
Edition July 2017

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

or

English

BS2000 OSD/BC V11.0
Executive Macros

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2017 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U3291-J-Z125-16-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17

S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0
\1

60
38

05
_

m
ak

_a
t\b

h
b\

en
\m

a
kr

o.
iv

z

Contents

1 Preface . 9

1.1 Objectives and target groups of this manual . 9

1.2 Summary of contents . 9

1.3 Changes since the last edition of the manual . 11

1.4 Notational conventions . 12

2 BS2000 Components . 13

3 Use of macros . 17

3.1 Macro processing by the assembler . 17

3.2 Syntactical representation of macro calls . 18

3.3 Use of registers . 23

3.4 Return information and error flags (return codes) 23

3.5 Macro expansion . 27

3.6 Types of macro . 28
3.6.1 O-type macros . 28
3.6.2 R-type macros . 28
3.6.3 S-type macros . 29

3.7 Standard header . 43

3.8 Macro Command Language Processor macros 45

Contents

 U3291-J-Z125-16-76

4 Application areas and brief descriptions . 47

4.1 Linking and loading . 47

4.2 Virtual address space . 49
4.2.1 Structure of virtual address space . 49
4.2.2 Address conversion . 53
4.2.3 Working with virtual memory . 55
4.2.4 Common memory areas shared by several users (Memory pools) 55
4.2.5 Extended addressing with data spaces . 61

4.3 Task and program execution control . 72
4.3.1 Starting, interrupting and terminating . 72
4.3.2 User and job switches . 73
4.3.3 Intertask communication (ITC) . 76
4.3.4 (Task) serialization . 91
4.3.5 Eventing . 94
4.3.6 Contingency processes . 110
4.3.7 STXIT procedure with contingency processing . 131
4.3.8 Distributed Lock Manager (DLM) . 140
4.3.8.1 Structure of a DLM lock . 141
4.3.8.2 Functions of the DLM . 145
4.3.8.3 Synchronous and asynchronous lock requests 149
4.3.8.4 Lock name . 152
4.3.8.5 Cluster systems and single systems . 153

4.4 Requesting and accessing lists and tables . 155

4.5 Input/output . 156
4.5.1 System files . 156
4.5.2 Files and records . 159
4.5.3 Data terminal communication . 160
4.5.4 Messages . 161
4.5.5 Encryption . 161

4.6 Debugging aids . 162

4.7 Checkpoints . 162

4.8 Accounting . 162

4.9 Communication (programs, users, system) . 163

4.10 Multiprocessor systems . 164

4.11 XS programming . 164

4.12 Job scheduler . 165

4.13 Macros generating only CSECTs or DSECTs 166

Contents

U3291-J-Z125-16-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17

S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0
\1

60
38

05
_

m
ak

_a
t\b

h
b\

en
\m

a
kr

o.
iv

z

5 Description of the macros . 167

AINF – Measure resource utilization . 168
ALESRV – Connect task with/disconnect task from data space 194
ALINF – Request information on access lists . 198
AMODE31 – Query addressing mode . 201
ARDS – Generate accounting records . 202
AREC – Write user accounting record . 205
ASHARE – Load user's shared code into common memory pools 210
ASPC – Enter memory allocation . 222
AUDIT – Control audit mode . 224
BIND – Link and load load unit . 233
BKPT – Set breakpoint; interrupt current program 274
CALL – Load segments . 276
CDUMP2 – Generate user, system or area dump 278
CHKEI – Check event item . 294
CHKPRV – Check system privileges . 297
CHKSI – Check serialization item . 300
CLCOM – Terminate intertask communication . 304
CMD – Call command . 306
CONTXT – Access process data . 324
CRYPT – Word encryption . 340
CSTAT – Change page status . 348
CSTMP – Set read/write access for memory pool 352
CTIME – Time stamp calculations . 357
CUPAB – Address operand list (24-bit interface) . 378
DCSTA – Generate operand table for terminal attributes 382
DELFEI – Delete SOLSIG or POSSIG entry . 399
DEQAR – Dequeue access request . 400
DISCO – Disable contingency definition . 405
DISEI – Disable event item . 408
DISMP – Disable memory pool . 411
DISSI – Disable serialization item . 415
DJINF – Create DSECT or data list for JINF macro 419
DJSI – Create DSECTs or data areas for job scheduler macros (24-bit interface) . . . 422
DJSIPL – Create DSECTs or data areas for job scheduler macros (31-bit interface) . 424
DPOFEI – Create POSSIG entry . 426
DSHARE – Unload user's shared code from common memory pool 432
DSOFEI – Create SOLSIG entry . 435
DSPSRV – Control a data space . 440
DTMODE – Create DSECT or data list for TMODE macro 449
ENACO – Enable contingency definition . 452
ENAEI – Enable event item . 455
ENAMP – Enable memory pool . 459

Contents

 U3291-J-Z125-16-76

ENASI – Enable serialization item . 469
ENQAR – Enqueue access request . 473
ENTER – Initiate ENTER job . 478
ETABIT – Generate or change entry for symbol table 497
ETABLE – Transfer load information . 500
EXIT – Terminate STXIT process/routine . 508
GCCSN – Display CCS name for command and data input 511
GEPRT – Get program time . 517
GETPRGV – Get program version . 521
GPARMOD – Control macro expansion . 524
GTIME – Get date and time . 526
ILEMGT – Management of Indirect Linkage Entries (ILEs) 539
ILEMIT – Generate or update a list entry for an ILE list 545
IOSID – Request operating system identification and version 548
JINF – Request job information . 551
JMGDJP – Create DSECT or data area for JMGJPAR macro 556
JMGJPAR – Request job parameters . 557
JOBINFO – Request job information . 559
JSATTCH – Attach job scheduler to Job Management System 563
JSDETCH – Detach job scheduler from Job Management System 566
JSEXPCT – Request JSS events . 568
JSINFO – Access STREAM-PARAMETER values 572
JSRUNJB – Transfer job to start . 574
JSWAKE – Initiate timer event for job scheduler 577
LDSLICE – Load slice . 579
LEVCO – Modify priority level of contingency process 584
LGOFF – Terminate job . 587
LKCAN – Cancel lock request . 590
LKCVT – Convert lock request . 593
LKDEQ – Release lock request . 601
LKENQ – Generate lock . 605
LKEQU – Generate DLM-specific layouts . 615
LKINF – Output information on locks . 618
LKLSB – Generate Lock Status Block layout . 623
LPOV – Load segment . 625
MINF – Output memory map for class 6 memory or memory pool 629
MSG7X – Output message . 636
MSGRC – Output return codes . 653
MSGSHOW – Output information about system- or task-specific message files . . . 656
MSGSINIT – Lock message file or add message file to message system 660
MSGSMOD – Lock message files or add message files 662
NKDINF – Output data on (peripheral) configuration 667
NKGTYPE – Output device information . 690
NSIINF – Output system information . 702

Contents

U3291-J-Z125-16-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17

S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0
\1

60
38

05
_

m
ak

_a
t\b

h
b\

en
\m

a
kr

o.
iv

z

NSIOPT – Output system parameters . 710
OPCOM – Open communication . 717
OPSGEN – Control of S variable generation via MIP 719
PASS – Wait one second . 722
PINF – Output global program information . 724
POSSIG – Post signal request . 736
RDATA – Read record from SYSDTA . 745
RDUID – Read user ID . 758
RELBF – Release receive queue . 760
RELM – Release memory . 761
RELMP – Release pages in memory pool . 764
REQM – Request memory . 770
REQMP – Request pages in memory pool . 774
RETCO – Return from contingency process . 780
RETRN – Load return with register . 781
REVNT – Receive event . 783
RPOFEI – Send POSSIG signal . 789
RSOFEI – Request POSSIG signal (event) . 791
SAVE – Save register contents . 793
SEGLD – Load segments . 797
SELPRGV – Select program version . 799
SETBF – Set buffer size for dialog communication 802
SETIC – Set interval timer . 804
SEVNT – Send event . 808
SHOWMP – Output memory pools . 810
SOLSIG – Solicit signal request . 824
SRMUINF – Read user information from user catalog 833
STAMCE – Read MRSCAT entries . 847
STXIT – Specify interrupt event address . 883
SUSPEND – Suspend task . 895
SWITCH – Set and query job and user switches . 897
SYSFL – Reassign system files . 908
SYSTA – Output information on system file and TASKLIB assignment 921
TCHNG – Modify terminal characteristics . 924
TERM – Terminate program and procedure step 928
TINF – Read or modify task attributes . 932
TMODE – Interrogate job attributes . 940
TSPRIO – Output run priorities . 946
TSTAT – Interrogate terminal attributes . 947
TYPIO – Write message to console . 957
UNBIND – Unload and unlink objects . 961
VMGINF – Output information on VM2000 operation 972
VPASS – Variable-length pass . 977
VSVI1 – Output link and load information . 979

Contents

 U3291-J-Z125-16-76

VTCSET – Define logical control characters . 1005
VTSUCB – Create VTSU parameters for input/output 1037
WRCPT – Write checkpoint . 1057
WRLST – Write record to SYSLST . 1063
WROUT – Write record to SYSOUT . 1067
WRTRD – Combined input/output . 1085

6 Appendix . 1111

6.1 Macros supported only for compatibility . 1112
CDUMP – Output user, system or area dump . 1112
GETSW – Get switch . 1121
GETUS – Get user switch . 1122
HSITYPE – Output information about current HSI 1124
MRSINF – Request MSCF information . 1126
MRSSTA – Display MSCF status . 1130
MSG7 – Output message . 1133
SETSW – Set job switch . 1143
SETUS – Set user switch . 1145
SINF – Output system information . 1147
TABLE – Transfer load information . 1151

6.2 Macros in alphabetical order . 1156

6.3 Macros arranged according to SVC number . 1162

6.4 Other macros in BS2000 OSD/BC . 1164

6.5 Standardized function key codes . 1167

Abbreviations . 1169

Related publications . 1173

Index . 1179

U3291-J-Z125-16-76 9

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

1

1 Preface

The present manual deals with all the macros which the user can issue to the BS2000
Executive and system services, and also describes the macros for terminal access.

1.1 Objectives and target groups of this manual

The manual addresses all BS2000 assembly language programmers.

The user should be familiar with the Assembler language and the use of macros. The
“Assembler Instructions (BS2000)” manual [1] and “ASSEMBH” reference manual [2] can
be used for this purpose. The present manual summarizes the most important information
on the use of macros (chapter “Use of macros” on page 17).

The user should also have practical experience of BS2000. Appropriate information is
provided in the “Introduction to System Administration” manual [10].

1.2 Summary of contents

The chapter “BS2000 Components” describes how the executive is embedded in the
components of BS2000. It also explains the differences between job, task and process.

The basic syntax required to create a macro is described in the chapter “Use of macros”.

The chapter “Application areas and brief descriptions” lists the task areas for which macros
are described in this manual.
The macros are divided into groups on the basis of their functions, which are explained in
a brief description. Wherever required, the application of a functional group, i.e. the
interaction of several macros, is described in greater detail.

The chapter “Description of the macros” describes all Executive macros and a selection of
macros for other components in alphabetical order.
The DSECT of the macro is shown in some cases to aid understanding. Short program
examples supplement the descriptions.

Summary of contents Preface

10 U3291-J-Z125-16-76

A macro described here can be looked up:

● alphabetically, via its name (running titles, table of contents, index and appendix,
page 1156);

● via its function (table of contents and page 47);

● via its SVC number (appendix, page 1162).

The appendix describes macros supported only for reasons of compatibility. It then lists all
the macros followed by a table of function key codes.

At the end of the manual you will find a number of chapters containing lists that will make it
easier for you to work with the manual.

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface Changes since the last edition of the manual

U3291-J-Z125-16-76 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

1

1.3 Changes since the last edition of the manual

The amendments to BS2000 OSD/BC V11.0 have been introduced.

Macros for subsystems with separate version numbers are described for the following
versions: BLSSERV V2.8A, TIAM V13.2A, VTSU V13.3A, see page 167.

Further important amendments

Macro Amendments

SHOWMP New macro outputting data on Memory Pools

NDGUINF The macro is obsolete (Global Storage is no longer supported). Its description has
been removed from this manual.

Notational conventions Preface

12 U3291-J-Z125-16-76

1.4 Notational conventions

The following abbreviated names are used in this manual:

● BS2000 servers for the servers with /390 architecture and the servers with x86
architecture.
These servers are operated with the corresponding BS2000 operating system.

● /390 servers for the Server Unit /390 of the Fujitsu Server BS2000 SE Series and the
Business Servers of the S Series

● x86 servers for the Server Unit x86 of the Fujitsu Server BS2000 SE Series

● SE servers for the Business Servers of the SE Series (Server Units /390 and x86)

● S servers for the Business Servers of the S Series (/390 architecture)

In the examples the strings <date>, <time> and <ver> specify the current outputs for date,
time and version when the examples are otherwise independent of the date, time and
version.

The following typographical elements are used in this manual:

MACRO Names of macros are highlighted in bold in running text

input Inputs in examples are shown in bold typewriter font

Output DSECTS, compiler lists or outputs in examples are shown in typewriter font

i For notes on particularly important information

References to other publications within the text are given in abbreviated form followed by
numbers; the full titles are listed in the “References” section at the back of this manual.

U3291-J-Z125-16-76 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

2

2 BS2000 Components

The BS2000 operating system comprises two main groups, a central system and the user
programs (e.g. language processors, file editors and utility routines).

The central system can be controlled by the user via the command language or the macros
of the operating system BS2000.

The central system consists of the following components:

– Executive
– Data Communication Methods (DCM)
– Data Management System (DMS)
– System services

Figure 1: Components of BS2000

B S 2 0 0 0

Central system User programs

Executive

Language processors

Data Communication Methods

Data Management System

Utility routines

System services

BS2000 components

14 U3291-J-Z125-16-76

The Executive contains the central control routines of the operating system; it performs the
following functions:

– controlling the execution of all jobs; e.g. all interactive, batch and SPOOL jobs
– management of virtual memory and real memory
– syntactical analysis of commands
– execution of spooling operations
– input from and output to operator consoles
– system resource accounting

BS2000 Executive macros enable program-specific use of the central control routines. This
manual describes all the Executive macros.

The Data Communication Methods (DCM) perform the following functions:

– Data transfer between program and terminals or other programs.
– Management of the associated resources.

BS2000 macro calls to the communication access system control, among other things,
operation of data display terminals. Of the macros for the communication access system,
the use of the terminal access macros is explained in this manual. The “TIAM” manual [16]
describes the functional scope of these macros. Other macros are described in the “DCAM”
manual [15].

The Data Management System (DMS) includes routines supporting the following
functions:

– File management (catalogs, stores, retrieves and deletes files
– Support of file access methods
– Input/output on peripheral devices (excluding consoles and terminals)

BS2000 Data Management System macros are provided for file, volume and device
handling. Data Management System macros are described in the “DMS Macros”
manual [7].

The System services include additional functions of the Control System, e.g.

– Advanced Interactive Debugger (AID)
– Dynamic Binder Loader (DBL)
– Linkage editor (BINDER)

The BS2000 Interactive Debugging Aid macros are used for error recovery in loaded
programs, as this system function is capable of monitoring programs as well as affecting
program execution.
In addition to the Executive macros, this manual describes all system service macros.

 BS2000 components

U3291-J-Z125-16-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

2

Jobs, tasks and processes

The concepts of job, task and process each have a specific meaning in BS2000.
Each of these terms is used to describe particular combinations of status and activity for a
unit of work which has been submitted to the operating system.

Job: A sequence of commands, instructions and data which is contained between
the SET-LOGON-PARAMETERS and EXIT-JOB commands. There is a
difference between batch jobs and interactive jobs. In a batch job, the sequence
of commands, instructions and data is read from a file; in an interactive job, this
sequence is input interactively via the data display terminal. Job management
assigns a job class to the job, and puts it into the appropriate job queue. When
it enters the system, the job is given a job number (called the task sequence
number, or TSN) by which it can be addressed during the time it remains in the
system.

Task: From the viewpoint of the operating system, a job becomes a task once system
resources (CPU, memory, devices) are assigned to it. The task is controlled by
task management, and a task control block (TCB) is created for it.

Process: The activities which are executed at program or module level within a task are
referred to as the processes of the task. Each process has a process control
block (PCB), which is used to record the exact state of a program if it is
interrupted. The processes in a task are coordinated using the task control
block.

/SET-LOGON-PARAMETERS

:

Sequence of commands,
instructions and data

:

/EXIT-JOB

Job

BS2000 components

16 U3291-J-Z125-16-76

The diagram below will clarify the relationship between the concepts of job, task and
process:

Figure 2: Jobs, tasks and processes

Job User
level

/SET-LOGON-PARAMETERS /EXIT-JOB

- -

..

Process Operating
system

Task level

U3291-J-Z125-16-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

3 Use of macros

3.1 Macro processing by the assembler

A macro is a statement in a source program. It consists of a mnemonic operation code
(macro name) specifying the particular function to be performed, which may be followed by
values in the form of operands that supply information required for the execution of the
macro, or give more details on the function to be performed (e.g. EXIT CONTINU=YES).
The operands that may or must be specified are discussed in the “Description of the
macros” on page 167.

Like every other source program statement, a macro is processed by the assembler at
assembly time. Macro processing results in the source program macro being replaced by
the macro expansion. A macro expansion consists of a sequence of instructions and
assembly statements which together perform the function specified by the macro. When
reference is made to statements generated by a macro, the macro expansion is meant.

The macro expansion is generated by the assembler via the macro definition. Every macro
requires a macro definition. Macros can therefore be issued only if there is a corresponding
macro definition. Macro definitions can be written by the user (see the “ASSEMBH” manual
[2]) or are supplied to the user as part of the operating system (such as those definitions
whose macros are dealt with in the present manual). All available macro definitions are
included in the macro library. A macro definition is the original specification that the
assembler uses to generate the macro expansion.

The macro definition is modified by the operand specifications in the macro call, and current
values are loaded.

The source program, in which all macros are replaced by their macro expansions, is then
assembled into machine language. The macro expansions are included in the assembly
listing, unless they are suppressed by the PRINT NOGEN assembly statement (see the
“ASSEMBH” manual [2]). The function requested by the macro is not performed until the
program is executed.

A macro can be defined as the function which is implemented through the interaction of
macro and macro definition.

Syntactical representation of macro calls Use of macros

18 U3291-J-Z125-16-76

3.2 Syntactical representation of macro calls

Format of a macro call

The macro format comprises two areas.
The upper area contains the optional name field and the macro name.
The lower area contains the possible operands.

An entry in the name field is permitted; the name specified is the symbolic address of the
first statement in the macro expansion. The user may use this address, for example, as a
branch address or as a halt point when using the Interactive Debugging Aid.
The call formats in the present manual generally omit the name field except in cases where
a specification in a name field is of special significance. An example would be a macro of
type S in L form (see page 30): The symbolic address specified in the name field is required
for linking the data area with the instruction part of the macro (E form). Further examples
are the ARDS, CUPAB, DCSTA and TMODE macros, where the default name of the
generated dummy section may be replaced by the specification in the name field. Such
macro formats also comprise the name field.

The macro name identifies the required macro. The dollar sign '$' is not used as the first
character in user macros, because it is reserved for privileged macros.

The operand field may contain any number of operands, separated by commas, but it may
also remain empty. The type and number of operands that may or must be specified is
defined in the format description of each macro.

When calling a macro in an Assembler program, the name field, macro name and first
operand must be separated by at least one space. Multiple operands must be separated by
commas.

Format errors that are detected by the Assembler when the macros are being processed
are included in the Assembler listing as MNOTE messages (see section “Macro language”
in the “ASSEMBH” manual [2]).

[name] macro name

<operand1>

,<operand2>

Use of macros Syntactical representation of macro calls

U3291-J-Z125-16-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

Operand forms

Positional operands

Positional operands must be written in a specific order as they are interpreted by the
Assembler on the basis of their position in the operand field.
Example: MACRO A,B,C

If the second operand (B) is deleted, the user must supply the second comma (immediately
after the first comma) so as to maintain the proper position for the third operand (C):
MACRO A,,C

However, if the last positional operands are omitted, the delimiting commas need not be
written. For example, if the operands B and C are omitted in the present example, the macro
could be written as follows: MACRO A

Keyword operands

The keyword associated with a given keyword operand uniquely identifies that operand to
the Assembler. Therefore, these operands can be written in any order. An operand value
which originates from a defined set of allowed values is assigned to an operand by an
equals sign.
Keyword operands have the following format: <keyword>=<desired value>
Example: MACRO AREA=X,LENGTH=100

Mixed operands

An operand field may contain a combination of positional and keyword operands; however,
all positional operands must precede all keyword operands.
Example: MAKRO A,B,C,AREA=X,LENGTH=100

The rules for positional operand and keyword operand omissions also apply to mixed
operand fields. Thus, if the operands B, C and AREA are omitted, the above example
appears as: MAKRO A,LENGTH=100

Operand sublists

A sublist consists of one or more positional operands, each separated by commas.
The entire list must be enclosed in parentheses, and is considered to be one operand in
that it occupies a single position in the operand field or is associated with a single keyword.
The contents of the sublist are processed similarly to positional operands.
Example: (A,B,C) or (A)
In the second example, the sublist consists of only one operand. In this case, the enclosing
parentheses must still be written, even though there is only one element in the sublist, as
otherwise it will not be recognized as a sublist.

Syntactical representation of macro calls Use of macros

20 U3291-J-Z125-16-76

Metasyntax

In the macro format, specific characters (metacharacters) and conventions are used; an
overview is given in the following description.

Appears as Meaning Example

UPPERCASE
LETTERS

Uppercase letters denote keywords or constants and
must be entered by the user exactly as shown. Keywords
must begin with * if both keywords and names or
constants and variables can be specified as alternatives.

DIB

FORCED=*YES

UPPERCASE
LETTERS
in boldface

Uppercase letters printed in boldface denote allowed
abbreviations of keywords.

GLOBAL=YES
The user must enter
GLOBAL=YES oder
GLOBAL=Y

lowercase
letters

Lowercase letters denote data types of values, which can
be specified by the user, or variables which, on entry,
must be replaced by current values.

DIB=<var: pointer>

FILE filename

< > Angle brackets denote variables whose allowed values
are described by the data types.

<var: pointer>

Braces enclose alternatives, i.e. one entry must be
selected from the specifications enclosed.
Exception: default values.

The user must enter
TAPE=YES or
TAPE=NO

/ The slash denotes a choice between alternatives; it has
the same function as braces.

FORCED=*NO/*YES
The user must enter
FORCED=*NO or
FORCED=*YES

underlining Underlining denotes the default value of an operand,
which is the value the system assumes if the user makes
no entry (= system preset).
If an operand has no default value, specification of an
operand is mandatory.

FORCED=*NO/*YES
The user must enter
FORCED=*NO or
FORCED=*YES
(no specification implies
FORCED=*NO)

[] Square brackets enclose options, i.e. the entries may be
deleted. When a comma is enclosed between square
brackets in optional entries, it need only be written if the
option is used. When it is outside the brackets it must be
specified even if the option is not used (round brackets
must be entered).

filename[,ERASE]
The user must enter, for
instance,
FILE,ERASE or
FILE or
XYZ,ERASE etc.

Table 1: Macro syntax

TAPE= YES

NO

Use of macros Syntactical representation of macro calls

U3291-J-Z125-16-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

list-
poss(n)

A list can be formed from the operand values following
list-poss. n specifies the maximum number of list
elements. If the list contains more than one element it
must be enclosed in round brackets.

FLAG=list-poss(3):
*SLI/*SKIP/*DC
The user must enter
FLAG=*SKIP
FLAG=(*SLI,*DC)

... Ellipses denote repetition, i.e. the preceding syntactical
unit may be specified one or more times in succession.

(filename,...)
The user must enter
FILE or
(FILE,XYZ) or
(FILE1,FILE2,FILE3)
etc.

Ë This character denotes a blank (X'40') STDË
The user must enter
'STD '
(without inverted
commas)

= The equals sign links the operand name to the operand
values associated with it.

DATA=<var:pointer>

Appears as Meaning Example

Table 1: Macro syntax

Syntactical representation of macro calls Use of macros

22 U3291-J-Z125-16-76

Data types of the operand values

Suffixes to data types

The operand values can be entered directly as a character string or integer (see data types
c-string and integer) or indirectly via a variable (see data type var:). The following table
contains the data types that are possible for variables.

Data types of variables

Data type Character set Remarks

c-string EBCDIC characters must be enclosed in inverted
commas

integer [+-] 0..2147483647 is a decimal number

var: precedes specification of a variable.
The type of variable follows the colon
(see table “Data types of variables”.)

<var: var-type>

reg: Register 0..15 (<reg: var-type>)

Suffix Meaning

n..m for the integer data type, n..m means an interval is specified;
n: minimum value
m: maximum value

for the c-string data type, n..m means a length specified in bytes;
n: minimum length
m: maximum length
with n < m

n in the c-string data type, n means a length specified in bytes;
n must be the exact number

Data type Description Definition in
the program

char: n The variable is a character string of n characters. If no length is
specified, it is assumed that n = 1.

CLn

int: n The variable is an integer that occupies n bytes.
If no length is specified, it is assumed that n = 1.
Condition: n Î 4

FLn

enum-of E: n The variable is the enumeration of E, which occupies n bytes. If
no length is specified, it assumed that n = 1 (n Î 4).

XLn

pointer The variable is an address or an address value. A

Use of macros Use of registers

U3291-J-Z125-16-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

3.3 Use of registers

Wherever mentioned in the text of this manual, registers are referred to as R0, R1, This
serves to distinguish references to registers from other numerical references; it is also a
way of referring to registers frequently used in programs.

The Control System macros use general registers R0, R1 and R15; in addition, R13 and
R14 are used by the SAVE and RETRN macros.

Registers R0 and R1 contain either operands or the address of operands in the macro.

Register R14 is sometimes used as the return register. It contains the address of the next
instruction in the user program following the macro.

After the execution of a number of macros, register R1 contains the address of the data
area rather than its original contents.

Register R15 contains the error flag (return code). If an error occurs during the execution
of a macro, information on the execution is stored in the rightmost byte of register R15,
before control is returned to the user program. Newer macros either do not use register R15
or only use it as an additional way of storing the return code. In these cases, a field for
storing the return code is reserved in the standard header (see page 43).

3.4 Return information and error flags (return codes)

Return information

The transfer of information to the calling program is an integral part of the function of a
number of macros. This information is sometimes stored in register R1 or transferred to a
program area whose address is specified in the macro. The mode of transfer of such
information is indicated in the description of the relevant macro.

Error flags (return codes)

After a macro has been executed, the calling program is informed of the successful or
unsuccessful result of the macro. This is effected by transferring a return code.
Depending on the relevant macro interface, the return code may be transferred either in
register R15 or in the standard header. Some macros allow a combination of these two
cases.

Return information and error flags (return codes) Use of macros

24 U3291-J-Z125-16-76

1. Transferring the return code in the standard header

The main code is transferred in the two rightmost bytes. It identifies the result of the
function execution. Subcode 1 is used for error classification. Subcode 2 subdivides the
error into error classes or contains additional diagnostic information. All parts of the return
code are specified in hexadecimal notation. For information on the structure and contents
of the standard header, see page 43.

2. Transferring the return code in register R15

The primary return code is transferred in the rightmost byte of register R15. It indicates
whether or not the function was executed successfully.
If no error occurred during execution, the rightmost byte contains the code X'00'. If an error
occurred during the execution of a macro, the Executive places an error flag in the form of
a different hexadecimal code in this byte (the three leftmost bytes each contain X'00'
provided that nothing else has been specified explicitly).
In some cases, the information provided by the primary return code is supplemented by a
secondary return code in the leftmost byte of register R15. This code provides more
detailed information on the cause of the error. The secondary return code, too, is specified
in hexadecimal notation. It is the user's responsibility to analyze this code and to take
proper action.
The return code values and their meaning are given under “Return information and error
flags” in each macro description.

If the code values of the primary return code are given with an increment of X'04' and a
guaranteed maximum value is defined, the return code can be processed using a branch
table (consisting of 4-byte branch instructions).
The return codes of many macros do not have such a fixed structure. Such return codes
must be processed with explicit queries (compare instructions).

An example follows for each of these two types of processing.

(Part of
standard
header)

aaaa = main code
bb = subcode1
cc = subcode2

c c b b a a a a

R15: aa = primary return code
bb = secondary return codeb b a a

Use of macros Return information and error flags (return codes)

U3291-J-Z125-16-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

Return code of the OPCOM macro

Example of return code processing with a branch table

RCTAB START
PRINT NOGEN
BALR 3,0
USING *,3

* :
OPCOM ITCNAME * Declare ITC participation

1 *,MACRO: OPCOM, VERSION: VER041
B RS00(15)

CONTINUE EQU *
* :
END TERM
RS00 B CONTINUE * R15=00: No error handling

B OPERR * R15=04
B NAMEERR * R15=08
B MEMERR * R15=0C

EXIST NOP EXIST * R15=10:
* EXISTING ITC PARTICIPATION handling

B END
OPERR NOP OPERR * OPERAND ERROR handling

B END
NAMEERR NOP NAMEERR * DUPLICATE NAME handling

B END
MEMERR NOP MEMERR * MEMORY ERROR handling

B END
END

X'aa' Meaning

X'00' ITC participation has been started.

X'04' Error in operand specification. ITC participation has not been started.

X'08' ITC name is already assigned. ITC participation is not started.

X'0C' No system memory available for starting ITC or the system-internal size for
receive queues is exceeded. ITC participation is not started.

X'10' ITC participation has already been declared.

Return information and error flags (return codes) Use of macros

26 U3291-J-Z125-16-76

Example of return code processing with explicit query

RCEXPL START
PRINT NOGEN
BALR 3,0
USING *,3

* :
OPCOM ITCNAME * Declare ITC participation

1 *,MACRO: OPCOM, VERSION: VER041
LTR 15,15
BZ CONTINUE * R15 = X'00'
C 15,=F'4'
BE OPERR * R15 = X'04'
C 15,=F'8'
BE NAMEERR * R15 = X'08'
C 15,=F'12'
BE MEMERR * R15 = X'0C'
C 15,=F'16'
BE EXIST * R15 = X'10'

* : ***
* : * Handling of other return codes
* : ***
CONTINUE EQU *
* :
END TERM
*
OPERR NOP OPERR * OPERAND ERROR handling

B END
NAMEERR NOP NAMEERR * DUPLICATE NAME handling

B END
MEMERR NOP MEMERR * MEMORY ERROR handling

B END
EXIST NOP EXIST * EXISTING ITC PARTICIPATION handling

B END
* :

END

Use of macros Macro expansion

U3291-J-Z125-16-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

3.5 Macro expansion

Macros are implemented by supervisor calls (SVCs). In a few cases, the CALL macro for
instance, the macro expansion contains no SVC. The supervisor call causes an SVC
interrupt which activates the interrupt analysis. With the aid of an SVC index table the
interrupt analysis determines the program module associated with the relevant macro. The
validation of parameter values and the transfer to the calling program of information on any
errors or on the processing status are controlled by the program module itself.

Figure 3: Flow diagram of SVC processing

Types of macro Use of macros

28 U3291-J-Z125-16-76

3.6 Types of macro

To avoid any confusion it should be noted that the term “macro type” is not intended to
differentiate the concepts of “action macro” and “definition macro”, which relate to the
function of a macro:

An action macro is a macro that is expected to perform specific actions. The AREC macro,
for example, is used to write a user acoounting record (see page 205).

A definition macro is a macro that is expected to supply definitions (addressing aids,
DSECTS) rather than to perform actions. The CUPAB macro (page 378), for example, is
used to generate symbolic names for the purpose of addressing operand tables.

The type classification of macros relates to the mode of operand transfer. There are
R-type macros (operand transfer via registers), S-type macros (operand transfer via
storage) and O-type macros (macros not classified under any type).
S-type macros can be either action macros (with operand MF=E) or definition macros (with
operand MF=D).

3.6.1 O-type macros

There are a number of macros that cannot be classified as either type R or type S. They
are simply referred to as “other macros” and are specified as O-type macros in the macro
descriptions.

Examples of O-type macros are macros with an operand field allowing the specification of
one register (frequently R1) that contains the start address of a parameter area.

The parameter area is defined in the data section of the program (DC statements) and
contains the operand values.

3.6.2 R-type macros

A macro is of type R if all required operand values can be loaded into registers R0 and R1,
which are provided for this purpose. An R-type macro does not therefore generate a
parameter area.

MACRO

operand1 / (r1)

,operand2 / (r2)

Use of macros Types of macro

U3291-J-Z125-16-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

Not all macros use both registers (e.g. the DELFEI and RSOFEI macros). The parameters
may be specified directly as operands of the macro or may be contained in registers R0 and
R1.

If operand1 and operand2 are specified, macro expansion causes the specified values to be
loaded into registers R0 and R1.
If the registers are specified, the values of the operands operand1 and operand2 must have
been loaded into registers R1 and R0 before the macro is called. This procedure is referred
to as “register notation”.

Address operands in R-type macros can always be written as explicit or implicit addresses,
i.e. in the form: base, index, displacement.
If the macro has only one optional operand, then any comment desired must be preceded
by a “,” (comma).

Example: CLCOM ,comment

3.6.3 S-type macros

Operand values specified in S-type macros are transferred to the functional module in the
form of a data area. The data area is part of the macro expansion. It contains the data
definitions and storage definitions (DC and DS statements) required for transferring the
operand values.

S-type macros support specification of the MF operand (see page 31). There are various
ways of specifying this operand, depending on the functionality of the different macros.
There are three MF formats:

Detailed diagrams of all three MF formats are given below, followed by a description of the
operands and operand values.
Examples of macros in the S, D, E, M and L form are given on page 35.
The different forms are described on page 31.

MF format for Special features

MF format 1 Macros with 24-bit interface:
return code in register R15
Macros with 31-bit interface:
return code in register R15 or (if available) in
standard header

MF=S is the presetting (default
format) for the MF operand.

MF format 2 Macros with 31-bit interface:
return code in standard header

MF format 3 Macros with 31-bit interface:
return code in standard header

There is no particular presetting
for the MF operand.

Table 2: MF formats for the S-type macros

Types of macro Use of macros

30 U3291-J-Z125-16-76

MF format 1

The default format MF=S may not be specified explicitly for most macros in MF format 1.
Any exceptions are indicated in the description of the macro (see also the operand
description for MF=S, page 31).
With the 24-bit interface, prefix notation (e.g. (C,pre)) may not be used for the C/D/L form.
Any exceptions are indicated in the description of the macro involved.

MF format 2

[opaddr] MACRO

[opaddr] MACRO

[MF=S] [,op1,...,opn]

MF= L

(L,pre)

MF= D

(D,pre)

MF= (C,pre)

C

MF=(E, addr

(r)

)

[,PARMOD=24 / 31]

[MF=S] [,op1,...,opn]

MF=L [,op1,...,opn][,PREFIX=p]

MF=M,op1,...,opn[,PREFIX=p][,MACID=mac]
[,PARAM=addr / (r) / <var: pointer> / <reg: pointer>]

MF=D[,PREFIX=p]

MF=C[,PREFIX=p][,MACID=mac]

MF=E[,PARAM=addr / (r) / <var: pointer> / (<reg: pointer>)]

Use of macros Types of macro

U3291-J-Z125-16-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

MF format 3

opaddr
Assembler name: If MF=L, identifies the address of the data area, otherwise optional.
opadr can be used to address the data area with MF=(E,adr) or MF=M,PARAM=.

op1,...,opn
represent functional operands to be specified.

PARMOD=
controls macro expansion. Either the 24-bit or the 31-bit interface is generated.

24
The 24-bit interface is generated. Data areas and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data areas and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data areas start with the standard header.

MF=
determines the type of macro generation. Seven forms of macro can be distinguished,
depending on the value specified for the MF operand:

S (default form: presetting for MF formats 1 and 2):
This operand value may not be specified in format 3.
MF=S may not be specified explicitly for most macros in MF format 1, i.e. the default
form is selected by omitting the MF operand. MF=S is not included in the macro format
for these macros. MF=S is included in the description of the call format for macros that
allow MF=S to be specified explicitly.
First the instruction part is generated and then the data area, taking the operand values
specified in the macro into account. The data area contains no field names and no
explanatory equates. Initialization values are entered in the standard header.

[opaddr] MACRO

MF=L [,op1,...,opn][,PREFIX=p]

MF=M,op1,...,opn[,PREFIX=p][,MACID=mac]

MF=R,op1,...,opn[,PREFIX=p][,MACID=mac]

MF=D[,PREFIX=p]

MF=C[,PREFIX=p][MACID=mac]

MF=E[,PARAM=addr / (r) / <var: pointer> / (<reg: pointer>)]

Types of macro Use of macros

32 U3291-J-Z125-16-76

C (C form)
Only the data area is generated. Each field is assigned a field name and explanatory
equates, if required. The data area ends with a length equate. Initialization values must
usually be entered in the standard header by the user.

(C,pre)
This specification is permitted only in format 1. The user can define the first characters
of the field names and equates by specifying a prefix pre.
pre = 1..4 characters.

C [,PREFIX=p][,MACID=mac]
This specification is permitted only in MF formats 2 and 3. The PREFIX operand allows
the user to define the first character of the field names and equates. p = 1 letter.
The MACID operand allows the user to define the second, third and fourth characters
of the field name and equates. mac = 1..3 characters.
No other operands are evaluated in the C form.

D (D form)
A DSECT is generated. Each field is assigned a field name and explanatory equates, if
required. The DSECT ends with a length equate. No switch to the initial location counter
is effected.
The DSECT describes the structure of a memory area but does not occupy any memory
space itself. The symbolic name specified with DSECT is entered in an ESD record
(External Symbol Dictionary record). The location counter is set to zero.

(D,pre)
This specification is permitted only in MF format 1. The user can define the first
characters of the field name and equates by specifying a prefix pre.
pre = 1..4 characters.

D [,PREFIX=p]
This specification is permitted only in MF formats 2 and 3. The user can define the first
character of the field names and equates by specifying a prefix p. p = 1 letter.
No other operands are evaluated in the D form.

L (L form)
Only the data area is generated, taking the operand values specified in the macro into
account. The data area contains no field names and no explanatory equates. The
initialization values are entered in the standard header. The macro is contained in the
definition section of the program. If it contains variable data, this form of macro must not
be written in the reentrant portion of the program when shared-code programming is
employed. The data area is initialized with constant values in the reentrant portion of
the program, copied to a data area specific to the program run before the E-form call
and modified there if necessary. Modification can be carried out, for example, with the
M form, if it is available for the interface involved.

Use of macros Types of macro

U3291-J-Z125-16-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

E (E form)
Only the instructions required for calling the functional module are generated. The
instruction part usually ends with an SVC. The macro must indicate the address of the
data area containing the operand values.

(E,addr) / (E,(r))
This specification is permitted only in MF format 1.
addr = Assembler name (address of the data area).
r = register containing the address of the data area. The register must be loaded with
this address value before the macro is called.

E [,PARAM=adr / (r)]
E [,PARAM=<var: pointer> / (<reg: pointer>)]
The PARAM operand specifies the address of the data area. This specification is
permitted only in MF formats 2 and 3.
addr = Assembler name (address of the data area).
r = register containing the address of the data area. The register must be loaded with
this address value before the macro is called.
If no other specification is made, the default setting is: PARAM = (1)
No other operands are evaluated in the E form.

M (M form)
This operand value may be specified only in MF formats 2 and 3.
Instructions (e.g. MVCs) are generated which, while the program is running, use the
operand values which are specified in the macro to overwrite fields in a data area
already initialized with MF=L or, in the case of shared code programming, in a copy of
the data area initialized with MF=L local to the program run. This is how the M form
conveniently enables the operand values with which a macro is called to be
dynamically matched with the program run.
If MF=M is specified, no default values are accepted for functional operands, i.e. all
operands must be specified explicitly
Since the instructions generated with MF=M use the symbolic addresses and equates
of the C form or D form, it must be established when using the M form that these names
are available for addressing the data area to be modified. It is particularly important to
ensure that for a macro with MF=M any PREFIX and MACID operands are specified
with the same values as those in the associated MF=C or MF=D call.

M [,PREFIX=p][,MACID=mac]
The PREFIX operand allows the user to define the first character of the field names and
equates.
p = 1 letter.
The MACID operand allows the user to define the second, third and fourth characters
of the field name and equates.
mac = 1..3 characters.

Types of macro Use of macros

34 U3291-J-Z125-16-76

M [,PARAM=addr / (r)]
M [,PARAM=<var: pointer> / (<reg: pointer>)]
The PARAM operand specifies the address of the data area. This specification is
permitted only in MF format 2.
addr / <var: pointer> = Assembler name (address of the data area).
r / (<reg: pointer>) = register containing the address of the data area. The register must
be loaded with this address value before the macro is called.
Default setting: PARAM = (1)

R (R form)
This operand value may be specified only in MF format 3.
The operand values (of output parameters) specified by means of functional operands
are read from the data area and stored in variables of the application program.
Since the instructions generated for this purpose use the symbolic addresses and
equates of the C form or D form, it must be established when using the R form that these
names are available for addressing the data area to be modified. It is particularly
important to ensure that for a macro with MF=R any PREFIX and MACID operands are
specified with the same values as those in the associated MF=C or MF=D call.

R [,PREFIX=p][,MACID=mac]
The PREFIX operand allows the user to define the first character of the field names and
equates.
p = 1 letter.
The MACID operand allows the user to define the second, third and fourth characters
of the field names and equates.
mac = 1..3 characters.

Use of macros Types of macro

U3291-J-Z125-16-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

Example 1: RDATA macro (MF format 1) with S form (standard form)

RDATA1 START
LDBASE R3,0

1 *,MACRO: LDBASE, VERSION: VER021 021
1 ##BALR R3,0 020
2 BASR R3,0 012

USING *,R3
RDATA1 AMODE ANY
RDATA1 RMODE ANY

GPARMOD 31
1 *,MACRO: GPARMOD, VERSION: VER121

PRINT GEN
RDATA INAREA,STOP —— (1)

1 ##SPASS S0004S,S0004D A312
2 CNOP 0,4
2 BAS 1,S0004S ADDRESS AND SKIP PARAMS
1 S0004D DS 0F A340
1 FHDR UNIT=36,FUNCT=18,VERS=2
2 DS 0A
2 DS 0XL8 GENERAL OPERAND LIST HEADER
2 DC AL2(36) FUNCTION UNIT NUMBER
2 DC AL1(18) FUNCTION NUMBER
2 DC AL1(2) FUNCTION INTERFACE VERSION NUMBER
2 DC X'FFFFFFFF' Returncode is virgin
1 *
1 DC A(STOP) ERROR ADDRESS
1 DC AL4(INAREA) READ IN AREA ADDRESS
1 DS AL1(0) PLACE FOR I.EDIT BYTE 1
1 DS AL1(0) PLACE FOR I.EDIT BYTE 2
1 DC AL1(0) SYSDTA ASSIGNMENT
1 DC AL1(0) FLAG BYTE 1
1 DC AL2(L'INAREA) LENGTH OF READ
1 DC AL1(0) FLAG TABLE BYTE
1 DC AL1(0) ASSIGNMENT CHANGE INDICATOR
1 DC H'0' KEY-POSITION
1 DC H'0' KEY-LENGTH
1 DC AL4(0) VTSUCB ADDRESS
1 DC AL2(0) INPUT TIMER VALUE 009
1 DC H'0' RES_FOR_TIAM 007
1 *
1 @DCEI DCEDIT=,MODE=,IGETFC=,ICFD=, C
1 ITRSUP=,ILINEND=,IGETBS=, C
1 IMANUAL=,ILCASE=,IHDR=, C
1 IGETIC=,RDA1=-20,RDA2=-19
2 ORG *-20
2 DC AL1(0)
2 ORG *+20-1

Types of macro Use of macros

36 U3291-J-Z125-16-76

2 ORG *-19
2 DC AL1(0)
2 ORG *+19-1
2 *,@DCEI 999 921011 53531002
1 S0004S DS 0Y A340
1 SVC 39 SYSFILE SVC
1 *

PRINT NOGEN
STOP TERM

*
INAREA DS CL104
R3 EQU 3

END

(1) The standard form is the default setting for the RDATA macro and is selected by
omitting the MF operand. All operands required must be specified. The instruction
part and data area are generated.

Example 2: RDATA macro (MF format 1) with E and L form

RDATA2 START
LDBASE R3,0

1 *,MACRO: LDBASE, VERSION: VER021 021
1 ##BALR R3,0 020
2 BASR R3,0 012

USING *,R3
RDATA2 AMODE ANY
RDATA2 RMODE ANY

GPARMOD 31
1 *,MACRO: GPARMOD, VERSION: VER121

PRINT GEN
RDATA MF=(E,PARLIST) ——————————————————————————————————————— (1)

1 LA 1,PARLIST LOAD ADDR PARAM LIST INTO R1
1 SVC 39 SYSFILE SVC
1 *

PRINT NOGEN
STOP TERM
*
INAREA DS CL104

PRINT GEN
PARLIST RDATA INAREA,STOP,MF=L ————————————————————————————————————— (2)

1 S0007D DS 0F A340
1 PARLIST FHDR UNIT=36,FUNCT=18,VERS=2
2 DS 0A
2 PARLIST DS 0XL8 GENERAL OPERAND LIST HEADER

Use of macros Types of macro

U3291-J-Z125-16-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

2 DC AL2(36) FUNCTION UNIT NUMBER
2 DC AL1(18) FUNCTION NUMBER
2 DC AL1(2) FUNCTION INTERFACE VERSION NUMBER
2 DC X'FFFFFFFF' Returncode is virgin
1 *
1 DC A(STOP) ERROR ADDRESS
1 DC AL4(INAREA) READ IN AREA ADDRESS
1 DS AL1(0) PLACE FOR I.EDIT BYTE 1
1 DS AL1(0) PLACE FOR I.EDIT BYTE 2
1 DC AL1(0) SYSDTA ASSIGNMENT
1 DC AL1(0) FLAG BYTE 1
1 DC AL2(L'INAREA) LENGTH OF READ
1 DC AL1(0) FLAG TABLE BYTE
1 DC AL1(0) ASSIGNMENT CHANGE INDICATOR
1 DC H'0' KEY-POSITION
1 DC H'0' KEY-LENGTH
1 DC AL4(0) VTSUCB ADDRESS
1 DC AL2(0) INPUT TIMER VALUE 009
1 DC H'0' RES_FOR_TIAM 007
1 *
1 @DCEI DCEDIT=,MODE=,IGETFC=,ICFD=, C
1 ITRSUP=,ILINEND=,IGETBS=, C
1 IMANUAL=,ILCASE=,IHDR=, C
1 IGETIC=,RDA1=-20,RDA2=-19
2 ORG *-20
2 DC AL1(0)
2 ORG *+20-1
2 ORG *-19
2 DC AL1(0)
2 ORG *+19-1

2 *,@DCEI 999 921011 53531002
1 *

PRINT NOGEN
R3 EQU 3

END

(1) The E form of the macro generates the instruction part of the RDATA macro. The
data area with the desired operands starts at the symbolic address PARLIST.

(2) All desired operands are specified in the L form of the macro. The data area is
generated.

Types of macro Use of macros

38 U3291-J-Z125-16-76

Example 3: GTIME macro (MF format 3) with D, E, M and L form

GTIME START
PRINT NOGEN
BALR R3,0
USING *,R3

GTIME AMODE ANY
GTIME RMODE ANY

LA R5,GLIST ——— (1)
USING DGLIST,R5
LA R13,SAVE

*
E1 GTIME MF=E,PARAM=GLIST,LINKADR=*NONE ——————————————————————— (2)

MVC TEXT,='Date: ' ——————————————————————————————————————— (3)
MVC DATE,NTIGDTIC
WROUT OUTPUT,STOP

2 *,@DCEO 999 921011 53531004
CLEAR MVC DATE,=CL10' '
*
M GTIME MF=M,PARAM=GLIST,DAY=YES ————————————————————————————— (4)
*
E2 GTIME MF=E,PARAM=GLIST,LINKADR=*NONE ——————————————————————— (5)

MVC TEXT,='Day: ' ——————————————————————————————————————— (6)
MVC DAY,NTIGDYID
WROUT OUTPUT,STOP

2 *,@DCEO 999 921011 53531004
STOP TERM
*
OUTPUT DC Y(OUTPUTE-OUTPUT)

DC X'404001'
TEXT DS CL6
DATE DS CL10

ORG DATE
DAY DS CL2

ORG
OUTPUTE EQU *
SAVE DS 18F
GLIST GTIME MF=L,DATE=YES —— (7)

PRINT GEN
DGLIST GTIME MF=D ——— (8)

1 DGLIST MFTST MF=D,PREFIX=N,MACID=TIG,ALIGN=F, C
1 DMACID=TIG,SUPPORT=(E,D,C,M,L),DNAME=TIG_MDL
2 DGLIST DSECT ,
2 *,##### PREFIX=N, MACID=TIG #####
1 * subcodes
1 NTIGERROR_IN_CALL EQU 1 Error in Call
1 NTIGRNAP EQU 32 no Action possible
1 NTIGWARNING_SITUATION EQU 512 Warning Situation (SPL)

Use of macros Types of macro

U3291-J-Z125-16-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

1 NTIGRWCS EQU 2 Warning Situation (ASS)
1 *
1 * GTIME-Parameter-Area
1 NTIGFHDR FHDR MF=(C,NTIG),EQUATES=NO Standardheader
2 NTIGFHDR DS 0A
2 NTIGFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER

2 *
2 NTIGIFID DS 0A 0 INTERFACE IDENTIFIER
2 NTIGFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 NTIGFCT DS AL1 2 FUNCTION NUMBER
2 NTIGFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 NTIGRET DS 0A 4 GENERAL RETURN CODE
2 NTIGSRET DS 0AL2 4 SUB RETURN CODE
2 NTIGSR2 DS AL1 4 SUB RETURN CODE 2
2 NTIGSR1 DS AL1 5 SUB RETURN CODE 1
2 NTIGMRET DS 0AL2 6 MAIN RETURN CODE
2 NTIGMR2 DS AL1 6 MAIN RETURN CODE 2
2 NTIGMR1 DS AL1 7 MAIN RETURN CODE 1
2 NTIGFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 * main return codes
1 NTIGRNIN EQU 1 GTIME function not
1 * initialized
1 NTIGRNSI EQU 2 no season information
1 NTIGRPRV EQU 16 no previous change date known
1 NTIGRPST EQU 17 no later change date in past
1 * known
1 NTIGRNCD EQU 18 no change date known
1 NTIGRXIE EQU 8 internal error concerning
1 * xcs_mode
1 *
1 NTIGIB1 DS AL1 indicator byte 1
1 NTIGIMU EQU X'80' MODE = UTC
1 NTIGIFB EQU X'40' FORMAT = BIN
1 NTIGICS EQU X'20' not used
1 NTIGIFT EQU X'10' FORMAT = TODR
1 NTIGIDW EQU X'08' date wanted
1 NTIGIWW EQU X'04' day wanted
1 NTIGITW EQU X'02' TOD wanted
1 NTIGIZW EQU X'01' zone wanted
1 NTIGIB2 DS AL1 indicator byte 2
1 NTIGIRM EQU X'80' resolution = microsec.

Types of macro Use of macros

40 U3291-J-Z125-16-76

1 NTIGICN EQU X'40' next change date demanded
1 NTIGICP EQU X'20' previous ch.date demanded
1 NTIGIRF EQU X'10' time reference
1 NTIGIMX EQU X'08' global XCS-time on
1 NTIGICA EQU X'04' announcement of chdate
1 * demanded
1 NTIGRESERVED_2BITS EQU X'03' not yet used
1 NTIGIRES DS XL2 indicator byte 3 & 4
1 NTIGDATE_UNION DS 0XL16 date_union
1 NTIGDATE_SPL DS XL16 for SPL
1 ORG NTIGDATE_UNION
1 *
1 NTIGDTI DS 0XL16 date_iso4
1 NTIGDATE_UN DS 0XL10 date union

1 *
1 NTIGDATE_1 DS 0XL10 date struct
1 NTIGDTIY DS CL4 year
1 NTIGDTI1 DS CL1 hyphen1
1 NTIGDTIM DS CL2 month
1 NTIGDTI2 DS CL1 hyphen2
1 NTIGDTID DS CL2 day
1 *
1 ORG NTIGDATE_UN
1 NTIGDTIC DS CL10 date_char
1 ORG NTIGDATE_UN+10
1 NTIGDTIJ DS CL3 julian date
1 NTIGDTIB DS CL1 blank
1 NTIGDYID DS CL2 weekday in ISO4
1 *
1 ORG NTIGDATE_UNION
1 *
1 NTIGDTB DS 0XL16 date_bin
1 *
1 NTIGDATE_2 DS 0XL6 date
1 NTIGDTBY DS H year
1 NTIGDTBM DS H month
1 NTIGDTBD DS H day
1 *
1 NTIGDTBJ DS H Julian date
1 NTIGFILL_6 DS XL6 fill for weekday
1 NTIGDYBD DS H weekday bin.: MO=0, DI=1, ...
1 * SO=6
1 *
.
.
.

Use of macros Types of macro

U3291-J-Z125-16-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

Runtime log

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,gtime), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,gtime))
% ASS6011 ASSEMBLY TIME: 538 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 135 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=gtime
% BLS0523 ELEMENT 'GTIME', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'GTIME', VERSION ' ' OF '<date> <time>' LOADED
Date: 2012-01-20
Day: FR

(1) Register R5 is loaded with the address of the data area created with MF=L and used
to address the parameter list.

(2) The call GTIME MF=E will generate the command section.
The data area with the operand values starts as of the symbolic address GLIST: The
current date (DATE=YES) should be determined (see also point (7)).

(3) The output area will be filled in with the text “Date:”, and the contents of the field
NTIGDTIC. The field NTIGDTIC is part of the DSECT and of the data area GLIST
and contains the current date. The desired information will be output with the
WROUT macro.

(4) The call GTIME MF=M will dynamically modify the GLIST data area. Additionally
the current day (DAY=YES) should now be output.

(5) The call GTIME MF=E will generate the command section.
The data area with the operand values again starts as of the symbolic address
GLIST: The current day (DAY=YES) should now be determined (see also point (7)).

(6) The output area will be filled with the text “Day:” and the contents of the field
NTIGDYID. The field NTIGDYID is part of the DSECT and of the modified data area
GLIST and contains the current day after a claa with MF=E has been issued. The
desired information will be output with the WROUT macro.

Types of macro Use of macros

42 U3291-J-Z125-16-76

(7) The call GTIME MF=L generates the data area for operand values. The data area
starts as of the symbolic address GLIST. The first time GTIME MF=E is called, the
information DATE will be queried (see point (2)). The second time GTIME MF=E is
called, the data area has been changed with a previous call GTIME MF=M, so that
the desired information is now also DAY (see points (4) and (5)).

(8) The DSECT for GTIME is generated.
The data area can be completed by using the field name of the DSECT. The field
names begin by default with the characters NTIG.
The calculation of addresses in DGLIST once again begins with X'000000'. The
subsequent offsets are addressed with the base register R5 (e.g. in MVCs).

Use of macros Standard header

U3291-J-Z125-16-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

3.7 Standard header

All macros which are new and, as a rule, all existing macros which which have been
extended by the 31-bit interface make use of the standard header in order to identify their
interface.

The standard header is an 8-byte field at the beginning of the data area containing the
(standardized) interface name plus 4 bytes reserved for a return code. The standard header
is generated and initialized, i.e. supplied with the valid values for UNIT, FUNCTION and
VERSION, by the corresponding macro. When using an E-form macro with reference to the
data area, the caller may have to initialize the standard header. Where required, details are
given in the macro description.

Structure of the standard header:

The following list gives the standard return code values which apply to all macros:

Byte Field contents and meaning

0 - 1
2
3
4
5
6 - 7

Name of the unit containing the requested function
Name of the function within the unit
Name of the version of the function
SUBCODE2 of the return code
SUBCODE1 of the return code
MAINCODE of the return code

Table 3: Standard header

SUB-
CODE2

SUB-
CODE1

MAIN-
CODE

Meaning

X'00' X'00' X'0000' The function has been performed without errors.
There is no information in addition to the MAINCODE.

X'01' X'00' X'0000' The function has been performed without errors.
No further action was required.

X'00' X'01' X'FFFF' The requested function is not supported (incorrect entry for UNIT
or FUNCTION in the standard header). Unrecoverable error.

X'00' X'02' X'FFFF' The requested function is not available. Unrecoverable error.

X'00' X'03' X'FFFF' The specified version of the interface is not supported (incorrect
entry for VERSION in the standard header). Unrecoverable error.

X'00' X'04' X'FFFF' Data area is not aligned on a word boundary.

X'00' X'41' X'FFFF' The subsystem is not present and must be explicitly generated.

X'00' X'42' X'FFFF' The calling task is not connected to this interface; the connection
must be explicitly established.

Table 4: Standard return codes

Standard header Use of macros

44 U3291-J-Z125-16-76

MAINCODE indicates the result of function execution. SUBCODE1 qualifies MAINCODE.
SUBCODE2 further qualifies the error by means of error classes or contains additional
diagnostic information.
With all new macros, the return code should be supplied exclusively in the standard header.
Some macro interfaces allow the return code to be passed in register R15, either as an
alternative or in addition to being supplied in the standard header. The return code field
should be initially set to X'FFFFFFFF' in order to permit checking whether a return code has
been transferred to the standard header or not.

Example: generation of standard header

WROUT START
PRINT NOGEN
BALR 3,0
USING *,3

WROUT AMODE ANY
WROUT RMODE ANY

GPARMOD 31
1 *,MACRO: GPARMOD, VERSION: VER121

PRINT GEN
WROUT OUTPUT,STOP

1 ##SPASS S0002S,S0002D A312
2 CNOP 0,4
2 BAS 1,S0002S ADDRESS AND SKIP PARAMS
1 S0002D DS 0F A340
1 FHDR UNIT=36,FUNCT=17,VERS=2
2 DS 0A
2 DS 0XL8 GENERAL OPERAND LIST HEADER
2 DC AL2(36) FUNCTION UNIT NUMBER
2 DC AL1(17) FUNCTION NUMBER
2 DC AL1(2) FUNCTION INTERFACE VERSION NUMBER
2 DC X'FFFFFFFF' Returncode is virgin
1 *
1 DC AL4(STOP) ERROR ADDRESS
1 DC AL4(OUTPUT) MESSAGE AREA ADDRESS
* :

X'00' X'81' X'FFFF' The subsystem is currently not available.

X'00' X'82' X'FFFF' The subsystem is in the DELETE or HOLD state.

SUB-
CODE2

SUB-
CODE1

MAIN-
CODE

Meaning

Table 4: Standard return codes

Use of macros Macro Command Language Processor macros

U3291-J-Z125-16-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

3

3.8 Macro Command Language Processor macros

The Macro Command Language Processor (MCLP) allows (system) commands to be
entered without exiting the program mode. The macro CMD is used to invoke the MCLP
(with SVC 5816) and to communicate the command name and operands. The MCLP carries
out a syntax check before branching to the actual command processing routine itself. After
the command has been executed, the program is resumed.

Some of the commands which can be invoked will terminate the calling program (see
table 13 on page 317). The calling program is also terminated if (user-specific) commands
defined using SDF-A and implemented by command procedures are called.

In addition to SDF commands, ISP commands may also be invoked. Input errors in SDF
command names may be corrected in interactive mode.

Some of the BS2000 commands contained in the system syntax file of BS2000 OSD/BC
cannot be called via the CMD macro, see table 12 on page 315.

Some of the commands have own macros. The following table compares these macros with
the corresponding commands (macros described in the appendix are not included):

Macro Command Function

CDUMP2 CREATE-DUMP Generate dump

CHKPRV SHOW-PRIVILEGE Query own job privileges

ENTER ENTER-JOB Submit a job

LGOFF EXIT-JOB Terminate job

MSGSHOW SHOW-MSG-FILE-ASSIGNMENT Output information on system or task-
specific message files

MSGSINIT MODIFY-MSG-FILE-ASSIGNMENT Lock message file or add message file
to message system

MSGSMOD MODIFY-MSG-FILE-ASSIGNMENT Lock message file or add message file
to message system

NKDINF SHOW-DEVICE-DEPOT
SHOW-DEVICE-CONFIGURATION
SHOW-DEVICE-STATUS
SHOW-DISK-DEFAULTS
SHOW-DISK-STATUS
SHOW-MOUNT-PARAMETERS
SHOW-RESOURCE-ALLOCATION
SHOW-RESOURCE-REQUEST
SHOW-TAPE-STATUS

Output information on the allocation and
availability status of configuration and
mounted volumes

NSIINF SHOW-SYSTEM-INFORMATION Output system information

NSIOPT SHOW-SYSTEM-PARAMETERS Output system parameters

Table 5: Commands with their own macros

Macro Command Language Processor macros Use of macros

46 U3291-J-Z125-16-76

RDUID SHOW-JOB-STATUS Read user ID

SINF SHOW-SYSTEM-INFORMATION
SHOW-SYSTEM-PARAMETERS

Output system information and system
parameters

SRMUINF SHOW-USER-ATTRIBUTES Output information from user catalog

STAMCE SHOW-MASTER-CATALOG-ENTRY
SHOW-PUBSET-PARAMETERS

Output MRSCAT entries
Output pubset information

SWITCH MODIFY-JOB-SWITCHES
MODIFY-USER-SWITCHES
SHOW-JOB-SWITCHES
SHOW-USER-SWITCHES

Set job switches
Set user switches
Query job switches
Query user switches

SYSFL ASSIGN-SYSDTA
ASSIGN-SYSLST
ASSIGN-SYSOUT
REMOVE-TASKLIB
SET-TASKLIB

Assign system files

SYSTA SHOW-SYSTEM-FILE-ASSIGNMENTS Output system file assignments

TCHNG MODIFY-TERMINAL-OPTIONS Modify terminal attributes

Macro Command Function

Table 5: Commands with their own macros

U3291-J-Z125-16-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4 Application areas and brief descriptions

4.1 Linking and loading

Macro Brief description

ASHARE Links and loads shared code, which may consist of a set of modules, into a memory
pool

BIND Calls the dynamic binder loader DBL to link and load one or more modules and
continues the task optionally with the calling program or with the loaded module

CALL Loads a segment that is not yet in memory and continues the task with the loaded
segment. Subsequent segments within the same path of the overlay structure are
loaded automatically

DSHARE Unloads shared code from a memory pool

ETABIT Generates or changes an entry for a symbol table transferred to the DBL in the
ETABLE macro

ETABLE Transfers a symbol table to the DBL; the table is integrated into the symbol table of the
specified context

GETPRGV Displays the program version previously selected by the user with the SELPRGV
macro or the SELECT-PROGRAM-VERSION command

ILEMGT Manages a list of ILEs (Indirect Linkage Entries)

ILEMIT Generates a list entry for an ILE list which is used in the ILEMGT macro

LDSLICE Loads the specified slice, that has been defined by the user in a link and load module
(LLM), into main memory

LPOV Loads the specified segment, even if it is already in memory, and continues the task
optionally with the calling program or with a freely selectable module

PINF Provides information on programs loaded with the LOAD-PROGRAM
or START-PROGRAM command

SELPRGV Determines which program version the DBL is to use if several versions of a program
are loaded

SEGLD Loads a segment, even if is already in memory, and continues the task optionally with
the calling program or with any module. Subsequent segments within the same path of
the overlay structure are loaded automatically

Linking and loading Application areas and brief descriptions

48 U3291-J-Z125-16-76

The TABLE macro is still supported for compatibility reasons only. It is described on
page 1151.

Detailed information on the link loader starter DBL and the BINDER functions can be found
in the manuals “BLSSERV” [4] and “BINDER” [5].

UNBIND During program execution, releases memory space occupied by an object that is no
longer required and optionally unlinks CSECTs and ENTRYs within the object (i.e.
external references to these symbols are then handled by the DBL as unresolved
external references). The object can be a load unit, a link and load module (LLM) or an
object module (OM)

VSVI1 Provides the user with information about entries in the tables of the DBL, in particular
about the names of the contexts and also the names, load addresses, lengths and
attributes of CSECTs, ENTRYs and COMMONs

Macro Brief description

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.2 Virtual address space

This section describes the structure of the virtual address space in BS2000 and how to
convert virtual addresses into real addresses (address conversion). It also contains brief
descriptions of the macros and detailed descriptions of the application areas “Working with
virtual address space”, “Memory pools” and “Extended addressing with data spaces”.

4.2.1 Structure of virtual address space

Virtual address space is a series of virtual addresses in continuous ascending order,
starting at 0.

The size of the virtual address space can be selected for /390 servers and may be up to
2 Gb, see figure 4 on page 51. The user address space for x86 servers is generated with
2 Gb and cannot be modified.

Since commands cannot be executed unless they and their operands are located in main
memory, it is necessary to convert the virtual addresses of the address space into real main
memory addresses (see page 53). This conversion takes place when the program is
executed.

BS2000 divides virtual address space into pages for management purposes. A page
consists of 4 Kb (4096 bytes), i.e. users can request memory for their programs in portions
of 4 Kb.
Each task is assigned its own virtual address space when it is created. Virtual address
space is divided into six memory classes with different attributes. Each page can be
assigned to exactly one of these classes.
Classes 5 and 6 together represent the task-local part of the virtual address space,
although only class 6 memory is addressable by users for their own programs and data
(user address space). In class 5 memory, the system sets up tables that it requires for
communication with the user task. Nonprivileged users cannot normally access this
memory area. There are exceptions to this rule, e.g. nonprivileged DSSM subsystems that
can also be loaded into class 5 memory. Classes 1 through 4 are privileged, although class
4 can contain subsystems and users' reentrant programs in addition to system tables.
Classes 1, 2 and 3 are available only to the system.

Virtual address space Application areas and brief descriptions

50 U3291-J-Z125-16-76

Division into memory classes

Memory class Attributes Contents and availability

6 – nonresident (presetting)
– assigned dynamically
– task-local

– Programs and work areas of the
(nonprivileged) user

– Nonprivileged users have read and write
access to this class

5 – nonresident
– assigned dynamically
– task-local

– System tables for linking the task to the
system and to nonprivileged subsystems

– Nonprivileged users do not normally have
access to this class

4 – nonresident
– assigned dynamically
– system-global

– Pageable tables, dynamically loadable parts
of the system and reentrant programs
(shared code)

– Nonprivileged users have read access to
shared code

3 – resident
– assigned dynamically
– system-global

– Resident tables, dynamically loadable parts
of the system and system work areas

– May not be accessed by nonprivileged users

2 – nonresident
– static
– system-global

– Pageable tables and system modules
– May not be accessed by nonprivileged users

1 – resident
– static
– system-global

– Resident tables and system modules
– May not be accessed by nonprivileged users

Table 6: Definition of the memory classes

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Virtual address space on /390 servers

The information in figure 4 shows the structure of the 2 Gb virtual address space in servers
with /390 architecture (standard setting).

Figure 4: Structure of virtual address space (/390 servers)

4
3 System
2
1

5

6

Memory classes

User

User

4 Shared code

2048 Mb = 2 Gb

1808 Mb

16 Mb

14 Mb

VASMAX = Virtual address
space maximum

SYSBAS = System base
(default value, see page 52)

USXBAS = User extended base (fixed)

SHRBAS = Share base (variable)
5

6

Virtual address space Application areas and brief descriptions

52 U3291-J-Z125-16-76

Size of user address space

User address space (class 6 memory) and task-local system address space (class 5
memory) each have an area of address space above and below the 16-Mb boundary. There
are no fixed boundaries between class 5 and class 6 memory. The boundaries can vary in
either direction, depending on the memory requirements for each of the two memory
classes. The maximum size of the user address space is also variable, therefore, and
depends on the amount of class 5 memory required for the activities performed by the user
task. However, 1/8 of the common area is always reserved for class 5 memory; class 6
memory can never occupy the entire area.

There are three other factors that determine the size of the user address space:

1. Setting the size of the user address space (/390 servers only)
The user address space is generated with 1808 Mbytes.
The procedure SYSPRC.BS2000-EXEC.version can be used to generate a BS2000
EXEC with a different user and overall address space using the BS2000 standard
EXEC supplied as a basis, see the “System Installation” manual [11].
Of the standard size of 1808 Mb (or 896 Mb or 448 Mb) for the task-local address space
(which corresponds to a total address space of 2048 Mb (or 1024 Mb or 512 Mb)), 1/8
is reserved for class 5 memory. This leaves a size of 1568 Mb (or 770 Mb or 378 Mb)
for class 6 memory above 16 Mb.

2. System initialization
The size of the shared code area below 16 Mb can be set via the parameter service at
system initialization time. The default setting is 2 Mb. In addition, during system
initialization DSSM determines the total requirement for class 5 memory across all
subsystems using SCOPE=*GLOBAL. A correspondingly large area is reserved for
class 5 memory (in addition to the general share of 1/8), but this can be released again
on a task-local basis using /RELEASE-SUBSYSTEM-SPACE. A total of approximately
12 Mb remains for the class 6 memory when SHRSIZE=2 Mb.

3. User catalog
The user entry defines the contingent (in Mb) which is available to the user for
allocations in the virtual address space. It covers the memory requests in class-6
memory of the user address space and in the data spaces which are created by the
user.
The maximum size of class 6 memory available to each user is entered in the user
catalog. However, this value determines only the amount of class 6 memory required,
not its location (above or below 16 Mb).
In the output of the SHOW-USER-ATTRIBUTES command, the ADDRESS-SPACE-
LIMIT field contains the maximum permitted size of class 6 memory for a user ID (see
the “Commands” manual [19]).

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.2.2 Address conversion

Each virtual address space forms a domain. If an address space is not part of the system
address space and has not been defined explicitly as shareable, the pages of the address
space are accessible only within this address space. In other words, the pages are
protected against access from other address spaces. This protection is achieved by means
of address conversion, which always refers to the activated address space when converting
a virtual address into a real address. On task initialization, a special hardware register
(CR1) is activated. This register contains the base address and the length of the conversion
table valid for this address space. (When a task is deinitialized, its address space is
deactivated; switching a task therefore also switches the address space associated with it.)

A virtual address is composed of the segment number, page number (index) and byte
number. BS2000 converts this address into a real address in two stages. Firstly, a page
table is selected via the corresponding segment table (conversion table). This page table
then contains the (real) main memory page number associated with the virtual page
number. Address conversion takes place only for the page section (segment and page
number) of an address; the real and virtual displacement within a page remains unchanged.

The size of virtual and real pages is 4 Kbytes for all BS2000 servers.

Accordingly, a virtual 31-bit address is divided into 11 bits segment number, 8 bits page
number and 12 bits offset (see figure 5 on page 54).

Virtual address space Application areas and brief descriptions

54 U3291-J-Z125-16-76

Figure 5: Address conversion for a 31-bit address

Segment number (11-bit)
Page number (8-bit)

Displacement
(12-bit)

VIRTUAL 31-BIT ADDRESS: S S S I I D D D

Hardware register
in the CPU

CR1

Segment table

A (page table)

Page table

:
:

:
:

Real frame #

REAL ADDRESS: F F F F F D D D

Displacement
Real frame number within the
in main memory frame

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.2.3 Working with virtual memory

Pages in a memory pool (see page 56) can be requested using the REQMP macro and
released using the RELMP macro.

4.2.4 Common memory areas shared by several users (Memory pools)

Macro Brief description

CSTAT Changes the status of memory pages owned by a program
(paging and read/write access)

MINF Provides information about the allocation and size of class 6 memory or of a memory
pool

RELM Releases a contiguous memory area from the calling program

REQM Requests (additional) memory space for the program

Macro Brief description

CSTAT Changes the status of memory pages of a program (paging and read/write access)

CSTMP Changes the read/write access to a memory pool

DISMP Terminates participation in a memory pool. The specified memory pool is deallocated
if the calling program is the last (or only) participant

ENAMP Sets up a memory pool, or enables participation in an existing memory pool

MINF Provides information about allocation of pages and the size of a memory pool

RELMP Releases (contiguous) memory space within a memory pool

REQMP Requests (contiguous) memory space within a memory pool

SHOWMP Outputs information on Common Memeory Pools which are currently created in the
system

Virtual address space Application areas and brief descriptions

56 U3291-J-Z125-16-76

Memory pool characteristics

A memory pool is an area in memory (class 6 memory) that can be shared by several users.
Each of the participating users may read from or write to any page of the pool. A user who
is not a participant has no access to the pool pages.

If a pool participant changes the contents or the status of the pool pages, all pool
participants are affected. If a participant writes to a page of the pool, this data is available
to all other participants. If a participant protects a pool page against overwriting (CSTAT
macro), no pool participant can write to this page any more. Subroutines residing in the pool
should be reentrant.

In order to coordinate accesses to the memory pool and to ensure efficient interworking,
execution of the participating tasks should be synchronized. One way in which the user may
accomplish this is by the (task) serialization method (see page 91).

Information on the memory pools currently created in the system and the joined tasks is
provided by the SHOWMP macro and the BS2000 command /SHOW-MEMORY-POOL-STATUS,
see the “Commands” manual [19].

Opening a memory pool

By means of the ENAMP macro, a user can set up a new memory pool or join an existing
one (dependent on the MODE operand of the macro).

When creating a new pool, the user defines its name, scope and size. These definitions are
binding for any further participants. The scope determines whether (and if so, which) other
tasks may participate in the pool.

The size of the pool is limited by the amount of user memory available to the participants.
The memory pool is created in units of 64K or 1 Mb. Memory pools with 64K units are
always created below the 16-Mb boundary and will not be supported on a long-term basis.
It is advisable to create memory pools with 1-Mb units only (enhanced performance). The
ENAMP macro causes the system to reserve for the pool the appropriate number of entries
in the segment table (see figure 6 on page 59).

A user joining an existing memory pool must accept the pool name, scope and size. The
system provides an ID that can be used instead of the name to speed up processing. When
opening a pool, each participant can specify an address at which the system can enter the
ID.
When opening a pool, users may individually specify which part of their available address
space is to be allocated to the memory pool by specifying a start address for the pool within
this address space. Each participant may address the pool using a selected area of the
address space. The same address need not be selected by all participants. The system
supplies the participants with the virtual address of the first pool byte via register R1.

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Closing a memory pool

The DISMP macro terminates the user's participation in the specified memory pool, thereby
releasing that part of that user's address space that was allocated to the pool. If DISMP is
called by the last remaining or the sole pool participant, the memory pool is deleted
altogether. (The participant deleting the memory pool need not be identical with the
participant who created the pool.)

Requesting memory in a memory pool

Using the REQMP macro, any participant in a memory pool can request memory in the pool
in 4K pages. The system allocates the requested pages in the virtual memory area reserved
for the pool (by ENAMP). Any pool participant can now write to and read from the allocated
pages. The participant who submits the request (binding for all participants) specifies
which, and how many, pages are to be allocated within the reserved pool area. The MINF
macro provides information on the page allocation and size of the memory pool.

Releasing memory in a memory pool

Using the RELMP macro, any participant in a memory pool can release memory pages
previously allocated to the memory pool. It is irrelevant which participant originally reserved
the memory area and which portions of it were allocated. The participant that calls RELMP
specifies how many and which of the allocated pages are to be released. The release is
valid for all pool participants.

Page status in a memory pool

The ENAMP macro may be used to specify whether the memory area is to be resident. This
may only be done by an authorized caller: the START-PROGRAM command for the
program calling ENAMP must define the number of resident pages for the task. This value
must be taken into account if the user defines the size of the memory pool in the ENAMP
call and also specifies that the pool is to be resident.

Using the CSTAT macro, a pool participant can change the page status within user
memory. The page status of a memory pool can be changed by means of CSTAT from
pageable to resident only. A change in page status from resident to pageable is ignored for
memory pools, which have been specified as resident by ENAMP.

The CSTAT macro is not restricted by memory pool boundaries. The range of pages
influenced by CSTAT may begin outside of a pool and end within the pool, and vice versa.
When the page status is changed from resident to pageable, only pages outside the
resident memory pool are changed.

Virtual address space Application areas and brief descriptions

58 U3291-J-Z125-16-76

If the page status is changed from pageable to resident, all pool participants can access the
resident pages. This change of status can only be performed by an authorized pool
participant. (The START-PROGRAM command for the program calling CSTAT specifies
whether and how many memory pages may be resident).
The user can also use CSTAT to set the access mode (read/write access) for the specified
memory pages. The memory pages can be inside or outside a memory pool.

The (authorized) user can set the access mode for a memory pool with the CSTMP macro.
This specification always applies to all pages of the memory pool. The following points
should be noted:

– CSTAT has a lower priority than CSTMP for changing the access mode (read/write
access).
Write protection imposed with CSTMP cannot be removed with CSTAT.

– CSTAT is rejected if write protection was imposed with CSTMP.
– Write protection imposed with CSTAT can be extended to all pool pages with CSTMP.

Restrictions on the use of memory pools

– Checkpoint processing (WRCPT macro / RESTART-PROGRAM command) is illegal if
a memory pool is open.

– The HOLD-TASK command (see “Commands” manual [19]) is rejected.
– If an unrecoverable main memory error occurs in a pool page, any program which

attempts to access the errored pool page will be terminated.

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Figure 6: Establishing a connection to and accessing a memory pool page (/390 servers)

(1) The ENAMP macro establishes a connection with the memory pool AB.

(2) The real start address of the memory pool page table is entered in the next free
entry of the segment table. In this case, the next free entry is the entry for the third
segment. For user 1, therefore, memory pool AB starts at the virtual address
X'00200000'. This virtual start address is stored in register R1.

(3) The contents of register R1 are loaded into register R5. Both registers now contain
the virtual start address of memory pool AB for user 1.

(4) 5 pages (X'5000') are added to the virtual start address of memory pool AB and the
results are stored in register R5.

(5) The REQMP macro then requests the 6th page of memory pool AB.

Virtual address space Application areas and brief descriptions

60 U3291-J-Z125-16-76

(6) The 6th entry in the memory pool page table contains the real frame number of the
6th page of memory pool AB in main memory. The 6th entry in the page table
extension contains the logical block number of the 6th page in page memory.

(7) The 6th page of memory pool AB is accessed.

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.2.5 Extended addressing with data spaces

The extended address space principle

The extended addressing mode is available on all BS2000 servers.

In the extended addressing mode new address spaces for data are available in addition to
the address space provided in previous versions. Since some of the characteristics of these
new virtual address spaces differ from those of conventional virtual address space, the
following new terminology has been introduced:

– program space for conventional virtual address space
– data space for the new virtual address spaces

The following list summarizes the characteristics of a data space:
– address space for data only, i.e. addressed program code cannot be executed
– may be used in 24-bit and 31-bit addressing mode
– size of between 4K and 16Mb/2Gb, depending on addressing mode
– homogeneous address space, i.e. no memory classes, same page attributes
– contains no reserved system address areas
– may be shareable (similar to memory pools)
– data may be partitioned

Advantages of data spaces for the user:
– A considerable increase in the total volume of addressable data
– Data spaces enable the address space to be structured more easily, allowing the

separation of program code and data and partitioning of data relevant to security or
other critical data

– A larger program space is available to the user since user data can be stored in a data
space.

Macro Brief description

ALESRV Sets up and clears a connection between a program and a data space

ALINF Provides information on the access lists with which data spaces and their connections
are managed

DSPSRV Creates, extends and deletes virtual address space for data addressing (data space),
provides information on a data space and releases a data space.

Virtual address space Application areas and brief descriptions

62 U3291-J-Z125-16-76

Program space and data space

Figure 7: Extending the virtual address space with data spaces

The program space corresponds to the virtual address space provided in previous BS2000
versions. It therefore begins at virtual address X'00' and has a maximum size of 2Gb. Within
the program space, it is possible to address both executable programs and pure data.

A data space is a contiguous virtual address space with a size of between 4K and 2Gb.
A data space begins at virtual address 0. It is available to the user in its entirety since, unlike
the program space, it does not contain any areas reserved for the system.
Within a data space, it is possible to address only data or programs that have been stored
as data, i.e. program code addressed in a data space cannot be executed. A user sets up
a data space by specifying type, name, scope and desired size. The user who sets up the
data space becomes its owner.

User

2

eg. 2 Gb

4
3 System
2
1

5

6

Memory classes

User

User

4 Shared Code

VASMAX
(2 Gb)

SYSBAS

USXBAS

SHRBAS
5

6

User

1

eg. 1 Gb

n

Data spacesProgram space

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

A data space is implemented as a homogeneous address space, i.e. all pages are assigned
the same attributes as soon as they are requested. These attributes are defined on creation
of a data space. The attributes specified when a data space is created remain valid
throughout the lifetime of the data space. All participants joining a data space must accept
these attributes.
The scope determines which tasks can join the data space and access the data it contains.
The name of a data space is unique only within its scope. The requested data space is
identified throughout the session by means of the SPID (space identification). The SPID is
assigned by the system.

Data space types

The data space type determines the type of memory allocation/deallocation within the data
space. It is determined at generation time.

The following data space types exist:

– STACK
A data space of the type STACK is an allocated area that is contiguous in virtual terms,
starting with address 0 and going up to the current size. Functions are available for
extending and reducing the current size (EXTEND/REDUCE) and for deleting the con-
tent of an area within the current size (CLEAR).

– HEAP
A data space of the type HEAP is a virtual address space in which areas of any required
size can be allocated dynamically up to the maximum size of the data space. The allo-
cation functions available are GETAREA and RETAREA.

The size is indicated in units of 4 KB.

Virtual address space Application areas and brief descriptions

64 U3291-J-Z125-16-76

Addressing data space contents

Access lists
Before a program can access data in a data space, it must establish a connection to this
data space.
Each task has its own access list (AL) containing all the current connections between a
program and data spaces. Access lists are located in the privileged memory area and are
managed by the system. When a program sets up or clears connections, entries (access
list entries, ALE) are added to or deleted from the task-specific access list.

ALET and SPID
On connection setup, the program receives a value (the access list entry token or ALET)
that points to the new entry in the access list.
Whereas the SPID (assigned by the system when the data space was created) is used by
the software to identify the data space throughout the system, the ALET is used to address
the data space on a hardware basis. The value of the ALET is task-specific:
if several tasks set up a connection to one and the same data space, they are each
assigned a different ALET, since the ALET identifies an entry in the task-specific access list.

Access registers
Data spaces are accessed via an additional set of registers consisting of 16 access
registers (ARs). The 16 access registers are assigned unambiguously to the 16 general
registers. The general registers used for address calculation can be base or index registers.
If only an index register and no base register is used for address calculation, the program
space is always addressed.
If, however, a base register is (also) used for address calculation and the ALET of the
corresponding access register is not zero, the corresponding data space is addressed. This
makes it possible to assign a separate data space to each address that is referenced by a
base register. Since general register 0 may not be used as the base register, AR0 may not
be used to address a data space.
Loading the corresponding access register with the ALET that identifies a connection to a
data space allows address conversion for data access to be performed via the address
conversion tables of the data space.
Just as a different area within the program space can be addressed by reloading the base
register with the start address of this area, a different data space can be addressed by
reloading the access register with a different ALET from the access list. The access list thus
represents the set of data spaces that a program can access at a particular time.
The mechanism for accessing a data space via the access list is effective only for operand
access to data. In the case of branch instructions, operand access always takes place in
the program space. This prevents program code in a data space from being executed.

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

AR mode
To make use of the extended address space option, a program must be instructed to work
with the additional set of registers, i.e. to run in AR mode (access register mode).
If AR mode is not activated, virtual addresses of the program space are addressed.
The assembler instruction SAC activates and deactivates AR mode.

 SAC 512 * set address space control - activate AR mode *
 SAC 0 * - deactivate AR mode *

If AR mode is not activated, therefore, program code and data is accessed in the program
space whereas, in AR mode, data is accessed in data spaces which are indexed via access
registers.
When AR mode is activated, a real address is calculated as before by converting the virtual
address in two stages (index register + base register + displacement), but taking into
account the access register. If the access register that corresponds to the base
register ≠ 0, it refers to a data space and the virtual address of this data space is converted.
If the access register = 0, a virtual address of the program space is converted.
If a program is running in AR mode and uses a general register as the base register for
addressing data, the corresponding access register must be assigned a valid ALET,
otherwise the program is aborted.
A special ALET value is available for addressing data in the program space. The value
ALET = 0 always addresses the program space.

A number of new Assembler instructions have been introduced for working with access
registers (see the “Assembler Instructions (BS2000)” manual [1]).

LAM
STAM
LAE
SAR
CPYA
EAR
TAR
SAC
IAC

Load Access Multiple
STore Access Multiple
Load Address Extended
Set Access Register
CoPY Access register
Extract Access Register
Test Access Register
Set Address space Control
Insert Address space Control

Virtual address space Application areas and brief descriptions

66 U3291-J-Z125-16-76

How to make a data space addressable

1. Create a data space (DSPSRV macro, FCT=CREATE)
or
supply the identification (SPID) of an existing, shareable data space (DSPSRV macro,
FCT=INFORM).

2. Establish a connection to this data space
(ALESRV macro, FCT=CONNECT). An ALET is returned.

3. Load the ALET into the access register whose corresponding general register is used
as the base register for addressing the data in the data space
(instruction LAM ARx,ARx,alet, if ARx EQU x is defined).

4. Activate AR mode (instruction SAC 512).

If more than one task is authorized to access the same data space and the data space has
been made addressable via the access list, correct user serialization must be ensured.
The maximum number of data spaces that can be set up per task is 32. However, each task
can access many more data spaces (already set up by other tasks). A maximum of
125 ALETs can be managed per task,i.e. a connection can be established to 125 data
spaces.
All access registers are initialized with zero when the program is started.

i Access registers and AR mode should be used only on a procedure-local basis,
since the linkage routines are not executable in AR mode and do not save the
access registers when subroutines are called.

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Figure 8: Selecting an address space

(1) The address calculated during address conversion refers to the program space if
– AR mode is not activated or
– the ALET in the access register (corresponding to the base register) is zero.

(2) The address calculated during address conversion refers to a data space. An
access list entry (ALE) is addressed via the ALET of the corresponding access
register. This ALE in turn points to an entry in the data space table via which the
data space is identified.

(3) A data space can also be addressed via the SPID assigned by the system. The
SPID identifies the data space throughout the session.

Virtual address space Application areas and brief descriptions

68 U3291-J-Z125-16-76

Macros for using data spaces

Three macros are available to nonprivileged users for working with extended virtual
address space.
The DSPSRV macro can be used to request or release a data space. The user can request
and release (additional) memory pages to an existing data space.
The ALESRV macro manages the entries in the access list. It connects a task to a data
space and can also clear this connection. If the ALET is specified, the macro outputs the
SPID associated with the data space.
The ALINF macro tells the user which entries in the access list refer to which data spaces.

Example

The following example illustrates the use of a type STACK data space. (@ expressions are
predefined macros of the ASSEMBH assembler.) Only those sections of the full program
relating to data space usage are shown.

DATASPAC START
PRINT NOGEN

* :
DSPMFD DSPSRV MF=D
ALEMFD ALESRV MF=D
*
DATASPAC @ENTR TYP=M
* :
CREATE LA 1,DSPPL —— (1)

@DATA DSECT=DSPMFD,BASE=1
MVC DSPPL(NVDD#),DSPMFL
DSPSRV MF=M,FCT=CREATE,INISIZE=25
DSPSRV MF=E,PARAM=(1)
DSPSRV MF=R,SPID=DSPSPID

*
CONNECT LA 1,ALEPL —— (2)

@DATA DSECT=ALEMFD,BASE=1
MVC ALEPL(NVDA#),ALEMFL
ALESRV MF=M,SPID=DSPSPID
ALESRV MF=E,PARAM=(1)
ALESRV MF=R,ALET=DSPALET

*
SAC 512 —— (3)

*

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

WRITEDS LAM 8,8,DSPALET —— (4)
SR 8,8
MVC 0(100,8),DATA

*
SAC 0 —— (5)

*
INFORM LA 1,DSPPL —— (6)

@DATA DSECT=DSPMFD,BASE=1
MVC DSPPL(NVDD#),DSPMFL
DSPSRV MF=M,FCT=INFORM,IDENT=NAME,NAME='SHARED#DS', C

SCOPE=GLOBAL
DSPSRV MF=E,PARAM=(1)
DSPSRV MF=R,SPID=DSPSPID2

*
CONNECT2 LA 1,ALEPL —— (7)

@DATA DSECT=ALEMFD,BASE=1
MVC ALEPL(NVDA#),ALEMFL
ALESRV MF=M,SPID=DSPSPID2
ALESRV MF=E,PARAM=(1)
ALESRV MF=R,ALET=DSPALET2

*
SAC 512 —— (8)

*
COPYDS LAM 7,7,DSPALET2 ——— (9)

SR 7,7
MVC 0(100,7),0(8)

*
SAC 0 —— (10)

*
CLEAR LA 1,DSPPL —— (11)

@DATA DSECT=DSPMFD,BASE=1
DSPSRV MF=M,FCT=CLEAR,SPID=DSPSPID2,AREA=1000,SIZE=100
DSPSRV MF=E,PARAM=(1)

*
EXTEND DSPSRV MF=M,FCT=EXTEND,SPID=DSPSPID,SIZE=1000 ———————————————— (12)

DSPSRV MF=E,PARAM=(1)
DSPSRV MF=R,EXTADDR=DSPEXTND

*
*** Further access to the extended data space (read, write, etc.) ***
*
DISCONN LA 1,ALEPL —— (13)

@DATA DSECT=ALEMFD,BASE=1
MVC ALEPL(NVDA#),ALEMFL
ALESRV MF=M,FCT=DISCONN,ALET=DSPALET
ALESRV MF=E,PARAM=(1)
ALESRV MF=M,FCT=DISCONN,ALET=DSPALET2
ALESRV MF=E,PARAM=(1)

*

Virtual address space Application areas and brief descriptions

70 U3291-J-Z125-16-76

DESTROY LA 1,DSPPL —— (14)
@DATA DSECT=DSPMFD,BASE=1
DSPSRV MF=M,FCT=DESTROY,SPID=DSPSPID
DSPSRV MF=E,PARAM=(1)
@EXIT

*
*** Definitions ***
*
DSPMFL DSPSRV MF=L,NAME='SPACE1',MAXSIZE=2000
ALEMFL ALESRV MF=L,FCT=CONNECT
*
DSPSPID DS D * SPID of data space created by
* * program
DSPALET DS F * ALET of this data space
DSPSPID2 DS D * SPID of another program's
* * data space
DSPALET2 DS F * ALET of this data space
DSPEXTND DS A * Extension address
DSPPL DS XL(NVDD#) * Dynamic data area for DSPSRV
ALEPL DS XL(NVDA#) * Dynamic data area for ALESRV
DATA DS XL100 * Data to be transferred

@END

(1) A data space with a size of 100 Kbytes is created:
The address of the parameter list for the DSPSRV macro is loaded into register R1
(LA), then the DSECT is placed over the parameter list (@DATA) and the parameter
list is initialized (MVC). The data space is created by means of the DSPSRV
macros. The DSPSPID field is to contain the SPID assigned by the system.

(2) The program connects itself to the data space:
the address of the parameter list for the ALESRV macro is loaded into register R1
(LA), then the DSECT is placed over the parameter list (@DATA) and the parameter
list is initialized (MVC). The program connects itself to the data space via the
ALESRV macros, specifying the SPID. The DSPALET field is to contain the
corresponding ALET.

(3) AR mode is activated. An access register is now assigned unambiguously to each
general register.

(4) Data is written to the data space:
the base register is register R8. Access register 8 is loaded with the ALET of the
data space (LAM).
The base register is then deleted (SR).
100 bytes of data from the DATA field are written to the start of the data space (MVC).

Application areas and brief descriptions Virtual address space

U3291-J-Z125-16-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

(5) AR mode is deactivated:
AR mode should always be deactivated as soon as possible in order to avoid
unintentional access to the data space (particularly when branching to
subprograms).

(6) The SPID of another program's shareable data space is queried:
the DSPSRV macros address this data space via its name and scope. The SPID of
this data space is to be entered in the DSPSPID2 field.

(7) The program sets up a connection to the other program's data space:
the program connects itself to this data space via the ALESRV macros, specifying
the SPID of the data space. The corresponding ALET is to be stored in the DSPALET2
field.

(8) AR mode is activated. An access register is now assigned unambiguously to each
general register.

(9) Data is copied from one data space to another:
access register 7 is loaded with the ALET of the other program's data space (LAM).
100 bytes are written to the start of the other program's data space from the
program's own data space, represented by access register 8.

(10) AR mode is deactivated (see (5)).

(11) Data is deleted from the other program's data space:
the DSPSRV macros delete 400 Kb from this data space by overwriting them with
binary zeros, starting at address X'1000'.

(12) A data space is extended:
the DSPSRV macros extend the program's own data space by 4000 Kb.

(13) The connection to both data spaces is cleared down:
the program clears down the connection to both data spaces via the ALESRV
macros, specifying the appropriate ALETs.

(14) The data space created by the program is destroyed. The corresponding entry in
the access list is deleted.

Task and program execution control Application areas and brief descriptions

72 U3291-J-Z125-16-76

4.3 Task and program execution control

4.3.1 Starting, interrupting and terminating

Macro Brief description

BKPT Transfers control to the system. The user can then enter commands at the terminal

ENTER Initiates a batch job (same function as ENTER-JOB command)

EXIT Terminates an STXIT process

LGOFF Terminates the job (same function as EXIT-JOB command)

PASS Causes the calling program to wait one second

RETRN Returns control to the program from which it was called (e.g. with the BR instruction).
In addition it can be used to restore the contents of any registers the current program
has saved using the SAVE macro

SAVE Saves register contents by buffering them; the call is useful at the beginning of a
subroutine. The register contents can be restored with the RETRN macro

SETIC Starts or resets the interval timer (used in conjunction with the STXIT macro)

STXIT Specifies user-defined interrupt handling routines with which the system continues
processing when a program interrupt occurs

TERM Terminates the program and the job step, and initiates a memory dump

TINF Changes the run priority of the task, or the job type (batch, interactive or transaction),
or the parameters of the task' s deactivation prohibition

VPASS Pends the user task for a specified time

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.3.2 User and job switches

The SWITCH macro replaces the GETSW, GETUS, SETSW and SETUS macros.
These macros are still supported for reasons of compatibility only and are described in the
appendix on page 1121.

Use of job switches in BS2000

When using job switches the user must bear in mind that some system components and
software products alter the status of certain job switches or are controlled by them. The
following table shows which software products and system components normally utilize job
switches, listing them in the order in which they are subsequently described:

The following applies:
The loader message BLS0500 is suppressed by setting switch 4.

After execution of the SET-JOB-STEP command, all job switches over 15 are reset.

The effect of switch usage on the system components and software products listed above
is described in the following pages.

Macro Brief description

SWITCH Reads or changes the 32 job switches associated with the job or the 32 user switches
associated with the user' s own or another user' s user ID.

System component/software product Switches

ARCHIVE
BCAMDEF
DAMP
DBL/ELDE (binder/loader)
EDT
STEP/SET-JOB-STEP command
TSOSLNK

30, 31
0, 4, 5, 31
5, 30
4
4 - 7
16 - 31
4

Task and program execution control Application areas and brief descriptions

74 U3291-J-Z125-16-76

ARCHIVE
The software product ARCHIVE can be called both in procedures and in ENTER jobs.
Information about program execution can be obtained from the switches set by ARCHIVE
during or after execution.

Switch 30 set by ARCHIVE: warning message in procedures.
Switch 30 is set by ARCHIVE when the ARCHIVE statement has been executed but a
warning message has been issued.

Switch 31 set by ARCHIVE: error in procedures.
Switch 31 is set by ARCHIVE if the ARCHIVE statement has been executed even though
an error has been detected.

BCAMDEF
Switches 0, 4, 5, 31 are used:
Switches 0, 4, 5 and 31 are set and reset during the BCAMDEF procedure.

DAMP

Switch 5 set for DAMP

Before the DAMP program is called, task switch 5 must be set in the procedure.
If, in procedure mode, a DAMP statement is followed by a system command that is not
permitted at the DAMP program level, DAMP switches from procedure mode to interactive
mode and resets task switch 5. The last DAMP output screen is then displayed on the
screen. In batch mode, a system command which is not permitted causes the job to be
aborted.

Switch 30 set for DAMP

If task switch 30 is set and DAMP is executing in interactive mode, a message is issued
asking whether a dump should be generated.
If task switch 30 is set and DAMP is executing in batch mode, no dump is generated.

DBL/ELDE (binder/loader)
Switch 4 set: system messages concerning the loading of a module (BLS0500, BLS0517,...)
are suppressed.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

EDT
Switch 4 set for EDT: EDT suppresses start/end message

– Interactive jobs, batch jobs:
If this switch is set before loading EDT, load message BLS0500 and, on termination of
EDT, message EDT800 are suppressed. The message
EDITED FILE(S) NOT SAVED! TERMINATE (Y/N)?
is also suppressed.

– Batch jobs:
If job switch 4 is set, no log is written during the EDT run (ï @LOG=NONE).

Switch 5 set for EDT: EDT operates in L mode
Input is read line by line from SYSDTA. When output to the screen, the current line number
is replaced by '*'. The @EDIT FULL SCREEN statement switches over to F mode.
Activating/deactivating switch 5 during the EDT run has no effect on the mode set.

Switch 6 set for EDT: EDT outputs 160 characters
If this switch is set, EDT writes 160 characters in a SYSLST record and any overflow to the
next record. Use of this option is recommended if the SYSLST (system) file is to be output
to a printer with a maximum line length of 160 characters. The switch must be set before
calling EDT.
EDT usually outputs only 132 print positions and writes any overflow to the next record.

Switch 7 set for EDT: superfluous memory space is not released
If switch 7 is set, the superfluous memory space assigned is not automatically released by
EDT. EDT usually releases unoccupied memory space (negative specification in SPACE
operand of FILE macro, see the “DMS Macros” manual [7]). This switch can also be set
while EDT is executing.

SET-JOB-STEP command
Switches 16 through 31 are reset:
Job switches 16 through 31 are reset when the user issues a SET-JOB-STEP command.

TSOSLNK
Switch 4 set for TSOSLNK: page feed suppressed
Setting job switch 4 causes all page feeds in linkage editor listings to be ignored on output
to SYSLST.

Task and program execution control Application areas and brief descriptions

76 U3291-J-Z125-16-76

4.3.3 Intertask communication (ITC)

Intertask communication (ITC) procedure

Intertask communication (ITC) allows message exchanges between programs which are
being executed in different tasks. ITC requires each ITC participant to have a unique
identity in the form of an ITC name. From the viewpoint of the operating system, ITC
participants are those tasks which have an ITC name maintained in the communication
table; from the user's viewpoint, they are the (user) programs which are being executed in
these tasks and which have called OPCOM. By participating in intertask communication, all
tasks in the system can exchange messages and - if necessary - wait for their arrival,
provided they know each other's ITC names. Each ITC participant may send and receive
messages. A participant (program) can send a message to another participant, but will not
be informed automatically of receipt of the message. The receiver can acknowledge receipt
by returning a message.

In addition to sending messages, a participant may ask to be given messages already sent
or yet to be sent by other participants. If the message is not yet available at the time of the
request, the program run can be halted for a selected period of time. As soon as the
message arrives, or on expiration of the waiting period, the system will resume the program
run and deliver the message. The receiver can specify the participant whose message is to
terminate this waiting period, or can accept any participant as the sender.

The following macros are used for intertask communication:

OPCOM Open ITC participation
SEVNT Send message
REVNT Request message
RELBF Delete receive queue
CLCOM Close ITC participation

Macro Brief description

CLCOM Terminates participation in intertask communication

OPCOM Opens intertask communication for a participant, and supplies an ITC name

RELBF Deletes the first message in the ITC receive queue of the ITC participant

REVNT Receives a message for the ITC name of the participant

SEVNT Sends a message to another ITC participant

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Opening and closing ITC participation

A program wanting to participate in ITC must call the OPCOM macro, and give an ITC
name. The system checks this name and rejects it if it has already been assigned to another
ITC participant. If the name is unique and if sufficient system memory (for ITC participant
lists) is available, the system includes the task with its ITC name in the participant list. If the
task is the first ITC participant, the OPCOM call also initiates the intertask communication
(the system sets up a communication table). OPCOM is rejected if insufficient system
memory is available for the lists and tables.

As soon as the OPCOM call has been accepted by the system, the participant can send
messages to or receive messages from other ITC participants, itprovided that their ITC
names are known to one another.

The user can terminate participation in ITC by means of the macro CLCOM. If the NOKEEP
operand is specified in the macro, participation is terminated completely for that user, and
no further messages may be sent or received. The system deletes any existing messages
in the receive queue and erases the user's ITC name from the participant list.

If the user calls the CLCOM macro with the KEEP operand, then only the participation as
receiver is terminated. The system delivers no messages, but the user can still evaluate the
receive queue and send messages to other participants. If the receive queue is empty when
the CLCOM KEEP call is issued, the system proceeds as for the CLCOM NOKEEP call.

It is recommended that ITC participation be terminated with the call sequence CLCOM
KEEP/CLCOM NOKEEP, in order to prevent messages being lost. Otherwise, messages
arriving between the REVNT and the CLCOM calls will be lost.

If a program or task is terminated without the macro CLCOM having been called, the
system will terminate ITC participation for this program or task with an internal call of the
CLCOM NOKEEP macro. This may result in messages being lost. To avoid this, the receive
queue can be evaluated in an STXIT routine (see page 131). The routine should issue the
call CLCOM KEEP, check any messages present, return the proper acknowledgment and
close with CLCOM NOKEEP, thus forestalling system-internal program/task termination
(including CLCOM NOKEEP).

The receive queue

For each ITC participant, the system sets up a receive queue in system memory, in which
it queues all messages to the participant in the order of their arrival. The participant must
evaluate and delete the messages in the queue.

If a participant requests a message (REVNT macro), the system passes to it the message
that came in first, and which is also the first in the queue (FIFO principle). If the participant
requests a message from a specific sender, it receives the first message transmitted by this
sender. The system always transfers the message that is first in line. Thus, a participant
wanting to request the next message must first delete the first one. When a message is

Task and program execution control Application areas and brief descriptions

78 U3291-J-Z125-16-76

initially requested (with a REVNT macro), the system can be directed to delete it from the
queue after it has been transferred. Depending on the particular request, this may be the
first message in the queue or the first one from a specific sender. The first message from a
specific sender cannot be deleted explicitly, but only in conjunction with the request
(REVNT). The first message in the queue can, however, be deleted explicitly with the
RELBF macro. The participant can delete the whole receive queue by calling the RELBF
macro in a loop and testing the return code each time to check whether the receive queue
is empty.

As soon as participation in ITC is terminated (with CLCOM), the system stops accepting
messages for the receive queue of the participant concerned. Simultaneously with the
closing of ITC participation, the program or task can have the system cancel its receive
queue. Alternatively, it can continue to evaluate the existing messages and subsequently
release the receive queue by means of a further CLCOM call.

Sending messages

An ITC participant can send messages to any other participant at any time (using the
SEVNT macro), provided sufficient system memory is available. The sender merely needs
to know the ITC name of the receiver. The system does not, however, notify the intended
receiver that a message has arrived. The addressed participant must take the initiative and
request the message. Once the message has been received, it is good practice for the
receiver to send back a message as an acknowledgment. The sender can then request this
at a convenient time (e.g. after all messages have been sent off) by means of a REVNT
macro.

The sending participant holds the message ready in a separate program area. The
message may be up to 64 K in length. After calling the SEVNT macro, the system checks
whether the receiver's ITC name is syntactically correct, and whether it is contained in the
participant list. It also makes sure that the messages contained in the receive queue do not
exceed a total length of > 128 K. If the check proves positive, the system transfers the
message to the receiver's receive queue. The sending task is continued without waiting
after the SEVNT call and can send further messages to any desired receiver.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Requesting and receiving messages

Each ITC participant can request a message with the REVNT macro and - if it has not yet
arrived - wait for it. The receiver can specify that the message is to come from a specific
sender or that a message from any participant will be accepted. If the receive queue is
empty or contains no messages from the desired sender, the system interrupts the task
after the REVNT call until the message arrives or until the waiting time has expired (see
figure 9 on page 80). The waiting time interval (between 1 second and 6 hours) can be set
in the REVNT call. As soon as the task is continued, the REVNT return code can be tested
to check whether the message is arrived.

The request for a message (REVNT macro) can be linked with eventing. The eventing
mechanism regards the arrival of the message as an ITC event (see following section).

The system transfers the message from the receive queue into a program area of the
participant, together with the sender's ITC name and its length. If the receiving field is not
large enough to accommodate the complete message, the system transfers only the
header, consisting of the name of the sender, the length of the complete message and the
first 4 bytes of the message.

A participant requesting a message with REVNT can also specify that the system is to
delete it from the receive queue after transmission (operand REL=YES). Operand REL=NO
causes the message to be retained. This allows the same message to be requested more
than once. Until the first message in the queue is deleted it will continue to be the one
transferred with each request. To have the next message transferred, the participant must
delete the first one (implicitly with REVNT or explicitly with RELBF).

If a participant receives messages of different lengths, it may not be advisable to reserve a
full-length destination field (64K + 7 for sender name and message). If REVNT is called with
a length of 16 (and REL=NO), only the message header (sender name, record length field
and 4 bytes of information) will be transmitted. The participant can then decide either to
delete the message or to request more memory space (REQM) to enlarge the destination
field. A further request can then be made for the message, this time in its full length.

Task and program execution control Application areas and brief descriptions

80 U3291-J-Z125-16-76

Figure 9: Intertask communication (ITC): program requesting a message

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Linking ITC to eventing

This section assumes that the reader is familiar with eventing, which is described on
page 94 and page 110 of the present manual.

Event classes:

Eventing permits users to have the execution of their program interrupted until one of a
number of different events occurs (see page 94). The events that can influence eventing
are subdivided into various classes according to their origin (see figure 10 on page 82). At
present the following event classes are available:

Optional events
UPAM events
ITC events
DCAM events
CJC events

In the class of optional events, the user determines when and whether to signal an event to
eventing (POSSIG, see page 103). Events of all other classes (ITC, UPAM etc.), though
originating during program execution, are signaled to eventing by the system, not by the
program (internal POSSIG). In addition, the nature of such events is defined:
for example, a UPAM event occurs upon completion of an I/O operation, and the arrival of
an ITC message (or expiration of a specified waiting time) is regarded as an ITC event.

A program which solicits a signal from an event item (SOLSIG) may also be the one in
which the expected event occurs. For example, a program initiates an I/O operation via
PAM and then requests a signal for the event (SOLSIG). As a result, the program is
interrupted (synchronous eventing) by the event item and continued as soon as an internal
POSSIG indicates that the I/O operation has been completed.

A participant cannot restrict its signal request to a specific event class. The signal received
(continuation or contingency start) may refer to any event that may occur within the scope
of the event item. By means of the post code (see page 96), eventing informs the participant
of the class and precise circumstances of the event.

Execution of the program can therefore be made dependent on a number of different
events. This is useful when several events are expected but the program does not know
which of them will occur first (e.g. arrival of ITC message or reading of a PAM block
completed).

Task and program execution control Application areas and brief descriptions

82 U3291-J-Z125-16-76

Figure 10: Event classes

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

ITC message as an ITC class event

The effect of linking ITC and eventing is that an (ITC) event occurs whenever an ITC
message is received or the waiting time expires. The link is established through
specification of an event item ID address in the REVNT call. As a result, program execution
will not be interrupted by the REVNT call. The message sender need not be a participant
in eventing.

Linking ITC and eventing permits more flexible program execution than ITC alone:

● The participant can combine a wait for an ITC message with a wait for another event.

Example
The participant program issues a PAM (see “DMS Macros” manual [7]) and a
REVNT call, both linked to an event item. It then issues a SOLSIG call and is
interrupted. Upon its resumption, it checks the post code to see whether the
message has arrived, or the I/O operation has been completed.

● The participant can postpone the wait interrupt: The interrupt occurs not after the
REVNT call, but after the subsequent SOLSIG call (see figure 11 on page 86 and
figure 12 on page 87).

Example
Using a linked REVNT call, the participant requests an ITC message and continues
processing. At some later point it issues a SOLSIG call to check whether the
message has arrived. Only if the message is still outstanding will the interrupt occur.

● The participant can avoid any wait interrupt by specifying a contingency routine in the
SOLSIG call (see figure 13 on page 88). In such an asynchronous instance of eventing,
the SOLSIG call may equally well be issued prior to the REVNT call.

Example
To evaluate an ITC message and to perform all actions contingent on it, a
contingency routine is defined in a program. The contingency routine is specified in
the SOLSIG call. The message is requested by a REVNT call given before or after
the SOLSIG call. Program execution is not interrupted either by REVNT or by
SOLSIG (which would cause it to wait), but only by the contingency routine, which
starts its execution as soon as an event occurs.

Task and program execution control Application areas and brief descriptions

84 U3291-J-Z125-16-76

The SOLSIG call does not enable a participant to request a specific event. Eventing
assigns to the participant the first event occurring within its scope which has not yet been
requested by other (previous) SOLSIG calls. By means of the post code, the participant
must filter out the relevant events.
The scope of an event item may comprise one task, all tasks under one user ID, or all tasks
within the system. The scope is defined when enabling the event item.
Several event items (with various scopes) can exist at the same time, and a task may
associate itself with various event items at the same time (see page 94).

Program structure for the linked use of ITC and eventing (without contingency process)
(see figures 11 on page 86 and 12 on page 87).

– Participation in both ITC and eventing must be enabled (OPCOM and ENAEI). The
system enters the ID of the event item under the address specified in the ENAEI macro.
If the event item has already been enabled, the participant has to belong to the specified
scope in order to join in. If other participants within the same scope also call the
SOLSIG macro, it is impossible to predict to which participant an event will be assigned
by the event item.

– A message is requested with the REVNT macro. In addition to the known operands, the
address of the ID used in the ENAEI call is specified in the EIID operand.

– Execution of the program is not interrupted. The program has to check the REVNT
return code in R15 to ascertain whether the call has been accepted, or rejected due to
a format error. A rejected REVNT call does not produce an ITC event. The return code
for a linked REVNT cannot contain any details of the message; only the post code
contains such details.
No further REVNT call (linked or unlinked) may be issued prior to the completion of a
linked REVNT call (i.e. message received or waiting time expired). Other calls linked to
the event item, e.g. a PAM call, are permissible.

– At a time convenient for its execution, the program calls the SOLSIG macro and speci-
fies an address for the post code. Program execution is not interrupted if the signal
request is immediately satisfied. Otherwise, in the case of synchronous eventing,
program execution is interrupted for a period not longer than the specified waiting time
interval.

– Upon continuing its execution, the program first checks the return code of the SOLSIG
call for format errors or expiration of the SOLSIG waiting time. (The expiration of the
REVNT waiting time is specified in the post code.)

– The post code is checked. The system has stored it at the address specified in the
SOLSIG call (or in register 3 for a contingency process). The leftmost byte of the post
code indicates the class to which a specific event belongs (ITC event: X'08'). The
program then proceeds to the processing section provided for the particular event
class.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

– Processing of an ITC event: The rightmost byte of the post code is checked. It indicates
whether the REVNT waiting time has expired or whether the message, or only the
message header, has been transmitted. From this point on, REVNT calls may again be
issued.

For many ITC applications, one message is likely to be immediately followed by others.
In such a case, any additional REVNT calls should not be linked to eventing. The
SOLSIG calls required are time-consuming, and are of no advantage if the message
has already arrived. Instead, the program will continue to issue unlinked REVNT calls
specifying WTIME=0 until all outstanding messages have been received.
Subsequently, a linked REVNT call will again be useful for expecting further messages.

– The program terminates its participation in ITC and eventing by means of CLCOM and
DISEI (see note).

i Note: terminating event-driven ITC

Until an event has been signaled for a linked REVNT call (i.e. message arrived or
waiting time expired) the participant may not disable the associated event item.
Otherwise, the contingency process will be started due to the DISEI call
(asynchronous eventing), or, with synchronous eventing, an ITC event can no
longer be signaled even if the message has already been transmitted. The following
procedure is recommended: The participant must check internally whether the last
linked REVNT has been completed (e.g. by means of a counter; for local scope,
with CHKEI). The DISEI call can then be issued. By issuing CLCOM KEEP, the
participant can suppress the reception of any further messages. Any messages still
waiting in the message queue are picked up by means of unlinked REVNT calls.
Afterwards, ITC participation can be terminated with CLCOM NOKEEP.

i Note: waiting times

Both the REVNT call and the SOLSIG call can be used to set a waiting time.
The REVNT waiting time limits the duration of the message request. If the waiting
time expires and no message has arrived, this is regarded as an ITC event. The
system issues an internal POSSIG call to the event item, which in turn signals an
ITC event to the participant. Upon expiration of the REVNT waiting time, the
rightmost byte of the post code contains the value X'10'.
The SOLSIG waiting time limits the duration of the solicit signal request. If the
waiting time expires and the event item has not signaled an event, the interrupted
program is continued (synchronous operation) or the contingency routine is started
(asynchronous operation). Upon expiration of the SOLSIG waiting time, the return
code of the SOLSIG call has the value X'20000004'. (Expiration of the REVNT
waiting time is regarded as an ITC event. In this case, the SOLSIG return code has
the value X'00000000').

Task and program execution control Application areas and brief descriptions

86 U3291-J-Z125-16-76

Figure 11: ITC linked to eventing (synchronous operation):
The requested message arrives after the SOLSIG call

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Figure 12: ITC linked to eventing (synchronous operation):
The requested message arrives before the SOLSIG call

Task and program execution control Application areas and brief descriptions

88 U3291-J-Z125-16-76

Figure 13: ITC linked to eventing (asynchronous operation):
A contingency process is executed when the message arrives.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Example

Program structure for the linked use of ITC and eventing, with a contingency process (see
figure 13 on page 88).

EXAMPLE START
 BALR 6,0
 USING *,6
 :
 :
 ENAEI EINAME=EVE,EIIDRET=ECODE ??????????????? (1)
 ENACO CONAME=CONTEVE,COADAD=CONTADR,
 COIDRET=CONTI
 OPCOM PARTIC
 :
 :
 SOLSIG EIID=ECODE,COID=CONTI,LIFETIM=3600 ??? (2)
 C 15, RC00
 BNE SOLSERR
 :
 :
 REVNT RECEIPT,100,WTIME=600,EIID=ECODE ?????? (3)
 C 15,RC00
 BNE REVERR
 :
 :
 CLCOM ?? (4)
 DISCO COID=CONTI
 DISEI EIID=ECODE
 TERM

Program
segment with ITC
processing (basic
process)

CONTANF BALR 5,0 ??????????????????????????????????????? (5)
 USING *,5
 ST 3,POSTCODE
 : Checking of post codes for
 : various event classes
 CLI POSTCODE,ITCEVENT
 BE ITCPROC
 : Processing of events belonging
 : to other classes
 :
ITCPROC : Checking of post codes for
 : reception of messages.
 : Evaluation of the message
 RETCO

Contingency
routine
(contingency
process)

Task and program execution control Application areas and brief descriptions

90 U3291-J-Z125-16-76

(1) Participation in eventing is enabled. The name of the event item is EVE. The
address of the event item ID is ECODE. The scope is local.
A contingency routine is defined. Its ID resides at the address CONTI. ITC
participation is opened. The ITC name is PARTIC.

(2) Using the SOLSIG call, an event signal is requested. A contingency routine is
specified in the call. This is to be started if a message arrives or, at the latest, upon
expiration of the waiting time. The SOLSIG call may also be issued after the REVNT
call.
The basic process continues (unless interrupted by the contingency process
because the message had already arrived). The SOLSIG return code is checked.
If it is not equal to zero, the system did not accept the call. The SOLSERR error
routine checks to find the cause.

(3) An ITC message is requested. The specification EIID=ECODE links this request to
event item EVE. Execution of the program is not interrupted. Calls for other event
classes (e.g. PAM) may be issued before or after this REVNT call.
A return code in R15 not equal to zero indicates that the call was not accepted. The
REVERR error routine checks to find the cause.

(4) The participant program wants to terminate linked ITC processing: It terminates
participation in ITC with CLCOM, deletes the contingency definition with DISCO
and disables event item EVE with DISEI. (For ways of preventing messages being
lost, see the note preceding the example.)

(5) The contingency routine stores the post code supplied by the system in register R3
and then evaluates its leftmost byte. This byte indicates the class of the event that
initiated the contingency routine. In the processing section for the corresponding
event class, the contingency routine evaluates the rightmost post code byte, which

REVERR (Error handling in REVNT call)
 :
 B
 :
SOLSERR (Error handling in SOLSIG call)
 :
 B
 :

Error routine

ECODE DS F
CONTADR DC A(CONTANF)
CONTI DS F
RECEIPT DS CL100
RC00 DC A(0)
POSTCODE DC A(0)
ITCEVENT EQU X'08'
 END

Data

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

contains the return code for the class. For ITC events, this return code indicates
whether the waiting time has expired or whether the message has been transmitted
(see REVNT). Then if, for example, the waiting time has expired, it can issue
another linked REVNT call (a return to the first REVNT call is not possible). The
contingency routine is terminated by the RETCO macro.

4.3.4 (Task) serialization

Introduction

The user is supplied with a semaphore-type mechanism which permits serial access to
certain items (serialization items).

Serialization item

A serialization item is not linked with any particular characteristic. It is the responsibility of
the user to confer a particular characteristic and identity on the serialization item.
A serialization item is identified by a name; an ID is also provided and can be used in further
macros of the same task in order to speed up processing.

Scope of a serialization item (SCOPE operand)

The SCOPE operand specifies the scope (participating group) for a serialization item. The
scope may encompass a single task, all the tasks under one ID, or all the tasks in the
system.

Macro Brief description

CHKSI Checks the queue occupancy of a serialization item

DEQAR Terminates the (exclusive) use of a serialization item by the task associated with the
calling program

DISSI Cancels the assignment of the task to the serialization item.
The serialization item is deleted if it is not being used by any other task

ENASI Assigns the task to a serialization item. The serialization item is established if it is not
already being used by another task

ENQAR Requests the (exclusive) use of a serialization item.
The request is entered in a queue

Task and program execution control Application areas and brief descriptions

92 U3291-J-Z125-16-76

Enabling the use of a serialization item

A serialization item must be assigned to a task before an (exclusive) access request for the
item (ENQAR) can be processed.
A serialization item is assigned to a task either explicitly by means of ENASI (ENAble
Serialization Item) or implicitly using ENQAR (ENQueue Access Request) with a name. If
there is already a serialization item with the stated name in the defined scope (established
by an ENASI macro in another task), the macro merely causes the serialization item to be
assigned to the task associated with the calling program. Otherwise the serialization item
is established and assigned by the system. An ID is provided for the serialization item only
if an explicit enable function (ENASI) is used.
A task can use up to 2000 serialization items simultaneously.

Canceling the assignment of a serialization item

A serialization item assignment is canceled either explicitly by means of a DISSI macro
(DISable Serialization Item) or implicitly by means of a DEQAR macro (DEQueue Access
Request) with the DISSI operand. If the serialization item is not used by any other task, it is
deleted.

An ENASI macro for a serialization item that has already been disabled does not
necessarily produce the same ID assignment as that established by the preceding ENASI
call.

Program termination

With program termination, the assignment of the task to all the serialization items used is
canceled.

Access request for a serialization item (ENQAR macro)

The ENQAR macro (ENQueue Access Request) requests (exclusive) access to the
specified serialization item. The request is entered in the serialization item queue and the
task is placed in a wait state until it is first in the queue, when it resumes execution and uses
the serialization item until a DEQAR call (DEQueue Access Request) is issued for this item.

If no serialization item with the specified name exists in the defined scope, one is
established and assigned (implicit enable function).

Using the COND operand, the user can specify whether the access request is to be
satisfied immediately or whether it may wait. The waiting time is specified by the LIFETIM
operand.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Terminating access to a serialization item (DEQAR macro)

The DEQAR macro (DEQueue Access Request) terminates a task's access to the specified
serialization item.

Access can be terminated by the task which requested the access or by any other task
which also uses this serialization item (operand HOLDER=ANY in the DEQAR call).

Optionally (DISSI operand), the assignment between the task and the serialization item can
also be canceled (implicit disable function).

Checking a serialization item (CHKSI macro)

The CHKSI macro (CHecK Serialization Item) provides information about availability and
access (for the task associated with the calling program or any other task) of the specified
serialization item. This information is made available as a return code (in register R15).

Task and program execution control Application areas and brief descriptions

94 U3291-J-Z125-16-76

4.3.5 Eventing

General

Eventing is a technique which makes it possible to coordinate the execution of two or more
(user) programs in different tasks. For example, program B is to read data records from a
file only after program A has updated it; or program A is to write a data record in a shared
memory area only after program B has read the preceding record. Coordination of the
programs is achieved by the use (for control purposes) of a common event variable to
determine the actions of the operating system (to put a task into a wait state, to end the wait
state, or to start a contingency process). The event variable is addressed via the event item.
The entire procedure - posting of events, their interrogation and the consequent actions
taken - is referred to as eventing. The external representation of eventing is the event item.

From the viewpoint of the operating system, the participants in eventing are the tasks which
are associated with a common event variable (event item); from the user's viewpoint, the
participants are the (user) programs which are executed in these tasks.

Macro Brief description

CHKEI Checks the queue status for an specified event item

DELFEI Deletes a SOLSIG/POSSIG entry in the EVENTLST (optimized eventing, forward
eventing)

DISEI Terminates participation in eventing. The specified event item is deleted if it is not being
used by any other task

DPOFEI Generates a POSSIG entry in the EVENTLST (optimized eventing, forward eventing)

DSOFEI Generates a SOLSIG entry in the EVENTLST (optimized eventing, forward eventing)

ENAEI Enables participation in eventing. The task is assigned to the specified event item

POSSIG Signals the occurrence of an event to a specified event item

RPOFEI Signals an event to the event item (optimized eventing, forward eventing)

RSOFEI Requests notification of the arrival of a signal from an event item (optimized eventing,
forward eventing)

SOLSIG Issues a solicit a signal request for an event item

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Basic functions of eventing

● Enabling participation in eventing
Programs whose execution is to be coordinated must open (enable) their participation
in eventing and specify the name (and scope) of a common variable (event item). The
declarations concerning participation, and the specification of the event item, apply only
to the program currently being executed.
For each event item, two queues are set up (POSSIG and SOLSIG queues). A task may
use up to 2000 event items simultaneously.

● Sending a signal
A program wishing to report the completion of a particular processing operation sends
a POSSIG signal to eventing. This signal is entered in the POSSIG queue (on the FIFO
principle).

● Requesting a signal
A program requiring information about the completion of a particular processing step in
another program sends a SOLSIG request to eventing. This request is entered in the
SOLSIG queue (on the FIFO or LIFO principle, according to specification).

● Servicing the queues (see figure 18 on page 102)
The first POSSIG signal in the POSSIG queue is assigned to the first SOLSIG request
in the SOLSIG queue - irrespective of which tasks they originated from. If the SOLSIG
request cannot be satisfied (i.e. the POSSIG queue is empty), two courses of action are
possible:

– synchronous eventing (see figure 15 on page 99 and figure 16 on page 100)
The task which issued the SOLSIG request is put into a wait state either until a
POSSIG signal is received by eventing or until the specified waiting time has
elapsed. (Execution of the program is synchronized using the POSSIG signal.)

– asynchronous eventing (see figure 17 on page 101)
The task which issued the SOLSIG request is not put into a wait state. If the
SOLSIG request can be satisfied during the subsequent continued running of the
program, or a long enough time elapses to satisfy the specified waiting time, then a
contingency routine specified in the program is started.

If the SOLSIG request can be satisfied immediately (the POSSIG queue is not empty),
then either the program execution will continue with the instruction which follows the
SOLSIG macro, or a contingency routine specified in the SOLSIG call is started.
Each participant can check the status of the queues; the information given indicates
whether there are any POSSIG signals in the POSSIG queue, and whether there are
any SOLSIG requests in the SOLSIG queue.

Task and program execution control Application areas and brief descriptions

96 U3291-J-Z125-16-76

● Disabling eventing
Participation in eventing can be disabled at any time. The participant is deleted from the
list of participating tasks. Any SOLSIG requests which are still in the SOLSIG queue at
that time are deleted. Any POSSIG signals not yet assigned at that time remain in the
POSSIG queue.
Participation is implicitly terminated when a program ends (not at the end of the task).
The event item and all the internal processing lists are deleted when the last (or only)
program terminates its participation.

● Post code (see figure 18 on page 102)
Eventing only registers the arrival of a POSSIG signal. No information is provided about
the event giving rise to the signal (file closed, record written, ...). Since the first entry in
one queue is always paired with the first entry in the other queue, it is not possible to
address a particular receiver or sender directly. However, the sender of the POSSIG
signal may send a short message (post code) with the signal. The code is passed to the
task whose SOLSIG request is satisfied by this POSSIG signal. It enables the receiver
to determine whether the POSSIG signal is connected with its program execution or
not.

The post code is 4 or 8 bytes long (4 bytes when using the 24-bit interface). The table
below summarizes the important applications for various classes of event:

Application/
Event class

Post Code Remarks

(POSSIG) X'aa....aa' aa....aa: string specified by the user (4 or 8 bytes)

ITC X'08000000'
X'08000004'
X'0800000C'
X'08000010'

REVNT event terminated
Operand error
Receiving field too small
Timeout

DCAM X'0Caa...a' aa...a: character string provided by the user (3 or 7 bytes)

UPAM X'1000i..a' 31-bit addressing mode
i..a = iiiiaaaaaaaa, where:
iiii: identifier which the user assigned to the job (2 bytes)
a...a: PAM data area address (4 bytes)
The user may employ either the data area address or just the first
word plus the identifier iiii

X'10aaaaaa' 24-bit addressing mode
a...a: PAM data area address (3 bytes)

CJC X'1400iiii'
X'1404iiii'
X'1408iiii'

Condition satisfied
Job variable deleted
Catalog exported

iiii: Character string to identify the
ONEVT

Table 7: Applications/event classes and their post codes

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

The macro ETCNAM (with no operands) is used to generate symbolic names for the
individual event classes.

ETCNAM
1 *,MACRO: ETCNAM, VERSION: VER040
1 *
1 * EVENT TYPE CODES WHICH MAY BE
1 * OUTPUT FROM THE SYSTEM TO THE USER
1 *
1 ETCTCS EQU X'04' TCS-EVENT
1 ETCITC EQU X'08' ITC-EVENT
1 ETCDCM EQU X'0C' DCAM-EVENT
1 ETCUPM EQU X'10' UPAM-EVENT
1 ETCCJC EQU X'14' CONDITIONAL JOB CONTROL-EVENT

Task and program execution control Application areas and brief descriptions

98 U3291-J-Z125-16-76

Figure 14: Eventing: Synchronous operation
The event is signaled before the waiting time has expired

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Figure 15: Event item queues

Task and program execution control Application areas and brief descriptions

100 U3291-J-Z125-16-76

Figure 16: Eventing: Synchronous operation
The event is signaled after the waiting time has expired

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Figure 17: Eventing: Asynchronous operation
The event is signaled before the waiting time has expired

Task and program execution control Application areas and brief descriptions

102 U3291-J-Z125-16-76

Figure 18: Information transfer (eventing)

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

The basic functions described are implemented using two groups of macros. The user
eventing group of macros allows comprehensive use of the basic functions. The forward
eventing (FEV) group of macros supplements user eventing with optimized variants which
make for more efficient execution. Forward eventing can only be used in the synchronous
mode. User eventing and forward eventing macros can be used together.

User eventing

User eventing is implemented using the following macros:

ENAEI Enable participation in eventing
POSSIG Send a POSSIG signal
SOLSIG Register a SOLSIG request
CHKEI Check event item queue
DISEI Disable participation in eventing

● Participation in eventing is enabled by calling the macro ENAEI. The macro call must
include a name for the event item and the scope (group of participants in eventing). The
name is only valid within the specified scope. These two items of information are used
internally to construct an ID for the event item. The ID is passed back to the calling
participant and can be used in subsequent eventing macros (this speeds execution of
the macros). Each participant in eventing receives a unique ID. If a user disables
eventing in a program, and then later re-enables it in the same program run, the ID
which is then issued may be different from the first one. Eventing is enabled by the first
participant to issue the ENAEI macro. The event item and the requisite internal
processing lists are then established automatically; subsequent participants are
assigned to the event item.
The scope may include a task, all tasks under a user ID, or all tasks in the system (the
same name associated with a different scope would represent a different eventing
procedure).

● The POSSIG macro is used to send a signal to eventing. The sending of the POSSIG
signal does not cause the task to be interrupted. The macro call may specify a
contingency routine that is to be started either if it was possible to assign a SOLSIG
request to the POSSIG signal, or if a specified time allowed for such an assignment has
expired (the SOLSIG queue is empty). After the waiting time has expired, the POSSIG
signal is deleted from the queue.
When it is executed, the contingency routine supplies an event information code in
register R2 (see page 115). The event information code indicates whether the expected
event has occurred (a POSSIG signal was assigned) or not; the code thus represents
a kind of acknowledgment of the POSSIG signal.

The POSSIG call may also specify a contingency message, which will be passed to the
contingency routine in register R1 after it has started.
Several consecutive POSSIG calls may be chained together. The chain may also
terminate with the macro SOLSIG.

Task and program execution control Application areas and brief descriptions

104 U3291-J-Z125-16-76

● The SOLSIG macro is used to send a SOLSIG request to eventing. In the case of
synchronous eventing, the task is put into a wait state until a POSSIG signal can be
assigned to the SOLSIG request or until the specified waiting time has expired. It is also
possible to specify that the task should not wait for the arrival of the POSSIG signal.
In the case of asynchronous operation, the task is not put into a wait state. A
contingency routine specified in the macro call is started if either

a) a POSSIG signal can be assigned to the SOLSIG request within a specified waiting
time, or

b) the waiting time has expired.

In situation a) it is possible to direct that a new SOLSIG request be sent immediately.

The following items of information are passed on to the contingency process:

– the contingency message specified in the SOLSIG macro in register R1 of the
contingency process.

– the event information code in register R2.
– the post code from the POSSIG macro in register R3 (plus register R4).

In both synchronous and asynchronous operation, the SOLSIG request is deleted from
the SOLSIG queue on expiry of the waiting time.

● The macro CHKEI can be used to check the occupancy of the queues. The information
requested is supplied to the participant in the form of the return code.

● The macro DISEI terminates participation in eventing. Any SOLSIG requests remaining
in the SOLSIG queue are deleted. Assigned forward events are also deleted (see
below). Any POSSIG signals not yet assigned remain in the POSSIG queue. The event
item is deleted when the last (only) participant issues the DISEI macro.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Forward eventing

Forward eventing supplements user eventing with the following macros:

DPOFEI Create a POSSIG entry in the EVENTLST
DSOFEI Create a SOLSIG entry in the EVENTLST
RPOFEI Send a POSSIG signal
RSOFEI Register a SOLSIG request
DELFEI Delete a POSSIG-/SOLSIG entry in the EVENTLST

Forward eventing (FEV) is an optimized form of synchronous eventing. FEV avoids the
need for repeated validation of the operands when either POSSIG or SOLSIG calls to a
particular event item are repeated. Instead, an event list (EVENTLST) is set up and in the
case of SOLSIG requests, for example, a SOLSIG entry is made. In subsequent steps in
the program, any (real) SOLSIG request will simply refer to this entry. The entry can be
explicitly deleted subsequently. The same applies to the sending of POSSIG signals. For
each participant, a maximum of 2047 entries can be created in the EVENTLST.
Participation in eventing must be enabled using the macro ENAEI and terminated using
DISEI. The macro CHKEI can be used to check the POSSIG or SOLSIG queue. From the
viewpoint of eventing, it makes no difference whether, for example, a POSSIG signal is sent
using POSSIG or using RPOFEI. The same applies to the sending of a SOLSIG request.
Forward eventing can only be used in synchronous operation. A post code may be
specified.

● The macro DPOFEI creates a POSSIG entry in the EVENTLST. A reference number for
the entry is returned to the caller. As in the case of the POSSIG macro, several
successive DPOFEI calls can be chained. The specifications given in the macro call are
copied into the EVENTLST entry. A post code may be specified. However, a
contingency routine (POSSIG macro) must not be specified.

● The macro DSOFEI creates a SOLSIG entry in the EVENTLST. A reference number for
the entry is returned to the caller. The operand values specified in the macro call are
copied into the EVENTLST entry. Only synchronous operation is permitted.

● An RPOFEI macro referencing the POSSIG entry in the EVENTLST causes a POSSIG
signal to be sent to eventing.

● An RSOFEI macro referencing the SOLSIG entry in the EVENTLST causes a SOLSIG
request to be registered with eventing.

● The DELFEI macro can be used to delete a POSSIG entry or a SOLSIG entry in the
EVENTLST.

Task and program execution control Application areas and brief descriptions

106 U3291-J-Z125-16-76

Example: synchronous operation

The programs EV1 and EV2 are started in separate interactive jobs (at different data display
terminals). EV2 is reading from a file that EV1 wants to copy. EV2 signals the closing of the
file to EV1; then EV1 copies the file.
Both programs are to run in 31-bit addressing mode: EV1 below and EV2 above the 16-Mb
boundary.

Program EV1

EV1 START
EV1 AMODE ANY
EV1 RMODE ANY

GPARMOD 31
PRINT NOGEN
BALR 3,0
USING *,3
ENAEI EINAME=EVE,SCOPE=GROUP,EIIDRET=ABRID1 —————————————————— (1)
GDATE TOD=TIME1
WROUT MESS1,ERROR
SOLSIG EIID=ABRID1,COND=UNCOND,RPOSTAD=PCEMPF,RPOSTL=2, -

LIFETIM=800 —— (2)
M1 GDATE TOD=TIME2

WROUT MESS2,ERROR —— (3)
CMD 'COPY-FILE','TEST.FILE.1,TEST.FILE.2'
WROUT TEXT,ERROR
DISEI EIID=ABRID1 —— (4)
TERM

ERROR TERM DUMP=Y
*** DEFINITIONS ***
ABRID1 DS F
MESS1 DC Y(MESS1END-MESS1)

DS CL2
DC X'01'
DC C'PROGRAM WAITING SINCE '

TIME1 DS CL8
MESS1END EQU *
MESS2 DC Y(MESS2END-MESS2)

DS CL2
DC X'01'
DC C'POSSIG SIGNAL RECEIVED AT '

TIME2 DS CL8
DC C'; POSTCODE = '

PCEMPF DS CL8
MESS2END EQU *

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

TEXT DC Y(TEXTEND-TEXT)
DS CL2
DC X'01'
DC C'COPY-FILE COMMAND EXECUTED'

TEXTEND EQU *
END

(1) Event item EVE is enabled.

(2) EV1 issues a SOLSIG call for EVE and provides a receiving field for a post code
(2 words). Then EV1 waits for a maximum of 800 seconds for the arrival of a
POSSIG signal.

(3) After the arrival of the POSSIG signal (or after the wait time has finished), EV1 is
continued and outputs a message. EV2 has closed the TEST.FILE.1 file; EV1 can
copy the file.

(4) EV1 disables event item EVE.

Program SRC.EV2

EV2 START
EV2 AMODE ANY
EV2 RMODE ANY

GPARMOD 31
PRINT NOGEN
BALR 3,0
USING *,3
ENAEI EINAME=EVE,SCOPE=GROUP,EIIDRET=ABRID2 —————————————————— (5)
OPEN TESTFCB,INPUT —— (6)
GET TESTFCB,INAREA

CLOSE CLOSE ALL
GDATE TOD=TIME1
POSSIG EIID=ABRID2,SPOSTAD=PCSEND,SPOSTL=2 ——————————————————— (7)
WROUT MESS1,ERROR
DISEI EIID=ABRID2 —— (8)
TERM

ERROR TERM DUMP=Y
*** FILE ***

DS 0F
TESTFCB FCB FCBTYPE=SAM,LINK=FILIN,EXIT=E1
E1 EXLST EOFADDR=CLOSE,COMMON=CLOSE
*** DEFINITIONS ***
ABRID2 DS F
PCSEND DC X'C5E5F26060C5E5F140' FIELD ALIGNED ON WORD BOUNDARY!

Task and program execution control Application areas and brief descriptions

108 U3291-J-Z125-16-76

MESS1 DC Y(MESS1END-MESS1)
DS CL2
DC X'01'
DC C'POSSIG SIGNAL SENT AT '

TIME1 DS CL8
MESS1END EQU *
INAREA DS CL200

END

(5) EV2 is connected to event item EVE.

(6) EV2 opens the TEST.FILE.1 file and reads a data record. The file is closed.

(7) EV2 sends a POSSIG signal and transfers a post code (2 words).

(8) EV2 disables event item EVE.

Runtime log of the interactive job with program EV1.SRC

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,ev1), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,ev1))
% ASS6011 ASSEMBLY TIME: 525 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 86 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=ev1 ——— (1)
% BLS0523 ELEMENT 'EV1', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'EV1', VERSION ' ' OF '<date> <time>' LOADED
PROGRAM WAITING SINCE 13:14:41 —— (2)
POSSIG SIGNAL RECEIVED AT 13:20:22; POSTCODE = EV2--EV1
COPY-FILE COMMAND EXECUTED —— (3)

(1) EV1 is loaded and started.

(2) EV1 has been waiting for the POSSIG signal.

(3) The POSSIG signal was received; EV1 copies the file.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Runtime log of the interactive job with program EV2.SRC

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,ev2), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,ev2))
% ASS6011 ASSEMBLY TIME: 871 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 86 MSEC
//end
% ASS6012 END OF ASSEMBH
/add-file-link link-name=filin,file-name=test.file.1
/start-executable-program library=macexmp.lib,element-or-symbol=ev2 ——— (4)
% BLS0523 ELEMENT 'EV2', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'EV2', VERSION ' ' OF '<date> <time>' LOADED
POSSIG SIGNAL SENT AT 13:20:22 —— (5)

(4) EV2 is loaded and started.

(5) EV2 sends the POSSIG signal, after it has closed the TEST.FILE.1 file.

For further examples see the section on contingency processes (page 110) and the
POSSIG and SOLSIG macro descriptions.

Task and program execution control Application areas and brief descriptions

110 U3291-J-Z125-16-76

4.3.6 Contingency processes

Use of contingency processes

Contingency processes are used in conjunction with eventing and STXIT procedures.
The use of contingency processes in STXIT procedures is a special application and results
in certain restrictions with regard to the following description; these are dealt with in “STXIT
procedure with contingency processing”, page 131.
They consist of user-written routines that are processed by the system as contingency
processes.

A contingency process has the following characteristics which distinguish it from a task on
the one hand and from a routine on the other:

– A contingency process has no task sequence number (TSN) of its own.
– Contingency processes can be nested.
– A contingency process is not started by the user issuing SET-LOGON-PARAMETERS;

it is initiated by the occurrence of a user-defined event.
– A contingency process has its own processing level (priority), its own process control

block (PCB) and thus its own set of registers.

A contingency process, which by definition is initiated when an event occurs, enables the
user to take measures that are specifically related to this event. An example of such an
event could be that another process has reached a particular stage during processing, such
as the generation of a file or the start of a program.

The measures required to handle several events can be precisely coordinated by the
assignment of appropriate priorities.

Macro Brief description

CONTXT Reads or writes in the registers of the interrupted contingency process or of the basic
process

DISCO Disables the definition of a routine as a contingency process

ENACO Enables a routine as a contingency process and assigns a contingency name and a
priority to it

LEVCO Changes the priority of the calling basic process or contingency process during
execution

RETCO Terminates the calling contingency process. The system continues the process with
the basic process or another contingency process

SUSPEND Suspends the calling basic process or contingency process in an interruptible state

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

At its start, the registers of the contingency process contain the value zero, and a base
register must be defined and loaded. When selecting the base register, note that registers
R1, R2, R3 and possibly R4 are used by the system to transfer information to the
contingency process.

Contingency processes can be employed by the user by issuing the following macros:

ENACO Enable contingency definition
DISCO Disable contingency definition
RETCO Return from a contingency process
CONTXT Access context of a process
LEVCO Change priority level of a process

Enabling and disabling a contingency definition

A contingency process is defined by means of the ENACO macro, in which name, start
address and priority are specified. The addressing mode activated at the time of
contingency definition (AMODE) is automatically activated by the operating system at the
time the contingency routine is executed.

The ENACO macro can be invoked both in a basic process and in a contingency process.
The basic process is always the associated independent process initiated first (with SET-
LOGON-PARAMETERS).

As soon as a routine is no longer to be used as a contingency process, the user may disable
the contingency definition by means of the DISCO macro, specifying the name of the
relevant contingency process. This causes the contingency definition to be deleted.

Any subsequent POSSIG and SOLSIG macros referring to a deleted contingency process
are rejected. Any POSSIG or SOLSIG macros whose entries are still in the relevant event
item queue when the contingency definition is deleted, are not affected. Consequently, the
contingency process will still be activated when the associated event occurs.

Unlike the scope of an event item, the scope of a contingency process is always local; its
application is therefore restricted to the defining task. A task can use up to 400 contingency
processes simultaneously.

An ID for the name of the contingency process is provided by the system to the defining
task at an address. The use of this ID speeds up processing; it is mandatory in the POSSIG
and SOLSIG macros. If a contingency process is deleted and subsequently specified again
under the same name, the ID may be different from that supplied on the previous occasion.

Task and program execution control Application areas and brief descriptions

112 U3291-J-Z125-16-76

Start and termination of a contingency process

The user enables the start of a contingency process by specifying its ID as an operand in
a POSSIG or SOLSIG macro (see page 115). The link with the activating event is thus
established.

A contingency process is activated and, subject to its priority, starts its execution under the
following conditions:

– Asynchronous eventing
A contingency process was specified in the SOLSIG macro to make a solicit signal
request and the signal has been received (figure 17 on page 101) or the time interval
has elapsed.
The contingency process is also started if the basic process has deleted the event item
(DISEI).

– Acknowledgment of a signal
A contingency process was specified in the POSSIG macro to make a post signal
request and the signal was solicited (figure 19 on page 113) or the time interval has
elapsed. The contingency process is also started if the basic process has previously
deleted the event item (DISEI).

The system starts a contingency process under the following conditions:

– No process with a higher priority is activated or started.
– No process with equal priority precedes it in the queue.

At its start, the contingency process must first define a base register.

The contingency process is started with the access level valid during the associated
SOLSIG or POSSIG call. The contingency routine is started by the operating system with
the same addressing mode which was active at the time of contingency definition (ENACO
or STXIT). Upon termination of the contingency process, the interrupted task is reassigned
the access level it had before the interrupt.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Figure 19: Flow diagram of a contingency process
Here it is used to return an acknowledgment.

The execution of a contingency process is terminated when the process issues the RETCO
macro. Depending on priority, control will then be returned to the task (basic process) or to
another contingency process.

Task and program execution control Application areas and brief descriptions

114 U3291-J-Z125-16-76

Contingency process priorities

If several contingency processes have been defined, the use of priority levels, assigned
with the contingency definition, and the modification of priority levels during execution
provide for coordination facilities when several events occur simultaneously.

Permissible range of priority levels:

By default, a contingency process has a higher priority level than the basic process. The
basic process is interrupted when the contingency process is initiated, and is not continued
until the contingency process is terminated. A current contingency process can also be
interrupted by another contingency process having a higher priority level (figure 20 on
page 116). If several contingency processes have the same priority level, they are entered
in a queue and processed, by default, on the FIFO principle (first in, first out).

Basic processes and contingency processes can change their priority during processing by
means of the LEVCO macro. At the same time a choice can be made between the LIFO
and FIFO method. A process with a new priority is placed among tasks of the same priority
according to the selected queueing method.

– FIFO queue processing (first in, first out):
After process activation or after execution of the LEVCO macro, the process is placed
at the end of the queue for processes having the same priority level. Any processes
preceding it in the queue will be started before it. If a process lowers its priority during
processing using the FIFO method, the process may possibly be interrupted by
processes having the same priority. This can be prevented by specifying the LIFO
method in the LEVCO macro.

– LIFO queue processing (last in, first out):
After process activation or after execution of the LEVCO macro, the process is placed
at the beginning of the queue for processes having the same priority. Thus, only
processes with a higher priority level can be executed before this process.

For further details on the interruptibility of contingency processes see the relevant note in
the CONTXT macro description.

Basic process
Contingency process

priority 0-127
priority 1-127

default value: 0
default value: 1

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

It is the user's responsibility to assign priorities so as to provide for correct nesting of
processes. When the priority level of the basic process is increased special care must be
taken to prevent any subsequent contingency processes from being blocked until the basic
process terminates. If, in such a situation (the active process has a higher priority than
contingency processes already waiting in the queue), the active process is placed in the
wait state with the SUSPEND macro, this does not cause the waiting contingency
processes to start.

Restrictions

A process is not allowed to lower its priority to a level where it is below the priority level
of a process already started (and interrupted). A previously started and interrupted
process is only allowed to restart after the interrupting contingency process is
terminated.

Access to interrupted processes

Every contingency process has its own set of registers.

A contingency process has access to the registers of the process it has interrupted or to
those of the basic process. The CONTXT macro enables the contingency process to read
or modify the floating-point registers, the program counter and the general registers of the
interrupted contingency process or of the basic process.

Information transfer to contingency processes

A contingency process, when activated, may obtain up to three types of information:

Register R1 may contain a contingency message (4 bytes). It can be specified in
the ENACO macro or - at a later stage, by overwriting - in the POSSIG
or SOLSIG macro (figure 18 on page 102). Its format and meaning can
be defined by the user without any restriction.

Register R2 always contains the event information code (2 bytes), which specifies
the conditions that caused the contingency process to be initiated. Its
form and meaning are predefined (see table 8 on page 117).

Register R3 may contain a post code (4 or 8 bytes). If the post code is 8 bytes
(+ R4) (2 words) long, the second word is entered in register R4. The post code

can be specified in the POSSIG macro (figure 18 on page 102). Its
format and meaning can be defined by the user subject to existing
conventions (see page 96).

Task and program execution control Application areas and brief descriptions

116 U3291-J-Z125-16-76

Figure 20: Prioritized execution of contingency processes

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

The event information code in register R2 consists of the event switch ES in the rightmost
byte and the information indicator II in the leftmost byte.

II ES Meaning

X'00' X'00' Event has occurred as expected. Neither post code nor contingency message is
available.

X'04' X'00' Event has occurred as expected. Contingency message is available; post code is
not available.

X'08' X'00' Event has occurred as expected. Contingency message is not available. Post code
(length = 4 bytes) has been entered in register R3.

X'0C' X'00' Event has occurred as expected. Both contingency message and post code
(length = 4 bytes) are available.

X'28' X'00' Event has occurred as expected. Contingency message is not available. Post code
(length = 8 bytes) has been entered in registers R3 and R4.

X'2C' X'00' Event has occurred as expected. Both contingency message and post code
(length = 8 bytes) are available.

X'00' X'04' Event did not occur within the specified period of time. Neither contingency message
nor post code is available.

X'04' X'04' Event did not occur within the specified period of time. Contingency message is
available; post code is not available.

X'08' X'04' Event did not occur within the specified period of time. Contingency message is not
available; post code (4 bytes) has been entered in register R3.

X'0C' X'04' Event did not occur within the specified period of time. Both contingency message
and post code (4 bytes) are available.

X'10' X'04' The event item was disabled (DISEI) before the event occurred. Neither contingency
message nor post code is available.

X'14' X'04' The event item was disabled (DISEI) before the event occurred. Contingency
message is available; post code is not available.

X'18' X'04' The event item was disabled (DISEI) before the event occurred. Contingency
message is not available; post code (4 bytes) has been entered in register R3.

X'1C' X'04' The event item was disabled (DISEI) before the event occurred. Both contingency
message and post code (4 bytes) are available.

X'28' X'04' Event did not occur within the specified period of time. Contingency message is not
available; post code (8 bytes) has been entered in registers R3 and R4.

X'2C' X'04' Event did not occur within the specified period of time. Both contingency message
and post code (8 bytes) are available.

X'38' X'04' The event item was disabled (DISEI) before the event occurred.
Contingency mes-sage is not available; post code (8 bytes) has been entered in
registers R3 and R4.

Table 8: Event information codes

Task and program execution control Application areas and brief descriptions

118 U3291-J-Z125-16-76

Example: Asynchronous operation

Part 1: Interactive job with PCOSOL1 program

The PCOSOL1 program defines two event items (ADAM and EVE) and two contingency
processes (CONTA and CONTE). The program solicits a signal from each event item by
means of the SOLSIG macro, and specifies a contingency process each time
(asynchronous operation). In part 1 of the example, no POSSIG calls are issued to the
event items. Contingency process CONTA is started because its waiting time has elapsed
(60 seconds). Contingency process CONTE is started because the program deletes event
item EVE.

Program PCOSOL1

PCOSOL1 START
PRINT NOGEN
BALR 5,0
USING *,5
ENAEI EINAME=ADAM,SCOPE=GROUP,EIIDRET=ABBRADAM ——————————————— (1)
ENAEI EINAME=EVE,SCOPE=GROUP,EIIDRET=ABBREVE
ENACO CONAME=A,COADAD=CONTAAD,COIDRET=ABBRA —————————————————— (2)
ENACO CONAME=E,COADAD=CONTEAD,COIDRET=ABBRE
GDATE TOD=TIMEBAS1
SOLSIG EIID=ABBRADAM,COID=ABBRA,LIFETIM=60 ——————————————————— (3)
CL 15,NULL
BNE ERROR
SOLSIG EIID=ABBREVE,COID=ABBRE ——————————————————————————————— (4)
CL 15,NULL
BNE ERROR
WROUT MLDBAS1,ERROR
VPASS 120 —— (5)

CONNECT GDATE TOD=TIMEBAS2
CHKEI EIID=ABBRADAM
ST 1,WSADAM
ST 15,WSARC
CHKEI EIID=ABBREVE
ST 1,WSEVE
ST 15,WSERC
WROUT MLDBAS2,ERROR
DISCO COID=ABBRA ——— (6)
DISCO COID=ABBRE

X'3C' X'04' The event item was disabled (DISEI) before the event occurred. Both contingency
message and post code (8 bytes) are available.

II ES Meaning

Table 8: Event information codes

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

GDATE TOD=TIMEBAS3
DISEI EIID=ABBRADAM —— (7)
DISEI EIID=ABBREVE
WROUT MLDBAS3,ERROR

DTH1 TERM
*
CONTA BALR 6,0 —— (8)

USING *,6
GDATE TOD=TIMEA
ST 2,INFOADAM
WROUT MLDCONA,ERROR
CONTXT SAVE=LASTREG,PROCESS=LAST
ST 15,RCCONTXT
RETCO

*
DS 0F

LASTREG DS CL68
INFOADAM DS F

MLDCONA DC Y(ENDCA-MLDCONA)
DS L2
DC X'01'
DC 'TIMEOUT CONTINGENCY A AT '

TIMEA DS CL8
ENDCA EQU *
*
CONTE BALR 7,0 —— (9)

USING *,7
GDATE TOD=TIMEE
WROUT MLDCONE,ERROR
ST 2,INFOEVE
RETCO

*
INFOEVE DS F
MLDCONE DC Y(ENDCE-MLDCONE)

DS L2
DC X'01'
DC 'TIMEOUT CONTINGENCY E AT '

TIME DS CL8
ENDCE EQU *
*
ERROR CDUMP2 SCOPE=AREA

TERM

CONTAAD DC A(CONTA)
CONTEAD DC A(CONTE)
NULL DC F'0'

Task and program execution control Application areas and brief descriptions

120 U3291-J-Z125-16-76

RCCONTXT DS F
*
ABBRADAM DS F
ABBREVE DS F
ABBRA DS F
ABBRE DS F
*
MLDBAS1 DC Y(ENDBAS1-MLDBAS1)

DS L2
DC X'01'
DC 'BOTH SOLSIGS ISSUED AT '

TIMEBAS1 DS CL8
ENDBAS1 EQU *
MLDBAS2 DC Y(ENDBAS2-MLDBAS2)

DC X'000001'
DC 'QUEUES CHECKED AT '

TIMEBAS2 DS CL8
ENDBAS2 EQU *
MLDBAS3 DC Y(ENDBAS3-MLDBAS3)

DC X'000001'
DC 'EVENT ITEMS DISABLED AT '

TIMEBAS3 DS CL8
ENDBAS3 EQU *
*
WSADAM DS F
WSARC DS F
WSEVE DS F
WSERC DS F
ENDE EQU *

END

Basic process

(1) Event items ADAM and EVE are defined. The addresses of the IDs are
ABBRADAM and ABBREVE.

(2) The CONTA routine is defined as contingency process A. The start address
(CONTA) is stored at the address CONTAAD; the address of the ID is ABBRA. The
same applies to the following definition of the CONTE routine as contingency
process E.

(3) The program solicits a signal from event item ADAM via a SOLSIG call and
specifies contingency process CONTA. If the signal has not arrived within a waiting
period of 60 seconds, event item ADAM is to start contingency process CONTA.
Program execution is continued after this SOLSIG call.

(4) With another SOLSIG call, a signal is solicited from EVE. For contingency process
CONTE, the default waiting time (10 minutes) applies.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

(5) For demonstration purposes, the program is made to wait by issuing the VPASS
macro. It is then interrupted by contingency process CONTA, whose waiting period
has elapsed. After CONTA has terminated, the program goes on to check the event
queues of ADAM and EVE.

(6) The program deletes the definitions of contingency processes CONTA and
CONTE. At this point, the SOLSIG call to EVE with contingency process CONTE
still resides in the event queue of EVE. CONTE can still be started, but another
SOLSIG call in which CONTE is specified would be rejected at this point.

(7) The program first deletes event item ADAM, and then EVE. As soon as EVE is
deleted, the system starts contingency process CONTE.

Contingency process CONTA

(8) As a contingency process has its own register set, a base register must be defined
and loaded at the start. Registers R1, R2 and R3 are not suitable, since they might
be used by the system during eventing (see “Information transfer to contingency
processes” on page 115). The event information code that was transferred to the
contingency process in register 2 is now stored under the address INFOADAM. For
demonstration purposes, the registers of the interrupted process (in this case the
basic process) are transferred to the LASTREG area by means of the CONTXT
macro. The contingency process terminates with the RETCO call.

Contingency process CONTE

(9) A base register is defined and loaded. The event information code is stored under
INFOEVE, and contingency process CONTE is terminated with RETCO.

Runtime log of the interactive job with PCOSOL1

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,pcosol1), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,pcosol1)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 1238 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 171 MSEC
//end
% ASS6012 END OF ASSEMBH

Task and program execution control Application areas and brief descriptions

122 U3291-J-Z125-16-76

/load-executable-program library=macexmp.lib,element-or-symbol=pcosol1, -
/ test-options=*aid
% BLS0523 ELEMENT ’PCOSOL1’, VERSION ’@’ FROM LIBRARY

’:2OSG:$QM212.MACEXMP.LIB’ IN PROCESS
% BLS0524 LLM ’PCOSOL1’, VERSION ’ ’ OF ’<date> <time>’ LOADED
/%in dth1;%r
BOTH SOLSIGS ISSUED AT 16:06:33 ——————————————————————————————————————— (10)
TIMEOUT CONTINGENCY A AT 16:07:33 ————————————————————————————————————— (11)
QUEUES CHECKED AT 16:07:33 —— (12)
TIMEOUT CONTINGENCY E AT 16:07:33 ————————————————————————————————————— (13)
EVENT ITEMS DISABLED AT 16:07:33
STOPPED AT LABEL: DTH1 , SRC_REF: 380, SOURCE: PCOSOL1 , PROC: PCOSOL1
/%d infoadam %x, %@(wsadam) -> %xl8 ——————————————————————————————————— (14)
*** TID: 00340180 *** TSN: 1PKB ***
CURRENT PC: 00000162 CSECT: PCOSOL1 *************************************
V’00000204’ = INFOADAM + #’00000000’
00000204 (00000000) 00000004
V’00000334’ = PCOSOL1 + #’00000334’
00000334 (00000334) 000000D0 30000000
/%d infoeve %x, %@(wseve) -> %xl8 ————————————————————————————————————— (15)
V’0000025C’ = INFOEVE + #’00000000’
0000025C (00000000) 10000004
V’0000033C’ = PCOSOL1 + #’0000033C’
0000033C (0000033C) 00000001 28000000
/%r

(10) From each of the two event items the program solicits a signal.

(11) The waiting period for contingency process CONTA has elapsed.

(12) The status of the POSSIG queue and the SOLSIG queue of each event item is
checked.

(13) Contingency process CONTE is executed because event item EVE has been
disabled by the basic process.

(14) Event item ADAM:
The event information code X'04' means that the waiting period has elapsed without
the event having occurred.
The return information X'30' of the CHKEI macro (in the WSARC field) means that the
event queues are empty: the SOLSIG entry was therefore removed, because
contingency process CONTA was completed.

(15) Event item EVE:
The event information code X'10000004' means that the event item was disabled
before an event occurred.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

The return code X'28' of the CHKEI macro (in the WSERC field) means that the
SOLSIG queue is not empty. Field WSEVE: X'01' specifies the number of existing
entries, in this case one entry: the SOLSIG entry still exists, because the
contingency process CONTE has not yet been started.

Part 2: Interactive job using the program PCOSOL2
ENTER job ENTER.POSA using the program POSA
ENTER job ENTER.POSE using the program POSE

PCOSOL2 program

The PCOSOL2 program differs from PCOSOL1 only in that it starts two ENTER jobs after
issuing the two SOLSIG calls to event items ADAM and EVE. Only that part of the source
program PCOSOL2 program which contains the change is listed below; the rest is identical
with the PCOSOL1 program.

PCOSOL2 START
PRINT NOGEN
BALR 5,0
USING *,5
ENAEI EINAME=ADAM,SCOPE=GROUP,EIIDRET=ABBRADAM
ENAEI EINAME=EVE,SCOPE=GROUP,EIIDRET=ABBREVE
ENACO CONAME=A,COADAD=CONTAAD,COIDRET=ABBRA
ENACO CONAME=E,COADAD=CONTEAD,COIDRET=ABBRE
GDATE TOD=TIMEBAS1
SOLSIG EIID=ABBRADAM,COID=ABBRA,LIFETIM=60
CL 15,NULL
BNE ERROR
SOLSIG EIID=ABBREVE,COID=ABBRE
CL 15,NULL
BNE ERROR
WROUT MLDBAS1,ERROR
ENTER 'ENTER.POSE,JOB-CLASS=JCB00050'
ENTER 'ENTER.POSA,JOB-CLASS=JCB00050'
VPASS 90

CONNECT GDATE TOD=TIMEBAS2
...

Task and program execution control Application areas and brief descriptions

124 U3291-J-Z125-16-76

POSA program and ENTER file ENTER.POSA

The ENTER job ENTER.POSA starts the POSA program. The POSA program enables
event item ADAM and sends a POSSIG call to ADAM. Before deleting the event item, it
waits 250 seconds by issuing the VPASS macro in order to prevent the entry from being
removed from the event queue before the PCOSOL2 program can call the SOLSIG macro.

POSA START
PRINT NOGEN
BALR 5,0
USING *,5
ENAEI EINAME=ADAM,SCOPE=GROUP,EIIDRET=ABBRADAM
GDATE TOD=TIMEA
POSSIG EIID=ABBRADAM
CL 15,=F'0'
BE OK

ERROR EQU *
***** Error handling *****

TERM
*

OK WROUT MLDPOSA,ERROR
VPASS 250
DISEI EIID=ABBRADAM
TERM

ABBRADAM DS F
MLDPOSA DC Y(ENDE-MLDPOSA)

DC X'000001'
DC 'POSSIG FOR ADAM ISSUED AT '

TIMEA DS CL8
ENDE EQU *

END

ENTER file ENTER.POSA

/.POSA SET-LOGON-PARAMETERS
/ASSIGN-SYSDTA *SYSCMD
/START-ASSEMBH
//COMPILE SOURCE=*LIBRARY-ELEMENT(MACEXMP.LIB,POSA), -
// COMPILER-ACTION=MODULE-GENERATION(MODULE-FORMAT=LLM), -
// MODULE-LIBRARY=MACEXMP.LIB, -
// LISTING=PARAMETERS(OUTPUT=*LIBRARY-ELEMENT(MACEXMP.LIB,POSA))
//END
/ASSIGN-SYSDTA *PRIMARY
/ASSIGN-SYSOUT PROT.POSA
/START-EXECUTABLE-PROGRAM LIBRARY=MACEXMP.LIB,ELEMENT-OR-SYMBOL=POSA
/EXIT-JOB

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

POSE program and ENTER file ENTER.POSE

The ENTER job ENTER.POSE starts the POSE program. The program enables event item
EVE and issues a POSSIG call to EVE. For the same reason specified for POSA, it waits
before issuing the DISEI call.

POSE START
PRINT NOGEN
BALR 5,0
USING *,5
ENAEI EINAME=EVE,SCOPE=GROUP,EIIDRET=ABBREVE
GDATE TOD=TIMEE
POSSIG EIID=ABBREVE
CL 15,=F'0'
BE OK

ERROR EQU *
***** Error handling *****

TERM
*
OK WROUT MLDPOSE,ERROR

VPASS 150
DISEI EIID=ABBREVE
TERM

ABBREVE DS F
MLDPOSE DC Y(END-MLDPOSE)

DC X'000001'
DC 'POSSIG FOR EVE ISSUED AT '

TIMEE DS CL8
ENDE EQU *

END

ENTER file ENTER.POSE as for ENTER.POSA

Runtime log of the interactive job PCOSOL2 and the two ENTER jobs

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,pcosol2), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,pcosol2)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 1217 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 166 MSEC//END
% ASS6012 END OF ASSEMBH

Task and program execution control Application areas and brief descriptions

126 U3291-J-Z125-16-76

/load-executable-program library=macexmp.lib,element-or-symbol=pcosol2, -
/ test-options=*aid
% BLS0523 ELEMENT ’PCOSOL1’, VERSION ’@’ FROM LIBRARY

’:2OSG:$QM212.MACEXMP.LIB’ IN PROCESS
% BLS0524 LLM ’PCOSOL1’, VERSION ’ ’ OF ’<date> <time>’ LOADED
/%in dth1;%r
BOTH SOLSIGS ISSUED AT 17:09:06 ——————————————————————————————————————— (1)
% JMS0066 JOB ’POSE’ ACCEPTED ON 12-01-20 AT 17:09, TSN = 1PY0
% JMS0066 JOB ’POSA’ ACCEPTED ON 12-01-20 AT 17:09, TSN = 1PY1

In the meantime, the ENTER jobs POSE and POSA output the following messages to their
output log:

ENTER.POSE:
POSSIG FOR EVE ISSUED AT 17:09:21 —————————————————————————————————————— (2)

ENTER.POSA:
POSSIG FOR ADAM ISSUED AT 17:09:22 ————————————————————————————————————— (3)

The interactive job continues as follows

TIMEOUT CONTINGENCY A AT 17:10:36 ————————————————————————————————————— (4)
TIMEOUT CONTINGENCY E AT 17:10:36
QUEUES CHECKED AT 17:10:36
EVENT ITEMS DISABLED AT 17:10:36
STOPPED AT LABEL: DTH1 , SRC_REF: 414, SOURCE: PCOSOL2 , PROC: PCOSOL2
/%d infoadam %x, %@(wsadam) -> %xl8 ——————————————————————————————————— (5)
*** TID: 00340180 *** TSN: 1PKB ***
CURRENT PC: 000001D2 CSECT: PCOSOL2 *************************************
V’00000274’ = INFOADAM + #’00000000’
00000274 (00000000) 00000000
V’000003A4’ = PCOSOL2 + #’000003A4’
000003A4 (000003A4) 00000140 30000000
/%d infoeve %x, %@(wseve) -> %xl8
V’000002CC’ = INFOEVE + #’00000000’
000002CC (00000000) 00000000
V’000003AC’ = PCOSOL2 + #’000003AC’
000003AC (000003AC) 00000158 30000000
/%r

(1) The PCOSOL2 program defines the two event items ADAM and EVE and
addresses a SOLSIG call to each of them. Subsequently, it starts ENTER job
ENTER.POSE and then ENTER job ENTER.POSA.

(2) ENTER job ENTER.POSE starts the program POSE, which enables event item
EVE and issues a POSSIG call.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

(3) ENTER job ENTER.POSA starts the program POSA, which enables event item
ADAM and issues a POSSIG call.

(4) Contingency processes CONTA and CONTE both have priority 1. The system
starts with the contingency process whose corresponding event item is the first to
receive a SOLSIG and a POSSIG call. In this case, a SOLSIG call already exists
for each event item, and a POSSIG call arrives earlier for the EVE event item than
for ADAM. Therefore, contingency process CONTE is started first, followed by
contingency process CONTA.

(5) On completion of the two contingency processes, the program of the basic process
is continued. It checks the queues of both event items: they are empty.
(After the CHKEI macro, the fields WSERC and WSARC contain the value
X'30000000'.) The event information codes of both contingency processes are
zero: the expected event has occurred.

Task and program execution control Application areas and brief descriptions

128 U3291-J-Z125-16-76

Part 3: Interactive job using the PCOSOL3 program
ENTER jobs ENTER.POSA and ENTER.POSE as in part 2

PCOSOL3 program

The PCOSOL3 program differs from PCOSOL1 and PCOSOL2 in that it starts the two
ENTER jobs at the beginning, before issuing the two SOLSIG calls. Only that part of the
source program PCOSOL3 containing the change is shown here; the rest is identical with
the PCOSOL1 program.

PCOSOL3 START
PRINT NOGEN
BALR 4,0
USING *,4
ENTER 'ENTER.POSE,JOB-CLASS=JCB00050'
ENTER 'ENTER.POSA,JOB-CLASS=JCB00050'
ENAEI EINAME=ADAM,SCOPE=GROUP,EIIDRET=ABBRADAM
ENAEI EINAME=EVE,SCOPE=GROUP,EIIDRET=ABBREVE
ENACO CONAME=A,COADAD=CONTAAD,COIDRET=ABBRA
ENACO CONAME=E,COADAD=CONTEAD,COIDRET=ABBRE
VPASS 40
GDATE TOD=TIMEBAS1
SOLSIG EIID=ABBRADAM,COID=ABBRA,LIFETIM=60
CL 15,NULL
BNE ERROR
SOLSIG EIID=ABBREVE,COID=ABBRE
CL 15,NULL
BNE ERROR
WROUT MLDBAS1,ERROR
VPASS 90

CONNECT GDATE TOD=TIMEBAS2
...

ENTER job ENTER.POSA using the POSA program: see part 2
ENTER job ENTER.POSE using the POSE program: see part 2

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Runtime log of the interactive job with PCOSOL3 and the two ENTER jobs

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,pcosol3), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,pcosol3)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 1260 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 168 MSEC
//end
% ASS6012 END OF ASSEMBH
/load-executable-program library=macexmp.lib,element-or-symbol=pcosol3, -
/ test-options=*aid
% BLS0523 ELEMENT ’PCOSOL3’, VERSION ’@’ FROM LIBRARY

’:2OSG:$QM212.MACEXMP.LIB’ IN PROCESS
% BLS0524 LLM ’PCOSOL3’, VERSION ’ ’ OF ’<date> <time>’ LOADED
/%in dth1;%r
% JMS0066 JOB ’POSE’ ACCEPTED ON 12-01.20 AT 17:20, TSN = 1PY7 ——————— (1)
% JMS0066 JOB ’POSA’ ACCEPTED ON 12-01-20 AT 17:20, TSN = 1PY8

In the meantime, the ENTER jobs POSE and POSA output the following messages to their
output log:

ENTER.POSE:
POSSIG FOR EVE ISSUED AT 17:20:19 ————————————————————————————————————— (2)

ENTER.POSA:
POSSIG FOR ADAM ISSUED AT 17:20:20 ———————————————————————————————————— (3)

The interactive job continues as follows

TIMEOUT CONTINGENCY A AT 17:20:52 ————————————————————————————————————— (4)
TIMEOUT CONTINGENCY E AT 17:20:52
BOTH SOLSIGS ISSUED AT 17:20:52 ——————————————————————————————————————— (5)
QUEUES CHECKED AT 17:22:22
EVENT ITEMS DISABLED AT 17:22:22
STOPPED AT LABEL: DTH1 , SRC_REF: 417, SOURCE: PCOSOL3 , PROC: PCOSOL3
/%d infoadam %x, %@(wsadam) -> %xl8
*** TID: 00340180 *** TSN: 1PKB ***
CURRENT PC: 000001DA CSECT: PCOSOL3 *************************************
V’0000027C’ = INFOADAM + #’00000000’
0000027C (00000000) 00000000
V’000003AC’ = PCOSOL3 + #’000003AC’

Task and program execution control Application areas and brief descriptions

130 U3291-J-Z125-16-76

000003AC (000003AC) 00000148 30000000
/%d infoeve %x, %@(wseve) -> %xl8
V’000002D4’ = INFOEVE + #’00000000’
000002D4 (00000000) 00000000
V’000003B4’ = PCOSOL3 + #’000003B4’
000003B4 (000003B4) 00000160 30000000 ...-....
/%r

(1) The PCOSOL3 program first starts ENTER job ENTER.POSE (TSN 02C1) and
then ENTER job ENTER.POSA (TSN 02C2).
(Event items ADAM and EVE are, for demonstration purposes, enabled by the
program after some time has elapsed; the SOLSIG calls for ADAM and EVE are
issued later.)

(2) The PCOPOSE program (started in ENTER job ENTER.POSE) defines event item
EVE and issues a POSSIG call for EVE.

(3) The PCOPOSA program (started in ENTER job ENTER.POSA) defines event item
ADAM and issues a POSSIG call for ADAM.

(4) As soon as the PCOSOL3 program (in the interactive job) has issued the SOLSIG
call for event item ADAM, it is interrupted by the start of contingency process A,
since a POSSIG call already exists for ADAM. On completion of A, the program may
continue and issue the SOLSIG call for EVE; a POSSIG call also exists here
already, and the program is interrupted again until contingency process E is
terminated. Only then can it output the message concerning the SOLSIG calls.

(5) The program checks the queues of both event items: they are empty. (After the
CHKEI macro, the fields WSERC and WSARC contain the value X'30000000'.)
The event information codes of both contingency processes are zero: the expected
event has occurred.

For a further example see the POSSIG macro description on page 736.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.3.7 STXIT procedure with contingency processing

General

The following events usually influence the continuation of the program run:

– invalid SVC, invalid operation code,
– data error, overflow,
– end of the program runtime, break/escape interrupts, INFORM-PROGRAM command,
– address errors.

The STXIT procedure enables users to react to such interrupts with their own (STXIT)
routines: if a program interrupt should occur, the STXIT routine is executed and then (in
normal circumstances) the interrupted basic process resumed. A basic process is a
currently executing program that was started with the START-PROGRAM command. The
STXIT routines are components of the program, but are executed as separate tasks.

Examples

● A program error (invalid SVC, invalid operation code, data error, overflow,...) usually
causes abnormal program termination. This can be avoided with an STXIT routine.

● A break (K2 key) usually causes the program to be interrupted (the operating system
now expects BS2000 commands). The programmer can use the STXIT routine to
anticipate an interrupt in the program.

Macro Brief description

CONTXT Reads or writes in the registers of the process it interrupted or of the basic process etc.

EXIT Terminates an STXIT process

LEVCO Changes the processing level (priority) of the calling STXIT process during execution

SETIC Sets or resets the interval timer (CPU time/real time)

STXIT Specifies user-written STXIT processes, with which the system continues processing
when a program interrupt occurs

Task and program execution control Application areas and brief descriptions

132 U3291-J-Z125-16-76

Description of the STXIT procedure

● STXIT management

The interrupt events to be processed with the STXIT procedure are put into STXIT
event classes (see table at the end of this section). The user can assign an STXIT
routine to every event class by means of the STXIT macro. The specified assignments
are entered in the system in an STXIT management block. In further STXIT calls, the
user can modify or extend the entered assignments in the created STXIT management
block, or create a new STXIT management block with further assignments. The STXIT
management blocks are chained together.

Using the STXIT procedure, up to 100 STXIT management blocks can be created in
one program (or program system). This enables several STXIT routines to coexist for
the same event class. This extension has advantages for applications in program
systems because, when an event occurs, each subprogram can be supplied with the
control needed for this particular event.

● STXIT routine

An STXIT routine is a control section in a program. It contains the programmer's
reaction to the interrupt event. The routine is terminated with the EXIT macro. The
STXIT routine starts its execution when the interrupt event occurs.
The actual interrupt event is described with the aid of an event code and communicated
to the program via register 3 (see table 9 on page 137).

When the interrupt event occurs, the STXIT routine executes in its own process (STXIT
process). In this case, the operating system uses the registers R1, R3 and R4 to
communicate with the routine.
The register contains the following information:

R1: STXIT message, where STXMSG is specified for STXIT operand.

R3: in the rightmost byte: event code of the interrupt event (see table 9 on page 137)

R4: in the rightmost byte: SVC number for SVC event class or function-key code for
ESCPBRK event class. Function-key codes can be taken from the “TIAM” manual
[16] or the table “Standardized function key codes” on page 1167. This functionality
is only provided if the TIAM partner is a terminal and not an application (e.g.
OMNIS).

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

● The STXIT process

– Definition of an STXIT process

STXIT processes are contingency processes (i.e. they have their own process control
block (PCB) and therefore their own set of registers, and their own processing level).
The start address of the STXIT process is the address of the STXIT routine that was
specified in the STXIT macro. By default, the STXIT process is assigned the highest
processing level (127).

– Execution of STXIT processes

An STXIT process is normally started as soon as an interrupt event occurs. If further
interrupt events occur during the run, a process queue is created. The processing level
and queueing method (LIFO/FIFO) for an STXIT process determine its place in the
process queue.

LIFO (Last In First Out) means that:
After a process has been activated, it is entered in the queue at the head of
processes with the same processing level (priority). Only processes with a
higher processing level can precede it.
STXIT processes for event classes with time-independent events (such as
program check, unrecoverable program errors,...., program termination) are
entered according to the LIFO principle (see table 9 on page 137).

FIFO (First In First Out) means that:
After a process has been activated it is entered in the queue as the last of the
processes with the same priority. Processes that were activated at an earlier
time and have the same processing level as this process, as well as processes
with a higher processing level, may precede it in the queue.
STXIT processes for the event classes with time-dependent events (timer for
real time, timer for CPU time, end of program runtime) are entered according to
the FIFO principle (see table 9 on page 137).

The interaction of several STXIT processes is explained below, using the current basic
process for demonstration purposes. For simplicity's sake it is assumed that all STXIT
processes have the same processing level, and that the basic process is continued
after the STXIT processes are terminated.

Task and program execution control Application areas and brief descriptions

134 U3291-J-Z125-16-76

In the example it is assumed either that:

a) only one STXIT routine is ever assigned to one event class in the program or
program system, or that

b) several STXIT routines are assigned to the event classes in the program or program
system (STXIT parallelism).

For a):

When an interrupt event occurs, the basic process (processing level 0) is interrupted
and the corresponding STXIT process (processing level 127) is started. When the
STXIT process terminates the basic process is continued as long as no other interrupt
events have occurred in the meantime. If a further interrupt event has occurred during
the STXIT process, the following points apply (depending on the queueing method):

– The current STXIT process is interrupted by a new STXIT process if the latter is
classified according to the LIFO principle (nested execution). After the new STXIT
process terminates, the interrupted STXIT process is resumed and, when this has
terminated, the basic process is continued as long as no new interrupt event has
occurred during these runs. It is also possible for more than two STXIT processes
to be nested. This also applies if the interrupt event belongs repeatedly to the same
event class, in which case a new STXIT process of the same STXIT routine is
started. However, this limits the level of nesting (specification in the STXIT macro
and maximum nesting depth as shown in the table 9 on page 137).

– The current STXIT process terminates and the new STXIT process is started if the
latter is classified according to the FIFO principle. The number of consecutive FIFO
processes is limited if the interrupt event belongs repeatedly to the same event
class (maximum nesting depth in the table 9 on page 137). The basic process is
continued if no new interrupt events have occurred during these runs.

For b):

STXIT processes are created for all the STXIT routines of this event class when an
interrupt event occurs. These are entered in the process queue according to their
specified queueing method, beginning with the first STXIT management block to have
been created with this event class. The results of this in a run are as follows:

– For STXIT routines of an event class using the LIFO method:
The basic process is interrupted and the STXIT routine entered in the last STXIT
management block to be created is executed, followed by the STXIT routine
entered in the previous STXIT management block to be created, etc.

– For STXIT routines of an event class using the FIFO method:
The basic process is interrupted, and the STXIT routine entered in the first STXIT
management block to be created is executed, followed by the STXIT routine
entered in the next STXIT management block to be created, etc.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

– In every STXIT routine the user can specify in the EXIT macro whether the process
sequence for the same event class is to be interrupted or continued.

If a new interrupt event occurs during an STXIT process, STXIT processes are created
(again) for all STXIT routines of the event class in question and entered in the process
queue according to the specified queueing method. This also applies if the interrupt
event belongs repeatedly to the same event class. However, a new STXIT process is
created for an interrupted STXIT routine only if the specified nesting depth has not yet
been reached. The figure below illustrates the operation sequence for the LIFO method.

Figure 21: Example of a run

STXIT-man. 01 STXIT-man. 02 STXIT-man. 03
The STXIT-management blocks are created

PROCHK=PR1 PROCHK=PR2 PROCHK=PR3 in the order 01, 02, 03 with the specified
INTR =IN1 INTR =IN2 INTR =IN3 assignments.

. . . Then the U1 interrupt event from the STXIT

. . . event class “program error” occurs.

U1(PROCHK)

3 U2(PROCHK) 2 1
First STXIT routine PR3 is executed,

(PR1) (PR2) (PR3) then PR2 and PR1. During execution of PR1,
U2 of the same event class occurs. PR1 is

6 5 4 interrupted and PR3 is restarted. Then
PR2 and PR1 are executed (PR1 only if the

(PR1) (PR2) (PR3) specified nesting depth has not yet been
reached). Then PR1 is executed again from

7 the interrupt point.

(PR1)

3 U1(INTR) 2 1
In this case the U1 event of the STXIT

(PR1) (PR2) (PR3) event class “Message to the program”
occurs during execution of PR1. PR1 is

6 5 4 interrupted and STXIT routines IN3, IN2
and IN1 are executed in succession.

(IN1) (IN2) (IN3) Finally, PR1 is continued from the
interrupt point.

7

(PR1)

indicates the routine specified in brackets (xxx) which is currently executing
The numbers 1 to 7 indicate the order of execution;

Task and program execution control Application areas and brief descriptions

136 U3291-J-Z125-16-76

– Control of STXIT processes

Changing the processing level (process priority):
As stated above, STXIT processes are started with processing level 127 by default and,
if they have the same processing level, they are entered in the process queue according
to a specified classification (queueing) principle (LIFO/FIFO). The following applies to
the value range:

Basic process: Processing level 0 - 127; default value 0
STXIT process: Processing level 1 - 127; default value 127

The basic process (started with a START-PROGRAM command) has processing level
0 and will always be interrupted by an STXIT process. The processing level (within the
specified range) of the STXIT process can be modified with the LEVCO macro during
execution of the STXIT routine. The user can thus change the order of the active STXIT
processes. However, the user must note that the processing level of an active process
cannot drop below that of a process which has already been started and interrupted.

Access to the PCB of the interrupted process:
The user can obtain read and write access to the PCB of the currently interrupted
process or the PCB of the basic process with the CONTXT macro. The caller can
access the general registers, the floating-point registers and the program counter.
Furthermore, the return code informs the user if the PCB has already been modified in
the current interrupt state with a CONTXT macro.

Restrictions

– Only one STXIT routine can be assigned to the “SVC” event class in one program
(program system). The assignment must be carried out in the first STXIT macro or refer
to the first STXIT management block that was created.

– It must be noted that, for the event classes “timer for real time” and “timer for CPU time”,
only one time interval for real time and CPU time is set at any moment (SETIC macro).

– Calling the TERM macro in the program (program system) leads to the activation of all
the STXIT routines assigned to the “TERM” event class, as long as the previous routine
was terminated with EXIT CONTINU=YES in each case. A further TERM macro (also
in an STXIT routine) causes immediate program termination, as required.

– When the specified number of nesting levels is exceeded, the program is terminated
and a user dump is produced; the interrupt weight in the PCB of the basic task is
overwritten with X'06'. (X'06' does not refer to any event to which the user may react by
activating a STXIT routine.)

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

The following table shows the STXIT event classes and their associated interrupt events:

STXIT event
class

Interrupt event Event
code

Queueing
method

Maximum
nesting depth

Program error Invalid SVC
Invalid operation code
Data error
Exponent overflow
Divide error or negative square
root
Mantissa = 0
Exponent underflow
Decimal overflow
Fixed-point overflow

X'04'
X'58'
X'60'
X'64'
X'68'

X'6C'
X'70'
X'74'
X'78'

LIFO 127

Interval timer for
CPU time

“SETIC interval” expired for CPU
time

X'20' FIFO 127

Interval timer for
real time

“SETIC interval” expired for real
time
summer/wintertime conversion

X'AO'

X'CO'

FIFO 127

End of program
runtime

CPU time limit for task or
program exceeded

X'80' FIFO 0

Unrecoverable
programming
error

Privileged SVC
Access to a non-existent
memory page
Privileged operation
Address error (e.g. alignment
error or wrong register)
XA error in SVC macro (24 bit
data area used in 31 bit mode)
Realtimer (condition error)
Data area alignment error in
SVC macro
Validation error
Invalid UNIT no. in standard
header

X'08'
X'48'

X'54'
X'5C'

X'9C'

X'A4'

X'AC'
X'B0'
X'C4'

LIFO 127

Message to the
program

INFORM-PROGRAM command X'44' LIFO 127

ESCPBRK BREAK/ESCAPE (via keys) X'84' LIFO 127

Table 9: STXIT event classes and their associated interrupt events

Task and program execution control Application areas and brief descriptions

138 U3291-J-Z125-16-76

Example of program structure with STXIT routines in a program system:

The program structure consists of one main program and several subprograms.

An STXIT management block is created by the main program and the STXIT routine
“TERMR1” assigned to the “program termination” event class is entered. Another STXIT
management block is created by subprogram A and a “TERMR2” STXIT routine is also
entered for the “program termination” event class. As soon as an event from this event class
occurs, the STXIT routines “TERMR2” and “TERMR1” are executed in succession. The last
STXIT management block to have been created is modified later by subprogram A (by
referring to the ID of the block); the assignment for the “program termination” event class is
deleted and the STXIT routine “ABNDR” assigned to the “ABEND” event class is entered.
From this time onward, only the “TERMR1” STXIT routine is activated when an event from
the “program termination” event class occurs.

Program
terminated by
asynchronous
events

Error recognized by system, e.g.
error in system, loss of power
START-PROGRAM,
LOAD-PROGRAM, ABEND,
EXIT-JOB, CANCEL-JOB
Address translation error due to
hardware error
Hardware error (CPU)
Forced unloading of a subsystem
(system admin.)
Unrecoverable DMS error

X'88'

X'8C'

X'94'

X'A8'
X'B8'

X'BC'

LIFO 0

Program
terminated by
synchronous
events

TERM-SVC from TU program
Program terminated by
CMD-/LGOFF macro

X'90'
X'98'

LIFO 0

SVC interrupt SVC macro of a specified SVC X'50' LIFO 127

Hardware error Input/output error when using the
“data in virtual” method

X'28' LIFO 0

Live Migration Live Migration X'D0' FIFO 127

STXIT event
class

Interrupt event Event
code

Queueing
method

Maximum
nesting depth

Table 9: STXIT event classes and their associated interrupt events

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

Program structure

EXAMP START * MAIN PROGRAM
 BALR ...
 USING ...

*** * First STXIT call in the main program
 STXIT STXDNEW=STXDIDF1,TERM=(TERMR1)
 :
TERMR1 EQU * * STXIT routine our "program termination"
 BALR ...
 USING ...
 :
 EXIT
 :
STXIDF1 DC F * 4-byte field for the ID of the STXIT
 END * management block

 : * USUBROUTINE A
 LA 6,STXDIDF2
*** * Second STXIT call (subroutine A)
 STXIT STXDNEW=(6),TERM=(TERMR2)
 :
*** * Update for the second STXIT management block.
*** * The interrupt exit for TERM is closed and
*** * an STXIT routine is specified for the
*** * ABEND event class.
 STXIT STXDID=STXIDF2,TERM=(CLOSE),ABEND=(ABNDR)
 :
TERMR2 EQU * * STXIT routine for "program termination"
 BALR ... * (subroutine A)
 USING ...
 :
 EXIT
 :
ABNDR EQU * * STXIT routine for "ABEND" (subroutine A)
 BALR ...
 USING ...
 :
 EXIT
 :
STXDIDF2 DC F * 4-byte field for the ID of the second STXIT
 END * management block

Task and program execution control Application areas and brief descriptions

140 U3291-J-Z125-16-76

4.3.8 Distributed Lock Manager (DLM)

The Distributed Lock Manager (DLM) enables tasks running on different nodes of an XCS
cluster (XCS = cross-coupled system) to serialize their accesses to shared resources (e.g.
files, data records, database blocks, devices, etc.). The resources which are concealed
behind a lock are not visible for the DLM: consultation is the responsibility of the users.
The DLM functionality is comparable to the serialization of tasks on a single (local) node
(computer). However, it is now also possible to choose between local node locks, i.e. locks
which are only visible at the local computer, and cluster locks which are visible at all the
computers (= nodes) in the XCS network. To set up an XCS network it is necessary to
purchase the product HIPLEX MSCF [26].
In addition, DLM provides a number of lock modes which permit not only a serialization of
(exclusive) access but also, for example, parallel, simultaneous reads by different users.

As far as the DLM is concerned, a lock is identified by

– a freely definable lock name assigned by the user
– the local scope (SCOPE operand)
– the global scope (NAMRNGE operand)

These specifications are used to assign the different calling tasks the lock with which they
want to work. Only if all three specifications are the same are two tasks referring to the
same lock.
To simplify processing, the calling task receives a lock ID which is then used to identify the
lock in all subsequent calls.

DLM locks are not linked to locks of any other lock manager. To ensure that a resource is
correctly protected, all users of that resource must use the same lock mechanism.

Macro Brief description

LKCAN Cancels lock requests

LKCVT Converts lock requests

LKDEQ Releases lock requests

LKENQ Generates a lock

LKEQU Generates DLM-specific layouts

LKINF Provides information about locks

LKLSB Generates the layout of the Lock Status Block

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.3.8.1 Structure of a DLM lock

A lock which is administered by DLM consists of at least two parts:

– The user-independent part that contains the general information and the administrative
data for the lock. This exists only once per lock and applies to all users of the lock.

– For each user who works with the lock, there is a user-dependent part which contains
information which is specific to each user of the lock. A user-dependent DLM lock part
is referred to as a lock request in the following.

All user-dependent lock parts, i.e. all lock requests, are linked to the user-independent part
in such a way that together they indicate the status of the individual lock request. The
possible statuses of a lock request are dependent on the mode in which the request was
made.

● Lock mode

The DLM provides six different lock modes:

NU Null mode. A lock request allocated with this mode is compatible with all other
lock requests. However, it may not access the resources.

CR Concurrent-Read mode. The lock holder is granted unprotected read access to
the resource, i.e. other read or write accesses to this resource are permitted at
the same time. Other lock holders are permitted only in NU mode, CR mode,
CW mode, PR mode and PW mode.

CW Concurrent-Write mode. The lock holder is granted unprotected write access to
the resource, i.e. other read or write accesses to this resource are permitted at
the same time. Other lock holders are permitted only in NU mode, CW mode or
CR mode.

PR Protected-Read mode. The lock holder is granted protected read access to the
resource, i.e. no other read or write accesses to this resource are permitted at
the same time. Other lock holders are permitted only in NU mode, CR mode or
PR mode.

PW Protected-Write mode. The lock holder is granted protected write access to the
resource. Other lock holders are permitted only in CR mode and in NU mode.

EX Exclusive mode. The resource may only be accessed by the lock holder. No
other read or write accesses are permitted. Lock holders in NU mode are
compatible with the EX mode, but they may not access the resource.

Task and program execution control Application areas and brief descriptions

142 U3291-J-Z125-16-76

● Compatibility of lock modes

+ requested lock mode is compatible with the allocated lock mode
- requested lock mode is incompatible with the allocated lock mode

● Status of a lock request

A lock request may have one of the following statuses (as seen by the user):

GRANTED The lock request is allocated for a lock if it is compatible with all
other already allocated locks. New lock requests are only allocated
if they are compatible or if the allocated lock request has been
released.

CONVERTING The lock request has already been allocated in one mode but this
mode now has to be changed. If this conversion leads to
incompatibilities with other allocated lock requests, it must be
postponed until the new lock request can be compatibly allocated.
The lock request to be converted remains in its original lock mode
until it can be converted (or until it times out or is cancelled).

WAITING The lock is waiting for its initial allocation. Allocation is performed as
soon as it is compatible with all the other lock requests that have
already been allocated

Lock requests with the status CONVERTING are handled before any other new lock
requests with the status WAITING.

If there is a lock request with the status WAITING which is incompatible with the
currently allocated lock requests, it blocks all subsequent lock requests for this lock
even if these are compatible (apart from locks in NU mode).

For questions of lock mode compatibility, see the table above.

Strongest currently
allocated lock mode

Requested lock mode

NU
1

CR
2

CW
3

PR
4

PW
5

EX
6

NU 1 + + + + + +

CR 2 + + + + + -

CW 3 + + + - - -

PR 4 + + - + - -

PW 5 + + - - - -

EX 6 + - - - - -

Weak

Strong

Lock protection

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

● Lock Value Block

The Lock Value Block (LVB) is a small address space which is directly allocated to the
lock. It can be read or written depending on the mode in which the lock request is
allocated and whether the lock request is receiving (strong lock mode) or releasing
(weak lock mode) the lock. The LVB enables users of the lock to exchange information
with one another.

The LVB consists of one 16-byte area (lock value) which can be described by the user
with any information. The lock value which the user wishes to write or which is supplied
to the user during a read request is located in the Lock Status Block.

The LVB exists for as long as any lock request exists for that lock. When the last (or
only) lock request for the lock is released, the lock itself is canceled and the LVB
discarded.

The Lock Value Block is accessed via the macros LKENQ, LKCVT and LKDEQ.

Accesses to the Lock Value Block

- The lock value is neither read nor written.
r (read) The lock value is read.

The lock value can be read by the user when the lock request is allocated.
If the lock value of a lock is read for the first time, it contains the initialization
value (binary nulls).

w (write) The lock value is written.
The lock value can be written by the user when the lock is converted from
a stronger lock mode (e.g. PW or EX mode) to a weaker or equal lock mode
or while a lock in PW or EX mode is being released.

If it was specified in the LKENQ macro that the LVB is to be read, the request is treated
as if the lock were to be converted from NU mode to the specified lock mode.

from the allocated
lock mode

to the requested lock mode

NU CR CW PR PW EX

NU r r r r r r

CR - r r r r r

CW - - r r r r

PR - - - r r r

PW w w w w w r

EX w w w w w w

Task and program execution control Application areas and brief descriptions

144 U3291-J-Z125-16-76

The illustration below indicates the diagrammatic structure of the resulting lock.

Figure 22: Schematic diagram of a lock

Lock Lock requests

User-independent User-dependent

Granted

Converting

Waiting

LVB

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.3.8.2 Functions of the DLM

● Generate lock

A task wishing to use a lock must first generate it. This is performed implicitly by calling
the LKENQ macro. The lock is generated by the DLM.
When a new lock that does not yet exist is generated, both parts of the lock, namely the
user-dependent and the user-independent parts, are generated.
If the lock to be generated already exists, only the user-dependent part of the lock is
generated and concatenated with the user-independent part.

Lock ID (LOCKID)

After a lock is generated, the task is given a (task-specific) lock ID (LOCKID) (LKENQ
macro, LOCKID operand). The lock ID must be specified by the calling task if other calls
referring to the same lock are made to the DLM. Other tasks that use the same lock and
thus the same lock name have different lock IDs for that lock.
The lock ID becomes invalid when the calling program releases it (LKDEQ macro) or
when the program is terminated.
A value equal to 0 is never supplied by the DLM as a lock ID.

i To avoid incompatible lock requests, a new lock request must always be
generated with LCKMODE = *NU (LKENQ macro) so that it can be allocated
immediately (GRANTED status). Otherwise the lock request receives the
WAITING status which it retains until all lock requests with the status
GRANTED and CONVERTING have been released before it can be allocated.
When the lock request has been allocated the lock mode can be converted with
the LKCVT macro, whereupon the request switches between the GRANTED
and the CONVERTING statuses only (see page 142).

● Lock request conversion

An existing and already allocated lock belonging to a user can be converted from one
lock mode to another (LKCVT macro). The LKCVT requests are executed before a new
lock request (LKENQ macro), apart from lock requests in NU mode, is executed.

During the conversion of the lock mode, the lock remains allocated in the original lock
mode. The lock request receives the CONVERTING status. If the lock request can be
allocated, then it is assigned the GRANTED status.The lock mode has now been
converted.

Task and program execution control Application areas and brief descriptions

146 U3291-J-Z125-16-76

Relationship between lock modes

e Lock mode 2 is equal to lock mode 1
l Lock mode 2 is weaker than lock mode 1
h Lock mode 2 is stronger than lock mode 1

● Releasing a lock

A lock can be released in two ways:

1. Firstly, the lock can be released by the calling task (LKDEQ macro).
This means that the caller's allocated lock request is canceled and the lock ID
(LOCKID) is invalidated. Further use of the invalid lock ID leads to error codes,
particularly if the lock still exists.
The user-dependent part of the lock, and all its user-specific information which has
been stored together with the lock, are deleted from the DLM data structure. If the
user is the last (only) user of this lock, the user-independent part of the lock is also
deleted. In this way the lock itself is deleted from the DLM data structure.

2. Secondly, a task's existing lock request can be converted to a weaker lock mode
(see table on page 142). The lock ID (LOCKID) remains valid and can continue to
be used (LKCVT macro).

● Canceling a lock request

Lock requests which have not yet been allocated by the DLM can be canceled with the
LKCAN macro.

Lock requests which have been generated by the LKENQ macro and have the status
WAITING or CONVERTING are completely canceled. If the lock request has the status
GRANTED, i.e. if the lock is already allocated, processing is terminated with an error
code. This lock request must be released with the LKDEQ macro.

Lock requests which are to be converted with the LKCVT macro and have the status
CONVERTING are not canceled. Only the conversion job is canceled.

The call can be synchronous or asynchronous.

Lock mode1 Lock mode 2

NU CR CW PR PW EX

NU e h h h h h

CR l e h h h h

CW l l e h h h

PR l l h e h h

PW l l l l e h

EX l l l l l e

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

● Outputting information on locks

The LKINF macro provides information on which locks are already being used. Several
search filters can be activated to narrow the selection. The locks are identified by their
lock names. The lock names may be fully or partially qualified names. If partially
qualified lock names are specified, the access operation can take a very long time as
the entire DLM database has to be searched for hits. This depends on the size of the
DLM database.

● Timeout detection

The user can specify a wait time and a hold time for the lock request, which is checked
by the DLM. If the lock request cannot be allocated during the wait time, it is terminated
with an error code or a wait time timeout is generated.

If the hold time exceeds the time limit, the lock holder is informed by the release event.
If a hold time is specified, a release event (RELEVTT) must also be specified.

If the value 0 was entered as the time limit for the lock request, this lock request is
identified as an immediate request. Immediate requests which cannot be allocated are
terminated with the return code X'00828006'.

● Lock Status Block

The Lock Status Block (LSB) is part of the user address space and has two main tasks.

Firstly, the LSB is needed for all asynchronous DLM calls. The LSB is the
communication area between the DLM and the calling program. The asynchronous
allocation of the lock is notified to the user by the appropriate return code being set in
the LSB. The user is informed of the specified event method.

The LSB must be initialized before asynchronous functions can be requested by the
DLM. This is done by calling the LKLSB macro with MF=L. The initialization values are
written in the LSV area. The DLM can now decide whether or not the transferred
address indicates a valid LSB. If the lock is allocated, the LSB must be available for the
DLM, otherwise no data is transferred. The error is reported to the calling program using
the event method.

Secondly, the LSB is needed if the Lock Value Block is to be read or written, irrespective
of whether the requests are synchronous or asynchronous.

The lock value which the user wishes to write or which is supplied to the user during a
read request is located in the Lock Status Block. The address of the LSB is specified in
the operand list of the current DLM call (LSBADR operand in the macros LKENQ,
LKCVT, LKDEQ and LKCAN).

Task and program execution control Application areas and brief descriptions

148 U3291-J-Z125-16-76

● Status information

The DLM keeps status information about the release of the last lock in PW or EX mode.
The release was executed normally if the lock was released by the lock holder (LKDEQ
macro). The status information is set to VALID.

If the release was terminated abnormally, the status information is set to INVALID. The
release is terminated abnormally if the program, the task, or the node on which the lock
holder is located was terminated before the lock was released.

The status information provides information about the validity of the Lock Value Block,
which is handled in the same way. The handling of the status information is not
necessarily linked to the handling of the Lock Value Block

The status information is sent to every subsequent lock holder until the status
information has been reset to VALID. If the requested lock mode was NU or CR the
information may no longer be current.

The status information INVALID can be reset to VALID if another lock holder requests
the lock in PW or EX mode, is allocated it, and, when it is released, specifies that the
status is to be reset. This can take place irrespective of the Lock Value Block. However,
it is possible to change the Lock Value Block and reset the status to VALID with a DLM
call.

● Termination sequence of lock requests during termination of the lock holder
process

During abnormal termination of a lock holder process (task or program), the lock
requests are released in a defined sequence.

The caller can specify the release time for his lock in one of the following three classes
during generation of a lock request (TERMNTE operand in the LKENQ macro):

FIRST This class contains locks which are released before or at the same time as
the locks in the next class, SECOND.

SECOND This class contains locks which are released after or at the same time as
the locks in the previous class, FIRST, and before or at the same time as
the locks in the next class, THIRD

THIRD This class contains locks which are released after or at the same time as
the locks in the previous class, SECOND.

To ensure that all locks from different processes which belong to the same application
are handled in the same way, the caller must ensure that all LKENQ requests are called
with the same operands.
This is not checked by the DLM during the LKENQ call.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.3.8.3 Synchronous and asynchronous lock requests

The DLM functions can be executed in two ways:

Firstly, the call can be synchronous. This means that control is only returned to the caller
when the request has been allocated or an error condition detected. The information is
returned in the return code.

Secondly, the call can be asynchronous. This means that control is returned to the caller
when the request has been accepted by the DLM. The lock request is allocated later. To
this end, the caller must specify an event method.

Two methods are possible for the asynchronous event method: contingency process or
eventing.
It is possible for one user to use the synchronous method and another user an
asynchronous method for the same lock and at the same time.

The following table shows which operands can be specified in the LKENQ macro and the
LKCVT macro in order to use the desired event method.

Operands in the LKENQ and LKCVT macros

Support overview:

Event method GRTEVTT RELEVTT

Synchronous allocation
*SYNCH *NO

*SYNCH *TUCONTI

*SYNCH *TUEVENT

Asynchronous

allocation

Contingency
*TUCONTI *TUCONTI

*TUCONTI *TUEVENT

Eventing
*TUEVENT *TUCONTI

*TUEVENT *TUEVENT

Macro Synchronous Asynchronous

LKENQ x x

LKCVT x x

LKDEQ x x

LKCAN x x

LKINF x -

Task and program execution control Application areas and brief descriptions

150 U3291-J-Z125-16-76

● Events and event specification

The DLM provides:

– the allocation event (GRANTID)
– the release event (RELID)

The allocation event terminates an asynchronous lock request either after the lock has
been allocated or when an error situation has been detected.

The release event informs the lock holder that his own allocated lock is blocking
incompatible lock requests from other users. The lock mode of the blocked request is
transferred together with the event. The lock holder is now able to reduce his lock
protection (LKCVT macro) or release his lock (LKDEQ macro).

If a lock holder releases the lock and the new lock holder blocks other lock requests,
the release event (which is sent to a blocking lock request) is also generated for the new
blocking lock request. The user must therefore take into account release events which
may be sent immediately after the lock is allocated. It is also possible for a lock holder
which is blocking other lock requests to receive more than one release event.

If an asynchronous DLM call times out, this causes a waiting-time timeout event.

If a lock is held for longer than the hold time specified for the lock, this causes a hold-
time timeout event.

– Asynchronous events and USERPAR operand
The asynchronous functions enable the USERPAR operand to be specified. The
value which the user specified when calling the macro is returned in the concluding
event of this lock request.

The USERPAR value which was specified in the LKENQ macro is transferred
together with the event when an allocation or release event for this lock (and this
task) occurs.
As of now, the USERPAR value transferred in a subsequent LKCVT macro is used
by the DLM for eventing. Every subsequent allocation or release event is
transferred together with this USERPAR value.

The USERPAR value which was specified in the LKCAN or LKDEQ macro is used
only for confirmation of the cancellation event or of the release event.

For ease of use, the user should specify only one USERPAR value for all macros
which relate to the same lock request.

– Synchronous
The user does not regain control until the lock request has been allocated, the
waiting time has expired or an error condition has been detected. The
corresponding information is provided in the return code.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

– Contingency process
A contingency ID can be specified for each of the events. The allocation event and
the release event may specify different contingency processes. If one of the two
events occurs, the corresponding contingency process is provided. If the release
event occurs, the blocking lock mode is transferred to the contingency process.

The contingency process must be generated with the ENACO macro. The returned
contingency ID must be specified in every asynchronous call. The contingency
process is provided under the control of the lock requester task.
The contingency ID must be available for the DLM, as otherwise no event can be
supplied.

When the contingency process is started, it is sent information about the
asynchronous call. This information consists of the event that caused
thecontingency process to be provided. It is transferred to the contingency process
via registers. Register 3 contains the event specification; register 4 contains the
user-defined USERPAR values from the LKENQ, LKCVT or LKDEQ macro. The
status of the asynchronous call is shown in the Lock Status Block which was
specified in the DLM call.

In order to use the contingency process it is necessary to specify two contingency
IDs: one for the allocation event (GRANTID) and one for the release event (RELID).
The ID can be the same in both cases. The decision as to which event is reported
can be made with the help of the information transferred to the contingency
process.

– Eventing
It is advisable to specify the same event ID for both events. The event ID must be
generated with the ENAEI macro. The returned EIID must be specified for every
asynchronous call.
The event ID must be available at the moment when the asynchronous request is
allocated as otherwise no event is supplied.

The postcode, which is transferred together with the event, contains the event
specification (DLM event). The user-defined operand USERPAR is also transferred
in the second word of the postcode. Information about the asynchronous request, if
available, is also transferred to the Lock Status Block.

– (Eventing) and contingency process
A combination of the two methods is possible. See the table “Operands in the
LKENQ and LKCVT macros” on page 149.

Task and program execution control Application areas and brief descriptions

152 U3291-J-Z125-16-76

4.3.8.4 Lock name

The lock name is a unique identifier for the lock. As far as the DLM is concerned, a lock
name internally consists of three parts (IDs for the local and global scope and a string for
the lock name). From the user's point of view, the following operands affect the way the
internal lock name is formed (LKENQ and LKINF macros).

1. The NAMRNGE operand is used to specify the global scope of the lock.

– NAMRNGE=*OWNSYSTEM
The specified lock name is only valid on the local system.

– NAMRNGE=*CLUSTER
The specified lock name is valid throughout the cluster.

2. The SCOPE operator is used to specify the local scope of the lock.

– SCOPE=*NAMESPACEID
The specified lock name is used as the internal lock name. The first part (8 bytes)
of the specified lock name implicitly forms the local scope. The local scope must be
a string. Valid characters are the letters “A..Z”, “a..z”; the digits “0..9” and the special
characters “@” and “#”. The maximum length of the lock name is 48 characters.

– SCOPE=*USERID
The user ID to which the calling task belongs is used to form the internal lock name.
The DLM determines the user ID and places it at the start of the lock name. The first
part of the specified lock name is not considered to be the local scope. The
maximum length of the specified lock name is reduced to 40 characters.
Specifying SCOPE=*USERID is an easy way of protecting an application's locks
against access by another application. The applications simply have to be started
under different user IDs.

– SCOPE=*GROUPID
The user group to which the calling task belongs is used to form the internal lock
name. The DLM determines the user group and places it at the start of the lock
name. The first part of the specified lock name is not considered to be the local
scope. The maximum length of the specified lock name is reduced to 40 characters.
The SCOPE=*GROUPID operand may only be specified if the software product
SECOS has been purchased and is operational as otherwise the LKENQ call
results in an error.
Specifying this operand is an easy way of protecting an application's locks against
access by another application. The applications simply have to be started under
different user groups.

3. The remaining part of a lock name (up to 40 characters) may contain any characters.

Application areas and brief descriptions Task and program execution control

U3291-J-Z125-16-76 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

The local scope must be formed in accordance with the following rules:

1. Users are not permitted to form a local scope which starts with the special character “$”.

2. Users must avoid the prefixes “SYS” and “@” for the local scope. These prefixes are
reserved for internal TU applications.

4.3.8.5 Cluster systems and single systems

Every lock name belongs to a global scope. If this scope is local to the node, the name is
valid only on its own node. It is always separate from a name which is the same but which
has the cluster as its scope.

Two applications (running on different nodes in a cluster) that have specified the same lock
name with local scope are not serialized because each of the lock names is a local, node-
specific name.

If two applications specify the cluster as the scope for identical lock names, they refer to the
same lock and are serialized by the DLM.

If two applications (running anywhere on the cluster) specify the same lock names but
different scopes, they refer to different locks.

A lock with NAMRNGE=*OWNSYSTEM cannot be transferred to a lock with
NAMRNGE=*CLUSTER because these two locks are completely different.

To enable user programs (that were developed for cluster systems) to run on single
systems without the need for modifications, the DLM provides the following feature:

If a system is not part of a cluster and is also not part of a cluster in the current session, the
DLM accepts LKENQ calls as if this system were part of a cluster. Locks which have been
enqueued with NAMRNGE=*CLUSTER are not the same as those enqueued with
NAMRNGE=*OWNSYSTEM.

Task and program execution control Application areas and brief descriptions

154 U3291-J-Z125-16-76

Brief overview

Specify when
calling macro

Macro Returned by macro

MF=D LKEQU (1)

MF=L LKLSB (2)

LKINF (3)

LKENQ LOCKID (4)

LOCKID LKCVT (5)

LOCKID LKCAN (6)

LOCKID LKDEQ (7)

(1) LKEQU generates DLM-specific layouts

(2) LKLSB generates the layout of the Lock Status Block

(3) LKINF provides information about locks

(4) LKENQ creates a lock and supplies a lock ID

(5) LKCVT converts the lock request

(6) LKCAN cancels the lock request

(7) LKDEQ releases lock requests

Application areas and brief descriptions Requesting and accessing lists and tables

U3291-J-Z125-16-76 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.4 Requesting and accessing lists and tables

Macro Brief description

AINF Provides details of the job' s resource utilization

CHKPRV Checks the current job for privileges

CTIME Performs time stamp calculations (represents different formats and works with
timespans)

CUPAB Generates addressing aids (DSECTs) for the operand lists of the RDATA, WROUT and
WRTRD macros

DCSTA Generates an area (CSECT) or addressing aids (DSECTs) for the information supplied
by the TSTAT macro

DJINF Generates a DSECT/data list for the output area of the JINF macro

DTMODE Generates a DSECT/data list for the 31-bit interface of the TMODE macro

GCCSN Displays the current code table for input and output of command and data
(SYSDTA/SYSCMD/SYSOUT/SYSLST)

GEPRT Gives the elapsed CPU time and the CPU time still available to the program or job

GTIME Gives the current date and time, and gives information about the current time zone

HSITYPE Supplies information about the current hardware-software interface (HSI)

IOSID Supplies information on the ID and version number of the operating system

JINF Transfers a list of job data (SET-LOGON-PARAMETERS command / ENTER-JOB
command) relating to the job executing the calling program

JMGDJP Generates a DSECT/data list for the data area of the JMGJPAR macro

JMGJPAR Transfers the job parameters specified in the SET-LOGON-PARAMETERS command
or ENTER-JOB command)

JOBINFO Transfers a list of job data (SET-LOGON-PARAMETERS command / ENTER-JOB
command) for a specified job

MINF Outputs memory map and size for class 6 memory or memory pool

NKDINF Transfers information on the reservation and availability states of the (peripheral)
configuration

NKGTYPE Supplies the name, device type code, device attributes, etc. of a device/volume type or
the names and device type codes of the device types that belong to a device family or
device class

NSIINF Supplies information on CPU, operating system, HSI or memory

NSIOPT Supplies information on system parameters

RDUID Transfers to the program the user ID of the task under which it is running

SINF Supplies information on CPU, operating system or system parameters to a user
program area

SRMUINF Transfers data from the user catalog into an area

Input/output Application areas and brief descriptions

156 U3291-J-Z125-16-76

4.5 Input/output

4.5.1 System files

The standard file names SYSDTA, SYSCMD, SYSLST, SYSLST01,
SYSLST02, ..., SYSLST99 and SYSOUT denote (system) files used by the operating
system for the input of commands and data to the operating system, or for the output of data
by the operating system. These files are created by the user task and define initial (primary)
default input and output areas.
Users can revoke the primary assignment and assign their own (cataloged) files to the
(standard) file names. Some of the standard names can also be equated (see the SYSFL
macro).

i The system files SYSIPT and SYSOPT are supported only for reasons of
compatibility. They are no longer described in this manual.

A task can use the following system files for input

SYSCMD The commands used to control the job are read in from SYSCMD.

SYSDTA The SYSDTA system file is used to input data and instructions for a program.
As soon as a program executes, SYSDTA is active. SYSDTA can be accessed
by means of the RDATA macro.

STAMCE Reads entries from the MRSCAT

TMODE Supplies information on the job currently running, e.g. TSN, user ID, accounting
number, etc.

TSPRIO Generates symbolic names for upper and lower limits of variable and constant priorities

TSTAT Supplies information on the characteristics of the interactive terminal (see also DCSTA)

VMGINF Supplies information in connection with VM2000 operation

VTCSET Generates symbolic names used to insert logical control characters in line mode output
messages or to locate line mode inputs

Macro Brief description

SYSFL Reassigns the system files SYSDTA, SYSLST, SYSLST01, SYSLST02, ..., SYSLST99
and SYSOUT and the TASKLIB.

SYSTA Assigns the system files and the TASKLIB.

Macro Brief description

Application areas and brief descriptions Input/output

U3291-J-Z125-16-76 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

A task can use the following system files for output

SYSOUT All logged messages and error messages that occur during the current job are
written to the SYSOUT system file. Utility routines and compilers also use
SYSOUT for this purpose. SYSOUT can be accessed by means of the WROUT
macro.

SYSLST SYSLST is used primarily for storing larger amounts of data, e.g. dumps or
generated lists. SYSLST can be accessed by means of the WRLST macro. In
addition, any data records written to SYSOUT are also written to the system file
SYSLST if the appropriate operands were specified in the SET-LOGON-
PARAMETERS or MODIFY-JOB-OPTIONS command.

SYSLST01, SYSLST02,...,SYSLST99
Unlike the SYSLST system file, these files do not have their own EAM area for
storing output data. They are used for intermediate storage and are effective
only if they are assigned cataloged files. The SYSLSTn files can be accessed
by means of the WRLST macro.

System files for output will be created as necessary by the operating system under the
user's ID. These are SAM files with the file names

S.OUT.tsn.yyyy-mm-dd.hhmmss (for SYSOUT)
S.LST.tsn.yyyy-mm-dd.hhmmss (for SYSLST)

where:

– tsn=TSN (task sequence number) assigned to the job
– yyyy-mm-dd=Date (yyyy=year, mm=month, dd=day)
– hhmmss=Time (hh=hours, mm=minutes, ss=seconds)

The storage space occupied by the files is not counted as part of the public space
allocation. At the end of the job, the files are automatically printed out, and then deleted.
The user has no access to these files. The command /DELETE-FILE *SYSxyz
(xyz=LST/OUT/OPT) may be used to (logically) delete the contents of a specified system
file, although the catalog entry is retained. An empty system file will not be printed out.

The system files used for output may also be output earlier than normal (START-
PROCESSING operand in the PRINT-DOCUMENTcommand).
In the PRINT-DOCUMENT and DELETE-SYSTEM-FILE commands or the ERASE (see
“DMS Macros” manual [7]) and PRNT... macros (see “SPOOL & Print - Macros and Exits”
manual [23]), it is permissible to specify the (standard) file namesSYSOUT and SYSLST
even if cataloged files have been assigned tothem.

Input/output Application areas and brief descriptions

158 U3291-J-Z125-16-76

Primary assignment and reassignment of system files

System files are generally given a specific (standard) assignment. This primary assignment
can be modified with the aid of the commands summarized in the following table. Examples
are to be found in the relevant command descriptions in the “Commands” manual [19]).

System
file

System file assignment
Primary assignment

Other
assignments

Commands for changing the
file assignment

SYSCMD Interactive mode: terminal
Batch mode: spoolin file
“S.INtsn” (spooled in via
magnetic tape device or
ENTER file)

Cataloged disk file
(SAM/ISAM)

CALL-PROCEDURE command:
assignment to a cataloged file
END-PROCEDURE commands
(procedure files only) and EXIT-
PROCEDURE: return to the last
procedure step left via a CALL-
PROCEDURE

SYSDTA See SYSCMD primary
assignment

Cataloged disk file
(SAM/ISAM),
S variable or PLAM
library element

ASSIGN-SYSDTA command:
assignment to cataloged file,
S variable, PLAM library element,
SYSCMD, or return to primary
assignment.
END-PROCEDURE commands
(procedure files only) and
EXIT-PROCEDURE: return to
assignment valid prior to
invocation of procedure mode

SYSOUT Interactive mode:
terminal

Batch mode:
temporary (system) file
S.OUT.. which is output to
printer at job termination and
then deleted

Interactive mode:
cataloged file,
S variable or PLAM
library element
Batch mode:
cataloged file,
S variable or PLAM
library element
which is not
automatically
output to printer;
PRINT-FILE
command required

See SYSLST

Table 10: System file assignment (Teil 1 von 2)

Application areas and brief descriptions Input/output

U3291-J-Z125-16-76 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.5.2 Files and records

SYSLST Temporary (system) file
S.LST....
which is output to printer
when the job is terminated
and then deleted (created
only when required)

Cataloged file,
S variable or PLAM
library element
which is not
automatically
output to printer;
PRINT-FILE
command required

ASSIGN-SYSLST command:
assignment to a cataloged file,
S variable or PLAM library
element, or return to primary
assignment.
END-PROCEDURE commands
(procedure files only) and
EXIT-PROCEDURE: return to
assignment valid prior to
invocation of procedure mode

SYSLST01
 .
 .
 .
SYSLST99

System files:
primary assignment
= same as for SYSLST

See SYSLST; also
possible between
each other

See SYSLST

Macro Brief description

CUPAB Generates addressing aids (DSECTs) for the operand lists of the RDATA, WROUT and
WRTRD macros

GCCSN Displays the current coding table for command and data input (SYSDTA/SYSCMD)

RDATA Reads a record from the SYSDTA system file, i.e. from a cataloged file, an S variable,
a PLAM library element or the interactive terminal (see also CUPAB)

VTSUCB Creates VTSU parameters for input/output

WRLST Causes a record to be written to the SYSLST system file and/or the SYSLST01,
SYSLST02, ... ,SYSLST99 system files. The relevant system file is printed after the job
has terminated, provided the user has not directed it to a cataloged file

WROUT Causes a record to be written to the SYSOUT system file, i.e. in interactive mode to the
terminal, a cataloged file, an S variable or a PLAM library element. In batch mode the
SYSOUT system file is printed after job termination (see also CUPAB), unless the user
has assigned it to a cataloged file, an S variable or a PLAM library element

WRTRD In interactive mode, writes a message to the terminal and subsequently accepts a
message from there (see also CUPAB)

System
file

System file assignment
Primary assignment

Other
assignments

Commands for changing the
file assignment

Table 10: System file assignment (Teil 2 von 2)

Input/output Application areas and brief descriptions

160 U3291-J-Z125-16-76

4.5.3 Data terminal communication

Macro Brief description

CUPAB Generates addressing aids (DSECTs) for the operand lists of the RDATA, WROUT and
WRTRD macros

GCCSN Displays the current code table for input and output of command and data
(SYSDTA/SYSCMD/SYSOUT/SYSLST)

DCSTA Generates an area (CSECT) or addressing aids (DSECTs) for the information supplied
by the TSTAT macro

RDATA Reads a record from the SYSDTA system file, i.e. from a cataloged file, an S variable,
a PLAM library element or the interactive terminal (see also CUPAB)

SETBF Changes the size of the system input/output buffer of the terminal

TCHNG Determines whether screen overflow is controlled by the system or by the user program

TMODE Supplies information on the calling task, e.g. buffer size, line length and logical terminal
type

TSTAT Supplies information on the features of the interactive terminal (see also DCSTA)

TYPIO Outputs a message at the console and accepts a response from the operator

VTCSET Defines logical control characters

VTSUCB Generates VTSU parameters for input/output

WROUT Writes a record to the SYSOUT system file, i.e. in interactive mode to the terminal, a
cataloged file, an S variable or a PLAM library element. In batch mode the SYSOUT
system file is printed after job termination (see also CUPAB), unless the user has
assigned it to a cataloged file, an S variable or a PLAM library element

WRTRD In interactive mode, writes a message to the terminal and subsequently accepts a
message from there (see also CUPAB)

Application areas and brief descriptions Input/output

U3291-J-Z125-16-76 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.5.4 Messages

4.5.5 Encryption

Macro Brief description

MSG7 Writes a message (with a 7-character message code) to the SYSOUT system file or
to the console and accepts a response

MSG7X Writes a message (with a 7-character message code) to the SYSOUT system file or
to the console and accepts a response

MSGSHOW Supplies information about the scope, number, language, names and access
methods of message files

MSGSINIT System administration macro.
This macro modifies the global range assignment list by entering new message files
or locking access to message files

MSGSMOD System administration and user macro.
The macro is used to modify the global range assignment list:
it enters new message files and/or locks access to message files. The nonprivileged
user can add task-specific message files to the messages

MSGRC Outputs the return code with an explanation for the macros of the messages

OPSGEN Supplies MIP with information about S variable generation

TYPIO Outputs a message on the operator console, and accepts a reply

Macro Brief description

CRYPT Encrypts words using a one-way encryption procedure
(decryption is not possible).

Debugging aids Application areas and brief descriptions

162 U3291-J-Z125-16-76

4.6 Debugging aids

4.7 Checkpoints

4.8 Accounting

Macro Brief description

AUDIT Monitors processor states TU and TPR of the user program

BKPT Transfers control to the system. The user may then enter commands at the data display
terminal

CDUMP2 Initiates a memory dump without program termination

TERM Terminates program and job step and initiates (where necessary) a memory dump

Macro Brief description

WRCPT Writes a checkpoint. Meaning: a defined system and program status at a specific point
of the program execution is buffered and is available for restarting the program at this
point (by means of the RESTART-PROGRAM command)

Macro Brief description

ARDS Describes the structure of the user records (definition macro)

AREC Writes an accounting record to the accounting file

ASPC Used to record the memory space currently occupied on public volumes (only for
system administration)

Application areas and brief descriptions Communication (programs, users, system)

U3291-J-Z125-16-76 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.9 Communication (programs, users, system)

The SWITCH macro replaces the GETSW, GETUS, SETSW and SETUS macros. These
macros are still supported for reasons of compatibility only and are described in the
appendix on page 1121.

Macro Brief description

BKPT Transfers control to the system. The user may then enter commands at the data display
terminal

CLCOM Terminates intertask communication for the calling program (see page 76)

CMD Executes commands without leaving program mode

JINF Transfers a list of job data

OPCOM Opens intertask communication for the calling program and defines its ITC name
(see page 76)

RELBF Deletes the first message in the ITC queue of the calling program (see page 76)

REVNT Receives a message for the ITC name of the calling program (see page 76)

SEVNT Sends a message to an ITC user (see page 76)

STXIT Specifies user routines for interrupt handling which are to be started if a program interrupt
occurs.
By means of the INFORM-PROGRAM command data can be transferred to an interrupt
routine (see the “ Commands” manual [19])

SWITCH Switches and transfers the 32 job switches associated with the job or the 32 user
switches associated with the user' s own or another user' s user ID

TMODE Transfers job attributes such as characteristics of the data display terminal (type, buffer,
mode, ...) as well as run priority, TSN, CPU time, and user ID

TYPIO Outputs a message on the console and accepts a response

WROUT Transfers a record to the SYSOUT system file, i.e. in interactive mode to the data display
terminal. In batch mode, the system file SYSOUT is printed after job termination (see
also CUPAB) unless the user has assigned it to a cataloged file

WRTRD In interactive mode, transfers a message to the data display terminal and subsequently
accepts a message from there (see also CUPAB)

Multiprocessor systems Application areas and brief descriptions

164 U3291-J-Z125-16-76

4.10 Multiprocessor systems

The macro MCSINFO replaces both the MRSINF and MRSSTA macros. These macros are
still supported for compatibility reasons only and are described in the appendix on
page 1126. The macro MCSINFO is described in the “HIPLEX MSCF” manual [26].

The macros MCSINFO and MRSSTA are only available to users of the multiuser system,
details of which are contained in the “HIPLEX MSCF” manual [26].

4.11 XS programming

Macro Brief description

MCSINFO Displays the current HIPLEX MSCF configuration to which the computer belongs

MRSINF Outputs information on the MSCF communication network

MRSSTA Outputs status in MSCF

STAMCE Transfers MRSCAT entries to an area

Macro Brief description

AMODE31 States whether the 31-bit addressing mode has been activated

GPARMOD Determines which interface (24-bit or 31-bit interface) is to be generated for the
subsequent macros

HSITYPE Indicates the size of the addressable class 6 memory and states which addressing
mode (24-bit or 31-bit addressing) can be used

Application areas and brief descriptions Job scheduler

U3291-J-Z125-16-76 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
k0

4

4.12 Job scheduler

These macros enable a job scheduler developed by the user to be connected to the Job
Management System (JMS).
A job scheduler runs as an application program in the TU processor state and is therefore
easily exchangeable. It communicates with JMS via a privileged interface (job scheduler
interface).
Users can replace the standard scheduler by a scheduler they have developed themselves
to suit their own requirements, without having to intervene in the operating system.
However, the functional scope of this type of scheduler is limited by the functional width of
the job scheduler interface.

Macro Brief description

DJSI Definition macro; creates name definitions, DSECTs or I/O areas for the 24-bit interface
of the job scheduler macros

DJSIPL Definition macro; creates name definitions, DSECTs or I/O areas for the 31-bit interface
of the job scheduler macros

JSATTCH Connects the job scheduler to the job management system

JSDETCH Severs the connection between the job scheduler and the job management system

JSEXPCT Requests the next event for the job scheduler from the job management system

JSINFO Transfers the STREAM-PARAMETER (S-PAR) of the stream definition to an area to be
specified

JSRUNJB Calls upon the class scheduler to start the specified job

JSWAKE Initiates a timer event for the job scheduler

Macros generating only CSECTs or DSECTs Application areas and brief descriptions

166 U3291-J-Z125-16-76

4.13 Macros generating only CSECTs or DSECTs

Macro Brief description

ARDS Describes the structure of accounting records

CUPAB Generates addressing aids for the operand tables of the RDATA, WROUT and WRTRD
macros

DCSTA Generates an area (CSECT) or addressing aids (DSECT) for the information
transferred by the TSTAT macro

DJINF Generates a DSECT/data list for the output area of the JINF macro

DJSI Generates name definitions, DSECTs or data areas for the 24-bit interface of the job
scheduler macros

DJSIPL Generates name definitions, DSECTs or data areas for the 31-bit interface of the job
scheduler macros

DTMODE Generates a DSECT/data list for the 31-bit interface of the TMODE macro

JMGDJP Generates a DSECT/data list for the data area of the JMGJPAR macro

LKEQU Generates a DSECT/data list for the Event Type Codes and the Global Return Codes
that are set by the different macros of the DLM

LKLSB Generates the layout of the Lock Status Block

PBTABD Generates a DSECT/data list for the input table of the TABLE macro (for 31-bit
interface only). See page 1152

VTCSET Generates symbolic names used to insert logical control characters in line mode output
messages or to detect line mode inputs

U3291-J-Z125-16-76 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

5 Description of the macros

This section contains detailed descriptions of the individual Executive macros in
alphabetical order. In general the descriptions are arranged into the following parts:

– macro name and function
– general: application area and macro type
– macro description: macro function
– macro format and operand description
– return information and error flags: return code and explanation
– example

The TIAM macros described in this manual reflect the functional scope of the current TIAM
version, V13.2A (see also the “TIAM” manual [16]):

The VTSU macros described in this manual, reflect the functional scope of the current
VTSU V13.3A (see the “VTSU” manual [30]):

The DBL macros described in this manual, reflect the functional scope of the current binder
loader BLSSERV V2.8A ; (see the “BLSSERV” manual [4]):

CUPAB RDATA TCHNG TSTAT

WROUT WRTRD

DCSTA VTCSET VTSUCB

ASHARE BIND DSHARE ETABIT ETABLE

GETPRGV ILEMGT ILEMIT LDSLICE PINF

SELPRGV UNBIND VSVI1

AINF Description of the macros

168 U3291-J-Z125-16-76

AINF – Measure resource utilization

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 1:

31-bit interface: standard/E/L/D form; see page 29

Resources whose utilization is to be measured are defined in so-called information
packages. The following information packages can be selected for measuring:

A description of the structure of the output fields for the individual information packages
follows after the description of the macro format.

Working set integral: Sum of all products of (main memory pages in Kbytes * user time in
seconds).
Number of data blocks transferred: transport of data to and from the local periphery, in PAM
pages (for public, system private and user private disks) or in 2K blocks (for magnetic tapes
and unit record devices).

Macro description

The AINF macro determines the resource utilization of a job and passes the values to a
user program area.
Two methods are available for measuring resource utilization:

– Usage stamp method:
Resource utilization since the beginning of the job (format 1)

– Measurement method:
Resource utilization of individual program sections (formats 2 and 3)

The MF=D operand generates a DSECT for the data area and a definition of possible return
information items. Additionally, the AINF macro may output the definitions of the output
structure of individual information packages (format 4).

Note
The CPU time consumed by the system call processing itself corrupts the measurement
slightly.

Designation Resources/Measured values

Global values

Time usage
Input/output count

CPU time, total number of inputs and outputs, number of data blocks
transferred, and working set integral are determined.
CPU time, time stamp or run time are determined.
Number of inputs and outputs.

Description of the macros AINF

U3291-J-Z125-16-76 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Functional description

When the usage stamp method is used, the AINF macro determines resource usage
since the beginning of the job and transfers the usage values to a user program area. The
user selects the resource to be measured by specifying information packages in the macro
(GLOBAL, TIME, IOCNT) to which different resources are assigned.

When the measurement method is used, the AINF macro determines the resource usage
of individual program sections. Measurement may be started, interrupted, continued or
terminated at freely selectable points in the program. Several measurements may be
nested and overlap as required. Each measurement is assigned its own measurement ID
in order to allow unique identification of different measurements.
When a measurement is started (READY operand), the user defines a measurement ID
and selects the information packages containing the resources to be measured. If the
measurement is to be interrupted, the user must issue another AINF call (with the INTR
operand) at the point where the interrupt is to take place. The system determines the usage
values of the specified resources since the start of the measurement and transfers them, if
desired, to a user program area. To continue the interrupted measurement, the user must
issue an AINF call (with the READY operand) containing the associated measurement ID
at the desired point. In this way, a measurement may be interrupted whenever desired and
continued later on. Following each interrupt, the system determines the total of the usage
values of all measurement steps up to this point.
Measurement is terminated when an AINF call (with the FINISH operand) is issued or the
program is terminated. The system transfers the total of the usage values of all measuring
steps (from the start of measurement to the end) to a user program area.

AINF data area format:

Field name Displacement Contents

IAMID
IAIMFC
IAIMTARE
IAIMAREA
IAIMCHAI
IAIMMID

00
04
08
0C
10
14

Macro ID
Function selection
Operand type
Output area
Chaining address
Measurement ID

AINF Description of the macros

170 U3291-J-Z125-16-76

Macro formats and description of operands

The operands of the following descriptions are described in alphabetical order.

Format 1: Usage stamp method

At least one of the operands GLOBAL, TIME or IOCNT must be specified with the value
YES, otherwise the macro is rejected with:

– X'10' in register R15 if only default values (NO) were specified explicitly.

– an MNOTE message (in the ASSEMBLER log) if none of the operands GLOBAL, TIME
or IOCNT were specified explicitly.

AREA=
Specifies a field where resource utilization values are entered. The field must be aligned on
a word boundary. The length of the field is determined by the desired information package
(see “Output structure format” on page 178).

addr
Symbolic address of the field.

(r)
Register containing the address value “addr”.

GLOBAL=
Specifies the information package “global values”.

NO
The information package “global values” is not selected.

YES
Resource utilization is output.

AINF

AREA=addr / (r)

,GLOBAL=NO / YES

,TIME=NO / YES

,IOCNT=NO / YES / EXT / STD

,MF=S / (E,..) / L

Description of the macros AINF

U3291-J-Z125-16-76 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

IOCNT=
Specifies the information package “input/output count”.

NO
The information package “input/output count” is not selected.

YES
The total number of input/output operations to/from public volumes and system private
disks is output.

STD
The total number of input/output operations to/from public volumes and system private
disks is output.

EXT
Same as STD or YES, but includes input/output operations to/from tapes, user private
disks and other devices.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

TIME=
Specifies the information package “time usage”.

NO
The information package “time usage” is not selected.

YES
CPU time and time stamp (time of day) are to be measured. The time stamp in the
usage stamp method is the value of the TOD register converted to seconds and
nanoseconds.

AINF Description of the macros

172 U3291-J-Z125-16-76

Format 2: Measurement method
Start or restart measurement

At least one of the operands GLOBAL, TIME or IOCNT must be specified with the value
YES, otherwise the macro is rejected with:

– X'10' in register R15 if only default values (NO) were specified explicitly.

– an MNOTE message (in the ASSEMBLER log) if none of the operands GLOBAL, TIME
or IOCNT were specified explicitly.

CHAIN=
Permits the AINF macro to be chained to another AINF macro by specifying a chaining
address. This address refers to the data area of the second AINF macro generated with
MF=L. See notes on chaining (page 181).

addr
Address of the operand list of the second macro generated with MF=L.

(r)
Register containing the address value “addr”. This operand is permitted only for the
standard form or the L form of the macro.

GLOBAL=
Specifies the information package “global values”.

NO
The information package “global values” is not selected.

YES
Resource utilization is output.

IOCNT=
Specifies the information package “input/output count”.

NO
The information package “input/output count” is not selected.

AINF

READY='measid' / addr / (r)

,GLOBAL=NO / YES

,TIME=NO / YES

,IOCNT=NO / YES / EXT / STD

[,CHAIN=addr / (r)]

,MF=S / (E,..) / L

Description of the macros AINF

U3291-J-Z125-16-76 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

YES
The total number of input/output operations to/from public volumes and system private
disks is output.

STD
The total number of input/output operations to/from public volumes and system private
disks is output.

EXT
Same as STD or YES, but includes input/output operations to/from tapes, user private
disks and other devices.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

READY=
Starts a new measurement and assigns it the specified measurement ID.

'measid'
Measurement ID assigned to the measurement. Length: up to 8 characters.
If the 'measid' name is already assigned to an (interrupted) measurement, this
measurement is restarted.

addr
Symbolic name (address) of a field containing the measurement ID.

(r)
Register containing the address value “addr”.

TIME=
Specifies the information package “time usage”.

NO
The information package “time usage” is not selected.

YES
CPU time and runtime are to be output.

Note

When a measurement is restarted, the selection of measurement packages (GLOBAL,
TIME, IOCNT) must match the specifications made when the measurement was
originally started. If this is not the case, the measurement is continued with the
information packages originally specified and the return information X'24' is stored in
register R15.

AINF Description of the macros

174 U3291-J-Z125-16-76

Format 3: Measurement method
Interrupt or terminate measurement

AREA=
Specifies a field where resource utilization values are entered. The field must be aligned on
a word boundary. The length of the field is determined by the desired information package
(see “Output structure format” on page 178).

addr
Symbolic address of the field.

(r)
Register containing the address value “addr”.

CHAIN=
Permits the AINF macro to be chained to another AINF macro by specifying a chaining
address. This address refers to the operand list of the second AINF macro generated with
MF=L. See notes on chaining (page 181).

addr
Address of the operand list of the second macro generated with MF=L.

(r)
Register containing the address value “addr”. This operand is permitted only for the
standard form or the L form of the macro.

FINISH=
FINISH terminates the measurement with the specified measurement ID.

'measid'
Measurement ID assigned to the measurement.

addr
Symbolic address of a field containing the measurement ID.

(r)
Register containing the address value “addr”.

AINF

[,CHAIN=addr / (r)]

,MF=S / (E,..) / L

INTR='measid' / addr / (r)[,AREA=addr / (r)]
FINISH='measid' / addr / (r),AREA=addr / (r)

Description of the macros AINF

U3291-J-Z125-16-76 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

INTR=
INTR interrupts the measurement with the specified measurement ID.

'measid'
Measurement ID assigned to the measurement.

addr
Symbolic address of a field containing the measurement ID.

(r)
Register containing the address value “addr”.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

AINF Description of the macros

176 U3291-J-Z125-16-76

Format 4: DSECTs for operand list and output structure
(at least one operand must be specified)

GLOBAL=D
Generates a DSECT for the output structure of the information package “global values”.

IOCNT=D
Generates a DSECT for the output structure of the information package “input/output
count”.

MF=D
Generates a DSECT for the operand list and EQU statements for the return code.

P=
Specifies a prefix for the symbolic names of the DSECT.

I
The generated field names begin with the prefix I, the length definitions with LIxx.

p
Letter prefixed to all generated field names of the DSECT. The prefix is also included in
the names of the length definitions: L&p.xx.
Length of the prefix = 1 letter.

*
No letter is prefixed to the generated field names or included in the names of the length
definitions.

TIME=D
Generates a DSECT for the output structure of the information package “time usage”.

AINF

[MF=D]

,P=I / P / *

[,GLOBAL=D]

[,TIME=D]

[,IOCNT=D]

Description of the macros AINF

U3291-J-Z125-16-76 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

AINF MF=D
1 #INTF INTNAME=AINF,REFTYPE=REQUEST,INTCOMP=001 GS 950
1 MFPRE DNAME=AIMPL,MF=D,PREFIX=I,MACID=AIM,DMACID=AIM :*R200
2 IAIMPL DSECT ,
2 *,##### PREFIX=I, MACID=AIM #####
1 DS 0F AINF PARAMETER LIST
1 IAIMID DS CL2 IDENTIFICATION OF AINF MACRO
1 IAIMAINF EQU C’AI’ - AINF INFORMATION STAMP
1 IAIMPMAC EQU C’PM’ - PROG MEASUREMENT FUNCT.
1 IAIMVER DC XL2’075’ AINF MACRO VERSION
1 IAIMFC DS X FUNCTION CODE
1 IAIMFCCV EQU X’01’ - CURRENT USAGE VALUES
1 IAIMFCRE EQU X’02’ - MEASUREMENT READY
1 IAIMFCIN EQU X’04’ - MEASUREMENT INTR
1 IAIMFCFI EQU X’08’ - MEASUREMENT FINISH
1 IAIMNPAR DC FL1’4’ # OF PARAMETERS
1 * + 8 = DIST OF FIRST PARAM ADDR
1 IAIMMSK1 DC X’00’ INFORMATION PACKAGE MASK1
1 IAIMGLOB EQU X’80’ - "GLOBAL" REQUIRED
1 IAIMTIME EQU X’40’ - "TIME" REQUIRED
1 IAIMIOCN EQU X’20’ - "IOCNT=STD" REQUIRED
1 IAIMIOCX EQU X’10’ - "IOCNT=EXT" REQUIRED
1 * EQU X’0F’ - ALL OTHER BITS RESERVED
1 IAIMMSK2 DC X’00’ INFORMATION PACKAGE MASK2
1 * EQU X’FF’ - ALL BITS RESERVED
1 IAIMTARE DS X TYPE OF AREA PARAM
1 IAIMNONE EQU X’00’ - NOT SPECIFIED
1 IAIMADDR EQU X’01’ - GIVEN AS DIRECT ADDRESS
1 IAIMREG EQU X’02’ - GIVEN IN A REGISTER
1 IAIMTCHA DS X TYPE OF CHAIN PARAM
1 * - EQUATES AS ABOVE
1 IAIMTMID DS X TYPE OF MEASUREMENT ID
1 * - EQUATES AS ABOVE, +
1 IAIMSTR EQU X’03’ - GIVEN AS A STRING
1 IAIMTMIX DS X TYPE OF MID CONTINUED
1 IAIMEXT EQU X’FF’ - EXTENDED PARAMETER
1 IAIMAREA DS A OUTPUT AREA ADDRESS
1 IAIMCHAI DS A CHAIN ADDRESS
1 IAIMMID DS 0A MEASUREMENT ID ADDR OR
1 IAIMMIDS DS CL8 MEASUREMENT ID STRING
1 IAIMPLE EQU * END OF AINF PARAM LIST
1 LIAIMPL EQU *-IAIMPL LENGTH OF AINF PARAM LIST
1 SPACE 2

The DSECT is followed by the definitions of possible return codes. This part of the
expansion is listed below under “Return information and error flags”.

AINF Description of the macros

178 U3291-J-Z125-16-76

Output structure format

1. Information package Global values

AINF GLOBAL=D
1 #INTF INTNAME=AINF,REFTYPE=REQUEST,INTCOMP=001 GS 950
1 MFPRE DNAME=AIAREA,MF=D,PREFIX=I,MACID=AIA,DMACID=AIA :*R200
2 IAIAREA DSECT ,
2 *,##### PREFIX=I, MACID=AIA #####
1 DS 0F START OF OUTPUT AREA
1 MFPRE DNAME=AIGLOB,ALIGN=F,PREFIX=I,MACID=AIG,MF=S, :*R200C
1 DMACID=AIG :*R200
2 CNOP 0,4
2 IAIGLOB DS 0F
1 * "GLOBAL" INFO PACKAGE
1 IAIGTCPU DS 0FL8 CPU TIME
1 IAIGCPUS DS F CPU TIME SECONDS
1 IAIGCPUN DS F CPU TIME NANOSECONDS
1 IAIG#IOS DS F TOTAL # IO’S
1 IAIG#BLK DS F TOTAL # BLOCKS GS 090
1 IAIGWSI DS FL8 WORKING SET INTEGRAL GS 090
1 IAIGLOBE EQU * END OF "GLOBAL" INFO
1 LIAIGLOB EQU *-IAIGLOB LENGTH OF "GLOBAL" INFO
1 SPACE 2
1 * END OF OUTPUT AREA
1 MFPRE DNAME=AIAEND,ALIGN=F,PREFIX=I,MACID=AIA,MF=S, :*R200C
1 DMACID=AIA :*R200
2 CNOP 0,4
2 IAIAEND DS 0F
1 LIAIAREA EQU *-IAIAREA LENGTH OF OUTPUT AREA
1 SPACE 2

The measured CPU time is composed of:
– CPU time in nonprivileged program mode
– CPU time in privileged program mode (SVC call and program error processing)
– CPU time during command processing

Field name Displacement Contents

IAIGTCPU

IAIG#IOS

00

08
0C
10

CPU time in the following format:
Displacement 00: full seconds
Displacement 04: remainder in nanoseconds
Current measurement accuracy: 1 microsecond
Total number of inputs/outputs
Number of data blocks
Working set integral

Description of the macros AINF

U3291-J-Z125-16-76 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

2. Information package Time usage

AINF TIME=D
1 #INTF INTNAME=AINF,REFTYPE=REQUEST,INTCOMP=001 GS 950
1 MFPRE DNAME=AIAREA,MF=D,PREFIX=I,MACID=AIA,DMACID=AIA :*R200
2 IAIAREA DSECT ,
2 *,##### PREFIX=I, MACID=AIA #####
1 DS 0F START OF OUTPUT AREA
1 MFPRE DNAME=AITIME,ALIGN=F,PREFIX=I,MACID=AIT,MF=S, :*R200C
1 DMACID=AIT :*R200
2 CNOP 0,4
2 IAITIME DS 0F
1 * "TIME" INFO PACKAGE
1 IAITTCPU DS 0FL8 CPU TIME
1 IAITCPUS DS F CPU TIME SECONDS
1 IAITCPUN DS F CPU TIME NANOSECONDS
1 IAITETIM DS 0FL8 ELAPSED TIME / TIME STAMP
1 IAITTIMS DS F TIME IN SECONDS
1 IAITTIMN DS F TIME NANOSECONDS
1 IAITIMEE EQU * END OF "TIME" INFO
1 LIAITIME EQU *-IAITIME LENGTH OF "TIME" INFO
1 SPACE 2
1 * END OF OUTPUT AREA
1 MFPRE DNAME=AIAEND,ALIGN=F,PREFIX=I,MACID=AIA,MF=S, :*R200C
1 DMACID=AIA :*R200
2 CNOP 0,4
2 IAIAEND DS 0F
1 LIAIAREA EQU *-IAIAREA LENGTH OF OUTPUT AREA
1 SPACE 2

A breakdown of CPU time is given in the “global values” information package.
The time stamp in the usage stamp method is the value of the TOD register converted into
seconds and nanoseconds.

Field name Displacement Contents

IAITTCPU

IAITETIM

00

08

CPU time in the following format:
Displacement 00: full seconds
Displacement 04: remainder in nanoseconds
Current measurement accuracy: 1 microsecond
For usage stamp method: time stamp
For measurement method: runtime
Displacement 08: full seconds
Displacement 0C: remainder in nanoseconds
Current measuring accuracy: 1 microsecond

AINF Description of the macros

180 U3291-J-Z125-16-76

3. Information package Input/output count

AINF IOCNT=D
1 #INTF INTNAME=AINF,REFTYPE=REQUEST,INTCOMP=001 GS 950
1 MFPRE DNAME=AIAREA,MF=D,PREFIX=I,MACID=AIA,DMACID=AIA :*R200
2 IAIAREA DSECT ,
2 *,##### PREFIX=I, MACID=AIA #####
1 DS 0F START OF OUTPUT AREA
1 MFPRE DNAME=AIIOCN,ALIGN=F,PREFIX=I,MACID=AII,MF=S :*R200DMACIC
1 D=AII :*R200
2 CNOP 0,4
2 IAIIOCN DS 0F
1 * "IOCNT" INFO PACKAGE
1 IAII#IOS DS F TOTAL # IO’S
1 IAIIIOPD DS F # IO’S ON PUBLIC DEVICES
1 IAIIIOSD DS F # IO’S ON SYSTEM PRIV. DISKS
1 IAIIIOUD DS F # IO’S ON USER PRIVATE DISKS
1 IAIIIOTP DS F # IO’S ON TAPE DEVICES
1 IAIIIOUR DS F # IO’S ON UNIT RECORD DEVICES
1 IAIIOCNE EQU * END OF "IOCNT" INFO
1 LIAIIOCN EQU *-IAIIOCN LENGTH OF "IOCNT" INFO
1 SPACE 2
1 * END OF OUTPUT AREA
1 MFPRE DNAME=AIAEND,ALIGN=F,PREFIX=I,MACID=AIA,MF=S, C
1 DMACID=AIA
2 CNOP 0,4
2 IAIAEND DS 0F
1 LIAIAREA EQU *-IAIAREA LENGTH OF OUTPUT AREA

The following are not included in the input/output count:
– Terminal inputs/outputs for interactive and transaction processes
– Paging inputs/outputs

The following applies in addition to single inputs/outputs to tapes, user private disks and
other devices (see the IOCNT=EXT operand):
The following are not included in the input/output count
– I/Os from privileged programs
– I/Os to devices released prior to the program run (by REMOVE-FILE-LINK or SECURE-

RESOURCE-ALLOCATION)

Field name Displacement Contents

IAII#IOS
IAIIIOPD
IAIIIOSD
IAIIIOUD
IAIIIOTP
IAIIIOUR

00
04
08
0C
10
14

Input/output total
Input/output on public volumes
Input/output on shareable private disks
Input/output on task-exclusive disks
Input/output on tape
Input/output on other devices

Description of the macros AINF

U3291-J-Z125-16-76 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

As these restrictions do not apply to the input/output totals, the value computed for the total
number may be greater than the sum of single values.

Notes on chaining for measurement method (CHAIN operand)

– The AINF data area designated by CHAIN is processed immediately after the data area
of the calling AINF macro. This allows several AINF calls to be executed within one
SVC processing session; e.g. terminating or interrupting a measurement with
concurrent start or restart of a new measurement (under a different measurement ID);
or interrupting a measurement to output current measuring results with immediate
restart of the same measurement.

– Address transfer in registers facilitates reentrant programming but is not recommended
unless no more than two operands are to be linked.

– Following SVC processing, register R1 contains the address of the most recently
processed data area.

– If an error occurs in the AINF data area of a chain, the chain is terminated at this point.
Register R1 then contains the address of the errored data area.

Return information and error flags

Register R1 contains the address of the data area; for macro chaining, it contains the
address of the most recently processed data area..

R15:
A return code relating to the execution of the AINF
macro is transferred in the rightmost byte of register
R15; the remaining three bytes are deleted.

a a

AINF Description of the macros

182 U3291-J-Z125-16-76

During macro chaining, the specification “Call executed / not executed?” refers to the most
recently processed data area (i.e. the data area whose address is stored in register R1). If
an error occurs during chaining, the chain is terminated at the point of the errored data area,
where:

“executed” indicates that the last (errored) data area was still processed. If the error
can be corrected by the user program, continuation of processing
starting at the next data area should be requested.

“not executed” indicates that the last (errored) data area could not be processed. If the
error can be corrected by the user program, processing should continue
with the same (corrected) operand list.

Field name X'aa' Meaning

IAIROK X'00' Call executed successfully.

IAIRADER X'04' Call not executed due to invalid operand list address.

IAIRFUER X'08' Call not executed due to invalid macro ID or invalid function code (neither
usage stamp method nor READY, INTR or FINISH).

IAIRCHER X'0C' Call executed despite invalid chaining address in most recently processed
operand block (READY, INTR, FINISH).

IAIRPAER X'10' Call not executed due to:
– invalid register or output area address;
– invalid register or measurement ID address;
– missing operand entries.

IAIRMRDY X'14' Call not executed because measurement is already being performed under
the specified measurement ID (with READY).

IAIRNCL5 X'18' Call not executed because there is no more class 5 memory available for
work area (with READY).

IAIRMNTF X'1C' Call not executed because INTR or FINISH had no associated READY; i.e.
measurement not yet started.

IAIRMINT X'20' Call executed despite FINISH for a measurement interrupted by means of
INTR; i.e. measurement not yet resumed.

IAIRIRIN X'24' Call executed despite fact that READY call for measurement resumption
(after INTR) does not contain same information as READY call when
measurement was started.

Description of the macros AINF

U3291-J-Z125-16-76 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Example 1: Usage stamp method

AINF1 START
PRINT NOGEN
BALR 3,0
USING *,3
LA 5,AREAONE
USING AINFDATA,5
AINF GLOBAL=Y,TIME=Y,IOCNT=EXT,AREA=AREAONE ——————————————— (1)
PRINT NOGEN

*
* Display CPU time
*

MVC MESSTXT(L'MCPU),MCPU
L 8,IAIGCPUS CPU time in seconds
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+20(10),ASSIST2+6
MVI MESSTXT+30,C'.'
L 8,IAIGCPUN CPU time in nanoseconds
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+31(9),ASSIST2+7
BAL 7,OUTPUT Call output routine ---------->

*
* Display elapsed time
*

MVC MESSTXT(L'MELA),MELA
L 8,IAITTIMS Elapsed time in seconds
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+20(10),ASSIST2+6
MVI MESSTXT+30,C'.'
L 8,IAITTIMN Elapsed time in nanoseconds
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+31(9),ASSIST2+7
BAL 7,OUTPUT Call output routine ---------->

*
* Display # IO's
*

MVC MESSTXT(L'MIOS),MIOS * Total # IO's ****************
L 8,IAII#IOS
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+30(10),ASSIST2+6
BAL 7,OUTPUT Call output routine ---------->

*
MVC MESSTXT(L'MIOP),MIOP * Public IO's *****************
L 8,IAIIIOPD
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+30(10),ASSIST2+6
BAL 7,OUTPUT Call output routine ---------->

AINF Description of the macros

184 U3291-J-Z125-16-76

*
MVC MESSTXT(L'MIOSP),MIOSP * System private IO's *********
L 8,IAIIIOSD
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+30(10),ASSIST2+6
BAL 7,OUTPUT Call output routine ---------->

*
MVC MESSTXT(L'MIOSP),MIOSP * User private IO's ***********
L 8,IAIIIOUD

BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+30(10),ASSIST2+6
BAL 7,OUTPUT Call output routine ---------->

*
MVC MESSTXT(L'MITP),MITP * Tape devices ****************
L 8,IAIIIOTP
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+30(10),ASSIST2+6
BAL 7,OUTPUT Call output routine ---------->

*
MVC MESSTXT(L'MIUR),MIUR * Unit record devices *********
L 8,IAIIIOUR
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+30(10),ASSIST2+6
BAL 7,OUTPUT Call output routine ---------->

END TERM
*
* Output routine
*
OUTPUT WROUT MESSAGE,END,PARMOD=31

2 *,@DCEO 999 921011 53531004
MVI MESSTXT,C' ' Clear MESSTXT for next output
MVC MESSTXT+1(L'MESSTXT-1),MESSTXT
BR 7 Return ->

*
* Conversion routine
*
PKD2ZND CVD 8,ASSIST1 Convert register contents to

UNPK ASSIST2,ASSIST1 zoned decimal
MVZ ASSIST2+15(1),=X'F0'
BR 7 Return ->

*
* Definitions
*
AREAONE DS 0F

DS 6F
DS 4F
DS 6F

Description of the macros AINF

U3291-J-Z125-16-76 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

MESSAGE DC Y(ENDMESS-MESSAGE) Record length
DS CL2 Reserved
DC X'01' Print feed control character

MESSTXT DC CL60' ' Text
ENDMESS EQU *
ASSIST1 DS D
ASSIST2 DS CL16
MCPU DC C'CPU Time used:'
MELA DC C'Elapsed Time used:'
MIOS DC C'Total number of IOs:'
MIOP DC C'IOs on public devices:'
MIOSP DC C'IOs on system private disks:'
MIOUP DC C'IOs on user private disks:'
MITP DC C'IOs on tape devices:'
MIUR DC C'IOs on unit record devices:'

PRINT GEN
AINFDATA AINF GLOBAL=D,TIME=D,IOCNT=D —————————————————————————————— (2)

1 #INTF INTNAME=AINF,REFTYPE=REQUEST,INTCOMP=001 GS 950
1 AINFDATA MFPRE DNAME=AIAREA,MF=D,PREFIX=I,MACID=AIA,DMACID=AIA :*R200
2 AINFDATA DSECT ,
2 *,##### PREFIX=I, MACID=AIA #####
1 IAIAREA DS 0F START OF OUTPUT AREA LKH075
1 MFPRE DNAME=AIGLOB,ALIGN=F,PREFIX=I,MACID=AIG,MF=S, :*R200C
1 DMACID=AIG :*R200
2 CNOP 0,4
2 IAIGLOB DS 0F
1 * "GLOBAL" INFO PACKAGE LKH075
1 IAIGTCPU DS 0FL8 CPU TIME LKH075
1 IAIGCPUS DS F CPU TIME SECONDS LKH075
1 IAIGCPUN DS F CPU TIME NANOSECONDS LKH075
1 IAIG#IOS DS F TOTAL # IO'S LKH075
1 IAIG#BLK DS F TOTAL # BLOCKS GS 090
1 IAIGWSI DS FL8 WORKING SET INTEGRAL GS 090
1 IAIGLOBE EQU * END OF "GLOBAL" INFO LKH075
1 LIAIGLOB EQU *-IAIGLOB LENGTH OF "GLOBAL" INFO LKH075
1 SPACE 2 LKH075
1 MFPRE DNAME=AITIME,ALIGN=F,PREFIX=I,MACID=AIT,MF=S, :*R200C
1 DMACID=AIT :*R200
2 CNOP 0,4
2 IAITIME DS 0F
1 * "TIME" INFO PACKAGE LKH075
1 IAITTCPU DS 0FL8 CPU TIME LKH075
1 IAITCPUS DS F CPU TIME SECONDS LKH075
1 IAITCPUN DS F CPU TIME NANOSECONDS LKH075
1 IAITETIM DS 0FL8 ELAPSED TIME / TIME STAMP LKH075
1 IAITTIMS DS F TIME IN SECONDS LKH075
1 IAITTIMN DS F TIME NANOSECONDS LKH075
1 IAITIMEE EQU * END OF "TIME" INFO LKH075

AINF Description of the macros

186 U3291-J-Z125-16-76

1 LIAITIME EQU *-IAITIME LENGTH OF "TIME" INFO LKH075
1 SPACE 2 LKH075
1 MFPRE DNAME=AIIOCN,ALIGN=F,PREFIX=I,MACID=AII,MF=S :*R200DMACIC
1 D=AII :*R200
2 CNOP 0,4
2 IAIIOCN DS 0F
1 * "IOCNT" INFO PACKAGE LKH075
1 IAII#IOS DS F TOTAL # IO'S LKH075
1 IAIIIOPD DS F # IO'S ON PUBLIC DEVICES LKH075
1 IAIIIOSD DS F # IO'S ON SYSTEM PRIV. DISKS LKH075
1 IAIIIOUD DS F # IO'S ON USER PRIVATE DISKS LKH075
1 IAIIIOTP DS F # IO'S ON TAPE DEVICES LKH075
1 IAIIIOUR DS F # IO'S ON UNIT RECORD DEVICES LKH075
1 IAIIOCNE EQU * END OF "IOCNT" INFO LKH075
1 LIAIIOCN EQU *-IAIIOCN LENGTH OF "IOCNT" INFO LKH075
1 SPACE 2 LKH075
1 * END OF OUTPUT AREA LKH075
1 MFPRE DNAME=AIAEND,ALIGN=F,PREFIX=I,MACID=AIA,MF=S, :*R200C
1 DMACID=AIA :*R200
2 CNOP 0,4
2 IAIAEND DS 0F
1 LIAIAREA EQU *-IAIAREA LENGTH OF OUTPUT AREA LKH075
1 SPACE 2 LKH075

END
=X'F0'

(1) Resource utilization since the start of the job is to be measured using the
information packages “global values”, “time usage” and “input/output count”. The
measurement values are to be transferred to the area AREAONE.

(2) A DSECT is generated for each of the different information packages. The field
names defined there may be used for symbolic addressing of the measurement
values in AREAONE.

Description of the macros AINF

U3291-J-Z125-16-76 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Runtime log

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,ainf1), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,ainf1))
% ASS6011 ASSEMBLY TIME: 380 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 107 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=ainf1
% BLS0523 ELEMENT 'AINF1', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'AINF1', VERSION ' ' OF '<date> <time>' LOADED
CPU Time used: 0000000058.526666000 —————————————————————————————— (3)
Elapsed Time used: 0000001333.942669000
Total number of IOs: 0000019462
IOs on public devices: 0000019462
IOs on system private disks: 0000000000
IOs on system private disks: 0000000000
IOs on tape devices: 0000000000
IOs on unit record devices: 0000000000

(3) The calculated measurement values are output.

AINF Description of the macros

188 U3291-J-Z125-16-76

Example 2: Measurement method

In the AINF2 program, two measurements are started. These measurements are assigned
the codes MES 1 and MES 2.
MES1 requests resource utilisation data which corresponds to the information packages
“time usage” and “input and output tally”. When the measurement is terminated, the
information should be output to AREA1.
MES2 requests resource utilisation data which corresponds to the information packages
“global values” and “input and output tally”. When the measurement is suspended, i.e. at
the end of the first measurement period, the information should be output to AREA2A; when
the measurement is terminated, to AREA2B.
In addition, the DSECTS for the output structures of the information packages are
generated for MES1 and MES2 and are linked to the relevant output areas.

AINF2 START
PRINT NOGEN
BALR 3,0
USING *,3

MES1B AINF READY='MES1',TIME=Y,IOCNT=EXT Start MES1
LTR 15,15 If Returncode not zero
BNE ERROR go to ERROR ->
MVC MESSTXT,STARTMSG
BAL 7,OUTPUT Call output routine ---------->

MES2B AINF READY='MES2',GLOBAL=Y,IOCNT=Y Start MES2
LTR 15,15 If Returncode not zero
BNE ERROR go to ERROR ->
MVI STARTMSG+3,C'2' Modify start message
MVC MESSTXT,STARTMSG
BAL 7,OUTPUT Call output routine ---------->

MES2I AINF INTR='MES2',AREA=AREA2A Interrupt MES2
MES2C AINF READY='MES2',GLOBAL=Y,IOCNT=Y Continue MES2

BKPT
MES2E AINF FINISH='MES2',AREA=AREA2B Terminate MES2
MES1E AINF FINISH='MES1',AREA=AREA1 Terminate MES1
*
* Display Elapsed Time (MES1)
*

USING MES1PAR,5
LA 5,AREA1
MVC MESSTXT(L'MELA),MELA
L 8,AAITTIMS Elapsed time in seconds
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+20(10),ASSIST2+6
MVI MESSTXT+30,C'.'
L 8,AAITTIMN Elapsed time in nanoseconds
BAL 7,PKD2ZND Call conversion routine
MVC MESSTXT+31(9),ASSIST2+7

Description of the macros AINF

U3291-J-Z125-16-76 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

BAL 7,OUTPUT Call output routine ---------->
*
* Display # IO's at interrupt (MES2)
*

USING MES2PAR,6
LA 6,AREA2A
MVC MESSTXT(L'MIOPI),MIOPI * Public IO's *****************
L 8,BAIIIOPD
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+30(10),ASSIST2+6
BAL 7,OUTPUT Call output routine ---------->

*
* Display # IO's at end (MES2)
*

LA 6,AREA2B
MVC MESSTXT(L'MIOPE),MIOPE * Public IO's *****************
L 8,BAIIIOPD
BAL 7,PKD2ZND Call conversion routine ------>
MVC MESSTXT+30(10),ASSIST2+6
BAL 7,OUTPUT Call output routine ---------->

END TERM
ERROR NOP ERROR

* : Error handling
TERM

*
* Output routine
*
OUTPUT WROUT MESSAGE,END,PARMOD=31

2 *,@DCEO 999 921011 53531004
MVI MESSTXT,C' ' Clear MESSTXT for next output
MVC MESSTXT+1(L'MESSTXT-1),MESSTXT
BR 7 Return ->

*
* Conversion routine
*
PKD2ZND CVD 8,ASSIST1 Convert register contents to

UNPK ASSIST2,ASSIST1 zoned decimal
MVZ ASSIST2+15(1),=X'F0'
BR 7 Return ->

AREA1 DS 10F
AREA2A DS 12F
AREA2B DS 12F
MESSAGE DC Y(ENDMESS-MESSAGE) Record length

DS CL2 Reserved
DC X'01' Print feed control character

MESSTXT DC CL60' ' Text
ENDMESS EQU *

AINF Description of the macros

190 U3291-J-Z125-16-76

STARTMSG DC CL60'MES1 successfully started'
ASSIST1 DS D
ASSIST2 DS CL16
MCPU DC C'CPU Time used:'
MELA DC C'Elapsed Time used:'
MIOPI DC C'IOs before BKPT:'
MIOPE DC C'IOs after BKPT:'

PRINT GEN
MES1PAR AINF TIME=D,IOCNT=D,P=A

1 #INTF INTNAME=AINF,REFTYPE=REQUEST,INTCOMP=001 GS 950
1 MES1PAR MFPRE DNAME=AIAREA,MF=D,PREFIX=A,MACID=AIA,DMACID=AIA :*R200
2 MES1PAR DSECT ,
2 *,##### PREFIX=A, MACID=AIA #####
1 AAIAREA DS 0F START OF OUTPUT AREA LKH075
1 MFPRE DNAME=AITIME,ALIGN=F,PREFIX=A,MACID=AIT,MF=S, :*R200C
1 DMACID=AIT :*R200
2 CNOP 0,4
2 AAITIME DS 0F
1 * "TIME" INFO PACKAGE LKH075
1 AAITTCPU DS 0FL8 CPU TIME LKH075
1 AAITCPUS DS F CPU TIME SECONDS LKH075
1 AAITCPUN DS F CPU TIME NANOSECONDS LKH075
1 AAITETIM DS 0FL8 ELAPSED TIME / TIME STAMP LKH075
1 AAITTIMS DS F TIME IN SECONDS LKH075
1 AAITTIMN DS F TIME NANOSECONDS LKH075
1 AAITIMEE EQU * END OF "TIME" INFO LKH075
1 LAAITIME EQU *-AAITIME LENGTH OF "TIME" INFO LKH075
1 SPACE 2 LKH075

1 MFPRE DNAME=AIIOCN,ALIGN=F,PREFIX=A,MACID=AII,MF=S :*R200DMACIC
1 D=AII :*R200
2 CNOP 0,4
2 AAIIOCN DS 0F
1 * "IOCNT" INFO PACKAGE LKH075
1 AAII#IOS DS F TOTAL # IO'S LKH075
1 AAIIIOPD DS F # IO'S ON PUBLIC DEVICES LKH075
1 AAIIIOSD DS F # IO'S ON SYSTEM PRIV. DISKS LKH075
1 AAIIIOUD DS F # IO'S ON USER PRIVATE DISKS LKH075
1 AAIIIOTP DS F # IO'S ON TAPE DEVICES LKH075
1 AAIIIOUR DS F # IO'S ON UNIT RECORD DEVICES LKH075
1 AAIIOCNE EQU * END OF "IOCNT" INFO LKH075
1 LAAIIOCN EQU *-AAIIOCN LENGTH OF "IOCNT" INFO LKH075
1 SPACE 2 LKH075
1 * END OF OUTPUT AREA LKH075
1 MFPRE DNAME=AIAEND,ALIGN=F,PREFIX=A,MACID=AIA,MF=S, :*R200C
1 DMACID=AIA :*R200
2 CNOP 0,4
2 AAIAEND DS 0F

Description of the macros AINF

U3291-J-Z125-16-76 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

1 LAAIAREA EQU *-AAIAREA LENGTH OF OUTPUT AREA LKH075
1 SPACE 2 LKH075

MES2PAR AINF GLOBAL=D,IOCNT=D,P=B
1 #INTF INTNAME=AINF,REFTYPE=REQUEST,INTCOMP=001 GS 950
1 MES2PAR MFPRE DNAME=AIAREA,MF=D,PREFIX=B,MACID=AIA,DMACID=AIA :*R200
2 MES2PAR DSECT ,
2 *,##### PREFIX=B, MACID=AIA #####
1 BAIAREA DS 0F START OF OUTPUT AREA LKH075
1 MFPRE DNAME=AIGLOB,ALIGN=F,PREFIX=B,MACID=AIG,MF=S, :*R200C
1 DMACID=AIG :*R200
2 CNOP 0,4
2 BAIGLOB DS 0F
1 * "GLOBAL" INFO PACKAGE LKH075
1 BAIGTCPU DS 0FL8 CPU TIME LKH075
1 BAIGCPUS DS F CPU TIME SECONDS LKH075
1 BAIGCPUN DS F CPU TIME NANOSECONDS LKH075
1 BAIG#IOS DS F TOTAL # IO'S LKH075
1 BAIG#BLK DS F TOTAL # BLOCKS GS 090
1 BAIGWSI DS FL8 WORKING SET INTEGRAL GS 090
1 BAIGLOBE EQU * END OF "GLOBAL" INFO LKH075
1 LBAIGLOB EQU *-BAIGLOB LENGTH OF "GLOBAL" INFO LKH075
1 SPACE 2 LKH075
1 MFPRE DNAME=AIIOCN,ALIGN=F,PREFIX=B,MACID=AII,MF=S :*R200DMACIC
1 D=AII :*R200
2 CNOP 0,4
2 BAIIOCN DS 0F
1 * "IOCNT" INFO PACKAGE LKH075
1 BAII#IOS DS F TOTAL # IO'S LKH075
1 BAIIIOPD DS F # IO'S ON PUBLIC DEVICES LKH075
1 BAIIIOSD DS F # IO'S ON SYSTEM PRIV. DISKS LKH075

1 BAIIIOUD DS F # IO'S ON USER PRIVATE DISKS LKH075
1 BAIIIOTP DS F # IO'S ON TAPE DEVICES LKH075
1 BAIIIOUR DS F # IO'S ON UNIT RECORD DEVICES LKH075
1 BAIIOCNE EQU * END OF "IOCNT" INFO LKH075
1 LBAIIOCN EQU *-BAIIOCN LENGTH OF "IOCNT" INFO LKH075
1 SPACE 2 LKH075
1 * END OF OUTPUT AREA LKH075
1 MFPRE DNAME=AIAEND,ALIGN=F,PREFIX=B,MACID=AIA,MF=S, :*R200C
1 DMACID=AIA :*R200
2 CNOP 0,4
2 BAIAEND DS 0F
1 LBAIAREA EQU *-BAIAREA LENGTH OF OUTPUT AREA LKH075
1 SPACE 2 LKH075

END
=X'F0'

AINF Description of the macros

192 U3291-J-Z125-16-76

Runtime log

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,ainf2), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,ainf2))
% ASS6011 ASSEMBLY TIME: 407 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 106 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=ainf2
% BLS0523 ELEMENT 'AINF2', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'AINF2', VERSION ' ' OF '<date> <time>' LOADED
MES1 successfully started ——— (1)
MES2 successfully started ——— (2)
% IDA0199 PROGRAM BREAK AT ADDRESS X'0000B8', AMODE=24 ———————————————— (3)
/copy-file from-file=oldexp,to-file=newexp ———————————————————————————— (4)
/resume-program
Elapsed Time used: 0000000000.247344000 —————————————————————————————— (5)
IOs before BKPT: 0000000000
IOs after BKPT: 0000000011

(1) MES1 was started; the macro executed without error.

(2) MES2 was started; the macro executed without error.

(3) Program execution was interrupted with BKPT.

Previously, MES2 was interrupted in order to save in AREA2A the measurements for
CPU time, run time and number of inputs/outputs since starting. MES2 was then
resumed.

(4) In the demonstration, a COPY-FILE command is issued (input/output). Program
execution is then resumed. MES2 and MES1 are terminated. AREA2B contains the
measurements for “global values” and the input/output count since starting MES2.
The measurements for “time usage” and “input/output tally” cumulated since
starting MES1 are stored in AREA1.

Description of the macros AINF

U3291-J-Z125-16-76 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

(5) For demonstration purposes, some of the values determined are displayed:

– runtime in seconds (calculated in MES1)

– input/output count at the point of interruption of MES2. The inputs/outputs
generated by the COPY-FILE command are not taken into account.

– input/ouput count at the end of MES2, i.e including the inputs/outputs generated
by the COPY-FILE command.

ALESRV Description of the macros

194 U3291-J-Z125-16-76

ALESRV – Connect task with/disconnect task from
data space

General

Application area: Extended addressing with data spaces; see page 61
Macro type: Type S, MF format 3: C/D/L/M/R/E form; see page 29

The ALESRV macro can can be used on all BS2000 servers
(see section “Extended addressing with data spaces” on page 61).

Macro description

The ALESRV connects a program running in AR mode with a data space that was set up
using the DSPSRV macro. The system establishes a connection to the specified data
space by searching for a free entry (ALE) in the task's access list, assigning it and returning
the ALET for addressing purposes. When creating an ALE, the system checks whether the
program is authorized to access this data space. Once the program has loaded a valid
ALET into the access register, the system no longer performs a check before allowing
access.

The ALESRV macro can also be used to release a data space. The system flags the entry
(ALE) that connects the program to the data space as invalid in the task's access list. This
entry is then available for a new connection (using FCT=CONNECT). If, during address
conversion, an entry flagged as invalid is accessed, an interrupt occurs (see the STXIT
macro).

If the user specifies an ALET, the ALESRV macro outputs the identification (SPID)
associated with the data space which identifies the data space uniquely throughout the
session.

The functions of the ALESRV macro make it possible to
– set up a connection between a program and a data space (FCT=CONNECT),
– clear this connection (FCT=DISCONN) and
– output the SPID of a data space (FCT=IDENTIFY).

Description of the macros ALESRV

U3291-J-Z125-16-76 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Macro format and description of operands

FCT=
Specifies which of the functions of the ALESRV macro is to be executed.

CONNECT
Connects a program running in AR mode to an existing data space. A free entry (ALE)
in the access list is assigned and the ALET is output.
The SPID operand must be specified.

DISCONN
Disconnects the program running in AR mode from the data space by releasing an
assigned entry (ALE) in the access list, i.e. by flagging it as invalid.
The ALET operand must be specified.

IDENTIFY
Identifies a data space by means of its ALET, which points to an entry (ALE) in the
access list. The SPID of the data space is output.
The ALET operand must be specified.

ALET=
Is the contents of an access register and points to an entry in the access list. This entry
connects the program with the data space.
This operand may be an input or output operand.

alet_addr
Symbolic address (name) of a 4-byte field containing the ALET of a specific data space.

SPID=
Identifies a data space uniquely throughout the system. The system assigns the SPID on
creation of a data space. This operand can be an input or output operand.

spid_addr
Symbolic address (name) of an 8-byte field containing the SPID of a data space.

ALESRV

,MF=C / D / L / M / R / E

[,PARAM=addr / (r)]

,PREFIX=N / p

,MACID=VDA / macid

FCT
CONNECT, SPID=spid_addr

DISCONN, ALET=alet_addr

IDENTIFY, ALET=alet_addr

=

ALESRV Description of the macros

196 U3291-J-Z125-16-76

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.
It is possible to specify a PREFIX in the C form, D form, R form or M form of the macro, and
additionally a MACID in the C form, R form or M form (see page 29).

Notes on the macro call

– The ALET operand can be an input or or output operand, i.e. FCT=CONNECT places
it in the generated parameter list as an output operand; the next time this parameter list
is used, the ALET operand is also valid as an input operand.

– Multiple connections to one and the same data space can be set up using different
ALETs. Each of these ALETs must be deleted by a corresponding FCT=DISCONNECT
call, since the system does not automatically delete all corresponding ALETs when
releasing a data space.

– The ALET value assignment is deterministic, in other words for two programs in a
BS2000 system run the sequence of the successful ALESRV calls with
FCT=CONNECT and FCT=DISCONN is identical and parameterized in the same way
(with CONNECT this means: SPID of the same data space specified; with DISCONN:
the same ALET), thus both programs obtain the same ALET output value in the event
of the nth ALESRV-CONNECT.
What is meant here is as follows:
If two TU programs behave in the same way with regard to connection to data spaces,
they are also assigned the same ALETs.

– A data space is released using the DSPSRV FCT=DESTROY macro or on termination
of the program that created the data space.

Description of the macros ALESRV

U3291-J-Z125-16-76 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

For an example see section “Extended addressing with data spaces” on page 68.

Standard
header:

A return code relating to the execution of the
ALESRV macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function executed successfully.
MF=R can be used to read the following values from the parameter list:
– if FCT=CONNECT: alet
– if FCT=IDENTIFY: spid

X'02' X'00' X'0001' Warning: the entry in the access list was deleted but the associated data
space was already released (if FCT=DISCONN)

X'00' X'01' X'0003' Error in data area

X'01' X'01' X'0004' SPID operand missing (if FCT=CONNECT)

X'02' X'01' X'0004' ALET operand missing (if FCT=DISCONN or FCT=IDENTIFY)

X'20' X'0005' Internal error

X'00' X'40' X'0304' Incorrect specification of SPID operand:
the specified data space does not exist or the caller is not authorized to
access this data space (if FCT=CONNECT)

X'01' X'40' X'0304' Incorrect specification of SPID operand:
the specified data space belongs to a different TU domain
(if FCT=CONNECT)

X'00' X'40' X'0404' Incorrect specification of ALET operand:
the specified ALET is invalid or privileged
(if FCT=DISCONN or FCT=IDENTIFY)

X'01' X'40' X'0404 Incorrect specification of ALET operand:
the specified ALET references a data space in a different TU domain
(if FCT=DISCONN or FCT=IDENTIFY)

X'00' X'40' X'0406' Access list full, i.e. there are no free entries available for setting up a new
connection between program and data space
(if FCT=CONNECT)

X'00' X'40' X'0604' Specified ALET references a data space that has already been deleted
(if FCT=IDENTIFY)

ALINF Description of the macros

198 U3291-J-Z125-16-76

ALINF – Request information on access lists

General

Application area: Extended addressing with data spaces; see page 61
Macro type: Type S, MF format 3: C/D/L/M/E form;

see page 29

The ALINF macro can be used on all BS2000 servers
(see section “Extended addressing with data spaces” on page 61).

Macro description

The ALINF macro tells the caller which ALETs (access list entry tokens) in the caller's task-
specific access list correspond to a particular data space, which is identified uniquely by
means of its SPID. If one or more ALETs are associated with a data space, the first of these
is returned in the <PREFIX><MACID>ALET field (with RETURN=FIRST); on each consecutive
call of the macro, the next ALET is returned (with RETURN=NEXT). The FROM operand
can be used to specify where the search is to start, irrespective of any ALETS already
found.

Macro format and description of operands

SPID=spid_addr
Identifies a data space uniquely throughout the system. The system assigns the SPID on
creation of a data space.
spid_addr: Symbolic address (name) of an 8-byte field containing the SPID of the data
space.

ALINF

SPID=spid_addr

,RETURN=FIRST / NEXT[,FROM=alet_addr / (r)]

,MF=C / D / L / M / E

[,PARAM=addr / (r)]

,PREFIX=N / p

,MACID=VDI / macid

Description of the macros ALINF

U3291-J-Z125-16-76 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

RETURN=
Specifies which of the ALETS associated with the data space is return in the
<PREFIX><MACID>ALET field.

FIRST
The first ALET found that points to the data space identified by SPID is returned in the
output field <PREFIX><MACID>ALET.

NEXT
The next ALET found is returned. The search starts at the ALET displayed in the output
field <PREFIX><MACID>ALET. This ALET (ï predecessor) is determined either by an
ALINF call with RETURN=FIRST or by direct specification in the FROM operand. If the
ALET output field does not already contain a predecessor as a result of a previous call
and the FROM operand is not specified, the search starts at the next corresponding
ALET in any location (any entry in the access list (ALE)).

FROM=
Specifies the ALET at which the search is to begin for the next corresponding ALET. The
value is written to the output field <PREFIX><MACID>ALET and is read by the ALINF macro as
an input operand (ïpredecessor) if RETURN=NEXT. This operand may be specified only if
MF=M.

alet_addr
Symbolic address of the ALET that is to be the predecessor.

(r)
Register containing the address value “addr”.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see . The valid MF values are given at the
start of the macro description under “Macro type” and are included in the macro format.

It is possible to specify a PREFIX in the C form, D form or M form of the macro, and
additionally a MACID in the C form or M form (see page 29).
It is possible to specify a PREFIX in the C form, D form or M form of the macro, and
additionally a MACID in the C form or M form (see section “S-type macros” on page 29).

ALINF Description of the macros

200 U3291-J-Z125-16-76

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

For an example see section “Extended addressing with data spaces” on page 68.

Standard
header:

A return code relating to the execution of the ALINF
macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function executed successfully.
The ALET found can be read from the <pre> VDIALET field of the
parameter list

X'00' X'00' X'0001' No corresponding ALET found

X'00' X'01' X'0003' Error in data area

X'07' X'01' X'0003' Invalid RETURN operand

X'08' X'01' X'0003' Invalid FROM operand: the operand value does not have ALET format

X'01' X'01' X'0004' SPID operand missing

X'20' X'0009' Internal error

X'01' X'40' X'0005' Incorrect specification of SPID operand:
– the specified SPID does not correspond to any data space or
– the corresponding data space is privileged or
– the data space belongs to a different domain

X'02' X'40' X'0005' Incorrect specification of SPID operand:
the corresponding data space was created by a different domain

Description of the macros AMODE31

U3291-J-Z125-16-76 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

AMODE31 – Query addressing mode

General

Application area: XS programming; see page 164
Macro type: Type O; see page 28

/390 servers offer the user a choice between a 24-bit addressing mode and a 31-bit
addressing mode.
Any program being run above the 16-Mb boundary must execute in
31-bit addressing mode.

Macro description

The AMODE31 macro informs the user of the address mode settings. The information is
passed by setting the 231 and 20 bits in the register specified. Bits 230 through 21 are
overwritten. The bit settings listed below mean:

No return code indicating the macro execution is transferred.

Macro format and description of operands

reg
Register where information is entered.

Bit 231 Bit 20 Addressing mode

0 0 24-bit addressing mode (NXS)

1 0 31-bit addressing mode (XS)

1 1 32-bit addressing mode (x86 servers)

AMODE31

reg

ARDS Description of the macros

202 U3291-J-Z125-16-76

ARDS – Generate accounting records

General

Application area: Accounting (system administration macro); see page 162 and 166
Macro type: Definition macro; see page 28

Macro description

The macro ARDS generates a dummy section (DSECT) that serves to describe the
structure of those accounting records which are created and written to the accounting file
by the BS2000 accounting system. The accounting records are referred to by their record
identifiers (e.g. UDAT, UACC, DSPC) and are described in the “Accounting records” manual
[13].

A user wishing to obtain the structure of an accounting record that was created by a
decoupled subsystem can request the structure of this record, depending on the current
subsystem version.

The user can specify whether the macro describes the structure of all the accounting
records, or a selection of them, or just a single record.

Macro format and description of operands

name
Name of the generated DSECT. Default setting: name = ARDSECT.

ALL
The macro refers to all the accounting records.

[name] ARDS

ALL / id / (id,id,...)

,DRV=OLD / NEW

,DSSM=OLD / NEW

,FT=OLD / NEW

,SPOOL=OLD / NEW

,UTM=OLD / NEW

,VM=OLD / NEW

,HSMS=OLD / NEW

Description of the macros ARDS

U3291-J-Z125-16-76 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

id
Record identifier of the accounting record to be described.

(id,id,...)
List of record identifiers of the required accounting records.
The list must be specified in parentheses.

DRV=
Specifies the version-dependent structure of an accounting record that was created via the
DRV subsystem (Dual Recording by Volume).

OLD
The structure is determined by the subsystem version that was known to the accounting
system when the accounting record was transferred.
If no other version of the subsystem was transferred and loaded in the meantime, this
structure is the same as the current one.

NEW
The structure is determined by the subsystem version that is currently loaded and is
therefore always current.
If another subsystem version was transferred and loaded after transfer of the
accounting records, the structure of the accounting records corresponds to the version
that was unloaded (the “old” version) and not the “new” subsystem version that was
loaded when ARDS was called. If NEW is specified, therefore, the caller must ensure
that the current subsystem macro library (.GCLIB.UR) is known to the assembler (SET-
TASKLIB command - see “Commands” manual [19], or COMPILE MACRO-
LIBRARY=... statement in the compiler program - see “ASSEMBH” manual [2]).

DSSM=
Specifies the version-dependent structure of an accounting record that was created via the
DSSM subsystem (Dynamic Subsystem Management).

OLD
Operand description as for DRV operand above.

NEW
Operand description as for DRV operand above.

FT=
Specifies the version-dependent structure of an accounting record that was created via the
FT subsystem (File Transfer).

OLD
Operand description as for DRV operand above.

NEW
Operand description as for DRV operand above.

ARDS Description of the macros

204 U3291-J-Z125-16-76

HSMS=
Specifies the version-dependent structure of an accounting record which was created via
the HSMS subsystem (Hierarchical Storage Management System).

OLD
Operand description as for DRV operand above.

NEW
Operand description as for DRV operand above.

SPOOL=
Specifies the version-dependent structure of an accounting record that was created via the
SPOOL subsystem (Simultaneous Peripheral Operation Online).

OLD
Operand description as for DRV operand above.

NEW
Operand description as for DRV operand above.

UTM=
Specifies the version-dependent structure of an accounting record that was created via the
UTM subsystem (Universal Transaction Monitor).

OLD
Operand description as for DRV operand above.

NEW
Operand description as for DRV operand above.

VM=
Specifies the version-dependent structure of an accounting record that was created via the
VM subsystem (Virtual Memory).

OLD
Operand description as for DRV operand above.

NEW
Operand description as for DRV operand above.

Notes on the macro call

– FT=NEW:may only be specified for an FT subsystem ≥ V5.0.

– UTM=NEW:may only be specified for a UTM subsystem ≥ V3.3.

– HSMS=NEW: The value NEW must be specified in order to obtain the DSECT for
HSMS.

– The structure of an accounting record can be created only once for each assembler
module, otherwise name conflicts occur.

Description of the macros AREC

U3291-J-Z125-16-76 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

AREC – Write user accounting record

General

Application area: Accounting; see page 162
Macro type: S-Typ, MF-Format 1:

31-bit interface: standard/L/D/E form; see page 29

The accounting system compiles accounting data on the usage of data center resources
and writes this data to the accounting file in the form of accounting records. The following
are examples of accounting data:

– CPU time used, I/O data volume, working set integral, device and volume reservation
data;

– system services used (user dumps etc.);
– memory reservation on pubsets.

The accounting file is evaluated using a special evaluation routine.
Basic structure of an accounting record:

A detailed description is provided in the “Accounting records” manual [13].

Macro description

The AREC macro initiates the writing of a user accounting record to the accounting file.

An accounting record can be one of the following:

– a UDAT accounting record with a record extension
– a UACC accounting record with a record ID
– an accounting record (freely) defined by the user

The DSECT operand enables the user to generate the basic structure for accounting
records. For user-defined accounting records it is advisable to adhere to this structure.

Record description Record ID, time stamp, ...

User description User ID, account number, analyzed user task, ...

Basic information Standard data

Variable record portion Record extensions

AREC Description of the macros

206 U3291-J-Z125-16-76

Notes

– The user must use appropriate programs for evaluating accounting records (see the
“Introduction to System Administration” manual [10]).

– System administration can limit the number of user accounting records per task for each
user (MAX-ACCOUNT-RECORDS parameter in the user catalog). This limit applies to
the whole command mode of a task (outside of program runs). Default value: MAX-
ACCOUNT-RECORDS = 100; maximum of 100 accounting records in the command
mode of a task.

– The writing of a freely defined accounting record to the accounting file requires the
authorization MAX-ACCOUNT-RECORDS=NL (no limit).

Macro format and description of operands

DSECT=RECORD
A dummy section (DSECT) that reproduces the basic structure of an accounting record is
generated.
A prefix P (P = 1 letter) may be specified.
The MF operand may not be specified.

DATA=
This describes the address of the record extension (data string) that is entered in the UDAT
accounting record. The length of the following text should be specified in bytes 0-1 of the
data string.
Length of text ≤ 255 bytes.

addr
Symbolic address (name) of the field containing the data string.

(r)
Register containing the address value “addr”.

AREC

,MF=S / L / (E,...) / D

,P=I / p

DSECT=RECORD

,DATA=adr / (r)

,ID=adr / (r)

,RECORD=adr / (r)

Description of the macros AREC

U3291-J-Z125-16-76 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

ID=
This describes the address of a character string (data string) that is entered as a record ID
in the UACC accounting record.
Length of the character string ≤ 8 bytes.

addr
Symbolic address (name) of the field containing the data string.

(r)
Register containing the address value “addr”.

RECORD=
This describes the address of the accounting record (freely) defined by the user.
The record ID and the user description must also be supplied with values by the user in the
accounting record.
Record length ≤ 496 bytes.

The operand is only permissible for users with MAX-ACCOUNT-RECORDS=NL (in the user
catalog).

addr
Symbolic address (name) of the field containing the accounting record.

(r)
Register containing the address value “addr”.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

If MF=D, a prefix P (P = 1 letter) can be specified, as shown in the macro format.

AREC Description of the macros

208 U3291-J-Z125-16-76

Return information and error flags

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the AREC macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'00' X'00' Function executed normally

X'04' X'00' The record was not written because accounting was deactivated

X'08' X'00' The record was not written because the relevant record type was deactivated

X'00' X'04' Address error (parameter list)

X'00' X'08' Invalid function code (for SVC 99 or for AREC)

X'00' X'0C' The function is not allowed for this user

X'00' X'10' Address error (DATA, ID or RECORD operand)

X'00' X'14' Invalid record ID

X'00' X'18' Max. record length exceeded

X'00' X'1C' Number of permissible records exceeded

X'00' X'20' Invalid register

X'00' X'24' System or resource error; more information in the secondary return code

X'04' X'24' No memory available

X'08' X'24' No job information

X'0C' X'24' CLTF error: error on writing a record

Description of the macros AREC

U3291-J-Z125-16-76 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Basic structure of an accounting record

AREC DSECT=RECORD
1 MFCHK DNAME=ARLDS,MF=D,PREFIX=I,MACID=ARL,DMACID=ARL
2 IARLDS DSECT ,
2 *,##### PREFIX=I, MACID=ARL #####
1 DS 0F AREC PARAMETER LIST
1 **
1 * GENERAL LAYOUT OF ACCOUNT RECORDS *
1 **
1 IARLRHDR DS 0F RECORD HEADER
1 IARLRL DS Y RECORD LENGTH
1 DS XL2 RESERVED
1 IARLID DS CL4 RECORD ID
1 DS FL8 RESERVED (TIME STAMP)
1 IARLLUS DS Y LENGTH OF USER HEADER
1 IARLLBI DS Y LENGTH OF BASIC INFORMATION
1 DS XL4 RESERVED
1 *
1 *
1 IARLUSER DS 0F USER HEADER
1 IARLUSID DS CL8 USER IDENTIFICATION
1 IARLACNT DS CL8 ACCOUNT NUMBER
1 IARLTSN DS CL4 TSN
1 *
1 *
1 ORG IARLID+X'1000'
1 IARLBI DS 0F BASIC INFORMATION
1 *
1 *
1 ORG IARLID+X'2000'
1 IARLEXT DS 0H VARIABLE EXTENSION PART
1 IARLEXTH DS 0H EXTENSION HEADER
1 IARL#EXT DS H NUMBER EXTENSIONS
1 IARLDEXT DS 0H START LIST OF DISTANCES
1 *
1 ORG IARLID+X'3000'
1 IARLSEXT DS 0H STRING EXTENSION
1 IARLSEXI DS CL2 EXTENSION ID
1 IARLLSEX DS Y LENGTH OF STRING
1 IARLSEXB DS 0C BEGIN OF STRING
1 *
1 ORG IARLID+X'3000'
1 IARLAEXT DS 0H ARRAY EXTENSION
1 IARLAEXI DS CL2 EXTENSION ID
1 IARLAEX# DS X NUMBER OF ELEMENTS
1 IARLAEXL DS X LENGTH OF ONE ELEMENT
1 IARLAEXB DS 0H BEGIN OF FIRST ELEMENT

 ASHARE Description of the macros

210 U3291-J-Z125-16-76

ASHARE – Load user's shared code into common
memory pools

General

Application area: Linking and loading; see page 47
Macro type: S-Typ, MF-Format 2:

Type S, MF format 2: standard/C/D/L/E/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

The ASHARE macro links and loads the user's shared code into a common memory pool.
This shared code may consist of a set of modules (see section “Common memory areas
shared by several users (Memory pools)” on page 55). Any user connected to the common
memory pool can access this type of shared program via its program name or via all other
nonmasked CSECTS or ENTRYs, using the LOAD-EXECUTABLE-PROGRAM and
START-EXECUTABLE-PROGRAM commands (or LOAD-PROGRAM and START-
PROGRAM) or the BIND and VSVI1 macros.

In indirect linking, ASHARE can be used for loading server modules into a common
memory pool.

Description of the macros ASHARE

U3291-J-Z125-16-76 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Macro format and description of operands

ASHARE

,ALTLIB=*DBLOPT / NO / YES

,INTVERS=BLSP2 / SRV001

,MAP=*DBLOPT / NO / BOTH / (BOTH,nn) / nn / SYSOUT

[,MPID=addr / (r)]

[,MSGCTRL=*DBLOPT / INFORMATION / WARNING / ERROR / NONE]

,RESMP=NO / YES

,RESSYS=NO / YES

[,START@=addr / (r)]

,SYMTYP=ANY / CSECT / CSEN / MODULE / ENTRY

,MF=S / C / D / E / L / M

[,PARAM=addr / (r)]

,PREFIX=P / p

,MACID=BAS / macid

[, CONTEXT=name

CONTXT@=addr / (r)

]

[,

LIBNAM=file / *

LIBNAM@=addr / (r)

LIBLINK=name
LIBLNK@=addr / (r)

]

, PGMVERS=*STD / version

PGMVER@=addr / (r)

[, PROGRAM=name

PROG@=addr / (r)

]

[, REPFILE=file

REPFIL@=addr / (r)

]

, SYMBOL=name

SYMBOL@=addr / (r)

[, VERSION=version

VERS@=addr / (r)

]

 ASHARE Description of the macros

212 U3291-J-Z125-16-76

The operands are described in alphabetical order below.

ALTLIB=
Specifies whether alternate libraries are to be searched for the object defined by SYMBOL
or SYMBOL@. Alternate libraries are assigned using the file link name BLSLIBnn
(00≤nn≤99) or $BLSLBnn (for alternate system libraries) and are also used for the autolink
function of DBL.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, ALTLIB=NO applies.

NO
Alternate libraries will not be searched.

YES
Alternate libraries will be searched.

i The operands ALTLIB=YES and LIBNAM/LIBNAM@/LIBLINK/LIBLNK@ may
be specified together in the same macro. If, however, the main library specified
by LIBNAM/LIBNAM@/LIBLINK/LIBLNK@ is not present, DBL will abort the
processing. ALTLIB=YES cannot serve as a substitute for a missing or invalid
main library.

CONTEXT=
Specifies the name of the context in which the program is to be loaded. If this context
already exists in a memory pool that is accessible by the user task, this name must refer to
the memory pool specified in the MPID operand. Up to 15 contexts may be defined in one
memory pool.

name
Context name. The first character of the context name must be “#”. The name may be
up to 32 characters long. The default name is “#” followed by the first 31 characters of
the memory pool specified in the MPID operand.

CONTXT@=
Specifies the address of a field containing the context name. Can be specified only if MF=M.

addr
Address of an auxiliary field which contains the field address searched for.

(r)
r = register containing the field address searched for.

Description of the macros ASHARE

U3291-J-Z125-16-76 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

INTVERS=
This operand defines the version of the macro interface ASHARE.

BLSP2
Default. Corresponds to macro version 2.

SRV001
Corresponds to macro version 3. This version is supported as of BLSSERV V2.4A.

LIBLINK=name
Explicit specification of the file link name of the main library. This name may be up to
8 characters long.

LIBLNK@=
Specifies the address of a field containing the file link name of the main library. May be
specified only if MF=M.

addr
Address of an auxiliary field which contains the field address searched for.

(r)
r = register containing the field address searched for.

LIBNAM=
Specifies the main library in which the search for the object defined with SYMBOL or
SYMBOL@ is to take place. The main library can be defined by specifying its file name
explicitly or by means of a file link name. The EAM object module file is defined using the
file name “*”. It is not possible to specify a file link name for the EAM object module file. If
the LIBNAM, LIBNAM@, LIBLINK and LIBLNK@ operands are omitted, the library with the
file link name BLSLIB is searched.

The main library is searched before the alternate libraries (see page 264). It is also used for
the autolink function of DBL. If the LIBLINK or LIBLNK@ operand is specified, any LIBNAM
or LIBNAM@ entry is ignored.

file
Explicit specification of the file name of the main library. The file name may be up to
54 characters long.

*
Specifies the EAM object module file as the main library.

LIBNAM@=
Specifies the address of a field containing the name of the main library. May be specified
only if MF=M.

addr Address of an auxiliary field which contains the field address searched for.

(r) r = register containing the field address searched for.

 ASHARE Description of the macros

214 U3291-J-Z125-16-76

MAP=
Specified only with INTVERS=SRVxxx and xxx Ï 001
Defines whether or not a DBL map is output and specifies the output destination for the DBL
map.

*DBLOPT
This operand value is taken over from the last call of the MODIFY-DBL-DEFAULTS
command. If no value has yet been defined with MODIFY-DBL-DEFAULTS for the
operand involved, MAP=NO applies.

NO
No DBL map is output.

BOTH
The output destination is the SYSOUT system file and the SYSLST00 system file.

(BOTH,nn)
The output destination is the SYSOUT system file and a SYSLSTnn system file (00În-
nÎ99).

nn
The output destination is a system file from the range SYSLST00 through SYSLST99
whose number must be specified here.
The number must be specified as a 2-digit number (00 for 0 etc.).

SYSOUT
The output destination is the SYSOUT system file.

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM, PREFIX and MACID, see section “S-type macros” on page 29. The valid
MF values are given at the start of the macro description under “Macro type” and are
included in the macro format.

It is possible to specify a PREFIX (consisting of one alphabetic character) in the C form,
D form or M form of the macro, and additionally a MACID (three alphabetic characters) in
the C form or M form (see section “S-type macros” on page 29).

MPID=addr
Symbolic address of a 4-byte field containing the identifier of a memory pool into which the
load unit will be loaded. This identifier is made available to the user by means of the ENAMP
macro, which must be executed before the ASHARE macro.

(r)
r = register containing the address value “addr”. May be specified only if MF=M.

Description of the macros ASHARE

U3291-J-Z125-16-76 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

MSGCTRL=
Specifies the lowest message class; DBL messages at and above this level will be output.
The value set in the load call with LOAD-EXECUTABLE-PROGRAM or START-
EXECUTABLE-PROGRAM (or LOAD-PROGRAM or START-PROGRAM) will be used as
the default value.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, MSGCTRL=INFORMATION applies.

INFORMATION
All classes of message will be output.

WARNING
Only messages of the WARNING and ERROR classes will be output.

ERROR
Only messages of the ERROR class will be output.

NONE
No DBL messages will be output.

PGMVERS=
Specifies the program version.

*STD
The load unit resulting from the load call receives the version of the loaded library
element as the program version. If the symbol specified in the load call is already
loaded, a search is carried out for the program version that was set using the SELECT-
PROGRAM-VERSION command. If no program version has been set, DBL uses the
first symbol found.

version
The version specification may be up to 24 characters long. If this program version
already exists in the common memory pool, the load procedure is aborted and the
corresponding return code is output.

PGMVER@=
Specifies the address of a field containing the program version. May be specified only if
MF=M.

addr
Address of an auxiliary field which contains the field address searched for.

(r)
r = register containing the field address searched for.

 ASHARE Description of the macros

216 U3291-J-Z125-16-76

PROGRAM=
Identifies the program.

name
The specified name must be unique and must not be more than 32 characters long. The
default value is the name specified for SYMBOL or SYMBOL@. If this program already
exists in a common memory pool that can be accessed by the user, the load procedure
is aborted.

PROG@=
Specifies the address of a field containing the program name. May be specified only if
MF=M.

addr
Address of an auxiliary field which contains the field address searched for.

(r)
r = register containing the field address searched for.

REPFILE=
Specifies the name of the REP file which contains REP records in standard BS2000 format
(see the “Introduction to System Administration” manual [10]). If there is an error during the
processing of REP records, DBL outputs an error message on SYSOUT and the errored
REP record is skipped. REP processing then resumes.

file
The file name may be up to 54 characters long.

REPFIL@=
Specifies the address of a field which contains the name of a REP file. May be specified
only if MF=M.

addr
Address of an auxiliary field which contains the field address searched for.

(r)
r = register containing the field address searched for.

RESMP=
Specifies the scope for resolving external references in the shared code in the memory
pool.

NO
Only the context specified in the CONTEXT operand is used to resolve external
references.

YES
All contexts that refer to the memory pool are used to resolve external references.

Description of the macros ASHARE

U3291-J-Z125-16-76 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

RESSYS=
Specifies whether the shared code in the system address space (class 3/4/5 memory) is
also to be searched in order to resolve external references. This shared code is loaded with
DSSM in the form of nonprivileged subsystems.

NO
Shared code in the system address space is not used to resolve external references.

YES
Shared code in the system address space is used to resolve any external references
that were not resolved as a result of searching the shared code in the memory pool.

START@=addr
Symbolic address of a 4 byte field to which DBL transfers the start address of the load unit
in the memory pool. The field must be aligned on a word boundary. The user must request
the start address explicitly with START@; it is not returned by default.

(r)
r = register containing containing the address value “addr”. May be specified only if
MF=M.

SYMBOL=name
Explicit specification of an object name. DBL uses this name to determine which module of
the load unit is to be loaded into the memory pool first. The name can refer to the following
objects:

– control section (CSECT),
– entry point (ENTRY),
– object module (OM) (element name),
– linking loader module (LLM) (element name).

The name may be up to 32 characters long. The type of the object is defined using the
SYMTYP operand.

SYMBOL@=
Specifies the address of a field containing the name of the object. May be specified only if
MF=M.

addr
Address of an auxiliary field which contains the field address searched for.

(r)
r = register containing the field address searched for.

 ASHARE Description of the macros

218 U3291-J-Z125-16-76

SYMTYP=
Specifies the type of object defined with the name SYMBOL or SYMBOL@ and defines the
search sequence for the object. A symbol (CSECT or ENTRY) or module (OM or LLM) can
be defined as the type of object.
If the object is a symbol, the name SYMBOL or SYMBOL@ designates a symbol name and
can be

– the name of a nonmasked CSECT or ENTRY entry in a program library (type R or
type L),

– the name of a nonmasked CSECT or ENTRY entry in an object module library (OML)
or in the EAM object module file.

If the object is a module, the name SYMBOL or SYMBOL@ designates a module name and
can be

– the name of a library element (type R or type L) in a program library or
– the name of a library element in an object module library (OML).

ANY
The search is performed in the following sequence:

1. LLMs with the module name SYMBOL or SYMBOL@

2. OMs with the module name SYMBOL or SYMBOL@

3. Symbols with the symbol name SYMBOL or SYMBOL@ in an LLM. DBL searches
for CSECTS first. If no CSECT is found, it searches for ENTRYs.

4. Symbols with the symbol name SYMBOL or SYMBOL@ in an OM. DBL searches
for CSECTS first. If no CSECT is found, it searches for ENTRYs.

CSECT
Only control sections (CSECTs) with the symbol name SYMBOL@ or SYMBOL are
searched for.

ENTRY
Only entry points (ENTRYs) with the symbol name SYMBOL or SYMBOL@ are
searched for.

CSEN
CSECTs and ENTRYs with the symbol name SYMBOL or SYMBOL@ are searched for.
DBL searches for CSECTs first. If no CSECT is found, it searches for ENTRYs.

MODULE
Only modules with the module name SYMBOL or SYMBOL@ are searched for.

Description of the macros ASHARE

U3291-J-Z125-16-76 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

VERSION=
Specifies the element version of the library element defined by SYMBOL or SYMBOL@.
If SYMTYP=ANY, the VERSION operand is taken into account only if the object name
(SYMBOL or SYMBOL@) refers to a module in a program library (type R or type L). If a
CSECT or ENTRY name is specified, the VERSION operand is ignored. If the operand is
not specified, the default value for the highest element version in program libraries is used
(see the “LMS” manual [29]).

version
Explicit specification of the element version. The version specification may be up to
24 characters long.

VERS@=
Specifies the address of a field containing the element version. May be specified only if
MF=M.

addr
Address of an auxiliary field which contains the field address searched for.

(r)
r = register containing the field address searched for.

Notes on the macro call

– Before calling the ASHARE macro, the user must have been connected to the common
memory pool by means of the ENAMP macro. The memory pool must have been set
up with the ENAMP operand FIXED=YES and the SCOPE may not be LOCAL.

– If the memory pool was created in address space higher than 16 Mbytes, all CSECTS
of the loaded modules must have the attribute RMODE=ANY.

– External references that cannot be resolved and name conflicts are not permitted.
– LLMs with user-defined slices cannot be loaded into common memory pools using the

ASHARE macro. In the case of LLMs whose slices have been defined with the PUBLIC
attribute, only the PUBLIC part is loaded using ASHARE. This also applies to the
autolink function of DBL.

– Test and diagnostic information (LSD) is not taken into account.
– The number of memory pools in which the user can store shared code is limited to

16 per scope (ENAMP operand SCOPE) for each user ID:

1. up to 16 memory pools for SCOPE=GROUP,
2. up to 16 memory pools assigned to a specific user group number for

SCOPE=USER-GROUP and
3. up to 16 memory pools for SCOPE=GLOBAL.
A task can therefore access a total of 48 memory pools for shared code in the user
address space. Shared code that is to be accessible for all users as in
SCOPE=GLOBAL, can also be loaded into the system address space as a
nonprivileged subsystem with DSSM.

 ASHARE Description of the macros

220 U3291-J-Z125-16-76

– If the specified program version has not yet been loaded but a program with this name
already exists in the link context (see CONTEXT parameter), loading is rejected
because of the name conflict.
To avoid such name conflicts, different versions of a program must be loaded into
different contexts.

– Only a limited number of memory pages in the system address space are available for
storing linking and loading information concerning the modules loaded with ASHARE.
The number of pages is defined in the startup parameter service via the system
parameter BLSUSLIM.

– A resident memory pool can be used for ASHARE only if it is created in a load module
that was loaded with the corresponding value for #RESIDENT-PAGES (see the START-
EXECUTABLE-PROGRAM command [19]).

– When searching for the primary input, symbols of the FILE type are ignored for
ASHARE since an FILE symbol may never be used as the entry point of a server
module for indirect linking.

Return information and error flags

The start address of the load unit is transferred to the field specified with the START@
operand.

Standard
header:

A return code relating to the execution of the
ASHARE macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function executed normally

X'00' X'01' X'0001' Symbol name omitted

X'00' X'01' X'0002' Memory pool identifier (MPID operand) omitted

X'00' X'01' X'0003' Invalid identifier specified in MPID

X'00' X'01' X'0004' Invalid context name

X'00' X'01' X'0005' Invalid symbol type

X'00' X'01' X'0006' Invalid field address specified for START@

X'00' X'01' X'0007' Invalid memory pool name.

X'00' X'01' X'0008' Invalid MAP operand.

X'00' X'01' X'0009' The SYSLST number in the MAP operand is invalid.

X'00' X'01' X'0011' Task not connected to memory pool

X'00' X'01' X'0012' Memory pool created with wrong attributes.
FIXED=YES missing from ENAMP macro or CLASS=5 or
SCOPE=LOCAL specified in ENAMP

Description of the macros ASHARE

U3291-J-Z125-16-76 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

X'00' X'01' X'0013' Program name specified for PROGRAM not unique;
already exists in a memory pool

X' 00' X'01' X'0014' Context specified for CONTEXT already exists in another memory pool

X'00' X'01' X'0015' Context cannot be generated since the maximum number of 15 contexts
has already been reached in this memory pool

X'00' X'01' X'0016' Maximum number of 16 memory pools with this scope already in use for
this user ID. No more memory pools can be used with this scope

X'00' X'01' X'0017' System storage area for linking and loading information is full (number
of memory pages defined in system parameter BLSUSLIM already
reached)

X'00' X'01' X'0018' Specified symbol already loaded in this context

X'00' X'01' X'0019' Memory pool already specified in a BIND macro and can no longer be
used for shared code

X'00' X'01' X'0020' Error during linking/loading. The return code relating to this errored load
procedure is transferred in the parameter list.
Possible values are described with the BIND macro

X'00' X'20' X'0100' System error

X'00' X'20' X'0101' Internal DBL error

X'00' X'20' X'0103' DBL Lock Manager error during processing of ASHARE macro

X'00' X'01' X'FFFF' The function is no longer or not yet supported

X'00' X'03' X'FFFF' The interface version is not supported

X'cc' X'bb' X'aaaa' Meaning

ASPC Description of the macros

222 U3291-J-Z125-16-76

ASPC – Enter memory allocation

General

Application area: Accounting/system administration macro; see page 162
Macro type: Type S, MF format 1:

31-bit interface: standard/L/D/E form; see page 29

The ASPC macro can only be called under the TSOS (system administration) ID. An
unauthorized call will be rejected with return code X'0C'.

Macro description

The ASPC macro is used to record the current memory allocation on public and private
volumes. The PAM page allocation is recorded in the form of accounting records.

The ASPC macro writes one or more accounting records (space stocktaking records:
record ID = DSPC or DSPP) to the accounting file for every locally available public volume
set (PVS) or private disk (PD). Each record contains the following:

– the catalog ID of the PVS
– time of stocktaking (date, time of day);
– an indicator relating to the completeness of the record:

'C': continuation character
'L': recording complete ('L' = last)
'I': recording incomplete (the PVS was exported during recording)

– user IDs for the PVS (up to 26 user IDs per record);
– number of PAM blocks allocated per user ID;

For a detailed description of DSPC and DSPP records, see the “Accounting records”
manual [13]. Several records are written for one PVS if the PVS has more than 26 user IDs.
In this case, the records contain the continuation character.
ASPC has no operands that control functions.

Description of the macros ASPC

U3291-J-Z125-16-76 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Macro format and description of operands

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.
If MF=D, a prefix P (p = 1 letter) can be specified, as shown in the macro format.

Return information and error flags

In all cases where aa = X'10' there is also an entry in the SERSLOG file containing the
operand list and the return code of the called system function.

ASPC

,MF=S / L / (E,..) / D

,P=I / p

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the ASPC macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'00' X'00' Normal execution

X'04' X'00' The record was not written because accounting or the DSPC record was
deactivated

X'00' X'04' Address error (operand list)

X'00' X'08' Invalid function code (for SVC 99 in the operand list)

X'00' X'0C' User is not authorized to call the macro

X'00' X'10' System or resource error

X'04' X'10' No job information

X'08' X'10' Error on accessing MRSCAT

X'0C' X'10' Error on accessing the internal USERTABLE

X'10' X'10' Error on writing a record

AUDIT Description of the macros

224 U3291-J-Z125-16-76

AUDIT – Control audit mode

General

Application area: Debugging aids; see page 162
Macro type: Type S, MF format 1: standard/L/D/E form;

see page 29

No symbolic names are generated in the data area in the case of MF=L.

i The function harware AUDIT (see below) is only available on /390 servers.
On other BS2000 servers the function does return RC=0, but it is not executed.

Macro description

The AUDIT macro offers the user functions for program auditing.

The linkage AUDIT is available in addition to the hardware AUDIT. Both these functions
permit tracing of the program run by recording either the addresses of branches performed
(hardware AUDIT) or the destination addresses of subprogram branches (linkage AUDIT).
The two functions are mutually independent.

The hardware AUDIT enters the source addresses for each branch performed in an AUDIT
table, whereas the linkage AUDIT enters the branch destination addresses in the AUDIT
table on execution of the BASR, BALR, BASSM and BAKR commands. The linkage AUDIT
thus makes it possible to record all the subprograms called within the program run, provided
that they were called using one of the above commands.

Separate AUDIT tables are created for the hardware and linkage AUDIT and identified
accordingly in the header line on output. An AUDIT table consists of 64 word-length entries
for the hardware AUDIT and 1024 entries for the linkage AUDIT and is cyclically overwritten
unless specified otherwise. The macro may refer to the entire run of a task or all tasks or
be restricted to one process within its own task (e.g. contingency process). The linkage
AUDIT may also be processor-local.

It is possible to permit or prohibit the hardware AUDIT and the linkage AUDIT

– For an entire session
Control is achieved via the system parameter AUDALLOW=YES/NO.
If any local linkage AUDIT has been activated, it is deactivated if the system parameter
AUDALLOW=NO has been set.
The hardware AUDIT and the linkage AUDIT can only be controlled in combination.

– For a user ID
Control is performed using the operand HARDWARE-AUDIT or LINKAGE-AUDIT=
*UNCHANGED / *NOT-ALLOWED / *ALLOWED in the MODIFY-USER-ATTRIBUTES
or ADD-USER command.

Description of the macros AUDIT

U3291-J-Z125-16-76 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

– For a task
Control is performed using the operand HARDWARE-AUDIT or LINKAGE-AUDIT=
*UNCHANGED / *NOT-ALLOWED / *ALLOWED in the MODIFY-TEST-OPTIONS
command.

The AUDIT macro is rejected with return code X'81003C' if the hardware and linkage
AUDITs are not permitted.

Comments on the local linkage AUDIT

The linkage AUDIT is used for the CPU-specific activation of the linkage AUDIT for all the
active CPUs or all the logical machines of a server configuration. For each CPU, a trace
table is created in privileged class 3 memory and this is maintained throughout the entire
session. The linkage AUDIT can be activated or deactivated via the parameter service
during the startup phase. System administration can use the /START-LINKAGE-
AUDIT/STOP-LINKAGE-AUDIT commands and the AUDIT macro to activate/deactivate
the local linkage AUDIT during the session.

Macro format and description of operands

The operands are described in alphabetical order below.

AUDIT

FCT=HWA / LNKA

,SCOPE=TASK / FUNCT / ALLTASK / SIHGLOB / SYSGLOB

,STATE=USER / SYS / PROC

[,PARMOD=31]

,MF=S / L / (E,..) / D

,ID=AUD / pre

,ACTION=

ON [,SAVE=n]

OFF

CONT

DISC

GET [,TABLE=addr]

[, TID=tid

TSN=tsn

]

AUDIT Description of the macros

226 U3291-J-Z125-16-76

ACTION=
Specifies the desired AUDIT operation: activate/deactivate, interrupt, continue or output.

ON
The 64-word (256-byte) or 1024-word (4096-byte) AUDIT table is created (if not already
present), and initialized by overwriting any existing entries with binary zero. The current
pointer is set to the beginning of the table and AUDIT mode is activated.
If the AUDIT table already exists, the current pointer is set after the last entry or, if the
table is already full, to the beginning of the table (cyclic overwriting), and AUDIT mode
is activated.

OFF
Deactivates AUDIT mode and releases the AUDIT table and the save table, if present.
If the AUDIT table was copied via the GET operand to a memory area designated by
the user, this area is retained until the program is terminated. The SCOPE=FUNCT
operand may not be specified; the SAVE operand is ignored.

CONT
Reactivates the AUDIT following a preceding ACTION=DISC call. Auditing to the AUDIT
table is resumed from the point at which it was interrupted by the ACTION=DISC call. If
a save table is present it continues to be used for saving the AUDIT tables.

This operand can only be specified in conjunction with SCOPE=TASK. If no AUDIT is
active at the time of the CONTINUE call, it is activated for the specified processor state
(USER or SYS) for the entire task. The operands TID and TSN may not be specified.
The SAVE operand is ignored.

DISC
Deactivates AUDIT mode while retaining the AUDIT table and the save table, if present.
The DISCONTINUE function can be used only for the entire run of the user's own task
(SCOPE=TASK); the operands TID and TSN may not be specified; the SAVE operand
is ignored.

GET
Only permitted if SCOPE=TASK; the SAVE operand is ignored

For FCT=HWA:
The 64-word hardware AUDIT table (excluding the save table) is copied to the memory
area designated by the user by means of the virtual address specified in the TABLE
operand.
Unlike the SHOW command, the contents of the AUDIT table are read in in unchanged
chronological order.

For FCT=LNKA:
All the linkage AUDIT trace information (AUDIT and save table) is copied to the memory
area designated by the user in the linkage AUDIT data area by means of the virtual
address audTAB and the length audLBUF The last AUDIT table entry appears at the
beginning of the output.

Description of the macros AUDIT

U3291-J-Z125-16-76 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

In the linkage AUDIT, the address and length of the transfer buffer must be stored in the
audTAB or audLBUF fields. Note that the address and length of the transfer buffer cannot
be specified directly in the macro; instead they must be entered in the parameter list
using the L form. In addition to the AUDIT table, the address of the next free entry in the
transfer buffer is returned in the audTABE field. If the buffer is full, the end address of the
buffer is returned. If the interface is called with ACTION=GET and the value
X'00000000' in the audTAB field, the buffer size for a subsequent GET call is returned in
the audLBUF field. If the transfer buffer specified in the audTAB field is too small, the
request will only be partially carried out. The linkage AUDIT table is transferred only with
the length specified in the audLBUF field. The return code X'400020' is returned in
addition.

FCT=
This operand specifies the AUDIT function to which the following parameters refer.

HWA
The AUDIT macro refers to the hardware AUDIT.

LNKA
The AUDIT macro refers to the linkage AUDIT.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.
If MF=D or MF=L, a prefix ID (pre = 1..3 letters) can be specified, as shown in the macro
format.

PARMOD=
This parameter is unnecessary and is still supported for compatibility reasons only.
In general only the 31-bit interface is generated regardless of the operand specified.

Note: 24-bit coding that has already been generated will, of course, remain executable.

SAVE=
Creates a save area (save table) for the AUDIT table in the privileged class 5 memory of
that task which is to be monitored with AUDIT (with TU), or in the privileged class 3 memory
(with TPR). This save area accepts the contents of the AUDIT table before it is cyclically
overwritten. This increases the requestable amount of AUDIT information.
This operand is effective only if specified in conjunction with ACTION=ON and only if no
AUDIT table is yet available (e.g. after ACTION=OFF).

n
Specifies the number of 4K pages for the save area.
With nonprivileged logging of the processor state TU, integer values of 0 ≤ n ≤ 16 may
be specified for n. A maximum of 64K can be requested for the save area,
corresponding to the size of 256 hardware AUDIT trace tables or 16 linkage AUDIT
trace tables.

AUDIT Description of the macros

228 U3291-J-Z125-16-76

With privileged logging of the processor state TPR using the hardware AUDIT, only the
values 0 and 1 are meaningful for n; greater values (n > 1) are replaced by the value 1.
A maximum of 4KB can therefore be requested for the save area for TPR in the
hardware AUDIT, corresponding to the size of 16 AUDIT trace tables.
This operand may not be specified for privileged logging of the processor state TPR
using the linkage AUDIT or if SCOPE=SIHGLOB/SYSGLOB is specified.

SCOPE=
Specifies the program area to be logged.

Note
An AUDIT job of a very large program area or a higher PCB replaces that of a smaller
program area or a lower PCB (e.g. TASK replaces FUNCT), but not vice versa.

TASK
The requesting task or the task specified in the TID or TSN operand is to be logged.

FUNCT
The PCB-specific function to be logged is that function which refers to the highest
interrupted PCB of the processor state specified in the STATE operand. FUNC is
permitted for the user's own task only and if ACTION=ON is specified. The operands
TID and TSN may not be specified.

ALLTASK
All branch addresses belonging to the processor state TPR are to be logged with all
tasks. If the TID or TSN operands are listed at the same time this leads to an error
message. The SAVE=n entry is ignored if FCT=HWA is specified. SAVE=n may not be
specified if FCT=LNKA (see SAVE operand). If necessary, ALLTASK first switches off
an active task-wide hardware audit in every task and then switches it back on without
the save table.
If the task-wide TPR linkage AUDIT is already switched on for a task, it is not changed
by the ALLTASK function.
If a task-wide hardware audit is inactive, it is not switched off and the save table is
retained. If new tasks are added, the AUDIT is generally activated for these without the
save table.
This value can only be entered under the system administration ID (TSOS).

SIHGLOB
All branch addresses of the processor state SIH are logged in a processor-local AUDIT
table. This specification is permitted only in conjunction with FCT=LNKA,
STATE=PROC and ACTION=ON/OFF. The operands TID, TSN and SAVE may not be
specified.
This value can only be entered under the system administration ID (TSOS).

Description of the macros AUDIT

U3291-J-Z125-16-76 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

SYSGLOB
All branch addresses of the processor states SIH and TPR are logged in a processor-
local AUDIT table. SCOPE=SYSGLOB may only be used if no privileged linkage AUDIT
is activated in any task throughout the system or no TPR linkage AUDIT is in the
'DISCONTINUE' state. This specification is permitted only in conjunction with
FCT=LNKA, STATE=PROC and ACTION=ON/OFF. The operands TID, TSN and SAVE
may not be specified.
This value can only be entered under the system administration ID (TSOS).

STATE=
Processor state (TU, TPR or SIH) to which the scope specified in the SCOPE operand
refers. If more than one processor state is to be logged simultaneously, the macro must be
called a number of times.

USER
The scope specified in the SCOPE operand refers to the processor state TU (USER).
The operand value P1 is still supported for reasons of compatibility and for the hardware
AUDIT only. Default for SCOPE=FUNCT and SCOPE=TASK.

SYS
The scope specified in the SCOPE operand refers to the processor state TPR (SYS).
The operand value P2 is still supported for reasons of compatibility and for the hardware
AUDIT only. Default and mandatory for SCOPE=ALLTASK.
This value can only be specified under the system administration ID (TSOS).

PROC
The scope specified in the SCOPE operand is processor-local and refers to the SIH
processor state or SIH and TPR. This specification is permitted only in conjunction with
FCT=LNKA. Default and mandatory for SCOPE=SIHGLOB/SYSGLOB.
This value can only be specified under the system administration ID (TSOS).

TABLE=
Specifies the address to which the contents of the hardware AUDIT table are to be written.
This may only be specified for hardware AUDIT and in conjunction with ACTION=GET.

addr
Virtual memory address which must point to a previously assigned memory area with
write access authorization. Address 0 must not be specified.
(addr can be specified by 1 to 8 hexadecimal digits or by the appropriate number of
decimal digits).

It is helpful to enter only a dummy value for the TABLE operand and then to overwrite
the audTAB with the appropriate address dynamically in the program.

In the linkage AUDIT the transfer of AUDIT trace information to a user area is controlled
exclusively by the GET operand.

AUDIT Description of the macros

230 U3291-J-Z125-16-76

TID=
Specifies the task which is to be monitored with AUDIT by its internal task number. The
operand may only be specified together with SCOPE=TASK (see also the note for the TSN
operand).

tid
Internal task number; can be specified in the followinf form:
h[hhhhhhh]: 1-8 hexadecimal digits, which the system pads out to 8 places with

leading zeros as necessary.

TSN=
Specifies the task which is to be monitored with AUDIT by its job number.

tsn
Job number (TSN); can be specified as follows:

n[nnn]: 1-4 digits, which the system pads out with leading zeros to 4 places as
necessary

a[aaa]: 1-4 alphanumeric characters, which the system pads out with leading zeros
to 4 places as necessary

c'a[aaa]': 1-4 characters, which the system pads out with leading zeros to 4 places as
necessary (user-specified blanks are retained)

Notes
– If neither of the two operands TID or TSN is specified, the AUDIT request applies

to the requesting task itself.
The TID or TSN operand may be specified only in conjunction with SCOPE=TASK.
The ACTION=DISC and ACTION=CONT operands are not permitted in conjunction
with the TID or TSN operand.

Description of the macros AUDIT

U3291-J-Z125-16-76 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Return information and error flags

R15:
A return code relating to the execution of the AUDIT
macro is transferred in register R15.0 0 a a a a a a

X'aaaaaa' Meaning

X'000000' a) The requested action was accepted
b) The requested action was ignored because AUDIT is already running

(ACTION=ON)
c) The requested action was ignored because AUDIT is not running (ACTION=DISC)
d) The requested action was ignored because no AUDIT table has been allocated

(ACTION=OFF)
e) The requested action with SCOPE=FUNCT was ignored because AUDIT has

already been activated for SCOPE=TASK
f) The requested action was ignored because the hardware AUDIT is not available on

this hardware.

X'000004' Operand error. The generated data area contains illegal operand combinations, or the
user or the program is not privileged for the action requested

X'000008' The address of the data area is invalid, or the data area is not aligned on a word
boundary, or an internal error occurred

X'00000C' The address in the TABLE operand (table transfer area) is invalid or the area is read-
only

X'000010' Insufficient memory is available for either class 3 original tables, class 4 management
areas, class 5 save tables or class 5 management areas. The AUDIT action cannot
be executed

X'000014' The task with the specified TID or TSN does not exist

X'000018' The PCB addressed by SCOPE=FUNCT does not exist

X'01FFFF' The UNIT or FUNCTION number specified in the standard header is invalid.
Processing is aborted

X'03FFFF' Invalid version number in the standard header

X'400020' The table transfer area for the linkage AUDIT table (ACTION=GET) is too small.
Execution of the function was incomplete

X'400024' The function could not be executed because
a)a processor-local linkage AUDIT is running (STATE=SYS) or
b)a linkage AUDIT is running in the TPR processor state (STATE=PROC) or
c)a processor-local SIH linkage AUDIT is running (SCOPE=SYSGLOBE) or
d)a processor-local SIH and TPR linkage AUDIT is running (SCOPE=SIHGLOB)

X'400028' The TU save table is not contained in the transfer buffer due to an internal AUDIT
error.

X'40002C' The task identified by means of its TID or TSN is terminating. The job was rejected.

AUDIT Description of the macros

232 U3291-J-Z125-16-76

X'810030' The macro call sequence AUDIT FCT=HWA,ACTION=ON/-OFF/-ON for an external
task in TPR always produces this return code in the second ACTION=ON if the
external task has not been executed in the meantime. This means that the second
macro call with ACTION=ON must be repeated later because the macro call with
ACTION=OFF is still in a queue.

X'810034' Macro call AUDIT FCT=HWA/LNKA,STATE=U
System administration has locked the hardware or linkage AUDIT for the active user
ID using the /MODIFY-USER-ATTRIBUTES command.

X'810038' Macro call AUDIT FCT=HWA/LNKA,STATE=U
The user has locked the hardware or linkage AUDIT for the active task using the
/MODIFY-TEST-OPTIONS command.

X'81003C' Macro call AUDIT FCT=HWA/LNKA
System administration has prohibited all AUDIT macro calls for the current session by
specifying the parameter AUDALLOW=NO in the startup parameter service.

X'81FFFF' The central linkage AUDIT management is currently locked (please wait and repeat
the job at a later time).

X'aaaaaa' Meaning

Description of the macros BIND

U3291-J-Z125-16-76 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

BIND – Link and load load unit

Application areat: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard/C/D/L/E/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

The BIND macro links another load unit into the executing program.

Macro format and description of operands

BIND

,ALTLIB=*DBLOPT / NO / YES / list-poss(2): *TASKLIB / *BLSLIB##

[,AMODE@=adr / (r) / label]

[,AMODCHK = *DBLOPT / STD / ADVANCED]

,AUTOLNK=*DBLOPT / YES / NO / ALTLIB

,BRANCH=NO / YES

,CLOSE=*DBLOPT / ALL / NONE / ALT

,ERREXIT=*DBLOPT / adr / (r) / label

,IGNATTR=*DBLOPT / NONE / READ

,INTVERS=BLSP2 / SRV001 / SRV002 / SRV003 / SRV004 / SRV005 / SRV006

[,LDINFO=*DBLOPT / DEF / MAP / NONE / REF]

,LNKCTXS=*DBLOPT / ANY / OLD / NEW

,LOAD=YES / NO / ILESERVER

[,LOAD@=adr / (r) / label]

,MAP=*DBLOPT / NO / BOTH / (BOTH,nn) / nn / SYSOUT

[,MPID=adr / (r) / label]

[,MSG=*DBLOPT / INFORMATION / WARNING / ERROR / NONE]

[,NACOL=*DBLOPT / STD / ABORT]

,

LIBNAM@=adr / (r) / label

LIBNAM=*DBLOPT / datei / *

LIBLINK=name

,
LNKCTX@=adr / (r) / label

LNKCTX=*DBLOPT / name

BIND Description of the macros

234 U3291-J-Z125-16-76

BIND (continued)

,OVERLAY=NO / YES

,PROGMOD=*DBLOPT / ANY / 24

[,PURESOR= list-poss(3): USERSHARE / SYSSHARE / LNKCTX]

[,PURESTY=*DBLOPT / STD / USER]

,REFCTX#=0 / n

,REPSCOP=*DBLOPT / CONTEXT / UNIT

[,RESORD= list-poss(4): LNKCTX / USERSHARE / SYSSHARE / REFCTX]

,RESTYP=*DBLOPT / STD / USER

,SHARE=*DBLOPT / SYSTEM / NONE / USER / GROUP / USER_GROUP / GLOBAL / ALL

,SYMTYP=ANY / CSECT / ENTRY / CSEN / MODULE

[,TSTOPT=*DBLOPT / NONE / AID]

[,UNRES=*DBLOPT / STD / DELAY / DELAYWARN / ABORT]

,USRMAPI = NONE / STD / ALL

[,USRMAP@ = adr / (r) / <label>]

[,USRMAPL = integer 1..21474836479]

[,USRUNR@ = adr / (r) / label]

[,USRUNRL = integer 1..21474836479]

,USRUNRI = STD / DELAY / BOTH

,XPAND=PARAM / XRC / USRMAP / USRUNR

[,XRC=adr / (r) / label]

,XRCL=28 / 36

,MF=S / C / D / E / L / M [,PARAM=adr / (r)] ,PREFIX=P / p [,LABEL=name]

,
PGMVER@=adr / (r) / label

PGMVERS=*DBLOPT / *STD / version

[,
REFCTX@=adr / (r) / label

REFCTX=name / (name1,name2,...name200)

]

,
REPFIL@=adr / (r) / label

REPFILE=*DBLOPT / file

,
SYMBOL@=adr / (r) / label

SYMBOL= name / *ALL

SYMBLAD=adr / (r) / label,

[,
UNIT@=adr / (r) / label

UNIT= name

]

[,
VERS@=adr / (r) / label

VERS=version

]

Description of the macros BIND

U3291-J-Z125-16-76 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

The operands are described in alphabetical order below.

ALTLIB=
Specifies whether alternate libraries are to be searched for the object defined by
SYMBOL@ or SYMBOL. Alternate libraries are assigned using the file link name BLSLIBnn
(00ÎnnÎ99) or $BLSLBnn. They are also used for the autolink function of DBL.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, ALTLIB=NO applies.

NO
Alternate libraries or tasklibs will not be searched.

YES
Alternate libraries will be searched.

*TASKLIB
May be specified only if INTVERS=SRVxxx and xxx Ï 002.
Tasklibs are searched in the following order:

1. The library which is assigned with the SET-TASKLIB command

2. The $userid.TASKLIB library

or, in the event that this does not exist:

The TASKLIB library under the default system ID (DEFLUID user ID)

*BLSLIB##
May be specified only if INTVERS=SRVxxx and xxx Ï 002.
Alternate libraries will be searched.

Notes

– The operand values *TASKLIB and *BLSLIB## can be specified as a list. The order
of values in this list defines the order in which the relevant libraries will be searched.

– The specifications ALTLIB=YES and ALTLIB=BLSLIB## have the same meaning.

– The ALTLIB=YES and LIBNAM@/LIBNAM/LIBLINK operands may be specified
together in the same macro. If, however, the main library specified by
LIBNAM@/LIBNAM/LIBLINK is not present, DBL will abort the processing.
ALTLIB=YES cannot serve as a substitute for a missing or invalid main library.

BIND Description of the macros

236 U3291-J-Z125-16-76

AMODCHK=
Determines whether additional checks of the addressing mode should be performed during
loading (only in conjunction with INTVERS=SRVxxx and xxx Ï 005). If the AMODCHK
operand is not specified, the value set in the START-EXECUTABLE-PROGRAM or LOAD-
EXECUTABLE-PROGRAM (or START-PROGRAM or LOAD-PROGRAM) load call will be
used as the default value.

*DBLOPT
The operand value is taken over from the last call of the MODIFY-DBL-DEFAULTS
command. If no value has yet been defined with MODIFY-DBL-DEFAULTS for the
operand involved, AMODCHK=STD applies.

STD
Only the checks compatible with BLSSERV < V2.5 are executed.

ADVANCED
The same checks as for AMODE-CHECK = *STD are performed.
During loading a check is also performed to see whether inconsistencies can occur
while resolving external references because of the load unit’s addressing mode.

AMODE@=
Specifies the address of a 1-byte long field into which the DBL enters the addressing mode
for the load unit call. The field must be aligned on a word boundary.
The following are possible values for the addressing mode:
2 for AMODE 24
1 for AMODE 31
4 for AMODE 32

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic field address. May be specified only if MF=S or MF=L.

AUTOLNK=
Specifies whether the autolink function of DBL is to be turned on or off.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, AUTOLNK=YES applies.

YES
The autolink function is to be turned on.

Description of the macros BIND

U3291-J-Z125-16-76 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

NO
The autolink function is to be turned off. External references are resolved only with the
help of programs (private and shared) that are already loaded.

ALTLIB
The autolink function accesses only alternate libraries, which are assigned using the file
link name BLSLIBnn (00ÎnnÎ99) or $BLSLBnn.

BRANCH=
Specifies whether the calling program is to be resumed immediately after the load unit has
been loaded or whether the loaded load unit will be processed. The addressing mode is set
by DBL.

NO
After the load unit has been loaded the instruction following the BIND macro in the
calling program will be executed.

YES
After being loaded the load unit will be processed first. DBL determines the address
using the symbol or module name specified with SYMBOL@ or SYMBOL.

CLOSE=
Specifies whether libraries used by DBL are to be closed or remain open when processing
of the DBL macro has been completed. This refers to all libraries which DBL searches for
modules. The operand can be used to speed processing when DBL is called a number of
times with the same library.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, CLOSE=ALL applies.

ALL
All libraries used will be closed.

NONE
All libraries used will remain open and can be used for a further DBL call.

ALT
All alternate libraries used will be closed. Only the main library specified by the
LIBNAM@, LIBNAM or LIBLINK operand is to remain open.

BIND Description of the macros

238 U3291-J-Z125-16-76

ERREXIT=
Specifies the address of a 4-byte field.
If the UNRES operand is specified with the value STD/DELAY/DELAYWARN the address
that is to be assigned to unresolved external references should be entered in this field.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, unresolved external references are assigned the address
X'FFFFFFFF'.

addr
Address of an auxiliary field which contains the field address searched for. May be
specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic address of the field. May be specified only if MF=S or MF=L.

IGNATTR=
Specifies which CSECT attributes are to be ignored during loading.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, IGNATTR=NONE applies.

NONE
All CSECT attributes are taken into account during loading.

READ
The CSECT attribute READ-ONLY is ignored during loading. The CSECT is loaded into
a readable/writable main memory page. This makes it possible to set breakpoints when
debugging using AID, for example.

INTVERS=
The operand specifies the version of the BIND macro interface.

BLSP2
Default. Corresponds to macro version 5.

SRV001
Corresponds to macro version 6. This version is supported by BLSSERV as of V2.2.

SRV002
Corresponds to macro version 7. This version is supported by BLSSERV as of V2.3A.

Description of the macros BIND

U3291-J-Z125-16-76 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

SRV003
Corresponds to macro version 8. This version is supported by BLSSERV as of V2.3B.

SRV004
Corresponds to macro version 9. This version is supported by BLSSERV as of V2.4A.

SRV005
Corresponds to macro version 10. This version is supported by BLSSERV as of V2.5A.

SRV006
Corresponds to macro version 11. This version is supported by BLSSERV as of V2.6A.

LABEL=name
May be specified only if MF=M.
Name of the structure, i.e. the DSECT which describes the operands of the BIND macro.
The operand is mandatory if there is no valid USING statement for the definition of the base
address register for the DSECT of the parameter list. The LABEL operand must be
specified in conjunction with the PARAM operand. Both operands are used to produce a
valid USING statement.

The following may be specified for “name”:
– The name specified in the name field of a preceding macro name BIND MF=D.
– The name “xPBBNDS” if no “name” has already been specified, where “x” is the value

of the PREFIX operand of a preceding macro BIND MF=D, PREFIX=x. The default value
for “x” is “P”.

– The name of the longer DSECT containing the parameter list of the BIND macro if the
macro BIND MF=C was specified earlier.

LDINFO=
Defines the load information for the load unit.
If the LDINFO operand is not specified, the value set with the START-EXECUTABLE-
PROGRAM or LOAD-EXECUTABLE-PROGRAM (or START-PROGRAM or LOAD-
PROGRAM) load call is used as the default value.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, the value that follows *DBLOPT in the syntax definition applies.

DEF
An external symbol dictionary containing the program definitions of all modules in the
load unit will be loaded.
Program definitions are control sections (CSECTs), entry points (ENTRYs),
COMMONs, dummy sections (DSECTs), external dummy sections (XDSEC-Ds) and
module names.

BIND Description of the macros

240 U3291-J-Z125-16-76

MAP
Only an external symbol dictionary which is required for building the DBL map will be
loaded temporarily. The external symbol dictionary will be unloaded as soon as the DBL
map is built.

NONE
No external symbol dictionary will be loaded.

REF
An external symbol dictionary will be loaded containing the resolved references of all
modules in the load unit in addition to the program definitions. References are external
references (EXTRNs), V-type constants, weak external references (WXTRNs) and
external dummy sections (XDSEC-Rs).

LIBLINK=name
File link name of the main library. The name may be up to 8 characters long.

LIBNAM@=
Specifies the main library in which the search for the object defined with SYMBOL@ or
SYMBOL is to take place. The main library is defined through the address of a field that
contains the file name of the library. The EAM object module file is defined using the file
name “*”. It is not possible to specify a file link name for the EAM object module file.
The main library is searched before the alternate libraries (see page 264). It is also used for
the autolink function of DBL. If the LIBLINK operand is used, any LIBNAM@ entry is
ignored.

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic ield address. May be specified only if MF=S or MF=L.

Description of the macros BIND

U3291-J-Z125-16-76 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

LIBNAM=
File name of the main library. May be specified only if MF=S or MF=L.
If the LIBLINK operand is used, any LIBNAM entry is ignored.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, the library with the file link name BLSLIB is searched.

file
Explicit specification of the file name of the main library. The file name may be up to
54 characters long.

*
Specifies the EAM object module file as the main library.

LNKCTX@=
Specifies the address of a field containing the name of the link context. The name must
begin with a letter.

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic field address. May be specified only if MF=S or MF=L.

LNKCTX=
May be specified only if MF=S or MF=L.

name
Explicit specification of the name for the link context. The name may be up to
32 characters long and must begin with a letter.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, the link context “LOCAL#DEFAULT” is used.

BIND Description of the macros

242 U3291-J-Z125-16-76

LNKCTXS=
Specifies whether or not the new link context defined via LNKCTX@ or LNKCTX may be
located within the existing user contexts.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, LNKCTXS=ANY applies.

ANY
If a user context with the name specified by means of the LNKCTX@ or LNKCTX
operand is present in the user context, the existing context will be used. If no context
with the same name is present a new context will be generated.

OLD
The specified link context must already be located within the existing user context. A
new context will not be generated.

NEW
The specified link context must not be located within the existing user context. A new
context will be generated.

LOAD=
Specifies whether a symbol with the symbol name SYMBOL@ or SYMBOL is to be loaded
or whether loading of an ILE server module is required. This will depend on whether the
DBL takes ILE type symbols into account when searching for the primary input.

YES
The symbol will be loaded if it is not already loaded. ILE symbols will be included.

NO
The symbol will not be loaded. If it is already loaded the load address will be passed by
DBL. ILE symbols will be included.
The BIND...,LOAD=NO call should be replaced by the VSVI1...,SELECT=BYNAME call
for performance reasons.

ILESERVER
The symbol to be loaded is the entry point of an ILE server module. ILE symbols will
therefore be ignored.

Description of the macros BIND

U3291-J-Z125-16-76 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

LOAD@=
Specifies the address of an area below 16 Mb in class 6 memory at which the first module
is to be loaded. If other modules are present they will be loaded into a free area after the
first module.
If the address is located above 16 Mb in class 6 memory the LOAD@ operand is ignored
and the OVERLAY operand set to NO. Loading is not performed if:
– the address is not aligned on a doubleword boundary or an invalid address in class 6

memory was specified,
– the user has defined multiple contexts in class 6 memory,
– the area of class 6 memory in which the first module is to be loaded is already occupied

and the OVERLAY=NO operand was specified,
– an LLM was loaded either as the first module or using autolink,
– the MPID operand was also specified.
If the LOAD@ operand is not specified DBL determines the load address. If a load address
was specified when storing an LLM, the LLM is loaded starting at this address if this is
possible.

addr
Address of a field which contains the area address. May be specified only if MF=M.

(r)
r = register containing the area address searched for. May be specified only if MF=M.

label
Area address. The address can be specified as a symbolic address or as a constant
(X'...'). May be specified only if MF=S or MF=L.

MAP=
Specifies whether a DBL map is to be output or not, and if so, indicates the output
destination.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, MAP=NO applies.

NO
No DBL map is to be output.

BOTH
The output destination is the SYSOUT and SYSLST00 system files.

(BOTH,nn)
The output destination is the SYSOUT system file and a SYSLSTnn system file
(where 00ÎnnÎ99).

BIND Description of the macros

244 U3291-J-Z125-16-76

nn
The output destination is a system file from the set SYSLST00 to SYSLST99 whose
number must be specified here.
The number must given in 2-digit form (00 for 0, etc.).

SYSOUT
The output destination is the SYSOUT system file.

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM and PREFIX, see section “S-type macros” on page 29. The valid MF
values are given at the start of the macro description under “Macro type” and are included
in the macro format.
A PREFIX can be specified in the C form or D form of the macro (see section “S-type
macros” on page 29).

MPID=
Address of a 4 byte field which contains the identifier of the memory pool into which the load
unit is loaded.
This short identifier is made available to the user by means of the ENAMP macro.
The operand must not be specified:
– if the LOAD@ and OVERLAY operands are specified,
– if an LLM containing user-defined slices is loaded.
The user is responsible for management of the memory pool. DBL passes information
concerning the loaded load unit in the memory pool only to the user who issued the BIND
macro call.
Multiple load units can be loaded into a memory pool within a user context. Shared code
that is to be made available as such in memory pools must be loaded using the ASHARE
macro.

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic field address. May be specified only if MF=S or MF=L.

Description of the macros BIND

U3291-J-Z125-16-76 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

MSG=
Specifies the lowest message class; messages at and above this level will be output.
If the MSG operand is not specified, the value set in the START-EXECUTABLE-PROGRAM
or LOAD-EXECUTABLE-PROGRAM (or START-PROGRAM or LOAD-PROGRAM) load
call will be used as the default value.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, the value that follows *DBLOPT in the syntax definition applies.

INFORMATION
All classes of message will be output.

WARNING
Only messages of the WARNING and ERROR classes will be output. Messages of the
INFORMATION message class will not be output.

ERROR
Only messages of the ERROR class will be output.

NONE
No messages will be output.

NACOL=
Defines how name conflicts affecting symbols with identical names are to be handled.
Name conflicts are detected only if the symbols are not masked.
If the NACOL operand is not specified the value set in the START-PROGRAM or LOAD-
PROGRAM load call is used as the default value.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, NACOL=STD applies.

STD
Name conflicts between nonmasked symbols will be indicated by warning messages.
The module containing the symbol with the same name will be loaded. The new
occurrence of the symbol will be masked, i.e. it will no longer be used for resolving
external references.

ABORT
Loading of the current load unit will be aborted if a name conflict between nonmasked
symbols is detected.

BIND Description of the macros

246 U3291-J-Z125-16-76

OVERLAY=
Specifies whether the modules of the load unit may overlay the module located at the
address specified with LOAD@. This operand requires the LOAD@ operand to be specified
and is incompatible with the MPID operand.

NO
The modules of the load unit must not overlay the module located at the address
specified with LOAD@.

YES
The modules of the load unit may overlay the LOAD@ module. The first module of the
load unit is loaded at the address specified with LOAD@. If other modules are present
they will be loaded contiguously after the first. An exception are areas locked by means
of the CSECT attributes READ-ONLY and PAGEABLE. The user must ensure that the
overlaid area is no longer needed later.
All modules overlaid by modules of the load unit are unloaded by DBL. The used
memory contents are not deleted before the new load operation, however.
COMMONs are loaded independently of the specified load address.

PGMVER@=
Specifies the address of a field containing the program version. If this program version is
already loaded, a link to it is created. If this program version is not loaded, the new load unit
receives the specified version.

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic field address. May be specified only if MF=S or MF=L.

PGMVERS=
Specifies the program version.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, PGMVERS=*STD applies.

*STD
The load unit resulting from the load call receives the version of the loaded library
element as the program version. If the symbol specified in the load call is already
loaded, a search is carried out for the program version that was set using the SELECT-
PROGRAM-VERSION command. If no program version has been set, DBL uses the
first symbol found.

Description of the macros BIND

U3291-J-Z125-16-76 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

version
may be up to 24 characters long.

PROGMOD=
Specifies in which part of the address space (above or below 16 Mb) the modules of the
load unit are to be loaded.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, PROGMOD=ANY applies.

ANY
The modules of the load unit can be loaded above or below 16 Mbytes.

24
The entire load unit will be loaded below 16 Mb.
The program will be executed in 24-bit addressing mode.
External references will be interpreted as 24-bit addresses.

PURESOR
Specifies the user-defined search sequence for the resolution of external references in
PUBLIC parts of LLMs if PURESTY=USER was specified (only in conjunction with
INTVERS=SRVSRVxxx and xxx Ï 001).

list-poss(3): USERSHARE / SYSSHARE / LNKCTX
The search sequence is defined by the sequence of the keywords within the list. The
keywords have the following meaning:

If PURESOR=(SYSSHARE, LNKCTX, USERSHARE) is specified, for example, when
resolving external references in PUBLIC parts the search is carried out in the following
sequence:

1. in the shared code of the system
2. in the link context
3. in the shared code of the user

Notes

– Each keyword can only occur once in the list.

– Keywords that are not specified in the list are appended to the end of the list
internally by DBL in accordance with the predefined sequence (USERSHARE,
SYSSHARE, LNKCTX). For example, PURESOR=(SYSSHARE) is handled in the
same way as PURESOR=(SYSSHARE, USERSHARE, LNKCTX).

USERSHARE
SYSSHARE
LNKCTX

for shared code of the user
for shared code of the system
for link context

BIND Description of the macros

248 U3291-J-Z125-16-76

– The PURESTY and PURESOR operands have no influence on which contexts are
searched. They only specify the sequence. Whether shared code is searched must
be specified with the SHARE operand. DBL does not carry out any consistency
checks on these operands. If PURESOR=(LNKCTX, SYSSHARE), SHARE=NONE
is specified, for example, the shared code of the system is not used for the
resolution of external references although the corresponding keyword is specified
in the list of the search sequence.

PURESTY=
Specifies the search strategy for the resolution of external references in PUBLIC parts of
LLMs (only in conjunction with INTVERS=SRVxxx and xxx Ï 001).

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, PURESTY=STD applies.

STD
The search sequence predefined by DBL applies:

1. shared code of the user
2. shared code of the system
3. link context

USER
The search sequence is specified by the user with the PURESOR operand.

REFCTX@=
Specifies the address of a field containing a name list of reference contexts which will be
searched in order to resolve external references.
Up to 200 names of reference contexts can be entered in the list. A name must begin with
a letter. The contexts specified in the list must be present. The reference contexts are
searched in the order in which they appear in the list. The number of reference contexts can
be defined using the REFCTX# operand. A link context defined using LNKCTX@ or
LNKCTX cannot be used as a reference context.

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic field address. May be specified only if MF=S or MF=L.

Description of the macros BIND

U3291-J-Z125-16-76 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

REFCTX=name / (name1,...,name200)
May be specified only if MF=S or MF=L.
Explicit specification of a list containing the names of reference contexts. Each name may
consist of up to 32 characters. Up to 200 names may be entered in the list. The names must
not begin with a dollar sign ($).

REFCTX#=0 / n
Specifies the number of reference contexts in the name list defined with REFCTX@ or
REFCTX.
0ÎnÎ200; Default value: 0

REPFIL@=
Specifies the address of a field which contains the name of a REP file.
This enables the user to apply REP records to the modules of a load unit. The REP records
must have the standard record format for processing by the RMS utility routine (see the
“Utility Routines” manual [27]). If there is an error during processing of REP records, a
warning message is output and the errored REP record is skipped. REP processing then
resumes.

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic field address. May be specified only if MF=S or MF=L.

REPFILE=
May be specified only if MF=S or MF=L.
Specifies the name of the REP file.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, no REP file is used.

file
Explicit specification of the name of the REP file. The name may be up to 54 characters
long.

BIND Description of the macros

250 U3291-J-Z125-16-76

REPSCOP=
Specifies whether REP processing is to be performed for all modules in the context or only
for modules in the current load unit.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, REPSCOP=CONTXT applies.

CONTEXT
REP processing is to be performed for all modules in the context.

UNIT
REP processing is to be performed only for modules in the current load unit. All other
modules in the context will be skipped.

RESORD=
Specifies the user-defined search sequence for the resolution of external references if
RESTYP=USER was specified (only in conjunction with INTVERS=SRVxxx and xxx Ï 001).

list-poss(4): LNKCTX / USERSHARE / SYSSHARE / REFCTX
The search sequence is defined by the sequence of the keywords within the list. The
keywords have the following meaning:

If RESORD=(REFCTX, USERSHARE, SYSSHARE, LNKCTX) is specified, for
example, the search is carried out in the following order when resolving external
references:

1. in the reference context
2. in the shared code of the user
3. in the shared code of the system
4. in the link context

Notes

– Each keyword can appear in the list only once.

– Keywords that are not specified in the list are appended to the end of the list
internally by DBL in accordance with the predefined sequence (LNKCTX,
USERSHARE, SYSSHARE, REFCTX). For example, RESORD=(REFCTX,
USERSHARE) is handled in the same way as RESORD=(REFCTX, USERSHARE,
LNKCTX, SYSSHARE).

LNKCTX
USERSHARE
SYSSHARE
REFCTX

for link context
for shared code of the user
for shared code of the system
for reference context

Description of the macros BIND

U3291-J-Z125-16-76 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

– The RESTYP and RESORD operands have no influence on which contexts are
searched. They only specify the sequence. Whether shared code or reference
context is searched must be specified with the SHARE or REFCTX operand (or
REFCTX@). DBL does not carry out any consistency checks on these operands. If
RESORD=(LNKCTX, SYSSHARE), SHARE=NONE is specified, for example, the
shared code of the system is not used for the resolution of external references
although the corresponding keyword is specified in the list of the search sequence.

RESTYP=
Specifies the search strategy for the resolution of external references (only in conjunction
with INTVERS=SRV001/SRV002).

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, RESTYP=STD applies.

STD
The search sequence predefined by DBL applies:

1. link context
2. shared code of the user
3. shared code of the system
4. reference context(s)

USER
The search sequence is specified by the user with the RESORD operand.

SHARE=
Specifies what part of the shared code is to be included in the search for the symbol
specified with SYMBOL@ or SYMBOL and for resolving external references. This also
applies to the autolink function of DBL if AUTOLNK=YES is specified. If the symbol involved
is located in a common memory pool, DBL returns the load address, links the user task with
the common memory pool and terminates the load procedure. If the symbol involved is
located in a nonprivileged subsystem (see “Subsystem Management” manual [12]), DBL
returns the load address, establishes a connection to the subsystem and terminates the
load procedure. If BRANCH=YES is specified, a branch is then made to the address of the
symbol found.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, SHARE=SYSTEM applies.

SYSTEM
Only the shared code of the system (in class 3/4/5 memory) is included in the search.

BIND Description of the macros

252 U3291-J-Z125-16-76

NONE
No shared code is to be included in the search. DBL causes a private copy of the
program to be loaded.

USER
Only the user's shared code in common memory pools is to be included in the search,
irrespective of the scope of the common memory pool.

GROUP
Only shared code in common memory pools with the scope GROUP is to be included
in the search.

USER_GROUP
Only shared code in common memory pools with the scope USER_GROUP is included
in the search.

GLOBAL
Only shared code in common memory pools with the scope GLOBAL is included in the
search.

ALL
The shared code of both the system and the user is included in the search.

SYMBLAD=
Specifies the address of a 4-byte field, aligned on a word boundary. In this field DBL enters
the address at which the program run has to be continued when the load unit is referenced.

This address depends on the operand SYMTYP:

– If SYMTYP=MODULE or SYMTYP=ANY is specified and a module with the name that
was specified with the SYMBOL (or SYMBOL@) operand is loaded, then the address
is the start address of the module (LLM or OM). Details for computing the start address
of LLMs see manual “BINDER” [5]. If the start address of the LLM is an external name,
the address of that CSECT or ENTRY is returned.

– In all other cases (if SYMTYP=CSECT, ENTRY or CSEN is specified or
SYMTYP=MODULE or SYMTYP=ANY is specified and a module with another name
than specified with the SYMBOL (or SYMBOL@) operand was loaded) the returned
address is the address of the CSECT or ENTRY with the name specified with the
SYMBOL (or SYMBOL@) operand.

The addressing mode to be used for the load unit call is indicated as following:

– on /390 servers in the leftmost bit of the field specified with the SYMBLAD operand,

– on other BS2000 servers in the field AMODE@ if specified.

Description of the macros BIND

U3291-J-Z125-16-76 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

In the following cases loading is aborted:

– SYMBLAD is not specified

– the field is not aligned on a word boundary

– the according memory area has no write access or is not allocated.

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Field address. The address can be specified as a symbolic address or as a constant
(X'...'). May be specified only if MF=S or MF=L.

SYMBOL@=
Specifies the address of a field containing the name of an object. DBL uses this name to
determine which module of the load unit is to be loaded first. The name can refer to the
following objects:
– control section (CSECT),
– entry point (ENTRY),
– object module (OM) (element name),
– link and load module (LLM) (element name).
The type of the object is defined using the SYMTYP operand.

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic field address. May be specified only if MF=S or MF=L.

i The field which contains the name must be 32 characters long. If the name is
shorter, it must be padded with blanks.

BIND Description of the macros

254 U3291-J-Z125-16-76

SYMBOL=
May be specified only if MF=S or MF=L.
Specifies the name of a control section (CSECT), an entry point (ENTRY), an object module
(OM) or a linking loader module (LLM). DBL uses this name to determine which module of
the load unit is to be loaded first.

name
Explicit specification of the object name. The name may be up to 32 characters long.

An asterisk (*) can be specified as the last character of the name. This represents any
character string. In this case all library elements whose name corresponds to the
specified pattern are loaded from the main library (LIBNAM/LIBNAM@/LIBLINK
operand) into one list name unit.

i If multiple asterisks (*) are specified in the name, all characters after the first
asterisk are ignored.

*ALL
All library elements of the main library (LIBNAM/LIBNAM@/LIBLINK operand) are
loaded into one list name unit.

SYMTYP=
Specifies the type of object defined with the name SYMBOL@ or SYMBOL and defines the
search sequence for the object. A symbol (CSECT or ENTRY) or module (OM or LLM) can
be defined as the type of object.
If the object is a symbol the name SYMBOL@ or SYMBOL designates a symbol name and
can be:
– the name of a nonmasked CSECT or ENTRY entry in a program library (type R or

type L),
– the name of a nonmasked CSECT or ENTRY entry in an object module library (OML)

or in the EAM object module file (OMF).
If the object is a module the name SYMBOL@ or SYMBOL designates a module name and
can be:
– the name of a library element (type R or type L) in a program library,
– the name of a library element in an object module library (OML).

ANY
All symbol tables are included in the search. The search is performed in the following
sequence, as defined by DBL:

1. LLMs with the module name SYMBOL@ or SYMBOL
2. OMs with the module name SYMBOL@ or SYMBOL
3. Symbols with the symbol name SYMBOL@ or SYMBOL in an LLM. DBL searches

for CSECTs first. If no CSECT is found, it searches for ENTRYs.
4. Symbols with the symbol name SYMBOL@ or SYMBOL in an OM. DBL searches

for CSECTs first. If no CSECT is found, it searches for ENTRYs.

Description of the macros BIND

U3291-J-Z125-16-76 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

CSECT
Only control sections (CSECTs) with the symbol name SYMBOL@ or SYMBOL are
searched for.

ENTRY
Only entry points (ENTRYs) with the symbol name SYMBOL@ or SYMBOL are
searched for.

CSEN
CSECTs and ENTRYs with the symbol name SYMBOL@ or SYMBOL are searched for.
DBL searches for CSECTs first. If no CSECT is found, it searches for ENTRYs.

MODULE
Only modules with the module name SYMBOL@ or SYMBOL are searched for.

i A search for any already loaded CSECT or ENTRY names does not take place.
In this way, repeated BIND calls can lead to multiple loading, which can result
in BLS0339 messages.

TSTOPT=
Specifies whether symbolic addresses in the source program may be used for debugging
with AID. Only programs for which test and diagnostic information (LSD) has been
generated during compilation may be debugged using symbolic addresses. For this
purpose certain compiler options must be set when compiling the source program (refer to
user guide for the relevant compiler or assembler). If the TSTOPT operand is not specified,
the value set with the START-EXECUTABLE-PROGRAM or LOAD-EXECUTABLE-
PROGRAM (or START-PROGRAM or LOAD-PROGRAM) load call is used as the default
value.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, TSTOPT=NONE applies.

NONE
Test and diagnostic information (LSD) is not taken into account.

AID
Permits symbolic addresses from the source program to be used when debugging the
program with AID (see the “AID” manual [3]). This entry is valid only if LDINFO=DEF or
LDINFO=REF is specified at the same time.

BIND Description of the macros

256 U3291-J-Z125-16-76

UNIT@=
Specifies the address of a field containing the name of the load unit. The name can be used
in subsequent UNBIND macros.
If the operand is not given, the name defined via SYMBOL@ or SYMBOL will be used.

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic field address. May be specified only if MF=S or MF=L.

UNIT=name
May be specified only if MF=S or MF=L.
Explicit specification of the name of the load unit. The name may be up to 32 characters
long.

UNRES=
Specifies how unresolved external references are to be handled. All unresolved external
references will be output to the SYSOUT system file, with external dummy sections
(XDSECs-R) being listed separately.
If the UNRES operand is not specified the value set in the START-EXECUTABLE-
PROGRAM or LOAD-EXECUTABLE-PROGRAM (or START-PROGRAM or LOAD-
PROGRAM) load call will be used as the default value.

*DBLOPT
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, the value that follows *DBLOPT in the syntax definition applies.

STD
Unresolved external references (except for external dummy sections (XDSECs-R)) will
be given an address which is specified in the ERREXIT operand.

DELAY
Unresolved external references will be resolved at a later time. This operand is valid
only in combination with LDINFO=REF.
DBL stores the unresolved external references in the link context. When the next load
unit is loaded in the context DBL attempts to resolve the stored external references with
CSECTs and ENTRYs from this load unit at the end of the loading operation. This
process is repeated each time a new load unit is loaded for as long as the context exists.
External dummy sections (XDSEC-Rs) cannot be stored.
When stored in the context, the unresolved external references are given a (provisional)
address which is specified in the ERROR-EXIT operand.

Description of the macros BIND

U3291-J-Z125-16-76 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

DELAYWARN
Specified only in conjunction with INTVERS=SRVxxx, where xxx Ï 004.
The behavior is like UNRES=DELAY. In addition, when unresolved external references
occur, a corresponding return code is issued.

UNRES=DELAYWARN is also a prerequisite for USRUNRI=DELAY.

ABORT
Unresolved external references are not allowed. Loading of the current load unit will be
aborted.

USRMAP@=
Address of a user-defined data area to which information of the DBL map which is defined
with the USRMAPI operand (only in conjunction with INTVERS=SRVxxx and xxx Ï 005) is
to be output. The data area must be aligned on word boundary. The length of the area must
be transferred with the USRMAPL operand. You can also obtain the layout of the
information with
BIND MF=D,XPAND=USRMAP,INTVERS=SRV005.

This specification is ignored if USRMAPI=NONE.

addr
Address of an auxiliary field which contains the address of the data area.
May be specified only if MF=M.

(r)
r = register containing the address of the data area. May be specified only if MF=M.

label
Symbolic address of the data area. May be specified only if MF=S or MF=L.

USRMAPI=
Determines which part of the DBL map is to be output to a data area whose address the
user transfers with the USRMAP@ operand (only in conjunction with INTVERS=SRVxxx
and xxx Ï 005).

NONE
The DBL map is not output to a user-defined data area.

STD
The header of the DBL map and the information on load unit and modules are output to
a user-defined data area, but no information on CSECTs and ENTRYs.

ALL
The entire DBL map (as with SYSOUT) is output to a user-defined data area.

BIND Description of the macros

258 U3291-J-Z125-16-76

USRMAPL=integer 1..21474836479
Length of the user-defined data area whose address is transferred with the USRMAP@
operand (only in conjunction with INTVERS=SRVxxx and xxx Ï 005). The length must be
specified in bytes. It must (for the minimum information) be at least 248 bytes for INT-
VERS=SRV005 and 336 bytes for INTVERS=SRV006.

This specification is ignored if USRMAPI=NONE.

USRUNR@=
Address of a user-defined data area to which a list of the unresolved external references is
to be output (only in conjunction with INTVERS=SRVxxx and xxx Ï 005). The data area
must be aligned on word boundary. The length of the area must be transferred with the
USRUNRL operand.

The information output mainly consists of a list header, the length of the information output
and the number of unresolved external references, and a list of records, each of which
define one of these external references.
The layout of the area can be generated with BIND MF=D,XPAND=USRUNR,INTVERS=SRVxxx
where xxx Ï 005. The layout depends on the version (INTVERS operand).

addr
Address of an auxiliary field which contains the address of the data area.
May be specified only if MF=M.

(r)
r = register containing the address of the data area. May be specified only if MF=M.

label
Symbolic field address of the data area. May be specified only if MF=S or MF=L.

USRUNRI=
Determines which unresolved external references are to be output to the data area whose
address the user transfers with the USRUNR@ operand (only in conjunction with
INTVERS=SRVxxx und xxx Ï 006).

The specification is ignored if USRUNR@ is not specified.

STD
The external references from the current load operation which remain unresolved are
output to the user-defined data area.

DELAY
The external references from earlier load operations (with UNRES=DELAY) which
remained unresolved are output to the user-defined data area.

When USRUNRI=DELAY, UNRES=DELAYWARN must also be specified.

Description of the macros BIND

U3291-J-Z125-16-76 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

BOTH
Both types of unresolved external references are output to the user-defined data area.

When USRUNRI=BOTH, UNRES=DELAYWARN must also be specified.

USRUNRL=integer 1..21474836479
Length of the user-defined data area whose address is transferred with the USRUNR@
operand (only in conjunction with INTVERS=SRVxxx and xxx Ï 005). The length must be
specified in bytes. It must (for the output header) be at least16 bytes for INTVERS=SRV005
and 20 bytes for INTVERS=SRV006.

This specification is ignored if USRUNR@ is not specified.

VERS@=
Specifies the address of a field containing the element version of the element defined by
SYMBOL@ or SYMBOL. If SYMTYP=ANY is specified, the VERS@ operand is taken into
account only if the object name (SYMBOL@ or SYMBOL) refers to a module in a program
library (type R or type L). If a CSECT or ENTRY name is specified, the VERS@ operand is
ignored. If the operand is not specified, the default value for the highest element version in
program libraries is used (see the “LMS” manual [29]).

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic field address. May be specified only if MF=S or MF=L.

VERS=version
May be specified only if MF=S or MF=L.
Explicit specification of the element version. The name may be up to 24 characters long.

XPAND=
Specified only with MF=D.
Determines the layout of the data area to be generated.

PARAM
Generates the layout of the parameter list for calling the BIND macro.

XRC
Generates the layout for the extended return code.

BIND Description of the macros

260 U3291-J-Z125-16-76

USRMAP
Specified only in conjunction with INTVERS=SRVxxx and xxx Ï 005.
Generates the layout for the data area to which the DBL map can be output (see
USRMAPI, USRMAP@ and USRMAPL operands).

USRUNR
Specified only in conjunction with INTVERS=SRVxxx and xxx Ï 005.
Generates the layout for the data area to which a list of the unresolved external
references can be output (see USRUNR@, USRUNRI and USRUNRL operands).

XRC=
Specifies the address of a field containing the extended return code.
The address must be aligned on a word boundary. The field has the following format:

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic field address. May be specified only if MF=S or MF=L.

XRCL=
Defines the length of the field specified in XRC. Depending on the length set, DBL transfers
all or only some of the possible information.

28
The XRC field is 28 bytes long. No information about ILEs will be transferred.

36
The XRC field is 36 bytes long. All information, including ILE information, will be
transferred.

Byte Length Content

0- 6 7 Message code of the last message output during processing of the BIND macro

7 1 blank

8-11 4 DMS error code

12-23 12 PLAM error code

24-27 4 Error code for other types of error that may occur when searching in libraries

28 1 ILE flag and 7 reserved bits

29-31 3 reserved

32 4 Address of the ILE server module

Description of the macros BIND

U3291-J-Z125-16-76 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Notes on the macro call

– Modules or control sections (CSECTs) which have already been loaded once in the link
context are not loaded a second time by DBL. With BRANCH=YES DBL branches to
the address of the symbol (CSECT or ENTRY) that was loaded. With BRANCH=NO
processing is continued with the next instruction in the calling program.

– CSECTs or COMMONs which have names consisting of blanks are given the default
name “%CSECT” or “%COM”.

– If an LLM containing no relocation information cannot be loaded at a suitable address
an error condition is produced.

– When loading the load unit DBL attempts to resolve unresolved external references
from a previous load unit which were stored in the link context (UNRES=DELAY
operand) for the current load unit.

– The OPEN mode for the program libraries and elements is determined by the value
defined with the system parameter BLSOPENX.

– The ALTLIB=YES and LIBNAM@/LIBNAM/LIBLINK operands may be specified
together in the same macro. If, however, the main library specified by the
LIBNAM@/LIBNAM/LIBLINK operand is not present, DBL aborts the processing.
Specifying ALTLIB=YES is no substitute for a missing or invalid main library.

– If the specified program version has not yet been loaded but a program with this name
already exists in the link context (see CONTEXT operand), loading is rejected because
of the name conflict.

– When a REP file (REPFILE, REPFIL@) is specified, DBL can also process an
associated NOREF file provided the name convention for BS2000-REP files is adhered
to: either the NOREF file name includes the element “SYSNRF” (instead of SYSREP),
or the NOREF file has the same name as the main library with the extension “.NOREF”.
NOREF files must have the same format in the user environment as in the system
environment.

– When BIND MF=D,XPAND=USRMAP is specified, the same prefix must be specified as for
BIND MF=D,XPAND=PARAM.

– If the user-defined output area for the DBL map (USRMAPI, USRMAP@ and
USRMAPL operands) is too small to contain all the information, a return code
(X’08010129’) is entered in the map header. Output is aborted, but the load operation
is continued.

– The list of unresolved external references or external references from earlier load
operations (with UNRES=DELAY) which remained unresolved (if there is one) is output
to the area defined with USRUNR@, USRUNRI and USRUNRL. This output is
independent of the UNRES operand. If the area that is to contain all the information is

BIND Description of the macros

262 U3291-J-Z125-16-76

too small, a return code (X’0801012D’) is entered in the map header. Output is aborted,
but the load operation is continued. If all external references have been resolved, 0 is
entered in the map header.

– When SYMBOL=*ALL or SYMBOL=name is specified and the last character of name being the
wildcard symbol “*”, the result of the load process is a socalled list name unit.
For details, see the „BLSSERV“ manual [4].

Format of the name structure in the parameter list of the BIND macro

DBL manages the various names defined in the BIND macro with the aid of the BIND macro
parameter list. For each name the parameter list contains a pointer which points to the
address of the associated name field (see figure on the next page). Except for SYMBOL@
all names are optional. If a name is not defined in the macro the macro sets the associated
pointer to the address value X'FFFFFFFF'.

A name can also be explicitly specified in the macro. In this case the names are entered in
the parameter list.

Description of the macros BIND

U3291-J-Z125-16-76 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Figure 23: Name structure in the parameter list of the BIND macro

VERS@ not defined

Parameter list

REFCTX #=1

REFCTX #=2

 .

 .

 .

REFCTX #=n

Library name

LNKCTX name

Unit name

Symbol name

REPFIL@ not defined

X‘FFFFFFFF‘

X‘FFFFFFFF‘

SYMBOL@

UNIT@

LINKCTX@

REFCTX@

LIBNAM@

BIND Description of the macros

264 U3291-J-Z125-16-76

Search strategy

DBL searches in various containers for the object defined using SYMBOL@ and SYMTYP.
If a suitable object is found in a container it is inserted in the load unit, the load unit is loaded
and the start address passed to the user via the SYMBLAD field.

The search operation is performed in the following stages:

1. Search in the link context. The reference context is not searched.

2. Search in the user's shared code that was loaded into a common memory pool by
means of the ASHARE macro of DBL. The search can be restricted to memory pools
with a particular scope or suppressed in its entirety (SHARE-SCOPE operand).

3. Search in the shared code in the system address space in which nonprivileged
subsystems are loaded (see the “Subsystem Management” manual [12]). The user can
suppress searching in nonprivileged subsystems by specifying SHARE-SCOPE ≠
SYSTEM in the load call.

4. Search libraries which the user specified with the LIBNAM@ or LIBNAM or LIBLINK
operand in the load call.

5. Search alternate (system) libraries assigned using the file link name BLSLIBnn (where
00ÎnnÎ99) or $BLSLBnn. The libraries are searched in ascending numerical order (by
“nn”). The alternate system libraries $BLSLB00..49 are searched first, followed by the
alternate libraries BLSLIB00..99, and finally, the remaining alternate system libraries
$BLSLB50..99.

The system and/or user tasklibs can be searched, depending on the operand ALTLIB.

The user can suppress searching in alternate libraries by specifying the ALTLIB=NO
operand in the load call.

Note

For list name units, no names in the link context or shared code are searched for as these
names are element names and not symbol names.

For details, see the „BLSSERV“ manual [4].

Description of the macros BIND

U3291-J-Z125-16-76 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Return information and error flags

The start address of the load unit is transferred to the field specified with the SYMBLAD
operand. The high-order bit of the transferred start address indicates which addressing
mode has to be set (bit = 1 for 31-bit addressing, bit = 0 for 24-bit addressing).

Standard
header:

The following return code relating to the execution of
the BIND macro is transferred in the standard header
(cc=Subcode2,bb=Subcode1,aaaa=Maincode).

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Macro executed normally

X'0C' X'01' X'0018' A reserved field of the parameter list is not prefilled with zeros

X'0C' X'01' X'0100' Illegal combination of parameters in the parameter list. Illegal
combinations may, for example, include:
– OVERLAY=YES specified without LOAD@
– LDINFO=NONE specified together with TEST-OPTIONS in the

LOAD-EXECUTABLE-PROGRAM or LOAD-PROGRAM command
– RESTYP=USER specified without RESORD
– USRMAPI=STD/ALL specified without USRMAP@ or USRMAPL

X'0C' X'01' X'0104' The macro call is invalid because it was issued under a user ID that is
permitted for maintenance only

X'0C' X'40' X'0114' LNKCTXS=OLD was given and the specified context is not present

X'0C' X'40' X'0118' LNKCTXS=NEW was given and the specified context is present

X'0C' X'40' X'011C' A context specified with REFCTX@ is not present

X'0C' X'01' X'0120' – An output area has read access only, is not assigned or is not
aligned on a word boundary,

– MPID is not assigned or is not aligned on a word boundary

X'0C' X'01' X'0121' Invalid parameter list: One of the input parameters is wrong.

X'0C' X'01' X'0124' An area that is to contain a name is not assigned. The name can be:
– the object name (SYMBOL)
– the name of the load unit (UNIT)
– the version name (VERS)
– the library name (LIBNAM)
– the name of the REP file (REPFILE)
– the link context name (LNKCTX)
– a name in the list of reference context names (REFCTX)

X'0C' X'01' X'0125' The number of reference context names is too big. No more than
200 names are permitted

X'0C' X'01' X'0127' The mandatory operand SYMBLAD has not been specified.

BIND Description of the macros

266 U3291-J-Z125-16-76

X'08' X'01' X'0129' The length specified with USRMAPL is too small. Output of the DBL map
to a user-defined data area is aborted without an end record. Loading is
continued. This return code is output in the data area’s header.

X'0C' X'01' X'012A' The length specified with USRMAPis too small.

X'08' X'01' X'012D' The length specified with USRUNRL is too small. Output of the list of
unresolved external references or of external references from earlier
load operations (with UNRES=DELAY) which remained unresolved to a
user-defined data area is aborted. Loading is continued.
This return code is output in the data area’s header.

X'0C' X'01' X'012E' The length specified with USRUNRL is too small.

X'0C' X'01' X'0134' Illegal LNKCTXS operand

X'0C' X'01' X'0144' Invalid link context name

X'0C' X'01' X'0146' A reference context has the same name as the link context

X'0C' X'01' X'0148' A link or reference context cannot be used

X'0C' X'01' X'014C' An invalid symbol name consisting of blanks has been specified

X'0C' X'01' X'014D' No symbol name has been specified

X'0C' X'01' X'0150' Illegal entry in the SYMTYP operand.
One of the following must be specified as the object type:
CSECT (1) / ENTRY (2) / CSEN (3) / MODULE (4) / ANY (5).
An object type other than those listed above was specified

X'0C' X'20' X'0158' The maximum number of 16 user contexts has been reached. A new
context cannot be generated

X'0C' X'40' X'016C' Internal error in the AID debugging routine (system error)

X'0C' X'40' X'0184' The identifier for MPID is invalid because
– the memory pool (MP) was not set up or the user not connected to

the MP
– the MP is not in class 6 memory
– the MP is already being used for the user' s shared code

X'0C' X'01' X'0188' Invalid load address specified in LOAD@

X'0C' X'40' X'018C' An attempt was made to use a context which has been corrupted by a
previous error

X'cc' X'bb' X'aaaa' Meaning

Description of the macros BIND

U3291-J-Z125-16-76 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

X'0C' X'40' X'0190' An illegal residence mode (RMODE) has been defined for the load unit
by DBL. This can happen when loading modules or COMMONs.
Possible cause when loading a module:
– The dummy RMODE defined for the module is 24 and the load unit

is loaded into a memory pool (MP) above 16 Mb
Possible causes when loading a COMMON:
1. The COMMON is to be loaded below 16 Mb and the load unit is

loaded into a MP above 16 Mb. This is the case when:
– the COMMON has RMODE 24 or
– the load unit has PROGMOD 24 or
– at least one module of the load unit is loaded below 16 Mb.

2. The COMMON was loaded in same context in a previous load unit
above 16 Mb and is to be loaded below 16 Mb in the current load unit

X'0C' X'01' X'0194' A class 6 memory area requested by DBL has been released by the
user, or the attributes of memory pages have been changed by the user.
An error occurred during the validity check of the released area.

X'0C' X'20' X'0196' Common memory pool connection error. The task cannot be connected
to the memory pool because (for example) part of the memory area for
the memory pool has already been requested by the current task

X'0C' X'20' X'0198' There is not enough space available for loading the objects specified by
the user

X'0C' X'20' X'01A0' A resource cannot be accessed because it is locked

X'0C' X'40' X'0200' Error during DBL execution (system error)

X'0C' X'40' X'0204' Inconsistencies in the DBL memory management tables (system error)

X'0C' X'40' X'0208' Inconsistencies in the DBL data management tables (system error)

X'0C' X'40' X'020C' Inconsistencies in the symbolic information tables (system error)

X'0C' X'20' X'0300' Error in $REQM, $RELM, $CSTAT, RDTFT (system error)

X'0C' X'40' X'0400' Errors detected in object records during processing of a module
(OM or LLM)

X'0C' X'40' X'0404' Invalid type code in the ESD/ESV record

X'0C' X'40' X'0408' Inconsistencies in the input module (e.g. in the order of ESD/ESV
records)

X'0C' X'40' X'040C' The specified module is not contained in the current load unit. Error in
the RLD/LRLD record

X'0C' X'40' X'0410' Error in the TXT record

X'0C' X'40' X'0414' Error during processing of symbolic information

X'04' X'40' X'0418' Error in REP record. Processing is continued. (Message BLS0230 was
answered with YES in interactive mode.)

X'08' X'40' X'0418' Error in REP record. Processing is continued (batch mode)

X'cc' X'bb' X'aaaa' Meaning

BIND Description of the macros

268 U3291-J-Z125-16-76

X'0C' X'40' X'0418' Error in REP record. Processing was aborted. (Message BLS0230 was
answered with NO in interactive mode.)

X'04' X'40' X'041C' The specified module is not in the current load unit. The REP record is
ignored. Processing is continued. (Message BLS0234 answered YES)

X'0C' X'40' X'041C' The specified module is not in the current load unit. The REP record
cannot be processed. Processing was aborted. (Message BLS0234 was
answered with NO.)

X'04' X'40' X'0420' Error in the INCLUDE statement. Processing is continued. (Message
BLS0230 was answered with YES.)

X'0C' X'40' X'0420' Error in the INCLUDE statement. Processing was aborted

X'0C' X'40' X'0430' The LLM cannot be loaded. Possible reasons:
– It cannot be loaded with the current BLSSERV version.
– Only one LLM with user-defined slices can be loaded in a context,

and one already exists.
– LLM can only be processed by BINDER and LLMAM .
– LLM with CSECT AMODE=31 cannot be loaded with

PROGMOD=24.
– An LLM with user-defined slices cannot be loaded in a list name unit.

X'0C' X'40' X'0432' An address resulting from a relocation was truncated. Processing is
continued

X'0C' X'40' X'0433' An address resulting from a instruction is outside the current segment.
Processing is aborted

X'0C' X'40' X'0434' This LLM is inconsistent with the “PRE-LOADING” option and preloading
was requested. Processing is aborted

X'0C' X'40' X'0435' The length transferred to DSSM for the preloadable section does not
match the actual length of the preloadable LLM section

X'04' X'01' X'0600' The module specified in an INCLUDE statement cannot be found.
Processing is continued. (Message BLS0232 was answered with YES.)

X'0C' X'01' X'0600' The module specified in an INCLUDE statement cannot be found.
Processing was aborted. (Message BLS0232 was answered with NO.)
or
The module specified with SYMBOL@ or SYMBOL cannot be found in
the specified libraries

X'04' X'01' X'0604' A name conflict has occurred and has been accepted

X'0C' X'01' X'0604' A name conflict has occurred. Processing was aborted

X'04' X'01' X'0608' External references cannot be resolved.
Processing is continued. (Message BLS0350 was answered with YES.)

X'08' X'01' X'0608' Unresolved external references remain in the context and are processed
later when possible. Processing is continued.
(Return code issued only with UNRES=DELAYWARN.)

X'cc' X'bb' X'aaaa' Meaning

Description of the macros BIND

U3291-J-Z125-16-76 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

X'0C' X'01' X'0608' External references cannot be resolved.
Processing was aborted. (Message BLS0350 was answered with NO.)

X'04' X'01' X'0609' XDSECs-Rs cannot be resolved. Processing is continued

X'0C' X'01' X'0609' XDSECs-Rs cannot be resolved. Processing was aborted

X'04' X'40' X'060C' LOAD=NO was specified but the module is not loaded

X'0C' X'40' X'060D' The symbol is already loaded in LNKCTX. It is not loaded again so as to
avoid name conflicts

X'0C' X'01' X'0610' The specified file is not a program library (PL) or an object module library
(OML)

X'0C' X'01' X'0614' The specified file is not a valid object module library (OML)

X'0C' X'01' X'0618' The PLAM library routine is not available

X'0C' X'01' X'061C' PAM read error in the library

X'0C' X'01' X'0620' Error in the OML directory

X'0C' X'40' X'0624' The load unit contains a CSECT with AMODE 31 and:
– the hardware does not allow 31-bit addressing
– PROGMOD=24 was specified or
– the module with the specified symbol has already been loaded

above 16 Mb and PROGMOD=24 was specified

X'04' X'40' X'0628' The current addressing mode does not match the addressing mode that
has to be used for the entry point (e.g. when the called program is
executing with AMODE=31 and the entry point has AMODE=24). The
addressing mode has to be switched over. However, DBL still passes the
correct start address in the SYMBLAD field

X'0C' X'40' X'062C' An attempt was made to load a module with RMODE=24 into a memory
pool above 16 Mb

X'0C' X'01' X'0630' An LLM containing slices for loading above and below 16 Mb cannot be
loaded into a memory pool

X'0C' X'01' X'0634' An LLM containing user-defined slices cannot be loaded into a memory
pool

X'0C' X'01' X'0636' The HSI codes of the ILE and server module are incompatible.
The server module has not been loaded.

X'00' X'01' X'FFFF' The function is no longer or not yet supported

X'00' X'03' X'FFFF' The interface version is not supported

X'cc' X'bb' X'aaaa' Meaning

BIND Description of the macros

270 U3291-J-Z125-16-76

Example

During the BIND1 program run, a BIND macro is issued to load a second CSECT, BIND2,
as an overlay. BIND2 is stored as an LLM in library MACEXMP.LIB. Both CSECTs are to
execute in 31-bit addressing mode. BIND1 is to be loaded below, and BIND2 above, the
16-Mb boundary. After the BIND macro is called BIND2 is to execute first.

Program BIND1

BIND1 START
PRINT NOGEN

BIND1 AMODE 31 ——— (1)
BIND1 RMODE 24

BALR 3,0
USING *,3
USING BINDSECT,6 ——— (2)
ST 3,AREA11
UNPK AREAH,AREA1
MVC AREAA(8),AREAH

WROUT1 WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (3)
BACK LA 12,MVC
BIND BIND MF=E,PARAM=BINDPAR ————————————————————————————————————— (4)

LA 6,BINDPAR
CLC XBINRET,=X'00000000' ——————————————————————————————————— (5)
BE MVC
MVC OUT+5(26),='BIND error! '
WROUT OUT,ERROR,PARMOD=31
B ERROR

MVC MVC OUT+5(26),='Back in BIND1 '
WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (6)

ERROR TERM
OUT DC Y(OUTE-OUT)

DS CL3
DC C'BIND1: BASEREG.= '

AREAA DS CL8
OUTE EQU *
AREA DS 0F
AREA1 DS 0CL5
AREA11 DS CL4
AREA12 DC C'0'

DS 0F
AREAH DS CL9
BINDPAR BIND MF=L,SYMBOL=BIND2,SYMBLAD=BIND2@,BRANCH=YES,PROGMOD=ANY,*

LIBLINK=PLAMLIB,MAP=SYSOUT
BIND2@ DS A
BINDSECT BIND MF=D,PREFIX=X —— (7)

END

Description of the macros BIND

U3291-J-Z125-16-76 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Program BIND2

BIND2 CSECT —— (8)
PRINT NOGEN

BIND2 AMODE ANY —— (9)
BIND2 RMODE ANY

BALR 4,0
USING *,4
ST 4,AREA11
UNPK AREAH,AREA1
MVC AREAA(8),AREAH
WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (10)
BR 12

ERROR TERM
OUT DC Y(OUTE-OUT)

DS CL3
DC C'BIND2: BASEREG.= '

AREAA DS CL8
OUTE EQU *
AREA DS 0F
AREA1 DS 0CL5
AREA11 DS CL4
AREA12 DC C'0'
AREAH DS CL9

END

(1) The AMODE=31 attribute is defined for program segment BIND1. The RMODE=24
attribute means that BIND1 will always be loaded below the 16Mb boundary.

(2) Register 6 is assigned by the assembler as the base address register for
addressing the DSECT for the operand list of the BIND macro, which is generated
at the symbolic address BINDSECT as a result of a BIND macro specifying MF=D.

(3) The contents of the base register for BIND1 are output to indicate the addressing
mode and the load address.

(4) The BIND macro is called in its E form at the symbolic address BIND. At this point
in the program, therefore, only the instruction part is generated. The associated
operand list is created at the symbolic address BINDPAR by means of a BIND
macro specifying MF=L. As a result of the operand values specified in the list, the
BIND macro causes the following to happen at program runtime:
– the CSECT BIND2 (SYMBOL=BIND2,SYMTYP=CSECT) is reloaded from the

library assigned with the link name PLAMLIB (LIBLINK=PLAMLIB),
– the start address of BIND2 is stored in field BIND2@ (SYMBLAD=BIND2@),
– the 31-bit addressing mode is set for BIND2 (PROGMOD=ANY),
– a DBL map is output to SYSOUT (MAP=SYSOUT), and
– the program run is continued in BIND2 after BIND2 has been loaded

(BRANCH=YES).

BIND Description of the macros

272 U3291-J-Z125-16-76

(5) Following execution of the BIND macro, a check is made to verify that the XBINRET
field of the standard header contains the return code X'00000000', which indicates
error-free execution of the macro. The name XBINRET originates from the DSECT
that was generated under the symbolic address BINDSECT as a result of a BIND
macro specifying MF=D and PREFIX=X (see (7)). This DSECT describes the layout
of the operand list of the BIND macro. The symbolic names of the DSECT can be
used for addressing within the operand list once the assigned base address register
(in this case, register 6) has been loaded with the start address of the operand list
(in this case, BINDPAR).

(6) A message is written to SYSOUT to indicate that the program run is continued in
BIND1 following execution of BIND2.

(7) The BIND macro specifying MF=D generates a DSECT which describes the layout
of the operand list of the BIND macro. The PREFIX=X operand causes the letter X
to be prefixed to all symbolic names in this DSECT (field names and equates).

(8) The CSECT statement defines the program segment BIND2.

(9) AMODE=ANY indicates to the operating system that BIND2 can execute in 24-bit
or 31-bit addressing mode.

(10) The contents of the base register for BIND2 are output to indicate the addressing
mode and the load address.

Runtime log

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,bind1), - ——————————————— (11)
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,bind1))
% ASS6011 ASSEMBLY TIME: 557 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 84 MSEC
//compile source=*library-element(macexmp.lib,bind2), - ——————————————— (12)
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,bind2))
% ASS6011 ASSEMBLY TIME: 270 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 82 MSEC
//end
% ASS6012 END OF ASSEMBH

Description of the macros BIND

U3291-J-Z125-16-76 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

/add-file-link link-name=plamlib,file-name=macexmp.lib ———————————————— (13)
/start-executable-program library=macexmp.lib, - —————————————————————— (14)
/ element-or-symbol=bind1,prog-mode=*any
% BLS0523 ELEMENT 'BIND1', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'BIND1', VERSION ' ' OF '<date> <time>' LOADED
BIND1: BASEREG.= 80000002 ——— (15)
——— (16)
############################### A D B L M A P #############################
#
LOAD UNIT: BIND2. LOAD INFO =DEF
VERSION : ~ LOAD TIME =<date> <time>
CONTEXT : LOCAL#DEFAULT. TEST OPTION=NONE
#
LLM : BIND2. BY_ATTR / EXPLICIT PLAMLIB
OM : BIND2. STANDARD
CSECT : BIND2. @= 1000000 L= 7E
#
LOAD UNIT STARTING POINT. @= 1000000 AMODE=31 HSI=/7500
#
######################## E N D O F A D B L M A P ######################
BIND2: BASEREG.= 81000002 ——— (17)
Back in BIND1 ——— (18)

(11) Program BIND1 is assembled.

(12) Program BIND2 is assembled.

(13) The file link name used in the BIND call (4) is assigned.

(14) DBL is invoked to link, load and start the program.

(15) The contents of the base register for BIND1 are output. 31-bit addressing is set
(bit 231 = 1); the load address is below the 16-Mb boundary.

(16) DBL has loaded the CSECT BIND2. A DBL log is written to SYSOUT.

(17) The contents of the base register for BIND2 are output. 31-bit addressing is set
(bit 231 = 1); the load address is above the 16-Mb boundary.

(18) Following the return from BIND2, the program run is continued in BIND1.

BKPT Description of the macros

274 U3291-J-Z125-16-76

BKPT – Set breakpoint; interrupt current program

General

Application areas: Debugging aids; see page 162
Interrupting the program run; see page 72
Communication; see page 163

Macro type: O-Type O; see page 28

Macro description

The BKPT macro serves to interrupt program execution in order to enter commands.
In interactive mode, system commands or IDA commands can be input at the terminal. The
program is continued with the RESUME-PROGRAM, %RESUME or %TRACE command.
In the case of batch jobs and interactive procedures, commands are processed until the
next RESUME-PROGRAM, %RESUME or %TRACE command is encountered.

Macro format and description of operands

Example

BKPT START
PRINT NOGEN
BALR 3,0
USING *,3
WROUT MESS1,ERROR —— (1)
BKPT ——— (2)
WROUT MESS1,ERROR —— (3)

ERROR TERM
*** Definitions ****
MESS1 DC Y(END-MESS1)

DS L2
DC X'01'
DC C'Here is BKPT'

END EQU *
END

BKPT

Description of the macros BKPT

U3291-J-Z125-16-76 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,bkpt), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,bkpt))
% ASS6011 ASSEMBLY TIME: 314 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 80 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=bkpt
% BLS0523 ELEMENT 'BKPT', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'BKPT', VERSION ' ' OF '<date> <time>' LOADED
Here is BKPT —— (1)
% IDA0199 PROGRAM BREAK AT ADDRESS X'000014', AMODE=24 ——————————————— (2)
/show-user-status inf=*prog
NAME TSN TYPE SIZE CURR-CMD
MACTEST 2QSE 3 DIALOG1 1 SHOW-USER-STATUS

PROG::2OSG:$QM212.MACEXMP.LIB(BKPT,@,L)
/resume-program
Here is BKPT —— (3)

(1) A message is written to SYSOUT.

(2) The BKPT macro is encountered: program execution is interrupted. The message
IDA0199 is output.

Commands can now be input at the user terminal. In this example, the SHOW-
USER-STATUS INF=*PROG command is input. With the RESUME-PROGRAM
command the interrupted program is continued from the line after BKPT.

(3) A message is written to SYSOUT.

CALL Description of the macros

276 U3291-J-Z125-16-76

CALL – Load segments

General

Application area: Linking and loading; see page 47
Macro type: O-Type O; see page 28

Macro description

The CALL macro enables the user to load a segment that is not yet in memory by specifying
a symbol. Subsequent segments within the same path of the overlay structure are loaded
automatically.

After loading is completed program execution continues at the specified symbol in the
segment just loaded.

Macro format and description of operands

symbol
Symbolic address (entry point) within the segment to be loaded.
A 4-byte V-type constant is generated for this symbol. This operand allows the user to
implicitly specify the segment to be loaded and, simultaneously, to specify the address at
which program execution continues after macro execution.

CALL

symbol

Description of the macros CALL

U3291-J-Z125-16-76 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Functional description

The CALL macro (and also the SEGLD macro) implements the automatic loading of
segments (nonautomatic loading is performed by the LPOV macro).

An instruction in the CALL macro causes the Assembler to generate a V-type constant from
the specified symbolic address. This constant identifies both the segment to be loaded and
the address at which program execution continues after loading is completed. Based on this
V-type constant in the CALL macro and on the CONTROL=YES operand in the PROGRAM
control statement (see the “Utility Routines” manual [27]), the linkage editor generates an
overlay control module, required for automatic loading, which satisfies the V-type constant
with an address. The CALL macro includes a branch to the V-type constant. When CALL
is to be executed, control is passed to the overlay control module, which performs a check
to establish whether the required segment is already in memory. If the segment has already
been loaded, program execution will continue at the instruction identified by the operand
“symbol”. If the segment specified has not yet been loaded, it will be brought into memory
together with all segments that are in the same path. After the loading operation the
program will continue - in the same way as if no loading had occurred - at the specified
address in the segment to be loaded.

Notes

– The overlay structure of a program in which automatic loading of segments is performed
should be designed in such a way as to allow for additional memory as required for the
overlay control module, for ENTAB and for SEGTAB (see the “Utility Routines”
manual [27]).

– The CALL macro must be contained in a program area covered by a USING statement.
As register 15 is used by the CALL macro for segment loading (it contains the entry
address), it must not be used as the base register for the program section that contains
the CALL macro.

CDUMP2 Description of the macros

278 U3291-J-Z125-16-76

CDUMP2 – Generate user, system or area dump

The three types of dump supported by CDUMP2 differ in the scope of the information
offered and in the name and the ID for the dump file output. The following sections outline
the most important characteristics of area, user, and system dumps:

Area dump

Scope of the area dump:

– The areas of the user address space from class 6 memory and class 5 memory which
are specified in the CDUMP2 call, provided the output is not prohibited by the system
parameter DUMPCL5P.

– Specially protected pages (“secret pages”, CSTAT PROTECT=YES macro call) are
output only in the scope which is specified by the system parameter DUMPSEPA.

– Other system areas: module AIDSYSD, the area with COMAREA, the TCB and
TU-PCB tables (see user dump); in addition - if requested by the MODE=*EXP
operand - all other system areas of the user dump.

– Data spaces (see section “Extended addressing with data spaces” on page 61) to which
the CDUMP2 caller is connected. The caller uses the data area to determine from which
areas data spaces are to be saved.

– The output can be controlled with /MODIFY-TEST-OPTIONS
USERDUMP-OPTIONS=*PARAMETERS(...), see the “commands” manual [19].

ID for the area dump file:

– User ID of the task which has called CDUMP2, if the user is authorized to read all the
data output in the dump.

– SYSUSER system ID if the dump contains read-protected data which the user is not
authorized to access (e.g. programs protected by a read password which the user has
not entered in the password table of the task).

Name of the area dump file:

– $userid.SYS.ADUMP[.jobname].tsn.i if the file is entered under the ID of the CDUMP2
caller.

– $SYSUSER.SYS.ADUMP[.jobname].tsn.i.userid if the file is entered under the
SYSUSER system ID.

Where:

userid User ID of the CDUMP2 caller
jobname JOB-NAME of the job which has called CDUMP2 (from the SET-LOGON-

PARAMETERS command)
tsn TSN of the job which has called CDUMP2
i Consecutive number of the area/user dump within the task

Description of the macros CDUMP2

U3291-J-Z125-16-76 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

User dump

Scope of the user dump:

– Total class 6 and class 5 memory, provided this is not prohibited by the system
parameter DUMPCL5P.

– Specially protected pages (“secret pages”, CSTAT PROTECT=YES macro call) are
output only in the scope which is specified by the system parameter DUMPSEPA.

– Other system areas: AIDSYSD module, Trace Dump List; task-specific system tables
such as TCB (Task Control Block), TFT (Task File Table), TU-PCB (Process Control
Block), TU-AUDIT-TABLE (AUDIT table, see AUDIT macro).

– The system trace table is buffered when CDUMP2 is called and is included in the dump
when the dump is created (at the point where it occurs in the system).

– If the error task program counter (PC) indicates the system address space, any pages
referenced via general purpose registers and PCs (plus 5 pages preceding and 5 pages
following) are also output. If at least one page is present which is privileged but not
“common readable”, the user dump is output to the ID SYSUSER.

– Data spaces (see section “Extended addressing with data spaces” on page 61) to which
the CDUMP2 caller is connected.
The caller uses the DS macro operand to determine whether only specific data spaces,
all data spaces or no data spaces are to be saved. If the DS operand is not specified,
the value (YES or NO) set in the MODIFY-TEST-OPTIONS command, operand DATA-
SPACES=*YES/*NO determines the output of data spaces.

– The output can be controlled with /MODIFY-TEST-OPTIONS
USERDUMP-OPTIONS=*PARAMETERS(...), see the “commands” manual [19].

ID for user dump file:

– User ID of the task which has called CDUMP2 if the user is authorized to read all the
data output in the dump and if the dump does not contain referenced pages located in
privileged address space and which are not “common readable”.

– $SYSUSER system ID if the dump contains read-protected data which the user is not
authorized to access (e.g. programs protected by a read password which the user has
not entered in the password table of the task).

Name of the user dump file

– $userid.DUMP[.jobname].tsn.i if the file is not created under the user ID of the
CDUMP2 caller.

– $SYSUSER.DUMP[.jobname].tsn.i.userid if the file is not entered under the
$SYSUSER user ID.

For function, see area dump.

CDUMP2 Description of the macros

280 U3291-J-Z125-16-76

System dump

Users wishing to request a system dump must have set their read privileges to a value m≥3
with /MODIFY-TEST-OPTIONS PRIVILEGE=*PARAMETERS(READ=m,WRITE=1). They
are only authorized to do so if this privilege is granted to them in the user catalog.

A user or area dump can be converted to a system dump if the test privilege has been
granted (see above)

– using /MODIFY-TEST-OPTIONS, operand DUMP=*SYSTEM
The message IDA0N45 is suppressed.

– by answering the message IDAN045 with Y,SYSTEM

The operator can control whether the system dump is output to disk, or to tape or magnetic
tape cartridge.
If a system dump is abnormally terminated, the message IDA0N99 is output depending on
the value of the DUMPCTRL system parameter.

Scope of the system dump:

– Total class 6 memory - depending on the value of the system parameter DUMPSREF
- except the pages which were declared as “secret pages”

– Total class 5, class 3 and class 1 memory except the pages which were declared as
“secret pages”.

– All data areas from class 4 memory and those pages from class 4 and class 2 memory,
covering the 5 pages before and after an address, to which the program counters (PC)
from the PCBs and the trace table, and the general purpose registers of the PCBs and
the bourse registers of the TCB refer. Exceptions to this are “secret pages”.

– Specially protected pages (“secret pages”, CSTAT PROTECT=YES macro call) are
output only in the scope which is specified by the system parameter DUMPSEPA.

– With SNAP, class 1, class 3, and resident class 4 memory is buffered before the dump
is actually generated and is then included in the dump.

– The system trace table is buffered when CDUMP2 is called and is included in the dump
when the dump is created (at the point where it occurs in the system).

– Additional system areas: the modules AIDSYSD, EOLDTAB, DMCHD, NSISINF,
CLASS2OP; areas with TU-AUDIT, Trace Dump List and the REPLOG and SERSLOG
system files; system tables as in user dump.

– Data spaces (see section “Extended addressing with data spaces” on page 61) that the
operating system has defined in the dump creator CDUMP via a privileged interface
($DMPDEF(I)).

Description of the macros CDUMP2

U3291-J-Z125-16-76 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

ID for system dump file: $SYSDUMP

Name of the system dump file:

:catid:$SYSDUMP. .pc.ec.tsn.date.time

Where:

modul Name of the module from which CDUMP2 is called, max. 8 characters
ABSOLU is used if there is no name for the module
pc Address in the program counter (relative to the start of the module)
ec Event code (hexadecimal)
tsn TSN of the task which has called CDUMP2.
date date in the form Dyymmdd (D draws attention to the begin of the date)
time Time in the form hhmmss

Dump output

● The user can request a dump if /MODIFY-TEST-OPTIONS USERDUMP-
OPTIONS=*PARAMETERS(DUMP=*YES) was previously specified or if DUMP=*STD
is the default setting. With DUMP=*YES, the dump will be automatically created,
otherwise the following query is issued in response to a dump request:
IDA0N45 DUMP DESIRED? REPLY (Y=USER-/AREADUMP TO DISK;

Y,<VOLUMETYPE>=USER-/AREADUMP TO TAPE;
Y,SYSTEM=SYSTEMDUMP TO DISK;
N=NO)

The user is offered the choice between a user or area dump (response: Y) or a system
dump (response: Y,SYSTEM). Only a user who has adequate test privileges can
request a system dump. If <VOLUMETYPE> is entered, the dump is output to tape.

● If /MODIFY-TEST-OPTIONS USERDUMP-OPTIONS=*PARAMETERS(DUMP=*STD)
is set, no memory dump is issued in procedures or in batch mode. The following
message appears:
IDA0N48 TASK/SYSTEM SETTINGS PROHIBIT DUMP

● If /MODIFY-TEST-OPTIONS USERDUMP-OPTIONS=*PARAMETERS(DUMP=*NO)
is set, a dump request is rejected. The following message appears:
IDA0N47 DUMP PROHIBITED BY /MODIFY-TEST-OPTIONS COMMAND

● If the user has requested a system dump, the following message is displayed at the
console:
IDA0N52 SYSTEM DUMP DESIRED? REPLY (EOT=OUTPUT TO DISK;

<VOLUMETYP>=OUTPUT TO TAPE;
N=NO)

ABSOLU

module

CDUMP2 Description of the macros

282 U3291-J-Z125-16-76

The console message IDA0N52 can be suppressed with the system parameters
DUMPCTRL and DUMPSD#. In general the message is suppressed if DUMPCTRL is
set to “unattended operation” or “error in system task”. In addition, DUMPSD# can be
used to specify the number of IDA0N52 messages that are not to appear at the console
in each session.

If IDAN052 is suppressed, the dump is created automatically. This enables greater
consistency in the data in the class 3 and class 4 memories.

● If the memory space available for output of a user or area dump is insufficient, the dump
is interrupted with the following message:
IDA0N57 INSUFFICIENT DISK SPACE. NO DUMP OUTPUT

● If the CDUMP2 operands have not been correctly entered, the dump request is rejected
with the message
IDA0N46 CDUMP OPERAND LIST INCORRECT OR NOT AVAILABLE.
If an error occurs in the system during output of the dump, the following messages
– dependent on the error – are output:

– IDA0N63 DMS xxxx ERROR OCCURRED. DUMP PROCESSING CONTINUED
Dump processing is continued

– IDA0N61 DUMP PROCESSING ABORTED DUE TO aaa ERROR AT PC=bbb. RC=ccc
With a user or system dump, this message is also output to the console and a
SERSLOG entry is written simultaneously. With a system dump, the SERSLOG file
is included in the dump. Dump processing is aborted.

● Dump output is time-monitored. If the dump cannot be output within 36 minutes, output
is aborted.

● Copying of files dumped to tape
If files have been dumped to magnetic tape cartridge, they can be copied to disk by
means of the COPY-FILE command. The utility routine PERCON cannot be used in this
case.

Example

/IMPORT-FILE SUPPORT=*TAPE(VOLUME=<volume>,DEVICE=<device>,-
FILE-NAME=<original filename>)

/ADD-FILE-LINK LINK=DMCOPY11,FILE-NAME=<original filename>,-
ACCESS-METHOD=*UPAM,BUF-LEN=*STD(2)

/ADD-FILE-LINK LINK=DMCOPY22,FILE-NAME=<output filename>,-
ACCESS-METHOD=*UPAM,BUF-LEN=*STD(2)

/COPY-FILE FROM-FILE=<original filename>,TO-FILE=<output filename>

See also COPY-FILE command in the “commands” manual [19].

Description of the macros CDUMP2

U3291-J-Z125-16-76 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

General

Application area: Debugging aids; see page 162
Macro type: Type S, MF format 1: C/D/L/M/E form; see page 29

i CDUMP2 always generates a 31-bit interface. To generate a 24-bit interface, the
old macro CDUMP (Appendix) must be used.

Macro description

The macro CDUMP2 generates a dump (in a separate dump task) for the task which has
called CDUMP2. By specifying the SCOPE operand, the user can determine whether an
area dump, a user dump or a system dump is to be output.

The dump is written to the disk unedited as a PAM file (it may be written to magnetic tape
or to magnetic tape cartridge). The dump cannot be distributed over several tapes. For
analysis and printout the dump can be edited with the software products AID and DAMP
(see the “AID” manual [3] and “Diagnostics Handbook” [9]).

Macro formats and description of operands

CDUMP2

MF=C / D / L / M / E

,SCOPE=*USER / *SYSTEM / *AREA

[,XPAND=PARAM / DSCB / AREA]

,PC=*STD / <var: pointer> / (<reg: pointer>)

,EC=*STD / <var: pointer> / (<reg: pointer>)

,CODE=<var: pointer> / (<reg: pointer>)

,INSERT=<var: pointer> / (<reg: pointer>)

,TITL=*STD / <var: pointer> / (<reg: pointer>)

,SNAP=*STD / *YES / *NO

,ELSN=*NONE / <var: pointer> / (<reg: pointer>)

,DIAG=*NO / *YES

,DIV=*STD / *YES / *NO

,DS=*STD / *YES / *NO / <var: pointer> / (<reg: pointer>)

,MMAP=*STD / *YES / *NO

,NUM=<integer 1..2048>

,MODE=*STD / *EXP

,DSCTRL=<var: pointer> / (<reg: pointer>)

CDUMP2 Description of the macros

284 U3291-J-Z125-16-76

The operands are described in alphabetical order below.

CODE=
designates a character sequence for identification of the dump;. length = 7 bytes. The
character sequence is output in the IDA0N51 message. This operand is only permitted in
conjunction with SCOPE=*USER or SCOPE=*SYSTEM.

<var: pointer>
Name of the field with the address of the character sequence; may only be specified in
conjunction with MF=M.

(<reg: pointer>)
Register with the address of the character sequence; may only be specified in
conjunction with MF=M.

DIAG=
Determines whether the message IDA0N50 indicating the address of the CDUMP2-SVC is
sent to the operator. This operand may be specified only in conjunction with
SCOPE=*SYSTEM.

*NO
The message IDA0N50 is not output.

*YES
The message IDA0N50 is output.

DIV=
Specifies whether DIV windows are to be included in the user dump. This operand may be
specified only in conjunction with SCOPE=*USER, otherwise the value DIV=*YES is used.
See also the section “Extended addressing with data spaces” on page 61.

*STD
The value set in /MODIFY-TEST-OPTIONS, operand DATA-IN-VIRTUAL determines
whether DIV windows are to be included in the user dump (*YES) or not (*NO).

*YES
All DIV windows are to be included in the user dump.

*NO
No DIV windows are to be included in the user dump.

DS=
Determines which memory areas of data spaces (DS) are to be included in the user dump.
This operand may only be specified in conjunction with SCOPE=*USER.
The areas of data spaces included in the area dump are the ones that the user has specified
in the DSCTRL operand.
In system dumps, only the areas of data spaces that the operating system has defined in in
the dump creator CDUMP via a privileged interface ($DMPDEF(I)) are included.
See also the section “Extended addressing with data spaces” on page 61.

Description of the macros CDUMP2

U3291-J-Z125-16-76 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

*STD
The value set in /MODIFY-TEST-OPTIONS, operand DATA-SPACES determines
whether data spaces are to be included in the user dump (*YES) or not (*NO).

*YES
All data spaces (up to 100 data spaces used by the caller) are to be included in the user
dump.

*NO
No data spaces are to be included in the user dump.

<var: pointer>
Name of the field with the address of the list of data spaces; may only be specified in
conjunction with MF=M.

(<reg: pointer>)
Register with the address of the list of data spaces; may only be specified in conjunction
with MF=M.
This list contains the SPIDs (8 bytes per entry). The list must end with a zero entry
(D(0)).

DSCTRL=
Points to a data space control block (DSCB). A data space and its associated areas can be
defined in the DSCB. DSCTRL must point to the first DSCB. This operand may be specified
only in conjunction with SCOPE=*AREA.

Data structure of a DSCB:

The maximum number of areas in the DSCB is 2048. By chaining DSCBs, users can specify
areas of more than one data space of their task. By default, no areas of a data space are
specified. See also the section “Extended addressing with data spaces” on page 61.

<var: pointer>
Name of the field with the address of the DSCB; may only be specified in conjunction
with MF=M.

(<reg: pointer>)
Register with the address of the DSCB; may only be specified in conjunction with
MF=M.

The following specification obtains the DSECT of a DSCB: CDUMP2 MF=D,XPAND=DSCB
The following specification obtains the DSECT of an area: CDUMP2 MF=D,XPAND=AREA

CDDDSCB
CDDDS@
CDDSPID
CDDNUM
CDDSTRT
CDDEND

DSECT
DS
DS
DS
DS
DS

,
A
XL8
H
A
A

DATA SPACE CTRL BLOCK
Points to the next DSCB
SPID of the DS
Number of areas in the DS
Start of the first area
End of the first area

CDUMP2 Description of the macros

286 U3291-J-Z125-16-76

EC=
defines the location from where the event code (interrupt weight) is to be fetched. The event
code is output in the IDA0N51 message. This specification is permissible only in conjunction
with SCOPE=*USER or SCOPE=*SYSTEM; if SCOPE=*AREA the event code is always
fetched from the calling stack.

*STD
The event code is to be fetched from the caller stack

<var: pointer>
Name of the field with the address of the event code; may only be specified in
conjunction with MF=M.

<reg: pointer>
Register with the address of the event code; may only be specified in conjunction with
MF=M.

ELSN=
Specifies the address of a field containing the number of an Error Log Sequence Block to
which the caller has written specific data in the error log file. The number is output in the
IDA0N51 message..
Field length = 4 bytes, which must be aligned on a word boundary. The number must be
entered as a binary digit. This operand is only permitted in conjunction with
SCOPE=*SYSTEM.

*NONE
An ELSN is not output.

<var: pointer>
Name of the field with the address of the ELSN; may only be specified in conjunction
with MF=M.

(<reg: pointer>)
Register with the address of the ELSN; may only be specified in conjunction with MF=M.

INSERT=
defines a text to be output with the message IDA0N51. This text could contain more detailed
information on the cause of the dump.
The user must place this text, which may be up to 60 characters long, in a data area with
the following format:

Byte 1: Length (hexadecimal) of the text to be output (in bytes). If byte 1 has the value
0, no INSERT text is output.

Byte 2 through n (n≤61): Text to be output.

This operand is only permitted in conjunction with SCOPE=*USER or SCOPE=*SYSTEM.

Description of the macros CDUMP2

U3291-J-Z125-16-76 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

<var: pointer>
Name of the field with the address of the text; may only be specified in conjunction with
MF=M.

(<reg: pointer>)
Register with the address of the text; may only be specified in conjunction with MF=M.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.
The following operands must be specified for area dumps: The SCOPE operand if
MF=C/D/E, and additionally the NUM operand if MF=C/D.
For system dumps, the SCOPE operand is mandatory if MF=C/D/E.

MMAP=
Defines whether memory map pages (data areas for POSIX pages) are to be stored in the
dump. This operand is only evaluated if SCOPE=*USER is also specified. If
SCOPE=*SYSTEM is specified, MMAP=*YES is assumed.

*STD
Default value: the value specified in /MODIFY-TEST-OPTIONS, operand MMAP
determines whether memory map pages are present in the user dump.

*YES
All the memory map pages associated with the task are to be included in the user dump.

*NO
No memory map pages are to be present in the user dump.

MODE=
Defines the scope of the diagnostic data to be output for an area dump. The operand may
be specified only in conjunction with SCOPE=*AREA.

*STD
Ensures that only the AIDSYSD module and the areas with COMAREA, TU-PCB and
TCB are dumped in addition to the specified areas in class 6 and class 5 memory (see
the section “Area dump” on page 278).

*EXP
Initiates dumping of the area with COMAREA and all other system areas as in user
dump in addition to the areas specified in class 6 and class 5 memory (see the section
“User dump” on page 279).

NUM=
Specifies the number of areas to be dumped. NUM is permissible only in conjunction with
MF=L/C/D and only in conjunction with SCOPE=*AREA The start and end addresses of the
areas to be dumped must be entered (dynamically) in the generated data area. The DSECT
of the area is generated with CDUMP2 MF=D,XPAND=AREA. If MF=C/D, NUM is mandatory.

CDUMP2 Description of the macros

288 U3291-J-Z125-16-76

<integer 1..2048>
Number of areas to be dumped as a direct specification; number range: 1..2048.

PC=
designates a register or field which contains the program counter to be logged.

*STD
The program counter is to be fetched from the calling stack.

<var: pointer>
Name of the field with the address of the program counter; may only be specified in
conjunction with MF=M.

(<reg: pointer>)
Register with the address of the program counter; may only be specified in conjunction
with MF=M.

SCOPE=
specifies whether a user, system or area dump is to be output.

*USER
A user dump is output

*SYSTEM
A system dump is output. This specification may only be entered by users with a read
test privilege of ≥ 3 or for TPR programs

*AREA
An area dump is output. The addresses for the areas must be specified immediately
after the parameter list. Depending on the number of areas the addresses must be
specified in the following sequence: start address, end address, start address, end
address, ... start address, end address.

SNAP=
determines the use of the SNAP to generate a highly consistent system dump. This
operand is only permitted in conjunction with SCOPE=*SYSTEM

*STD
Means that an associated snap dump, if one exists, is used to create the system dump
(if the system dump occurred because of a TPR program error, the system will normally
have initiated a SNAP dump for it).

*YES
means that CDUMP2 generates a snap dump (unless an associated one already exists)
and uses this to create the system dump.

*NO
means that CDUMP2 creates the system dump without using an associated snap dump
(even though one may exist).

Description of the macros CDUMP2

U3291-J-Z125-16-76 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

TITL=
defines an additional title line for the memory dump. Length = 132 characters.

*STD
CDUMP2 generates a standard title line.

<var: pointer>
Name of the field with the address of the title line; may only be specified in conjunction
with MF=M.

(<reg: pointer>)
Register with the address of the title line; may only be specified in conjunction with
MF=M.

XPAND=
specifies whether a DSECT is to be generated for the CDUMP2 parameter list, the DSCB,
or an area. May only be specified in conjunction with MF=D.

PARAM
A DSECT is generated for the CDUMP2 parameter list.

DSCB
A DSECT is generated for the data space control block.

AREA
A DSECT is generated for an area.

The following specification obtains the DSECT of a DSCB: CDUMP2 MF=D,XPAND=DSCB
The following specification obtains the DSECT of an area: CDUMP2 MF=D,XPAND=AREA

CDUMP2 Description of the macros

290 U3291-J-Z125-16-76

Return information and error flags

The return codes are compatible with those of the old CDUMP macro.

Standard
header:

A return code relating to the execution of the
CDUMP2 macro is transferred in the standard header
(aa=main code).

a a

X'aa' Meaning

X'00' Dump completed without errors

X'04' Dump completed using default values

X'08' Dump suppressed due to /OPTION DUMP operand

X'0C' Dump suppressed due to system standards

X'10' Dump suppressed due to severe CDUMP2 operand error

X'14' Dump suppressed due to insufficient test privilege

X'18' Dump suppressed due to error in DMS routines

X'1C' Dump suppressed due to system error

X'20' Dump suppressed due to previous interruption of CDUMP2

X'28' Dump suppressed due to SHUTDOWN processing

X'2C' Dump suppressed by calling task

X'30' All area specifications are invalid. No dump is output

X'34' Incorrect specification for NUM=... . No dump is output

X'38' Some dump areas are not located in the caller' s address space or the specifications are
inconsistent. At least one memory area has, however, been output

X'3C' Dump suppressed since “DMS READY” has not yet been reached

Description of the macros CDUMP2

U3291-J-Z125-16-76 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Example

The following program creates a memory pool in class 6 memory and generates a user
dump and an area dump.

CDUMP2 START
PRINT NOGEN
BALR 3,0
USING *,3
ENAMP MPNAME=MEMP,SCOPE=GLOBAL,MPIDRET=PID,BSIZE=48 —————————— (1)

REQMP REQMP MPID=PID,BSIZE=5 ——————————————————————————————————————— (2)
LA 4,4095(1)
LA 4,1(4)
ST 4,AR1ANF
MVC 0(TEXT1LEN,4),TEXT1 ———————————————————————————————————— (3)
LA 4,4095(4)
ST 4,AR1END
LA 4,1(4)
ST 4,AR2ANF
MVC 0(TEXT2LEN,4),TEXT2 ———————————————————————————————————— (4)
LA 4,4095(4)
ST 4,AR2END

CDUMPUS CDUMP2 MF=E,PARAM=PARAM —————————————————————————————————————— (5)
CDUMPAR CDUMP2 MF=E,PARAM=AREA ——————————————————————————————————————— (6)
TERM TERM
**** Definitions ****

DS 0F
PID DS F
TEXT1 DC C'AREADUMP: '

DC C'PAGE 2 OF MEMORY POOL '
DC 100C'A'
DC 100C'B'

TEXT1LEN EQU *-TEXT1
TEXT2 DC C'AREADUMP: '

DC C'PAGE 3 OF MEMORY POOL '
DC 100C'C'
DC 100C'D'

TEXT2LEN EQU *-TEXT2
PARAM CDUMP2 MF=L,SCOPE=*USER —————————————————————————————————————— (7)
AREA CDUMP2 MF=L,SCOPE=*AREA,NUM=2,MODE=*EXP —————————————————————— (8)
AR1ANF DS A —— (9)
AR1END DS A
AR2ANF DS A
AR2END DS A

END

CDUMP2 Description of the macros

292 U3291-J-Z125-16-76

(1) A memory pool consisting of 48 main memory pages is set up above the 16 Mb
boundary. The start address of the memory pool is stored in Register R1.

(2) Five main memory pages are required from the start address of the main memory
pool.

(3) The text AREADUMP: PAGE 2 OF MEMORY POOL and 100 times A and B are entered in
the memory pool.

(4) The text AREADUMP: PAGE 3 OF MEMORY POOL and 100 times C and D are entered in
the memory pool.

(5) The CDUMP2 macro is called in its E form at the symbolic address of the program,
CDUMPUS. The associated data area is generated at the symbolic address
PARAM by a CDUMP2 call specifying MF=L (see (7)).

The operands specified there cause the macro to output a user user dump when it
is executed (SCOPE=*USER).

(6) The CDUMP2 macro is called again in its E form at the symbolic address of the
program, CDUMPAR. In this case the associated data area is generated at the
symbolic address AREA by a CDUMP2 call specifying MF=L (see (8)).
The operands specified there cause the macro to output an area dump for two
areas (NUM=2) when executed in its extended form.

(7) Data area for the CDUMP2 call in (5).

(8) Data area for the CDUMP2 call in (6).

(9) The addresses for the areas must be specified immediately after the parameter list.
Depending on the number of areas the addresses must be specified in the following
sequence: start address, end address, start address, end address, ... start address,
end address.

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,cdump2), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,cdump2))
% ASS6011 ASSEMBLY TIME: 492 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 82 MSEC
//end
% ASS6012 END OF ASSEMBH

Description of the macros CDUMP2

U3291-J-Z125-16-76 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

/start-executable-program library=macexmp.lib,element-or-symbol=cdump2
% BLS0523 ELEMENT 'CDUMP2', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'CDUMP2', VERSION ' ' OF '<date> <time>' LOADED
% IDA0N51 PROGRAM INTERRUPT AT LOCATION '0000006A (CDUMP2), (CDUMP)'
% IDA0N45 DUMP DESIRED? REPLY (Y=USER-/AREADUMP TO DISK;

Y,<VOLUMETYPE>= USER-/AREADUMP TO TAPE; Y,SYSTEM=SYSTEMDUMP;
N=NO)? y ——— (10)

% IDA0N53 DUMP BEING PROCESSED. PLEASE HOLD ON
% IDA0N54 'USERDUMP' WRITTEN TO FILE '$QM212.DUMP.V.2RCU.00001' —————— (11)
% IDA0N55 TITLE: 'TSN-2RCU UID-QM212 AC#-89002 USERDUMP PC-0000006A

EC-50 VERS-150 DUMP-TIME 13:47:16 12-01-20'
% IDA0N51 PROGRAM INTERRUPT AT LOCATION '00000070 (CDUMP2), (ADUMP)'
% IDA0N45 DUMP DESIRED? REPLY (Y=USER-/AREADUMP TO DISK;

Y,<VOLUMETYPE>=USER-/AREADUMP TO TAPE; Y,SYSTEM=SYSTEMDUMP;
N=NO)? y ——— (12)

% IDA0N53 DUMP BEING PROCESSED. PLEASE HOLD ON
% IDA0N54 'AREADUMP' WRITTEN TO FILE '$QM212.SYS.ADUMP.V.2RCU.00002' — (13)
% IDA0N55 TITLE: 'TSN-2RCU UID-QM212 AC#-89002 AREADUMP PC-00000070

EC-50 VERS-150 DUMP-TIME 13:47:22 12-01-20'

(10) A user or area dump is output to disk if the response to the query in the message
IDA0N45 is Y[ES]. If /MODIFY-TEST-OPTIONS USERDUMP-
OPTIONS=*PARAMETERS(DUMP=*YES) was issued beforehand, the message
IDA0N45 is not output.

(11) The file containing the user dump is cataloged under the user ID of the caller.

(12) see (10)

(13) The file containing the area dump is cataloged under the user ID of the caller.

The dumps can be edited for the interactive evaluation or printout with the utility routine
DAMP (see “Diagnostics Handbook” [9]).

 CHKEI Description of the macros

294 U3291-J-Z125-16-76

CHKEI – Check event item

General

Application area: Eventing, see page 94
Macro type: Type S, MF format 1: standard/L/E form; see page 29

Macro description

The CHKEI macro communicates information to the calling program on the status of the
queues associated with the specified event item.

Macro format and description of operands

EINAME=name
Specifies the name of the event item. The event item must already have been enabled
before the CHKEI macro is issued.
The SCOPE operand must be specified for unique event item identification.

EINAMAD=
Specifies the event item. The event item is unique only if an additional SCOPE operand has
been specified.

addr
Symbolic address of the field containing the name of the event item.

(r)
Register containing the address of the field.

CHKEI

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

EINAME=name
EINAMAD=addr / (r) [,EINAMLN=length]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

EIID=addr / (r)

Description of the macros CHKEI

U3291-J-Z125-16-76 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

EINAMLN=
Specifies the length in bytes of the name of the event item. The length must be at least 1
byte and must not exceed 54 bytes.
If the operand is omitted, the length attribute of the EINAMAD operand is assumed if
EINAMAD=addr is specified; if EINAMAD=(r), the maximum length of 54 bytes is assumed.

length
Length of the event item name.

SCOPE=
Specifies the scope of eventing (participants using the event item).

LOCAL
The use of the event item is limited to the calling task.

GROUP
All the tasks with the same user ID as the calling task are participants.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.

The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP;
the program reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

EIID=
Specifies the ID of the event item. This ID is supplied to the user by the ENAEI macro. If the
ID is used instead of the name of the event item, processing is speeded up. The event item
is uniquely identified by the ID.

addr
Symbolic address of the field containing the ID.

(r)
Register containing the address of the field.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the the start of
the macro description under “Macro type” and are included in the macro format.

 CHKEI Description of the macros

296 U3291-J-Z125-16-76

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

Return information and error flags

Register 1 contains the operand list address (during macro execution) and the number of
pending SOLSIG or POSSIG macros (after macro execution).

For examples, see the sections “Eventing” (page 106) and “Contingency processes”
(page 118) and the SOLSIG macro description (page 830).

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the CHKEI macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'28' X'00' Function executed: one or more SOLSIG requests in the queue. The number is
specified in R1

X'2C' X'00' Function executed: one or more POSSIG requests in the queue. The number is
specified in R1

X'30' X'00' Function executed: no requests in the queues

X'0C' X'04' No action taken: the event item generated by the system is not allocated to the
calling task

X'10' X'04' No action taken: invalid operands were specified

X'14' X'04' No action taken: invalid name or invalid ID. There is no event item with the
specified ID

Description of the macros CHKPRV

U3291-J-Z125-16-76 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

CHKPRV – Check system privileges

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 2: standard/E/L/M/C/D form; see page 29

Macro description

In order to provide better protection for privileged system services against unauthorized
access the SECOS software product allows privileges possessed by the holder of the
TSOS user ID (system administration) in earlier versions to be assigned to various
management facilities, each responsible for a subarea of the system administration. Each
of these facilities possesses only the system privileges which it requires for its tasks. Details
of how these privileges are distributed can be found in the “SECOS” manual [14].

Using the CHKPRV macro, users can check in their program whether the job running the
program possesses one or more of these system privileges. 31 system privileges can be
checked. The result of the check is entered in the standard header of the data area as a
return code (see return code table following the operand description).

Macro format and description of operands

PRIV=
Specifies the system privilege to be checked.

(priv[,priv]...)
Descriptions of the privileges to be checked. If several privileges are specified, the
return code “No error” is given if the job possesses at least one of these privileges.

CHKPRV

PRIV=(priv[,priv]...)

,MF=S / E / L / C / D / M

[,PARAM=addr / (r)]

,PREFIX=S / p

,MACID=RMC / macid

CHKPRV Description of the macros

298 U3291-J-Z125-16-76

The following overview lists the possible values for priv with the corresponding system
privileges:

ACSADM Alias catalog service administration

CUPRV001
:

CUPRV008

flexibly assigned by system administration
((enables individual users to be granted individual rights))

FTACADM FTAC administration

FTADM File transfer administration

GUAADM System global guard administration

HSMSADM HSMS administration

HWMAINT Hardware online maintenance

NETADM Network administration

NOTIFADM Notification service administration

OPERATING BS2000 system operation

POSIXADM POSIX user administration

PROPADM Programming of administration procedures

PRSRVADM SPOOL administration

SATFEVAL SAT file evaluation

SATFMGMT SAT file management

SECADM Security administration

STDPROC Using user commands

SUBSMGMT Subsystem management

SWMONADM Software monitor administration

TAPEADM Tape administration

TAPEKEYADM Encryption Key management for tapes

TSOS TSOS privileges which are not assigned to any of the other management
facilities specified here

USERADM User administration

VMPRIV Virtual machine administration

VM2ADM VM2000 administration

Description of the macros CHKPRV

U3291-J-Z125-16-76 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.

A PREFIX can be specified in the C form, D form or M form of the macro and a MACID in
the C form or M form (see section “S-type macros” on page 29).

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

The calling program is terminated when the following errors occur:

– The data area is not assigned to the caller.
– The data area is not aligned on a word boundary.
– The data area is protected against write access.

Standard
header:

The following return code relating to the macro
CHKPRV is transferred in the standard header
(bb=Subcode1, aaaa=Maincode):

0 0 b b a a a a

X'bb' X'aaaa' Meaning

X'00' X'0000' Function successfully executed. The task possesses at least one of the specified
privileges

X'00' X'0002' The task possesses none of the specified privileges

X'01' X'0003' Operand error: illegal specification for privileges

X'20' X'00FF' System error

CHKSI Description of the macros

300 U3291-J-Z125-16-76

CHKSI – Check serialization item

General

Application area: (Task) serialization; see page 91
Macro type: Type S, MF format 1: standard/L/E form; see page 29

CHKSI generates either a 24-bit or a 31-bit interface, depending on the specification. In the
event of macro chaining, all macros chained must make use of the same interface (either
24-bit or 31-bit interface).

Macro description

This macro is used to check the status of a serialization item. The result of the check is
stored in register 15 (see “Return information and error flags” below).

At CHKSI macro execution time, the specified serialization item must be present; implicit
creation is not performed.

The CONTINU operand permits up to 255 CHKSI macros to be chained.

Macro format and description of operands

SINAME=name
Specifies the name of the serialization item. The SCOPE operand is required for unique
serialization item identification.

CHKSI

,CONTINU=NO / YES

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

SINAME=name
SINAMAD=addr / (r) [,SINAMLN=length]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

SIID=addr / (r)

Description of the macros CHKSI

U3291-J-Z125-16-76 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

SINAMAD=
Specifies the name of the serialization item. The serialization item is uniquely identified only
if the SCOPE operand has also been specified.

addr
Symbolic address of the field containing the name.

(r)
Register containing the address.

SINAMLN=
Specifies the length in bytes of the serialization item name. The length must be at least 1
byte and not more than 54 bytes.
If the operand is missing, the length attribute of the SINAMAD operand is assumed if
SINAMAD=addr is specified; if SINAMAD=(r), the maximum length (54) is assumed.

length
Length of the serialization item name in bytes.

SCOPE=
Specifies the scope of the serialization item (participants making use of the item).

LOCAL
The use of the serialization item is limited to the calling task.

GROUP
All the tasks with the same user ID as the caller are participants.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.

The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

CHKSI Description of the macros

302 U3291-J-Z125-16-76

SIID=
Specifies the ID of the serialization item. The ID is returned to the user by the ENASI macro.
Use of this ID instead of the name of the serialization item increases processing speed. The
ID is unique.

addr
Symbolic address of a 4-byte field containing the ID.

(r)
Register containing the address.

CONTINU=
Specifies whether up to 255 CHKSI macros are to be chained.

NO
This macro is the last (or only) macro of a sequence.

YES
Indicates that this macro is followed by another CHKSI macro.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

Notes on the macro call using the list form (MF=L operand)

Only one macro call with MF=E need be issued for execution, irrespective of whether this
call applies to a single request or to a series of requests. The operand list for a series of
requests is generated by macro call chaining (MF=L) by means of the CONTINU operand.

Description of the macros CHKSI

U3291-J-Z125-16-76 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Return information and error flags

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the CHKSI macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'28' X'00' All serialization items were checked.
All specified serialization items are available, i.e. none of the serialization items is
being used

X'2C' X'00' All serialization items were checked.
All specified serialization items are being used by the calling program' s task, i.e.
the access requests for these serialization items were satisfied

X'30' X'00' All serialization items were checked.
One or more of the specified serialization items are being used by the calling
program' s task; the remaining ones are available

X'34' X'00' All serialization items were checked.
The calling program' s task is not using any of the specified serialization items, but
one or more serialization items are being used by other tasks

X'38' X'00' All serialization items were checked.
One or more of the specified serialization items are being used by the calling
program' s task and by other tasks

X'10' X'04' The serialization items were not all checked.
Invalid operands were specified:
– Invalid address, i.e. address within a DSECT
– Invalid length
– Invalid name
– SCOPE or CONTINU value undefined

X'14' X'04' The serialization items were not all checked.
An invalid ID was specified

X'20' X'04' The serialization items were not all checked.
There was at least one serialization item for which the calling program did not
perform the enable function (see the ENASI macro)

CLCOM Description of the macros

304 U3291-J-Z125-16-76

CLCOM – Terminate intertask communication

General

Application areas: Intertask communication (ITC); see page 76
Communication; see page 163

Macro type: Type R; see page 28

Macro description

By means of CLCOM, the calling program terminates its participation in ITC (by deleting its
ITC name from the list of participants).

Macro format and description of operands

NOKEEP
Specifies that the receive queue is dissolved. Any messages still in the queue can no longer
be requested.

KEEP
Specifies that the receive queue is retained. Outstanding messages in the receive queue
may still be requested after the CLCOM call has been issued.

(1)
Register R1 contains the start address of the operand field. This operand field has a length
of 4 bytes and starts at a word boundary; its contents are as follows:

X'04000000' corresponds to NOKEEP or
C'KEEP' corresponds to KEEP

CLCOM

NOKEEP / KEEP / (1)

Description of the macros CLCOM

U3291-J-Z125-16-76 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Functional description

By means of CLCOM, the calling program's task terminates its participation in intertask
communication (ITC). Once a program has called CLCOM NOKEEP, it can neither send nor
receive any more messages. Messages still in its receive queue are deleted.

If CLCOM KEEP is specified, the receive queue is not deleted. The program may still send
messages and also request any that have already arrived. Once CLCOM KEEP is invoked,
no new messages will be transferred. If there were no messages in the receive queue at
the time CLCOM KEEP was called, then the system proceeds as if CLCOM NOKEEP had
been specified.

The call CLCOM NOKEEP causes the system to delete the ITC name of the calling
program from the list of participants. The ITC name can then be used again. If desired, the
calling program may join ITC again (under any ITC name that has not already been
assigned). When the last ITC participant issues the CLCOM NOKEEP call, ITC is
terminated (the system deletes the ITC table).

Note

If the NOKEEP operand is omitted (i.e. the default value is to apply), but a comment is
written in this line, then the system executes the CLCOM KEEP function.

Return information and error flags

R15:
A return code relating to the execution of the CLCOM
macro is transferred in the rightmost byte of register
R15.

a a

X'aa' Meaning

X'00' ITC participation is terminated, and the receive queue is dissolved

X'04' Operand error. ITC participation continues

X'08' The task of the calling program is not an ITC participant

X'0C' There are still messages in the receive queue. ITC participation still has to be terminated
(only in conjunction with KEEP)

 CMD Description of the macros

306 U3291-J-Z125-16-76

CMD – Call command

General

Application areas: Macro Command Language Processor macros; see page 45
Communication; see page 163

Macro type: Type S, MF format 1: standard/L/D/C/E form; see page 29

Macro description

The CMD macro enables a command or a list of commands to be called without exiting
program mode. The CMD macro activates the macro command language processor
(MLCP) and passes to it the command name and the specified command operands or a list
of command names and the associated command operands. After the (last) command has
been executed, the program continues.
Users can have a log of the command processing (e.g. system messages) transfered to
SYSOUT and/or to an area of their program or to an S variable. The command return code
can also be transfered to an area of the program.

The table 12 on page 315 sets out the commands which cannot be called using the CMD
macro.

Macro format and description of operands

CMD

[,OPART2='oplist2'] [,OPART3='oplist3'] [,OPART4='oplist4']

[,OPART5='oplist5'] [,OPART6='oplist6'] [,OPART7='oplist7']

,LIST=NO / YES

[,CMDRC=addr]

,DIALOG=NO / YES

,SYSOUT=YES / NO

,SUBST=NO / JV / ALL

,ORIGIN=CMD / CURRENT

[,DTAVAR@=addr]

[,DTAVARL=length]

'command-name' [,'oplist1'[, addr / (r)]

, , addr / (r)

]

Description of the macros CMD

U3291-J-Z125-16-76 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

The keyword operands are listed in alphabetical order after the descriptions of the
positional operands.

'command-name'
Name of the command which is to be called by CMD.
If the LIST=YES operand is specified, the 'command-name' string can contain a list of
commands separated by semicolons. Each command is separated from its list of command
operands by a blank.
If an error occurs while the commands in this list are being processed, the CMD macro is
aborted at this point.
If the 'command-name' operand contains a list of commands, the 'oplist1' and OPARTx
operands are omitted.

'oplist1'
oplist1 = op1,op2,op3,..... = list of the command operands.
The length of the list must be ≤ 248 characters. The list can be continued at any desired
point using the operands OPART2,, OPART7. Each successive list is regarded as the
continuation of the one immediately preceding it (without regard for the numbering 2-7). The
operand may not be specified in conjunction with LIST=YES.

addr
addr = address of the receiving field for the SYSOUT listing. If “addr” is not specified, output
will be to SYSOUT only. This is also the case if the length of the receiving field is zero. The
receiving field must be aligned on a word boundary. Structure and maximum length of the
receiving field depend on the value of the BUFMOD operand.
The first four bytes of every record in the SYSOUT listing that is copied into the receiving
area represent a record length field (bytes 0-1 contain the record length, bytes 2-3 are
reserved). The output text itself starts at byte 4 of each record. The output records are

CMD (cont.)

,DTAEXT=NO / YES

[,MSGVAR@=addr]

[,MSGVARL=length]

,MSGEXT=NO / YES

,VER=1 / 2 / 3 / 4

,BUFMOD=SHORT / LONG

[,PARMOD=24 / 31]

[,MF=L / (E,..) / D / C]

,PREFIX=M / p

 CMD Description of the macros

308 U3291-J-Z125-16-76

written to the receiving area one after another until the area limit has been reached. When
no more space is left in this area, any further output records are written to SYSOUT only (if
SYSOUT=YES is specified).
A record may be truncated if it oversteps the area limit (return code X'OC').

Note
The SYSOUT output format for a command in interactive mode may differ from that in
batch mode. This must be taken into account when defining the receiving area.

(r)
Register containing the address of the receiving field.

BUFMOD=
Defines the structure and maximum size of the receiving field for the SYSOUT listing.

SHORT
The receiving field may be up to 32 Kbytes long and has the following structure:

LONG
May only be specified if the 31 bit interface of the macro is generated (PARMOD=31).
This value may only be specified in conjunction with VER=2/3/4. The receiving field may
be up to 2 Gb long and has the following structure:

Note

If the receiving field is not fully assigned, macro execution is aborted with the return
code X'08'.
If the specified length l is exceeded, output is truncated as per BUFMOD=SHORT.
CMD returns the return code X'0C'.

Byte 0-1: length l (hex.) of the receiving field in bytes (1 Î 215-1); l is to be specified by the
user.

Byte 2-3: reserved, no entry

Byte 4-n: SYSOUT listing

Byte 0-3: length l (hex.) of the receiving field in bytes (l Î 231-1); l is to be specified by the
user. The following values are to be observed for l:

l=0:
1 Î l Î 16:

The receiving field is ignored
Macro execution is aborted with the return code X'08'.

Byte 4-7: length l (hex.) of the user data in the receivingfield in bytes (including the 16-byte
prefix) is entered by the system when a macro is executed. Default: length=16.

Byte 8-11: reserved; however, must be deleted when the CMD macro is called (binary zero
or -1), otherwise execution is aborted with the error code X'08'.

Byte 12-15: reserved; used by the system

Byte 16-n: SYSOUT listing

Description of the macros CMD

U3291-J-Z125-16-76 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

CMDRC=
Specifies the symbolic address of a 9-byte field in the following format to which the
command return code of the command processed by the CMD macro is written.

If a list of commands is passed in the 'command-name' operand (only possible in
conjunction with LIST=YES), the specified field contains the return code of the last
command to be passed to MCLP.
The operand may be specified only in conjunction with VER=3/4.

addr
Symbolic address of the field to which the return code is to be written. Default setting:
0, i.e. no return code is transferred.

DIALOG=
This indicates whether an error or help dialog is to be conducted if syntax errors are
detected.

NO
No error dialog is conducted.

YES
Error dialog is to be conducted, if the terminal type allows this.

DTAEXT=
This determines whether or not the S variable specified in DTAVAR@ should be extended
to include the contents of the variables generated by OPS.
This operand may only be specified in conjunction with VER=4 and specifications for
DTAVAR@ and DTAVARL.

NO
The S variable should not be extended.
The (old) contents of S variables are replaced by the contents of the OPS variables.

YES
The S variable is extended by adding the contents of the OPS variables. If the S variable
cannot be extended, the (old) contents are deleted before saving.

DTAVAR@=
specifies the symbolic address of an area containing the name of a composite S variable.
The contents of all variables generated by OPS should be stored in this S variable.
If the S variable was not declared before the macro is called execution is terminated with
the return code X'10'.
This operand may only be specified in conjunction with VER=4.

Byte 0: Subcode2 in assembler format X'nn'

Byte 1: Subcode1 in assembler format X'nn'

Byte 2-8: Maincode in assembler format CL7

 CMD Description of the macros

310 U3291-J-Z125-16-76

addr
Symbolic address of the area containing the name of S variables. This can be identical
to the address specified in the MSGVAR@ operand so that all variables generated by
MIP or OPS are saved in a single area.

DTAVARL=
This specifies the length of the area addressed in DTAVAR@.
This operand may only be specified in conjunction with VER=4.

length
length = length of the field to be specified in bytes.

LIST=
Enables a list of commands and their associated operands to be specified for the
'command-name' operand.

NO
The 'command-name' operand consists of a single command.

YES
The 'command-name' operand contains a list of commands separated by semicolons.
This value may be specified only in conjunction with VER=3/4.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.
A PREFIX (p = 1 letter) can be specified for MF=C or MF=D, as shown in the macro format.

MSGEXT=
This determines whether or not the S variable specified in MSGVAR@ should be extended
to include the contents of the variables generated by MIP.
This operand may only be specified in conjunction with VER=4 and specifications for
MSGVAR@ and MSGVARL.

NO
The S variable should not be extended.
The (old) contents of S variables are replaced by the contents of the MIP variables.

YES
The S variable is extended by adding the contents of the MIP variables. If the S variable
cannot be extended, the (old) contents are deleted before saving.

Description of the macros CMD

U3291-J-Z125-16-76 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

MSGVAR@=
specifies the symbolic address of an area containing the name of a composite S variable.
The contents of all variables generated by MIP should be stored in this S variable.
If the S variable was not declared before the macro is called execution is terminated with
the return code X'10'.
This operand may only be specified in conjunction with VER=4.

addr
Symbolic address of the area containing the name of S variables. This can be identical
to the address specified in the DTAVAR@ operand so that all variables generated by
MIP or OPS are saved in a single area.

MSGVARL=
This specifies the length of the area addressed in MSGVAR@.
This operand may only be specified in conjunction with VER=4.

length
length = length of the field to be specified in bytes.

OPARTx=
Allows continuation of the operand list.
x = a member of the set (2, 3, .., 7).

'oplistx'
oplistx = opi,opj,opk,.... = (continuation) list of command operands;
x = a member of the set (2,3,...,7).
Length: oplistx = 1..248 characters.
The operand may not be specified in conjunction with LIST=YES.

ORIGIN=
Specifies the origin of the command and must be used when checking whether the
command is permitted.
This operand may only be specified in conjunction with VER=4 and MF=D or MF=C.

CMD
The command input must be checked with the CMD-ALLOWED attribute from the
syntax file.

CURRENT
In addition to the CMD-ALLOWED attribute, the SDF also checks whether the
command is permitted in the current mode, i.e. the mode in which the program was
started. This mode may be: interactive, interactive procedure, batch or batch procedure.

 CMD Description of the macros

312 U3291-J-Z125-16-76

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb). This value may only be specified in conjunction with VER=1.

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

SUBST=
Specifies what substitutions are to take place in the command input.

NO
No substitution is to take place in the command input.

JV
All job variables in the command input are to be replaced by their contents. This value
may only be specified in conjunction with VER=4.

ALL
Depending on the program environment, the entire command input is to be replaced,
i.e. all S variables, job variables and SYSFILE procedure parameters in the command
input are to be replaced in the specified order.
Substitution of SYSFILE procedure parameters is not meaningful for S procedures.
S variables are replaced only if they are known in the current program environment.
This value may only be specified in conjunction with VER=4.

SYSOUT=
This indicates whether the log is also to be output to SYSOUT.

YES
Output also to SYSOUT.

NO
No output to SYSOUT.
The receiving area “addr” must be specified in this case.

Description of the macros CMD

U3291-J-Z125-16-76 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

VER=1 / 2 / 3 / 4
Only important for MF not equal to E and is otherwise ignored. The operand defines the
version of the operand list which is to be generated.
Compatibility with other operands: see table below.

x means that the operands involved may be combined.

VER=1 VER=2 VER=3 VER=4

PARMOD = 24
= 31

x
x x x x

BUFMOD = SHORT
= LONG

x x
x

x
x

x
x

LIST = NO
= YES

x x x
x

x
x

CMDRC x x

SUBST = NO
= JV
= ALL

x x x x
x
x

ORIGIN x

DTA... x

MSG... x

other operands x x x x

Table 11: compatibility of the VER operand with other operands (CMD)

 CMD Description of the macros

314 U3291-J-Z125-16-76

Notes on the macro call

– The specification DIALOG=YES is ignored in expert mode (MODIFY-SDF-OPTIONS
GUIDANCE=EXPERT; see the manual “Commands” [19]). This results in the return
code X'10' (instead of X'14').

– If DIALOG=NO is specified SDF delivers the following return code if the help request is
used in the CMD input:
– “?”: The return code X'10' is delivered.
– “<operation?>”: (? as part of <operation>) : The return code X'14' is delivered.
– “<operation> ?” : If <operation> is valid, the return code X'10' is delivered. If

<operation> is invalid, the return code X'14' is delivered.
In both modes (interactive or batch), an unclear command is returned for all values of
the DIALOG operand with the X'14' return code.

– Processing of the command list (if LIST=YES) is terminated if one of the specified
commands causes an error (syntax error, memory error,..).
This type of error does not result in SPIN-OFF.

– The data area generated with MF=C/D must correspond to the data area used with
MF=L.

– If the CMD parameter list was initialized with the standard form or with MF=L, the
<PREFIX>CLPLNTH field contains the following information:
– the length of the entire predefined parameter list of the CMD macro in the first

halfword (i.e. 2 bytes, starting at byte 0).
– the length of the processed command input in the second halfword (i.e. 2 bytes,

starting at byte 2). If processing of the CMD macro was aborted due to an error, this
halfword indicates the point at which processing was aborted.

– Structured CMD macro output cannot be directed to the S variable stream SYSINF (as
with EXECUTE-CMD command).

– If the CMD macro is to direct its output to an S variable generated by OPS, then:
– the START-PROGRAM command cannot be issued by the CMD macro;
– it is not possible to chain a number of commands in a single input record ('command

name' and LIST=YES operands).

– Not all the BS2000 commands can be called via the CMD macro, see the following
table.

Description of the macros CMD

U3291-J-Z125-16-76 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Command Function Manual

ADD-CJC-ACTION Submit CJC command sequence (job variables) [19]

BEGIN-BLOCK Initiate command block [21]

BEGIN-PARAMETER-
 DECLARATION

Initiate declaration of procedure parameters in
procedure header

[19],[21]

BEGIN-PROCEDURE Define procedure file attributes [19]

BREAK Request command mode [33]

CANCEL-PROCEDURE Terminate (execution of a) procedure [19]

CANCEL-PROGRAM Terminate program run [19]

CHANGE-
ACCOUNTING-FILE

Change system accounting file [19]

COPY-SYSTEM-FILE Copy system files [19]

CYCLE Terminate loop execution [21]

DELON Delete ON command [33]

ENDON Terminate ON statement sequence [33]

ELSE Initiate ELSE branch in IF block [19],[21]

ELSE-IF Initiate alternative branch in IF block [21]

END-BLOCK Terminate a command block [21]

END-CJC-ACTION Terminate CJC command sequence (job variables) [19]

END-FOR Terminate a FOR block [21]

END-IF Terminate an IF block [19],[21]

END-PARAMETER-
 DECLARATION

Terminate a procedure parameter declaration [19],[21]

END-PROCEDURE Terminate procedure file [19]

END-WHILE Terminate a WHILE block [21]

ENDP Terminate procedure file [33]

EOF Mark the end of the SYSDTA file [19]

ESCAPE Interrupt procedure run [33]

EXIT-BLOCK Interrupt processing of a command block [21]

FOR Initiate FOR block [21]

GOTO Branch to tag [19],[21]

HOLD-PROCEDURE Interrupt procedure execution and allow command input
via the data display terminal

[19]

HOLD-PROGRAM Interrupt program execution and allow command input
via the data display terminal

[19]

Table 12: Commands that cannot be called via the CMD macro (Teil 1 von 2)

 CMD Description of the macros

316 U3291-J-Z125-16-76

IF Initiate a block [19],[21]

IF-BLOCK-ERROR Initiate a block error handling routine [19],[21]

IF-CMD-ERROR Initiate a command error handling routine [21]

LOGON Initiate job [33]

MODIFY-
 ACCOUNTING-
 PARAMETERS

Specify accounting records and record extensions for
the accounting file

[19]

MODIFY-JV-
 CONDITIONALLY

Modify the value of a job variable and branch to branch
destination

[19],[22]

ON Conditionally execute a command sequence [33]

PROCEDURE Specify procedure file attributes [33]

REMOVE-CJC-ACTION Cancel effect of ADD-CJC-ACTION command (job
variables)

[19]

REPEAT Initiate REPEAT block [21]

RESTART-PROGRAM Start a program at its checkpoint [19]

RESUME-
 PROCEDURE

Continue execution of interrupted procedure [19]

SELECT-PRODUCT-
 VERSION

Select a product version [19]

SET-JOB-STEP Terminate spin-off [19]

SET-LOGON-
 PARAMETERS

Initiate an interactive or batch job [19]

SHOW-ACCOUNTING-
 STATUS

Display information about accounting system [19]

SKIP-COMMANDS Conditional or unconditional branch [19]

SKIPJV Branch conditional upon job variables [33]

SKIPUS Branch conditional upon user switches [33]

START-ACCOUNTING Deactivate accounting system [19]

STEP Terminate spin-off [33]

STOP-ACCOUNTING Deactivate accounting system [19]

UNTIL Terminate REPEAT block [21]

WAIT-EVENT Specify conditional wait time (batch job [19],[22]

WHEN Set conditional halt for batch job (via user switch) [33]

WHILE Initiate WHILE block [21]

Command Function Manual

Table 12: Commands that cannot be called via the CMD macro (Teil 2 von 2)

Description of the macros CMD

U3291-J-Z125-16-76 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

– When the following commands are called via the CMD macro, the calling program is
unloaded:

The calling program is also unloaded if the called command is implemented by a
command procedure. This is, for example, the case for all EDIT commands (see the
“Commands” manual [19]). However, self-defined commands of this type can also exist
by means of SDF-A (see the “SDF-A” manual [20]).

To prevent unloading, commands which are initialized via a command procedure and
the CALL-PROCEDURE, CALL and DO commands can be called indirectly using the
SDF-P command INCLUDE-CMD (see the “SDF-P” manual [21]). The command which
is actually to be executed is called as an operand of INCLUDE-CMD.
INCLUDE-CMD interrupts the calling program, executes the command specified as an
operand (and thus the associated command procedure) and then returns to the
program. The called command procedure for its part may not, however, execute any
command which leads to the program being unloaded.

A consequence is that in the case of commands which terminate the calling program,
the SYSOUT listing will not be copied into the “addr” receiving area. Any STXIT routine
which is defined for the event class “program termination” will be activated.
Any job variable which monitors the job will be set to “$T”.

Command Function Manual

ABEND Terminate the current job [33]

CALL Call procedure [33]

CALL-PROCEDURE Call procedure [19]

DO Call procedure [33]

EXECUTE Load and start a module [33]

EXIT-JOB Terminate job [19]

HELP-SDF Help information on calling SDF commands [19]

LOAD Load a module [33]

LOAD-EXECUTABLE-
PROGRAM

Load a module [19]

LOAD-PROGRAM Load a module [19]

LOGOFF Terminate job [33]

START-EXECUTABLE-
PROGRAM

Link, load and start a module [19]

START-PROGRAM Link, load and start a module [19]

Table 13: Commands that cause the calling program to be unloaded

 CMD Description of the macros

318 U3291-J-Z125-16-76

Return information and error flags

Additionally, if PARMOD=31:

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

R15:
A return code relating to the execution of the CMD
macro is specified in the rightmost byte of register
R15.

a a

X'aa' Meaning

X'00' Function executed successfully

X'04' The function was aborted due to insufficient memory

X'08' The function was aborted due to an error in the operand list (address area)

X'0C' The function was aborted: the receiving area is too short. The last output record placed in
the receiving area was truncated

X'10' The function was aborted due to a macro/command error (the command returned an error
to the MCLP)

X'14' The function was aborted due to an invalid command in the operand list

X'24' The function was aborted due to an error during substitution of the command input

Standard
header:

The following return code regarding execution of the CMD
macro is transferred in the standard header (cc=Subcode2,
bb=Subcode1, aaaa=Maincode):

c c b b a a a a

cc bb aaaa Meaning

00 00 0000 The function was executed successfully

00 01 0008 The function was aborted due to an operand error

00 20 0004 The function was aborted due to an internal error

00 40 0010 The function was aborted due to a macro/command error

00 40 0014 The function was aborted due to an invalid command in the operand list

00 40 0024 The function was aborted due to an error during substitution of the command
input

02 00 000C The function was aborted because the receiving area is too short. The last
output record placed in the receiving area was truncated

Description of the macros CMD

U3291-J-Z125-16-76 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Layout of the DSECT for VER=4

CMD MF=D,PARMOD=31,VER=4
1 #INTF REFTYPE=REQUEST,INTNAME=CMD,INTCOMP=4
1 DS 0F
1 MFCHK DMACID=CLP,PREFIX=M,MACID=CLP,MF=D,DNAME=DMCLP
2 MDMCLP DSECT ,
2 *,##### PREFIX=M, MACID=CLP #####
1 MCLPSTRT DS 0F
1 FHDR MF=(C,MCLP)
2 DS 0A
2 MCLPFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 MCLPIFID DS 0A 0 INTERFACE IDENTIFIER
2 MCLPFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 MCLPFCT DS AL1 2 FUNCTION NUMBER
2 MCLPFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 MCLPRET DS 0A 4 GENERAL RETURN CODE
2 *
2 * GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
2 * REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
2 *
2 MCLPSRET DS 0AL2 4 SUB RETURN CODE
2 MCLPSR2 DS AL1 4 SUB RETURN CODE 2
2 * ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
2 * Standard subcode2 values as defined by convention:
2 MCLPR2OK EQU X'00' All correct, no additional info
2 MCLPR2NA EQU X'01' Successful, no action was necessary
2 MCLPR2WA EQU X'02' Warning, particular situation
2 MCLPSR1 DS AL1 5 SUB RETURN CODE 1
2 *
2 * GENERAL INDICATION OF ERROR CLASSES
2 *
2 * CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
2 * CLASS B X'01' - X'1F' PARAMETER SYNTAX ERROR
2 * CLASS C X'20' INTERNAL ERROR IN CALLED FUNCTION
2 * CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
2 * CLASS E X'80' - X'82' WAIT AND RETRY
2 *
2 MCLPRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
2 MCLPRPER EQU X'01' PARAMETER SYNTAX ERROR
2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' - X'1F'
2 MCLPRFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED

 CMD Description of the macros

320 U3291-J-Z125-16-76

2 MCLPRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
2 MCLPRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
2 *
2 MCLPRAER EQU X'04' ALIGNMENT ERROR
2 MCLPRIER EQU X'20' INTERNAL ERROR
2 MCLPRCAR EQU X'40' CORRECT AND RETRY
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
2 MCLPRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
2 * EXPLICITELY BY CREATE-SS
2 MCLPRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
2 *
2 MCLPRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
2 MCLPRWLR EQU X'81' " LONG "
2 MCLPRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
2 * BUT RETRY IS POSSIBLE
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' - X'82'
2 MCLPRTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE
2 MCLPRDH EQU X'82' SS IN DELETE / HOLD
2 *
2 MCLPMRET DS 0AL2 6 MAIN RETURN CODE
2 MCLPMR2 DS AL1 6 MAIN RETURN CODE 2
2 MCLPMR1 DS AL1 7 MAIN RETURN CODE 1
2 *
2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'00XXYYYY')
2 *
2 MCLPRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 MCLPFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 MCLPFLAG DS X Flag bits
1 * Flag bits:.0...... : UNUSED
1 * 0....... : reserved for TPR usage
1 MCLPDIA EQU X'20' ..1..... : DIALOG possible (w. SDF only)
1 MCLPNSYS EQU X'10' ...1.... : no SYSOUT logging
1 MCLPLIST EQU X'08'1... : LIST of commands
1 MCLPNOUT EQU X'04'10. : no output buffer
1 MCLPLONG EQU X'02'01. : long output buffer
1 *00. : short (old) output buffer
1 MCLPREG EQU X'01'1 buffer @ given via a register/
1 MCLPADDR EQU X'00'0 buffer @ given directly
1 MCLPNSRG EQU X'11' ...1...1 no SYSOUT, buff.@ in a reg.
1 MCLPNSAD EQU X'10' ...1...0 no SYSOUT, buff.@ given directly
1 MCLPFLA3 DS XL1 FLAG 3
1 MCLPSJV EQU X'80' 10...... substitute jv only
1 MCLPSALL EQU X'40' 01...... substitute all
1 MCLPDATE EQU X'20' ..1..... data var buf extend
1 MCLPMSGE EQU X'10' ...1.... msg var buf extend
1 MCLPCUOR EQU X'04'1.. origin=current
1 MCLPUNUS DS XL1 reserved (unused)

Description of the macros CMD

U3291-J-Z125-16-76 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

1 MCLPROUT DS XL1 reg.# if buffer @ in reg.
1 MCLPOUT DS A buffer @ or 0
1 MCLPCMD@ DS A @ of command (-> V-field)
1 MCLPRC@ DS A @ return code of command
1 MCLPTPR2 DS A reserved for TPR usage.
1 MCLPDAV@ DS A @ of var name for data
1 MCLPMSV@ DS A @ of var name for message
1 MCLPDAVL DS H length of var name
1 MCLPMSVL DS H length of var name
1 MCLPTPR3 DS A reserved for TPR usage.
1 MCLPHLN EQU *-MCLPSTRT CMD p.l. length
1 MCLPLNTH EQU * command's V-field when CLPCMD@ points here
1 MCLPCMD EQU *+4 cmd start when MCLPCMD@ points to MCLPLNTH

 CMD Description of the macros

322 U3291-J-Z125-16-76

Example

With the CMD macro, the SHOW-JOB-STATUS command is run in two variants. The
program is executed in 31-bit addressing mode below the 16-Mb boundary.

CMD START
PRINT NOGEN

CMD AMODE ANY
BALR 3,0
USING *,3
CMD MF=(E,LFORMAD1),PARMOD=31 —————————————————————————————— (1)
CMD MF=(E,LFORMAD2),PARMOD=31 —————————————————————————————— (2)
MVC MESSAGE(4),PROTCONT
MVC MESSTXT,PROTCONT+4
WROUT MESSAGE,END,PARMOD=31

END TERM
LFORMAD1 CMD 'SHOW-JOB-STA','INF=(*STD,*PROGRAM)',MF=L,PARMOD=31 ———— (3)
LFORMAD2 CMD 'SHOW-JOB-STA','INF=*STD',PROT,SYSOUT=NO,MF=L,PARMOD=31 (4)

DS 0F
PROT DC Y(PROTEND-PROT) —— (5)

DC X'4040'
PROTCONT DS CL2500
PROTEND EQU *
MESSAGE DC Y(ENDMESS-MESSAGE) Record length

DS CL2 Reserved
DC X'01' Print feed control character

MESSTXT DS CL255 Contents
ENDMESS EQU *

END

(1) The macro call is split into the instruction part and data area (see page 29). At this
point, only the instruction part (SVC) is given, with a reference to the data area
LFORMADR1 in the data section of the program.

(2) The macro is called with a reference to the data area LFORMADR2.

(3) The SHOW-JOB-STATUS command is called with the INF=(*STD,*PROGRAM)
operand. Output is sent to the display terminal.

(4) The SHOW-JOB-STATUS command is called with the INF=*STD operand. The
information is output to the PROT area.

(5) The command output area starts on a word boundary, with the area length being
entered in the first two bytes.

Description of the macros CMD

U3291-J-Z125-16-76 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Runtime log

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,cmd), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,cmd))
% ASS6011 ASSEMBLY TIME: 344 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 80 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=cmd
% BLS0523 ELEMENT 'CMD', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'CMD', VERSION ' ' OF '2<date> <time>' LOADED
NAME TSN TYPE PRI CPU-USED CPU-MAX ACCOUNT# ——————————— (6)
MACTEST 2QSE 3 DIALOG1 0 210 58.7710 9000 89002
NAME TSN TYPE SIZE CURR-CMD
MACTEST 2QSE 3 DIALOG1 1 START-EXECUTABLE-PROGRAM

PROG::2OSG:$QM212.MACEXMP.LIB(CMD,@,L)
NAME TSN TYPE PRI CPU-USED CPU-MAX ACCOUNT# ——————————— (7)
MACTEST 2QSE 3 DIALOG1 0 210 58.7856 9000 89002

(6) Output of the first CMD call direct to the display terminal.

(7) The output area PROT of the second CMD call is displayed using WROUT.

CONTXT Description of the macros

324 U3291-J-Z125-16-76

CONTXT – Access process data

General

Application areas: Contingency processing; see page 110
STXIT processing; see page 131

Macro type: S-Typ, MF-Format 1: standard/L/E form; see page 29

If a basic process or a contingency process is interrupted by a contingency process, the
contents of its registers and of the program counter are stored in the PCB (process control
block).

Macro description

The CONTXT macro gives a contingency process access to the context (PCB, Process
Control Block) of an interrupted process.

CONTXT supports all current BS2000 servers. The interrupted process can therefore exist
in /390 code with a /390 context (/390 servers) or in x86 code with an x86 context (x86
servers). Since there are differences between contexts, the LAYOUT operand is used to
distinguish them.

If LAYOUT=COMPATIBLE (default), the complete context (register and PC) are read for an
interrupted /390 process. The whole context can be modified and written.
For an interrupted x86 process, the equivalent parts of the context are mapped to the
relevant areas of the layout. The context is therefore not output in its entirety. It can also
only be written in parts.

If LAYOUT=FCONTXT, the complete context of an interrupted x86 process is read. ILC is
formed. CC and PM are meaningless.
The complete context of an interrupted /390 process is mapped to the relevant areas of the
layout.
The whole context of a process can be modified and written. CC, ILC and PM cannot be
written for x86 processes.

See also “PCB accesses in the /390 process mode” on page 338.

If x86 code is integrated or dynamically loaded (e.g. dynamic loading of the ported product
SORT) in user applications (/390-Code) both the context of x86 code and the context of
/390 code are visible at this interface, depending on the mode in which the interruption
occurred. Programs which run completely in /390 mode are not affected.

Description of the macros CONTXT

U3291-J-Z125-16-76 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

The following differences in the context can be seen when a x86 program is interrupted and
the context of the interrupted (x86) process is viewed (CONTXT SAVE=...,LAYOUT=FCONTXT):

– the context contains the /390-equivalent parts (register, PC, floating-point register, etc.)
which can also be addressed via the DSECT and

– an HSI-dependent area which can be read or written in block form

Macro format and description of operands

The operands ILC, CC, PM are meaningless for x86 servers.

CONTXT

,FPR=NO / YES

,PROCESS=MAIN / LAST

,FUNCT=READ / WRITE

,LAYOUT=COMPATIBLE / FCONTXT

,LAYOUTF=DSECT[,PREFIX=p]

[,ILC=addr / (r)]

[,CC=addr / (r)]

[,PM=addr / (r)]

[,PMODE=addr / (r)]

[,MODE=addr / (r)]

[,ASCMOD=addr / (r)]

[,PRGCODE=addr / (r)]

[,PRGCODL=addr / (r)]

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

[SAVE=addr / (r)
STACKR=(x1, x2, ...),OWNR=(y1, y2,...)

]

[SAVACR=addr / (r)
STKACR=(x1, x2, ...),OWNACR=(y1, y2,...)

],

CONTXT Description of the macros

326 U3291-J-Z125-16-76

SAVE=
Describes the address of a field used for exchanging data with the PCB of the specified
process (PROCESS operand). The structure and contents of this field depend on the
LAYOUT operand.

– LAYOUT=COMPATIBLE (preset value)
The data exchange field has the same structure as in the previous CONTXT interface
in /390 mode.
Field length = 68 bytes; data must be aligned on word boundaries.
Field structure and assignments:
Byte 0 - byte 63: Register R0 through R15 of the /390 PCB

equivalent registers of the X86 PCB
Byte 64 b- byte 67: program counter (PC)

– LAYOUT=FCONTXT
To support x86 mode the data exchange field has a structure of its own. In addition to
the /390 PCB it also contains the entire x86 PCB and consequently also the floating-
point registers. They are passed between the data exchange field and the PCB of the
specified process, regardless of the value of the FPR operand.

If, however, the process whose PCB is being accessed is running in /390 mode, then a
limited amount of data is passed. Only the areas of the data exchange field that
represent SPARC registers for which there are /390 equivalents are read or supplied
with data.

The field length of the data exchange field can be determined dynamically with the
STXIT macro, CONTXTL operand. Validation of the data exchange field is, however,
always implemented in the length used. The data exchange field must be aligned to
doubleword boundary.

A DSECT that describes the new structure of the data exchange field can be created
by calling the CONTXT macro with the operand LAYOUTF=DSECT. With this DSECT,
it is possible to symbolically address the individual subfields of the data exchange field.

If FUNCT=READ applies, the context is transferred from the PCB of the specified process
to the specified field.

If FUNCT=WRITE applies, the content of the specified field is transferred to the context of
the specified process. The program counter (PC / NIA = Next Instruction Address) can only
be written if it points to a /390 module or if LAYOUT= FCONTXT has been specified.

addr
Symbolic address (name) of the area for data exchange.

(r)
r = register containing the address value “addr”

Description of the macros CONTXT

U3291-J-Z125-16-76 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

STACKR=
Designates a series of selected registers (including the program counter) of the specified
process for data exchange. For x86 contexts, only the general-purpose registers are
supported as being equivalent to the /390 registers R0 through R15. the content of the
specified field is transferred to the context of the specified process. The program counter
(PC / NIA = Next Instruction Address) can only be written if it points to a /390 module or if
LAYOUT= FCONTXT has been specified. There are no such restrictions when reading the
program counter.

Note
The same number of operand values must be specified for the STACKR and OWNR
operands. The specifications enclosed in parentheses are paired for data transfer. Thus
data transfer is effected between x1 and y1, between x2 and y2, between x3 and y3, etc.

(x1,x2,...)
x1,x2 = members of the set (0,1,2,.....,15,PC).
The numbers 0,,15 stand for the general registers, and PC for the program counter.
In the case of the program counter, only the address of the next instruction is
transferred.

OWNR=
Identifies a sequence of selected registers of the calling (contingency) process, which are
to be used to receive the values read, or to contain the values to be written (see also the
note on STACKR).

(y1,y2,...)
y1,y2 = members of the set (0,1,2,.....,15,PC).
The numbers 0,,15 stand for the general registers and PC stands for the program
counter.
When STACKR and OWNR are used, it is important to note that the macro destroys
the contents of registers R1 and R15 (register R1: address of the macro operand list,
register R15: return information). Thus, it is not possible to “write” the contents from
register R1 and to “read” the contents into register R15.

SAVACR=
Identifies the address of a field for data exchange with the PCB of the specified process
(PROCESS operand).
Field length = 64 bytes; the field must be aligned on a word boundary.
If FUNCT=READ, the contents of the access registers AR0 through AR15 are transferred
from the PCB of the specified process into the specified field.
If FUNCT=WRITE, the contents of the specified field are transferred into the access register
of the specified process according to the above assignment.

addr
Symbolic address (name) of the field for data exchange.

CONTXT Description of the macros

328 U3291-J-Z125-16-76

(r)
r = register containing the address value “addr”.

STKACR=
Identifies a sequence of selected access registers of the specified process for use in data
exchange.

Note
The same number of operand values must be specified for the STKACR and OWNACR
operands. The specifications enclosed in parentheses are paired for data transfer. Thus
data transfer is effected between x1 and y1, between x2 and y2, between x3 and y3, etc.

(x1,x2,...)
x1,x2 = members of the set (0,1,2,.....,15).
The numbers 0,,15 stand for the access registers.

OWNACR=
Identifies a sequence of access registers of the calling (contingency) process, which are to
be used to receive the values read, or to contain the values to be written; (see also the note
on STKACR).

(y1,y2,...)
y1,y2 = members of the set (0,1,2,.....,15).
The numbers 0,,15 stand for the access registers.

FPR=
Specifies whether or not the contents of the floating-point registers are to be transferred.
This operand is only significant when used with LAYOUT=COMPATIBLE (preset value).
If one of the participating processes is running in x86 mode, then only floating-point
registers of the process may participate in the transfer that represent the equivalent /390
floating-point registers.

NO
The contents of the floating-point registers are not to be transferred.

YES
If FUNCT=READ is specified, the contents of the floating-point registers of the specified
process are transferred to the floating-point registers of the calling (contingency)
process.
If FUNCT=WRITE is specified, the contents of the floating-point registers of the calling
(contingency) process are transferred to the floating-point registers of the specified
process.

If LAYOUT=FCONTXT is specified, there is no direct transfer of the contents of the
floating-point registers of the calling process to the floating-point registers of the
specified process or vice versa.
Instead, the floating-point registers are passed using the data exchange field that is
specified by the SAVE operand. The FPR operand specification is ignored.

Description of the macros CONTXT

U3291-J-Z125-16-76 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

All the x86 mode floating-point registers are passed, regardless of the run mode of the
calling process, if the specified process is running in x86 mode.

PROCESS=
Specifies the process which is to be accessed.

MAIN
The basic process is accessed, even if it was not the one directly interrupted by the
calling (contingency) process.

LAST
The process that was interrupted by the calling process is accessed. This can be the
basic process or another contingency process.

FUNCT=
Specifies whether a read or write access is required.
See also “PCB accesses in the /390 process mode” on page 338.

READ
The contents of the specified registers and, if required, the program counter and the
complete x86 context (if LAYOUT=FCONTEXT on x86 servers), are read from the PCB
of the specified process, to the specified fields.

WRITE
The specified registers and, if required, the program counter and the complete x86
context (if LAYOUT=FCONTEXT on x86 servers) of the specified process are
overwritten by the values specified by the calling process.
Write access is only possible when the storage key in the PCB of the calling process
matches the storage key in the PCB of the specified process.

/309 mode: The contents of the fields described with ILC/CC/PM/ASCMOD
aretransferred to the PCB of the specified process (interrupted process or basic
process). The information is to be stored in the corresponding bits.

LAYOUT=
Specifies the scope and structure of the data exchange field whose address is specified in
the SAVE operand. This also controls the “write NIA” function via the STACKR=(PC)
operand, see page 327.

COMPATIBLE
Preset value: the scope and layout of the /390 context is expected. The floating-point
registers will only be passed if FPR=YES is also specified.

FCONTXT
The scope and layout of the x86 context is expected. For x86 contexts the floating-point
registers are transferred via the data exchange field, regardless of the FPR operand.
The length of the SAVE area to be provided by the user can be determined dynamically
using the STXIT macro, CONTXTL operand.

CONTXT Description of the macros

330 U3291-J-Z125-16-76

The actual length required depends on the process mode. For information on the length
and the layout of the relevant data exchange field see “Layout of the DSECT” on
page 333.

LAYOUTF=DSECT
Triggers the creation of a DSECT for the data exchange field as in the operand
LAYOUT=FCONTXT . The address of the data exchange field is specified in the SAVE
operand when the action is called.
When this operand is specified, the only other operand evaluated is the PREFIX operand.

PREFIX=p
Specifies a letter which determines the first character of the field name and of the equate.
This operand is only taken into account if LAYOUTF= DSECT is also specified.

ILC, CC, PM=
These operands are meaningless to a x86 PCB. They cannot be stored in a x86 PCB.

ILC=
Describes the address of a field for the instruction length code (in PCR format).
Field length = 1 byte. Entry in bits 0-1.

addr
Symbolic address (name) of the field for the instruction length code.

(r)
Register containing the address value “addr”.

CC=
Describes the address of a field for the condition code (in PCR format).
Field length = 1 byte. Entry in bits 2-3.

addr
Symbolic address (name) of the field for the condition code.

(r)
Register containing the address value “addr”.

PM=
Describes the address of a field for the program mask (in PCR format).
Field length = 1 byte. Entry in bits 4-7.

addr
Symbolic address (name) of the field for the program mask.

(r)
Register containing the address value “addr”.

Description of the macros CONTXT

U3291-J-Z125-16-76 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

PMODE=
Describes the address of a field containing the processor mode.
Field length = 1 byte.
The processor mode can be read or written on x86 servers. It can only be read on other
BS2000 servers.

The following processor modes mean:
X'00': /390 mode (native on /390 servers or under /390 firmware on x86 servers)
X'01': x86 mode native

addr
Symbolic address (name) of the field containing the processor mode

(r)
r = register with the address value of addr.

MODE=
Defines the address of a 1-byte field which indicates the current addressing mode.
This is used for inquiring about or modifying the addressing mode used by the specified
process.
The entry in this field has the following meaning:
X'00': 24-bit addressing mode
X'01': 31-bit addressing mode

If FUNCT=READ, the addressing mode is fetched from the PCB and entered in the
specified field.
If FUNCT=WRITE, the specified addressing mode is entered in the PCB. When modifying
the addressing mode, the user has to make sure that the context is compatible with the new
addressing mode (24-bit or 31-bit).

addr
Symbolic address (name) of the field for the addressing mode.

(r)
Register containing the address value “addr”.

ASCMOD=
Describes the address of a 1-byte field which indicates the ASC (address space control)
mode. The addressing mode of the specified process can be read or modified.
The entry in this field has the following meaning:
X'00': program space mode
X'40': access register mode (ASC mode); the program is running in AR mode (see also
section “Extended addressing with data spaces” on page 61).

addr
Symbolic address (name) of the field for the ASC mode.

(r)
Register containing the address value “addr”.

CONTXT Description of the macros

332 U3291-J-Z125-16-76

PRGCODE=
Defines the address of a field for the program code. The interrupted command or the
command set by NIA (Next Instruction Address) (from the specified process: LAST- or
MAIN-PCB) is shown left-justified in this field. Read access only. Field length = 6 bytes. May
only be specified in conjunction with the operand PRGCODL.

addr
Symbolic address (name) of the field for the program code.

(r)
Register containing the address value “addr”.

PRGCODL=
Defines the address of a field for the program code. The length of this command is written
to this field. Field length = 1 byte.
May only be specified in conjunction with the operand PRGCODE. The following values are
possible:
> 0: (=2 or =4 or =6): Length of the determined program code.
= 0: Indicator: The program code could not be determined. The field PRGCODE remains

unchanged.

addr
Symbolic address (name) of the field for the length of the program code.

(r)
Register containing the address value “addr”.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

Description of the macros CONTXT

U3291-J-Z125-16-76 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Layout of the DSECT for LAYOUT=FCONTXT

CONTXT LAYOUTF=DSECT
1 *
1 **
1 * DSECT FOR SAVE-FIELD BY LAYOUT = FCONTXT *
1 **
1 *
1 SFCONTXT DSECT
1 *
1 SAVEHSI DS X HSI INDICATOR
1 SHSI390 EQU X'01' /390 HSI
1 SHSI390E EQU X'03' /390 HSI + ESA
1 SHSIRISC EQU X'04' RISC HSI (NOT USED)
1 SHSISPAC EQU X'08' SPARC HSI
1 SHSISPME EQU X'0A' SPARC HSI + ESA
1 SHSISXI EQU X'10' IA64 HSI
1 SHSISXE EQU X'12' IA64 HSI+ ESA
1 SHSIX86 EQU X'20' X86 HSI
1 SHSIX86E EQU X'22' X86 HSI+ ESA
1 *
1 SAVEAMOD DS X ADDRESS MODE
1 SAMODE24 EQU X'00' 24-BIT ADDRESS MODE
1 SAMODE31 EQU X'01' 31-BIT ADDRESS MODE
1 *
1 SAVEPMOD DS X PROCESSOR MODE
1 SPMODE1 EQU X'00' "/390" (/390 - MACHINE) OR
1 * "/390-EMULATION" (SPARC-MACHINE)
1 SPMODE2 EQU X'01' "SPARC " (SPARC-MACHINE)
1 *
1 SAVEILC DS X INSTRUCT LENGTH CODE (PCR-FORMAT:BIT 0-1)
1 SAVECC DS X CONDITION CODE (PCR-FORMAT: BIT 2-3)
1 SAVEPM DS X PROGRAM MASK (PCR-FORMAT: BIT 4-7)
1 *
1 SAVEASCM DS X ASC-MODE (ESA) >> NOT USED ON RISC
1 *
1 DS XL1 UNUSED
1 *
1 *--
1 * PROCESS MODE DEPENDENT AREA
1 *--
1 *
1 SAV390A DS 0D AREA FOR PMODE = /390 AND SPARC
1 *
1 * (RISC) & /390 GENERAL REGISTERS
1 *
1 SAVERR0 DS 2F R0) (HARD-WIRED TO ZERO !)
1 SAVERR1 DS 2F R1)

CONTXT Description of the macros

334 U3291-J-Z125-16-76

1 SAVERR2 DS 2F R2)
1 SAVERR3 DS 2F R3)
1 SAVERR4 DS 2F R4 >> RISC ONLY
1 SAVERR5 DS 2F R5)
1 SAVERR6 DS 2F R6)
1 SAVERR7 DS 2F R7)
1 *
1 SAVERR8 DS 2F R8
1 SAVEGR0 EQU SAVERR8+4 /390: R0 EQUIVALENT
1 SAVERR9 DS 2F R9
1 SAVEGR1 EQU SAVERR9+4 /390: R1 EQUIVALENT
1 SAVERR10 DS 2F R10
1 SAVEGR2 EQU SAVERR10+4 /390: R2 EQUIVALENT
1 SAVERR11 DS 2F R11
1 SAVEGR3 EQU SAVERR11+4 /390: R3 EQUIVALENT
1 SAVERR12 DS 2F R12
1 SAVEGR4 EQU SAVERR12+4 /390: R4 EQUIVALENT
1 SAVERR13 DS 2F R13
1 SAVEGR5 EQU SAVERR13+4 /390: R5 EQUIVALENT
1 SAVERR14 DS 2F R14
1 SAVEGR6 EQU SAVERR14+4 /390: R6 EQUIVALENT
1 SAVERR15 DS 2F R15
1 SAVEGR7 EQU SAVERR15+4 /390: R7 EQUIVALENT
1 SAVERR16 DS 2F R16
1 SAVEGR8 EQU SAVERR16+4 /390: R8 EQUIVALENT
1 SAVERR17 DS 2F R17
1 SAVEGR9 EQU SAVERR17+4 /390: R9 EQUIVALENT
1 SAVERR18 DS 2F R18
1 SAVEGR10 EQU SAVERR18+4 /390: R10 EQUIVALENT
1 SAVERR19 DS 2F R19
1 SAVEGR11 EQU SAVERR19+4 /390: R11 EQUIVALENT
1 SAVERR20 DS 2F R20
1 SAVEGR12 EQU SAVERR20+4 /390: R12 EQUIVALENT
1 SAVERR21 DS 2F R21
1 SAVEGR13 EQU SAVERR21+4 /390: R13 EQUIVALENT
1 SAVERR22 DS 2F R22
1 SAVEGR14 EQU SAVERR22+4 /390: R14 EQUIVALENT
1 SAVERR23 DS 2F R23
1 SAVEGR15 EQU SAVERR23+4 /390: R15 EQUIVALENT
1 *
1 SAVERR24 DS 2F R24)
1 SAVERR25 DS 2F R25)
1 SAVERR26 DS 2F R26)
1 SAVERR27 DS 2F R27 >> RISC ONLY
1 SAVERR28 DS 2F R28)
1 SAVERR29 DS 2F R29)
1 SAVERR30 DS 2F R30) (ADDRESS MODE MASK)
1 SAVERR31 DS 2F R31)

Description of the macros CONTXT

U3291-J-Z125-16-76 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

1 *
1 *
1 SAVENIA DS 2F NIA/PC (NEXT INSTRUCTION ADDRESS)
1 SVNIA390 EQU SAVENIA+4 /390: NIA-EQUIVALENT
1 *
1 *
1 SAVEHI DS 2F MULTIPLE/DIVIDE REG HI RESULT (RISC ONLY)
1 SAVELO DS 2F MULTIPLE/DIVIDE REG LO RESULT (RISC ONLY)
1 *
1 *
1 * (RISC) & /390 FLOATING POINT REGISTERS
1 *
1 SAVEF0 DS F F0 : F0/1 = /390: EXT FPR 8 EQUIVALENT
1 SAVEF1 DS F F1
1 SAVEF2 DS F F2 : F2/3 = /390: EXT FPR 10 EQUIVALENT
1 SAVEF3 DS F F3
1 SAVEF4 DS F F4 : F4/5 = /390: EXT FPR 12 EQUIVALENT
1 SAVEF5 DS F F5
1 SAVEF6 DS F F6 : F6/7 = /390: EXT FPR 14 EQUIVALENT
1 SAVEF7 DS F F7
1 SAVEF8 DS F F8 : F8/9 = /390: EXT FPR 1 EQUIVALENT
1 SAVEF9 DS F F9
1 SAVEF10 DS F F10: F10/11 = /390: EXT FPR 3 EQUIVALENT
1 SAVEF11 DS F F11
1 SAVEF12 DS F F12: F12/13 = /390: EXT FPR 5 EQUIVALENT
1 SAVEF13 DS F F13
1 SAVEF14 DS F F14: F14/15 = /390: EXT FPR 7 EQUIVALENT
1 SAVEF15 DS F F15
1 SAVEF16 DS F F16: F16/17 = /390: EXT FPR 9 EQUIVALENT
1 SAVEF17 DS F F17
1 SAVEF18 DS F F18: F18/19 = /390: EXT FPR 11 EQUIVALENT
1 SAVEF19 DS F F19
1 *
1 SAVEF20 DS 2F F20/21 = /390: FPR 0 EQUIVALENT
1 SAVEF22 DS 2F F22/23 = /390: FPR 2 EQUIVALENT
1 SAVEF24 DS 2F F24/25 = /390: FPR 4 EQUIVALENT
1 SAVEF26 DS 2F F26/27 = /390: FPR 6 EQUIVALENT
1 *
1 SAVEF28 DS F F28: F28/29 = /390: EXT FPR 13 EQUIVALENT
1 SAVEF29 DS F F29
1 SAVEF30 DS F F30: F30/31 = /390: EXT FPR 15 EQUIVALENT
1 SAVEF31 DS F F31
1 *
1 SAVEFCR DS F FP-CONTROL-/STATUS REG >> NOT USED ON RISC
1 *
1 *
1 * /390-ESA ACCESS REGISTERS
1 *

CONTXT Description of the macros

336 U3291-J-Z125-16-76

1 SAVEAR0 DS F ACR0)
1 SAVEAR1 DS F ACR1)
1 SAVEAR2 DS F ACR2)
1 SAVEAR3 DS F ACR3 >> NOT USED ON RISC
1 DS 9F ACR4-ACR12)
1 SAVEAR13 DS F ACR13)
1 SAVEAR14 DS F ACR14)
1 SAVEAR15 DS F ACR15)
1 *
1 SWOSPARC EQU *-SFCONTXT LENGTH - WITHOUT SPARC-BLOCK
1 *
1 *--
1 * SPARC CONTEXT BLOCK
1 *--
1 *
1 DS 0D)
1 SSPARCB DS 100D SPARC-AREA: BEGIN)
1 DS 100D >> FOR SPARC ONLY
1 DS 15D)
1 SSPARCE DS 0D SPARC-AREA: END)
1 SLSPARCB EQU SSPARCE-SSPARCB LENGTH OF SPARC-BLOCK (SPARC)
1 *
1 *--
1 *
1 SAVLNGTH EQU *-SFCONTXT LENGTH OF SAVE-FIELD (SPARC)
1 *
1 *--
1 * IA64 CONTEXT BLOCK: FCONTEXT
1 *--
1 *
1 ORG SSPARCB REDEFINITION OF NATIVE AREA
1 SSXIB DS 0D IA64-AREA: BEGIN
1 SLIA64 EQU SWOSPARC+4064 LENGTH OF IA64 CONTEXT
1 *
1 *
1 *
1 *--
1 * X86 CONTEXT BLOCK: FCONTEXT
1 *--
1 *
1 ORG SSPARCB REDEFINITION OF NATIVE AREA
1 SX86E DS 0D X86-AREA: BEGIN
1 SLX86E EQU SWOSPARC+4096 LENGTH OF X86 CONTEXT
1 *
1 *--

Description of the macros CONTXT

U3291-J-Z125-16-76 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Return information and error flags

During execution of the macro, register R1 contains the address of the operand list.

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the CONTXT macro is transferred in register R15.
aa=X'00': normal execution
aa≠X'00': function was not executed.

b b a a

X'bb' X'aa' Meaning

X'00' X'00' Normal execution. The PCB had not yet been changed (in the current interrupt state)

X'04' X'00' Normal execution. The PCB had already been changed with CONTXT (in the current
interrupt state)

X'04' X'04' Function was not executed; invalid operands

X'04' X'08' Function was not executed. The macro was given in a basic process

X'04' X'18' Write not permitted
This may have the following causes:
– writing of BD, PRGCODE
– writing of CC, ILC, PM in x86 PCB
– writing of a program counter which points to a x86 module when

LAYOUT=COMPATIBLE is specified

X'04' X'1C' Function was not executed. When FUNCT=WRITE the storage key in the PCB to be
changed does not match the storage key in the current PCB

X'04' X'20' Function was not executed:
it is not possible to access the access registers

CONTXT Description of the macros

338 U3291-J-Z125-16-76

PCB accesses in the /390 process mode

The following table shows the result of accessing the PCB, depending on the CONTXT
operands, run mode of the interrupted process and the LAYOUT operand specification:

Meaning of the abbreviations used in the table:

R0 - R15: general registers
RC: Return code

CONTXT
operand

CONTXT
FUNCT=

LAYOUT=COMPATIBLE LAYOUT=FCONTXT

/390-PCB x86 PCB /390 PCB x86 PCB

SAVE
READ

(1)
(2)

(3) (4)
WRITE RC=X'18' (*)

OWNR/STACKR
(without PC/NIA)

READ
as before R0-R15 as before R0-R15

WRITE

STACKR=(PC)
READ

as before
x86 native NIA

as before x86 nativeNIA
WRITE RC=X'18' (*)

SAVACR/
OWNACR /

READ

as before as before as before as before
STKACR /
ASCMOD

WRITE

FPR
READ

(5) (5) (6) (7)
WRITE

ILC
READ

as before
value: 0 or 4

as before
value: 0 or 4

WRITE RC=X'18' RC=X'18'

CC
READ

as before
value: X'00'

as before
value: X'00'

WRITE RC=X'18' RC=X'18'

PM
READ

as before
value: X'00'

as before
value: X'00'

WRITE RC=X'18' RC=X'18'

MODE
READ

as before as before as before as before
WRITE

PMODE
READ X'00' X'01' X'00' X'01'

WRITE (8) (8) (8) (8)

Description of the macros CONTXT

U3291-J-Z125-16-76 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Meaning of the comments in the table:

(*): The program counter (PC / NIA = Next Instruction Address) may only be written if it
points to a /390 module (with LAYOUT= COMPATIBLE) or if LAYOUT=FCONTXT has been
specified.

(1): The data exchange field has the same structure as before.

(2): The data exchange field has the same structure as before.
Only those registers that are equivalent to /390 registers and NIA are read or
written.

(3): The data exchange field utilizes the new structure. Only the registers equivalent to
the /390 registers, the x86 floating-point registers relevant to the /390 floating-point
registers, NIA and the other process statuses are read or written (provided they can
be overwritten). Data is exchanged via the corresponding SAVExxxx fields.

(4): In addition to (3), the complete x86 context is read and written (via the exchange
area SSPARCB of the length SLSPARCB). Modifying individual data in the context is only
possible via the SAVExxxx fields.

(5): The data is transferred between the /390 floating-point registers of the specified
PCB and those of the contingency PCB.

(6): Only via the SAVE operands, see (3)

(7): Only via the SAVE operands, see (4)

(8): Writing the PMODE is allowed in order, for example, to restart the interrupted PCB
at a central termination routine, whose PMODE is not the interrupted PMODE.
Writing the PMODE only makes sense if the NIA is modified at the same time.

CRYPT Description of the macros

340 U3291-J-Z125-16-76

CRYPT – Word encryption

General

Application area: Word encryption; see page 161
Macro type: Type S, MF format 3: D/C/M/E/L form; see page 29

Macro description

The CRYPT macro is used for one-way encryption of words with a maximum length of
8 bytes. One-way encryption means that it is not possible to decrypt the words that have
been encrypted with CRYPT. A 4-byte or 8-byte string is returned as a result of macro
execution.

Macro format and description of operands

The operands are described in alphabetical order below.

CRCL2OP=
Encrypts the input word in accordance with the system parameter ENCRYPTION.

*YES
Encryption is in accordance with the system parameter ENCRYPTION.

CRYPT

INSTRA=<var: pointer> / (<reg: pointer>)

,INSTRL=4 / 8 / <var: int:1>

,OUSTRA=<var: pointer> / (<reg: pointer>)

,CRYALG=*SCA / *SCAVK / *OLD / <var: enum-of _ecrt_s:1>

,CRCL2OP=*YES / *NO / <var: enum-of _cl2op_s:1>

,VKEYA=<var: pointer> / (<reg: pointer>)

,XPAND=*INPAR / *KEYPAR

,MF=D / C / M / E / L

[,PARAM = addr / (r)]

,PREFIX=S / p

,MACID=RME / macid

Description of the macros CRYPT

U3291-J-Z125-16-76 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

*NO
The input word is always encrypted, regardless of the system parameter
ENCRYPTION.

<var: enum-of _cl2op_s:1>
Name of the field together with the type of encryption.

CRYALG=
Selects the encryption algorithm.

*SCA
The encryption algorithm SCA is used.

*SCAVK
The encryption algorithm SCA is used with the key specified in the key field (VKEYA
operand).

*OLD
Specifies the encryption algorithm used previously.

<var: enum-of _ecrt_s:1>
Name of the field with the encryption algorithm.

INSTRA=
Defines the address of a field which contains the word which is to be encrypted (input word).
The length of this field is specified in the INSTRL operand. The input word must be a string
of type X string or C string and may be a maximum of 8 characters in length.
This operand is mandatory in conjunction with MF=L.

<var: pointer>
Name of the field with the address of the input word; only permitted with MF=M.

(<reg: pointer>)
Register with the address of the input word; only permitted with MF=M.

INSTRL=
Specifies the length of the field that has to be reserved for the encrypted input word. the
maximum permitted value for the length is 8. The field in which the input word is now
specified may now be either 4 or 8 bytes long

4
4 bytes are reserved for the field length.

8
8 bytes are reserved for the field.

<var: int:1>
Name of the field together with a specification of the field length that has to be reserved.

CRYPT Description of the macros

342 U3291-J-Z125-16-76

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.
A PREFIX can be specified in the C form or D form of the macro and additionally a MACID
in the C form (see section “S-type macros” on page 29).

OUSTRA=
Defines the address of a field which is to contain the encrypted word (output word). If the
input word is ≤ 4 bytes, a 4-byte long output word is returned. If the length of the input word
is between 5 and 8 bytes, an 8-byte long output word is returned.
These operands are mandatory in conjunction with MF=L.

<var: pointer>
Name of the field with the address of the output word; only permitted with MF=M.

(<reg: pointer>)
Register with the address of the output word; only permitted with MF=M.

VKEYA=
Address of the employed variable key which is to be used if the encryption setting
CRYALG=*SCAVK is selected.

<var: pointer>
Name of the field with the address of the variable key; only permitted with MF=M.

(<reg: pointer>)
Register with the address of the variable key; only permitted with MF=M.

XPAND=
Controls the expansion scope of the macro.

*INPAR
Preset value: the parameter structure is expanded.

*KEYPAR
Only the data area for the variable key is expanded.

Description of the macros CRYPT

U3291-J-Z125-16-76 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Selecting the variable key

A variable key may be used only in conjunction with the SCA encryption algorithm
(CRYALG=*SCA operand). The variable key is 44 bytes long and comprises the following
four parts (PREFIX and MACID are assigned their respective default settings):

The SCA encryption algorithm is an iterative application of a basic encryption method. To
provide sufficient security, the number of iterations (SRMECC field) must be between 128 and
8192. Encryption using 128 iterations requires approximately 15000 operations. The
number of operations increases linearly with the number of iterations.

The key components EE1 and EE2 (SRMEKEE1 and SRMEKEE2 fields) represent permutations
of the numbers 0 through 15. For a “secure” key, each byte of EE1 and EE2 must contain
a number between 0 and 15; each of these numbers must occur once in each of the key
components EE1 and EE2.
The key component EE3 (SRMEKEE3 field) can contain any characters and has a length of 8
bytes. However, no two of these bytes may be identical.

The encryption routine does not check whether the above conditions for a “secure” variable
key have been met. It is often impossible to avoid using “insecure” keys in one-way
encryption. For this reason, the SCA encryption algorithm can also work with “insecure”
keys. For reasons of security, however, the use of such keys should be avoided if possible.

Encryption of input words > 8 bytes long

If encryption of words > 8 bytes long is required, it is possible to split the input word into
several 8-byte words and encrypt these word segments separately. The encryption of
words > 8 bytes long is no more secure than the encryption of words ≤ 8 bytes long using
the algorithms provided by the CRYPT macro.

Layout of the DSECT

The layout of the DSECT is to be found on page 345.

SRMEVK
SRMECC
SRMEKEE1
SRMEKEE2
SRMEKEE3
SRMEVK#

DS
DS
DS
DS
DS
EQU

0F
F
XL16
XL16
XL8
*-SRMEVK

number of iterations
key component EE1
key component EE2
key component EE3

CRYPT Description of the macros

344 U3291-J-Z125-16-76

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A structured return code relating to the execution of
the CRYPT macro is returned:
(cc=Subcode2, bb=Subcode1, aaaa=Maincode)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function executed successfully

X'01' X'01' X'0001' Function not executed due to operand error: input word not assigned

X'02' X'01' X'0001' Function not executed due to operand error: output word not assigned

X'03' X'01' X'0001' Function not executed due to operand error: no assignment for variable key

X'04' X'01' X'0001' Function not executed due to operand error: invalid specification for
encryption algorithm

X'05' X'01' X'0001' Function not executed due to operand error:
invalid specification for dependency on system parameter

X'06' X'01' X'0001' Function not executed due to operand error: invalid length specification for
input word

X'08' X'01' X'0001' Function not executed due to operand error: invalid variable key

X'09' X'01' X'0002' Function not executed due to memory request error:
it is not possible to access the field containing the input word

X'0A' X'01' X'0002' Function not executed due to memory request error:
it is not possible to access the field containing the output word

X'0B' X'01' X'0002' Function not executed due to memory request error:
it is not possible to access the field containing the variable key

X'0C' X'01' X'0002' Function not executed due to memory request error:
it is not possible to access the parameter list

X'0D' X'01' X'0002' Function not executed due to memory request error
it is not possible to access the SRMEPOE field)

X'20' X'0003' Function not executed: internal error

Description of the macros CRYPT

U3291-J-Z125-16-76 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Example

PRINT NOGEN
 CRYPT START
 BALR 10,0
 USING *,10

CRYPT MF=E,PARAM=PARLIST —————————————————————————————————— (1)
1 MFCHK MF=E,PREFIX=S,MACID=RME,PARAM=PARLIST,
 1 SVC=16,
 1 DMACID=RME,SUPPORT=(D,L,C,M,E)
 2 LA 1,PARLIST
 2 SVC 16
 CLI SRMEMR1,SRMEOK * Error query
 BNE ERREXIT

UNPK OUTPUTX(9),OUTPUT(5)
 UNPK OUTPUTX+8(9),OUTPUT+4(5)
 TR OUTPUTX,CODETAB-C'0'
 WROUT CODE,0 * Output
 TERM
 *
 ERREXIT WROUT TEXT,0
 TERM

 CODE DC Y(CODEEND-CODE)
 DS CL3
 DC C'OUTPUT OF THE ENCRYPTED WORD '
 INPUT DC C'SUPERMAN' * Input word *
 DC C': '
 OUTPUT DS CL8 * Output word
 DC C' '
 OUTPUTX DS CL16 * Output word hex
 CODEEND EQU *
 DS C

TEXT DC Y(TEXTEND-TEXT)
 DS CL3
 DC C'ERROR !!'
 TEXTEND EQU *

KEY DS 0F
 DC F'250' * Number of iterations
 DC X'0203040506070809' * EE1
 DC X'0A0B0C0D0E0F0001' EE1 *
 DC X'0100030205040706' * EE2
 DC X'09080B0A0D0C0F0E' EE2 *
 DC X'A1A2A3A4A5A6A7A8' * EE3 *

PARLIST CRYPT MF=L,INSTRL=8,CRYALG=*SCAVK,CRCL2OP=*NO, -
 VKEYA=KEY,INSTRA=INPUT,OUSTRA=OUTPUT ———————————————— (1)
 ORG PARLIST

CRYPT Description of the macros

346 U3291-J-Z125-16-76

 CRYPT MF=C —— (2)
 1 *
 1 SRMEPA DS 0F BEGIN of PARAMETERAREA
 1 FHDR MF=(C,SRME),EQUATES=NO STANDARD HEADER
 2 DS 0A
 2 SRMEFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
 2 *
 2 SRMEIFID DS 0A 0 INTERFACE IDENTIFIER
 2 SRMEFCTU DS AL2 0 FUNCTION UNIT NUMBER
 2 * BIT 15 HEADER FLAG BIT,
 2 * MUST BE RESET UNTIL FURTHER NOTICE
 2 * BIT 14-12 UNUSED, MUST BE RESET
 2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
 2 SRMEFCT DS AL1 2 FUNCTION NUMBER
 2 SRMEFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
 2 *
 2 SRMERET DS 0A 4 GENERAL RETURN CODE
 2 SRMESRET DS 0AL2 4 SUB RETURN CODE
 2 SRMESR2 DS AL1 4 SUB RETURN CODE 2
 2 SRMESR1 DS AL1 5 SUB RETURN CODE 1
 2 SRMEMRET DS 0AL2 6 MAIN RETURN CODE
 2 SRMEMR2 DS AL1 6 MAIN RETURN CODE 2
 2 SRMEMR1 DS AL1 7 MAIN RETURN CODE 1
 2 SRMEFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
 2 *
1 * RETURN CODE EQUATES FOR MAIN-CODE 1

 1 SRMEOK EQU X'00' NOERROR
 1 SRMEIOP EQU X'01' INVALID OPERAND
 1 SRMEIAR EQU X'02' INVALID AREA
 1 SRMEINE EQU X'03' INTERNAL ERROR
 1 *
 1 SRMEIN DS F INPUT STRING ADDRESS
 1 SRMEOUT DS F OUTPUT STRING ADDRESS
 1 SRMELEN DS X INPUT STRING LENGTH
 1 SRMEECR DS X SELECT ENCRYPTION ROUTINE
 1 *
 1 * EQUATES FOR ENCRYPTION ROUTINE SELECT
 1 SRMEECRS EQU X'01' SCA ENCRYPTION ROUTINE
 1 SRMEECRO EQU X'02' OLD ENCRYPTION ROUTINE
 1 SRMEECRV EQU X'03' SCA ENCR. ROUT. (V. KEY)
 1 *
 1 SRMEC2O DS X SEL. CLASS 2 OPTION YES/NO
 1 * EQUATES FOR CLASS 2 OPTION
 1 SRMEC2OY EQU X'01' CLASS 2 OPTION YES
 1 SRMEC2ON EQU X'02' CLASS 2 OPTION NO
 1 *
 1 SRMEPOE DS X PROGRESS OF EXECUTION
 1 * RETURN FOR PROGRESS OF EXECUTION

Description of the macros CRYPT

U3291-J-Z125-16-76 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

 1 SRMEUV EQU X'01' UNCRYPTED
 1 SRMESCA EQU X'02' SCA ENCRYPTED
 1 SRMEOLD EQU X'03' OLD ENCRYPTED
 1 SRMESVK EQU X'04' SCA ENCRYPTED (V. KEY)
 1 *
 1 SRMESVK@ DS F ADR. VARIABLE KEY
 1 SRME# EQU *-SRMEPA LENGTH OF PARAMETERAREA
 *
 CODETAB DC C'0123456789ABCDEF'
 END CRYPT

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
%//compile source=*library-element(lib.srpmencp,crypt), -
%// compiler-action=module-generation(module-format=llm), -
%// module-library=lib.srpmencp, -
%// listing=parameters(output=*library-element(lib.srpmencp,crypt))
% ASS6011 ASSEMBLY TIME: 360 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 65 MSEC
%//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=lib.srpmencp,element-or-symbol=crypt
% BLS0523 ELEMENT 'CRYPT', VERSION '@', TYPE 'L' FROM LIBRARY

':2OSC:$EVA.LIB .SRPMENCP' IN PROCESS
% BLS0524 LLM 'CRYPT', VERSION ' ' OF '<date> <time>' LOADED
OUTPUT OF THE ENCRYPTED WORD SUPERMAN: |ÑzÄkè~] 4F69A9639254FFBD ————— (3)

(1) A word with a length of 8 bytes is to be encrypted with the CRYPT macro using the
SCA algorithm, irrespective of the class 2 option. A variable key is to be used. The
input word is read from the INPUT field and the output word is written to the OUTPUT
field.

(2) Layout of the DSECT.

(3) The CODE field is output by means of the WROUT macro. The input word SUPERMAN
is encrypted as |ÑzÄkè~]. The hexadecimal result of the encryption is
4F69A9639254FFBD.

CSTAT Description of the macros

348 U3291-J-Z125-16-76

CSTAT – Change page status

General

Application area: Working with virtual memory; see page 55
Memory pools; see page 55

Macro type: Type S, MF format 1: standard/E/L form; see page 29

The operating system manages virtual storage on a page basis (among other things, this
involves paging, memory protection, requests for pages in memory and their release).
One page of memory is 4 K (=4096 bytes). Space is assigned to the user program in
class 6 memory in page-sized portions.

Macro description

The CSTAT macro enables users to amend the attributes of the pages assigned to their
program in class 6 memory in relation to

– paging management (whether the pages are resident or pageable)
– mode of access (read/write access)
– special access protection (accesses via AID or DUMP only allowed with special

privilege).

For memory pages which are in a memory pool, the following points should be noted:

– Memory pages in a resident memory pool can be made nonpageable by a CSTAT call
(see also the macro ENAMP). When the macro is executed, only those pages which lie
outside the memory pool are affected.

– Memory pages in a nonresident memory pool can be made resident and subsequently
pageable again by any memory pool user issuing CSTAT.

– Where changes to access rights are concerned, the CSTAT macro has a lower priority
than the CSTMP macro:
A write protection set up for a memory pool using CSTMP cannot be removed (page by
page) using CSTAT; this even applies to pages whose write protection was set up using
CSTAT before the call to CSTMP.

Description of the macros CSTAT

U3291-J-Z125-16-76 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Macro format and description of operands

PGNUM=
Specifies the page number(s) of the page(s) whose status is to be amended in respect of
paging, mode of access or special access protection. In addition to PGNUM, at least one
further operand must be specified. A call to CSTAT containing only PGNUM=.... is
meaningless, and will result in the error flag (return code value) X'0C'.

value
Page number of the page whose status is to be amended.

ALL
The status of all the pages used by the program is to be amended. The operand
PGNUM=ALL must only be used in combination with PAGE=...

(r)
Register which contains the page number (value) or the parameter ALL (X'40C1D3D3');
(2 ≤ r ≤ 12).

ACCESS=
Determines whether the specified pages may be accessed only for reading, or may also be
written to (write access implies permission to read).

Notes
– ACCESS=... must not be specified in combination with PGNUM=ALL.
– Memory pool: a write protection established by CSTMP cannot be removed using

CSTAT.

READ
Only read access is allowed.

WRITE
Write access is allowed.

(r)
Register which contains the parameter YES (X'40E8C5E2) or NO (X'4040D5D6').
YES: write access allowed.
NO: only read access allowed.

CSTAT

PGNUM=value / ALL / (r)

[,ACCESS=READ / WRITE / (r)]

[,PAGE=YES / NO / (r)]

[,PROTECT=YES]

[,MF=(E,..) / L]

CSTAT Description of the macros

350 U3291-J-Z125-16-76

PAGE=
Specifies whether the memory pages are to be pageable or resident.

YES
The memory page(s) is (are) to be pageable.
Memory pages which are part of a resident memory pool are unaffected.

NO
The memory page(s) is (are) to be resident.
The maximum number of pages that can be made resident is limited by the operand
RESIDENT-PAGES=PARAMETERS(MINIMUM=...) in the command START-
PROGRAM or LOAD-PROGRAM.

Note
If memory saturation should occur, the following steps can be taken:
– Any pending CSTAT requests for resident memory pages are rejected (in spite of

this, the value of the return code will be X'00').
– Some of those memory pages of a program which have already been made

resident with CSTAT may be made pageable by the operating system (their
resident status will not automatically be restored later).

(r)
Register containing the parameter YES (X'40E8C5E2') or NO (X'4040D5D6');
(2 ≤ r ≤ 12).

PROTECT=
Specifies a special access protection for the memory page.

Notes
– PROTECT=YES must not be used in combination with PGNUM=ALL or ACCESS=....
– Any access protection set up using PROTECT can only be removed by releasing the

memory page (RELM). This will cause the contents of the page to be deleted!

YES
Accesses to the memory page by the debugging aid AID are only permitted if special
privilege is assigned. The same is true for a memory dump.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

Description of the macros CSTAT

U3291-J-Z125-16-76 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Return information and error flags

During execution, the register R1 contains the address of the operand list.

R15:
A return code relating to the execution of the CSTAT
macro is transferred in the rightmost byte of register
R15.

a a

X'aa' Meaning

X'00' Normal execution

X'04' The specified page does not belong to the program, and was also not requested using REQM

X'0C' Operand error

X'10' The program has attempted to make more pages resident then were reserved for it in the
START- or LOAD-EXECUTABLE-PROGRAM command (operand RESIDENT-PAGES)

CSTMP Description of the macros

352 U3291-J-Z125-16-76

CSTMP – Set read/write access for memory pool

General

Application area: Memory pools; see page 55
Macro type: Type S, MF format 1: standard/L/D/E form; see page 29

A memory pool (MP) is a memory area in class 6 memory that can be used by several users
at the same time. Its size (and position) is determined by the first user. A memory pool can
be furnished with write protection (CSTMP has priority over CSTAT).

Creating a “read-only memory pool”:

1. create the MP and request memory pages (ENAMP, REQMP)
2. write to the MP (e.g. load shared code)
3. establish write protection = set MP to “read only” (CSTMP)

Macro description

The (authorized) user can provide a memory pool with write protection (only read access is
allowed) or revoke this protection with the CSTMP macro. The requested access protection
applies to all pages of the memory pool and all participants. The function is only carried out
if the user has the required authorization (CSTMP-MACRO-ALLOWED=*YES) in the user
catalog.

Notes

– A memory pool is addressed by means of either its pool name or its ID (see ENAMP).
– CSTMP overrides the effect of the CSTAT macro:

– CSTAT is rejected if write protection has already been established with CSTMP.
– write protection established with CSTAT can be removed or extended to all pool

pages by means of CSTMP. Such an extended write protection can only be
removed again by means of CSTMP.

– Different levels of protection cannot be established with CSTMP.
– It is not possible to either request (REQMP) or release (RELMP) pages for a write-

protected memory pool.

Description of the macros CSTMP

U3291-J-Z125-16-76 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Macro format and description of operands

MPNAME=
Defines the name of the memory pool.

name
Name of the memory pool (note the connection with the SCOPE operand).

MPNAMAD=
Specifies the address of the field containing the name of the memory pool.

addr
Symbolic address (name) of the field (note the connection with the SCOPE operand).

MPNAMLN=
Gives the length of the name to which MPNAMAD refers. If this operand is omitted, the
length attribute of “addr” is assumed.

length
Length in bytes.

MPID=
Defines the address of the field (length = 4 bytes) with the ID for the memory pool (see also
ENAMP). The ID identifies the memory pool uniquely. The use of the memory pool ID
increases the speed of processing.

addr
Symbolic address (name) of the field containing the ID.

CSTMP

,ACCESS=WRITE / READ

[,PARMOD=24 / 31]

[,MF=L / (E,..) / (D,pre) / D]

MPNAME=name
MPNAMAD=addr [,MPNAMLN=length]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

MPID=addr

CSTMP Description of the macros

354 U3291-J-Z125-16-76

SCOPE=
Defines the scope (authorized users) of the memory pool. This specification is used to
identify the memory pool uniquely and must always be entered in conjunction with the
MPNAME or MPNAMAD operand.

LOCAL
The memory pool is used only by the user that created it.

GROUP
Memory pool users can be all tasks with the ID of the user that created the memory
pool.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.
The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

ACCESS=
Defines whether the memory pool is read-only or open to both read and write access
(authorization for write access implies read access as well); this applies to all users.

WRITE
Write access is permissible.

READ
Only read access is permissible.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.
A prefix (pre = 1..3 letters) can be specified in the D form of the macro, as shown in the
macro format.
Default setting: pre = CST

Description of the macros CSTMP

U3291-J-Z125-16-76 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

Return information and error flags
After macro processing, register R1 contains the operand list address.

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the CSTMP macro is transferred in register R15.
aa=X'00': normal execution;
aa=X'04': function is not executed.

b b 0 0 0 0 a a

X'bb' X'aa' Meaning

X'00' X'00' Normal execution

X'04' X'04' Function is not carried out; the caller is not a memory pool user (no ENAMP macro)

X'1C' X'04' Function is not carried out; operand error:
– invalid address of the operand list
– error in operand list structure
– invalid address for MPNAMAD or MPID in the operand list
– designation of the memory pool:

– name contains invalid characters
– invalid length specification (MPNAMLN)
– memory pool not designated (MPNAME, MPNAMAD, MPID not specified)
– MPNAMLN specified, but MPNAMAD omitted
– SCOPE specified, but MPNAME/MPNAMAD omitted
– designation not unequivocal: more than one operand was specified as

designation (MPNAME/MPNAMAD/MPID)
– invalid SCOPE specification
– SCOPE=USER_GROUP was specified, but SRPM is not available in system
– invalid ACCESS specification
– PARMOD=24 specified in conjunction with 31-bit addressing mode (AMODE31)

CSTMP Description of the macros

356 U3291-J-Z125-16-76

31-bit interface:
– In the event of errors in the alignment or initialization of the standard header, the return

codes X'0001FFFF' / X'0003FFFF'/ X'0004FFFF' are additionally transferred in register
R15; see table “Standard return codes” on page 43.

– No return codes are transferred in the standard header.

X'24' X'04' Function not carried out; authorization error:
– the caller is not authorized to call the CSTMP macro (missing entry in the user ID)
– the caller is not authorized to change the access protection of a privileged or

class 5 memory pool
– The memory pool contains DIV or FASTPAM windows

X'bb' X'aa' Meaning

Description of the macros CTIME

U3291-J-Z125-16-76 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

CTIME – Time stamp calculations

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 3: C/D/E/L/M form; see page 29

Macro description

The CTIME macro offers the following functions:

– conversion of the time stamp format (FUNCT=*CONV)
– addition and subtraction of a timespan to/from a time stamp (FUNCT=*ADD)
– calculation of the timespan between two time stamps (FUNCT=*DIFF)

CTIME supplies the results in the operand list in printable, binary or TODR/TODX form.

Notes

– The CTIME macro does not use an SVC.
If MF=D (default setting), the system does not initialize a standard header, i.e. the user
must define the standard header before calling the macro (for information on the
structure of the standard header, see page 43).

– Because the functions of the CTIME macro are initiated via a subprogram interface
rather than a SVC, a program calling CTIME must provide a save area 18 words long.
The address of this save area must be loaded into register R13 before the macro call.

The operand list contains memory areas for:

The field names for PREFIX=N and MACID=TIC apply.

Time stamps and timespans are used to define the DSECTs NTICS (for time stamps) and
NTICD (for timespans) for addressing data fields containing time specifications.

A time stamp consists of the date (year, month, day, day of the week) and time (hours,
minutes, seconds, milliseconds, microseconds). It always refers to a particular time base
and can be specified in different formats. Timespans consist of day and time specifications
and can also be specified in different formats.

Input time stamp 1 NTICS1I Length: 48 bytes

Input time stamp 2 NTICS2I 48 bytes

Input timespan NTICD1I 32 bytes

Output time stamp NTICS1O 48 bytes

Output timespan NTICD1O 32 bytes

CTIME Description of the macros

358 U3291-J-Z125-16-76

Possible time bases are:

UTC: Universal Time Coordinate ï Greenwich Mean Time (world time)
LTI: Local Time (local time in the calling system)
FZ: Foreign Zone (“foreign” or any time base)

If the FZ time base is specified, zone information must also be specified to make
the time stamp unambiguous. This information indicates which world time zone
difference and/or which season difference must be observed and whether the
time stamp was specified in summer or winter time.

Time stamps can have the following formats:

ISO4 Printable format in decimal notation as follows:
yyyy-mm-ddjjj wwhh:mm:ssvhz:mz-hs:ms-smlsmcs

where

yyyy
mm
dd
jjj
ww
hh
mm
ss
v
hz
mz
hs
ms
s
mls
mcs

Year
Month
Day of the month
Julian date
Day of the week
Hours
Minutes
Seconds
Sign of zone difference
Hours of zone difference
Minutes of zone difference
Hours of season difference
Minutes of season difference
Summer/wintertime specification
Milliseconds
Microseconds

(4 bytes)
(2 bytes)
(2 bytes)
(3 bytes)
(2 bytes)
(2 bytes)
(2 bytes)
(2 bytes)
(1 bytes)
(2 bytes)
(2 bytes)
(2 bytes)
(2 bytes)
(1 bytes)
(3 bytes)
(3 bytes)

Description of the macros CTIME

U3291-J-Z125-16-76 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

The data area for accepting the time stamp has the following format (macro
expansion with MF=D and PREFIX=N):

NTICSISO4 DS 0XL48 timestamp in iso4
NTICSDATE_U DS 0XL10 date union
*
NTICSMD DS 0XL10 date
NTICSIDY DS CL4 year
NTICSID1 DS CL1 hyphen1
NTICSIDM DS CL2 month
NTICSID2 DS CL1 hyphen2
NTICSIDD DS CL2 day
*
 ORG NTICSDATE_U
NTICSDATE_CHAR DS CL10 date_char
 ORG NTICSDATE_U+10
NTICSIDJ DS CL3 julian
NTICSIDB DS CL1 blank
*
NTICSMW DS 0CL2 begin of weekday
NTICSIWD DS CL2 weekday
*
NTICSMT DS 0CL8 time: "hh:mm:ss"
NTICSITH DS CL2 hour
NTICSIT1 DS CL1 colon1
NTICSITM DS CL2 minute
NTICSIT2 DS CL1 colon2
NTICSITS DS CL2 second
*
NTICSMZ DS 0CL14 zone: "shh:mm-hh:mm-a"
NTICSIZS DS CL1 zonesign
NTICSIZH DS CL2 zonehour
NTICSIZ1 DS CL1 colon3
NTICSIZM DS CL2 zoneminute
NTICSIZ2 DS CL1 hyphen3
NTICSISH DS CL2 seasonhour
NTICSIS1 DS CL1 colon4
NTICSISM DS CL2 seasonminute
NTICSIS2 DS CL1 hyphen4
NTICSISA DS FL1 actualseason
*
NTICSMF DS 0XL6 begin of fraction of second
NTICSIF DS 0CL6 fraction of second : "mmmuuu"
NTICSIFM DS CL3 millisecond
NTICSIFN DS CL3 microsecond
NTICSILE EQU *-NTICSISO4 LENGTH OF ISO4 TIMESTAMP
* (without address of CHDATE List)
NTICSCDL DS A chdates_addr

CTIME Description of the macros

360 U3291-J-Z125-16-76

BINAR The numeric values are specified in halfwords in binary notation.

The data area for accepting the time stamp has the following format (macro
expansion with MF=D and PREFIX=N):

NTICSBINAR DS 0XL42 timestamp in binar
NTICSBDY DS H year
NTICSBDM DS H month
NTICSBDD DS H day
NTICSBDJ DS H julian
NTICSFILL1 DS CL6 fill1
NTICSBWD DS H weekday
*
NTICSBTH DS H hour
NTICSBTM DS H minute
NTICSBTS DS H second
NTICSBL1 EQU *-NTICSBINAR LENGTH OF BINARY TIMESTAMP
* PART1 (date & time)
NTICSFILL2 DS CL2 fill2
NTICSBZH DS H zonehour
NTICSBZM DS H zoneminute
NTICSBSH DS H seasonhour
NTICSBSM DS H seasonminute
NTICSBSA DS FL1 actualseason
NTICSFILL3 DS CL5 fill3
* fraction of second
NTICSBFM DS H millisecond
NTICSBFN DS H microsecond
NTICSBL2 EQU *-NTICSBFM LENGTH OF BINARY TIMESTAMP
* PART2 (fraction of second)
NTICSBLE EQU *-NTICSBINAR LENGTH OF BINARY TIMESTAMP

TODR Time of day register format. The TOD register has the length of a doubleword
and contains:
((Number of microseconds since 1/1/1900) * 4096) modulo 264

It is incremented by the hardware. The TOD register can be queried using the
STCK command. The interpretation of the TODR content depends on the epoch
set for the system run, see the “Introduction to System Administration” manual
[10]).

The data area for accepting the time stamp has the following format (macro
expansion with MF=D and PREFIX=N):

NTICST DS 0XL8 timestamp in TODR
NTICSTMS DS F most significant word:
* approx sec
NTICSTLS DS F least significant word:
* micro_sec * 2**12

Description of the macros CTIME

U3291-J-Z125-16-76 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

TODX Extended time of day register format: it has the length of a doubleword and
contains the number of microseconds since January 1 1900 0 hours.

The data area for accepting the time stamp has the following format (macro
expansion with MF=D and PREFIX=N):

NTICSX DS 0XL8 timestamp in TODX
NTICSTHW DS F high word
NTICSTLW DS F low word

Timespans can have the following formats:

ISO4 / Printable format in decimal notation.
ISO4MIC The data area for accepting the timespan has the following format (macro

expansion with MF=D and PREFIX=N):

NTICDI DS 0XL32 tdiff in iso4
NTICDIS DS CL1 sign
NTICDIDD DS CL10 day
NTICDID1 DS CL1 hyphen
NTICDITH DS CL2 hour
NTICDIT1 DS CL1 colon1
NTICDITM DS CL2 minute
NTICDIT2 DS CL1 colon2
NTICDITS DS CL2 second
NTICDIFP DS CL1 point
NTICDIFM DS CL3 millisecond
NTICDIFN DS CL3 microsecond
NTICDILE EQU *-NTICDI LENGTH OF ISO4 TIMEDIFFERENCE
* (without unused field)
 DS CL5 unused

BINAR / Binary specification.
BINARMIC The data area for accepting the timespan has the following format (macro

expansion with MF=D and PREFIX=N):
NTICDB DS 0XL16 tdiff in binar
NTICDBDD DS F day
NTICDBTH DS H hour
NTICDBTM DS H minute
NTICDBTS DS H second
NTICDBFM DS H millisecond
NTICDBFN DS H microsecond
NTICDBLE EQU *-NTICDB LENGTH OF BINARY TIMESTAMP
* (without the fill field)
 DS H to fill the gap

CTIME Description of the macros

362 U3291-J-Z125-16-76

TODR Time of day register format.
The data area for accepting the timespan has the following format (macro
expansion with MF=D and PREFIX=N):

NTICDT DS 0XL8 tdiff in TODR (for C)
NTICDTMS DS F most significant word:
* approx. sec
NTICDTLS DS F least significant word:
* micro_sec * 2**12

TODX Extended time of day register format.
The data area for accepting the time stamp has the following format (macro
expansion with MF=D and PREFIX=N):

NTICSX DS 0XL8 timestamp in TODX
NTICSTHW DS F high word
NTICSTLW DS F low word

Value ranges

The following value ranges are valid for the CTIME macro. Note that the macro format
distinguishes between input and output with regard to time stamps and timespans.

BINAR or ISO4 format:

01.01.1900 00:00:00,000000 < time stamp < 31.12.9999 23:59:59,999999

Permitted time difference: ± 2147483647 days

TODR format:

t0 < time stamp < t1

Permitted time difference: ± 26062 days

t0 and t1 are dependent on the epoch which is set for the TOD register in the startup
parameter service (parameter record GTIME, see the “Introduction to System
Administration” manual [10]) for the system run. The TODR format for the default epoch
(GTIME parameter EPOCH=00) is:
01.01.1900 00:00:00.000000 < time stamp < 17.09.2042 23:53:47.370495

TODX format:

01.01.1900 00:00:00 < time stamp < 18.03.4317 02:44:48.587775

Permitted time difference: ± 882867 days

Description of the macros CTIME

U3291-J-Z125-16-76 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Macro format and description of operands

The operands are described in alphabetical order below.

CTIME

FUNCT=*CONV / *ADD / *ADDLL / *DIFF / addr / (r)

,BASE1IN=*UTC / *LTI / *FZ / addr / (r)

,FRM1IN=*ISO4 / *ISO4MIC / *BINAR / *BINARMIC / *TODR / *TODX / addr / (r)

,INF1IN=*CALEND / *JULIAN / addr / (r)

,FRM1ZIN=*NONE / *ISO4 / *ISO4LST / *BINAR / *BINARLST / addr / (r)

,CHDL1IN=*NONE / addr / (r)

,BASE2IN=*UTC / *LTI / *FZ / addr / (r)

,FRM2IN=*ISO4 / *ISO4MIC / *BINAR / *BINARMIC / *TODR / *TODX / addr / (r)

,INF2IN=*CALEND / *JULIAN / addr / (r)

,FRM2ZIN=*NONE / *ISO4 / *ISO4LST / *BINAR / *BINARLST / addr / (r)

,CHDL2IN=*NONE / addr / (r)

,BASEOUT=*LTI / *UTC / *FZ / addr / (r)

,FRMOUT=*ISO4 / *ISO4MIC / *BINAR / *BINARMIC / *TODR / *TODX / addr / (r)

,FRMZOUT=*NONE / *ISO4 / *ISO4LST / *BINAR / *BINARLST / addr / (r)

,CHDLOUT=*NONE / addr / (r)

,FRMDIN=*ISO4 / *ISO4MIC / *BINAR / *BINARMIC / *TODR / *TODX / addr / (r)

,FRMDOUT=*ISO4 / *ISO4MIC / *BINAR / *BINARMIC / *TODR / addr / (r)

,LINKADR=*NONE / linkaddr

,MF=D / C / L / M / E

[,PARAM=addr / (r)]

,PREFIX=N / p

,MACID=TIC / macid

CTIME Description of the macros

364 U3291-J-Z125-16-76

BASE1IN=
BASE2IN=
BASEOUT=
BASE1IN and BASE2IN specify the time base valid for the 1st and 2nd input time stamps
and BASEOUT specifies the time base valid for the output time stamp.

*UTC
The time stamp is specified according to UTC (Universal Time Coordinate, which
corresponds to Greenwich Mean Time).
This is the default value for BASE2IN.

*LTI
The time stamp is specified according to LTI (Local TIme), the local time base valid in
the calling system. This is the default value for BASEOUT.

*FZ
The time stamp is specified in a foreign or any time base (Foreign Zone). The
information that characterizes this time base must be included in the zone information
for the time stamp involved and specified with the relevant parameters (the FRMxZIN or
FRMZOUT operand must be specified).

addr
Symbolic address (name) of a field that must be loaded beforehand with the relevant
equate. Length = 1 byte.

(r)
Register containing the value of the relevant equate.

CHDL1IN=
CHDL2IN=
CHDLOUT=
Provides a table (list) of conversion times for use in assigning FZ time stamps to summer
time or winter time.
A specification other than *NONE is only permissible with MF=M and with “FZ” time stamps.

*NONE
No table provided.

addr
Symbolic address (name) of a field containing the table of conversion times. This
operand value is only permitted with MF=M and may only be specified in conjunction
with BASExxx=*FZ. To process this table, the values FRMxZIN=*ISO4LST/*BINARLST
or FRMZOUT=*ISO4LST/*BINARLST must be set. For unique representation of a time
stamp, the zone information fields zone difference and conversion difference must also
be assigned.
The table must be aligned on a word boundary and the format must be as follows:

Description of the macros CTIME

U3291-J-Z125-16-76 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

The conversion time information is contained in consecutive doublewords. CHDATE
data appears as UTC-based STCK values shifted 8 bits logically to the right
(SRL command), with the lowest-value bit indicating the nature of the conversion: if the
bit = 0, conversion is from winter to summer time, if the bit = 1, conversion is from
summer to winter time.
The table should be generated with GTIME CHDATE=...
These doublewords must contain ascending values.
The table must end with the doubleword D'0'.
See page 373 for a worked example.

(r)
Register with the address value of addr.

FRMDIN=
FRMDOUT
Specifies the existing timespan format (FRMDIN as input timespan) or the desired timespan
format (FRMDOUT as output timespan).

*ISO4
The timespan is represented in printable format. With FRMDOUT, millisecond and
microsecond fields are also provided.

*ISO4MIC
The timespan is represented in printable format. With FRMDIN, additional expansion
with milliseconds and microseconds is expected.

*BINAR
The timespan is represented in binary form with fixed-point numbers. 4 bytes are used
for the days and 2 bytes each for the hours, minutes and seconds. With FRMDOUT,
millisecond and microsecond fields are also provided.

*BINARMIC
The timespan is represented in binary form with fixed point numbers. With FRMDIN,
additional expansion with milliseconds and microseconds is expected.

*TODR
The timespan is represented in time of day register format.

*TODX
The timespan is represented in extended time of day register format.

addr
Symbolic address (name) of a field that must be loaded beforehand with the relevant
equate. Length = 1 byte.

(r)
Register containing the value of the relevant equate.

CTIME Description of the macros

366 U3291-J-Z125-16-76

FRM1IN=
FRM2IN=
FRMOUT=
Specifies the existing time stamp format (FRM1IN, FRM2IN as input time stamps) or the
desired time stamp format (FRMOUT as output time stamp).

*ISO4
The time stamp is represented in printable format. This is the default value for FRM2IN
and FRMOUT. With FRMDOUT, millisecond and microsecond fields are also provided.

*ISO4MIC
The time stamp is represented in printable format. With input time stamps, additional
expansion with milliseconds and microseconds is expected.

*BINAR
The time stamp is represented in binary form with halfword fixed-point numbers. With
FRMDOUT, millisecond and microsecond fields are also provided.

*BINARMIC
The time stamp is represented in binary form with halfword fixed point numbers.
With input time stamps, additional expansion with milliseconds and microseconds is
expected.

*TODR
The time stamp is represented in time of day register format.

*TODX
The timespan is represented in extended time of day register format.

addr
Symbolic address (name) of a field that must be loaded beforehand with the relevant
equate. Length = 1 byte.

(r)
Register containing the value of the relevant equate.

FRM1ZIN=
FRM2ZIN=
FRMZOUT=
Specifies the format of the additional zone information supplied (FRMxZIN) or desired
(FRMZOUT), which characterizes the time base of the specified time stamp.
This operand is mandatory if the time base “FZ” was specified for the time stamp involved.

If the “LTI” time base was specified for an input time stamp, it is possible to specify whether
or not the season information supplied with the time stamp is to be evaluated. “*NONE”
means that this information is not evaluated. Other values require the corresponding field
of the zone information to contain a valid value.

Description of the macros CTIME

U3291-J-Z125-16-76 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

For the output time stamp, the FRMZOUT operand specifies the format in which the zone
information is to be output. If “*NONE” is specified, the format of the time stamp itself is
assumed (if the “*TODR” format is used, the zone information is output in binary form).

*NONE
No zone information is supplied.

*ISO4
The zone information is specified in printable format.

*ISO4LST
The zone information is specified in printable format. The address of the CHDATE table
must be provided by the operands CHDLxIN or CHDLOUT.
The specification in the zone information which shows whether the time stamp is for
summer or winter time is ignored. The FZ time stamp is compared with this table to
obtain the summer / winter time information (see also the example on page 373).

*BINAR
The zone information is specified in binary form as a halfword fixed-point number.

*BINARLST
The zone information is specified in binary form as a halfword fixed-point number.
The address of the CHDATE table must be provided by the operands CHDLxIN or
CHDLOUT.
The specification in the zone information which shows whether the time stamp is for
summer or winter time is ignored. The FZ time stamp is compared with this table to
obtain the summer / winter time information (see also the example on page 373).

addr
Symbolic address (name) of a field that must be loaded beforehand with the relevant
equate. Length = 1 byte.

(r)
Register containing the value of the relevant equate.

FUNCT=
Specifies which function of the CTIME macro is to be executed.

*CONV
The 1st input time stamp is converted into a different format. The results are written to
the output time stamp.

*ADD
The input timespan is added to the 1st input time stamp. The results appear in the
output time stamp. The input timespan may also be negative. The format of the input
timespan is specified with the FRMDIN operand.

*ADDLL
As is the case with *ADD, the input timespan is added to the 1st input time stamp.

CTIME Description of the macros

368 U3291-J-Z125-16-76

Here, however, a conversion between summer time and winter time is taken into
account between the input time stamp and the output time stamp. (These conversion
days do not have the usual length of 24 hours; they are lengthened or shortened by the
conversion difference. When addition is carried out, however, they are nevertheless
considered to be 24-hour days, in contrast to *ADD). The results appear in the output
time stamp. The input timespan can also be negative.

Example
The conversion from winter to summer time took place on 30.03.2008 at 02:00:00.

*DIFF
The time difference between the 1st input time stamp and the 2nd input time stamp is
calculated. The results appear in the output timespan.

addr
Symbolic address (name) of a field that must be loaded beforehand with the relevant
equate. Length = 1 byte.

(r)
Register containing the value of the relevant equate.

INF1IN=
INF2IN=
Specifies the type of day specification used in the input time stamp involved.

*CALEND
The conventional calendar month and day specification is used.

*JULIAN
The date is specified according to the Julian system, which numbers the days of the
year consecutively, starting at January 1.

addr
Symbolic address (name) of a field that must be loaded beforehand with the relevant
equate. Length = 1 byte.

(r)
Register containing the value of the relevant equate.

LINKADR=
Specifies the manner in which the address of the entry point IGTCTI for the CTIME routine
in the GET-TIME subsystem is supplied to the user program. LINKADR must be specified
if MF=E; in all other cases specifying LINKADR has no effect.

Input time stamp
Input timespan

2008-03-29,23:00:00
+00001-00:00:00 (1 Tag)

*ADD result
*ADDLL result

2008-03-31,00:00:00
2008-03-30,23:00:00

Description of the macros CTIME

U3291-J-Z125-16-76 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

*NONE
During assembly the assembler generates an external reference for the IGTCTI entry
point and this is resolved during linking via the autolink function of the BLS.
This value can be used when the module containing the CTIME call
– is always linked and loaded with the dynamic binder loader DBL (in this case,

CTIME in the E form is allowed to issue a V constant, which is supplied by the BLS
during the load procedure) or

– is linked with the BINDER of the new BLS (see the “BINDER” manual [5] under the
BINDER statement SET-EXTERN-RESOLUTION RESOLUTION=STD.

linkaddr
Symbolic address (name) of a word in which the user has provided the address of the
IGTCTI entry point before the CTIME call.
The following example shows how the address of the IGTCTI entry point is first supplied
to the program by an appropriate BIND call in register R1 and can then be transferred
for the CTIME call into the word designated by “linkaddr”:

The entry address of the CTIME routine must always be supplied to the user program
in this way if none of the cases mentioned in LINKADR=*NONE apply, e.g. especially if
the module with the CTIME call is linked by BINDER under the BINDER statement
SET-EXTERN-RESOLUTION RESOLUTION=MANDATORY.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.

A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form (see section “S-type macros” on page 29).

In the E form and M form of the macro, the label of the data area is specified in the PARAM
operand. The data area must be doubleword-aligned. Default setting: NTICPA
aligned. Default setting: NTICPA
When calling the macro with MF=L, the user must specify this label explicitly, otherwise an
MNOTE is output.

AENTRY
OPLIST
BINDPL

BIND
:
CTIME
:
DS
CTIME
BIND

MF=E,PARAM=BINDPL

MF=E,PARAM=OPLIST,LINKADR=AENTRY

F
MF=L,...
MF=L,SYMBOL=IGTCTI,SYMBLAD=AENTRY

CTIME Description of the macros

370 U3291-J-Z125-16-76

Use of registers

The following registers are required for a CTIME macro call:

R1 is loaded by the macro with the address of the operand list.
R13 must be loaded before the macro call with the address of an 18-word save area

which the calling program has to provide.
R14 is loaded by the macro with the return address of the user program.
R15 is overwritten by the routine called (via CTIME).

Description of the macros CTIME

U3291-J-Z125-16-76 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

Return information and error flags

Standard
header:

The following return code relating to execution of the
CTIME macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

cc bb aaaa Meaning

00 00 0000 Function executed successfully

01 0001 The function was aborted: an invalid time stamp was specified in the parameter
list.
Action: correct time stamp.

01 0002 The function was aborted: error in the zone information of a specified time stamp.
Action: correct zone information.

01 0003 The function was aborted: error in timespan specification.
Action: correct timespan specification.

01 0006 The function was aborted: error in specification of the input or output data via the
operands in the parameter list.
Action: correct specification.

01 000D The function was aborted: address of CHDATEs table not aligned on word
boundary or address field is empty.
Action: correct program.

01 000E The function was aborted: error in format of CHDATEs table. The desired data
processing is not possible. Possible errors:
1. The first byte of each entry is not X'00' .
2. The last byte of each entry is not alternately X'00' and X'01'.
3. The entries are not monotonously ascending in terms of the time stamp for

assignment. This may be because
– the table was wrongly formated with GTIME;
– e.g. CHDATEs were only entered for the next two years but a three-year

time stamp is to be assigned; the data following the table is in this case
taken to be a continuation of the table.

4. The time difference between two entries (excluding the first two) is not
between 4 to 8 months

Action: correct table or table-formation program.

00 04 FFFF The function was aborted: Data area is not aligned on a double word boundary.
Action: correct program.

02 00 0007 Warning: the function was executed but the output time stamp is before or after
the conversion times. It is not possible to determine whether summer or winter
time applies. It is assumed that a winter time stamp is required. To make sure that
the output time stamp is unambiguous, zone information must be stored with it.
This warning can occur only for an LTI time stamp or for an FZ time stamp for
which a CHDATE table has been provided.

CTIME Description of the macros

372 U3291-J-Z125-16-76

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

If subcode1 is not equal to zero, only the return code in the standard header is set and no
other data is transfered.

02 0008 Warning: the function was executed but the specified time stamp is represented
in a conversion time interval that cannot actually occur. A winter time stamp is
assumed. If it is known whether summer or winter time applies, this information
can be supplied with the time stamp (see FRMnZIN operand). This warning can
occur only for an LTI input time stamp or for an FZ time stamp for which a
CHDATE table has been provided.
Action:
if information is available as to whether summer or winter time applies, it can be
supplied with the time stamp. To process this information, the FRMxZIN operand
must be set accordingly.

02 0009 Warning: input time stamp is not unique.
The function was executed but the specified time stamp is now represented in a
conversion interval in which the time stamp is represented twice.
A summer time stamp is assumed.
If it is known whether the time stamp is a summer or winter time stamp, this
information can be supplied with the time stamp (see FRMnZIN operand). This
warning can occur only for an LTI input time stamp or for an FZ time stamp for
which a CHDATE table has been provided.
Action:
if information is available as to whether summer or winter time applies, it can be
supplied with the time stamp. To process this information, the FRMxZIN operand
must be set accordingly.

02 000A Warning: output time stamp is not unique.
The function was executed but the output time stamp is in a time interval at the
conversion between summer and winter time that occurs twice. To ensure that
the output time stamp is unambiguous, the zone information must be stored with
the time stamp. This warning can occur only for an LTI output time stamp or for
an FZ time stamp for which a CHDATE table has been provided.

02 000B Warning: the function was executed but the upper range limit (see “Value
ranges”) was exceeded when a timespan was added to a time stamp. The output
date receives the value of the upper range limit.

02 000C Warning: the function was executed but the result of subtracting a timespan from
a time stamp was a value less than the lower range limit (see “Value ranges”).
The output date receives the value of the lower range limit.

02 000F Warning: the function was executed but the output time stamp is in a conversion
time interval which is not actually permitted. This warning can occur only for
*ADDLL function output time stamps.

cc bb aaaa Meaning

Description of the macros CTIME

U3291-J-Z125-16-76 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

The calling program is terminated when the following errors occur:
– The data area is not assigned to the caller.
– The data area is not aligned on a doubleword boundary.
– The data area is protected against write access.

Example illustrating utilization of a user-specific CHDATEs table

TITLE 'GTIME and CTIME'
*

PRINT NOGEN,BASE
GPARMOD 31

*
CGTIME @ENTR TYP=M

BIND MF=E,PARAM=BINDPLG
BIND MF=E,PARAM=BINDPLC

*
LA R1,GTPAR1
USING NTIGPL,R1
MVC NTIGCHD(NTIGCHDL),=A(0,128) ———————————————————————————— (1)
LA R3,CHDATES ——— (2)

*
@CYCL ,
GTIME MF=E,PARAM=(R1),LINKADR=AENTRYG ———————————————————————— (3)
MVC 0(NTIGCHDL,R3),NTIGCHD ————————————————————————————————— (4)
LA R3,NTIGCHDL(R3) —— (5)

*
@WHEN NE
CLC NTIGRET,=A(0)
@BREA , —— (6)

*
@BEND ,

*
**
* Following this part of the program, the system's CHDATES are *
* already stored in the CHDATES memory area. *
**
*
DTH1 LA R1,CTPAR2

USING NTICPL,R1
CTIME MF=M,CHDLOUT=CHDATES

*
RDATA MF=(E,READDATE) —— (7)
LA R1,CTPAR2
USING NTICPL,R1
MVC NTIC1MD(L'DATEDATE),DATEDATE ——————————————————————————— (8)
MVC NTIC1MT(L'DATETIME),DATETIME
MVC NTIC3MZ(14),=C'+01:00:-01:00-'

CTIME Description of the macros

374 U3291-J-Z125-16-76

CTIME MF=E,PARAM=(R1),LINKADR=AENTRYC ———————————————————————— (9)
*
END @EXIT
*
**
* With the above section of the program, RDATA is used to read in a *
* date in the format "yyyy mm dd hh mm ss" from the terminal and to *
* convert it using the CTIME from UTC to FZ, taking into account the *
* CHDATEs table. The event is shown in ISO4 format in the parameter *
* list in the output time stamp. *
**
*
READDATE RDATA INDATE,0,MF=L —— (10)
*
INDATE DS 0CL30
DATELEN DS CL2
DATERES DS CL2
DATEDATE DS CL10
DATESPAC DS CL1
DATETIME DS CL8
*
GTPAR1 GTIME MF=L,CHDATE=NEXT ––– (3)
*
CTPAR2 CTIME MF=L,FUNCT=*CONV,BASE1IN=*UTC,FRM1IN=*ISO4, C

BASEOUT=*LTI,FRMOUT=*ISO4 –––––––––––––––––––––––––––––––––– (9)
*
CHDATES DS 100D ——— (11)
*
BINDPLG BIND MF=L,SYMBOL=I@GTIME,SYMBLAD=AENTRYG
BINDPLC BIND MF=L,SYMBOL=IGTCTI,SYMBLAD=AENTRYC
*
AENTRYG DS A
AENTRYC DS A
*

@END ,
**
* DSECTs *
**
*
NTICPL CTIME MF=D
NTIGPL GTIME MF=D

END

(1) Default setting of the GTIME parameter list with a value that ensures that the
subsequent CHDATEs are supplied in chronological order.

(2) The storage address of the CHDATE is loaded in register R3.

(3) The GTIME call fetches the first or next CHDATE.

Description of the macros CTIME

U3291-J-Z125-16-76 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

(4) Secured in the storage area.

(5) The pointer to the CHDATEs table is incremented by X'08'.

(6) The loop should be quit if there is no next CHDATE (or in the event of an error).

(7) The RDATA requires that a date be entered via a data display terminal. The date
must be entered in the format yyyy-mm-dd hh:mm:ss (it is not necessary to enter the
divider; it is sufficient to enter a blank in each case).

(8) The CTIME data area is supplied with date and zone.

(9) The input time stamp is converted from UTC to LTI. Both the output and input time
stamps should be in ISO4 format.

(10) RDATA data area with definition of the entry field INDATE.

(11) Area definition for up to 100 CHDATEs.

Runtime log

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,cgtime), -
// compiler-action=module-generation(module-format=llm), -
// macro-library=$tsos.syslib.assembh.012, - —————————————————— (12)
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,cgtime)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 1605 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 101 MSEC
//end
% ASS6012 END OF ASSEMBH
/add-file-link link-name=blslib00,file-name=$tsos.syslib.assembh.012 —— (13)
/load-executable-program library=macexmp.lib,element-or-symbol=cgtime, -
/ dbl-parameters=*par(resolution=*par(alternate-libraries=*yes))
% BLS0523 ELEMENT 'CGTIME', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'CGTIME', VERSION ' ' OF '<date> <time>' LOADED
/%in dth1 <%d %@(chdates) -> %xl96> —————————————————————————————————— (14)
/%in end <%d indate,%1 -> %xl232> ————————————————————————————————————— (15)
/%r

CTIME Description of the macros

376 U3291-J-Z125-16-76

*** TID: 005000D8 *** TSN: 2QSE **
CURRENT PC: 0000006A CSECT: CGTIME *************************************
V'00000208' = CGTIME + #'00000208' ————————————————————————————————— (16)
00000208 (00000208) 008FF960 489C4000 0090D566 AC464001 ..9-.. ...N... .
00000218 (00000218) 0091BA3A 1E2A4000 00929F0D 900E4001 .j.... ..k.... .
00000228 (00000228) 009383E1 01F24000 009468B4 73D64001 .lc..2 ..m...O .
00000238 (00000238) 00954D87 E5BA4000 0096325B 579E4001 .n(gV. ..o.$.. .
00000248 (00000248) 0097172E C9824000 009804CF 49A04001 .p..Ib ..q.... .
00000258 (00000258) 00FFFFFF FFFFFF00 0099CE76 2D684001 .~~~~~~..r.... .
*2012-01-20 14:36:35 —— (17)
SRC_REF: 230 SOURCE: CGTIME PROC: CGTIME *******************************
INDATE = |....2012-01-20 14:36:35.......|
CURRENT PC: 00000098 CSECT: CGTIME *************************************
V'00000120' = CGTIME + #'00000120' —————————————————————————————————— (18)
00000120 (00000120) 00050702 00000000 01010001 01010001
00000130 (00000130) 02010000 01010100 F2F0F1F2 60F0F1602012-01-
00000140 (00000140) F2F0F0F0 F0404040 F1F47AF3 F67AF3F5 20000 14:36:35
00000150 (00000150) 00000000 00000000 00000000 00000000
00000160 (00000160) 00000000 00000000 F0F0F0F0 60F0F0600000-00-
00000170 (00000170) F0F0F0F0 F0404040 F0F07AF0 F07AF0F0 00000 00:00:00
00000180 (00000180) 00000000 00000000 00000000 00000000
00000190 (00000190) 00000000 00000000 4EF0F0F0 F0F0F0F0+0000000
000001A0 (000001A0) F0F0F060 F0F07AF0 F07AF0F0 00000000 000-00:00:00....
000001B0 (000001B0) 00000000 00000000 F2F0F1F2 60F0F1602012-01-
000001C0 (000001C0) F2F0F0F2 F040C6D9 F1F57AF3 F67AF3F5 20020 FR15:36:35
000001D0 (000001D0) 4EF0F17A F0F060F0 F17AF0F0 60E6F0F0 +01:00-01:00-W00
000001E0 (000001E0) F0F0F0F0 00000208 00000000 0000016C 0000...........%
000001F0 (000001F0) 00000000 00000000 00000000 00000000
00000200 (00000200) 00000000 00F8C1808A.

(12) During assembly, the library containing the necessary @ macros for structured
programs is specified.

(13) In order to run structured programs, the library with the @ macros will also be
required. Here it is assigned in the load call using the link name BLSLIB00 and the
specification ALTERNATE-LIBRARIES=*YES.

(14) The CHKDATEs table is to be output at the symbolic address DTH1.

(15) The INDATE field and the operand list are to be outpout at the symbolic address
END. After a successful CTIME call, the start address of the operand list is
contained in register R1. The operand list is 232 bytes in length (this information is
obtained by releasing the DSECT with CTIME MF=D).

(16) The symbolic address DTH1 has been reached. The table of the CHDATEs is
output. 10 CHDATES are currently recognized in the system. They are in TODR
format, shifted 1 byte to the right.
The system marks the end of the CHDATEs table with X'00FFFFFF FFFFFF00'.

Description of the macros CTIME

U3291-J-Z125-16-76 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

(17) Entry of a time stamp is requested (Prompt “*”).

(18) The symbolic address END has been reached. The contents of the field INDATE
are output: The time stamp entered was read in correctly by RDATA.

Output of the operands list:

– The first input time stamp of the operand list corresponds to the time stamp
“2012-01-20 14:36:35” read in by RDATA. The time basis is UTC. The time
stamp is in ISO4 format.

– The second input time stamp and the input timespan was not specified.
– The output time stamp (based on LTI) is in ISO4 format and contains the

following information:
The day specified is the 20th day of the year, a Friday.
The current time has been recalculated. The LTI time is “15:36:35”.
The zone information “+01:00-01:00-W” shows that the zone difference
between UTC and LTI is one hour and the difference between daylight saving
time and standard time is also one hour, and that now is standard time (“W” as
“winter“, standard time; summer time would be indicated by “S” as “summer”).

– No output timespan was calculated.

CUPAB Description of the macros

378 U3291-J-Z125-16-76

CUPAB – Address operand list (24-bit interface)

General

Application areas: Requesting and accessing lists and tables; see page 155
Input/output; see page 156

Macro type: Type O; see page 28

The description applies to TIAM V13.2A.

The CUPAB macro may be used only in 24-bit addressing mode.
In 31-bit addressing mode, the form MF=F/D of the appropriate input/output macro
(RDATA, WROUT, WRTRD) must be used.

Macro description

The CUPAB macro (Communication User PArameter Block) macro allows the user to
address symbolically the fields and flags in the operand lists for the RDATA, WROUT and
WRTRD macros. For this purpose, CUPAB generates a dummy section (DSECT) for the
operand list with 24-bit addresses.

Macro format and description of operands

name
When this entry is specified, it is used as the DSECT name. When it is omitted, CUPAB is
automatically generated as the DSECT name.

D
D generates a dummy section (DSECT) for the operand list. When this operand is omitted,
an MNOTE message is issued.
DSECT generation is not affected.

[name] CUPAB

D

Description of the macros CUPAB

U3291-J-Z125-16-76 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

The field names generated by the macro and their characteristics are as follows:

– RDATA operand table:

– WROUT operand table:

– WRTRD operand table:

Field Name Byte Meaning

CURAREAW
CUREDIT1
CURAREA
CURFTB
CUREDIT2
CURALEN
CURERRW
CURACI
CURERROR

0 - 3
0
1 - 3
4
5
6 - 7
8 - 11
8
9 - 11

Full word containing CUREDIT1 and CURAREA.
Input edit option byte 1.
Address of user input area (in CURAREAW).
Flag.
Input edit option byte 2.
Length of user input area.
Full word containing CURACI and CURERROR.
Assignment change indicator for SYSDTA
Error address (in CURERRW).

L@RDATAB Length of RDATA operand table.

Field Name Byte Meaning

CUWMSGW
CUWEDIT1
CUWMSG
CUWERRW
CUWEDIT2
CUWERROR

0 - 3
0
1 - 3
4 - 7
4
5 - 7

Full word containing CUWEDIT1 and CUWMSG.
Output edit option byte 1.
Address of the message in the user program.
Full word containing CUWEDIT2 and CUWERROR.
Output edit option byte 2.
Error address.

L@WROUTB Length of the WROUT operand table.

Field Name Byte Meaning

CUBMSGW
CUBOEDT1
CUBMSG
CUBAREAW
CUBIEDT1
CUBAREA
CUBOEDT2
CUBIEDT2
CUBALEN
CUBERRW
reserviert
CUBERROR

 0 - 3
 0
 1 - 3
 4 - 7
 4
 5 - 7
 8
 9
10 - 11
12 - 15
12
13 - 15

Full word containing CUBOEDT1 and CUBMSG.
Output edit option byte 1.
Address of message output area.
Full word containing CUBIEDT1 and CUBAREA.
Input edit option byte 1.
Input area address.
Output edit option byte 2.
Input edit option byte 2.
Length of user input area.
Full word containing CUBERROR.
-
Error address.

L@WRTRDB Length of the WRTRD operand table.

CUPAB Description of the macros

380 U3291-J-Z125-16-76

Symbolic constants for edit bytes 1 and 2

As well as defining field names for the RDATA, WROUT and WRTRD operand tables,
CUPAB also defines symbolic constants for the values of the edit, edit1 and edit2 operands.

The following tables provide an overview of the names of the symbolic constants defined
by CUPAB, their current values and equivalent symbolic edit operands when MODE is
specified, and also indicate whether or not they are valid in the various modes.

a) Output edit option byte 1

b) Output edit option byte 2

CUPAB name Bit Corresponding
MODE operand

valid (X) or mandatory (1)
for MODE=

COMP LINE FORM PHYS

CWR1CODE 20 OTRSUP= X 0 0 0

CWR1LNET 21 OLINEND= X 0 1 1

22 reserved for MODE= 0 1 0 1

CWR1RSET 23 OMANUAL= X 0 0 0

CWR1HOM 24 OHOM= 0 X 0 0

CWR1PTPE 25 OPTAPE= X 0 0 0

26 reserved for MODE= 0 0 1 1

CWR1HARD 27 OHCOPY= X X 0 X

CUPAB name Bit Corresponding
MODE operand

valid (X) or mandatory (1)
for MODE=

COMP LINE FORM PHYS

CWR2HDR 20 OHDR= X 0 1 X

CWR2NOLC 21 ONOLOGC= 0 X 0 0

CWR2EXT 22 EXTEND= 0 X 0 0

CWR2INFO 23 OINFO= 0 X 0 0

24 reserved 0 0 0 0

CWR2POSN 25 ONOPOSN= 0 X 0 0

CWR2TRAN 25 OTRANS= 0 0 0 X

CWR2BEL 26 OBELL= 0 X 0 0

CWR2ETB 27 OETB= 0 0 0 X

Description of the macros CUPAB

U3291-J-Z125-16-76 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

1
60

3
80

5
_m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.v
0

5\
ab

c.
do

c

c) Input edit option byte 1)

d) Input edit option byte 2

The following applies to operands where bits are not reserved:

For the meaning of the MODE operands (and the associated bits of the input and output
edit option bytes) refer to the operand descriptions for the RDATA, WROUT and WRTRD
macros.

CUPAB name Bit Corresponding
MODE operand

valid (X) or mandatory (1)
for MODE=

COMP LINE FORM PHYS

CRD1CODE 20 ITRSUP= X 0 0 X

CRD1LNET 21 ILINEND= X 0 1 1

CRD1BACK 22 IGETBS= X X X X

CRD1RSET 23 IMANUAL= X 0 0 0

CRD1LCT 24 ILCASE= X X X X

25 reserved for MODE= 0 1 0 1

26 reserved for MODE= 0 0 1 1

CRD1HDR 27 IHDR= X 0 1 X

CUPAB name Bit Corresponding
MODE operand

valid (X) or mandatory (1)
for MODE=

COMP LINE FORM PHYS

CRD2GFC 20 IGETFC= 0 X 0 0

21 reserved 0 0 0 0

CRD2CFD 22 ICFD= 0 X 0 0

CRD2GIC 23 IGETIC= 0 X 0 0

24 reserved 0 0 0 0

CRD2EXT 25 EXTEND= 0 X 0 1

26 reserved 0 0 0 0

27 reserved 0 0 0 0

MODE operand Associated bit

= Y set (1)

= N reset (0)

DCSTA Description of the macros

382 U3291-J-Z125-16-76

DCSTA – Generate operand table for terminal attributes

General

Application areas: Requesting and accessing lists and tables; see page 155
Input/output; see page 156

Macro type: Type O; see page 28

● The description applies to VTSU V13.3A

Macro description

The DCSTA macro (Data Communication STation Attributes) supports the TSTAT macro.
DCSTA is used to generate receiving fields or symbolic field names (DSECT) for the
information supplied by the TSTAT macro.

Macro format and description of operands

name
Becomes the symbolic name for the first DS statement in the macro expansion if the C
operand is specified (the length attribute is zero).
If the D operand is specified, the “name” operand specifies the name of the dummy section
(DSECT).

If the “name” operand is omitted, the system forms a name from the valid prefix (see the
“prefix” operand) and the operand value for TYPE.

C
A storage area with symbolic addresses is generated. In the TSTAT call, this area may be
specified as receiving field. No CSECT statement is generated.

D
A dummy section (DSECT) is generated together with a DSECT statement. The symbolic
name generated can be used to address a receiving field previously defined for the TSTAT
macro.

[name] DCSTA

D / C

[,prefix]

,TYPE=TCHAR / PHDIM / LIDIM / VDT[YP] / EDOPT / OFLOW / STNAM / PRNAM / ALL / MONCS /

PERPH / BASIC

Description of the macros DCSTA

U3291-J-Z125-16-76 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

prefix
The prefix may consist of 1 to 3 characters, which are to appear at the beginning of the
generated field names. The specified prefix replaces the characters “STA”, the default
value for the field name prefix.

TYPE=
Specifies which receiving field or which field names are to be generated:

TCHAR
Requests data terminal characteristics.

PHDIM
Requests physical data terminal characteristics.

LIDIM
Requests logical data terminal characteristics.

VDT[YP]
Requests logical data terminal type.

EDOPT
Static edit options.

OFLOW
Requests overflow control type values.

STNAM
Requests data terminal name.

PRNAM
Requests processor name.

ALL
Requests information from TCHAR to PRNAM.

MONCS
Description of monitor and character sets.

PERPH
Requests connected peripherals.

BASIC
Basic information on the data terminal.

DCSTA Description of the macros

384 U3291-J-Z125-16-76

Functional description

If the TSTAT macro is used to request information, the receiving field may be defined either
explicitly or with the DCSTA C,... macro. If the receiving field has been explicitly defined,
the DCSTA D,... macro may be used to generate a dummy section (DSECT), i.e. an
address structure for the receiving field, by means of a USING statement. In order to
interrogate bit values, the DCSTA macro generates symbolic constants with which the field
contents may be compared.

The field names which DCSTA generates by default may be seen in the macro expansion
in the example. All of them start with the letters STA. Any string may be selected to replace
these characters.

The start addresses of the receiving fields generated by the DCSTA C,... macro must be
specified in the TSTAT macro.

The default start addresses are as follows:

STATCHAR STASTNAM
STAPHDIM STAPRNAM
STALIDIM STAALL
STAVDT STAMONCS
STAEDOPT STAPERPH
STAOFLOW STABASIC

Return information and error flags

Description of the transferred information: see the following pages

R15:
A return code relating to the execution of the macro
DCSTA is transferred in the rightmost byte of register
R15.

a a

Return code Meaning

X'00' Normal termination

X'04' Unrecoverable error

X'08' Error in the operand list

X'0C' No participant data terminal available

X'10' Length of the receiving field is too short: only part of the information was given when
the operand ALL was output.
In all other operands no information is transferred.

X'14' The desired information is (partly) not available

Description of the macros DCSTA

U3291-J-Z125-16-76 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

● TCHAR:Physical type (area length: 8 bytes)

Byte Symb. name Meaning

0 STAPTTYP Partner type:

(STADCAMP)
(STADCAMT)

Partner is a DCAM program
Partner is a data terminal

1 STADVTYP Device type, e.g.:

(STAD1000)
(STAD100E)
(STADT100)
(STADPT80)
(STAD8110)
(STAD8151)
(STAD8152)
(STAD8160)
(STAD8162)
(STAD9731)
(STAD9750)
(STAD9751)
(STAD9752)
(STAD9753)
(STAD9754)
(STAD9755)
(STAD9763)
(STAD8122)
(STAD8121)
(STAD9001)
(STAD9002)
(STAD9003)
(STAD9004)
(STAD9012)
(STAD9013)
(STAD0131)
(STAD0189)
(STAD9022)
(STAD1118)
(STAD1119)
(STAD3270)
(STADHOST)
(STADAP)
(STAD9021)
(STAD3287)
(STAD9014)
(STAD9026)
(STADFE)

T1000 Printer Terminal
FS100-E Printer Terminal
T100 Printer Terminal
PT80 Printer Terminal
8110 Printer Terminal
8151 Data Display Terminal
8152 Data Display Terminal
8160 Data Display Terminal
8162 Data Display Terminal
9731 Graphics Workstation
9750/9749 Data Display Terminal
9751 Data Display Terminal
9752 Data Display Terminal
9753 Data Display Terminal
9754 Data Display Terminal
9755 Data Display Terminal
9763 Data Display Terminal
8122 Printer
8121 Printer
9001 Printer
9002 Printer
9003 Printer
9004 Printer
9012 Printer
9013 Printer
9001-31 Printer
9001-8931 Printer
9022 Printer
9011-18 Printer
9011-19 Printer
3270 Data Display Terminal
Program in the server
Workstation
9021 Printer
3287 Printer
9014 Printer
9026 Printer (HDLC, 9025 compatible)
Front-End Data Display Terminal (FHS-DOORS)

DCSTA Description of the macros

386 U3291-J-Z125-16-76

Notes

– The 9749 Data Display Terminal can be generated as a separate device type in the
PDN. However, for application programs, it is always displayed as the 9750 Data
Display Terminal when the TSTAT macro is used.

– The 9758 M4 Data Display Terminal can be generated in the PDN as the 9755 or 9763
Data Display Terminal. However, for application programs, it is always displayed as the
9755 Data Display Terminal when the TSTAT macro is used.

2 STATCHR2 Character set:

(STATC2EX)
(STATC2LC)
(STATC2DT)
(STATC2DF)

Second character set available
Lowercase notation available
German (instead of international) keyboard generated
Byte 2 is defined

3 STATCHR3 Device options at the data display terminal:

(STATC3H1)
(STATC3H2)
(STATC3IC)
(STATC3AP)
(STATC3GF)
(STATC3DZ)
(STATC3DF)

Local hardcopy printer generated or assigned with TCHNG
Central hardcopy printer generated or assigned with TCHNG
ID card reader generated or assigned with TCHNG
APL option generated or assigned with TCHNG
Graphics option generated or assigned with TCHNG
Decentralized formatting
Byte 3 is defined

4 STATCHR4 Data display terminal functions

(STATC4CO)
(STATC4ZF)
(STATC4ST)
(STATC4HI)
(STATC4C8)
(STATC4HP)
(STATC4DF)

4 colors
Character and field attributes
Status of the terminal possible
Hardware system line available
8 colors
HP Laser Jet II
Byte 4 is defined

5 STATTCHRS Information from the status message

(STATTCSDT)
(STATTCSHC)
(STATTCSIC)
(STATTCSDF)

German keyboard connected
Local hardcopy unit connected
ID card reader connected
Status of the terminal available

6 STACTRLU Type of printer controller when the data terminal is a printer,
X' 00 for 8112 Printer Controller, generated device type (see above) for
data display terminals

7 STACHCAD Channel address of the central hardcopy unit

Byte Symb. name Meaning

Description of the macros DCSTA

U3291-J-Z125-16-76 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

● PHDIM:Physical attributes (area length: 8 bytes)

Bit 215 = 1 means in each case: value is not available.

● LIDIM:Logical attributes (line mode) (area length: 8 bytes)

Bit 215 = 1 means in each case: value is not available.

Byte Symb. name Meaning

0-1 STALLEN Physical line length

2-3 STANOLIN Physical line number
(unrestricted for printer terminals: X' 7FFF')

4-5 STAMAXDB Maximum physical device buffer, i.e. maximum number of characters
which can be sent to the data terminal with one output call.
X' 7FFF' (unrestricted): Restricted only by access method or line.

6-7 - Reserved

Byte Symb. name Meaning

0-1 STALLLEN Number of characters per physical line in line mode, where ' NL' in the
text is to be counted as two characters.

2-3 STALNOLN Number of physical lines which can be output in line mode without the
overflow control reacting.

4-5 STALMAXB Number of characters which can be sent in a message in line mode
without the overflow control reacting (generally lines multiplied by
columns minus 1).

6-7 - reserved

DCSTA Description of the macros

388 U3291-J-Z125-16-76

● VDT[YP]:Logical type (area length: 8 bytes)

● EDOPT:Static edit options (area length: 8 bytes)

The symbolic operands of the WRTRD macro are used for representation.

Byte Symb. name Meaning

0 STAVDT Logical device type:

(STALINCP)
(STAFORCP)
(STACMPCP)

(STAFYSCP)
(STAEXLCP)
(STAAUTLF)
(STANOINP)
(STAEOM=0)
(STAEOM=1)

Lines/page data terminal (LINE MODE)
Format data terminal (FORM MODE)
Data display terminal support compatible with earlier versions of
operating system (COMP MODE)
Physical data terminal support (PHYS MODE)
Line/page data terminal (ext. LINE MODE)
Automatic line feed for printers
Data terminal is a printer
Data terminal is a printer terminal
Data terminal is a data display terminal

1 STAVDTPR Logical device protocol:

(STATD810)
(STAT3270)

810 Protocol
3270 Protocol

2-7 - reserved

Byte Symb. name Meaning

0 STASEWR1 Output edit byte 1

(STAWR1MM)

(STAWR1CD)

(STAWR1LE)

(STAWR1RE)

(STAWR1HO)

(STAWR1PT)

(STAWR1HC)

Mask for output edit mode
=STAWR1CO: MODE=COMP
=STAWR1LI: MODE=LINE
=STAWR1FO: MODE=FORM
=STAWR1FY: MODE=PHYS
=1: OTRSUP =Y
=0: =N
=1: ONLINEND =Y
=0: =N
=1: OMANUAL =Y
=0: =N
=1: OHOM =Y
=0: =N
=1: OPTAPE =Y
=0: =N
=1: OHCOPY =Y
=0: =N

Description of the macros DCSTA

U3291-J-Z125-16-76 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

1 STASEWR2 Output edit byte 2

(STAWR2HD)

(STAWR2NO)

(STAWR2EX)

(STAWR2ET)

(STAWR2BL)

(STAWR2TP)

(STAWR2IM)

(STAWR2PN)

=1: OHDR =Y
=0: =N
=1: ONOLOGC =Y
=0: =N
=1: EXTEND =Y
=0: =N
=1: OETB =Y
=0: =N
=1: OBELL =Y
=0: =N
=1: OTRANS =Y
=0: =N
=1: OINFO =Y
=0: =N
=1: ONOPOSN =Y
=0: =N

2 STASERD1 Input edit byte 1

(STARD1MM)

(STARD1CD)

(STARD1LE)

(STARD1BS)

(STARD1PT)

(STARD1LC)

(STARD1HD)

Mask for input edit mode
=STARD1CO: MODE=COMP
=STARD1LI: MODE=LINE
=STARD1FO: MODE=FORM
=STARD1FY: MODE=PHYS
=1: ITRSUP =Y
=0: =N
=1: ILINEND =Y
=0: =N
=1: IGETBS =Y
=0: =N
=1: IMANUAL =Y
=0: =N
=1: ILCASE =Y
=0: =N
=1: IHDR =Y
=0: =N

3 STASERD2 Input edit byte 2

(STARD2FC)

(STARD2IC)

(STARD2CF)

(STARD2EX)

=1: IGETFC =Y
=0: =N
=1: IGETIC =Y
=0: =N
=1: ICFD =Y
=0: =N
=1: EXTEND =Y
=0: =N

Byte Symb. name Meaning

DCSTA Description of the macros

390 U3291-J-Z125-16-76

● OFLOW:Control for screen overflow (area length: 8 bytes)

● STNAM:Name of the terminal, as specified in the PDN (area length: 8 bytes)

● PRNAM:Name of the server to which the terminal is connected, as specified in the RDF
generation (area length: 8 bytes)

● ALL

The symbolic addresses of the table fields are defined as above. The subarea sequence is
as follows:

TCHAR, PHDIM, LIDIM, VDTYP, EDOPT, OFLOW, STNAM, PRNAM

Note
If TYPE=ALL is specified, the area size is 64 bytes. TYPE=ALL does not include
MONCS, PERPH and BASIC.

4-7 - reserved

Byte Symb. name Meaning

0 STAOFLOW Type of overflow control:

(STAOFCTM)

(STAOFCAK)
(STAOFCTL)

(STAOFPGM)

Bit 20=1 Overflow control when using the timer.
 Waiting time with n seconds (hexadecimal input) according to
 STAOFTIM
Bit 21=1 Overflow control with acknowledgement request when
overflow
 occurs
Bit 20=0 No overflow control
Bit 21=0 No overflow control
Bit 25=0 Overflow control by the system
Bit 25=1 Overflow control by the user (see TCHNG macro,
 MODIFY-TERMINAL-OPTIONS command)

1 STAOFTIM Waiting time (hexadecimal input in seconds).

2 - 7 - reserved

Byte Symb. name Meaning

0-7 STASTNAM Name of the terminal

Byte Symb. name Meaning

0-7 STAPRNAM Name of the server

Byte Symb. name Meaning

Description of the macros DCSTA

U3291-J-Z125-16-76 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

● MONCS: Description of monitor and character sets (area length: at least 14 bytes)

Information is supplied in the status message from the data terminal, when this is available,
otherwise default values are assumed.

Byte Symb. name Meaning

0 STAMOCPR Status message from the terminal

(STAMOCY)

(STAMOCN)

Status message available. The following data is taken from the status
message.
No status message. VTSU default values are assumed for the following
information.

1 STAMOTYP Terminal monitor type

(STAMONO)
(STACOLOR)
(STAPRINT)

Data terminal with a monochrome screen
Data terminal with a color screen
Data terminal is a printer

2 STAFAT Field attributes

(STAFATY)
(STAFATN)

Field attributes can be used
Field attributes cannot be used

3 - reserved

4 STADIM1 Screen size 24 lines x 80 characters

(STADIMY)
(STADIMN)

Format is supported (can be addressed with DIM)
Format is not supported (not addressable with DIM)

5 STADIM2 Screen size 32 lines x 80 characters

(STADIMY)
(STADIMN)

Format is supported (addressable with DIM)
Format is not supported (not addressable with DIM)

6 STADIM3 Screen size 43 lines x 80 characters

(STADIMY)
(STADIMN)

Format is supported (addressable with DIM)
Format is not supported (not addressable with DIM)

7 STADIM4 Screen size 27 lines x 132 characters

(STADIMY)
(STADIMN)

Format is supported (addressable with DIM)
Format is not supported (not addressable with DIM)

8-11 - reserved

12-13 STACSNO Number of addressable character sets

14 STACS0T Character set type 0

(STACSSIN)
(STACSTRI)
(STACSNO)

Loadable monochrome character set
Loadable color character set
Nonloadable character set

DCSTA Description of the macros

392 U3291-J-Z125-16-76

15 STACSOS Character set status 0

(STACSNLO)
(STACSDSS)
(STACSDVN)
(STACSDVA)

Character set can be loaded
Character set has been reserved by the data display terminal
Character set has been loaded by the data processing system
Character set has been loaded and assigned by the data processing
system

16 STACS1T Character set type 1

(STACSSIN)
(STACSTRI)
(STACSNO)

Loadable monochrome character set
Loadable color character set
Nonloadable character set

17 STACS1S Character set status 1

(STACSNLO)
(STACSDSS)
(STACSDVN)
(STACSDVA)

Character set can be loaded
Character set has been reserved by the data display terminal
Character set has been loaded by the processor
Character set has been loaded and assigned by the processor

18 STACS2T Character set type 2

(STACSSIN)
(STACSTRI)
(STACSNO)

Loadable monochrome character set
Loadable color character set
Nonloadable character set

19 STACS2S Character set status 2

(STACSNLO)
(STACSDSS)
(STACSDVN)
(STACSDVA)

Character set can be loaded
Character set has been reserved by the data display terminal
Character set has been loaded by the processor
Character set has been loaded and assigned by the processor

20 STACS3T Character set type 3

(STACSSIN)
(STACSTRI)
(STACSNO)

Loadable monochrome character set
Loadable color character set
Nonloadable character set

21 STACS3S Character set status 3

(STACSNLO)
(STACSDSS)
(STACSDVN)
(STACSDVA)

Character set can be loaded
Character set has been reserved by the data display terminal
Character set has been loaded by the processor
Character set has been loaded and assigned by the processor

22 STACS4T Character set type 4

(STACSSIN)
(STACSTRI)
(STACSNO)

Loadable monochrome character set
Loadable color character set
Nonloadable character set

Byte Symb. name Meaning

Description of the macros DCSTA

U3291-J-Z125-16-76 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Bytes 14-29 are omitted when the length of the status area is inadequate, without giving a
return code. Information on character sets is only given when the character sets can be
addressed via bytes 12-13.

23 STACS4S Character set status 4

(STACSNLO)
(STACSDSS)
(STACSDVN)
(STACSDVA)

Character set can be loaded
Character set has been reserved by the data display terminal
Character set has been loaded by the processor
Character set has been loaded and assigned by the processor

24 STACS5T Character set type 5

(STACSSIN)
(STACSTRI)
(STACSNO)

Loadable monochrome character set
Loadable color character set
Nonloadable character set

25 STACS5S Character set status 5

(STACSNLO)
(STACSDSS)
(STACSDSS)
(STACSDVN)
(STACSDVA)

Character set can be loaded
Character set has been reserved by the data display terminal
Character set has been loaded by the processor
Character set has been loaded and assigned by the processor

26 STACS6T Character set type 6

(STACSSIN)
(STACSTRI)
(STACSNO)

Loadable monochrome character set
Loadable color character set
Nonloadable character set

27 STACS6S Character set status 6

(STACSNLO)
(STACSDSS)
(STACSDVN)
(STACSDVA)

Character set can be loaded
Character set has been reserved by the data display terminal
Character set has been loaded by the processor
Character set has been loaded and assigned by the processor

28 STACS7T Character set type 7

(STACSSIN)
(STACSTRI)
(STACSNO)

Loadable monochrome character set
Loadable color character set
Nonloadable character set

29 STACS7S Character set status 7

(STACSNLO)
(STACSDSS)
(STACSDVN)
(STACSDVA)

Character set can be loaded
Character set has been reserved by the data display terminal
Character set has been loaded by the processor
Character set has been assigned and loaded by the processor

Byte Symb. name Meaning

DCSTA Description of the macros

394 U3291-J-Z125-16-76

● PERPH: Connected peripherals (area length: 8 bytes)

Information is given in the status message from the data terminal, when this is available,
otherwise it is supplied from the generation.

● BASIC: Basic information on the data terminal (area length: 24 bytes)

Information is given in the status message from the data terminal, when this is available,
otherwise it is supplied from the generation or VTSU-B default values are assumed.

If you specify a length greater than 24 and less than 33 bytes, information is only returned
for bytes 0-23.

If you specify a length of 33 bytes, information is only returned for bytes 0-32. If XHCS is
not loaded or if the terminal does not support extended character sets, no information is
supplied on the terminal type and the extended standard name.

If you specify a length greater than 33 bytes and less than 52 bytes and the data display
terminal works in 8-bit mode, the first byte of this area is set to X'00'. The information
received is truncated because the specified area is too small.

If you specify a length of 52 bytes, information is returned only for bytes 0-51. Bytes that
are not required are set to X'00'. No information is provided for printers.

If you specify a length of 60 bytes, information is returned for bytes 0-59. Bytes that are not
required are set to X'00'.

If you specify a length of 64 bytes, the information returned is complete (bytes 0-63).

Byte Symb. name Meaning

0 STAPERPR Status of the terminal

(STAPERY)
(STAPERN)

Status message from the data terminal available
No status message available from the data terminal

1-2 - reserved

3 STALOCHC Local hardcopy unit

(STALHCY)
(STALHCN)

Local hardcopy unit connected
No local hardcopy unit connected

4-5 - reserved

6 STAIDCAR ID card reader

(STAIDCY)
(STAIDCN)

ID card reader connected
No ID card reader connected

7 STACKT Chipcard terminal

(STACKTY)
(STACKTN)

Chipcard terminal connected
No chipcard terminal connected

Description of the macros DCSTA

U3291-J-Z125-16-76 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Bytes that are not required are set to X'00'.

Byte Symb. name Meaning

0 STAINFO Terminal status

(STAINFOY)
(STAINFON)

Status message from the terminal is available
No status message from the terminal

1 STAINFP Status from the terminal

(STAINFPY)
(STAINFPN)

Status message from the terminal possible
No status message is expected from the terminal

2-9 STAPTNAM Printable data terminal type

TYP00
DSS-X.29
RECHNER
SS-8102
DSS-8151
DSS-8152
SS-8110
SS-8121
FS100
FS100-E
DRS90037
DRS-8122
DSS-8162
DSS-8160

Unknown data terminal type
X.29 data display terminal
PROCESSOR
8102 Printer
8151 Data Display Terminal
8152 Data Display Terminal
8110 Teleprinter
8121 Printer
T100 Teleprinter
FS100-E Teleprinter
90037 Printer
8122 Printer
8162 Data Display Terminal
8160 Data Display Terminal

2-9 STAPTNAM Printable data terminal type

DRS-8124
AP
SST-X.29
DSS-9750
DRS-9003
DSS-9770
DRS-9002
DSS-3974
DSS-9751
DSS-9752
DSS-9753
DRS-9001
DSS-9731
DSS9770R
DRS-9004
DSS-9754
DSS-9755
DSS-9763
DRS-9012

8124 Printer
Application program
X.29 teleprinter
9750 or 9749 Data Display Terminal
9003 Printer
9770 Data Display Terminal
9002 Printer
3974 Data Display Terminal
9751 Data Display Terminal
9752 Data Display Terminal
9753 Data Display Terminal
9001 Printer
9731 Data Display Terminal
9770R Data Display Terminal
9004 Printer
9754 Data Display Terminal
9755 Data Display Terminal
9763 Data Display Terminal
9012 Printer

DCSTA Description of the macros

396 U3291-J-Z125-16-76

2-9 STAPTNAM Printable data terminal type

(cont.) DRS-9013
DSS-3270
DRS-0131
DRS-0189
DRS-9022
DRS-1118
DRS-1119
DRS-3287
TCP-IP
DRS-9021
DRS-9014
DRS-9026
DSS-FE

9013 Printer
3270 Data Display Terminal
9001-31 Printer
9001-8931 Printer
9022 Printer
9011-18 Printer
9011-19 Printer
3287 Printer
TCP-IP application
9021 Printer
9014 Printer
9026 Printer (HDLC, 9025 compatible)
Front-End Data Display Terminal (FHS-DOORS)

10 STAHCOPY Local hardcopy unit

(STABLHCY)
(STABLHCN)

Local hardcopy unit connected
No local hardcopy unit connected

11 STAIDCR ID card reader

(STAIDCRY)
(STAIDCRN)

ID card reader connected
No ID card reader connected

12 STACOL Number of colors on the data terminal

(STACOLNO)
(STACOL4)
(STACOL8)

No colors
4 colors
8 colors

13-15 - reserved

16-19 STALINES Physical number of lines printable (decimal)
(from the generation or default values)

20-23 STACOLUM Physical number of characters per line printable (decimal)
(from generation or default values)

24 STATTYPE Terminal type

(STATYPE7)
(STATYPE8)

Terminal can work in 7-bit mode only.
Terminal can work in 7-bit or 8-bit mode.

25-32 STACURCH Extended standard name. The value is returned only if the data display
terminal supports 8-bit mode.

33 STACCSNN Number of 8-bit character sets supported

(STATRINF) X' 00' and STATYPE8 simultaneously: the length of the information to be
output exceeds the specified length. The information is truncated.

34 STACSS1 1st supported character set
The variant number is specified in hexadecimal form.

Byte Symb. name Meaning

Description of the macros DCSTA

U3291-J-Z125-16-76 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

35 STACSS2 2nd supported character set
The variant number is specified in hexadecimal form.

36 STACSS3 3rd supported character set
The variant number is specified in hexadecimal form.

37 STACSS4 4th supported character set
The variant number is specified in hexadecimal form.

38 STACSS5 5th supported character set
The variant number is specified in hexadecimal form.

39 STACSS6 6th supported character set
The variant number is specified in hexadecimal form.

40 STACSS7 7th supported character set
The variant number is specified in hexadecimal form.

41 STACSS8 8th supported character set
The variant number is specified in hexadecimal form.

42 STACSS9 9th supported character set
The variant number is specified in hexadecimal form.

43 STACSS10 10th supported character set
The variant number is specified in hexadecimal form.

44 STACSS11 11th supported character set
The variant number is specified in hexadecimal form.

45 STACSS12 12th supported character set
The variant number is specified in hexadecimal form.

46 STACSS13 13th supported character set
The variant number is specified in hexadecimal form.

47 STACSS14 14th supported character set
The variant number is specified in hexadecimal form.

48 STACSS15 15th supported character set
The variant number is specified in hexadecimal form.

49 STACSS16 16th supported character set
The variant number is specified in hexadecimal form.

50-51 - Reserved

52-59 STAACTCH Name of the extended character set activated. The name is returned only
if the data display terminal supports 8-bit mode.

60 STARMODE Physical read mode

(STARMODM)
(STARMODU)

Only modified fields are read.
All unprotected fields are read.

61 STALLECH Logical line-end symbol for data display terminals without equivalent
hardware functions.

Byte Symb. name Meaning

DCSTA Description of the macros

398 U3291-J-Z125-16-76

If less than 16 different variants are supported in STACCSn (bytes 34-49), the remaining
variant numbers (16-n) are set to X'00'.

Examples see TSTAT macro.

62 STASUBCH Substitute symbol for characters that are not X' 40' and are not logical
control characters.

63 STAPERHC Permanent hardcopy

(STAPERHY)

(STAPERHN)

All output messages for a data display terminal are printed out
simultaneously via a conn. hardcopy unit.
Output messages are not also logged as hardcopy.

Byte Symb. name Meaning

Description of the macros DELFEI

U3291-J-Z125-16-76 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

DELFEI – Delete SOLSIG or POSSIG entry

General

Application area: (Optimized) eventing; see page 94
Macro type: Type R; see page 28

Forward eventing (FEV) is an optimized form of synchronous eventing. FEV avoids the
need for repeated validation of the specified operands when POSSIG or SOLSIG calls are
made repeatedly in a program.

Macro description

The macro DELFEI refers to an entry created in the EVENTLST using either DSOFEI or
DPOFEI and deletes it from the EVENTLST. A DISEI call also deletes the associated
forward events (implicit DELFEI).

Macro format and description of operands

REFNUM=
Identifies a register which (directly) contains the reference number for the POSSIG entry.

(r)
Register which contains the reference number.

Return information and error flags

During execution of the macro, register R1 contains the reference number; register R0 is
overwritten with an internal function code.

DELFEI

REFNUM=(r)

R15:
A structured return code relating to the execution of
the macro DELFEI is transferred in Register 15
(aa=primary return code, bb=secondary return code).

b b a a

X'bb' X'aa' Meaning

X'00' X'00' Function executed: the entry in the EVENTLST has been deleted.

X'04' X'04' No action taken: incorrect reference number or entry already deleted.

DEQAR Description of the macros

400 U3291-J-Z125-16-76

DEQAR – Dequeue access request

General

Application area: (Task) serialization; see page 91
Macro type: Type S, MF format 1: standard/L/E form; see page 29

DEQAR generates the 24-bit or the 31-bit interface, depending on the specification. In the
event of macro chaining, the PARMOD operands of all macros chained must be given the
same value.

Macro description

The DEQAR macro terminates access to the specified serialization item (previously
requested with an ENQAR macro) by the task of the calling program. If another task is
entered in the queue for this serialization item, it is activated and allowed access to the item.
As an optional function, this macro can also be used to cancel the assignment (previously
established with ENASI) of the serialization item to the caller task.
The CONTINU operand allows chaining of up to 255 DEQAR macros.

Macro format and description of operands

DEQAR

,DISSI=NO / YES

,HOLDER=SELF / ANY

,CONTINU=NO / YES

[,PARMOD=24 / 31]

[,MF=L / (E, ..)]

SINAME=name
SINAMAD=addr / (r) [,SINAMLN=length]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

SIID=addr / (r)

Description of the macros DEQAR

U3291-J-Z125-16-76 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

SINAME=name
Specifies the name of the serialization item. The SCOPE operand must be added to ensure
the serialization item is uniquely identified.

SINAMAD=
Specifies the address of the name of the serialization item. Identification is unique only if
the SCOPE operand has also been specified.

addr
Symbolic address of the field containing the name.

(r)
Register containing the address.

SINAMLN=
Specifies the length in bytes of the serialization item name. The length must be at least
1 byte and not more than 54 bytes.
If the operand is missing, the length attribute of the SINAMAD operand is assumed if
SINAMAD=addr is specified; if SINAMAD=(r), the maximum length (54) is assumed.

length
Length of the serialization item name.

SCOPE=
Specifies the scope of the serialization item (i.e. the participant tasks authorized to use it):

LOCAL
The serialization item is only used by the task of the calling program.

GROUP
All the tasks with the same user ID as the calling task.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.
The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system.

This is why the GETUGR macro (see the “SECOS” manual [14] has to check whether
SRPM is available prior to a macro call with SCOPE=USER_GROUP. The program
reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

DEQAR Description of the macros

402 U3291-J-Z125-16-76

SIID=
Specifies the ID of the serialization item. The ID is provided to the user by the ENASI macro.
If this ID is used instead of the name of the serialization item, processing time is reduced.
A serialization item is uniquely identified by the ID.

addr
Symbolic address of a 4-byte field containing the ID.

(r)
Register containing the address.

DISSI=
Specifies whether use of the specified serialization item by the task of the calling program
is to be terminated (see the DISSI macro).

NO
Use is not to be terminated.

YES
Use is to be terminated.

HOLDER=
Specifies whether access is to be terminated if the task of the calling program also
requested the current access.

SELF
Access is terminated if the task of the calling program also requested the current
access.

ANY
When HOLDER=ANY is specified, access is terminated irrespective of which task
requested access.

CONTINU=
This operand allows chaining of up to 255 DEQAR macros.

NO
This is the last (or only) macro of a sequence.

YES
YES indicates that another DEQAR macro follows this macro.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

Description of the macros DEQAR

U3291-J-Z125-16-76 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

Notes on the macro call

– When the list form (operand MF=L) of the macro is used, the following should be noted:
Only one macro with MF=E need be specified for execution, regardless of whether this
macro applies to a single request or to a series of requests.

– In the case of a series of requests, the operand list is generated via macro chaining
(MF=L) by means of the CONTINU operand.

– When the program is terminated, all access requests of this program are terminated as
well.

DEQAR Description of the macros

404 U3291-J-Z125-16-76

Return information and error flags

During macro processing, register R1 contains the operand list address.

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the DEQAR macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'00' X'00' All dequeue macros were executed.
No additional actions were taken.

X'04' X'00' All dequeue macros were executed.
At least one serialization item was deleted.

X'08' X'00' All dequeue macros were executed.
At least one disable operation (see the DISSI macro) was executed.

X'0C' X'04' Not all dequeue macros were executed.
At least one dequeue operation was not executed because serialization items
were not allocated to the task of the calling program.

X'10' X'04' Not all dequeue macros were executed.
Invalid operands were specified:
– Invalid address, e.g. address within a DSECT
– Invalid length
– Invalid name
– SCOPE, CONTINU, DISABLE or HOLDER value undefined

X'14' X'04' Not all dequeue macros were executed.
An invalid ID was specified (the ID is not known to the system, or the calling task
did not issue an enable macro (see the ENASI macro)).

X'20' X'04' Not all dequeue macros were executed.
No further access request existed for at least one serialization item, or access to
at least one serialization item is to be terminated by means of HOLDER=SELF, but
the access request was issued by another task. When several DEQAR macros are
chained, the dequeue operations are performed for those serialization items for
which they are permitted. The status of the serialization items for which
theDEQUAR macro is invalid is not modified. If the DISSI=YES operand is
specified, a disable function is performed.

Description of the macros DISCO

U3291-J-Z125-16-76 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

DISCO – Disable contingency definition

General

Application area: Contingency processing; see page 110
Macro type: Type S, MF format 1: standard/L/E form; see page 29

Macro description

The DISCO macro is provided to stop a routine from being used as a contingency process.
The contingency process definition is disabled and therefore cannot be specified in
subsequent POSSIG or SOLSIG macros.

Any subsequent SOLSIG and POSSIG macros which refer to the disabled contingency
definition are rejected (return information). Any SOLSIG and POSSIG requests already
queued (i.e. macros which have already been issued) are not affected when the
contingency definition is disabled; in other words, the contingency process is initiated when
the appropriate events occur.

Macro format and description of operands

CONAME=name
Specifies the name of the contingency process.

CONAMAD=
Specifies the address of the name of the contingency process.

addr
Symbolic address of the field containing the name.

(r)
Register containing the address.

DISCO

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

CONAME=name
CONAMAD=addr / (r) [,CONAMLN=length]

COID=addr / (r)

DISCO Description of the macros

406 U3291-J-Z125-16-76

CONAMLN=
Specifies the length in bytes of the contingency process name.
The length must be at least 1 byte and not more than 54 bytes.
If the operand is missing, the length attribute of the CONAMAD operand is assumed if
CONAMAD=addr is specified; if CONAMAD=(r), the maximum length (54) is assumed.

length
Length of the contingency process name.

COID=
Specifies the ID of the contingency process. The ID is supplied to the user by means of the
ENACO macro.

addr
Symbolic address of a 4-byte field containing the ID.

(r)
Register containing the address.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

Description of the macros DISCO

U3291-J-Z125-16-76 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Return information and error flags

Register R1 contains the operand list address.

For examples, see the section “Contingency processes” (page 110) and the POSSIG
macro description (page 736).

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the DISCO macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'04' X'00' Contingency definition disabled.

X'10' X'04' Invalid operands specified. No action taken.

X'14' X'04' Invalid name or ID. No contingency process with the specified ID exists. No action
taken.

DISEI Description of the macros

408 U3291-J-Z125-16-76

DISEI – Disable event item

General

Application area: Eventing; see page 94
Macro type: Type S, MF format 1: standard/L/E form;

see page 29

Macro description

The DISEI macro is provided to terminate the use of a specified event item by the task of
the calling program. The event item is deleted if it is not used by any other task.

Macro format and description of operands

EINAME=name
Specifies the name of the event item that is no longer used by the calling task. The event
item is uniquely identified only if the SCOPE operand is also specified.

EINAMAD=
Specifies the address of the name of the event item. For a unique event item definition, the
SCOPE operand must also be specified.

addr
Symbolic address of the field containing the name of the event item.

(r)
Register containing the address.

DISEI

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

EINAME=name
EINAMAD=addr / (r) [,EINAMLN=length]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

EIID=addr / (r)

Description of the macros DISEI

U3291-J-Z125-16-76 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

EINAMLN=
Specifies the length of the event item name in bytes. The length must be at least 1 byte and
not more than 54 bytes.
If the operand is missing, the length attribute of the EINAMAD operand is assumed if
EINAMAD=addr is specified; if EINAMAD=(r), the maximum length (54) is assumed.

length
Length of the event item name.

SCOPE=
Specifies the scope of the event item (i.e. the participants authorized to use it).

LOCAL
Use of the event item is limited to the calling task.

GROUP
All the tasks with the same user ID as the calling task.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.

The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

EIID=
Specifies the event item ID. The ID is supplied to the user by the ENAEI macro. If this ID is
used instead of the name of the event item, processing is speeded up. The ID is unique.

addr
Symbolic address of the field containing the ID.

(r)
Register containing the address of the field.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

DISEI Description of the macros

410 U3291-J-Z125-16-76

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

Functional description

If any SOLSIG or POSSIG requests by the calling program are still waiting in the queue of
the event item when the DISEI macro is issued (see “Eventing”, page 94), these requests
will be deleted; the assigned forward events will also be deleted from the EVENTLST
(implicit DELFEI). If these were SOLSIG requests (synchronous/asynchronous), the calling
program will be notified via the return code in register R15 or via the event information code.
The same applies to POSSIG requests in which a contingency process was specified.

Return information and error flags

Register R1 contains the address of the operand list.

For examples, see the sections “Eventing” (page 106) and “Contingency processes”
(page 118).

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the macro DISEI is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'04' X'00' Function executed: the event item was deleted.

X'08' X'00' Function executed: use of event item by the task of the calling program was
terminated. The event item was not deleted.

X'0C' X'04' No action: the event item generated by the system is not assigned to the calling
task.

X'10' X'04' No action: invalid operands were specified.

X'14' X'04' No action: invalid name or ID. No event item with the specified ID exists.

X'18' X'04' No action: the event item to be deleted is still being used by FASTPAM.

Description of the macros DISMP

U3291-J-Z125-16-76 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

DISMP – Disable memory pool

General

Application area: Memory pools; see page 55
Macro type: Type S, MF format 1: standard/L/E form; see page 29

A memory pool is a memory area (class 6 memory) that can be used by several users
together. With ENAMP, a user can create a memory pool or declare participation in an
existing memory pool. With DISMP, a user can explicitly terminate participation in a memory
pool; participation is terminated implicitly with program termination.
A memory pool is addressed either via the pool name or via its ID (see ENAMP).
Following DISMP, participation in the same (still existing) memory pool must be declared
again via ENAMP. The caller is given a new ID for the memory pool.

Macro description

A memory pool participant can sever the connection to the memory pool with the DISMP
macro. The memory pool is deleted if the caller is the last (or only) user. All pages of the
pool are implicitly released in this case.

Macro format and description of operands

DISMP

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

MPNAME=name

MPNAMAD= addr

(r)

[,MPNAMLN= length

(r)

]

,SCOPE=

LOCAL

GROUP

USER_GROUP

GLOBAL

MPID= addr

(r)

DISMP Description of the macros

412 U3291-J-Z125-16-76

MPNAME=
Specifies the name of the memory pool. Note the connection with the SCOPE operand.

name
Name of the memory pool.

MPNAMAD=
Defines the address of the field with “name”.
(Note the connection with the SCOPE operand).

addr
Symbolic address (name) of the field.

(r)
Register containing the address value of the field.

MPNAMLN=
Defines the length of the name specified under MPNAMAD.
If not specified: length attribute of the addr field or, if MPNAMAD=(r) was specified,
54 bytes.

length
Length in bytes.

(r)
Register containing the length.

SCOPE=
Defines the scope (authorized users) of the memory pool. The specification is used to
identify the memory pool uniquely and must always be specified in conjunction with the
MPNAME and MPNAMAD operands.

LOCAL
The memory pool is used only by the user who created it.

GROUP
Memory pool users can be all the tasks with the same user ID as the user that created
the memory pool.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.

The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

Description of the macros DISMP

U3291-J-Z125-16-76 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

GLOBAL
All the tasks in the system are participants.

MPID=
Defines the address of a field (length = 4 bytes) with the ID for the memory pool (see
ENAMP). The ID identifies the memory pool uniquely. Identifying the memory pool by the
ID instead of by the name reduces processing time.

addr
Symbolic address (name) of the field containing the ID.

(r)
Register containing the address value of the field.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

Return information and error flags

After macro processing, register R1 contains the operand list address.

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the DISMP macro is transferred in register R15.
aa=X'00' : normal execution;
aa=X'04' : function not executed.

b b 0 0 0 0 a a

DISMP Description of the macros

414 U3291-J-Z125-16-76

31-bit interface:

– In the event of errors in the alignment or initialization of the standard header, the return
codes X'0001FFFF' / X'0003FFFF'/ X'0004FFFF' are additionally transferred in register
R15; see the table “Standard return codes” on page 43.

– No return codes are transferred in the standard header.

X'bb' X'aa' Meaning

X'0C' X'00' Normal execution; caller is the last or only participant; memory pool is deleted.

X'10' X'00' Normal execution; end of participation in memory pool; memory pool is retained.

X'04' X'04' Function was not carried out. The caller is not a participant in the memory pool in
question (no ENAMP macro).

X'1C' X'04' Function was not carried out; operand error:
– invalid address of the operand list
– error in operand list structure
– invalid address for MPNAMAD or MPID in the operand list
– designation of the memory pool:
 – name contains invalid characters
 – invalid length specification (MPNAMLN)
 – memory pool not designated (MPNAME, MPNAMAD, MPID not specified)
 – MPNAMLN specified, but MPNAMAD omitted
 – SCOPE specified, but MPNAME/MPNAMAD omitted
 – designation not unequivocal: more than one operand was specified as

 designation (MPNAME/MPNAMAD/MPID)
– invalid SCOPE specification
– SCOPE=USER_GROUP was specified, although SRPM is not available in the

system.
– invalid register (R1) specification
– PARMOD=24 specified in conjunction with 31-bit addressing mode

(AMODE31)

X'24' X'04' Function not carried out; authorization error:
– pages of the memory pool are still locked against releasing by the (user' s own)

task; the lock was set in a privileged state
– the caller is not authorized to terminate participation in a privileged or class 5

memory pool.
– The memory pool is still being used by FASTPAM.

Description of the macros DISSI

U3291-J-Z125-16-76 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

DISSI – Disable serialization item

General

Application area: (Task) serialization; see page 91
Macro type: Type S, MF format 1: standard/L/E form; see page 29

DISSI generates a 24-bit or a 31-bit interface, depending on the the specification. In the
event of macro chaining, all macros chained must make use of the same interface (either
24-bit or 31-bit interface).

Macro description

This macro is used to terminate utilization of the specified serialization item by the task of
the calling program. If the serialization item is not used by any other task, it is deleted.
Before the DISSI macro is called, the use of the serialization item must be disabled again
(using the DEQAR macro).
The CONTINU operand allows up to 255 DISSI macros to be chained.

Macro format and description of operands

SINAME=name
Specifies the name of the serialization item. This specification is unique only in conjunction
with the SCOPE operand.

DISSI

,CONTINU=NO / YES

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

SINAME=name
SINAMAD=addr / (r) [,SINAMLN=length]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

SIID=addr / (r)

DISSI Description of the macros

416 U3291-J-Z125-16-76

SINAMAD=
Specifies the address of the name of the serialization item. This specification is unique only
if the SCOPE operand is also specified.

addr
Symbolic address of the field containing the name.

(r)
Register containing the address.

SINAMLN=
Specifies the length in bytes of the serialization item name. The length must be at least
1 byte and not more than 54 bytes.
If the operand is missing, the length attribute of the SINAMAD operand is assumed if
SINAMAD=addr is specified;
if SINAMAD=(r), the maximum length (54) is assumed.

length
Length of the serialization item name.

SCOPE=
Specifies the scope of the serialization item (i.e. the participants authorized to use it):

LOCAL
Use of the serialization item is limited to the calling task.

GROUP
All the tasks with the same user ID as the calling task.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.

The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [12]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

SIID=
Specifies the ID of the serialization item. This ID is supplied to the user by the ENASI
macro. If this ID is used instead of the name of a serialization item, processing time is
reduced. The ID is unique.

addr
Symbolic address of a 4-byte field containing the ID.

Description of the macros DISSI

U3291-J-Z125-16-76 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

(r)
Register containing the address.

CONTINU=
Allows chaining of up to 255 DISSI macros.

NO
This is the last (or only) macro in a sequence.

YES
This DISSI macro is followed by another.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

Notes on the macro call

– The disable function may also be requested as part of a DEQAR macro (see the
DEQAR macro).

– The system performs a disable operation at program termination time for all
serialization items still being used by the task.

– The following should be borne in mind when using the list form (operand MF=L) of the
macro:
Only one macro call with MF=E need be given for execution, irrespective of whether this
call applies to a single request or to a series of requests. The operand list for a series
of requests is generated by macro chaining (MF=L) with the aid of the CONTINU
operand.

DISSI Description of the macros

418 U3291-J-Z125-16-76

Return information and error flags

Register 1 contains the operand list address.

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the DISSI macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'04' X'00' All disable macros were executed:
At least one serialization item was deleted.

X'08' X'00' All disable macros were executed:
Use of all specified serialization items was terminated.

X'0C' X'04' Not all disable macros were executed:
At least one serialization item was not used by the task of the calling program.

X'10' X'04' Not all disable macros were executed:
Invalid operands were specified:
– invalid address; e.g. address within a DSECT
– invalid length
– invalid name
– SCOPE or CONTINU value undefined.

X'14' X'04' Not all disable macros were executed:
An invalid ID was specified (the ID is not known to the system or the caller' s task
did not issue an associated, valid enable macro (see the ENASI macro)).

X'24' X'04' Not all disable macros were executed:
A disable request was issued for a serialization item for which an enqueue request
was honored, but for which the associated dequeue function had not yet been
performed.

Description of the macros DJINF

U3291-J-Z125-16-76 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

DJINF – Create DSECT or data list for JINF macro

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Definition macro; see page 28

Macro description

The DJINF macro generates a description of the output area for the JINF macro. The
description is created in the form of a DSECT or data list. For the 24-bit interface, the
DSECT/data list is generated by specifying the operand JATTR/RUNTIME; for the 31-bit
interface, it is generated by specifying the PARLIST operand. In the latter case, the
description of the output area starts with the standard header. The initialization values for
the standard header are entered in the data list.

Macro format and description of operands

DSECT=
Specifies whether a DSECT of the output area is to be generated or a data list.

YES
A DSECT is generated.

NO
A data list is generated.

PREFIX=
Gives a character string to be prefixed to the symbolic names of the DSECT/data list.

p
Prefix for the symbolic names. Length ≤ 2 characters.
Default value: p = JI.

DJINF

DSECT=YES / NO

[,PREFIX=p]

,JATTR=NO / YES ,RUNTIME=NO / YES

,PARLIST=NO / YES

 DJINF Description of the macros

420 U3291-J-Z125-16-76

JATTR=
Indicates whether the DSECT/data list for job data is to be generated.

NO
No DSECT/data list is generated.

YES
A DSECT/data list is generated.

RUNTIME=
Indicates whether the DSECT/data list for current job data (start-of-job time, number of job
retries) is to be generated.

NO
No DSECT/data list is generated.

YES
A DSECT/data list is generated.

PARLIST=
Indicates whether a DSECT/data list for the 31-bit interface is to be generated.

NO
No DSECT/data list is generated.

YES
A DSECT/data list is generated.

Layout of the DSECT for the 31-bit interface

DJINF DSECT=YES,PARLIST=YES
1 *--------P A R A M E T E R L I S T
1 #INTF REFTYPE=REQUEST, C
1 INTNAME=JINF, C
1 INTCOMP=002
1 JIJOBDPL DSECT
1 FHDR UNIT=43,FUNCT=2,VERS=1
2 DS 0A
2 DS 0XL8 GENERAL OPERAND LIST HEADER
2 DC AL2(43) FUNCTION UNIT NUMBER
2 DC AL1(2) FUNCTION NUMBER
2 DC AL1(1) FUNCTION INTERFACE VERSION NUMBER
2 DC X'FFFFFFFF' Returncode is virgin
1 JIJOUID DS CL8 USER ID
1 JIJOACC DS CL8 ACCOUNT NUMBER
1 JIJOJCLA DS CL8 JOB CLASS
1 JIJOJNAM DS CL8 JOB NAME
1 JIJOTSN DS CL4 TASK SEQUENCE NUMBER
1 JIJOJPRI DS X JOB PRIORITY

Description of the macros DJINF

U3291-J-Z125-16-76 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

1 JIJORP DS X REPEAT-TYPE
1 JIJORPNO EQU X'01' - NO
1 JIJORPAS EQU X'02' - AT-STREAM-STARTUP
1 JIJORPDL EQU X'03' - DAILY
1 JIJORPWK EQU X'04' - WEEKLY
1 JIJORPPD EQU X'05' - PERIOD
1 JIJORPIT DS H REPEAT-INTERVAL
1 JIJOST DS X START-TYPE
1 JIJOSTSO EQU X'01' - SOON
1 JIJOSTEA EQU X'02' - EARLIEST
1 JIJOSTAT EQU X'03' - AT
1 JIJOSTLA EQU X'04' - LATEST
1 JIJOSTWI EQU X'05' - WITHIN
1 JIJOSTBU EQU X'06' - BYUSER
1 JIJOSTBO EQU X'07' - BYOPERATOR
1 JIJOSTIM EQU X'08' - IMMEDIATE
1 JIJOSTAS EQU X'09' - AT-STREAM-STARTUP
1 JIJOSTDR DS CL6 START DATE REQUESTED
1 JIJOSTTR DS CL4 START TIME REQUESTED
1 JIJORER DS X RERUN INDICATOR
1 JIJORERN EQU X'00' - NO
1 JIJORERY EQU X'80' - YES
1 JIJOFLU DS X FLUSH INDICATOR
1 JIJOFLUN EQU X'00' - NO
1 JIJOFLUY EQU X'80' - YES
1 JIJOTIME DS F CPU TIME REQUESTED
1 JIJONTL DS X NO TIME LIMIT INDICATOR
1 JIJONTLN EQU X'00' - NTL NOT REQUESTED
1 JIJONTLY EQU X'80' - NTL REQUESTED
1 JIJOMONJ DS CL54 MONITORING JOB VARIABLE
1 JIJOSTDA DS CL6 DATE JOB ACTUALLY STARTED
1 JIJOSTTI DS CL4 TIME JOB ACTUALLY STARTED
1 JIJORPCO DS H REPEAT-COUNT
1 JIJOLEN EQU *-JIJOBDPL LENGTH OF PARAMETERLIST

DJSI Description of the macros

422 U3291-J-Z125-16-76

DJSI – Create DSECTs or data areas for job scheduler
macros (24-bit interface)

General

Application area: Job scheduler (system administration macro); see page 165
Macro type: Definition macro; see page 28

● JMS = Job Management System; JSS = Job Scheduling Supports.
JSS is part of JMS.

● For 31-bit interface, see the DJSIPL macro.

Macro description

The DJSI macro creates name definitions, DSECTs and data areas for the 24-bit interface
of the following job scheduler macros:

JSATTCH Attach job scheduler to Job Management System
JSDETCH Detach job scheduler from Job Management System
JSEXPCT Request next event for job scheduler
JSRUNJB Transfer job to class scheduler
JSINFO Transfer STREAM-PARAMETER values
JSWAKE Specify next time event for job scheduler

DSECTs and data lists start with the standard header. The initialization values for the
standard header are entered.

Macro format and description of operands

DJSI

DSECT=YES / NO

[,PREFIX=p]

,EVENT=NO / YES

,CLOCK=NO / YES

,JSINF=NO / YES

,STRTINF=NO / YES

,WAKE=NO / YES

Description of the macros DJSI

U3291-J-Z125-16-76 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

DSECT=
Specifies whether a dummy section (DSECT) is to be generated for the subsequently
specified data areas or whether data areas and definitions are created directly in the
application program.

YES
A dummy section is generated.

NO
The data areas and definitions are created and stored directly in the application
program (immediate access via the symbolic names).

EVENT=...
Specifies whether the output area of the JSEXPT macro and a list of JMS events are to be
created.

CLOCK=...
Specifies whether the output area of the JSATTCH macro is to be created.

STRTINF=...
Specifies whether the input area of the JSRUNJB macro is to be created.

JSINF=...
Specifies whether the output area of the JSINFO macro is to be created.

WAKE=...
Specifies whether the input area of the JSWAKE macro is to be created.

PREFIX=
Gives a character string to be prefixed to the symbolic names of the DSECT / I/O area.

p
Prefix for the symbolic names. Length ≤ 2 characters. Default value: p = JS.

Notes on the macro call

Equates for the return codes of the job scheduler macros are appended to every subset
(EVENT, CLOCK,...).

DJSIPL Description of the macros

424 U3291-J-Z125-16-76

DJSIPL – Create DSECTs or data areas for job scheduler
macros (31-bit interface)

General

Application area: Job scheduler (system administration macro); see page 165
Macro type: Definition macro; see page 28

● For 24-bit interface please refer to the DJSI macro.

Macro description

The DJSIPL macro creates name definitions, DSECTs and data areas for the 31-bit
interface of the following job scheduler macros:

JSATTCH Attach job scheduler to Job Management System
JSDETCH Detach job scheduler from Job Management System
JSEXPCT Request next event for job scheduler
JSRUNJB Transfer job to class scheduler
JSINFO Transfer STREAM-PARAMETER values
JSWAKE Specify next time event for job scheduler

DSECTs and data areas start with the standard header. The initialization values for the
standard header are entered.

Macro format and description of operands

DJSIPL

DSECT=YES / NO

[,PREFIX=p]

,JSATTCH=NO / YES

,JSEXPCT=NO / YES

,JSINFO=NO / YES

,JSDETCH=NO / YES

,JSRUNJB=NO / YES

,JSWAKE=NO / YES

Description of the macros DJSIPL

U3291-J-Z125-16-76 425

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

DSECT=
Specifies whether a dummy section (DSECT) is to be generated for the subsequently
specified data areas or whether data areas and definitions are created directly in the
application program.

YES
A dummy section is generated.

NO
The data areas and definitions are created and stored directly in the application
program.

JSATTCH=...
Specifies whether the output area of the JSATTCH macro is to be created.

JSDETCH=...
Specifies whether the input area of the JSDETCH macro is to be created.

JSEXPCT=...
Specifies whether the output area of the JSEXPCT macro and a list of JMS events are to
be created.

JSRUNJB=...
Specifies whether the input area of the JSRUNJB macro is to be created.

JSINFO=...
Specifies whether the output area of the JSINFO macro is to be created.

JSWAKE=...
Specifies whether the input area of the JSWAKE macro is to be created.

PREFIX=
Gives a character string to be prefixed to the symbolic names of the DSECTs or data areas.

p
Prefix for the symbolic names. Length ≤ 2 characters. Default value: p = JI.

DPOFEI Description of the macros

426 U3291-J-Z125-16-76

DPOFEI – Create POSSIG entry

General

Application area: (Optimized) eventing; see page 94
Macro type: Type S, MF format 1: standard/L/E form; see page 29

Forward eventing (FEV) is an optimized form of synchronous eventing. FEV avoids the
necessity for repeated validation of the specified operands when POSSIG or SOLSIG calls
are made repeatedly in a program. Instead, an event list (EVENTLST) is created and if, for
example, signals are to be sent to an event item (using the POSSIG function), a single entry
is made in the list. In subsequent stages of the program when (real) send requests are
issued, they will simply reference this entry each time (using RPOFEI). The entry may be
explicitly deleted again (using DELFEI).
A maximum of 2047 entries may be generated per participant in the EVENTLST. The task
of the calling program must be assigned to the event item (using ENAEI).

Macro description

The macro DPOFEI creates a POSSIG entry in the event list EVENTLST. All the necessary
details are copied into the entry (name of the event item or event item ID, post code,
maximum time for collecting the signal (event)). A reference number for the entry is passed
back to the caller.
It is possible to chain together several consecutive calls to DPOFEI. The chain can also be
terminated using the macro DSOFEI. When using a chain, note that:

– DSOFEI must always appear as the last macro in the chain.

– The first macro call which results in an error will terminate the chain; any entries already
created will be deleted.

– The operand REFNUM (for communicating the reference number) may only be
specified in the first macro call in the chain.

– A maximum of 5 macro calls may be chained together. All macros in the chain must use
the same interface format.

Description of the macros DPOFEI

U3291-J-Z125-16-76 427

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Macro format and description of operands

EINAME=
Indicates that the name which follows is that which the caller assigned to the event item,
using the macro ENAEI (note the interaction with the SCOPE operand).

name
Name of the event item.

EINAMAD=
Indicates that the address which follows is that of a field which contains the name of the
event item (note the interaction with the SCOPE operand).

addr
Symbolic address of the field containing the name of the event item.

(r)
Register containing the address value “addr”.

EINAMLN=
Indicates that the length of the name of the event item follows.
If this operand is omitted, the length of the name is taken to be the same as for the field
specified in EINAMAD=addr, or 54 bytes if EINAMAD=(r) was used.

length
Length of the name in bytes.

DPOFEI

[,REFNUM=addr / (r)]

[,]

,SPOSTL=1 / 2

,CONTINU=NO / YES / DSOFEI

[,LIFETIM=sec / (r)]

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

EINAME=name
EINAMAD=addr / (r) [,EINAMLN=length]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

EIID=addr / (r)

SPOSTAD=addr / (r)
SPOSTR=r

DPOFEI Description of the macros

428 U3291-J-Z125-16-76

SCOPE=
Specifies the scope of the event item (i.e. participants authorized to use it). The name of
the event item is unique only in combination with the scope. SCOPE must always be
specified in conjunction with EINAME or EINAMAD.

LOCAL
Use of the event item is limited to the caller's task.

GROUP
All the tasks with the same user ID as the caller's task are participants.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.

The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

EIID=
Specifies the location of the event item ID.
This event item ID is passed to the user when the macro ENAEI is executed. It provides a
unique identifier for the event item; its use results in faster execution of the macro.

addr
Symbolic address of a 4-byte field containing the event item ID.

(r)
Register containing the address value “addr”.

REFNUM=
Indicates that the address which follows identifies a field in which the reference number for
the EVENTLST entry is passed to the caller.
Field length = 4 bytes; aligned on a word boundary.

addr
Symbolic address of the field in which the reference number is to be stored.

(r)
Register containing the address value “addr”.

Description of the macros DPOFEI

U3291-J-Z125-16-76 429

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

SPOSTAD=
Indicates that the address which follows is for a field containing a post code which is to be
sent to the receiver of the signal (see the macro SOLSIG or DSOFEI).
The post code has a length of 4 or 8 bytes. Field length = 4 or 8 bytes; aligned on a word
boundary.
A post code in the form X'00000000' will not be sent. The operand SPOSTR permits the
same function to be executed more rapidly.

addr
Symbolic address of the field containing the post code.

(r)
Register containing the address value “addr”.

SPOSTR=
Indicates a register which (directly) contains the post code. If the 8-byte post code
(=2 words) is used, the register following the specified register (in number) must contain
the second word of the post code. A post code in the form X'00000000' will not be sent.

r
Register containing the post code.

SPOSTL=
Gives the post code length in words.

1
Post code length = 1 word (=4 bytes).

2
Post code length = 2 words.

CONTINU=
Enables the DPOFEI macro to be chained with other, immediately succeeding DPOFEI or
DSOFEI calls.

NO
No further DPOFEI or DSOFEI call follows.

YES
A DPOFEI macro call follows.

DSOFEI
A DSOFEI macro call follows.

LIFETIM=
Can be used to specify a time interval (in seconds), within which the signaled event must
be collected (using the macro SOLSIG or DSOFEI). After this time interval has expired, the
event will be deleted from the event queue.
Execution may be delayed by up to +10 seconds.

DPOFEI Description of the macros

430 U3291-J-Z125-16-76

sec
Time specification in seconds.
1 ≤ seconds ≤ 43200. Default value: seconds = 600.

(r)
Register containing the value of “sec”.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

Return information and error flags

During execution of the macro, register R1 contains the address of the operand list; register
R0 is overwritten.

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the DPOFEI macro is transferred in R15.

b b a a

X'bb' X'aa' Meaning

X'00' X'00' Normal execution. A POSSIG entry was created. All the specified operands are
valid.

X'04' X'04' No action taken: the permitted maximum of 2047 calls has been exceeded.

X'0C' X'04' No action taken: the event item is not enabled for the task of the caller program.

X'10' X'04' No action taken: invalid operand specified.

X'14' X'04' No action taken: there is no event item with the specified name or ID.

Description of the macros DPOFEI

U3291-J-Z125-16-76 431

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Example of a chained macro structure:

DPOFEI START
 BALR
 USING
 . . .
 DPOFEI EIID=IDP1,REFNUM=REFNR,CONTINU=YES
 DPOFEI EIID=IDP2,CONTINU=YES
 DPOFEI EIID=IDP3,CONTINU=DSOFEI
 DSOFEI EIID=IDS1
 . . .
 TERM
***** DEFINITIONS ******************************
 . . .
IDP1 DS CL4
IDP2 DS CL4
IDP3 DS CL4
IDS1 DS CL4
REFNR DS F
 . . .
 END

DSHARE Description of the macros

432 U3291-J-Z125-16-76

DSHARE – Unload user's shared code from common
memory pool

General

Application area: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard/C/D/L/E/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

The DSHARE macro unloads a single shareable program from a common memory pool.
This program was loaded previously by means of the ASHARE macro. The calling task
must be connected to the common memory pool containing the shareable program
involved. When the last participant is disconnected from a memory pool, all the shareable
programs in this memory pool are unloaded and the memory pool is deleted (see the
DISMP macro).

Macro format and description of operands

PROGRAM=name
Identifies the program that was loaded into the common memory pool using the ASHARE
macro. The specified name must be unique and may be up to 32 characters long.

DSHARE

[,]

,MF=S / C / D / E / L / M

[,PARAM=addr / (r)]

,PREFIX=P / p

,MACID=BDS / macid

PROGRAM=name
PROG@=addr / (r)

PGMVERS=*STD / version

PGMVER@=addr / (r)

Description of the macros DSHARE

U3291-J-Z125-16-76 433

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

PROG@=
Specifies the address of a field containing the program name. May be specified only in
conjunction with MF=M.

addr
Address of an auxiliary field which contains the field address searched for.

(r)
r = register containing the field address searched for.

PGMVERS=
Specifies the program version.

*STD
The program version is not taken into account during unloading, i.e. the first program
found with the specified name is unloaded.

version
The version specified may be up to 24 characters long. If this program version does not
exist in the common memory pool, nothing is unloaded and the corresponding return
code is output.

PGMVER@=
Specifies the address of a field containing the program version. May be specified only if
MF=M.

addr
Address of an auxiliary field which contains the field address searched for.

(r)
r = register containing the field address searched for.

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM, PREFIX and MACID, see section “S-type macros” on page 29. The valid
MF values are given at the start of the macro description under “Macro type” and are
included in the macro format.

A PREFIX can be specified in the C form, D form or M form of the macro, and additionally
a MACID in the C form or M form (see section “S-type macros” on page 29).

DSHARE Description of the macros

434 U3291-J-Z125-16-76

Notes on the macro call

– Before calling DSHARE, the user must be connected to the memory pool.

– Only the DSHARE macro can be used to unload shared code from memory pools. The
UNBIND macro may not be used for this purpose.

– It is the user's responsibility to check whether the program to be unloaded is still being
executed by other users.

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A return code relating to the execution of the
DSHARE macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally.

X'00' X'01' X'0001' The program name is missing.

X'00' X'01' X'0010' The program was not found in any memory pool accessible to the user.

X'00' X'01' X'0011' The program was found but the user is not connected to the memory
pool involved.

X'00' X'20' X'0100' System error.

X'00' X'20' X'0101' DBL error during unloading.

X'00' X'20' X'0103' DBL-LOCK-MANAGER error during the DSHARE macro processing

X'00' X'01' X'FFFF' The function is no longer or not yet supported.

X'00' X'03' X'FFFF' The interface version is not supported.

Description of the macros DSOFEI

U3291-J-Z125-16-76 435

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

DSOFEI – Create SOLSIG entry

General

Application area: (Optimized) eventing; see page 94
Macro type: Type S, MF format 1: standard/L/E form; see page 29

Forward Eventing (FEV) is an optimized form of synchronous eventing. FEV avoids the
necessity for repeated validation of the specified operands when SOLSIG or POSSIG calls
are issued repeatedly in a program. Instead, an event list (EVENTLST) is created and if, for
example, signals are to be requested from an event item (using the SOLSIG function), a
single SOLSIG entry is made in the list. In subsequent stages of the program, whenever a
(real) receive request is issued (using RSOFEI) it will simply refer to the EVENTLST entry.
The entry can be explicitly deleted again (using DELFEI).

A maximum of 2047 entries may be generated per participant in the EVENTLST. The task
of the calling program must be assigned to the event item (by a preceding ENAEI).

Macro description

The macro DSOFEI creates a SOLSIG entry in the event list EVENTLST. All the necessary
details are copied into the entry (name of the event item or ID, post code, maximum waiting
time allowed for the signal (event) to occur. A reference number for the entry is passed to
the caller.

Macro format and description of operands

DSOFEI

,REFNUM=addr / (r)

[,LIFETIM=sec / (r)]

[,], RPOSTL=1 / 2, RPOSTNUM=number / (r)

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

EINAME=name
EINAMAD=addr / (r) [,EINAMLN=length]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

EIID=addr / (r)

RPOSTAD=addr / (r)
RPOSTR=r

DSOFEI Description of the macros

436 U3291-J-Z125-16-76

EINAME=
Indicates that the name which follows is that which the caller assigned to the event item,
using the macro ENAEI (note the interaction with the SCOPE operand).

name
Name of the event item.

EINAMAD=
Indicates that the address which follows is that of a field which contains the name of the
event item (note the interaction with the SCOPE operand).

addr
Symbolic address of the field containing the name of the event item.

(r)
Register containing the address value “addr”.

EINAMLN=
Indicates that the length of the name of the event item follows.
If this operand is omitted, the length of the name is taken to be the same as for the field
specified in EINAMAD=addr, or 54 bytes if EINAMAD=(r) was used.

length
Length of the name in bytes.

SCOPE=
Specifies the scope of the event item (i.e. participants authorized to use it). The name of
the event item is unique only in combination with the scope. SCOPE must always be
specified in conjunction with EINAME or EINAMAD.

LOCAL
Use of the event item is limited to the caller's task.

GROUP
All the tasks with the same user ID as the caller's task are participants.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.

The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

Description of the macros DSOFEI

U3291-J-Z125-16-76 437

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

EIID=
Specifies the location of the event item ID.
This event item ID is passed to the user when the macro ENAEI is executed. It provides a
unique identifier for the event item; its use results in faster execution of the macro.

addr
Symbolic address of a 4-byte field containing the event item ID.

(r)
Register containing the address value “addr”.

REFNUM=
Indicates that the address which follows identifies a field in which the caller is to receive the
reference number for the entry in the EVENTLST.
Field length = 4 bytes; aligned on a word boundary.

addr
Symbolic address of the field into which the reference number is to be put.

(r)
Register containing the address value “addr”.

LIFETIM=
Can be used to specify a time interval (in seconds), which is the maximum time that the task
of the calling program should wait for the occurrence of the event (signal). Termination of
the wait may be delayed by up to +10 seconds.

sec
Time specification in seconds. 1 ≤ sec ≤ 43200.
Default value: sec = 600.

(r)
Register containing the value of “sec”.

RPOSTAD=
Indicates that the address which follows is for a field in which a post code may be entered
(see the macro POSSIG).
The post code has a length of 4 or 8 bytes. The RPOSTL operand determines whether both
words of the post code or just the 1st word are to be transferred to this field.
The operand RPOSTR permits the same function as RPOSTAD to be executed more
rapidly.

addr
Symbolic address of the field in which the post code is to be entered. Field length = 4
or 8 bytes.

(r)
Register containing the address value “addr”.

DSOFEI Description of the macros

438 U3291-J-Z125-16-76

RPOSTR=
Specifies a register in which the post code it to be entered directly. A post code consisting
of 2 words is entered in the specified register and the one following it (in number) if
RPOSTL=2 is specified.

r
Register to receive the post code.

RPOSTL=
Gives the number of words to be received as post code.

1
Only one word (the first) of the post code is to be transferred.

2
The complete post code (= 2 words) is to be transferred.

RPOSTNUM=
Specifies the maximum number of post codes which are to be transferred. The range
specified for RPOSTAD must be large enough to be able to receive all post codes. Required
length: RPOSTNUM*2+1 (1 byte indicator X'FF', end of list).

number
Number of post codes to be transferred.

(r)
r = register with the number of post codes to be transferred.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

Description of the macros DSOFEI

U3291-J-Z125-16-76 439

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Return information and error flags

During execution of the macro, register R1 contains the address of the operand list; register
R0 is overwritten.

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the DSOFEI macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'00' X'00' Normal execution. A SOLSIG entry has been created. All the specified operands
are valid.

X'04' X'04' No action taken: the permitted maximum of 2047 calls has been exceeded.

X'0C' X'04' No action taken: the event item is not enabled for the task of the calling program.

X'10' X'04' No action taken: invalid operand specified.

X'14' X'04' No action taken: there is no event item with the specified name or ID.

DSPSRV Description of the macros

440 U3291-J-Z125-16-76

DSPSRV – Control a data space

General

Application area: Extended addressing with data spaces; see page 61
Macro type: Type S, MF format 3: C/D/L/M/R/E form; see page 29

The DSPSRV macro can be used all BS2000 servers
(see section “Extended addressing with data spaces” on page 61).

Macro description

The DSPSRV macro enables the user to create a data space by specifying type, name,
scope and desired size. A user who creates a data space automatically becomes its owner.
The system returns an identification (the SPID) that uniquely identifies the data space
throughout the session. A program that is to access a data space must be connected to it
via access lists. This connection is established by means of the ALESRV macro.

The data space type determines the kind of memory allocation/deallocation within the data
space and the functions that are provided for this.

The functions of the DSPSRV macro make it possible to:

– create a data space (FCT=CREATE),
– release an existing data space (FCT=DESTROY),
– request information on an existing data space (FCT=INFORM),

for a data space with type STACK:
– extend an existing data space by adding memory pages (FCT=EXTEND) and
– delete the contents of an existing data space (in some cases also in units of 4K),

i.e. overwrite them with binary zeros (FCT=CLEAR)
– reduce the current size of a data space (FCT=REDUCE)

for a data space with type HEAP:
– allocate an area (FCT=GETAREA)
– release an allocated area (FCT=RETAREA)

Description of the macros DSPSRV

U3291-J-Z125-16-76 441

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Macro format and description of operands

The operands are described in alphabetical order below.

AREA=
Specifies the start address of a data space area. This operand can be both input operand
(FCT=RETAREA, CLEAR) and output operand (FCT=GETAREA).
The address must be aligned on a page boundary (4K) and be located within the area of
the generated data space.

area_addr
Symbolic address (name) of a 4-byte field containing the start address of the area.

(r)
Register containing the start address value “addr”.

DSPSRV

FCT=

[,MF=C / D / L / M / E / R[,SPID=spid_addr][,EXTADDR=ext_addr][.AREA=area_addr]]

[,PARAM=addr / (r)]

,PREFIX=N / p

,MACID=VDD / macid

CREATE, NAME='name'/name_addr, INISIZE=number / (r)

,MAXSIZE=number / (r), DIAPROT=NO/YES,

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

,TYPE=STACK / HEAP

DESTROY,SPID=spid_addr

INFORM,IDENT=NAME / SPID [,SPID=spid_addr][,NAME='name' / name_addr]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

EXTEND,SPID=spid_addr ,SIZE=number / (r)

CLEAR,SPID=spid_addr,AREA=area_addr / (r) ,SIZE=number / (r)

REDUCE,SPID=spid_addr, SIZE=number / (r)

GETAREA,SPID=spid_addr, SIZE=number / (r)

RETAREA,SPID=spid_addr, AREA=area_addr / (r) ,SIZE=number / (r)

DSPSRV Description of the macros

442 U3291-J-Z125-16-76

DIAPROT=
Specifies whether the data space is to be protected against access by diagnostic tools
(e.g. AID, USERDUMP, CDUMP2).

NO
The data space is not protected, i.e. diagnostic tools may access it.

YES
The data space is to be given special protection. Diagnostic tools may not access it.

EXTADDR=
Specifies the start address of the data space to be extended. This operand is an output
operand (only with MF=R).

ext_addr
Address for outputting the start address of the new memory space extension (with
FCT=EXTEND).

FCT=
Specifies which of the functions of the DSPSRV macro is to be executed.

CREATE
Creates a new data space. The caller becomes the owner of the data space.
With return code X'aaaa'=X'0000', the system returns the SPID. This can be read from
the parameter list with MF=R.

DESTROY
Releases an existing data space, provided that the caller is also the owner of the data
space.

EXTEND
Extends an existing data space of type STACK by adding 4K memory pages. For
information on the size of the data space, see the notes on address space size.
With return code X'aaaa'=X'0000', the system returns the start address of the memory
space extension (EXTADDR). This can be read from the parameter list with MF=R. The
allocated area within the data space is cleared to binary zeros.

CLEAR
Deletes the contents of a data space area of type STACK by overwriting memory pages
in units of 4K with binary zeros. The deleted memory pages are no longer retained in
real memory (paging memory).

INFORM
Provides information on the data space specified by means of its name and scope or
SPID. The DSECT generated with MF=D contains all information.

REDUCE
Reduces the current size of a data space of type STACK in 4 K units.

Description of the macros DSPSRV

U3291-J-Z125-16-76 443

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

GETAREA
Allocates an area within a data space of type HEAP.
With return code X'aaaa'=X'0000', the system returns the start address of the area
(AREA). This can be read from the parameter list with MF=R. The allocated area within
the data space is cleared to binary zeros.

RETAREA
Releases an allocated area within a data space of type HEAP.

IDENT=
Specifies which operands (NAME and SCOPE or SPID) are to be used to identify the data
space (if FCT=INFORM).

NAME
The data space is identified by means of its name and scope.

SPID
The data space is identified by means of its SPID.

INISIZE=
Specifies the initial size of the requested data space in units of 4K.
For information on the size of the data space, see the notes on address space size and
allocation size on page 446.

number
Positive integer (X'01' .. X'80000') specifying the initial size of the data space.

(r)
Register containing the “number”.

MAXSIZE=
Specifies the maximum desired size of the requested data space in units of 4K.
For a data space of the type HEAP the specified size is rounded up to the next MB
boundary.
A data space does not have to reach the maximum size specified here; this value simply
sets an upper limit. The maximum permitted size depends on the maximum address space
size (ADDRESS-SPACE-LIMIT) specified in the user catalog (see the notes on address
space size).

number
Positive integer (X'01' .. X'80000') specifying the maximum size of the data space.

(r)
Register containing the “number”.

DSPSRV Description of the macros

444 U3291-J-Z125-16-76

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.

A PREFIX can be specified in the C form, D form, R form or M form of the macro and
additionally a MACID in the C form, R form or M form (see page 29).

MF=R enables the output parameters of the functions CREATE (SPID=),
INFORM (SPID=), EXTEND (EXTADDR=) and GETAREA (AREA=) to be read from the
parameter area.

NAME=
Specifies the name of the data space. Length = 1..54 alphanumeric characters, the first of
which must be a letter or one of the characters # or @.
The name of a data space is unique only within its scope (see the SCOPE operand),
i.e. there may be data spaces with the same name but with different scopes.

'name'
Name of the data space.

name_addr
Symbolic address (name) of a field (54 byte) containing the name of the data space in
alphanumeric characters.

SCOPE=
Defines the scope of the specified data space. The name of a data space identifies the data
space uniquely only within the specified scope.
The scope determines which tasks can participate in the specified data space, i.e. access it.

LOCAL
Use of the data space is limited to the task which created it. Other tasks may not access
it.

GROUP
All tasks with the user ID of the task that created the data space can be connected to
the data space.

USER_GROUP
All tasks belonging to the same user group as the user ID of the task that created the
data space can use the data space, provided that the SRPM has been loaded.

GLOBAL
All the tasks in the system can access the data space.

Description of the macros DSPSRV

U3291-J-Z125-16-76 445

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

SIZE=
Specifies the size of the data space area for the functions EXTEND, REDUCE, CLEAR,
GETAREA and RETAREA. This operand is specified in units of 4K.
The following points must be taken into account:

– if FCT=EXTEND: The data space extended by SIZE may not exceed the size specified
in MAXSIZE; see the notes on address space size on page 446.

– if FCT=CLEAR/RETAREA: The area defined by AREA and SIZE must be located within
an existing data space identified by means of its SPID.

– if FCT=REDUCE: The value of SIZE may not be greater than the current size of the data
space.

– if FCT=GETAREA: The sum of all allocated areas may not be greater than specified in
MAXSIZE.

number
Positive integer ≥ 1 that defines the number of 4K units to be added to the data space
(FCT=EXTEND) or deleted (FCT=CLEAR).

(r)
Register containing the address value of “number”.

SPID=
Identifies a data space uniquely throughout the system.
The system assigns the SPID when a data space is created. This operand may be an input
or output operand.

spid_addr
Symbolic address (name) of an 8-byte field containing the SPID of the data space.

TYPE=
Determines the type of memory allocation/deallocation within the data space. This is
determined at generation time.

STACK
A data space of the type STACK is an allocated area that is contiguous in virtual terms,
starting with address 0 and going up to the current size.
The allocation functions available are EXTEND, REDUCE and CLEAR. The GETAREA
and RETAREA functions are rejected.

HEAP
A data space of the type HEAP is a virtual address space in which areas of any required
size can be allocated dynamically up to the maximum size of the data space. The
allocation functions available are GETAREA and RETAREA. The EXTEND, REDUCE
and CLEAR functions and the INISIZE parameter are rejected.

Note

DIV (Data in Virtual) functionality is only supported in data spaces of the type STACK.

DSPSRV Description of the macros

446 U3291-J-Z125-16-76

Notes on the macro call

– The SPID may be an input or output operand, i.e. it is placed in the generated
parameter list as an output operand with FCT=CREATE or FCT=INFORM and, the next
time this parameter list is used, is also valid as an input operand. The same applies for
the AREA operand in the functions GETAREA and RETAREA.

– The sum of the memory pages already occupied by the task and the additional memory
pages requested by DSPSRV may not exceed the maximum address space size
(ADDRESS-SPACE-LIMIT) entered in the user catalog for the owner. The same applies
to the MAXSIZE specification.
The command SHOW-USER-ATTRIBUTES PUBSET=*HOME can be used to obtain
information on the user's own address space size. If the address space is full, a storage
space error is reported and the function is aborted.

– On termination of the program that created the data space, the data space is released
automatically, i.e. without FCT=DESTROY. The SPID is no longer valid; any remaining
ALETS, however, are not deleted. If another program uses one of these ALETs to
attempt to access a data space that no longer exists, the program will be terminated.

– If a data space to be deleted still contains DIV windows, these windows must be closed
before the data space can be released.

Notes on address space size

– Any specification for creating or extending data spaces may not exceed the maximum
address space size specified in the user catalog. This means that the sum of all memory
requests must be less than or equal to the address space size given in the ADDRESS-
SPACE-LIMIT field. The sum of all memory requests is calculated from:

– the class 6 memory pages allocated in the program space,
– the allocated pages that were requested for existing data spaces,
– the pages requested in the current DSPSRV macro (with INISIZE and MAXSIZE

when creating a data space or with SIZE when extending a data space).

– The maximum size specified for a data space when it is created (MAXSIZE) must be
greater than or equal to the initial data space size specified for INISIZE.
The size specified in SIZE when extending a data space (together with INISIZE and
any memory pages that were added previously with FCT=EXTEND) may not exceed
MAXSIZE.

Return information and error flags

Standard
header:

A return code relating to the execution of the
DSPSRV macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

Description of the macros DSPSRV

U3291-J-Z125-16-76 447

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function executed successfully.
The following values can be read from the parameter list with MF=R:
– if FCT=CREATE: spid_addr (SPID operand)
– if FCT=EXTEND: ext_addr (EXTADDR operand)
– if FCT=INFORM: spid_addr (SPID operand)
– if FCT=GETAREA: area_addr (AREA operand)

X'02' X'00' X'0001' Warning: the specified data space has been released even though other
programs are connected to it (if FCT=DESTROY).

X'00' X'01' X'0003' Invalid FCT operand.

X'01' X'01' X'0003' Invalid NAME operand.

X'02' X'01' X'0003' Invalid SCOPE operand.

X’04’ X’01’ X’0003’ Invalid TYPE operand

X'05' X'01' X'0003' Invalid IDENT operand.

X'06' X'01' X'0003' Invalid MAXSIZE operand.

X'07' X'01' X'0003' Invalid INISIZE operand.

X'0A' X'01' X'0003' Invalid DIAPROT operand.

X'0C' X'01' X'0003' Invalid AREA operand.

X'0D' X'01' X'0003' Invalid combination of operands.

X'20' X'0005' Internal error.

X'00' X'40' X'000D' DIV application running: the data space contains DIV windows (if
FCT=DESTROY).

X'00' X'40' X'0102' Invalid specification of NAME operand. A data space with the specified
name already exists (only if FCT=CREATE).

X'00' X'40' X'0104' Invalid specification of NAME and/or SCOPE (if FCT=INFORM).

X'00' X'40' X'0106' Maximum load reached for paging memory.

X'00' X'40' X'0107' The maximum address space available to the task (ADDRESS-SPACE-
LIMIT in user catalog) has been exceeded. Invalid specification of
INISIZE or MAXSIZE (if FCT=CREATE) or SIZE (if FCT=EXTEND).

X'00' X'40' X'0202' Error in SCOPE=USER_GROUP: the SRPM subsystem is not loaded
(if FCT=CREATE).

X'00' X'40' X'0206' Maximum load reached for main memory.

X'00' X'40' X'0302' The calling task is not the owner of the data space and may not delete it
(if FCT=DESTROY).

X'00' X'40' X'0304' Incorrect specification of SPID operand.
The specified data space does not exist or the caller is not authorized to
access this data space.

X'00' X'40' X'0306' Maximum number of data spaces reached (if FCT=CREATE).

DSPSRV Description of the macros

448 U3291-J-Z125-16-76

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

For an example see section “Extended addressing with data spaces” on page 68.

X'00' X'40' X'0404' Error in TYPE. The data space type is invalid for the specified function.

X'00' X'40' X'0406' Address space saturation. There is insufficient free and contiguous
address space available in the data space to satisfy the requirements
(with FCT=GETAREA)

X'00' X'40' X'0604' Invalid MAXSIZE operand:
– maximum data space size exceeded (if FCT=EXTEND).
– the specified size is greater than the current size of the data space

(with FCT=REDUCE).
– the specified size is greater than the maximum size of the data

space (with FCT=GETAREA)

X'00' X'40' X'0C04' The specified area is not a part of the data space (if FCT=CLEAR or
RETAREA).

X'00' X'40' X'0F04' Allocation error. The area specified is not allocated within the data space
(with FCT=RETAREA).

X'00' X'81' X'0106' Maximum load reached for paging memory.

X'00' X'81' X'0306' Internal shortage of resources.

X'cc' X'bb' X'aaaa' Meaning

Description of the macros DTMODE

U3291-J-Z125-16-76 449

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

DTMODE – Create DSECT or data list for TMODE macro

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Definition macro; see page 28

Macro description

The DTMODE macro generates a description of the input/output area for the TMODE
macro in 31-bit addressing mode. The description is created in the form of a DSECT or a
data list and starts with the standard header. The initialization values for the standard
header are entered in the data list.

Macro format and description of operands

DSECT=
Specifies whether a DSECT for the output area is to be generated or a data list.

YES
A DSECT is generated.

NO
A data list is created.

PREFIX=
Specifies a character string to be prefixed to the symbolic names of the DSECT/data list.

p
Prefix for the symbolic names. Length ≤ 2 characters.
Default setting: p = TM.

DTMODE

DSECT=YES / NO

[,PREFIX=p]

DTMODE Description of the macros

450 U3291-J-Z125-16-76

Layout of the DSECT for the I/O area

DTMODE DSECT=YES
1 #INTF REFTYPE=REQUEST,INTNAME=TMODE,INTCOMP=002
1 *---------------- P A R A M E T E R L I S T
1 TMODPL DSECT
1 FHDR UNIT=43,FUNCT=1,VERS=1
2 DS 0A
2 DS 0XL8 GENERAL OPERAND LIST HEADER
2 DC AL2(43) FUNCTION UNIT NUMBER
2 DC AL1(1) FUNCTION NUMBER
2 DC AL1(1) FUNCTION INTERFACE VERSION NUMBER
2 DC X'FFFFFFFF' Returncode is virgin
1 TMODTSN DC CL4' ' TASK SEQUENCE NUMBER
1 TMODUSER DC CL8' ' USER IDENTIFICATION NUMBER
1 TMODACCT DC CL8' ' TASK ACCOUNT NUMBER
1 TMODTIME DC F'0' TASK CPU TIME
1 TMODPRIV DC AL1(0) TASK PRIVELEDGE CODE
1 TMODPRSA EQU 1 SYSTEM ADMINISTRATOR BIT
1 TMODPRUS EQU 2 USER BIT
1 TMODLLEN DC AL1(0) PHYSICAL LINE LENGTH (TERMINAL)
1 TMODVDT DC AL1(0) VIRTUAL DEVICE TYPE
1 TMODLINC EQU 1 LINE MODE CAPABILITY
1 TMODFORC EQU 2 FORMAT MODE CAPABILITY
1 TMODCMPC EQU 4 COMPATIBLE MODE CAPABILITY
1 TMODFYSC EQU 8 PHYSICAL MODE CAPABILITY
1 TMODEXLC EQU 16 EXTENDED LINE MODE CAPABILITY
1 TMODEOM EQU 64 EVANESCENT OUTPUT MESSAGES(VDU)
1 TMODTYPE DC AL1(0) TASK OR TERMINAL TYPE
1 TMODPRI DC AL1(0) TASK PRIORITY
1 TMODMSG DC X'00' MSG OPTIONS :*
1 TMODMSGF EQU X'01' |
1 TMODMSGC EQU X'02' |
1 TMODMSGH EQU X'04' > SEE /OPTION COMMAND
1 TMODMSGT EQU X'08' |
1 TMODMSGL EQU X'20' |
1 TMODBUFS DC H'0' BUFFERSIZE
1 TMODPNAM DC CL8' ' PROGRAM NAME
1 TMODNAME DC CL8' ' JOB NAME FROM /LOGON
1 TMODPLL EQU *-TMODPL LENGTH OF PARAMETERLIST

Description of the macros DTMODE

U3291-J-Z125-16-76 451

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Explanation of field contents

TMODTSN: task sequence or job number (TSN); 4 characters
TMODUSER: user ID; 8 characters
TMODACCT: account number; 8 characters
TMODTIME: CPU time consumed by the task, multiple of 100 microseconds; 8-digit

decimal number. Values > 204800 sec are not output; this maximum value
is repeated for subsequent calls

TMODPRIV: privilege status assigned to the task, where
X'01' ï task runs under the system administration ID (TSOS)
X'02' ï task runs under the (nonprivileged) caller's user ID

TMODLLEN: (physical) line length at the data display terminal; only when line mode is
used

TMODVDT: characteristics of the data display terminal
TMODTYPE: type of data display terminal; X'00' if the job is a batch job, otherwise:

X'02' ï 8103 Printer Terminal
X'04' ï 8150 Data Display Terminal
X'11' ï TRANSDATA 8415, 8418
X'15' ï 8151 Data Display Terminal
X'16' ï 8152 Data Display Terminal
X'17' ï 8110 Printer Terminal
X'18' ï 8161 Data Display Terminal with 54 characters per line
X'19' ï 8161 Data Display Terminal with 64 characters per line
X'1A' ï 8161 Data Display Terminal with 80 characters per line
X'2C' ï 8162 Data Display Terminal
X'2D' ï 8160 Data Display Terminal
X'35' ï 9750 Data Display Terminal
X'4F' ï 9763 Data Display Terminal

TMODPRI: run priority of the task; 2-digit hexadecimal number
TMODBUFS: length of the physical I/O buffer of the terminal; 4-digit hexadecimal number.

Not with batch jobs.
TMODPNAM: program name, if module was loaded using the static loader (ELDE);

8 characters. X'00...0', if module was loaded using the dynamic binder
loader (DBL).

TMODNAME: job name from the SET-LOGON-PARAMETERS command.

ENACO Description of the macros

452 U3291-J-Z125-16-76

ENACO – Enable contingency definition

General

Application area: Contingency processing; see page 110
Macro type: Type S, MF format 1: standard/L/E form; see page 29

Macro description

The ENACO macro allows a routine to be defined as a contingency process with a special
name. The contingency process must be defined before it can be specified in a SOLSIG or
POSSIG macro. The ENACO macro provides an ID to be used in further macros which refer
to the contingency process. A program can use up to 400 contingency processes
simultaneously. The scope of the contingency process is local: use is restricted to the task
of the calling program.

The addressing mode (AMODE) active at the time of the ENACO macro call must be
identical with the one at the time the contingency routine is executed.

Macro format and description of operands

CONAME=
Specifies the name of the contingency process.

name
Name of the contingency process. 1 ≤ name length ≤ 54.

Name format:
1st character: letter, #, @;
2nd through to 54th character: any combination of characters from the

character set (A,...,Z,0,...,9,$,#,@).
The first blank (X'40') terminates the name.

ENACO

CONAME=name
CONAMAD=addr / (r) [,CONAMLN=length]

,COADAD=addr / (r) ,COIDRET=addr / (r)

[,COMAD=addr / (r)] [,LEVEL=prio / (r)]

[,PARMOD=24 / 31] [,MF=L / (E, ..)]

Description of the macros ENACO

U3291-J-Z125-16-76 453

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

CONAMAD=
Specifies the address of a field containing the name of the contingency process (for name
format see CONAME).

addr
Symbolic address (name) of the field

(r)
Register containing the “addr” address value.

CONAMLN=
Specifies the length of the contingency process name if CONAMAD=... was specified.

length
Length of the name in bytes
Default setting:
– length attribute of the field specified with CONAMAD=...
– 54 bytes if CONAMAD=(r) was specified.

COADAD=
Specifies a field containing the start address of the contingency process. The field should
be aligned on a word boundary.

addr
Symbolic address (name) of a field containing the start address

(r)
Register containing the “addr” address value.

COIDRET=
Specifies the address of a field where an ID of the contingency process is entered. The ID
should be used in subsequent macros referring to the contingency process.
The field should be aligned on a word boundary.

addr
Symbolic address (name) of the field to hold the ID.

(r)
Register containing the “addr” address value.

COMAD=
Specifies a field containing a contingency message. The message is transferred to register
R1 of the contingency process. A message specified here may be replaced by a message
issued by a SOLSIG or POSSIG macro.

addr
Symbolic address (name) of the field containing the contingency message.

(r)
Register containing the “addr” address value.

ENACO Description of the macros

454 U3291-J-Z125-16-76

LEVEL=
Specifies the priority level of the contingency process.

prio
Priority level of the contingency process. 1 ≤ prio ≤ 127.
Default value: prio = 1

(r)
Register containing the value of “prio”.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

Return information and error flags
During macro processing, register R1 contains the operand list address.

For examples, see the section “Contingency processes” (page 110) and the description of
the POSSIG macro (page 736).

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the ENACO macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'04' X'00' The contingency process was defined for the calling task.

X'0C' X'04' The contingency process was already defined for the calling task. No action.

X'10' X'04' Invalid operands were specified. No action.

X'18' X'04' The maximum number of contingency processes which can be used
simultaneously has been exceeded. No action.

Description of the macros ENAEI

U3291-J-Z125-16-76 455

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

ENAEI – Enable event item

General

Application area: Eventing; see page 94
Macro type: Type S, MF format 1: standard/L/E form; see page 29

Macro description

The ENAEI macro allows a task to establish an event item. If an event item with the
specified name already exists in the defined scope (established by an ENAEI macro call in
another task), the macro only causes the event item to be assigned to the task of the calling
program. Otherwise the event item is established and assigned by the system.
A call to this macro also makes available an ID for the event item; this ID can be used in
subsequent calls, to speed up processing.
A program can use up to 2000 event items simultaneously.

Macro format and description of operands

EINAME=
Specifies the name of the event item.

name
Name of the event item. 1 ≤ name length ≤ 54.

Name format:
1st character: letter, #, @;
2nd through 54th character: any combination of characters from the

character set (A,...,Z,0,...,9,$,#,@).
The first blank (X'40') terminates the name.

ENAEI

,EIIDRET=addr / (r)

,SOSIGQ=FIFO / LIFO

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

EINAME=name
EINAMAD=addr / (r) [,EINAMLN=length]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

ENAEI Description of the macros

456 U3291-J-Z125-16-76

EINAMAD=
Specifies the address of a field containing the name of the event item (for name format see
above).

addr
Symbolic address (name) of the field.

(r)
Register containing the “addr” address value.

EINAMLN=
Specifies the length of the event item name if EINAMAD=... was specified.

length
Length of the name in bytes.
Default setting:
– length attribute of the field specified with EINAMAD=...
– 54 bytes if EINAMAD=(r) was specified.

SCOPE=
Specifies the scope of the event item (i.e. the participants authorized to use it).

LOCAL
the use of the event item is limited to the calling task.

GROUP
All the tasks with the same user ID as the calling task are participants.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.

The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

EIIDRET=
Specifies the address of a field where an ID of the event item is entered.

addr
Symbolic address (name) of the field to hold the ID. Field length = 4 bytes. The field
should be aligned on a word boundary.

(r)
Register containing the “addr” address value.

Description of the macros ENAEI

U3291-J-Z125-16-76 457

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

SOLSIGQ=
Specifies the queueing method to be used for SOLSIG requests. All ENAEI macros having
a given event item must define the same queueing method for SOLSIG requests.

FIFO
FIFO = first in - first out

LIFO
LIFO = last in - first out

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

ENAEI Description of the macros

458 U3291-J-Z125-16-76

Return information and error flags

During macro processing, register R1 contains the operand list address.

For examples, see the sections “Eventing” (page 106) and “Contingency processes”
(page 118) and also the POSSIG (page 742) and SOLSIG macro description (page 830).

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the ENAEI macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'04' X'00' Function executed: the event item was established by the system and assigned to
the task of the calling program.

X'08' X'00' Function executed: an event item already established by the system was assigned
to the task of the calling program.

X'0C' X'04' No action taken: the event item had already been assigned to the task of the calling
program. The ID of the event item is supplied.

X'10' X'04' No action taken: invalid operands were specified.

X'18' X'04' No action taken: the maximum number of event items which can be used
simultaneously has been exceeded.

X'1C' X'04' No action taken: event item specifications (FIFO and LIFO) do not agree for
SOLSIG queueing (SOLSIGQ operand).

Description of the macros ENAMP

U3291-J-Z125-16-76 459

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

ENAMP – Enable memory pool

General

Application area: Memory pools; see page 55
Macro type: Type S, MF format 1: standard/L/E form; see page 29

A memory pool (MP) is a memory area (class 6 memory) that may be used by several users
together. The user who creates the memory pool defines its size (position), name and
memory attributes.
Memory pools can be created in units of 64K and 1 Mb. Memory pools with units of 64K are
always created below the 16-Mb boundary; on a long-term basis, such memory pools will
no longer be supported. For this reason and reasons of degraded performance, users are
advised against creating memory pools of 64K units. Information about the size of the
memory pool and the number of memory pages allocated can be requested by means of
the MINF macro.

Macro description

With the ENAMP macro, a user can create a memory pool or declare participation in an
existing memory pool. The user is given an ID for the memory pool by the system. This ID
can be used to increase the speed of processing in subsequent pool macros (CSTMP,
REQMP, RELMP, DISMP); it can vary for different users.
When creating a new memory pool, the caller sets the following fixed pool attributes with
ENAMP:

– name of the memory pool
– scope (authorized users: the caller only, all tasks under the user ID of the caller, all tasks

from the user group of the caller, all tasks in the system)
– size
– start address (uniform or freely selectable for each user)
– location (below the 16 Mb boundary or freely selectable for each user)
– page management (resident or pageable)

The specified memory space is reserved in the address space of the caller with ENAMP.
Pages are requested with REQMP.

ENAMP Description of the macros

460 U3291-J-Z125-16-76

The following points apply when using an existing memory pool:

– a memory pool can only be identified uniquely with its own name and the scope
(SCOPE operand); (in subsequent calls the ID is sufficient).

– the caller must not specify any different pool attributes (see above) (it is best to use the
default setting).

– any caller can request memory space with REQMP (as far as the size of the memory
pool permits) and release memory space with RELMP.

– any authorized caller (CSTMP=YES in the user catalog) can define a lock to protect
memory pages against access or release the lock (CSTMP).

– any caller can terminate participation in the memory pool by means of DISMP.

Notes

– the WRCPT macro and the commands HOLD-TASK and RESTART-PROGRAM are
rejected if a task is using a memory pool.

– operand lists and input/output areas that are supplied dynamically should not be stored
in memory pools (otherwise complicated synchronization measures are required).

Macro format and description of operands

ENAMP

[,MPIDRET=addr / (r)]

,MODE=ANY / NEW / OLD

[,]

[,LOC=BELOW]

[,PAGE=addr / (r)]

[,FIXED=YES]

,RES=NO / YES

,INHERIT=YES / NO

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

MPNAME=name
MPNAMAD=addr / (r) [,MPNAMLN=length / (r)]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

BSIZE=size / (r)
PSIZE=size / (r)

Description of the macros ENAMP

U3291-J-Z125-16-76 461

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

MPNAME=
Defines the name of the memory pool. Note the connection with the SCOPE operand.

name
Memory pool name. 1 ≤ name length ≤ 54 characters.

Name format:
1st character: letter or special character #,@.
2nd through 54th character: any combination from the character set

(A,...,Z,0,...,9,$,#,@).
The first blank (X'40') terminates the name.

MPNAMAD=
Defines the address of the field with “name”. Note the connection with the SCOPE operand.

addr
Symbolic address (name) of the field.

(r)
Register containing the address value of the field.

MPNAMLN=
Defines the length of the name specified under MPNAMAD. If it is not specified: length
attribute of the “addr” field or, if MPNAMAD=(r) was specified, 54 bytes.

length
Length in bytes.

(r)
Register containing the length.

SCOPE=
Specifies the scope (authorized participants) for the memory pool.
The operand allows a unique identifier to be assigned to the memory pool, and must be
used in conjunction with the operands MPNAME and MPNAMAD. Note the default value!

LOCAL
the use of the memory pool is limited to the calling task.

GROUP
All the tasks with the same user ID as the calling task are participants.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.

The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

ENAMP Description of the macros

462 U3291-J-Z125-16-76

GLOBAL
All the tasks in the system are participants.

MPIDRET=
Defines the ID for the memory pool. The ID is returned to the user by the system after
execution of the macro and can be used in subsequent macros (REQMP, RELMP, DISMP,
CSTMP) to identify the pool uniquely (the use of the ID increases the speed of processing).
All memory pool users are given their own ID by ENAMP. An exception are “inheritable”
memory pools, where the “son task” can use the same ID as the “parent task”.

addr
Symbolic address (name) of the field containing the ID.
Field length = 4 bytes.

(r)
Register containing the address value of the field.

MODE=
Specifies whether the caller wants to create a new memory pool or use one that already
exists. If the latter is the case, it should be noted that a memory pool can only be identified
uniquely via its name and scope (SCOPE operand).

ANY
the caller wants to use the specified memory pool if it exists; if not, a memory pool with
the specified attributes is created for the caller.

NEW
The caller wants to generate a new memory pool with the specified attributes.
The call is rejected if a memory pool with this name and SCOPE already exists.

OLD
The caller wants to use an existing memory pool. The call is rejected if
– the memory pool does not exist,
– the specified pool attributes do not correspond to those determined at pool creation
– the memory pool was generated with SCOPE=LOCAL.

BSIZE=
Defines the size of the memory pool (in 4K units = memory pages). The memory pool is
created as a contiguous memory area as specified by means of the operands PAGE and/or
LOC and, depending on the addressing mode, below or above the 16-Mb boundary.
BSIZE cannot be specified if the PSIZE operand was specified at memory pool creation.

size
Number of memory pages (4K units). Specification of size = 0 is illegal and results in
the macro call being rejected. The size of the memory pool may be rounded by the
operating system for performance reasons (see Notes).

Description of the macros ENAMP

U3291-J-Z125-16-76 463

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

(r)
Register containing the number of memory pages
Default setting:
– For reasons of compatibility, a (new) memory pool is created using the default value

for the PSIZE operand if neither BSIZE nor PSIZE is specified explicitly.
– Current value for existing memory pool.

Notes

– The size of the memory pool may be rounded by the operating system for
performance reasons as follows:
The memory pool is created with units of 1 Mb and aligned on a 1-Mb boundary. It
is rounded to a multiple (n) of 1 Mb units (size of MP = n * 1Mb ≥ size * 4K).

– Rounding is guaranteed to be part of the functional scope of BS2000 Version 9.0
only.

PSIZE=
Defines the size of the memory pool in 64K units. The memory pool is created as a
contiguous memory area below the 16-Mb boundary and aligned on a 64K boundary.
PSIZE cannot be specified if the BSIZE operand was specified at memory pool creation.

size
Number of memory segments with 64K each. size=0 is illegal; the macro is rejected in
this case.

(r)
Register containing the value for “size”.
Default value (only if operand BSIZE was not specified at memory pool creation):
– size = 1 for a memory pool to be created,
– current value for an existing memory pool.

Note
On a long-term basis, the PSIZE operand and memory pools with units of 64K will
no longer be supported.

LOC=
Specifies that part of the address space where the memory pool is to be located.
Specification of this operand is useful only in conjunction with 31-bit addressing and if the
BSIZE operand is specified.

BELOW
The memory pool is created in the caller's address space below the 16-Mb boundary.

Note
A memory pool created with LOC=BELOW but without a fixed start address may,
in another participant's own address space, also be placed above the 16-Mb
boundary.

ENAMP Description of the macros

464 U3291-J-Z125-16-76

PAGE=
Specifies the start address of the memory pool in the caller's address space. The start
address should be aligned as follows:

– on a 64K boundary, if the memory pool consists of 64K segments (PSIZE operand).
– on a 1-Mb boundary, if the memory pool consists of 1-Mb segments (BSIZE operand).

Default setting: The first sufficiently large and contiguous area that begins on a 64K or
1-Mb boundary is selected.
In 31-bit addressing mode, the memory pool is located above the 16 Mb boundary unless
LOC=BELOW is specified. If the memory pool was created with FIXED=YES, the fixed start
address is binding for all future users.
Default value in this case: the start address is assumed (the memory pool is placed in the
address space of the caller in the same way as in the address space of the one that created
the memory pool). The start address is submitted to the caller in register R1.

addr
Start address.

(r)
Register containing the address value “addr”.

Note
Wherever possible, the PAGE operand should not be used. Should it be
indispensable, the user should previously inquire about the size and location of the
class 6 memory by means of the MINF macro.

FIXED=YES
The memory pool has the same virtual start address for all users (from this address
onwards, it is placed in the caller's address space).

Notes
– if FIXED=YES is not specified (by the first caller), future users may each specify a

different start address in their address space.
– a caller that wants to use an existing memory pool cannot revoke the FIXED=YES

specification.
– specification of this operand is useful only for the caller that created the memory pool.

If it is not specified at memory pool creation, any subsequent specification of
FIXED=YES by a pool participant will be rejected.

RES=
Specifies whether the memory pages of the pool are to be pageable or resident. This
attribute is determined by the caller that creates the pool (the maximum number of resident
memory pages is set in user catalog).

NO
The memory pages are to be pageable.

Description of the macros ENAMP

U3291-J-Z125-16-76 465

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

YES
The memory pages are to be resident.

Note
In the case of RES=YES, the specification for the PSIZE/ BSIZE operand is not
checked against the specification for the RESIDENT-PAGES operand in the
START-PROGRAM or LOAD-PROGRAM command. The check is not carried out
until memory space is occupied with REQMP.

INHERIT=
Specifies the inheritability of a memory pool when the participating user task (“parent task”)
generates a new son task: (“fork()”). This operand is not supported if a local and resident
class 6 memory pool was specified or PARMOD=24 was set. See also note on page 466.

YES
The memory pool should be inheritable i.e. in the event of a fork(), the son task is
implicitly linked to a non-local memory pool of the parent task.
For a local (non-resident) memory pool, the memory space of the parent task is copied
to the son task. This means that the memory space for each task is locally available and
the task is free to decide on the contents of the memory pool and the functions to be
executed.

NO
In the event of a fork(), the son task is not linked to the memory pool of the parent task.
The memory area is not assigned to the son task.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists use 24-bit addresses.
(Address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists use 31-bit addresses
(address space ≤ 2 Gb) and start with the standard header.

ENAMP Description of the macros

466 U3291-J-Z125-16-76

Notes on memory pool inheritability

– For inheritable, local memory pools, a new memory pool is set up implicitly for the “son
task” (after task generation by the parent task: “fork()”). This has the same properties
(name, access rights etc.) and contents as the memory pool of the parent task at the
point when the son task was generated (implemented via the copy-on-write
mechanism). This enables both parent and son tasks to have shared access to the
contents of the memory pool, while any changes effected by them apply only locally
within their “own” memory pool.

– For inheritable, non-local memory pools, inheritance is effected via an implicit ENAMP
call to the existing memory pool during the fork(). This means that parent and son tasks
operate in the same memory area.

– The ID of the memory pool (MPIDRET operand) is inherited from the the parent task by
the son task.

– However, the allocation for requesting resident memory pages and - for a local memory
pool - the resident memory pages priorized with CSTAT PAGE=NO, are not inheritable.

Description of the macros ENAMP

U3291-J-Z125-16-76 467

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Return information and error flags

The virtual start address of the memory pool is stored in register R1 after the function has
been carried out.

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the ENAMP macro is transferred in register R15.

b b 0 0 0 0 a a

X'bb' X'aa' Meaning

X'04' X'00' Normal execution; a new memory pool has been established (MODE=NEW/ANY).

X'08' X'00' Normal execution; the caller is the new user of the specified memory pool
(MODE=OLD/ANY).

X'04' X'04' Function was not executed; memory pool does not exist (MODE=OLD).

X'08' X'04' Function was not executed. The macro refers to an existing memory pool:
– the caller is already a memory pool user (MODE=OLD/ANY). Register R1

contains the start address of the memory pool and MPIDRET its ID .
– the memory pool already exists (MODE=NEW).
– different pool attributes were specified (MODE=OLD/ANY):
 – PSIZE/BSIZE
 – PAGE (in the case of a fixed memory pool: the start address of the MP is

 returned in register R1)
 – LOC (in the case of a fixed memory pool)
 – FIXED
 – RES

X'14' X'04' Function was not executed; insufficient free memory space
– in the caller' s address space
– in the address space below the 16-Mb boundary (in conjunction with

LOC=BELOW or PSIZE=...)

X'18' X'04' Function was not executed; invalid memory address:
– the start address or an address in the specified area is outside the address

space of the caller.
– the start address or an address in the specified area is on or above the 16-Mb

boundary and LOC=BELOW or PSIZE=... was specified.
– the start address is not aligned on a 64K/1-Mb boundary
– the specified address space is not completely free.

ENAMP Description of the macros

468 U3291-J-Z125-16-76

31-bit interface:

– In the event of errors in the alignment or initialization of the standard header, the return
codes X'0001FFFF' / X'0003FFFF'/ X'0004FFFF' are additionally transferred in register
R15; see the table “Standard return codes” on page 43.

– No return codes are transferred in the standard header.

X'1C' X'04' Function was not executed. Operand error:
– invalid address of the operand list
– error in structure of operand list
– invalid addresses for MPNAMAD or MPIDRET in the operand list
– designation of the memory pool:
 – the name contains invalid characters
 – invalid length specification (MPNAMLN)
 – the name (MPNAME, MPNAMAD) is not specified
 – MPNAME and MPNAMAD are specified
 – MPNAMLN specified, but MPNAMAD omitted
 – SCOPE specified, but MPNAME/MPNAMAD omitted
– invalid specifications for SCOPE/MODE/BSIZE/PSIZE/LOC/FIXED/RES
– the MP name and the field in which the ID is transferred overlap
– invalid register (R1) specified
– PARMOD=24 specified in conjunction with 31-bit addressing mode

(AMODE31).
– SCOPE=USER_GROUP was specified, although SRPM is not available in the

system.
– With an ENAMP call for a memory pool which already exists, the current

access key does not match the access key valid when the pool was created,
because one of the user IDs in question still has the obsolete SECURE-OLTP
privilege.

– INHERIT=YES was specifed, although the memory pool in question is local
and resident or PARMOD=24 was specified.

X'20' X'04' Function was not executed. Owing to memory saturation, the macro cannot be
executed at the moment. A subsequent macro may be successful.

X'bb' X'aa' Meaning

Description of the macros ENASI

U3291-J-Z125-16-76 469

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

ENASI – Enable serialization item

General

Application area: (Task) serialization; see page 91
Macro type: Type S, MF format 1: standard/L/E form; see page 29

ENASI generates either the 24-bit or the 31-bit interface, depending on the specification.
In the event of macro chaining, all macros chained must make use of the same interface
(either 24-bit or 31-bit interface).

Macro description

The ENASI macro creates a serialization item for the calling program's task. If a
serialization item with the specified name has already been established in the defined
scope (by an ENASI macro of another task), the macro call only causes the serialization
item to be assigned to the task of the calling program. If there is no serialization item, one
is established by the system and assigned to the task of the calling program. This macro
also returns an ID for the serialization item; this ID can be used in later calls to speed up
processing.

A program can use up to 2000 serialization items simultaneously. The CONTINU operand
allows up to 255 ENASI macros to be chained.

Macro format and description of operands

SINAME=name
Specifies the name of the serialization item. The name consists of a character string
comprising 1 to 54 bytes. The first blank (X'40') terminates the name. The characters may
be letters, digits and the special characters $, # and @. The first character must not be a
digit or the $ character.

ENASI

,SIIDRET=addr / (r)

,CONTINU=NO / YES

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

SINAME=name
SINAMAD=addr / (r) [,SINAMLN=length]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

ENASI Description of the macros

470 U3291-J-Z125-16-76

SINAMAD=
Specifies the name of the serialization item.
The rules governing the name format are specified in the SINAME operand description.

addr
Symbolic address of the field containing the name.

(r)
Register containing the address.

SINAMLN=
Specifies the length in bytes of the serialization item name. The length must be at least
1 byte and not more than 54 bytes.
If the operand is missing, the length attribute of the SINAMAD operand is assumed if
SINAMAD=addr is specified; if SINAMAD=(r), the maximum length (54) is assumed.

length
Length of the serialization item name.

SCOPE=
Specifies the scope of the serialization item (i.e. the participants authorized to use it).

LOCAL
The use of the serialization item is limited to the calling task.

GROUP
All the tasks with the same user ID as the calling task are participants.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.

The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

SIIDRET=
Specifies the ID of the serialization item.
The ID can be used in other macros (ENQAR, DEQAR, CHKSI and DISSI) referring to the
specified serialization item in order to speed up processing.

addr
Symbolic address (name) of a 4-byte field used for returning the ID to the calling
program.

Description of the macros ENASI

U3291-J-Z125-16-76 471

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

(r)
Register containing the address value “addr”.

CONTINU=
This operand allows up to 255 ENASI macros to be chained.

NO
This is the last (or only) macro of a sequence.

YES
YES indicates that another ENASI macro follows this macro.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

Notes on the macro call

– The ID of the serialization item passed to the calling program can be used in other
macros instead of the name in order to speed up processing.

– An explicit enable for a serialization item is required only if the user desires to speed up
processing by using the ID. Otherwise the user can employ the implicit enable function
(see the ENQAR and DEQAR macros).

– A task can use a serialization item only if an associated explicit or implicit enable
function for this task was processed.

– A second ENASI macro call (explicit or implicit) issued in a program for a serialization
item that was specified earlier in an explicit enable and then disabled again (see the
DISSI macro), does not necessarily assign the same ID to this item as to the first ENASI
macro call.

– If the same serialization item name is specified in two ENASI macros with different
scopes, the system will process two different serialization items.

– The scope of an ID is the same as the scope of the associated name.

ENASI Description of the macros

472 U3291-J-Z125-16-76

– When the list form of the macro (MF=E) is used, the following should be noted:
Only one macro with MF=E is required for execution, regardless of whether the macro
applies to one request or to a series of requests. In the case of a series of requests, the
operand list is generated through macro chaining (MF=L) by means of the CONTINU
operand.

Return information and error flags

Register 1 contains the operand list address.

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the ENASI macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'04' X'00' All enable macros were executed:
At least one new serialization item was established.

X'08' X'00' All enable macros were executed:
The use of at least one serialization item was enabled.

X'0C' X'04' Not all enable macros were executed:
At least one serialization item has already been used by the task of the calling
program.

X'10' X'04' Not all enable macros were executed:
Invalid operands were specified:
– invalid address
– invalid length
– invalid name
– scope or CONTINU value undefined.

X'18' X'04' Not all enable macros were executed:
The maximum number of concurrently used serialization items was exceeded.

Description of the macros ENQAR

U3291-J-Z125-16-76 473

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

ENQAR – Enqueue access request

General

Application area: (Task) serialization; see page 91
Macro type: Type S, MF format 1: standard/L/E form; see page 29

ENQAR generates either a 24-bit or a 31-bit interface, depending on the specification. In
the event of macro chaining, all macros chained must make use of the same interface
(either 24-bit or 31-bit interface).

Macro description

This macro requests access to the specified serialization item. The access request is
entered in the queue of the serialization item and the program is placed in the wait state
until it is the first in the queue. The program is then continued and uses the serialization
item until a DEQAR macro is issued for this serialization item.
If there is no serialization item with the specified name in the defined scope, the serialization
item is established and an implicit enable function (see the ENASI macro) is performed.
The COND operand enables the user to specify whether the access request is to be
performed unconditionally, or only if it can be satisfied immediately. The time for which a
program will wait for an access request to be honored can be limited by means of the
LIFETIM operand.
The CONTINU operand allows up to 255 ENQAR macros to be chained. Such a chain of
macros will be processed only if all individual requests can be honored at the same time.

Macro format and description of operands

ENQAR

,CONTINU=NO / YES

,COND=UNCOND / IMMED

[,LIFETIM=sec / (r)]

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

SINAME=name
SINAMAD=addr / (r) [,SINAMLN=length]

,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL

SIID=adr / (r)

ENQAR Description of the macros

474 U3291-J-Z125-16-76

SINAME=name
Specifies the name of the serialization item. This specification is unique only in conjunction
with the SCOPE operand.

SINAMAD=
Specifies the address of the serialization item name. This name is unique only if the SCOPE
operand is also specified.

addr
Symbolic address of the field containing the name.

(r)
Register containing the address.

SINAMLN=
Specifies the length in bytes of the serialization item name. The length must be at least
1 byte and not more than 54 bytes.
If the operand is missing, the length attribute of the SINAMAD operand is assumed if
SINAMAD=addr is specified; if SINAMAD=(r), the maximum length (54) is assumed.

length
Length of the serialization item name.

SCOPE=
Specifies the scope of the serialization item (i.e. participants authorized to use it).

LOCAL
The use of the serialization item is limited to the calling task.

GROUP
All the tasks with the same user ID as the calling task are participants.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.
The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system.

This is why the GETUGR macro (see the “SECOS” manual [14]) has to check whether
SRPM is available prior to a macro call with SCOPE=USER_GROUP. The program
reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

Description of the macros ENQAR

U3291-J-Z125-16-76 475

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

SIID=
Specifies the ID of the serialization item. This ID is supplied to the user by the ENASI
macro. If the ID is used instead of the name of the serialization item, processing is speeded
up. The ID identifies the item uniquely.

addr
Symbolic address of a 4-byte field containing the ID.

(r)
Register containing the address.

CONTINU=
This operand allows up to 255 ENQAR macros to be chained.

NO
This is the last (or only) macro of a sequence.

YES
YES indicates that another ENQAR macro follows behind this macro.

COND=
Defines access request processing. If the request can be satisfied immediately, it is
satisfied; if it cannot be satisfied immediately, the request is entered in the queue of the
referenced serialization item. In this case, the calling program must wait until the complete
request can be processed or until the waiting time specified by means of the LIFETIM
operand has elapsed.
This operand may be used only in the last macro of a series of ENQAR macros chained by
means of CONTINU; nevertheless it applies to the whole series.

UNCOND
The request is not subject to any conditions.

IMMED
The access request is processed only if the complete request can be satisfied
immediately.

LIFETIM=
Specifies the time in seconds the task is to wait for the access requests to be processed. A
return code indicates whether the request was satisfied or whether the maximum waiting
time has elapsed.
The operand may be used only in the last macro of a series of ENQAR macros chained by
means of CONTINU; nevertheless it applies to the whole series.

sec
Time in seconds. 1 sec ≤ wait time ≤ 43200 sec.
Processing precision for this macro is +10 seconds. Default setting: 600 seconds.

(r)
Register containing the time in seconds.

ENQAR Description of the macros

476 U3291-J-Z125-16-76

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

Notes on the macro call

– An implicit enable is performed when the calling task has not yet requested an explicit
or implicit enable (see the ENASI macro) for this serialization item. However, an implicit
enable does not cause an ID to be supplied.

– Each further explicit or implicit enable macro issued in a program for a serialization item
that was specified earlier in an explicit enable and then disabled (see the DISSI macro)
does not necessarily assign the same ID to this serialization item as the first enable
macro.

– An enable performed as part of an ENQAR macro and the entry in the queue form one
operation.

– If the same serialization item name was specified in two enable macros with different
scopes, the system will process two different serialization items.

– When the list form of the macro (MF=E) is used, the following should be noted:
Only one macro with MF=E is required for execution, regardless of whether the macro
applies to one request or to a series of requests. In the case of a series of requests, the
operand list is generated through macro chaining (MF=L) by means of the CONTINU
operand.

Description of the macros ENQAR

U3291-J-Z125-16-76 477

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Return information and error flags

Register R1 contains the operand list address.

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the ENQAR macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'04' X'00' All enqueue requests were satisfied: At least one serialization item was
established and assigned to the task of the calling program.

X'08' X'00' All enqueue requests were satisfied:
At least one serialization item was assigned to the task of the calling program.

X'0C' X'00' All enqueue requests were satisfied:
All serialization items were already assigned to the task of the calling program.

X'3C' X'00' All enqueue requests were satisfied:
A DEQAR macro, issued by another task that was not the “holder” of the
serialization item, has already been processed. This DEQAR macro was
processed because HOLDER=ANY was specified. This return code has priority
over all others with RS=X' 00' .

X'10' X'04' Not all enqueue requests were satisfied:
Invalid operands were specified:
– invalid address (e.g. address within a DSECT)
– invalid length, invalid name, invalid LIFETIM value
– SCOPE, CONTINU or COND value undefined
– COND or LIFETIM specification entered for an item that is not the last in a

series chained with CONTINU.

X'14' X'04' Not all enqueue requests were satisfied:
An invalid ID was specified.

X'18' X'04' Not all enqueue requests were satisfied:
The maximum number of serialization items which can be used simultaneously
was exceeded.

X'1C' X'04' Not all enqueue requests were satisfied:
The complete request could not be satisfied
– immediately (if COND=IMMED)
– within the waiting time (if COND=UNCOND).

X'24' X'04' Not all enqueue requests were satisfied:
The calling program is already using the requested serialization item.

X'40' X'04' Not all enqueue requests were satisfied:
No class 5 memory was available for processing the request.

X'44' X'04' Not all enqueue requests were satisfied:
A disable request for at least one serialization item was issued (by a contingency
process with higher priority), while the enqueue request was still pending.

ENTER Description of the macros

478 U3291-J-Z125-16-76

ENTER – Initiate ENTER job

General

Application area: Starting, interrupting and terminating; see page 72
Macro type: Type S, MF format 1: standard/L/E/C/D form; see page 29

Macro description

The ENTER macro allows the ENTER-JOB command to be issued via the macro command
language processor (MCLP) without interrupting program mode (see section “Macro
Command Language Processor macros” on page 45). Messages concerning command
processing are output to SYSOUT and may additionally be transferred to an area of the
calling program. The ENTER-JOB command allows a batch job that is stored in an
(ENTER) file to be transferred to the operating system for processing.
The (ENTER) file is a cataloged file or a library element. The ENTER-JOB command can
be issued in both program mode and command mode (see also the “Commands”
manual [19]). The new job receives its own TSN and is executed in its own task -
independently of the calling task. The specifications in the ENTER-JOB command
designate the (ENTER) file, identify the caller (access authorization and accounting) and
characterize the job and logging for the job run.

The specifications on access authorization are checked against the entry in the user
catalog; further specifications regarding the job class and job attributes (job priority, run
priority, system resources) are also checked against the entry in the job class definition.
These entries may be accessed by the user via the SHOW-USER-ATTRIBUTES or SHOW-
JOB-CLASS commands.
If the entries for PRIORITY and NTL (No Time Limit) are not identical in the user catalog
and the job class definition, the value that is better for the user is accepted.
The PRIORITY and MSG operands only continue to be supported for reasons of
compatibility. Instead, the RUN-PRIO operand - or the RUN-PRIO, START= IMMEDIATELY
(for PRIORITY=(p,EXPRESS) and LOG operands together - should be used.

The operand list specified in the command operands must be specified as a string enclosed
in single quotes ('pathname [,userid1, ... ,JOB-PAR=..]'). Single quotes that are a part of a
string that occurs within this operand list (e.g. specification of the operand HOST='hostid')
must be specified twice to prevent them from being interpreted as special characters.

An (ENTER) file begins with the SET-LOGON-PARAMETERS command and ends with the
EXIT-JOB command. The operands in the SET-LOGON-PARAMETERS command are not
interpreted.

Description of the macros ENTER

U3291-J-Z125-16-76 479

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Figure 24: Initiating an ENTER job

Macro format and description of operands

ENTER

'<text>'

where <text> consists of the following operands (single quotation marks must be specified twice):

⏐ pathname

⏐ [,userid1,accountno[,password]]

⏐ ,FROM-LOGON=NO / YES

⏐ [,FPASS=password]

⏐ [,CRPASS=password]

⏐ ,ERASE=NO / YES

⏐ [,HOST=*ANY / ' 'hostid' ' / jvname1] [,CAT=' 'catid' ' / jvname2]

⏐ [,JOB-CLASS=*STD / jobclass]

⏐ [,MONJV=jvname] [,JVPASS=password]

⏐ [,JOB-PRIO=STD / jprio]

⏐ [,RERUN=NO / YES]

⏐ [,FLUSH=NO / YES]

⏐
⏐
⏐
⏐
⏐
⏐ [,START=]

⏐
⏐
⏐
⏐
⏐

Initiating job

Own TSN Own TSN

ENTER job formed from the
commands in the file XY

/SET-LOGON-PARAMETERS
...
/ENTER XY
...
/LOGOFF

/SET-LOGON-PARAMETERS
...
/LOGOFF

STD
SOON

WITHIN(HOURS=hours[,MINUTES=minutes]

[HOURS=hours,]MINUTES=minutes

)

AT([DATE=yy-mm-dd,]TIME=hh : mm)

EARLIEST([DATE=yy-mm-dd,]TIME=hh : mm)

LATEST([DATE=yy-mm-dd,]TIME=hh : mm)

AT-STREAM-STARTUP

IMMEDIATELY

ENTER Description of the macros

480 U3291-J-Z125-16-76

The 'pathname' variable stands for:

where:

catid
Catalog ID of the pubset on which the file is stored. Default value: the catalog ID allocated
to the user ID in the user catalog.

userid
User ID to which the file is allocated.
Default value: user ID which executes the macro call.

i When pathname is specified without a catalog ID and user ID and it is not cataloged
under the user’s own ID, the system attempts to access a file or library of the same
name under the default system ID (“Secondary Read” function, see the
“Introductory Guide to DMS” [8]).

ENTER (cont.)

⏐
⏐
⏐
⏐
⏐ [,REPEAT=]

⏐
⏐
⏐
⏐
⏐ [,CALENDAR=' 'pathname' ' ,SYMDATE=symdatname]

⏐ ,LIMIT=STD / number / (DATE=yy-mm-dd,TIME=hh:mm)

⏐ [,RUN-PRIO=STD / rprio]

⏐ [,TIME=STD / NTL / t]

⏐ ,PROTECTION=NONE / CANCEL

⏐ [,PRINT= STD / NO-LIMIT / number

⏐ [,LOG=(LISTING=NO / YES)]

⏐ [,JOB-PAR=*NO / ' 'attributes' ']

⏐ [,PRIORITY=p / ([p],EXP[PRESS])]

⏐ ,MSG=[F / C] [L] [H]

[,addr / (r)]

[,PARMOD=24 / 31]

[,MF=C / D / L / (E,..)]

STD
NO

PERIOD(HOURS=hours[,MINUTES=minutes]

[HOURS=hours,]MINUTES=minutes

)

DAILY

WEEKLY

AT-STREAM-STARTUP

[:catid:] [$userid.] filename

library(element)

Description of the macros ENTER

U3291-J-Z125-16-76 481

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

filename
Name of the cataloged file with the batch job.

i – filename can also be the name of a temporary file (see the “DMS Introductory
Guide” [8])

– A file generation or a file generation group cannot be specified
– The specification of a file group (“file(group)” format) is only permissible for tape

files
– The file must be shareable if it does not belong to the own user ID

library
Name of a PLAM library on disk (see the “LMS” manual [29]).

(member)
Name of the library element with the batch job.

i The expression library(member) without a catalog ID and user ID may be up to 41
characters long. With a full path name including catalog ID and user ID it may be up
to 54 characters long.

userid1
User ID for the ENTER job to be initiated or *FROMCA if the macro call is issued from a user
ID with the OPERATING privilege.

*FROMCA
The user ID of the caller is used.

accountno
Account number for the ENTER job.

i The userid1 and accountno operands may only be specified or omitted together in
the ENTER macro. If they are omitted in the ENTER macro, the values in the SET-
LOGON-PARAMETERS command of the executing job are assumed.

password
Password for the user ID userid1.
password is a string with a length of 8 bytes (c-string) or 16 bytes (x-string). Because
password is a string within a string, the single quotes must be specified twice. The password
is not logged on SYSOUT, i.e. it does not appear in the printout of the ENTER job.
If the userid1, accountno and password operands are omitted, they are, in the case of
LOGON=YES, taken over from the SET-LOGON-PARAMETERS command of the ENTER
file. Otherwise they are taken over from the SET-LOGON-PARAMETERS command of the
initiating job.

ENTER Description of the macros

482 U3291-J-Z125-16-76

FROM-LOGON=
Specifies whether or not the operands of the SET-LOGON-PARAMETERS command with
which the ENTER file begins are to be evaluated (as with an ENTER-JOB command at the
console).

NO
The operands of the SET-LOGON-PARAMETERS command in the ENTER file are not
evaluated.

YES
This operand can only be specified from a user ID with the OPERATING privilege.
The operands of the SET-LOGON-PARAMETERS command in the ENTER file are
evaluated. However, entries in the ENTER macro have priority, i.e. a value specified in
the SET-LOGON-PARAMETERS command becomes effective only if the
corresponding operand in the ENTER macro is not specified.

FPASS=
Designates the execute or write password for the ENTER file: write password when
ERASE=YES is specified, otherwise the execute password. The operand allows access to
the ENTER file if the password specified matches the password that protects this file.

password
Password for accessing the ENTER file.
password is a string with a length of 4 bytes (c-string) or 8 bytes (x-string). Because
password is a string within a string, the single quotes must be specified twice. The
password is not logged on SYSOUT, i.e. it does not appear in the printout of the ENTER
job.

CRPASS=
Designates the password with which the ENTER file is encrypted. The operand allows
access to the encrypted ENTER file if the password specified matches the password that
protects this file.

password
Password for accessing the ENTER file.
password is a string with a length of 8 bytes (c-string) or 16 bytes (x-string). Because
password is a string within a string, the single quotes must be specified twice. The
password is not logged on SYSOUT, i.e. it does not appear in the printout of the ENTER
job.

Description of the macros ENTER

U3291-J-Z125-16-76 483

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

ERASE=
Specifies whether the ENTER file is to be erased when the job is terminated.

NO
The ENTER file is not to be erased when the job is terminated.

YES
The ENTER file is to be erased at the end of the ENTER job.

i In spite of ERASE=YES, the file is not deleted if

a) the file is a library member

b) the job issuer is not the file’s (co-) owner

c) the job is abnormally terminated

d) the job is terminated by an EXIT-JOB (MODE=*ABNORMAL), CANCEL-
JOB or SHUTDOWN command

Cases c) and d) do not apply to a file on private disk, a temporary file or a file
cataloged under the caller's user ID if the ENTER job is to run under a different
user ID. In all these cases, the file is deleted once the S.IN. file has been
created.

HOST=
Specifies the target system on which the job is to be run.
Only available to users of the software products “HIPLEX MSCF” [26] and “JV” [22].

*ANY
The job can run on any target system.

''hostid''
ID of the target system.

jvname1
Job variable containing the host ID. The syntax for jvname1 must comply with the rules
for a GETJV operation (see “JV” manual [22]).

CAT=
Specifies the target system via the specified catalog ID. The job is directed to the system
to which the specified catalog is assigned.
Available only to users of the software products “HIPLEX MSCF” [26] and “JV” [22].

''catid''
Catalog ID.

jvname2
Job variable containing the catalog ID. The syntax for jvname2 must comply with the
rules for a GETJV operation (see “JV” manual [22]).

ENTER Description of the macros

484 U3291-J-Z125-16-76

JOB-CLASS=
Designates a job class to which the job is to be assigned.
If the operand is not specified, when FROM-LOGON=YES it is assigned the value from the
SET-LOGON-PARAMETERS command in the ENTER file, otherwise it is assigned the
value *STD.
The authorization for the various job classes can be queried with the SHOW-USER-
ATTRIBUTES or SHOW-JOB-CLASS commands.

*STD
The job class is the (standard) job class preset for the user or the system.

jobclass
Name of the job class.

MONJV=
Denotes a job variable that monitors the job.
If the operand is not specified, when FROM-LOGON=YES the value from the SET-LOGON-
PARAMETERS command in the ENTER file applies, otherwise the ENTER job is started
without MONJV.

Users can address their job via this job variable. During the job run, the operating system
allocates the following value to the job variable:
$S job in job queue
$R job being processed
$T job terminated normally
$A job aborted
$M job exported by means of /MOVE-JOBS
Only available to users of the “JV” software product [22].

jvname
Name of the job variable.

JVPASS=
Denotes a password that authorizes access to the monitoring job variable.
JVPASS is ignored if MONJV was not specified.

password
Password for the job variable jvname.
password = string with a length of 4 bytes (c-string) or 8 bytes (x-string). Because
“password” is a string within a string, the single quotes must be specified twice. The
password is not logged on SYSOUT, i.e. it does not appear in the printout of the ENTER
job.

Description of the macros ENTER

U3291-J-Z125-16-76 485

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

JOB-PRIO=
If the operand is not specified, when FROM-LOGON=YES it is assigned the value from the
SET-LOGON-PARAMETERS command in the ENTER file, otherwise it is assigned the
value STD.

STD
The standard value for the job class is assumed.

jprio
Job priority. MAXIMUM ≤ jprio ≤ 9. The lower the value, the higher the job priority
(urgency). The value for MAXIMUM is set in the job class definition and can be
accessed with the SHOW-JOB-CLASS command.

RERUN=
Specifies whether the job is to be rerun in the next BS2000 session if its execution was
interrupted by serious system errors or by the end of the system run.
If the operand is not specified, when FROM-LOGON=YES it is assigned the value from the
SET-LOGON-PARAMETERS command in the ENTER file, otherwise it is assigned the
value NO.

NO
No rerun of the job.

YES
The job is rerun.

FLUSH=
Specifies whether the job is removed from the job queue if it has not been processed before
the end of the system run (SHUTDOWN).
If the operand is not specified, when FROM-LOGON=YES it is assigned the value from the
SET-LOGON-PARAMETERS command in the ENTER file, otherwise it is assigned the
value NO.

NO
The job remains in the queue. The next system run must be initialized with a warm or
selective start.

YES
The job is removed from the queue. Job control with RERUN/FLUSH:

Job control using RERUN/FLASH

– if FLUSH=YES and RERUN=YES were specified and the job was interrupted
during the previous system run, FLUSH=NO is assumed in the next system run.
This ensures that the job remains in the job queue even if it is not started in this
system run.

– a monitoring job variable is set to $S if the job is repeated.

ENTER Description of the macros

486 U3291-J-Z125-16-76

– RERUN and FLUSH are not evaluated if the job is repeated.
– FLUSH=YES will be gnored with warning JMS0056 for calendar jobs.

START=
Denotes a time (period of time) for the start of the job.
If the operand is not specified, when FROM-LOGON=YES it is assigned the value from the
SET-LOGON-PARAMETERS command in the ENTER file, otherwise it is assigned the
value STD.

STD
The standard value for the selected job class is assumed.

SOON
The job is to be started as soon as possible (in line with its priority).

IMMEDIATELY
The job is to be started immediately.

WITHIN(...)
The job is to be started within the specified time (hours/minutes).
0 ≤ hours ≤ 23; 0 ≤ minutes ≤ 59.

AT(...)
The job is to be started at precisely the specified date and time.
DATE=yy-mm-dd Date (yy = year, mm = month, dd = day)
TIME=hh:mm Time of day (hh = hours, mm = minutes)

i – Hyphens and colons in DATE= and TIME= must be specified;
for example: 31 May 2012 at 15.08 is AT (DATE=12-05-31, TIME=15:08).

– The following applies to TIME: 00 ≤ hh ≤ 23; 00 ≤ mm ≤ 59.
– If the two-digit year specification is less than 80, it is interpreted as 20yy,

entries equal to or greater than 80 are interpreted as 19yy.

EARLIEST(...)
The job is to be started no earlier than at the specified time/date.
DATE=yy-mm-dd Date (yy = year, mm = month, dd = day).
TIME=hh:mm Time of day (hh = hours, mm = minutes).

See the START=AT(...) operand.

LATEST(...)
The job is to be started no later than at the specified time (date/time).
DATE=yy-mm-dd Date (yy = year, mm = month, dd = day).
TIME=hh:mm Time of day (hh = hours, mm = minutes).

See the START=AT(...) operand.

Description of the macros ENTER

U3291-J-Z125-16-76 487

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

AT-STREAM-STARTUP
The job is to be started after the startup of the job scheduler.

i The start values SOON, IMMEDIATELY, WITHIN, AT, EARLIEST, LATEST and
AT-STREAM-STARTUP are only valid if they are authorized in the job class
definition; see the SHOW-JOB-CLASS command.

REPEAT=
Denotes a period of time after which the job is to be started at regular intervals. The
repetition is regarded as a job sequence. J(0) denotes the first job run, J(1) denotes the first
repetition, ..., and J(n) denotes the nth repetition. The repetition J(i+1) is created with the
start of the job J(i), where (i ≥ 0).
If the operand is not specified, when FROM-LOGON=YES it is assigned the value from the
SET-LOGON-PARAMETERS command in the ENTER file, otherwise it is assigned the
value STD.

STD
The standard value for the selected job class is assumed.

NO
The job is not repeated.

DAILY
Daily repetition at the time specified with START.

WEEKLY
Weekly repetition at the time specified with START.

PERIOD(...)
Repetition after the specified time interval (in hours and minutes).
0 ≤ hours ≤ 23; 0 ≤ minutes ≤ 59.

AT-STREAM-STARTUP
Repetition after every startup of the job scheduler.

Notes

– Specification of the repeat values NO, DAILY, WEEKLY, PERIOD and AT-STREAM-
STARTUP is only valid if they are also authorized in the job class definition; (see
the SHOW-JOB-CLASS command).

– The RERUN and FLUSH operands are not evaluated if a job is repeated. The job
is restarted in the next repetition run.

– The ith repetition of a job (i ≥ 1) is not started until the (i-1)th execution has been
terminated.

– The abnormal termination of the current job J(i) has no effect on the start of J(i+1);
(i ≥ 0).

– Abnormal termination of the complete job: both the job that is currently running J(i)
and the subsequent job J(i+1) must be terminated abnormally, (i ≥ 0);

ENTER Description of the macros

488 U3291-J-Z125-16-76

(CANCEL-JOB command or make the job the last job of the repeat sequence with
the command MODIFY-JOB tsn, REPEAT=NO).

CALENDAR=
The start time of the job and any repetitions are specified by a symbolic date, which is
defined in a calendar file (calendar job).
The CALENDAR and SYMDATE operands must be specified together.
If CALENDAR and SYMDATE are specified, the START and REPEAT operands cannot be
specified.

''pathname''
pathname (see page 480) = name of the calendar file.

SYMDATE=
See CALENDAR.

sym-date-name
Symbolic date, which identifies the start time and any repetitions within the calendar file.

LIMIT=
determines the life of a calendar job. This limit applies in addition to the limits that are set
by the calendar.

STD
The life of a calendar job is determined only from the entry of the symbolic date in the
calendar.

number
This entry is only valid for calendar jobs.
1 ≤ number ≤ 32767
Maximum number of repetitions of the calendar job. Once a single job run has been
completed, the run counter is incremented by 1. The system then checks whether the
job counter has reached or exceeded the maximum number. If this occurs, the whole
calendar job is terminated.

(DATE=yy-mm-dd,TIME=hh:mm)
The entry is only valid for calendar jobs.
Entries in the calendar file are only taken into account up to the specified limit. No
further repetition job is generated for calendar entries after the limit; the calendar job
terminates.
The limit refers exclusively to the scheduled jobs in the file, not to the real runtime of the
jobs. Repetition jobs with a “permissible” start date are not subject to any further
restrictions and are, for example, also started after the specified date if it was not
possible to start them earlier because of delays in the job scheduler.
The date is determined by specifying the day and time:

See operand START=AT(...)

Description of the macros ENTER

U3291-J-Z125-16-76 489

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

RUN-PRIO=
Defines the priority for the processing of the job (relative to other tasks).
If the operand is not specified, when FROM-LOGON=YES it is assigned the value from the
SET-LOGON-PARAMETERS command in the ENTER file, otherwise it is assigned the
value STD.

STD
Standard value for the selected job class. The default value is also accepted if invalid
values are specified for “rprio”.

rprio
Specifies the run priority. MAXIMUM ≤ rprio ≤ 255. The lower the value, the higher the
priority. The value for MAXIMUM is set in both the job class definition and the user
catalog and can be accessed with the SHOW-JOB-CLASS or SHOW-USER-
ATTRIBUTES command. If the values are not identical, the threshold value that is better
for the user is accepted.

TIME=
Denotes the maximum CPU time (in seconds) that the task may use. The maximum amount
of CPU time that can be specified is set by the selected job class.
If the operand is not specified, when FROM-LOGON=YES it is assigned the value from the
SET-LOGON-PARAMETERS command in the ENTER file, otherwise it is assigned the
value STD.

STD
Standard value of the selected job class.

t
CPU time in seconds. 0 ≤ t ≤ maximum CPU time.

NTL
No Time Limit. The task runs without a CPU time limit.

PROTECTION=
determines whether the job is protected from being terminated inadvertently by the
CANCEL-JOB command.

NONE
The job is not protected.

CANCEL
The job is protected.

ENTER Description of the macros

490 U3291-J-Z125-16-76

PRINT=
Denotes the maximum number of records that can be output by the task (in total) to the
SYSLST, SYSLST01, SYSLST02,..., SYSLST99 system files. Data records that are output
simultaneously to SYSOUT and SYSLST (LOG=(LISTING=YES) or MSG=FH
specification) are not included.
If the operand is not specified, when FROM-LOGON=YES it is assigned the value from the
SET-LOGON-PARAMETERS command in the ENTER file, otherwise it is assigned the
value STD.

STD
Standard value of the selected job class.

number
Number of records. 0 ≤ number ≤ MAXIMUM. The value for MAXIMUM is set in the job
class definition and can be accessed with the SHOW-JOB-CLASS command.

NO-LIMIT
The number of records is unlimited.

LOG=(...)
Specifies whether the log of the job run is also to be output to SYSLST (LISTING=YES).
If the operand is not specified, when FROM-LOGON=YES it is assigned the value from the
SET-OGON-PARAMETERS command in the ENTER file, otherwise it is assigned the value
*LISTING=NO.

JOB-PAR=
Enables the specification of additional attributes for the selected job class - provided they
have been defined and disclosed by the system administration.
If the operand is not specified, when FROM-LOGON=YES it is assigned the value from the
SET-OGON-PARAMETERS command in the ENTER file, otherwise it is assigned the value
*NO.

*NO
No additional attributes.

''attributes''
String of freely selectable characters; it is allocated by system administration for
marking other job class attributes.

PRIORITY=
Designates the priority for the processing of a job (relative to other tasks).

p
Run priority. MAXIMUM ≤ p ≤ 255. The lower the value, the higher the priority. The value
for MAXIMUM is set both in the job class definition and in the user catalog. It can be
accessed with the SHOW-JOB-CLASS or SHOW-USER-ATTRIBUTES command. If
the values are not identical, the threshold value that is better for the user is accepted.
Default value: standard value for the selected job class.

Description of the macros ENTER

U3291-J-Z125-16-76 491

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

i This standard value is also assumed if invalid values are specified for “p”.

([p],EXP[RESS])
The EXPRESS specification causes the ENTER job to be started immediately. This
operand does not effect the further processing of the job. The authorization for the
EXPRESS operand is set in the user catalog and/or in the job class definition.

i The operand only continues to be supported for reasons of compatibility.
The PRIORITY=p specification should be replaced by RUN-PRIO=rprio, and
the PRIORITY=(p,EXPRESS) specification by RUN-PRIO=rprio,
START=IMMEDIATELY.

The PRIORITY operand is ignored if the RUN-PRIO operand was specified; the
EXPRESS specification is ignored if the START operand was specified.

MSG=
This operand is used to control the way in which system messages are to be output or job
execution is to be logged.

F
The full system messages are output to the SYSOUT system file (F for “Full message”).

C
The coded short form of the system messages is output to SYSOUT (C for “Code”).

L
Console messages and operator responses for this job are logged
(L for “Log”). If the user enters MSG=LH, the messages logged to SYSLST are
accompanied by the time at which they were entered.

H
Execution is also logged to SYSLST (H for “Hold message”).

i the MSG operand only continues to be supported for reasons of compatibility.
MSG is completely ignored if LOG was specified.

ENTER Description of the macros

492 U3291-J-Z125-16-76

addr
Address of the field to which the SYSOUT log is to be written. If omitted, or if the field has
a length of zero, the log is output to SYSOUT only. The field must be aligned on a word
boundary. Layout:

Bytes 0 - 1: field length (≤ 32767 bytes)
Bytes 2 - 3: no entry
Bytes 4 - n: start of SYSOUT log.

The first 4 bytes of each record of the SYSOUT log transferred to the field contain the record
length field (bytes 0-1 contain the record length, bytes 2-3 are reserved). The actual output
text always starts at byte 4. Output records are written to the field until its boundary is
reached. Any further output records that cannot be written to the field are output to SYSOUT
only. If the field boundary is reached while a record is being written, the record may be
truncated (error flag X'0C').

(r)
Register containing the “addr” address value.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

Description of the macros ENTER

U3291-J-Z125-16-76 493

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Combining the START and REPEAT operands

a) The first job start and all subsequent job starts take place as specified.

b) The first job start takes place with START=AT-STREAM-STARTUP. All subsequent
starts take place after the startup of the job scheduler with START=SOON.

c) The repetition cycle is based on the moment of job acceptance.

d) The repetition cycle is based on the specified time (START=...., TIME=....).

e) The first job start takes place after the startup of the job scheduler. The repetition
cycle is based on this start time. Subsequent starts take place with START =
SOON.

f) The repetition cycle is based on the specified time (START=...., TIME=....). The
second start and all subsequent starts take place with START=SOON.

g) The repetition cycle is based on the moment of job acceptance. All subsequent
starts take place with START=SOON.

START REPEAT

AT-STREAM-STARTUP DAILY bzw. WEEKLY PERIOD

IMMEDIATELY / SOON a) c) c)

AT / EARLIEST a) d) f)

LATEST / WITHIN a) c) g)

AT-STREAM-STARTUP b) e) e)

ENTER Description of the macros

494 U3291-J-Z125-16-76

General notes

● The operand list of the command operands must be enclosed in single quotes.

● A copy of the file is created using the name S.IN.tsn.date.hhmmss in the following
cases:

– if the file resides on private disk
– if the ENTER job is to run under a different user ID than that under which the file is

cataloged
– if the file is a temporary file
– if the file is encrypted

If the ENTER file is a library element, a copy is created under the name
S.IN.libraryname.elementname.tsn.hhmmss.
The S.IN. file is automatically deleted at the end of the job (EXIT-JOB) unless
checkpoints were set during job execution (WRCPT macro). In this case, the S.IN. file
must be present to ensure a restart without problems (RESTART-PROGRAM
command).

● Although S.IN. files are password protected (EXEC-PASSWORD) it is possible to erase
them with /DELETE-FILE without first entering the password. It is thus possible to
remove any S.IN. files that are no longer required or that have not been erased by the
system.

● ENTER files can be password protected against being read (READ-PASSWORD),
overwritten (WRITE-PASSWORD) or executed (EXEC-PASSWORD) (CREATE-FILE
command). The EXEC-PASSWORD or a higher-ranking password must be specified in
the FPASS operand if an ENTER macro is executed. WRITE-PASSWORD must also
be specified if the file is to be erased after execution (ERASE=YES operand).
The passwords are checked for errors as soon as the ENTER call is processed.
A successful check remains valid even if the user subsequently changes the
passwords, and the file is executed.

● ENTER files may be SAM or ISAM files with variable record length (RECFORM=V).
72 characters are interpreted for each data record. Where ISAM files are concerned,
the key field may be at any position in the data record, since it is masked out.
See “Consistent job interface” under the ENTER-JOB command.

Description of the macros ENTER

U3291-J-Z125-16-76 495

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Notes on job monitoring (see the “JV” manual [22])

● At ENTER time, the status indicator of “jvname” is set to “$S”, the “TSN” indicator to the
job number associated with the job and the processor indicator to the catalog ID of the
processor which is executing the job.

● If jvname cannot be accessed at macro processing time, the call is rejected. If the job
variable can only not be accessed later (the ENTER job wishes to enter a value), the
job outputs an error message to SYSOUT and continues to run normally.

● The user ID under which the monitoring job variable is issued and also the user ID for
which the job is processed must have access to jvname.

● JVPASS is the password, in accordance with the password hierarchy, which allows
access to the monitoring job variable. The password must be specified in the ENTER
macro if job distribution is required (see the “HIPLEX MSCF” manual [26]). Without job
distribution, the password may be given via a separate ADD-PASSWORD command.

● For access to the monitoring job variable, the same rules apply as for access to the
ENTER file.

Notes on job distribution (see the “HIPLEX MSCF” manual [26])

● “hostid” must define an active system of the MSCF network, otherwise the ENTER call
will be rejected.

● “jvname1” must contain the “hostid” of an active system of the MSCF network,
otherwise the ENTER call will be rejected.

● “catid” must define a known and accessible catalog (within the MSCF network),
otherwise the ENTER call will be rejected.

● “jvname2” must contain the “catid” of a known and accessible catalog (within the MSCF
network), otherwise the ENTER call will be rejected.

● If the HOST and CAT operands are specified, the value of the HOST operand is used
to define the target system.

● All passwords (both FPASS and CRPASS for the ENTER file and JVPASS for the
MONJV) must be specified in the ENTER macro when job distribution is required.
Without job distribution, the password can also be given using a separate ADD-
(CRYPTO-)PASSWORD command.

ENTER Description of the macros

496 U3291-J-Z125-16-76

Return information and error flags

R15:
A return code relating to the execution of the ENTER
macro is transferred in the rightmost byte of register
R15.

a a

X'aa' Meaning

X'00' Normal termination.

X'04' The request has not been processed due to insufficient memory area.

X'08' Error in the operand list (address area).

X'0C' The last output record entered in the user area has been truncated.

X'10' Macro call/command error (the command returned an error to MCLP),
e.g. file not cataloged (DMS0D33) or incorrect operand (JMS0021).

Description of the macros ETABIT

U3291-J-Z125-16-76 497

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

ETABIT – Generate or change entry for symbol table

General

Application area: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard/C/D/L/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

The ETABIT macro generates an entry for a symbol table, which is transferred to the DBL
when the ETABLE macro is called.

Macro format and description of operands

When creating an entry, the value *NOT-SPECIFIED causes the attributes of the symbols
to be initialized with ’FALSE’.

ETABIT

MF=D / C / L / M

,AMODE=*NOT-SPECIFIED / *31 / *24 / *ANY

,HSI_CODE=*BY-SYSTEM / *390 / *RISC / *SPARC / *X86E 1

,INVISIBLE=*NOT-SPECIFIED / *NO / *YES

,LEN=0 / <integer 0..2147473647>

,LOAD_ADDR=NULL-1 / <var: pointer>

,PAGE_ALIGNED=*NOT-SPECIFIED / *NO / *YES

,PRIVILEGED=*NOT-SPECIFIED / *NO / *YES

,PUBLIC=*NOT-SPECIFIED / *NO / *YES

,READ_ONLY=*NOT-SPECIFIED / *NO / *YES

,RESIDENT=*NOT-SPECIFIED / *NO / *YES

,SYMBOL_NAME='Ë' / <c-string 1..32> / <var: char 1..32>

,SYMBOL_TYPE=*NOT-SPECIFIED / *CSECT / *ENTRY / *COMMON

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=P / p

,MACID=BET / macid

1 The operand values *RISC and *SPARC have no meaning in BS2000/OSD-BC V9.0 and higher

 ETABIT Description of the macros

498 U3291-J-Z125-16-76

The operands are described in alphabetical order below.

AMODE=*NOT-SPECIFIED / *31 / *24 / *ANY
Value of the AMODE attribute

HSI_CODE=*BY-SYSTEM / *390 / X86E
The code type that refers to the symbol must be specified (*390, *X86E).
The default value is the type of server on which the user program is running. However, the
correct HSI code should always be entered in order to avoid an undesired and possibly
incorrect update on an ETABLE ACTION=*UPDATE macro.

INVISIBLE=*NOT-SPECIFIED / *NO / *YES
Value of the INVISIBLE attribute

LEN=0 / <integer 0..2147483647>
Length of element.
For CSECTs and COMMON areas, LEN must be greater than 0.
For ENTRYs, LEN must be 0.

LOAD_ADDR=NULL-1 / <var: pointer>
Load address of the symbol.

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM, PREFIX and MACID, see section “S-type macros” on page 29. The valid
MF values are given at the start of the macro description under “Macro type” and are
included in the macro format.
It is possible to specify a PREFIX in the C form, D form, or M form of the macro, and
additionally a MACID in the C form or M form (see section “S-type macros” on page 29).

PAGE_ALIGNED=*NOT-SPECIFIED / *NO / *YES
Value of the PAGE_ALIGNED attribute

PRIVILEGED=*NOT-SPECIFIED / *NO / *YES
Value of the PRIVILEGED attribute

PUBLIC=*NOT-SPECIFIED / *NO / *YES
Value of the PUBLIC attribute

READ_ONLY=*NOT-SPECIFIED / *NO / *YES
Value of the READ_ONLY attribute

RESIDENT=*NOT-SPECIFIED / *NO / *YES
Value of the RESIDENT attribute

SYMBOL_NAME='Ë' / <c-string 1..32> / <var: char 1..32>
Symbol name

SYMBOL_TYPE=*NOT-SPECIFIED / *CSECT / *ENTRY / *COMMON
Symbol type entered in the symbol table.

Description of the macros ETABIT

U3291-J-Z125-16-76 499

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Notes on the macro call

– If the HSI_CODE parameter is not specified, it is set to the default value *BY-SYSTEM.
A subsequent call to the ETABLE macro with ACTION=*UPDATE could, in some
cases, cause the HSI code to be inadvertently updated. To prevent this from
happening, the HSI code of the symbol must always be specified.

– The notes relating to the ETABLE macro also apply to the ETABIT macro. The layout
of a table entry is also described there.

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A return code relating to the execution of the ETABIT
macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally.

X'01' X'00' X'0000' The same ETABLE symbol already exists.

X'60' X'01' X'0006' Error in addressing mode.

X'60' X'01' X'0007' Invalid length specification.

X'60' X'01' X'0009' Invalid attribute value.

X'60' X'01' X'000B' Invalid value in HSI.

X'60' X'01' X'000C' The symbol table entry for ETABLE is invalid.

X'60' X'01' X'000D' SYMBOL_TYPE was not specified when the entry was generated.

X'60' X'01' X'002C' Invalid symbol name.

X'60' X'01' X'0060' Symbol not found.

X'60' X'01' X'0130' Invalid LOAD_ADDR operand.

X'60' X'01' X'0150' Error in symbol type.

X'60' X'01' X'0151' A symbol generated with ETABLE with this name already exists.

X' 60' X' 01' X'0152' A symbol not generated with ETABLE with this name already exists and
the required action for such a symbol is not permitted (see page 504).

X' 00' X' 01' X'FFFF' The function is no longer or not yet supported.

X' 00' X' 03' X'FFFF' The interface version is not supported.

 ETABLE Description of the macros

500 U3291-J-Z125-16-76

ETABLE – Transfer load information

General

Application area: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard/C/D/L/E/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

With the ETABLE macro, the user program transfers a symbol table to the DBL; the table
is integrated into the symbol table of the specified context. The transferred table notifies the
DBL of the names and attributes of CSECTs, ENTRYs, and COMMON areas of the user
program.

This macro is not compatible with the previous TABLE macro.

Macro format and description of operands

The operands are described in alphabetical order below.

ACTION=
Action which is to be executed for the individual symbols in the transferred table.

*CREATE
The symbols are entered into the symbol table of the context. They must not already be
present in it.

ETABLE

MF=S / D / C / E / L / M

,ACTION=*CREATE / *UPDATE / *DELETE

,CONTEXT_NAME=' Ë' / <char 1..32>

,CONTEXT_STATE=*DBL-OPTIONS / *ANY / *NEW / *OLD

,TABLE_ADDRESS=NULL-1 / <var: pointer>

,TABLE_LENGTH=0 / <integer 0..2147483647>

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=P / p

,MACID=BEI / macid

Description of the macros ETABLE

U3291-J-Z125-16-76 501

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

*UPDATE
The symbols are entered with their new attributes into the symbol table of the context.
They must already be present in it. The visibility of symbols which were not entered with
an earlier call of the ETABLE macro is also changed here.

*DELETE
The symbols are to be deleted from the symbol table of the context.

CONTEXT_NAME='Ë' / <char 1..32>
Name of the context to which the symbols are assigned. The first character must be a letter.

CONTEXT_STATE=
Status of the context specified with CONTEXT_NAME

*DBL-OPTIONS
The operand value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the operand has not yet been set using the MODIFY-DBL-
DEFAULTS command, the value that follows *DBL-OPTIONS in the syntax definition
applies.

*ANY
If the context already exists it is used, otherwise a new context is created.

*NEW
The context is created. It must not already exist.

*OLD
The context already exists.

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM, PREFIX and MACID, see section “S-type macros” on page 29. The valid
MF values are given at the start of the macro description under “Macro type” and are
included in the macro format.
It is possible to specify a PREFIX in the C form, D form, or M form of the macro, and
additionally a MACID in the C form or M form (see section “S-type macros” on page 29).

TABLE_ADDRESS=NULL-1 / <var: pointer>
Address of a table of symbols to be transferred to DBL.

TABLE_LENGTH=0 / <integer 0..2147483647>
Actual length of the table (in bytes)

 ETABLE Description of the macros

502 U3291-J-Z125-16-76

Notes on the macro call

– The type and name of a symbol cannot be changed with ETABLE.
– The address in the LOAD_ADDR field must be a valid class 6 memory address.
– A symbol that was entered in the symbol table of the context with ETABLE cannot be

deleted from the symbol table using the UNBIND macro. However, symbols that were
introduced with the LOAD-/START-EXECUTABLE-PROGRAM (or LOAD-/START-
PROGRAM) command or with the BIND and TABLE macros cannot be deleted with
ETABLE ACTION=*DELETE.

– If ACTION=*DELETE is set, the CONTEXT_STATE operand is ignored. Only the
symbol names are taken into account.

– The user is responsible for symbols entered in the symbol table with ETABLE; these
symbols are not visible for the current task.

– If a COMMON area is introduced with ETABLE, DBL assumes that the COMMON area
is already loaded and refers the LOAD_ADDR field to an allocated memory area.

– If ACTION=UPDATE is applied to a symbol which was not generated by ETABLE, only
the symbol name, symbol type and the INVISIBLE attribute are taken into account
during processing.

– Only the visibility can be updated for a symbol which was not generated by ETABLE.
– As the visibility can also be updated for symbols which were not generated by ETABLE,

the visibility of the first symbol found is always updated.

Description of the macros ETABLE

U3291-J-Z125-16-76 503

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Symbol table format

The address specified with TABLE_ADDRESS points to a symbol table, which may contain
a number of entries. An individual entry has the following format:

The DSECT for such a symbol entry is generated with ETABIT MF=D.

Byte Length Field name Meaning and/or value

0 8 HDR Standard header

8 1 TYPE / CSECT (X'F0') or
/ ENTRY (X'F1') or
/ COMMON (X'F3')

9 7 ATTRIBUTE Same attributes as for CSECTs (1 byte per attribut with the
following meaning):

1. INVISIBLE:
2. AMODE:
3. RESIDENT:
4. PAGE_ALIGNED:
5. READ_ONLY:
6. PUBLIC:
7. PRIVILEGED:

X'01' ï NO, X'02' ï YES
X'01' ï 31, X'02' ï 24, X'03' ï ANY
X'01' ï NO, X'02' ï YES
X'01' ï NO, X'02' ï YES
X'01' ï NO, X'02' ï YES
X'01' ï NO, X'02' ï YES
X'01' ï NO, X'02' ï YES

16 4 LOAD_ADDR Load address of the symbol

20 2 LEN Length of the CSECT / of the COMMON area

22 32 SYMBOL_NAME Name of the symbol

54 1 HSI_CODE 390 (X'01') or
x86E (X'09')

55 1 MMODE TU_4K_DEPENDENT (X'02') or
COMPATIBLE (X'03) or
NATIVE (X'04')

 ETABLE Description of the macros

504 U3291-J-Z125-16-76

Handling of name conflicts

The following table shows how name conflicts between symbols introduced by the
ETABLE, TABLE and BIND macros are handled:

(1) An existing ETABLE symbol has the same name.
The following return code is transferred: ETABLE_SYMB_DUPLICATE

(2) A name conflict occurs. The following return code is transferred:
ETABLE_NAME_COLLISION

(3) The symbol is changed (no name conflict).

(4) Only the visibility of the symbol is updated.

(5) The symbol is deleted (no name conflict).

(6) Invalid action.

Existing symbol was introduced by

ACTION ETABLE TABLE BIND

*CREATE (1) (2) (2)

*UPDATE (3) (4) (4)

*DELETE (5) (6) (6)

Description of the macros ETABLE

U3291-J-Z125-16-76 505

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

Return information and error flags

If an error occurs during processing of the table entries, a corresponding return code is
entered in the HDR field of the table entry containing the error. The return code
FUNCTION_PARTIALLY_PROCESSED is entered in the standard header of the
parameter list and processing of the table entries is continued.

The PROCESSED_ITEMS field of the parameter list contains the number of correctly
processed entries.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A return code relating to the execution of the ETABLE
macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally.

X'01' X'00' X'0000' The function was already executed.

X'02' X'00' X'0001' The function was partially executed.

X'60' X'01' X'0001' Invalid TABLE_LENGTH operand.

X'60' X'01' X'0002' Invalid specification for TABLE_ADDRESS or TABLE_LENGTH.

X'60' X'01' X'0008' Invalid ACTION operand

X'60' X'01' X'000A' Internal ETABLE error.

X'60' X'01' X'0019' A reserved field does not contain any binary zeros.

X'60' X'01' X'0040' The context is not yet present and CONTEXT_STATE=*OLD was
specified.

X'60' X'01' X'0048' The context is already present and CONTEXT_STATE=*NEW was
specified.

X'60' X'01' X'0134' Invalid CONTEXT_STATE parameter

X'60' X'01' X'0148' Invalid context name

X'60' X'40' X'0158' Maximum number of user contexts has been reached.

X'60' X'20' X'0200' Internal DBL error

X'60' X'20' X'0300' System error

X'00' X'01' X'FFFF' The function is no longer or not yet supported.

X'00' X'03' X'FFFF' The interface version is not supported.

 ETABLE Description of the macros

506 U3291-J-Z125-16-76

Example

This example is designed to illustrate the application of the ETABLE/ETABIT interfaces:

* DSECT of ETABLE item
*
 ETABIT MF=D
 ...
* Initialization of the ETABLE parameter list
*
 MVC ETAPL(PBEI#),ETAPLI
 LA 1,ETATAB
 LA 2,ETATABL
 ETABLE MF=M,TABLE_ADDRESS=(1),TABLE_LENGTH=(2)
*
* Initialization of the entries
*
 USING PBETDS,1 reg 1 = Address of the first entry
* PBETDS = DSECT for the entry
*
* First entry
*
 MVC 0(PBET#,1),ETAITEMI Initializing entry
 ETABIT MF=M,SYMBOL_NAME=CS1NAM,LEN=CS1L,
 LOAD_ADDR=CS1@,SYMBOL_TYPE=*COMMON
*
* Second entry
*
 LA 1,PBET#(1) reg 1 = Address of the second entry
 L 2,CS2@
 MVC 0(PBET#,1),ETAITEMI Initializing entry
 ETABIT MF=M,SYMBOL_NAME='CS2',LEN=200,
 LOAD_ADDR=(2),SYMBOL_TYPE=*CSECT
*
* Call ETABLE
*
 ETABLE MF=E,PARAM=ETAPL
*
* Return code evaluation
*
 ...
*
* ETABLE table
*
ETATAB DS XL(2*PBET#) Table for two entries
ETATABL EQU *-ETATAB Table length
 DS 0F
CS1@ DS F Address of the first symbol entered

Description of the macros ETABLE

U3291-J-Z125-16-76 507

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

CS1NAM DS CL32 Name of the first symbol entered
CS1L DS Y Length of the first symbol entered
CS2@ DS F Address of the second symbol entered
*
ETAPL ETABLE MF=C Parameter list
*
* Structure for initializing the ETABLE parameter list
*
ETAPLI ETABLE MF=L,ACTION=*CREATE,CONTEXT_STATE=*NEW,
 CONTEXT_NAME='ETACTX'
*
* Structure for initializing an ETABLE entry
*
 ETAITEMI ETABIT MF=L

 EXIT Description of the macros

508 U3291-J-Z125-16-76

EXIT – Terminate STXIT process/routine

General

Application areas: Starting, interrupting and terminating; see page 72
STXIT processing; see page 131

Macro type: Type S, MF format 1: standard/L/E form; see page 29

Program interrupts can be processed with STXIT routines. They run as separate processes
(and have their own PCB and processing level).
No return code relating to the execution of the EXIT macro is transferred.

Macro description

The EXIT macro terminates an STXIT process.

The user may specify whether another STXIT routine assigned to the same event class is
to be activated; if this is not the case, the interrupted process is continued or the program
is terminated.

Notes

– If the STXIT routine is assigned to the “ABEND” or “normal program termination” event
class, the program is terminated by the system after the EXIT macro, provided that all
the STXIT routines for these STXIT event classes have been executed (if
CONTINU=YES) and the event (e.g. LOGOFF(ABEND)) has been terminated by the
system.

– An STXIT routine assigned to the “end of the program runtime” event class should be
terminated with the TERM macro.

Macro format and description of operands

EXIT

CONTINU=YES / NO / STD

,TERM=

[,MF=L / (E,..)]

NO

(PRGR[,DUMP] ,NORMAL])

(STEP[,DUMP] [,NORMAL])

Description of the macros EXIT

U3291-J-Z125-16-76 509

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\d

ef
.d

o
c

CONTINU=
Defines whether another STXIT routine of the same event class is to be started.

YES
Another STXIT routine is started.

NO
No other STXIT routine is started.

STD
This option normally corresponds to CONTINU=YES. It has a different meaning only if
all of the following three conditions are fulfilled:

– the STXIT class is 'PROGRAM CHECK' or 'UNRECOVERABLE PROGRAM
ERROR',

– all previous STXIT routines of this STXIT class have terminated with
CONTINU=STD, and

– there are no more STXIT routines of the same STXIT class.

In this case the program is resumed as if these STXIT routines had never existed, i.e.
the error recovery envisaged for the fault which has occurred is started.

TERM=
Specifies whether the program is to be terminated (if no other STXIT routines of the same
STXIT event class are activated in the program).

NO
The program is not to be terminated.

(PRGR[,DUMP][,NORMAL])
The program is to be terminated.
If DUMP is specified, a user dump is also output.
If NORMAL is specified, the program is terminated normally.
Default setting is ABNORMAL, i.e. the program is terminated abnormally.

(STEP[,DUMP][,NORMAL])
In an interactive task, the program is terminated.
In a batch task, the program additionally branches to the next SET-JOB-STEP, or EXIT-
JOB command.
If DUMP is specified, a user dump is also output. If NORMAL is specified, the program
is terminated normally.
Default setting is ABNORMAL, i.e. the program is terminated abnormally.)

 EXIT Description of the macros

510 U3291-J-Z125-16-76

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

For an example, see section “STXIT procedure with contingency processing” on page 131.

Description of the macros GCCSN

U3291-J-Z125-16-76 511

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

GCCSN – Display CCS name for command and data input

General

Application areas: Input/output of files and records; see page 156
Requesting and accessing lists and tables; see page 155

Macro type: Type S, MF format 3: D/C/S/E/L form; see page 29

Macro description

The GCCSN macro allows the user to display the name of the current coded character set
(coding table) for input and output of commands or data.
The name of the current coded character set (coding table) depends on the input or output
source:

– SYSDTA/SYSCMD/SYSOUT is assigned to a data display terminal:
The CCS name is determined by VTSU. The GCCSN macro receives the name
(internally) from the ACTCH field of the TSTAT macro's parameter list.

– SYSDTA/SYSCMD/SYSOUT/SYSLST is assigned to an S variable:
Interactive mode: the same as when SYSDTA/SYSCMD is assigned to a data display
terminal.
Batch mode: the CCS name 'EDF03IRV' is displayed.

– SYSDTA/SYSCMD/SYSOUT/SYSLST is assigned to a PLAM library element:
The CCS name of the library element is displayed.
If no coding table is assigned to the library element, the coding table name “EDF03IRV”
is displayed.

– SYSCMD is assigned to a file:
The CCS name in the catalog entry for the file is displayed. Files may be cataloged files,
S procedures and non-S procedures.

– SYSDTA/SYSOUT/SYSLST is assigned to a file:
The CCS name in the catalog entry for the file is displayed. Files may be cataloged files,
S procedures and non-S procedures (if SYSDTA=(SYSCMD)).
The name of the coding table for SYSOUT/SYSLST can be assigned using the
commands /ASSIGN-SYSOUT/SYSLST CODED-CHARACTER-SET=.
If no coding table is assigned, the default name of the user catalog entry is displayed.

Once the parameter list has been initialized (MF=L) the function call (MF=E) is issued. If the
macro is executed without errors, the field <PREFIX><MACID>CCSN in the parameter list
contains the CCS name of the queried system file.

GCCSN Description of the macros

512 U3291-J-Z125-16-76

Macro format and description of operands

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.

A PREFIX can be specified in the C form or D form of the macro and additionally a MACID
in the C form (see page 29).

It is also possible to call this macro with MF=S.

STREAM=
Specifies the system file whose CCS name is to be output.

SYSDTA
The CCS name of SYSDTA is to be displayed.

SYSCMD
The CCS name of SYSCMD is to be displayed.

SYSOUT
The CCS name of SYSSYSOUT is to be displayed.

SYSLST
The CCS name of SYSLST is to be displayed.

Notes

– If SYSDTA is assigned to a data display terminal, the user can modify the CCS name
dynamically in a program (in the VTSU control block of the RDATA macro).
This modification is valid only during this RDATA input/output and has no effect on the
output of the GCCSN macro, which in this case always displays the CCS name that is
predefined in the user's user catalog.

– If SYSCMD is assigned to a data display terminal, privileged users can modify the CCS
name dynamically (in the VTSU control block of the WRTRD macro).

GCCSN

STREAM=SYSDTA / SYSCMD / SYSOUT / SYSLST

,MF=D / C / S / E / L

[,PARAM=addr / (r)]

,PREFIX=C / p

,MACID=CSN / macid

Description of the macros GCCSN

U3291-J-Z125-16-76 513

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

This modification is valid only during this WRTRD input/output and has no effect on the
output of the GCCSN macro, which in this case always displays the CCS name that is
predefined in the user's user catalog.

– If SYSDTA/SYSCMD/SYSOUT/SYSLST is assigned to a file or a library element, the
CCS name does not change between the time the file or library element is opened
(OPEN) and the time it is closed (CLOSE).

– If a procedure is interrupted with K2, the current SYSDTA CCS name is not that of the
data display terminal but that of the procedure that has just been interrupted.

– If, during processing of a procedure, a procedure parameter is prompted at the data
display terminal, the current CCS name for this procedure applies to the fixed
(requesting) part of the command/statement line. The CCS name of the data display
terminal applies to the parameter value entered.

Example

Level 1: data display terminal Level 2: procedure HALLO

:
(IN) /CALL-PROC HALLO -----> /BEGIN-PROC A,PROC-PAR=(&PARAM),-
 / ESC-CHAR='&'
 /ASS-SYSDTA *SYSCMD
 /START-PROG $EDT
<---------------------------- @READ'&PARAM
(OUT) &PARAM=
(IN) TEST.1
----------------------------> @READ'TEST.1
 :

The string @READ' is read using the CCS name for the HALLO procedure; the string
TEST.1 is read using the CCS name for the data display terminal.

– The user can issue the RDATA ..,A macro to obtain information on any modifications to
the SYSDTA assignment.

GCCSN Description of the macros

514 U3291-J-Z125-16-76

Layout of the CSECT

GCCSN MF=C
1 #INTF REFTYPE=REQUEST,INTNAME=GCCSN,INTCOMP=002
1 MFCHK MF=C,SUPPORT=(C,D,S,L,E),PREFIX=C, C
1 MACID=CSN,DMACID=CSN, C
1 PARAM=,ALIGN=F,SVC=39
2 DS 0F
2 *,##### PREFIX=C, MACID=CSN #####
1 CCSNCS FHDR MF=(C,CCSN)
2 CCSNCS DS 0A
2 CCSNFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 CCSNIFID DS 0A 0 INTERFACE IDENTIFIER
2 CCSNFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 CCSNFCT DS AL1 2 FUNCTION NUMBER
2 CCSNFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 CCSNRET DS 0A 4 GENERAL RETURN CODE
2 *
2 * GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
2 * REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
2 *
2 CCSNSRET DS 0AL2 4 SUB RETURN CODE
2 CCSNSR2 DS AL1 4 SUB RETURN CODE 2
2 * ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
2 * Standard subcode2 values as defined by convention:
2 CCSNR2OK EQU X'00' All correct, no additional info
2 CCSNR2NA EQU X'01' Successful, no action was necessary
2 CCSNR2WA EQU X'02' Warning, particular situation
2 CCSNSR1 DS AL1 5 SUB RETURN CODE 1
2 *
2 * GENERAL INDICATION OF ERROR CLASSES
2 *
2 * CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
2 * CLASS B X'01' - X'1F' PARAMETER SYNTAX ERROR
2 * CLASS C X'20' INTERNAL ERROR IN CALLED FUNCTION
2 * CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
2 * CLASS E X'80' - X'82' WAIT AND RETRY
2 *
2 CCSNRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
2 CCSNRPER EQU X'01' PARAMETER SYNTAX ERROR
2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' - X'1F'
2 CCSNRFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED

Description of the macros GCCSN

U3291-J-Z125-16-76 515

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

2 CCSNRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
2 CCSNRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
2 *
2 CCSNRAER EQU X'04' ALIGNMENT ERROR
2 CCSNRIER EQU X'20' INTERNAL ERROR
2 CCSNRCAR EQU X'40' CORRECT AND RETRY
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
2 CCSNRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
2 * EXPLICITELY BY CREATE-SS
2 CCSNRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
2 *
2 CCSNRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
2 CCSNRWLR EQU X'81' " LONG "
2 CCSNRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
2 * BUT RETRY IS POSSIBLE
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' - X'82'
2 CCSNRTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE
2 CCSNRDH EQU X'82' SS IN DELETE / HOLD
2 *
2 CCSNMRET DS 0AL2 6 MAIN RETURN CODE
2 CCSNMR2 DS AL1 6 MAIN RETURN CODE 2
2 CCSNMR1 DS AL1 7 MAIN RETURN CODE 1
2 *
2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'00XXYYYY')
2 *
2 CCSNRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 CCSNFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 CCSNFLAG DS X STREAM IDENTIFIER
1 CCSNDTA EQU X'01' SYSDTA
1 CCSNCMD EQU X'02' SYSCMD
1 CCSNOUT EQU X'03' SYSOUT
1 CCSNLST EQU X'04' SYSLST
1 CCSNRES1 DS CL3 RESERVED
1 CCSNRES2 DS A RESERVED
1 CCSNRES3 DS A RESERVED
1 CCSNCCSN DS CL8 CODED CHARACTER SET NAME
1 CCSNPAR EQU X'01' SC1 RC : PARAMETER ERROR
1 CCSNERR EQU X'20' SC1 RC : INTERNAL ERROR
1 CCSN# EQU *-CCSNCS PARAMETER LIST LENGTH
1 SPACE 2

GCCSN Description of the macros

516 U3291-J-Z125-16-76

Return information and error flags

During macro processing, register R1 receives the parameter list address. The CCS name
is transferred in the field <PREFIX><MACID>CCSN in the parameter list.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A structured return code relating to the execution of
the GCCSN macro is transferred
(bb=Subcode1, aaaa=Maincode):

0 0 b b a a a a

X'bb' X'aaaa' Meaning

X'00' X'0000' Normal execution.

X'01' X'0008' Operand error.

X'20' X'0004' Internal error.

Description of the macros GEPRT

U3291-J-Z125-16-76 517

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

GEPRT – Get program time

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type O/type R; see page 28

Type S, MF format 1: 31-bit interface
standard/E/L/D form; see page 29

● O-type macro expansion does not make use of any registers.

● The SVCs used differ, depending on the macro form.

Macro description

The GEPRT macro provides information on the CPU time used by the job since SET-
LOGON-PARAMETERS and/or the CPU time still available for the executing program.
The CPU time still available is determined from the time limit allowed for execution of the
program (as specified in the START-PROGRAM command, CPU-LIMIT operand); or, if this
operand was omitted, from the time limit for the job (i.e. either the specified time or the
default value in the SET-LOGON-PARAMETERS command).
Fields must be created in order to receive the program time data (provided in zoned decimal
format).

Calling the macro without specifying any operands (type R) will provide the CPU time used
since SET-LOGON-PARAMETERS. This information (in TODR format) is passed to the
user in registers R0 and R1. Without operands, the function executes considerably faster
than when calling the macro with operands (only 220 instructions for type R, as opposed to
550 for type S or O).

Macro format and description of operands

GEPRT

[,PARMOD=31]

[,MF=L / (E,..) / D]

,PREF=G / p

[[addr1] [,addr2]
[(r1)] [,(r2)]

 [,FORMAT=B8]]

GEPRT Description of the macros

518 U3291-J-Z125-16-76

addr1
Symbolic address of a 6-byte field. The CPU time already used by the job is entered in this
field.
Field length = 8 bytes if the operand FORMAT=B8 is specified.

(r1)
Register containing the address value “addr1”. If PARMOD=31, the address value may not
be transferred in register R1.

addr2
Symbolic address of a 6-byte field. The remaining (maximum) CPU time for the program or
the job is entered into this field.
Field length = 8 bytes if the operand FORMAT=B8 is specified.

(r2)
Register containing the address value “addr2”. If PARMOD=31, the address value may not
be transferred in register R1.

FORMAT=B8
The time information is provided in the format hhhhmmss (hhhh=hours, mm=minutes,
ss=seconds).

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.

A prefix PREF (1 letter, default setting: G) can be specified in the D form of the macro (see
page 29).

PARMOD=
Controls macro expansion. If PARMOD is not specified here, macro expansion is performed
according to the specification for the GPARMOD macro or according to the default value for
the assembler (= 24-bit interface).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

Description of the macros GEPRT

U3291-J-Z125-16-76 519

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

Functional description

The CPU time is supplied in zoned decimal format as a 6-digit string (hhmmss) or, if
FORMAT=B8 is specified, as an 8-digit string (hhhhmmss).

Specifications for jobs with no CPU time limit (NTL):

Field for elapsed CPU time:

Field for remaining CPU time:

Note
The GEPRT macro transfers no return code. Addressing errors made by the user cause
the system to generate the “address error” event (STXIT event class “unrecoverable
program error”). The program is terminated with the flag “address error” unless an
STXIT routine has been included in the program to deal with this event.

Example

GEPRT START
PRINT NOGEN
BALR 3,0
USING *,3
GEPRT FIELD1,FIELD2,FORMAT=B8 ———————————————————————————————— (1)
WROUT OUTB,ERROR

ERROR TERM
**** DEFINITIONS *******
OUTB DC Y(OUTBE-OUTB)

DS CL3
DC C'CPU TIME USED: '

FIELD1 DS CL8
DC C' AVAILABLE CPU TIME: '

FIELD2 DS CL8
OUTBE EQU *

END

current value < 100h current value Ï 100h

6-byte field
8-byte field

current value
current value

99h 59min 59sec
current value

6-byte field 99h 59min 59sec

8-byte field 9999h 59min 59sec

GEPRT Description of the macros

520 U3291-J-Z125-16-76

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,geprt), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,geprt))
% ASS6011 ASSEMBLY TIME: 337 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 80 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=geprt
% BLS0523 ELEMENT 'GEPRT', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'GEPRT', VERSION ' ' OF '<date> <time>' LOADED
CPU TIME USED: 00000059 AVAILABLE CPU TIME: 00022901 ———————————————— (2)

(1) Both the CPU time used since SET-LOGON-PARAMETERS and the CPU time still
available for running the program are requested.

(2) The CPU time used since SET-LOGON-PARAMETERS and the CPU time still
available for running the program are output.

Description of the macros GETPRGV

U3291-J-Z125-16-76 521

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

GETPRGV – Get program version

General

Application area: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard/C/D/E/L/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

The GETPRGV macro outputs the program version that was previously selected by the
user with the SELPRGV macro or the SELECT-PROGRAM-VERSION command.

Macro format and description of operands

PRGNAME=<name 1..32>
Program name. The name may contain alphanumerical characters only.
May be specified only if MF=L or MF=S.

PRGNAM@=<var: name 32..32> / (<reg: pointer>)
Symbolic address or register containing the address of a 32 character field, which contains
the the program name. Shorter name specifications must be padded with blanks.
May be specified only if MF=M.

GETPRGV

MF=S / C / D / E / L / M

,PRGNAME=<name 1..32>

,PRGNAM@=<var: name 32..32> / (<reg: pointer>)

,PRGVER@=<var: structure> / <var: pointer> / (<reg: pointer>)

,PARAM=<var: pointer> / (<reg: pointer>)

,PREFIX=P / p

,MACID=BGT / macid

 GETPRGV Description of the macros

522 U3291-J-Z125-16-76

PRGVER@=
Address of a structure in which the program was entered by DBL if a version was selected.
The DSECT <prefix><macid>VRDS for the structure is generated if MF=D and has the
following layout:

<var: structure>
Symbolic address of the structure. May be specified only if MF=L or MF=S.

<var: pointer>
Symbolic address of an auxiliary field containing the address of the structure.
May be specified only if MF=M.

(<reg: pointer>)
Register containing the address of the structure. May be specified only if MF=M.

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM, PREFIX and MACID, see section “S-type macros” on page 29. The valid
MF values are given at the start of the macro description under “Macro type” and are
included in the macro format.

It is possible to specify a PREFIX in the C form, D form, or M form of the macro, and
additionally a MACID in the C form or M form (see section “S-type macros” on page 29).

Notes on the macro call

– DBL first searches the program versions for which SCOPE=PROGRAM was set (see
SELPRGV macro). If DBL finds the specified program among them it transfers the
program version and terminates the search.

– Valid class 6 memory addresses must be specified in PRGNAM@ and PRGVER@.

Byte Length Field name Description

0 1 VERL Program version length

1 24 VERS Program version

Description of the macros GETPRGV

U3291-J-Z125-16-76 523

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

Return information and error flags

The program version and its length are transferred in the structure that was specified using
the PRGVER@ parameter.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

The following return code relating to the execution of
the GETPRGV macro is transferred in the standard
header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally.

X'00' X'01' X'0001' PRGNAME not specified or invalid.

X'00' X'01' X'0002' PRGVER@ not specified or invalid.

X'00' X'00' X'0004' A version for the program has not been selected.

X'00' X'00' X'0007' Program not found with the name specified.

X'00' X'20' X'0300' System error.

X'00' X'01' X'FFFF' The function is no longer or not yet supported.

X'00' X'03' X'FFFF' The interface version is not supported.

GPARMOD Description of the macros

524 U3291-J-Z125-16-76

GPARMOD – Control macro expansion

General

Application area: XS programming; see page 164
Macro type: Type O; see page 28

● the user has the choice between a 24-bit addressing mode and a 31-bit addressing
mode (AMODE=24/31). Programs stored above the 16-Mb boundary must be run in
31-bit addressing mode.

● Those macros which did not have 31-bit interfaces have been extended by this type of
interface. The former interface is retained and referred to as the 24-bit interface.
Data areas and instructions use 24-bit addresses for the 24-bit interface and 31-bit
addresses for the 31-bit interface. The 31-bit interface may be used in 24-bit addressing
mode also. In the latter case, the addresses contained in the data area are interpreted
as 24-bit addresses (i.e. the leftmost byte is not evaluated).

Macro description

The GPARMOD macro serves to assign, at program assembly time, one of the values
24 or 31 to the global Assembler variable &SYSMOD. &SYSMOD is evaluated at the time
those macros are generated which allow for both a 24-bit and a 31-bit interface, but which
were issued without the operand PARMOD=... being specified. Depending on the value of
&SYSMOD either the 24-bit or the 31-bit interface is generated for the subsequent macros.
Note that any specification of the PARMOD operand in a particular macro call prevails over
the value in &SYSMOD at macro generation time.

Macro format and description of operands

24
The 24-bit interface is generated for the subsequent macros. Data lists and instructions use
24-bit addresses (address space ≤ 16 Mb).

31
The 31-bit interface is generated for the subsequent macros. Data lists and instructions use
31-bit addresses (address space ≤ 2 Gb).

GPARMOD

[24 / 31]

Description of the macros GPARMOD

U3291-J-Z125-16-76 525

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

Examples

MAC1, MAC2 and MAC3 refer to macros which can generate both a 24-bit and a 31-bit
interface.

 :
 :
 GPARMOD 31 ——— (1)
 MAC1 op1, ..., op4
 MAC2 op1, op2, op3
 MAC3 op1, ..., op7
 :
 :

 :
 :
 GPARMOD 24 ——— (2)
 MAC1 op1, ..., op4
 MAC2 op1, ..., PARMOD=31
 MAC3 op1, ..., op7
 :
 :

 :
 :
 GPARMOD 31 ——— (3)
 MAC1 op1, ..., PARMOD=24
 MAC2 op1, ..., PARMOD=24
 MAC3 op1, ..., op7
 :
 :

(1) &SYSMOD is set to 31. Since the subsequent macros are issued without the
PARMOD operand specified, the 31-bit interface is generated for each of these
macros.

(2) &SYSMOD is set to 24. For MAC1 and MAC3, the 24-bit interface is generated, for
MAC2 the 31-bit interface.

(3) &SYSMOD is set to 31. For MAC1 and MAC2, the 24-bit interface is generated in
accordance with the value specified for the PARMOD operand; for MAC3, the
31-bit interface is generated as specified for &SYSMOD.

GTIME Description of the macros

526 U3291-J-Z125-16-76

GTIME – Get date and time

General

Application areas: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 3: C/D/E/L/M form; see page 29

Macro description

The GTIME macro gives the following information:

– the current date and time of day, either the UTC ('Universal Time Coordinate',
corresponding to Greenwich Mean Time) or LT (standard 'Local Time' of the country)

– monotony behavior for callers on different XCS network node computers can be
requested at the same time

– the current weekday
– the time zone of the system (corresponds to the shift in time with respect to UTC) in

hours and minutes
– the amount of the time shift for daylight saving time (summer time) in hours and minutes
– the current time shift with respect to the standard time (winter time) based on daylight

saving time (summer time).
– the points at which daylight saving time (summer time) changes to standard time (winter

time) and vice versa (administered with the CTIME macro)
– whether the system time is synchronized with an external reference and, if so, with

which reference time source (e.g. radio clock)
– whether a time change is due in the next hour
– the current epoch for the TODR (see the “Introduction to System Administration”

manual [10])

GTIME supplies this information in the data area in printable, binary or TODR/TODX form
(for the output of local time (LT) or the Universal Time Coordinate (UTC) only).

Notes

– Because the functions of the GTIME macro are initiated via a subprogram interface
rather than a SVC, a program calling GTIME must provide a save area 18 words long.
The address of this save area must be loaded into register R13 before the macro call.

– Apart from checking the standard header, there is no validation of the operand list.

Description of the macros GTIME

U3291-J-Z125-16-76 527

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

Macro format and description of operands

The operands are described in alphabetical order below.

CHD_ANNOUNCMNT=
Announces a conversion time by means of a flag.

*NO
No (other) flag should be set.

*YES
A flag for a time change is set in the time interval of one hour before the conversion.

The data area for the output of the flag has the following structure (macro expansion
with MF=D and standard value for PREFIX):

NTIGGINF DS AL1 general_info
NTIGICNH EQU X'80' chdate is expected in next
* hour
NTIGRESERVED_7BITS EQU X'7F' not yet used
NTIGFRES DS XL2 reserved

GTIME

MODE=LT / UTC

,FORMAT=ISO4 / BIN / TODR / TODX

,RESOLVE=SEC / MICROSEC

,LINKADR=*NONE / linkaddr

,DATE=NO / YES

,DAY=NO / YES

,TOD=NO / YES

,ZONE=NO / YES

,EXTREF=NO / YES

,CHDATE=NONE / NEXT / PREV

,CHD_ANNOUNCMNT=*NO / *YES

,XCS_MODE=*NO / *YES

,MF=D / E / L / C / M

[,PARAM=addr / (r)]

,PREFIX=N / p

,MACID=TIG / macid

GTIME Description of the macros

528 U3291-J-Z125-16-76

CHDATE=
Specifies the direction in which conversion times (CHDATEs) are to be sought.
For further information on conversion times see notes on page 536.

NONE
Default setting. No (other) conversion time should be sought.

NEXT
The next conversion time should be sought.
The search begins at the contents of the field <prefix><macid>CHD.

PREV
The previous conversion time should be sought.
The search begins at the contents of the field <prefix><macid>CHD.

DATE=
Determines whether the current date is output.

NO
No information is given about the current date.

YES
The current date (calendar day and Julian date) is transferred to a data area. The value
of the FORMAT operand governs the area and format in which the information is
transferred:

FORMAT=ISO4
The current date is transferred in the form yyyy-mm-ddjjj (both hyphens are
included in the output). Where:

yyyy Year (four digits)
mm Month (two digits, with leading zero as necessary)
dd Day (two digits, with leading zero as necessary)
jjj Julian date: current day of the year

(three digits, with leading zeros as necessary)

The area in the operand list for accepting the date has the following format (macro
expansion with MF=D and default value for PREFIX):

* DATE IN ISO4 FORMAT (EXAMPLE :2012-01-20020)
NTIGDTI DS 0XL16 date_iso4
NTIGDATE_UN DS 0XL10 date union
*
NTIGDATE_1 DS 0XL10 date struct
NTIGDTIY DS CL4 year
NTIGDTI1 DS CL1 hyphen1
NTIGDTIM DS CL2 month
NTIGDTI2 DS CL1 hyphen2
NTIGDTID DS CL2 day
*

Description of the macros GTIME

U3291-J-Z125-16-76 529

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

 ORG NTIGDATE_UN
NTIGDTIC DS CL10 date_char
 ORG NTIGDATE_UN+10
NTIGDTIJ DS CL3 Julian date
NTIGDTIB DS CL1 blank
NTIGDYID DS CL2 weekday in ISO4

FORMAT=BIN
Year, month, day and Julian date are transferred as integers in each case (in binary
form). The area in the operand list for accepting the date has the following format
(macro expansion with MF=D and default value for PREFIX):

* DATE IN BINARY FORMAT
NTIGDTB DS 0XL16 date_bin
*
NTIGDATE_2 DS 0XL6 date
NTIGDTBY DS H year
NTIGDTBM DS H month
NTIGDTBD DS H day
*
NTIGDTBJ DS H Julian date
NTIGFILL_6 DS XL6 fill for weekday
NTIGDYBD DS H weekday bin.: MO=0, DI=1, ...
* SO=6

DAY=
Determines whether the current weekday is output.

NO
No information is given about the current weekday.

YES
The current weekday is transferred to a field of the operand list. The value of the
FORMAT operand governs the area and format in which the information is transferred:

FORMAT=ISO4
The first two letters of the current weekday (MO, DI, MI, DO, FR, SA, SO) are
transferred to the following field of the operand list (macro expansion with MF=D
and default value for PREFIX):

* DAY OF WEEK IN ISO4 FORMAT (EXAMPLE : MO)
NTIGDYI DS 0XL2

FORMAT=BIN
The current weekday is transferred as an integer (in binary form) (0 for Monday,
1 for Tuesday,..., 6 for Sunday) in the following halfword of the operand list (macro
expansion with MF=D and default value for PREFIX):

* DAY OF WEEK IN BINARY FORMAT
NTIGDYB DS 0XL2

GTIME Description of the macros

530 U3291-J-Z125-16-76

EXTREF=
Determines whether the information on the external reference of the system time should be
supplied where it is available.

NO
No information will be suppliued.

YES
The information on any available external reference of the system time should be
supplied.

The data area for the output of the information has the following structure (for detailled
information see the GTIME DSECT; default values for PREFIX and MACID):

* FLAGS OF GTIME: TIME REFERENCE
NTIGFLG DS 0XL4 flags of GTIME
NTIGTREF DS FL1 time_reference
* _time_reference_s
NTIGNONE EQU 0 no external time reference
NTIGSVPF EQU 1 SVP radio clock reference
NTIGSVCE EQU 1 Server connected ext.reference
NTIGCHNF EQU 2 Channel rad. cl. reference
NTIGBSCE EQU 2 BS2 connected ext. reference
NTIGDCET EQU 3 DCE reference
NTIGXCST EQU 4 XCS reference
NTIGSKPX EQU 5 SKP-X reference
NTIGX2K EQU 5 X2000 reference

FORMAT=
Defines the form in which GTIME supplies the requested information.

ISO4
The information is provided in printable form.

BIN
The information is provided in binary form.

TODR / TODX
The information is taken from the contents of the TOD register and the setting for the
epoch in the TOD register.
The operand values for DATE, DAY, TOD and ZONE must be “NO”. The MODE operand
is evaluated, i.e. MODE=LT must be set if the local time is to be output in TODR or
TODX format; otherwise the UTC is output in TODR format.
The differences between TODR and TODX are described in the section “System time
administration” in the “Introduction to System Administration” manual [10] and also in
the information on the CTIME macro on page 357.

Description of the macros GTIME

U3291-J-Z125-16-76 531

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

LINKADR=
Specifies the manner in which the address of the entry point I@GTIME for the GTIME
routine in the GET-TIME subsystem is supplied to the user program. If MF=E, LINKADR
must be specified; in all other cases, specification of LINKADR has no effect.

*NONE
Default value: during assembly the assembler generates an external reference for the
I@GTIME entry point and this is resolved during linking via the autolink function of the
BLS.

This value can be used when the module containing the GTIME call:

– is always linked and loaded with the dynamic binder loader DBL (in this case,
GTIME in the E form is allowed to issue a V constant, which is supplied by the BLS
during the load procedure)
or

– is linked with the BINDER of the new BLS (see the “BINDER” manual [5]) under the
BINDER statement SET-EXTERN-RESOLUTION RESOLUTION=STD.

linkaddr
Symbolic address (name) of a word in which the user has provided the address of the
I@GTIME entry before the GTIME call.

The following example shows how the address of the of the I@GTIME entry is first
supplied to the program by an appropriate BIND call in the R1 register and can then be
transferred for the GTIME call into the word designated by “linkaddr”:

 LINK MF=E,PARAM=BINDPL
 :
 GTIME MF=E,PARAM=OPLIST,LINKADR=AENTRY
 :
AENTRY DS F
OPLIST GTIME MF=L,...
BINDPL BIND MF=L,SYMBOL=I@GTIME,SYMBLAD=AENTRY

The entry address of the GTIME routine must always be supplied to the user program
in this way if none of the cases mentioned in LINKADR=*NONE apply, e.g. especially if
the module with the GTIME call is linked by BINDER under the BINDER statement SET-
EXTERN-RESOLUTION RESOLUTION=MANDATORY.

GTIME Description of the macros

532 U3291-J-Z125-16-76

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.

A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form (see page 29).

In the E form of the macro, the label of the data area is specified in the PARAM operand.
Default setting: NTIG$PL
When calling the macro with MF=L, the user must specify this label explicitly, otherwise an
MNOTE is output.

MODE=
Defines in which time system the date and time are to be output.

LT
Date and time are output in local time system (legal zone time).

UTC
Date and time are given as the UTC (Universal Time Coordinate, corresponds to
Greenwich Mean Time).

RESOLVE=
specifies the desired level of expansion for the GTIME time specification for the formats
ISO4 and BIN. For the format of output areas, see the areas specified for the TOD=YES
operand.

SEC
Time is specified down to seconds.

MICROSEC
Time is specified down to microseconds.

TOD=
Determines whether the current time is output.

NO
No information is transferred about the current time.

YES
The current time is transferred to an area of the operand list. The value of the FORMAT
operand governs the area and format in which the information is transferred:

Description of the macros GTIME

U3291-J-Z125-16-76 533

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

FORMAT=ISO4
The current time is transferred in the form hh:mm:ss (both colons are included in the
output). Where:

hh Hours (two digits with leading zero as necessary)
mm Minutes (two digits with leading zero as necessary)
ss Seconds (two digits with leading zero as necessary)

The area in the operand list for accepting the time has the following format (macro
expansion with MF=D and default value for PREFIX):

* TIME OF DAY WITH FORMAT=ISO4 (EXAMPLE : 08:31:09)
NTIGTDI DS 0XL8 _tod_iso4_mdl
NTIGTDIH DS CL2 hour
NTIGTDI1 DS CL1 colon1
NTIGTDIM DS CL2 minute
NTIGTDI2 DS CL1 colon2
NTIGTDIS DS CL2 second
* SECOND FRACTION OF TIME OF DAY IN ISO4 FORMAT
* (EXAMPLE : .123456)
NTIGTFI DS 0XL6 _ftod_iso4_mdl
NTIGTFIM DS CL3 millisecond
NTIGTFIN DS CL3 microsecond

FORMAT=BIN
Hour, minute and second are transferred as an integer in each case (in binary form).
The area in the operand list for accepting the time has the following structure
(macro expansion with MF=D and default value for PREFIX):

* TOD IN BINARY FORMAT
NTIGTDB DS 0XL6 _tod_bin_mdl
NTIGTDBH DS H hour
NTIGTDBM DS H minute
NTIGTDBS DS H second

* SECOND FRACTION OF TOD IN BINARY FORMAT
NTIGTFB DS 0XL4 _ftod_bin_mdl
NTIGTFBM DS H millisecond
NTIGTFBN DS H microsecond

GTIME Description of the macros

534 U3291-J-Z125-16-76

XCS_MODE=
supplies a time value which is strictly monotone within the XCS cluster with regard to a DLM
lock for a shared resource.

*NO
The monotony described above is not required.

*YES
outputs a time value which ascends monotonically within an XCS cluster under the
following conditions:
The caller must hold a DLM lock (see section “Distributed Lock Manager (DLM)” on
page 140) at the time of the call. The monotony relationship applies only for the time
stamp which has been fetched under the same lock.
The time value can be used for logging entries.
Its use is limited to the output format FORMAT=*TODR and MODE=*UTC. The
necessary expansion is achieved in TODR format only. Restriction to MODE=*UTC
ensures that monotony is maintained for all node computers even at the moment when
a time change takes place.

ZONE=
Determines whether characteristic values of the local time zone are output.

NO
No information on the local time zone is transferred.

YES
Characteristic values of the local time zone are transferred to an area in the operand
list. The value of the FORMAT operand governs the area and format in which the
information is transferred:

FORMAT=ISO4
The characteristic values of the local time zone are transferred in the form
shh1:mm1-hh2:mm2-z (colons and hyphens are included in the output). Where:

s “+” or “-”: Sign of time difference between the local time zone and UTC
(Universal Time Coordinate, corresponds to Greenwich Mean Time).

hh1:mm1 Time difference between the local time zone and UTC in hours (hh) and
minutes (mm) (hh and mm are two digits in each case, with leading
zeros as necessary).

hh2:mm2 Time shift in the local time zone between daylight saving time (summer
time) and standard time (winter time) in hours (hh) and minutes (mm)
(hh and mm are two digits in each case, with leading zeros as
necessary).

z “W” or “S”: Current timing in the local time zone (W for standard time
(winter time), S for daylight saving time (summer time)).

Description of the macros GTIME

U3291-J-Z125-16-76 535

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

The area in the operand list for accepting this information has the following format
(macro resolution with MF=D and default value for PREFIX):
* ZONE IN ISO4 FORMAT (EXAMPLE :+08:00-01:00-S)
NTIGZOI DS 0XL14 _zone_iso4_mdl
*
NTIGZOIC DS 0XL6 time_zone
NTIGZOIS DS CL1 sign
NTIGZOIH DS CL2 hour
NTIGZOI1 DS CL1 colon1
NTIGZOIM DS CL2 minute
*
NTIGZOI2 DS CL1 hyphen1
*
NTIGZSIC DS 0XL5 seasonal_difference
NTIGZSIH DS CL2 hours
NTIGZSI1 DS CL1 colon1
NTIGZSIM DS CL2 minutes
*
NTIGZSI2 DS CL1 hyphen2
NTIGZSIA DS FL1 actual season
* _season_iso4_s
NTIGZSIW EQU 230 'W': Wintertime
NTIGZSIS EQU 226 'S': Daylight Savings Time

FORMAT=BIN
The characteristic values of the local time zone are transferred as integers in each
case (in binary form).
The area in the operand list for accepting this information has the following format
(macro resolution with MF=D and default value for PREFIX):

* ZONE IN BINARY FORMAT
NTIGZOB DS 0XL10 _zone_bin_mdl
*
NTIGTIMEZONE DS 0XL4 time_zone
NTIGZOBH DS H hour
NTIGZOBM DS H minute
*
*
NTIGSEASONAL_DIFFERENCE DS 0XL4 seasonal_difference
NTIGZSBH DS H hours
NTIGZSBM DS H minutes
*
NTIGZSBA DS FL1 actual season
* _season_bin_s
NTIGZSBW EQU 0 Wintertime
NTIGZSBS EQU 1 Daylight Savings Time
*
NTIGZONE_BIN_FILL DS XL1 to fill the gap

GTIME Description of the macros

536 U3291-J-Z125-16-76

Notes on conversion times

In order to use CTIME functionality with non-system conversion times, it must be
possible to find out the conversion times of the system on which time data is created.
BS2000 can administer up to 400 conversion times. One conversion time inquiry can
be made with each GTIME macro call.
Information about conversion times is provided in a field of 8 bytes
(<prefix><macid>CHD). The values specified for the CHDATE operand determine the
direction of the conversion time inquiry. The reference point is the information present
in this field when GTIME is called:
If all 8 bytes of the field contain X'00', the search begins after the next or preceding
conversion time for the current system time. If the field already contains a date,
however, this is interpreted as CHDATE information already supplied by GTIME and the
search begins after that date.
The CHDATE information appears as STCK values based on UTC shifted 8 Bits
logically to the right (SRDL instruction). The lowest-value bit indicates the type of
conversion: 0 indicates conversion from standard time (winter time) to daylight saving
time (summer time), and 1 daylight saving time (summer time) to standard time (winter
time).
The CTIME function requires this data to be arranged as a table. The format of the table
is given in the CTIME macro description, operands CHDLxIN and CHDLOUT. An
example of working with conversion times is also given for the CTIME macro (see
page 357).

Data returned to the data area can be accessed with the following names (default
values for PREFIX and MACID):

NTIGCHD DS 0XL8 change date
*
NTIGTODC DS 0XL8 s_todr
NTIGCHDATE_UN DS 0XL8 chdate_un
NTIGCHDATE_VALUE DS XL8 chdate_bit64
 ORG NTIGCHDATE_UN
*
NTIGCHDATE_MDL DS 0XL8 chdate_mdl
NTIGCHD1 DS F most significant word
NTIGCHD2 DS F least significant word

Description of the macros GTIME

U3291-J-Z125-16-76 537

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

Register contents

The following registers are required for a GTIME macro call:

R1 is loaded by the macro with the address of the operand list.

R13 before the macro call, is to be loaded with the address of an 18-word save area
which the calling program has to provide.

R14 is loaded by the macro with the return address of the user program.

R15 is overwritten by the routine called (through GTIME).

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

The following return code relating to the GTIME
macro is transferred in the standard header
 (cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

cc bb aaaa Meaning

00 00 0000 Function executed successfully.

02 0010 The function was executed but the system knows of no CHDATE earlier than
that specified in the data area. There is no point in calling CHDATE=PREV
again as it will yield the same result. The 8 bytes of CHDATE information
contain X'00..0001'.

02 0011 The function was executed but the system knows of no CHDATE later than
that specified in the data area. There is no point in calling CHDATE=NEXT
again as it will yield same result. The 8 bytes of CHDATE information contain
X'00FFFFFFFFFFFFss', where 'ss' stands for the SEASON after the
previous CHDATE (i.e. is X'00' or X'01').

02 0012 The function was executed but the system knows of no CHDATE. There is
therefore no time change in the system. There is no point in calling the
GTIME macro again.

20 0008 The return code is possible only if XCS_MODE=*YES is specified. The
function could not be executed. An internal error occurred when monotone
time was determined for all XCS systems. cc refers to the error type but is
only relevant for diagnosis within the manufacturer. There is no point in
calling the GTIME macro again with XCS_MODE=*YES.

GTIME Description of the macros

538 U3291-J-Z125-16-76

The calling program is terminated when the following errors occur:
– The data area is not assigned to the caller.
– The data area is not aligned on a word boundary.
– The data area is protected against write access.

The TODR’s current epoch is supplied with every GTIME call in the <prefix><macid>EPD
data field (one byte), see the section “System time administration” in the “Introduction to
System Administration” manual [10].

For examples see section “S-type macros” on page 38 and the CTIME macro (page 357).

Description of the macros ILEMGT

U3291-J-Z125-16-76 539

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

ILEMGT – Management of Indirect Linkage Entries (ILEs)

General

Application area: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard/C/D/E/L/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

The ILEMGT macro enables the user to manage a list of ILEs (Indirect Linkage Entries).
The ILEs in the list may be generated, updated or deleted.

Information on ILEs can be requested with the VSVI1 macro.

Macro format and description of operands

The operands are described in alphabetical order below.

ACTION=
Action to be executed for the ILEs in the list.

*CREATE
The ILEs are to be created.

*UPDATE
The ILEs are to be updated.

ILEMGT

MF=S / D / C / E / L / M

,ACTION=*CREATE / *UPDATE / *DELETE

,CONTEXT_NAME= 'Ë' / <c-string 1..32> / <var: char 1..32>

,CONTEXT_STATE=*DBL-OPTIONS / *ANY / *NEW / *OLD

,ILE_LIST_ADDR=NULL-1 / <var: pointer>

,ILE_LIST_LEN=0 / <integer 0..2147483647>

,MPID_ADDR=NULL-1 / <var: pointer>

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=P / p

,MACID=ILE / macid

 ILEMGT Description of the macros

540 U3291-J-Z125-16-76

*DELETE
The ILEs are to be deleted.

CONTEXT_NAME=

'Ë' / <c-string 1..32> / <var: char 1..32>
Name of the context to which the ILEs belong.

CONTEXT_STATE=
State of the context specified in CONTEXT_NAME

*DBL-OPTIONS
The parameter value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, the value that follows *DBL-OPTIONS in the syntax definition
applies.

*ANY
If the context already exists it is used, otherwise a new context is created.

*NEW
The context is being created. It must not already exist.

*OLD
The context must already exist.

ILE_LIST_ADDR=NULL-1 / <var: pointer>
Address of a list of ILEs that is to be transferred to DBL.

ILE_LIST_LEN=0 / <integer 0..2147483647>
Length of the ILE list (in bytes)

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM, PREFIX and MACID, see section “S-type macros” on page 29. The valid
MF values are given at the start of the macro description under “Macro type” and are
included in the macro format.
It is possible to specify a PREFIX in the C form, D form, or M form of the macro, and
additionally a MACID in the C form or M form (see section “S-type macros” on page 29).

MPID_ADDR=NULL-1 / <var: pointer>
Address of a field with the identifier of the memory pool containing the specified context.
This identifier is made available to the user by means of the ENAMP macro.

Description of the macros ILEMGT

U3291-J-Z125-16-76 541

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

ILE list format

The addresses specified in ILE_LIST_ADDR point to an ILE list which may contain a
number of entries. An individual ILE entry has the following format:

The DSECT for such an ILE list entry is generated with ILEMIT MF=D.

Notes on the macro call

– If an address was specified with MPID_ADDR, the first character of the context name
(mandatory parameter) determines whether or not the context is shared. If the Context
name begins with „#“, DBL searches for the context in common memory pools and
generates the context if necessary (ASHARE macro). In this case the MPID must
identify a memory pool which is either already used with ASHARE, or which is blank
(i.e. in which no memory is yet occupied).

If the context name does not begin with '#', DBL searches in the normal user contexts.
A context whose name begins with a letter may not be shared. DBL recognizes this as
a conflict between the memory pool usage type and the name convention, and the
macro is rejected with the corresponding return code.

– The number of memory pools in which the user can store shared code is limited to
16 per scope for each user ID, see page 219.

– If ACTION = *CREATE / *UPDATE is specified the STATE field of an ILE entry contains
ACTIVE, and both LOAD_ADDR and SERVER_ADDR must refer to allocated memory
areas.

Byte Length Field name Meaning and/or value

0 8 HDR Standard header

8 1 STATE ACTIVE (X'01') or
NOT_ACTIVE (X'02')

9 1 CONTROL SYSTEM (X'01') or
USER (X'02')

10 1 HSI_CODE 390 (X'01') or
x86E (X'09')

11 1 RESERVED1 reserved (must contain X'00')

12 4 LOAD_ADDR Address of the IL routine

16 4 SERVER_ADDR Address of the ILE server

20 2 REF_DISPL Distance of the external reference to the server within the IL
routine

22 32 NAME Name of the ILE symbol

54 2 RESERVED2 reserved (must contain X'0000')

 ILEMGT Description of the macros

542 U3291-J-Z125-16-76

– If the CONTROL field contains SYSTEM, DBL executes the following actions:

a) When the ILE server is loaded
the STATE field is set to ACTIVE and the address of the ILE server is entered into
the IL routine.

b) When the ILE server is unloaded
the STATE field is set to NOT_ACTIVE and X'FFFFFFFF' is entered into the IL
routine as the address of the ILE server.

The CONTROL=SYSTEM field setting may not be used in combination with the
ACTION=*UPDATE macro parameter.

– If ACTION=*CREATE is specified the LOAD_ADDR field must refer to an allocated
memory area containing the user-defined IL routine (CONTROL=USER). If this does
not apply (CONTROL=SYSTEM) then the DBL generates a standard IL routine in the
context. The standard IL routine is generated in the HSI code that was specified when
the ILEMIT macro was called, or else in the HSI code of the server on which the
program is running.
If a user-defined IL routine is present, the REF_DISPL field must contain the distance
of the word in the IL routine that refers to the ILE server. This word must be writable.
Specification of the HSI code is mandatory for user-defined routines.

– If ACTION=*DELETE is specified, the IL routine will also be deleted from the context
provided the ILE to be deleted was generated with CONTROL=*BY-SYSTEM.
The IL routine must have been generated by the DBL.

– All non-masked CSECTs and ENTRYs in the target context may be used as ILE
servers, even those introduced by means of the ETABLE macro. To avoid any
problems which this might cause for ILE management, one context should be set up for
ILEs and their servers, and a different context set up for ETABLE symbols.

– If LLMs formed from PUBLIC and PRIVATE slices are to be used for indirect linking,
these LLMs must be available in format 1 (see the “BINDER” manual [5]).

– The IL routines should have the attributes AMODE and RMODE=ANY and be loaded
below 16 Mb, to ensure that they can be accessed by all programs.

– When an ILE is updated a check is performed when its server is loaded to see whether
the HSI code and AMODE of ILE and server match. If not, loading of the server is
rejected.

Description of the macros ILEMGT

U3291-J-Z125-16-76 543

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

Return information and error flags

If an error occurs during processing of the list entries, a corresponding return code is
entered in the HDR field of the list entry containing the error. The return code
FUNCTION_PARTIALLY_PROCESSED is transferred in the standard header of the
parameter list and processing of the list entries is continued..

The PROCESSED_ITEMS field of the parameter list contains the number of correctly
processed entries.

Standard
header:

The following return code relating to the execution of
the ILEMGT macro is transferred in the standard
header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally.

X'02' X'00' X'0001' The function was partially executed.

X'61' X'01' X'0001' Invalid value in ILE_LIST_LEN.

X'61' X'01' X'0002' Invalid parameter combination in the parameter list.

X'61' X'01' X'0003' The MESSAGE parameter is invalid.

X'61' X'01' X'0004' The context name is invalid.

X'61' X'01' X'0008' The ACTION parameter is invalid.

X'61' X'40' X'0011' The task is not connected to the memory pool.

X'61' X'01' X'0014' The new USER context already exists in another memory pool.

X'61' X'40' X'0015' Maximum number of contexts in the memory pool has already been
reached.

X'61' X'40' X'0016' The maximum number of memory pools with this scope has already
been reached for the user ID. No more memory pools can be used with
this scope.

X'61' X'40' X'0017' System storage area for user contexts is full.

X'61' X'01' X'0018' A reserved field does not contain any binary zeros.

X'61' X'01' X'0019' The current memory pool is not shared.

X'61' X'20' X'0100' System error (e.g.: $REQM, $RELM, $CSTAT, RDTFT)

X'61' X'20' X'0101' Internal DBL error.

X'61' x'80' X'0103' Shared resources are not available.

X'61' X'01' X'0114' CONTEXT_STATE=*OLD was specified and the context does not exist.

X'61' X'01' X'0118' CONTEXT_STATE=*NEW was specified and the specified context
already exists.

X'61' X'40' X'0120' MPID_ADDR is not aligned on a word boundary.

 ILEMGT Description of the macros

544 U3291-J-Z125-16-76

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

X'61' X'01' X'0134' The CONTEXT_STATE parameter is invalid.

X'61' X'40' X'0148' An attempt was made to use a context which has been corrupted by a
previous error.

X'61' X'40' X'0158' Maximum number of 16 user contexts has been reached. No more new
contexts can be generated.

X'61' X'01' X'0184' The specified memory pool is invalid.

X'61' X'20' X'0198' Insufficient memory availabe for the action requested.

X'61' X'20' X'0204' Inconsistencies in the DBL memory management tables (system error).

X'00' X'01' X'FFFF' The function is no longer or not yet supported.

X'00' X'03' X'FFFF' The interface version is not supported.

X'cc' X'bb' X'aaaa' Meaning

Description of the macros ILEMIT

U3291-J-Z125-16-76 545

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

ILEMIT – Generate or update a list entry for an ILE list

General

Application area: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard/C/D/L/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

The ILEMIT macro generates or updates a list entry for an ILE list which is used in the
ILEMGT macro.

Macro format and description of operands

The operands are described in alphabetical order below.

CONTROL=
Specifies whether ILE is to be controlled by DBL or by the user, i.e. the person editing the
IL routine.

*NOT-SPECIFIED
This value is not permitted during generation of a list entry.

ILEMIT

MF=D / C / L / M

,CONTROL=*NOT-SPECIFIED / *BY-SYSTEM / *BY-USER

,HSI_CODE=*BY-SYSTEM / *390 / *RISC 1

,ILE_NAME=<c-string 1..32> / <var: char 1..32>

,LOAD_ADDR=NULL-1 / <var: pointer>

,REF_DISPL=0 / <integer 0..65535>

,SERVER_ADDR=NULL-1 / <var: pointer>

,STATE=*NOT-SPECIFIED / *ACTIVE / *NOT-ACTIVE

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=P / p]

,MACID=ILT / macid

1 The operand value *RISC has no meaning in BS2000/OSD-BC V9.0 and higher

 ILEMIT Description of the macros

546 U3291-J-Z125-16-76

*BY-SYSTEM
The DBL generates the standard IL routine.

*BY-USER
There is a user-defined IL routine.

HSI_CODE=
Indicates in which of the servers machine codes the IL routine exists. This operand is
mandatory if LOAD_ADDR is specified.

*BY-SYSTEM / *390
The default setting is the server type on which the IL routine is running.

ILE_NAME=<c-string 1..32> / <var: char 1..32>
Name of the ILE symbol.

LOAD_ADDR=NULL-1 / <var: pointer>
Address of the IL routine.
If this operand is specified the HSI_CODE operand must also be specified.

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM, PREFIX and MACID, see section “S-type macros” on page 29. The valid
MF values are given at the start of the macro description under “Macro type” and are
included in the macro format.
It is possible to specify a PREFIX in the C form, D form, or M form of the macro, and
additionally a MACID in the C form or M form (see section “S-type macros” on page 29).

REF_DISPL=0 / <integer 0..65535>
Distance of the server address word within the IL routine.

SERVER_ADDR=NULL-1 / <var: pointer>
Address of the server (only if STATE=ACTIVE is specified).

STATE=

*NOT-SPECIFIED
Indicates whether the ILE server is loaded. This value is not permitted during the
generation of a list entry.

*ACTIVE
The server is loaded.

*NOT-ACTIVE
The server is not loaded.

Notes on the macro call

The notes relating to the ILEMGT macro also apply to the ILEMIT macro. The layout of
a list entry is also described there.

Description of the macros ILEMIT

U3291-J-Z125-16-76 547

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

The following return code relating to the execution of
the ILEMIT macro is transferred in the standard
header
(cc=subcode2, bb=subcode1, aaaa=main code):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally.

X'61' X'01' X'000A' The ILE entry is invalid.

X'61' X'01' X'0012' ILE not found (if ACTION=*DELETE or
ACTION=*UPDATE is specified).

X'61' X'01' X'0013' ILE already exists (if ACTION=*CREATE is specified).

X'61' X'01' X'0018' A reserved field does not contain any binary zeros.

X'61' X'01' X'0020' An invalid value has been set for STATE, CONTROL or HSI_CODE.

X'61' X'01' X'0021' Requested action cannot be executed with this CONTROL setting.

X'61' X'01' X'0022' Server address word (REF_DISPL) in the IL is not writable.

X'61' X'01' X'0023' The user-specific IL routine is not loaded.

X'61' X'01' X'0024' Operands (STATE or CONTROL) missing from list entry generation.

X'61' X'01' X'002C' The ILE name is invalid. It must begin with a blank.

X'61' X'40' X'0050' HSI codes of ILE and ILE server do not match: ILE was not generated.

X'61' X'01' X'0130' Invalid address (LOAD_ADDR, SERVER_ADDR) in current list entry.

X'61' X'40' X'0194' Error in validation of a class 6 memory area.

X'00' X'01' X'FFFF' The function is no longer or not yet supported.

X'00' X'03' X'FFFF' The interface version is not supported.

IOSID Description of the macros

548 U3291-J-Z125-16-76

IOSID – Request operating system identification and version

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type O; see page 28

Macro description

The IOSID macro supplies the ID and version number of the operating system. The
information is entered in the global text variable &IOSID or in register R1. The entry has one
of the following formats:

C'x' in &IOSID

C'xvvv' in register R1

where:

x=2: BS2000
vvv: version number, e.g. 190 ï V19.0

The entry in &IOSID is made during macro assembly and depends on the macro library in
use.

For information on global text variables (variable parameters), see the “ASSEMBH”
manual [2].

Macro format and description of operands

GBLC
Transfers the operating system ID to the global text variable &IOSID.

without operand
The operating system ID and the version number are transferred to register R1.

IOSID

[GBLC]

Description of the macros IOSID

U3291-J-Z125-16-76 549

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\g
hi

.d
o

c

Example

IOSID START
PRINT NOGEN

*
* Definition of macro QUERY
*

MACRO —— (1)
&NAME QUERY

GBLC &IOSID
&NAME NOP &NAME

AIF ('&IOSID'(1,1) EQ '2').BS2 ————————————————————————————— (2)
MNOTE 9,'Only BS2000 possible'

.BS2 WROUT MESS,ERROR
ERROR B END
MESS DC Y(ENDM-MESS)

DC X'404001'
DC C'Operating system BS2000'

ENDM EQU *
END NOP &NAME

MEND
*
* Program start
*

BALR 3,0
USING *,3
IOSID —— (3)
ST 1,WORD
MVC GR1CONT,WORD
WROUT GR1OUT,END1
IOSID GBLC ——— (4)

CALLMAC QUERY —— (5)
END1 TERM
GR1OUT DC Y(GR1END-GR1OUT)

DC X'404001'
DC C'Reg1: '

GR1CONT DS CL4
GR1END EQU *
WORD DS F

END

(1) The QUERY macro is generated to analyze the contents of &IOSID:
– Issue message (WROUT) if &IOSID contains the character “2” (BS2000).
– MNOTE message for all other cases.

(2) The global text variable &IOSID is requested.

(3) Operating system ID and version are to be output in register R1.

IOSID Description of the macros

550 U3291-J-Z125-16-76

(4) The operating system ID is to be output to the global text variable &IOSID.

(5) Call the QUERY macro.

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,iosid), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,iosid))
% ASS6011 ASSEMBLY TIME: 336 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 87 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=iosid
% BLS0523 ELEMENT 'IOSID', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'IOSID', VERSION ' ' OF '<date> <time>' LOADED
Reg1: 2190 —— (6)
Operating system BS2000 ——— (7)

(6) Output of the edited register R1 after calling the macro IOSID without operands.
The following information is contained:

Operating system: BS2000
Version: 19.0

(7) After calling the macro IOSID with the GBLC operand, the result of the evaluation
from the QUERY will be output.

Description of the macros JINF

U3291-J-Z125-16-76 551

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

JINF – Request job information

General

Application areas: Requesting and accessing lists and tables; see page 155
Communication; see page 163

Macro type: Type S, MF format 1: 24-bit interface: standard/E/L form
31-bit interface: standard form; see page 29

A job begins with the SET-LOGON-PARAMETERS command and ends with the EXIT-JOB
command. A job can also be created by transferring a procedure file to the system using
the ENTER-PROCEDURE command. A job is categorized in a job class by the operating
system according to its job data (attributes). Both user-specific (accounting) data and job-
specific data (job name, job class, job priority, start time,...) are included in the job data. The
user transfers the latter specifications to the operating system in the SET-LOGON-
PARAMETERS or ENTER-JOB or ENTER-PROCEDURE commands.

Macro description

The JINF macro transfers a list of job data to an area to be specified. The list is subdivided
into data that is specified in the SET-LOGON-PARAMETERS or ENTER-JOB command
and data on the current job (job start time, number of job repetitions). The DJINF macro
generates a description (DSECT/data section) of the output list. The lengths of the areas to
be created should be taken from this description.
In 31-bit addressing mode, the area to be created (PARLIST=...) must start with the
standard header.

Macro format and description of operands

JINF

[PARMOD=24] [,JATTR=addr / (r)] [,RUNTIME=addr / (r)]
 [,MF=L / (E,..)]

[PARMOD=31],PARLIST=addr / (r)

JINF Description of the macros

552 U3291-J-Z125-16-76

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses.
(Address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses.
(Address space ≤ 2 Gb). Data lists start with the standard header.

JATTR=
Defines the address of an area to receive the job data at job generation time. The area
should be aligned on a word boundary.

addr
Symbolic address (name) of the area.

(r)
Register containing the address value “addr”.

RUNTIME=
Defines the address of an area to receive the current job data (job start time, number of job
repetitions). The area should be aligned on a word boundary.

addr
Symbolic address (name) of the area.

(r)
Register containing the address value “addr”.

PARLIST=
Gives the address of an area to receive the job data. The area should be aligned on a word
boundary and must start with the standard header. When using the data list created by
means of DJINF, the standard header is initialized automatically; in all other cases, it is the
user's task to initialize the standard header.

addr
Symbolic address (name) of the area.

(r)
Register containing the address value “addr”.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

Description of the macros JINF

U3291-J-Z125-16-76 553

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

Return information and error flags

During macro processing, register R1 contains the operand list address.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

R15:
A return code relating to the execution of the JINF
macro is transferred in register R15.0 0 a a a a a a

X'aaaaaa' Meaning

X'000000' Normal execution.

X'000008' Operand error or insufficient length or PARLIST specified with PARMOD=24.

X'00000C' System error.

JINF Description of the macros

554 U3291-J-Z125-16-76

Example

JINF START
JINF AMODE ANY

PRINT NOGEN
BALR 3,0
USING *,3
JINF PARLIST=JIJOBDPL,PARMOD=31 —————————————————————————————— (1)
MVC EMPF1,JIJOUID ——— (2)
MVC EMPF2,JIJOACC
MVC EMPF3,JIJOJCLA
MVC EMPF4,JIJOTSN
WROUT AUS1,ERROR,MODE=LINE,PARMOD=31

TERM TERM
ERROR TERM DUMP=Y

DS 0F
AUS1 DC Y(AUS1END-AUS1)

DS CL3
DC C'USER ID: '

EMPF1 DS CL8
F1 DC X'15'

DC C'ACCOUNT NUMBER: '
EMPF2 DS CL8
F2 DC X'15'

DC C'JOB CLASS: '
EMPF3 DS CL8
F3 DC X'15'

DC C'TSN: '
EMPF4 DS CL4
AUS1END EQU *

DJINF DSECT=NO,PARLIST=YES ———————————————————————————————————— (3)
END

This program, in conjunction with the use of the symbolic names in the data list (macro
DJINF) output certain job data (user ID, account number, job class, task sequence number
= TSN). The program is executed in 31-bit addressing mode.

Description of the macros JINF

U3291-J-Z125-16-76 555

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,jinf), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,jinf))
% ASS6011 ASSEMBLY TIME: 344 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 81 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=jinf
% BLS0523 ELEMENT 'JINF', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'JINF', VERSION ' ' OF '<date> <time>' LOADED
USER ID: QM212 —— (4)
ACCOUNT NUMBER: 89002
JOB CLASS: JCDSTD
TSN: 2QSE

(1) The JINF macro is called.

(2) Transfer the job data to the output field and output it line by line with the WROUT
macro.

(3) The DJINF macro is called to generate the data list (output area). The initialization
values for the standard header are entered.

(4) Line-by-line output to SYSOUT of the selected job data.

JMGDJP Description of the macros

556 U3291-J-Z125-16-76

JMGDJP – Create DSECT or data area for JMGJPAR macro

General

Application areas: Requesting and accessing lists and tables; see page 155
Macro type: Definition macro; see page 28

Macro description

The JMGDJP macro generates a description (DSECT/data area) of the operand list of the
JMGJPAR macro. DSECT and data area start with the standard header, the initialization
values are entered.

Macro format and description of operands

DSECT=
Indicates whether a dummy section (DSECT) for the operand list is to be generated or
whether data area and definitions are to be created in the user program directly.

YES
A dummy section is generated.

NO
Data area and definitions are to be created in the user program directly.

PREFIX=
Gives a character string to be prefixed to the symbolic names of the DSECT or the data
area.

p
Prefix for the symbolic names. Length ≤ 2 characters.
Default value: p=JP.

JMGDJP

DSECT=YES / NO

[,PREFIX=p]

Description of the macros JMGJPAR

U3291-J-Z125-16-76 557

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

JMGJPAR – Request job parameters

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type R; see page 28

Additional attributes (job parameters) relating to the job class can be specified in the SET-
LOGON-PARAMETERS, ENTER-JOB and ENTER-PROCEDURE commands if they were
previously defined and made known by system administration (see the ENTER-JOB,
ENTER-PROCEDURE and SET-LOGON-PARAMETERS commands in the “Commands”
manual [19]).

Macro description

The JMGJPAR macro transfers the job parameters specified in the SET-LOGON-
PARAMETERS, ENTER-JOB or ENTER-PROCEDURE command to a specified area.
The JMGDJP macro generates a description (DSECT/data list) of the output area.

Macro format and description of operands

PARLIST=
Specifies the address of an area to receive the job parameters. The area should be aligned
on a word boundary and must start with the standard header. The standard header is
initialized if and when the area is created with the JMGDJP macro.

addr
Symbolic address (name) of the area.

(r)
Register containing the address value “addr”.

JMGJPAR

PARLIST=addr / (r)

JMGJPAR Description of the macros

558 U3291-J-Z125-16-76

Return information and error flags

During macro processing, register R1 contains the operand list address.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

R15:
A return code relating to the execution of the
JMGJPAR macro is transferred in register R15.0 0 a a a a a a

X'aaaaaa' Meaning

X'000000' Normal execution.

X'000004' No job parameters specified.

X'000008' Operand error.

X'00000C' System error.

Description of the macros JOBINFO

U3291-J-Z125-16-76 559

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

JOBINFO – Request job information

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 2: standard/C/D/L/E form; see page 29

● The JOBINFO macro is an extension of the JINF macro in that it supplies information
about individual jobs selected by the user by means of their TSNs. Note that information
about spoolout jobs cannot be obtained in this way.

A job begins with the SET-LOGON-PARAMETERS command and ends with the EXIT-JOB
command. A job can also be created by transferring a procedure file to the system with the
ENTER-PROCEDURE command. A job is categorized in a job class by the operating
system according to its job data (attributes). Both user-specific (accounting) data and job-
specific data (job name, job class, job priority, start time,...) are included in the job data. The
user submits the latter specifications to the operating system in the SET-LOGON-
PARAMETERS or ENTER-JOB / ENTER-PROCEDURE command.

Macro description

The JOBINFO macro transfers a list of job data to an output area. The job must have
been submitted to the Job Management System by entering either the SET-LOGON-
PARAMETERS, ENTER-JOB or ENTER-PROCEDURE command, i.e. the inquiry can refer
to an interactive job, a batch job or a job in the job pool that has not yet been started. The
job is identified via its TSN. Nonprivileged users only receive information about jobs running
under their own user IDs or about jobs started under their own user IDs. The FORM
operand serves to control the amount of information output.

FORM=SHORT supplies the following items of information:
TSN of the job, user ID, account number, job class, job name, job type (interactive job, batch
job, job in job pool), requested CPU time, start attributes (SOON, EARLIEST,...,DAILY,
WEEKLY,..), (requested) start date, (requested) start time.

FORM=LONG additionally supplies the following items of information:
retry interval and number of job repetitions, job priority, RERUN and FLUSH data, (real)
start date, (real) start time, spoolin data, spoolin time, name of monitoring job variable,
name of the SYSCMD (Enter) file, length of job parameter, job parameter, BCAM name (if
the job is running on a computer other than the home computer), TSN of the task issuing
the macro call.

JOBINFO Description of the macros

560 U3291-J-Z125-16-76

The I/O area is created immediately following the standard header. It begins with the (input)
field for the job's TSN. Entries in this field must be made dynamically whenever the C/D
form of a macro is used. The input field is followed by the output area whose length can be
obtained from a list generated with MF=C/D. Initialization values are entered in the standard
header.

Macro format and description of operands

TSN=
TSN (job number) of the job about which information is requested. Nonprivileged users can
only specify jobs running under their own user IDs or that have been started in their own
user IDs. System administration is allowed to request information about any job.

'tsn'
Job number (TSN). Default value: tsn='ËËËË' (4 blanks): this means that job data for
the calling program is output.

addr
Symbolic address (name) of the 4-byte field containing the TSN.

(r)
Register containing the TSN (right-justified).

FORM=
Controls the amount of information output, cf. macro description.

LONG
Full-length information output.

SHORT
Abbreviated information output.

JOBINFO

[TSN='tsn' / addr / (r)]

,FORM=LONG / SHORT

,CONST=YES / NO

,MF=S / E / L / C / D

[,PARAM=addr / (r)]

,PREFIX=J / p

,MACID=OBI / macid

Description of the macros JOBINFO

U3291-J-Z125-16-76 561

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

CONST=
Determines whether equates are to be entered in the output list in order to facilitate the
interpretation of field contents. CONST can be specified in conjunction with MF=C/D only.

YES
Equates are entered.

NO
No equates are entered.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.

A PREFIX can be specified in the C form or D form of the macro and additionally a MACID
in the C form (see section “S-type macros” on page 29).

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

The following errors cause the calling program to be aborted:
– The data area has not been assigned to the calling program.
– The data area is not aligned on a word boundary.

Standard
header:

A return code relating to the execution of the
JOBINFO macro is transferred in the standard
header (cc=Subcode2, bb=Subcode1,
aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function has been executed.

X'00' X'01' X'0001' Job data of calling job not found in job management.

X'00' X'02' X'0001' Job has not been submitted to the Job Management System; no job data
could be found (specified TSN not assigned to any job).

X'00' X'03' X'0001' Job has not been submitted to the Job Management System; no job data
could be found (specified TSN is a SPOOL job).

X'00' X'01' X'0003' System error: internal interface error

X'00' X'02' X'0003' System error: job data not accessible

X'00' X'03' X'0003' System error: no memory space available.

X'00' X'00' X'0004' Authorization error: e.g. specified TSN assigned to different user ID.

JOBINFO Description of the macros

562 U3291-J-Z125-16-76

– The data area is write-protected.

Description of the macros JSATTCH

U3291-J-Z125-16-76 563

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

JSATTCH – Attach job scheduler to Job
Management System

General

Application area: Job scheduler (system administration macro); see page 165
Macro type: Type S, MF format 1: 24-bit interface: standard/E/L form

31-bit interface: standard form; see page 29

● The JSATTCH macro can only be called under the TSOS (system administration) ID.

● When using the 31-bit interface, the DJSIPL macro serves to generate a description
(DSECT/data list) of the operand list; when using the 24-bit interface, the same function
is performed by the DJSI macro.

● JMS = Job Management System; JSS = Job Scheduling Supports. JSS is part of the
Job Management System.

Macro description

The JSATTCH macro indicates to JMS that the job scheduler is ready to process JSS
events.
JMS confirms by returning a date entry in the form of the minutes that have elapsed since
1.1.1980 (0.00 hours).

Note
It is essential to use this macro in order that JSS can support the job scheduler (receive
job start requests, transfer JSS events).

Macro format and description of operands

CLOCK=
Defines the address of an area in which the date entry is made. The area must be aligned
on a word boundary. This operand can be specified only for the 24-bit interface.

addr
Symbolic address (name) of the area.

JSATTCH

CLOCK=addr / (r) [,PARMOD=24] [,MF=L / (E,..)]
[PARMOD=31] ,PARLIST=addr / (r)

JSATTCH Description of the macros

564 U3291-J-Z125-16-76

(r)
Register containing the address value “addr”.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands, see page 29.
The valid MF values and default settings for this macro are given at the start of the macro
description.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses.
(Address space ≤ 16 Mb.)

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses.
(Address space ≤ 2 Gb.) Data lists start with the standard header.

PARLIST=
Gives the address of the area containing the date entry. The area should be aligned on a
word boundary and must start with the standard header. This operand can be specified only
for the 31-bit interface.
The DJSIPL macro generates a description (DSECT/data list) of this area; the initialization
values for the standard header are entered.

addr
Symbolic address (name) of the area.

(r)
Register containing the address value “addr”.

Description of the macros JSATTCH

U3291-J-Z125-16-76 565

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

R15:
A return code relating to the execution of the
JSATTCH macro is transferred in register R15.0 0 a a a a a a

X'aaaaaa' Meaning

X'000000' Normal execution.

X'000008' Operand error.

X'00000C' System error.

X'000010' Unauthorized caller (not TSOS).

X'000018' Macro was carried out after a JSATTCH macro or job stream has already terminated.

JSDETCH Description of the macros

566 U3291-J-Z125-16-76

JSDETCH – Detach job scheduler from Job
Management System

General

Application area: Job scheduler (system administration macro); see page 165
Macro type: Type S, MF format 1: 24-bit interface: standard/E/L form

31-bit interface: standard form; see page 29

● The JSDETCH macro can only be called under the TSOS (system administration) ID.

● When using the 31-bit interface, the DJSIPL macro serves to generate a description
(DSECT/data list) of the operand list.

● JMS = Job Management System; JSS = Job Scheduling Supports. JSS is part of the
Job Management System.

Macro description

The JSDETCH macro indicates to the JMS that the job scheduler need no longer be
supported by the system. The job scheduler is detached from JSS.
If JSDETCH is called without operands, the 24-bit interface is generated.

Macro format and description of operands

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

JSDETCH

PARMOD=24 [,MF=L / (E,..)]
[PARMOD=31] ,PARLIST=addr / (r)

Description of the macros JSDETCH

U3291-J-Z125-16-76 567

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses.
(Address space ≤ 16 Mb.)

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses.
(Address space ≤ 2 Gb.) Data lists start with the standard header.

PARLIST=
Gives the address of the operand list. The list should be aligned on a word boundary and
must start with the standard header. The DJSIPL macro generates a description
(DSECT/data list) of the operand list; the initialization values for the standard header are
entered.

addr
Symbolic address (name) of the operand list.

(r)
Register containing the address value “addr”.

Return information and error flags

When the 31-bit interface is used, register R1 is overwritten.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

R15:
A return code relating to the execution of the
JSDETCH macro is transferred in register R15.0 0 a a a a a a

X'aaaaaa' Meaning

X'000000' Normal execution.

X'000008' Operand error.

JSEXPCT Description of the macros

568 U3291-J-Z125-16-76

JSEXPCT – Request JSS events

General

Application area: Job scheduler (system administration macro); see page 165
Macro type: 24-bit interface, type S: MF format 1 (standard/E/L form)

31-bit interface, type S: MF format 2 (standard form); see page 29

● The JSEXPCT macro can only be called under the TSOS (system administration) ID.

● When using the 31-bit interface, the DJSIPL macro serves to generate a description
(DSECT/data list) of the operand list, of all JSS events, as well as EQUATES for the
return code; when using the 24-bit interface, the same function is performed by the
DJSI macro.

● JMS = Job Management System; JSS = Job Scheduling Supports.

JSS is part of the Job Management System.

Macro description

The next event for the job scheduler is requested from JMS with the JSEXPCT macro. The
events refer to a job (job acceptance, job termination, job RELEASE, job CANCEL, etc.)
managed by the job scheduler, to the job class (job class in the HOLD state, resetting,
reacceptance of jobs) or to the job scheduler (job scheduler in the HOLD state, resetting,
modified STREAM-PARAMETER, ...).

Note
The job scheduler is put into a wait state if there is no event for processing. When an
event occurs, the job scheduler is removed from the wait state.

Macro format and description of operands

JSEXPCT

EVENT=addr / (r) [,PARMOD=24] [,MF=L / (E,..)]
[PARMOD=31] ,PARLIST=addr / (r)

Description of the macros JSEXPCT

U3291-J-Z125-16-76 569

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

EVENT=
Defines the address of an area where the event is entered. The area must be aligned on a
word boundary.

addr
Symbolic address (name) of the area.

(r)
Register containing the address value “addr”.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands, see page 29.
The valid MF values and default settings for this macro are given at the start of the macro
description.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses.
(Address space ≤ 16 Mb.)

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses.
(Address space ≤ 2 Gb.) Data lists start with the standard header.

PARLIST=
Gives the address of the operand list. The list should be aligned on a word boundary and
must start with the standard header. The DJSIPL macro generates a description
(DSECT/data list) of the operand list; the initialization values for the standard header are
entered.

addr
Symbolic address (name) of the operand list.

(r)
Register containing the address value “addr”.

JSEXPCT Description of the macros

570 U3291-J-Z125-16-76

Description of the events (24-bit interface/31-bit interface)

JSIEJINT/JSEXJINT: introduce a job
The job scheduler is requested to introduce the job to the set of jobs it manages. The
following information on the job is supplied to the scheduler:
– TSN
– name of the job class
– CPU time
– job priority
– arrival time
– start type (SOON, IMMEDIATE, ...)
– start time
– hold state
– job parameters (J-PAR)

JSIEJTER/JSEXJTER: terminate execution of a job started by the job scheduler.

JSIEJHLD/JSEXJHLD: place a job that is waiting to be started in the hold state.
The job scheduler is requested to ignore the job during scheduling. A job in the hold
state is marked as such in the job pool (EQUISAMQ file).

JSIEJREL/JSEXJREL: release a job from the hold state.
The job scheduler is requested to allow for the job again in scheduling.

JSIEJCAN/JSEXJCAN: delete a job that has not yet been started by the job scheduler.
The job scheduler is requested to cancel the job.

JSIEJEXP/JSEXJEXP: introduce a job that is to be started as soon as possible.

JSIEJRES/JSEXJRES: modify the attributes of a job that has not yet been started with the
 MODIFY-JOB command.

JSIECHLD/JSEXCHLD: place the specified job class in the hold state.
As in the case of JSIEJHLD/JSEXJHLD, the job scheduler is requested to ignore jobs
of this class in future. All the jobs of a job class in the hold state are also marked as such
in the job pool (EQUISAMQ file).

JSIECREL/JSEXCREL: release the job class from the hold state.
The job scheduler is requested to allow once again for jobs of this class during
scheduling.

JSIECAVA/JSEXCAVA: CLASS-LIMIT has not been reached for the specified job class.
This occurs either when a job running in the class is terminated or by raising the
CLASS-LIMIT with the MODIFY-JOB-CLASS command.

JSIESHLD/JSEXSHLD: the specified stream has been placed in the hold state.
The job scheduler is requested not to start any more jobs.

Description of the macros JSEXPCT

U3291-J-Z125-16-76 571

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

JSIESREL/JSEXSREL: release the hold state for the stream.
The job scheduler is requested to start jobs again.

JSIESCLQ/JSEXSCLQ: indicator that the operating system is in the shutdown state.
This event has the same effect as JSIESHLD/JSEXSHLD, i.e. no more jobs are started.

JSIESCLI/JSEXSCLI: causes the scheduler to terminate immediately (program
termination). This event is initiated with the STOP-JOB-STREAM command. No more
events are sent to the stream after this event.

JSIESCHA/JSEXSCHA: information about modified STREAM-PARAMETERs.

JSIETIM/JSEXTIM: event which occurs every minute and which enables the job scheduler
 to carry out time functions (e.g. support of the START operand in the SET-LOGON-
PARAMETERS command and the REPEAT-JOB operand in the ENTER-JOB
command).

Return information and error flags

During macro processing, register R1 contains the operand list address.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

R15:
A return code relating to the execution of the
JSEXPCT macro is transferred in register R15.0 0 a a a a a a

X'aaaaaa' Meaning

X'000000' Normal execution.

X'000008' Operand error.

X'00000C' System error.

X'000010' Unauthorized caller (not TSOS).

X'000018' Macro called before a JSATTCH macro or after a JSDETCH.

JSINFO Description of the macros

572 U3291-J-Z125-16-76

JSINFO – Access STREAM-PARAMETER values

General

Application area: Job scheduler (system administration macro); see page 165
Macro type: Type S, MF format 1: 24-bit interface: standard/E/L form

31-bit interface: standard form; see page 29

● The JSINFO macro can only be called under the TSOS (system administration) ID.

● When using the 31-bit interface, the DJSIPL macro serves to generate a description
(DSECT/data list) of the operand list, when using the 24-bit interface, the same function
is performed by the DJSI macro.

● JMS = Job Management System; JSS = Job Scheduling Supports.

JSS is part of the Job Management System.

Macro description

The STREAM-PARAMETER (S-PAR) values of the stream definition are accessed with the
JSINFO macro.
The JSINFO macro should be called before the JSATTCH macro.

Macro format and description of operands

JSINF=
Defines the address of an area in which the STREAM-PARAMETER values are entered.
The area must be aligned on a word boundary.

addr
Symbolic address (name) of the area.

(r)
Register containing the address value “addr”.

JSINFO

JSINF=addr / (r) [,PARMOD=24] [,MF=L / (E,..)]
[PARMOD=31] ,PARLIST=addr / (r)

Description of the macros JSINFO

U3291-J-Z125-16-76 573

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses.
(Address space ≤ 16 Mb.)

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses.
(Address space ≤ 2 Gb.) Data lists start with the standard header.

PARLIST=
Gives the address of the operand list. The list should be aligned on a word boundary and
must start with the standard header. The DJSIPL macro generates a description
(DSECT/data list) of the operand list; the initialization values for the standard header are
entered.

addr
Symbolic address (name) of the operand list.

(r)
Register containing the address value “addr”.

Return information and error flags
During macro processing, register R1 contains the operand list address.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

R15:
A return code relating to the execution of the JSINFO
macro is transferred in register R15.0 0 a a a a a a

X'aaaaaa' Meaning

X'000000' Normal execution.

X'000008' Operand error.

X'000010' Unauthorized caller (not TSOS).

JSRUNJB Description of the macros

574 U3291-J-Z125-16-76

JSRUNJB – Transfer job to start

General

Application area: Job scheduler (system administration macro); see page 165
Macro type: Type S, MF format 1: 24-bit interface: standard/E/L form

31-bit interface: standard form; see page 29

● The JSRUNJB macro can only be called under the TSOS (system administration) ID.

● When using the 31-bit interface, the DJSIPL macro serves to generate a description
(DSECT/data list) of the operand list; when using the 24-bit interface, the same function
is performed by the DJSI macro.

● JMS = Job Management System; JSS = Job Scheduling Supports. JSS is part of the
Job Management System.

Macro description

By means of the JSRUNJB macro the job scheduler requests the class scheduler to start
the specified job.
The job is defined by
– its TSN,
– the name of the job class to which the job was assigned and
– start specifications for the job (start indicator).

Note

If the CLASS-LIMIT has been reached for the job class, the job is not started. An
appropriate return code is transferred.

Macro format and description of operands

JSRUNJB

PARMOD=24 ,STRTINF=addr / (r) [,MF=L / (E,..)]
[PARMOD=31] ,PARLIST=addr / (r)

Description of the macros JSRUNJB

U3291-J-Z125-16-76 575

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

STRTINF=
Defines the address of an area with the data of the job to be started. The area must be
aligned on a word boundary.

addr
Symbolic address (name) of the area.

(r)
Register containing the address value “addr”.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses.
(Address space ≤ 16 Mb.)

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses.
(Address space ≤ 2 Gb.) Data lists start with the standard header.

PARLIST=
Gives the address of the operand list. The list should be aligned on a word boundary and
must start with the standard header. The DJSIPL macro generates a description
(DSECT/data list) of the operand list; the initialization values for the standard header are
entered.

addr
Symbolic address (name) of the operand list.

(r)
Register containing the address value “addr”.

JSRUNJB Description of the macros

576 U3291-J-Z125-16-76

Return information and error flags

During macro processing, register R1 contains the operand list address.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

R15:
A return code relating to the execution of the
JSRUNJB macro is transferred in register R15.0 0 a a a a a a

X'aaaaaa' Meaning

X'000000' Normal execution.

X'000004' TSN of job to be started is unknown.

X'000008' Operand error.

X'00000C' System error.

X'000010' Unauthorized caller (not TSOS).

X'000018' Macro called before a JSATTCH macro or after a JSDETCH.

X'00001C' The job is not in Q1 or has not been marked as “accepted for scheduling” by the Job
Management System.

X'000020' Job class limit exceeded.

X'000024' Job stream in HOLD state.

X'000028' Job in HOLD state.

Description of the macros JSWAKE

U3291-J-Z125-16-76 577

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

JSWAKE – Initiate timer event for job scheduler

General

Application area: Job scheduler (system administration macro); see page 165

Macro type: Type S, MF format 1: 24-bit interface: standard/E/L form
31-bit interface: standard form; see page 29

● The JSWAKE macro can only be called under the TSOS (system administration) ID.

● When using the 31-bit interface, the DJSIPL macro serves to generate a description
(DSECT/data list) of the operand list; when using the 24-bit interface, the same function
is performed by the DJSI macro.

● JMS = Job Management System; JSS = Job Scheduling Supports. JSS is part of the
Job Management System.

Macro description

The JSWAKE macro serves to initiate the next timer event for the job scheduler. The time
specification for the timer event is transferred in a field.

Macro format and description of operands

JSWAKE=
Gives the address of the field containing the time specification for the timer event. The field
must be aligned on a word boundary.

addr
Symbolic address (name) of the field.

(r)
Register containing the address value “addr”.

JSWAKE

PARMOD=24 ,JSWAKE= addr / (r) [,MF=L / (E,..)]
[PARMOD=31] ,PARLIST=addr / (r)

JSWAKE Description of the macros

578 U3291-J-Z125-16-76

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses.
(Address space ≤ 16 Mb.)

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses.
(Address space ≤ 2 Gb.) Data lists start with the standard header.

PARLIST=
Gives the address of the operand list. The list should be aligned on a word boundary and
must start with the standard header. The DJSIPL macro generates a description
(DSECT/data list) of the operand list; the initialization values for the standard header are
entered.

addr
Symbolic address (name) of the operand list.

(r)
Register containing the address value “addr”.

Return information and error flags
During macro processing, register R1 contains the operand list address.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

R15:
A return code relating to the execution of the
JSWAKE macro is transferred in register R15.0 0 a a a a a a

X'aaaaaa' Meaning

X'000000' Normal execution.

X'000008' Operand error.

X'000010' Unauthorized caller (not TSOS).

Description of the macros LDSLICE

U3291-J-Z125-16-76 579

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

LDSLICE – Load slice

General

Application area: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard/C/D/L/E/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

The LDSLICE macro loads a slice defined in an LLM by the user into main memory. The
slices used to build the LLM are defined by the user by means of the SET-USER-SLICE-
POSITION statement (see the “BINDER” manual [5]).

Macro format and description of operands

LDSLICE

[]

[,MSG=*DBLOPT / INFORMATION / WARNING / ERROR / NONE]

,

,PATH=NO / YES

,RELOAD=NO / YES

[,SLICE@=addr / (r) / label]

,MF=S / C / D / E / L / M

[,PARAM=addr / (r)]

,PREFIX=P / p

[,LABEL=name]

MODULE=name
MODULE@=addr / (r)

NAME=name
NAME@=addr / (r)

LDSLICE Description of the macros

580 U3291-J-Z125-16-76

The operands are described in alphabetical order below.

LABEL=name
For MF=M only.
Name of the structure, i.e. the DSECT which describes the operand list of the LDSLICE
macro. The operand is mandatory if there is no valid USING statement for the definition of
the base address register for the DSECT of the parameter list. The LABEL operand must
be specified in conjunction with the PARAM operand. Both operands are used to produce
a valid USING statement.
The following may be specified for “name”:

1. The name specified in the name field of a preceding macro name LDSLICE MF=D.

2. The name “xSLICDS” if no “name” has already been specified, where “x” is the value of
the PREFIX operand of a preceding macro LDSLICE MF=D, PREFIX=x.
The default value for “x” is “P”.

3. The name of the longer DSECT containing the parameter list of the LDSLICE macro if
the macro LDSLICE MF=C was specified earlier.

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM and PREFIX, see section “S-type macros” on page 29. The valid MF
values are given at the start of the macro description under “Macro type” and are included
in the macro format.

A PREFIX can be specified in the C form, D form or M form of the macro
(see section “S-type macros” on page 29).

MODULE=name
Specifies the internal name of the LLM or PAM-LLM defined when the LLM was generated
(max. 32 characters). The internal name should always be specified when several LLMs
with user-defined slices are loaded in main memory. If the MODULE operand is not
specified DBL selects the first LLM which contains the slice.

MODULE@=
For MF=M only.
Specifies the address of a field containing the internal name of the LLM.

addr
Symbolic address of the field containing the name.

(r)
Register containing the address value “addr”.

Description of the macros LDSLICE

U3291-J-Z125-16-76 581

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

MSG=
Specifies the lowest message class; messages at and above this level will be output. The
value set with the LOAD-EXECUTABLE-PROGRAM or START-EXECUTABLE-PROGRAM
(or LOAD-PROGRAM or START-PROGRAM) load call is used as the default value.

*DBLOPT
The operand value is taken from the last call of the MODIFY-DBL-DEFAULTS
command. If a value for the parameter has not yet been set using the MODIFY-DBL-
DEFAULTS command, MSG=INFORMATION applies.

INFORMATION
All classes of message will be output.

WARNING
Only messages of the WARNING and ERROR classes will be output. Messages of the
INFORMATION message class will not be output.

ERROR
Only messages of the ERROR class will be output.

NONE
No messages will be output.

NAME=name
Specifies the name of the slice which is to be loaded. The name is specified by the user in
the SET-USER-SLICE-POSITION statement when defining the slice. This name must be
inserted for “name” (max. 32 characters long).
The specified slice can only be loaded if the root slice (%ROOT) is loaded.

NAME@=
For MF=M only.
Specifies the address of a field containing the name of the slice to be loaded.

addr
Symbolic address of the field containing the name.

(r)
Register containing the address value “addr”.

PATH=
Determines whether only the slice specified with NAME will be loaded or whether in addition
to the NAMEd slice all “higher” slices in the same path (between the root slice and the
NAMEd slice) will be loaded.

NO
Only the slice specified with NAME will be loaded.

YES
All higher slices in the same path will be loaded in addition to the NAMEd slice.

LDSLICE Description of the macros

582 U3291-J-Z125-16-76

RELOAD=
Specifies whether a slice which is already loaded in main memory will be reloaded.

NO
An already loaded slice will not be reloaded.

YES
An already loaded slice will be reloaded and will overwrite the previous slice in main
memory.

SLICE@=
Specifies the address of a 4-byte field in which DBL passes the load address of the slice.
The address transferred refers to the first byte of the slice specified with NAME. The field
must be aligned on a word boundary and have write access.
If the SLICE@ operand is not specified the load address of the slice is not passed.

addr
Symbolic address of the field. May be specified only if MF=M

(r)
Register containing the address value “addr”. May be specified only if MF=M.

label
Direct specification of the symbolic address of the field. May be specified only if MF=S
or MF=L.

Rules for the loading of slices

– The slice to be loaded must form part of the physical structure for which the root slice
was loaded.

– The root slice must already have been loaded using the START-PROGRAM or LOAD-
PROGRAM command or the BIND macro.

Description of the macros LDSLICE

U3291-J-Z125-16-76 583

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

Return information and error flags

If a field has been specified with the SLICE@ operand, DBL passes the load address of the
slice.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

The following return code relating to the execution of
the LDSLICE macro is transferred in the standard
header
(cc=subcode2, bb=subcode1, aaaa=main code):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally.

X'0C' X'01' X'0018' A reserved field in the parameter list is not prefilled with zeros.

X'0C' X'01' X'0100' Invalid parameter list. The mandatory NAME operand is missing.

X'0C' X'20' X'0102' The specified module has not been found.

X'0C' X'01' X'0104' The specified slice has not been found.

X'00' X'00' X'0108' The specified slice has already been loaded.

X'0C' X'01' X'010C' The field specified by SLICE@ is not aligned on a word boundary.

X'0C' X'01' X'0110' The field specified by SLICE@ has read access only or is not assigned.

X'0C' X'20' X'0198' Not enough memory space available for loading the object.

X'0C' X'40' X'0204' Internal memory management error.

X'0C' X'40' X'0208' Internal data manager error.

X'0C' X'20' X'0300' Error during a system call.

X'00' X'03' X'FFFF' The function is no longer or not yet supported.

X'00' X'03' X'FFFF' The interface version is not supported.

LEVCO Description of the macros

584 U3291-J-Z125-16-76

LEVCO – Modify priority level of contingency process

General

Application areas: Contingency processing; see page 110
STXIT procedure; see page 131

Macro type: Type S, MF format 1: standard/L/E form; see page 29

Macro description

The LEVCO macro enables the user to modify the processing level (priority) of a current
basic or contingency process. Permissible range:

Basic process: processing level 0 - 127 (default value: 0)
Contingency process: processing level 1 - 127 (default value: 1)

Macro format and description of operands

NEWLV=
Specifies the new processing level with which the process is to be continued.

level
Processing level (integer).

(r)
Register containing the specification for “level”.

NEWLVAD=
Specifies the new processing level with which the process is to be continued.

addr
Symbolic address of a 1-byte field containing the specification for the processing level.

LEVCO

[,OLDLVAD=addr / (r)]

,QUEUE=FIFO / LIFO

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

NEWLV=level / (r)
NEWLVAD=addr / (r)

Description of the macros LEVCO

U3291-J-Z125-16-76 585

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

(r)
Register containing the address value “addr”.

OLDLVAD=
Specifies the old processing level of the process that called LEVCO.

addr
Symbolic address of a 1-byte field in which the old processing level is to be entered.

(r)
Register containing the address value “addr”.

QUEUE=
Specifies the method by which the calling process with the modified processing level is to
be enqueued with processes that will then have the same processing level.

FIFO
Indicates the “First In, First Out” method. This means that, after execution of the LEVCO
macro, not only can the calling process be interrupted by processes with a higher
processing level, but also that LIFO processes with the same processing level which
have already been activated will be continued before it is started, since the calling
process is placed at the end of the queue.

LIFO
Indicates the “Last In, First Out” method.
With its new processing level, the calling process is put at the head of the queue
containing processes with the same processing level. Thus, it can be interrupted only
by processes with a higher processing level or by LIFO processes with the same
processing level.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses.
(Address space ≤ 16 Mb.)

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses.
(Address space ≤ 2 Gb.)

LEVCO Description of the macros

586 U3291-J-Z125-16-76

Notes on the macro call

A process must not reduce its processing level to a point where it is lower than that of a
process already started and interrupted (see section “Contingency processes” on
page 110). If the processing levels are equal, QUEUE=FIFO must not be specified (only
QUEUE=LIFO is allowed).

Return information and error flags

During macro processing, register R1 contains the operand list address.

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the macro is transferred in register R15.

b b a a

X'aa' X'bb' Meaning

X'00' X'00' The process is continued with the new priority level.

X'04' X'04' No action. The new priority is lower than (or, in the case of FIFO, equal to) that of
an already activated process.

X'10' X'04' Invalid operands were specified. No action.

Description of the macros LGOFF

U3291-J-Z125-16-76 587

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

LGOFF – Terminate job

General

Application area: Starting, interrupting and terminating; see page 72
Macro type: Type S, MF format 1:

31-bit interface: standard/L/E/C/D form; see page 29

Macro description

The LGOFF macro allows the user to issue the EXIT-JOB command via the macro interface
of the macro command language processor (MCLP) without interrupting program mode
(see section “Macro Command Language Processor macros” on page 45). Messages
concerning command processing are issued on SYSOUT.

The user ends a job with the EXIT-JOB command. Thereupon, the operating system
deallocates the virtual memory pages and devices used by the job and prepares the output
system files for output on printer or tape. If, during job execution, new file generations have
been created, the system updates the base value of the file generation group (see the DMS
manuals [7] and [8]). The name of the relevant file generation group, the first and the current
generation and the base value are output in a message on SYSOUT.

Macro format and description of operands

BUT=
This operand applies only to interactive users and is ignored in batch mode. It enables users
to specify that they wish to start a new job after termination of the current one and that the
connection to the server should therefore not be cleared down. If the BUT operand is
omitted, a connection cleardown will be initiated.

LGOFF

[]

[,MF=C / D / L / (E,..)]

'BUT[,TAPE]'
'TAPE[,BUT]'

'BUT[,NOSPOOL]'

'NOSPOOL[,BUT]'

LGOFF Description of the macros

588 U3291-J-Z125-16-76

TAPE=
This operand causes the system files to be spooled out to tape rather than to the printer.
The SYSLST and/or SYSOUT files are written to a file on the same tape named
“TAPE.TSNnnnn”, where nnnn is the TSN of the job to br terminated.
The SYSOPT file is written to a separate tape and is also given the file name
“TAPE.TSNnnnn”, where nnnn is a new TSN of which the user is informed via the SYSOUT
file.

NOSPOOL=
This operand prevents the system files SYSLST and SYSOUT (for
LOGGING=PARAMETERS (LISTING=YES) in the SET-LOGON-PARAMETERS or
MODIFY-JOB-OPTIONS commands) and SYSOPT from being output on the printer.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see page 29. The valid MF values are given at the start of the
macro description under “Macro type” and are included in the macro format.

Notes on the macro call

– The command operands must be enclosed in single quotes.
– An STXIT routine defined in the calling program for the “program termination” event

class will be activated.
– Monitoring job variables (program and job) are set to '$T'.

Return information and error flags

R15:
A return code relating to the execution of the LGOFF
macro is transferred in the rightmost byte of register
R15.

a a

X'aa' Meaning

X'00' Normal termination.

X'04' The request has not been processed, due to insufficient memory space.

X'08' Error in the operand list (address area).

X'0C' The last output record entered in the user area has been truncated.

X'10' Macro/command error (the command returned an error to MCLP).

Description of the macros LGOFF

U3291-J-Z125-16-76 589

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

Example

LGOFF START
PRINT NOGEN
BALR 3,0
USING *,3
LGOFF 'NOSPOOL,BUT'
TERM
END

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,lgoff), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,lgoff))
% ASS6011 ASSEMBLY TIME: 408 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 77 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=lgoff
% BLS0523 ELEMENT 'LGOFF', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'LGOFF', VERSION ' ' OF '<date> <time>' LOADED
/LOGOFF NOSPOOL,BUT
% EXC0419 /LOGOFF AT 1505 ON <date> FOR TSN '52IS'
% EXC0421 CPU TIME USED: 1.5734
% JMS0150 INSTALLATION ' S200-40', BS2000 VERSION 'V190', HOST 'D016ZE04':

PLEASE ENTER '/SET-LOGON-PARAMETERS' OR '?'

The output of system files was suppressed. The connection to the server is retained. A new
SET-LOGON-PARAMETERS command may be entered immediately (see also the
“Commands” manual [19], EXIT-JOB command).

 LKCAN Description of the macros

590 U3291-J-Z125-16-76

LKCAN – Cancel lock request

General

Application area: Distributed Lock Manager (DLM); see page 140
Macro type: Type S, MF format 3: C/D/L/M/E form; see page 29

Macro description

The LKCAN cancels lock requests which have not yet been allocated by the DLM. Lock
requests which have been generated by the LKENQ macro and are in the WAITING or
CONVERTING queue of the lock are completely canceled. If the lock request is in the
GRANTED queue it is terminated with an error code.

Lock requests which are to be converted with the LKCVT macro are not canceled. Only the
conversion job is canceled.

The call can be synchronous or asynchronous.

Macro formats and description of operands

The operands are described in alphabetical order below.

ACKEVTT=
Defines the way in which information about the cancellation is to be returned. There are
three methods of control. The specified ID (contingency ID or event ID) is valid for the
current cancellation request. Other cancellation requests from other tasks may specify
different IDs.

LKCAN

MF=C / D / L / M / E

,ACKEVTT=*SYNCH / *TUCONTI / *TUEVENT / <var: enum-of _evttype_s:1>

,ACKNID=0 / <var: int:4>

,LOCKID=0 / <var: int:4>

,LSBADR=<var: pointer>

,USERPAR=0 / <var: int:4>

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=N / p

,MACID=LDA / mac

Description of the macros LKCAN

U3291-J-Z125-16-76 591

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

*SYNCH
Synchronous lock request. Return from the macro if the lock request has been canceled
or an error condition detected. The cancellation information is delivered in the return
code.

*TUCONTI
Contingency process. This value must be specified to obtain confirmation of the
cancellation request during contingency processing

*TUEVENT
Eventing. An event variable can be used to obtain the cancellation information. The
cancellation information is supplied by calling the SOLSIG macro.

<var:enum-of _evttype_s:1>
Name of the field with the value of the cancellation method.

ACKNID=
For asynchronous lock requests, this operand specifies the contingency ID or the event ID
which contains the information that the lock has now been deleted.

<var: int:4>
Default setting is 0.
Contingency ID or event ID.

LOCKID=
Lock ID for the lock request which is to be canceled.

<var: int:4>
Default setting is 0.
Lock ID which has been returned by the LKENQ macro.

LSBADR=
Field with the address of the Lock Status Block. The Lock Status Block contains the return
code of the asynchronous call.

<var: pointer>
Name of the field with the address of the Lock Status Block.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID, and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.

USERPAR=
The parameter for asynchronous messages which are to be transferred to the contingency
process or to the event variable.

<var: int:4>
Default setting is 0. User-defined values.

 LKCAN Description of the macros

592 U3291-J-Z125-16-76

Return information and error flags (return codes)

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

The following return code relating to the execution of
the LKCAN macro is transferred in the standard
header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally.

X'00' X'00' X'0001' The macro was executed normally. The cancel request has been
enqueued. The lock request is canceled asynchronously.

X'00' X'00' X'0004' Cancellation of the lock request was initiated, but the lock is still
allocated.

X'00' X'01' X'1005' The Lock Status Block is not accessible.

X'00' X'01' X'1006' The ACKNID type is not the same as that specified in ACKEVTT.

X'00' X'01' X'100C' The specification in the LOCKID operand is invalid.

X'00' X'01' X'1014' The selected function is not allowed for the user.

X'00' X'01' X'10FF' An incorrect parameter, which has no specific return code, was
specified.

X'00' X'20' X'2001' An internal error occurred.

X'00' X'20' X'2003' Internal error in connection with the resource block.

X'00' X'20' X'2004' Internal error in connection with a timeout.

X'00' X'20' X'2005' Internal error in connection with the lock request.

X'00' X'20' X'2006' Internal error in connection with XCS.

X'00' X'82' X'8004' The lock has already been dequeued.

Description of the macros LKCVT

U3291-J-Z125-16-76 593

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

LKCVT – Convert lock request

General

Application area: Distributed Lock Manager (DLM); see page 140
Macro type: Type S, MF format 3: C/D/L/M/E form; see page 29

Macro description

The LKCVT macro converts an existing lock request. The lock must have been generated
with the LKENQ macro and a lock ID must have been returned.

This lock ID (LOCKID) must be specified when the LKCVT macro is called. The user's lock
request is identified by the lock ID.

The lock request is placed in the CONVERTING queue of the lock. If the lock can be
allocated it is placed in the GRANTED queue. The LKCVT macro was executed
successfully.

The lock request can be synchronous or asynchronous.

If it is asynchronous, the lock is allocated as soon as possible. The selected eventing is
started and the allocation is notified to the calling program.

During allocation (conversion from a weaker to a stronger lock (LVBCTL=*MOVE).
During release (conversion from PW or EX mode to a weaker lock protection), the user can
specify that the Lock Value Block is to be changed (LVBCTL=*MOVE).

Macro formats and description of operands

LKCVT

MF=C / D / L / M / E

,ASYNCTL=*SYNCH / *ASYNCH / <var: enum-of _asyncctl_s:1>

,CONTROL=*STD / *EXPRESS / <var: enum-of _ctltype_s:1>

,GRANTID=0 / <var: int:4>

,GRTEVTT=*SYNCH / *TUCONTI / *TUEVENT / <var: enum-of _evttype_s:1>

,HOLDTIM=*INFINITE / *SYSTEM / <var: int:2> / <integer 0..32767>

,LCKMODE=*NU / *CR / *CW / *PR / *PW / *EX / <var: enum-of _lckmode_s:1>

,LOCKID=0 / <var: int:4>

,LSBADR=<var: pointer>

,LVBCTL=*IGNORE / *MOVE / <var: enum-of _lvbctl_s:1>

 LKCVT Description of the macros

594 U3291-J-Z125-16-76

The operands are described in alphabetical order below.

ASYNCTL=
Allocation control for an asynchronous lock request. If the lock request can be allocated
immediately, a contingency process or an event signal can be suppressed.

*SYNCH
If the lock request can be allocated immediately, a contingency process or an event
signal is suppressed.

*ASYNCH
Even if the lock request can be allocated immediately, a contingency process or an
event signal is generated.

<var: enum-of _asyncctl_s:1>
Name of the field with the allocation control of the asynchronous lock request at the time
of execution.

CONTROL=
Specifies the control options for the conversion request.

*STD
Standard control of conversion request.

*EXPRESS
This conversion request is to be executed before other conversion requests. This
operand value should only be specified if the converted lock mode is released again
very quickly.

<var: enum-of _ctltype_s:1>
Name of the field with the value which has been defined by the user.

LKCVT (cont.)

,RELEVTT=*NO / *TUCONTI / *TUEVENT / <var: enum-of _evttype_s:1>

,RELID=0 / <var: int:4>

,STATUS=*UNCHANGE / *RESET / *INVALIDATE / <var: enum-of _status_s:1>

,USERPAR=0 / <var: int:4>

,WAITTIM=*STD / *INFINITE / <var: int:2> / <integer 0..32767>

,WAITTYP=*TIME / *IMMEDIATE / <var: enum-of _timetype_s:1>

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=N / p

,MACID=LDC / mac

Description of the macros LKCVT

U3291-J-Z125-16-76 595

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

GRANTID=
ID for the lock allocation. Specifies, for asynchronous lock requests, which contingency ID
or event ID is to be assigned to the information that the lock has now been allocated.

<var: int:4>
Default setting is 0.
The contingency ID or event ID.

GRTEVTT=
Describes the way in which information about the lock allocation is to be returned. There
are three methods of control: one synchronous and two asynchronous. The specified ID
(contingency ID or event ID) is valid for the current lock request. Other lock requests from
other tasks may specify different IDs.

*SYNCH
Synchronous lock request. Return from the macro if the lock has been allocated or an
error condition detected. The allocation information is delivered in the return code.

*TUCONTI
Contingency process. This value must be specified to obtain confirmation of the
allocation request during contingency processing. The user is notified of incompatible
allocation requests which have been enqueued by other users. The release
contingency is started if the lock is in an incompatible lock mode.

*TUEVENT
Eventing. An event variable can be used to obtain allocation information. The allocation
information is supplied by calling the SOLSIG macro. Incompatible allocation requests
from other tasks are notified via the same event variable.

<var:enum-of _evttype_s:1>
Name of the field with the allocation event type at the time of execution

HOLDTIM=
The hold time is the time that the lock holder wants to hold the lock. When the hold time has
expired, a release event is generated by the DLM so that the lock holder can weaken or
release its lock request.
This can only be specified together with the RELEVTT operand.

*INFINITE
No hold time limit.

*SYSTEM
Hold time defined by the operating system.

<var: int:2>
Hold time defined by the user in seconds.

<integer 0..32767>
Direct specification of hold time in seconds.

 LKCVT Description of the macros

596 U3291-J-Z125-16-76

LCKMODE=
Specifies the requested lock mode.

*NU
The lock is in Null Mode and is always allocated. It is compatible with all other lock
requests. However, access to the resource is not allowed.

*CR
The lock is in Concurrent-Read Mode. Other locks are permitted only in Null Mode,
Concurrent-Read Mode, Concurrent-Write Mode, Protected-Read Mode, and in
Protected-Write Mode. The lock holder is granted unprotected read access to the
resource.

*CW
The lock is in Concurrent-Write Mode. Other locks are permitted only in Null Mode,
Concurrent-Write Mode, or in Concurrent-Read Mode. The lock holder is granted
unprotected write access to the resource.

*PR
The lock is in Protected-Read Mode. Other locks are permitted only in Null Mode,
Concurrent-Read Mode, or in Protected-Read Mode. The lock holder is granted
protected read access to the resource.

*PW
The lock is in Protected-Write Mode. Other locks are permitted only in Null Mode and
in Concurrent-Read Mode. The lock holder is granted protected write access to the
resource.

*EX
The lock is in Exclusive Mode. Other locks are permitted only in Null Mode. Only the
lock holder may access the resource.

<var: enum-of _lckmode_s:1>
Name of the field with the lock mode.

LOCKID=
Lock ID of the lock which is to be converted.

<var: int:4>
Default setting is 0.
Lock ID which has been returned by the LKENQ macro

LSBADR=
Field with the address of the Lock Status Block. The Lock Status Block contains the Lock
Value Block.

<var: pointer>
Name of the field with the address of the Lock Status Block.

Description of the macros LKCVT

U3291-J-Z125-16-76 597

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

LVBCTL=
Control of the Lock Value Block.

*IGNORE
The Lock Value Block is not used.

*MOVE
Read or write the Lock Value Block. The Lock Value Block can be read if the lock is
allocated. It can be written if the lock is in PW or EX Mode.

<var: enum-of _lvbctl_s:1>
Name of the field with the control of the Lock Value Block at the time of execution.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID, and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.
A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form.

RELEVTT=
Defines the way in which information about the lock release is to be returned. There are two
asynchronous methods of control. The specified ID (contingency ID or event ID) is valid for
the current lock request.

*NO
No information about other incompatible lock requests concerning this lock is output.
This can lead to deadlock problems if the lock is not released. If the hold time specified
for the lock has expired, the lock holder for this lock request is terminated without further
notification.

*TUCONTI
Contingency process. This value must be specified to obtain confirmation of the release
request during contingency processing. The user is notified of incompatible allocation
requests which have been enqueued by other users. The release contingency is started
if the lock is in an incompatible lock mode.

*TUEVENT
Eventing. An event variable can be used to obtain the release information. The
allocation information is supplied by calling the SOLSIG macro. Incompatible allocation
requests from other tasks are notified via the same event variable.

<var:enum-of _evttype_s:1>
Name of the field with the release-event type at the time of execution.

 LKCVT Description of the macros

598 U3291-J-Z125-16-76

RELID=
ID for the lock release. Specifies which contingency ID or event ID is to be assigned to the
information that the lock request is blocking another lock request from a different user.

<var: int:4>
Default setting is 0.
The contingency ID or event ID.

STATUS=
Lock status change parameter. Specifies whether the lock status is validated when a lock
is released in PW or EX Mode.

*UNCHANGE
The lock status is not changed while a lock is released in PW or EX Mode.

*RESET
The lock status is reset to VALID while a lock is released in PW or EX mode.

*INVALIDATE
The lock status is set to INVALID while a lock is released in PW or EX mode.

<var: enum-of _status_s:1>
Name of the field with the lock status change parameter at the time of execution.

USERPAR=
The parameter for asynchronous messages which are to be transferred to the contingency
process or to eventing.

<var: int:4>
Default setting is 0.
User-defined values.

WAITTIM=
The wait time is the length of time it will take until the lock is allocated.

*STD
Standard wait time. If WAITTYP=*IMMEDIATE is specified the lock is allocated
immediately or the job is terminated. If job processing is delayed (cluster, network) the
wait time is 600 seconds.

*INFINITE
The lock request never exceeds the time limit. The lock request waits until the lock is
assigned or a deadlock situation is identified.

<var: int:2>
Wait time defined by the user in seconds.

<integer 0..32767>
Direct specification of wait time in seconds.

Description of the macros LKCVT

U3291-J-Z125-16-76 599

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

WAITTYP
Specifies the wait time type for waiting lock requests.

*TIME
The wait time value is specified via the WAITTIM operand.

*IMMEDIATE
Immediate lock request. The lock request is not enqueued if it cannot be allocated
immediately. The value for the timeout can be specified via the WAITTIM operand. This
value is used if the handling of the lock request leads to a DLM-internal wait status. This
may occur, for example, if a network connection is no longer available after the lock
request has been sent to a different node for processing, with the result that the
necessary response is never transferred from that other node. To prevent this, the user
can specify a wait time via the WAITTIM operand.

<var: enum-of _timetype_s:1>
User-defined values.

Return information and error flags

Standard
header:

The following return code relating to the execution of
the LKCVT macro is transferred in the standard
header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally. The lock request was converted to a
new lock mode.

X'00' X'00' X'0001' The macro was executed normally. The lock request has been enqueued;
the lock is allocated asynchronously.

X'00' X'00' X'0002' The macro was executed. The lock was allocated in the specified lock
mode, but the lock status is invalid. This information is output only if the lock
mode is greater than or equal to CW.

X'00' X'01' X'1005' The Lock Status Block is not available.

X'00' X'01' X'1006' The GRANTID type is not the same as that specified in GRTTYPE.

X'00' X'01' X'1007' The RELID type is not the same as that specified in RELTYPE.

X'00' X'01' X'1008' Invalid combination of GRTEVTT and RELEVTT.

X'00' X'01' X'1009' The specification in the WAITTIM operand is invalid.

X'00' X'01' X'100A' The specification in the HOLDTIM operand is invalid

X'00' X'01' X'100C' The specification in the LOCKID operand is invalid.

X'00' X'01' X'1015' The specification in the LCKMODE operand is invalid.

X'00' X'01' X'10FF' An incorrect parameter, which has no specific return code, was specified.

 LKCVT Description of the macros

600 U3291-J-Z125-16-76

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

X'00' X'20' X'2001' An internal error occurred.

X'00' X'20' X'2003' Internal error in connection with the resource block.

X'00' X'20' X'2004' Internal error in connection with a timeout.

X'00' X'20' X'2005' Internal error in connection with the lock request.

X'00' X'20' X'2006' Internal error in connection with XCS.

X'00' X'40' X'4001' A deadlock was detected.

X'00' X'40' X'4003' The previous lock request has not yet been terminated.

X'00' X'82' X'8002' Timeout.

X'00' X'82' X'8004' The lock has already been dequeued.

X'00' X'82' X'8005' The lock has already been canceled.

X'00' X'82' X'8006' Immediate lock requests are not possible due to the existence of
incompatible lock requests which have already been allocated.

X'cc' X'bb' X'aaaa' Meaning

Description of the macros LKDEQ

U3291-J-Z125-16-76 601

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

LKDEQ – Release lock request

General

Application area: Distributed Lock Manager (DLM); see page 140
Macro type: Type S, MF format 3: C/D/L/M/E form; see page 29

Macro description

The LKDEQ releases a lock request from the queue of an existing lock. When the last (or
only) lock request is released, the lock itself is canceled. The LKDEQ macro may be called
synchronously or asynchronously. The lock is identified by its ID (LOCKID), which is
returned by the LKENQ macro. This lock ID must be specified when the LKDEQ macro is
called.
The user may specify that the Lock Value Block is to be changed while a lock is released
in PW or EX Mode (LVBCTL=*MOVE).

Macro formats and description of operands

The operands are described in alphabetical order below.

LKDEQ

MF=C / D / L / M / E

,ASYNCTL=*SYNCH / *ASYNCH / <var: enum-of _asyncctl_s:1>

,DEQEVTT=*SYNCH / *TUCONTI / *TUEVENT / <var: enum-of _evttype_s:1>

,DEQID=0 / <var: int:4>

,LOCKID=0 / <var: int:4>

,LSBADR=<var: pointer>

,LVBCTL=*IGNORE / *MOVE / <var: enum-of _lvbctl_s:l>

,STATUS=*UNCHANGE / *RESET / *INVALIDATE / <var: enum-of _status_s:1>

,USERPAR=0 / <var: int:4>

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=N / p

,MACID=LDD / mac

 LKDEQ Description of the macros

602 U3291-J-Z125-16-76

ASYNCTL=
Control of an asynchronous lock request. If the lock request can be dequeued immediately,
a contingency process or an event signal can be suppressed.

*SYNCH
If the lock request can be released immediately, a contingency process or an event
signal is suppressed.

*ASYNCH
Even if the lock request can be released immediately, a contingency process or an
event signal is generated.

<var: enum-of _asyncctl_s:1>
Name of the field with the asynchronous lock request at the time of execution.

DEQEVTT=
Describes the way in which release information is to be returned. There are three methods
of control. The specified ID (contingency ID or event ID) is valid for the current release
request. Other release requests from other tasks may specify different IDs.

*SYNCH
Synchronous lock request to dequeue the lock. Return from the macro if the lock has
been released or an error condition detected. The release information is delivered in the
return code.

*TUCONTI
Contingency process. This value must be specified to obtain confirmation of the release
request during contingency processing.

*TUEVENT
Eventing. An event variable can be used to obtain the release information. The release
information is supplied by calling the SOLSIG macro.

<var:enum-of _evttype_s:1>
Name of the field with the release information type at the time of execution.

DEQID=
ID for the lock request. Specifies, for asynchronous lock requests, which contingency ID or
event ID is to be assigned to the information that the lock has now been released.

<var: int:4>
Default setting is 0.
The contingency ID or event ID.

Description of the macros LKDEQ

U3291-J-Z125-16-76 603

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID, and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.
A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form.

LOCKID=
Lock ID of the lock which is to be dequeued.

<var: int:4>
Default setting is 0.
Lock ID of a previous LKENQ macro call, which is to be dequeued.

LSBADR=
Field with the address of the Lock Status Block. The Lock Status Block contains the Lock
Value Block.

<var: pointer>
Name of the field with the address of the Lock Status Block.

LVBCTL=
Control of the Lock Value Block.

*IGNORE
The Lock Value Block is not used.

*MOVE
Read or write the Lock Value Block. The Lock Value Block can be read if the lock is
allocated. It can be written if the lock is released in PW or EX Mode.

<var: enum-of _lvbctl_s:1>
Name of the field with the control of the Lock Value Block at the time of execution.

STATUS=
Specifies whether the lock status is validated when a lock is released in PW or EX Mode.

*UNCHANGE
The lock status is not changed while a lock is released in PW or EX Mode.

*RESET
The lock status is reset to VALID while a lock is released in PW or EX mode.

*INVALIDATE
The lock status is set to INVALID while a lock is released in PW or EX mode.

<var: enum-of _status_s:1>
Name of the field with the lock status change parameter at the time of execution.

 LKDEQ Description of the macros

604 U3291-J-Z125-16-76

USERPAR=
The parameter for asynchronous messages which are to be transferred to the contingency
process or to eventing.

<var: int:4>
Default setting is 0.
User-defined values.

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

The following return code relating to the execution of
the LKDEQ macro is transferred in the standard
header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally. The lock was dequeued.

X'00' X'00' X'0001' The macro was executed normally. The lock release request has been
enqueued. The lock is dequeued asynchronously. The release is notified to
the selected eventing methods.

X'00' X'01' X'1005' The Lock Status Block is not available.

X'00' X'01' X'100C' The specification in the LOCKID operand is invalid.

X'00' X'01' X'1006' The DEQID type is not the same as that specified in DEQEVTT.

X'00' X'01' X'10FF' An incorrect parameter, which has no specific return code, was specified.

X'00' X'20' X'2001' An internal error occurred.

X'00' X'20' X'2003' Internal error in connection with the resource block.

X'00' X'20' X'2004' Internal error in connection with a timeout.

X'00' X'20' X'2005' Internal error in connection with the lock request.

X'00' X'20' X'2006' Internal error in connection with XCS.

X'00' X'40' X'4003' The previous lock request has not yet been terminated.

X'00' X'82' X'8004' The lock has already been dequeued.

Description of the macros LKENQ

U3291-J-Z125-16-76 605

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

LKENQ – Generate lock

General

Application area: Distributed Lock Manager (DLM); see page 140
Macro type: Type S, MF format 3: C/D/L/M/E form; see page 29

Macro description

The LKENQ macro generates a lock. The lock is not generated again if it already exists,
but the calling task is allocated to it. The lock request is enqueued in the specified lock
mode.

A lock is identified by a lock name and a scope. The lock name is supplied to the DLM by
the user.

A lock ID (LOCKID) is returned to the calling task; this must be specified to facilitate
processing in subsequent calls (LKCVT, LKCAN, LKDEQ). The lock ID is a task-specific
control for the lock.

If the lock has already been enqueued for this task, the lock ID of the previous LKENQ
request is returned but the macro is not executed. The lock mode has not been changed!

Macro formats and description of operands

LKENQ

MF=C / D / L / M / E

,ASYNCTL=*SYNCH / *ASYNCH / <var: enum-of _asyncctl_s:1>

,GRANTID=0 / <var: int:4>

,GRTEVTT=*SYNCH / *TUCONTI / *TUEVENT / <var: enum-of _evttype_s:1>

,HOLDTIM=*INFINITE / *SYSTEM / <var: int:2> / <integer 0..32767>

,LCKMODE=*NU / *CR / *CW / *PR / *PW / *EX / <var: enum-of _lckmode_s:1>

,LSBADR=<var: pointer>

,LVBCTL=*IGNORE / *MOVE / <var: enum-of _lvbctl_s:1>

,MULTENQ=*NO / *YES / <var: enum-of _multiple_s:1>

,NAMEADR=<var: pointer>

,NAMELEN=0 / <integer 8..48> / <var: int:2>

,NAMRNGE=*OWNSYSTEM / *CLUSTER / <var: enum-of _namerange_s:1>

,SCOPE=*NAMESPACEID / *USERID / *GROUPID / <var: emun-of_scope_s:1>

 LKENQ Description of the macros

606 U3291-J-Z125-16-76

The operands are described in alphabetical order below.

ASYNCTL=
Allocation control for an asynchronous lock request. If the lock request can be allocated
immediately a contingency process or an event signal can be suppressed.

*SYNCH
If the lock request can be allocated immediately an allocation contingency or an event
signal is suppressed.

*ASYNCH
An allocation contingency or an event signal is still generated by the DLM even if the
lock request can be allocated immediately.

<var: enum-of _asyncctl_s:1>
Name of the field with the allocation control of the asynchronous lock request at the time
of execution.

GRANTID=
ID for the lock allocation. Specifies, for asynchronous requests, which contingency ID or
event ID is to be assigned to the information that the lock has now been allocated.

<var: int:4>
Default setting is 0.
The contingency ID or event ID.

LKENQ (cont.)

,RELEVTT=*NO / *TUCONTI / *TUEVENT / <var: enum-of _evttype_s:1>

,RELID=0 / <var: int:4>

,TERMNTE=*STD / *FIRST / *SECOND / *THIRD / <var: enum-of _terminate_s:1>

,USERPAR=0 / <var: int:4>

,WAITTIM=*STD / *INFINITE / <var: int:2> / <integer 0..32767>

,WAITTYP=*TIME / *IMMEDIATE / <var: enum-of _timetype_s:1>

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=N / p

,MACID=LDE / mac

Description of the macros LKENQ

U3291-J-Z125-16-76 607

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

GRTEVTT=
Describes the way in which information about the lock allocation is to be returned. There
are three methods of control: one synchronous and two asynchronous. The specified ID
(contingency ID or event ID) is valid for the current lock request. Other lock requests from
other tasks may specify different IDs.

*SYNCH
Synchronous lock request. Return from the macro if the lock has been allocated or an
error condition detected. The information is delivered in the return code.

*TUCONTI
Contingency process. This value must be specified to obtain confirmation of the
allocation request during contingency processing. The user is notified of incompatible
lock requests which have been enqueued by other users. The release contingency is
started if the lock is in an incompatible lock mode.

*TUEVENT
Eventing. An event variable can be used to obtain allocation information. The allocation
information is supplied by calling the SOLSIG macro. Incompatible allocation requests
from other tasks are notified via the same event variable.

<var:enum-of _evttype_s:1>
Name of the field with the allocation event type at the time of execution

HOLDTIM=
The hold time is the time that the lock holder wants to hold the lock. When the hold time has
expired, a release event is generated by the DLM so that the lock holder can weaken or
release its lock request.
This can only be specified together with the RELEVTT operand.

*INFINITE
No hold time limit.

*SYSTEM
Hold time defined by the operating system.

<var: int:2>
Hold time defined by the user in seconds.

<integer 0..32767>
Direct specification of hold time in seconds.

 LKENQ Description of the macros

608 U3291-J-Z125-16-76

LCKMODE=
Specifies the lock mode of the requested lock.

*NU
The lock is in Null Mode and is always allocated. It is compatible with all other lock
requests. However, access to the resource is not allowed.

*CR
The lock is in Concurrent-Read Mode. Other locks are permitted only in Null Mode,
Concurrent-Read Mode, Concurrent-Write Mode, Protected-Read Mode, and in
Protected-Write Mode. The lock holder is granted unprotected read access to the
resource.

*CW
The lock is in Concurrent-Write Mode. Other locks are permitted only in Null Mode,
Concurrent-Write Mode, or in Concurrent-Read Mode. The lock holder is granted
unprotected write access to the resource.

*PR
The lock is in Protected-Read Mode. Other locks are permitted only in Null Mode,
Concurrent-Read Mode, or in Protected-Read Mode. The lock holder is granted
protected read access to the resource.

*PW
The lock is in Protected-Write Mode. Other locks are permitted only in Null Mode and
in Concurrent-Read Mode. The lock holder is granted protected write access to the
resource.

*EX
The lock is in Exclusive Mode. Other locks are permitted only in Null Mode. Only the
lock holder may access the resource.

<var: enum-of _lckmode_s:1>
Name of the field with the lock mode.

LSBADR=
Field with the address of the Lock Status Block. The Lock Value Block is part of the Lock
Status Block.

<var: pointer>
Name of the field with the address of the Lock Status Block.

Description of the macros LKENQ

U3291-J-Z125-16-76 609

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

LVBCTL=
Specifies the handling of the Lock Value Block.

*IGNORE
The Lock Value Block is not used.

*MOVE
Read or write the Lock Value Block. The Lock Value Block can be read if the lock is
allocated. It can be written if the lock is released.

<var: enum-of _lvbctl_s:1>
Name of the field with the handling of the Lock Value Block at the time of execution.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID, and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.
A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form.

MULTENQ=
Multiple LKENQ requests are allowed.
Specifies whether the user is allowed to enqueue more than one lock request for the same
lock name (= lock). Each of these lock requests is assigned its own lock ID (LOCKID) and
each one must be dequeued individually.

*NO
If a lock request from this task already exists for the specified lock, this (the current) lock
request is rejected.

*YES
This (the current) lock request is enqueued irrespective of existing lock requests from
this task for this lock. This lock request is assigned its own unique lock ID.

<var: enum-of _multiple_s:1>
Name of the field with the value of MULTENQ at the time of execution.

NAMEADR=
Field with the address of the lock name.

<var: pointer>
Name of the field with the address of the lock name.

 LKENQ Description of the macros

610 U3291-J-Z125-16-76

NAMELEN=
Default setting is 0.
Specifies the length of the lock name.

<integer 8..48>
Direct specification of the length of the lock name at the time of transfer.

<var: int:2>
Name of the field with the length of the lock name at the time of execution.

NAMRNGE=
Specifies the range within which the lock name is valid. If a LKENQ request is executed on
a single system (which is not and never will be part of a cluster), the lock is handled as if it
were the single-system part of a cluster. This feature allows programs to be ported from
single non-clustered systems to cluster systems.

*OWNSYSTEM
The specified lock name is valid on the local system only.

*CLUSTER
The specified lock name is valid for the whole cluster.

<var: enum-of _namerange_s:1>
Name of the field with the range in which the lock name is valid, at the time of execution.

RELEVTT=
Describes the way in which information about the lock release is to be returned. There are
three methods of control: one synchronous and two asynchronous. The specified ID
(contingency ID or event ID) is valid for the current lock request. Other lock requests from
other tasks may specify different IDs.

*NO
No information about other incompatible lock requests concerning this lock is output.
This can lead to deadlock problems if the lock is not released. If the hold time specified
for this lock has expired, the lock holder for this lock request is terminated without further
notification.

*TUCONTI
Contingency process. This value must be specified in order to obtain the release event
during contingency processing. Users are informed of incompatible lock requests which
are entered in the queue by other users. The release contingency is started if the lock
is in an incompatible mode.

*TUEVENT
Eventing. An event variable can be used to obtain the release event. The information is
supplied when the SOLSIG macro is called. The incompatible lock requests from other
tasks are reported via the same event variable.

Description of the macros LKENQ

U3291-J-Z125-16-76 611

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

<var:enum-of _evttype_s:1>
Name of the field with the release event type at the time of execution.

RELID=
ID for the lock release. Specifies which contingency ID or event ID is to be assigned to the
information that the lock request is blocking another lock request from a different user.

<var: int:4>
Default setting is 0.
The contingency ID or event ID.

SCOPE=
Defines the local scope of the lock name.

*NAMESPACEID
Preset value: the specified lock name is used as the internal lock name. The first part
(8 bytes) of the specified lock name implicitly forms the local scope. The local scope
must be a character string. The valid characters are the letters “A..Z”, “a..z”; the digits
“0..9” and the special characters “@” and “#”. The maximum length of the specified lock
name is 48 characters.

*USERID
The user ID to which the calling task belongs is used to form the internal lock name. The
DLM determines the user ID and places it at the start of the lock name. The first part of
the specified lock name is not interpreted as the local scope. The maximum length of
the specified lock name is reduced to 40 characters.
If the operand SCOPE=*USERID is specified, an application's locks can be easily
protected against access by another application. The applications simply have to be
started under different user IDs.

*GROUPID
The user group to which the calling task belongs is used to form the internal lock name.
The DLM determines the user group and places it at the start of the lock name. The first
part of the specified lock name is not interpreted as the local scope. The maximum
length of the specified lock name is reduced to 40 characters.
The operand SCOPE=*GROUPID may only be specified if the software product
SECOS is operational as otherwise the LKENQ call results in an error.

<var: enum-of _scope_s:1>
Name of the field with the local scope of the lock name at runtime.

 LKENQ Description of the macros

612 U3291-J-Z125-16-76

TERMNTE=
Specifies the sequence in which this lock is released during abnormal termination of the
lock-holder process (task or program). The termination sequence is divided into three
classes. The locks of the process that is being terminated are released in the sequence
specified, or they are all released simultaneously (as seen from the other processes).

*STD
This lock is released in the termination sequence specified by the DLM.

*FIRST
This lock is released before or at the same time as the locks in the next class.

*SECOND
This lock is released after or at the same time as the locks in the previous class, and
before or at the same time as the locks in the next class.

*THIRD
This lock is released after or at the same time as the locks in the previous class.

<var: enum-of _terminate_s:1>
Name of the field with the termination class at the time of execution.

USERPAR=
Contains the parameter for asynchronous messages. These are transferred to the
contingency process or to eventing.

<var: int:4>
User-defined values. Default setting is 0.

WAITTIM=
The wait time is the length of time that must be waited until the lock is allocated.

*STD
Standard wait time. If WAITTYP=*TIME is specified, *INFINITA is assumed. If
WAITTYP=*IMMEDIATE is specified the lock is allocated immediately or the job is
terminated. If job processing is delayed (cluster, network) the wait time is 600 seconds.

*INFINITE
Infinite wait time. The request never times out. The lock request waits until the lock is
allocated or a deadlock situation is detected.

<var: int:2>
Wait time defined by the user in seconds.

<integer 0..32767>
Direct specification of wait time in seconds.

Description of the macros LKENQ

U3291-J-Z125-16-76 613

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

WAITTYP
Specifies the wait time type for waiting lock requests.

*TIME
The timeout value is specified via the WAITTIM operand.

*IMMEDIATE
Immediate lock request. The lock request is not enqueued if it cannot be allocated
immediately. The value for the timeout can be specified via the WAITTIM operand. This
value is used if the handling of the lock request leads to a DLM-internal wait status. This
may occur, for example, if a network connection is no longer available after the lock
request has been sent to a different node for processing, with the result that the
necessary response is never transferred from that other node. To prevent this, the user
can specify a wait time via the WAITTIM operand.

<var: enum-of _timetype_s:1>
User-defined values.

Return information and error flags

Standard
header:

The following return code relating to the execution of the
LKENQ macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally. The lock was allocated or the lock
request has been enqueued.

X'00' X'00' X'0001' The macro was executed normally. The lock request has been
enqueued; the lock is allocated asynchronously.

X'00' X'00' X'0002' The macro was executed but the lock status is invalid. This information
is output only if the lock mode is greater than or equal to CW.

X'00' X'01' X'1001' The lock name is too long.

X'00' X'01' X'1002' The address of the lock name is not available.

X'00' X'01' X'1003' The lock name is not allowed.

X'00' X'01' X'1004' The specified name space is invalid.

X'00' X'01' X'1005' The Lock Status Block is not available.

X'00' X'01' X'1006' The GRANTID operand type is not the same as that specified in the
GRTEVTT operand.

X'00' X'01' X'1007' The RELID operand type is not the same as that specified in the
RELEVTT operand.

X'00' X'01' X'1008' Invalid combination of GRTEVTT and RELEVTT operands.

X'00' X'01' X'1009' Invalid specification in the WAITTIM operand.

 LKENQ Description of the macros

614 U3291-J-Z125-16-76

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

X'00' X'01' X'100A' Invalid specification in the HOLDTIM operand.

X'00' X'01' X'100B' Invalid specification in the LCKTYPE operand.

X'00' X'01' X'1010' The lock has already been enqueued for this task.

X'00' X'01' X'1015' Invalid specification in the LCKMODE operand.

X'00' X'01' X'10FF' An incorrect parameter, which has no specific return code, was
specified.

X'00' X'20' X'2001' An internal error occurred.

X'00' X'20' X'2003' Internal error in connection with the resource block.

X'00' X'20' X'2004' Internal error in connection with a timeout.

X'00' X'20' X'2005' Internal error in connection with the lock request.

X'00' X'20' X'2006' Internal error in connection with XCS.

X'00' X'40' X'4003' The previous lock request has not yet been terminated.

X'00' X'82' X'8001' No further locks can be created.

X'00' X'82' X'8002' Timeout.

X'00' X'82' X'8003' It is not possible at present to specify locks with
NAMRNGE=*CLUSTER.

X'00' X'82' X'8005' The lock request has already been canceled.

X'00' X'82' X'8006' Immediate lock requests are not possible due to the existence of
incompatible lock requests which have already been allocated.

X'cc' X'bb' X'aaaa' Meaning

Description of the macros LKEQU

U3291-J-Z125-16-76 615

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

LKEQU – Generate DLM-specific layouts

General

Application area: Distributed Lock Manager (DLM); see page 140
Macro type: Definition macro, see page 28

Macro description

The LKEQU generates the DLM-specific layouts and values for the event type codes and
the global return codes, which are set by the different macros of the DLM.

The LKEQU macro may only be called with MF = D.

Macro formats and description of operands

Description of operands

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID, and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.

LKEQU

MF=D

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=N / p

,MACID=LDQ / mac

 LKEQU Description of the macros

616 U3291-J-Z125-16-76

Layout of the data area for LKEQU MF = D

LKEQU MF=D
1 MFTST MF=D,PREFIX=N,MACID=LDQ,ALIGN=F, C
1 DMACID=LDQ,SUPPORT=(D),DNAME=LDQMDL
2 NLDQMDL DSECT ,
2 *,##### PREFIX=N, MACID=LDQ #####
1 NLDQNMM# EQU 48 maximum length of a lock name
1 * including the name space id
1 * which always must be the
1 * first part of the lock name
1 * string
1 *
1 NLDQNMP# EQU 48 reserved
1 *
1 NLDQNSP# EQU 8 length ot the name space id
1 *
1 NLDQTIMI EQU -1 value for infinite wait- or
1 * holdtime
1 *
1 NLDQTIMS EQU -2 value for system defined
1 * holdtime
1 *
1 NLDQUNIT EQU 247 DLM unit number in standard
1 * header
1 *
1 * layout of the event data for asynchronous calls
1 *
1 NLDQREG3 DS 0XL4 word 1 or register 3 of event
1 * data
1 NLDQETC DS FL1 unit which issued the event
1 * (here always the event type
1 * code of DLM)
1 * event type code for event notification
1 NLDQVENT EQU 22 DLM event
1 *
1 NLDQEVNT DS FL1 notified event
1 * type of the event that occurred
1 NLDQGRT EQU 1 grant event after LKENQ or
1 * LKCVT call
1 NLDQWTOT EQU 2 waittimeout event after LKENQ
1 * or LKCVT call
1 NLDQREL EQU 3 release event
1 NLDQHTOT EQU 4 holdtimeout event
1 NLDQERGT EQU 5 error event after failing
1 * LKENQ or LKCVT call
1 NLDQCANC EQU 6 cancelled event after LKENQ
1 * or LKCVT call when a LKCAN

Description of the macros LKEQU

U3291-J-Z125-16-76 617

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

1 * was issued meanwhile
1 NLDQLSBR EQU 7 general error event when lock
1 * state block was not
1 * accessible
1 NLDQOKDQ EQU 8 dequeue event after LKDEQ
1 * call
1 NLDQERDQ EQU 9 error event after failing
1 * LKDEQ call
1 NLDQOKCN EQU 10 cancel done event after LKCAN
1 * call
1 NLDQERCN EQU 11 error event after failing
1 * LKCAN call
1 *
1 NLDQBMOD DS X lock mode of the lock request
1 * which is blocked by the own
1 * granted lock request
1 NLDQFILL DS X reserved
1 *
1 *
1 NLDQREG4 DS 0XL4 word 2 or register 4 of event
1 * data
1 NLDQUPAR DS F last given value of user
1 * parameter
1 *
1 NLDQEQUATES# EQU *-NLDQETC

 LKINF Description of the macros

618 U3291-J-Z125-16-76

LKINF – Output information on locks

General

Application area: Distributed Lock Manager (DLM); see page 140
Macro type: Type S, MF format 3: C/D/L/M/E form; see page 29

Macro description

The LKINF macro provides information on which locks are already being used. Several
search filters can be activated to narrow the selection. The locks are identified by their lock
names. The lock names may be fully or partially qualified names. If you specify partially
qualified lock names, then, under certain circumstances, access may be very slow since
the entire DLM database has to be searched for hits.

Macro formats and description of operands

The operands are described in alphabetical order below.

CONTROL=
The search filter controls which data is to be returned.

list-poss(3):
A list containing a maximum of four elements can be formed from the following values.

*LOCKED
Only information about locks with a lock mode not equal to zero is returned.

LKINF

MF=C / D / L / M / E

,CONTROL=list-poss(3): *LOCKED / *LOCKED_BY_ME / *LCKMODE

,LCKMODE=*NU / *CR / *CW / *PR / *PW / *EX / <var: enum-of _lckmode_s:1>

,NAMEADR=<var: pointer>

,NAMELEN=0 / <integer 0..48> / <var: int:2>

,NAMRNGE=*OWNSYSTEM / *CLUSTER / <var: enum-of _namerange_s:1>

,SCOPE=*NAMESPACEID / *USERID / *GROUPID / <var: emun-of_scope_s:1>

,NAMTYPE=*FULL / *PARTIAL / <var: enum-of _nametype_s:1>

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=N / p

,MACID=LDI / mac

Description of the macros LKINF

U3291-J-Z125-16-76 619

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

*LOCKED_BY_ME
Only information about locks which the user is maintaining in a lock mode not equal to
zero is returned. The user is identified by his or her lock ID (LOCKID).

*LCKMODE
Only information relating to the specified lock mode is returned.

LCKMODE=
Specifies the requested lock mode. Is only evaluated if the operand
CONTROL=*LCKMODE is also specified.

*NU
The lock is in Null Mode and is always allocated. It is compatible with all other lock
requests. Access to the resource is not allowed.

*CR
The lock is in Concurrent-Read Mode. Other locks are permitted only in Null Mode,
Concurrent-Read Mode, Concurrent-Write Mode, Protected-Read Mode, and in
Protected-Write Mode. The lock holder is granted unprotected read access to the
resource.

*CW
The lock is in Concurrent-Write Mode. Other locks are permitted only in Null Mode,
Concurrent-Write Mode, or in Concurrent-Read Mode. The lock holder is granted
unprotected write access to the resource.

*PR
The lock is in Protected-Read Mode. Other locks are permitted only in Null Mode,
Concurrent-Read Mode, or in Protected-Read Mode. The lock holder is granted
protected read access to the resource.

*PW
The lock is in Protected-Write Mode. Other locks are permitted only in Null Mode and
in Concurrent-Read Mode. The lock holder is granted protected write access to the
resource.

*EX
The lock is in Exclusive Mode. Other locks are permitted only in Null Mode. Only the
lock holder may access the resource.

<var: enum-of _lckmode_s:1>
Name of the field with the lock mode.

Note
The LCKMODE and CONTROL operands may not be specified together. The lock
mode may only be specified directly via the LCKMODE operand or indirectly via the
CONTROL operand.

 LKINF Description of the macros

620 U3291-J-Z125-16-76

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID, and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.
A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form.

NAMEADR=
Field with the address of the lock name.

<var: pointer>
Name of the field with the address of the lock name.

NAMELEN=
Default setting is 0.
Specifies the length of the lock name.

<integer 0..48>
Direct specification of the length of the lock name at the time of transfer.

<var: int:2>
Name of the field with the length of the lock name at the time of execution.

NAMRNGE=
Specifies the range within which the lock name is valid.

*OWNSYSTEM
The specified lock name is valid on the local system only.

*CLUSTER
The specified lock name is valid for the whole cluster.

<var: enum-of _namerange_s:1>
Name of the field with the range in which the lock name is valid.

NAMTYPE=
Specifies whether the character string for the name is a fully or partially qualified lock name.

*FULL
The specified lock name is a fully qualified lock name.

*PARTIAL
The specified lock name is a partially qualified lock name.

<var: enum-of _nametype_s:1>
Name of the field with the lock name type.

Description of the macros LKINF

U3291-J-Z125-16-76 621

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

SCOPE=
Determines the local scope of the lock name

*NAMESPACEID
Preset value: the specified lock name is used as the internal lock name. The first part
(8 bytes) of the specified lock name implicitly forms the local scope. The local scope
must be a character string. The valid characters are the letters “A..Z”, “a..z”; the digits
“0..9” and the special characters “@” and “#”. The maximum length of the specified lock
name is 48 characters.

*USERID
The user ID to which the calling task belongs is used to form the internal lock name. The
DLM determines the user ID and places it at the start of the lock name. The first part of
the specified lock name is not interpreted as the local scope. The maximum length of
the specified lock name is reduced to 40 characters.
If the operand SCOPE=*USERID is specified, an application's locks can be easily
protected against access by another application. The applications simply have to be
started under different user IDs.

*GROUPID
The user group to which the calling task belongs is used to form the internal lock name.
The DLM determines the user group and places it at the start of the lock name. The first
part of the specified lock name is not interpreted as the local scope. The maximum
length of the specified lock name is reduced to 40 characters.
The operand SCOPE=*GROUPID may only be specified if the software product
SECOS has been purchased and is operational as otherwise the LKENQ call results in
an error.

<var: enum-of _scope_s:1>
Name of the field with the local scope of the lock name at runtime.

 LKINF Description of the macros

622 U3291-J-Z125-16-76

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

The following return code relating to the execution of
the LKINF macro is transferred in the standard
header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally. At least one corresponding lock was
found.

X'01' X'00' X'0000' The macro was executed but no corresponding lock was found.

X'02' X'00' X'0000' The macro was executed and corresponding locks were found but not all
the nodes returned information as a result of a network problem.

X'00' X'01' X'1001' The lock name is too long.

X'00' X'01' X'1002' The address of the lock name is not available.

X'00' X'01' X'1003' The specified lock name is not permissible.

X'00' X'01' X'1004' The specified name space is invalid.

X'00' X'01' X'100F' The search filter is not permissible.

X'00' X'01' X'1015' The specification in the LCKMODE operand is invalid.

X'00' X'01' X'1016' The specification in the NAMTYPE operand is invalid.

X'00' X'01' X'1017' The specification in the NAMRNGE operand is invalid.

X'00' X'01' X'10FF' An incorrect parameter, which has no specific return code, was
specified.

X'00' X'20' X'2001' An internal error occurred.

X'00' X'20' X'2003' Internal error in connection with the resource block.

X'00' X'20' X'2004' Internal error in connection with a timeout.

X'00' X'20' X'2005' Internal error in connection with the lock request.

X'00' X'20' X'2006' Internal error in connection with XCS.

Description of the macros LKLSB

U3291-J-Z125-16-76 623

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

LKLSB – Generate Lock Status Block layout

General

Application area: Distributed Lock Manager (DLM); see page 140
Macro type: Type S, MF format 3: C/D/L/M/E form; see page 29

Macro description

The LKLSB macro generates the layout of the Lock Status Blocks (LSB). The LSB is part
of the user address space which must be generated by the user for an asynchronous lock
request. This user address space must be accessible for the DLM until the generated lock
request is terminated.

Termination of the asynchronous lock request causes a corresponding return code to be
written to the LSB. The user-defined event method for this lock request is started.

To decide whether the return code in the LSB was delivered by the DLM, the user must
initialize the LSB by initializing the return code with the return code value when calling
LKLSB MF=L.

Macro formats and description of operands

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID, and PARAM), see page 29. The valid MF values are given
at the start of the macro description under “Macro type” and are included in the macro
format.
A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form.

LKLSB

MF=C / D / L / M

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=N / p

,MACID=LDL / mac

 LKLSB Description of the macros

624 U3291-J-Z125-16-76

Initialization of the Lock Status Block

LKLSB MF=L
1 MFTST MF=L,PREFIX=N,MACID=LDL,ALIGN=F, C
1 DMACID=LDL,SUPPORT=(D,C,M,L)
2 DS 0F
1 FHDR MF=L,UNIT=247,FUNCT=6,VERS=1,RC=-1
2 DS 0A
2 DS 0XL8 GENERAL OPERAND LIST HEADER
2 DC AL2(247) FUNCTION UNIT NUMBER
2 DC AL1(6) FUNCTION NUMBER
2 DC AL1(1) FUNCTION INTERFACE VERSION NUMBER
2 DC A(-1) Returncode
1 * FHDR
1 DC A(0) LOID
1 DC A(0) OWID
1 DC CL16' ' VAL

Description of the macros LPOV

U3291-J-Z125-16-76 625

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

LPOV – Load segment

General

Application area: Linking and loading; see page 47
Macro type: Type O; see page 28

Macro description

The LPOV macro (Load Program OVerlay) allows only the (one) specified segment to be
loaded into memory, even if it is already in memory.
The LPOV macro is used if nonautomatic segment loading is required. Automatic segment
loading permits more than one segment to be loaded with one macro (see the “Utility
Routines” manual [27]).

Macro format and description of operands

modulename
Specifies the symbolic name of the segment to be loaded. This name can be up to
6 alphanumeric characters long.

address
Specifies the symbolic address in the calling or another module, to which control is returned
after the module has been loaded. If this operand is omitted, control is returned to the
instruction following the LPOV macro. The calling program waits until the module is loaded.

LPOV

,modulename [,address]

LPOV Description of the macros

626 U3291-J-Z125-16-76

Functional description

Execution of the LPOV macro causes the static loader to be invoked; this loads the
segment specified by “modulename” into memory. After the loading process, control is
passed to the instruction specified by “address”. This address may be contained in the
calling module or be an external reference in another module. If the “address” operand is
omitted, control is passed to the instruction following the LPOV macro.
If an external reference is used for control transfer, it is the user's responsibility to ensure
that the module with the relevant entry address is in memory after the loading process.
Since execution of the LPOV macro causes only one segment to be loaded, each segment
must be loaded explicitly. When the LPOV macro is executed, the segment specified is
loaded irrespective of whether it is in memory or not. The LPOV macro is not linked to the
overlay control module, and no list of overlay segments currently in memory is maintained.

Notes on the macro call

– After a segment has been loaded by the LPOV macro, corrections may be made using
AID with %ON %LPOV (see the “AID” manual [3]).

– The LPOV macro, which permits the nonautomatic loading of segments, communicates
directly with the operating system. If LPOV is used concurrently with the CALL or
SEGLD macro (automatic segment loading), the status list of the program overlay
structure may be corrupted (see the “Utility Routines” manual [27]). Such a condition
may lead to errors during program execution.

Description of the macros LPOV

U3291-J-Z125-16-76 627

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\jk

l.d
o

c

Return information and error flags

If errors occur during loading of an overlay segment, the Executive returns control to the
program at the instruction following the LPOV macro expansion. If no errors occur, the
continuation address specified in the macro call is valid.

R15:
A return code relating to the execution of the LPOV
macro is transferred in the rightmost byte of register
R15.

a a

X'aa' Meaning

X'00' The load operation was successful.

X'04' Invalid read-only modification record.

X'08' Illegal record code in text/modification block or a modification record precedes the first text
record.

X'0C' There are too many read-only modification records or the segemt name cannot be found in
any of the index records for load modules (=segments).

X'10' There is no index record for load modules having the segment name %ROOT.

X'14' There is not sufficient memory to load the segment.

X'18' Illegal key information, error during reading of PAM load module file or error in the output of
messages.

X'1C' Invalid segment name.

X'20' AID load error.

X'24' Error in reading C element from PLAM library.

LPOV Description of the macros

628 U3291-J-Z125-16-76

Description of the macros MINF

U3291-J-Z125-16-76 629

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

MINF – Output memory map for class 6 memory or
memory pool

General

Application areas: Working with virtual memory; see page 55
Memory pools; see page 55
Requesting and accessing lists and tables; see page 155

Macro type: Type S, MF format 1:
31-bit interface: standard/L/D/E form; see page 29

The size of class 6 memory may vary within a program run, depending on class 5 and
class 6 memory space requirements.

Macro description

The MINF macro provides the user with information about the utilization of

– the class 6 memory allocated to the user, or
– a memory pool in class 6 memory.

The information is output in the form of a bit table which indicates for a particular memory
page whether it is occupied or not. The entries in the bit table have the following meaning:

byte 0, bit 27 represents the 1st (requested) memory page,
byte 0, bit 26 represents the 2nd memory page,
:
:
byte 0, bit 20 represents the 8th memory page,
byte 1, bit 27 represents the 9th memory page,
etc.

Memory page utilization is indicated thus:

bit 2n = 0: memory page is occupied.
bit 2n = 1: memory page is not occupied.

Note

If information on class 6 memory is to be output (CL6 operand), each page within a
memory pool is considered to be occupied, regardless of whether or not the page has
already been requested by means of REQMP.
If information on the memory pool itself is to be output (MP operand), only those pages
that have already been requested by means of REQMP are considered to be occupied.

MINF Description of the macros

630 U3291-J-Z125-16-76

Macro format and description of operands

CL6
Information about the utilization of the class 6 memory allocated to the user is output. Pages
of a memory pool are always marked as in use.

MP
Information about the utilization of a memory pool (class 6 memory) is output. Only those
pages are marked as in use which have been requested by means of REQMP.

INF=
Specifies the type of information requested.

SIZE
The virtual page number (VPN) of the first page and the size (number of pages) of the
class 6 memory/memory pool are output. The information is output to the field specified
by the ADDR operand.

FREE,MAP=addr
A bit table is output, indicating the utilization of pages of the memory area specified with
the ADDR operand. The bit table is output to the field specified by the MAP operand.
Additional information about the length of the bit table is entered in the field specified
with ADDR.
“addr“ is the symbolic address (name) of a field (1 byte of the field's length is required
for every 8 memory pages).

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.
A prefix (pre = 1..3 letters) can be specified in the D form of the macro, as shown in the
macro format.
Default setting: pre = MNF

MINF

,ADDR=addr

,MF=S / (E,...) / L / (D,pre) / D

CL6

MP

,INF= SIZE

FREE,MAP=addr

Description of the macros MINF

U3291-J-Z125-16-76 631

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

ADDR=addr
Specifies a field which is used for both input and output (operand INF).
Field length = 16 bytes (4 words). The field must be aligned on a word boundary.

addr
Symbolic address (name) of the field.

The contents depend on the specification for CL6/MP/SIZE, as illustrated below:

CL6, INF=SIZE: (output field only)

MP,INF=SIZE:

CL6/MP,INF=FREE:

Byte Output

 0 - 3
 4 - 7
 8 - 11
12 - 15

VPN of first memory page below 16 Mb
Number of memory pages below 16 Mb
VPN of first memory page above 16 Mb or X' 00000000'
Number of memory pages above 16 Mb or X' 00000000'

X'00000000' is output if no class 6 memory exists above 16 Mb.

Byte Input Output

 0 - 3
4 - 7
8 - 11
12 - 15

VPN of any pool page
not used
not used
not used

VPN of 1st memory pool page
size (number of pages) of memory pool
not changed 1)

not changed 1)

1) 'not changed' means: In the event of a number of consecutive MINF calls, the contents
specified with the preceding call are retained.

Byte Input Output

 0 - 3
4 - 7

 8 - 11
12 - 15

VPN of 1st page of requested area
Number of memory pages about
whose utilization a bit table is to be
output
not used
not used

not changed
Number of memory pages actually described by
the bit table

not changed
not changed

The specified VPN must be a multiple of 16 (n=0,1,...)

MINF Description of the macros

632 U3291-J-Z125-16-76

Return information and error flags

After macro processing, register R1 contains the operand list address.

Example

In the example, information about the size, location and page utilization of a memory pool
is requested; the memory pool has been created above the 16-Mb boundary.

MINF START
PRINT NOGEN

MINF AMODE 31
MINF RMODE ANY

GPARMOD 31
1 *,MACRO: GPARMOD, VERSION: VER121

BALR 3,0
USING *,3
ENAMP MPNAME=MEMP,SCOPE=GLOBAL,MPIDRET=PID,BSIZE=48 ———————— (1)

1 *,ENAMP: 144/951025
REQMP REQMP MPID=PID,BSIZE=5 ————————————————————————————————————— (2)

1 *,REQMP: 141 / 950210
*
DTH1 LR 4,1 —— (3)

LA 4,4095(1)
LA 4,1(4)
LR 5,4
SRL 5,12
ST 5,MPINF1

MINF1 MINF MP,ADDR=MPINF,INF=SIZE ——————————————————————————————— (4)
1 *,MACRO: MINF, VERSION: VER174
DTH2 MVC MPINF2,=F'16'

MVC 0(27,4),TEXT
MINF2 MINF MP,ADDR=MPINF,INF=FREE,MAP=BITTAB ———————————————————— (5)

1 *,MACRO: MINF, VERSION: VER174

R15:
A return code relating to the execution of the MINF
macro is transferred in register R15. The same RC is
additionally transferred in the standard header of the
operand list.

0 0 0 0 0 0 a a

X'aa' Meaning

X'00' Function has been executed

X'04' Operand error (illegal address specified with MF=(E,...)

X'08' Invalid VPN (the specified page is not located in class 6 memory/memory pool, or the value
is not a multiple of 16 (n = 0, 1, ...)

X'0C' Address error (operand list/ADDR field/MAP)

Description of the macros MINF

U3291-J-Z125-16-76 633

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

TERM TERM
*
**** Definitions ****
*
MPINF DS 0F
MPINF1 DS F
MPINF2 DS F
MPINF3 DS F
MPINF4 DS F
PID DS F
BITTAB DS CL4
TEXT DC C'2ND PAGE OF MEMORY POOL'

END
=F'16'

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,minf), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,minf)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 358 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 82 MSEC
//end
% ASS6012 END OF ASSEMBH
/load-executable-program library=macexmp.lib,element-or-symbol=minf, -
/ test-options=*aid,prog-mode=*any
% BLS0523 ELEMENT 'MINF', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'MINF', VERSION ' ' OF '<date> <time>' LOADED
/%in reqmp <%d c' ',c'- label reqmp:',%1,%15>
/%in dth1 <%d c' ',c'- label dth1:',%1,%15>
/%in minf1 <%d c' ',c'- label minf1:',mpinf1, mpinf1 %x>
/%in dth2 <%d c' ',c'- label dth2:',mpinf1, mpinf1 %x,mpinf2, mpinf2 %x>
/%in term <%d c' ',c'- label term:',%@(bittab) -> %xl4;%d %4 -> %xl30>
/%r

MINF Description of the macros

634 U3291-J-Z125-16-76

- LABEL REQMP: —— (6)
*** TID: 005000D8 *** TSN: 2QSE ***
CURRENT PC: 01000040 CSECT: MINF **
**
%1 = 01100000
%15 = 04000000

- LABEL DTH1: ——— (7)
CURRENT PC: 0100006A CSECT: MINF **
%1 = 01100000
%15 = 00000000

- LABEL MINF1: —— (8)
SRC_REF: 100 SOURCE: MINF PROC: MINF ************************************
MPINF1 = 4353
CURRENT PC: 01000080 CSECT: MINF **
V'010000E0' = MPINF1 + #'00000000'
010000E0 (00000000) 00001101

- LABEL DTH2: ——— (9)
SRC_REF: 117 SOURCE: MINF PROC: MINF ************************************
MPINF1 = 4352
CURRENT PC: 0100009A CSECT: MINF **
V'010000E0' = MPINF1 + #'00000000'
010000E0 (00000000) 00001100
SRC_REF: 117 SOURCE: MINF PROC: MINF ************************************
MPINF2 = 256
CURRENT PC: 0100009A CSECT: MINF **
V'010000E4' = MPINF2 + #'00000000'
010000E4 (00000000) 00000100

- LABEL TERM: ——— (10)
CURRENT PC: 010000C2 CSECT: MINF **
V'010000F4' = MINF + #'000000F4'
010000F4 (000000F4) 07FF0000 .~..
V'01101000' = ABSOLUT + #'01101000'
01101000 (01101000) F2D5C440 D7C1C7C5 40D6C640 D4C5D4D6 2ND PAGE OF MEMO
01101010 (01101010) D9E840D7 D6D6D300 00000000 0000 RY POOL.......

(1) Create a memory pool above the 16-Mb boundary.
Size of the memory pool = 48 memory pages (rounded to 1 Mb).

(2) Reserve 5 memory pages beginning with the start address.

Description of the macros MINF

U3291-J-Z125-16-76 635

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

(3) REQMP supplies the start address of the memory pool in register R1. The field
MPINF1 is the input field for the macro MINF and as such should contain (any) virtual
page number (VPN) within the memory pool. Register R4 contains the address of
the first byte on the second memory pool page, while register R5 contains the
relevant VPN. This VPN is stored in the field MPINF1.

(4) First MINF call:
Output size and location of the memory pool.
Output is to the field MPINF: The VPN of the first page of the memory pool is in the
field MPINF1, and the number of pages of the memory pool is in the field MPINF2. The
fields MPINF3 and MPINF4 are not modified.

(5) Second MINF call:
A bit table of the first 16 pages of the memory pool is to be output (the preceding
MVC transfers the figure 16 into the second input field MPINF2).
The input field for MINF now contains the VPN of the first page (MPINF1) supplied
by the first MINF call and the number of pool pages whose utilization is to be output
(MPINF2). Output is to the field BITTAB.

(6) After execution of ENAMP, the start address and the return code are interrogated.
The memory pool starts at address X'01100000'.
RC = X'04000000' means: a new memory pool has been created.

(7) After execution of REQMP, the address of the reserved area and the return code
are interrogated. The reserved area starts at address X'01100000';
RC = X'00000000'.

(8) The input field for MINF contains X'00001101' = 4353 as the VPN of a memory pool
page.

(9) After the first MINF:
The VPN of the first page and the size of the memory pool are output:
VPN = 4352 (ïX'1100'); size = 256 pages (ïX'100'). The VPN of the first page is
retained as input for the second MINF call.

(10) After the second MINF:

– The bit table starts at address X'000000EC'; length = 2 bytes (ï 16 pages).
Contents: X'07FF'; bit pattern: 0000/0111/1111/1111 . The memory pages
reserved with REQMP are marked as in use; the remainder of the 16 pages is
marked as free.

– The text 2ND PAGE ... has been entered in the second page of the memory
pool.

MSG7X Description of the macros

636 U3291-J-Z125-16-76

MSG7X – Output message

General

Application area: Messages; see page 161
Macro type: Type S, MF format 3: C/D/L/M/E form; see page 29

Register contents may be specified only in the M form of the macro.

Macro description

The MSG7X macro outputs a system message to SYSOUT, SYSLST, the operator console,
a user program area or an S variable. The specified message code must contain 7 charac-
ters.
The MSG7X macro uses the new operand list layout (with standard headers; see page 43).

Every system message has a 7-character message code. The first 3 characters of the code
denote the message class; the remaining 4 characters are used for consecutive numbering
within a class. System messages can contain variable sections “(&nnn)” that can be
replaced by inserts.

Macro format and description of operands

MSG7X

ID=msgid / (r1) / (class,(r)) / (,(r)) / (class,(addr)) / (,addr)

[,LAN='language']

,DEST=SYSOUT / SYSLST / CONSOLE / (destination,...) / NONE

[,UCDEST='destcode' / destaddr / (r) / N]

[,INSERT=

(insertlength,
addr

(r)

’insert’

)

((insertlength,
addr

(r)

’insert’

),...)

((r1),(r2))

(((r1),(r2)),...)

number

NONE

]

Description of the macros MSG7X

U3291-J-Z125-16-76 637

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

ID=
Specifies the message code of the system message to be output.

msgid
Specifies a 7-character message code.

(class,addr)
Modifies the message code in the parameter list.

(class,(r))
This operand value may be specified only in conjunction with MF=M.
class message class
addr symbolic address (name) of a field containing the new message number
(r) register containing the new message number

(,addr)
Modifies the message number in the parameter list.

MSG7X (cont.)

,DMS=APPL / NOTAPPL / NA

,BUFFUSE=INTERNAL / EXTERNAL

,DEFTEXT=NONE / (textlength,addr) / (textlength,(r)) / ((r1),(r2))

,TIMER=UNLIMITED / (r) / wert

,TIMESTAMP=NO / YES

,DATESTAMP=NO / YES

,MF=D / C / L / E / M

[,PARAM=addr / (r)]

,PREFIX=X / p

,MACID=MSG / macid

[,REPLY=

(replylength, addr

(r)

)

((r1),(r2))

N

]

[,BUFFER=

(bufferlength, addr

(r)

)

((r1),(r2))

N

] ,MAP=NO / YES

MSG7X Description of the macros

638 U3291-J-Z125-16-76

(,(r))
This operand value may be specified only in conjunction with MF=M.
addr symbolic address (name) of a field containing the new message number
(r) register containing the new message number

INSERT=
Specifies up to 30 lengths and addresses of inserts. An address reference is created in the
message processing operand list for each entry.
If more inserts are specified than can be accommodated by the message, excess inserts
are ignored. An insert consisting solely of blanks is shortened to a single blank.
Trailing blanks in an insert are suppressed. The character X'01' must be entered at the end
of an insert to prevent the suppression of blanks. When the character X'01' is encountered
during message processing, all blanks that precede it are retained.
If insertlength=0 and addr=0 are specified, the system assumes the default value from the
message file for the insert. If no default value is specified in the message file the insert is
omitted.
If a message text contains more inserts than are specified in the macro call, the default
value is assumed for every excess insert. The substitute insert (&nn) is used if no default
value is present.
If MF=M is specified, an address reference is created for all inserts specified for INSERT.
For example, calling MF=M,INSERT=(((R1),(R2)),((R3),(R4))) changes inserts 0 and 1 in
the data area but not 2 or 3.
All inserts defined previously in the operand list are ignored. The number of inserts defined
for MF=M must be less than or equal to any maximum number predefined by MF=C or
MF=D.

(insertlength,...)
insertlength length of the insert
addr1 symbolic address (name) of the area with the insert
(r) register containing the insert address

(may be specified only if MF=M)
'insert' direct specification of the insert (length of string: max. 4 characters)

If insertlength=0, the insert must begin with a record length field (4 bytes) and is thus
always at least 4 bytes long.
Byte 0-1 length of the insert
Byte 2-3 reserved.

Inserts may be skipped by entering commas for omitted positions, e.g.
INSERT=(,(insertlength2,addr2),,(insertlength4,addr4)). Inserts omitted in this way are
replaced by their default values or by a blank character string (&nn).
The sum of the insertion lengths must be ≤ 4079 bytes. An insertion list must be
enclosed within additional paretheses.
If output is to console, the sum of all insertions must be ≤ 218 bytes.

Description of the macros MSG7X

U3291-J-Z125-16-76 639

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

((r1),(r2))
r1 register containing insert length
r2 register containing insert address.
This may only be specified with MF=M.
An insertion list must be enclosed within additional paretheses.

number
Number of INSERTs for which space is to be reserved in the data area for message
processing.

With MF=C/D, the number is 15 by default.
With MF=M, the number of inserts in the data area may be changed.

NONE
All inserts defined previously are ignored.
This operand value may be specified only in conjunction with MF=M.

LAN='language'
Specifies the language to be used for message output. This operand is ignored if
DEST=CONSOLE is specified.

'language'
1 letter to identify the language: D = German, E = English.
For additional options please consult system administration. The default value is
defined by the system parameter MSGLPRI; this value is also assumed in the event of
invalid specifications.

REPLY=
Defines a reply area. The area must be aligned on a halfword boundary and begin with a
record length field (4 bytes: bytes 1-2: length of the reply; bytes 3-4 reserved). Before the
macro is executed, bytes 1-2 must contain the length of the reply area (≤ 4095 bytes).
When the macro is executed, the current length of the reply is entered in bytes 1-2.

Lowercase letters are converted to uppercase when entered via the REPLY operand.
REPLY may be specified only in conjunction with DEST=SYSOUT/CONSOLE.

If “?” is entered as a reply and is reserved as a codeword in MIP, MIP displays the meaning
of the message in question and the action required, before the message is output again in
response.

(replylength,...)
replylength length of the reply area > 4 bytes
addr symbolic address (name) of the area
(r) register containing the address of the area

(may be specified only if MF=M)

MSG7X Description of the macros

640 U3291-J-Z125-16-76

((r1),(r2))
r1 register containing the length of the reply area
r2 register containing the address of the area
May only be specified if MF=M.

N
No reply area is generated in the CSECT/DSECT.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with MF=C/D.

DEST=
Designates destinations for the converted system message. Only DEST=SYSOUT /
CONSOLE may be specified in conjunction with REPLY.

SYSOUT
Output to SYSOUT. This is the default setting if another output location is not specified
with BUFFER. If an output location is specified with BUFFER and output to SYSOUT is
desired, DEST=SYSOUT must be specified explicitly.
If an S variable was declared and the variable stream was directed into it, and the
message is a guaranteed one, output is also to the S variable.

SYSLST
Output to SYSLST.

CONSOLE
Output to the operator console.

(destination,...)
Combination of the above-mentioned destinations; entry in parentheses, separated by
commas.

NONE
Deletes the destinations SYSOUT, SYSLST and CONSOLE from the operand list. This
operand value may be specified only in conjunction with MF=M. Note that the operand
list must always contain at least one destination, e.g. a special area designated for this
purpose (see the BUFFER operand).

BUFFER=
Specifies an area to which the converted system message is to be transferred. If output to
SYSOUT is also desired, DEST=SYSOUT must be explicitly specified.
BUFFER must be aligned on a halfword boundary. A record length field is entered in the
first 2 bytes (WROUT-Format):
Byte 0-1 length of the area
Byte 2-3 reserved
Byte 4 output control character
Byte 5-n message text

Description of the macros MSG7X

U3291-J-Z125-16-76 641

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

(bufferlength,...)
bufferlength = length of the area > 16 bytes
addr symbolic address (name) of the area
(r) register containing the address of the area (may be specified only if MF=M)
The sum of the area lengths must be ≤ 4095 bytes.

((r1),(r2))
r1 register containing the length of the message area.
r2 register containing the address of the area.
May only be specified if MF=M.

N
No area for the converted system message is generated in the CSECT/DSECT.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with MF=C/D.

MAP=
Specifies whether BUFFER is given another structure (mapping format).

NO
BUFFER is created in the WROUT format.

YES
BUFFER is created in the mapping format (see below).

UCDEST=
UCON destination (UCON=Universal Console); (see the “Introduction to System Adminis-
tration” [10]).

The destination of a message can be specified as follows:
– mnemonic device name for a particular console
– routing code for consoles and authorized user tasks which are allocated a particular

area of activity
– authorization name for an authorized user task.

i UCDEST is not executed unless DEST=CONSOLE was specified.
UCDEST has priority over the routing code attribute of the message in the message
file.

'destcode'
The following entries are permissible for 'destcode':
– '(mn)'

mn: 2-character mnemonic device name.
– '< x'

x: routing code; The < character must be specified.
– 'name'

name: name of the user task (4 characters).

MSG7X Description of the macros

642 U3291-J-Z125-16-76

destaddr
Symbolic address (name) of an area (4 bytes) with the entry for “destcode”. Left-justified
entries; alignment on a word boundary.

(r)
Register containing the address of the area (4 bytes). May be specified only if MF=M.

N
No field for “destcode” is to be generated in the CSECT/DSECT.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with MF=C/D.

DMS=
Specifies the message search mechanism.

APPL
The message is sought with the aid of DMS (message files and DLAM area).

NOTAPPL / NA
The message is sought only at system level in the DLAM area (without DMS). Reply if
the requested message is not found:
msgid,(DMS NOT IN MEMORY),<program pointer>,<modul>,<inserts>

BUFFUSE=
Specifies whether the message is to be stored in an S variable via a variable stream
(SYSMSG) and can be output by means of the HELP-MSG-INFORMATION MSG-ID=
*LAST command (in other words, without explicitly specifying the message number).
Specifying BUFFUSE is relevant only of the output does not go to SYSOUT
(DEST ≠ SYSOUT) and a transfer area was specified with the BUFFER operand.
If the message is (also) output to SYSOUT, and if it is a guaranteed message, it is always
output to the S variable (where one was declared and the variable stream was directed into
it). The variable stream includes only “guaranteed messages”. See the manuals
“SDF-P” [21] and “Utility Routines (MSGMAKER)” [27].

INTERNAL
Output is not directed to a variable stream. The message cannot be output by means
of the HELP-MSG-INFORMATION MSG-ID=*LAST command (in other words, without
explicitly specifying the message number.

EXTERNAL
If an S variable was declared and the variable stream directed to it (with the command
ASSIGN-STREAM or EXECUTE-COMMAND or with the CMD or OPSGEN macro), the
message is output to this S variable.
The message code, the text of the message and the default values of the inserts are
output. The message must be a guaranteed one, since otherwise it is not included in
the variable stream. If the message is the last one output by the task, it can be output
with the command HELP-MSG-INFORMATION MSG-ID=*LAST.

Description of the macros MSG7X

U3291-J-Z125-16-76 643

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

DEFTEXT=
Refers to a default message text. This default message text is output if the required
message is not defined or if the required message or MIP task is not currently available.
A corresponding return code is output. The default message text must be ≤ 4079 bytes.

NONE
No default message text specified.

(textlength,...)
textlength = length of area
addr symbolic address (name) of area
(r) register containing address of area (may be specified only if MF=M)

((r1),(r2))
r1 register containing length of default message text.
r2 register containing address of area.
May be specified only if MF=M.

TIMER=
Specifies the maximum waiting time for a reply (REPLY operand) after a message is sent
to SYSOUT.
If no reply is received within the time specified, the corresponding return code is output.

UNLIMITED
Unlimited waiting time.

(r)
r: register containing the waiting time. May be specified only if MF=M.

value
Waiting time, which can be between 10 and 3600 seconds.

TIMESTAMP=
Allows additional output of local system time.

NO
Local system time is not output.

YES
Local system time is output in ISO4 format in addition to the message. The output then
has the following format:
%ËËhh:mm:ss msgid text

where:
hh hour
mm minute
ss second
msgid message ID
text message text

MSG7X Description of the macros

644 U3291-J-Z125-16-76

Note
For representation of time stamps, see also CTIME macro (page 357).

If MIP cannot read a time due to an internal error, the following is output:
%ËËHH:MM:SS msgid text

DATESTAMP=
Allows additional output of date.

NO
Date is not output.

YES
The date is output in ISO4 format in addition to the message. The output then has the
following format:
%ËËyyyy-mm-dd msgid text

where:
yyyy year
mm month
dd day of the month
msgid message ID
text message text

Note
For representation of time stamps, see also CTIME macro (page 357).

If MIP cannot read a date due to an internal error, the following is output:
%ËËYYYY-MM-DD msgid text
If both date and time output is required, the date comes before the local system time.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.
A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form (see section “S-type macros” on page 29).

Description of the macros MSG7X

U3291-J-Z125-16-76 645

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Notes

– The total length of a message including the message code must be ≤ 4079 bytes. Any
characters in excess of this are automatically cut.

– If output is to the console, the maximum length of a message, including message key
is only 230 bytes.

– Trailing blanks are automatically suppressed.

– Message output to SYSOUT, SYSLST or to a BUFFER area always begins with the
character % (e.g. %ËËNMH1121 <text>).
If, however, the message is output to the console, it begins with a blank before the %
(e.g. Ë%ËËNMH1121 <text>).

Mapping format

The mapping format specifies the structure of the BUFFER area in the case of MAP=YES.
Various entries (mapping list) are prefixed to the structure defined under BUFFER.

Structure of the mapping format:

Bytes 0 - 1 length of the mapping list
Bytes 2 - 3 C'MP'
Bytes 4 - n entries
Bytes n+1 - p remainder of structure as under BUFFER (WROUT format).

The entries contain information on
– the inserts
– the message code
– the routing code
– the message weight
– as necessary, slack bytes for alignment of the WROUT buffer.

MSG7X Description of the macros

646 U3291-J-Z125-16-76

The entries are stored in the formats below:

Notes on the macro call

– If output is in mapping format, an entry with length =0 and address=0 stands for an
insert which does not exist. Such entries are output only if the inserts of a message are
not consecutively numbered.

– Inserts for which no current value is available, however, are described by an entry with
length=0 and the distance to the defined insert position. The default text of the insert or,
if no default text is defined, the standard insert (&xx) is found starting at this distance.

– If another MSG7X parameter list for an input is to be constructed from the mapping
output, the distance for non-specified inserts must be reset to 0 because all other
distance values in conjunction with length=0 are regarded as defining an insert which
begins with a 4-byte record length field.

Entry on Structure of the entry

(A separate entry
Insert Insert Displacement from ... is created for

length insert in WROUT format each entry.)

0H 2 4

Message X' 81' 7-character message code
code

0H 1 8

Message X' 20' Message
weight weight

0 1 1

Routing X' 50' Routing code
code (left-justified)

0 1 5

Slack X' 00' - - - X' 00' WROUT format
bytes

0 1 m H

Description of the macros MSG7X

U3291-J-Z125-16-76 647

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

The calling program is terminated when the following errors occur:
– The data area is not assigned to the caller.
– The data area is not aligned on a word boundary.
– The data area is protected against write access.

Standard
header:

A return code relating to the execution of the MSG7X
macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode;
Subcode2 is only used with an I/O error and then
contains the main return code of the WROUT or
WRTRD macro):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' MSG7X macro executed successfully

X'cc' X'04' X'0001' Abnormal termination of output (SYSOUT, SYSLST or CONSOLE).
In this case Subcode2 (X' cc') contains the Maincode of the WROUT or
WRTRD macro

X'08' X'0001' Operand error: invalid specification for message number, area address,
mnemonic device name, name of the authorized user task or area length

X'0C' X'0001' Invalid request for a reply, e.g. in batch mode or when nonspecifiable
destinations (SYSLST or several destinations) are designated in the DEST
operand

X'10' X'0001' No memory space available

X'14' X'0001' BREAK during execution of the WROUT macro

X'18' X'0001' Message text was truncated on transfer to the output area

X'20' X'0001' Message output was aborted

X'00' X'41' X'FFFF' MIP subsystem not loaded

X'02' X'00' Message not defined

X'03' X'00' MIP task not available

X'05' X'00' DMS subsystem not loaded

X'06' X'00' Message not available. Error in file

MSG7X Description of the macros

648 U3291-J-Z125-16-76

Example 1

This example shows various options for seeking and outputting messages.

MSG7X1 START
MSG7X1 AMODE ANY
MSG7X1 RMODE ANY

PRINT NOGEN
BALR 3,0
USING *,3

*
SYSFL 'SYSLST=LST.MSG7X'

MFE1 MSG7X MF=E,PARAM=MFL1 —————————————————————————————————————— (1)
MFE2 MSG7X MF=E,PARAM=MFL2 —————————————————————————————————————— (2)

WROUT TEXT,ERROR,PARMOD=31
MFE3 MSG7X MF=E,PARAM=MFL3 —————————————————————————————————————— (3)

WROUT TEXT,ERROR,PARMOD=31 ————————————————————————————————— (4)
SYSFL 'SYSLST=(PRIMARY)'

*
ERROR TERM
*
MFL1 MSG7X MF=L,ID=DMS0E27,DMS=NOTAPPL,LAN='D'
MFL2 MSG7X MF=L,ID=DMS0E27,DEST=(SYSLST,SYSOUT),LAN='D'
MFL3 MSG7X MF=L,ID=SCP0976,DEST=SYSLST,BUFFER=(75,TEXT)
*
TEXT DC Y(TEXTEND-TEXT)

DS 3X
DS 0CL75
DC C'message output via WROUT: '

TEXTEND EQU *
END

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,msg7x1), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,msg7x1))
% ASS6011 ASSEMBLY TIME: 508 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 82 MSEC
//end
% ASS6012 END OF ASSEMBH

Description of the macros MSG7X

U3291-J-Z125-16-76 649

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

/start-executable-program library=macexmp.lib,element-or-symbol=msg7x1
% BLS0523 ELEMENT 'MSG7X1', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'MSG7X1', VERSION ' ' OF '<date> <time>' LOADED
% DMS0E27 (DVS NICHT VERFUEGBAR) --PC=00000034 IN

P1-MODULE=********-- —— (5)
% DMS0E27 FEHLER BEIM SCHLIESSEN EINER DATEI. EIN- AUSGABE MIT

HARDWARE-FEHLER BEENDET —— (6)
message output via WROUT:
% SCP0976 LOGICAL VALIDATION PROBLEM DURING COMMAND PROCESSING ——————— (7)

Output on SYSLST:

% DMS0E27 FEHLER BEIM SCHLIESSEN EINER DATEI. EIN- AUSGABE MIT
HARDWARE-FEHLER BEENDET

% SCP0976 LOGICAL VALIDATION PROBLEM DURING COMMAND PROCESSING

(1) The message DMS0E27 should be output to SYSOUT. The message should only be
sought in the DLAM area (without DMS). It is not found in the DLAM area, so the
message is not output; A corresponding return code is output.

(2) The message DMS0E27 should be output to SYSOUT and to SYSLST. The restriction
under (1) does not apply.

(3) The message SCP0976 should be output to SYSLST and written to the specified
area TEXT.

(4) The macro WROUT writes the contents of the macro TEXT to SYSOUT.

(5) Output of the message from (1). The message is output in German because of the
LAN=’D’ operand.

(6) Output of the message from (2). The message is output in German because of the
LAN=’D’ operand.

(7) Output of WROUT.

MSG7X Description of the macros

650 U3291-J-Z125-16-76

Example 2

The following example shows message output being directed to an S variable. The
S variable must be declared before calling the program and the variable stream SYSMSG
must be assigned to it. Only the guaranteed messages are included in the SYSMSG
variable stream.

MSG7X2 START
MSG7X2 AMODE ANY
MSG7X2 RMODE ANY

PRINT NOGEN
BALR 3,0
USING *,3

*
MFE1 MSG7X MF=E,PARAM=MFL1
MFE2 MSG7X MF=E,PARAM=MFL2
MFE3 MSG7X MF=E,PARAM=MFL3
MFE4 MSG7X MF=E,PARAM=MFL4
*
ERROR TERM
*
**** Definitions ****
*
MFL1 MSG7X MF=L,ID=CMD0500,BUFFER=(250,BUF),MAP=YES, *

DEST=(SYSOUT,SYSLST) ————————————————————————————————— (1)
MFL2 MSG7X MF=L,ID=DMS0DF8,BUFFER=(250,BUF),MAP=YES,DEST=SYSOUT — (2)
MFL3 MSG7X MF=L,ID=SCP0976,BUFFER=(250,BUF),DEST=SYSLST ————————— (3)
MFL4 MSG7X MF=L,ID=DMS0574,BUFFER=(250,BUF),DEST=SYSLST, *

BUFFUSE=EXTERNAL ————————————————————————————————————— (4)
*
BUF DS 0CL250

DC Y(ENDBUF-BUF)
DS 3X
DS CL245

ENDBUF EQU *
END

Description of the macros MSG7X

U3291-J-Z125-16-76 651

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,msg7x2), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,msg7x2)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 405 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 80 MSEC
//end
% ASS6012 END OF ASSEMBH
/declare-var msg(type=structure),mult-elem=*list —————————————————————— (5)
/assign-stream sysmsg,to=*var(msg)
/start-executable-program library=macexmp.lib,element-or-symbol=msg7x2
% BLS0523 ELEMENT 'MSG7X2', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'MSG7X2', VERSION ' ' OF '<date> <time>' LOADED
% CMD0500 INVALID DESCRIPTION OF COMMAND OR STATEMENT IN CURRENT SYNTAX FILE
% DMS0DF8 EXPECTED VSN '(&01)' FOR FILE '(&02)', VSEQ '(&03)' NOT MOUNTED ON
DEVICE '(&00)'. VSN '(&04)' FOUND INSTEAD. REPLY (0=EXIT; 1=RETRY; 2=DISPLAY
LABEL; =ACCEPT)
/assign-stream sysmsg,to=*dummy ——————————————————————————————————————— (6)
/show-var msg
MSG(*LIST).MSG-TEXT = % BLS0523 ELEMENT 'MSG7X2', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
MSG(*LIST).MSG-ID = BLS0523
MSG(*LIST).I0 = MSG7X2
MSG(*LIST).I1 = @
MSG(*LIST).I2 = :2OSG:$QM212.MACEXMP.LIB
MSG(*LIST).MSG-TEXT = % BLS0524 LLM 'MSG7X2', VERSION ' ' OF

'<date> <time>' LOADED
MSG(*LIST).MSG-ID = BLS0524
MSG(*LIST).I0 = MSG7X2
MSG(*LIST).I1 =
MSG(*LIST).I2 = <date> <time>
MSG(*LIST).MSG-TEXT = % BLS0551 COPYRIGHT (C) . . .
MSG(*LIST).MSG-ID = BLS0551
MSG(*LIST).I0 = FUJITSU TECHNOLOGY SOLUTIONS
MSG(*LIST).I1 = 2012
MSG(*LIST).MSG-TEXT = % CMD0500 INVALID DESCRIPTION OF COMMAND OR STATEMENT

IN CURRENT SYNTAX FILE
MSG(*LIST).MSG-ID = CMD0500
MSG(*LIST).MSG-TEXT = % DMS0574 DMS ERROR CODE '(&00)' OCCURRED WHEN

MSG7X Description of the macros

652 U3291-J-Z125-16-76

DELETING SYSTEM FILE. COMMAND NOT PROCESSED
MSG(*LIST).MSG-ID = DMS0574
MSG(*LIST).I0 = (&00)

(1) The message with message code CMD0500 is output to SYSOUT and SYSLST and
to the BUF area, from where it is written to the S variable ABC via the variable stream
SYSMSG. The output area BUF is structured in the mapping format.

(2) The message with message code DMS0DF8 is output to SYSOUT and the BUF area
in mapping format. However, since it is not a guaranteed message, it is not included
in the variable stream SYSMSG, and so is not written to ABC.

(3) The message with message code CMD0800 is output to SYSLST and the BUF area.
BUFFUSE is set to INTERNAL as the default; it is not included in the variable
stream SYSMSG or the S variable ABC.

(4) The message with message code DMS0574 is output to SYSLST and the BUF area,
from where it is written to the S variable ABC via the variable stream SYSMSG.

(5) A composed “List”-type S variable called ABC is declared. Each guaranteed
message is stored in the structured S variable ABC as a list element. Elements are
added to the
S variable until the assignment to SYSMSG is terminated.

(6) The assignment of the variable stream SYSMSG to the S variables ABC is
canceled. The contents of the S variables ABC are displayed.

In addition to the messages written by the program in the S variable ABC, the
S variable also contains guaranteed messages which were output when loading the
MSG7X2 module. These were also output to the S variable ABC when loading the
MSG7X2 module after the redirection of the variable stream SYSMSG.

Description of the macros MSGRC

U3291-J-Z125-16-76 653

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

MSGRC – Output return codes

General

Application area: Messages; see page 161
Macro type: Definition macro; see page 28

Macro description

The MSGRC macro outputs the return codes and their explanations in (equate) list form for
the following macros described in this manual:

MSG7 MSGSINIT MSGSHOW MSGSMOD

The macros can be specified individually or in a list form. MSGRC does not necessarily
output the return codes in the same order.

Macro format and description of operands

P=
Prefix to all the symbolic names in the list.

I
All symbolic names begin with I.

p
A single letter that is to be used as a prefix.

FUNCT=
Specifies the macros whose return codes are to be listed.

ALL
All macros of the “messages” function group are listed.

macro
Name of the macro whose return codes are to be output.

(macro, ..., macro)
List of macro names whose return codes are to be output.

MSGRC

P=I / p

,FUNCT=ALL / macro / (macro, ...,macro)

MSGRC Description of the macros

654 U3291-J-Z125-16-76

List for the macros MSG7, MSGSHOW, MSGSINIT and MSGSMOD

MSGRC P=A,FUNCT=(MSGSMOD,MSG7,MSGSHOW,MSGSINIT)
1 #INTF INTCOMP=1,INTNAME=MIP-MSG7,REFTYPE=REQUEST
1 ******** ********
1 ******** MSG7 ********
1 ******** ********
1 *
1 AM7OK EQU X'00' MSG7 PROCESSED SUCCESSFULLY
1 AM7IOERR EQU X'04' I/O ERROR
1 AM7MBINC EQU X'08' PARAMETER LIST ERROR
1 AM7REPBA EQU X'0C' REPLY REQUIRED IN BATCH PROCESSING
1 AM7RQMER EQU X'10' NO MEMORY AVAILABLE TO PROCESS THE FUNCTION
1 AM7BRKWR EQU X'14' BREAK DURING THE WROUT MACRO
1 AM7TRUNC EQU X'18' MESSAGE-TEXT TRUNCATED
1 AM7MOINT EQU X'20' MESSAGE OUTPUT PROCESSING INTERRUPTED
1 AM7RCINC EQU X'24' INCORRECT ROUTING-CODE
1 AM7RPLST EQU X'2C' REPLY INCORRECT WHEN SYSLST REQUIRED
1 AM7RPMD EQU X'30' REPLY INCORRECT WHEN MANY OUTPUT
1 * DESTINATIONS GIVEN
1 SPACE 3
1 ******** ********
1 ******** MSGSINIT ********
1 ******** ********
1 *
1 ASIOK EQU X'00' MSGSINIT PROCESSED SUCCESSFULLY
1 ASIUNRES EQU X'04' FILE: NO FILE AVAILA&BLE.
1 * TRACE: REQUIRED STATUS ALREADY EXISTING
1 ASIPLERR EQU X'08' PARAMETER LIST ERROR
1 ASINTSOS EQU X'0C' USER NOT TSOS
1 ASINOTPR EQU X'10' SYSTEM UNABLE TO PROCESS THE MACRO
1 SPACE 3
1 ******** ********
1 ******** MSGSMOD ********
1 ******** ********
1 *
1 ASMOK EQU X'00' MSGSMOD PROCESSED SUCCESSFULLY
1 ASMERRDP EQU X'04' MSGSMOD ERROR DURING PROCESS
1 ASMPLERR EQU X'08' MSGSMOD PARAMETER LIST ERROR
1 ASMNTSOS EQU X'0C' MSGSMOD USER NOT TSOS
1 ASMRQMER EQU X'10' NO MEMORY AVAILABLE ($REQM ERROR)
1 ASMNOFIL EQU X'24' MSGSMOD NO MESSAGE FILE
1 ASMNOTPR EQU X'28' MSGSMOD UNABLE TO PROCESS
1 SPACE 3

Description of the macros MSGRC

U3291-J-Z125-16-76 655

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

1 ******** ********
1 ******** MSGSHOW ********
1 ******** ********
1 *
1 ASHOK EQU X'00' MSGSHOW PROCESSED SUCCESSFULLY
1 ASHERRDP EQU X'04' ERROR DURING PROCESS
1 ASHPLERR EQU X'08' MSGSHOW PARAMETER LIST ERROR
1 ASHNTSOS EQU X'0C' BUFFER TOO SHORT
1 ASHRQMER EQU X'10' NO MEMORY AVAILABLE ($REQM ERROR)
1 ASHUNBLE EQU X'30' UNABLE TO PROCESS (INTERNAL ERROR)

MSGSHOW Description of the macros

656 U3291-J-Z125-16-76

MSGSHOW – Output information about system- or
task-specific message files

General

Application area: Messages; see page 161
Macro type: Type S, MF format 1: standard/L/E/C/D form; see page 29

Message files can be assigned a scope (system-wide or task-specific). Nonprivileged users
can use their own message files for message output restricted to their own tasks. In
addition, it is possible to specify the language which is to be given preference when
selecting the message texts for output. Message files and the language specification are
included in the message system either by means of the MSGSMOD macro or the MODIFY-
MSG-FILE-ASSIGNMENT command.

The SHOW-MSG-FILE-ASSIGNMENT command corresponds to the MSGSHOW macro.
For further information on the commands, see the “Commands” manual [19].

Macro description

The MSGSHOW macro provides information about the following:

– number of message files (system-wide, task-specific)
– language used for message output (system-wide, task-specific)
– names of message files; each name is preceded by an indicator of the access method

(DLAM, ISAM). System message files are listed first, followed by the task-specific
message files.

An example of the layout of the output is given following the description of operands.

Macro format and description of operands

MSGSHOW

,SCOPE=BOTH / SYSTEM / TASK

,MF=S / C / (C,pre) / (E,...) / (D,pre) / D / L

BUFFER= (length, addr

(r)

)

Description of the macros MSGSHOW

U3291-J-Z125-16-76 657

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

BUFFER=
Specifies the length and address of an area for the output data. The area must be aligned
on a word boundary. The MSGDSHL macro serves to generate a description (DSECT/data
list) of this output area.

length
Length of the area in bytes; “length” ≥ 16. If the area is too small, only the number of
message files is entered; see “Return information and error flags”, below, RC = X'0C'.

addr
Symbolic address (name) of the area.

(r)
Register containing the address value “addr”.

SCOPE=
Specifies whether system-wide or task-specific message files are to be listed.

BOTH
Both system and task-specific message files are listed.

SYSTEM
Only the system message files are listed.

TASK
Only the task-specific message files are listed.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.
In the C form or D form, a prefix (pre = 1..4 letters) can be specified, as shown in the macro
format.

Default values: pre = C for C form
pre = D for D form

If less than four letters are specified for a prefix, the string SHOx results (where x ï first
letter).

MSGSHOW Description of the macros

658 U3291-J-Z125-16-76

Layout of the output

The MSGDSHL macro serves to generate either a data list of the output area or a dummy
section (DSECT) of the output area.

C/D
A data list/DSECT is generated.

p
Prefix for the symbolic names of the DSECT/data list. No more than the first 3 characters
of the string specified here will actually be used as a prefix.
Default value: p=SHL.

Register contents

Register R1 contains the operand list address.
Register R15 contains the return code.

Return information and error flags

MSGDSHL

[C/D][,p]

R15:
A return code relating to the execution of the
MSGSHOW macro is transferred in the rightmost
byte of register R15.

0 0 0 0 0 0 a a

X'aa' Meaning

X'00' Normal execution

X'04' Error during macro execution

X'08' Operand error

X'0C' Output area too small

X'30' Macro cannot be executed

X'41' MIP subsystem is not loaded

Description of the macros MSGSHOW

U3291-J-Z125-16-76 659

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

DSECT of the output area

MSGDSHL D
1 #INTF INTCOMP=1,INTNAME=MIP-SHOW,REFTYPE=REQUEST
1 SHLD MFPRE MF=D,PREFIX=*NONE,DNAME=SHLD,MACID=SHL,DMACID=SHL, C
1 ALIGN=D
2 SHLD DSECT ,
2 *,##### PREFIX=, MACID=SHL #####
1 SHLDBUFL DC Y(SHLDMLEN) --LENGTH OF THE BUFFER
1 SHLDSYSN DC X'00' --SYSTEM FILE NUMBER
1 SHLDTSKN DC X'00' --TASK FILE NUMBER
1 SHLDSYSL DC CL3' ' --SYSTEM LANGUAGE
1 SHLDTSKL DC CL1' ' --TASK LANGUAGE
1 SHLDSEAR DC X'00' --SEARCH VALUE
1 SHLDSALL EQU X'80' --SEARCH = *ALL
1 SHLDSTSK EQU X'20' --SEARCH = *TASK
1 SHLDRES DS CL7 --RESERVED
1 SHLDFIXD EQU *-SHLD --FIXED-PART LENGTH
1 SHLDFLST DS 510CL55 --FILE NAMES LIST
1 ORG SHLDFLST
1 SHLDFNAM DS CL55 --1ST FILE
1 ORG SHLDFNAM
1 SHLDINDT DS CL1 --FILE TYPE
1 SHLDTIDL EQU X'80' --DLAM + ISAM
1 SHLDTISA EQU X'40' --ISAM
1 SHLDTDLA EQU X'20' --DLAM
1 SHLDTLDL EQU B'00010000' --LOCAL DLAM + ...
1 SHLDNAME DS CL54 --FILE NAME
1 ORG
1 SHLDMLEN EQU *-SHLD --MAX LENGTH OF THE BUFFER

MSGSINIT Description of the macros

660 U3291-J-Z125-16-76

MSGSINIT – Lock message file or add message file to
message system

General

Application area: Messages (system administration macro); see page 161
Macro type: Type S, MF format 1: 31-bit interface: standard/L/E/C/D form;

see page 29

System messages are assigned to the message files that contain them by means of the
global class list. The class list contains all message classes (the first 3 characters of the
message code) and the assigned names of the message files. The class list is created at
system start time, and can be modified by system administration during normal operation
using the MSGSINIT / MSGSMOD macros, or the MODIFY-MSG-FILE-ASSIGNMENT
command.
A message file consists of a message work file and the corresponding HELP file (reduced
message primary file).

Macro description

The MSGSINIT macro enables system administration to add a further message file to the
message system or to prohibit access to a message file. The message class and name of
the new message file are entered at the beginning of the class list. All references to a
message file which is to be locked are deleted from the class list.
Modification of this list applies only to the current system run; the generation values are not
changed. MSGSINIT enables system administration to activate or deactivate the MIP trace
function.

Macro format and description of operands

FILE=
This operand refers to the message file that is to be added or locked. The link name
SMSGFILE must be assigned to the appropriate message work file before the macro call.

MSGSINIT

[FILE=ADD / DEL / STD]

[,TRACE=ON / OFF]

,MF=S / C / (C,pre) / (E,...) / (D,pre) / D / L

Description of the macros MSGSINIT

U3291-J-Z125-16-76 661

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

ADD
Message classes and the name of the message file are added at the beginning of the
global class list.

DEL
All references to the message file to be locked are deleted from the class list.

STD
The STARTUP state is created for the class list.

TRACE=
The operand switches the MIP trace function on or off.

ON
The trace function is activated.

OFF
The trace function is deactivated.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.
A prefix (pre = 1 letter) can be specified in the C form or D form, as shown in the macro
format. This prefix is inserted into all symbolic names of the CSECT/DSECT as the 4th
character (after “INI”).

Default values: pre = C for C form
pre = D for D form

Return information and error flags

R15:
A return code relating to the execution of the
MSGSINIT macro is transferred in the rightmost byte
of register R15.

b b a a

Ret.Code Meaning

X'00' Normal execution

X'04' Error in the FILE operand: message file is not available or link name is not assigned

X'08' Operand error

X'0C' Error during access authorization check: the caller is not system administration (does
not have the TSOS ID)

X'10' Resource limit: macro cannot be executed

X'41' MIP subsystem is not loaded

MSGSMOD Description of the macros

662 U3291-J-Z125-16-76

MSGSMOD – Lock message files or add message files

General

Application area: Messages; see page 161
Macro type: Type S, MF format 1: 31-bit interface:

standard/L/E/C/D form; see page 29

System messages are assigned to the message files that contain them by means of the
global class list. The class list contains all message classes (the first 3 characters of the
message code) and the assigned names of the message files. The class list is created at
system start time and can be modified by system administration during normal operation
using the macros MSGSINIT and MSGSMOD, or the MODIFY-MSG-FILE-ASSIGNMENT
command.
Nonprivileged users can use their own message files for message output, restricted to their
own tasks. The names of the system-wide and/or task-specific message files can be
requested by means of the MSGSHOW macro or the SHOW-MSG-FILE-ASSIGNMENT
command. The default value for the language of the message output is defined in the user
catalog, see the SHOW-USER-ATTRIBUTES command, DFAULT-MSG-LANGUAGE
output field; if no default value is specified there, the value set in the startup parameter
service is used. For further information on the commands, see the “Commands” manual
[19].

Macro description

The MSGSMOD macro enables system administration to add further message files to the
message system or to prohibit access to message files. The message classes and the
names of the new message files are entered at the beginning of the class list (range
assignment table). All references to message files which are to be locked are deleted from
the class list. Modifications to this list are applicable only during the current system run - the
generation values are not changed.
Nonprivileged users can add their own message files to the message system and define
the language to be used for message output. These message files can then be used for the
current task; they are accessed before the system message files when searching for
messages.

One macro call can be used to add up to 8 message files to the message system (using the
IMPORT operand), and to lock a maximum of 8 message files (using the EXPORT
operand). If both EXPORT and IMPORT are included in the same call, the same form of
parameter must be used for transmission of the file names in each operand (either register
format (r), or addresses (addr), or file names (file)).

Description of the macros MSGSMOD

U3291-J-Z125-16-76 663

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Macro format and description of operands

MSGSMOD

[,SCOPE=TASK / SYSTEM]

,SEARCH=*UNCHANGED / *ALL / *STD / *TASK 1

,LAN=*UNCHANGED / *STD / 'language'

,MF=S / C / (C,pre) / (E,...) / (D,pre) / D / L

1 The SEARCH operand is no longer evaluated. It can still be specified for reasons of compatibility.

[EXPORT=

(r)

(r),(r), ... ,(r)

(REG,n)

adr

(addr,addr, ... ,addr)

(ADR,n)

'file'

('file', ... ,'file')

(FILE,n)

]

[,IMPORT=

(r)

(r),(r), ... ,(r)

(REG,n)

addr

(addr,addr, ... ,addr)

(ADR,n)

'file'

('file', ... ,'file')

(FILE,n)

]

MSGSMOD Description of the macros

664 U3291-J-Z125-16-76

EXPORT=
IMPORT=
Specifies the message file(s) to be locked (EXPORT) or to be added to the message system
(IMPORT).

(r)
Register containing the address value of a field which contains the name of a message
file.

((r),..(r))
Specifies a list of up to 8 registers. Each register contains the address value of a field
which contains the name of a message file.

(REG,n)
The registers to be used will be specified in the operand list. This operand can only be
used if MF=L/D/C is specified.
n = number of addresses; n ≤ 8. Default value: n=1.

addr
Symbolic address of the field which contains the name of a message file.

(addr,...)
Specifies a list of up to 8 symbolic addresses. These addresses identify fields
containing the names of the message files.

(ADR,n)
The addresses will be specified in the operand list. This operand can only be used if
MF=L/D/C is specified.
n = number of addresses; n ≤ 8. Default value: n=1.

'file'
Name of a message file.

(file,...)
Specifies a list of up to 8 (message) file names.

(FILE,n)
The names of the message files will be specified in the operand list. This operand can
only be used if MF=L/D/C is specified.
n = number of message files; n ≤ 8. Default value: n=1.

Description of the macros MSGSMOD

U3291-J-Z125-16-76 665

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

SCOPE=
Defines the scope of the message files specified with the IMPORT/EXPORT operands. The
message files may be accessible to the entire system (i.e. all tasks in the system) or only
to the task executing the calling program.

TASK
Only the task executing the program which issued the MSGSMOD macro can access
the message files specified with IMPORT/EXPORT. The assignment is canceled
automatically at the end of the task. EXPORT can be specified only for message file(s)
previously assigned to the task by means of IMPORT.
TASK is the default value for nonprivileged users.

SYSTEM
All tasks in the system can access the message files specified with IMPORT/EXPORT.
The assignment is valid for the current system run only. SYSTEM can be specified only
under the system administration user ID.
SYSTEM is the default value for the system administration.

LAN=
Serves to define a language to be used for message output. This definition applies to the
current task run only.

*UNCHANGED
The language defined for the task run is not changed.

*STD
The language specified in the user catalog or with the system parameter MSGLPRI.

'language'
1 letter to identify the language, where D = German, E = English.
For symbols for other languages please consult system administration.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.
The C form or D form can only be specified in conjunction with
IMPORT/EXPORT=REG/ADR/FILE. A prefix (pre = 1..4 letters) can be specified, as shown
in the macro format.

Default values: pre = MODC for C form
pre = MODD for D form

If less than four letters are specified for a prefix, the string MODx results (where x ï first
letter).

MSGSMOD Description of the macros

666 U3291-J-Z125-16-76

Return information and error flags

R15:
A return code relating to the execution of the
MSGSMOD macro is transferred in register R15. The
values are hexadecimal constants.
bbbb must be read bit by bit.
Bit 2n-1 = 1: the n-th file (in the specified order,
starting with EXPORT=...) could not be read without
errors.

b b b b a a

X'bbbb' X'aa' Meaning

X'xxxx' X'00' Normal execution

X'xxxx' X'04' Error during execution of the macro

X'08' Operand error

X'0C' Access authorization: user is not TSOS (system administration)

X'10' Resource limitation (REQM error)

X'xxxx' X'30' The macro cannot be executed

X'41' MIP subsystem is not loaded

Description of the macros NKDINF

U3291-J-Z125-16-76 667

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

NKDINF – Output data on (peripheral) configuration

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 2: standard/E/L/C/D/M form; see page 29

NDM (Nucleus Device Management) supplies information to the user, operator, and system
administration on the allocation and availability status of the configuration and mounted
data volumes. The configuration comprises the following: CPUs, channels, controllers, and
devices.

Devices (disk devices, tape devices, printers, ...) are assigned to device types (T-C), device
families (F-C), volume types (V-T) and device classes, see the “System Installation” [10]
manual. A particular device can be addressed via its mnemonic device name (MN).

The NKGTYPE macro provides information about the names, device type codes, device
characteristics, path addresses and path attributes for a particular device type or volume
type, or about names and device type codes of the device types belonging to a device
family or device class.

Macro description

The NKDINF macro enables access to data provided by the information services (NKD) of
NDM. The data provides information on the following:

– the allocation level of a task
– the allocation and availability status of devices, device types device families, disks or

tapes
– the structure of the configuration
– the device queue.

The NKDINF macro transfers the requested information in appropriately structured output
records. The macro provides the user with the layouts of these output records as DSECTs
to facilitate interpretation of the output.

The output records contain information on the allocation and availability status of the
specified devices, hardware units or resources. The records are entered in an area of class
6 memory, which the macro has previously requested.

The output control record is also prefixed to the output records requested by the user in this
output area; the output control record contains general information about macro execution
and the structure of the output area. The start address of the area is passed in the NKDIOPTR
field to the operand list.

NKDINF Description of the macros

668 U3291-J-Z125-16-76

The caller is responsible for returning the memory area (RELM). The length specifications
should be taken from the output control record. The following should be noted when
returning the memory area:

– the start address of the output buffer is aligned on a page boundary;
– the NKDIOLEN field in the output control record contains the size of the output area. The

size is specified in main memory pages (4K) for nonprivileged callers.

The user can generate the layout of any output record offered by NKDINF as a DSECT
using a macro call with MF=D and the RECORD operand. The DSECT permits symbolic
addressing of the individual fields of an output record.

The user must change the evaluation of his CONFIG record when compiling existing
programs (from a version < BS2000/OSD-BC V3.0) with BS2000/OSD-BC ≥ V3.0. The
layout has changed to one which is incompatible with BS2000/OSD-BC V2.0, since the
number of inner connections of the CONFIG been increased from 4 to 8.
In versions < BS2000/OSD-BC V3.0 compiled programs receive the output in the same
format as before, and so are still able to run.

The following restrictions apply to nonprivileged users:

– task records are output only for tasks under the user's own ID,
– the caller is given no information on device queues (DVQ operand), allocation and

reservation of specified device types (TYPTASK operand), disks for which explicit
utilization specifications were made with the SET-DISK-PARAMETER command (DISC
operand) and disks for which the DRV product is in use (DRV operand).

– Information on allocations by other users is masked out.
– The caller receives the output of the SUMMARY information only in the LOC record.

Description of the macros NKDINF

U3291-J-Z125-16-76 669

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Macro format and description of operands

NKDINF

,EXTMN=NO / YES

CONFIG=

NO

ALL

CHN

CPU

CTL

DVC

IOSIDE

SE

SIDE

(

ctl-mn

chpid

chnrange

icuu

mn

ioside#

cpu#

se#

side#

dev#

, addr

(r)

[, S

L

])

,DISC=

NO

MONITORED

SCHEDULED

(mn

vsn

, addr

(r)

[, S

L[,TASK]

])

,TAPE=

NO

ALL / (ALL,CAR)

(mn

vsn

, addr

(r)

)

(mn,addr,CAR)

,TASK=

NO

OWN

(tsn

tid

, addr

(r)

)

NKDINF Description of the macros

670 U3291-J-Z125-16-76

NKDINF (cont.)

,GLOBAL=NO / YES

,DVQ=NO / YES

,DEPOT=

NO

ALL

(mn

location

, addr

(r)

)

,DEVICE=

NO

ALL

(
mn

tt

fc

,
addr

(r)

)

,UNMONIT=

NO

ALL

(vsn, addr

(r)

)

,TYPTASK=

NO

ALL

(fc

tt

, addr

(r)

)

,SUMMARY=

NO

ALL

(fc

tt

, addr

(r)

)

,DRV=

NO

ALL

ALL-DRV

(vsn, addr

(r)

)

Description of the macros NKDINF

U3291-J-Z125-16-76 671

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

i The operands CONFIG=IOSIDE/SE/SIDE/(ioside#,...)/(se#,...)/(side#,...)
return no information, since the associated hardware is no longer supported. The
operand values can still be specified, for compatibilty.

The operands are described in alphabetical order below.

CONFIG=
One CONFIG output record is written for each specified unit of the configuration.

NO
This function is not desired.

ALL
Information relating to all generated hardware units is requested. A very large output
area can occur with large configurations in the case of CONFIG=ALL.

CHN
Information relating to all channels is requested.

CPU
Information relating to all CPUs is requested.

CTL
Information relating to all multidevice controllers is requested.

NKDINF (cont.)

[,RECORD=ALL / CONFIG / DEVICE / DEPOT / DISC / DRV / DVQ / GLOBAL / HEADER /

LOC / SUMMARY / TAPE / TASK / TYPTASK / UNMONIT]

,HWSTATE=NO / YES

,MF=S / E / L / C / D / M

[,PARAM=addr / (r)]

,PREFIX=N / p

,MACID=KDI / macid

,LOC=

NO

ALL

(

location

tt

fc

vt

,
adr

(r)

)

NKDINF Description of the macros

672 U3291-J-Z125-16-76

DVC
Information relating to all devices is requested.

(ctl-mn,...)
The user transfers in a list (see page 673) the mnemonic names of the device
controllers about which information is required.

(chpid,...)
The user transfers in a list (see page 673) the CHANNEL_PATH_ID of the channels
about which information is required.

(chnrange,...)
The user transfers in a list (see page 673) the channel range about which information
is required.

(icuu,...)
The user transfers in a list (see page 673) the device addresses of the hardware units
about which information is required.
A device address designates the path on which a device can be addressed. The device
address is 2 bytes long and comprises the following components:

Byte 1: 1st half-byte: number of the input/output processor
2nd half-byte: channel number

Byte 2: port number of the multidevice controller and port number of the device, or
only the port number of the device (if it is connected directly to the channel).

(mn,...)
The user transfers in a list (see below) the mnemonic device names of the hardware
units on which information is required.

(cpu#,...)
The user transfers in a list (see below) the numbers of the CPUs on which information
is required.

(dev#,...)
The user transfers in a list (see below) the device numbers of the hardware units on
which information is required.

addr
Symbolic address (name) of a field. The field contains a list of mnemonic device names,
device addresses or device numbers. It must be aligned on a word boundary.

(r)
Register containing the address value “addr”. A register may be specified only in
conjunction with MF=M.

Description of the macros NKDINF

U3291-J-Z125-16-76 673

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Format of the list for transferring mnemonic device names, device addresses or device
numbers:
– The first word contains the number of entries in the list, right-justified in hexadecimal

form.
– This is followed by the entries: each entry is 4 bytes long and contains (left-justified)

the mnemonic device name, device address or device number. Bytes not required
should be overwritten with X'00'.

S
Information is output in the short format (standard format).

L
Information is output in the long format and contains additional path descriptions.

DEPOT=
Provides information on the assignment of physical tape devices (mnemonics) to depots
(locations).

NO
This function is not desired.

ALL
Information is output on all known locations.

(mn,...)
The user transfers in a list (see below) the mnemonic names of the tape devices on
which information is required.

(location,...)
The user transfers in a list (see below) the locations on which information is required.

addr
Symbolic address of a field. The field contains a list of mnemonics or locations and must
be aligned on a word boundary.

(r)
Register containing the address value “addr”. A register may be specified only in
conjunction with MF=M.

Format of the list for transferring the (tape) mnemonics or locations:
– The first word of the list contains the number of entries in the list, right-justified in

hexadecimal form.
– This is followed by the entries: For mnemonics, each entry is 4 bytes long. For

locations, each entry is 8 bytes long. Each entry contains a mnemonic or location,
left-justified.

NKDINF Description of the macros

674 U3291-J-Z125-16-76

DEVICE=
A DEVICE output record is output for each specified device.
See the note at RECORD=DEVICE, page 679.

NO
This function is not desired.

ALL
Information is requested on all devices.

(mn,...)
The user transfers in a list (see below) the mnemonic names of the devices about which
information is required.

(tt,...)
The user transfers in a list (see below) the codes for the types of devices on which
information is required.

(fc,...)
The user transfers in a list (see below) the codes for the families of devices about which
information is required.

addr
Symbolic address (name) of a field. The field contains a list of mnemonic device names,
codes for device families or device type codes. It must be aligned on a word boundary.

(r)
Register containing the address value “addr”. A register may be specified only in
conjunction with MF=M.

Format of the list for transferring family codes, device type codes or mnemonic device
names:
– The first word contains the number of entries in the list, right-justified in hexadecimal

form.
– This is followed by the entries: when family device type codes are specified each

entry is 2 bytes long, when mnemonic device names are specified the length of the
entry depends on the value of the EXTMN operand: with EXTMN=NO each entry is
2 bytes long, with EXTMN=YES each entry is 4 bytes long.

– The lists may contain a maximum 32 K of entries.

Example 1: 2 device types with device type codes X'A5' (= D3435) and
X'8F' (= D3475)

X'00' X'00' X'00' X'02' X'A5' X'00' X'8F' X'00'

addr

Description of the macros NKDINF

U3291-J-Z125-16-76 675

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Example 2: 2 device families with family codes X'A0' (= disk devices) and
X'C0' (= MTC)

DISC=
Requests a DISC output record for each specified disk (disk device).

NO
This function is not desired.

MONITORED
Information is requested relating to all disks which are available online and monitored
by NDM.

SCHEDULED
Information is requested relating to all disks for which explicit utilization specifications
were made with the SET-DISK-PARAMETER command.
This value may be specified only under the system administration ID (TSOS).

(mn,...)
The user transfers in a list (see below) the mnemonic names of the disks about which
information is required.

(vsn,...)
The user transfers in a list (see below) the VSNs (volume serial numbers) of the disks
about which information is required.

addr
Symbolic address (name) of a field. The field contains a list of VSNs or mnemonic
device names. It must be aligned on a word boundary.

(r)
Register containing the address value “addr”. A register may be specified only in
conjunction with MF=M.

Format of the list for transferring mnemonic device names or VSNs:
– The first word contains the number of entries in the list, right-justified in hexadecimal

form.
– This is followed by the entries: each entry is 8 bytes long and contains (left-justified)

the VSN or the mnemonic device name. Bytes not required should be overwritten
with X'00'.

S
Information is output in the short format (standard format).

X'00' X'00' X'00' X'02' X'A0' X'00' X'C0' X'00'

addr

NKDINF Description of the macros

676 U3291-J-Z125-16-76

L
Information is output in the long format and contains additional specifications about the
SVL states and disk parameters.
This value may be specified only under the system administration ID (TSOS).

TASK
Output of a list of TSNs of the tasks that are currently working with the disk. The list
consists of 4-byte entries and is output only for private disks in USE=DMS mode.
TASK may be specified only in conjunction with the long format (L).
This value may be specified only under the system administration ID (TSOS).

DRV=
A DRV output record is requested for each disk specified for which the DRV product (Dual
Recording by Volume; see the “DRV” manual [25]) is in use.

NO
This function is not desired.

ALL
A DRV output record is requested for each disk known to the DRV component.
This value may be specified only under the system administration ID (TSOS).

ALL-DRV
A DRV output record is requested for all disks for which the DRV operating mode is set.
This value may be specified only under the system administration ID (TSOS).

(vsn,...)
The user transfers a list (see below) of the VSNs (volume serial numbers) of the disks
about which information is required.
This value may be specified only under the system administration ID (TSOS).

addr
Symbolic address (name) of a field. The field contains a list of VSNs. It must be aligned
on a word boundary.

(r)
Register containing the address value “addr”. A register may be specified only in
conjunction with MF=M.

Format of the list for transferring the VSNs:
– The first word contains the number of entries in the list, right-justified in hexadecimal

form.
– This is followed by the entries: each entry is 8 bytes long and contains (left-justified)

the VSN. Bytes not required should be overwritten with X'00'.

Description of the macros NKDINF

U3291-J-Z125-16-76 677

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

DVQ=
Specifies whether information on the device queue (secure queue) is to be output.

NO
This function is not desired.

YES
DVQ output records are written.
This value may be specified only under the system administration ID (TSOS).

EXTMN=
Specifies whether the caller transfers mnemonic device names in the old format (2 bytes
long) or in the new format (4 bytes long) in the operand list, and/or expects mnemonic
device names in the old or new format in the output area of the macro.
The macro provides fields in the output area for the 2-byte or 4-byte format to accept the
mnemonic names. An indicator specifies for each output record whether the 2-byte or
4-byte output field has been filled.

NO
The user transfers only 2-byte mnemonic device names in the operand list and also only
interprets 2-byte names.
If information is output for a device whose mnemonic name is 4 bytes long, the 2-byte
field in the output area is deleted, the indicator for output in 4-byte format is set and the
incompleteness of the information is indicated in the output prefix (OCR) and in the
standard header through return codes.

YES
The user transfers and expects mnemonic device names always in 4-byte format.
If shorter mnemonic device names are specified, they are to be entered left-justified in
the fields provided in the operand list and padded with blanks on the right.

GLOBAL=
Specifies whether the setting of all global NDMS control parameters is to be output.

NO
This function is not desired.

YES
An output record with the global NDM control parameters is written.

HWSTATE=
Outputs information about the hardware status (ON/OFF) of the unit.

i Users of the CONFIG and CONFIG-L records who do not evaluate the fields
SIDE_/GP_ etc. HARDWARE_STATE (in NKDCUTYP of the CONFIG record) should call
NKDINF with the HWSTATE=NO operand in order to speed up processing.

NO
This function is not desired.

NKDINF Description of the macros

678 U3291-J-Z125-16-76

YES
The hardware status of the unit is determined (only significant for special applications).

LOC=
Outputs the information scope of SUMMARY and TYPTASK, sorted according to location.

NO
This function is not desired.

ALL
An output record is created for each generated device type.

(location,...)
An output record is created for the specified locations for each generated device type.
For the format of the location list, see DEPOT operand.

(tt,...)
The user transfers in a list (see below) the codes of the device types on which
information is required.

(fc,...)
The user transfers in a list (see below) the codes of the device families on which
information is required.

(vt,...)
The user transfers in a list (see below) the codes of the volume types on which
information is required.

addr
Symbolic address of a field. The field contains a list of device type codes or family codes
and must be aligned on a word boundary.

(r)
Register containing the address value “addr”. A register may be specified only in
conjunction with MF=M.
Format of the list for transferring the device type codes or family codes:
– The first word of the list contains the number of entries in the list, right-justified in

hexadecimal form.
– This is followed by the entries: each entry is 2 bytes long and contains (left-justified)

the device type code or family code.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.
A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form (see section “S-type macros” on page 29).

Description of the macros NKDINF

U3291-J-Z125-16-76 679

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

RECORD
May only be specified in conjunction with MF=C or MF=D and specifies for which output
record a CSECT or DSECT is generated.

ALL
Generates CSECTs/DSECTs for all the output records (HEADER through DRV) offered
by the macro.

CONFIG
Generate a CSECT/DSECT for the CONFIG output record (CONFIG operand).

DEPOT
Generates a CSECT/DSECT for the DEPOT output record (DEPOT operand).

DEVICE
Generates a CSECT/DSECT for the DEVICE output record (DEVICE operand).
Note
Given the functional extension “Dynamic I/O Configuration change”, the DEVICE record
may now also contain records for those dummy devices which are present as
placeholders in the BS2000 device table and which are subsequently replaced by real
devices. The EXTENDED DEVICE MNEMONIC field in the records for these devices
contains the mnemonic “DUMMY” and the DEVICE RECONFIGURATION STATE field
contains the value X'0F' (INVALID).

DISC
Generates a CSECT/DSECT for the DISC output record (DISC operand).

DRV
Generates a CSECT/DSECT for the DRV output record (DRV operand).

DVQ
Generates a CSECT/DSECT for the DVQ output record (DVQ operand).

GLOBAL
Generates a CSECT/DSECT for the GLOBAL output record (GLOBAL operand).

HEADER
Generates a CSECT/DSECT for the output control record.
The output control record contains:
– pointers to the various output records
– counters
– length specifications (length of the output area, length of the individual output

records) and
– return codes for the various output records.
The layout is reproduced at the end of the description.

LOC
Generates a CSECT/DSECT for the LOC output record (LOC operand).

NKDINF Description of the macros

680 U3291-J-Z125-16-76

SUMMARY
Generates a CSECT/DSECT for the SUMMARY output record (SUMMARY operand).

TAPE
Generates a CSECT/DSECT for the TAPE output record (TAPE operand).

TASK
Generates a CSECT/DSECT for the TASK output record (TASK operand).

TYPTASK
Generates a CSECT/DSECT for the TYPTASK output record (TYPTASK operand).

UNMONIT
Generates a CSECT/DSECT for the UNMONIT output record (UNMONIT operand).

SUMMARY=
A SUMMARY output record is requested for each specified device family (device type). The
record contains summary information on the device family or the device type. For each
device family, the set of SUMMARY records for its device types is supplied.

NO
This function is not desired.

ALL
A SUMMARY output record is requested for each device type defined in the system.

(fc,...)
The user transfers in a list (see below) the codes of the device families about whose
device types information is required.

(tt,...)
The user transfers in a list (see below) the codes for the types of devices about which
information is required.

addr
Symbolic address (name) of a field. The field contains a list of family codes or device
type codes. It must be aligned on a word boundary.

(r)
r = register containing the address value “addr”. A register may be specified only in
conjunction with MF=M.

Format of the list for transferring family codes or device type codes:
– The first word contains the number of entries in the list, right-justified in hexadecimal

form.
– This is followed by the entries: each entry is 2 bytes long and contains (left-justified)

the family code or device type code.

Description of the macros NKDINF

U3291-J-Z125-16-76 681

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

TAPE=
A TAPE output record is written for each specified tape device.

NO
This function is not desired.

ALL
Information is requested on all tapes monitored by NDM.

(mn,...)
The user transfers in a list (see below) the mnemonic names of the tape devices about
which information is required.

(vsn,...)
The user transfers in a list (see below) the VSNs (volume serial numbers) of the tapes
about which information is required.

addr
Symbolic address (name) of a field. The field contains a list of VSNs or mnemonic
device names. It must be aligned on a word boundary.

(r)
r = register containing the address value “addr”. A register may be specified only in
conjunction with MF=M.

Format of the list for transferring mnemonic device names or VSNs:
– The first word contains the number of entries in the list, right-justified in hexadecimal

form.
– This is followed by the entries: each entry is 8 bytes long and contains (left-justified)

the VSN or the mnemonic device name. Bytes not required should be overwritten
with X'00'.

CAR
Additional records are output for 3591 Magnetic Tape Cartridges in “random” mode.
These apply to cartridges already in the cartridge loader and which have already been
registered by the device management system. Multiple records can be issued for a
device.

TASK=
A TASK output record is written. The record contains information on devices, disks and
tapes that are used by the specified task.

NO
This function is not desired.

OWN
Specifications refer to the calling task.

NKDINF Description of the macros

682 U3291-J-Z125-16-76

(tsn,...)
The user transfers in one word the TSN (task sequence number) of the task about
whose device and volume allocation information is required.

(tid,...)
The user transfers in one word the TID (task identifier) of the task about whose device
and volume allocation information is required.

addr
Symbolic address (name) of the word containing the TSN or TID of a task.

(r)
Register containing the address value “addr”. A register may be specified only in
conjunction with MF=M.

TYPTASK=
One TYPTASK output record is requested for each specified device family (device type).
The record indicates the number of devices of the specified type that have been reserved
by a task. For each device family, the set of TYPTASK records relating to its device types is
output.

NO
This function is not desired.

ALL
A TYPTASK output record is requested for all device types defined in the system.
This value may be specified only under the system administration ID (TSOS).

(fc,...)
The user transfers in a list (see below) the codes of the device families about whose
device types information is required.
This value may be specified only under the system administration ID (TSOS).

(tt,...)
The user transfers in a list (see below) the device type codes of the device types about
which information is required.
This value may be specified only under the system administration ID (TSOS).

addr
Symbolic address (name) of a field. The field contains a list of family codes or device
type codes. It must be aligned on a word boundary.

(r)
Register containing the address value “addr”. A register may be specified only in
conjunction with MF=M.

Description of the macros NKDINF

U3291-J-Z125-16-76 683

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Format of the list for transferring family codes or device type codes:
– The first word contains the number of entries in the list, right-justified in hexadecimal

form.
– This is followed by the entries: each entry is 2 bytes long and contains (left-justified)

the family code or device type code.

UNMONIT=
An UNMONIT output record is requested for each of the tape volumes specified that has
been reserved “offline”. This record indicates the VSN of the tape volume reserved as well
as the TSN of the task which reserved it. “Offline” reservation means that a device/volume
has been requested which is not (yet) monitored by NDM.

NO
This function is not desired.

ALL
An UNMONIT output record is requested for all tape volumes reserved “offline”.

(vsn,...)
The user transfers in a list (see below) the VSNs (volume serial numbers) of the tapes
about which information is required.

addr
Symbolic address (name) of a field. The field contains a list of VSNs. It must be aligned
on a word boundary.

(r)
Register containing the address value “addr”. A register may be specified only in
conjunction with MF=M.
Format of the list for transferring the VSNs:
– The first word contains the number of entries in the list, right-justified in hexadecimal

form.
– This is followed by the entries: each entry is 8 bytes long and contains (left-justified)

the VSN. Bytes not required should be overwritten with X'00'.

NKDINF Description of the macros

684 U3291-J-Z125-16-76

Register contents

Register R15 is used internally as a general register when the NKDINF macro is called with
MF=M and addresses are specified.

Return information and error flags

Standard
header:

A return code relating to the execution of the NKDINF
macro is transferred in the standard header:
(cc=Subcode2, bb=Subcode1, aaaa=Maincode)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function successfully executed. All requested information is provided in
the output area

X'01' 1 X'00' X'0008' Output area was created but not all requested output records are
available: some or all of the specified codes (device type codes, VSNs,
mnemonic names etc.) are unknown

X'02' 1 X'00' X'0008' Output area was created but not all requested output records are
available: user is not sufficiently privileged

X'04' 1 X'00' X'0008' Output area was created but in some output records the information is
not complete: disk monitor not available

X'08' 1 X'00' X'0008' Output area was created but the information is incomplete in some
output records: tape monitor not available

X'10' 1 X'00' X'0008' Output area was created but the DRV operand could not be processed:
DRV subsystem is not available

X'20' 1 X'00' X'0008' Output area was created but the information is incomplete in some
output records: four-digit mnemonic device names are available and
EXTMN=NO was specified in the macro call.
The 2-byte field in the affected output records was deleted.

X'xx' 2 X'01' X'0010' Operand error, no output area was created:
type of requested information is unknown or not permissible

X'xx' 2 X'01' X'0011' Operand error, no output area was created:
one of the outputs MN, VSN, DEV# etc. is unknown or not permissible

X'00' X'01' X'0013' Operand error, no output area was created: EXTMN operand is unknown

X'00' X'20' X'0004' System error, no output area was created

X'xx' 2 X'40' X'0012' Type of a requested output record (record type) for the nonprivileged
user is not allowed

X'xx' 2 X'40' X'0020' List with the provided device type codes, VSNs, mnemonic names etc.
has not been assigned

X'xx' 2 X'40' X'0021' List with the provided device type codes, VSNs, mnemonic names etc.
is not aligned on a word boundary

Description of the macros NKDINF

U3291-J-Z125-16-76 685

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

01 TASK output record
02 GLOBAL output record
03 DEVICE output record
04 TAPE output record
05 DISC output record
06 CONFIG output record
07 DVQ output record
08 SUMMARY output record
09 TYPTASK output record
0A UNMONIT output record
0B DRV output record
0C DEPOT output record
0D LOC output record

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

The calling program is terminated when the following errors occur:
– The data area is not assigned to the caller.
– The data area is not aligned on a word boundary.
– The data area is protected against write access.

X'xx' 2 X'40' X'0022' More device type codes, VSNs, mnemonic names, etc. than allowed are
specified in a list

X'xx' 2 X'40' X'0023' Version number of a layout is unknown

X'00' X'80' X'0040' No memory is currently available, no output area was created

1 The sub return codes are added to the main code X'0008': when a macro is called several of them can occur
simultaneously

2 X'xx' indicates the type of output record (record type) which led to the return code. The possible values for xx
are as follows:

X'cc' X'bb' X'aaaa' Meaning

NKDINF Description of the macros

686 U3291-J-Z125-16-76

Layout of the DSECT for the output control record (RECORD=HEADER)

NKDINF MF=D,RECORD=HEADER
1 *,NKDINF VERSION 500
1 #INTF INTNAME=NKDINF,REFTYPE=REQUEST,INTCOMP=1
1 *
1 * GENERATION OF OUTPUT-LAYOUTS
1 *
1 *
1 * C/DSECT FOR OUTPUT-CONTROL RECORD
1 *
1 MFCHK MF=D,PREFIX=N,SUPPORT=(C,D),MACID=KDI, C
1 DMACID=KDO,DNAME=KDOENT
2 NKDOENT DSECT ,
2 *,##### PREFIX=N, MACID=KDO #####
1 NKDOENTR DS 0F 1 OUTPUT_CONTROL_RECORD
1 NKDOBLEN DS F 2 LENGTH_OF_BUFFER_OBTAINED
1 NKDOSBUF DS 0F 2 SUBBUFFER_DESCRIPTION
1 NKDOTRBP DS A 3 PTR_TO_FIRST_TASK_RECORD
1 NKDOTRB# DS H 3 #_OF_TASK_RECORDS
1 NKDOTRBL DS H 3 LENGTH_OF_TASK_RECORD
1 NKDOTRBR DS X 3 RESULT_FOR_TASK_RECORDS SET
1 NKDOOKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 NKDOOKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 NKDOOKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 NKDOOKRE EQU X'08' OK_NO_RECORDS_EXISTS
1 NKDONOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 NKDOOKMN EQU X'0E' OK_NO_MN_DUE_TO_EXTENDED_MN
1 NKDODRBD DS 0F 2 DEVICE_RECORD_BUFFER_DESCRIPTION
1 NKDODRBP DS A 3 PTR_TO_FIRST_DEVICE_RECORD
1 NKDODRB# DS H 3 #_OF_DEVICE_RECORDS
1 NKDODRBL DS H 3 LENGTH_OF_DEVICE_RECORD
1 NKDODRBR DS X 3 RESULT_FOR_DEVICE_RECORDS SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS
1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 * &P.OKMN EQU X'0E' OK_NO_MN_DUE_TO_EXTENDED_MN
1 NKDOGRBD DS 0F 2 GLOBAL_RECORD_BUFFER_DESCRIPTION
1 NKDOGRBP DS A 3 PTR_TO_GLOBAL_RECORD
1 NKDOGRB# DS H 3 #_OF_GLOBAL_RECORDS "ALWAYS 1"
1 NKDOGRBL DS H 3 LENGTH_OF_GLOBAL_RECORD
1 NKDOGRBR DS X 3 RESULT_FOR_GLOBAL_RECORD SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS

Description of the macros NKDINF

U3291-J-Z125-16-76 687

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 NKDOCRBD DS 0F 2 CONFIG_RECORD_BUFFER_DESCRIPTION
1 NKDOCRBP DS A 3 PTR_TO_FIRST_CONFIG_RECORD
1 NKDOCRB# DS H 3 #_OF_CONFIG_RECORDS
1 NKDOCRBL DS H 3 LENGTH_OF_CONFIG_RECORD
1 NKDOCRBR DS X 3 RESULT_FOR_CONFIG_RECORDS SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS
1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 * &P.OKMN EQU X'0E' OK_NO_MN_DUE_TO_EXTENDED_MN
1 NKDOBRBD DS 0F 2 TAPE_RECORD_BUFFER_DESCRIPTION
1 NKDOBRBP DS A 3 PTR_TO_FIRST_TAPE_RECORD
1 NKDOBRB# DS H 3 #_OF_TAPE_RECORDS
1 NKDOBRBL DS H 3 LENGTH_OF_TAPE_RECORD
1 NKDOBRBR DS X 3 RESULT_FOR_TAPE_RECORDS SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS
1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 * &P.OKMN EQU X'0E' OK_NO_MN_DUE_TO_EXTENDED_MN
1 NKDOPRBD DS 0F 2 DISC_RECORD_BUFFER_DESCRIPTION
1 NKDOPRBP DS A 3 PTR_TO_FIRST_DISC_RECORD
1 NKDOPRB# DS H 3 #_OF_DISC_RECORDS
1 NKDOPRBL DS H 3 LENGTH_OF_DISC_RECORD
1 NKDOPRBR DS X 3 RESULT_FOR_DISC_RECORDS SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS
1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 * &P.OKMN EQU X'0E' OK_NO_MN_DUE_TO_EXTENDED_MN
1 NKDOQRBD DS 0F 2 DVQ_RECORD_BUFFER_DESCRIPTION
1 NKDOQRBP DS A 3 PTR_TO_DVQ_RECORD
1 NKDOQRB# DS H 3 #_OF_DVQ_RECORDS "ALWAYS 1"
1 NKDOQRBL DS H 3 LENGTH_OF_DVQ_RECORD
1 NKDOQRBR DS X 3 RESULT_FOR_DVQ_RECORD SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS
1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 * &P.OKMN EQU X'0E' OK_NO_MN_DUE_TO_EXTENDED_MN
1 NKDOSRBD DS 0F 2 SUMMARY_RECORD_BUFFER_DESCRIPTION
1 NKDOSRBP DS A 3 PTR_TO_SUMMARY_RECORD
1 NKDOSRB# DS H 3 #_OF_SUMMARY_RECORDS

NKDINF Description of the macros

688 U3291-J-Z125-16-76

1 NKDOSRBL DS H 3 LENGTH_OF_SUMMARY_RECORD
1 NKDOSRBR DS X 3 RESULT_FOR_SUMMARY_RECORD SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS
1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 NKDOYRBD DS 0F 2 TYPTASK_RECORD_BUFFER_DESCRIPTION
1 NKDOYRBP DS A 3 PTR_TO_TYPTASK_RECORD
1 NKDOYRB# DS H 3 #_OF_TYPTASK_RECORDS
1 NKDOYRBL DS H 3 LENGTH_OF_TYPTASK_RECORD
1 NKDOYRBR DS X 3 RESULT_FOR_TYPTASK_RECORD SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS
1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS

1 NKDOURBD DS 0F 2 UNMONIT_RECORD_BUFFER_DESCRIPTION

1 NKDOURBP DS A 3 PTR_TO_UNMONIT_RECORD
1 NKDOURB# DS H 3 #_OF_UNMONIT_RECORDS
1 NKDOURBL DS H 3 LENGTH_OF_UNMONIT_RECORD
1 NKDOURBR DS X 3 RESULT_FOR_UNMONIT_RECORD SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS
1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 NKDOVRBD DS 0F 2 DRV_RECORD_BUFFER_DESCRIPTION
1 NKDOVRBP DS A 3 PTR_TO_DRV_RECORD
1 NKDOVRB# DS H 3 #_OF_DRV_RECORDS
1 NKDOVRBL DS H 3 LENGTH_OF_DRV_RECORD
1 NKDOVRBR DS X 3 RESULT_FOR_DRV_RECORD SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS
1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 NKDOLRBD DS 0F 2 DEPOT_RECORD_BUFFER_DESCRIPTION
1 NKDOLRBP DS A 3 PTR_TO_DEPOT_RECORD
1 NKDOLRB# DS H 3 #_OF_DEPOT_RECORDS
1 NKDOLRBL DS H 3 LENGTH_OF_DEPOT_RECORD
1 NKDOLRBR DS X 3 RESULT_FOR_DEPOT_RECORD SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS

Description of the macros NKDINF

U3291-J-Z125-16-76 689

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 NKDOARBD DS 0F 2 LOCATION_REC_BUFFER_DESCRIPTION
1 NKDOARBP DS A 3 PTR_TO_LOCATION_RECORD
1 NKDOARB# DS H 3 #_OF_LOCATION_RECORDS
1 NKDOARBL DS H 3 LENGTH_OF_LOCATION_RECORD
1 NKDOARBR DS X 3 RESULT_FOR_LOCATION_RECORD SET
1 * &P.OKRO EQU X'00' (OK_RECORDS_OUTPUTED
1 * &P.OKPT EQU X'02' OK_RECORDS_PARTIAL_OUTPUT
1 * &P.OKRN EQU X'04' OK_RECORDS_NOT_REQUESTED
1 * &P.OKRE EQU X'08' OK_NO_RECORDS_EXISTS
1 * &P.NOTA EQU X'0C' SCOPE_HIDES_REQUESTED_RECORDS
1 DS XL3 RESERVED
1 NKDO# EQU *-NKDOENTR LENGTH_OF_CONTROL_RECORD
1 NKDOLGTH EQU NKDO# OLD NAME OF LENGTH

NKGTYPE Description of the macros

690 U3291-J-Z125-16-76

NKGTYPE – Output device information

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 1:

31-bit interface: standard/E/L/D form;
see page 29

Device type: Each device is assigned to a device type (DEVICE type). The devices of a
particular device type have the same device characteristics. The device
type can be addressed either by its (printable) name or by a device type
code. Examples of device type names are HNC2, D3435; the
corresponding device type codes are X'6D', X'A5'.

Volume type: The volume type defines a combination of (device) characteristics which are
important for the use of a volume, e.g. the recording density of tapes. Those
device types which possess the characteristics required of a particular type
of volume are assigned to a volume type; e.g. the device type LTO-U4 is
assigned to volume type TAPE-U4 (MTC with 896 tracks). For disks, the
assignment of device types to volume types is unique (identical names).
The volume type can be addressed either by its (printable) name or by the
volume type code. An examples of name is TAPE-U4; volume type code
X'CE'.

Device family: A set of device types having specific device characteristics are assigned to
a device family (FAMILY type). A given device type will belong to one device
family only. A device family can be addressed by its (printable) name or by
the family code. Examples of device family names are DISK, MTC; the
corresponding family codes are X'A0', X'C0'.

Device class: A set of device types is assigned to a device class (CLASS type). Three
device classes exist: UR, TAPE and DISK (where UR stands for UNIT-
RECORD devices). Device classes can be addressed by their (printable)
names only.

The device type table (“System Installation” [10] manual) contains the names of device
types and device families and the associated device type codes and family codes.

Description of the macros NKGTYPE

U3291-J-Z125-16-76 691

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Macro description

The NKGTYPE macro provides information about the names, device type codes, device
characteristics, path addresses and path attributes for a particular device type or volume
type, or about names and device type codes of the device types of a particular device family
or device class.
The scope of the information to be output can be determined by means of the INF=...
operand. The operand list starts with the standard header. The user can request a DSECT
of the input/output area to be generated. The size of the DSECT is also determined by
means of the INF operand.

Macro format and description of operands

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

If MF=D is specified, a prefix (p = 1 letter) can be specified, as shown in the macro format.

If the MF operand is omitted, parameter list and calling sequence are generated. After
execution R1 then points to the parameter list.

FORMAT=
Indicates whether the name or the code is specified.

INTERNAL
The code (device type code/volume type code/family code) is specified.

PRINTABLE
The (printable) name is specified.

NKGTYPE

[p] [,MF=(E,..) / L / D]

,FORMAT=INTERNAL / PRINTABLE

,TYPE=UNKNOWN / DEVICE / VOLUME / FAMILY / CLASS

[,INTYP=addr]

,INF=STD / LIST / LOCLIST / VLIST / GEN / STD-LIST

NKGTYPE Description of the macros

692 U3291-J-Z125-16-76

TYPE=
Indicates the device type, volume type, device family or device class to which the
device/device type belongs.

UNKNOWN
The assignment is unknown. The type lists are searched in the following order: device
class, device family, volume type and device type (including the lists of the
corresponding “alias”). The list of device classes is searched only if the (printable) name
is specified.

DEVICE
Only the list of device types and the list of the corresponding “alias” is searched.

VOLUME
Only the list of volume types and the list of the corresponding “alias” is searched.

FAMILY
Only the list of device families is searched.

CLASS
Only the list of device classes is searched.

INTYP=
Specifies the field containing the name or code. If the INTYP operand is omitted, the input
field NKGDIPTI/NKGDIPPR in the operand list must be supplied with the name/code by the
user. Field length:
– 8 bytes if the (printable) name is specified. The name is entered left-justified with trailing

blanks.
– 2 bytes if the device type code or family code is specified. The code is entered left-

justified with trailing zeros.

addr
Symbolic address of the field.

INF=
Defines the scope of the information output.

STD
Standard output is generated:
– type list which contains the name or code
– device class (CLASS type)
– name and code
– If a device type is specified, a list of the device type characteristics (family code,

recording density of a magnetic tape device, ...) is additionally output.

Description of the macros NKGTYPE

U3291-J-Z125-16-76 693

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

LIST
In addition to the standard output, a list of the corresponding device types is output:
– If a device type is specified, a list of the corresponding volume types is output and

vice versa.
– If a device family or device class is specified, a list of the names and device type

codes of the device types belonging to that device family or device class is output.

LOCLIST
In addition to the standard output, a list of the corresponding types in the specified
storage location is also output. The name of the storage location must be supplied
explicitly in the parameter list. If no value is entered in the storage location field, the
corresponding types are determined from the set of devices which are not assigned to
any storage location (residual pool).
You can only specify a device type or a volume type.
If you specify a device type (TYPE=DEVICE), you will obtain a list of the corresponding
volume types; if you specify a volume type (TYPE=VOLUME), you will see a list of the
corresponding device types.

VLIST
Specification of this operand is meaningful for device classes only.
In addition to the standard output, a list of the volume types belonging to the device
class specified is output.

GEN
Specification of this operand is meaningful for device types only.
In addition to the standard output, a list of the generation options (path addresses and
path attributes, e.g. channel type, controller type, ...) is output.

STD-LIST
Specification of this operand is meaningful for TYPE=CLASS only.
In contrast to INF=LIST, only the list of disk devices and STDDISK supported to
BS2000/OSD-BC V2.0 is output.
This value was introduced to support the SDF data type <device>. New disks should
only be requested in user commands with the standard disk type STDDISK.

NKGTYPE Description of the macros

694 U3291-J-Z125-16-76

Return information and error flags

Register R1 contains the operand list address.

Layout of the DSECT for the input/output area if INF=STD

NKGTYPE MF=D
1 *,VERSION 701
1 #INTF MACNAME=NKGTYPE,REFTYPE=REQUEST,MACVERS=701, C
1 INTNAME=011.001,INTVERS=1
1 MFPRE DNAME=KGDTYP,MF=D,MACID=KGD,ALIGN=F,PREFIX=N, C
1 DMACID=KGD
2 NKGDTYP DSECT ,
2 *,##### PREFIX=N, MACID=KGD #####
1 NKGDPLS DS 0F DCL 1 NKGTYPE_PARAMETERLIST_START
1 NKGDFHDR FHDR MF=(C,NKGD),EQUATES=NO
2 NKGDFHDR DS 0A
2 NKGDFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 NKGDIFID DS 0A 0 INTERFACE IDENTIFIER
2 NKGDFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 NKGDFCT DS AL1 2 FUNCTION NUMBER
2 NKGDFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *

R15:
A structured return code relating to the execution of
the NKGTYPE macro is transferred in register R15:
(cc=Subcode2, bb=Subcode1, aaaa=Maincode)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Normal execution, entry found

X'00' X'04' X'0004' Entry not found

X'00' X'08' X'0004' Specification for INF=... is inconsistent with specification for TYPE=...

X'00' X'10' X'0004' The (printable) name specified is incomplete or ambiguous

X'00' X'20' X'0004' System error

X'00' X'0C' X'0004' Invalid operand list address

X'00' X'FF' X'0004' Operand error

Description of the macros NKGTYPE

U3291-J-Z125-16-76 695

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

2 NKGDRET DS 0A 4 GENERAL RETURN CODE
2 NKGDSRET DS 0AL2 4 SUB RETURN CODE
2 NKGDSR2 DS AL1 4 SUB RETURN CODE 2
2 NKGDSR1 DS AL1 5 SUB RETURN CODE 1
2 NKGDMRET DS 0AL2 6 MAIN RETURN CODE
2 NKGDMR2 DS AL1 6 MAIN RETURN CODE 2
2 NKGDMR1 DS AL1 7 MAIN RETURN CODE 1
2 NKGDFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 SPACE 1
1 * EQUATES FOR THE MAIN RETURN CODE
1 SPACE 1
1 NKGDSUCC EQU X'0000' SUCCESS : ENTRY FOUND
1 * OUTPUT AREA CONTAINS VALID DATA
1 NKGDPERR EQU X'0004' UNSUCCESS
1 * OUTPUTAREA IS SET TO ZERO (X'00')
1 * SEE SUB RETURN CODE 1 FOR DETAIL
1 SPACE 1
1 * EQUATES FOR THE SUB RETURN CODE 1 (RR IN X'00RR0004)
1 SPACE 1
1 NKGDSENF EQU X'04' ENTRY NOT FOUND
1 NKGDICIT EQU X'08' UNCONSISTENCY BETWEEN INF AND TYPE P.
1 NKGDS1SY EQU X'20' SYSTEM ERROR (RC-CLASS C) 215
1 NKGDSPIA EQU X'10' PRINTABLE INPUT IS AMBIGUOUS
1 NKGDSPER EQU X'FF' PARAMETER ERROR
1 NKGDNAP1 EQU X'0C' PARAMETER LIST OR INPUT-TYPE NOT
1 * ACCESSIBLE (THIS RC IS ONLY
1 * POSSIBLE FOR P1-USERS, FOR WHICH A
1 * ADDRESS VALIDATION IS DONE, THIS RC
1 * IS ONLY SET TO CALLERS R15)
1 SPACE 1
1 * EQUATES FOR THE SUB RETURN CODE 2 (SS IN X'SS000000) 101
1 SPACE 1
1 *********************************
1 * INPUT PARAMETER *
1 *********************************
1 NKGDINP DS 0F 2 INPUT_PARAMETER
1 NKGDTPES DS X 3 TYPE_SET
1 NKGDDEVC EQU C'D' (DEVICE = D,
1 NKGDVOLM EQU C'V' VOLUME = V,
1 NKGDFAML EQU C'F' FAMILY = F,
1 NKGDCLSS EQU C'C' CLASS = C,
1 NKGDUNKN EQU C'U' UNKNOWN = U)
1 NKGDFRMT DS X 3 FORMAT_SET
1 NKGDINTR EQU X'01' (INTERNAL = 1,
1 NKGDPRNT EQU X'02' PRINTABLE = 2)

NKGTYPE Description of the macros

696 U3291-J-Z125-16-76

1 NKGDTYPE DS X 3 INPUT_TYPE_SET
1 NKGDTSTD EQU X'00' (TYPE_EXPLIZIT_IN_PARAMLIST = 0,
1 NKGDADDR EQU X'01' TYPE_ADDR_SPECIFIED = 1,
1 NKGDREG EQU X'02' NO MORE USED SINCE V11.2A)
1 NKGDINFS DS X 3 INFORMATION_SET
1 NKGDISTD EQU X'01' (STANDARD = 1,
1 NKGDIGEN EQU X'02' GENERATION = 2,
1 NKGDILST EQU X'04' LIST_OF_CORRESPONDING_TYPES = 4,
1 *I.ICHR EQU X'08' DISK_CHARACTERISTICS NO LONGER SUPP.
1 NKGDVLST EQU X'10' LIST_OF_CLASS_SPEC_VOL_TYPES = 16,
1 NKGDSLST EQU X'20' Standard_List_of_CLASS = 32,
1 NKGDLLST EQU X'40' LIST-OF-CORR-TYPES-IN-LOCATION=64)
1 SPACE 1
1 NKGDIADR DS A 3 ADDR(INPUT_TYPE)
1 ORG NKGDIADR
1 NKGDIREG DS A 3 NO MORE USED SINCE V11.2A
1 NKGDIPTI DS XL2 3 INPUT_TYPE_INTERNAL_FORMAT
1 DS 0A
1 NKGDIPPR DS CL8 3 INPUT_TYPE_PRINTABLE_FORMAT
1 NKGDILOC DS CL8 3 INPUT_LOCATION
1 SPACE 2
1 *********************************
1 * OUTPUT PARAMETER *
1 *********************************
1 NKGDOUTP DS 0F 2 OUTPUT_PARAMETER
1 NKGDOPLI DS CL1 3 OUTPUT_LIST_INDICATOR SET
1 NKGDOTTL EQU C'D' (ENTRY_FOUND_IN_DEVICE_TYPE_LIST=D,
1 NKGDOVTL EQU C'V' ENTRY_FOUND_IN_VOLUME_TYPE_LIST=V,
1 NKGDOFTL EQU C'F' ENTRY_FOUND_IN_FAMILY_TYPE_LIST=F,
1 NKGDOCTL EQU C'C' ENTRY_FOUND_IN_CLASS_TYPE_LIST =C)
1 NKGDSECL DS XL1 3 SECOND_LIST_INDICATOR
1 NKGDSVTL EQU X'01' 4 E._FOUND_ALSO_IN_VOL_TYPE_L = 1
1 NKGDSDTL EQU X'02' 4 E._FOUND_ALSO_IN_DEV_TYPE_L = 2
1 NKGDSFML EQU X'04' 4 E._FOUND_ALSO_IN_FAM_TYPE_L = 4
1 NKGDOPNI DS XL1 3 NAME_INDICATOR
1 * /* TO TEST ON BIT LEVEL */
1 NKGDOINS EQU X'01' 4 INPUT_NAME_IN_SHORT_FORMAT = 1
1 NKGDOANT EQU X'02' 4 ALIAS_NAME_TRANSLATED = 2
1 NKGDDCLS DS X 3 DEVICE_CLASS SET
1 NKGDURD EQU C'U' (UR_DEVICE =U,
1 NKGDDISC EQU C'D' DISC_DEVICE=D,
1 NKGDTAPE EQU C'T' TAPE_DEVICE=T)
1 DS X 3 RESERVED
1 NKGDDVTI DS XL2 3 TYPE_INTERNAL_FORMAT
1 NKGDDVTP DS CL8 3 TYPE_PRINTABLE_FORMAT

Description of the macros NKGTYPE

U3291-J-Z125-16-76 697

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

1 NKGDRESP DS X 3 RESERVATION_POSSIBILITY_INDICATOR
1 NKGDRESN EQU X'01' 4 RESERVATION_BY_TYPE_NOT_POSSIBLE = 1
1 NKGDALNP EQU X'02' 4 ALLOCATION_BY_TYPE_NOT_POSSIBLE = 2
1 NKGDRMNN EQU X'04' 4 RESERVATION_BY_MNEM_NOT_POSSIBLE = 4
1 NKGDAMNN EQU X'08' 4 ALLOCATION_BY_MNEM_NOT_POSSIBLE = 8
1 NKGDATNA EQU X'10' 4 ATTACH_NOT_ALLOWED =16
1 DS F 3 RESERVED
1 SPACE 2
1 ***
1 *
1 * VOLUME-TYPE-ATTRIBUTES
1 * ONLY VALID IF NKGDOPLI=NKGDOVTL
1 * (ENTRY_FOUND_IN_VOLUME_TYPE_LIST_
1 *
1 ***
1 NKGDDNSF DS X 3 DENSITY_FLAG
1 NKGDCORD EQU X'01' 4 VOL_TYPE_CORRESPONDS_TO_ONE_DENSITY
1 NKGDVLEV DS X 3 TAPE_LEVEL_INDICATOR
1 NKGDLV9 EQU X'01' 4 9_LEVEL_TAPE
1 NKGDLV18 EQU X'02' 4 MBK_Mode
1 NKGDLVV EQU X'04' 4 VIDEO_TAPE
1 NKGDLVSC EQU X'08' 4 STREAMING_CARTRIGE_TAPE
1 NKGDITYP DS XL2 3 VOLUME_TYPE_FOR_LABEL_INITIALISATION
1 NKGDVL#2 EQU * VOLUME_TYPE_DESCRIPTION_EXTENSION
1 NKGDVRCM EQU * 3 VOLUME_TYPE_RECORDING_MODE
1 NKGDVTPM DS X 4 VOLUME_TAPE_MODE (/* 9_LEVEL_TAPE*/
1 *I.800 EQU X'01' DENSITY_800_BPI = 1,
1 *I1600 EQU X'02' DENSITY_1600_BPI = 2,
1 *I6250 EQU X'04' DENSITY_6250_BPI = 4)
1 ORG NKGDVTPM
1 NKGDV18M DS X 4 VOLUME_MBK_MODE (/* 18_LEVEL_TAPE*/
1 *I.COMP EQU X'01' DATA_COMPACTION = 1
1 *I.256P EQU X'02' 256kB_blocks_possible = 2
1 *I.MLTE EQU X'20' LTO_encrypted = 32
1 *I.MLTO EQU X'40' MODE LTO = 64)
1 NKGDWORN EQU X'80' WORM-Medium = 128)
1 NKGDTRCT DS CL2 3 DMS_TAPE_RECORDING_TECHNIQUE(
1 NKGDDLNR EQU C' ' NORMAL_DENSITY ,
1 NKGDDLCM EQU C'P ' COMPACTION)
1 NKGDDHDI DS C 3 DMS_HDR2_DENSITY_INDICATOR(
1 NKGDDH8 EQU C'2' HDR2_800_BPI ,
1 NKGDDH16 EQU C'3' HDR2_1600_BPI ,
1 NKGDDH62 EQU C'4' HDR2_6250_BPI ,
1 NKGDDHDM EQU C' ' HDR2_MBK)
1 NKGDTCRS DS X 3 TYPE_CONCERNED_BY_RESTRICTION
1 NKGDRCNW EQU X'01' CONCERNED_BY_RESTRICTION_NO_WRITE
1 NKGDLTOT DS X 3 LTO_MEDIUM_TYPE
1 ORG NKGDVL#2

NKGTYPE Description of the macros

698 U3291-J-Z125-16-76

1 SPACE 2
1 ***
1 *
1 * GENERATION-UNDEPENDENT DEVICE-TYPE-ATTRIBUTES
1 * ONLY VALID IF NKGDOPLI=NKGDOTTL
1 * (ENTRY_FOUND_IN_DEVICE_TYPE_LIST)
1 *
1 ***
1 NKGDFAMD DS 0XL10 3 FAMILY_DESCRIPTION
1 NKGDFAMI DS XL2 4 FAMILY_INTERNAL_FORMAT
1 NKGDFAMP DS CL8 4 FAMILY_PRINTABLE_FORMAT
1 NKGDDEFI DS X 3 DEFAULT_INTERRUPTION_SUBCLASS_CODE_SET
1 NKGDDEF0 EQU X'00'
1 NKGDDEF1 EQU X'01'
1 NKGDDEF2 EQU X'02'
1 NKGDDEF3 EQU X'03'
1 NKGDDEF4 EQU X'04'
1 NKGDDEF5 EQU X'05'
1 NKGDDEF6 EQU X'06'
1 NKGDDEF7 EQU X'07'
1 NKGDHWA2 DS X 3 HARDWARE_ATTRIBUTES BYTE 2
1 * EQUATES CF BELOW
1 NKGDDSSP DS 0XL2 3 DISC_SUB_ATTRIBUTES
1 NKGDDMDE DS X 4 DISC_MODE
1 NKGDMOVJ EQU X'01' 5 MOVABLE =1
1 NKGDFIXH EQU X'02' 5 FIX_HEAD =2
1 NKGDSTRU DS X 4 DISK_STRUCTUR_SET
1 NKGDSFBA EQU X'01' (FBA-DISK =1,
1 NKGDSCKD EQU X'02' CKD-DISK =2,
1 NKGDSPAD EQU X'04' PAD_DISK =4,
1 NKGDSCHD EQU X'08' CHANNEL_DEPENDENT =8, &CTL-DEPENDENT
1 NKGDSECK EQU X'10' ECKD_DISK =16,
1 NKGDSEMU EQU X'20' EMULATED_DISK =32)
1 ORG NKGDDSSP
1 NKGDTSSP EQU * 3 TAPE_SUB_ATTRIBUTES
1 NKGDTMDE DS X 4 TAPE_MODE /* 9_LEVEL_TAPE */
1 NKGDL9M EQU NKGDTMDE
1 NKGD800 EQU X'01' 5 No longer used
1 NKGD1600 EQU X'02' 5 1600BPI_SUPPORTED =2
1 NKGD6250 EQU X'04' 5 6250BPI_SUPPORTED =4
1 ORG NKGDTMDE
1 NKGDL18M DS X 4 MBK_MODE
1 NKGDCOMP EQU X'01' 5 DATA_COMPATCION_SUPPORTED = 1
1 NKGDTPLV DS X 3 TAPE_LEVEL_INDICATOR
1 *&I.LV9 EQU X'01' 4 9_LEVEL_TAPE = 1
1 *&I.LV18 EQU X'02' 4 MBK_Mode = 2
1 *&I.LVV EQU X'04' 4 VIDEO_TAPE
1 *&I.LVSC EQU X'08' 4 STREAMING_CARTRIGE_TAPE

Description of the macros NKGTYPE

U3291-J-Z125-16-76 699

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

1 ORG NKGDDSSP
1 NKGDCNSP EQU * 3 CONSOLE_SUB_ATTRIBUTES
1 NKGDCMDE DS X 4 CONSOLE_MODE
1 NKGDCDIS EQU X'01' 5 DISPLAY =1
1 NKGDCHDC EQU X'02' 5 HARDCOPY=2
1 ORG NKGDDSSP+L'NKGDDSSP
1 NKGDHWAT DS X 3 HARDWARE_ATTRIBUTES
1 NKGDRERE EQU X'01' 4 RESERVE_RELEASE_SUPPORTED = 1 (D)
1 NKGDSDNC EQU X'02' 4 SET_DENSITY_NECCESSARY = 2 (T)
1 NKGDSTRM EQU X'04' 4 STREAMING_MODUS_POSSIBLE = 4 (T)
1 NKGDDISP EQU X'08' 4 DISPLAY = 8 (T,D)
1 NKGDBUFF EQU X'10' 4 CONTROLLER_WITH_BUFFER =16 (T,D)
1 NKGDPOSI EQU X'20' 4 CTL_SUPPORTS_POSITIONING =32 (T)
1 NKGDNRRV EQU X'40' 4 NO_READ_REVERSE_SUPPORTED =64 (T)
1 NKGDSTKP EQU X'80' 4 STACKER_POSSIBLE =128 (T)
1 * HWA2 3 HARDWARE_ATTRIBUTES BYTE 2
1 NKGDSSDD EQU X'01' 4 SOLID_STATE_DISC_DEVICE = 1 (D)
1 NKGDRSTP EQU X'02' 4 RANDOM_STACKER_POSSIBLE = 2 (T)
1 NKGDFORI EQU X'04' 4 FORMATTING_DURING_INIT_NECESSARY= 4(T)
1 NKGDGENF DS X 3 GENERATION_FACILITIES
1 NKGDSICH EQU X'01' 4 CFCS12_CHANNEL_TYPE =1
1 NKGDFJCH EQU X'02' 4 CFCS3_CHANNEL_TYPE =2
1 NKGDPADT DS A 3 ADRESS_OF_ADAM_TRANSLATION
1 NKGDCBUF DS F 3 CONTROLLER_BUFFER_SIZE (BYTES)
1 NKGDDCAP DS F 3 MAXIMAL DISC CAPACITY (#HP'S PER VOL)
1 NKGD#CYL DS H 3 MAXILAL NUMBER OF CYCLINDERS PER VOL
1 NKGDDFVT DS XL2 3 DEFAULT_VOLUME_TYPE (DEFAULT_DENSITY)
1 NKGDURST DS X 3 USE_RESTRICTION
1 NKGDRNWR EQU X'01' RESTRICTION_NO_WRITE_POSSIBLE
1 NKGDLTOL DS X 3 LTO_LEVEL
1 DS XL2 3 RESERVED
1 NKGDOPL1 EQU *-NKGDOUTP
1 NKGDOPLN EQU *-NKGDOUTP LENGTH_OF_THE_OUTPUT_PARAMETERLIST
1 DS 0XL(1-(NKGDOPLN-60)*(NKGDOPLN-60))
1 NKGDPLLN EQU *-NKGDPLS TOTAL_LENGTH_OF_THE_PARAMETERLIST

NKGTYPE Description of the macros

700 U3291-J-Z125-16-76

Example

The device types belonging to device family X'A0' (disk storage units) are to be output. The
macro is called in the E/L form.

NKGTYPE START
PRINT NOGEN
BALR 3,0
USING *,3
NKGTYPE MF=(E,NKGL)

END TERM
NKGL NKGTYPE MF=L,TYPE=FAMILY,INTYP=ADDR,INF=LIST
ADDR DC X'A000' ——— (1)

END

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,nkgtype), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,nkgtype)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 306 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 94 MSEC
//end
% ASS6012 END OF ASSEMBH
/load-executable-program library=macexmp.lib,element-or-symbol=nkgtype, -
/ test-options=*aid
% BLS0523 ELEMENT 'NKGTYPE', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'NKGTYPE', VERSION ' ' OF '<date> <time>' LOADED
/%on %any <%d %§(nkgl)-> %xl568>;%r ——————————————————————————————————— (2)
*** TID: 00710070 *** TSN: 6LHZ ***
CURRENT PC: 0000002C CSECT: NKGTYPE *************************************
V'00000030' = NKGTYPE + #'00000030'
00000030 (00000030) 000B0101 00000000 C6010104 000002BAF.......
00000040 (00000040) 00000000 00000000 00000000 00000000
00000050 (00000050) 00000000 C60000C4 00A000C4 C9E2D240F..D...DISK
00000060 (00000060) 40404003 00000000 00000000 00000000
00000070 (00000070) 00000000 00000000 00000000 00000000
00000080 (00000080) 00000000 00000000 00000000 00000000
00000090 (00000090) 001A0000 8100C4F3 F4F3F460 F1F08200a.D3434-10b.
000000A0 (000000A0) C4F3F4F3 F460F2F0 8300C4F3 F4F3F860 D3434-20c.D3438-

Description of the macros NKGTYPE

U3291-J-Z125-16-76 701

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

000000B0 (000000B0) F3F08400 C4F3F4F2 F1F160F4 8500C4F3 30d.D34211-4e.D3
000000C0 (000000C0) F4F0F940 40408600 C4F3F4F2 F1F160F2 409 f.D34211-2
000000D0 (000000D0) 8700C4F3 F4F3F460 F3F08800 C4F3F4F2 g.D3434-30h.D342
000000E0 (000000E0) F1F160F3 8900C4F3 F4F9F060 F3F08A00 11-3i.D3490-30..
000000F0 (000000F0) C4F3F4F9 F060F4F0 8B00C4F3 F4F2F1F1 D3490-40..D34211
00000100 (00000100) 60F58E00 C4F3F4F9 F2404040 8F00C4F3 -5..D3492 ..D3
00000110 (00000110) F4F7F560 F8C6A100 C4F3F4F3 F960F1F0 475-8F..D3439-10
00000120 (00000120) A200C4F3 F4F3F640 4040A300 C4F3F4F3 s.D3436 t.D343
00000130 (00000130) F7404040 A400C4F3 F4F3F860 F2F0A500 7 u.D3438-20v.
00000140 (00000140) C4F3F4F3 F5404040 A700C4F3 F4F9F060 D3435 x.D3490-
00000150 (00000150) F1F0AAF0 C4F3F4F0 F960C7E2 AB00C4F3 10.0D3409-GS..D3
00000160 (00000160) F4F7F540 4040AC00 C4F3F4F8 F0404040 475 ..D3480
00000170 (00000170) AD00C4F3 F4F8C540 4040AE00 C4F3F4F8 ..D348E ..D348
00000180 (00000180) C6404040 AF00C4F3 F4F9F060 F2F0AA00 F ..D3490-20..
00000190 (00000190) E2E3C4C4 C9E2D240 00000000 00000000 STDDISK
000001A0 (000001A0) 00000000 00000000 00000000 00000000

REPEATED LINES: 10
00000250 (00000250) 00000000 00000000 00000000 00000000
00000260 (00000260) 00000000 00000000

(1) The family code for disk storage units is entered.

(2) The input output area is displayed using the Advanced Interactive Debugger (AID).

The I/O area starts at address X'000034'.
Bytes 3-7 contain the return code X'00000000'.
The input data (DSECT area “INPUT PARAMETER”) follows:
X'C6': TYPE=FAMILY,
X'01': FORMAT=INTERNAL,
X'01': INTYP=ADR,
X'04': INF=LIST,
X'000002BA' is the virtual address of field ADR.

The output area (DSECT area “OUTPUT PARAMETER”) starts at address
X'000054', where:
X'C6': ,Entry was found in the list of device families.
X'C4': ,Disk storage unit.
X'A0': ,Family code.
X'C4C9E2D240404040': DISK = name of the device family.

The additional output for INF=LIST is found starting at address X'000090'.
X'001A': The device type list contains 26 entries.
2 reserved bytes are followed by the device type code and then the (printable)
device type name.

NSIINF Description of the macros

702 U3291-J-Z125-16-76

NSIINF – Output system information

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 3: D/C/E/L form; see page 29

Macro description

The NSIINF macro provides information about the following:

CPU: serial numbers and identifications of available CPUs
BS2000: label and version of the operating system, as well as addressing mode of

the operating system and the operating system options selected at
generation time

Memory: size of the (physical) main memory
HSI: HSI base type
Server: type of server (model series)
Live migration: number of Live Migrations that occurred

No more than one item of information can be requested per macro call. The desired
information is output to the <PREFIX><MACID>OUTP field. The data type and length of the
output field depend on the information requested, as shown in the table at the end of the
operand description.

Macro format and description of operands

NSIINF

INFO=BIGPGSIZ / BS2ID / CONFNAMX / CPUIDIPL / (CPUID,8) / (CPUID,16) / EPOCH / HSIASF / HSIBASE /

HSILINE / HSIVM / IPLDTTM / IPLMODE / NEWMSIZE / MEMSIZE / OSDVERS / OSIOID /

PAGESIZE / SPSUFFIX / SYSNAME / MIGCOUNT

,SRVUNIT=STD / INITIAL / CURRENT

,MF=D / C / E / L

[,PARAM=addr / (r)]

,PREFIX=N / p

,MACID=SII / macid

Description of the macros NSIINF

U3291-J-Z125-16-76 703

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

INFO=
Identifies the information to be output.
For contents and length of information, see table on page 704.

SRVUNIT =
Specifies the Server Unit whose data is to be displayed.
The explicit specification of this operand only makes sense if live migration has taken place
and if the desired information depends on the Server Unit.

SRVUNIT = STD
The currently valid setting for the BS2000 session is to be used.
System-global default: INITIAL.

SRVUNIT = INITIAL
Server Unit on which IPL was performed (IPL server).

SRVUNIT = CURRENT
Server Unit on which the BS2000 session (possibly after live migration) is currently running.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.
A PREFIX can be specified in the C form or D form of the macro and additionally a MACID
in the C form (see section “S-type macros” on page 29).

NSIINF Description of the macros

704 U3291-J-Z125-16-76

List of information identifiers and their meanings

Identifier Length
in bytes

Meanings of values output

BIGPGSIZ 4 Size of a “big page” in the memory (in bytes). This information is only
meaningful on x86 servers. Otherwise it is rejected with the
corresponding return code.

BS2ID

8

10

10

 8

Information on the operating system being used.
The information contains the following parts:
<PREFIX> <MACID> BSNP:

Program name (8 bytes, left-justified), e.g. 'BS2V190'
<PREFIX> <MACID> BSVR:

Version specification in DOD format, e.g. 'V19.0A00pp'
pp is the PVLU information

<PREFIX> <MACID> BSDT:
Date of operating system generation in ISO4 format
 (YYYY-MM-DD)

<PREFIX> <MACID> BSTM:
Time of operating system generation in ISO4 format
(HH:MM:SS)

CONFNAMX 21 Server type (model series) in the new expanded format, e.g.
'7.500-ËS210-FËËËËËËËË'
If the server type is not entered in the system
7.500-7.000ËËËËËËËËËËË is output.
The server designation is divided into the following four sections:
Section 1: byte 0- 4: basic type
Section 2: byte 6-10: model series
Section 3: byte 12-15: model ID
Section 4: byte 17-20: special model characteristics

Bytes 5, 11 and 16 separate these sections and always contain the
character '-' (hyphen). If there is no information on section 4,
bytes 16-20 contain blanks.

Note
The old designation format of the server type can be taken
from bytes 6 through 13 (SINF INFO=CONFNAME).

(CPUID,n) 8*n
(n=8 or
n=16)

Identifications of the CPUs.
The nth element contains the identification of the nth CPU in
hexadecimal form, as it is received from the hardware. If the nth CPU is
not available, the nth element contains binary zero (8 times X'00'). The
element number is then no longer identical to the CPU address. .

CPUIDIPL 8 Identification of the IPL CPU in hexadecimal form, as it is received from
the hardware. See also (CPUID,n).

EPOCH 1 Epoch for the TOD register (see the “Introduction to System
Administration” manual [10])

Description of the macros NSIINF

U3291-J-Z125-16-76 705

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

HSIASF 2 Provides additional information on the HSI. The following values may be
output:
AF: The operating system is running on a server with the option of

extending the virtual address space. This permits optional
access to a program space and a number of data spaces. This
access is made possible by the use of an additional set of
registers (access registers) (see section “Extended addressing
with data spaces” on page 61).

NA: No extended address space is available.

HSIBASE 6 CFCS3: HSI base type = CFCS3 (/390 servers).
X86: HSI base type = X86 (x86 servers).

HSILINE 2 Provides additional information on the HSI.
I: HSI base type CFCS3; CPU type = IX
K: HSI base type X86; CPU type = KM
UD: HSI base type not defined

HSIVM 2 Provides information as to whether a real or a virtual machine is present
Possible values:
V2 The operating system is running on a virtual machine under

VM2000.
NV The operating system is running on a real machine.

IPLDTTM
10

 8

Provides the following information:
<PREFIX> <MACID> IPDA:

Startup date of the current session in ISO4 format
(YYYY-MM-DD)

<PREFIX> <MACID> IPTM:
Startup time of the current session in ISO4 format
(HH:MM:SS)

IPLMODE 1 Provides information on the system startup mode.
Possible mode:
<PREFIX> <MACID> IPMD: dialog mode
<PREFIX> <MACID> IPMA: automatic or fast mode

NEWMSIZE 4 Size of the (physical) main memory which can be used by the software
(specified in megabytes)

MEMSIZE 4 Size of (physical) main memory available to software (in bytes).
Note
Out of preference, use NEWMSIZE, since MEMSIZE may not be
sufficient for current memory sizes.

MIGCOUNT 4 Provides information on the number of live migrations which have taken
place.
0 means that no live migrations have taken place in the session.

Identifier Length
in bytes

Meanings of values output

NSIINF Description of the macros

706 U3291-J-Z125-16-76

Return information and error flags

OSDVERS 10 Version of BS2000 in DOD format, e.g. 'V10.0A00pp'
(pp is the PVLU information)

OSIOID

 8

10

10

 8

Provides information on the I/O configuration of the operating system in
use.
The information contains the following parts:
<PREFIX> <MACID> IONP:

Program name (8 bytes, left-justified), e.g. 'OSIOV190'
<PREFIX> <MACID> IOVR:

Version specification in DOD format, e.g. 'V19.0A00pp'
pp is the PVLU information

<PREFIX> <MACID> IODT:
Generation date of the I/O configuration in ISO4 format
(YYYY-MM-DD)

<PREFIX> <MACID> IOTM:
 Generation time of the I/O configuration in ISO4 format

(HH:MM:SS)

PAGESIZE 4 hardware page size (specified in kilobytes)

SPSUFFIX 15 Provides information on the origin of the system parameters at system
startup

*NONE From <std-name> withou suffix

*SYSTEM-NAME
From <std-name>.<sys-name>, where <sys-name>
corresponds to the system name
(see the SYSNAME parameter)

*VM-NAME From <std-name>.<vm-name>.<vm-name>, where
<vm-name> corresponds to the VM name

*IOCONF-ID-NAME
From <std-name>.<ioconf-name>, where
<ioconf-name> corresponds to the IOCONF program name

*DIALOG The system parameters were entered either completely or
partially via parameter files entered in the dialog or directly
via the console.

*UNKNOWN No information on name creation is available
(only in the event of an error)

<std-name> corresponds to SYSPAR.BS2.vvv, where vvv = BS2000
version without period; for example SYSPAR.BS2.190

SYSNAME 8 System name in the format <name 1..8>

Identifier Length
in bytes

Meanings of values output

Description of the macros NSIINF

U3291-J-Z125-16-76 707

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

The desired information is output to the <PREFIX><MACID>OUTP field.

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A return code relating to the execution of the NSIINF
macro is transferred in the standard header
(aaaa=Maincode, bb=Subcode1, cc=Subcode2).

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function executed successfully

X'01' X'01' X'0001' No action: invalid specification for the INFO operand

X'02' X'01' X'0001' No action: invalid specification in INFO=(CPUID,n)

X'06' X'01' X'0001' No action: parameter cannot be used for current HSI (see BIGPGSIZ)

NSIINF Description of the macros

708 U3291-J-Z125-16-76

Example

NSIINF START
PRINT NOGEN

NSIINF AMODE ANY
GPARMOD 31
BALR 3,0
USING *,3

*
NSIOPLST NSIINF MF=D,INFO=BS2ID ————————————————————————————————————— (1)
NSIINF CSECT

LA 4,NSILIST
USING NSIOPLST,4
NSIINF MF=E,PARAM=NSILIST
MVC MESSNAME,=C'NP'
MVC MESSTXT(L'NSIIBSNP),NSIIBSNP
BAL 7,OUTPUT Call output routine ---------->
MVC MESSNAME,=C'VR'
MVC MESSTXT,NSIIBSVR
BAL 7,OUTPUT Call output routine ---------->
MVC MESSNAME,=C'DT'
MVC MESSTXT,NSIIBSDT
BAL 7,OUTPUT Call output routine ---------->
MVC MESSNAME,=C'TM'
MVC MESSTXT(L'NSIIBSTM),NSIIBSTM
BAL 7,OUTPUT Call output routine ---------->

END TERM
*
* Output routine
*
OUTPUT WROUT MESSAGE,END,PARMOD=31

MVI MESSTXT,C' ' Clear MESSTXT for next output
MVC MESSTXT+1(L'MESSTXT-1),MESSTXT
BR 7 Return ->

*
**** Definitions ****

DS 0H
NSILIST NSIINF MF=L,INFO=BS2ID ————————————————————————————————————— (2)
MESSAGE DC Y(ENDMESS-MESSAGE) Record length

DS CL2 Reserved
DC X'01' Print feed control character
DC C'NSIIBS'

MESSNAME DC CL2' ' Field indicator
DC C' = '

MESSTXT DC CL10' ' Contents
ENDMESS EQU *

END

Description of the macros NSIINF

U3291-J-Z125-16-76 709

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,nsiinf), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,nsiinf))
% ASS6011 ASSEMBLY TIME: 368 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 85 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=nsiinf
% BLS0523 ELEMENT 'NSIINF', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'NSIINF', VERSION ' ' OF '<date> <time>' LOADED
NSIIBSNP = I10BXS ——— (3)
NSIIBSVR = V19.0A00I1
NSIIBSDT = <date>
NSIIBSTM = <time>

(1) The DSECT for BS2ID (information on the operating system currently in use) is
generated.

(2) The parameter list is supplied with the information.

(3) The following information regarding the current operating system is transferred:
I10BXS: Program name
V19.0A00I1: Version (V19.0A00) and PVLU information (I1)
<date>: Date on which the operating system was generated
<time>: Time at which the operating system was generated.

NSIOPT Description of the macros

710 U3291-J-Z125-16-76

NSIOPT – Output system parameters

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 3: D/C/E/L form; see page 29

System parameters define specific options of an individual operating system.

System parameters are entered in the startup parameter file or the corresponding default
values are used. System parameters can be modified individually during a system run.
These modifications must also be saved in the startup parameter file if they are required for
future system starts.

Macro description

The NSIOPT macro provides information on nonprivileged system parameters. When the
caller has the TSOS privilege, the privileged systems parameters are also output.

All the system parameters are described with the SHOW-SYSTEM-PARAMETERS
command in the “Commands” [19] manual.

Only one system parameter can be queried for each macro call. The INFO operand is used
to select the system parameter. The desired information is transferred to an output field
defined in the FIELD and LENG operands. The data type of the field depends on the system
parameter being queried.

Macro format and description of operands

NSIOPT

[INFO='info',FIELD=addr,LENG=length]

,MF=D / C / E / L

[,PARAM=addr / (r)]

,PREFIX=N / p

,MACID=SIO / macid

Description of the macros NSIOPT

U3291-J-Z125-16-76 711

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

INFO=
Identifies the information to be output.

'info'
Identifier for the system parameter. The string “info” must be exactly 8 bytes long. If the
name of the desired system parameter is less than 8 bytes long, it must be padded to
this length with blanks.

FIELD=
Specifies the address of the field to which the information is to be output. The field length
is determined by the value of the LENG operand. The information is entered left-justified.

addr
Symbolic address of the field.

LENG=
Specifies the length of the entry in the field specified in the FIELD operand. The length is
given in the “Introduction to System Administration” manual [10]. If an incorrect value is
specified here, no entry is made in the field specified with FIELD.

length
Length in bytes (see list), specified as a decimal digit.
For system parameters of type C, information can be output to a field which is too small,
provided that only blanks are deleted from the contents of the system parameter.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.
A PREFIX can be specified in the C form or D form of the macro and additionally a MACID
in the C form.

NSIOPT Description of the macros

712 U3291-J-Z125-16-76

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A return code relating to the execution of the NSIOPT
macro is transferred in the standard header
(aaaa=Maincode, bb=Subcode1, cc=Subcode2).

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function executed successfully

X'01' X'01' X'0001' No action: invalid specification for the INFO operand

X'02' X'01' X'0001' No action: invalid specification for the FIELD operand or for the FIELD
and LENG operands

X'03' X'01' X'0001' No action: invalid specification for the LENG operand, e.g. no value
specified for LENG

X'04' X'01' X'0001' No action: the LENG operand does not match the length of the
requested system parameter

X'05' X'01' X'0001' No action: information on the requested system parameter is not
available to nonprivileged users

Description of the macros NSIOPT

U3291-J-Z125-16-76 713

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Example

NSIOPT START
NSIOPT AMODE ANY

GPARMOD 31
BALR 3,0
USING *,3

*
NSIOPLST NSIOPT MF=D —— (1)

1 * NSIOPT, VERSION=101, DATE=900911 101
1 NSIOPLST MFCHK MF=D, 101C
1 PREFIX=N, 101C
1 MACID=SIO, 101C
1 DMACID=SIO, 102C
1 DNAME=SIOPL, 101C
1 SUPPORT=(D,C,L,E), 101C
1 PARAM=, 101C
1 SVC=135 101
2 NSIOPLST DSECT ,
2 *,##### PREFIX=N, MACID=SIO #####
1 * 101
1 #INTF INTNAME=NSIOPT,REFTYPE=REQUEST, 101C
1 INTCOMP=1 101
1 * 101
1 NSIORCNE EQU 0 NO ERROR 101
1 NSIORCII EQU 1 INFO INVALID 101
1 NSIORCFI EQU 2 FIELD INVALID 101
1 NSIORCLI EQU 3 LENG INVALID 101
1 NSIORCLS EQU 4 LENG TOO SHORT 101
1 * 101
1 NSIS0002 EQU * 101
1 NSIOFHDR FHDR MF=(C,NSIO),EQUATES=NO 101
2 NSIOFHDR DS 0A
2 NSIOFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 NSIOIFID DS 0A 0 INTERFACE IDENTIFIER
2 NSIOFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 NSIOFCT DS AL1 2 FUNCTION NUMBER
2 NSIOFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 NSIORET DS 0A 4 GENERAL RETURN CODE
2 NSIOSRET DS 0AL2 4 SUB RETURN CODE
2 NSIOSR2 DS AL1 4 SUB RETURN CODE 2
2 NSIOSR1 DS AL1 5 SUB RETURN CODE 1

NSIOPT Description of the macros

714 U3291-J-Z125-16-76

2 NSIOMRET DS 0AL2 6 MAIN RETURN CODE
2 NSIOMR2 DS AL1 6 MAIN RETURN CODE 2
2 NSIOMR1 DS AL1 7 MAIN RETURN CODE 1
2 NSIOFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 NSIOINFO DS CL8 INFO 101
1 NSIOFILD DS A POINTER 101
1 NSIOLENG DS H LENGTH 101
1 NSIE0002 EQU * 101
1 NSIO# EQU (NSIE0002-NSIS0002) 101

PRINT NOGEN
NSIOPT CSECT

LA 4,NSILST
USING NSIOPLST,4
BAL 7,OUTPUT Call output routine ----------> (2)
MVC NSIOINFO,=C'SSMLGOF1' ———————————————————————————————— (3)
MVC NSIOLENG,=H'9'
BAL 7,OUTPUT Call output routine ---------->
MVC NSIOINFO,=C'ENCRYPT ' ———————————————————————————————— (4)
MVC NSIOLENG,=H'1'
BAL 7,OUTPUT Call output routine ---------->

END TERM
*
* Output routine
*
OUTPUT NSIOPT MF=E,PARAM=NSILST ——————————————————————————————————— (5)

MVC PARNAME,NSIOINFO
WROUT MESSAGE,END,PARMOD=31

2 *,@DCEO 999 921011 53531004
MVI OPTTXT,C' ' Clear OPTSTXT for next output
MVC OPTTXT+1(L'OPTTXT-1),OPTTXT
BR 7 Return ->

*
**** Definitions ****

DS 0H
NSILST NSIOPT MF=L,INFO='BLKCTRL ',FIELD=OPTTXT,LENG=6 ———————————— (6)
MESSAGE DC Y(ENDMESS-MESSAGE) Record length

DS CL2 Reserved
DC X'01' Print feed control character

PARNAME DC CL8' ' Field indicator
DC C' = '

OPTTXT DC CL10' ' Contents
ENDMESS EQU *

END
=C'SSMLGOF1'
=C'ENCRYPT '

Description of the macros NSIOPT

U3291-J-Z125-16-76 715

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,nsiopt), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,nsiopt))
% ASS6011 ASSEMBLY TIME: 366 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 92 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=nsiopt
% BLS0523 ELEMENT 'NSIOPT', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'NSIOPT', VERSION ' ' OF '<date> <time>' LOADED
BLKCTRL = PAMKEY ——— (7)
SSMLGOF1 = REQ-SPOOL
ENCRYPT = Y

(1) Generation of DSECT for addressing the output information.

(2) First call of the output routine (5).

(3) Modification of the NSIOPT data area for the second call: The system parameter
SSMLGOF1 should be output at a length of 9. The output routine (5) is then called
for the second time.

(4) Modification of the NSIOPT data area for the third call: The system parameters
ENCRYPT should be output at a length of 1. The output routine (5) is then called
for the third time.

(5) Output routine.
The value of a system parameter is first determined using the macro NSIOPT. The
determined value is then output to SYSOUT using WROUT.
The output routine is called three times in this example.

(6) Call to macro NSIOPT with MF=L for initialization of the data area. The file attribute
BLKCTRL is to be output. The length of the information to be output is 6 bytes.

NSIOPT Description of the macros

716 U3291-J-Z125-16-76

(7) Output of the determined system parameters:

– The system parameter BLKCTRL displays the value 'PAMKEY' as the default
value for the BLKCTRL file attribute.

– The system parameter SSMLGOF1 displays the value 'REQ-SPOOL', i.e.
spoolout jobs are always accepted.

– The system parameter ENCRYPT displays the value 'Y'. Passwords are
entered in the file catalog in encrypted form.

Description of the macros OPCOM

U3291-J-Z125-16-76 717

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

OPCOM – Open communication

General

Application areas: Intertask communication; see page 76
Communication; see page 163

Macro type: Type O; see page 28

Macro description

The macro OPCOM allows the user to participate in intertask communication (ITC). The
caller specifies a name, to be used as the ITC identification when sending or receiving
messages. This name is entered in the ITC participants list, unless it is already being used
by another ITC participant (see “Return information and error flags”, below).
The first participant to call the macro OPCOM implicitly causes ITC to be opened (a
communication table is created).

Macro format and description of operands

name
Name which the caller wishes to use as an ITC name. This name may consist of up to
8 characters. Alphanumeric and special characters are permitted, except for:

X'00' through X'3F'
X'41' through X'49'
X'51' through X'59'
X'62' through X'69'
X'70' through X'79'
X'80' through X'C0'
X'CA' through X'D0'
X'DA' through X'E1'
X'EA' through X'EF'
X'FA' through X'FE'

Character X'40' may only be specified as the last character of “name”.

(1)
Register R1 contains the address value of a field which contains the ITC name.
Field length = 8 bytes.

OPCOM

name / (1)

OPCOM Description of the macros

718 U3291-J-Z125-16-76

Return information and error flags

R15:
A return code relating to the execution of the OPCOM
macro is transferred in the rightmost byte of register
R15.

 a a

X'aa' Meaning

X' 00' ITC participation opened

X' 04' Operand error, ITC participation not opened

X' 08' Name already in use, ITC participation not opened

X' 0C' No system memory available to open ITC, or the internal maximum length for receive
queues has been exceeded

X' 10' ITC participation has already been enabled

Description of the macros OPSGEN

U3291-J-Z125-16-76 719

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

OPSGEN – Control of S variable generation via MIP

General

Application area: Message system; see page 161
Macro type: Type S; see page 29

Macro description

The OPSGEN macro controls the starting and termination of S variable generation by the
message system and transfers the variable name under which the variable created is to be
stored.

Macro format and description of operands

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “macro type” and are included in the
macro format.

SIGNAL=
Gives the current task the signal to start or terminate generation of structured message
output to S variables. The output contains the message text, message code, inserts and
reply area.

*START
If this signal is given, MIP starts to generate structured message output and to store it
in S variables.

OPSGEN

[SIGNAL=*START / *STOP]

,OUTPUT=*SYSOUT / *NONE

,MODE=*REPLACE / *EXTEND

[,MSGVAR=addr / (r)]

[,MSGVARL=length / addr / (r)]

[,MF=D / C / E / L / M]

[,PARAM=addr / (r)]

,PREFIX=N / p

,MACID=MHG / macid

 OPSGEN Description of the macros

720 U3291-J-Z125-16-76

*STOP
Generation of structured message output is terminated.

OUTPUT=
Determines whether or not messages from the program should be output to SYSOUT.

*SYSOUT
Messages are output to SYSOUT.

*NONE
Messages are discarded and not output.

MSGVAR=
Shows the address of an area containing the name of the required variable.
May only be specified if MF=M.

addr
Symbolic address of an area which again contains the address of the variable name.

(r)
Register containing the address of the area.

MSGVARL=
Specifies the length (max. 255) of the area addressed in MSGVAR.

length
Length of field to be specified in bytes.

addr
Symbolic address of a field 2 bytes long containing the length. This value may only be
specified in conjunction with MF=M.

(r)
Register containing the address of the 2 byte field.

MODE=
Specifies whether the existing contents of the S variable should be overwritten or whether
the newly generated messages should be added to the old contents.

*REPLACE
S variable contents are deleted prior to description with the newly generated messages.

*EXTEND
The newly generated messages are added to the existing S variable contents.

Description of the macros OPSGEN

U3291-J-Z125-16-76 721

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

03
8

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\m
n

o.
do

c

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A return code relating to the execution of the
OPSGEN macro is transferred in the standard header
(aaaa=maincode,bb=subcode1,cc=subcode2).

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function executed successfully

X'00' X'01' X'0002' Error in the parameter list

X'00' X'01' X'FFFF' Function not known

X'00' X'02' X'FFFF' Incorrect specification of UNIT/FUNCTION in standard header

X'00' X'03' X'FFFF' Incorrect specification of VERSION in standard header

X'00' X'20' X'0003' Problems with variable generation

X'00' X'20' X'0004' Error in execution of function

X'00' X'40' X'0001' SIGNAL=*STOP operand specified without prior switching on of variable
generation with SIGNAL=*START

PASS Description of the macros

722 U3291-J-Z125-16-76

PASS – Wait one second

General

Application area: Starting, interrupting and terminating; see page 72
Macro type: Type O; see page 28

Macro description

The PASS macro causes the task to wait one second.

Macro format

Example

PASS START
PRINT NOGEN
BALR 3,0
USING *,3
GEPRT ,CPU REMAINING PROGRAM TIME
GDATE TOD=CLOCK TIME OF DAY
PASS WAIT ONE SECOND
GDATE TOD=CLOCK1 TIME OF DAY
GEPRT ,CPU1 REMAINING PROGRAM TIME

DTH1 TERM
CLOCK DS CL8

DC C' '
CLOCK1 DS CL8

DC C' '
CPU DS CL6

DC C' '
CPU1 DS CL6

DC C' '
END

PASS

Description of the macros PASS

U3291-J-Z125-16-76 723

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,pass), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,pass)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 322 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 78 MSEC
//end
% ASS6012 END OF ASSEMBH
/load-executable-program library=macexmp.lib,element-or-symbol=pass, -
/ test-options=*aid
% BLS0523 ELEMENT 'PASS', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'PASS', VERSION ' ' OF '<date> <time>' LOADED
/%on %term<%d clock,clock1,cpu,cpu1>
/%r
*** TID: 005000D8 *** TSN: 2QSE ***
**
SRC_REF: 54 SOURCE: PASS PROC: PASS ************************************
**
CLOCK = |13:12:36| —— (1)
CLOCK1 = |13:12:37|
CPU = |022900| —— (2)
CPU1 = |022900|

(1) Output of the time, before and after running the macro PASS. One second has
passed.

(2) Output of the CPU time before and after running the macro PASS. No CPU time
was used.

PINF Description of the macros

724 U3291-J-Z125-16-76

PINF – Output global program information

General

Application area: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard/C/D/L/E/M form; see page 29

See also the “BLSSERV” manual [4] for information in the dynamic binder loader DBL.

Macro description

The PINF macro provides the user with information on programs that were loaded by
means of the LOAD-EXECUTABLE-PROGRAM or START-EXECUTABLE-PROGRAM (or
LOAD-PROGRAM or START-PROGRAM) command.

The following information can be requested:

– the internal program name (SELECT=INTNAME),

– the internal program version (SELECT=INTVERS),

– the creation date of the program (SELECT=INTDATE),

– the copyright name of the program (SELECT=COPRIGHT),

– the name of the library in which the program is stored (SELECT=FILENAME),

– the element name of the program in the library (SELECT=ELEMNAME),

– the element version (SELECT=ELEMVERS),

– the element type (SELECT=ELEMTYPE),

– the name that was specified in the load call in the START-PROGRAM or LOAD-
PROGRAM command (SELECT=SPECNAME),

– an indicator that shows whether the program was loaded by the static loader ELDE or
was the first module of a load unit and was loaded by DBL (SELECT=LOADTYPE).

All information is displayed in the output field in hexadecimal form.

Description of the macros PINF

U3291-J-Z125-16-76 725

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Macro format and description of operands

The operands are described in alphabetical order below.

ADDR=addr
Specifies the symbolic address of a field to which DBL is to transfer the information.

(r)
Register containing the address value “addr”. May be specified only in conjunction with
MF=M.

LEN=
Specifies the length in bytes of the output field specified in ADDR.
If this operand is not specified, the minimum length (4 bytes) is used.

integer
The minimum length is 4 bytes. If several items of information are specified in SELECT,
the total length of the output field must be the sum of the lengths of the information items
(see the SELECT operand).

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM, PREFIX and MACID, see section “S-type macros” on page 29. The valid
MF values are given at the start of the macro description under “Macro type” and are
included in the macro format.

A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form (see section “S-type macros” on page 29).

PINF

SELECT=INTNAME / INTVERS / INTDATE / COPRIGHT / FILENAME / ELEMNAME / ELEMVERS /

 ELEMTYPE / SPECNAME / LOADTYPE

,VERSION=001 / 002

,ADDR=addr / (r)

[,LEN=integer]

,MF=S / C / D / E / L / M

[,PARAM=addr / (r)]

,PREFIX=P / p

,MACID=BPI / macid

PINF Description of the macros

726 U3291-J-Z125-16-76

SELECT=
Specifies the type of information to be output. The symbolic names of the desired items of
information must be specified here. Up to 8 items of information may be requested
simultaneously. The following tables list the items of information that can be requested,
giving their symbolic names, the length of the information and a description.

Meaning of the output with VERSION=001

The letters in parentheses in the table have the following meanings:

(D): The program was loaded by the dynamic binder loader DBL. The information
refers to the first module (LLM or object module) of the load unit to be loaded.

(S): The program was loaded by the static loader ELDE (load module, C-type library
element) or it is a PAM-LLM that was loaded by the dynamic binding loader
DBL.

Symb.
name

Length
(bytes)

Description

INTNAME 41 Internal program name:
(D): – internal name of the LLM or the first CSECT name of

the object module, if it was loaded from the EAM
object module file

(S): – Internal name of the load module or PAM-LLM

INTVERS 24 interne Programmversion:
(D): – Internal version of the LLM
(S): – Internal version of the program or PAM-LLM

INTDATE 10 Creation date of the program in yyyy-mm-dd format
yyyy=year, mm=month, dd=day
(D): For LLM: creation date of LLM

For object module: execution date of the R-type element or of
the element from the EAM object module file

(S): Creation date of load module or PAM-LLM

COPRIGHT 64 Copyright name of the program
(D): Copyright name of the LLM
(S): Copyright name of the load module or PAM-LLM

FILENAME 54 (D): Name of the library (program library or OML); if the program
was loaded from the EAM object module file, the field contains
blanks

(S): Name of the cataloged file (of the load module or PAM-LLM) or
the name of the library containing the C-type element (load
module)

Description of the macros PINF

U3291-J-Z125-16-76 727

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

ELEMNAME 64 (D): For LLM: the L-type element name.
For object modules, one of the following:
– the R-type element name in the program library
– the element name in an OML or
– the first CSECT name of the object module if it was loaded

from the EAM object module file.
(S): Name of the C-type element in a program library.

ELEMVERS 24 (D): For LLM: the version of the L-type element.
For object module: the version of the R-type element in the
program library

(S): The version of the C-type element in the program library.

ELEMTYPE 8 Contains a letter identifying the element type and 7 blanks.
(D): L = LLM or R = object module
(S): C = load module

SPECNAME 64 Contains the name that was specified in the load call in the START-
PROGRAM or LOAD-PROGRAM command:
(D): The specified symbol or the string “EAM OMF” for the EAM

object module library
(S): The name of the cataloged file (of the load module or PAM-

LLM) or the name of the C-type element in a program library.

LOADTYPE 1 Indicator for the type of the loaded program:
= 0 : (S) – The program was loaded by the static loader ELDE or it is

a PAM-LLM.
î 0 : (D) – The program was loaded by DBL and the information

refers to the first module of the load unit.

Symb.
name

Length
(bytes)

Description

PINF Description of the macros

728 U3291-J-Z125-16-76

Meaning of the output with VERSION=002

The letters in parentheses in the table have the following meanings:

(D): The program was loaded by the dynamic binder loader DBL. The information
refers to the first module (LLM or object module) of the load unit to be loaded or
to a PAM-LLM.

(S): The program was loaded by the static loader ELDE (load module, C-type library
element).

Symb.
name

Length
(bytes)

Description

INTNAME 41 Internal program name:
(D): – internal name of the LLM or PAM-LLM or the first CSECT

name of the object module, if it was loaded from the
EAM object module file

(S): – Internal name of the load module

INTVERS 24 interne Programmversion:
(D): – Internal version of the LLM or PAM-LLM
(S): – Internal program version

INTDATE 10 Creation date of the program in yyyy-mm-dd format
yyyy=year, mm=month, dd=day
(D): For LLM/PAM-LLM: creation date of LLM/PAM-LLM

For object module: execution date of the R-type element or of
the element from the EAM object module file

(S): Creation date of load module

COPRIGHT 64 Copyright name of the program
(D): Copyright name of the LLM or PAM-LLM
(S): Copyright name of the load module

FILENAME 54 (D): Name of the library (program library or OML) or filename of the
PAM-LLM; if the program was loaded from the EAM object
module file, the field contains blanks

(S): Name of the cataloged file (of the load module) or the name of
the library containing the C-type element (load module)

ELEMNAME 64 (D): For LLM: the L-type element name.
For object modules, one of the following:
– the R-type element name in the program library
– the element name in an OML or
– the first CSECT name of the object module if it was loaded

from the EAM object module file.
(S): Name of the C-type element in a program library.

ELEMVERS 24 (D): For LLM: the version of the L-type element.
For object module: the version of the R-type element in the
program library

(S): The version of the C-type element in the program library.

Description of the macros PINF

U3291-J-Z125-16-76 729

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

VERSION=
Defines the required macro version and thus the layout of the output.

001
Version 1 of the PINF macro is used. In this case no distinction is made between load
modules and PAM-LLMs in the output.

002
Version 2 of the PINF macro is used. This specification is supported as of BLSSERV
V2.5.

The information output for PAM-LLMs is different from the information for load modules.

ELEMTYPE 8 Contains a letter identifying the element type and 7 blanks.
(D): L = LLM or R = object module
(S): C = load module

SPECNAME 64 Contains the name that was specified in the load call in the START-
PROGRAM or LOAD-PROGRAM command:
(D): The specified symbol or the string “EAM OMF” for the EAM

object module library or the filename of the PAM-LLM
(S): The name of the cataloged file (of the load module) or the name

of the C-type element in a program library.

LOADTYPE 1 Indicator for the type of the loaded program:
= 0 : (S) – The program was loaded by the static loader ELDE.
î 0 : (D) – The program was loaded by DBL and the information

refers to the first module of the load unit.

Symb.
name

Length
(bytes)

Description

PINF Description of the macros

730 U3291-J-Z125-16-76

Notes on the macro call

A macro in the form MF=M is normally used to modify the parameter list dynamically.

If, however, the parameter list is modified directly with MF=D by means of symbolic names,
the user should bear in mind the following points for the macro processor:

– The entries must be made sequentially from the first position.

– Entries that follow the entries currently available are ignored.

– A null entry amongst the entries currently available is ignored, but is nevertheless
treated as a valid entry.

Return information and error flags

The requested information is transferred to the field specified in the ADDR operand.

Standard
header:

The following return code relating to the execution of
the PINF macro is transferred in the standard header
(cc=Subcode2,bb=Subcode1,aaaa=Maincode)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally

X'00' X'40' X'0001' The desired information is not yet defined (warning) or is no longer
supported.

X'00' X'01' X'0010' The output field is too small

X'00' X'01' X'0020' An unknown symbolic name was specified in SELECT

X'00' X'01' X'0070' The memory area for the output field is not assigned

X'00' X'20' X'0090' Internal error

X'00' X'01' X'0100' The SELECT operand is missing

X'00' X'01' X'0110' More than 8 items of information were specified for SELECT

X'00' X'01' X'FFFF' The function is no longer or not yet supported

X'00' X'02' X'FFFF' The function is not available

X'00' X'03' X'FFFF' The version of the interface is not supported

Description of the macros PINF

U3291-J-Z125-16-76 731

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Example

The PINFBSP program calls the PINF macro and outputs the following information:

– the internal program name
– the library name
– the name of the library element
– the element type
– the element version
– the name specified in the load call.

PINFBSP CSECT
PINFBSP AMODE ANY
PINFBSP RMODE ANY

BASR 10,0
USING *,10
GPARMOD 31
PRINT GEN
EJECT

*
***** PINF SELECT = INTNAME *****
*
INTNAM MVC MTEXT(24),=CL24'PINF SEL=INTNAME'

MVC MEXPECT(4),=XL4'00000000'
PINF SELECT=INTNAME,ADDR=ZONE,LEN=41 ——————————————————————— (1)
L 15,4(1) ——— (2)
CL 15,MEXPECT
BE WINTNAM ——— (3)
BAS 12,MEREXP ——— (4)
B FILNAM —— (5)

WINTNAM MVC MAREA,MTEXT ——— (6)
MVC ZAREA(41),ZONE
BAS 12,WRINFO

*
***** PINF SELECT = FILENAME *****
*
FILNAM MVC MTEXT(24),=CL24'PINF SEL=FILENAME'

MVC MEXPECT(4),=XL4'00000000'
PINF SELECT=FILENAME,ADDR=ZONE,LEN=54 —————————————————————— (7)
L 15,4(1)
CL 15,MEXPECT
BE WFILNAM
BAS 12,MEREXP
B ELMT

WFILNAM MVC MAREA,MTEXT ——— (8)
MVC ZAREA(54),ZONE
BAS 12,WRINFO

*

PINF Description of the macros

732 U3291-J-Z125-16-76

***** PINF SELECT = ELEMNAME, ELEMVERS, ELEMTYPE *****
*
ELMT MVC MTEXT(24),=CL24'PINF SEL=ELEMxxxx'

MVC MEXPECT(4),=XL4'00000000'
PINF SELECT=(ELEMNAME,ELEMVERS,ELEMTYPE),ADDR=ZONE,LEN=96 —— (9)
L 15,4(1)
CL 15,MEXPECT
BE WELMT
BAS 12,MEREXP
B SPNAM

WELMT MVC MAREA(24),=CL24'PINF SEL=ELEMNAME' ———————————————————— (10)
MVC ZAREA(64),ZONE
BAS 12,WRINFO

*
MVC MAREA(24),=CL24'PINF SEL=ELEMVERS' ———————————————————— (11)
MVC ZAREA(24),ZONE+64
BAS 12,WRINFO

*
MVC MAREA(24),=CL24'PINF SEL=ELEMTYPE' ———————————————————— (12)
MVC ZAREA(8),ZONE+88
BAS 12,WRINFO

*
***** PINF SELECT = SPECNAME *****
*
SPNAM MVC MTEXT(24),=CL24'PINF SEL=SPECNAME'

MVC MEXPECT(4),=XL4'00000000'
PINF SELECT=SPECNAME,ADDR=ZONE,LEN=64 —————————————————————— (13)
L 15,4(1)
CL 15,MEXPECT
BE WSPNAM
BAS 12,MEREXP
B MTERM

WSPNAM MVC MAREA,MTEXT ——— (14)
MVC ZAREA(64),ZONE
BAS 12,WRINFO

*
MTERM TERM ——— (15)
MTERMD TERM DUMP=Y —— (16)
*
**** Definitions ****
MEREXP DS 0H

MVC MPACK(4),MEXPECT —————————————————————————————————————— (17)
UNPK MEXP+1(9),MPACK(5)
NC MEXP+1(8),=X'0F0F0F0F0F0F0F0F'
TR MEXP+1(8),MTAB
MVI MEXP,C'('
MVC MEXP+9(10),MCEXP

*

Description of the macros PINF

U3291-J-Z125-16-76 733

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

MEREAL ST 15,MPACK —— (18)
UNPK MRS(9),MPACK(5)
NC MRS(8),=X'0F0F0F0F0F0F0F0F'
TR MRS(8),MTAB
MVI MRS+8,MBLANK

*
MEWROUT DS 0H

WROUT MMSG,MTERMD ——— (19)
MVI MTEXT,MBLANK —— (20)
MVC MTEXT+1(51),MTEXT
BR 12

*
WRINFO DS 0H

WROUT AREA,MTERMD ——— (21)
MVI ZAREA,MBLANK
MVC ZAREA+1(95),ZAREA
BR 12

*
**** DATA DEFINITION ****
*
AREA DC Y(LAREA)

DC CL3' '
MAREA DC CL24' '
ZAREA DC CL96' '
LAREA EQU *-AREA
MMSG DC Y(MMSGE)

DC C' ==ERROR== '
MTEXT DC CL24' '
MRS DC CL9' '
MEXP DC CL19' '
MMSGE EQU *-MMSG
MBLANK EQU X'40'
MCEXP DC C' EXPECTED)'
MPACK DS F

DC X'00'
MTAB DC C'0123456789ABCDEF'
MEXPECT DC F'0'
ZONE DS CL96

END

(1) The PINF macro is called. The internal program name is requested; this name has
a maximum length of 41 bytes and is to be stored in the ZONE field.

(2) The macro return code, which is stored in the second word of the standard header,
is loaded into register R15. Then the actual return code is compared with the
expected return code X'00000000'.

PINF Description of the macros

734 U3291-J-Z125-16-76

(3) Once the macro has been executed successfully, the program goes on to output the
information returned by PINF.

(4) In the event of unsuccessful macro execution, the program branches to the error
handling routine.

(5) Once error handling is complete, the program continues with the next PINF call.

(6) The internal program name written to the ZONE field by the PINF macro is output.

(7) The PINF macro is called again. The name of the program library is requested; this
name has a maximum length of 54 bytes and is to be stored in the ZONE field.

(8) The library name is output.

(9) The PINF macro is called again. The following items of information are requested:
– the name of the element in the program library,
– the element version,
– the element type.
A total of 96 bytes must be reserved for these three items of information.

(10) The element name is output. It begins at the start of the ZONE field and has a length
of 64 bytes.

(11) The element version is output. It starts at the symbolic address ZONE+64 and has
a length of 24 bytes.

(12) The element type is output. It starts at the symbolic address ZONE+88 and has a
length of 8 bytes.

(13) The PINF macro is called again. The symbol name specified in the load call (e.g. in
START-EXECUTABLE-PROGRAM) is requested. The symbol name has a
maximum length of 64 bytes and is to be stored in the ZONE field.

(14) The symbol name specified in the load call is output.

(15) The program is terminated normally.

(16) If errors occurred in the WROUT macro, the program is terminated with a dump.

(17) The expected macro return code is edited as a string to be output at a later time.

(18) The actual macro return code is edited as a string to be output at a later time.

(19) An error message is issued if the PINF macro returned a return code
≠ X'00000000'. In this case, the following message is issued:

where:
zzzzzzzz is the selected information
xxxxxxxx is the value of the actual macro return code

==ERROR== PINF SEL=zzzzzzzz xxxxxxxx (00000000 EXPECTED)

Description of the macros PINF

U3291-J-Z125-16-76 735

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

(20) The fields MTEXT, MRS and MEXP are assigned blanks (X'40') and the program is
continued.

(21) The requested program information is output. The ZAREA field is then assigned
blanks (X'40') and the program is continued.

Runtime log

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,pinfbsp), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,pinfbsp))
% ASS6011 ASSEMBLY TIME: 381 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 143 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=pinfbsp
% BLS0523 ELEMENT 'PINFBSP', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'PINFBSP', VERSION ' ' OF '<date> <time>' LOADED
PINF SEL=INTNAME PINFBSP
PINF SEL=FILENAME :2OSG:$QM212.MACEXMP.LIB
PINF SEL=ELEMNAME PINFBSP
PINF SEL=ELEMVERS ~
PINF SEL=ELEMTYPE L
PINF SEL=SPECNAME PINFBSP

(22) The requested information is output to SYSOUT.
The internal program name is PINFBSP. The module was fetched from the program
library MACEXMP.LIB, where it is stored as an LLM with the name PINFBSP. The
name PINFBSP was specified in the load call (in START-EXECUTABLE-
PROGRAM).

POSSIG Description of the macros

736 U3291-J-Z125-16-76

POSSIG – Post signal request

General

Application area: Eventing; see page 94
Macro type: Type S, MF format 1: standard/L/E form; see page 29

In the event of macro chaining, all the macros chained must make use of the same
interface. If the 24-bit interface is used, a 4-byte field is generated for the post code. If the
31-bit interface is used, the post code may have a length of either 4 or 8 bytes.

Macro description

This macro is used to indicate to the event item that an event has occurred. The event item
must previously have been assigned to the task of the calling program (by calling the ENAEI
macro).
The program which issued the POSSIG macro is always continued. It can also specify a
contingency process, which is initiated as soon as POSSIG satisfies a “SOLicit SIGnal
request” (SOLSIG) or as soon as a prescribed period of time has elapsed. This contingency
process provides information on whether or not the signal was used within this period of
time.
The contingency process must already have been defined (by ENACO).

Macro format and description of operands

POSSIG

EINAME=name

EINAMAD= addr

(r)

[,EINAMLN=length]

,SCOPE=

LOCAL

GROUP

USER_GROUP

GLOBAL

EIID= addr

(r)

[SPOSTAD= addr

(r)

SPOSTR=r

],SPOSTL=1/ 2,

Description of the macros POSSIG

U3291-J-Z125-16-76 737

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

EINAME=name
Specifies the name of the event item to which the event is to be signaled. The event item
must previously have been defined by the ENAEI macro. The name of the event item is
unique only if SCOPE is also specified.

EINAMAD=
Specifies the address of the name of the event item. This entry is unique only if SCOPE is
also specified.

addr
Symbolic address of the field containing the name.

(r)
Register containing the address.

EINAMLN=
Specifies the length in bytes of the event item name. If the operand is missing, the length
attribute of the EINAMAD operand is assumed if EINAMAD=addr is specified;
if EINAMAD=(r), the maximum length (54 bytes) is assumed.

length
Length of the event item name.

SCOPE=
Specifies the scope of the event item (i.e. participants authorized to use it).

LOCAL
The use of the event item is limited to the calling task.

GROUP
All the tasks with the same user ID as the calling task are participants.

POSSIG (cont.)

[,LIFETIM=sec / (r)]

,CONTINU=NO / YES / SOLSIG

[,COID=addr / (r)]

[,COMAD=addr / (r)]

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

POSSIG Description of the macros

738 U3291-J-Z125-16-76

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.
The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP;
the program reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

EIID=
Specifies the ID of the event item. The ID is supplied to the user by the ENAEI macro call.
If the ID is used instead of the name to identify the event item, it speeds up processing. The
ID is unique.

addr
Symbolic address of a 4-byte field containing the event item ID.

(r)
Register containing the address of the field.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

Description of the macros POSSIG

U3291-J-Z125-16-76 739

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

SPOSTAD=
Specifies the field containing the post code information to be transferred to the
corresponding program (which issues the SOLSIG macro) (see section “Eventing” on
page 94). The post code has a length of either 4 or 8 bytes.
It is also transferred to the contingency process, if present (COID operand). Post code
X'00000000' is not transferred.
Processing is speeded up if SPOSTR, which offers the same function, is used instead of
SPOSTAD.

addr
Symbolic address of the field containing the post code information.
Length = 4 or 8 bytes.

(r)
Register containing the address value “addr”.

SPOSTR=
Specifies a register containing the post code information to be transferred to the
corresponding program (which issues the SOLSIG macro).
If the 8-byte post code (= 2 words) is used, the register following the specified register (in
number) must contain the 2nd word of the post code. Post code X'00000000' is not
transferred.

(r)
Register containing the post code. Registers R0 and R1 should not be used.

SPOSTL=
Gives the length of the post code in words. If the 24-bit interface (PARMOD=24) is used,
only SPOSTL=1 is permitted.

1
The post code is 1 word (4 bytes) long.

2
The post code is 2 words long.

LIFETIM=
Specifies the time for which the signal is to be used by a corresponding SOLSIG request.
The event information code informs the contingency process, if any, whether or not the
signal was used within this period of time.

sec
Time in seconds. 1 ≤ sec ≤ 43200
The processing accuracy for this operation is +10 seconds.
Default value: 600 sec.

(r)
Register containing the time specification in seconds.

POSSIG Description of the macros

740 U3291-J-Z125-16-76

CONTINU=
Permits POSSIG macro chaining with further POSSIG macros or with a SOLSIG macro. All
macros chained must make use of the same interface.

NO
No further POSSIG or SOLSIG macro immediately follows the POSSIG macro.

YES
A further POSSIG macro immediately follows a POSSIG macro.

SOLSIG
A SOLSIG macro immediately follows the POSSIG macro.

Operands used to specify a contingency process

COID=
Specifies the ID of the contingency process. The ID is supplied to the user by the ENACO
macro.

addr
Symbolic address of the field containing the ID.

(r)
Register containing the address value “addr”.

COMAD=
Specifies a contingency message. This contingency message is passed to the contingency
process (register R1). A message issued here replaces any message that might have been
issued when the contingency was defined (see section “Contingency processes” on
page 110).

addr
Symbolic address of a word containing a contingency message.

(r)
Register containing the address.

Notes on the macro call

– The POSSIG queue of an event item cannot accept an unlimited number of requests.
In order to protect the system, the number of POSSIG requests in the queue of an event
item is limited to a machine-dependent maximum value.

– If a program (package) has defined a contingency process that is written in SPL,
register 12 must contain the address of the SPL program manager for all ENACO,
SOLSIG and POSSIG calls.

Description of the macros POSSIG

U3291-J-Z125-16-76 741

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Return information and error flags

During macro processing, register R1 contains the operand list address.

The following applies to macro chaining (CONTINU operand):

aa = X'00' All macro calls in the chain were completed.

aa = X'04' A macro in the chain was not completed (all preceding macros in the chain
were completed). The chain is aborted at this point.
The error cause is contained in the corresponding secondary indicator.

Information on post code usage is supplied on page 96.

The various meanings of the event information code values for contingency processes are
described in table 8 on page 117.

R15:
A structured return code (aa = primary return code,
bb = secondary return code) relating to the execution
of the POSSIG macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'00' X'00' Function executed: the signal was successfully sent

X'0C' X'04' No action: the event item established by the system was not assigned to the task
of the calling program

X'10' X'04' No action: invalid operands were specified

X'14' X'04' No action: invalid name or ID. An event item with the specified name does not exist

X'18' X'04' No action: the maximum number (400) of contingency processes permitted per
basic task has been exceeded

X'24' X'04' No action: invalid contingency ID. No contingency process with this ID exists

X'28' X'04' No action: the maximum number of requests in the POSSIG queue was reached

POSSIG Description of the macros

742 U3291-J-Z125-16-76

Example

POSSIG START
PRINT NOGEN

POSSIG AMODE ANY
GPARMOD 31

1 *,MACRO: GPARMOD, VERSION: VER121
BALR 5,0
USING *,5
ENAEI EINAME=EVENT,SCOPE=GROUP,EIIDRET=KKEV ———————————————— (1)
POSSIG EIID=KKEV ——— (2)
ST 15,RCFIELD1
ENACO CONAME=CONT,COADAD=COANFAD,COIDRET=KKCO —————————————— (3)
POSSIG EIID=KKEV,COID=KKCO,LIFETIM=60 —————————————————————— (4)
ST 15,RCFIELD2

LOOP CLI SWITCH,'0'
BE LOOP
ST 2,ACKNO —— (5)
DISCO COID=KKCO
ST 15,RCFIELD3
DISEI EIID=KKEV
ST 15,RCFIELD4

DTH1 TERM
COANF BALR 6,0

USING *,6
CONTXT STACKR=(2),OWNR=(2),FUNCT=WRITE ————————————————————— (6)
MVI SWITCH,'1'
RETCO

KKEV DS F
KKCO DS F
COANFAD DC A(COANF)
SWITCH DC C'0'
*
ACKNO DS F
RCFIELD1 DS F
RCFIELD2 DS F
RCFIELD3 DS F
RCFIELD4 DS F

END

Description of the macros POSSIG

U3291-J-Z125-16-76 743

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,possig), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,possig)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 509 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 84 MSEC
//end
% ASS6012 END OF ASSEMBH
/load-executable-program library=macexmp.lib,element-or-symbol=possig, -
/ test-options=*aid
% BLS0523 ELEMENT 'POSSIG', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'POSSIG', VERSION ' ' OF '<date> <time>' LOADED
/%in dth1;%r
STOPPED AT LABEL: DTH1 , SRC_REF: 158, SOURCE: POSSIG , PROC: POSSIG
/%d %@(rcfield1) -> %x
*** TID: 005000D8 *** TSN: 2QSE ***
CURRENT PC: 000000A6 CSECT: POSSIG **************************************
V'000000FC' = POSSIG + #'000000FC' —————————————————————————————————— (7)
000000FC (000000FC) 00000000
/%d %@(rcfield2) -> %x
V'00000100' = POSSIG + #'00000100' —————————————————————————————————— (8)
00000100 (00000100) 00000000
/%d %@(quitt) -> %x
V'000000F8' = POSSIG + #'000000F8' —————————————————————————————————— (9)
000000F8 (000000F8) 00000004
/%d %@(rcfield3) -> %x, %@(rcfield4) -> %x ———————————————————————————— (10)
V'00000104' = POSSIG + #'00000104'
00000104 (00000104) 04000000
V'00000108' = POSSIG + #'00000108'
00000108 (00000108) 04000000
/%r

(1) The event item EVENT is defined. KKEV is the address of the ID.

(2) The POSSIG macro is used to post a signal to the event item. A contingency
process as acknowledgment is not specified. As no other participant requests the
signal by means of SOLSIG, the signal remains in the POSSIG event queue until
the waiting time has expired (here 600 seconds, default value).

POSSIG Description of the macros

744 U3291-J-Z125-16-76

(3) The COANF contingency process is defined by the ID address KKCO (see the
ENACO macro).

(4) A second signal is posted to the event item. The contingency process (ID address
KKCO) is to be started after 60 seconds unless a previous SOLSIG macro has
already initiated the start. After this POSSIG call the program idles in a wait loop.

(5) The basic process stores register 2 (event information code) under ACKNO, closes
the contingency definition (DISCO) and disables eventing (DISEI).

(6) The COANF contingency process is started. The event information code in register
2 specifies that no SOLSIG macro arrived. By means of the CONTXT macro it is
transferred from register 2 of the contingency process to register 2 of the basic
process (see the CONTXT macro). After this the loop variable is changed to open
the idle loop and the contingency process is terminated by means of the RETCO
macro.

(7) Return switch after the first POSSIG macro (see (2)): posting of signal was
successful.

(8) Return switch after the second POSSIG macro (see (4)): posting of signal was
successful.

(9) Event information code of contingency process: the expected event did not occur
within the waiting time. Neither contingency message nor post code exists.

(10) Return switch after the DISCO and DISEI macros: the contingency definition and
the event item were disabled.

For further examples, see the sections “Eventing” (page 106) and “Contingency
processes” (page 118)

Description of the macros RDATA

U3291-J-Z125-16-76 745

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

RDATA – Read record from SYSDTA

General

Application areas: Input/output of files and records; see page 156
Data terminal communication; see page 160

Macro type: Type S, MF format 1: 24-bit interface: standard/E/L form
31-bit interface: standard/E/L/C/D form; see page 29

This macro description applies to TIAM V13.2A

The following applies when using the 31-bit interface:

– Neither symbolic names nor equates are generated for the standard header when
MF=C/D is used. In the event of the operand list being supplied dynamically, the
initialization values for the standard header should be taken from an operand list
generated with MF=L.
A user dump is produced if the UNIT field is supplied with an incorrect value.

– No return code is transferred in the standard header.

The CUPAB macro generates a DSECT of the RDATA operand list for the 24-bit interface
format.

Macro description

RDATA enables the next data record to be read from SYSDTA.
SYSDTA can be assigned to a PLAM library element, a cataloged SAM or ISAM file or -
typically - the user's terminal.
The record (or, in the case of the terminal, the message) is placed in an area of the user
program as a variable-length record.

The keyboard is locked for the 8160, 9749 and 975x Data Display Terminals after an input
with RDATA. This means that no further inputs are possible before the next output; only
short codes are permitted.

If a “BREAK” is detected during the read operation, the program counter is reset to the start
of the macro expansion, with the result that the macro is repeated after the interrupt has
been processed.

On execution of the macro (in the case of format 1), the specified operands are stored in
an operand table and the start address of this table is loaded into register R1. In the case
of format 2, the table specified in the user program is used.

RDATA Description of the macros

746 U3291-J-Z125-16-76

Macro format 1 and description of operands

record
Symbolic address of the field to which the data record to be read is transferred. The field
starts with a record length field. Record format:
Byte 0-1: record length + 4-byte record length field
Byte 2-3: reserved
Byte 4-n: data record.
Example

RDATA

record,error[,length][,edit][,A]

,KEYOUT=N / Y

,KEYPOS=N / Y

,KEYLEN=N / Y

,RC=OLD / NEW

[,VTSUCBA=addr]

[,TIMER=value]

,PARMOD=24 / 31

[,MF=C / (C,pre) / (E,...) / (D,pre) / D / L]

RECORD
LENGTH
RESERV
DATA

DS
DS
DS
DS

0CL74
CL2
CL2
CL70

[

,MODE=COMP ,ITRSUP= NO

YES

,ILINEND=
NO

YES

 ,ILCASE= NO

YES

,IHDR=
NO

YES

 ,IGETBS= NO

YES

,MODE=LINE ,ILCASE= NO

YES

,IGETBS=
NO

YES

 ,IGETFC= NO

YES

,IGETIC=
NO

YES

 ,ICFD= NO

YES

]

Description of the macros RDATA

U3291-J-Z125-16-76 747

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

error
Symbolic address (name) in the user program to which a branch is made:
– when an error occurs (read error, end of file,...)
– if operand A is set.
If an error occurs, register R14 contains the address of the next instruction after the RDATA
macro call. The error code is transferred in register R15.
31-bit interface: if error = 0 (address X'00..0') is specified, the program continues with the
next instruction after the RDATA macro call.

length
Specifies the size of the read input area (“record”) including 4 bytes for the record length
field. The maximum size permitted is 32767 bytes. If this operand is omitted, the length
attribute of “record” is assumed.

edit
Specifies the edit option for a message input from the terminal. This operand is not
necessary when standard functions (all edit bits = 0) are used, when a MODE specification
is made or when the VTSU control block is used. Direct specification (X'xx') enables only
the first edit byte for input to be set to the same meaning as specified in the CUPAB macro
description.

Notes
This parameter only continues to be supported for reasons of compatibility.
The edit options should be controlled via MODE specifications (see the MODE
operand) or via the VTSU control block (see the VTSUCBA operand).

A
The user program is notified of the initial standard assignment and each subsequent
assignment to SYSDTA. This notification occurs via the error address (“erraddr”) as soon
as the read operation has been completed. The assignment code is stored as follows:
24-Bit interface: in the leftmost byte of register R15.
31-Bit interface: in the CURAIND field of the operand list.

KEYLEN=
Determines whether or not the ISAM key length is to be stored. This operand is evaluated
only if SYSDTA is assigned to an ISAM file.

N
The length of the ISAM key is not stored.

Y
The length of the ISAM key decremented by 1 is stored as follows:
– 24-bit interface: in the rightmost byte of register R0.
– 31-bit interface: in the CURKEYL field of the operand list.

RDATA Description of the macros

748 U3291-J-Z125-16-76

KEYOUT=
Determines whether the record is to be transferred with or without the ISAM key. This
operand is evaluated only if SYSDTA is assigned to an ISAM file.

N
The ISAM key is not to be removed.

Y
The ISAM key is removed.

KEYPOS=
Determines whether or not the ISAM key position is to be stored. This operand is evaluated
only if SYSDTA is assigned to an ISAM file.

N
The ISAM key position is not stored.

Y
The ISAM key position decremented by 1 is stored as follows:
24-bit interface:
– in the middle two bytes of register R0 if KEYLEN=Y is specified
– in the two rightmost bytes of register R0 if KEYLEN=N is specified.
31-bit interface: in the CURKEYP field of the operand list.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.
A prefix (pre = 1..3 letters) can be specified in the C form and D form of the macro, as shown
in the macro format.
Default value: pre = CUR

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

Description of the macros RDATA

U3291-J-Z125-16-76 749

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Note
Any character string beginning with “Y” has the same meaning as the “Y” entry. Any
character other than “Y” is interpreted as “N”; similarly any character string beginning
with a character other than “Y” has the same effect as an “N” entry and gives rise to an
MNOTE message.

The following operands are interpreted only if SYSDTA is assigned to the terminal. The
MODE specifications together with the edit options continue to be supported for
compatibility reasons only. They are now summarized in the VTSU control block (VTSUCB,
see the VTSUCB macro).

MODE=COMP
Specifies compatible mode. Symbolic operands enable the user program to use all the edit
options as defined in the edit option table (see the CUPAB macro). Any specifications made
in the “edit” operand are ignored. Control characters in the text are passed unchecked to
the user program. This operating mode is compatible with previous versions (compatible
terminals supported: 8103, 8110, 8150, 8152, 8161).
This mode is interpreted as MODE=LINE for the devices 3270, 8160, 8162, 9749, 975x. All
edit options other than ILCASE, IGETBS are rejected (RC: X'08').

MODE=LINE
If SYSDTA is a terminal, it is treated as a logical line terminal. The message may be
structured with logical control characters (see the VTCSET macro). A device-specific
message header is not provided. The operands for message editing are interpreted.
If SYSDTA is a cataloged file, i.e. not a terminal, the operands for message editing are not
interpreted. For example, lowercase letters are not converted into uppercase letters if
SYSDTA is a cataloged file and ILCASE has the NO value (default value). Logical control
characters in the message are also not interpreted.

ICFD=
Specifies whether confidential data is to be protected.

NO
No precautions are to be taken to protect confidential data.

YES
The input data is confidential and is to be invisible at the terminal. Depending on the
terminal used, this is implemented by blanking or clearing the screen or by overwriting
the input line in the case of printer terminals.

IGETBS=
Determines whether underline characters (X'6D') are passed to the user program. This
operand should be specified only for 8103 Data Display Terminals.

NO
Underline characters are not passed to the user program. Instead, the system performs
the correction function.

RDATA Description of the macros

750 U3291-J-Z125-16-76

YES
The underline characters (X'6D') are passed to the user program without being
evaluated by the system.

IGETFC
Determines whether a function key code is to be transferred.

NO
No function key code is to be transferred.

YES
The 5th byte of the input area is to contain the standardized function key code. This
code identifies the terminal key used to initiate data transfer (for standardized function
key codes see the appendix).

IGETIC=
Determines whether the input source is to be changed.

NO
The input source is not to be changed.

YES
Input is to be from the connected ID card reader. The input data can consist only of ID
card information or of the short code K14. This entry is permitted only for 8160, 9749,
975x and 3270 Terminals with a defined ID card reader (see also the TSTAT macro,
TYPE=TCHAR). The IGETIC operand is ignored if ICFD=YES is also specified or if no
ID card reader is connected.

IHDR=
Specifies how the message header is to be handled.

NO
The message header is not transferred to the user program.

YES
The entire message header is transferred to the user program. In the case of 3270
Terminals, the message header consists of the application ID (AID byte) and the 2-byte
cursor position.

ILCASE=
Determines whether a distinction is to be made between uppercase and lowercase letters.

NO
All lowercase letters are transferred to the user program in uppercase format.

YES
Lowercase letters are also transferred to the user program.

Description of the macros RDATA

U3291-J-Z125-16-76 751

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

ILINEND=
Specifies how carriage return and line feed characters are to be handled.

NO
The carriage return and line feed characters are not passed to the user program.

YES
The carriage return and line feed characters are passed to the user program.

ITRSUP=
Specifies whether or not the translation from device code to EBCDIC is to be suppressed.

NO
Translation from device code to EBCDIC is not suppressed. The user program receives
the message in EBCDIC.

Exception
In the case of the 8161 Data Display Terminal, the message header is always supplied
in the device code.

YES
Translation from device code to EBCDIC is suppressed. The user program receives the
message in the device code. This entry is not valid for the 8161 Data Display Terminal.

RC=
Determines where the return code is to be stored.
This operand is permitted only for a 31-bit interface.

OLD
The return code is stored in the rightmost byte of register R15.

NEW
The return code is stored both in register R15 and in the standard header. All 4 bytes
of register R15 are allocated for evaluation. A 4-byte return code is supplied only if
SYSDTA reads from the data display terminal. In all other cases, only a 1-byte return
code is supplied, irrespective of the return code value.

TIMER=value
Defines a maximum wait time for input. If no input is received within the defined wait time,
a return code is issued. This operand may be specified only for the 31-bit interface.

value
Wait time of 10 to 3600 seconds. The default value is UNLIMITED, i.e. no timer is used.

RDATA Description of the macros

752 U3291-J-Z125-16-76

VTSUCBA=addr
Defines the address of a VTSUCB generated with MF=L. This When the VTSUCBA
operand is used, the MODE operand and the following EDIT options are ignored (the
operand value is set to X'FF' in the parameter list). This means that all desired EDIT options
must be specified in the VTSUCB.
This operand may be specified only for the 31-bit interface.
The VTSUCB is not used by default.

addr
Symbolic address (name) of the VTSUCB.

Macro format 2 and description of operands

(1)
Register R1 contains the operand list address. The list must be aligned on a word boundary.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

RDATA

(1) [,PARMOD=24 / 31]

Description of the macros RDATA

U3291-J-Z125-16-76 753

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Layout of the data area

– When using the 24-bit interface, the values for input edit byte 1/2 should be taken from
the table specified with the CUPAB macro.

– When using the 31-bit interface, they should be taken from a data list generated with
MF=C/D.

– Assignment code for SYSDTA

Interface Byte Contents

31-bit interface 0 - 7

8 - 11
12 - 15

16
17
18
19

20 - 21
22
23

24 - 25
26 - 27
28 - 31
32 - 33
34 - 35

Standard header. For structure see section “Standard header” on
page 43
The initialization values should be taken from an operand list generated
with MF=L. No return code is transferred in the standard header if
RC=OLD.
Address to be branched to if an error occurs (operand “error”).
Address of the field to which the data record read is transferred
(operand “record”).
Input edit byte 1
Input edit byte 2
Assignment code for SYSDTA
Flag indicating use of VTSUCB and return code handling
Maximum length of the data record to be read (operand “length”)
Flag for edit byte of ISAM key
SYSDTA assignment indicator (Bit 20 =1 ï operand A)
Position of the ISAM key
Length of the ISAM key
Address of the VTSUCB
Timer values
Reserved (X'00000000')

24-bit interface 0
1 - 3

4
5

6 - 7
8

9 - 11

Input edit byte 1
Address of the field to which the data record read is transferred
(operand ' record')
Flag
Input edit byte 2
Maximum length of the data record to be read (operand “length”).
SYSDTA assignment indicator (Bit 20 =1 ï operand A)
Address to be branched to if an error occurs (operand “error”).

24-bit interface: The assignment code is transferred in the leftmost byte of register
R15

31-bit interface: The assignment code is transferred in the CURAIND field of the
RDATA operand list.

RDATA Description of the macros

754 U3291-J-Z125-16-76

Code values and their meaning

– Flag byte and its meaning:
Bit 27 = 1/0 corresponds to KEYOUT=Y/N.
Bit 26 = 1/0 corresponds to KEYPOS=Y/N.
Bit 25 = 1/0 corresponds to KEYLEN=Y/N.

Value Meaning

X'00' Assignment for SYSDTA is unchanged

X'04' SYSDTA is assigned to a SAM file

X'08' SYSDTA is assigned to an ISAM file

X'14' SYSDTA is assigned to a terminal

X'18' SYSDTA is assigned to an S variable

X'20' SYSDTA is assigned to a PLAM library element

Description of the macros RDATA

U3291-J-Z125-16-76 755

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Return information and error flags

– Where possible, the system corrects any edit options that are invalid for a particular
device or for the operating mode MODE=.

– During macro processing, register R1 contains the operand list address.

if PARMOD=24:

if PARMOD=31, RC=OLD:

Return codes that may occur in addition to those described under PARMOD=24 are X'24'
(Error in VTSUCB) and the return codes which, in accordance with conventions, apply to
all macros (see the table “Standard return codes” on page 43).

R15:
A return code relating to the execution of the RDATA
macro is transferred in register R15, where: aa =
Maincode; bb = assignment code if operand A is
specified in conjunction with the 24-bit interface;
in all other cases bb = X'00'.

b b 0 0 0 0 a a

X'aa' Meaning

X'00' Normal termination

X'04' Unrecoverable error

X'08' Operand error

X'0C' Record truncated. Record length > specified length

X'10' End of file (EOF)

X'14' SYSDTA not assigned

X'18' Error during volume access

X'20' Invalid edit option byte: error corrected by the system

X'38' Problem in connection with POSIX

RDATA Description of the macros

756 U3291-J-Z125-16-76

if PARMOD=31, RC=NEW:

The return codes are entered both in the standard header and in register R15.

Standard
header:

A return code relating to execution of the RDATA
macro is transferred in the standard header:
aaaa=Maincode; bb=SUBCODe1, cc=Subcode2

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function processed successfully

X'00' X'00' X'0014' Function processed successfully, but SYSDTA not assigned

X'00' X'00' X'0018' Function processed successfully, but error occurred when accessing
volume

X'00' X'00' X'0020' Function processed successfully. Operand error corrected via
TIAM/VTSU

X'00' X'01' X'0008' Operand error not corrected

X'07' X'01' X'0008' Operand error not corrected:
the RESERVED fields are not 0

X'08' X'01' X'0008' Operand error not corrected:
value of TIMER operand not in permitted range (10 - 3600 seconds)

X'00' X'20' X'0004' Internal error

X'02' X'20' X'0004' Internal error: BCAM message lost

X'05' X'20' X'0004' Internal error: input message too long

X'06' X'20' X'0004' Internal error: negative transport acknowledgment

X'00' X'40' X'0004' Input/output aborted

X'00' X'40' X'000C' Input record length > specified length:
input record truncated

X'00' X'40' X'0010' End of file (EOF)

X'00' X'40' X'0034' Timeout (no input received within specified wait time)

X'01' X'80' X'0004' Internal BCAM bottleneck

X'09' X'80' X'0038' Error in connection with POSIX:
Input/output serialization error

X'0A' X'40' X'0038' Error in connection with POSIX:
If the LOGON task is in system mode, no inputs/outputs of processes
generated with fork() are possible

X'24' VTSU error. In addition to main code (rightmost byte), see error
information in VTSUCB header

Description of the macros RDATA

U3291-J-Z125-16-76 757

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Notes on the macro call

– Truncation occurs if the record to be transferred is longer than specified in the length
operand. The record is only transferred to the read input area in accordance with the
length specified in the length operand; the remainder of the record is lost. If the record
is shorter than the read input area, it is entered left-justified and the remainder is not
filled with blanks. The program continues without an error flag.

– The end-of-file condition (EOF) can occur in the following ways:
– Interactive mode:

Activate the ESCAPE function (K2 key). Job processing switches over to command
mode. Then issue the EOF command followed by RESUME-PROGRAM.

– Procedure or batch mode:
The (system) files SYSDTA and SYSCMD are assigned to each other and a data
record starting with a slash is read.
Exceptions: – the HOLD-PROGRAM command has been issued.

– the slash has been replaced by symbolic operands.
– the record starts with two consecutive slashes

(e.g. SDF statement).
– The (system) files SYSDTA and SYSCMD are not assigned to each other:

The EOF command is detected in columns 1-4 of the record.

For examples, see section “S-type macros” on page 29.

RDUID Description of the macros

758 U3291-J-Z125-16-76

RDUID – Read user ID

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 2: standard/C/D/L/E form; see page 29

Macro description

The RDUID macro transfers to a user program in its operand list the user ID and the
account number of the job under which it is running (see the layout of the operand list after
the operand description).

Macro format and description of operands

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.

A PREFIX can be specified in the C form or D form of the macro and additionally a MACID
in the C form (see section “S-type macros” on page 29).

RDUID

MF=S / E / L / C / D

[,PARAM=addr / (r)]

,PREFIX=S / p

,MACID=RMR / macid

Description of the macros RDUID

U3291-J-Z125-16-76 759

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

The calling program is terminated when the following errors occur:
– The data area is not assigned to the caller.
– The data area is not aligned on a word boundary.
– The data area is protected against write access.

Layout of the data area for RDUID MF=C

1 FHDR MF=(C,SRMR),EQUATES=NO
2 DS 0A
2 SRMRFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 SRMRIFID DS 0A 0 INTERFACE IDENTIFIER
2 SRMRFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 SRMRFCT DS AL1 2 FUNCTION NUMBER
2 SRMRFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 SRMRRET DS 0A 4 GENERAL RETURN CODE
2 SRMRSRET DS 0AL2 4 SUB RETURN CODE
2 SRMRSR2 DS AL1 4 SUB RETURN CODE 2
2 SRMRSR1 DS AL1 5 SUB RETURN CODE 1
2 SRMRMRET DS 0AL2 6 MAIN RETURN CODE
2 SRMRMR2 DS AL1 6 MAIN RETURN CODE 2
2 SRMRMR1 DS AL1 7 MAIN RETURN CODE 1
2 SRMRFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 SRMRUID DC CL8' ' USERID
1 SRMRACC DC CL8' ' ACCOUNT NUMBER
1 SRMR# EQU *-SRMRFHE LENGTH OF RDUID PARAMETER BLOCK

Standard
header:

The following return code relating to the execution of
the RDUID macro is transferred in the standard
header (bb=Subcode1, aaaa=Maincode):

0 0 b b a a a a

X'bb' X'aaaa' Meaning

X'00' X'0000' Function successfully executed

X'20' X'00FF' System erro

RELBF Description of the macros

760 U3291-J-Z125-16-76

RELBF – Release receive queue

General

Application areas:: Intertask communication; see page 76
Communication; see page 163

Macro type: Type O; see page 28

Macro description

Users participating in intertask communication (ITC) can delete the first message in their
receive queue by means of the RELBF macro.
Users who want to analyze their receive queue may request the first message from a
specified sender or the first message in the queue (FIFO). If they proceed according to the
FIFO principle, they must delete the first message in the queue before accessing the next
one. If the first message was not deleted implicitly when it was requested
(REVNT...REL=YES), it may be deleted explicitly by means of the RELBF macro.
A user who wants to delete the entire receive queue but does not yet want to terminate ITC
participation (CLCOM) may keep issuing the RELBF macro in a loop until the return code
indicates that the queue is empty.

Macro format and description of operands

Return information and error flags

RELBF

R15:
A return code relating to the execution of the RELBF
macro is transferred in the rightmost byte of register
R15.

 a a

X'aa' Meaning

X' 00' The first message in the receive queue has been deleted

X' 04' The receive queue was empty

X' 08' The task of the calling program is not an ITC participant

Description of the macros RELM

U3291-J-Z125-16-76 761

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

RELM – Release memory

General

Application area: Working with virtual memory; see page 55
Macro type: Type S, MF format 1: standard/L/E form; see page 29

Macro description

The RELM macro releases a contiguous area of the caller's class 6 memory. Memory is
released in multiples of one page (4 Kb) . It is permissible to release memory space which
has not previously been requested with REQM. Memory areas previously requested by
various REQM macro calls can be released by means of a single RELM call if they are
contiguous.

Macro format and description of operands

number
Number of pages (4 Kb) to be released.
Default value: number = 1.

(r)
Register containing “number”.

page
Page number of the first page (4 Kb) of the area to be released.

(r)
Register containing “page”.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

RELM

[,PARMOD=24 / 31]

,MF=S / (E,...) / L

[number

(r)

], page

(r)

RELM Description of the macros

762 U3291-J-Z125-16-76

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

Return information and error flags

During macro processing, register R1 contains the operand list address.

R15:
A return code relating to the execution of the RELM
macro is transferred in register R15.0 0 0 0 0 0 a a

X'aa' Meaning

X'00' Memory space was released

X'04' Function only partially executed.
The area to be released also contains nonrequested pages. The address of the first
nonrequested page is transferred in register R1. All pages in the area up to this address
were released, all pages after it are in the same state as before the RELM call

X'0C' Function not executed.
– Invalid operand list address
– Error in operand list structure
– The area to be released lies (partly) outside the class 6 memory
– The area to be released (partly) overlaps a memory pool
– The area to be released (partly) overlaps a FASTPAM ENVIRONMENT/ IOAREA

POOL. It is not possible to release the area until the corresponding FASTPAM disable
function has been executed

– The area to be released (partly) overlaps a DIV window
It is not possible to release the area until the correspondinng DIV unmap function has
been executed

Description of the macros RELM

U3291-J-Z125-16-76 763

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

If the 31-bit interface is used:

– In the event of errors in the initialization of the standard header, the return codes
X'0001FFFF' / X'0003FFFF' / X'0004FFFF' are additionally transferred; see the table
“Standard return codes” on page 43.

– No return codes are transferred in the standard header.

Examples

1. Let the user program occupy pages 1 - 12.
RELM 3,10 releases three pages starting at page 10, i.e. pages 10, 11 and 12.

2. Let the user program occupy pages 1 - 6.
RELM ,5 releases one page starting at page 5, i.e. page 5 is released.

RELMP Description of the macros

764 U3291-J-Z125-16-76

RELMP – Release pages in memory pool

General

Application area: Memory pools; see page 55
Macro type: Type S, MF format 1: standard/L/E form; see page 29

A user can explicitly request (REQMP) and also release (RELMP) contiguous memory
space in a memory pool. The following applies to the release of memory space in a memory
pool:
– the caller must be a pool participant (ENAMP),
– it is irrelevant which of the pool participants requested the memory space and in what

units it was requested.

Macro description

The user can release contiguous memory space in a memory pool with the RELMP macro.
The release is carried out in memory pages (4K).

Notes

– A memory pool is accessed via the pool name or via its ID (see ENAMP).
– The release of pool pages does not change the size of a memory pool as specified in

the ENAMP macro.
– The memory space to be released need not have been allocated as a contiguous

memory area.
– RELMP is rejected if the memory pool is write-protected (CSTMP macro).

Description of the macros RELMP

U3291-J-Z125-16-76 765

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Macro format and description of operands

MPNAME=
Defines the name of the memory pool (note the connection with the SCOPE operand).

name
Name of the memory pool.

MPNAMAD=
Specifies the address of the field containing “name” (note the connection with the SCOPE
operand).

addr
Symbolic address (name) of the field.

(r)
Register containing the address value “addr”.

MPNAMLN=
Specifies the length of the memory pool name specified under MPNAMAD. If omitted:
length attribute of the “addr” field, or 54 bytes if MPNAMAD=(r) was specified.

length
Length in bytes

(r)
Register containing “length”.

RELMP

[,ADDR=addr / (r)]

[,BSIZE=number / (r) / ALL]

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

MPNAME=name

MPNAMAD= addr

(r)

[,MPNAMLN= length

(r)

]

[,SCOPE=

LOCAL

GROUP

USER_GROUP

GLOBAL

]

MPID=addr / (r)

RELMP Description of the macros

766 U3291-J-Z125-16-76

SCOPE=
Defines the scope (authorized users) of the memory pool. This specification is used to
identify the memory pool uniquely and must always be entered in conjunction with the
MPNAME or MPNAMAD operand.

LOCAL
The memory pool is only used by the user who created it.

GROUP
Memory pool users can be all tasks with the ID of the user that created the memory
pool.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.
The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

GLOBAL
Users can be all the tasks running in the system.

MPID=
Specifies the address of a field (length = 4 bytes) with the ID for the memory pool (see
ENAMP). The ID provides unique identification of the memory pool; this operand speeds
up processing.

addr
Symbolic address (name) of the field containing the ID.

(r)
Register containing the address value “addr”.

ADDR=
Specifies the start address of the memory area to be released. The address must be
aligned on a 4K boundary. The entire area must be in the specified memory pool.

Note
The ADDR operand is mandatory unless BSIZE=ALL is specified.

addr
Start address.

(r)
Register containing the start address.

Description of the macros RELMP

U3291-J-Z125-16-76 767

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

BSIZE=
Specifies the size in (4K) memory pages of the memory area to be released.
Default value: BSIZE=1.

Note
The BSIZE=0 operand is permitted; memory space is not released.

number
Number of memory pages.

(r)
Register containing “number”.

ALL
All the memory pages requested for the memory pool are released.
This operand can also be executed in register “r” in the form C' ALL'.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists use 24-bit addresses.
(Address space ≤ 16 Mb).

31
The 31-bit interface is generated.
Data lists use 31-bit addresses (address space ≤ 2 Gb) and start with the standard
header.

RELMP Description of the macros

768 U3291-J-Z125-16-76

Return information and error flags

After macro processing, register R1 contains the operand list address.

R15:
A structured return code (aa = primary return code,
bb = secondary return code) relating to the execution
of the RELMP macro is transferred in register R15.
aa = X'00': normal execution,
aa = X'04': function was not carried out.

b b 0 0 0 0 a a

X'bb' X'aa' Meaning

X'00' X'00' Normal execution. Memory pages were released

X'18' X'00' Normal execution. Memory pages were released; not all the pages in the specified
area had been requested

X'04' X'04' Function was not executed. The caller is not a memory pool participant (no
ENAMP macro)

X'18' X'04' Function was not executed; invalid memory area:
– The start address or an address of the specified memory area is not within the

memory pool
– The start address is not aligned on a 4K boundary
– The specified memory area completely or partially overlaps an area used by

DIV or FASTPAM

X'1C' X'04' The function was not executed; operand error:
– Invalid operand list address
– Error in operand list structure
– Invalid address for MPNAMAD or MPID in the operand list
– Memory pool designation:
 – name contains invalid characters
 – invalid length specification (MPNAMLN)
 – MPNAMLN was specified but MPNAMAD was not
 – MPNAME, MPNAMAD and MPID were not specified
 – SCOPE specified but MPNAME/MPNAMAD not specified
 – designation is not unequivocal; more than one of operands MPNAME/

MPNAMAD/MPID was specified
– Invalid SCOPE specification
– Invalid BSIZE specification
– Neither the ADDR nor BSIZE=ALL operands were specified
– An invalid register was specified (R1)
– PARMOD=24 was specified in conjunction with 31-bit addressing mode

(AMODE31)
– SCOPE=USER_GROUP was specified, although SRPM is not available in the

system
– The release of pages not in a memory pool is no longer supported

Description of the macros RELMP

U3291-J-Z125-16-76 769

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

31-bit interface:

– In the event of errors in the initialization of the standard header, the return codes
X'0001FFFF' / X'0003FFFF' / X'0004FFFF' are additionally transferred in register R15;
see table “Standard return codes” on page 43.

– No return codes are transferred in the standard header.

X'24' X'04' Function was not executed; authorization error:
– The memory pool is write-protected.
– The memory pool was protected by a privileged user against release. Repeat

the macro, if required
– The caller is not authorized to release memory pages from a privileged or a

class 5 memory pool

X'bb' X'aa' Meaning

REQM Description of the macros

770 U3291-J-Z125-16-76

REQM – Request memory

General

Application area: Working with virtual memory; see page 55
Macro type: Type S, MF format 1: standard/L/E form; see page 29

Macro description

REQM requests that a contiguous memory area be assigned to the user program. This area
can be released again with RELM. Memory is requested in multiples of one page (4 Kb).
The memory allocated is always virtual. Each byte of the allocated page(s) is overwritten
with X'00' (except if the page had already been requested).

Macro format and description of operands

number
Number of pages (4 Kb) to be requested.
Default value: number = 1.

(r)
Register containing “number”.

REQM

,ALIGN=4KB / HW_PAGE

[,PARMOD=24 / 31]

,MF=S / (E,..) / L

[number

(r)

][,

page

(r)

LOC=

RES

ANY

BELOW

ABOVE

]

Description of the macros REQM

U3291-J-Z125-16-76 771

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

page
Page number (4 Kb) at which allocation is to begin.
Default setting: Smallest page number of the first area in the caller's class 6 memory which
is sufficiently large and has not yet been allocated. The area may be aligned during function
execution (e.g. on a multiple of 16 pages) if the number of pages requested exceeds a
specific threshold.

Note
This operand should be specified only after an inquiry as to the size and location of the
caller's class 6 memory has been made by means of the MINF macro.

(r)
Register containing “page”.

LOC=
Identifies that part of class 6 memory where the memory pages are to be reserved (below
or above the 16-Mb boundary).
The operand is ignored if the 24-bit interface is used.

RES
Default setting: memory pages are reserved in that part of class 6 memory where the
macro call is issued.

ANY
Memory pages are reserved as follows, depending on the addressing mode in use:
– below the 16-Mb boundary if 24-bit addressing mode is activated,
– above or below the 16-Mb boundary if 31-bit addressing mode is activated.

BELOW
Memory pages are reserved below the 16-Mb boundary.

ABOVE
Memory pages are reserved above the 16-Mb boundary.

ALIGN=
Specifies the alignment of the requested area.

4KB
The requested area is aligned on 4-Kb boundary.

HW_PAGE
The requested memory area begins on a page boundary determined by the hardware.
In this case, the operands “number” and “page” must be used in such a way that a
multiple (in 4 Kbyte units) of hardware page sizes is achieved.

Note
The hardware page size can be obtained by the NSIINF INFO=PAGESIZE macro.

REQM Description of the macros

772 U3291-J-Z125-16-76

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

Description of the macros REQM

U3291-J-Z125-16-76 773

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Return information and error flags

During macro processing, register R1 contains the operand list address.
After successful execution of the macro, the start address of the allocated area is stored in
register R1.

For the 31-bit interface:
– In the event of errors in the initialization of the standard header, the return codes

X'0001FFFF' / X'0003FFFF' / X'0004FFFF' are additionally transferred; see table
“Standard return codes” on page 43.

– No return codes are transferred in the standard header.

R15:
A return code relating to the execution of the REQM
macro is transferred in register R15.0 0 0 0 0 0 a a

X'aa' Meaning

X'00' The request has been processed successfully. Register R1 contains the address of the first
page even if the page had already been requested

X'04' Function not executed.
– Insufficient contiguous free memory space is available in the address space
– Insufficient free space is available in the paging area

X'0C' Function not executed
– Invalid operand list address
– Error in operand list structure
– The requested number of pages exceeds
 – the value for the ADDRSPACE parameter in the user catalog (see output of SHOW-

USER-ATTRIBUTES command)
 – the area available below or above 16 Mb (see output of MINF macro)
– The requested area lies (partly) outside the class 6 memory
– The requested area (partly) overlaps a memory pool
– The specified number or page parameter is not a multiple of the hardware page size in

4 Kb units and ALIGN=HW_PAGE is specified.

REQMP Description of the macros

774 U3291-J-Z125-16-76

REQMP – Request pages in memory pool

General

Application area: Memory pools; see page 55
Macro type: Type S, MF format 1: standard/L/E form; see page 29

The user can explicitly request (contiguous) space in a memory pool, where:
– the caller must be a pool participant (ENAMP).
– any pool participant can release the allocated memory area.
– any pool participant can access the allocated memory area.

Macro description

A contiguous memory area in a memory pool is requested with the REQMP macro. The
allocation is carried out in memory pages (4Kb). The bytes of the requested page(s) are
overwritten with X'00' (unless the page(s) have been requested before).

Notes

– A memory pool is addressed via a pool name or its ID (see ENAMP).
– REQMP is rejected if the memory pool is write-protected (CSTMP macro).
– Resident memory pool: REQMP is rejected if the number of pages requested exceeds

the value of the RESIDENT-PAGES operand in the START- or LOAD-EXECUTABLE-
PROGRAM command.

– An inquiry as to the size of the memory pool and the status of memory pages (allocated
or not) can be made by means of MINF.

Description of the macros REQMP

U3291-J-Z125-16-76 775

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Macro format and description of operands

MPNAME=
Defines the name of the memory pool (Note the connection with the SCOPE operand).

name
Name of the memory pool.

MPNAMAD=
Specifies the address of the field containing “name” (note the connection with the SCOPE
operand).

addr
Symbolic address (name) of the field.

(r)
Register containing the address value “addr”.

MPNAMLN=
Defines the length of the name specified under MPNAMAD. If omitted: length attribute of
the “addr” field, or 54 bytes if MPNAMAD=(r) was specified.

length
Length in bytes.

(r)
Register containing “length”.

REQMP

[,ADDR=addr / (r)]

[,BSIZE=number / (r)]

,ALIGN=4KB / HW_PAGE

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

MPNAME=name

MPNAMAD= addr

(r)

[,MPNAMLN= length

(r)

]

[,SCOPE=

LOCAL

GROUP

USER_GROUP

GLOBAL

]

MPID=addr / (r)

REQMP Description of the macros

776 U3291-J-Z125-16-76

SCOPE=
Defines the scope (authorized users) of the memory pool. This specification is used to
identify the memory pool uniquely and must always be entered in conjunction with the
MPNAME or MPNAMAD operand.

LOCAL
The memory pool is only used by the user who created it.

GROUP
Memory pool users can be all tasks with the ID of the user that created the memory
pool.

USER_GROUP
All the tasks whose user IDs belong to the same user group as the user ID of the
creating participant can be participants.
The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

GLOBAL
Users can be all the tasks running in the system.

MPID=
Specifies the address of a field (length = 4 bytes) with the ID for the memory pool (see
ENAMP). The ID provides unique identification of the memory pool; this operand speeds
up processing.

addr
Symbolic address (name) of the field containing the ID.

(r)
Register containing the address value of the field.

ADDR=
Specifies the start address of the memory area to be allocated. The address must be
aligned on a 4Kb boundary. The entire area must be in the specified memory pool.
Default value: the first unused, contiguous area in the memory pool or in user memory
below the 16-Mb boundary. The area may be aligned on a specific boundary (64Kb or
1-Mb boundary) if the number of pages requested exceeds a defined threshold.

addr
Start address.

(r)
Register containing the start address.

Description of the macros REQMP

U3291-J-Z125-16-76 777

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

BSIZE=
Specifies the size of the requested memory area in memory pages (4Kb).
Default value: BSIZE=1; this value is also assumed if BSIZE=0 was specified.

number
Number of memory pages.

(r)
Register containing “number”.

ALIGN=
Specifies the alignment of the requested area.

4KB
The requested area is aligned on 4-Kb boundary.

HW_PAGE
The requested memory area begins on a page boundary determined by the hardware.
In this case, the operands BSIZE (in 4 Kbyte units) and ADDR (as the start address)
must be used in such a way that a multiple of hardware page sizes is achieved.

Note
The hardware page size can be obtained by the NSIINF INFO=PAGESIZE macro.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated. If PARMOD
is not specified here, macro expansion is performed according to the specification for the
GPARMOD macro or according to the default setting for the assembler (= 24-bit interface).

24
The 24-bit interface is generated. Data lists use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists use 31-bit addresses
(address space ≤ 2 Gb) and start with the standard header.

REQMP Description of the macros

778 U3291-J-Z125-16-76

Return information and error flags

After successful execution of the function, register R1 contains the start address of the
allocated memory area.

R15:
A structured return code (aa = primary return code,
bb = secondary return code) relating to the execution
of the REQMP macro is transferred in register R15.
aa = X'00': normal execution,
aa = X'04': function was not carried out.

b b 0 0 0 0 a a

X'bb' X'aa' Meaning

X'00' X'00' Normal execution. Memory was allocated

X'18' X'00' Normal execution. At least one memory page was already allocated within the
requested area. The remaining memory pages were allocated

X'04' X'04' Function was not executed. The caller is not a memory pool user (no ENAMP macro)

X'14' X'04' Function was not executed.
Insufficient memory space:
– Memory pool does not have this amount of free contiguous memory space

available
– Resident memory space: the request exceeds the value of the RESIDENT-

PAGES operand in the START- or LOAD-EXECUTABLE-PROGRAM command
– BSIZE or ADDR is not a multiple of the hardware page size and

ALIGN=HW_PAGE is specified.

X'18' X'04' Function was not executed.
Invalid memory area:
– Start address or an address of the specified memory is not within the memory

pool
– The start address is not aligned on a 4K boundary

X'24' X'04' Function was not executed.
Authorization error:
– The memory pool is write-protected
– The caller is not authorized to request memory pages from a privileged or a class

5 memory pool

Description of the macros REQMP

U3291-J-Z125-16-76 779

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

31-bit interface:

– In the event of errors in the alignment or initialization of the standard header, the return
codes X'0001FFFF' / X'0003FFFF' / X'0004FFFF' are additionally transferred in register
R15; see table “Standard return codes” on page 43.

– No return codes are transferred in the standard header.

X'1C' X'04' The function was not executed. Operand error:
– Invalid operand list address
– Error in operand list structure
– Invalid address for MPNAMAD or MPID in the operand list
– Memory pool designation:

– name contains invalid characters
– invalid length specification (MPNAMLN)
– MPNAMLN was specified but MPNAMAD was not
– MPNAME, MPNAMAD and MPID were not specified
– SCOPE was specified but MPNAME/MPNAMAD was not
– designation not unequivocal: more than one of the operands

MPNAME/MPNAMAD/MPID was specified
– Invalid SCOPE operand
– Invalid BSIZE operand
– Invalid register (R1) specified
– SCOPE=USER_GROUP was specified although SRPM is not available in the

system
– PARMOD=24 was specified in conjunction with 31-bit addressing mode

(AMODE31)
– Requests for pages not in a memory pool are no longer supported

X'bb' X'aa' Meaning

RETCO Description of the macros

780 U3291-J-Z125-16-76

RETCO – Return from contingency process

General

Application area: Contingency processing; see page 110
Macro type: Type S, MF format 1: standard/E/L form; see page 29

Macro description

The RETCO macro enables return from a contingency process. Control is returned to a
basic task or contingency process having the same or a lower priority level.
RETCO must not be issued in the basic task (abnormal program termination with error
message ETMEV03).

Macro format and description of operands

MF
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

For examples, see section “Contingency processes” on page 110 and the POSSIG macro
description (page 736).

RETCO

[MF=L / E]

Description of the macros RETRN

U3291-J-Z125-16-76 781

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

RETRN – Load return with register

General

Application area: Starting, interrupting and terminating; see page 72
Macro type: Type O; see page 28

Macro description

The RETRN macro serves to reload saved register contents, to return from a subroutine to
the main program and to pass on a return code, if desired.
The RETRN macro is issued at the end of a subroutine if, at the beginning of that
subroutine, the registers of the main program were saved by means of the SAVE macro.
Except for register 13, all general register contents can be buffered and reloaded. The
address of the save area supplied by the main program must be contained in register 13
(see the SAVE macro).

Macro format and description of operands

r1
Specifies a register (general register) that is to be loaded from the save area. Numbers
between 0 and 15 (except 13) may be specified for “r1”. The parentheses are optional.

r1,r2
Specifies a consecutive series of general registers which are to be reloaded. The range r1,
r2 must not contain register 13, but it may cross the register 15/register 0 boundary.
Example: All registers except register 13, i.e. registers 0 to 12, 14 and 15, are loaded from
the save area by means of the entry (14,12).

T
Is designed for compatibility with TOS language processors and is used to interrupt forward
chaining in nested programs. After the registers have been reloaded, a “1” is set in the
lowest-order bit in word 3 of the buffer.

RC=
Specifies a return code that is passed on to the main program in the rightmost three bytes
of register 15.

rc
The value “rc” must be a decimal number or an absolute expression.

RETRN

[(r1[,r2])] [,T] [,RC=rc / (15)

RETRN Description of the macros

782 U3291-J-Z125-16-76

(15)
Specifies that register 15 contains a return code in the rightmost three bytes. In this
case register 15 is not reloaded with the original contents of the buffer.

Functional description

The RETRN macro loads the specified registers from the save area and branches to the
main program. For the call of the RETRN macro it is required:

– that the subroutine saved the register contents at the beginning by means of the SAVE
macro;

– that the address of the save area has been loaded to register 13;
– that the main program has loaded the return address to register 14.

If specified, the RETRN macro transfers a return code in register 15. This code can be freely
agreed upon by the main program and the subroutine. The description of the SAVE macro
deals with this point in detail and contains an example.

Note

Register specifications can also be entered in the form “Rn”, where n = register number.

Description of the macros REVNT

U3291-J-Z125-16-76 783

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

REVNT – Receive event

General

Application areas: Intertask communication; see page 76
Communication; see page 163

Macro type: Type O; see page 28

Macro description

A user participating in intertask communication (ITC) can request a message and wait for
its arrival by means of the REVNT macro.

Functional description

Each ITC participant may request a message by means of the REVNT macro. It can specify
whether it will accept a message from any participant, or only messages from a specified
sender. If the participant is waiting for a message from an unspecified sender, this message
may also be from a sender that joined ITC later.

If there is not yet a message (or none from the desired sender) in the receive queue of the
calling participant when the REVNT macro is issued, the task is interrupted by the system.
The interrupted task is continued when the message is received or after the waiting time
has elapsed; the length of the waiting time may be specified in the REVNT call. If the
message has arrived in the meantime, it is transferred to the task.

The system transcribes the message from the receive queue to the destination field of the
program. If there are several messages in the queue, it transcribes the first message or the
first message from the desired sender. In the REVNT macro the user may specify whether
or not the message is to be deleted after it has been transcribed from the receive queue. If
the message is not deleted, it may be transcribed again by means of another REVNT
macro.

A message may be 8 bytes to 64 Kbytes long (including a 4-byte record length field). A user
who knows the extent of messages to be exchanged when programming may define the
length of the destination field accordingly. The system enters both the message and its
actual length in the destination field. If the destination field cannot accommodate the entire
message, the system transcribes only the first 4 bytes of the message, but it enters the
complete length in the record length field.

REVNT Description of the macros

784 U3291-J-Z125-16-76

This is flagged by means of return code X'0C'. If the message length is not known when
programming, the user should issue the REVNT macro with the specification REL=NO. The
user receives the actual length and may base the size of the destination field on that value;
then the entire message may be transcribed by means of a second REVNT macro. This
time the user may delete the message by means of REL=YES, or issue the RELBF macro,
which clears the first message in the receive queue.

ITC-linked to eventing:
The wait state, in which a task is placed after the REVNT call, can be avoided by linking ITC
to eventing if the message is expected from an unspecified sender. In addition, waiting for
an ITC message can be combined with waiting for another event (see section “Eventing”
on page 94).

ITC is linked to an event item by specifying the address of the ID of the event item as an
additional operand in the REVNT call. This address must have been defined in a previous
ENAEI call. As a result, the task is not interrupted after the REVNT call. The caller is
provided with a restricted return code specifying whether or not the REVNT call has been
accepted. Information concerning the arrival of the message is delivered to the task by the
post code as soon as the SOLSIG call has been processed. The SOLSIG call now permits
the user to request a solicit signal for an event at any time after the REVNT call (even prior
to the REVNT call if a contingency process has been specified). If no message has been
received, the SOLSIG waiting time begins. The task is interrupted unless a contingency
process has been specified. The SOLSIG waiting time is terminated by any event occurring
for the specified event item. The post code indicates the class to which the event belongs.

Notes

– A task may check its receive queue, without being interrupted, by means of the
REVNT..., WTIME=0 call.

– The limit for the waiting time (WTIME operand) is meant to prevent participants mutually
blocking one another (if each is waiting for a message from the other).

Notes on linked REVNT:

– The event class indicated in the post code must be checked as to whether an ITC event
or another event has occurred.

– No further REVNT macro - linked or unlinked - may be issued prior to the completion of
a linked REVNT call (rejected with return code X'18').

– The event item must not be deleted (DISEI macro) prior to the completion of a linked
REVNT call. Otherwise, the REVNT call cannot be completed and messages may be
lost (see the note in the section “Intertask communication (ITC)” on page 85).

Description of the macros REVNT

U3291-J-Z125-16-76 785

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Macro format and description of operands
Format 1:

destfield
Symbolic address of the field to which the message from the receive queue is to be
transferred. The field must begin on a word boundary. After the transfer its contents are as
follows:

The destination field must be at least 16 bytes long and the specification in the record length
field must have a value of at least 8.

length
Decimal number specifying the length of the destination field, including the 8 bytes for the
sender. The value for “length” may lie between 16 and 65543. The message including the
record length field may be between 8 and 65535 bytes long.

WTIME=seconds
Specifies how long a task is to wait for the message if it has not yet been received at the
time when the REVNT macro is issued. Times from 0 to 21599 seconds are permissible.
If WTIME is not specified, the task waits 600 seconds.

REVNT

destfield,length

[,WTIME=seconds]

,REL=YES / NO

[,NAME=sendername]

[,EIID=address]

Bytes Contents

0 - 7 ITC name of the participant that sent the message

8
9

length of the complete
message + 4 (for SLF)

10
11

reserved

12
:

n

message (at least 4 bytes, if the field was too small to accommodate
the complete message)

record length field (SLF)

REVNT Description of the macros

786 U3291-J-Z125-16-76

REL=
Specifies whether or not the message is to remain in the receive queue.

YES
The message is deleted after being transferred from the receive queue, even if there
was not sufficient space available for the message in the destination field.

NO
The message remains in the receive queue.

NAME=sendername
ITC name of an ITC participant; indicates that a message should only be transferred if the
specified participant is the sender.

EIID=address
This operand is required only if ITC is to be linked to eventing (see “Linking ITC to eventing”
on page 81).
The operand value “address” specifies the symbolic address of a field containing the ID of
the event item. The field is 4 bytes long. The system has entered the ID in this field as a
result of a previous ENAEI macro.

Format 2:

(1)
Register 1 contains the address of an operand field with the following contents:

REVNT

(1)

Bytes Contents

0 - 3 address of receive field

4 - 7 length of receive field (hexadecimal)

8 X'00' : no linking to eventing
X'01' : the REVNT request is linked to an event item

9 - 11 C'YES' for REL=YES
X'00' C'NO' for REL=NO

12 - 15 waiting time in seconds

16 - 23 ITC name of the sender made up to 8 bytes with trailing blanks if necessary,
or only blanks if no sender is to be specified

24 - 27 address of ID of event item; to be specified only if X' 01' is specified in byte 8

Description of the macros REVNT

U3291-J-Z125-16-76 787

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

Return information and error flags

REVNT without linkage to eventing:

REVNT with linkage to eventing:

R15:
A return code relating to the execution of the REVNT
macro is transferred in the rightmost byte of register
R15.

a a

X'aa' Meaning

X'00' The message has been completely transcribed

X'04' Operand error (e.g. memory has not been allocated or is not class 6 memory). No message
has been transcribed

X'08' The calling task is not an ITC participant. No message has been transcribed

X'0C' The destination field is too small for the complete message. Only the header and first
4 bytes have been transcribed

X'10' Even during the waiting time no message has been received

X'18' Processing of an earlier linked REVNT call has not been completed. The present call is
rejected

X'aa' Meaning

X'00' REVNT call accepted

The following return codes indicate that the REVNT call does not produce an ITC event:

X'04' Operand error (e.g. memory is not class 6 memory or has not been allocated). The REVNT
call is rejected

X'08' The calling task is not an ITC participant. The REVNT call is rejected

X'18' Processing of an earlier linked REVNT call has not been completed. The present call is
rejected

REVNT Description of the macros

788 U3291-J-Z125-16-76

Meaning of the post code (for linkage to eventing only):

The post code is 4 bytes long and is entered after the SOLSIG macro call under an address
specified therein. The leftmost byte indicates the event class (see section “Eventing” on
page 94). The rightmost byte contains the return code applicable to the particular event
class. An ITC event has event class X'08'.

ITC post code Meaning

X'08000000' A linked REVNT call has been completed with the arrival of a message

X'08000004' Operand error: The memory space for the destination field is no longer allocated
(asynchronous eventing operation)

X'0800000C' The destination field is too small for the complete message. Only the header
and the first 4 bytes have been transferred

X'08000010' The waiting time has expired and no message has been received

Description of the macros RPOFEI

U3291-J-Z125-16-76 789

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

RPOFEI – Send POSSIG signal

General

Application area: (Optimized) eventing; see page 94
Macro type: Type R; see page 28

Forward eventing (FEV) is an optimized form of synchronous eventing. FEV avoids the
need for repeated validation of the operands when either POSSIG or SOLSIG calls to a
particular event item are repeated. Instead, an event list, EVENTLST, is set up and in order
to send signals to an event item (a POSSIG function), for example, a POSSIG entry is made
in the list. The entry may be explicitly deleted again (DELFEI).
The task of the calling program must be enabled for the event item (using ENAEI).

Macro description

The macro RPOFEI refers to a POSSIG entry in the EVENTLST and initiates the sending
of a signal (event) to an event item.
This signal terminates the wait state of the requesting task, or starts a contingency routine
in this task, if this was specified in a SOLSIG call.

Macro format and description of operands

REFNUM=(r)
Identifies a register which (directly) holds the reference number of the POSSIG entry.

(r)
Register containing the reference number.

RPOFEI

REFNUM=(r)

RPOFEI Description of the macros

790 U3291-J-Z125-16-76

Return information and error flags

During the execution of the macro, register R1 contains the reference number.
Register R0 is overwritten with an internal function code.

R15:
A structured return code relating to the execution of
the macro is transferred in register R15
(aa = primary return code, bb = secondary return
code).

b b a a

X'bb' X'aa' Meaning

X'00' X'00' Normal execution. The signal was sent

X'04' X'04' No action: incorrect reference number (POSSIG entry already deleted?)

X'28' X'04' No action: the maximum permitted number of requests in the POSSIG queue was
exceeded

Description of the macros RSOFEI

U3291-J-Z125-16-76 791

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
2

01
7

 S
ta

n
d

13
:1

8.
34

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

80
5

_m
a

k_
at

\b
hb

\e
n\

m
ak

ro
.v

05
\p

qr
.d

o
c

RSOFEI – Request POSSIG signal (event)

General

Application area: (Optimized) eventing; see page 94
Macro type: R-Typ; see page 28

Forward eventing (FEV) is an optimized form of synchronous eventing. FEV avoids the
need for repeated validation of the operands when either SOLSIG or POSSIG calls to a
particular event item are repeated. Instead, an event list, EVENTLST, is set up and in order
to request signals from an event item (a SOLSIG function), for example, a SOLSIG entry is
made in the list. The entry may be explicitly deleted again (DELFEI).
The task of the calling program must be enabled for the event item (using ENAEI).

Macro description

The macro RSOFEI refers to a SOLSIG entry in the EVENTLST and requests a signal
(event) from an event item. The task of the calling program is put into a wait state if the
requested signal has not yet been received, but for not longer than the duration of the
specified waiting time (using the macro DSOFEI).

Macro format and description of operands

REFNUM=r
Identifies a register which (directly) contains the reference number of a SOLSIG entry.

(r)
Register containing the reference number.

RSOFEI

REFNUM=(r)

RSOFEI Description of the macros

792 U3291-J-Z125-16-76

Return information and error flags

During the execution of the macro, register R1 contains the reference number. Register R0
is overwritten with an internal function code.

R15:
A structured return code relating to the execution of
the macro is transferred in register R15
(aa = primary return code, bb = secondary return
code).

b b a a

X'bb' X'aa' Meaning

X'00' X'00' Normal execution: the event has occurred. A post code has been transmitted, if it
was specified

X'30' X'00' Function executed: the post code could not be transmitted because the receiver
had not prepared a receiving field

X'34' X'00' Function executed: the post code was not transmitted because it had the
value X' 00000000'

X'38' X'00' Function executed: post code truncated from the right (receiving field too small)

X'3C' X'00' Function executed: post code entered left-justified (receiving field too long).
This return information does not occur if the RPOSTNUM operand is used in the
DSOFEI macro.

X'04' X'04' No action: incorrect reference number (SOLSIG entry already deleted?)

X'20' X'04' No action: the event did not occur within the waiting time

X'28' X'04' No action: the event item was disabled (using the macro DISEI) before the event
occurred

X'50' X'04' No event available.

Description of the macros SAVE

U3291-J-Z125-16-76 793

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

SAVE – Save register contents

General

Application area: Starting, interrupting and terminating; see page 72
Macro type: Type O; see page 28

Macro description

The SAVE macro may be used to store register contents temporarily.

The SAVE macro is called at the beginning of a subroutine in order to save the register
contents of the main program. A return to the main program is effected by the RETRN
macro, which reloads the saved contents to the registers and makes the branch. All general
registers except register 13 can be saved. Register 13 must contain the address of the save
area, which must be defined by the main program.

Macro format and description of operands

r1
Specifies a register (general register) which is to be saved. The numbers from 0 to 15
(except 13) may be specified for “r1“. The parentheses are optional.

r1,r2
Specifies a consecutive number of registers (general registers), which are to be saved.
The range r1, r2 must not contain register 13, but but it may cross the register 15 /
register 0 boundary.
Example: If (14,12) is specified, all registers except register 13, i.e. registers 0 to 12, 14 and
15, are saved.

Note
Register specifications can also be entered in the form “Rn”, where n = register number.

SAVE

[(r1[,r2])] [,T] [,entry / *]

SAVE Description of the macros

794 U3291-J-Z125-16-76

T
Is designed for compatibility with TOS language processors and specifies that registers 14
and 15 are to be saved. This operand is specified if “r1” or the range r1, r2 does not start or
end on registers 14 and 15.

Note
If the range r1, r2 starts with register 1 or 2 when T is specified, then all registers from
14 to “r2” are saved, i.e. registers 0 and possibly 1 are not excluded from the range.

entry
Provided for compatibility with TOS language processors and specifies an ID for the SAVE
macro. “entry” must not comprise more than 155 characters; commas and blanks are not
permissible. The ID is included in the macro expansion at a halfword boundary before the
first instruction to be executed. The ID is immediately preceded by a byte beginning on a
halfword boundary and containing the length of the ID.

*
Provided for compatibility with TOS language processors and specifies that the entry in the
name field of the macro is to be used as an ID. If the name field is empty, the name of the
CSECT which contains the macro is used.

Functional description

The SAVE macro is used in subroutines, together with the RETRN macro, to save the
contents of the main program's general registers. The SAVE macro stores the values, while
the RETRN macro reloads them to the registers before the return branch and transfers a
return code if desired.
The buffer for the register contents must be defined by the main program with a length of
18 words (72 bytes). Its address must be loaded to register 13.

Description of the macros SAVE

U3291-J-Z125-16-76 795

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Buffer structure

The buffer always contains the register contents of the program in which it is defined. The
registers are stored by the called subroutine that calls the SAVE macro at the beginning.

One word of the buffer is allocated permanently to each of the registers 0 to 15 (except 13).
If a register is not to be saved, the SAVE macro skips the associated buffer word. The order
of the register contents in the buffer (14, 15, 0 to 12) permits all registers to be stored
consecutively (excluding register 13). Register 13 cannot be saved by means of the SAVE
macro, because it is used by SAVE for addressing the buffer.

If the subroutine changes register 13, this register must be saved separately. The SAVE
macro cannot be used for this purpose.

1 reserved for compiler

2 address of the calling program's buffer
(GR13)

3 address of the called program's
buffer

4 general register 14, return address

5 general register 15, destination address

6 general register 0

7 general register 1, data addresses

8 general register 2

9 general register 3

10 general register 4

11 general register 5

12 general register 6

13 general register 7

14 general register 8

15 general register 9

16 general register 10

17 general register 11

18 general register 12

 reserved for program nesting

 saved register contents

SAVE Description of the macros

796 U3291-J-Z125-16-76

Note on program nesting

A subroutine calling another subroutine, which also saves registers by means of
SAVE/RETRN, must also define a buffer. Before it loads the address of this buffer to register
13, it must save the contents of register 13 (the address of the previous program's buffer)
in word 2 of its own buffer. Before it returns to the calling program it must reload register 13
from that location.
It may deposit the address of its own buffer in word 3 of the buffer of the calling program.

Figure 25: Buffer

The address in word 2 is entered by the program that defined the buffer.
The address in word 3 and the register contents in words 4 to 18 are entered by the called
subroutine (SAVE macro).

Register conventions in nested programs:

Register R13 buffer address
Register R14 return address
Register R15 destination address (entry point in the called subroutine) or return code

(see the RETRN macro)
Register R1 address of data addresses (if data addresses are to be transferred to

the called subroutine).

Description of the macros SEGLD

U3291-J-Z125-16-76 797

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

SEGLD – Load segments

General

Application area: Linking and loading; see page 47
Macro type: Type O; see page 28

Macro description

The SEGLD macro permits automatic loading of a segment, even if it already resides in
memory. Further segments within the same path of the overlay structure are loaded
automatically.
A continuation address can be specified.

Macro format and description of operands

symbol1
Symbolic address within the segment to be loaded. A 4-byte V-type constant is generated
for this symbol.

symbol2
Symbolic address in the calling or another module to which control is passed once loading
has been completed (no V-type constant). If this operand is omitted, control is returned to
the instruction following the SEGLD macro.

Functional description

The SEGLD macro (and also the CALL macro) causes the automatic loading of segments
(nonautomatic loading is performed by the LPOV macro).
A statement in the SEGLD macro causes the Assembler to generate a V-type constant from
the symbolic address specified. This constant identifies the segment to be loaded. Based
on the V-type constant in the SEGLD macro (and on the CONTROL=YES operand in the
PROGRAM control statement) the linkage editor generates an overlay control module
required for automatic loading which satisfies the V-type constant with an address. When
the SEGLD macro is executed, control is passed to the overlay control module. The
segment that contains the symbolic address as well as all further segments within the same
path of the overlay structure are then brought into memory by the overlay control module.
This takes place regardless of whether or not the segments are already in memory.

SEGLD

symbol1[,symbol2]

SEGLD Description of the macros

798 U3291-J-Z125-16-76

Upon completion of the loading process control is returned to the instruction following the
SEGLD macro (if the “symbol2” operand is omitted). The optional address provided by the
“symbol2” operand can be present within the calling module or may be an external
reference. In the latter case the user must issue the corresponding ENTRY and EXTRN
statements as well as making sure that the module that contains “symbol2” is in memory
after completion of the loading process (see the “Utility Routines” manual [27]).

Notes on the macro call

– The overlay structure of a program in which automatic loading of segments is performed
should be designed in such a way as to allow for additional memory requirements for
the overlay control module, for ENTAB and for SEGTAB (see the “Utility Routines”
manual [27]).

– The SEGLD macro must be contained in a program area that is covered by a USING
statement. As register 15 is used by the SEGLD macro for segment loading, it must not
be used as the base register for the program section that contains the SEGLD macro.

Return information and error flags

If an error occurs while an overlay segment is being loaded, the Executive continues the
program with the command following SEGLD. If no error occurs, the continuation address
specified in the macro applies.

R15:
A return code relating to the execution of the SEGLD
macro is transferred in the rightmost byte of register
R15.

a a

X'aa' Meaning

X'00' Segment has been loaded

X'04' Incorrect read-only modification record

X'08' Incorrect record code in text/modification block, or there is a modification record before the
1st text record

X'0C' Too many read-only modification records present, or segment name cannot be found in any
of the index records for load modules (= segment)

X'10' There is no index record for load modules with segment name %ROOT

X'14' There is insufficient memory space to load the segment

X'18' Incorrect code information, or error in reading PAM load module file, or error in message
output

X'1C' Incorrect segment name

X'20' Error in loading AID

X'24' Error in reading a C element of a PLAM library

Description of the macros SELPRGV

U3291-J-Z125-16-76 799

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

SELPRGV – Select program version

General

Application area: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard /C/D/E/L/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

The SELPRGV macro determines which program version the DBL is to use if several
versions of a program can be loaded. This program must not been loaded when the version
is selected.

Macro format and description of operands

PRGNAME = <name 1..32>
Program name. As far as the DBL is concerned this is the name of a load unit. The name
may contain alphanumerical characters only. May be specified only with MF=L or MF=S.

PRGNAM@ = <var: name 32..32> / (<reg: pointer>)
Symbolic address or register containing the address of a 32 character field, which contains
the the program name. Shorter name specifications must be padded with blanks.
May be specified only if MF=M.

SELPRGV

MF=S / C / D / E / L / M

,PRGNAME=<name 1..32>

,PRGNAM@=<var:name 32..32> / (<reg: pointer>)

,PRGVERS=<name 1..24> / *STD

,PRGVER@=<var:name 24..24> / (<reg: pointer>)

,SCOPE=PROGRAM / TASK

,PARAM=<var: pointer> / (reg: pointer>)

,PREFIX=P / p

,MACID=BSL / macid

 SELPRGV Description of the macros

800 U3291-J-Z125-16-76

PRGVERS = <name 1..24>
Program version to be used by the DBL. May be specified only with MF=L or MF=S.

*STD
No version is selected. The DBL deletes the program version from its version table.

PRGVER@ = <var: name 24..24> / (<reg: pointer>)
Symbolic address or register containing the address of a 32 character field, which contains
the the program version. Shorter version specifications must be padded with blanks.
May be specified only if MF=M.

SCOPE=
Scope for the version selection.

PROGRAM
Default setting: The version selection only remains valid until the program is terminated
or the version selection is deleted. Version selection must therefore be repeated before
or during every program call.

TASK
The version selection remains valid until the end of the task or until the version selection
is deleted.

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM, PREFIX and MACID, see section “S-type macros” on page 29. The valid
MF values are given at the start of the macro description under “Macro type” and are
included in the macro format.

It is possible to specify a PREFIX in the C form, D form, or M form of the macro, and
additionally a MACID in the C form or M form (see section “S-type macros” on page 29).

Notes on the macro call

– Valid class 6 memory addresses must be specified in PRGNAM@ and PRGVER@.

Description of the macros SELPRGV

U3291-J-Z125-16-76 801

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A return code relating to the execution of the
SELPRGV macro is transferred in the standard
header
(cc=subcode2,bb=subcode1,aaaa=main code)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally

X'00' X'01' X'0001' PRGNAME not specified or invalid

X'00' X'01' X'0002' PRGVERSnot specified or invalid

X'00' X'01' X'0003' Invalid specification in SCOPE

X'00' X'00' X'0004' Version selection cannot be deleted since no program version has been
selected

X'00' X'01' X'0005' Program version table cannot be generated. Version selection rejected

X'00' X'20' X'0006' DSSM error

X'00' X'20' X'0300' System error

X'00' X'01' X'FFFF' The function is no longer or not yet supported

X'00' X'03' X'FFFF' The interface version is not supported

SETBF Description of the macros

802 U3291-J-Z125-16-76

SETBF – Set buffer size for dialog communication

General

Application area: Data terminal communication; see page 160
Macro type: Type O; see page 28

Macro description

The SETBF macro enables a user program to change the size of the internal physical I/O
buffer for communication with the terminal.
The SETBF macro is ignored in batch mode.

Macro format and description of operands

size
Size of the buffer (number of characters). 80 ≤ size ≤ 3482.

N
Indicates that no change is to be made in the buffer size if the requested size is the same
or smaller than the current buffer size.

(1)
Indicates that the user has loaded general register 1 with the size of the buffer desired
before issuing the SETBF macro. If the function corresponding to the N operand is required,
the complement of the size must be loaded in register R1.

SETBF

size [,N]

(1)

Description of the macros SETBF

U3291-J-Z125-16-76 803

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Return information and error flags

R15:
A return code relating to the execution of the SETBF
macro is transferred in the rightmost byte of register
R15.

 a a

X'aa' Meaning

X'00' Requested buffer allocated

X'04' Invalid buffer size specified by the user program

X'08' New buffer could not be allocated

SETIC Description of the macros

804 U3291-J-Z125-16-76

SETIC – Set interval timer

General

Application areas: Starting, interrupting and terminating; see page 72
STXIT processing; see page 131

Macro type: Type S, MF format 1: standard/L/E form; see page 29

Macro description

The SETIC macro enables a time interval for the CPU time and/or the real time to be
defined and the summer/winter time change event to be indicated. After the time interval
has elapsed, a “CPU time interval elapsed” or “real time interval elapsed” or “summer/winter
time change” interrupt event is signaled, and a STXIT routine allocated in the calling
program is activated (see the STXIT macro). If this does not happen, the program is
terminated.

Functional description

The Executive sets interval timers to the values specified in the SETIC macro. As soon as
these values are reached, the user program is interrupted. The system generates the event
X'20' for “CPU time interval elapsed” and/or X'A0' for “Real time interval elapsed” and/or
X'20' for “summer/winter time change”, and - if specified by STXIT - control is passed to the
interrupt routine for the appropriate timers. If no interrupt routine was specified in the STXIT
macro, the program is terminated on occurrence of a timer interrupt.
Once the interrupt has been initiated, the Executive resets the timer to the value specified
in the SETIC macro. The interrupts will occur regularly at given intervals or times of day, as
specified, until the the time interval is changed by another SETIC macro or deactivated by
specification of the value zero. If “REPEAT=NO” is specified, repeating of the intervals can
be suppressed.
If the task is in a PASS/VPASS wait state when the real-time interval elapses, this wait state
is not interrupted. Control is not passed to the specified STXIT routine until the wait state
has terminated.

Description of the macros SETIC

U3291-J-Z125-16-76 805

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Macro format and description of operands

CPUTIM=
Makes specifications regarding the CPU time interval (event code X'20').

addr
Symbolic address of the field that contains the CPU time interval specification. There
are two possible field formats:
– The “addr” field is one word long and contains the time interval as a binary number

whose value is interpreted in terms of milliseconds.
– The “addr” field is 6 bytes long and contains the time interval in the format

hhmmss - hours, minutes seconds (EBCDIC).

Maximum value for hours: 24
Maximum value for minutes and seconds: 59
Once the specified time has elapsed, control is passed to the routine specified by the
STXIT macro (TIMER operand).

(r)
Register containing the address value of the “addr” field.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

SETIC

[CPUTIM=addr / (r)]

[,CHWSTIM=YES / NO]

,REPEAT=YES / NO

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

[,REALTIM=addr / (r)

,TOD=addr / (r)

]

SETIC Description of the macros

806 U3291-J-Z125-16-76

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

REALTIM=
Makes specifications regarding the real-time interval (event code X'A0').

addr
Symbolic address of the field that contains the real-time interval. There are two possible
field formats:
– The “addr” field is one word long and contains the real-time interval as a binary

number whose value is interpreted in terms of milliseconds.
– The “addr” field is 6 bytes long and contains the real-time interval in the format

hhmmss - hours, minutes, seconds (EBCDIC).

Maximum value for hours: 24
Maximum value for minutes and seconds: 59
The value 0 is interpreted as 24 hours.
Once the specified time has elapsed, control is passed to the routine specified in the
STXIT macro (RTIMER operand).

(r)
Register containing the address value of the “addr” field.

REPEAT=
Specifies whether or not the same interval is to be set again after it has elapsed.

YES
Default setting: the same interval is to be set again after it has elapsed. This operand
is effective only in conjunction with the “CPUTIM”, “REALTIM” or “TOD” operand. With
“TOD”, it will be repeated every 24 hours. With REALTIM all values < 50 msec are set
to 50 msec. The summer/winter time change (or vice versa) is always implemented with
REPEAT=YES.

NO
The interval will not be set again.

TOD=
Makes time-of-day specifications for a real timer, based on a 24-hour clock (event code
X'A0').
The specification is made in the format hhmmss - hours, minutes, seconds (EBCDIC).
When the specified time of day is reached, control is passed to the routine specified in the
STXIT macro (RTIMER operand).

Description of the macros SETIC

U3291-J-Z125-16-76 807

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

addr
Symbolic address of a 6-byte field containing the time-of-day specification.

(r)
Register containing the address value of the “addr” field.

CHWSTIM=
Indicates the summer/winter (or vice versa) time change event (event code X'C0'). When
the event occurs, control is transferred to the routine specified in the STXIT macro (RTIMER
operand).

YES
The event is indicated, i.e. the STXIT routine - if defined - is started.

NO
The event is not indicated.

Return information and error flags

R15:
A return code relating to the execution of the SETIC
macro is transferred in the rightmost byte of register
R15.

a a

X'aa' Meaning

X'00' Normal execution

X'04' Function was not executed. Invalid operands

X'08' Function was not executed. Invalid time entry

SEVNT Description of the macros

808 U3291-J-Z125-16-76

SEVNT – Send event

General

Application areas: Intertask communication; see page 76
Communication; see page 163

Macro type: Type O; see page 28

Macro description

A user participating in intertask communication may transfer a message to another ITC
participant by means of the SEVNT macro.

Macro format and description of operands

sender-field
Symbolic name of the field containing the message to be transferred. This field must start
at a word boundary and must be constructed like a variable-length record (with 4 byte
record length field):
Bytes 0-1: record length in bytes = length of message +4

(8 ≤ record length ≤ 65 535)
Bytes 2-3: reserved
Bytes 4-n: message

The message (including the record length field) must be at least 8 bytes long and must not
exceed 65535 bytes.

receiver-name
ITC name of the participant which is to receive the message.

(1)
Specifies that register R1 contains the address of an operand field. The operand field must
be aligned on a word boundary and have the following contents:
Byte 0-3: Address of the sender field (format as described above).
Byte 4-11: ITC name of the receiver. If the name is shorter than 8 characters, the field must

be padded with blanks (X'40').

SEVNT

sender-field,receiver-name

(1)

Description of the macros SEVNT

U3291-J-Z125-16-76 809

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Functional description

Each ITC participant may transfer a message to another participant by means of the
SEVNT macro. The message may be between 4 bytes and 64 Kbytes long. It is transferred
into the receive queue of the receiving ITC participant. The SEVNT macro is rejected if
there is not enough system memory available, or if the total length of messages in the
receive queue exceeds a predefined limit (128 K). The sending program is not automatically
informed whether the receiver requests and analyzes the message from the receive queue.
To obtain this information, the receiver would have to return a message as
acknowledgment. The task which includes the SEVNT call is not interrupted by the sending
of the message.

An ITC participant may issue successive SEVNT calls to send messages to various
receivers.

Return information and error flags

R15:
A return code relating to the execution of the SEVNT
macro is transferred in the rightmost byte of register
R15.

a a

X'aa' Meaning

X'00' The message was transferred to the receiving queue of the specified participant

X'04' Operand error (e.g. memory is not allocated or is not class 6 memory). The message was
not transferred

X'08' The calling task is not an ITC participant. The message was not transferred

X'0C' Not enough system memory available or the internal limit for receive queues has already
been exceeded. The message was not transferred

X'10' The receiver is not (yet) an ITC participant, or the calling task is trying to transfer a message
to itself. The message was not transferred

SHOWMP Description of the macros

810 U3291-J-Z125-16-76

SHOWMP – Output memory pools

General

Application area: Memory pools; see page 55
Macro type: Type S, MF format 3: C/D/E/L/M form; see page 31

A memory pool (MP) is a memory area (class 6 memory) that may be used by several users
together. The user who creates the memory pool defines its size (position), designation
(name) and memory attributes.
Information about the size of the memory pool and the number of memory pages allocated
can be requested by means of the MINF macro.

Macro description

The SHOWMP macro informs about common memory pools that currently exist in the
system. Local memory pools will not be output. The macro outputs the name, scope and
number of connected tasks. The user can also request the TSNs of the connected tasks.

In all cases, a nonprivileged user will only see the nonprivileged memory pools that have a
connected task for his user ID. The list of sharer tasks will only contain tasks with the user's
own user ID.

The information can be narrowed down via the following parameters:
– Output for a certain name or range of names
– Output for a certain scope
– Output for memory pools with certain characteristics
The user can also determine the maximum number of TSNs to be listed with the connected
tasks (default setting is 45).

Privileged functions

Privileged users (TSOS or SW-MONITOR-ADMINISTRATION privilege) can access
information on all memory pools. Also, all sharer tasks will be output, irrespective of the user
ID. Privileged memory pools can be selected with the PRIV_POOL operand.

Description of the macros SHOWMP

U3291-J-Z125-16-76 811

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Macro format and description of operands

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. a prefix), see section “S-type macros” on page 29. The valid MF values are
given at the beginning of the macro description under “Macro type” and are included in the
macro format.

SHOWMP

MF=D / E / L / C / M

,SCOPE=*ANY / *GLOBAL / *GROUP / *USER-GROUP

,SELECT=*ALL / *PAR

,PRIV_POOL=*ANY / *YES / *NO

,CONNECT=*ANY / *BY-USER / *BY-TASK

,INFO=*STD / *ALL

,NUMSHR=45 / <integer 1..4096> / <var: int:4> / (<reg: integer 1..4096>)

,INFO_AREA=adr / (r)

,INFO_LENGTH=1 / <integer 1..1024> / <var: int:4> / (<reg: integer 1..1024>)

[,PARAM=adr / (r)]

,PREFIX=N / p

,MACID=VPI / macid

,XPAND=PARAM / INFA

,EQUATES=YES / NO]

,MPNAME=*ALL / '<name 1..54 with_wild>'

[,MPNAMAD=A(name) / adr / (r) ,MPNAMLN=<integer 1..54> / <var: int:4> / (<reg: integer 1..54>)]

,GROUP_USERID=*ANY / *OWN / '<name 1..8>' / <var: name 8..8> / (<reg: A(name 8..8)>)

,USER_GROUPID=*ANY / *OWN / '<name 1..8>' / <var: name 8..8> / (<reg: A(name 8..8)>)

,USERID=*OWN / '<name 1..8>' / <var: name 8..8> / (<reg: A(name 8..8)>)

,TSN=*OWN/ '<name 1..4>' / <var: name 4..4> / (<reg: A(name 4..4)>)

SHOWMP Description of the macros

812 U3291-J-Z125-16-76

MPNAME=
Specifies the names of the memory pools to be output (note the connection with the SCOPE
and SELECT operands).
Depending on the MF variant, the MPNAMAD operand may be used instead, see
“Programming notes” on page 817.

*ALL
All memory pools are output.

'<name 1..54 with-wild>'
Only the specified memory pool is output. When using a wildcard, all memory pools with
a name corresponding to the wildcard string will be output. The wildcard character is *.
The first blank space marks the end of the name or wildcard string.

MPNAMAD=
Specifies the address of the field containing the name of the memory pool (note the
connection with the SCOPE and SELECT operands). * is a valid wildcard. The first blank
space marks the end of the name or wildcard string.
Depending on the MF variant, the operand MPNAME may be used instead, see
“Programming notes” on page 817.

A(name)
Address of the field containing the name of the memory pool.

adr
Symbolic address (name) of an auxiliary field containing the address of the field
containing the name of the memory pool (only for MF=M).

(r)
r = register with the address value of the field (only for MF=M).

MPNAMLN=
Defines the length of the name specified under MPNAMAD. Mandatory when using
MPNAMAD. Otherwise, MPNAMLN will be ignored.

<integer 1..54>
Length in bytes.

<var: int:4>
Symbolic address (name) of the field containing the length (only for MF=M).

(<reg: integer 1..54>)
reg = register containing the length (only for MF=M).

Description of the macros SHOWMP

U3291-J-Z125-16-76 813

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

SCOPE=
Specifies whether only memory pools with a certain scope should be output.

*ANY
The memory pools will be output irrespective of their scope.

*GLOBAL / *GROUP / *USER_GROUP
Only memory pools with the specified scope will be output.

GROUP_USERID=*ANY / *OWN / '<name 1..8>' / <var: name 8..8> /
(<reg: A(name 8..8)>)
Operand will only be evaluated if SCOPE=*GROUP.
Only memory pools created with the indicated user ID will be output. *OWN designates the
user ID of the calling task.
With *ANY, the output is pre-defined irrespective of the user ID.

'<name 1..8>'
Specification of the user ID.

<var: name 8..8>
Symbolic address (name) of the field containing the user ID (only for MF=M).

(<reg:A(name 8..8))
reg = register containing the address of the field containing the user ID (only for MF=M).

USER_GROUPID=*ANY / *OWN / '<name 1..8>' / <var: name 8..8> /
(<reg: A(name 8..8)>)
Operand will only be evaluated if SCOPE=*USER_GROUP.
Only memory pools created by the specified user group will be output. *OWN designates
the user group to which the calling task belongs. With *ANY, the output is pre-defined
irrespective of the user group.

'<name 1..8>'
Indication of the user group.

<var: name 8..8>
Symbolic address (name) of the field containing the name of the user group (only for
MF=M).

(<reg:A(name 8..8))
reg = register containing the address of the field containing the name of the user group
(only for MF=M).

SHOWMP Description of the macros

814 U3291-J-Z125-16-76

SELECT=*ALL / *PAR
Specifies whether the number of memory pools defined by name and SCOPE should be
further narrowed down through additional criteria (*PAR) or not (*ALL).

PRIV_POOL=*ANY / *YES / *NO
If SELECT=*PAR, this operand defines whether only privileged memory pools (*YES, only
valid for privileged users) are to be output. If *NO, no privileged memory pools will be
output. *ANY: both privileged and nonprivileged memory pools will be output.

CONNECT=
If SELECT=*PAR, this operand defines whether the memory pools will be filtered
depending on their connected tasks. *ANY: memory pools will be output irrespective of their
connected tasks.

*BY-USER
Only memory pools will be output that have a connected task with the user ID defined
in the following USERID operand.

*BY-TASK
Only memory pools will be output that have the connected task with the TSN defined in
the following TSN operand.

USERID=*OWN / '<name 1..8>' / <var: name 8..8> / (<reg: A(name 8..8)>)
Operand will only be evaluated for INFO=*ALL.
If CONNECT=*BY-USER, this operand specifies the user ID for the connected task. *OWN:
the user ID of the caller. Only privileged users can view memory pools that have connected
tasks with a user ID other than their own.

'<name 1..8>'
Specification of the user ID.

<var: name 8..8>
Symbolic address (name) of the field containing the user ID (only for MF=M).

(<reg:A(name 8..8))
reg = register containing the address of the field containing the user ID (only for MF=M).

Description of the macros SHOWMP

U3291-J-Z125-16-76 815

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

TSN=*OWN / '<name 1..4>' / <var: name 4..4> / (<reg: A(name 4..4)>)
If CONNECT=*BY-TASK, this operand specifies the TSN for the connected task. *OWN:
the TSN of the caller. Nonprivileged users can only specify tasks with their own user ID
here.

'<name 1..4>'
Specification of the TSN.

<var: name 4..4>
Symbolic address (name) of the field containing the TSN (only for MF=M).

(<reg:A(name 4..4))
reg = register containing the address of the field containing the TSN (only for MF=M).

INFO=
Defines the amount of information output.

*STD
The properties of the memory pools and the number of connected tasks will be output.

*ALL
In addition to the standard output, all connected tasks will be listed with their TSN.
Nonprivileged users will only see the TSNs for their own user ID. Privileged users will
see all TSNs.

NUMSHR=45 / <integer 1..4096> / <var: int:4> / (<reg: integer 1..4096>)
Operand will only be evaluated for INFO=*ALL.
Defines the maximum number of tasks to be listed.

<integer 1..4096>
Specification of number of tasks.

<var: int:4>
Symbolic address (name) of the field containing the number of tasks (only for MF=M).

(<reg: integer 1..4096>)
reg = register containing the number of tasks (only for MF=M).

INFO_AREA=adr / (r)
Only for MF=M.
Specifies the address of the information output area. The area has to consist of one or more
class 6 memory pages.

adr
Symbolic address (name) of an auxiliary field containing the address of the information
output area.

(r)
r = register with the address value of the information output area.

SHOWMP Description of the macros

816 U3291-J-Z125-16-76

INFO_LENGTH=1 / <integer 1..1024> / <var: int:4> / (<reg: integer 1..1024>)
Specification of the number of pages for this output.

<integer 1..4096>
Specification of the number of pages.

<var: int:4>
Symbolic address (name) of the field containing the number of pages (only for MF=M).

(<reg: integer 1..1024>)
reg = register containing the number of pages (only for MF=M).

XPAND=
Control operand only for MF=C and MF=D:
Specifies, which structure is to be expanded (created). For other MF values, this operand
will be ignored.

PARAM
The layout of the parameter list will be expanded.

INFA
The layout of the information area will be expanded.

EQUATES=
Control operand only for MF=C and MF=D:
Specifies, whether, when expanding the parameter or information area, equates for the
values of the fields of the parameter or information area are to be generated as well.

YES
When expanding the parameter or information area, equates for the values of the fields
of the parameter or information area are to be generated.

NO
When expanding the parameter or information area, equates for the values of the fields
of the parameter or information area are not to be generated.

Description of the macros SHOWMP

U3291-J-Z125-16-76 817

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Programming notes

There are three pairs of operands that may not be used together and that exclude each
other: MPNAME and MPNAMAD, GROUP_USERID and USER_GROUPID, USERID and
TSN. For these pairs, the following rule applies: the latest specification (in different MF
variants) is valid and has to match the other operands.
In detail:

● If MPNAME or MPNAMAD are specified, the latest of these specifications is valid
(meaning from the latest MF=L- or MF=M call).

● For SCOPE=*GROUP, the latest specification has to be GROUP_USERID (not
USER_GROUPID).

● For SCOPE=*USER_GROUP, the latest specification hat to be USER_GROUPID (not
GROUP_USERID).

● For SELECT=*PAR and CONNECT=*BY-USER, the latest specification has to be the
USERID operand (not TSN).

● For SELECT=*PAR and CONNECT=*BY-TASK, the latest specification has to be the
TSN operand (not USERID).

Information about the memory pools is provided in the information area (INFO_AREA and
INFO_LENGTH operands). There are also two more fields with output information in the
parameter area:

● If the function was executed successfully or partially, the number of memory pools for
which information is provided in the information area is indicated in the &P.NPOL field.

● If the size of the class 6 memory (INFO_LENGTH operand) is not enough (return
information: function partially executed. Information area too small), the required page
number is provided in the parameter area (field &P.INFX). It can be used for additional
calls of SHOWMP, e.g. in a loop.

i The number of memory pools can change between two SHOWMP calls!

SHOWMP Description of the macros

818 U3291-J-Z125-16-76

Layout of the parameter area

&P._MDL DSECT
* subcode2
&P.NONE EQU 0 no further information
&P.NOMP EQU 1 no memory pool found
&P.NOCO EQU 2 no connection to memory pool
&P.MNER EQU 3 error in MPNAME specification
&P.MAER EQU 4 invalid MPNAMAD address
&P.MLER EQU 5 invalid MPNAMLN value
* specified
&P.SCER EQU 6 error in SCOPE specification
&P.SEER EQU 7 error in SELECT specification
&P.PPER EQU 8 error in PRIV_POOL
* specification
&P.COER EQU 9 error in CONNECT
* specification
&P.GUER EQU 10 wrong USERID specified for
* SCOPE=*GROUP
&P.GRER EQU 11 wrong GROUPID specified for
* SCOPE=*USER-GROUP
&P.CUER EQU 12 wrong USERID specified for
* CONNECT=*BY-USER
&P.CTER EQU 13 wrong TSN specified for
* CONNECT=*BY-TASK
&P.IFER EQU 14 error in INFO specification
&P.NSER EQU 15 error in NUMSHR specification
&P.IAER EQU 16 invalid INFO_AREA address
&P.ILER EQU 17 invalid INFO_LENGTH value
* specified
&P.FHDR FHDR MF=(C,&P.),EQUATES=NO Standardheader

* main return codes
&P.SUCC EQU 0 function processed
* successfully
&P.PART EQU 1 function processed only
* partially
&P.PAER EQU 2 parameter error
&P.INER EQU 3 internal error
&P.PRER EQU 4 privilege error
&P.PSAT EQU 5 paging area saturation
&P.MSAT EQU 6 main memory saturation
&P.USAT EQU 7 user space saturation
&P.SSAT EQU 8 system space saturation
*
&P.MPSS DS AL1 MPSHOW FLAG
&P.MPNS EQU X'80' *ALL OR MP NAME SPECIFIED
&P.CUSS EQU X'40' *OWN OR USERID SPECIFIED

Description of the macros SHOWMP

U3291-J-Z125-16-76 819

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

&P.TSNS EQU X'20' *OWN OR TSN SPECIFIED
&P.GUSS EQU X'10' *OWN/*ANY OR USERID SPECIFIED
&P.GRPS EQU X'08' *OWN/*ANY OR GROUPID
* SPECIFIED
&P.GUOA EQU X'04' *ANY OR *OWN FOR USERID
* SPECIFIED
&P.GROA EQU X'02' *ANY or *OWN FOR GROUPID
* SPECIFIED
&P.RES1 EQU X'01' RESERVED
*
&P.COPE DS FL1 SCOPE OF SHOWMP
* scope of memory pools
&P.ANYS EQU 0 any memory pool scope
&P.GRP EQU 1 memory pools of scope=group
&P.UGRP EQU 2 memory pools of
* scope=user-group
&P.GLB EQU 3 memory pools of
* scope=user-global
*
&P.SELE DS FL1 SELECTION OF SHOWMP
* select memory pools
&P.ALLS EQU 0 select all memory pool data
&P.PAR EQU 1 select specific data
*
&P.CONM DS FL1 CONNECTION OF SHOWMP
* select connected memory pools
&P.ANYC EQU 0 select any memory pool
&P.USER EQU 1 select memory pools of user
* ID
&P.TASK EQU 2 select memory pools of task
*
&P.PRPO DS FL1 PRIV-POOL OF SHOWMP
* privilege of memory pools
&P.ANYP EQU 0 select memory pools whether
* privileged or no
&P.YESP EQU 1 select only privileged memory
* pools
&P.NOP EQU 2 select only non-privileged
*
&P.INFM DS FL1 INFO OF SHOWMP
* type of information
&P.STD EQU 0 get data without TSN-list
&P.ALLI EQU 1 get data with TSN-list
*
&P.MPNM DS CL54 MEMORY POOL NAME
&P.MPNA DS A ADDRESS OF MEMORY POOL NAME
&P.MPLN DS F LENGTH OF MPNAME
&P.SCOPE_ID DS 0XL8 USER- OR GROUP_ID

SHOWMP Description of the macros

820 U3291-J-Z125-16-76

&P.GUSI DS CL8 USER-ID BY SCOPE=GROUP
ORG &P.SCOPE_ID
&P.GRPI DS CL8 GROUP-ID BY SCOPE=USER-GROUP
ORG &P.SCOPE_ID+8
&P.CONNECT_ID DS 0XL8 USER-ID OR TSN
&P.USID DS CL8 USER-ID BY CONNECT=*BY-USER
ORG &P.CONNECT_ID
&P.TSN DS CL4 TSN BY CONNECT=*BY-TSN
ORG &P.CONNECT_ID+8
&P.NRSH DS F # OF SHARER
&P.INFP DS A ADDRESS OF INFO AREA
&P.INFL DS F LENGTH OF INFO AREA IN PAGES
&P.NPOL DS F NUMBER OF FOUND MEMORY POOLS
&P.INFX DS F NEW LENGTH OF INFO AREA (PAGES)
&P.# EQU *-&P.FHDR

Layout of the information area

&P.INFA DSECT
*
* info area description
&P.NXTM DS A NEXT MEMORY POOL
&P.MPNA DS CL54 MEMORY POOL NAME
&P.MPSC DS FL1 SCOPE OF MEMORY POOL
* scope of memory pools
&P.GRPO EQU 1 memory pools of scope=group
&P.UGRO EQU 2 memory pools of
* scope=user-group
&P.GLBO EQU 3 memory pools of
* scope=global
*
&P.RES DS XL1 RESERVED BYTE
&P.GUID DS CL8 GROUP- OR USER-ID
&P.NSHR DS F # OF SHARER TASKS
&P.STSN DS CL4 TSN OF SHARER
&P.INFA# EQU *-&P.NXTM

Description of the macros SHOWMP

U3291-J-Z125-16-76 821

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A return code relating to the execution of the
SHOWMP macro is transferred in the standard
header (cc=Subcode2, bb=Subcode1,
aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Macro executed normally.

X'01' X'00' X'0000' Normal execution. No matching memory pool in the system

X'02' X'00' X'0000' Normal execution. Specified memory pool exists, but not connected

X'00' X'00' X'0001' Function partially executed. Information area too small. The required
number of pages will be provided in the output field &P.INFL.

X'03' X'01' X'0002' Error in MPNAME operand (also if MPNAMAD refers to a field with a
faulty name specification)

X'04' X'01' X'0002' Invalid address in MPNAMAD operand

X'05' X'01' X'0002' Invalid value in MPNAMLN operand

X'06' X'01' X'0002' Error in SCOPE operand

X'07' X'01' X'0002' Error in SELECT operand

X'08' X'01' X'0002' Error in PRIV_POOL operand

X'09' X'01' X'0002' Error in CONNECT operand

X'0A' X'01' X'0002' Wrong user ID in USERID operand (SCOPE=*GROUP)

X'0B' X'01' X'0002' Wrong group ID in GROUPID operand (SCOPE=*USER-GROUP)

X'0C' X'01' X'0002' Wrong user ID in USERID operand (CONNECT=*BY-USER)

X'0D' X'01' X'0002' Wrong TSN in TSN operand (CONNECT=*BY-TASK)

X'0E' X'01' X'0002' Error in INFO operand

X'0F' X'01' X'0002' Error in NUMSHR operand

X'10' X'01' X'0002' Invalid address in INFO_AREA operand (also for missing indication or
missing page orientation of the area)

X'11' X'01' X'0002' Invalid length in INFO_LENGTH operand

X'00' X'20' X'0003' Internal error

X'00' X'40' X'0004' Not privileged for call

X'00' X'80' X'0005' Shortage in paging memory

X'00' X'80' X'0006' Shortage in main memory

X'00' X'80' X'0007' Shortage in user address space

SHOWMP Description of the macros

822 U3291-J-Z125-16-76

Program example

SHOWMP MF=D,XPAND=PARAM
SHOWMP MF=D,XPAND=INFA
*
SHMEMPO @ENTR TYP=I,LOCAL=SHMEMPL
SHMEMPL @PAR D=YES
SHMEMPC SHOWMP MF=C,PREFIX=A,XPAND=PARAM
*
SHMPNAME DS CL8 MPNAME
SHUSERID DS CL8 USERID FOR GROUP
SHMEMPL @PAR LED=YES
...
LA R3,SHMEMPC
USING NVPI_MDL,R3
LA R4,1
MVC SHMEMPC(NVPI#),SHMEMPD
MVC SHMPNAME,MEMPNAME COPY MPNAME
MVC SHUSERID,USERID Assume: MYUID is own USERID
LA R9,SHMPNAME A(MPNAME)
*
SHOWMP MF=M,MPNAMAD=(R9),MPNAMLN=8,GROUP_USERID=SHUSERID
*
@CYCL ,
*
REQM (R4) REQUEST CLASS 6 PAGES
@WHEN NZ
LTR R15,R15
@BREAK ,
*
LR R5,R1
SHOWMP MF=M,INFO_AREA=(R5)
*
SHOWMP MF=E,PARAM=(R3) GET MEMORY POOL DATA
XR R15,R15
@WHEN EQ
CLC NVPIMRET,=X'0000'
@OR GT
CLC NVPIMRET,=X'0001'
@BREAK ,
*
RELM (R4),(R5) RELEASE CLASS 6 PAGES

Description of the macros SHOWMP

U3291-J-Z125-16-76 823

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

*
L R4,NVPIINFL GET NEW PAGE NUMBER
@BEND ,
*
@IF ZE
LTR R15,R15
@AND EQ
CLC NVPIMRET,=X'0000'
@AND NE
CLC NVPINPOL,=F'0' AVOID CYCLE WITH LOOP COUNT 0
@THEN ,
*
* evaluation of returned info data
*
L R8,NVPINPOL
LR R7,R5 ADDRESS OF INFO AREA
USING NVPIINFA,R7
*
@CYCL (R8) LOOP OVER FOUND MEMPOOLS
.
.
L R7,NVPINXTM NEXT MEMORY POOL
@BEND ,
*
@ELSE ,
*
* error handling
*
@BEND ,
...
@END ,
* DATA
SHMEMPD SHOWMP MF=L,SCOPE=*GROUP,SELECT=*ALL,INFO=*ALL
*
MEMPNAME DC CL8'HAUS*' MPNAME WITH WILDCARD
USERID DC CL8'MYUID' USERID FOR GROUP

SOLSIG Description of the macros

824 U3291-J-Z125-16-76

SOLSIG – Solicit signal request

General

Application area: Eventing; see page 94
Macro type: Type S, MF format 1: standard/L/E form; see page 29

If the 24-bit interface is used, a 4-byte field is generated for the post code. If the 31-bit
interface is used, the post code may have a length of either 4 or 8 bytes.

Macro description

This macro is used to issue a “SOLicit SIGnal request” for an event item. The event item
must previously have been assigned to the calling task (by ENAEI). The task can wait until
an event occurs (synchronous operation) or, if the task is to be continued, until a
contingency process is initiated as a result of the event (asynchronous operation).
In either case the task is continued (or the contingency process is initiated) once a specified
period of time has elapsed - even if the event does not occur.
The contingency process must previously have been defined (by ENACO).

Note
If a program (package) has defined a contingency process written in SPL, register R12
must contain the address of the SPL program manager for all ENACO, SOLSIG and
POSSIG calls.

Macro format and description of operands

SOLSIG

EINAME=name

EINAMAD= addr

(r)

[,EINAMLN=length]

[,SCOPE=LOCAL / GROUP / USER_GROUP / GLOBAL]

EIID= addr

r()

Description of the macros SOLSIG

U3291-J-Z125-16-76 825

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

EINAME=name
Specifies the name of the event item to which the requested event is signaled. The event
item must already have been defined (ENAEI). The name of the event item is unique only
in conjunction with SCOPE.

EINAMAD=
Specifies the name of the event item. This entry is unique only in conjunction with SCOPE.

addr
Symbolic address of the field containing the name.

(r)
Register containing the address of the field.

EINAMLN=length
Specifies the length in bytes of the event item name. If the operand is missing, the length
attribute of the EINAMAD operand is assumed if EINAMAD=addr is specified;
if EINAMAD=(r), the maximum length (54 bytes) is assumed.

length
Length of the event item name.

SOLSIG (cont.)

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

,COND=UNCOND[, RPOSTAD= addr

(r)

RPOSTR=r

] [,RPOSTL= 1

2

][,LIFETIM= sec

(r)

]

,COND=IMMED[, RPOSTAD= addr

(r)

RPOSTR=r

] ,RPOSTL=
1

2

,COID= addr

(r)

[,COMAD= addr

(r)

][,COND=PERM][,LIFETIM= sec

(r)

]

SOLSIG Description of the macros

826 U3291-J-Z125-16-76

SCOPE=
Specifies the scope (group of participants) of the event item.

LOCAL
Default setting: the use of the event item is limited to the calling task.

GROUP
All the tasks with the same user ID as the calling task are participants.

USER_GROUP
All the tasks, whose user IDs belong to the same user group as the user ID of the
creating participant, can be participants.
The operand value assumes the existence of user groups and may therefore only be
specified when the SRPM function unit of the SECOS software product is available in
the system. This is why the GETUGR macro (see the “SECOS” manual [14]) has to
check whether SRPM is available prior to a macro call with SCOPE=USER_GROUP.
The program reaction is dependent on the result (return code).

GLOBAL
All the tasks in the system are participants.

EIID=
Specifies the ID of the event item. This ID is supplied to the user by the ENAEI macro. If the
ID is used instead of the name of the event item, processing is speeded up. The ID is
unique.

addr
Symbolic address of a 4-byte field containing the ID.

(r)
Register containing the address of the field.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

Description of the macros SOLSIG

U3291-J-Z125-16-76 827

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

Operands for synchronous operation

COND=
Specifies whether or not the caller is willing to wait for the event to occur.

UNCOND
Denotes that the caller is willing to wait for the event to occur. The waiting time can be
restricted with the aid of the LIFETIM operand.

IMMED
Denotes that the caller is not willing to wait for the event to occur. The program must be
continued even if the event was not yet signaled to the event item by a POSSIG macro.
More information is supplied by the secondary indicator X'20' in register 15 (see “Return
information and error flags” below).

RPOSTAD=
Specifies a field to which a post code is to be transferred. The post code may be 4 or 8 bytes
long. The RPOSTL operand determines whether only the first word or both words of the
post code are to be placed in the field.
The RPOSTR operand has the same function as this operand and, if it is used, processing
is speeded up.
The address value 0 is not allowed.

addr
Symbolic address of the field to receive the post code. Field length = 4 or 8 bytes.

(r)
Register containing the address value “addr”.

RPOSTR=r
Indicates a register where the post code is to be entered directly. A two-word post code is
entered in this register and the one following it (in number) if RPOSTL=2 is specified.

r
Register to receive the post code.

RPOSTL=
Gives the length in words of the post code to be received. If the 24-bit interface
(PARMOD=24) is used, only RPOSTL=1 is permitted.

1
Default setting: only one word (the first word) of the post code is to be transferred.

2
The complete post code (2 words) is to be transferred.

SOLSIG Description of the macros

828 U3291-J-Z125-16-76

LIFETIM=
Time for which the task is to wait for an event to occur. The return information indicates
whether the request was satisfied or the waiting time elapsed. The operand is ignored if
COND=IMMED is specified.

sec
Time in seconds. 1 ≤ sec ≤ 43200
The processing accuracy is +10 seconds.
Default value: 600 sec.

(r)
Register containing the specification in seconds.

Operands for asynchronous operation

COID=
Specifies the ID of the contingency process. The ID is supplied to the user by the ENACO
macro call.

addr
Symbolic address of a 4-byte field containing the ID.

(r)
Register containing the address.

COMAD=
Specifies a contingency message. A contingency message issued here replaces any which
might have been issued when the contingency was defined (by ENACO).

addr
Symbolic address of a word containing a contingency message.

(r)
Register containing the address.

COND=PERM
Permanent asynchronous SOLSIG:
If the signal requested by SOLSIG arrives (via POSSIG) within the waiting time (LIFETIM),
another SOLSIG macro is issued. The waiting time for this second macro is 600 seconds.
If no signal arrives during this waiting time, no further SOLSIG macro is issued.

LIFETIM=
Time during which the event should occur. The event information code notifies the contin-
gency task as to whether or not the request was honored within the specified period of time.

sec
Time in seconds. 1 ≤ sec ≤ 43200
The processing accuracy is +10 seconds.
Default value: 600 sec

Description of the macros SOLSIG

U3291-J-Z125-16-76 829

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

(r)
Register containing the time specification in seconds.

Return information and error flags

During macro processing, register R1 contains the operand list address.

R15:
A structured return code (aa = primary return code,
bb = secondary return code) relating to the execution
of the macro is transferred in register R15.

b b a a

X'bb' X'aa' Meaning

X'00' X'00' Function executed:
– synchronous operation:

The event occurred. Post code information was provided and received, or post
code information was neither provided nor requested.

– asynchronous operation:
SOLSIG was successfully queued

X'30' X'00' Function executed: post code information was provided (POSSIG) but SOLSIG did
not request a destination field (RPOSTAD)

X'34' X'00' Function executed: no post code information was provided (POSSIG) although
SOLSIG requested such information (RPOSTAD). A zero post code (X'000000') is
regarded as no post code

X'38' X'00' Function executed: post code exceeds specified receiving field in length. The 2nd
word (4 rightmost bytes) has been truncated

X'3C' X'00' Function executed: post code is shorter than the receiving field. It is entered left-
justified

X'0C' X'04' No action: the event item established by the system has not been assigned to the
calling task

X'10' X'04' No action: invalid operands were specified

X'14' X'04' No action: invalid name or ID. No event item with the specified identification exists

X'18' X'04' No action: maximum number (400) of contingency processes allowed per basic
task has been exceeded

X'20' X'04' No action: the event did not occur.
Either COND=IMMED was set before POSSIG had been issued or the waiting time
has elapsed

X'24' X'04' No action: invalid contingency process ID. No contingency process with this ID
exists

X'28' X'04' No action: the event item was deleted before the event occurred

SOLSIG Description of the macros

830 U3291-J-Z125-16-76

Example: synchronous operation

SOLSIG START
PRINT NOGEN

SOLSIG AMODE ANY
GPARMOD 31

1 *,MACRO: GPARMOD, VERSION: VER121
BALR 3,0
USING *,3
ENAEI EINAME=EVENT,SCOPE=GLOBAL,EIIDRET=KK ————————————————— (1)
GDATE TOD=TIME1
SOLSIG EIID=KK,COND=UNCOND ————————————————————————————————— (2)

*** WAITING FOR SIGNAL ***
GDATE TOD=TIME2
ST 15,RCFIELD1
GDATE TOD=TIME3
SOLSIG EIID=KK,COND=UNCOND,LIFETIM=70 —————————————————————— (3)

*** WAITING FOR SIGNAL ***
GDATE TOD=TIME4
ST 15,RCFIELD2
GDATE TOD=TIME5
SOLSIG EIID=KK,COND=IMMED —————————————————————————————————— (4)
GDATE TOD=TIME6
ST 15,RCFIELD3
CHKEI EIID=KK —— (5)
ST 15,RCFIELD4
DISEI EIID=KK

DTH1 TERM
**** DEFINITIONS *****
KK DS F
TIME1 DS CL8
TIME2 DS CL8
TIME3 DS CL8
TIME4 DS CL8
TIME5 DS CL8
TIME6 DS CL8
RCFIELD1 DS F
RCFIELD2 DS F
RCFIELD3 DS F
RCFIELD4 DS F

END

Description of the macros SOLSIG

U3291-J-Z125-16-76 831

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,solsig), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,solsig)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 453 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 84 MSEC
//end
% ASS6012 END OF ASSEMBH
/load-executable-program library=macexmp.lib,element-or-symbol=solsig, -
/ test-options=*aid
% BLS0523 ELEMENT 'SOLSIG', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'SOLSIG', VERSION ' ' OF '<date> <time>' LOADED
/%in dth1;%r
STOPPED AT LABEL: DTH1 , SRC_REF: 287, SOURCE: SOLSIG , PROC: SOLSIG
/%d %@(time1) -> %cl8,%@(time2) -> %cl8 ——————————————————————————————— (6)
*** TID: 005000D8 *** TSN: 2QSE ***
**
CURRENT PC: 00000136 CSECT: SOLSIG **************************************
**
V'00000158' = SOLSIG + #'00000158'
00000158 (00000158) 13:14:15
V'00000160' = SOLSIG + #'00000160'
00000160 (00000160) 13:24:53
/%d %@(rcfield1) -> %x —— (7)
V'00000188' = SOLSIG + #'00000188'
00000188 (00000188) 20000004
/%d %@(time3) -> %cl8,%@(time4) -> %cl8 ——————————————————————————————— (8)
V'00000168' = SOLSIG + #'00000168'
00000168 (00000168) 13:24:53
V'00000170' = SOLSIG + #'00000170'
00000170 (00000170) 13:26:02
/%d %@(rcfield2) -> %x —— (9)
V'0000018C' = SOLSIG + #'0000018C'
0000018C (0000018C) 20000004
/%d %@(time5) -> %cl8,%@(time6) -> %cl8 ——————————————————————————————— (10)
V'00000178' = SOLSIG + #'00000178'
00000178 (00000178) 13:26:02
V'00000180' = SOLSIG + #'00000180'
00000180 (00000180) 13:26:02

SOLSIG Description of the macros

832 U3291-J-Z125-16-76

/%d %@(rcfield3) -> %x —— (11)
V'00000190' = SOLSIG + #'00000190'
00000190 (00000190) 20000004
/%d %@(rcfield4) -> %x —— (12)
V'00000194' = SOLSIG + #'00000194'
00000194 (00000194) 30000000
/%r

(1) The event item EVENT is defined. KK is the address for the ID.

(2) The task solicits a signal from the event item. The caller is willing to wait for the
arrival of the signal until the end of the default waiting time (10 minutes).

(3) A second signal is requested. In this case, the waiting time is only 70 seconds.

(4) A third signal is requested. The task will not wait for it. As no signal has been posted
in the POSSIG event queue, the task is continued immediately.

(5) The queues of the event item EVENT are checked. They are empty because the
waiting times of all SOLSIG macros have expired. Then the definition of the event
item is disabled.

(6) Time of day before and after the SOLSIG macro with default waiting time: the
waiting time was 10 minutes and 38 seconds.

(7) Return code X'20000004' after the first SOLSIG call: the event did not take place.

(8) Time of day before and after the SOLSIG call with 70 seconds waiting time: the
waiting time was 69 seconds.

(9) Return code X'20000004' after the second SOLSIG call: the event did not take
place.

(10) Time of day before and after the SOLSIG macro without waiting time: no waiting
time.

(11) Return code X'20000004' after the third SOLSIG call: the event did not take place.

(12) Result of the check of the receive queues by means of CHKEI: there are no
requests in the receive queues.

For examples, see the sections “Eventing” (page 106) and “Contingency processes”
(page 118).

Description of the macros SRMUINF

U3291-J-Z125-16-76 833

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

SRMUINF – Read user information from user catalog

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 3: D/C/E/L/M form; see page 29

An entry is made by a user administrator in the user catalog for each user (user ID). The
contents of the entry include the following:

– user ID, password authorization,...
– specifications on system resources available to the user (CPU time, memory space,...)
– special user rights (privileged access,...)
– accounting data.
– Mailing information (mail and email addresses)

Macro description

The SRMUINF macro reads data from the user catalog and transfers it to an area specified
beforehand. Depending on the specification made, the accounting data, the user-specific
data or the entire entry for a user ID is output from the user catalog. The following distinction
needs to be made:

– Macro under the ID of the nonprivileged user:
only data from the user's own entry is output.

– Macro call under the ID of a user administrator (normally the user ID TSOS or, if the
software product SECOS is used, a user ID with the privilege USER-
ADMINISTRATION):
– output of data from the user's own entry
– output of data from other users (individually for any one user or in sequence for

more than one user)
– Macro under the ID of a user group administrator (only possible if the software product

SECOS is used). Only data from a local pubset can be output:
– output of data from the user's own entry
– output of data from other users who belong to the group or subgroup of the user

group administrator.

SRMUINF Description of the macros

834 U3291-J-Z125-16-76

Macro format and description of operands

The operands are described below in alphabetical order.

ACTION=
Specifies whether data is to be read from the user catalog for the specified user ID or the
next user ID.

*READ
Default setting: the entry for the specified user ID is read from the user catalog.

*READNXT
The entry for the user ID that follows the specified user ID is read from the user catalog.
This value can only be specified under the ID of a user administrator with the system privilege
“USER-ADMINISTRATION” (this system privilege is normally assigned to the user ID TSOS
or, if the software product SECOS is used, to a user ID with the corresponding privileges).

*READSEQ
The entry for the user ID that follows the specified user ID is read from the user catalog.
In addition, the user ID whose entry was read is entered in the parameter list as the
USERID operand.

addr
Symbolic address (name) of the field containing the information as to which entry from
the user catalog is to be transferred.
May be specified only in conjunction with MF=M.

SRMUINF

INFO=*USER / *ALL / *ACCOUNT / *POSIX / *EMAIL / *ALL_EMAIL / addr / (r)

[,AREA@=addr / (r)]

[,AREA#=length / addr / (r)]

,USERID=*OWN / *FIRST / 'userid' / addr / (r)

,PVS=*HOME / 'catid' / addr / (r)

,ACTION=*READ / *READNXT / *READSEQ / addr / (r)

,MF=D / C / L / M / E

[,PARAM=addr / (r)]

,PREFIX=S / p

,MACID=RMV / macid

,XPAND=
PARAM

OUTPUT,DATA=ALL / USER / ACCOUNT / POSIX / EMAIL / ALL_EMAIL

Description of the macros SRMUINF

U3291-J-Z125-16-76 835

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

(r)
Register containing the address value for the value of the ACTION operand. May be
specified only in conjunction with MF=M.

AREA@=
Denotes the address of an output area to which the data from the user catalog is
transferred.

addr
Symbolic address (name) of the area.

(r)
Register containing the address value of the output area. May be specified only in
conjunction with MF=M.

AREA#=
Specifies the length of the output area. The minimum length depends on the amount of
information to be output (determined by means of the INFO operand). The entry is
truncated if the length specification is inadequate (return code aa = X'10').

length
Integer specifying the length of the output area in bytes. “length” can assume the values
0, 1, ..., 4096.

addr
Symbolic address (name) of a field containing the length of the output area. May be
specified only in conjunction with MF=M.

(r)
Register containing the address value for the length of the output area. May be specified
only in conjunction with MF=M.

DATA=
Controls the definition of specific output areas. This operand is evaluated only if
XPAND=OUTPUT is specified.

ALL
Default setting: defines the complete entry for the specified user ID, but without the
EMAIL- and POSIX-specific parts.

USER
Defines the user-specific part (without account numbers) of the entry for the specified
user ID.

ACCOUNT
Defines the account-specific part (account numbers only) of the entry for the specified
user ID.

POSIX
Defines the POSIX-specific part of the entry for the specified user ID.

SRMUINF Description of the macros

836 U3291-J-Z125-16-76

EMAIL
Defines the EMAIL-specific part of the entry for the specified user ID.

ALL_EMAIL
Defines the complete entry with the EMAIL-specific part for the specified user ID, but
without the POSIX-specific part.

INFO=
Specifies how much data is to be transferred from the entry in the user catalog.

*USER
Default setting: only the user-specific data is transferred.

*ALL
The entire entry is transferred, but without the EMAIL- and POSIX-specific parts.

*ACCOUNT
Only the account-specific data is transferred.

*POSIX
The POSIX-specific data is transferred. The same data is output with the
SHOW-POSIX-USER-ATTRIBUTES command.

*EMAIL
The area with the receiver addresses for emails is transferred.

*ALL_EMAIL
The complete entry and the area with the receiver addresses for emails is transferred,
but not the POSIX-specific part.

addr
Symbolic address (name) of a field containing the information as to how much data is
to be transferred. May be specified only in conjunction with MF=M.

(r)
Register containing the address value for the value of the INFO operand. May be
specified only in conjunction with MF=M.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.
A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form (see section “S-type macros” on page 29).

PVS=
Specifies the PVS (Public Volume Set; “pubset”) of the user catalog from which an entry is
to be read.

Description of the macros SRMUINF

U3291-J-Z125-16-76 837

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

*HOME
Default setting: the desired entry is contained in the user catalog of the home pubset.

'catid'
Catalog ID of the PVS containing the user catalog from which an entry is to be read.
'catid' has a maximum length of 4 characters.

addr
Symbolic address (name) of a 4-byte field containing the 'catid'. Short catids have to be
padded with blanks.
May be specified only in conjunction with MF=M.

(r)
Register containing the address of the 4-byte 'catid'. Short catids have to be padded
with blanks.

USERID=
Denotes the user ID whose entry is to be read from the specified user catalog.

*OWN
Default setting: the entry for the caller's own user ID is output.

*FIRST
The first entry in the specified user catalog is output.
This value may be specified only in conjunction with the ACTION=*READNXT operand
and only if the caller has the appropriate privileges.

'userid'
User ID.
'userid' has a maximum length of 8 characters.
The privileges of the caller govern which user IDs may be specified. The following cases
apply:
– The caller is a nonprivileged user:

only the user's own ID is permissible.
– The caller is a user group administrator (only possible when the software product

SECOS is used):
any user ID from the caller's user group or from a subgroup of the caller's group is
permissible.

– The caller is a user administrator with the system privilege
“USER-ADMINISTRATION” (normally the user ID TSOS or, if the software product
SECOS is used, a user ID with the corresponding privileges):
any user ID on the specified PVS is permissible.

addr
Symbolic address (name) of an 8-byte field containing the 'userid'. May be specified
only in conjunction with MF=M.

SRMUINF Description of the macros

838 U3291-J-Z125-16-76

(r)
Register containing the address value “addr”. May be specified only in conjunction with
MF=M.

XPAND=
Specifies which data area is to be processed.

PARAM
Default setting: the call data area is processed.

OUTPUT
Requests output of a special output area. The DATA operand must be specified. This
determines the output layout of the desired information.

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A structured return code relating to the execution of
the SRMUINF macro is transferred in the standard
header: (aa = primary return code, bb = secondary
return code)

 b b a a

X'bb' X'aa' Meaning

X'00' X'00' Normal execution

X'01' X'04' Operand error or insufficient privileges

X'00' X'08' No entry exists for this ID

X'80' X'0C' The pubset (PVS) is inaccessible

X'00' X'10' The entry for the user ID was not output in its entirety (inadequate length
specification)

Description of the macros SRMUINF

U3291-J-Z125-16-76 839

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Layout of the DSECT (1)

SRMUINF MF=D,PREFIX=A
1 STACK PRINT
1 PRINT NOGEN
2 *,##### PREFIX=A, MACID=RMV #####
1 #INTF REFTYPE=REQUEST,INTNAME=SRMUINF,INTCOMP=001
1 ARMVPL DS 0F BEGIN of PARAMETERAREA
1 FHDR MF=(C,ARMV),EQUATES=NO
2 DS 0A
2 ARMVFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 ARMVIFID DS 0A 0 INTERFACE IDENTIFIER
2 ARMVFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 ARMVFCT DS AL1 2 FUNCTION NUMBER
2 ARMVFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 ARMVRET DS 0A 4 GENERAL RETURN CODE
2 ARMVSRET DS 0AL2 4 SUB RETURN CODE
2 ARMVSR2 DS AL1 4 SUB RETURN CODE 2
2 ARMVSR1 DS AL1 5 SUB RETURN CODE 1
2 ARMVMRET DS 0AL2 6 MAIN RETURN CODE
2 ARMVMR2 DS AL1 6 MAIN RETURN CODE 2
2 ARMVMR1 DS AL1 7 MAIN RETURN CODE 1
2 ARMVFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 * ADDITIONAL MAIN RETURN-CODES:
1 *
1 ARMVMOK EQU 0 REQUEST SERVICED
1 ARMVPAER EQU 4 PARAMETER ERROR
1 ARMVENFO EQU 8 ENTRY NOT FOUND
1 ARMVPNAC EQU 12 PVS NOT ACCESSIBLE
1 ARMVRSER EQU 16 RESOURCE NOT AVAILABLE
1 *
1 DS XL4 UNUSED
1 ARMVUSRD DS CL8 USERID SPECIFIED
1 ARMVINFO DS AL1 INFO-TYPE
1 ARMVIALL EQU 1 ALL REQUIRED
1 ARMVIUSR EQU 2 USER INFO REQUIRED
1 ARMVIACI EQU 3 ACCOUNT INFO REQUIRED
1 ARMVIPOS EQU 4 POSIX INFO REQUIRED
1 ARMVIEMA EQU 5 EMAIL INFO REQUIRED
1 ARMVIAEM EQU 6 ALL&EMAIL INFO REQUIRED
1 ARMVACOD DS AL1 ACTION CODE

SRMUINF Description of the macros

840 U3291-J-Z125-16-76

1 ARMVACRD EQU 1 READ
1 ARMVACRN EQU 2 READ NEXT
1 ARMVPVS DS CL4 PVS CATID
1 ARMVHOME EQU C'#' PVS IS HOME
1 DS CL4 FOR CAT-ID EXTENSION
1 DS XL2 UNUSED1
1 ARMVARE@ DS A AREA ADDRESS
1 ARMVARE# DS AL2 AREA LENGTH
1 DS XL2 UNUSED2
1 *
1 ARMVPL# EQU *-ARMVPL P/L LENGTH

Layout of the DSECT (2)

SRMUINF MF=D,XPAND=OUTPUT,DATA=ALL_EMAIL
1 STACK PRINT
1 PRINT NOGEN
2 *,##### PREFIX=S, MACID=RMV #####
1 ***
1 * INFORMATION ON JOB *
1 ***
1 SRMVJOB DS 0F
1 SRMVUSER DS CL8 USER-IDENTIFICATION
1 SRMVSVR DS CL1 SEVER INDICATOR
1 SRMVSVRY EQU 1 - USERID HAS BEEN SEVERED
1 SRMVSVRN EQU 2 - USERID NOT SEVERED
1 SRMVPVG DS CL1 USER PRIVILEGE CODE
1 SRMVPVGA EQU 1 - SYSTEM ADMINISTRATOR
1 SRMVPVGN EQU 2 - NORMAL USER
1 SRMVPASS DS CL8 USER'S PASSWORD
1 SRMVENCR DS CL1 PASSWORD-ENCRYPTION
1 SRMVENUN EQU 0 - UNDEFINED
1 SRMVENNO EQU 1 - NO ENCRYPTION
1 SRMVESCA EQU 2 - ENCRYPT-MODE SCA
1 SRMVEOLD EQU 3 - ENCRYPT-MODE OLD
1 SRMVENOP EQU 4 - NO PASSWORD
1 DS XL1 NOT USED
1 SRMVJOB# EQU *-SRMVJOB LENGTH OF JOB PART
1 ***
1 * INFORMATION ON DMS *
1 ***
1 SRMVDMSD DS 0F
1 SRMVSPLI DS F SPACE LIMIT
1 SRMVSPUS DS F SPACE USED
1 DS XL2 RESERVED
1 SRMVIPSE DS CL1 PUBLIC SPACE EXCESS IND
1 SRMVIPEN EQU 1 - NOT PERMITTED

Description of the macros SRMUINF

U3291-J-Z125-16-76 841

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

1 SRMVIPET EQU 2 - TEMPORARY
1 SRMVIPEY EQU 3 - PERMITTED
1 SRMVTPIG DS CL1 TPIGNORE INDICATOR
1 SRMVTPIY EQU 1 - YES : ERROR MESSAGES IGNORED
1 SRMVTPIN EQU 2 - NO : NO TPIGNORE PRIVILEGE
1 SRMVTPIR EQU 3 - READ: ERROR MSG IGNORED-INPU
1 SRMVTPIB EQU 4 - BLP : BY-PASS-LABEL
1 SRMVTPIA EQU 5 - ALL : BLP AND YES PRIVILEGES
1 SRMVDFCT DS CL4 DEFAULT CAT-ID OF PVS
1 DS CL4 NOT USED
1 SRMVTSPL DS F TEMP SPACE LIMIT
1 SRMVTSPU DS F TEMP SPACE USED
1 SRMVFILI DS F FILE LIMIT
1 SRMVFILA DS F FILE AMOUNT
1 SRMVJVLI DS F JV LIMIT
1 SRMVJVA DS F JV AMOUNT
1 SRMVEXHC DS CL8 EXTENDED HOST CODE
1 SRMVDMTR DS X DMS TUNING RESOURCES
1 SRMVDTRN EQU 1 NONE
1 SRMVDTRP EQU 2 PAGEABLE
1 SRMVDTRR EQU 3 RESIDENT
1 SRMVPAL DS X PHYSICAL ALLOCATION
1 SRMVPALN EQU 1 NOT-ALLOWED
1 SRMVPALA EQU 2 ALLOWED
1 DS XL2 UNUSED
1 SRMVUS1L DS F S1 LEVEL USED
1 SRMVUS2L DS F S2 LEVEL USED
1 SRMVDMCL DS CL8 DEFAULT MANAGEMENT CLASS
1 SRMVDSCL DS CL8 DEFAULT STORAGE CLASS
1 * PERM SPACE LIMIT
1 SRMVLTOT DS F TOTAL SPACE
1 SRMVLSTD DS F S0 LEVEL SPACE
1 SRMVLSHP DS F HIGH PERF SPACE
1 SRMVLSVP DS F VERY HIGH PERF SPACE
1 SRMVLSHA DS F HIGH AVAIL SPACE
1 * TEMP SPACE LIMIT
1 SRMVLTMP DS F TOTAL SPACE
1 SRMVLTHP DS F HIGH PERF SPACE
1 SRMVLTVP DS F VERY HIGH PERF SPACE
1 * WORK SPACE LIMIT
1 SRMVLWRK DS F TOTAL SPACE
1 SRMVLWHP DS F HIGH PERF SPACE
1 SRMVLWVP DS F VERY HIGH PERF SPACE
1 * PERM SPACE USED
1 SRMVUTOT DS F TOTAL SPACE
1 SRMVUSTD DS F S0 LEVEL SPACE
1 SRMVUSHP DS F HIGH PERF SPACE
1 SRMVUSVP DS F VERY HIGH PERF SPACE

SRMUINF Description of the macros

842 U3291-J-Z125-16-76

1 SRMVUSHA DS F HIGH AVAIL SPACE
1 * TEMP SPACE USED
1 SRMVUTMP DS F TOTAL SPACE
1 SRMVUTHP DS F HIGH PERF SPACE
1 SRMVUTVP DS F VERY HIGH PERF SPACE
1 * WORK SPACE USED
1 SRMVUWRK DS F TOTAL SPACE
1 SRMVUWHP DS F HIGH PERF SPACE
1 SRMVUWVP DS F VERY HIGH PERF SPACE
1 SRMVCYSL DS F CRYPTO SESSION LIMIT
1 SRMVCYSU DS F CRYPTO SESSION USED
1 SRMVNST DS X NET-STORAGE USAGE
1 SRMVNSTN EQU 1 NOT-ALLOWED
1 SRMVNSTA EQU 2 ALLOWED
1 DS XL3 UNUSED
1 SRMVNCS DS CL8 NET-CODED-CHAR-SET
1 SRMVDMS# EQU *-SRMVDMSD LENGTH OF DMS PART

1 ***
1 * INFORMATION ON TASK/PROGRAM *
1 ***
1 SRMVTASK DS 0F
1 SRMVUSW DS CL4 USER'S SWITCHES
1 SRMVAIDR DS CL1 AID'S READ VALUE
1 SRMVAIDW DS CL1 AID'S WRITE VALUE
1 SRMVTPRV DS CL1 TESTPRIV INDICATOR
1 SRMVTPRY EQU 1 - TESTPRIV IS YES
1 SRMVTPRN EQU 2 - TESTPRIV IS NO
1 SRMVADS2 DS CL2 ADDRSPACE VALUE
1 SRMVADIT DS CL1 AUDIT INDICATOR
1 SRMVADTY EQU 1 - AUDIT ALLOWED
1 SRMVADTN EQU 2 - AUDIT NOT ALLOWED
1 SRMVPSW DS CL1 PSWORD CMD'S RIGHT
1 SRMVPSWY EQU 1 - PSWORD YES
1 SRMVPSWM EQU 2 - PSWORD MOD
1 SRMVPSWN EQU 3 - PSWORD NO
1 SRMVCSMP DS CL1 CSTMP-MACRO INDICATOR
1 SRMVCSMY EQU 1 - CSTMP-MACRO ALLOWED
1 SRMVCSMN EQU 2 - CSTMP-MACRO NOT ALLOWED
1 SRMVHWAU DS CL1 HARDWARE-AUDIT INDICATOR
1 SRMVHWAUY EQU 1 - HW-AUDIT ALLOWED
1 SRMVHWAUN EQU 2 - HW-AUDIT NOT ALLOWED
1 SRMVLKAU DS CL1 LINKAGE-AUDIT INDICATOR
1 SRMVLKAUY EQU 1 - LNK-AUDIT ALLOWED
1 SRMVLKAUN EQU 2 - LNK-AUDIT NOT ALLOWED
1 SRMVPRID DS CL54 PROFILE ID
1 SRMVRPAG DS H NB OF RESIDENT PAGES
1 SRMVDTKL DS CL1 DEFAULT-MESSAGE-LANGUAGE

Description of the macros SRMUINF

U3291-J-Z125-16-76 843

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

1 SRMVMSGS DS CL1 DEFAULT-MESSAGE-SEARCH
1 SRMVSTSK EQU X'01' -TASK
1 SRMVSALL EQU X'02' -*ALL
1 SRMVADRS DS F ADDRSPACE VALUE
1 SRMVRPGS DS F NB OF RESIDENT PAGES
1 SRMVTSK# EQU *-SRMVTASK LENGTH OF TASK PART
1 ***
1 * INFORMATION ON SPOOL *
1 ***
1 SRMVSPOL DS 0F
1 DS CL8 UNUSED
1 SRMVMAIL DS CL64 MAILING ADDRESS
1 SRMVSPL# EQU *-SRMVSPOL LENGTH OF SPOOL PART
1 *-
1 SRMVUSR# EQU *-SRMVJOB LENGTH OF USER PART
1 ***
1 * INFORMATION ON ACCOUNTING *
1 ***
1 SRMVACCT DS 0F
1 SRMVNBAC DS H NUMBER OF ACCOUNT-NB
1 SRMVMARC DS H MAXIMUM OF ACCOUNT RECORDS
1 *-
1 SRMVACC# EQU *-SRMVACCT LENGTH OF ACC GLOBAL INF.
1 *-
1 *- INFORMATION ON ACCOUNT ENTRY
1 *-
1 SRMVACCE DS 0F
1 SRMVACT DS CL8 ACCOUNT NUMBER
1 SRMVCPU DS F CPU TIME REMAINING
1 SRMVNTL DS CL1 NTL INFORMATION
1 SRMVNTLY EQU 1 - NTL ALLOWED
1 SRMVNTLN EQU 2 - NTL NOT ALLOWED
1 SRMVEXP DS CL1 EXPRESS INFORMATION
1 SRMVEXPY EQU 1 - EXPRESS ALLOWED
1 SRMVEXPN EQU 2 - EXPRESS NOT ALLOWED
1 SRMVSCLA DS CL1 SPOOL-OUT CLASS
1 SRMVPRI DS CL1 HIGHEST PRIORITY PERMITTED
1 SRMVINHD DS CL1 INHIBIT DEACTIVATION IND
1 SRMVINHY EQU 1 - INHIBIT DEACTIVATION ALLOW
1 SRMVINHN EQU 2 - INHIBIT DEACT NOT ALLOW
1 SRMVTYPL DS CL1 UPPER LIMIT OF TASK TYPE
1 SRMVTYST EQU 1 - STD
1 SRMVTYTP EQU 2 - TP
1 SRMVTYSY EQU 3 - SYS

SRMUINF Description of the macros

844 U3291-J-Z125-16-76

1 **/
1 * INFORMATION FOR POSIX VERSION V11.2 */
1 **/
1 SRMVPOA DS X POSIX ACCOUNTNUMBER
1 SRMVPOAY EQU 1 1: YES POSIX ACCOUNTNUMBER
1 SRMVPOAN EQU 2 2: NO POSIX ACCOUNTNUMBER
1 SRMVDAC DS X DEFAULT ACCOUNTNUMBER
1 SRMVDACY EQU 1 - YES DEFAULT ACCOUNTNUMBER
1 SRMVDACN EQU 2 - NO DEFAULT ACCOUNTNUMBER
1 SRMVACE# EQU *-SRMVACCE LENGTH OF ONE ACC ENTRY
1 *-
1 DS CL(59*SRMVACE#)
1 *
1 SRMVACM# EQU 60*SRMVACE#+SRMVACC# MAX LENGTH OF ALL ACCOUNT
1 *- ENTRIES,GLOBAL INF
SRMVALL# EQU *-SRMVJOB MAX LENGTH OF A ALL ENTRY

* INFORMATION ON EMAIL V17.0 *

SRMVEMA DS 0F
SRMVEMAL DS H EMAIL-LENGTH
SRMVEMAI DS CL1800 EMAIL
SRMVEMA# EQU *-SRMVEMA LENGTH OF EMAIL-INFO
1 *-
1 SRMVETR# EQU SRMVUSR#+SRMVACM# MAX LENGTH OF A USER ENTRY

Description of the macros SRMUINF

U3291-J-Z125-16-76 845

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Example showing output of user ID and default pubset

SRMUINF START
SRMUINF RMODE ANY
SRMUINF AMODE ANY

GPARMOD 31
BALR 3,0
BCTR 3,0
BCTR 3,0
USING SRMUINF,3
SRMUINF AREA@=SRMAUS,AREA#=SRMVLLLL,INFO=*ALL,MF=M ————————— (1)
SRMUINF MF=E,PARAM=SRMPL ——————————————————————————————————— (2)
CLI SRMVMR1,SRMVMOK * ERROR IN CALL ?
BNE ERROR
MVC USERID,SRMVUSER * CALL OK; OUTPUT USER ID
MVC DEFPUB,SRMVDFCT * AND DEFAULT PUBSET
WROUT MSGAUSG,0
B ENDE

ERROR EQU * * ERROR IN CALL (RC <> 0);
UNPK RC(5),SRMVMR1(2) * OUTPUT RETURN CODE
TR RC(4),TAB
WROUT MSGFEHL,0

* Definitions *
TAB DS CL240

DC C'0123456789ABCDEF'
*
* Parameter area SRMUINF macro

DS 0F
SRMPL SRMUINF MF=C

ORG SRMVPL
SRMUINF MF=L
ORG

*
* Output area SRMUINF macro

DS 0F
SRMAUS SRMUINF MF=C,XPAND=OUTPUT,DATA=ALL
*
* Output area if call OK
MSGAUSG DS 0H

DC Y(MSGAUSGL)
DC CL3' '
DC C'SRMUINF: User ID: '

USERID DS CL8
DC C' , Default pubset: '

DEFPUB DS CL4
DC C'<'

MSGAUSGL EQU *-MSGAUSG
*

SRMUINF Description of the macros

846 U3291-J-Z125-16-76

* Output area if call contains error
MSGFEHL DS 0H

DC Y(MSGFEHLL)
DC CL3' '
DC C'Error in SRMUINF: RC = '

RC DS CL5
MSGFEHLL EQU *-MSGFEHL-1
SRMVLLLL DC Y(SRMVETR#) * LENGTH OF OUTPUT AREA

END
=AL4(SRMAUS)

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,srmuinf), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,srmuinf))
% ASS6011 ASSEMBLY TIME: 438 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 151 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=srmuinf
% BLS0523 ELEMENT 'SRMUINF', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'SRMUINF', VERSION ' ' OF '<date> <time>' LOADED
SRMUINF: User ID: QM212 , Default pubset: 2OSG<

(1) Initialize parameter list.

(2) Read user information.

Description of the macros STAMCE

U3291-J-Z125-16-76 847

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

STAMCE – Read MRSCAT entries

General

Application area: Multiprocessor systems; see page 164
Macro type: Type S, MF format 2: standard/E/L/C/D/M form; see page 29

Each pubset contains a file catalog TSOSCAT which can be uniquely identified by means
of its catalog ID. Furthermore, each TSOSCAT (and thus each pubset) is uniquely assigned
to one system (BS2000 native or VM2000 guest system).
The TSOSCAT of each home pubset contains the pubset's entry from the MRSCAT, a
catalog of all pubsets existing in the computer network. Each pubset can contain a
complete MRSCAT. An entry in the MRSCAT includes
– the catalog ID of a TSOSCAT;
– the BCAM name of the system to which this TSOSCAT is assigned;
– the device type of the corresponding pubset;
– status information relating to the pubset.
– pubset-specific operands (EAM, cache, allocator,...)

Macro description

The STAMCE macro outputs an extract from one selected entry, or all entries, of the
MRS catalog (MRSCAT) to an output area that is either defined by the user or created by
the macro. The extracts provide information about to the pubsets initialized in the computer
network, relating to:

– device information (catalog ID, device type code, system's BCAM name if the pubset is
managed by a remote system, etc.)

– status (home pubset, local pubset, pubset not accessible, etc.)
– pubset usage (paging, data access, ...)
– attributes (EAM operand, cache configuration, etc.)
– System administration or operator only:

number, TSNs and user IDs of all jobs occupying the pubset (either as opened files or
through reservation requests (SECURE locks), number and location of the CMS buffers
as per default and current setting, etc.)

Individual entries are identified via the catalog ID of the pubset. Output is restricted to
entries in the MRSCAT on the home pubset.

STAMCE Description of the macros

848 U3291-J-Z125-16-76

Notes

– Both the operand list and the output area have had their layout adapted to the functional
enhancements of the individual BS2000 versions. For the sake of compatibility it is also
possible to generate the layouts of older versions, using the STAMCE macro
(VERSION operand).

– If MF=M, the following restriction applies:
If the CATID or AREA operand is specified, register R15 may not be used as the base
register for the parameter list or for the fields defined via these operands.

Macro format and description of operands

STAMCE

CATID='Ë' / 'catid' / addr / (r)

[,AREA=addr / (r)]

[,LENGTH=length]

,REF=NO / YES / ALL

[,HOST=*LOCAL / '*LOCAL' / *ALL / '*ALL' / 'bcam-name' / addr]

,SELECT=ALL / ACCESSIBLE / DEF_XCS_CONF / EXCLUSIVE / HSMS_SUPPORTED / INACCESSIBLE /

LOCAL / LOCAL_ACCESSIBLE / MASTER_CHANGE_ERROR / PAGING / QUIET / REMOTE /

REMOTE_ACCESSIBLE / SCA / SHARED / SINGLE_FEATURE / SYSTEM_MANAGED /

UNUSED_VOLSETS / VOLUME_SETS / XCS_CONFIGURATED

[,PUBSET=*ALL / 'catid' / addr]

[,XPAND=PL / *ALL / MCE / OCC]

[,VERSION=5 / 3]

,MF=S / E / L / C / D / M

[,PARAM=addr / (r)]

,PREFIX=D / p

[,MACID=macid]

Description of the macros STAMCE

U3291-J-Z125-16-76 849

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

The operands are described below in alphabetical order.

AREA=
Specifies the address of an output area in which STAMCE transfers the requested
MRSCAT entries. If the operand is not specified, STAMCE requests class 6 memory for the
output (in units of 4096-byte main memory pages) and supplies the DMCEAREA and
DMCEARLN fields of the operand list with the address and length (in bytes) of this output
area. The caller is responsible for returning the memory area requested by the macro
(RELM macro). The caller is responsible for returning the memory area requested by the
macro (RELM macro).

addr
Symbolic address (name) of a field which accepts the requested MRSCAT entries. The
field is aligned on a word boundary.

(r)
Register containing the address value “addr”. May be specified only in conjunction with
MF=M.

CATID=
Defines the catalog IDs of the pubsets whose MRSCAT entries are to be output.

'Ë'
A blank enclosed in single quotes is the default setting.
The SELECT operand can be used to provide a narrower selection of MRSCAT entries
to be output.

'catid'
Either an explicitly specified catalog ID or a wildcard expression for selecting catalog
IDs. The specified character string should always be enclosed in apostrophes.
The following rules apply to the “catid” format, depending on whether the catalog ID is
specified explicitly or as a wildcard expression:

Catalog ID specified explicitly:
– catid is either a string one to four characters long, comprising the letters A,...,Z and

the digits 0,...,9 with the strings PUB and PUBx (x = any character) being excluded
– or the character # (for the home pubset).

Catalog ID specified as a wildcard expression:
catid is a string one to four characters long, which may contain the following wildcard
characters in addition to letters and digits:
* Wildcard for any (also empty) string
/ Wildcard for a single character
<s1> Wildcard for the string s1 specified in parentheses (maximum two characters)
- Negation symbol for the subsequent entries (only permissible as the first

character in the expression).
The SELECT operand may be used to provide a narrower selection of the MRSCAT
entries to be output.

STAMCE Description of the macros

850 U3291-J-Z125-16-76

addr
Symbolic address (name) of a field which contains either an explicitly specified catalog
ID or a wildcard expression for selecting catalog IDs. In either case, the caller must
enter this information in the appropriate format:

Catalog ID specified explicitly:

One of the following entries is to be placed in the field:

– a string in the form
[:]catid[Ë / :]
where catid is a string one to four characters long, comprising the letters A,...,Z and
the digits 0,...,9 with the strings PUB and PUBx (where x = any character) being
excluded. If catid is less than four characters it must be delimited on the right (as
shown above) by a blank (Ë; X'40') or by a colon (:). This delimiter may be omitted
if the catalog ID is four characters long.

– the character # (for the home pubset)
Catalog ID specified as wildcard expression:
A string in the following format is to be placed in the field:
[:]catid[Ë / :]
where catid is a wildcard expression which, including the right delimiter if present,
may be up to 256 characters long and may contain the following wildcard characters
in addition to letters and digits:

* Wildcard for any (also empty) string
/ Wildcard for a single character
<s1:s2> Wildcard for a string which lies between s1 and s2 in the lexicographical

order
<s1,...> Wildcard for one of the strings enclosed in parentheses
- Negation symbol for the subsequent entries (only permissible as the

first character of the expression).

If the wildcard expression is less than 256 characters it must be delimited on the
right, as shown above, by a blank (Ë; X'40') or by a colon (:). The delimiter may only
be omitted in expressions with 256 characters.

The SELECT operand may be used to provide a narrower selection of the MRSCAT
entries to be output.

(r)
Register containing the address value “addr”.
May be specified only in conjunction with MF=M.

Note
If MF=M and the CATID or AREA operand is specified, register R15 may not be
used as a base register for the parameter list or for the fields defined via these
operands.

Description of the macros STAMCE

U3291-J-Z125-16-76 851

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

HOST=
From amongst the systems having common access rights to a pubset, specifies the system
about whose tasks the information requested with REF=ALL is to be output.
The operand is effective only if specified in conjunction with REF=ALL, otherwise it is
ignored.

*LOCAL
'*LOCAL'
The information requested with REF=ALL is output for local tasks occupying the pubset.

*ALL
'*ALL'
If the pubset specified in the CATID operand is shareable and the local system is the
master of the pubset, the information requested with REF=ALL is output for all (local
and remote) tasks occupying this pubset; otherwise, information is output only for local
tasks.

'bcamname'
BCAM name of the local system or (if the local system is the master of the pubset) name
of a slave system.

addr
Symbolic address (name) of a field containing one of the values '*LOCAL', '*ALL' or
'bcamname'.

LENGTH=length
Specifies the length of the output area for the requested MRSCAT entries.
The implicit length of a field specified with the AREA operand is not assumed as the length
of the output area even if the LENGTH operand is not specified.
With MF=S, LENGTH may only be specified in conjunction with AREA.

length
Length (in bytes) of the field with the address “addr2”.
The minimum length of the output area depends on the number of requested MRSCAT
entries and the scope of the information specified in the REF operand. The following
values apply:

– An individual MRSCAT entry is requested:

When REF=NO or REF=YES the output area must be at least as long as the
MRSCAT entry to be output. The layout of this entry is illustrated as a DSECT
following the return codes.

When REF=ALL the minimum length lAREA of the output area is determined by the
following formula:

lAREA = lMCE + nOCC * lOCC + 1

STAMCE Description of the macros

852 U3291-J-Z125-16-76

Where:

lAREA Minimum length of the output area (in bytes)
lMCE Length of the MRSCAT entry to be output (for layout see DSECT

following description of return codes)
nOCC Number of occupation entries for the pubset to which the MRSCAT

entry refers
lOCC Length of an occupation entry (for layout see DSECT following

description of return codes)

– Several entries are requested:
The following formula applies for the minimum length lAREA of the output area:

lAREA = nMCE * lMCE + 4

Where:

lAREA Minimum length of the output area (in bytes)
nMCE Number of MRSCAT entries to be output
lMCE Length of the MRSCAT entry to be output (for layout see DSECT

following description of return codes)

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.
A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form (see section “S-type macros” on page 29).
Default values: MACID = MCE if XPAND=PL

MACID = MCF if XPAND=MCE
MACID = MCH if XPAND=OCC

PUBSET=
May only be specified in conjunction with SELECT=VOLUME_SETS .
Specifies the catid of the SM pubset whose volume set is returned.

*ALL
The volume sets of all SM pubsets are returned.

'catid'
Catid of the SM pubsets for whose volume sets information is is to be returned.

addr
Symbolic address (name) of a field containing the catalog id of the SM pubset for whose
volume sets information is to be returned.

Description of the macros STAMCE

U3291-J-Z125-16-76 853

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

REF=
Determines whether further information about the specified pubsets is to be output in
addition to the MRSCAT entries (in other words in addition to the information which the
/SHOW-MASTER-CATALOG-ENTRY command supplies).

NO
Default setting: no further information is to be output.

YES
In addition to the MRSCAT entry, the pubset parameters are also output (see the
SHOW-PUBSET-PARAMETERS command). Only the occupying tasks are missing;
these are only output when REF=ALL.

This entry is interpreted for macro calls only under the system administration ID (TSOS); it is
ignored for all other users.

ALL
In addition to the information described under REF=YES, the user IDs, the TSNs and
the TIDs of the tasks occupying the pubset are output for a pubset, as well as the
SYSIDs of the systems on which these tasks are running. The entries output are sorted
for each system: firstly according to user ID, then according to TSN and finally according
to TID.
REF=ALL is only permissible if the catalog ID of a pubset is specified explicitly in the
CATID operand. When a wildcard expression or the (default) value 'Ë' is specified in the
CATID operand, REF=ALL is converted internally into REF=YES.

This entry is interpreted for macro calls only under the system administration ID (TSOS); it is
ignored for all other users.

SELECT=
When a wildcard expression or the (default) value 'Ë' (blank) is specified in the CATID
operand, permits a narrower selection of the pubset thus specified.

ALL
Default setting: the requested information is output for all the pubsets specified in the
CATID operand.

ACCESSIBLE
The requested information is output only for pubsets whose file catalog can be
accessed.

DEF_XCS_CONF
The requested information is output only for pubsets defined as XCS pubset.

EXCLUSIVE
The requested information is output only for pubsets which are not imported as shared
pubsets.

STAMCE Description of the macros

854 U3291-J-Z125-16-76

HSMS_SUPPORTED
The requested information is output only for SM pubsets to which the
HSMS SUPPORTED attribute is applicable.

INACCESSIBLE
The requested information is output only for pubsets which are not imported.

LOCAL
The requested information is output only for pubsets which are imported locally.

LOCAL_ACCESSIBLE
The requested information is output only for pubsets which are imported locally and do
not have quiet status.

MASTER_CHANGE_ERROR
The requested information is output only for shared pubsets in which a master change
was terminated with errors.

PAGING
The requested information is output only for pubsets with paging areas which are used
locally.

QUIET
The requested information is output only for pubsets which are in the quiet status.

REMOTE
The requested information is output only for pubsets where the LOCAL selection
criterion is not applicable.

REMOTE_ACCESSIBLE
The requested information is output only for pubsets which are not imported locally, but
whose catalog can still be accessed because an MSCF connection to a remote system
which has imported the pubset locally currently exists.

SCA
The requested information is output only for pubsets for which the local system handles
the catalog accesses via SCA.
SCA = Speed Catalog Access. This replaces sequential access to the TSOSCAT with
indexed sequential (direct) file access.

SHARED
The requested information is output only for pubsets which are imported as shared
pubsets.

SINGLE_FEATURE
The requested information is output only for SF pubsets.

SYSTEM_MANAGED
The requested information is output only for SM pubsets.

Description of the macros STAMCE

U3291-J-Z125-16-76 855

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

UNUSED_VOLSETS
The requested information is output only for volume sets which are in the DEFINED
ONLY status.

VOLUME_SETS
The requested information is output only for volume sets.
The selection of volume set entries to be output can be narrowed with the PUBSET
operand.

XCS_CONFIGURATED
The requested information is output only for pubsets which are used as an XCS pubset.

VERSION=
Specifies for which BS2000 version the layout is to be created and information output.
If the VERSION operand is not specified, layout and information for BS2000 Version V10.0
are created or output.

5
Layout and information are created or output for BS2000/OSD-BC as of V3.0.

3
Layout and information for Versions BS2000/OSD-BC V1.0 and V2.0 are created or
output.

XPAND=
Only interpreted in conjunction with MF=C or MF=D and determines for which data area a
CSECT or DSECT is to be generated.

PL
A CSECT/DSECT is generated for the parameter area. This is the default setting when
MF=C.

*ALL
CSECTs/DSECTs are generated for the parameter area and the output area with the
occupation entry. This is the default setting when MF=D.

MCE
A CSECT/DSECT is generated for an MRSCAT entry.

OCC
A CSECT/DSECT is generated for the additional occupation information output with
REF=ALL.

STAMCE Description of the macros

856 U3291-J-Z125-16-76

Return information and error flags

Subcode2 (X'cc') is not shown in the table below. It may assume the values X'00' and X'01'.
They have the following meanings:

X'00': Error in local system
X'01': Only for REF=ALL: error in remote system

Standard
header:

A return code relating to the execution of the
STAMCE macro is transferred in the standard
header:
(cc= Subcode2, bb=Subcode1, aaaa=Maincode)

c c b b a a a a

X'bb' X'aaaa' Meaning

X'00' X'0000' Function executed successfully; no error.

X'20' X'0310' System error: error during privilege check.

X'01' X'0311' Operand error:
– The catalog ID and an address with the catalog ID were specified
– The output area is not aligned on a word boundary
– Not all parts of the parameter area can be accessed
– The output area is not available
– The address with the catalog ID is not available, or a valid catalog ID or

wildcard expression could not be found in the assigned memory area

X'40' X'0312' MRSCAT entry being sought not found:
– There is no MRSCAT entry with the specified catalog ID
– There is no MRSCAT entry corresponding to the selection criteria specified

in the wildcard expression and/or in the SELECT operand

X'20' X'0313' Error with REQM/RELM: memory space for the output could not be requested/
released

X'40' X'0313' Error with REQM/RELM: insufficient class 6 memory available

X'01' X'0314' Catalog ID / wildcard expression invalid:
The specified catalog ID or wildcard string does not correspond to the required
format

X'40' X'0316' Output area too small: the output area specified by the user is too small to accept
the requested information

X'40' X'0317' System error: conflict with MRSCAT lock

X'20' X'0318' System error: synchronization error

X'40' X'031A' MRSCAT not yet initialized:
STAMCE was called during startup before the MRSCAT was initialized

X'20' X'031B' Transmission error, occurs only with REF=ALL:
An error occurred during HIPLEX MSCF transmission when the pubset was
requested or released

Description of the macros STAMCE

U3291-J-Z125-16-76 857

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

The following values may be returned as additional return codes in the rightmost two bytes
of register 15:

X'04A4': An attempt was made to execute a STAMCE of a version < V9.5 and an invalid
operation code was detected in the operand list.
This error will occur particularly when the version of the operand list is
incompatible with the version of the SVC call.

X'04A0': As above; in addition, the JV (“Job Variables”) subsystem is not available.

Other return codes which, in accordance with conventions, apply to all macros are given in
table “Standard return codes” on page 43.

The calling program is terminated when the following errors occur:
– The data area is not assigned to the caller.
– The data area is not aligned on a word boundary.
– The data area is protected against write access.

X'01' X'031C' Invalid BCAM name, occurs only with REF=ALL:
– The specified BCAM name is not known to the system
– The specified BCAM name does not identify a pubset sharer
– The pubset is not multiprocessor shareable and the BCAM name does not

identify the local system.
– The local system is not the master of the multiprocessor shareable pubset

and the specified BCAM name does not identify the local system

X'01' X'031F' Incorrect SELECT operand in the operand list:
The user has supplied the field for the SELECT operand in the operand list with
an invalid value

X'01' X'FFFF' Interface error: incorrect unit or function code

X'03' X'FFFF' Interface error: incorrect version number

X'bb' X'aaaa' Meaning

STAMCE Description of the macros

858 U3291-J-Z125-16-76

DSECT for the operand list of the macro (XPAND=PL)

STAMCE MF=D,PREFIX=D,XPAND=PL,VERSION=5
1 #INTF REFTYPE=REQUEST, C
1 INTNAME=STAM, C
1 INTCOMP=5
1 MFCHK MF=D, C
1 SUPPORT=(C,D,E,L,M,S), C
1 PREFIX=D, C
1 MACID=MCE, C
1 DMACID=MCE, C
1 DNAME=MCEPL, C
1 PARAM=, C
1 SVC=33, C
1 ALIGN=F
2 DMCEPL DSECT ,
2 *,##### PREFIX=D, MACID=MCE #####
1 STAMLY MF=D, C
1 PREFIX=D, C
1 MACID=MCE, C
1 PARAM=, C
1 VERSION=5, C
1 XPAND=PL, C
1 FUNCT=1, C
1 CG27=DMCE, C
1 CATID=, C
1 AREA=, C
1 LENGTH=, C
1 REF=, C
1 HOST=, C
1 SELECT=, C
1 PUBSET=
2 #INTF REFTYPE=REQUEST, C
2 INTNAME=STAMLY, C
2 INTCOMP=5
2 ********************
2 * parameter list *
2 ********************
2 DMCEFHDR FHDR MF=(C,DMCE),EQUATES=NO standard header
3 DMCEFHDR DS 0A
3 DMCEFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
3 *
3 DMCEIFID DS 0A 0 INTERFACE IDENTIFIER
3 DMCEFCTU DS AL2 0 FUNCTION UNIT NUMBER
3 * BIT 15 HEADER FLAG BIT,
3 * MUST BE RESET UNTIL FURTHER NOTICE
3 * BIT 14-12 UNUSED, MUST BE RESET
3 * BIT 11-0 REAL FUNCTION UNIT NUMBER

Description of the macros STAMCE

U3291-J-Z125-16-76 859

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

3 DMCEFCT DS AL1 2 FUNCTION NUMBER
3 DMCEFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
3 *
3 DMCERET DS 0A 4 GENERAL RETURN CODE
3 DMCESRET DS 0AL2 4 SUB RETURN CODE
3 DMCESR2 DS AL1 4 SUB RETURN CODE 2
3 DMCESR1 DS AL1 5 SUB RETURN CODE 1
3 DMCEMRET DS 0AL2 6 MAIN RETURN CODE
3 DMCEMR2 DS AL1 6 MAIN RETURN CODE 2
3 DMCEMR1 DS AL1 7 MAIN RETURN CODE 1
3 DMCEFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
3 *
2 DMCEAREA DS A area address
2 DMCECTAD DS A catid address
2 DMCECTID DS CL4 catid
2 DMCEARLN DS F area length
2 DMCERESA DS A reserved (mf=m buffer)
2 DMCEHOST DS CL8 bcam name of the host
2 DMCESLCT DS C SELECT value
2 DMCEFLAG DS X flags
2 DMCESMPU DS CL4 id of sm pubset
2 DMCEUNUS DS XL6 unused
2 DMCE# EQU *-DMCEFHDR length parameter list
2 *
2 * return codes
2 *
2 DMCEOK EQU X'0000' NO_ERROR
2 DMCESRPM EQU X'0310' SRPM_ERROR
2 DMCEOPER EQU X'0311' OPERAND_ERROR_IN_STAM
2 DMCENFND EQU X'0312' MCE_CANNOT_BE_FOUND
2 DMCERQRL EQU X'0313' REQM_RELM_ERROR
2 DMCEICOW EQU X'0314' INVALID_CATID_OR_WILDCARD
2 DMCEATS EQU X'0316' AREA_TOO_SMALL
2 DMCELCKC EQU X'0317' MRSCAT_LOCK_CONFLICT
2 DMCESYER EQU X'0318' SYNCHRONIZATION_ERROR
2 DMCENINI EQU X'031A' MRSCAT_NOT_INITIALIZED
2 DMCETRER EQU X'031B' TRANSMISSION_ERROR
2 DMCEHOIN EQU X'031C' INVALID_HOST_NAME
2 DMCEPAER EQU X'031F' MRS_PARAM_ERROR
2 *
2 * subcode 2
2 *
2 DMCESC2L EQU X'00' LOCAL_ERROR
2 DMCESC2R EQU X'01' REMOTE_ERROR
2 *
2 * last catid
2 *
2 DMCELAST EQU X'40404040'

STAMCE Description of the macros

860 U3291-J-Z125-16-76

2 *
2 * last occupation
2 *
2 DMCELOCC EQU X'00'
2 *
2 * SELECT values
2 *
2 DMCEALL EQU 0 all the pubsets
2 DMCEPAGI EQU 1 paging pubsets
2 DMCELOCA EQU 2 local pubsets
2 DMCEREMO EQU 3 remote pubsets
2 DMCEACCE EQU 4 pubsets accessible
2 DMCELOAC EQU 5 pubsets local and accessible
2 DMCESHAR EQU 6 shared pubsets
2 DMCEEXCL EQU 7 exclusive pubsets
2 DMCEREAC EQU 8 pubsets remote and accessible
2 DMCESCA EQU 9 local and accessible pubsets which
2 * are connected to SPEEDCAT
2 DMCEXCS EQU 10 XCS configurated pubsets
2 DMCEHSMS EQU 11 all HSMS supported sm pubsets
2 DMCESF EQU 12 all single feature pubsets
2 DMCESM EQU 13 all system managed pubsets
2 DMCEVOL EQU 14 all volume sets of a sm pubset
2 DMCEDEF EQU 15 volume sets of sm pubsets which are
2 * defined but not in use
2 DMCEMCHE EQU 16 pubsets where an error occured during
2 * master change processing
2 DMCEINAC EQU 17 pubsets which are inaccessible
2 DMCEDXCS EQU 18 defined XCS configurated
2 DMCEQUIT EQU 19 pubset in quiet status
2 *
2 * flags
2 *
2 DMCEMPVS EQU X'80' set: MPVS mode
2 DMCEREF EQU X'40' set: REF = YES
2 DMCERALL EQU X'20' set: REF = ALL

Description of the macros STAMCE

U3291-J-Z125-16-76 861

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

DSECT for the output area of the macro (XPAND=MCE)

STAMCE MF=D,PREFIX=D,XPAND=MCE,VERSION=5
1 #INTF REFTYPE=REQUEST, C
1 INTNAME=STAM, C
1 INTCOMP=5
1 MFCHK MF=D, C
1 SUPPORT=(C,D,E,L,M,S), C
1 PREFIX=D, C
1 MACID=MCF, C
1 DMACID=MCF, C
1 DNAME=MCFMCE, C
1 PARAM=, C
1 SVC=33, C
1 ALIGN=F
2 DMCFMCE DSECT ,
2 *,##### PREFIX=D, MACID=MCF #####
1 STAMLY MF=D, C
1 PREFIX=D, C
1 MACID=MCF, C
1 PARAM=, C
1 VERSION=5, C
1 XPAND=MCE, C
1 FUNCT=1, C
1 CG27=DMCF, C
1 CATID=, C
1 AREA=, C
1 LENGTH=, C
1 REF=, C
1 HOST=, C
1 SELECT=, C
1 PUBSET=
2 #INTF REFTYPE=REQUEST, C
2 INTNAME=STAMLY, C
2 INTCOMP=5
2 DMCFMST DS 0D
2 MCEDSK VERSION=5,CG27=DMCF
3 #INTF REFTYPE=REQUEST, C
3 INTNAME=MCEDSK, C
3 INTCOMP=5
3 *******************************
3 * header of all entry types *
3 *******************************
3 DS 0D DW alignement
3 DMCFSHDR DS 0XL8 header
3 DMCFSCTD DS CL4 catid
3 *
3 DMCFSENT DS X entry type set

STAMCE Description of the macros

862 U3291-J-Z125-16-76

3 DMCFSSF EQU 0 single feature pubset
3 DMCFSSM EQU 1 system managed pubset
3 DMCFSVOL EQU 2 volume set
3 *
3 DS XL3 unused
3 ***
3 * starting point of the static entry part *
3 ***
3 DMCFSDSC DS 0D starting point of static part
3 **
3 * static part of a single feature pubset entry *
3 **
3 DMCFSBCA DS CL8 BCAM name for RFA
3 DMCFSDEM DS 0XL2 device mnemonic
3 DMCFSDEV DS XL1 device code
3 DMCFSDEF DS XL1 device filler
3 DMCFSBNU DS XL2 static number of CMS buffer
3 DMCFSBWT DS F batch wait time
3 DMCFSDWT DS F dialog wait time
3 *
3 * static pubset status values (1)
3 *
3 DMCFSSTA DS X static status byte (1)
3 DMCFSAUT EQU X'80' set : autoquiet selected
3 DMCFSBDF EQU X'40' set : static buffer defined
3 DMCFSBCL EQU X'20' set : static buffer resident (cl.3)
3 * reset: static buffer non-res. (cl.4)
3 DMCFSSH EQU X'10' set : pubset shared (next import)
3 * reset: pubset exclusive (next import)
3 DMCFSAC EQU X'08' set : pubset with controlled use
3 DMCFSUVA EQU X'04' set : physical allocation by users allowed
3 DMCFSFIM EQU X'02' set : continue IMPORT if cache can't be
3 * connected
3 * reset: abort IMPORT if cache can't be
3 * connected
3 DMCFSXCS EQU X'01' set : XCS pubset at startup
3 *
3 DMCFSSPC DS X SPEEDCAT set
3 DMCFSNSP EQU 0 no automatic start
3 DMCFSSSP EQU 1 SPEEDCAT task
3 DMCFSUSP EQU 2 SPEEDCAT own task
3 DMCFSNSS EQU 4 no, non start SPEEDCAT
3 *
3 * static pubset status values (2)
3 *
3 DMCFSST2 DS X static status byte (2)
3 DMCFSRIM EQU X'80' set : remote import by command only
3 * reset: remote import by connection

Description of the macros STAMCE

U3291-J-Z125-16-76 863

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

3 DMCFSCCT EQU X'40' set : TSOSCAT is to be converted to V10
3 * format during next EXPORT
3 DS XL1 unused
3 DMCFSUID DS CL8 userid allowed to access pubset
3 *
3 * static cache values
3 *
3 DMCFSCBS DS F cache size
3 *
3 DMCFSCBY DS X byte for bit values
3 DMCFSCBU EQU X'80' set : cache size unit is KB
3 * reset: cache size unit is MB
3 DMCFSCST EQU X'40' set : size tolerance
3 *
3 DMCFSCM DS X cache medium set
3 DMCFSCNC EQU 0 no cache
3 DMCFSCDC EQU 1 controller
3 DMCFSCES EQU 2 expanded storage
3 DMCFSCGS EQU 3 global storage
3 DMCFSCMM EQU 4 main memory
3 *
3 DMCFSCSZ DS X segment size set
3 DMCFSC4 EQU 0 4 KB
3 DMCFSC8 EQU 1 8 KB
3 DMCFSC16 EQU 2 16 KB
3 DMCFSC32 EQU 3 32 KB
3 *
3 DMCFSCFS DS X file selection
3 DMCFSBUS EQU 0 by user
3 DMCFSALL EQU 1 all
3 DMCFSAUS EQU 2 autoselected
3 *
3 DMCFSGDS DS X GS data security set
3 DMCFSGNS EQU 0 no security
3 DMCFSGCO EQU 1 connect
3 *
3 DMCFSGU1 DS XL1 GS unit=1 or 2
3 DMCFSGU2 DS XL1 unused
3 *
3 DMCFSGDB DS X GS double recording by buffer set
3 DMCFSGST EQU 0 std
3 DMCFSGNY EQU 1 mono
3 DMCFSGNN EQU 2 any
3 DMCFSGYE EQU 3 yes
3 *
3 DMCFSGFO DS X force out set
3 DMCFSGNF EQU 0 no force out
3 DMCFSGLF EQU 1 at low filling

STAMCE Description of the macros

864 U3291-J-Z125-16-76

3 DMCFSGHF EQU 2 at high filling
3 *
3 DMCFSCFE DS X DC prefetch set
3 DMCFSCFN EQU 0 no prefetch
3 DMCFSCFL EQU 1 low
3 DMCFSCFH EQU 2 high
3 *
3 * static attach/detach pubset
3 *
3 DMCFSMN DS XL2 attach pubset with dev#
3 *
3 * static allocator values
3 *
3 DMCFSAL1 DS F residual space at sat level 1
3 DMCFSAL2 DS F residual space at sat level 2
3 DMCFSAL3 DS F residual space at sat level 3
3 DMCFSAL4 DS F residual space at sat level 4
3 DMCFSAL5 DS F residual space at sat level 5
3 DMCFSAPA DS F predet primary alloc amount
3 DMCFSASA DS F predet secondary alloc amount
3 DMCFSADL DS F sec alloc doubling limit
3 DMCFSAZP DS F residual space for ZIP startup
3 *
3 * static eam values
3 *
3 DMCFSEMA DS F maximal size of file SYSEAM
3 DMCFSEMI DS F minimal size of file SYSEAM
3 DMCFSESA DS F secondary allocation of file SYSEAM
3 DMCFSEMS DS F virtual memory size of file SYSEAM
3 *
3 DMCFS# EQU *-DMCFSBCA length of the static part of a single
3 * feature pubset entry
3 ORG DMCFSDSC starting point of static part
3 **
3 * static part of a system managed pubset entry *
3 **
3 DMCFHBCA DS CL8 BCAM name for RFA
3 DMCFHDEM DS 0XL2 device mnemonic of volres of ctl volset
3 DMCFHDEV DS XL1 device code
3 DMCFHDEF DS XL1 device filler
3 DMCFHBNU DS XL2 static number of CMS buffer
3 DMCFHBWT DS F batch wait time
3 DMCFHDWT DS F dialog wait time
3 *
3 * static pubset status values (1)
3 *
3 DMCFHSTA DS X static status byte (1)
3 DMCFHAUT EQU X'80' set : autoquiet selected

Description of the macros STAMCE

U3291-J-Z125-16-76 865

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

3 DMCFHBDF EQU X'40' set : static buffer defined
3 DMCFHBCL EQU X'20' set : static buffer resident (cl.3)
3 * reset: static buffer non-res. (cl.4)
3 DMCFHSH EQU X'10' set : pubset shared (next import)
3 * reset: pubset exclusive (next import)
3 DMCFHAC EQU X'08' set : pubset with controlled use
3 DMCFHHSM EQU X'04' set : pubset is HSMS supported
3 DMCFHFIM EQU X'02' set : continue IMPORT if cache can't be
3 * connected
3 * reset: abort IMPORT if cache can't be
3 * connected
3 DMCFHXCS EQU X'01' set : XCS pubset at startup
3 *
3 DS XL1 unused
3 *
3 * static pubset status values (2)
3 *
3 DMCFHST2 DS X static status byte (2)
3 DMCFHRIM EQU X'80' set : remote import by command only
3 * reset: remote import by connection
3 DS XL1 unused
3 DMCFHUID DS CL8 userid allowed to access pubset
3 *
3 * static cache values
3 *
3 DS XL4 unused
3 DMCFHCBY DS X byte for bit values
3 DMCFHCST EQU X'40' set : size tolerance
3 *
3 DMCFHVID DS CL4 catid of ctl volset
3 *
3 DMCFHDFF DS X default file format set
3 DMCFHDST EQU 0 std
3 DMCFHPAM EQU 1 pamkey format
3 DMCFHNK2 EQU 2 NK2 format
3 DMCFHNK4 EQU 3 NK4 format
3 *
3 DS XL4 unused
3 *
3 * static attach/detach pubset
3 *
3 DMCFHMN DS XL2 attach pubset with dev#
3 *
3 * static allocator values
3 *
3 DS XL20 unused
3 DMCFHAPA DS F predet primary alloc amount
3 DMCFHASA DS F predet secondary alloc amount

STAMCE Description of the macros

866 U3291-J-Z125-16-76

3 DMCFHADL DS F sec alloc doubling limit
3 DS XL4 unused
3 *
3 * static EAM values
3 *
3 DMCFHEMA DS F maximal size of file SYSEAM
3 DMCFHEMI DS F minimal size of file SYSEAM
3 DMCFHESA DS F secondary allocation of file SYSEAM
3 DMCFHEMS DS F virtual memory size of file SYSEAM
3 *
3 DMCFH# EQU *-DMCFHBCA length of the static part of a system
3 * managed pubset entry
3 ORG DMCFSDSC starting point of static part
3 ***********************************
3 * static part of a pubset entry *
3 ***********************************
3 DMCFFBCA DS CL8 BCAM name for RFA
3 DMCFFDEM DS 0XL2 device mnemonic
3 DMCFFDEV DS XL1 device code
3 DMCFFDEF DS XL1 device filler
3 DMCFFBNU DS XL2 static number of CMS buffer
3 DMCFFBWT DS F batch wait time
3 DMCFFDWT DS F dialog wait time
3 *
3 * static pubset status values (1)
3 *
3 DMCFFSTA DS X static status byte (1)
3 DMCFFAUT EQU X'80' set : autoquiet selected
3 DMCFFBDF EQU X'40' set : static buffer defined
3 DMCFFBCL EQU X'20' set : static buffer resident (cl.3)
3 * reset: static buffer non-res. (cl.4)
3 DMCFFSH EQU X'10' set : pubset shared (next import)
3 * reset: pubset exclusive (next import)
3 DMCFFAC EQU X'08' set : pubset with controlled use
3 DMCFFUVA EQU X'04' set : physical allocation by users allowed
3 DMCFFFIM EQU X'02' set : continue IMPORT if cache can't be
3 * connected
3 * reset: abort IMPORT if cache can't be
3 * connected
3 DMCFFXCS EQU X'01' set : XCS pubset at startup
3 DS XL1 unused
3 *
3 * static pubset status values (2)
3 *
3 DMCFFST2 DS X static status byte (2)
3 DMCFFRIM EQU X'80' set : remote import by command only
3 * reset: remote import by connection
3 DS XL1 unused

Description of the macros STAMCE

U3291-J-Z125-16-76 867

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

3 DMCFFUID DS CL8 userid allowed to access pubset
3 *
3 * static cache values
3 *
3 DS XL4 unused
3 DMCFFCBY DS X byte for bit values
3 DMCFFCST EQU X'40' set : size tolerance
3 *
3 DS XL9 unused
3 *
3 * static attach/detach pubset
3 *
3 DMCFFMN DS XL2 attach pubset with dev#
3 *
3 * static allocator values
3 *
3 DS XL20 unused
3 DMCFFAPA DS F predet primary alloc amount
3 DMCFFASA DS F predet secondary alloc amount
3 DMCFFADL DS F sec alloc doubling limit
3 DS XL4 unused
3 *
3 * static eam values
3 *
3 DMCFFEMA DS F maximal size of file SYSEAM
3 DMCFFEMI DS F minimal size of file SYSEAM
3 DMCFFESA DS F secondary allocation of file SYSEAM
3 DMCFFEMS DS F virtual memory size of file SYSEAM
3 *
3 DMCFF# EQU *-DMCFFBCA length of the static part of a pubset
3 * entry
3 ORG DMCFSDSC starting point of static part
3 ***************************************
3 * static part of a volume set entry *
3 ***************************************
3 DMCFBPID DS CL4 corresponding pubset id
3 DS XL4 unused
3 DMCFBDEM DS 0XL2 device mnemonic
3 DMCFBDEV DS XL1 device code
3 DMCFBDEF DS XL1 device filler
3 *
3 * static performance attributes
3 *
3 DMCFBVSU DS X volset usage set
3 DMCFBVST EQU 0 standard volset
3 DMCFBWRK EQU 1 work volset
3 DMCFBHSM EQU 2 HSMS controlled volset
3 *

STAMCE Description of the macros

868 U3291-J-Z125-16-76

3 DMCFBAVA DS X availability set
3 DMCFBAST EQU 0 standard availability
3 DMCFBHIG EQU 1 high availability
3 *
3 DMCFBPER DS X performance profile
3 DMCFBPST EQU X'80' standard performance
3 DMCFBHIH EQU X'40' high performance
3 DMCFBVHI EQU X'20' very high performance
3 *
3 DMCFBCRE DS X write consistency set
3 DMCFBBYC EQU 0 by close
3 DMCFBIMM EQU 1 immediate
3 *
3 DS XL1 unused
3 *
3 DMCFBNFA DS X new file allocation
3 DMCFBNNR EQU 0 not restricted
3 DMCFBNPO EQU 1 physical only
3 DMCFBNNA EQU 2 not allowed
3 *
3 DMCFBVAC DS X volset access
3 DMCFBVNR EQU 0 not restricted
3 DMCFBVAO EQU 1 administrator only
3 *
3 DMCFBVSS DS X volset status
3 DMCFBVSD EQU 0 normal use
3 DMCFBVDO EQU 1 defined only
3 DMCFBVIH EQU 2 in hold
3 DMCFBVDF EQU 3 defect
3 *
3 DS XL2 unused
3 *
3 * static volset status values
3 *
3 DMCFBSTA DS X static status byte
3 DMCFBCVS EQU X'04' set: volset is ctl volset of a sm pubset
3 DS XL11 unused
3 *
3 * static cache values
3 *
3 DMCFBCBS DS F cache size
3 *
3 DMCFBCBY DS X byte for bit values
3 DMCFBCBU EQU X'80' set : cache size unit is KB
3 * reset: cache size unit is MB
3 *
3 DMCFBCM DS X cache medium set
3 DMCFBCNC EQU 0 no cache

Description of the macros STAMCE

U3291-J-Z125-16-76 869

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

3 DMCFBCDC EQU 1 controller
3 DMCFBCES EQU 2 expanded storage
3 DMCFBCGS EQU 3 global storage
3 DMCFBCMM EQU 4 main memory
3 *
3 DMCFBCSZ DS X segment size set
3 DMCFBC4 EQU 0 4 KB
3 DMCFBC8 EQU 1 8 KB
3 DMCFBC16 EQU 2 16 KB
3 DMCFBC32 EQU 3 32 KB
3 *
3 DMCFBCFS DS X file selection
3 DMCFBBUS EQU 0 by user
3 DMCFBALL EQU 1 all
3 DMCFBAUS EQU 2 autoselected
3 *
3 DMCFBGDS DS X GS data security set
3 DMCFBGNS EQU 0 no security
3 DMCFBGCO EQU 1 connect
3 *
3 DMCFBGU1 DS XL1 GS unit=1 or 2
3 DMCFBGU2 DS XL1 unused
3 *
3 DMCFBGDB DS X GS double recording by buffer set
3 DMCFBGST EQU 0 standard
3 DMCFBGNY EQU 1 mono
3 DMCFBGNN EQU 2 any
3 DMCFBGYE EQU 3 dual
3 *
3 DMCFBGFO DS X force out set
3 DMCFBGNF EQU 0 no force out
3 DMCFBGLF EQU 1 at low filling
3 DMCFBGHF EQU 2 at high filling
3 *
3 DMCFBCFE DS X DC prefetch set
3 DMCFBCFN EQU 0 no prefetch
3 DMCFBCFL EQU 1 low
3 DMCFBCFH EQU 2 high
3 *
3 * static allocator values
3 *
3 DMCFBAL1 DS F residual space at sat level 1
3 DMCFBAL2 DS F residual space at sat level 2
3 DMCFBAL3 DS F residual space at sat level 3
3 DMCFBAL4 DS F residual space at sat level 4
3 DMCFBAL5 DS F residual space at sat level 5
3 DS XL12 unused
3 DMCFBAZP DS F residual space for ZIP startup

STAMCE Description of the macros

870 U3291-J-Z125-16-76

3 *
3 DS XL16 unused
3 *
3 DMCFB# EQU *-DMCFBPID length of the static part of a volume
3 * set entry
3 ORG DMCFSDSC+DMCFS# length of a static MRSCAT entry
2 **
2 * starting point of the dynamic entry part *
2 **
2 DMCFD DS 0D starting point of dynamic part
2 ***
2 * dynamic part of a single feature pubset entry *
2 ***
2 DMCFDOC# DS F counter for occupations
2 *
2 * dynamic pubset status values (1)
2 *
2 DMCFDSTA DS X dynamic status byte (1)
2 DMCFDLOC EQU X'80' set: local reset: remote
2 DMCFDHOM EQU X'40' set: home reset: imported
2 DMCFDSH EQU X'20' set: shared reset: exclusive
2 DMCFDIMC EQU X'10' set: import in process
2 DMCFDEXC EQU X'08' set: export in process
2 DMCFDMAS EQU X'04' set: master reset: slave
2 DMCFDINA EQU X'02' set: inaccessible reset: not inacc
2 DMCFDQUI EQU X'01' set: quiet
2 *
2 * dynamic pubset status values (2)
2 *
2 DMCFDST2 DS X dynamic status byte (2)
2 DMCFDUVA EQU X'10' set: physical allocation by users allowed
2 DMCFDAC EQU X'08' set: pubset with controlled use
2 DMCFDMCP EQU X'04' set: master change in process
2 DMCFDPAG EQU X'02' set: paging pubset
2 DMCFDERI EQU X'01' set: eram inhibit
2 *
2 DMCFDSES DS X pubset session number
2 *
2 DMCFDFLA DS X CMS flags
2 DMCFDBDF EQU X'80' set: CMS buffers defined
2 DMCFDBCL EQU X'40' set: CMS buffers resident (class 3)
2 * reset: CMS buffers not resident (class 4)
2 DMCFDSPC EQU X'20' set: speedcat is running
2 DMCFDELC EQU X'10' set: Extra_large_catalog
2 *
2 DMCFDBNU DS XL2 number of CMS buffers
2 *
2 DMCFDATT DS X attribute

Description of the macros STAMCE

U3291-J-Z125-16-76 871

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

2 DMCFDLOB EQU X'40' set: large_objects
2 * files/volumes with more than 32 GB
2 DMCFDLFA EQU X'20' set: large_files_allowed
2 DMCFDRAI EQU X'10' set: pubset with RAID volumes
2 DMCFDGSV EQU X'08' set: gs volumes
2 DMCFDDRV EQU X'02' set: high availability by DRV
2 DMCFDKEY EQU X'01' set: key pubset
2 *
2 DMCFDXCN DS CL8 XCS name
2 DMCFDHOS DS CL8 host name :* MSCF host name
2 *
2 DMCFDPUB DS X pubset set
2 DMCFD2KN EQU 0 NK2 (2K native)
2 DMCFD4KN EQU 1 NK4 (4K native)
2 DMCFD4KO EQU 2 NK2, allocation unit multiple of 4K
2 * (4K oriented)
2 * dynamic cache values
2 *
2 DMCFDCSZ DS F size of cache buffer
2 *
2 DMCFDCB8 DS X byte for bit values
2 DMCFDCBU EQU X'80' set : cache size unit is KB
2 * reset: cache size unit is MB
2 DMCFDCDS EQU X'40' set : data security ensured
2 DMCFDCDB EQU X'20' set : double recording by buffer
2 DMCFDCDD EQU X'10' set : cache deactivated
2 DMCFDCIH EQU X'08' set : cache in hold
2 DMCFDCCU EQU X'04' set : cache used
2 DMCFDCSF EQU X'02' set : save file failed
2 *
2 DMCFDCM DS X cache medium set
2 DMCFDCNC EQU 0 no cache
2 DMCFDCDC EQU 1 controller
2 DMCFDCES EQU 2 expanded storage
2 DMCFDCGS EQU 3 global storage
2 DMCFDCMM EQU 4 main memory
2 *
2 DMCFDCS DS X segment size set
2 DMCFDC4 EQU 0 4 KB
2 DMCFDC8 EQU 1 8 KB
2 DMCFDC16 EQU 2 16 KB
2 DMCFDC32 EQU 3 32 KB
2 *
2 DMCFDCU1 DS XL1 GS unit=1 or 2
2 DMCFDCU2 DS XL1 unused
2 *
2 DMCFDCFO DS X force out set
2 DMCFDCNF EQU 0 no force out

STAMCE Description of the macros

872 U3291-J-Z125-16-76

2 DMCFDCIP EQU 1 at low filling
2 DMCFDCIN EQU 2 at high filling
2 *
2 DMCFDCFE DS X prefetch set
2 DMCFDCFN EQU 0 no prefetch
2 DMCFDCFL EQU 1 low
2 DMCFDCFH EQU 2 high
2 *
2 DMCFDCFS DS X file selection
2 DMCFDBUS EQU 0 by user
2 DMCFDALL EQU 1 all
2 DMCFDAUS EQU 2 auto select
2 *
2 DMCFDCAS DS H size of allocation unit (# of half pages)
2 DMCFDMTL DS H maximal I/O transfer length
2 DMCFDUID DS CL8 userid allowed to access pubset
2 *
2 DS XL2 unused
2 *
2 * dynamic allocator values
2 *
2 DMCFDAL5 DS F residual space at sat level 5
2 DMCFDAL4 DS F residual space at sat level 4
2 DMCFDAL3 DS F residual space at sat level 3
2 DMCFDAL2 DS F residual space at sat level 2
2 DMCFDAL1 DS F residual space at sat level 1
2 DMCFDAPA DS F predet primary alloc amount
2 DMCFDASA DS F predet secondary alloc amount
2 DMCFDADL DS F sec alloc doubling limit
2 DMCFDAZP DS F residual space for ZIP startup
2 *
2 * dynamic EAM values
2 *
2 DMCFDEMA DS F minimal size of file SYSEAM
2 DMCFDEMI DS F maximal size of file SYSEAM
2 DMCFDESA DS F secondary allocation of file SYSEAM
2 DMCFDEMS DS F virtual memory size of file SYSEAM
2 *
2 DMCFDREF DS XL4 counter of occupations (duplicate)
2 *
2 DMCF# EQU *-DMCFMST length of the STAM single
2 * feature pubset entry
2 ORG DMCFD starting point of dynamic part
2 ***
2 * dynamic part of a system managed pubset entry *
2 ***
2 DMCFKOC# DS F counter for occupations
2 *

Description of the macros STAMCE

U3291-J-Z125-16-76 873

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

2 * dynamic pubset status values (1)
2 *
2 DMCFKSTA DS X dynamic status byte (1)
2 DMCFKLOC EQU X'80' set: local reset: remote
2 DMCFKHOM EQU X'40' set: home reset: imported
2 DMCFKSH EQU X'20' set: shared reset: exclusive
2 DMCFKIMC EQU X'10' set: import in process
2 DMCFKEXC EQU X'08' set: export in process
2 DMCFKMAS EQU X'04' set: master reset: slave
2 DMCFKINA EQU X'02' set: inaccessible reset: not inacc
2 DMCFKQUI EQU X'01' set: quiet
2 *
2 * dynamic pubset status values (2)
2 *
2 DMCFKST2 DS X dynamic status byte (2)
2 DMCFKAC EQU X'08' set: pubset with controlled use
2 DMCFKMCP EQU X'04' set: master change in process
2 DMCFKPAG EQU X'02' set: paging pubset
2 DMCFKERI EQU X'01' set: eram inhibit
2 *
2 DMCFKSES DS X session number
2 *
2 DMCFKFLA DS X CMS flags
2 DMCFKBDF EQU X'80' set: CMS buffers defined
2 DMCFKBCL EQU X'40' set: CMS buffers resident (class 3)
2 * reset: CMS buffers not resident (class 4)
2 DMCFKBNU DS XL2 number of CMS buffers
2 *
2 * dynamic sm pubset status values
2 *
2 DMCFKSMS DS X special status bytes for sm pubsets
2 DMCFKGEN EQU X'80' set: pubset is in generation
2 ORG DMCFKSMS
2 DMCFKATT DS X attribute
2 DMCFKLOB EQU X'40' set: large_objects
2 * files/volumes with more than 32 GB
2 DMCFKLFA EQU X'20' set: large_files_allowed
2 DMCFKXCN DS CL8 XCS name
2 DMCFKHOS DS CL8 host name :* MSCF host name
2 *
2 DMCFKDFF DS X default file format set
2 DMCFKPAM EQU 0 pamkey format
2 DMCFKNO2 EQU 1 NK2 format
2 DMCFKNO4 EQU 2 NK4 format
2 *
2 * dynamic performance attributes
2 *
2 DMCFKPER DS X performance profile

STAMCE Description of the macros

874 U3291-J-Z125-16-76

2 DMCFKSTD EQU X'80' standard performance
2 DMCFKHIG EQU X'40' high performance
2 DMCFKVHI EQU X'20' very high performance
2 *
2 DMCFKWRC DS X write consistency
2 DMCFKBC EQU X'80' by close
2 DMCFKIMM EQU X'40' immediate
2 *
2 DMCFKAVA DS X availability
2 DMCFKAST EQU X'80' standard availability
2 DMCFKAHI EQU X'40' high availability
2 *
2 DS XL1 unused
2 *
2 DMCFKFMT DS X format profile
2 DMCFKK EQU X'80' system managed pubset with K volsets
2 DMCFKNK2 EQU X'40' system managed pubset with NK2 volsets
2 DMCFKFN4 EQU X'20' system managed pubset with NK4 volsets
2 *
2 DMCFKUSA DS X volume set usage
2 DMCFKUST EQU X'80' sm pubset with standard volsets
2 DMCFKWRK EQU X'40' sm pubset with work volsets
2 DMCFKHSS EQU X'20' sm pubset with HSMS controlled volsets
2 *
2 DS XL2 unused
2 DMCFKNOV DS F number of volsets
2 DS XL1 unused
2 DMCFKMTL DS H maximal I/O transfer length
2 DMCFKUID DS CL8 userid allowed to access the pubset
2 DS XL4 unused
2 *
2 * dynamic allocator values
2 *
2 DS XL20 unused
2 DMCFKAPA DS F predet primary alloc amount
2 DMCFKASA DS F predet secondary alloc amount
2 DMCFKADL DS F sec alloc doubling limit
2 DS XL4 unused
2 *
2 * dynamic EAM values
2 *
2 DMCFKEMA DS F maximal size of file SYSEAM
2 DMCFKEMI DS F minimal size of file SYSEAM
2 DMCFKESA DS F secondary allocation of file SYSEAM
2 DMCFKEMS DS F virtual memory size of file SYSEAM
2 *
2 DMCFKREF DS XL4 counter of occupations (duplicate)
2 *

Description of the macros STAMCE

U3291-J-Z125-16-76 875

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

2 DMCFK# EQU *-DMCFMST length of the STAM system
2 * managed pubset entry
2 ORG DMCFD starting point of dynamic part
2 ************************************
2 * dynamic part of a pubset entry *
2 ************************************
2 DMCFGOC# DS F counter for occupations
2 *
2 * dynamic pubset status values (1)
2 *
2 DMCFGSTA DS X dynamic status byte (1)
2 DMCFGLOC EQU X'80' set: local reset: remote
2 DMCFGHOM EQU X'40' set: home reset: imported
2 DMCFGSH EQU X'20' set: shared reset: exclusive
2 DMCFGIMC EQU X'10' set: import in process
2 DMCFGEXC EQU X'08' set: export in process
2 DMCFGMAS EQU X'04' set: master reset: slave
2 DMCFGINA EQU X'02' set: inaccessible reset: not inacc
2 DMCFGQUI EQU X'01' set: quiet
2 *
2 * dynamic pubset status values (2)
2 *
2 DMCFGST2 DS X dynamic status byte (2)
2 DMCFGAC EQU X'08' set: pubset with controlled use
2 DMCFGMCP EQU X'04' set: master change in process
2 DMCFGPAG EQU X'02' set: paging pubset
2 DMCFGERI EQU X'01' set: eram inhibit
2 *
2 DMCFGSES DS X session number
2 *
2 DMCFGFLA DS X CMS flags
2 DMCFGBDF EQU X'80' set: CMS buffers defined
2 DMCFGBCL EQU X'40' set: CMS buffers resident (class 3)
2 * reset: CMS buffers not resident (class 4)
2 DMCFGBNU DS XL2 number of CMS buffers
2 DMCFGATT DS X attribute
2 DMCFGLOB EQU X'40' set: large_objects
2 * files/volumes with more than 32 GB
2 DMCFGLFA EQU X'20' set: large_files_allowed
2 DMCFGXCN DS CL8 XCS name
2 DMCFGHOS DS CL8 host name :* MSCF host name
2 DS XL14 unused
2 DMCFGMTL DS H maximal I/O transfer length
2 DMCFGUID DS CL8 userid allowed to access pubset
2 DS XL4 unused
2 *
2 * dynamic allocator values
2 *

STAMCE Description of the macros

876 U3291-J-Z125-16-76

2 DS XL20 unused
2 DMCFGAPA DS F predet primary alloc amount
2 DMCFGASA DS F predet secondary alloc amount
2 DMCFGADL DS F sec alloc doubling limit
2 DS XL4 unused
2 *
2 * dynamic EAM values
2 *
2 DMCFGEMA DS F minimal size of file SYSEAM
2 DMCFGEMI DS F maximal size of file SYSEAM
2 DMCFGESA DS F secondary allocation of file SYSEAM
2 DMCFGEMS DS F virtual memory size of file SYSEAM
2 *
2 DMCFGREF DS XL4 counter of occupations (duplicate)
2 *
2 DMCFG# EQU *-DMCFMST length of the STAM pubset entry
2 *
2 ORG DMCFD starting point of dynamic part
2 **
2 * dynamic part of a volume set entry *
2 **
2 DMCFEOC# DS F counter for occupations
2 *
2 * dynamic volume set status values (1)
2 *
2 DMCFESTA DS X dynamic status bytes (1)
2 DMCFECON EQU X'80' set: volume set is connected
2 *
2 * dynamic volume set status values (2)
2 *
2 DMCFEST2 DS X dynamic status bytes (2)
2 DMCFEMCP EQU X'04' set: master change in process
2 DMCFEERI EQU X'01' set: eram inhibit
2 *
2 DS XL4 unused
2 *
2 DMCFEATT DS X attribute
2 DMCFERAI EQU X'10' set: volset with RAID volumes
2 DMCFEGSV EQU X'08' set: gs volumes
2 DMCFEDRV EQU X'02' set: high availability by DRV
2 DMCFEKEY EQU X'01' set: key volset
2 *
2 DS XL16 unused
2 *
2 DMCFEVOL DS X volume set format set
2 DMCFE2KN EQU 0 NK2 (2K native)
2 DMCFE4KN EQU 1 NK4 (4K native)
2 DMCFE4KO EQU 2 NK2, allocation unit multiple of 4K

Description of the macros STAMCE

U3291-J-Z125-16-76 877

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

2 * (4K oriented)
2 * dynamic cache values
2 *
2 DMCFECSZ DS F size of cache buffer
2 *
2 DMCFECB8 DS X byte for bit values
2 DMCFECBU EQU X'80' set : cache size unit is KB
2 * reset: cache size unit is MB
2 DMCFECDS EQU X'40' set : data security ensured
2 DMCFECDB EQU X'20' set : double recording by buffer
2 DMCFECDD EQU X'10' set : cache deactivated
2 DMCFECIH EQU X'08' set : cache in hold
2 DMCFECCU EQU X'04' set : cache used
2 DMCFECSF EQU X'02' set : save file failed
2 *
2 DMCFECM DS X cache medium set
2 DMCFECNC EQU 0 no cache
2 DMCFECDC EQU 1 controller
2 DMCFECES EQU 2 expanded storage
2 DMCFECGS EQU 3 global storage
2 DMCFECMM EQU 4 main memory
2 *
2 DMCFECS DS X segment size set
2 DMCFEC4 EQU 0 4 KB
2 DMCFEC8 EQU 1 8 KB
2 DMCFEC16 EQU 2 16 KB
2 DMCFEC32 EQU 3 32 KB
2 *
2 DMCFECU1 DS XL1 GS unit_1
2 DMCFECU2 DS XL1 GS unit_2
2 *
2 DMCFECFO DS X force out set
2 DMCFECNF EQU 0 no force out
2 DMCFECIP EQU 1 at low filling
2 DMCFECIN EQU 2 at high filling
2 *
2 DMCFECFE DS X prefetch set
2 DMCFECFN EQU 0 no prefetch
2 DMCFECFL EQU 1 low
2 DMCFECFH EQU 2 high
2 *
2 DMCFECFS DS X file selection
2 DMCFEBUS EQU 0 by user
2 DMCFEALL EQU 1 all
2 DMCFEAUS EQU 2 auto select
2 *
2 DMCFECAS DS H size of allocation unit (# of half pages)
2 DMCFEMTL DS H maximal I/O transfer length

STAMCE Description of the macros

878 U3291-J-Z125-16-76

2 DS XL10 unused
2 *
2 * dynamic allocator values
2 *
2 DMCFEAL5 DS F residual space at sat level 5
2 DMCFEAL4 DS F residual space at sat level 4
2 DMCFEAL3 DS F residual space at sat level 3
2 DMCFEAL2 DS F residual space at sat level 2
2 DMCFEAL1 DS F residual space at sat level 1
2 DS XL12 unused
2 DMCFEAZP DS F residual space for ZIP startup
2 *
2 DS XL16 unused
2 DMCFEREF DS XL4 counter of occupations (duplicate)
2 *
2 DMCFE# EQU *-DMCFMST length of the STAM volume
2 * set entry

Description of the macros STAMCE

U3291-J-Z125-16-76 879

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

DSECT for the output area of the macro (XPAND=OCC)

STAMCE MF=D,PREFIX=D,XPAND=OCC,VERSION=5
1 #INTF REFTYPE=REQUEST, C
1 INTNAME=STAM, C
1 INTCOMP=5
1 MFCHK MF=D, C
1 SUPPORT=(C,D,E,L,M,S), C
1 PREFIX=D, C
1 MACID=MCH, C
1 DMACID=MCH, C
1 DNAME=MCHOCC, C
1 PARAM=, C
1 SVC=33, C
1 ALIGN=F
2 DMCHOCC DSECT ,
2 *,##### PREFIX=D, MACID=MCH #####
1 STAMLY MF=D, C
1 PREFIX=D, C
1 MACID=MCH, C
1 PARAM=, C
1 VERSION=5, C
1 XPAND=OCC, C
1 FUNCT=1, C
1 CG27=DMCH, C
1 CATID=, C
1 AREA=, C
1 LENGTH=, C
1 REF=, C
1 HOST=, C
1 SELECT=, C
1 PUBSET=
2 #INTF REFTYPE=REQUEST, C
2 INTNAME=STAMLY, C
2 INTCOMP=5
2 DMCHOST DS 0F
2 DMCHSYS DS X sysid
2 DMCHUNUS DS XL3 unused
2 DMCHUSID DS CL8 userid
2 DMCHTSN DS CL4 tsn
2 DMCHTID DS F tid
2 DMCH# EQU *-DMCHOST length of the occupation entry

STAMCE Description of the macros

880 U3291-J-Z125-16-76

Example

In the following program, the STAMCE macro is called. The catalog ID and the BCAM name
of the system of the first 25 MRSCAT entries transferred by STAMCE are output on the
screen.

STAMCE START
PRINT NOGEN
BALR 10,0
USING *,10
USING DSTAM3,6 ——— (1)
USING DSTAM4,7 ——— (2)
STAMCE MF=E,PARAM=STAM3,VERSION=5 ————————————————————————— (3)
LR 7,1 —— (4)
L 6,DMCEAREA ——— (5)
L 5,=F'25'
WROUT HEADER,WROUTERR ————————————————————————————————————— (6)

SHOW CLC DMCFSCTD,=AL4(DMCELAST) —————————————————————————————— (7)
BE WROUTERR
MVC CATID,DMCFSCTD ——————————————————————————————————————— (8)
MVC PROCESS,DMCFFBCA
CLI PROCESS,X'00'
BNE WROUT2
MVC PROCESS,=CL8' '

WROUT2 WROUT OUTREC,WROUTERR
LA 6,DMCFG#(6)
BCT 5,SHOW

WROUTERR TERM
*** Definitions
STAM3 STAMCE CATID=' ',MF=L,VERSION=5
HEADER DC Y(HEADERE-HEADER)

DC CL2' '
DC CL1' '
DC C'CATID PROCESSOR '

HEADERE EQU *
OUTREC DC Y(OUTRECE-OUTREC)

DC CL2' '
DC CL1' '

CATID DS CL4
DC CL3' '

PROCESS DS CL8
OUTRECE EQU *

LTORG
DS 0F

DSTAM3 STAMCE MF=D,PREFIX=D,XPAND=MCE,VERSION=5
DSTAM4 STAMCE MF=D,PREFIX=D,XPAND=PL,VERSION=5

END

Description of the macros STAMCE

U3291-J-Z125-16-76 881

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,stamce), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,stamce))
% ASS6011 ASSEMBLY TIME: 210 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 27 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=stamce
% BLS0523 ELEMENT 'STAMCE', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'STAMCE', VERSION ' ' OF '<date> <time>' LOADED
CATID PROCESSOR —— (9)
A N89H04
AAK3 D015B219
AAK4 D015B219
AAN3 D015B219
AA4N
AKEY HELIOS2
ALB2
ANG3 ANGELA2
AP13 STARTB2
BAB2 BABETTE2
BAB3 BABETTE2
BECK
BEDS SOPHIE2
BSAD D015B007
BS41
BUEB D015B011
BUR3 D017ZE39
BUR4 D017ZE39
BUR5
.
.
.
B202
B203 D015B019

STAMCE Description of the macros

882 U3291-J-Z125-16-76

(1) Register 6 is assigned to the Assembler as the base address register for addressing
the DSECT for the output area of the STAMCE macro (in BS2000/OSD-BC V3.0
format). This DSECT is generated at the symbolic address DSTAM3 by means of
a STAMCE call with MF=D and XPAND=MCE.

(2) Register 7 is assigned to the Assembler as the base address register for addressing
the DSECT for the output area of the STAMCE macro (in BS2000/OSD-BC V3.0
format). This DSECT is generated at the symbolic address DSTAM4 by means of
a STAMCE call with MF=D and XPAND=PL.

(3) The STAMCE macro is called in its E form. The associated operand list is
generated at the symbolic address STAM3 by means of a STAMCE call with MF=L,
where

CATID=' ' (blank, for all MRSCAT entries)

is entered.
Since no value is specified for AREA, the AREA address is written implicitly to the
DMCAREA field of the operand list for the STAMCE macro (see DSTAM4:
STAMCE MF=D, PREFIX=D, XPAND=PL, VERSION=5).

(4) The start address of the operand list for the STAMCE macro is loaded into register
R7 so that the output area can be addressed via DMCAREA (points to the address
of the output area).

(5) Register R6 is loaded with the address of the output area.

(6) Output of a header line

(7) Check to see whether the end of the MRSCAT entries supplied has been reached.

(8) The first 25 MRSCAT entries that have been transferred to the output area by
STAMCE are evaluated in a loop: for each entry, the catalog ID (DMCFSCTD field
of the DSECT) and the BCAM name of the system (DMCFFBCA field of the
DSECT) - or blanks if no BCAM name is entered - are transferred to an output
record and output to the screen. The DSECT is subsequently shifted by the length
of an entry (DMCFG#).

(9) Output of the first 25 MRSCAT entries (shortened).

Description of the macros STXIT

U3291-J-Z125-16-76 883

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

STXIT – Specify interrupt event address

General

Application areas: STXIT processing; see page 131
Starting, interrupting and terminating; see page 72
Communication; see page 163

Macro type: Type S, MF format 1: standard/L/E form; see page 29

The following examples of events occurring in the program run affect the continuation of the
run:

– invalid operation code, invalid SVC,
– data error, overflow,
– end of program runtime, break interrupts, escape interrupts, or INFORM-PROGRAM

command,
– address error, (see table 14 on page 891).

With the following macros, the STXIT procedure enables users to process these types of
program interrupts with their own (STXIT) routines and therefore to avoid the danger of
premature program termination:

STXIT Define the STXIT process
EXIT Terminate the STXIT process
LEVCO Change the processing level (process priority) of the STXIT process
CONTXT Enable access to the interrupted task or to the basis process
SETIC Set timer interval (CPU time or real time)

A STXIT routine is a control section in a main program or a subprogram that is activated as
a separate process (own register set (PCB) and own process priority) by the BS2000
Executive in the event of a particular program interrupt. Users respond in the control section
to the interrupt event they accepted.

Macro description

Users allocate the STXIT routines of their program to any interrupt events (see table 14 on
page 891) with the STXIT macro.
The specified allocations are entered internally in a STXIT management block.

STXIT Description of the macros

884 U3291-J-Z125-16-76

Two forms of the STXIT macro must be distinguished:

a) STXIT macros without the STXDNEW/STXDID operands:

A STXIT management block is created for the first STXIT macro. The specified
“STXIT event class - STXIT routine” allocations are entered in this management
block. Every subsequent macro updates or supplements the allocations entered in
this management block (update of the management block). Therefore only one
STXIT routine can ever be allocated to an STXIT event class in a program or
program system. If an “STXIT event class - STXIT routine” allocation is modified,
only the last modification is valid.

b) STXIT macro with the STXDNEW/STXDID operands:

A separate STXIT management block with the specified allocations is created for
every STXIT macro with STXDNEW. The management blocks are chained to each
other, and the STXIT routines for the same STXIT event class are activated in the
prescribed sequence. An ID for the management block is transferred to the caller.
With this ID, the user can supplement, modify or revoke the allocations entered in
the relevant management block in a subsequent STXIT macro (with STXDID=...).

Both forms of the STXIT macro can be used concurrently in one program system. A
maximum of 100 STXIT management blocks can be created for one program system.
The processing level of an STXIT process can be changed during execution (LEVCO
macro).
A STXIT routine is terminated with EXIT or TERM. The user can specify in the EXIT macro
whether or not more STXIT routines that are allocated to the STXIT event class are to be
started. STXIT processes that are allocated to the same STXIT event class can interrupt
each other (nested execution).

Notes

– Only one STXIT routine can be allocated to the “SVC” event class in one and the same
program (program system). The allocation must be carried out in the first STXIT macro
or refer to the first STXIT management block to be created (the SVC number is
transferred in register R4 of the STXIT process when the corresponding event occurs).

– The user should note that, in the case of the “CPU timer” or the “real timer”, only one
time interval is set at any one moment for the CPU time and/or for the real time (see the
last call of the SETIC macro).

Description of the macros STXIT

U3291-J-Z125-16-76 885

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Macro format and description of operands

The variable list in the operand section corresponds to the following expression:

list ï

where the operand values have the following meanings:

addr
Symbolic address (name) of a STXIT routine.

STXIT

[]

,MODE=DEFUNCD / DEFMODE / INTMODE

[,STXMSG=addr / (r)]

[,TERM=list]

[,TIMER=list]

[,ERROR=list]

[,ABEND=list]

[,PROCHK=list]

[,RUNOUT=list]

[,RTIMER=list]

[,ESCPBRK=list]

[,HWERROR=list]

[,SVC=list]

[,SVCLIST=addr / (r) / CLOSE]

[,CONTXTL=addr / (r)]

[,INTR=list]

[,INTRBUF=addr / (r) / CLOSE]

,TERMRUN=STD / FORCED

[,MIGRATE=list]

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

STXDNEW=addr / (r)
STXDID=addr / (r)

(addr[,number])

((r)[,number])

(CLOSE)

STXIT Description of the macros

886 U3291-J-Z125-16-76

(r)
Register containing the address value “addr”.

number
Maximum number of STXIT routines in the nesting.
0 ≤ number ≤ 127. Default value: number = 0.

CLOSE
The assignment of STXIT routine to STXIT event class is revoked.

STXDNEW=
A (new) STXIT management block is created. The allocations of STXIT event classes to
STXIT routines are entered in the management block. An ID for the management block is
transferred to the caller by the system. The caller can use this ID to modify the specified
allocations in subsequent STXIT macros.

addr
Symbolic address (name) of a field in which the ID is entered; field length = 4 bytes.

(r)
Register containing the address value “addr”.

STXDID=
The allocations specified in a previous STXIT macro are to be modified. The relevant STXIT
management block is accessed via the returned ID.

addr
Symbolic address (name) of the field with the ID for the management block;
field length = 4 bytes.

(r)
Register containing the address value “addr”.

MODE=
Defines the addressing mode for the STXIT routine. The addressing mode is assigned to
the STXIT event classes defined in the same STXIT macro (the effect is event-class-
specific). By calling several STXIT macros with different event classes, the addressing
mode can therefore be set separately for each event class.

DEFUNCD
The STXIT routine is started in the same addressing mode that was set at the time of
the STXIT call. No check is carried out as to whether the same addressing mode is set
when the interrupt occurs.

DEFMODE
Default setting: the STXIT routine is started in the addressing mode that was active at
the time of the STXIT call. However, the STIXIT routine is not activated if the addressing
mode at the time of the STXIT call is different to the addressing mode at the time the
event occurs.

Description of the macros STXIT

U3291-J-Z125-16-76 887

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

INTMODE
The STXIT routine is started in the addressing mode active at the time of the interrupt.

STXMSG=
Determines the address of a 4 byte field which contains the STXIT message. This message
is transferred to the STXIT contingency process (in register R1).

addr
Symbolic address (name) of the message field.

(r)
Register containing the address value addr.

TERM=
Specifies the address of the STXIT routine for the “program termination” STXIT event class
(program termination due to synchronous events).

list
See the description of the list variable above.

TIMER=
Specifies the address of the STXIT routine for the “CPU timer” STXIT event class.

list
See the description of the list variable above.

ERROR=
Specifies the address of the STXIT routine for the “unrecoverable program error” STXIT
event class.

list
See the description of the list variable above.

ABEND=
Specifies the address of the STXIT routine for the STXIT event class “ABEND” (program
termination due to asynchronous events).

list
See the description of the list variable above.

PROCHK=
Specifies the address of the STXIT routine for the “program error” event class.

list
See the description of the list variable above.

RUNOUT=
Specifies the address of the STXIT routine for the “end of program runtime” STXIT event
class.

STXIT Description of the macros

888 U3291-J-Z125-16-76

list
See the description of the list variable above.

RTIMER=
Specifies the address of the STXIT routine for the “real timer” STXIT event class.

list
See the description of the list variable above.

ESCPBRK=
Specifies the address of the STXIT routine for the “ESCPBRK” (escape break) STXIT event
class. In addition to the event code in register R3, the function key code in the rightmost
byte of register R4 is transferred to the routine (for function key codes, see the “TIAM”
manual [16] or the table in the appendix on page 1167). This functionality is only provided
if the TIAM partner is a terminal and not an application (e.g. OMNIS).

list
See the description of the list variable above.

HWERROR=
Specifies the address of the STXIT routine for the “hardware error” STXIT event class.

list
See the description of the list variable above.

SVC=
Specifies the address of the STXIT routine for the “SVC interrupt” STXIT event class. In
addition to the event code in register R3, the SVC number is transferred in the rightmost
byte of register R4 to the routine. The monitored SVC is not executed. The interrupted PCB
continues to EXIT after the SVC.

list
See the description of the list variable above.

SVCLIST=
Specifies the address of a field with SVC numbers. The field must be aligned on a halfword
boundary. These SVC numbers are elements of the STXIT event class.
Format:
Byte 0: number of SVC entries > 0
Byte 1: SVC number (hexadecimal)
: :
Byte n: SVC number (hexadecimal)

addr
Symbolic address (name) of the field containing SVC numbers.

(r)
Register containing the address value “addr”.

Description of the macros STXIT

U3291-J-Z125-16-76 889

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

CLOSE
The assignment of the STXIT event class “SVC” to the STXIT routine is canceled.

CONTXTL=
Describes the address of a 4-byte field (aligned to word boundary) in which the length of
the data exchange field is stored. This is required by the CONTXT when used with the
operands SAVE and LAYOUT=FCONTXT to exchange data with the PCB of the specified
process. There are different lengths for /390 servers and x86 servers.

addr
Symbolic address (name) of the length field.

(r)
r = register with the address value addr.

INTR=
Specifies the address of the STXIT routine for the “message for the program” STXIT event
class.

list
See the description of the list variable above.

INTRBUF=
Specifies the address of a field for a message that is sent with the INFORM-PROGRAM
command. The field must be 64 bytes long.
Text length < field length: end of message is marked with X'00'.
Text length > field length: the message is truncated.
Text length = 0: X'00' is entered in the first byte of the field.

addr
Symbolic address (name) of the field for a message.

(r)
Register containing the address value “addr”.

CLOSE
The “INTR-STXIT routine” has not defined a field to receive a message. Any message
issued is ignored.

TERMRUN=
Defines the operate mode of the TERM/ABEND STXIT routine.

STD
STXIT routines signed on with STD run according to their placement in the wait queue
in line with the LIFO and priority principles.

FORCED
STXIT routines signed on with FORCED always run, and always as last STXIT routines.
Their order is determined in line with the LIFO principle.

STXIT Description of the macros

890 U3291-J-Z125-16-76

MIGRATE=
Specifies the address of the STXIT routine for the “Live Migration” STXIT event class.

list
See the description of the list variable above.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

Description of the macros STXIT

U3291-J-Z125-16-76 891

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

STXIT event class, STXIT operand and assigned events

The following table shows:
– which interrupt events an STXIT event class contains,
– which principle (FIFO/LIFO) is used to activate the STXIT routines allocated to an event

class (queues, classification),
– the maximum nesting depth that can be specified and
– the event code allocated to an interrupt event.

STXIT event
class

STXIT
operand

Interrupt result Event
code in
R3

Queueing
method

Maximum
nesting
level

Program error PROCHK Illegal SVC X'04' LIFO 127

Invalid operationcode X'58'

Data error X'60'

Exponent overflow X'64'

Division error or
neg. square root

X'68'

Mantissa = 0 X'6C'

Exponent underflow X'70'

Decimal overflow X'74'

Fixed-point overflow X'78'

CPU timer TIMER “SETIC interval” elapsed for
CPU time

X'20' FIFO 127

Real timer RTIMER “SETIC interval” elapsed for
real time

X'A0' FIFO 127

Summer / winter time
conversion

X'C0'

End of program
runtime

RUNOUT CPU time limit for task or
program exceeded

X'80' FIFO 0

Unrecoverable
program error

ERROR Privileged SVC X'08' LIFO 127

Access to a non-existent
memory page

X'48'

Privileged operation X'54'

Address error (e.g. alignment
error, incorrect register)

X'5C'

XA error in SVC call
(24 bit data area used in
 31 bit mode)

X'9C'

Table 14: STXIT event classes and their associated interrupt events (Teil 1 von 2)

STXIT Description of the macros

892 U3291-J-Z125-16-76

Unrecoverable
program error
(cont.)

ERROR Real timer (condition error) X'A4' LIFO 127

Data area alignment error in
SVC call

X'AC'

Validation error X'B0'

Invalid UNIT no. in standard
header

X'C4'

Message for the
program

INTR INFORM-PROGRAM
command

X'44' LIFO 127

ESCPBRK ESCPBRK BREAK/ESCAPE (via keys) X'84' LIFO 127

Program
termination due
to asynchronous
events

ABEND Error recognized by system,
e.g. error in system, power
failure

X'88' LIFO 0

START-PROGRAM,
LOAD-PROGRAM, ABEND,
EXIT-JOB CANCEL-JOB

X'8C'

Address translation error due to
hardware error

X'94'

Hardware error (CPU) X'A8'

Forced unloading of a
subsystem (system support)

X'B8'

Unavoidable DMS error X'BC'

Program
termination due
to synchronous
events

TERM TERM-SVC from a TU program X'90' LIFO 0

Program termination due to
CMD/LGOFF macro

X'98'

SVC interrupt SVC Call of a specified SVC X'50' LIFO 127

Hardware error HWERROR I/O error when using the “data
in virtual” method

X'28' LIFO 0

Live Migration MIGRATE Live Migration X'D0' FIFO 127

STXIT event
class

STXIT
operand

Interrupt result Event
code in
R3

Queueing
method

Maximum
nesting
level

Table 14: STXIT event classes and their associated interrupt events (Teil 2 von 2)

Description of the macros STXIT

U3291-J-Z125-16-76 893

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Notes on the macro call

– FIFO = First In First Out; LIFO = Last In First Out.

– ESCPBRK operand: this STXIT event affects only program interrupts via function keys.
It does not include program interrupts resulting from a HOLD-PROCEDURE or
ESCAPE, or HOLD-PROGRAM or BREAK command.

– INTRBUF operand: where the nesting depth is greater than 0, the message text is
overwritten by a subsequent INFORM-PROGRAM command.

– SVC and SVCLST operands: if SVC 128 (STXIT group) is specified as an interrupt
event, it can lead to a loop.

– SVC and SVCLST operands: the monitored SVC is not executed and the interrupted
PCB continues to EXIT after the SVC. This can also occur with the TERM operand.

– Invalid address in the STXIT macro: the “address error” event is reported, and an STXIT
routine allocated in a previous STXIT macro is activated or the program is terminated
with “address error”.

– If the TERM macro is called in a program system, it causes all the STXIT routines
allocated to the STXIT event class TERM to be activated. Another TERM macro (also
in an STXIT routine - instead of EXIT) causes immediate program termination, if
required.

– A STXIT routine of the ABEND or TERM event class can be tested with the interactive
debugging aid AID.
Exception: STXIT routine that was activated via a CANCEL-JOB command.

STXIT Description of the macros

894 U3291-J-Z125-16-76

Return information and error flags

Register R3 of the STXIT process contains the interrupt weight (event code).

If an interrupt event of the ESCPBRK class occurs, the function key code is transferred in
register R4 of the STXIT process (see the “TIAM” manual [16] or the Appendix on
page 1167 for details of function key codes).
This functionality is only provided if the TIAM partner is a terminal and not an application
(e.g. OMNIS).
If an interrupt event of the SVC class occurs, the SVC number is transferred in register R4
of the STXIT process.

R15:
A return code relating to the execution of the STXIT
macro is transferred in the rightmost byte of register
R15.

 a a

X'aa' Meaning

X'00' Normal execution.

X'04' Function was not executed. Invalid operands.

X'08' Function was not executed. Invalid ID for the STXIT control block (STXDID operand).

X'0C' Function was not executed. No memory space for the STXIT control block.

X'10' Function was not executed. A maximum of 100 STXIT control blocks can be created for a
program system.

X'14' Function was not executed. The STXIT event class SVC is only valid for the first STXIT
management block to have been created.

X'1C' Function was executed. STXIT control block cannot be updated because the memory key
in the PCB does not match the memory key in the control block.

Description of the macros SUSPEND

U3291-J-Z125-16-76 895

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

SUSPEND – Suspend task

General

Application area: Contingency processing; see page 110
STXIT processing; see page 131
Event control; see page 94

Macro type: Type S, MF format 1: standard/E/L form; see page 29

Macro description

The SUSPEND macro places the calling basic task or contingency process in a wait state
until a (STXIT) contingency process starts.
Caution: If no (STXIT) contingency process is started, the process issuing SUSPEND
remains in the wait state.

If SUSPEND is used in conjunction with event control (e.g. asynchronous SOLSIG followed
by SUSPEND macro), the user is responsible for ensuring that there is also a POSSIG
signal so that the wait state can be terminated with the aid of the contingency process thus
started.

Macro format and description of operands

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

SUSPEND

[MF=L / E]

SUSPEND Description of the macros

896 U3291-J-Z125-16-76

Return information and error flags

R15:
A structured return code (aa=primary return code,
bb=secondary return code) relating to the execution
of the SUSPEND macro is transferred in register
R15.

b b a a

X'aa' X'bb' Meaning

X'00' X'00' Calling task suspended.

X'04' X'04' Macro permitted only in TU programs. No action.

X'10' X'04' Invalid operands entered. No action.

Description of the macros SWITCH

U3291-J-Z125-16-76 897

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

SWITCH – Set and query job and user switches

General

Application areas: User and job switches; see page 73
Communication; see page 163

Macro type: Type S, MF format 3: C/D/L/E/M form; see page 29

● The SWITCH macro combines the functionality of the GETSW, GETUS, SETSW and
SETUS macros.

32 user switches are available to each user ID. These switches are stored in the user
catalog. Only the user switches in the user catalog of the home pubset are used.
The user switches are numbered consecutively from 0 through 31. When a user ID is set
up, all 32 of its switches are off. Thereafter they maintain whatever setting the user assigns
to them.
Each switch can be activated, deactivated or inverted individually. User switches are
permanent switches, i.e. they maintain their setting even after EXIT-JOB.

The operating system provides 32 job switches for each job. These job switches are
numbered consecutively from 0 through 31 and stored in TCB lists. Unlike user switches,
job switches are always switched off at the start of a job. Users must decide themselves
what the setting of each switch implies for their own programs.
Each switch can be activated, deactivated or inverted individually. Job switches are
temporary switches, i.e. they maintain their setting only until termination of the job (EXIT-
JOB). Note that job switches may also be used by some system components and utility
routines (see section “User and job switches” on page 73). When the SET-JOB-STEP
command is executed, switches 16 through 31 are turned off.

Macro description

The SWITCH macro enables users to activate, deactivate, invert and query the user
switches assigned to their user ID and the job switches assigned to their jobs.

SWITCH Description of the macros

898 U3291-J-Z125-16-76

Macro format and description of operands

The operands are described below in alphabetical order.

ACTION=
Specifies what function is to be executed.

*READ
Default setting: all user or job switches are queried. The SWITCH operand is not
evaluated.
Information indicating which switches are on or off is stored in a 4-byte field of the
parameter list (default: JCSSSW) following the MF=E call. In this field, bit 2n
corresponds to switch n. If bit 2n is set to “1”, switch n is on. If it is set to “0”, the switch
is off.

*WRITE
All switches specified in the SWITCH operand are activated. Switches that are not
specified are deactivated.

*ON
All switches specified in the SWITCH operand are activated. Switches that are not
specified remain unchanged.

*OFF
All switches specified in the SWITCH operand are deactivated. Switches that are not
specified remain unchanged.

*INVERT
All switches specified in the SWITCH operand are inverted. Switches that are not
specified remain unchanged.

SWITCH

[MODE=TASK / USER]

,USERID=*OWN / addr

[,SWITCH=addr / (no, ...)]

,ACTION=*READ / *WRITE / *ON / *OFF / *INVERT / addr

,CONST=YES / NO

,MF=D / C / L / E / M

[,PARAM=addr / (r)]

,PREFIX=J / p

,MACID=CSS / macid

Description of the macros SWITCH

U3291-J-Z125-16-76 899

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

addr
Symbolic address (name) of a 1-byte field containing the function to be executed in the
following form:

0 Query switches
1 Activate/deactivate switches
2 Activate switches
3 Deactivate switches
4 Invert switches

This operand value is not permitted in conjunction with MF=L.

CONST=
Specifies whether or not equates are to be generated.

YES
Default setting: equates are generated.

NO
No equates are generated.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.
A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form (see section “S-type macros” on page 29).

In the E form of the macro, the address of the operand list is stored in the PARAM operand.
Default setting: JCSS$PL

MODE=
Specifies whether a given function is to be executed for user switches or job switches.
This operand is mandatory unless MF=M is specified.

TASK
Job switches are queried or set.
The USERID operand is not evaluated.

USER
The user switches assigned to the specified user ID are queried or set.

SWITCH Description of the macros

900 U3291-J-Z125-16-76

SWITCH=
Specifies the user switches or job switches whose setting is to be queried or modified.
If the SWITCH operand is not specified, the preset bit mask X'00000000' is used.

(no, ...)
no = switch number (0 .. 31).
This operand value lists the numbers of the switches whose setting is to be queried or
modified, or specifies a subset of switches to be modified if ACTION=*WRITE.

The parentheses must be used even if only one switch is specified.

addr
Symbolic address (name) of a 4-byte field (bit mask) in which each bit corresponds to
a user or job switch as follows:

bit 20 ï switch 0, bit 21 ï switch 1, ..., bit 231 ï switch 31

This bit mask specifies which switches are to be modified. The type of modification is
determined by the ACTION operand.
If a bit is set to “1”, the corresponding switch is activated, deactivated or inverted. If the
bit is set to “0”, the switch is not modified unless ACTION=*WRITE: in this case, the
switches whose bit is set to “0” are deactivated.

This operand value is not permitted in conjunction with MF=L.

USERID=
Specifies the user ID whose user switches are to be queried or modified.
This operand is not evaluated for job switches (MODE=TASK).

*OWN
Default setting: the user switches of the user's own ID are to be queried or modified.

addr
Symbolic address (name) of an 8-byte field containing the desired user ID as a string.
This string is left-justified (padded, if necessary, with trailing blanks).

If ACTION≠*READ, another user's ID can be specified only under the privileged user ID TSOS
or if the caller has the “USER-ADMINISTRATION” system privilege.
If ACTION=*READ, no special privileges are necessary to query the switches of another
user's ID.

Description of the macros SWITCH

U3291-J-Z125-16-76 901

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

The following return code relating to the execution of
the SWITCH macro is transferred in the standard
header (cc=Subcode2, bb=Subcode1,
aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function executed successfully.

X'02' X'00' X'0001' Warning: the function was executed but an internal error occurred
involving permanent user switches. This return code can only occur for
user switches (MODE=USER).

X'00' X'01' X'0002' Operand error.

X'00' X'40' X'0008' The specified user ID does not exist.

X'00' X'82' X'000C' The specified user ID is locked.

X'00' X'82' X'0010' The required access authorization is missing.

X'20' X'0020' (Various) internal errors.

SWITCH Description of the macros

902 U3291-J-Z125-16-76

Layout of the DSECT for MODE=TASK

SWITCH MF=D,MODE=TASK
1 *--------------------- START OF SWITCH -----------------------------*
1 MFCHK MF=D,PREFIX=J,MACID=CSS,PARAM=, C
1 SVC=42, C
1 DMACID=CSS,SUPPORT=(D,L,C,M,E)
2 JCSS DSECT ,
2 *,##### PREFIX=J, MACID=CSS #####
1 *
1 #INTF REFTYPE=REQUEST,INTNAME=SWITCH,INTCOMP=001
1 JCSS$PL DS 0F BEGIN OF PARAMETERAREA
1 FHDR MF=(C,JCSS),EQUATES=YES
2 DS 0A
2 JCSSFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 JCSSIFID DS 0A 0 INTERFACE IDENTIFIER
2 JCSSFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 JCSSFCT DS AL1 2 FUNCTION NUMBER
2 JCSSFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 JCSSRET DS 0A 4 GENERAL RETURN CODE
2 *
2 * GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
2 * REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
2 *
2 JCSSSRET DS 0AL2 4 SUB RETURN CODE
2 JCSSSR2 DS AL1 4 SUB RETURN CODE 2
2 * ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
2 * Standard subcode2 values as defined by convention:
2 JCSSR2OK EQU X'00' All correct, no additional info
2 JCSSR2NA EQU X'01' Successful, no action was necessary
2 JCSSR2WA EQU X'02' Warning, particular situation
2 JCSSSR1 DS AL1 5 SUB RETURN CODE 1
2 *
2 * GENERAL INDICATION OF ERROR CLASSES
2 *
2 * CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
2 * CLASS B X'01' - X'1F' PARAMETER SYNTAX ERROR
2 * CLASS C X'20' INTERNAL ERROR IN CALLED FUNCTION
2 * CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
2 * CLASS E X'80' - X'82' WAIT AND RETRY
2 *
2 JCSSRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED

Description of the macros SWITCH

U3291-J-Z125-16-76 903

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

2 JCSSRPER EQU X'01' PARAMETER SYNTAX ERROR
2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' - X'1F'
2 JCSSRFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED
2 JCSSRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
2 JCSSRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
2 *
2 JCSSRAER EQU X'04' ALIGNMENT ERROR
2 JCSSRIER EQU X'20' INTERNAL ERROR
2 JCSSRCAR EQU X'40' CORRECT AND RETRY
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
2 JCSSRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
2 * EXPLICITELY BY CREATE-SS
2 JCSSRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
2 *
2 JCSSRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
2 JCSSRWLR EQU X'81' " LONG "
2 JCSSRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
2 * BUT RETRY IS POSSIBLE
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' - X'82'
2 JCSSRTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE
2 JCSSRDH EQU X'82' SS IN DELETE / HOLD
2 *
2 JCSSMRET DS 0AL2 6 MAIN RETURN CODE
2 JCSSMR2 DS AL1 6 MAIN RETURN CODE 2
2 JCSSMR1 DS AL1 7 MAIN RETURN CODE 1
2 *
2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'00XXYYYY')
2 *
2 JCSSRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 JCSSFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 *
1 * ***
1 * *** END OF STANDARD HEADER - START SPECIAL SWITCH PARAMETERLIST
1 * ***
1 *
1 JCSSHDR EQU X'009A0B01',4 std header task switch (TU)
1 *
1 *
1 * ***** SET OF RETURN CODES *****
1 * OUT OF THE SYSTEM-WIDE DEFINED RETURN-CODES, THE FOLLOWING MAY
1 * BE EXPECTED (CONFER INCLUDE FHDRI):
1 * 00 01 FFFF SPECIFIED FUNCTION IS NOT SUPPORTED
1 * 00 03 FFFF SPECIFIED VERSION IS NOT SUPPORTED
1 * 00 04 FFFF ALIGNMENT ERROR
1 *
1 * ADDITIONAL SPECIAL RETURNCODES ARE DEFINED :
1 *

SWITCH Description of the macros

904 U3291-J-Z125-16-76

1 * 00 00 0000 NORMAL EXECUTION
1 * 02 00 0001 EXECUTION, BUT ERROR IN WHENQ PROCESSING
1 * 00 01 0002 PARAMETER ERROR
1 * 00 40 0008 USERID NOT FOUND
1 * 00 82 000C USERID SEVERED
1 * 00 82 0010 NO PRIVILEGED
1 * XX 20 0020 SYSTEM ERROR
1 *
1 * MAIN RETURNCODES
1 JCSSOK EQU X'0000' execution ok
1 JCSSWHQE EQU X'0001' execution with warning
1 JCSSPARE EQU X'0002' parameter error
1 JCSSUNFE EQU X'0008' userid not found
1 JCSSUSEE EQU X'000C' userid severed
1 JCSSNPRE EQU X'0010' no privileged
1 JCSSIERR EQU X'0020' internal error
1 *
1 *
1 * DATA AREA
1 JCSSACT DS XL1 ACTION
1 JCSSREA EQU 0 = *READ
1 JCSSWRT EQU 1 = *WRITE
1 JCSSON EQU 2 = *ON
1 JCSSOFF EQU 3 = *OFF
1 JCSSINV EQU 4 = *INVERT
1 *
1 JCSSRES DS XL3 FILLER
1 *
1 JCSSSW DS F SWITCHES 31-0
1 *
1 ORG JCSSSW
1 JCSSSW3 DS XL1 SWITCHES 31 - 24
1 JCSSS31 EQU X'80' = SWITCH 31
1 JCSSS30 EQU X'40' = SWITCH 30
1 JCSSS29 EQU X'20' = SWITCH 29
1 JCSSS28 EQU X'10' = SWITCH 28
1 JCSSS27 EQU X'08' = SWITCH 27
1 JCSSS26 EQU X'04' = SWITCH 26
1 JCSSS25 EQU X'02' = SWITCH 25
1 JCSSS24 EQU X'01' = SWITCH 24
1 *
1 JCSSSW2 DS XL1 SWITCHES 23 - 16
1 JCSSS23 EQU X'80' = SWITCH 23
1 JCSSS22 EQU X'40' = SWITCH 22
1 JCSSS21 EQU X'20' = SWITCH 21
1 JCSSS20 EQU X'10' = SWITCH 20
1 JCSSS19 EQU X'08' = SWITCH 19
1 JCSSS18 EQU X'04' = SWITCH 18

Description of the macros SWITCH

U3291-J-Z125-16-76 905

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

1 JCSSS17 EQU X'02' = SWITCH 17
1 JCSSS16 EQU X'01' = SWITCH 16
1 *
1 JCSSSW1 DS XL1 SWITCHES 15 - 8
1 JCSSS15 EQU X'80' = SWITCH 15
1 JCSSS14 EQU X'40' = SWITCH 14
1 JCSSS13 EQU X'20' = SWITCH 13
1 JCSSS12 EQU X'10' = SWITCH 12
1 JCSSS11 EQU X'08' = SWITCH 11
1 JCSSS10 EQU X'04' = SWITCH 10
1 JCSSS9 EQU X'02' = SWITCH 9
1 JCSSS8 EQU X'01' = SWITCH 8
1 *
1 JCSSSW0 DS XL1 SWITCHES 7 - 0
1 JCSSS7 EQU X'80' = SWITCH 7
1 JCSSS6 EQU X'40' = SWITCH 6
1 JCSSS5 EQU X'20' = SWITCH 5
1 JCSSS4 EQU X'10' = SWITCH 4
1 JCSSS3 EQU X'08' = SWITCH 3
1 JCSSS2 EQU X'04' = SWITCH 2
1 JCSSS1 EQU X'02' = SWITCH 1
1 JCSSS0 EQU X'01' = SWITCH 0
1 *
1 JCSSUID DS CL8 USERID
1 *
1 JCSS# EQU *-JCSS$PL LENGTH OF PARAMETERAREA
1 *--------------------- END OF SWITCH -------------------------------*

SWITCH Description of the macros

906 U3291-J-Z125-16-76

Example

SWITCH START
PRINT NOGEN

SWITCH AMODE ANY
BALR R3,0
USING *,R3
MVC TASKSW,INITSW
SWITCH MF=M,ACTION=*READ
SWITCH MF=E,MODE=TASK,PARAM=TASKSW ––––––––––––––––––––––––––––––––– (2)

SW1 CLC JCSSMRET,=Y(JCSSOK)
BNE ERROR

*
TM JCSSSW0,JCSSS1 –– (3)

SW2 BZ END
SWITCH MF=M,ACTION=*INVERT,SWITCH=(2,3)
SWITCH MF=E,MODE=TASK,PARAM=TASKSW
SWITCH MF=M,ACTION=*READ
SWITCH MF=E,MODE=TASK,PARAM=TASKSW ––––––––––––––––––––––––––––––––– (3)

SW3 CLC JCSSMRET,=Y(JCSSOK)
BNE ERROR
B END

*
ERROR EQU *
****** ... ERROR HANDLING ... **************

B END
END TERM
R3 EQU 3
INITSW SWITCH MF=L,MODE=TASK
TASKSW SWITCH MF=C,MODE=TASK

END

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,switch), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,switch)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 395 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 84 MSEC
//end
% ASS6012 END OF ASSEMBH

Description of the macros SWITCH

U3291-J-Z125-16-76 907

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

/mod-job-sw on=(1,2,3,4,5) —— (1)
/load-program *m(macexmp.lib,switch),test-options=*aid,run-mod=*adv
/%in sw1
/%in sw2
/%in sw3
/%r
STOPPED AT LABEL: SW1 , SRC_REF: 20, SOURCE: SWITCH , PROC: SWITCH
/%d jcsssw %x;%r —— (2)
*** TID: 009301BB *** TSN: 6WWQ ***
CURRENT PC: 00000012 CSECT: SWITCH **************************************
V‘00000090‘ = JCSSSW + #‘00000000‘
00000090 (00000000) 0000003E
STOPPED AT LABEL: SW2 , SRC_REF: 24, SOURCE: SWITCH , PROC: SWITCH
/%d jcsssw0 %x;%r ——— (3)
CURRENT PC: 00000020 CSECT: SWITCH **************************************
V‘00000093‘ = JCSSSW0 + #‘00000000‘
00000093 (00000000) 3E .
STOPPED AT LABEL: SW3 , SRC_REF: 52, SOURCE: SWITCH , PROC: SWITCH
/%d jcsssw %x;%r —— (4)
CURRENT PC: 0000003E CSECT: SWITCH **************************************
V‘00000090‘ = JCSSSW + #‘00000000‘
00000090 (00000000) 00000032

(1) Prior to program execution, switches 1 through 5 are activated for demonstration
purposes.

(2) The job switches are read and the settings output to the field JCSSSW:
X'0000003E' = 25 + 24 + 23 + 22 + 21 means that switches 1, 2, 3, 4 and 5 are
activated and all other switches are deactivated.

(3) A query is issued as to whether switch 1 is activated: The field JCSSSW0 contains
the value X'3E'. The result of the logical comparison with the bitmap is not zero.
Processing of the program is continued.

(4) Following inversion of switches 2 and 3, all switches are read and their settings
output to the field JCSSSW: X'00000032' = 25 + 24 + 21 means that switches 1, 4
and 5 are activated and all other switches are deactivated.

SYSFL Description of the macros

908 U3291-J-Z125-16-76

SYSFL – Reassign system files

General

Application area: System files; see page 156
Macro type: Type S, MF format 1: standard/E/L/C/D form; see page 29

The (standard) file names SYSDTA, SYSLST, SYSLST01 ... SYSLST99 and SYSOUT
denote files used by the operating system to input commands and data to the operating
system or to output data via the operating system. These files are each created by the task
and specify input and output areas that were preset (primarily) from the start.
Users can revoke the primary assignment and assign their own (cataloged) files to the
(standard) file names. Some of the standard names can also be equated. The file which is
being assigned (to the right of the equals sign) then takes over the functions of the (system)
file (to the left of the equal sign). The SYSTA macro can be used to output the current
assignment of system files.

The system files available for input/output are described in the general section “System
files” on page 156.

Macro description

The SYSFL macro allows the user to issue the appropriate command via the macro
interface of the Macro Command Language Processor (MCLP) without interrupting
program mode (see section “Macro Command Language Processor macros” on page 45).

The SYSFL macro enables the user to reassign the (system) files SYSDTA, SYSLST,
SYSLST01,..., SYSLST99 and SYSOUT.
Output device and output format specifications for the (system) file SYSLST can be entered
by the user.
The SYSFL macro also enables the user to specify an object module file (TASKLIB) for the
dynamic binder loader.
Messages concerning the execution of the macro are output to SYSOUT and, if desired,
may be copied into an area in the calling program.

Description of the macros SYSFL

U3291-J-Z125-16-76 909

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Macro formats and description of operands

The following table shows the various macro formats for the SYSFL macro. The individual
formats and their operands are then described.

For a description of the PARMOD and MF operands, see section “S-type macros” on
page 29.

Assignment of SYSDTA (see description on page 912):

Assignment of SYSOUT (see description on page 914):

SYSFL

[,PARMOD=24 / 31]

[,MF=D / (E,..) / C]

SYSFL

[,adr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

SYSFL

'SYSOUT=pathname / (pathname,EXTEND) / *DUMMY / (PRIMARY)'

[,addr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

'SYSDTA=pathname / #filename / (SYSCMD) / (PRIMARY)'

'SYSDTA=pathname1(element), VERSION=*STD / vers, TYPE=*STD / type'

SYSFL Description of the macros

910 U3291-J-Z125-16-76

Assignment of SYSLST (see description on page 915):

Output of SYSLST to printer (see description on page 917):

Assignment of SYSLSTn (see description on page 918):

Assignment for dynamic binder loader DBL (see description on page 920):

SYSFL

'SYSLST=pathname / (pathname,EXTEND) / #filename / (SYSCMD) / (PRIMARY)'

[,addr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

SYSFL

'FILE=SYSLST, PRINTER=136 / 160 [,HREC=m] [,FORM=code] [,LOOP=vfb]]

 [,COPIES=number1 / ([number1],number2)] [,CHARS=(c1[,c2][,c3][,c4])]

 ,CONTROL=NO / PHYS [,IMAGE=xxxx] [,SHIFT=columns] [,DIS=zz]'

[,addr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

SYSFL

'SYSLSTn=pathname / (pathname,EXTEND) / *DUMMY / (PRIMARY) / *SYSLSTn'

[,addr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

SYSFL

'TASKLIB=pathname / (NO)'

[,addr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

Description of the macros SYSFL

U3291-J-Z125-16-76 911

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Notes

– The operands must be enclosed in single quotes.
– Unlike system output files, the assigned cataloged files are not automatically output to

the printer. The user can have these files printed using the PRINT-DOCUMENT
command.

– If the parentheses are omitted in the (SYSCMD) or (PRIMARY) entry, these will be
interpreted as file names.

– The field to receive the SYSOUT log must be aligned on a word boundary. The output
record starts with the 4-byte record length field, which contains the record length in
bytes 0-1. The record length field is followed by the output text. Structure of the output
area:

 DS 0F
OUTPUT DC Y(AENDE-OUTPUT) Output area
SLF DS 0CL4 4 bytes: record length field
SL DS CL2 2 bytes: record length of output record
 DS CL2 2 bytes: reserved
TEXT DS CL300 Output text
AENDE EQU *

Notes on temporary files:

– The system can operate without temporary files.
– Temporary files are task-oriented and are deleted on task termination.
– Temporary files can be of the type BTAM, SAM, ISAM or PAM.

Return information and error flags

Messages concerning command processing are part of the SYSOUT log, which can
optionally be transferred to the program (“addr” operand).

R15:
A return code relating to the execution of the SYSFL
macro is transferred in the rightmost byte of register
R15.

 a a

X'aa' Meaning

X'00' Normal termination.

X'04' Insufficient memory; request not processed.

X'08' Operand list error (address area).

X'0C' Last output record placed in user area was truncated.

X'10' Macro/command error (command returned an error to MCLP).

SYSFL Description of the macros

912 U3291-J-Z125-16-76

Assignment of SYSDTA

SYSDTA=

pathname
“pathname” stands for: [:catid:][$userid.]filename

catid
Catalog ID of the pubset where the file is stored.
The catalog ID assigned to the user ID in the user catalog.

userid
User ID to which the file is assigned.
Default value: user ID from the SET-LOGON-PARAMETERS command.

filename
Name of a cataloged file (or a file generation).
The file must be a SAM or ISAM file with variable record length.
An ISAM file also requires a key starting in column 5 and a key length of 8 bytes
(KEYPOS=5, KEYLEN=8; see the “DMS Macro” manual [7]). Specification of a file
group (not to be confused with a file generation group) is permitted only for tape
files.

#filename
Name of a temporary file.
= character that is set by the system parameter TEMPFILE as a prefix to the file
names of temporary files. Information on the character selected can be obtained with
the SHOW-SYSTEM-PARAMETERS command or the macro NSIOPT.
filename = any file name; length ≤ 30 characters.
See Notes on temporary files on page 911.

SYSFL

[,adr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

'SYSDTA=pathname / #filename / (SYSCMD) / (PRIMARY)'

'SYSDTA=pathname1(element), VERSION=*STD / vers, TYPE=*STD / type'

Description of the macros SYSFL

U3291-J-Z125-16-76 913

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

(SYSCMD)
The system file SYSCMD is equated with the system file SYSDTA, i.e. SYSCMD
assumes the same function as SYSDTA in addition to its own function. Data (and not
only commands) can then be read from the SYSCMD system file.

(PRIMARY)
SYSDTA is restored to its original primary assignment.

SYSDTA=pathname1(element)
“pathname1” stands for [:catid:][$userid.]library
catid see SYSDTA=pathname.
userid see SYSDTA=pathname.
library name of a PLAM library. The expression “library(element)” may be up to

41 characters long.
element name of a library element. The following characters are permissible:

– alphabetic charactersA,...Z
– special characters$, #, -, @
– numeric characters0,...9
The first character must be alphabetic. The last character must not be a hyphen.

VERSION=
The element name is supplemented by the version specification.

*STD
Default setting: the highest version is used.

vers
Version designation (max. 10 characters).

TYPE=
Element type (1 letter).

*STD
Default setting: element type = S.

type
Character from the set (D, S, M).

addr
Symbolic address (name) of a field to receive the SYSOUT log; for structure see page 911.

(r)
Register containing the address value “addr”.

SYSFL Description of the macros

914 U3291-J-Z125-16-76

Assignment of SYSOUT

SYSOUT=

pathname
“pathname” stands for [:catid:][$userid.]filename

catid
Catalog ID of the pubset where the file is stored.
The catalog ID assigned to the user ID in the user catalog.

userid
User ID to which the file is assigned.
Default value: user ID from the SET-LOGON-PARAMETERS command.

filename
Name of a file or a file generation.
The file is created as a SAM file on a public volume, with its size being determined
by the system parameter SSMAPRI and the SECONDARY-ALLOCATION being
determined by the system parameter SSMASEC. Alternatively, this file may also
reside on private volumes, if so defined earlier by the user in a CREATE-FILE
command. However, no multifile tape may be used.

It is advisable to estimate the probable size of the file “filename” and to specify a
corresponding PRIMARY-ALLOCATION operand in the CREATE-FILE command
so as to avoid too many memory requests.

(pathname,EXTEND)
SYSOUT is assigned to the file “filename”; data records are entered from the end of the
file onwards.

*DUMMY
A dummy file is assigned to SYSOUT. For meaning see ADD-FILE-LINK command,
“Commands” manual [19]. Data records are not stored.

(PRIMARY)
Restores the SYSOUT file to its primary assignment.

SYSFL

'SYSOUT=pathname / (pathname,EXTEND) / *DUMMY / (PRIMARY)'

[,addr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

Description of the macros SYSFL

U3291-J-Z125-16-76 915

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

addr
Symbolic address (name) of a field to receive the SYSOUT log; for structure see page 911.

(r)
Register containing the address value “addr”.

Assignment of SYSLST

SYSLST=

pathname
“pathname” stands for: [:catid:][$userid.]filename

catid
Catalog ID of the pubset on which the file is stored.
The catalog ID assigned to the user ID in the user catalog.

userid
User ID that is assigned to the file.
Default value: user ID from the SET-LOGON-PARAMETERS command.

filename
Name of a file or a file generation. SYSLST is assigned to this file or file generation.
The file is created as a SAM file on a public volume, with its size being determined
by the system parameter SSMAPRI and the SECONDARY-ALLOCATION being
determined by the system parameter SSMASEC. Alternatively, this file may also
reside on private volumes, if so defined earlier by the user in a CREATE-FILE
command. However, no multifile tape may be used.

It is advisable to estimate the probable size of the file “filename” and to specify a
corresponding PRIMARY-ALLOCATION operand in the CREATE-FILE command
so as to avoid too many memory requests.

If no further memory space is available during SYSLST output to a disk file, the
system requests a tape. The file is automatically copied to this tape and deleted
from the disk. SYSLST output then continues to the tape file.

SYSFL

'SYSLST=pathname / (pathname,EXTEND) / #filename / (SYSCMD) / (PRIMARY)'

[,addr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

SYSFL Description of the macros

916 U3291-J-Z125-16-76

#filename
Name of a temporary file.
= character that is set by the system parameter TEMPFILE as a prefix to the file
names of temporary files. Information on the character selected can be obtained with
the SHOW-SYSTEM-PARAMETERS command or the macro NSIOPT.
filename = any file name; length ≤ 30 characters.
See Notes on temporary files on page 911.

*DUMMY
A dummy file is assigned to SYSLST (for an explanation, see the ADD-FILE-LINK
command in the “Commands” manual [19]); data records are not stored.

(pathname,EXTEND)
The “filename” file is assigned to SYSLST; the data records are entered from the end
of the file onwards.

(PRIMARY)
Restores the SYSLST file to its primary assignment.

addr
Symbolic address (name) of a field to receive the SYSOUT log; for structure see page 911.

(r)
Register containing the address value “addr”.

Description of the macros SYSFL

U3291-J-Z125-16-76 917

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Output of SYSLST to printer

FILE=SYSLST
Together with the operands below, specifies the output format of the (system) file SYSLST.

addr
Symbolic address (name) of a field to receive the SYSOUT log; for structure, see page 911.

(r)
Register containing the address value “addr”.

The FORM and LOOP operands describe the printout format; they are described under the
PRNTDOC macro (see “SPOOL & Print - Macros and Exits” manual [23]).

SYSFL

'FILE=SYSLST, PRINTER=136 / 160 [,HREC=m] [,FORM=code] [,LOOP=vfb]]

 [,COPIES=number1 / ([number1],number2)] [,CHARS=(c1[,c2][,c3][,c4])]

 ,CONTROL=NO / PHYS [,IMAGE=xxxx] [,SHIFT=columns] [,DIS=zz]' 1

[,addr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

1 The PRINTER, HREC, COPIES, CHARS, CONTROL, IMAGE, SHIFT and DIA operands refer to the PRNT
macro of SPOOL V2.7 and are no longer described in the current manuals.

SYSFL Description of the macros

918 U3291-J-Z125-16-76

Assignment of SYSLSTn

SYSLSTn=
n = a (2-digit) number from the range (01,02,...,99).
The SYSLSTn files can only be used if (cataloged) SAM files are assigned to them. The
primary assignment to these files is the file that is simultaneously assigned to the SYSLST
(system) file.

pathname
pathname stands for: [:catid:][$userid.]filename

catid
Catalog ID of the pubset on which the file is stored.
The catalog ID assigned to the user ID in the user catalog.

userid
User ID to which the file is assigned.
The user ID from the SET-LOGON-PARAMETERS command.

filename
Name of a file or a file generation. The file is assigned to SYSLSTn and is created
as a SAM file on public volumes.
It is advisable to estimate the probable size of the “filename” file and to specify an
appropriate PRIMARY-ALLOCATION operand in the CREATE-FILE command.

*DUMMY
SYSLSTn is assigned a dummy file. The data records are not stored.

(pathname,EXTEND)
SYSLST is assigned the “filename” file; data records are entered from the end of the
file onwards.

(PRIMARY)
Primary assignment.

SYSFL

'SYSLSTn=pathname / (pathname,EXTEND) / *DUMMY / (PRIMARY) / *SYSLSTm'

[,addr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

Description of the macros SYSFL

U3291-J-Z125-16-76 919

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

*SYSLSTm
m = a 2-digit number from the range (01,02,...,99); m ≠ n
The SYSLSTn (system) files can also be assigned to each other. The following points
should be borne in mind:

– mutual assignment is not permitted

Example of incorrect assignment

SYSFL SYSLSTn = *SYSLSTm
SYSFL SYSLSTm = *SYSLSTn

– the assignment must eventually lead to a cataloged file or to a dummy file

Example

SYSFL SYSLSTn = filename
SYSFL SYSLSTm = *SYSLSTn
SYSFL SYSLSTp = *SYSLSTm

addr
Symbolic address (name) of a field to receive the SYSOUT log; for structure, see page 911.

(r)
Register containing the address value “addr”.

SYSFL Description of the macros

920 U3291-J-Z125-16-76

Assignment for dynamic binder loader DBL

TASKLIB=
Denotes an object module file which is to be searched by the binder loader DBL if
– no object module file (library) was specified on loading the program and/or
– external references still have to be resolved.
TASKLIB=(PRIMARY), i.e. the (user) file TASKLIB or,if this does not exist, the file
$TSOS.TASKLIB is searched.

pathname
“pathname” stands for: [:catid:][$userid.]filename

catid
Catalog ID of the pubset on which the file is stored.
The catalog ID assigned to the user ID in the user catalog.

userid
User ID to which the file is assigned.
User ID from the SET-LOGON-PARAMETERS command.

filename
Name of an object module file.
When a program is linked, this object module file is searched before the TASKLIB
(user) file, or the (system) file $TSOS.TASKLIB, for the object module required by
the binder loader (DBL).

Notes
– “filename” must not be the name of a file generation.
– Procedure nesting: After the END-PROCEDURE or EXIT-PROCEDURE

commands, the TASKLIB assignment valid before the procedure call applies.

(NO)
The assignment is canceled. TASKLIB=(PRIMARY) applies, or, in the case of nested
procedures, the assignment that existed before the procedure call is retained.

addr
Symbolic address (name) of a field to receive the SYSOUT log; for structure see page 911.

(r)
Register containing the address value “addr”.

SYSFL

'TASKLIB=pathname / (NO)'

[,addr / (r)]

[,PARMOD=24 / 31]

[,MF=L]

Description of the macros SYSTA

U3291-J-Z125-16-76 921

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

SYSTA – Output information on system file and
TASKLIB assignment

General

Application area: System files; see page 156
Macro type: Type S, MF format 1: standard/E/L/C/D form; see page 29

The (standard) file names SYSDTA, SYSCMD, SYSLST, SYSLST01, SYSLST02,...,
SYSLST99 and SYSOUT denote files used by the operating system to input data and
commands to the operating system or to output data via the operating system. These files
are created by the appropriate task and specify input and output areas that were preset
from the start.
The SYSFL macro allows users to revoke the primary assignment and assign their own
(cataloged) files to the (standard) file names. Some of the standard names can also be
equated.

Macro description

The SYSTA macro enables the user to issue the SHOW-SYSTEM-FILE-ASSIGNMENTS
command via the macro interface of the macro command language processor (MCLP)
without interrupting program mode (see section “Macro Command Language Processor
macros” on page 45).
Messages concerning command processing are issued on SYSOUT and are also entered
in a program area of the calling program. The SHOW-SYSTEM-FILE-ASSIGNMENTS
command permits the user to receive information on the assignment of system files and the
object module file (TASKLIB) for the dynamic binder loader.

Macro format and description of operands

SYSTA

'([SYSCMD][,SYSDTA][,SYSOUT][,SYSLST][,SYSLST01][,SYSLST02]...[,SYSLST99][,TASKLIB])'

[,addr / (r)]

,SYSOUT=YES / NO

,DIALOG=NO / YES

[,PARMOD=24 / 31]

[,MF=L / (E,..) / D / C]

SYSTA Description of the macros

922 U3291-J-Z125-16-76

SYSCMD / SYSDTA / SYSOUT / SYSLST / SYSLST01 / SYSLST02 / .. / SYSLST99 /
TASKLIB
Several system files, including TASKLIB, may be specified. Parentheses can be omitted if
only one file is specified.If the operands are omitted, the user receives information about all
system files and the TASKLIB. These operands must be enclosed in single quotes.

addr
Symbolic address (name) of a field to receive the SYSOUT log.

(r)
Register containing the address value “addr”.
This field must be aligned on a word boundary. The output record starts with the 4-byte
record length field, which contains the record length in bytes 0-1. The record length field is
followed by the output text.
Structure of the output area:

 DS 0F
OUTPUT DC Y(AENDE-OUTPUT) Output area
SLF DS 0CL4 4 bytes: record length field
SL DS CL2 2 bytes: record length
 DS CL2 2 bytes: reserved
TEXT DS CL300 Output text
AENDE EQU *

SYSOUT=
Specifies whether the log is also to be output to SYSOUT.

YES
Default setting: the log is also output to SYSOUT.

NO
The log is not output to SYSOUT.
In this case, the “addr” of the receiving field must be specified.

DIALOG
Specifies whether an error dialog is to be conducted if syntax errors are detected.

NO
Default setting: no error dialog is conducted.

YES
An error dialog is to be conducted.

Description of the macros SYSTA

U3291-J-Z125-16-76 923

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Return information and error flags

Messages concerning command processing are part of the SYSOUT log, which is also
transferred to the output area (“addr” operand).

R15:
A return code relating to the execution of the SYSTA
macro up to command execution is transferred in the
rightmost byte of register R15.

 a a

X'aa' Meaning

X'00' Normal termination.

X'04' Insufficient memory area is available; the request was not carried out.

X'08' Error in the operand list (address area).

X'0C' The last output record entered in the user area is truncated.

X'10' Macro/command error (the command returned an error to the MCLP).

TCHNG Description of the macros

924 U3291-J-Z125-16-76

TCHNG – Modify terminal characteristics

Application area: Data terminal communication; see page 160
Macro type: Type O; see page 28

● This macro description applies to TIAM V13.2A.

Macro description

The TCHNG macro enables characteristics of the logical terminal to be modified by the user
program.
The modifications made by the TCHNG macro remain effective until termination of the user
program or until a further TCHNG macro is issued; they are valid only for this program's I/O
operations for the terminal with the RDATA, WROUT and WRTRD macros.

Macro format and description of operands

TCHNG

,OFLOW=SYS / USER

,SUB=OUT / OUTIN

,INFOLIN=NO / YES

,CLEAR=YES / NO

EDOPT=DYN

EDOPT=STAT

,MODE=LINE ,OHCOPY=
N

Y

 ,OHOM=
N

Y

,OINFO=
N

Y

 ,ONOPOSN=
N

Y

,OBELL=
N

Y

 ,IGETBS=
N

Y

,ILCASE=
N

Y

 ,IGETFC=
N

Y

,IGETIC=
N

Y

 ,ICFD=
N

Y

,MODE=FORM ,IGETBS=
N

Y

 ,ILCASE=
Y

N

Description of the macros TCHNG

U3291-J-Z125-16-76 925

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

The operands are described below in alphabetical order.

CLEAR=
Determines whether the screen is to be cleared when the output mode changes.

YES
Default setting: When the output mode changes, e.g.
from LINE to FORM
from FORM to LINE, PHYS, COMP
from PHYS to LINE, FORM, COMP
from COMP to FORM

the screen is to be cleared. If the change of mode does not occur after an input, the
system waits t seconds before clearing the screen to allow users to read their last output
(see the command MODIFY-TERMINAL-OPTIONS OVERFLOW-CONTROL=...).

NO
The screen is not cleared when the output mode changes. The following message is
output without a waiting period.

Note
The user program must ensure that the screen contents do not affect any function
of the new mode, e.g. by premodified fields.

EDOPT=
Specifies which edit options values are to be evaluated.

DYN
Default setting: edit options values specified in any subsequent RDATA,WROUT and
WRTRD macro calls are to be evaluated (default values set by the system).

STAT
The edit options values specified in the TCHNG macro for MODE, OBELL, OHCOPY,
OHOM, OINFO, ONOPOSN, IGETBS, ILCASE, IGETFC, IGETIC and ICFD are to be
evaluated in any subsequent RDATA, WROUT and WRTRD macro calls. These
specifications remain valid until modified by a further TCHNG macro or until end of
program. However, they have no influence on system inputs and outputs. EDOPT=STAT
is ignored if VTSUCB is used.

TCHNG Description of the macros

926 U3291-J-Z125-16-76

INFOLIN=
Determines how incoming informative messages are to be displayed at data terminals.

NO
Default setting: Incoming informative messages are to be displayed like normal line-
mode messages at data terminals without a system line.

YES
At data terminals whose hardware does not provide a system line, incoming informative
messages are to be displayed in the last line on the screen when a formatted or physical
message is currently displayed on the screen (see the WROUT macro).

OFLOW=
Specifies the type of overflow check.

SYS
Default setting: In the event of long user program outputs, the system is to perform an
overflow check to prevent information overflow at the terminal. The type of system
overflow check is specified by the terminal user via the MODIFY-TERMINAL-OPTIONS
command (see the “Commands” manual [19], for default values and effect).

USER
The system is not to take any precautions to prevent information overflow in the event
of long user program outputs. An overflow check can thus be performed individually by
the user program.

Note
Operating system messages are still subject to the overflow check preset by the
system or specified via the MODIFY-TERMINAL-OPTIONS command.

SUB=
Determines when the defined substitution character is to replace characters.

OUT
Default setting: The defined substitution character is to replace illegal characters for line
mode outputs.

OUTIN
The defined substitution character is to
– replace illegal characters for line mode outputs
– transfer the logical control character SUB to the user program for line mode inputs

(see the VTCSET macro).

Description of the macros TCHNG

U3291-J-Z125-16-76 927

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

MODE=
OHCOPY=
OHOM=
OBELL=
ONOPOSN=
OINFO=
IGETBS=
ILCASE=
IGETFC=
IGETIC=
ICFD=
For the meaning of these operands, see the WRTRD or WROUT macro.

Return information and error flags

R15:
A return code relating to the execution of the TCHNG
macro is transferred in the rightmost byte of register
R15.

 a a

X'aa' Meaning

X'00' Normal termination.

X'04' Unrecoverable error.

X'08' Operand error.

X'0C' The caller is not in timesharing mode.

X'10' Operand error.

X'14' Invalid edit option.

TERM Description of the macros

928 U3291-J-Z125-16-76

TERM – Terminate program and procedure step

General

Application areas: Starting, interrupting and terminating; see page 72
Debugging aids; see page 162

Macro type: Type S, MF format 1: standard/E/L form; see page 29

Macro description

The TERM macro performs the following functions:
– Terminate program (default value)
– Terminate program and procedure step (UNIT=STEP operand)
– Issue memory dump (DUMP operand)
– Transfer return code to program-monitoring job variable (URETCD operand)

All input/output operations initiated by the program before the execution of the macro are
completed prior to program termination.

Macro format and description of operands

UNIT=
Determines whether or not a distinction is to be made between modes during program
termination.

PRGR
Default setting: the program is terminated.

TERM

UNIT=PRGR / STEP

,DUMP=N / Y

,MODE=NORMAL / ABNORMAL

[,URETCD=code / addr / (r)]

,MF=S / (E,..) / L

Description of the macros TERM

U3291-J-Z125-16-76 929

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

STEP
Terminates the program, taking into account the mode in which the program was
executing.

– Interactive mode:
If the program was called in a non-S procedure, the system also branches to the
next SET-JOB-STEP, EXIT-JOB, END-PROCEDURE or CANCEL-PROCEDURE
command. If the program was called in an S procedure, the system also protects
SDF-P error handling.

– Batch mode (ENTER file):
The system also branches to the next SET-JOB-STEP or EXIT-JOB command.

Note
The following specifications are recommended:
UNIT=PRGR if MODE=NORMAL
UNIT=STEP if MODE=ABNORMAL

DUMP=
Determines whether a memory dump is to be issued.

N
Default setting: no memory dump is issued.

Y
Issues a memory dump unless DUMP=NO was specified in the MODIFY-TEST-
OPTIONS command.

MODE=
Specifies the way in which the program is to terminate.

NORMAL
Default setting: the program is to terminate normally.
For users of job variables: The status indicator of a program-monitoring variable, if
present, is set to C'$TË'.

ABNORMAL
The program is to terminate abnormally. The message
.... ABNORMAL PROGRAM TERMINATION (&00) is output.

(&00)= NRT0001 if UNIT=PRGR was specified
(&00)= NRT0101 if UNIT=STEP was specified

For users of job variables:
The status indicator of a program-monitoring job variable, if present, is set to C'$AË'.
See also the Note above.

TERM Description of the macros

930 U3291-J-Z125-16-76

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

The following operand is only available to users who have the software product JV (see the
“JV” [22] manual) at their disposal:

URETCD=code
Specifies a 1- to 4-byte alphanumeric value in decimal (C'cccc') or hexadecimal
(X'xxxxxxxx') form. The program returns this value as a return code to the program-
monitoring job variable (left-justified, bytes 4-7).

Note
If the operand is missing, the value C'ËËËË' is returned to the program-monitoring job
variable.
This operand is ignored if no program-monitoring job variable has been defined.

addr
Relative virtual address of a 4-character alphanumeric value. The program returns this
value as a return code to the program-monitoring job variable (bytes 4-7).

(r)
Register containing a 4-character alphanumeric value. This value is returned to the
program-monitoring job variable as a return code (bytes 4-7). Register R0 is destroyed
if URETCD=(r) is specified.

Functional description

When this macro is executed the following occurs:

– All files assigned to the program and still open are closed.
– Memory assigned to the program is deallocated.
– Any STXIT routine defined for the event class TERM is activated.
– AIDSYS is called with the event “TERM”.
– Bytes 8-30 are deleted in the physical device table for each released device. The first

byte in the operation list is set to X'FF'. The program start address is set to 0 (4 bytes)
in the program table entry.

– The system then changes over to command mode.

Description of the macros TERM

U3291-J-Z125-16-76 931

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Notes on the macro call

– The operand is ignored if an invalid address is specified in the URETCD operand.

– Register R1 contains the operand list address.

If the operand list address is invalid or invalid operands were specified,
TERM UNIT=STEP,MODE=ABNORMAL,DUMP=Y
is executed and the following error message is issued:
%.... ABNORMAL PROGRAM TERMINATION NRT0601

– When the TERM macro with the operand DUMP=Y is called, the message
PROCESSING INTERRUPTED AT... appears.
Output of the memory dump depends on the value of the DUMP operand specified in
the MODIFY-TEST-OPTIONS command. TERM activates one of the following
messages in the case of DUMP=STD (default value):

– in interactive mode:
DUMP DESIRED ? REPLY (Y=YES, N=NO)
Whether or not a dump is produced depends on the response to the query.

– in batch mode and in procedures:
SYSTEM REGULATIONS PROHIBIT DUMP
No dump is produced.

The dump is output to disk in unedited form as a PAM file (see the CDUMP2 macro).
The file containing the dump is created under the user ID of the user who requested it.
As soon as the dump is complete, the message
DUMP WRITTEN,FILENAME=$userid.DUMP.tsn.i
and the title line of the dump are output.
If two or more dumps are requested for the same TSN, they are numbered
consecutively (“i”). The file can be evaluated with the aid of the analysis program DAMP.

TINF Description of the macros

932 U3291-J-Z125-16-76

TINF – Read or modify task attributes

General

Application area: Starting, interrupting and terminating; see page 72
Macro type: Type S, MF format 1: standard/E/L form; see page 29

Macro description

By means of the TINF macro the user can read or modify

– the run priority of the task
– the task attribute
– the parameters for deactivation prohibition on the task

in accordance with the values laid down in the user catalog.

It is also possible for the calling task to join or to leave an affinity task group.
Tasks which frequently require write access to the same data are said to be affined to one
another. This common data can be located either in the system address space (which is
used by all tasks) or in the user address space within common memory pools. Such tasks
can be grouped together to form an affinity task group.
However, a task can only ever be assigned to a single task group (or to no task group). The
functionality of affined task groups is implemented by the TANGRAM subsystem (see also
the “Introduction to System Administration” [10]).

Macro format and description of operands

TINF

ACCESS=R / W

[,DEACT=Y / N]

[,DWTR=Y / N]

[,DSSR=Y / N]

[,TPRYAD=addr / (r)]

[,TTYPAD=addr / (r)]

[,TGAFF=Y / N,TGIDAD=addr / (r)]

[,PROCNAD=addr / (r)]

[,PARMOD=24 / 31]

[,MF=L / (E,..)]

Description of the macros TINF

U3291-J-Z125-16-76 933

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

ACCESS=
Controls the read/write function of the operands TPRYAD and TTYPAD.

R
The data is transferred to the specified fields.

W
The data is transferred from the specified fields to the TCB.

DEACT=
Specifies whether or not a task can be deactivated in the following cases:
– the utilization of system capacity (CPU, memory, paging rate) is very high.
– the task assumes particular wait states or remains in these (see the DWTR operand).

If the DWTR operand is also specified, its setting has priority.
– because of the system services it has used so far the task is available for deactivation

(see the DSSR operand). If the DSSR operand is also specified, its setting has priority.

Y
The task can be deactivated.

N
The task is not to be deactivated. It can still be deactivated for other reasons (e.g.
VPASS macro with a wait time of over 500 ms).

DWTR=
Specifies whether a task can be deactivated in the following cases:
– It assumes particular, longer-lasting wait states, e.g. because of a PASS.
– It remains longer in an active wait state, e.g. after a SOLSIG with COND=UNCOD or

after a MSG7X/TYPIO with REPLY.

Y
The task may be deactivated.

N
The task is not to be deactivated.

DSSR=
Specifies whether a task can be deactivated after having used a certain amount of system
services (e.g. CPU time).

Y
The task may be deactivated.

N
The task is not to be deactivated.

TINF Description of the macros

934 U3291-J-Z125-16-76

TPRYAD=
Indicates the run priority of the task.

addr
Address of a one-byte field containing the run priority value.
For ACCESS=R the run priority of the task is transferred from the TCB into the specified
field. For ACCESS=W the run priority is transferred from the specified field into the TCB.

(r)
Register containing the address value “addr”.

TTYPAD=
Specifies the task attribute.
Values for the task attribute:

TTYPTP EQU X'81' transaction job
TTYPIACT EQU X'40' interactive job
TTYPPB EQU X'20' batch job

With ACCESS=R the job type is transferred to the specified field. With ACCESS=W the task
attribute is transferred from the specified field to the TCB.

addr
Address of a one-byte field containing the value for the task attribute.

(r)
Register containing the address value “addr”.

TGAFF=
Specifies whether the calling task wishes to join or leave an affinity task group.
This operand must be specified in conjunction with TGIDAD.

Y
The task joins the task group whose task group ID is in the field addressed by TGIDAD
or, if the field contains zero, a new task group. If a new task group is set up, the new task
group ID is returned in the field addressed by TGIDAD.

N
The task leaves the group whose task group ID is in the field addressed by TGIDAD. If
the task leaving is the last in its task group, that task group is deleted and the task group
ID is set to zero in the field addressed by TGIDAD.

Description of the macros TINF

U3291-J-Z125-16-76 935

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

TGIDAD=
Designates the task group ID address for the calling task.
This operand may only be specified in conjunction with TGAFF.

addr
Symbolic address of a 4 byte field containing the task group ID.

(r)
Register containing the address value of addr.

PROCNAD=
Provides the following information:
– Is the calling task assigned to an affinity task group?
– If so, how many CPUs are currently assigned to this task?
– How many CPUs is the system currently using?

addr
Symbolic address of a 4 byte field.
The first 2 bytes contain the number of CPUs on which the task may currently run.
The second 2 bytes contain the total number of CPUs currently available.
If the calling task is not assigned to a task group or if the TANGRAM subsystem is not
loaded, both sub-fields contain the same figures.

(r)
Register containing the address value of addr.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the specifi-
cation for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

TINF Description of the macros

936 U3291-J-Z125-16-76

Notes for affinity task groups

– When a task joins a task group, a memory pool must already have been set up so that
the field designated with TGIDAD can be placed in an area accessible to all the tasks
in the application. This field must be initialized with zero. The first task then sets up the
group on joining, and all the other tasks just join the existing group.

– BS2000 takes over when it comes to synchronizing joining procedures.
The second task to join (chronologically speaking) is only processed when the first has
been successfully joined and the new group ID has been returned.

Return information and error flags

During macro processing, register R1 contains the operand list address.

R15:
A return code relating to the execution of the TINF
macro is transferred in the rightmost byte of register
R15.

 a a

X'aa' Meaning

X'00' The macro was executed successfully.

X'04' Invalid operands have been specified. At least one required function has not been
executed.

X'08' The field designated with TGIDAD does not contain a valid group ID for the task.

X'10' For at least one function there is no authorization.

X'0C' The task wishing to join a task group already belongs to another task group.

X'14' The task wishing to leave (TGAFF=N operand) does not belong to a group.

X'18' 1

1 When this return code occurs, applications (e.g. database retrieval) can be continued

Up to 65535 task groups can be joined. This limit has been exceeded.

X'1C' 1 Internal TANGRAM error. Function has not been fully executed.

X'20' 1 Internal TANGRAM administration function (TANGBAS subsystem) unavailable.

Description of the macros TINF

U3291-J-Z125-16-76 937

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Example

The TINF macro transfers run priority, task attribute and information to an area in the user
program:

TINF START
PRINT NOGEN

TINF AMODE ANY
BALR 3,0
USING *,3

CHKOUT1 TINF TPRYAD=PRI,TTYPAD=TYPE,PROCNAD=INFO, *
TGAFF=N,TGIDAD=AFFINI,PARMOD=31 —————————————————————— (1)

CHKIN TINF TGAFF=Y,TGIDAD=AFFINI,PARMOD=31 —————————————————————— (2)
CHKOUT2 TINF TGAFF=N,TGIDAD=FALSE,PARMOD=31 ——————————————————————— (3)
CHKOUT3 TINF TGAFF=N,TGIDAD=AFFINI,PARMOD=31 —————————————————————— (4)
END TERM
*
**** Definitions ****
PRI DS L1
TYPE DS L1
INFO DS F
AFFINI DC X'00000000'
FALSE DC X'08150815'

END

TINF Description of the macros

938 U3291-J-Z125-16-76

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,tinf), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,tinf)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 283 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 79 MSEC
//end
% ASS6012 END OF ASSEMBH
/load-executable-program library=macexmp.lib,element-or-symbol=tinf, -
/ test-options=*aid
% BLS0523 ELEMENT 'TINF', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'TINF', VERSION ' ' OF '<date> <time>' LOADED
/%in chkin
/%in chkout2
/%in chkout3
/%in end
/%r
STOPPED AT LABEL: CHKIN , SRC_REF: 40, SOURCE: TINF , PROC: TINF
/%d %15 %xl, pri %xl1, type %xl1, affini %xl;%r ——————————————————————— (1)
*** TID: 00AF0265 *** TSN: 6WPP ***
CURRENT PC: 00000024 CSECT: TINF **
%15 = 00000014
V‘0000007A‘ = PRI + #‘00000000‘
0000007A (00000000) D2 K
V‘0000007B‘ = TYPE + #‘00000000‘
0000007B (00000000) 40
V‘00000080‘ = AFFINI + #‘00000000‘
00000080 (00000000) 00000000
STOPPED AT LABEL: CHKOUT2 , SRC_REF: 59, SOURCE: TINF , PROC: TINF
/%d %15 %xl, affini %xl;%r —— (2)
CURRENT PC: 00000038 CSECT: TINF **
%15 = 00000000
V‘00000080‘ = AFFINI + #‘00000000‘
00000080 (00000000) E3C70021 TG..
STOPPED AT LABEL: CHKOUT3 , SRC_REF: 78, SOURCE: TINF , PROC: TINF
/%d %15 %xl, false %xl;%r ——— (3)
CURRENT PC: 0000004C CSECT: TINF **
%15 = 00000008
V‘00000084‘ = FALSE + #‘00000000‘

Description of the macros TINF

U3291-J-Z125-16-76 939

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

00000084 (00000000) 08150815
STOPPED AT LABEL: END , SRC_REF: 96, SOURCE: TINF , PROC: TINF
/%d %15 %xl, affini %xl;%r —— (4)
CURRENT PC: 00000060 CSECT: TINF **
%15 = 00000000
V‘00000080‘ = AFFINI + #‘00000000‘
00000080 (00000000) 00000000

(1) The task should be logged off from the affinity task group with the task group ID
(X'00000000') in the AFFINI field:
Register 15 contains the return code X'00000014', i.e. the task to be logged off did
not form part of a task group.
The run priority of the task is X'D2' = 210.
The task is an interactive task (X'40').
The contents of the field AFFINI are unchanged.

(2) The task logs on to a newly set up affinity task group (field AFFINI contains the input
X'00000000').
Register 15 contains the return code X'00000000', i.e. the TINF was executed
without errors.
The task group ID of the newly set up affinity task group is returned in the field
AFFINI. Field AFFINI now contains X'E3C70021'.

(3) The task is to be logged off from the affinity task group with the task group ID
(X'08150815') located in the FALSE field:
Register 15 contains the return code X'00000008', i.e. in the field designated with
TGIDAD there is no valid task group ID for this task.
The contents of the field FALSE are unchanged.

(4) The task is to be logged off from the affinity task group with the task group ID
(X'E3C70021') in the AFFINI field:
Register 15 contains the return code X'00000000', i.e. the TINF was executed
without errors.
Since the task was the last (and only) one in its task group, the task group was
deleted and the task group ID was set to Null in the field addressed by TGIDAD.
Field AFFINI again contains X'00000000'.

TMODE Description of the macros

940 U3291-J-Z125-16-76

TMODE – Interrogate job attributes

General

Application areas: Requesting and accessing lists and tables; see page 155
Communication; see page 163

Macro type: Type O; see page 28

See the DTMODE macro for a description of the output fields. The symbolic field names
used when the 24-bit interface is generated start with the prefix TSK instead of TMOD.

Macro description

The TMODE macro provides the user program with information about the job under which
it is running. The user program supplies an area in which this information is to be stored.
The macro format depends on the interface desired.

Note
The user ID under which the user program is running can also be interrogated with the
RDUID macro. The privilege of the job under which the user program is running can
also be interrogated with the CHKPRV macro.

Macro formats and descriptions of operands

Format 1: 24-bit interface call

name
Name of the DSECT if operand D is specified.
Default value: name = TSKINF0.

area
Name of an area in which the job information is to be stored. “D” must not be used as the
name.

[name] TMODE

[]

[,PARMOD=24 / 31]

area[,length]
D

Description of the macros TMODE

U3291-J-Z125-16-76 941

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

length
Specifies the size in bytes of “area”. If the length operand is omitted, the length attribute of
“area” is used. If, in either case, the length is less than the number of bytes of information
supplied, the data is truncated by the difference.
The length of the information supplied is available as symbolic constant L@TSKINF (EQU
value).

D
A dummy section (DSECT) is generated for the output list.

PARMOD=
Controls macro expansion. If PARMOD is not specified here, macro expansion is performed
according to the specification for the GPARMOD macro or according to the default setting
for the assembler (= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

no entry
The operand values may also be supplied in an operand list, the address of which is
contained in register R1.
The operand list has the following format:

Byte Operand

0

1 - 3
4 - 5

Must be set to X' 00' ; this is important, since it is the only way of guaranteeing successful
execution of the macro. If this entry is omitted, an invalid return code might be transferred.
Address of the area in which job information is to be stored.
Length of the area (here the symbolic constant L@TSKINF may be specified).

TMODE Description of the macros

942 U3291-J-Z125-16-76

Format 2: 31-bit interface call

PARMOD=
Controls macro expansion.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

PARLIST=
Gives the address of an area where the job data is to be stored. The area should be aligned
on a word boundary and must start with the standard header.
The DTMODE macro generates a description (DSECT/data section) for the I/O area; the
initialization values for the standard header are entered.

addr
Symbolic address (name) of the area.

(r)
Register containing the address value “addr”.

TMODE

[PARMOD=31]

[,PARLIST=addr / (r)]

Description of the macros TMODE

U3291-J-Z125-16-76 943

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Return information and error flags

Example

A number of job attributes (type of data display terminal, size of terminal buffer, TSN of the
job, user ID, ...) are to be interrogated. The macro is executed in 31-bit addressing mode.
The output area is generated by means of the DTMODE macro (with the standard header
being initialized). Output fields are edited as required for output by means of the WROUT
macro.

TMODE START
PRINT NOGEN

TMODE AMODE ANY
BALR 3,0
USING *,3
TMODE PARMOD=31,PARLIST=TMODPL ————————————————————————————— (1)
UNPK HFIELD(3),TMODTYPE(2)
MVC TASKT+2(2),HFIELD
TR TASKT+2(2),CODTAB
UNPK HFIELD(5),TMODBUFS(3)
MVC TASKB+2(4),HFIELD
TR TASKB+2(4),CODTAB
UNPK HFIELD(3),TMODPRI(2)
MVC TASKP+2(2),HFIELD
TR TASKP+2(2),CODTAB
MVC TSN,TMODTSN
MVC USERID,TMODUSER
MVC ACC,TMODACCT
MVC JOB,TMODNAME
WROUT AUSB,TERM,MODE=LINE,PARMOD=31 ———————————————————————— (2)

2 *,@DCEO 999 921011 53531004
TERM TERM

DS 0F

R15:
A return code relating to the execution of the TMODE
macro is transferred in register R15.0 0 a a a a a a

X'aaaaaa' Meaning

X'000000' Function has been executed.

X'000004' Operand error.

X'00000C' System error.

X'01FFFF' Incorrect specification for UNIT/FUNCTION in the standard header.

X'03FFFF' Incorrect specification for VERSION in the standard header.

TMODE Description of the macros

944 U3291-J-Z125-16-76

AUSB DC Y(AUSBE-AUSB)
DS CL3
DC X'15'
DC C'TERMINAL TYPE: '

TASKT DC C'X''00'''
DC X'15'
DC C'BUFFER TERMINAL: '

TASKB DC C'X''0000'''
DC X'15'
DC C'RUN PRIORITY: '

TASKP DC C'X''00'''
DC X'15'
DC C'TSN: '

TSN DS CL4
DC X'15'
DC C'USER ID: '

USERID DS CL8
DC X'15'
DC C'ACCOUNT NUMBER: '

ACC DS CL8
DC X'15'
DC C'JOB NAME: '

JOB DS CL8
DC X'15'

AUSBE EQU *
HFIELD DS CL5
CODTAB DS CL240

DC C'0123456789'
DC C'ABCDEF'
DS 0F
DTMODE DSECT=NO —— (3)
END

Description of the macros TMODE

U3291-J-Z125-16-76 945

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,tmode), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,tmode))
% ASS6011 ASSEMBLY TIME: 336 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 86 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=tmode
% BLS0523 ELEMENT 'TMODE', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'TMODE', VERSION ' ' OF '<date> <time>' LOADED
TERMINAL TYPE: X'35' —— (4)
BUFFER TERMINAL: X'07F8'
RUN PRIORITY: X'D2'
TSN: 2QSE
USER ID: QM212
ACCOUNT NUMBER: 89002
JOB NAME: MACTEST

(1) The TMODE macro is called. The 31-bit interface is generated; the output area is
generated by means of the DTMODE macro.

(2) The interrogated values are output in LINE mode by means of WROUT. Some
values had to be edited before output (unpacked and converted into printable
characters).

(3) The output area is generated by means of the DTMODE macro. The standard
header is initialized.

(4) Output in LINE mode:
terminal type = X'35'.
buffer size = 2040 bytes.
run priority = 210.
etc.

TSPRIO Description of the macros

946 U3291-J-Z125-16-76

TSPRIO – Output run priorities

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type O; see page 28

Macro description

The TSPRIO macro outputs the minimum and maximum values for fixed and variable
priorities.

Macro format

 PRINT GEN
 TSPRIO
EPRIFIXU EQU 30 Maximum constant priority
EPRIFIXL EQU 127 Minimum constant priority
EPRIVARU EQU 128 Maximum variable priority
EPRIVARL EQU 255 Minimum variable priority

TSPRIO

Description of the macros TSTAT

U3291-J-Z125-16-76 947

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

TSTAT – Interrogate terminal attributes

General

Application areas: Data terminal communication; see page 160
Requesting and accessing lists and tables; see page 155

Macro type: Type S, MF format 1:
31-bit interface: standard/L/E/C/D form; see page 29

● This macro description applies to TIAM V13.2A.

Macro description

Information about a terminal may be requested in timesharing mode by means of the
TSTAT macro. The information obtained refers to the generated device type.

Macro format and description of operands

TCHAR
Requests physical type of terminal.
Supplies the type under which the terminal was generated in PDN.

PHDIM
Requests physical dimensions of terminal (line mode).

LIDIM
Requests logical dimensions of terminal (line mode).

VDTYP
Requests logical type of terminal.

EDOPT
Requests static edit options.

OFLOW
Requests type of overflow control.

STNAM
Requests terminal name.

TSTAT

TCHAR / PHDIM / LIDIM / VDTYP / EDOPT / OFLOW / STNAM / PRNAM / ALL / MONCS / PERPH / BASIC

,area [,length]

[,MF=C / (C,pre) / (E,..) / (D,pre) / D / L]

TSTAT Description of the macros

948 U3291-J-Z125-16-76

PRNAM
Requests processor name.

ALL
Requests output of all information.

MONCS
Requests information on the monitor and the character sets of the terminal.

PERPH
Requests information on the connected peripherals.

BASIC
Requests basic information on the terminal.

area
Symbolic address of an area in which the information requested is stored. The area must
be aligned on a halfword boundary.

length
Specifies the length of the area.
– for ALL : 64 bytes
– for MONCS : at least 14 bytes
– for BASIC : 640 bytes
– for other options : 8 bytes
If this specification is missing, the length attribute “area” is used. If the ALL, MONCS or
BASIC operand is specified and the area length is smaller than the terminal information
supplied, the amount of information which can be supplied is limited to that which will fit in
this area.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

A prefix (pre = 1..3 letters) can be specified in the C form and D form of the macro, as shown
in the macro format.
Default value: pre = TST

The operands TCHAR, PHIDIM, LIDIM, VDTYP, EDOPT, OFLOW, STNAM, PRNAM ALL,
MONCS, PERPH and BASIC correspond to those described for the DCSTA macro.

Description of the macros TSTAT

U3291-J-Z125-16-76 949

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Functional description

The calling program may define the area which is to receive the information either itself or
by means of the DCSTA C,... call (see Example 2). If the program defines the destination
area itself, it may perform addressing with the aid of a DSECT generated by means of the
DCSTA D,... call.

For a description of information supplied see the DCSTA macro (page 382).

Return information and error flags

R15:
A return code relating to the execution of the TSTAT
macro is transferred in register R15.0 0 0 0 0 0 a a

X'aa' Meaning

X'00' Normal termination.

X'04' Unrecoverable error.

X'08' Operand error.

X'0C' No terminal available.

X'10' Receiving area is too short; only part of the information was supplied if the ALL, MONCS or
BASIC operand was specified. In all other cases, nothing is supplied.

X'14' Not all the information required is available.

TSTAT Description of the macros

950 U3291-J-Z125-16-76

Example 1

This example requests the logical terminal type and the type of screen overflow control.
The receiving fields defined via the TSTAT macro (LOG and UEL) contain this information
in hexadecimal form. The DCSTA macro is required for evaluating this information.
DCSTA C,... is used to generate memory areas with symbolic addresses; these areas can
be specified as receiving fields when the TSTAT macro is called.
All the symbolic names generated by the macro and their meanings are listed in the DCSTA
macro description on page 382. For example, it is possible to read the type of overflow
control from the <PREFIX>OFLOW field by evaluating the series of bits contained in it.

TSTAT1 START
PRINT NOGEN
BALR 3,0
USING *,3
TSTAT VDTYP,LOG,8 —— (1)
TSTAT OFLOW,UEL,8 —— (2)

DTH1 TERM
LOG DS CL8
UEL DS CL8

END

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,tstat1), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,tstat1)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 245 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 78 MSEC
//end
% ASS6012 END OF ASSEMBH
/load-executable-program library=macexmp.lib,element-or-symbol=tstat1, -
/ test-options=*aid
% BLS0523 ELEMENT 'TSTAT1', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'TSTAT1', VERSION ' ' OF '<date> <time>' LOADED
/%in dth1<%d log %x, uel %x>
/%r
*** TID: 005000D8 *** TSN: 2QSE ***
**

Description of the macros TSTAT

U3291-J-Z125-16-76 951

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

CURRENT PC: 00000022 CSECT: TSTAT1 **************************************
**
V'0000003E' = LOG + #'00000000' ————————————————————————————————— (3)
0000003E (00000000) 5B010000 00000000 $.......
V'00000046' = UEL + #'00000000' ————————————————————————————————— (4)
00000046 (00000000) 02060000 00000000

(1) Logical type of terminal is requested.

(2) Type of overflow control is requested.

(3) The task runs on a data display terminal (bit 26 is set) at which the line, format and
physical modes are all permitted (bits 20, 21 and 23 are set).

(4) The system (bit 25 =0) controls the overflow. When the screen is full, the system
requests an acknowledgment at the terminal before overwriting the screen
(bit 21 =1).

TSTAT Description of the macros

952 U3291-J-Z125-16-76

Example 2

TSTAT2 START
PRINT NOGEN
BALR 3,0
USING *,3
TSTAT TCHAR,STATCHAR,8 ————————————————————————————————————— (1)
TSTAT PHDIM,PHYSAREA,8 ————————————————————————————————————— (2)
TSTAT LIDIM,FILIDIM,8 —————————————————————————————————————— (3)

DTH1 TERM
PRINT GEN
DCSTA C,TYPE=TCHAR ——— (4)

1 STATCHAR DS 0XL8
1 *
1 * DEFINE TERMINAL CHARACTERISTICS FIELDS
1 *
1 STASTTCH DS 0XL8 TERMINAL CHARACTERISTICS AREA
1 STAMNTCH DS 0XL8 MINIMUM TERMINAL CHARICS. AREA
1 *
1 STAPTTYP DC AL1(0) PARTNERTYPE
1 STADVTYP DC AL1(0) DEVICE TYPE
1 STATCHR2 DC AL1(0) TERMINAL CHARACTERISTICS BYTE 2
1 STATCHR3 DC AL1(0) TERMINAL CHARACTERISTICS BYTE 3
1 STATCHR4 DC AL1(0) TERM. CHARACTERISTIC BYTE 4 901
1 STATCHRS DC AL1(0) TERM. CHAR FROM STATION 920
1 STACTRLU DC AL1(0) CONTROL UNIT FOR PRINTER 701
1 STACHCAD DC AL1(0) CENTRAL HARDCOPY ADDRESS
1 *
1 * DEFINE PARTNER TYPES (PTTYP)
1 *
1 STADCAMP EQU X'00' PARTNER IS A PROGRAM
1 STADCAMT EQU X'01' PARTNER IS A TERMINAL
1 *
1 DCDEVCH STA
2 *
2 * DEFINE DEVICE TYPES (DVTYP)
2 *
2 STAD8103 EQU X'02' TELETYPE 8103
2 STAD8150 EQU X'04' VIDEO TERMINAL 8150
2 STAD8153 EQU X'05' *NO VTSU* VIDEO TERMINAL 8153
2 STADHOST EQU X'08' INTELLIGENT PARTNER
2 STAD8151 EQU X'15' VIDEO TERMINAL 8151
2 STAD8152 EQU X'16' VIDEO TERMINAL 8152
2 STAD8110 EQU X'17' SS-
8110 00530000
2 STAD6154 EQU X'18' *NO VTSU* VIDEO 8161 54 CHAR PER LINE
2 STAD6164 EQU X'19' *NO VTSU* VIDEO 8161 64 CHAR PER LINE
2 STAD6180 EQU X'1A' *NO VTSU* VIDEO 8161 80 CHAR PER LINE

Description of the macros TSTAT

U3291-J-Z125-16-76 953

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

2 STAD8161 EQU X'1A' *NO VTSU* VIDEO 8161
2 STAD8121 EQU X'1C' PRINTER STATION 8121
2 STADPT80 EQU X'1D' *AS 8103* TELETYPE PT80
2 STAD1000 EQU X'1E' *AS 8103* TELETYPE T1000
2 STADT100 EQU X'23' *AS 8103* TELETYPE T100
2 STAD100E EQU X'26' *AS 8103* FS100-E
2 STAD8122 EQU X'2B' PRINTER STATION 8122
2 STAD8162 EQU X'2C' VIDEO 8162
2 STAD8160 EQU X'2D' VIDEO 8160
2 STAD8124 EQU X'2E' PRINTER STATION 8124
2 STAD8167 EQU X'2F' *AS 8160* VIDEO 8167
2 STADAP EQU X'30' *AS HOST* AP-STATION
2 STAD9750 EQU X'35' VIDEO 9750 OR 9749
2 STAD9003 EQU X'36' PRINTER STATION 9003
2 STAD9770 EQU X'39' *AS 8151* DS 9770
2 STAD9002 EQU X'3B' PRINTER STATION 9002
2 STAD3974 EQU X'3D' VIDEO TERMINAL 3974
2 STAD9751 EQU X'3F' *AS 8160* DSS 9751
2 STAD9752 EQU X'40' *AS 9750* DSS 9752
2 STAD9753 EQU X'41' *AS 9750* DSS 9753
2 STAD9001 EQU X'42' PRINTER 9001
2 STAD9731 EQU X'43' *AS 3974* GRAFIC STATION 9731
2 STAD9004 EQU X'45' PRINTER 9004
2 STAD9754 EQU X'4C' *AS 8160* VIDEO 9754
2 STAD9755 EQU X'4E' DSS-9755
2 STAD9763 EQU X'4F' DSS-9763
2 STADBTXF EQU X'55' *AS HOST* BTX-STATION T-3000 (FELDVERS.)
2 STADBTXE EQU X'56' *AS HOST* BTX-EDITIER-STATION (DIENST)
2 STADBTXA EQU X'57' *AS HOST* BTX-ABFRAGE-STATION (DIENST)
2 STADUTC EQU X'5A' UTC FUER TELETEX
2 STAD9012 EQU X'5B' PRINTER 9012
2 STAD9013 EQU X'5C' PRINTER 9013
2 STAD3270 EQU X'5E' DSS-3270
2 STAD0131 EQU X'65' PRINTER 9001-31
2 STAD0189 EQU X'66' PRINTER 9001-8931
2 STAD9022 EQU X'68' PRINTER 9022
2 STAD1118 EQU X'6B' PRINTER 9011-18
2 STAD1119 EQU X'6C' PRINTER 9011-19
2 STAD3287 EQU X'6E' PRINTER 3287
2 STADPCL EQU X'70' PRINTERS PCL
2 STAD9021 EQU X'70' PRINTERS 9021 / 9022-200, HP LJ
2 STAD9014 EQU X'72' PRINTER 9014
2 STAD9026 EQU X'73' PRINTER 9026 (HDLC,COMP.9025)
2 STADTNO8 EQU X'74' Telnet without overflow 8-bit
2 STADTOV8 EQU X'75' Telnet with overflow 8-bit
2 STADFE EQU X'78' FRONT-END TERMINAL (FHS-DOORS)
2 *
2 * DEFINE TERMINAL CHARACTERISTICS BYTE 2 (TCHR2) BITS

TSTAT Description of the macros

954 U3291-J-Z125-16-76

2 *
2 STATC2EX EQU 8 SECONDARY CHARACTER SET
2 STATC2LC EQU 32 LOWER CASE
2 STATC2DT EQU 64 GERM KEYB WITH GERM NAT CHAR
2 STATC2DF EQU 128 BYTE 2 DEFINED
2 *
2 * DEFINE TERMINAL CHARACTERISTICS BYTE 3 (TCHR3) BITS
2 *
2 STATC3H1 EQU 1 HARDCOPY BIT 1 (LOCAL)
2 STATC3H2 EQU 2 HARDCOPY BIT 2 (CENTRAL)
2 STATC3HC EQU 3 HARDCOPY BITS
2 STATC3IC EQU 4 IDENTITY CARD READER
2 STATC3FD EQU 8 FLOPPY DISK
2 STATC3AP EQU 16 APL CAPABILITY
2 STATC3GF EQU 32 GRAPHICS
2 STATC3DZ EQU 64 DEZENTRAL FORMATING
2 STATC3DF EQU 128 BYTE 3 DEFINED
2 *
2 * DEFINE TERMINAL CHARACTERISTICS BYTE 4 (TCHR4) BITS
2 *
2 STATC4CO EQU 1 4 COLOURS(ITALIC/HALFBRIGHT)
2 STATC4ZF EQU 2 NEW ZAT AND FAT POSSIBLE
2 STATC4ST EQU 4 STATUS QUERY POSSIBLE
2 STATC4HI EQU 8 HARDWARE INFOLINE AVAILABLE
2 STATC4C8 EQU 16 8 COLOURS
2 STATC4HP EQU 32 HP LASER JET II
2 STATC4DF EQU 128 BYTE 4 DEFINED
2 *
2 * DEFINE TERM CHAR FROM STATION BYTE (TCHRS) BITS
2 *
2 STATCSDT EQU 1 GERMAN KEYBOARD
2 STATCSHC EQU 2 LOCAL HARDCOPY PRINTER
2 STATCSIC EQU 4 ID-CARD READER
2 STATCDOR EQU 8 DOORS capability (reserved)
2 STATCDSK EQU 16 DESK capability
2 STATCECC EQU 32 ENCRYPTION capability (res)
2 STATCPER EQU 64 Permanent ENCRYPTION reques
2 STATCSDF EQU 128 TERM CHAR FROM STAT RECEIVED
2 *,DCDEVCH 200 960821
1 *
1 *,DCSTA 201 970513

PHYSAREA DCSTA C,TYPE=PHDIM ——— (5)
1 PHYSAREA DS 0XL8
1 *
1 * DEFINE PHYSICAL TERMINAL ATTRIBUTES FIELDS
1 *
1 STASTPV DS 0XL8 PHYSICAL TERMINAL ATTR. AREA
1 STAMNPV DS 0XL8 MINIMUM PHYS. TERM. ATTR. AREA

Description of the macros TSTAT

U3291-J-Z125-16-76 955

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

1 *
1 STALLEN DC H'0' PHYSICAL LINE LENGTH
1 STANOLIN DC H'0' PHYSICAL NUMBER OF LINES
1 STAMAXDB DC H'0' MAX. PHYSICAL DEVICE BUFFER
1 DC 2AL1(0) RESERVED FOR FUTURE DEVELOPMENT
1 *,DCSTA 201 970513

DCSTA C,FI,TYPE=LIDIM —————————————————————————————————————— (6)
1 FILIDIM DS 0XL8
1 *
1 * DEFINE VIRTUAL TERMINAL ATTRIBUTES FIELDS
1 *
1 FISTLV DS 0XL8 VIRTUAL TERMINAL ATTR. AREA
1 FIMNLV DS 0XL8 MINIMUM VIRTUAL TERM ATTR AREA
1 *
1 FILLLEN DC H'0' VIRTUAL LINE LENGTH
1 FILNOLN DC H'0' VIRTUAL NUMBER OF LINES
1 FILMAXB DC H'0' MAXIMUM VIRTUAL DEVICE BUFFER
1 DC 2AL1(0) RESERVED FOR FUTURE DEVELOPMENT
1 *,DCSTA 201 970513

END

(1) Physical type of terminal is requested. The destination area which is generated by
means of the DCSTA C,... macro is called STATCHAR by default.

(2) Physical dimensions of terminal are requested. PHYSAREA is the name of the
destination area selected by the user.

(3) Logical dimensions of terminal are requested. The default prefix “STA” is replaced
by the prefix “FI” in the name of the FILIDIM destination area.

(4) The destination area for information on the physical type is generated together with
the symbolic constants for checking the bit values.

(5) The destination area for information on the physical dimensions is generated.

(6) The destination area for information on the logical dimensions is generated. “FI” is
to be the prefix for the field names (default: “STA”).

TSTAT Description of the macros

956 U3291-J-Z125-16-76

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,tstat2), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,tstat2)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 389 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 112 MSEC
//end
% ASS6012 END OF ASSEMBH
/load-executable-program library=macexmp.lib,element-or-symbol=tstat2, -
/ test-options=*aid
% BLS0523 ELEMENT 'TSTAT2', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'TSTAT2', VERSION ' ' OF '<date> <time>' LOADED
/%in dth1<%d statchar %xl8, physarea %xl8, filidim %xl8>
/%r
*** TID: 005000D8 *** TSN: 2QSE ***
**
CURRENT PC: 00000036 CSECT: TSTAT2 **************************************
**
V'00000052' = STATCHAR + #'00000000'
00000052 (00000000) 0135A081 88000000 ...ah... ——— (7)
V'0000005A' = PHYSAREA + #'00000000'
0000005A (00000000) 00500018 17FF0000 .&...~.. —— (8)
V'00000062' = FILIDIM + #'00000000'
00000062 (00000000) 00500018 07800000 .&...... —— (9)

(7) The process is running on a 9755 Data Display Terminal.

(8) X'0050' The physical line length is 80 characters.
X'0018' The physical number of lines is 24 lines.
X'17FF' The physical device buffer has a capacity of 6143 characters.

(9) X'0050' The logical line length is 80 characters (LINE mode).
X'0018' The logical number of lines is 24 lines (LINE mode).
X'0780' The logical character buffer comprises 1920 characters

(= 24 lines x 80 columns).

Description of the macros TYPIO

U3291-J-Z125-16-76 957

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

TYPIO – Write message to console

General

Application areas: Data terminal communication; see page 160
Message system; see page 161
Communication; see page 163

Macro type: Type S, MF format 1: standard/E/L form; see page 29

For a detailed description of physical and logical consoles and their use in BS2000 refer to
the “Introduction to System Administration” [10].

Macro description

The TYPIO macro is used to output a message on the console and to receive a message
from the console.

Macro format and description of operands

TYPIO

MSG=

[,REPLY=(length,)]

,SHORT=NO / YES

[,UCDEST=]

,MF=S / L / (E,)

addr1
(r1)

(base1,[index1],[disp1])

addr2
(r2)

(base2,[index2],[disp2])

’destcode’
addr3

(r3)

(base3,[index3].[disp3])

addr4
(1)

(r4)

TYPIO Description of the macros

958 U3291-J-Z125-16-76

MSG=
Specifies the address of an output area for the output message (variable-length record).
Message length ≤ 230 bytes; messages of a length between 231 and 251 bytes are
truncated; messages even longer than that are not transferred (length error).

addr1
Symbolic address (name) of the output area.

(r1)
Register containing the address value “addr1”.

(...)
Indirect adress for addr1.
base1 = base register 1; index1 = index register 1; disp1 = displacement 1

REPLY=
Specifies that a reply is expected. This operand defines the address of the input area for
the reply (variable-length record).
Reply length ≤ 72 bytes.

length
Length of input area (anticipated reply length + 4); 4 ≤ length ≤ 76.
– Longer replies are truncated.
– Shorter replies are entered left-justified and a byte with value X'00' is appended.
– length < 4 and length > 251 both result in a length error (RC = X'0C').
– 77 ≤ length ≤ 251 results in a length error (RC = X'04') and is treated as length = 76.

=addr2
Symbolic address (name) of the input area.

=(r2)
Register containing the address value “addr2”.

(...)
Indirect adress for addr2.
base2 = base register 2; index2 = index register 2; disp2 = displacement 2

SHORT=
Specifies whether the message is to be output with an abbreviated or unabbreviated header
(only effective for output to physical consoles).

NO
Default setting: specifies that the message is output in unabbreviated form.

YES
The message header is output in the form %xxxx_ where:
% = message without reply
xxxx = source code/name/TSN and

SHORT=YES is permitted only if REPLY has not been specified.

Description of the macros TYPIO

U3291-J-Z125-16-76 959

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

UCDEST=
UCON output destination.

The destination of the message may be specified as follows:
– mnemonic name for a specific physical console
– routing code for consoles and user tasks to which a specific job area has been assigned
– authorization name for an authorized user task.

If UCDEST is not specified, the output is directed to the target specified in system
parameter MSGDEST. In case of an invalid specification of UCDEST the output is directed
to the main console.

'destcode'
The following specifications are possible (Entries must be enclosed in single quotes):

– destcode = (mn)
where mn = 2-character mnemonic console name

– destcode = <x
where x = routing code (be sure to specify the < character)

– destcode = name of the user task (4 characters)

addr3
Symbolic address (name) of a field (word) containing the entry for “destcode”.

(r3)
Register containing the entry for “destcode”.

(...)
Indirect adress for addr3.
base3 = base register 3; index3 = index register 3; disp3 = displacement 3

Note
All entries must be entered left-justified.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

In the E form of the macro, the address of the parameter list is written to register R1 during
macro execution.

TYPIO Description of the macros

960 U3291-J-Z125-16-76

Notes on the macro call

– When using indirect addressing (operands MSG, REPLY, UCDEST) the commas must
always be entered.

– Format of the output or input area (operand MSG or REPLY):

Byte 0-1: Record length field (length of the message/reply + 4); when REPLY is
specified, this field is supplied with values by TYPIO.

Byte 2-3: reserved
Byte 4-n: Text of message/reply

– The macro can be used in reentrant programs, provided that only register entries are
used and the L form and E form are called individually.

– During execution of the TYPIO macro, the contents of registers R0 and R1 are
overwritten. The contents of register R0 are overwritten with binary zeros. The start
address of the parameter list is written to register R1 (in the E form of the macro).
For this reason, neither of these registers should be used for storing other values.

Return information and error flags

Example for an output area: For an input area:

message DC Y(mend-message) reply DS 0CL54

DS CL2 lenfield DS CL2

DC C'message-text' DS CL2

mend EQU * rtext DS CL50

R15:
A return code relating to the execution of the TYPIO
macro (format 2) is transferred in the rightmost byte
of register R15. The remaining bytes are deleted.

 a a

X'aa' Meaning

X'00' Normal execution.

X'04' TYPIO completed. Message or reply length truncated
Message: length 230 to 251specified
Reply: length 77 to 251 specified

X'08' Address error: address was given via register R0 or R1, or an address (addr1 - addr3) is at
least partially not in the user area.

X'0C' Length error: message length <= 0 or greater than 251 bytes.

X'10' Message output not possible (can occur, for example, during generation or termination of
the calling task).

Description of the macros UNBIND

U3291-J-Z125-16-76 961

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

UNBIND – Unload and unlink objects

General

Application area: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard/C/D/L/E/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

The UNBIND macro is used during the program run to release memory occupied by objects
that are no longer needed. The object can be a context, a load unit, an LLM or an object
module (OM). The symbols in the unloaded objects are then no longer available. The
occupied memory space is released pagewise only (in units of 4Kb). The space is returned
to memory management only if it is not required by any other modules on the same page.
Otherwise DBL notes the free areas and uses them at the next opportunity.

Control sections (CSECTs) and entry points (ENTRYs) in the object can optionally be
unlinked, i.e. external references to these symbols are treated as unresolved external
references by DBL. An object can be loaded only within a context and then only if
LDINFO=REF (BIND macro) or LOAD-INFORMATION=*REFERENCES (LOAD-
PROGRAM command) was specified when the object was loaded.

UNBIND Description of the macros

962 U3291-J-Z125-16-76

Macro format and description of operands

CONTEXT=name
Specifies the name of the context to be unloaded or in which objects are to be unloaded.
Objects can be:

– a load unit specified by UNIT or
– a module specified by MODULE.

“name” can be up to 32 characters long and must not begin with “$” or “#”.
If the operand is not used the name “LOCAL#DEFAULT” is assumed by default.

CONTXT@=
May be specified only if MF=M.
Specifies the address of a field which contains the name of the context to be unloaded.

addr
Address of an field which contains the name.

(r)
Register containing the address value “addr”.

UNBIND

[]

[,]

[,]

[,]

,UNLINK=NO / YES

,MSG=*DBLOPT / INFORMATION / WARNING / ERROR / NONE

,MF=S / C / D / E / L / M

[,PARAM=addr / (r)]

,PREFIX=P / p

[,LABEL=name]

CONTEXT=name

CONTXT@=addr / (r)

UNIT=name

UNIT@=addr / (r)

MODULE=name

MODULE@=addr / (r)

PGMVERS=*STD / version

PGMVER@=addr / (r)

Description of the macros UNBIND

U3291-J-Z125-16-76 963

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

UNIT=name
Specifies the name of the load unit to be unloaded or in which a module specified by
MODULE is to be unloaded. “name” is the name of the load unit which was specified in the
BIND macro at the time of loading. This can be:
– the name defined with the UNIT@ or UNIT operand or
– the name defined with the SYMBOL@ or SYMBOL operand if UNIT@ or UNIT was not

specified.
“name” can be up to 32 characters long.

UNIT@=
May be specified only if MF=M.
Specifies the address of a field which contains the name of the load unit to be unloaded.

addr
Address of a field which contains the name.

(r)
Register containing the address value “addr”.

MODULE=name
Specifies the name of the module to be unloaded. The module can be an LLM or an OM. If
an LLM, its internal name must be specified. “name” can be up to 32 characters long.

MODULE@=
May be specified only if MF=M.
Specifies the address of a field containing the name of the module which is to be unloaded.

addr
Address of a field which contains the name.

(r)
Register containing the address value “addr”.

UNLINK=
Specifies whether or not control sections (CSECTs) and entry points (ENTRYs) are to be
unlinked in the unloaded object. External references to unlinked symbols are then treated
as unresolved external references by DBL. Unlinking is only possible if the LDINFO=REF
operand was specified in the BIND macro at the time of loading.
Symbols in a context which refer to another context cannot be unlinked. Unlinking is only
possible within the same context.

NO
Default setting: symbols will not be unlinked.

YES
Symbols will be unlinked.

UNBIND Description of the macros

964 U3291-J-Z125-16-76

PGMVERS=
Specifies the program version to be unloaded.

*STD
Default setting: signifies that no version specification is to be taken into account during
unloading.

version
The version specification may be up to 24 characters long.
If the DBL does not find this program version, the program specified is not unloaded.

PGMVER@=
May be specified only if MF=M.
Specifies the address of a field containing the program version.

addr
Address of a field which contains the name.

(r)
Register containing the address value “addr”.

MSG=
Specifies the lowest message class; messages at and above this level will be output.

*DBLOPT
Default setting: the parameter value is taken from the last call of the MODIFY-DBL-
PARAMETERS command. If a value for the parameter has not yet been set using the
MODIFY-DBL-PARAMETERS command, MSG=INFORMATION applies.

INFORMATION
All classes of message will be output.

WARNING
Only messages of the WARNING and ERROR classes will be output. Messages of the
INFORMATION message class will not be output.

ERROR
Only messages of the ERROR class will be output.

NONE
No messages will be output.

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM and PREFIX, see section “S-type macros” on page 29. The valid MF
values are given at the start of the macro description under “Macro type” and are included
in the macro format.
A PREFIX can be specified in the C form, D form or M form of the macro
(see section “S-type macros” on page 29).

Description of the macros UNBIND

U3291-J-Z125-16-76 965

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

LABEL=name
May be specified only if MF=M
Name of the structure, i.e. the DSECT which describes the operand list of the UNBIND
macro. The operand is mandatory if there is no valid USING statement for the definition of
the base address register for the DSECT of the parameter list. The LABEL operand must
be specified in conjunction with the PARAM operand. Both operands are used to produce
a valid USING statement.

The following may be specified for “name”:

1. The name specified in the name field of a preceding macro name UNBIND MF=D
2. The name “xPBUNDS” if no “name” has already been specified, where “x” is the value

of the PREFIX operand of a preceding macro PBUNBIND MF=D, PREFIX=x
The default value for “x” is “P”.

3. The name of the longer DSECT containing the parameter list of the UNBIND macro if
the macro UNBIND MF=C was specified earlier.

Notes on the macro call

– The CONTEXT, UNIT and MODULE operands can be specified together in the same
macro in order to expedite the search by DBL or to resolve name conflicts in cases
where load units or modules have the same name. By default, DBL always chooses the
first name it finds.

– The delayed resolution of external references (DELAY) and the unlinking (UNLINK) are
restricted to one context. References which have been resolved by symbols in more
than one context cannot be unlinked.

– UNBIND can be used to unload only objects which were loaded with the BIND macro
or with the LOAD- or START-EXECUTABLE-PROGRAM (or LOAD- and START-
PROGRAM) command. Shared code which was loaded into a common memory pool
with the ASHARE macro cannot be unloaded with UNBIND; the DSHARE macro must
be used for this.

– A module belonging to a list name unit cannot be unloaded independently of the list
name unit.

UNBIND Description of the macros

966 U3291-J-Z125-16-76

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

Standard
header:

A return code relating to the execution of the UNBIND
macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally.

X'0C' X'01' X'0018' A reserved field in the parameter list is not preset with zeros.

X'0C' X'01' X'0100' Illegal parameter combination in the parameter list. Blanks must be
entered for the values of CONTEXT, UNIT and MODULE.

X'0C' X'01' X'015C' The specified context is not present.

X'0C' X'01' X'0170' The specified load unit is not present.

X'0C' X'01' X'0174' The specified module is not present.

X'0C' X'01' X'0178' A module belonging to a list name unit cannot be unloaded
independently of the list name unit.

X'0C' X'01' X'0198' Illegal context name. The first character is not a letter.

X'0C' X'01' X'0204' Inconsistencies in the DBL memory management tables (system error).

X'0C' X'01' X'0208' Inconsistencies in the DBL tables (system error)

X'0C' X'01' X'0300' Error during RETMEM processing (system error).

X'00' X'01' X'FFFF' The function is no longer or not yet supported.

X'00' X'03' X'FFFF' The interface version is not supported.

Description of the macros UNBIND

U3291-J-Z125-16-76 967

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

Example

During the UNBIND1 program run, a BIND macro is issued to load a second control section,
BIND3, as an overlay. BIND3 is stored as an object module in library MACEXMP.LIB. Both
control sections are to execute in 31-bit addressing mode. UNBIND1 is to be loaded below,
and BIND3 above, the 16-MB boundary. After the BIND macro is called BIND3 is to execute
first. Following the execution of BIND3 a return branch is to be made to UNBIND1 and
module BIND3 is to be unloaded by means of the UNBIND macro.

UNBIND1 START
UNBIND1 AMODE 31 ——— (1)
UNBIND1 RMODE 24
 BALR 3,0
 USING *,3
 USING BINDDS,6 ——— (2)
 USING UNBDS,7 —— (3)
 ST 3,AREA11
 UNPK AREAH,AREA1
 MVC AREAA(8),AREAH
WROUT1 WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (4)
BACK LA 12,UNBIND
BIND BIND MF=E,PARAM=BINDPAR ————————————————————————————————————— (5)
 LA 6,BINDPAR
 CLC XBINRET,=X'00000000' ——————————————————————————————————— (6)
 BE UNBIND
 MVC OUT+5(28),='BIND ERROR! '
 WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (7)
 B ERROR
UNBIND UNBIND MF=E,PARAM=UNBPAR ————————————————————————————————————— (8)
 LA 7,UNBPAR
 CLC YUNBRET,=X'00000000' ——————————————————————————————————— (9)
 BE MVC
 MVC OUT+5(28),='UNBIND ERROR! '
 WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (10)
 B ERROR
MVC MVC OUT+5(28),='UNBIND PROCESSED '
 WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (11)
 MVC OUT+5(28),='RETURN TO UNBIND1 '
 WROUT OUT,ERROR,PARMOD=31
ERROR TERM

OUT DC Y(OUTE-OUT)
 DS CL3
 DC C'UNBIND1: BASE REG.= '
AREAA DS CL8
OUTE EQU *
AREA DS 0F
AREA1 DS 0CL5

UNBIND Description of the macros

968 U3291-J-Z125-16-76

AREA11 DS CL4
AREA12 DC C'0'
 DS 0F
AREAH DS CL9
BINDPAR BIND MF=L,SYMBOL=BIND3,SYMBLAD=BIND3@,BRANCH=YES,PROGMOD=ANY,* – (5)
 LIBLINK=PLAMLIB
UNBPAR UNBIND MF=L,MODULE=BIND3 ––– (8)
BIND3@ DS A
BINDDS BIND MF=D,PREFIX=X —— (12)
UNBDS UNBIND MF=D,PREFIX=Y ——— (13)
 END

BIND3 CSECT —— (14)
 PRINT NOGEN
BIND3 AMODE ANY —— (15)
BIND3 RMODE ANY
 BALR 4,0
 USING *,4
 ST 4,AREA11
 UNPK AREAH,AREA1
 MVC AREAA(8),AREAH
 WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (16)
 BR 12
ERROR TERM

OUT DC Y(OUTE-OUT)
 DS CL3
 DC C'BIND3: BASE REG.= '
AREAA DS CL8
OUTE EQU *
AREA DS 0F
AREA1 DS 0CL5
AREA11 DS CL4
AREA12 DC C'0'
AREAH DS CL9
 END

Description of the macros UNBIND

U3291-J-Z125-16-76 969

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

(1) The attribute AMODE=31 is defined for control section UNBIND1. The attribute
RMODE=24 means that UNBIND1 will always be loaded below the 16-MB
boundary.

(2) Register 6 is assigned to the assembler as the base address register for addressing
the DSECT for the operand list of the BIND macro, which is generated at the
symbolic address BINDDS as a result of a BIND macro specifying MF=D.

(3) Register 7 is assigned to the assembler as the base address register for addressing
the DSECT for the operand list of the UNBIND macro, which is generated at the
symbolic address UNBDS as a result of an UNBIND macro specifying MF=D.

(4) The contents of the base register for UNBIND1 are output to indicate the addressing
mode and the load address.

(5) The BIND macro is called in its E form at the symbolic address BIND. At this point
in the program, therefore, only the instruction code is generated. The associated
operand list is created at the symbolic address BINDPAR by means of a BIND
macro specifying MF=L. As a result of the operand values specified in the list, the
BIND macro causes the following to happen at program runtime:

– the CSECT BIND3 (SYMBOL=BIND3) is reloaded from the library assigned
with the link name PLAMLIB (LIBLINK=PLAMLIB)

– the start address of BIND3 is stored in field BIND3@ (SYMBLAD=BIND3@)

– the 31-bit addressing mode is set for BIND3 (PROGMOD=ANY)

– the program run is continued in BIND3 after BIND3 has been loaded
(BRANCH=YES).

(6) Following execution of the BIND macro, a check is made to verify that the XBINRET
field of the standard header contains the return code X’00000000’, which indicates
error-free execution of the macro. The name XBINRET originates from the DSECT
that was generated under the symbolic address BINDDS as a result of a BIND
macro specifying MF=D and PREFIX=X (see point 12 below). This DSECT
describes the layout of the operand list of the BIND macro. The symbolic names of
the DSECT can be used for addressing within the operand list once the assigned
base address register (in this case, register 6) has been loaded with the start
address of the operand list (in this case, BINDPAR).

(7) If the BIND macro does not execute without error, an error message is written to
SYSOUT and the UNBIND1 program run is terminated.

(8) The UNBIND macro is called in its E form at the symbolic address UNBIND. At this
point in the program, therefore, only the instruction code is generated. The
associated operand list is created at the symbolic address UNBPAR by means of
an UNBIND macro specifying MF=L. As a result of the operand MODULE=BIND3
specified in the list, the UNBIND macro causes the BIND3 module to be unloaded.

UNBIND Description of the macros

970 U3291-J-Z125-16-76

(9) Following execution of the UNBIND macro, a check is made to verify that the
YUNBRET field of the standard header contains the return code X’00000000’,
which indicates error-free execution of the macro. The name YUNBRET originates
from the DSECT that was generated under the symbolic address UNBDS as a
result of an UNBIND macro specifying MF=D and PREFIX=Y (see point 13 below).
This DSECT describes the layout of the operand list of the UNBIND macro. The
symbolic names of the DSECT can be used for addressing within the operand list
once the assigned base address register (in this case, register 7) has been loaded
with the start address of the operand list (in this case, UNBPAR).

(10) If the UNBIND macro does not execute without error, an error message is written to
SYSOUT and the UNBIND1 program run is terminated.

(11) Messages written to SYSOUT indicate that program execution has continued in
UNBIND1 and module BIND3 has been unloaded.

(12) The BIND macro specifying MF=D generates a DSECT which describes the layout
of the operand list of the BIND macro. The operand PREFIX=X causes the letter X
to be prefixed to all symbolic names in this DSECT (field names and equates).

(13) The UNBIND macro specifying MF=D generates a DSECT which describes the
layout of the operand list of the UNBIND macro. The operand PREFIX=Y causes
the letter Y to be prefixed to all symbolic names in this DSECT (field names and
equates).

(14) The CSECT statement defines the control section BIND3.

(15) AMODE=ANY indicates to the operating system that BIND3 can execute in 24-bit
or 31-bit addressing mode.

(16) The contents of the base register for BIND3 are output to indicate the addressing
mode and the load address.

Runtime listing

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,unbind1), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,unbind1))
% ASS6011 ASSEMBLY TIME: 585 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 200 MSEC

Description of the macros UNBIND

U3291-J-Z125-16-76 971

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

01
7

 S
ta

n
d

13
:1

8
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
03

8
05

_m
ak

_a
t\b

hb
\e

n\
m

ak
ro

.v
05

\s
tu

.d
o

c

//compile source=*library-element(macexmp.lib,bind3), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,bind3))
% ASS6011 ASSEMBLY TIME: 169 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 83 MSEC
//end
% ASS6012 END OF ASSEMBH
/add-file-link link-name=plamlib,file-name=macexmp.lib ———————————————— (17)
/start-executable-program library=macexmp.lib,element-or-symbol=unbind1 (18)
% BLS0523 ELEMENT 'UNBIND1', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'UNBIND1', VERSION ' ' OF '<date> <time>' LOADED
UNBIND1: BASE REG.= 80000002 —— (19)
BIND3 : BASE REG.= 81000002 —— (20)
UNBIND PROCESSED
RETURN TO UNBIND1 ——— (21)

(17) The file link name used in the BIND call (5) is assigned.

(18) DBL is invoked to link, load and start the program.

(19) The contents of the base register for UNBIND1 are output. 31-bit addressing is set
(bit 231 = 1); the load address is below the 16-MB boundary.

(20) DBL has loaded the CSECT BIND3. The contents of the base register for BIND3
are output. 31-bit addressing is set (bit 231 = 1); the load address is above the
16-MB boundary.

(21) Following the return from BIND3, the program run is continued in UNBIND1 and
module BIND3 is unloaded.

VMGINF Description of the macros

972 U3291-J-Z125-16-76

VMGINF – Output information on VM2000 operation

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 3: D/C/E/L form; see page 29

The VM2000 virtual machine system allows different, completely separate system
environments to run on one server, with a performance comparable to a “native” system.
VM2000 thus increases the number of possible applications of a server and the degree to
which it is utilized. For further information, see the “VM2000” manual [17].

Macro description

The VMGINF macro tells the caller whether BS2000 is running under VM2000
(<PREFIX><MACID>VIND field of the parameter list). If this is the case, the caller is provided
with the following information on the VM2000 system, under which BS200 is currently
running or on which the IPL of BS2000 has been executed:

– the index (VM-INDEX) and the name (VM-NAME) of the virtual machine
– whether the system is a monitor system
– the SYSID (VM-CONFIGURATION-ID) of the monitor system.
– specific VM privileges and states of the guest system
– the version of VM2000
– the BCAM name of the monitor system
– the version of the monitor system
– Xen domain ID (x86 servers)

Macro format and description of operands

VMGINF

SRVUNIT = *STD / *INITIAL / *CURRENT

,MF=D / C / E / L

[,PARAM=addr / (r)]

,PREFIX=V / p

,MACID=MGI / macid

Description of the macros VMGINF

U3291-J-Z125-16-76 973

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

SRVUNIT=
Specifies the Server Unit whose data is to be output.

*STD
Currently valid default setting of the Server Unit.

*INITIAL
Server Unit on which IPL was performed for BS2000.

*CURRENT
Server Unit on which BS2000 is currently running.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.

A PREFIX can be specified in the C form or D form of the macro and additionally a MACID
in the C form (see section “S-type macros” on page 29).

i After calling the macro, the user must first establish whether the system is running
under VM2000. Only then can further output information be evaluated.

VMGINF Description of the macros

974 U3291-J-Z125-16-76

Layout of the data area

VMGINF MF=D
 1 MFTST MF=D,PREFIX=V,MACID=MGI,ALIGN=F, C
 1 DMACID=MGI,SUPPORT=(E,D,C,M,L)
 2 VMGI DSECT ,
 2 *,##### PREFIX=V, MACID=MGI #####
 1 VMGIUNIT EQU 137 unit number
 1 *
 1 VMGIFC04 EQU 4 function number
 1 *
 1 VMGIVR02 EQU 2 version number
 1 *
 1 * parameterarea description
 1 VMGIPA DS 0F begin of parameterarea _INOUT
 1 VMGIHDR FHDR MF=(C,VMGI),EQUATES=NO Standardheader
 2 VMGIHDR DS 0A
 2 VMGIFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
 2 *
 2 VMGIIFID DS 0A 0 INTERFACE IDENTIFIER
 2 VMGIFCTU DS AL2 0 FUNCTION UNIT NUMBER
 2 * BIT 15 HEADER FLAG BIT,
 2 * MUST BE RESET UNTIL FURTHER NOTICE
 2 * BIT 14-12 UNUSED, MUST BE RESET
 2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
 2 VMGIFCT DS AL1 2 FUNCTION NUMBER
 2 VMGIFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
 2 *
 2 VMGIRET DS 0A 4 GENERAL RETURN CODE
 2 VMGISRET DS 0AL2 4 SUB RETURN CODE
 2 VMGISR2 DS AL1 4 SUB RETURN CODE 2
 2 VMGISR1 DS AL1 5 SUB RETURN CODE 1
 2 VMGIMRET DS 0AL2 6 MAIN RETURN CODE
 2 VMGIMR2 DS AL1 6 MAIN RETURN CODE 2
 2 VMGIMR1 DS AL1 7 MAIN RETURN CODE 1
 2 VMGIFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
 2 *
 1 * main return codes
 1 VMGIMSCC EQU 0 function executed
 1 VMGIMPAR EQU 1 parameter error
 1 VMGIMINT EQU 2 internal error
 1 VMGIMTIM EQU 7 timeout error
 1 VMGIMANA EQU 64 VM2000 agent not available
 1 VMGIMXNA EQU 65 xend not available
 1 *

Description of the macros VMGINF

U3291-J-Z125-16-76 975

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

 1 VMGIVIND DS FL1 VM2000 indicator
 1 * VM2000 indicator set
 1 VMGIVM2R EQU 232 VM2000 running
 1 VMGIVM2N EQU 213 VM2000 not running
 1 *
 1 VMGISIND DS AL1 status indicator
 1 VMGIV2MO EQU X'80' monitor system
 1 VMGILTSY EQU X'40' local time syn via adjust
 1 * time
 1 VMGIMPAD EQU X'20' MP grade adjustment possible
 1 VMGIPIOM EQU X'10' VM-PRIV: DYNAMIC-IOREC
 1 VMGIPGIO EQU X'08' VM-PRIV: VMGLOB-IOREC
 1 VMGIUNU0 EQU X'04' unused
 1 VMGIGS2N EQU X'02' GS-UNIT2 not in use
 1 VMGIGS1N EQU X'01' GS-UNIT1 not in use
 1 VMGIVCID DS X VM configuration ID
 1 *
 1 VMGIVM_IDENT DS 0XL9 VM identification
 1 VMGIVMIX DS X VM index
 1 VMGIVMNM DS CL8 VM name
 1 *
 1 VMGIV1IN DS AL1 valid indicator 1
 1 VMGIV1O1 EQU X'80' :S: _OUT_11 valid
 1 VMGIV1O2 EQU X'40' :S: _OUT_12 valid
 1 VMGIV1O3 EQU X'20' :S: _OUT_13 valid
 1 VMGIV1O4 EQU X'10' :S: _OUT_14 valid
 1 VMGIUNU1 EQU X'0F' unused
 1 VMGIV2IN DS AL1 valid indicator 2
 1 VMGIUNU3 EQU X'FF' unused
 1 VMGIVVRS DS CL6 VM2000 version (Vxx.xx)
 1 * _OUT_11
 1 VMGISIN2 DS AL1 status indicator 2
 1 VMGIPIDA EQU X'80' VM-PRIV: IMPL-DEV-ASSIGN
 1 * _OUT_12
 1 VMGIPIOP EQU X'40' VM-PRIV: IO-PRIORITY _OUT_12
 1 VMGIPIOR EQU X'20' VM-PRIV: IO-RESET _OUT_12
 1 VMGICHMF EQU X'10' CHN-MON-FCL ACTIVE FOR VM
 1 * _OUT_12
 1 VMGIMBCA EQU X'08' BCAM ACTIVE IN MONITOR
 1 * _OUT_12
 1 VMGIPASA EQU X'04' VM-PRIV: AUTO-SNAP-ASSIGN
 1 * _OUT_12
 1 VMGIRSCS EQU X'02' RSC SUPPORTED _OUT_14
 1 VMGIUNU2 EQU X'01' unused
 1 VMGIMBCN DS CL8 monitor BCAM name _OUT_12
 1 VMGIMOVS DS CL10 monitor OSD version _OUT_12
 1 VMGIDOID DS XL8 Xen domid _OUT_13
 1 VMGIRES1 DS XL43 reserverd

VMGINF Description of the macros

976 U3291-J-Z125-16-76

 1 VMGISUI DS FL1 server unit indicator
 1 * Server unit indicator set
 1 VMGISUIS EQU 0 standard
 1 VMGISUII EQU 1 initial
 1 VMGISUIC EQU 2 current
 1 *
 1 VMGICID DS FL1 caller identifier (internal
 1 * use)
 1 * Caller identifier set
 1 VMGICIDS EQU 0 system
 1 VMGICIDU EQU 1 user
 1 *
 1 VMGI# EQU *-VMGIHDR

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

The names of the output fields are given in the parameter list.

Standard
header:

A return code relating to the execution of the VMGINF
macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'01' X'0001' Parameter error

X'00' X'20' X'0002' Internal error

X'0C' X'40' X'0007' Timeout error

X'0C' X'82' X'0040' VM2000 agent not available

X'0C' X'82' X'0041' XEND not available

Description of the macros VPASS

U3291-J-Z125-16-76 977

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

VPASS – Variable-length pass

General

Application area: Starting, interrupting and terminating; see page 72
Macro type: Type R; see page 28

Macro description

The VPASS macro is used to relinquish control of the processor for a specified period, i.e.
the user task is set to a wait state. The waiting period specification can be made relative to
the CPU rate.

Macro format and description of operands

number
Number of seconds or milliseconds during which the task is placed in the wait state,
specified either as a decimal or a hexadecimal digit (X'....').

(1)
Specifies that register R1 is loaded with the required number of seconds or milliseconds.

Value range
– Specification in seconds:

– direct entry: 0 ≤ number ≤ 4095 (=X'0FFF')
– Register R1: 0 ≤ number ≤ 21599

– Specification in milliseconds: 1 ≤ number ≤ 999 (=X'3E7')

MSEC=
Defines the unit of measurement for the “number” specification.

N
Specification in seconds.

Y
Specification in milliseconds (ms).

VPASS

number / (1)

,MSEC=N / Y

,CPUDEP=N / Y

VPASS Description of the macros

978 U3291-J-Z125-16-76

CPUDEP=
Specifies whether the period of time is to be made relative to the CPU rate.

N
The time specification is not made relative.

Y
The time specification is not changed in the case of 1-MOPS servers (servers working
at a rate of one million operations per second).
In the case of faster servers, the specified waiting time is reduced, relative to the CPU
rate. With slower servers this time is increased correspondingly.

i Making the time relative specification rate is advisable only when specified waiting
times are short, since the number of executed instructions cannot otherwise be
estimated precisely enough.

Notes on the macro call

– Time specifications ≤ 500 ms do not lead to deactivation of the task. The task remains
in the active waiting state.

– The specification number = 0 sec corresponds to a waiting time of 500 ms (for reasons
of compatibility).

For an example see the section “Contingency processes” on page 110.

Description of the macros VSVI1

U3291-J-Z125-16-76 979

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

VSVI1 – Output link and load information

General

Application area: Linking and loading; see page 47
Macro type: Type S, MF format 2: standard/C/D/L/E/M form; see page 29

See also the “BLSSERV” manual [4] for information on the dynamic binder loader DBL.

Macro description

The VSVI1 macro provides the user with information on entries in the DBL tables. For this
purpose, DBL accesses the following contexts:
– user contexts and/or system contexts

Information on system contexts is output only under TSOS.
– contexts of common memory pools in which shared code is stored and to which the user

is connected.

The following information can be requested:
– a list of context names (SELECT=CTXLIST),
– the size of the code loaded in a context and the size of the associated link and load

information (SELECT=CTXSIZE),
– a list containing the names, load addresses, lengths, types, attributes and contexts of

CSECTs, ENTRYs and COMMONs (SELECT=ALLLIST),
– a list containing the names, load addresses, lengths, types, attributes and contexts of

all CSECTs and COMMONs (SELECT=MODLIST),
– a record containing the name, load address, length, type, attribute, context, version

and HSI code of a single control section (CSECT), ENTRY or COMMON
(SELECT= BYNAME),

– a record containing the name, load address, length, type, attributes and context of a
control section (CSECT) or COMMON specified by means of an address
(SELECT= BYADDR).

– A list of ILEs belonging to one or more contexts.

The individual items of information (name, load address, length, attribute, type, context and
HSI code) can be selected independently of one another. It is also possible to request just
the length of the desired output information.
A description of the output information follows immediately after the operand description
(see page 990).

VSVI1 Description of the macros

980 U3291-J-Z125-16-76

Macro format and description of operands

The operands are described in alphabetical order below.

VSVI1

SELECT=CTXLIST / CTXSIZE / ALLLIST / MODLIST / BYNAME / BYADDR / ILELIST

,OUTADDR=adr / (r) / label

,OUTLEN=integer

,ADDRESS=YES / NO

,CONTEXT=YES / NO

,CTXPRIV=ANY / YES / NO

,CTXSEL=ALL / LOCAL / GLOBAL / POOL / SSLOCAL

,HSI=NO / YES

[,]

[,]

,INSTRUCT=adr

,INTVERS=BLSP2 / SRV001 / SRV002 / SRV003

,LEN=YES / NO

,NAME=YES / NO

,RUNMOD=STD / ADV

,SCOPE=ALL / USER_GROUP / GLOBAL / GROUP

,SIZONLY=NO / YES

,SYMTYP = ANY / CSECT / ISL / NOTISL

,TYPE=YES / NO

,VERSION=NO / YES

,MF=S / C / D / E / L / M

[,PARAM=adr / (r)]

,PREFIX=P / p

[,LABEL=name]

INNAME=name
INNAME@=adr / (r)

INADDR=adr / (r) / label

INCTX=name
INCTX@=adr / (r)

Description of the macros VSVI1

U3291-J-Z125-16-76 981

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

ADDRESS=
Specifies whether the load addresses are to be included in the information output.

YES
The load addresses will be output.

NO
The load addresses will not be output.

CONTEXT=
Specifies whether the names of the contexts are to be included in the information output.

YES
The context names will be output.

NO
The context names will not be output.

CTXPRIV=
Specifies the access privilege for the context search (only in conjunction with
RUNMOD=ADV).

– For nonprivileged users (not TSOS), the entry is ignored and internally set to
CTXPRIV=NO.

– For privileged users (TSOS), the following applies:
If RUNMODE=ADV and the CTXPRIV parameter was not specified, DBL sets
CTXPRIV=ANY.
If RUNMODE=STD, DBL ignores the input value for CTXPRIV and sets
CTXPRIV=YES.

ANY
Both privileged and nonprivileged contexts are to be searched. For nonprivileged users,
only nonprivileged contexts will be searched.

YES
Only privileged contexts will be searched. This option is permitted for privileged users
only.

NO
Only nonprivileged contexts will be searched.

VSVI1 Description of the macros

982 U3291-J-Z125-16-76

CTXSEL=
Specifies the scope of the context search (only in conjunction with RUNMOD=ADV).

– For nonprivileged users (not TSOS), only CTXSEL=LOCAL or CTXSEL=POOL is
permitted. Any other entry is handled in the same way as CTXSEL=LOCAL.

– For privileged users (TSOS), the following applies:
If RUNMODE=ADV and the CTXSEL parameter was not specified, DBL sets
CTXSEL=ALL.
If RUNMODE=STD, DBL ignores the input value for CTXSEL and sets
CTXSEL=GLOBAL.

ALL
Contexts with the SYSTEM and USER scope will be searched. Contexts with the scope
POOL and SSLOCAL will not be considered.

GLOBAL
Only contexts with the SYSTEM scope will be searched.

LOCAL
Contexts with the USER scope will be searched.
RUNMODE=ADV will also search the pre-loaded part of the context of subsystems if
following conditions are true:
– the task in which the VSVI1 macro is called is linked to the subsystem
– the subsystem possesses the attribute MEMORY-CLASS=*BY-SLICE

POOL
Contexts of memory pools into which shared code was loaded by means of the
ASHARE macro will be searched. The set of memory pool contexts can be restricted
by specifying a memory pool scope (SCOPE operand).

SSLOCAL
Only local subsystem contexts will be searched.

HSI=
Specifies whether the output is to contain information on the hardware-software interface
(only in conjunction with RUNMOD=ADV).

NO
The HSI code will not be output.

YES
The HSI code and HSI compiler information will be output. This operand value is
relevant only for the output of symbol information and may be specified only in
conjunction with RUNMOD=ADV.

INNAME=name
Specifies the name of a control section (CSECT), ENTRY or COMMON whose name, load
address, length and attributes are to be output.“name” may be up to 32 characters long.

Description of the macros VSVI1

U3291-J-Z125-16-76 983

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

The INNAME operand must be specified in conjunction with the SELECT=BYNAME
operand.

INNAME@=
May be specified only if MF=M. Specifies the address of a field containing the name of a
control section (CSECT), ENTRY or COMMON.

addr
Address of an auxiliary field which contains the field address searched for.

(r)
r = register containing the field address searched for.

INADDR=
Specifies an address for which the corresponding items of information (name, load address,
length and attributes) are to be output.
The INADDR operand must be specified in conjunction with the SELECT=BYADDR
operand.

addr
Address of a field which contains the program address searched for.
May be specified only if MF=M.

(r)
r = register containing program address searched for. May be specified only if MF=M.

label
Program address. The address can be specified as a symbolic address or as a constant
(X'...'). May be specified only if MF=S or MF=L.

INCTX=name
Specifies a context which is to be searched. “name” may be up to 32 characters long. If the
operand is not used the contexts will be searched in accordance with the CTXSEL and
CTXPRIV operand values; if CTXSEL=POOL is specified, the contexts will be searched in
accordance with the SCOPE operand. The INCTX operand will be ignored if
SELECT=CTXLIST has also been specified.

INCTX@=
May be specified only if MF=M.
Specifies the address of a field containing the name of the context which is to be searched.

addr
Address of an auxiliary field which contains the field address searched for.

(r)
r = register containing the field address searched for.

VSVI1 Description of the macros

984 U3291-J-Z125-16-76

INSTRUCT=addr
This operand is only available if INTVERS=SRVxxx and xxx Ï 001 is specified. It must be
used with SELECT=BYNAME.
Symbolic address of a structure containing an EEN (extended external name). The
structure consists of two 4-byte length fields, the first one containing the length of the
extended external name, and the second one containing the address of the extended
external name.

INTVERS=
This operand defines the version of the VSVI1 macro interface.

BLSP2
Default; corresponds to macro version 3.

SRV001
Corresponds to macro version 4. This version is supported as of BLSSERV V2.0.

SRV002
Corresponds to macro version 5. This version is supported as of BLSSERV V2.3B.

SRV003
Corresponds to macro version 6. This version is supported as of BLSSERV V2.5A.

MF=
For a general description of the MF operand, its operand values and any of the specified
operands PARAM and PREFIX, see section “S-type macros” on page 29. The valid MF
values are given at the start of the macro description under “Macro type” and are included
in the macro format.

A PREFIX can be specified in the C form, D form or M form of the macro
(see section “S-type macros” on page 29).

LABEL=name
May be specified only if MF=M.
Name of the structure, i.e. the DSECT which describes the operand list of the VSVI1 macro.
The operand is mandatory if there is no valid USING statement for the definition of the base
address register for the DSECT of the parameter list.
The LABEL operand must be specified in conjunction with the PARAM operand. Both
operands are used to produce a valid USING statement.

The following may be specified for “name”:

1. The name specified in the name field of a preceding macro name VSVI1 MF=D
2. The name “xVSVIDS” if no “name” has already been specified, where “x” is the value

of the PREFIX operand of a preceding macro VSVI1 MF=D, PREFIX=x
The default value for “x” is “P”.

3. The name of the longer DSECT containing the parameter list of the VSVI1 macro if the
macro VSVI1 MF=C was specified earlier.

Description of the macros VSVI1

U3291-J-Z125-16-76 985

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

LEN=
Specifies whether the lengths are to be included in the information output.

YES
The lengths will be output.

NO
The lengths will not be output.

NAME=
Specifies whether the names of CSECTs, ENTRYs and COMMONs are to be included in
the information output.

YES
The names are to be output.

NO
The names are not to be output.

OUTADDR=
Specifies the address of a field into which DBL is to place the information.

addr
Address of an auxiliary field which contains the field address searched for.
May be specified only if MF=M.

(r)
r = register containing the field address searched for. May be specified only if MF=M.

label
Symbolic field address.May be specified only if MF=S or MF=L.

OUTLEN=integer
Specifies the length of the output field (in bytes). The minimum length is 4 bytes.

RUNMOD=
Specifies the operating mode in which the VSVI1 macro will be processed.

STD
The macro will be processed in the standard form. The information output in this case
is fully compatible with the information supplied by the previous VSVI macro of BS2000
Version 9.5.
In standard form the VSVI1 macro processes only 8-character names in the case of
CSECTs, ENTRYs and COMMONs, and only names with up to 16 characters in the
case of contexts. This can lead to conflicts if, for example, information on a loaded LLM
is to be output, since longer names are truncated.

VSVI1 Description of the macros

986 U3291-J-Z125-16-76

ADV
The macro will be processed in the extended form. In this form the VSVI1 macro
processes names consisting of up to 32 characters. The following operands are
permitted only in conjunction with RUNMOD=ADV:
SELECT=ILELIST, CTXSEL, SCOPE, CTXPRIV, HSI, VERSION.

SCOPE=
Specifies which memory pool contexts are to be considered if CTXSEL=POOL was
specified (only in conjunction with RUNMOD=ADV).

ALL
Memory pool contexts will be considered.

GROUP
Only the contexts of common memory pools with the GROUP scope will be considered.

USER_GROUP
Only the contexts of common memory pools with the USER_GROUP scope will be
considered.

GLOBAL
Only the contexts of common memory pools with the GLOBAL scope will be
considered.

SELECT=
Selects the type of information to be output.

CTXLIST
A list of context names will be output (user (contexts of the task and/or system contexts
and/or memory pool contexts and/or local subsystem contexts).

CTXSIZE
Only allowed in combination with RUNMOD=ADV.
The size of the code loaded into a context and the size of the associated link and load
information will be output. The size is specified in bytes and is rounded up to a multiple
of 4 Kbytes. The name of the context must be defined using INCTX or INCTX@.

ALLLIST
A list containing the names, load addresses, lengths and attributes of all CSECTs,
ENTRYs and COMMONs will be output.

MODLIST
A list containing the names, load addresses, lengths and attributes of all CSECTs and
COMMONs will be output.

Description of the macros VSVI1

U3291-J-Z125-16-76 987

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

BYNAME
A record containing the name, load address, length and attributes of a single control
section (CSECT), ENTRY or COMMON will be output. The name of the symbol must
be specified with the INNAME or INSTRUCT (and INTVERS=SRVxxx with xxx Ï 001)
operand.

BYADDR
A record containing the name, load address, length and attributes of a single control
section (CSECT) or COMMON will be output. The address of the symbol must be
specified with the INADDR operand.

ILELIST
A list containing information on ILEs in the specified context is to be output.
SELECT=ILELIST may be specified only in conjunction with RUNMOD=ADV.

SIZONLY=
Specifies whether the desired information or merely the length of the desired information
will be output.

NO
The information will be transferred to the output field.

YES
Only the length of the information, not the information itself, will be transferred to the
output field.

SYMTYP=
This operand is available when INTVERS=SRVxxx and xxx Ï 003 are specified. It is only
meaningful in conjunction with the SELECT=BYNAME operand, and is ignored in any other
case.
It specifies the type of the symbol defined with INNAME, INNAME@ or INSTRUCT for
which information is requested.

ANY
The type of the symbol searched for is irrelevant.

CSECT
Only CSECTs with the specified name are searched for.

ISL
This specification is only relevant for privileged users. Furthermore, it is also only mean-
ingful if the CP context (see INCTX/INCTX@) or privileged contexts
(CTXSEL=ALL/GLOBAL and CTXPRIV=ANY/ALL) are searched.

Only ISL ENTRYs with the specified name are searched for.

NOTISL
Only symbols with the specified name are searched for, the CSECTs or ENTRYs, but
not ISL.

VSVI1 Description of the macros

988 U3291-J-Z125-16-76

TYPE=
Specifies whether the types (CSECT/ENTRY/COMMON) are to be included in the
information output.

YES
The types will be output.

NO
The types will not be output.

VERSION=
Specifies whether the output is to contain information on the program version (only in
conjunction with RUNMOD=ADV).

NO
The program version will not be output.

YES
The program version will be output. This operand value is relevant only for the output of
symbol information and may be specified only in conjunction with RUNMOD=ADV.

Notes on the macro call

● At least one of the operands NAME, ADDRESS, LEN, TYPE, CONTEXT, VERSION or
HSI must be specified for the output of information.

● None of the operands NAME, ADDRESS, LEN, TYPE, CONTEXT, VERSION or HSI
needs to be specified if the user merely wishes to check whether

– a specified name (INNAME/INSTRUCT operand) is the name of a symbol
(SELECT=BYNAME operand),

– a specified address (INADDR operand) is available (SELECT=BYADDR operand),
– a specified context (INCTX operand) is available (SELECT=ALLLIST or

SELECT=MODLIST operand).

In these cases, only the return code is significant.

If the name, address or context cannot be found the following return code is passed:
X'0440003C' Name of symbol not found
X'04400038' Address not found
X'04400040' Context not found

If the name, address or context is found DBL delivers the return code X'00000000'.

● The length of the output area into which DBL is to transfer the information has to be
defined with the OUTLEN operand. If the specified length is too small the information
will be truncated to this length. If the specified length is less than the length of the
smallest item of information, no information will be output. In both cases DBL supplies
a return code.

Description of the macros VSVI1

U3291-J-Z125-16-76 989

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

● If a module contains more than one CSECT, the information selected by DBL is
dependent on the SELECT operand, as follows:
– with SELECT=BYADDR the information refers to the CSECT containing the

address specified by INADDR.
– with SELECT=BYNAME, and if INNAME identifies a CSECT name, the information

refers to this CSECT.
– with SELECT=ALLLIST separate information is output for each CSECT.

● The VSVI1 macro attempts to carry on processing as far as possible in the event of
an error. If, for example, the operands specify that more than one context has to be
searched, and an error occurs while a context is being searched, the VSVI1 macro
continues by searching the next context. The cause of the error is reported by DBL in a
return code. This return code always refers to the last error that occurred.

● If SELECT=BYNAME is specified, either the INNAME or INSTRUCT operand must be
specified. However, they cannot be specified together.

● When SELECT=BYNAME is set, DBL searches the context only until the first symbol of
the specified name (INNAME or INSTRUCT operand) is found. If there are several
symbols with the same name, only information on the first symbol found is output.

● If just the length of the information is desired (SIZONLY=YES operand), DBL takes the
length of the information up to the null entry as the length.

● If the memory area specified in OUTADDR is only readable, or if zero was specified for
OUTLEN, processing is aborted with a user dump.

● If a context list is requested (SELECT=CTXLIST), NO can be specified for the NAME,
ADDRESS, LEN, TYPE, CONTEXT, VERSION, HSI and SIZONLY operands.

● When information about contexts of common memory pools is being requested
(CTXSEL=POOL), the return code X'08400048' may be issued as a result of concurrent
access to a common memory pool.

● The following applies for nonprivileged users (not $TSOS):
– The user-specific values for the operands are ignored and are filled internally by the

DBL with CTXPRIV=NO.
– For the CTXSEL operand, values other than POOL are ignored and are filled

internally by the DBL with CTXSEL=LOCAL.
– If VSVI1 is called SELECT=BYNAME but without INCTX, the DBL searches first in

the private class 6 memory and in common memory pools. If it does not find the
symbol specified, it tries to establish a connection to nonprivileged subsystems.

VSVI1 Description of the macros

990 U3291-J-Z125-16-76

Possible operand combinations

The following table shows which operands are mandatory or permitted depending on the
SELECT operand:

M Parameter mandatory
P Operand permitted
I Operand ignored
- Operand irrelevant for this SELECT specification.

Output information when RUNMOD=STD

In RUNMOD=STD operating mode the macro is processed in the standard form. The
information output in this case is fully compatible with the information supplied by the
previous VSVI macro of BS2000 Version 9.5.

In standard form the VSVI1 macro processes only 8-character names in the case of
CSECTs, ENTRYs and COMMONs, and only names with up to 16 characters in the case
of contexts. Longer names of CSECTs, ENTRYs and COMMONs are truncated to
8 characters, and longer names of contexts to 16 characters.

The reference size for an item of information output is an entry in the DBL tables. The entry
has a fixed length of 36 bytes.

SELECT=

IN
A

D
D

R

IN
N

A
M

E
/

IN
S

T
R

U
C

T

IN
C

T
X

O
U

TA
D

D
R

O
U

T
L

E
N

C
T

X
S

E
L

C
T

X
P

R
IV

S
C

O
P

E

S
Y

M
T

Y
P

CTXLIST - - - M M P P P I

CTXSIZE - - M M M - - - I

ALLLIST - - P M M P P P I

MODLIST - - P M M P P P I

ILELIST - - P M M P P P I

BYADDR M - P M M P P P I

BYNAME - M P M M P P P P

Description of the macros VSVI1

U3291-J-Z125-16-76 991

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Format of the entries

If just the length of the information is desired (SIZONLY=YES operand), this takes up the
first 4 bytes of the output field.

Multiple entries are output consecutively in the same sequence. The last entry is followed
by a null entry. A pseudoentry is output if the specified program address cannot be found
(SELECT=BYADDR operand).

Byte Length Field Field entry Coding/Remarks

0- 7 8 Name of symbol left-justified with trailing blanks Character constant

8-11 4 Load address - Hexadecimal constant

12-15 4 Length - Hexadecimal constant

16 1 Type - X'F0' ï CSECT
X'F1' ï ENTRY
X'F3' ï COMMON

17 1 Attributes 1 or 2 bit per attribute 27 ï INVISIBILITY
26 and 25 ï AMODE

00 ï AMODE=32
01 ï AMODE=31
10 ï AMODE=24
11 ï AMODE=ANY

24 ï RESIDENT
23 ï PAGE
22 ï READ-ONLY

18-19 2 X' 0000' Alignment of the following
field

20-35 16 Name of the context left-justified with trailing blanks Character constant

Field Null entry Pseudoentry

Length Field entry

Name of CSECT/COMMON/ENTRY 8 X'40.......40' C'ABSOLUTE'

Load address 4 X'0.....0' X'0.....0'

Length 4 X'F.....F' X'0.....0'

Type 1 X'C5' X'00'

Attribute 1 X'00' X'00'

Name of context 16 X'40.......40' X'40..........40'

VSVI1 Description of the macros

992 U3291-J-Z125-16-76

Notes

– The length of the output field is derived from adding together the individual entries. If
the length is too small the information will be truncated. The information is not
transferred if it is shorter than the minimum length for a requested entry. The minimum
length = length of an entry minus the length of items that are not to be output (e.g.
NAME=NO).

– Only the INVISIBILITY and AMODE attributes are relevant for an ENTRY, and only
PAGE and AMODE for a COMMON.

– A control section or ENTRY has the INVISIBILITY attribute if it was masked during
linking or subsequent loading.

– If SELECT=CTXLIST is specified, a list of 16-byte context names is output, each
followed by 16 blanks (X'40') to indicate the end of the name.

Format:

– If SELECT=CTXSIZE is specified, the output information consists of two words. The
first word contains the size of the code in the context and the second word contains the
size of the link and load information for this context. The specification is given in bytes
and is rounded up to a multiple of 4 Kbytes.

Output information when RUNMOD=ADV

In RUNMOD=ADV operating mode the macro is processed in the extended form. In
extended form the macro processes names up to 32 characters long, and ILE information,
HSI code and HSI compiler information may be requested in addition. The reference size
for a specified item of information is an entry in the DBL tables. The entry is of variable
length, being dependent on the length of the names and the type of information requested.

CTX1ËËËËËËËËËËËË

CTX2ËËËËËËËËËËËË

ËËËËËËËËËËËËËËËË

Description of the macros VSVI1

U3291-J-Z125-16-76 993

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Format of the entries

The total length of an entry may be calculated as follows:

Entry length = 17 + n + m + l

If just the length of the information is desired (SIZONLY=YES operand), this takes up the
first 4 bytes of the output field.

Bytes Length Field Field entry Coding/comment

0 - 3 4 Load address — Hexadecimal constant

4 - 7 4 Length — Hexadecimal constant

8 1 Type — X'F0' = CSECT
X'F1' = ENTRY
X'F2' = COMMON

9 1 Attributes 1 or 2 bit
per
attribute

27 ï INVISIBILITY
26 and 25 ï AMODE

00 ï AMODE=32
01 ï AMODE=31
10 ï AMODE=24
11 ï AMODE=ANY

24 ï RESIDENT
23 ï PAGE
22 ï READ-ONLY

10 - 11 2 X'0000' Alignment of following field

12 1 HSI code — X'01' = 7500 (/390)
X'09' = x86

13 1 HSI compiler information — Compiler-dependent;
BLS simply records this information
and outputs it here.

14 1 Length n of the symbol
name

— Hexadecimal constant

15 n Name of the symbol — Alphanumeric constant

15+n 1 Length m of the version — Hexadecimal constant

15+(n+1) m Version of the program to
which the symbol belongs

— Alphanumeric constant

15+(n+1)
+m

1 Length l of the context
name

— Hexadecimal constant

15+(n+1)
+(m+1)

l Name of the context — Alphanumeric constant

VSVI1 Description of the macros

994 U3291-J-Z125-16-76

Blank entries and pseudoentries

Multiple entries are output consecutively in the same order. The last entry is followed by a
null entry. A pseudoentry is output if the specified program address cannot be found
(SELECT=BYADDR operand).

Notes

– If SELECT=CTXLIST is specified, a list of variable-length context names is output.
The first byte of each list item contains the length of the context name; the following
bytes contain the context name proper. The list is terminated with a list item containing
32 blanks (X'40').

Format:

– If SELECT=CTXSIZE is specified, the output information consists of two words. The
first word contains the size of the code in the context and the second word contains the
size of the link and load information for this context. The specification is given in bytes
and is rounded up to a multiple of 4 Kbytes.

– If a user (not $TSOS) calls the VSVI1 macro with SELECT=BYNAME but without
specifying INCTX, and if DBL cannot find this symbol either in this user's class 6
memory or in shared code in memory pools, DBL attempts to establish a connection to
the nonprivileged DSSM subsystems.

Field Null entry Pseudoentry

Length Field entry

Load address 4 X'0.....0' X'0.....0'

Length 4 X'F.....F' X'0.....0'

Type 1 X'C5' X'00'

Attribute 1 X'00' X'00'

Length n of symbol name 1 X'08' X'08'

Name of symbol 8 X'40......40' C'ABSOLUTE'

Length m of context name 1 X'00' X'00'

0D LOCAL#DEFAULT

04 CTX1

04 CTX2

20 ËËËËËËËËËËËËËËËËËËËËËËËËËËËËËËËË

Description of the macros VSVI1

U3291-J-Z125-16-76 995

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

– If SELECT=ILELIST is specified, a formatted list entry is output for each ILE. The
context name may also be included in this list on request. If CONTEXT=NO is specified
the context name is not output. An entry for an ILE symbol has the following format:

The entry format roughly corresponds to the format that is also generated when the ILEMIT
macro is called.

The last ILE entry is followed by a blank entry in which all fields (except the NAME field)
contain binary zeros. The NAME field contains blanks. A blank entry does not contain a
CONTEXT field.

Bytes Length Field name Meaning and/or values

0 1 STATE X'01' = ACTIVE
X'02' = NOT_ACTIVE

1 1 CONTROL X'01' = SYSTEM
X'02' = USER

2 1 HSI_CODE X'01' = 390
X'09' = x86

3 1 RESERVED1 Reserved (must contain X'00')

4 4 LOAD_ADDR Address of the IL routine

8 4 SERVER_ADDR Address of the ILE server

12 2 REF_DISPL Distance of the external reference to the server within the
IL routine

14 32 NAME Name of the ILE symbol

46 2 RESERVED2 Reserved (must contain X'0000')

48 32 CONTEXT Name of the context to which the ILE belongs

VSVI1 Description of the macros

996 U3291-J-Z125-16-76

Return information and error flags

Standard
header:

A return code relating to the execution of the VSVI1
macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' The macro was executed normally.

X'0C' X'01' X'0018' A reserved field in the parameter list is not preset with zeros.

X'0C' X'01' X'0020' The specified length of the output field (OUTLEN operand) is less than
the actual length of the field.

X'0C' X'01' X'0024' The output field (OUTADDR operand) is not aligned on a halfword
boundary, has read access only, or has not been assigned.

X'0C' X'01' X'0028' Illegal entry for the SELECT operand.

X'0C' X'01' X'002C' Illegal entry for an operand. This may be:
– HSI or VERSION was specified in conjunction with RUNMOD=STD,
– (syntactically) wrong name specified for INNAME, INSTRUCT or

INCTX
– privileged context specified and the user is nonprivileged
– a nonprivileged user has specified an illegal context name in

RUNMOD=STD operating mode. When RUNMOD=STD applies,
only information on contexts with names consisting of blanks
(X'40') or the character string “LOCAL#DEFAULT” may be
requested by a nonprivileged user.

– SELECT=BYADDR was specified without INADDR or with incorrect
value for INADDR (e.g. INADDR=X'FFFFFFFF').

– a nonprivileged user has specified SYMTYP with a value other than
ANY and SELECT=BYNAME,CTXSEL=LOC,RUNMOD=ADV.

X'0C' X'01' X'002D' Illegal entry for the SYMTYP operand.

X'0C' X'01' X'0030' The caller has not specified any of the information operands (NAME,
ADDRESS, LEN, TYPE, CONTEXT, VERSION, HSI) and SELECT is not
BY_NAME or BY_ADDR.
This return code is also transferred if:
– the operands NAME, ADDRESS, LEN, TYPE, HSI, CONTEXT and

VERSION all contain NO, and SIZONLY=YES was specified.
– the operands NAME, ADDRESS, LEN, TYPE, HSI, CONTEXT and

VERSION all contain NO, SIZONLY=NO, SELECT=MODLIST or
SELECT=ALLLIST was specified, and INCTX was not specified.

X'08' X'40' X'0034' The length of the output area specified in the OUTLEN operand is less
than the total length of the requested information. The output is
incomplete.

Description of the macros VSVI1

U3291-J-Z125-16-76 997

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard return codes” on page 43.

X'0C' X'01' X'0034' The length of the output area specified in the OUTLEN operand is too
small for transferring the smallest item of information requested. No
output takes place.

X'04' X'40' X'0038' The address specified in the INADDR operand belongs to none of the
modules already loaded.

X'04' X'40' X'003C' The name specified in the INNAME or INSTRUCT operand designates
none of the modules already loaded.

X'04' X'40' X'0040' The context name specified in the INCTX operand cannot be found or
the task from which the VSVI1 call is issued is not linked to the
subsystem with the specified context name.

X'0C' X'20' X'0044' Internal error while the function was being executed. No output is
possible.

X'08' X'40' X'0048' One or more contexts with global scope are being used by another task.
The output is incomplete.

X'04' X'40' X'004C' The name of the symbol is longer than 8 characters and RUNMOD=STD
is specified. The name has been truncated to 8 characters.

X'04' X'40' X'0050' The specified context, though present, is empty because all its objects
have been unloaded.

X'04' X'40' X'0070' The task is not connected to the memory pool.

X'0C' X'20' X'0198' No more memory available.

X'0C' X'40' X'0204' Internal error in memory management.

X'0C' X'40' X'0208' Internal error in data manager.

X'0C' X'40' X'020C' Internal error in the symbolic information tables.

X'0C' X'20' X'0300' Error in $REQM, $RELM (system error).

X'00' X'01' X'FFFF' The function is no longer or not yet supported.

X'00' X'03' X'FFFF' The interface version is not supported.

X'cc' X'bb' X'aaaa' Meaning

VSVI1 Description of the macros

998 U3291-J-Z125-16-76

Example

During the PROGA program run, a BIND macro is issued to load a second control section,
PROGB, as an overlay. PROGB is stored as an object module in library MACEXMP.LIB.
Before and after PROGB is loaded, the VSVI1 macro is called in order to transfer link and
load information from the DBL tables to an output area. Both control sections are to execute
in 31-bit addressing mode. PROGA is to be loaded below, and PROGB above, the 16-MB
boundary. An ENTRY is defined in PROGB. After the BIND macro is called, PROGB is to
execute first. Following the execution of PROGB a return branch is to be made to PROGA.

Source listing

PROGA START
PROGA AMODE 31 ——— (1)
PROGA RMODE 24
 BALR 3,0
 USING *,3
 USING BINDDS,6 ——— (2)
 USING VSVI1DS,7 —— (3)
 ST 3,AREA11
 UNPK AREAH,AREA1
 MVC AREAA(8),AREAH
WROUT1 WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (4)
 MVI ADR1,X'D1' ——— (5)
 MVC ADR1+1(L'ADR1-1),ADR1
 VSVI1 MF=E,PARAM=VSVI1PAR ———————————————————————————————————— (6)
 LA 7,VSVI1PAR
 CLC YVSVRET,=X'00000000' ——————————————————————————————————— (7)
 BNE VSVIERR —— (8)
BACK LA 12,VSVI
BIND BIND MF=E,PARAM=BINDPAR ————————————————————————————————————— (9)
 LA 6,BINDPAR
 CLC XBINRET,=X'00000000' ——————————————————————————————————— (10)
 BE VSVI
 MVC OUT+5(28),='BIND ERROR! '
 WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (11)
 B ERROR
VSVI VSVI1 MF=E,PARAM=VSVI1PAR ———————————————————————————————————— (12)
 CLC YVSVRET,=X'00000000' ——————————————————————————————————— (13)
 BE MVC
VSVIERR MVC OUT+5(28),='VSVI1 ERROR! '
 WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (14)
 B ERROR
MVC MVC OUT+5(28),='VSVI1 PROCESSED '
 WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (15)
 MVC OUT+5(28),='RETURN TO PROGA '
 WROUT OUT,ERROR,PARMOD=31

Description of the macros VSVI1

U3291-J-Z125-16-76 999

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

ERROR TERM

 DS 0F
ADR1 DS CL180 —— (16)
OUT DC Y(OUTE-OUT)
 DS CL3
 DC C'PROGA: BASE REG.= '
AREAA DS CL8
OUTE EQU *
AREA DS 0F
AREA1 DS 0CL5
AREA11 DS CL4
AREA12 DC C'0'
 DS 0F
AREAH DS CL9
BINDPAR BIND MF=L,SYMBOL=PROGB,SYMBLAD=PROGB@,BRANCH=YES,PROGMOD=ANY,*
 LIBLINK=PLAMLIB ––– (9)
VSVI1PAR VSVI1 MF=L,SELECT=ALLLIST,CTXSEL=ALL,OUTADDR=ADR1,OUTLEN=180 ––– (6)
PROGB@ DS A
BINDDS BIND MF=D,PREFIX=X —— (17)
VSVI1DS VSVI1 MF=D,PREFIX=Y —— (18)
 END
PROGB CSECT PAGE ——— (19)
PROGB AMODE ANY
PROGB RMODE ANY
 ENTRY ENTR ——— (20)
ENTR BALR 4,0
 USING *,4
 ST 4,AREA11
 UNPK AREAH,AREA1
 MVC AREAA(8),AREAH
 WROUT OUT,ERROR,PARMOD=31 ———————————————————————————————————— (21)
 BR 12
ERROR TERM

OUT DC Y(OUTE-OUT)
 DS CL3
 DC C'PROGB: BASE REG.= '
AREAA DS CL8
OUTE EQU *
AREA DS 0F
AREA1 DS 0CL5
AREA11 DS CL4
AREA12 DC C'0'
AREAH DS CL9
 END

VSVI1 Description of the macros

1000 U3291-J-Z125-16-76

(1) The attribute AMODE=31 is defined for control section PROGA. The attribute
RMODE=24 means that PROGA will always be loaded below the 16-MB boundary.

(2) Register 6 is assigned to the assembler as the base address register for addressing
the DSECT for the operand list of the BIND macro, which is generated at the
symbolic address BINDDS as a result of a BIND macro specifying MF=D.

(3) Register 7 is assigned to the assembler as the base address register for addressing
the DSECT for the operand list of the VSVI1 macro, which is generated at the
symbolic address VSVI1DS as a result of a VSVI1 macro specifying MF=D.

(4) The contents of the base register for PROGA are output to indicate the addressing
mode and the load address.

(5) The output field for the VSVI1 macro is preset to C'J'.

(6) The VSVI1 macro is called in its E form. At this point in the program, therefore, only
the instruction code is generated. The associated operand list is created at the
symbolic address VSVI1PAR by means of a VSVI1 macro specifying MF=L. As a
result of the operand values specified in the list, the VSVI1 macro causes a list
containing the names, load addresses, lengths and attributes of all CSECTs,
ENTRYs and COMMONs to be output before PROGB is loaded.

(7) Following execution of the VSVI1 macro, a check is made to verify that the
YVSVRET field of the standard header contains the return code X'00000000', which
indicates error-free execution of the macro. The name YVSVRET originates from
the DSECT that was generated under the symbolic address VSVI1DS as a result of
a VSVI1 macro specifying MF=D and PREFIX=Y (see (18)). This DSECT describes
the layout of the operand list of the VSVI1 macro. The symbolic names of the
DSECT can be used for addressing within the operand list once the assigned base
address register (in this case, register 7) has been loaded with the start address of
the operand list (in this case, VSVI1PAR).

(8) If the VSVI1 macro does not execute without error, a branch is made to error exit
VSVIERR, an error message is output to SYSOUT and the PROGA program run is
terminated.

(9) The BIND macro is called in its E form at the symbolic address BIND. At this point
in the program, therefore, only the instruction code is generated. The associated
operand list is created at the symbolic address BINDPAR by means of a BIND
macro specifying MF=L. As a result of the operand values specified in the list, the
BIND macro causes the following to happen at program runtime:

– the CSECT PROGB (SYMBOL=PROGB) is reloaded from the library assigned
with the link name PLAMLIB (LIBLINK=PLAMLIB)

– the start address of PROGB is stored in field PROGB@
(SYMBLAD=PROGB@)

Description of the macros VSVI1

U3291-J-Z125-16-76 1001

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

– the 31-bit addressing mode is set for PROGB (PROGMOD=ANY)

– the program run is continued in PROGB after PROGB is loaded
(BRANCH=YES).

(10) Following execution of the BIND macro, a check is made to verify that the XBINRET
field of the standard header contains the return code X'00000000', which indicates
error-free execution of the macro. The name XBINRET originates from the DSECT
that was generated under the symbolic address BINDDS as a result of a BIND
macro specifying MF=D and PREFIX=Y (see (17)). This DSECT describes the
layout of the operand list of the BIND macro. The symbolic names of the DSECT
can be used for addressing within the operand list once the assigned base address
register (in this case, register 6) has been loaded with the start address of the
operand list (in this case, BINDPAR).

(11) If the BIND macro does not execute without error, an error message is output to
SYSOUT and the PROGA program run is terminated.

(12) Same as (6), but after PROGB has been loaded.

(13) Same as (7), but after PROGB has been loaded.

(14) If the VSVI1 macro does not execute without error, an error message is output to
SYSOUT and the PROGA program run is terminated.

(15) Messages to SYSOUT indicate that the program run has been continued in PROGA
and then link and load information has been output by means of the VSVI1 macro.

(16) Output field for the VSVI1 macro.

(17) The BIND macro with MF=D generates a DSECT which describes the layout of the
operand list of the BIND macro. The operand PREFIX=X causes the letter X to be
prefixed to all symbolic names in this DSECT (field names and equates).

(18) The VSVI1 macro with MF=D generates a DSECT which describes the layout of the
operand list of the VSVI1 macro. The operand PREFIX=Y causes the letter Y to be
prefixed to all symbolic names in this DSECT (field names and equates).

(19) The CSECT statement defines the control section PROGB with the attributes
AMODE=ANY and PAGE.

(20) ENTRY statement for the symbolic address ENTR.

(21) The contents of the base register for PROGB are output to indicate the addressing
mode and the load address.

VSVI1 Description of the macros

1002 U3291-J-Z125-16-76

Runtime listing

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,proga), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,proga)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 786 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 232 MSEC
//compile source=*library-element(macexmp.lib,progb), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,progb)), -
// test-support=*aid
% ASS6011 ASSEMBLY TIME: 191 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 93 MSEC
//end
% ASS6012 END OF ASSEMBH
/add-file-link link-name=plamlib,file-name=macexmp.lib ———————————————— (1)
/load-executable-program library=macexmp.lib,element-or-symbol=proga - (2)
// program-mode=*any,test-options=*aid
% BLS0523 ELEMENT 'PROGA', VERSION '@' FROM LIBRARY
 ':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'PROGA', VERSION ' ' OF '<date> <time>' LOADED
/%in back;%in error;%r ——— (3)
PROGA: BASE REG.= 80000002 —— (4)
STOPPED AT LABEL: BACK , SRC_REF: 53, SOURCE: PROGA , PROC: PROGA

Description of the macros VSVI1

U3291-J-Z125-16-76 1003

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

/%d adr1 %x ——— (5)
*** TID: 00100136 *** TSN: 1E17 ***
CURRENT PC: 00000054 CSECT: PROGA ***************************************
V'00000144' = ADR1 + #'00000000'
00000144 (00000000) D7D9D6C7 C1404040 00000000 00000384 PROGA d
00000154 (00000010) F0200000 D3D6C3C1 D37BC4C5 C6C1E4D3 0...LOCAL#DEFAUL
00000164 (00000020) E3404040 40404040 40404040 00000000 T
00000174 (00000030) FFFFFFFF C5000000 40404040 40404040 ~~~~E...
00000184 (00000040) 40404040 40404040 D1D1D1D1 D1D1D1D1 JJJJJJJJ
00000194 (00000050) D1D1D1D1 D1D1D1D1 D1D1D1D1 D1D1D1D1 JJJJJJJJJJJJJJJJ
 REPEATED LINES: 4
000001E4 (000000A0) D1D1D1D1 D1D1D1D1 D1D1D1D1 D1D1D1D1 JJJJJJJJJJJJJJJJ
000001F4 (000000B0) D1D1D1D1 JJJJ
/%r
PROGB: BASE REG.= 81000002 —— (6)
VSVI1 PROCESSED
RETURN TO PROGA
STOPPED AT LABEL: ERROR , SRC_REF: 208, SOURCE: PROGA , PROC: PROGA
/%d adr1 %x ——— (7)
CURRENT PC: 00000126 CSECT: PROGA ***************************************
V'00000144' = ADR1 + #'00000000'
00000144 (00000000) D7D9D6C7 C2404040 01000000 0000008A PROGB
00000154 (00000010) F0680000 D3D6C3C1 D37BC4C5 C6C1E4D3 0...LOCAL#DEFAUL
00000164 (00000020) E3404040 C5D5E3D9 40404040 01000000 T ENTR
00000174 (00000030) 00000000 F1600000 D3D6C3C1 D37BC4C5 1-..LOCAL#DE
00000184 (00000040) C6C1E4D3 E3404040 D7D9D6C7 C1404040 FAULT PROGA
00000194 (00000050) 00000000 00000384 F0200000 D3D6C3C1 d0...LOCA
000001A4 (00000060) D37BC4C5 C6C1E4D3 E3404040 40404040 L#DEFAULT
000001B4 (00000070) 40404040 00000000 FFFFFFFF C5000000 ~~~~E...
000001C4 (00000080) 40404040 40404040 40404040 40404040
000001D4 (00000090) D1D1D1D1 D1D1D1D1 D1D1D1D1 D1D1D1D1 JJJJJJJJJJJJJJJJ
000001E4 (000000A0) D1D1D1D1 D1D1D1D1 D1D1D1D1 D1D1D1D1 JJJJJJJJJJJJJJJJ
000001F4 (000000B0) D1D1D1D1 JJJJ

(1) The file link name used in the BIND call of program PROGA is assigned.

(2) DBL is invoked to link and load the program.

(3) The AID command %INSERT is used to define the test points BACK and ERROR.
The %RESUME command passes control to the called program.

(4) The contents of the base register for PROGA are output. 31-bit addressing is set
(bit 231 = 1); the load address is below the 16-MB boundary.

VSVI1 Description of the macros

1004 U3291-J-Z125-16-76

(5) The link and load information has been transferred to field ADR1. ADR1 was preset
to X'D1'. The VSVI1 macro call was issued before PROGB was loaded. The first 8
bytes reveal the name PROGA for the first control section. It is followed by the load
address X'00000000' and the length X'0000037C' (892 bytes). The next two bytes
indicate the type and attribute of the control section. Type X'F0' (ï CSECT) and
attribute X'20' (ïAMODE=31). The following values (X'0000') are used for
alignment. Then comes the 16-byte context name (LOCAL#DEFAULT). The
following fields contain the “null entry” for name (X'40....40'), load address
(X'00000000'), length (X'FFFFFFFF'), attribute (X'C5') and context name
(X'40....40').

(6) After PROGB has been loaded, the program run is continued in PROGB. The
contents of the base register are output. 31-bit addressing mode is set. The load
address is located above 16 MB. After PROGB has been completed, PROGA is
continued.

(7) Following loading of PROGB, there are several DBL entries in ADR1. First is the
entry for PROGB and the ENTRY in PROGB, then the entry for PROGA. The load
address for PROGB is X'01000000', the length X'00000082' (130 bytes). Its type is
X'F0' (CSECT) and its attributes X'68' (AMODE=ANY and PAGE). The ENTRY
name is C'ENTR', type X'F1' (ENTRY), attribute X'60' (AMODE=ANY). Then comes
the 16-byte context name (LOCAL#DEFAULT). This is followed by the entry for
PROGA and finally by the null entry.

Description of the macros VTCSET

U3291-J-Z125-16-76 1005

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

VTCSET – Define logical control characters

General

Application areas: Requesting and accessing lists and tables; see page 155
Data terminal communication; see page 160

Macro type: Type O; see page 28

● This macro description applies to VTSU V13.3A

Macro description

The VTCSET macro generates symbolic names which can be used to insert logical control
characters in line mode output messages and to locate line mode inputs.

Macro format and description of operands

prefix
Specifies a string (up to 5 characters) to be prefixed to the symbolic names.

In the following descriptions, “&P.” is used as a prefix in place of the string which precedes
the symbolic names.

1. Logical record control characters

&P.NL
Logical end of line (new line)

Effect on output:
– Special display formats on the terminal are reset to the standard display format (normal,

standard color, unprotected in line mode, protected in extended line mode). The
character set is not reset. If the message is output in extended line mode, the remainder
of the line is blanked and protected.

– The defined logical end-of-line character is output (except in extended line mode).
– The next line is set to standard status: normal, low intensity, standard color, standard

character set, unprotected in line mode, protected in extended line mode. The standard
character set is character set 0 for 9763 Data Display Terminals and character set 1 for
other display terminals and printers.

VTCSET

prefix

VTCSET Description of the macros

1006 U3291-J-Z125-16-76

Status is not set to standard if operating mode 2 and HOM=YES were specified for the
terminal.

– If continuing the output would cause data overflow at the terminal, the defined overflow
check is executed (except in extended line mode).

– The cursor is positioned at the start of the next line.
– In the case of field-oriented display and structured output (standard) a start of field is

generated.

&P.NP
Logical end of page (new page)

Effect on output:
– Special terminal display formats are reset to the standard display format (normal,

standard character set, standard color, unprotected in line mode, protected in extended
line mode with UPDATE=NO, unprotected in extended line mode with UPDATE=YES).
The screen format is reset to 24x80. The standard character set is character set 0 for
9763 Data Display Terminals and character set 1 for other display terminals and
printers.

– The defined logical end-of-line character is output.
– Hardcopy output is initiated (if HCOPY=YES).
– The defined overflow control action is executed.
– A new page is created (on display terminals the screen is cleared and the screen format

24x80 set, on printers a page feed is performed). If page feeds were already initiated in
the same message by means of ASF (automatic sheet feed), then the last ASF used
replaces NP.

– The cursor is positioned at start of line.
– In the case of field-oriented display and structured output (standard) a start of field is

generated.

&P.CL
Logical end of record (current line)

Effect on output (printers and teleprinters only):
– Special display formats on the terminal are reset (to normal, standard character set,

unprotected). The standard character set is character set 1 for the devices concerned).
– The defined logical end-of-line character is output.
– The cursor is set to the start of the current line.

Description of the macros VTCSET

U3291-J-Z125-16-76 1007

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

&P.VPAddd
(data display terminals only, see page 1019 for printers) Position on first unprotected field
of a line (vertical position absolute) (binary or three-digit decimal value)

Effect on output:
Absolute line positioning on the first unprotected field in line ddd of the data display terminal.
Can be combined with HPA for simultaneous positioning on the absolute column.

Note
– If ddd is zero or larger than 255, the substitute character (SUB) is inserted instead of

VPA and ddd is output.
– If ddd is less than or equal to 255 but greater than the maximum number of lines, NL is

executed instead of VPA.

&P.HPA ddd
(data display terminals only, see page 1019 for printers) Position on column (horizontal
position absolute) (three-digit decimal value)

HPA is processed in extended line mode only and only when specified immediately after a
valid VPA. HPA specifies the absolute column in a line defined by the preceding VPA. If the
preceding VPA control character was invalid or if HPA is not specified immediately after
VPA, HPA ddd is ignored. HPA on a 3270 terminal positions on the start of the next
unprotected field.

Effect on output:
Absolute column positioning in the line defined by the preceding VPA.

Note

– If ddd is zero or larger than 255, the substitute character (SUB) is inserted instead of
HPA and ddd is output.

– If ddd is less than or equal to 255 but greater than the maximum number of columns,
HPA ddd is ignored and only the VPA function is executed.

VTCSET Description of the macros

1008 U3291-J-Z125-16-76

2. Logical display control characters

&P.EM1
Emphasized layout 1

Effect on output:
Subsequent text characters are “emphasized” (highlighted) on the terminal as appropriate
to the device type used (see table on page 1027).

Emphasized layout is reset by:
– the logical record control characters (NL, NP, HPA, VPA)
– the display control characters (EM2, EM3, EM4, DAR, DIS, NOR)
– the field control characters (EPA, SPA, NUM, CHS, COL, FLD)

&P.EM2
Emphasized layout 2

Effect on output:
Subsequent text characters are “emphasized” on the terminal as appropriate to the device
type used (see table on page 1027).

Emphasized layout is reset by:
– the logical record control characters (NL, NP, HPA, VPA)
– the display control characters (EM1, EM3, EM4, DAR, DIS, NOR)
– the field control characters (EPA, SPA, NUM, CHS, COL, FLD)

&P.EM3
Emphasized layout 3

Effect on output:
Subsequent text characters are “emphasized” on the terminal (see table on page 1027).

Emphasized layout is reset by:
– the logical record control characters (NL, NP, HPA, VPA)
– the display control characters (EM1, EM2, EM4, DAR, DIS, NOR)
– the field control characters (EPA, SPA, NUM, CHS, COL, FLD)

&P.EM4
Emphasized layout 4

Effect on output:
Subsequent text characters are “emphasized” on the terminal (see table on page 1027).

Emphasized layout is reset by:
– the logical record control characters (NL, NP, HPA, VPA)
– the display control characters (EM1, EM2, EM3, DAR, DIS, NOR)
– the field control characters (EPA, SPA, NUM, CHS, COL, FLD)

Description of the macros VTCSET

U3291-J-Z125-16-76 1009

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

&P.NOR
Normal layout

Effect on output:
Subsequent text characters are displayed normally on the terminal (i.e. emphasized layout
is reset).

&P.SO
Shift out into character set extension in accordance with the table on page 1027.

Effect on output on certain terminals only (see table on page 1027):
Subsequent text characters are displayed on the terminal in the device-specific character
set according to the table on page 1027.

Meaning for input:
Subsequent text characters were entered using the terminal-specific character set.

&P.SI
Shift into basic character set in accordance with the table on page 1027.

Effect on output:
Subsequent text characters are displayed on the terminal in the basic character set.

Meaning for input:
Subsequent text characters belong to the basic character set.

&P.DAR
Dark layout

Support for this operand is continued only for the sake of compatibility. Instead of &P.DAR,
you should use the operands &P.EXT DIS and &P.EXT FLD.

Depending on the value of the DARPRINTABLE parameter, DAR is either a field or a logical
display control character.

Effect on output:
The value of DARPRINTABLE is N' (default).
In the case of field-oriented display and structured output, DAR generates a start of field.
Subsequent text characters are blanked and cannot be printed. The field is omitted from
hardcopy.
DAR is reset by the logical record control characters (NL, NP, HPA, VPA) or the field control
characters (EPA, NUM, CHS, COL and FLD).

The value of DARPRINTABLE is 'Y'.
Subsequent text characters are blanked. No start of field is generated.

DAR is reset by:
– the logical record control characters (NL, NP, HPA, VPA)
– the display control characters (EM1, EM2, EM4, NOR)
– the field control characters (EPA, SPA, NUM, CHS, COL, FLD)

VTCSET Description of the macros

1010 U3291-J-Z125-16-76

&P.EXT DIS x
(data display terminals only) Set display attributes

Effect on output:
Subsequent text characters are highlighted on the terminal as appropriate to the device
type used. Inverse video mode is ignored on 8110, 815x, 816x, 974x, 975x Data Display
Terminals and 3270 terminals. On the 9763 Color Terminal, the attributes flashing,
underscore, low intensity and combinations thereof are mapped to colors, depending on
SIDATA.

x is a hexadecimal value that can be selected by means of the following equates:

&P.FL flashing
&P.UND underscore / italic (see EM2)
&P.BLK invisible
&P.RIN reduced intensity
&P.INV inverse video
&P.RS the attributes FL, UND, BLK, RIN and INV are reset. Note that RS does not have

the same effect as NOR. NOR automatically selects the reduced intensity
attribute.

x is either the value of one of these equates or the sum of a combination of equates.

e.g. &P.EXT DIS &P.UND+&P.FL text subsequent text is underscored and flashing

Any attribute not supported by the display terminal is ignored.

The highlight is reset by:
– the logical record control characters (NL, NP, HPA, VPA)
– the display control characters (EM1, EM2, EM3, EM4, DAR, DIS, NOR)
– the field control characters (EPA, SPA, NUM, CHS, COL, FLD)

Description of the macros VTCSET

U3291-J-Z125-16-76 1011

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

3. Logical field control characters

&P.SPA
Start protected area

Effect on output (data display terminals only):
In the case of field-oriented display and structured output, SPA generates a start of field.
Subsequent text characters are displayed at reduced intensity on the monitor of the data
display terminal and are protected, i.e. they cannot be overwritten and returned to the data
processing unit.
SPA is reset by the logical record control characters (NL, NP, HPA, VPA) or the field control
characters (EPA, NUM, CHS, COL and FLD).

Note
This function has a significant impact on the display attributes of certain terminals
(newline on 8152 DDT, hardcopy function on 816x, 975x and 976x terminals). It should
therefore be used with extreme caution.

&P.EPA
End protected area

Effect on output:
In the case of field-oriented display and structured output, EPA generates a start of field.
Subsequent text characters are output to the terminal unprotected and displayed at high
intensity.
EPA is reset by the logical record control characters (NL, NP, HPA, VPA) or by the field
control characters (EPA, NUM, CHS, COL and FLD).

&P.NUM
Numeric area

Effect on output:
In the case of field-oriented display and structured output, NUM generates a start of field.
Subsequent text characters are output to the terminal unprotected and displayed at high
intensity.
You can enter only numeric data (digits, . * / + -) in this field.
NUM is reset by the logical record control characters (NL, NP, HPA, VPA) or by the field
control characters (EPA, SPA, CHS, COL and FLD).

VTCSET Description of the macros

1012 U3291-J-Z125-16-76

&P.CHS dd
Loadable character set
CHS is effective only on terminals of type 9763.

Effect on output:
In the case of field-oriented display and structured output, CHS generates a start of field
and a loadable character set from the repertory available to the data terminal is selected for
this field. dd is a two-digit decimal in the range 00-07 and designates the desired loadable
character set. You can use the TSTAT macro to query the loadable characters sets
available.

Example
If dd is 00, you address loadable character set 0 which has the symbolic name STACS0T
in DCSTA (see MONCS).

Only characters from the selected character set can be entered in the generated field.

CHS is reset by:
– the logical record control characters (NL, NP, HPA, VPA)
– the display control characters (EM1, EM2, EM3, EM4, DAR, NOR, DIS)
– the field control characters (EPA, SPA, NUM, COL, FLD)

Note
The user must ensure that the character sets of the data display terminal that are to be
addressed logically via the control character CHS are loaded with the correct character
sets.
CHS is not supported in the system line.
The character sets can be loaded physically in physical mode or with EXT TRA in line
mode. Character sets can be created with the software product ICE.

&P.COL dd
Choice of colors
COL is effective only on color terminals of type 9763.

Effect on output:
In the case of field-oriented display and structured output, COL generates a start of field
(even on monochrome screens). If the terminal is a 9763 color DDT, COL can be used to
select a color from those available for this field. dd is a two-digit decimal in the range 00-07
designating the desired color.

Note that COL is not supported in the system line.

00 default 01 blau 02 rot

03 magenta 04 grün 05 cyan

06 gelb 07 weiß

Description of the macros VTCSET

U3291-J-Z125-16-76 1013

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

COL (color selected) is reset by:
– the logical record control characters (NL, NP, HPA, VPA)
– the display control characters (EM1, EM2, EM3, EM4, DAR, NOR, DIS)
– the field control characters (EPA, SPA, NUM, CHS, FLD)

&P.EXT DIM ll ccc
Physical screen dimension
EXT DIM is effective only on terminals of type 9763, and only if specified immediately after
NP.

Effect on output:
EXT DIM can be used to select the screen format on display terminals of type 9763. The
standard format is 24 x 80. Additional formats are 32 x 80, 43 x 80 and 27 x 132. The
possible screen formats can be queried with TSTAT.
The number of lines ll is specified in two bytes. The number of columns ccc is specified in
3 bytes.
When the device is switched on, and during connection setup, the standard (default) format
is reset automatically. The screen format is reset to the standard format by NP, at end of
program, and when the screen is cleared by the system.
If a program is interrupted (K2, BKPT) in LINE mode, the screen format is not reset to the
standard format.
CHS is not supported in the system line.

&P.EXT FLD x
(data display terminals only) Set field characteristics

Effect on output:
In the case of field-oriented display and structured output, a start of field is generated and
certain characteristics are assigned to this new field. By default, this field is not printable. If
emphasized display preceded this operand, it is set to reduced intensity for a protected field
and to bright for all other fields.

x is a hexadecimal value selected by means of the following equates:

&P.PNS protected field not sendable
&P.PRS protected field sendable (automatic input)
&P.NUF numeric field
&P.MOD premodified field (only in extended line mode)
&P.MAR markable field
&P.PRT printable field
&P.INP unprotected input field not numeric, not markable, not printable
&P.ASK protected field with automatic tabulator (3270 terminals only)

x is either the value of one of these equates or the sum of a combination of equates.

e.g. &P.EXT DIS &P.UND+&P.FL text The field is numeric and markable

VTCSET Description of the macros

1014 U3291-J-Z125-16-76

If a combination of field characteristics is defined, the output attribute 'reduced intensity' is
retained. You must use the DIS control character to request other display attributes. Note
that the field characteristics must always precede the output attributes.

FLD is reset by the logical record control characters (NL, NP, HPA, VPA) or by the field
control characters (EPA, SPA, NUM, CHS, COL and FLD).

FLD is not supported in the system line.

Note that a markable field is of significance to the application only if the VTSUCB parameter
READ=MODIFIED is used.

If the characteristics protected, not sendable and markable are assigned to a field, they
correspond to the FHS attribute PROTECTION=DETECTABLE (protected selection field). If a field
of this type is marked in read mode, the user receives only the field coordinates VPA and
HPA and not the contents of the field. If you press the MAR key again, you can cancel
'marked' as an attribute of this field.

4. Logical local control characters

&P.LOC ctl
Set local attributes
LOC is effective only on data display terminals of type 9763.

Effect on input and output:
The attribute which is addressed with the control character ctl immediately following LOC
is only created locally. ctl can be: EM1-EM4, NOR, DAR, DIS, CHS and COL.

A local attribute is valid for all subsequent characters up to the next start of field, if not
explicitly reset before this. The attribute is reset using LOX (see page 1015). Local
attributes are character-specific. When the character disappears, so also does the local
attribute; any character that is inserted does not bear the local attribute, whilst the
characters moved to the right retain their local attribute.

The following substitute representation is used on data display terminals other than type
9763 and for printers:
The local display attributes LOC EM1- LOC EM4, LOC NOR, LOC DIS and LOC DAR are
replaced by the corresponding display attributes
EM1-EM4, NOR, DIS and DAR. There is no substitution for local character set attributes
(LOC CHS) and color attributes (LOC COL).

In the case of LOC DAR, the subsequent text characters, which are not visible on the
screen, can be printed. The value of DARPRINTABLE defines whether characters
substituted for invisible text characters can be printed.

Description of the macros VTCSET

U3291-J-Z125-16-76 1015

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Local attributes can only be entered if the LOCIN=YES option is set in the VTSUCB.
Otherwise they are deleted from the input message. Local attributes not supported logically
by VTSU are always deleted from the input message.

Note
The logical display control characters EM1-EM4 and NOR, which are located after LOC
and followed by EM1-EM4, NOR and DAR, are only effective once the local attribute
has been reset (using LOX NOR or LOX LOX). These display control characters also
have an effect on characters which are overwritten or inserted.

&P.LOX ctl
Reset local attributes

Effect on input and output:
Local attributes are reset with LOX.
ctl specifies which local attributes are reset.
ctl can be:
– NOR (local EM1, EM2, EM3, EM4, DIS, NOR or DAR is reset)
– CHS (local loadable character set is reset)
– COL (choice of color is reset)
– LOX (all local attributes are reset).

LOX resets the local attribute to the last valid non-local value.

The following substitute representation is used on data display terminals other than type
9763 and for printers:
LOX NOR and LOX LOX reset the attribute to the last display attribute which was not
generated by a substitute layout. There is no substitute representation for local character
set attributes (LOX CHS) and local color attributes (LOX COL).

Local attributes can only be received if the LOCIN=YES option is set in the VTSUCB.
Otherwise they are deleted from the input message. Local attributes not logically supported
by VTSU are always deleted from the input message.

Note

– In the case of EXTEND=NO, a logical display control character specified as the last
character (EM1, EM2, EM3, EM4, DIS, DAR or NUM) acts on the subsequent input
field. This provides a means of imposing the dark, numeric or emphasized attributes on
a normal line mode input. If the output is followed not by an input but by another output,
the control character has no effect.

– To specify a number of characteristics for a field, enter them in the following sequence:
&P.CHS dd &P.COL dd &P.EXT &P.FLD xx &P.EXT &P.DIS xx. The logical display
control characters must always follow the logical control characters for the field
characteristics. Note that if you use the control character &P.COL, and the terminal

VTCSET Description of the macros

1016 U3291-J-Z125-16-76

supports color, the other display attributes are ignored. Physical sequences are still
generated correctly. Same logical buffers are used for color and monochrome screen
of type 9763.

– If the two logical control characters VPA and HPA are combined, the physical
sequences generated differ depending on the positions of the control characters in the
buffer.

– If the control characters are at the start of the message, the cursor is positioned on
the requested coordinates and a start of field with standard attributes is generated.

– If the control characters are at the end of the message the cursor is positioned on
the requested coordinates and special display formats of the data display terminal
are reset to the standard display (normal, standard color, protected). The standard
character set is retained.

– If the control characters are within the message, the cursor is positioned on the
requested coordinates and a start of field with standard attributes is generated.
Special display formats of the data display terminal are reset to the standard display
(normal, standard color, unprotected in line mode, protected in extended line
mode). The standard character set is retained.

– Hardcopy support differs in line mode and extended line mode. In extended line mode,
a hardcopy of the entire screen is produced. In line mode, a hardcopy is created only
of the last field generated by a preceding control character.

– Fields generated with the EXT FLD control character must be defined as printable
fields.

Description of the macros VTCSET

U3291-J-Z125-16-76 1017

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

5. Logical control characters for printer support

Use of the logical control characters for printer support is only effective with EXTEND=NO.

&P.PLD
Partial line down (line subscripted)

Effect on output:
The printer moves half a line up and the subsequent text is printed half a line lower. This is
reset by PLU, at the logical end of the line or at end of message.

&P.PLU
Partial line up (line superscripted)

Effect on output:
The printer moves half a line down and the subsequent text is printed half a line higher. This
is reset by PLD, at the logical end of line or at end of message.

&P.VMI d
Vertical motion index (line spacing)
VMI is permitted only at the logical start of a page.

Effect on output:
Specifies the line spacing:
– d=1: normal spacing (1/6 inch).
– d=2: condensed spacing (1/8 inch).
– d=3: half-line spacing (1/12 inch).

Is reset by MLN at end of message. The number of lines per page is adjusted to match the
new line spacing.

&P.HMI d
Horizontal motion index (character pitch)
HMI is permitted only at the logical start of a line. Any left margin that has been set with LM
is reset.

Effect on output:
Specifies the character pitch:
– d=1: normal pitch (1/10 inch).
– d=2: condensed font A (character pitch 1/12 inch).
– d=3: condensed font B (character pitch 1/15 - 1/17 inch).

Reset by MLL and at end of message. The number of characters per line is automatically
adjusted.

VTCSET Description of the macros

1018 U3291-J-Z125-16-76

&P.NLQ
Near letter quality start

Effect on output:
On printers with near-letter quality capability, this feature is turned on by NLQ; otherwise
NLQ is ignored. NLQ is reset at the end of the message.

&P.NLX
Near letter quality exit

Effect on output:
The output control character NLX turns off the near-letter quality feature.

&P.LM ddd
Left margin

Effect on output:
Sets a left margin. The first character of all subsequent lines is printed in the column
specified by ddd.

LM is only permissible at the logical start of line and at the start of a message if there is no
CAP at this point. It is reset by HMI, MLL and at the end of the message.
When the left margin is set, several successive backspaces (BS) are permitted. This
enables the cursor to be positioned to the left of the left margin.

&P.PTS
Proportional type start

Effect on output:
A visually more pleasing printed result is achieved by individual character spacing.

PTS is effective until the end of the message or PTX.

Column counting is disabled and is not started again until an NL, NP, ASF, VPA or HPA
following a PTX is received.

&P.PTX
Proportional type exit

Effect on output:
Deactivates proportional type.

&P.MLL ddd
Maximum line length

Effect on output:
ddd defines the new maximum number of characters per line. Also, the character spacing
is set to 1/10 inch, and any left margin is reset. MLL only works at logical start of page and
for printers. The defined maximum line length remains effective for the entire duration of the
connection unless redefined.

Description of the macros VTCSET

U3291-J-Z125-16-76 1019

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

&P.MLN ddd
Maximum line number

Effect on output:
ddd defines the new maximum number of lines per page. It also sets the line spacing to
1/6 inch. MLN only works at logical start of page and for printers. The defined maximum
number of lines remains effective for the entire duration of the connection unless redefined.

&P.VPA ddd
Vertical position absolute (three-digit decimal)

Effect on output:
The output text starts in the line designated by ddd.

&P.HPA ddd
Horizontal position absolute (three-digit decimal)

Effect on output:
Subsequent characters in the current line are output starting at the column designated by
ddd.

&P.ASF d
Automatic sheet feeding (sheet insertion / ejection control) d= decimal number

Effect on output:
– For d=0 at the end of the message a sheet ejection is triggered.

When a form feed attachment is used: switchover to tractor.
– For d=1,2,3 the sheet ejection is combined with a sheet feed from the feed tray

designated by d.
– For d=9 sheet insertion takes place from the form feed attachment (9013 Printer only).

&P.CAP
Continue actual position (no positioning to the start of the next line at the beginning of a
message)

Effect on output:
Printing starts at the current position of the printer carriage. No resetting of logical control
characters at end of message or start of message. Additionally, multiple PLUs and PLDs
are allowed. However, only one PLU or PLD is reset at logical end of line.

To ensure that there is a defined initial state, the printer must be positioned to the start of a
line with NL, NP or VPA when CAP is used for the first time within an output sequence. CAP
is permitted only as the first character in a message. Overwriting may occur when CAP is
used for the first time or after a reset sequence (e.g. HMI reset) if the cursor is not explicitly
positioned on the start of a new line.

VTCSET Description of the macros

1020 U3291-J-Z125-16-76

6. Logical control characters with special functions

&P.DEL
Delete

Effect on output:
The character is removed from the output text and is not transmitted to the terminal.

&P.BS
Backspace (only display terminals with APL capability, and printers)

Effect on output:
The next text character is superimposed on the preceding character (to form a compound
character not contained in the character set).

A multiple BS is only allowed when a left margin has been set previously with LM.

Meaning for input:
The next text character and the preceding one are treated as a single unit.

Note
For the 9022 Printer, BS (backspace) following SO (shift out into character set
extension) is ignored.

&P.SUB
Substitute

Effect on output:
This logical control character and all other EBCDIC control characters (code < X'40') which
are not logical control characters are represented on the terminal by the valid substitute
character (macro TCHNG SUB=OUTIN).

Effect on input:
The valid substitute character has been detected in the terminal input and replaced (only if
requested via the macro TCHNG SUB=OUTIN, see the “TIAM” manual [16]).

&P.ESC
Escape

Effect on output:
Generates the control character ESC (EBCDIC code X'27'). This is transferred together
with the next character in unchanged form. This permits the use, in line mode, of terminal
device functions that are not logically supported (see descriptions of the respective
terminals).

Note
This control character causes the column and line counts by VTSU to be suppressed
(no overflow control).
Column counts are resumed by the control characters NL, NP or VPA, line counts
(overflow control) are resumed by the control character NP or VPA.

Description of the macros VTCSET

U3291-J-Z125-16-76 1021

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

&P.DC4
Treated like ESC by VTSU

Effect on output:
Generates the control character DC4 (EBCDIC code X'3C'). This is transferred together
with the following character to the terminal. This permits the use, in line mode, of terminal
device functions that are not logically supported (cf. descriptions of the respective
terminals).

The effect on column and line counting is as described in the note on the ESC control
character.

&P.HT
Horizontal tabulation

Effect on output:
Generates the control character HT (EBCDIC code X'05'), which is passed unchanged to
the terminal (cf. descriptions of the respective terminals).

The effect on column and line counting is as described in the note on the ESC control
character.

&P.VT
Vertical tabulation

Effect on output:
Generates the control character VT (EBCDIC code X'0B'), which is passed unchanged to
the terminal (cf. descriptions of the respective terminals).

The effect on column and line counting is as described in the note on the ESC control
character.

&P.EXT TRA d ll
Transparent output

Effect on output:
EXT TRA allows the user to transfer control character sequences unchanged
(transparently) to data display terminals and printers.
With d, the user can select the devices to which the transparent character sequence is to
be transferred:

d = X'00'
The control character sequence is transferred for all device types.

d = device type supplied in TSTAT:
The control character sequence is transferred only for the specified device type.

VTCSET Description of the macros

1022 U3291-J-Z125-16-76

With ll, the user specifies the length of the transparent control character sequence. ll is
specified in two bytes in either decimal (00-99) or binary form (X'0000'-X'7FFF'). The first
five bytes (EXT TRA d ll) are not counted as part of the length specification. If the length is
greater than the maximum device buffer, EXT is converted to SUB.

Note
If you use the logical control character EXT TRA you can specify any physical control
character.
If you use EXT TRA in order to modify positioning, correct overflow control is no longer
guaranteed.

&P.EXT RPT dd
The subsequent displayable or NULL character is repeated dd times (repeat symbol)

Effect on output:
EXT RPT enables you to reduce the size of your buffer in the case of multiple repeats of a
character.
dd is the number of times you want the subsequent character repeated. dd is specified in
two bytes, either in decimal (00-99) or in binary notation (X'0000'-X'7FFF').

Notes on the logical control characters

a) If a control character is illegal for a particular output device or in its current position,
it is ignored together with any associated number following it, or it is replaced (see
description of the individual control characters).

b) If a logical control character that expects a number to follow it is in fact followed by
bytes that do not form a legal number (no number or an impossible number), the
control character is replaced by SUB and the subsequent characters are treated as
text.

c) If the number following the logical control character is only illegal in special cases
(e.g. too large for the current line length), it is processed according to the procedure
described under a).

d) The control characters ASF, VPA and HPA have the effect of a logical end of line
and act on the preceding control characters in the same way as NL (reset character
set 2 etc.).

Description of the macros VTCSET

U3291-J-Z125-16-76 1023

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Effect of logical display control characters on data display terminals

Terminal Effect of logical display control characters

NOR EM1 EM2 EM3 EM4 DAR

8110
TTY 1 - 2 - - - - -

8150 - - - - -

8151 still flashing flashing flashing flashing -

8152 roman italics italics italics italics -

 3

low int.
roman
still

low int.
roman
flashing

low int.
italics
still

high int.
italics
still

high int.
italics
still

blanked

8160 OM 2 high int.
roman
still

high int.
roman
flashing

high int.
italics
still

low int.
roman
still

low int.
italics
still

blanked

low int.
roman
still

low int.
roman
flashing

low int.
underscore
d
still

high int.
roman
still

high int.
underscore
d
still

blanked

high int.
roman
still

high int.
roman
flashing

high int.
underscore
d
still

low int.
roman
still

low int.
underscore
d
still

blanked

8160

8162

OM 1

9748

9749

9750

9751

OM 1

9748

9749

9750

9751

OM 2

VTCSET Description of the macros

1024 U3291-J-Z125-16-76

9752 yellow
roman

yellow
flashing

white
roman

green
roman

red
roman

blanked

low int.
roman

low int.
roman
flashing

low int.
underscore
d

high int.
roman

high int.
underscore
d

blanked

high int.
roman

high int.
roman
flashing

high int.
underscore
d

low int.
roman

low int.
underscore
d

blanked

Terminal Effect of logical display control characters

NOR EM1 EM2 EM3 EM4 DAR

9755

9756

9758

OM 1

9755

9756

9758

OM 2

Description of the macros VTCSET

U3291-J-Z125-16-76 1025

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

9763 and 9759
 OM 1
monochrome
screen

low int.
roman

low int.
roman
flashing

low int.
underscore
d

high int.
roman

high int.
underscore
d

blanked

9763 and 9759
 OM 2
monochrome
screen

high int.
roman

high int.
roman
flashing

high int.
underscore
d

low int.
roman

low int.
underscore
d

blanked

9763 OM 1
color screen

yellow cyan white green red blanked

9763 OM 2
color screen

green red red yellow white blanked

3270 OM 1 low int
roman

high int.
roman

high int.
roman

high int.
roman

high int.
roman

blanked

3270 OM 2 high int.
roman

low int.
roman

low int.
roman

low int.
roman

low int.
roman

blanked

3279 OM 1 green red red red red blue

3279 OM 2 green white white white white green

8121
8122

normal italics italics italics italics -

9001 normal underscore
d

underscore
d

underscore
d

underscore
d

-

9002 normal italics underscore
d

italics italics
underscore
d

-

9003 normal italics red italics red and
italics

-

9004 normal shadow
script

underscore
d

fett bold and
underscore
d

-

9013 normal underscore
d

underscore
d

bold bold and
underscore
d

-

9012 normal underscore
d

underscore
d

bold bold and
underscore
d

-

9011-18/19 normal italics 4 underscore
d

bold bold and
underscore
d

-

Terminal Effect of logical display control characters

NOR EM1 EM2 EM3 EM4 DAR

VTCSET Description of the macros

1026 U3291-J-Z125-16-76

9001-31 / 8931 normal italics 4 underscore
d

bold bold and
underscore
d

-

9021 normal italics underscore
d

bold bold and
underscore
d

-

9022 normal shadow
script

underscore
d

bold bold and
underscore
d

-

1 TTY: PT80, T100, T1000
2 -: control character is ignored
3 OM: operating mode
4 Only for connection to a 9763 DDT or a BAM controller, otherwise underscored or no effect

Terminal Effect of logical display control characters

NOR EM1 EM2 EM3 EM4 DAR

Description of the macros VTCSET

U3291-J-Z125-16-76 1027

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Effect of logical display control characters on data display terminals

Terminal Effect of logical display control characters

SO SI SPA EPA NUM

8110
TTY 1

- 2 - - - -

8150 - - protected
low int.

unprotected
high int.

-

8151 - - protected
low int.

unprotected
high int.

-

8152 APL
character set

first
character set

protected
low int.

unprotected
high int.

-

8160 - - protected
low int.

unprotected
high int.

unprotected
high int. 3

8162 second
character set

first
character set

protected
low int.

unprotected
high int.

unprotected
high int.3

9748
9749
9750/9751

- -
protected
low int.

unprotected
high int.

unprotected
high int.3

9752
- -

protected
yellow

unprotected
green

unprotected
green 3

9755
9756
9758

- -
protected
low int.

unprotected
high int.

unprotected
high int.3

9763 / 9759
monochrome
screen

- -
protected
low int.

unprotected
high int.

unprotected
high int.3

9763
color screen - -

protected
yellow

unprotected
green

unprotected
green 3

3270
- -

protected
low int.

unprotected
high int.

unprotected
high int.3

3279 OM 1 4 - - white red red

3279 OM 2 - - white white white

812x - - - -

9001 - - - - -

9002 5 second
character set

first
character set

- - -

9003 second
character set

first
character set

- - -

VTCSET Description of the macros

1028 U3291-J-Z125-16-76

9004 second
character set

first
character set

- - -

9013 5 character set
extension 6

basic character
set 7 - - -

9012 character set
extension 6

basic
character set 7 - - -

9011-18/19 second
character set

first
character set - - -

9001-31/
8931 - - - - -

9021 secondary font primary font - - -

9022 character set
extension 8

basic
character set 9 - - -

1 TTY: PT80, T100, T1000
2 -: control character is ignored
3 entries must be numeric
4 OM: operating mode
5 depending on printer type (see relevant printer manual)
6 right half of ISO 8-bit code table; practical for e.g. teletex character set
7 left half of ISO 8-bit code table
8 right half of ISO 8-bit code table; practical for e.g. teletex character set
9 left half of ISO 8-bit code table

Terminal Effect of logical display control characters

SO SI SPA EPA NUM

Description of the macros VTCSET

U3291-J-Z125-16-76 1029

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Applicability of the logical control characters to individual printers and data display
terminals

Meaning:

X function is initiated
- logical control character is suppressed
* if preceded by a legal VPA, the logical control character is suppressed

Note

– The 9022 Printer ignores proportional type unless the current font supports proportional
spacing.

– Proportional type is impractical with the 9013 Printer unless a suitable character set is
selected.

– When used on the 9013 and 9002 Printers, the control character VPAddd causes the
execution of a number of line feeds defined by ddd.

Type PLD
PLU

LM PTS
PTX

VPA HPA ASF MLL MLN BS CAP ESC
DC4

HT VT

9004 X X X X X X X X X X X X X

9001 X - - - - - X X - X X X X

9003 - - - - - - X X X X X X X

9002 - - - X X - X X X X X X X

9013 X X X X X X X X X X X X X

9012 X X X X X X X X X X X X X

9011
18/19

X - X - X X X X X X X X X

9001-31/
8931

X - X - X - X X X X X X X

9022 X X X X X X X X X X X X X

9021 X - X X X X X X X X X X X

812x - - - - - - X X X X X - -

816x
975x
974x

- - - X * - - - - - X X X

976x - - - X * - - - - - X X X

3270 - - - X * - - - - - X X X

3279 - - - X * - - - - - X X X

VTCSET Description of the macros

1030 U3291-J-Z125-16-76

– When used on the 9002 Printer, the control character HPAddd either adds the number
of blanks defined by ddd or defines the column as of which the subsequent characters
are to be output. You can select either of these two options. The insertion of blanks is
the default.

Applicability of logical control characters for output

Meaning:

X function is initiated
- logical control character is suppressed

Note

On 9763 Data Display Terminals, only the screen formats supplied with TSTAT are
supported for the logical control character EXT DIM.

Terminal CHS LOC
LOX

EXT
DIM

EXT
TRA

NLQ
NLX

EXT
DIS

EXT
FLD

COL EXT
RPT

9763 X X X X - X X X X

975x
9748
9749
816x
3270

- 1

1 substitution takes place (see LOC and LOX control characters)

- X - X X - X

9001
9002
9003
9004
9013

- 1 - X - - - - X

9012 - 1 - X - - - - X

9011-18/19 - 1 - X X - - - X

9001-31/
8931

- 1 - X X - - - X

9022 - 1 - X - - - - X

9021 - 1 - X - - - - X

Description of the macros VTCSET

U3291-J-Z125-16-76 1031

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Effect of output attributes

Terminal FL UND BLK RIN INV

8110 - 1

1 -: control character is ignored

- - - -

815x - - - - -

8160 flashing italics blanked low intensity -

9750 flashing underscored /
inverse 2

2 set by jumper or ROM

blanked low intensity -

9755 flashing underscored /
inverse 3

3 selectable by SIDATA

blanked low intensity -

9758
9756

flashing underscoredinv
erse 3

blanked low intensity inverse

9763
9759

flashing underscoredinv
erse 3

blanked low intensity inverse

3270 - - blanked and not
printable

low intensity -

VTCSET Description of the macros

1032 U3291-J-Z125-16-76

Effect of field attributes

Terminal PNS PRS NUF MOD MAR PRT ASK

8110 - 1

1 -: control character is ignored

- - - - - -

815x - - - - - - -

8160 protected
not sendable

protected
sendable

numeric pre-
modified

markable printable -

9750 protected
not sendable

protected
sendable

numeric pre-
modified

markable printable -

9755 protected
not sendable

protected
sendable

numeric pre-
modified

markable printable -

9758
9756

protected
not sendable

protected
sendable

numeric pre-
modified

markable printable -

9763
9759

protected
not sendable

protected
sendable

numeric pre-
modified

markable printable -

3270 protected
not sendable

- numeric pre-
modified

selectable 2

2 the first character in the field is a destination character

printable 3

3 on a 3270 terminal, a non-printable field is automatically blanked

protected
automat.
tabulator

Description of the macros VTCSET

U3291-J-Z125-16-76 1033

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Character spacing and line spacing for the individual printers (in inches)

Note

– On the 9011-31/8931 Printer, bold (EM3, EM4) is not executed after HM13.

– On the 9021 Printer, HM13 is executed with 1/15“ only when a suitable font has been
selected; otherwise the next smallest character spacing is used.

Printer HMI1 HMI2 HMI3 VMI1 VMI2 VMI3

9004 1/10 1/12 1/15 1/6 1/8 1/12

9001 1/10 1/12 1/17 1/6 1/8 1/12

9003 1/10 1/12 1/15 1/6 1/8 1/12

9002 1/10 1/10 1/10 1/6 1/6 1/6

9013 1/10 1/12 1/15
 1st
ch.set
 only

1/6 1/8 1/12

9012 1/10 1/12 1/12 1/6 1/8 1/12

9011
18/19

1/10 1/12 1/15 1/6 1/8 1/12

900131/8931 1/10 1/12 1/15 1/6 1/8 1/12

9022 1/10 1/12 1/15 1/6 1/8 1/12

9021 1/10 1/12 1/15 1/6 1/8 1/12

812x 1/10 1/10 1/10 1/6 1/6 1/6

VTCSET Description of the macros

1034 U3291-J-Z125-16-76

Effect of reset at connect time on logically supported functions

Meaning:

S Reset to switch setting
M Reset to menu setting
R Reset
- No logical support for function
CS Character set
n(S) n defined by switch setting
n(M) n defined by menu selection

Note

– VTSU default
It is assumed for the logical support of these functions that the VTSU default values are
set by menu or switch settings. Any differences from the default settings are the
responsibility of the user.

– Automatic sheet feed
For the 9011-18/19 Printer, the menu setting for automatic sheet feed (ASF) simply
means selection of tractor or sheet feeder.

Printer HMI VMI PTS SO CHS ASF EM1-4 NLQ CR

9001 1/10 S - - ZV1 - R - S

9004 S S R R - ASF1 R - -

9013 S S R R S ASFn,
n(S)

R - S

9012 M M M R M ASFn,
n(M)

R M M

9011
18/19

M M M R M Tract
ASFn,
n(M)

EM1: M
EM2: R
EM3: M

M M

9001-31/8931 S S R - ZV1 - R S -

9022 S S R R R ASF1 R - -

9021 S S R R R ASF1 R - -

VTSU default 1/10 1/6 R R 1

1) Left half of the ISO 8-bit code table for printers with 8-bit character sets; otherwise basic character set

CS1 - R R CR

Description of the macros VTCSET

U3291-J-Z125-16-76 1035

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Layout of the DSECT

VTCSET BSP
1 *
1 * VIRTUAL TERMINAL CONTROL CHARACTER SET
1 *
1 *
1 * LOGICAL RECORD DELIMITERS
1 *
1 BSPNL EQU X'15' LOGICAL LINE END (CONT NEXT LINE)
1 BSPNP EQU X'0C' LOGICAL PAGE END (CONT NEXT PAGE)
1 BSPCL EQU X'0D' LOGICAL LINE END (CONT SAME LINE)
1 BSPVPA EQU X'29' LOG VERTICAL POS ABSOLUT (CONT LINE N)
1 BSPHPA EQU X'2A' LOG HORIZONT POS ABSOLUT (CONT COL N)
1 BSPASF EQU X'21' LOG SHEED FEDDING FROM CASETTE N D1
1 BSPCAP EQU X'20' CONTINUE ACTUAL POSITION AT MSG BEGIN
1 *
1 * LOGICAL UNIT DELIMITERS
1 *
1 BSPEM1 EQU X'1D' EMPHASIZED LAYOUT 1
1 BSPEM2 EQU X'1F' EMPHASIZED LAYOUT 2
1 BSPEM3 EQU X'13' EMPHASIZED LAYOUT 3
1 BSPEM4 EQU X'14' EMPHASIZED LAYOUT 4
1 BSPNOR EQU X'1E' NORMAL LAYOUT
1 BSPDAR EQU X'12' DARK LAYOUT
1 BSPPLD EQU X'2B' PARTIAL LINE DOWN
1 BSPPLU EQU X'2C' PARTIAL LINE UP
1 *
1 BSPSO EQU X'0E' SHIFT OUT TO 2ND CHARACTER SET
1 BSPSI EQU X'0F' SHIFT IN TO NORMAL CHARACTER SET
1 *
1 BSPSPA EQU X'36' START PROTECTED AREA
1 BSPEPA EQU X'08' END PROTECTED AREA
1 BSPNUM EQU X'11' START NUMERIC (UNPROTECTED) AREA
1 *
1 BSPCHS EQU X'06' CHARACTER SET D1D2
1 BSPCOL EQU X'17' COLOUR CHOICE
1 BSPLOC EQU X'09' LOCAL ATTRIBUTE START S1
1 BSPLOX EQU X'0A' LOCAL ATTRIBUTE EXIT S1
1 *
1 BSPVMI EQU X'24' VERTICAL MOVEMENT INDICATOR D1
1 BSPHMI EQU X'23' HORIZONTAL MOVEMENT INDICATOR D1
1 BSPLM EQU X'38' LEFT MARGIN D1D2D3
1 BSPPTS EQU X'1A' PROPORTIONAL TYPING START
1 BSPPTX EQU X'1B' PROPORTIONAL TYPING END
1 BSPMLL EQU X'33' MAXIMAL LINE LENGTH
1 BSPMLN EQU X'35' MAXIMAL LINE NUMBER (ON PAGE)
1 BSPNLQ EQU X'39' NEAR LETTER QUALITY START

VTCSET Description of the macros

1036 U3291-J-Z125-16-76

1 BSPNLX EQU X'3B' NEAR LETTER QUALITY EXIT
1 *
1 * SPECIAL FUNCTIONS
1 *
1 BSPDEL EQU X'07' DELETE
1 BSPBS EQU X'16' BACKSPACE
1 BSPSUB EQU X'3F' SUBSTITUTE
1 *
1 * DELIMITER EXTENSION
1 *
1 BSPEXT EQU X'3E' DELIMITER EXTENSION BYTE
1 *
1 * EXTENDED LOGICAL DELIMITERS
1 *
1 BSPTRA EQU C'T' TRANSPARENT OUTPUT X1L1L2
1 BSPDIM EQU C'D' DIMENSION OF SCREEN D1D2D3D4D5
1 BSPRPT EQU C'R' REPEAT NEXT CHARACTER NN TIMES
1 BSPDIS EQU C'I' SET DISPLAY ATTRIBUTES
1 BSPRS EQU X'00' RESET DISPLAY ATTRIBUTES
1 BSPFL EQU X'01' FLASHING
1 BSPUND EQU X'02' UNDERSCORED
1 BSPBLK EQU X'04' BLANKED
1 BSPRIN EQU X'08' REDUCED INTENSITY
1 BSPINV EQU X'10' INVERSE
1 BSPFLD EQU C'F' SET FIELD CHARACTERISTICS
1 BSPINP EQU X'00' INPUT FIELD
1 BSPPNS EQU X'01' PROTECTED NOT SENDABLE
1 BSPPRS EQU X'20' PROTECTED SENDABLE
1 BSPNUF EQU X'02' NUMERIC
1 BSPMOD EQU X'04' PRE-MODIFIED
1 BSPMAR EQU X'08' MARKABLE
1 BSPPRT EQU X'10' PRINTABLE
1 BSPASK EQU X'40' AUTOMATIC SKIP
1 *
1 *
1 * PHYSICAL UNIT DELIMITERS
1 *
1 BSPESC EQU X'27' ESCAPE X
1 BSPDC4 EQU X'3C' DC4 X
1 BSPHT EQU X'05' HORIZONTAL TABULATION
1 BSPVT EQU X'0B' VERTICAL TABULATION
1 *
1 *,VTCSET 080 941024 53531028

An example of extended line mode is given at the end of the WRTRD macro description
(Example 5).

Description of the macros VTSUCB

U3291-J-Z125-16-76 1037

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

VTSUCB – Create VTSU parameters for input/output

General

Application areas: Input/output of files and records; see page 156
Data terminal communication; see page 160

Macro type: Type S, MF format 3: C/D/L/M form; see page 29

● This description applies to VTSU V13.3A

Macro description

The VTSU control block (VTSUCB) is a program interface that allows the user to create
VTSU parameters for input and output with the RDATA, WROUT and WRTRD macros.
The following macros can be used to access the input/output interface:

WROUT record,error[,PARMOD=31],VTSUCBA=addrvtsucb

or WRTRD record1,,record2,,[length],error,[,PARMOD=31],VTSUCBA=addrvtsucb

or RDATA record,error,[length][,A][,PARMOD=31],VTSUCBA=addrvtsucb

where the VTSUCBA operand specifies an address (addrvtsucb) at which the VTSU
parameters start. These specifications replace the edit parameters of these macros. The
VTSUCB macro creates such a parameter list.

The RDATA/WROUT/WRTRD interfaces with edit parameters can be used parallel to the
VTSUCB interfaces. New functions (as of VTSU V9.0B), however, can only be used via
VTSUCB, since the edit parameters are no longer being extended.

Extended character sets are supported by the CCSNAME and CODETR operands. These
operands are evaluated only if MODE=LINE/EXTEND/INFO/FORM/PHYS is specified.

VTSUCB Description of the macros

1038 U3291-J-Z125-16-76

Macro format and description of operands

VTSUCB

: :

[

MODE=LINE,BELL=
NO

YES

,GETFC=
NO

YES

,HCOPY=
NO

YES

,NOPOS=
NO

YES

 ,LOW= NO

YES

,NOLOG=
NO

YES

[,RETINF=
*NONE

xx

] ,HOM=
NO

YES

 [,CCSNAME= *EXTEND

ccsname

],SPECIN=
N

I

C

 ,ENCOUT= NO

YES

,ENCIN=
NO

YES

,INFOLR=
NO

YES

MODE=EXTEND ,BELL=
NO

YES

,GETFC=
NO

YES

,LOW=
NO

YES

[,CCSNAME= *EXTEND

ccsname

]

 ,LOCIN=
NO

YES

,UPDATE=
NO

YES

,CURPOS=
NO

YES

 ,AUTOTAB=
STD

YES

NO

],HCOPY=
NO

YES

,READ=
UNPROT

MODIFIED

 ,ENCOUT= NO

YES

,ENCIN=
NO

YES

,INFOLR=
NO

YES

]

Description of the macros VTSUCB

U3291-J-Z125-16-76 1039

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

VTSUCB (cont.)

: :

: :

[

MODE=(MIXED,inmod,outmod) ,LOW= NO

YES

,HOM=
NO

YES

,COPY=
NO

YES

 ,BELL= NO

YES

,GETFC=
NO

YES

,UPDATE=
NO

YES

,NOPOS=
NO

YES

 ,READ= UNPROT

MODIFIED

,NOLOG=
NO

YES

,IHDR=
YES

NO

 ,LOCIN= NO

YES

,CODETR=
YES

NO

,CURPOS=
NO

YES

 ,OHDR= NO

YES

 [,CCSNAME= *EXTEND

ccsname

] ,RETINF=
*NONE

xx

 ,AUTOTAB=
STD

YES

NO

,SPECIN=
N

I

C

 ,ENCOUT= NO

YES

,ENCIN=
NO

YES

,INFOLR=
NO

YES

MODE=INFO ,BELL= NO

YES

,GETFC=
NO

YES

,LOW=
NO

YES

[,CCSNAME= *EXTEND

ccsname

]

 ,NOLOG= NO

YES

,ENCOUT=
NO

YES

,ENCIN=
NO

YES

MODE=PHYS ,IHDR= YES

NO

,LOW=
NO

YES

,OHDR=
NO

YES

[,CCSNAME= *EXTEND

ccsname

]

 ,CODETR= YES

NO

,ENCOUT=
NO

YES

,ENCIN=
NO

YES

,INFOLR=
NO

YES

]

VTSUCB Description of the macros

1040 U3291-J-Z125-16-76

MODE=

LINE
The current terminal is to be treated as a line or page terminal. The message can be
structured with logical control characters (see the VTCSET macro).
Any other control characters are invalid for output and are converted into a user-defined
substitute character (see the MODIFY-TERMINAL-OPTIONS SUBSTITUTE-
CHARACTER=command).
If SYSOUT is not a terminal, only the logical control characters NL and NP are
evaluated, e.g. for output to printers in batch mode.
The device-specific message header is not supplied during input.

EXTEND
(For 9749, 975x, 9763, 816x and 3270 Data Display Terminals only, EXTEND is
processed internally as line mode in the case of printers)

The current terminal should be treated as a logical line or page terminal. Text output is
protected and at reduced brightness unless specified otherwise. The message can be
structured by logical control characters (see VTCSET macro). Keys RU, EFZ, AFZ and
LSP are locked.

VTSUCB (cont.)

: :

,MF=L / C / D / M

[,PARAM=addr / (r)]

,PREFIX=Y / p

,MACID=VTC / macid

[

MODE=FORM ,LOW= NO

YES

[,CCSNAME= *EXTEND

ccsname

]

 ,ENCOUT= NO

YES

,ENCIN=
NO

YES

,INFOLR=
NO

YES

MODE=TRANS ,ENCOUT=
NO

YES

,ENCIN=
NO

YES

,INFOLR=
NO

YES

MODE=CHIP ,ENCOUT=
NO

YES

,ENCIN=
NO

YES

]

Description of the macros VTSUCB

U3291-J-Z125-16-76 1041

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

In the case of TIAM applications, areas which the user can use for input start with EPA,
DAR or NUM and end with SPA. With 3270 terminals, note that logical control
characters occupy space on the screen. However, a series of logical control characters
requires only one space.
In TIAM applications NIL is treated as a permissible character on input and output, and
is sent to the terminal by the program and vice versa. In the case of 3270 data display
terminals, note that NIL characters are not transferred to the DVA. VTSU-B fills fields
which are returned truncated on input with NIL characters back to their original length.
This ensures that the fields are always returned to the user in their original (output)
length.
In TIAM applications the start of an output message is mapped at the start of the next
line following the cursor. If the message does not begin with VPA, the screen is cleared,
starting at the cursor and before the first text character.
If the end of the screen is reached during output, output is continued at the top of the
screen. This continuation is always protected until the start of the next field. Screen
overflow control is ineffective here.

If the NL control character is recognized in an input message, processing continues and
the return code X'2C' is supplied at the WRTRD interface or the return code (main code)
X'0018' at the VTSUCB interface.

INFO
Messages can be mapped to a special information line (system line) without destroying
important data on the terminal.

The entry is intended particularly for user programs sending messages to terminals
“asynchronously” without knowing the current terminal display.

Mapping is performed
– protected, in a hardware display line (e.g. 9749, 9750, 9752 Data Display

Terminals), or
– protected, in the last line on the screen (e.g. 816x, 9751, 9753, 3270 Data Display

Terminals) if specified in the user program (see the TCHNG macro, INFOLIN
operand), after previous output with MODE=FORM or MODE=PHYS.

– in all other cases, as a normal line mode message.

If the message length exceeds one screen line, the message is split up and output line
by line.
The system observes the waiting time specified in the MODIFY-TERMINAL-OPTIONS
OVERFLOW-CONTROL=TIME() command.

The system line is reset automatically the first time an input is made following an output
to the system line.

Input with MODE=INFO is treated as a line mode input.

VTSUCB Description of the macros

1042 U3291-J-Z125-16-76

Note
If, before the system line output, WRTRD is used in line mode, an input field is set
up automatically.

(MIXED,inmode,outmode)
The application program uses a combination of different modes for input and output.
Only MODE=LINE, EXTEND, FORM and PHYS may be combined. MODE=CHIP, INFO
or TRANS may not be combined.
The default value of the LOW parameter, for input and output, depends on the defined
input mode. If MODE=PHYS, then LOW=YES; if MODE=LINE, EXTEND or FORM,
then LOW=NO. All other parameter values are defined in accordance with the required
input/output modes.

PHYS
The messages are to be output to or read from the terminal physically, i.e. without
editing by the system. This permits special device functions to be executed for which
the LINE or FORM mode is insufficient.

FORM
Specifies format mode. The user program works with the “Terminal Mapping Support”
software component (FHS), which edits the message in a form suitable for output to a
particular terminal.

TRANS
Output data is to be transmitted in “transparent” form, i.e. consisting of arbitrary binary
characters (5, 7 or 8 bits per character, depending on the device code) which are not
converted during transmission. If the transmission path was not generated “potentially
transparent”, output is rejected with return code X'04' at the WROUT/WRTRD interface.

CHIP
The output message is forwarded to the chipcard terminal using the device protocol
(810 protocol). The message must be created in expanded mode (see the “Data Display
Terminals” manuals). If the chipcard terminal is not addressable, output is rejected with
return code X'81' or X'82' (subcode 2) at the VTSUCB interface.

During input, a check is made as to whether the message is being sent from a chipcard
terminal, and the device protocol is removed. The function key code is placed in front
of the input message as the first byte. Input messages that are not sent from the
chipcard terminal are converted to short code K14.

Note
The MODE=CHIP operand is not permitted in the RDATA macro.

AUTOTAB=
The automatic tab jump from one unprotected field to the next is set. In mixed mode this
parameter is accepted only if input and output mode have the value EXTEND. Otherwise it
is ignored.

Description of the macros VTSUCB

U3291-J-Z125-16-76 1043

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

STD
Processing depends on the EXPROPOS operational parameter.

YES
As soon as you enter a character at the end of an unprotected field, the cursor
automatically jumps forward from this unprotected field to the next unprotected field
(including when EXPROPOS=Y).

Notes
– With 3270 terminals it is always possible to move the cursor with the arrow keys in

protected fields. If however AUTOTAB=YES, the cursor automatically jumps from
one input field to the next as soon as a character is entered at the end of an input
field.

– The EXPROPOS operational parameter is ignored by the 3270 terminal.

NO
The cursor does not jump automatically (including when EXPROPOS=N).

BELL=
Determines whether an audible signal is provided on output.

NO
No audible signal is provided for output.

YES
An audible signal is heard on output at the end of the message (applies only to 9749,
975x, 9763, 816x and 3270 Data Display Terminals with special hardware feature).

CCSNAME=
Defines the name of the character set to be used for this message. The code name of the
EBCDIC variant must be specified. The name of the corresponding ISO code variant is
rejected automatically. The name may be up to 8 bytes long. If the character set used is
changed prior to the new output, the screen is cleared automatically.

ccsname
Name of any EBCDIC code. If no name is specified, standard mode is assumed
automatically. This is either a 7-bit mode or an 8-bit mode activated by means of the
MODIFY-TERMINAL-OPTIONS command.

*EXTEND
The extended user default code is used automatically.

CODETR=
Specifies whether the message is to be translated from the specified code or into the
specified code on physical output. This parameter should be specified only for output to
printers that work with ESCAPE sequences not coded according to the EBCDIC core.
VTSU ignores these special ESCAPE sequences.

VTSUCB Description of the macros

1044 U3291-J-Z125-16-76

YES
VTSU translates the message from or into the specified code. VTSU recognizes and
skips the standard ESCAPE sequences.

NO
The control characters SO/SI are evaluated. VTSU does not perform any other code
conversion.

CURPOS=
For Extended Line Mode and Mixed Mode, determines whether the cursor position should
be returned after input. In Mixed Mode this parameter is accepted only if input and output
mode have the value EXTEND. Otherwise it is ignored.

NO
No details of the cursor position are supplied. The fields YVTCPOSL and YVTCPOSC
are undefined.

YES
The fields YVTCPOSL and YVTCPOSC are returned with the current cursor position
(lines and columns) after input.

ENCIN=
Specifies whether or not the next input has to be encrypted (valid only when the connection
is established from an emulation supporting encryption).

YES
The next input must be encrypted.

NO
The next input must not be encrypted (nevertheless, encryption of the message cannot
be prevented the message if encryption has been requested by another means).

ENCOUT=
Specifies if the current output must be encrypted or not (valid only when the connection is
established from an emulation supporting encryption).

YES
The output must be encrypted.

NO
The output must not be encrypted (nevertheless, encryption of the message cannot be
prevented if encryption has been requested by another means).

GETFC=
Specifies whether a function key code is transferred.

NO
No function key code is to be transferred.

Description of the macros VTSUCB

U3291-J-Z125-16-76 1045

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

YES
The logical function key code representing the key that initiates data transfer at the
terminal is transferred as the first character of the message.

HCOPY=
Specifies that the message output to a data display terminal is also to be output on a
hardcopy device (printer) connected to the terminal.

NO
The message is output to the data display terminal only.

YES
The message output to a data display terminal is also output on a hardcopy device
(printer) connected to the terminal.

Notes
– Hardcopy output is performed only if a hardcopy device was assigned to the data

display terminal on connection set up or via the MODIFY-TERMINAL-OPTIONS
command. For 3270 Data Display Terminals, the hardcopy device must be
assigned on connection setup (generated).

– If HCOPY=YES is used with no EXTEND mode, and the message contains the
logical control character SPA, EPA, NUM or DAR (if DARPRINTABLE=N), only the
last unprotected part of the message is printed, not the entire message.

– If OVERFLOW-CONTROL=NO (MODIFY-TERMINAL-OPTIONS command) is also
used, it may be the case that only part of the output is printed on the hardcopy
device.

HOM=
(For 816x, 9749, 975x ,9763 and 3270 Data Display Terminals only)

NO
Message output is to be structured and heterogeneous, i.e. each logical line is regarded
as a separate output unit.

With 816x, 975x, 9763 and 3270 terminals in operating mode 1 (only for TIAM
applications), the effect is that individual logical lines can be modified separately, and
so can be specifically transferred back.

YES
Message output is to be unstructured and homogeneous, i.e. the entire message is
regarded as a single output unit. The message length is restricted by the size of the
output buffer in the system.

With 816x, 975x, 9763 and 3270 terminals in operating mode 1 (only for TIAM
applications), the effect is that by modifying a character in an output message, the entire
message can be transferred back, so long as it is not explicitly structured by logical
display control characters.

VTSUCB Description of the macros

1046 U3291-J-Z125-16-76

IHDR=
Specifies how the message header is to be handled.

YES
The entire message header is passed to the user program (default value for
MODE=PHYS).
For 3270 Data Display Terminals, the message header consists of the send key code
(AID byte) and the two-byte cursor position.

NO
The message header is not passed to the user program.

INFOLR=
Specifies whether the info line has to be reset.

YES
The info line must be reset.

NO
The info line does not have to be reset.

LOCIN=
Determines how local attributes in the input message are handled.
This operand applies only to data display terminals that support local attributes (e.g. the
9763 Data Display Terminal).

NO
Local attributes are removed from the input message; they are not passed on to the
user.

YES
If the input message contains local attributes, they are passed to the user as logical
control characters (see the VTCSET macro).

LOW=
Determines whether a distinction is to be made between lowercase and uppercase letters.
The default setting for the LOW parameter depends on the MODE operand:

MODE=MIXED the default setting depends on
the defined input mode

MODE=PHYS LOW=YES is the default setting
MODE=LINE/EXTEND/FORM LOW=NO is the default setting

NO
All lowercase letters are transferred as uppercase letters to the user program.

YES
Lowercase letters are also transferred to the user program (default value for
MODE=PHYS).

Description of the macros VTSUCB

U3291-J-Z125-16-76 1047

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. PREFIX, MACID and PARAM), see section “S-type macros” on page 29.
The valid MF values are given at the start of the macro description under “Macro type” and
are included in the macro format.
A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form (see section “S-type macros” on page 29).

NOLOG=
Determines whether logical control characters are to be evaluated.

NO
All logical control characters are evaluated and special physical control characters are
accepted (see the VTCSET macro, e.g. ESC,DC4).
Other characters < X'40' are replaced by SUB. Printable characters are accepted.

YES
Logical control characters are not evaluated. All characters less than X'40' in EBCDIC
code are replaced by SUB (smudge character). Only printable characters are accepted.

NOPOS=
(Only for printers). For Line Mode and Mixed Mode, determines the output location of
messages.
In Mixed Mode, this parameter is accepted only if the output mode is MODE=LINE.
Otherwise it is ignored.

NO
The output message begins at the start of the next line.

YES
The output message begins at the start of the current line.

OHDR=
Specifies how the user-specific message header is to be handled.

NO
The message header is not prefixed to the output text.

YES
The message contains a user-specific header which the system prefixes to the output
text. The length of the message header +1 must be specified in binary form in byte 1 of
the message.

Note
When output is to the 8160, 975x and 9763 Data Display terminals and printers
locally attached to them, the system (MODE=LINE) or FHS works with parameter
specifications (PAG) and does not use a message header (PARAM0, PARAM1).
The differences between these two modes are described in the the manuals for
data display terminals or printers.

VTSUCB Description of the macros

1048 U3291-J-Z125-16-76

READ=
For Extended Line Mode and Mixed Mode, determines the physical read mode.
In Mixed Mode this parameter is accepted only if input and output mode have the value
EXTEND. Otherwise it is ignored.

Note that with DCAM applications in Extended Line Mode, when a YSEND call is followed
by a YRECEIVE call, both calls must have the same physical read mode (UNPROT or
MODIFIED).

UNPROT
All unprotected fields, including those not, modified, are returned to you. To determine
the modified value the data received must be compared with the output data.

MODIFIED
Only the modified fields are returned to you. Each modified field is prefixed in the user
buffer with its position on the screen (see logical control characters VPA and HPA).

RETINF=
Determines whether return information is required from printer terminals.

*NONE
No return information is supplied.

xx
xx = any two printable characters to be supplied with the return information. Single
quotes to be returned must be specified twice (e.g. RETINF=''''). The return information
is 4 bytes long and has the following structure:

Byte 0 Identification (X'41' positive/ X'42' negative)
Bytes 1-2 RETINF byte
Byte 3 Information on printer status (printer-specific)

SPECIN=
Requests special input. If special input is to be requested, the SPECIN parameter must be
specified beforehand in the requesting output message.

N
Normal input from the terminal.

I
Data is read from the ID card reader. The input data may consist of identity card
information or short message K14. This entry is permitted only for the 9749, 975x, 9763,
816x and 3270 Data Display Terminals with a defined ID card reader.
In contrast to TRANSDATA devices, data may be entered on 3270 Data Display
Terminals by a defined ID card reader at any time. If entries are requested by the ID
card reader, every other entry is converted into K14.

Description of the macros VTSUCB

U3291-J-Z125-16-76 1049

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

C
The input data is confidential and is to remain invisible on the terminal. This is achieved
by blanking or clearing the screen (when the screen format is reset to 24x80) or by
overwriting the input line at the printer terminal.

UPDATE=
For Extended Line Mode and Mixed Mode you can determine at the time of format outputs
whether the whole screen is created again, or if only the modified lines should be updated.
A modified line is one in which either an existing field is updated or a new field is generated.
In Mixed Mode, this parameter is accepted only if input and output mode have the value
EXTEND. Otherwise it is ignored.

NO
In the case of the first logical new page, the whole screen is created again.

YES
Only the modified lines are updated.
If you create a new field, ensure that the end of this new field has the output attribute
'not visible' and the field attribute 'protected'. If a new field is created, binary nulls are
output until the start of the next field. The output attribute 'not visible' suppresses output
of binary nulls and blanks are output. The field attribute 'protected' stops the
subsequent field being overwritten by the new field. Note that when updating the screen
the entire character set (CCSNAME) must be used, as when generating the original
screen. Otherwise the original screen is deleted and only the updated lines are output.
Also note that field attributes are not implicitly reset when updating.
For example, a field to which the attribute 'premodified' was assigned still has the same
attribute even after updating. Attributes must thus be explicitly reset.

VTSUCB Description of the macros

1050 U3291-J-Z125-16-76

Return information and error flags

Standard
header:

A return code relating to the execution of the
VTSUCB macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Successful processing.

X'58' X'00' X'0008' Successful processing, but RETINF byte is incorrect. Parameter
ignored.

X'02' X'00' X'0008' Successful processing, but invalid mode for current terminal. Substitute
display.

X'00' X'01' X'FFFF' Function not executed. UNIT or FUNCT incorrect.

X'xx' 1) X'01' X'0004' Function not executed.
Parameter error in VTSUCB.

X'40' X'01' X'0004' Function not executed.
User-specific message header has invalid length.

X'50' X'01' X'0004' Function not executed.
User buffer for input has invalid length.

X'60' X'01' X'0004' Function not executed.
Requested XHCS function not available. XHCS is not loaded.

X'61' X'01' X'0004' Function not executed.
The XHCS function is requested for 7-bit terminals.

X'62' X'01' X'0004' Function not executed.
The XHCS function is not supported.

X'80' X'01' X'0004' Function not executed.
MODE parameter invalid for command type.

X'86' X'01' X'0004' Function not executed.
CCSNAME incompatible with devices.

X'1E' X'01' X'0004' Function not executed. Invalid CCS name.

X'00' X'03' X'FFFF' Function not executed.
Incorrect VTSUCB version.

X'xx' X'20' X'0004' Function not executed.
Internal error (for diagnostics).

X'00' X'40' X'000C' Output message truncated.

X'00' X'40' X'0010' Input message truncated.

X'00' X'40' X'0018' Extended line mode: input message abbreviated.

X'02' X'40' X'0004' Function not executed.
Invalid mode for current terminal. No substitute display.

Description of the macros VTSUCB

U3291-J-Z125-16-76 1051

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Other return codes which, in accordance with conventions, apply to all macros, are given
in the table “Standard return codes” on page 43.

1) The first incorrect parameter in the VTSUCB is displayed in Subcode 2.

08: incorrect length specification in VTSUCB
10: incorrect MODE operand
11: incorrect HCOPY operand
12: incorrect BELL operand
13: incorrect NOLOG operand
14: incorrect READ operand
15: incorrect HOM operand
16: incorrect RETINF operand
17: incorrect LOCIN operand
18: incorrect OHDR operand
19: incorrect CODETR operand
1A: incorrect IHDR operand
1B: incorrect LOW operand
1C: incorrect SPECIN operand
1D: incorrect GETFC operand
1E: incorrect CCSNAME operand
1F: incorrect CURPOS operand
20: incorrect UPDATE operand
22: incorrect AUTOTAB operand
23: incorrect NOPOS operand
24: incorrect ENCOUT operand
25: incorrect ENCIN operand
26: incorrect INFOLR operand

The leftmost byte of the main code is not currently assigned and is set to the value X'00'.
If the standard header contains errors affecting the product identification (e.g. the wrong
version), the value is set to X'FF'.

X'10' X'40' X'0020' Function not executed. Restricted information.

X'81' X'40' X'0004' Function not executed.
No chipcard terminal available for terminal.

X'82' X'40' X'0004' Function not executed.
Chipcard terminal available but not accessible.

X'83' X'40' X'0004' Function not executed.
Message for chipcard terminal rejected by data display terminal.

X'cc' X'bb' X'aaaa' Meaning

VTSUCB Description of the macros

1052 U3291-J-Z125-16-76

Error messages that are returned to the input/output interface of the access methods when
the VTSUCB is not used are supplied in the same form as when the VTSUCB is used.
Relevant error information is also returned in the VTSUCB. Error information relating only
to the VTSUCB is indicated at the input/output interfaces via a separate return code (X'24')
and described in more detail in the VTSUCB return code.

Layout of the DSECT

VTSUCB MF=D,PREFIX=A
1 AVTSUCB DSECT
1 FHDR MF=(C,AVTC),EQUATES=NO
2 DS 0A
2 AVTCFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 AVTCIFID DS 0A 0 INTERFACE IDENTIFIER
2 AVTCFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 AVTCFCT DS AL1 2 FUNCTION NUMBER
2 AVTCFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 AVTCRET DS 0A 4 GENERAL RETURN CODE
2 AVTCSRET DS 0AL2 4 SUB RETURN CODE
2 AVTCSR2 DS AL1 4 SUB RETURN CODE 2
2 AVTCSR1 DS AL1 5 SUB RETURN CODE 1
2 AVTCMRET DS 0AL2 6 MAIN RETURN CODE
2 AVTCMR2 DS AL1 6 MAIN RETURN CODE 2
2 AVTCMR1 DS AL1 7 MAIN RETURN CODE 1
2 AVTCFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 *
1 * SUBCODE 1 VALUES
1 *
1 AVTCECPM EQU X'01' ERROR CLASS PARAMETER ERROR
1 AVTCECIN EQU X'20' ERROR CLASS INTERNAL ERROR
1 AVTCECSP EQU X'40' ERROR CLASS SPECIAL ERROR
1 *
1 * SUBCODE 2 VALUES
1 *
1 AVTCERLN EQU X'08' ERROR IN LENGTH OF VTSUCB
1 AVTCERMO EQU X'10' ERROR IN MODE PARAMETER
1 AVTCERHC EQU X'11' ERROR IN HARDCOPY PARAMETER
1 AVTCERBE EQU X'12' ERROR IN BELL PARAMETER
1 AVTCERNO EQU X'13' ERROR IN NOLOG PARAMETER
1 AVTCERRD EQU X'14' ERROR IN READ PARAMETER

Description of the macros VTSUCB

U3291-J-Z125-16-76 1053

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

1 AVTCERHO EQU X'15' ERROR IN HOM PARAMETER
1 AVTCERRE EQU X'16' ERROR IN RETINF PARAMETER
1 AVTCERLO EQU X'17' ERROR IN LOCIN PARAMETER
1 AVTCEROH EQU X'18' ERROR IN OUTPUT HEADER PARAMETER
1 AVTCERCO EQU X'19' ERROR IN CODETR PARAMETER
1 AVTCERIH EQU X'1A' ERROR IN INPUT HEADER PARAMETER
1 AVTCERLW EQU X'1B' ERROR IN LOWER INPUT PARAMETER
1 AVTCERSP EQU X'1C' ERROR IN SPECIAL INPUT PARAMETER
1 AVTCERGE EQU X'1D' ERROR IN GET FUNCTION CODE PARAMETER
1 AVTCERCC EQU X'1E' INVALID CCSNAME
1 AVTCERCP EQU X'1F' ERROR IN CURPOS PARAMETER
1 AVTCERUP EQU X'20' ERROR IN UPDATE PARAMETER
1 AVTCERWA EQU X'21' ERROR IN WARINFO PARAMETER
1 AVTCERAT EQU X'22' ERROR IN AUTOTAB PARAMETER
1 AVTCERNP EQU X'23' ERROR IN NOPOS PARAMETER
1 AVTCEREO EQU X'24' ERROR IN ENCOUT PARAMETER
1 AVTCEREI EQU X'25' ERROR IN ENCIN PARAMETER
1 AVTCERIR EQU X'26' ERROR IN INFOLR PARAMETER
1 *
1 AVTCERXH EQU X'60' XHCS FCT REQUESTED BUT XHCS NOT LOADED
1 AVTCER7B EQU X'61' XHCS FCT REQUESTED FOR 7-BIT TERMINAL
1 AVTCERBS EQU X'62' XHCS FCT SUPPORT ONLY FROM BS2000 V10
1 *
1 AVTCERIN EQU X'7A' NO PLACE ENOUGH TO INSERT SI/SO CHARS
1 AVTCER1L EQU X'7B' NO PLACE ENOUGH TO INSERT PAR01L CHARS
1 *
1 AVTCERM1 EQU X'80' MODE NOT VALID FOR COMMAND TYPE
1 AVTCERM2 EQU X'81' MODE=CHIP USED BUT NO CKT ANNOUNCED
1 AVTCERC1 EQU X'82' CKT NOT AVAILABLE FROM TERMINAL
1 AVTCERC2 EQU X'83' OTHER ERROR CODE FROM DSS BY CKT-MSG
1 AVTCERX2 EQU X'86' VTSUCB CCSN INCOMPATIBLE WITH DEVICE
1 AVTCERE1 EQU X'87' ENCRYPTION FOR OUTPUT NOT SUPPORTED
1 AVTCERE2 EQU X'88' ENCRYPTION FOR INPUT NOT SUPPORTED
1 AVTCERE3 EQU X'89' INFO LINE RESET INVALID WITH MODE
1 *
1 AVTCERO1 EQU X'40' HEADER LENGTH OF OUTPUT MSG NOT VALID
1 AVTCERI1 EQU X'50' USER BUFFER LEN FOR INPUT NOT VALID
1 *
1 * MAINCODE VALUES FOR SUBCODE 1 = X'40'
1 *
1 AVTCMRPM EQU X'04' WRONG PARAMETER FOR DEVICE
1 AVTCMROT EQU X'0C' OUTPUT TRUNCATION
1 AVTCMRIT EQU X'10' INPUT TRUNCATION
1 AVTCMRNL EQU X'18' NL IN EXT LINE INPUT MESSAGE
1 *
1 * MAINCODE VALUES FOR SUBCODE 1 = X'00'
1 *
1 AVTCMRCO EQU X'08' CORRECTED ERROR

VTSUCB Description of the macros

1054 U3291-J-Z125-16-76

1 *
1 *
1 AVTCLEN DS H LENGTH OF VTSUCB
1 *
1 AVTCINM DS C INPUT MODE FOR MODE=MIXED
1 AVTCOUTM DS C OUTPUT MODE FOR MODE=MIXED
1 *
1 DS XL4 RETURN INFO (NOT YET USED)
1 *
1 AVTCMODE DS C MODE OF MESSAGE
1 AVTCLINE EQU C'L' LINE MODE
1 AVTCEXT EQU C'E' EXTENDED LINE
1 AVTCINFO EQU C'I' INFO LINE MESSAGE
1 AVTCPHYS EQU C'P' PYHSICAL MODE
1 AVTCTRAN EQU C'T' TRANSPARENT MODE
1 AVTCFORM EQU C'F' FORM MODE
1 AVTCCHIP EQU C'C' CHIPCARD MODE (FOR CKT)
1 AVTCMIXD EQU C'M' MIXED MODE
1 *
1 AVTCHC DS C HARCOPY FUNCTION
1 AVTCHCN EQU C'N' NO HARDCOPY
1 AVTCHCY EQU C'Y' LOCAL/CENTRAL HARDCOPY
1 *
1 AVTCBEL DS C BELL FUNCTION
1 AVTCBELN EQU C'N' NO BELL
1 AVTCBELY EQU C'Y' BELL AFTER OUTPUT
1 *
1 AVTCNLG DS C NO LOG CHARS TO INTERPRET FUNCTION
1 AVTCNLGN EQU C'N' LOGICAL CHARACTERS TO INTERPRET
1 AVTCNLGY EQU C'Y' NO LOGICAL CHARACTERS TO INTERPRET
1 *
1 AVTCRBYT DS CL2 RETURN INFO BYTES
1 *
1 AVTCRIN DS C RETURN INFORMATION FUNCTION
1 AVTCRINN EQU C'N' NO RETURN INFORMATION
1 AVTCRINY EQU C'Y' RETURN INFORMATION REQUIRED
1 *
1 AVTCLOC DS C INPUT OF LOCAL CHARACTERS
1 AVTCLOCN EQU C'N' NO LOCAL CHARACTERS REQUIRED
1 AVTCLOCY EQU C'Y' LOCAL CHARACTERS REQUIRED
1 *
1 AVTCOHD DS C OUTPUT HEADER FUNCTION
1 AVTCOHDN EQU C'N' NO OUTPUT HEADER IN USER MSG
1 AVTCOHDY EQU C'Y' OUTPUT HEADER IN USER MESSAGE
1 *
1 AVTCCTR DS C CODE TRANSLATION FUNCTION
1 AVTCCTRN EQU C'N' NO CODE TRANSLATION DONE BY VTSU
1 AVTCCTRY EQU C'Y' CODE TRANSLATION TO/FROM CCS REQ.

Description of the macros VTSUCB

U3291-J-Z125-16-76 1055

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

1 *
1 AVTCIHD DS C INPUT HEADER FUNCTION
1 AVTCIHDN EQU C'N' NO INPUT HEADER REQUIRED
1 AVTCIHDY EQU C'Y' INPUT HEADER REQUIRED
1 *
1 AVTCLOW DS C LOWER CHARACTERS FUNCTION
1 AVTCLOWN EQU C'N' TRANSLATE LOWER CHARACTERS
1 AVTCLOWY EQU C'Y' RETAIN LOWER CHARACTERS
1 *
1 AVTCSPIN DS C SPECIAL INPUT FUNCTION
1 AVTCNSPI EQU C'N' NO SPECIAL INPUT
1 AVTCIDIN EQU C'I' INPUT FROM ID-CARD READER
1 AVTCCOIN EQU C'C' CONFIDENTIAL INPUT
1 *
1 AVTCFC DS C FUNCTION CODE
1 AVTCFCN EQU C'N' NO FUNCTION CODE REQUIRED
1 AVTCFCY EQU C'Y' FUNCTION CODE REQUIRED
1 *
1 AVTCHOM DS C HOMOGENEOUS OUTPUT
1 AVTCHOMN EQU C'N' NO HOMOGENEOUS OUTPUT REQUIRED
1 AVTCHOMY EQU C'Y' HOMOGENEOUS OUTPUT REQUIRED
1 *
1 AVTCNOP DS C OUTPUT ON SAME LINE
1 AVTCNOPN EQU C'N' OUTPUT STARTS ON NEXT LINE
1 AVTCNOPY EQU C'Y' OUTPUT STARTS ON CURRENT LINE
1 *
1 AVTCCCNA DS CL8 CODED CHARACTER SET NAME
1 *
1 AVTCCUR DS C CURSOR POSITION REQUESTED
1 AVTCCURN EQU C'N' CURSOR POSITION NOT RETURNED
1 AVTCCURY EQU C'Y' CURSOR POSITION GIVEN AFTER INPUT
1 *
1 AVTCPOSL DS XL1 CURSOR POSITION (LINE)
1 AVTCPOSC DS XL1 CURSOR POSITION (COLUMN)
1 *
1 AVTCREAD DS C READ MODE (EXTENDED LINE MODE)
1 AVTCRDUN EQU C'U' READ UNPROTECTED
1 AVTCRDMO EQU C'M' READ MODIFIED
1 *
1 AVTCUPD DS C SCREEN UPDATE IN EXTENDED LINE MODE
1 AVTCUPDN EQU C'N' NO SCREEN UPDATE -> REFRESH
1 AVTCUPDY EQU C'Y' SCREEN UPDATE
1 *
1 AVTCWAR DS C WAR BYTE REQUESTED
1 AVTCWARN EQU C'N' NO INFO ABOUT WAR BYTE
1 AVTCWARY EQU C'Y' VALUE OF WAR BYTE TO RETURN
1 *
1 AVTCWARI DS XL1 RETURNED WAR BYTE VALUE

VTSUCB Description of the macros

1056 U3291-J-Z125-16-76

1 *
1 AVTCAT DS C AUTOMATIC TABULATION
1 AVTCATS EQU C'S' STANDARD AUTOMATIC TABULATION
1 AVTCATN EQU C'N' AUTOMATIC TABULATION NOT REQUESTED
1 AVTCATY EQU C'Y' AUTOMATIC TABULATION REQUESTED
1 *
1 AVTCEO DS C ENCRYPTION FOR OUTPUT
1 AVTCEON EQU C'N' ENCRYPTION FOR OUTPUT NOT REQUESTED
1 AVTCEOY EQU C'Y' ENCRYPTION FOR OUTPUT REQUESTED
1 *
1 AVTCEI DS C ENCRYPTION FOR INPUT
1 AVTCEIN EQU C'N' ENCRYPTION FOR INPUT NOT REQUESTED
1 AVTCEIY EQU C'Y' ENCRYPTION FOR INPUT REQUESTED
1 *
1 AVTCIR DS C INFO LINE RESET
1 AVTCIRN EQU C'N' INFO LINE RESET NOT REQUESTED
1 AVTCIRY EQU C'Y' INFO LINE REQUESTED
1 *
1 DS XL1 RESERVED
1 *
1 AVTC# EQU *-AVTCFHE LENGTH OF DSECT
1 *,VTSUCB 350 980309

Description of the macros WRCPT

U3291-J-Z125-16-76 1057

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

WRCPT – Write checkpoint

General

Application area: Writing checkpoints; see page 162
Macro type: Type S, MF format 1:

31-bit interface: standard/L/D/E form; see page 29

Macro description

The WRCPT macro writes a checkpoint to a specified checkpoint file (cataloged PAM file).
The checkpoint comprises ID information, program status, related system status and virtual
memory contents. An aborted program can be continued by means of the RESTART-
PROGRAM command, making use of a checkpoint (see the “Commands” manual [19]).

Note
– The checkpoint routine opens the file.
– The operand “O” controls whether or not the file is overwritten.
– It is the user's responsibility to branch to the error routine or to a user-defined restart

routine.

Macro format and description of operands

LINK=
Identifies, by means of a link name, the file to which the checkpoint is to be written. The file
must be cataloged as a PAM file and entered with this file link name in the TFT (ADD-FILE-
LINK command; see the “Commands” manual [19]).

linkname
Link name of the file.

WRCPT

[,IDENT=check-id]

,O=NO / YES

,ENDAID=NO / YES

[,MF=L / (E,..) / D]

LINK=linkname
FILE=pathname

WRCPT Description of the macros

1058 U3291-J-Z125-16-76

FILE=
Identifies the file to which the checkpoint is to be written. The file must already be cataloged
as a PAM file.

pathname
Path name of the file.

IDENT=
Specifies a character string to identify the checkpoint. If this operand is omitted or if the
string starts with a blank, the checkpoint is given an ID internally.

check-id
Character string; length = 6 bytes. The first character must not be a blank.

O=
Defines whether or not the specified file is to be (logically) erased before the checkpoint is
written.

NO
The specified file is not erased. The checkpoint is written to the end of the file.

YES
The contents of the specified file are erased before the checkpoint is written.

ENDAID=
Specifies whether existing AID connections are to be terminated.

NO
If processing with AID took place before the check point was written, all AID measures
remain valid. Writing of the check point is rejected with the return code '68'.

YES
The check point is always written. If processing with AID took place before the check
point was written, the connection to AID is terminated. All previously set break points
are ineffective after the check point is written.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

Description of the macros WRCPT

U3291-J-Z125-16-76 1059

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Functional description

Upon being invoked, the checkpoint routine validates the operand list. The routine then
awaits termination of any outstanding I/O's and determines where in the file the checkpoint
is to be written. The checkpoint comprises ID information, program status, related system
status and virtual memory contents. All these are required for logically restarting a program
at the checkpoint.

When the checkpoint has been successfully completed, a message is logged on SYSOUT
for use at restart time. If an error is detected during checkpointing, an error code is returned.
This error code is stored in the standard header of the operand list. The first output of the
checkpoint routine is a number of PAM blocks with ID information, necessary control blocks,
information required for file reopening and the contents of virtual memory. The checkpoint
routine outputs a message to SYSOUT if the checkpoint has been completed successfully.
This message links a specified ID with a halfpage number for subsequent use in restarting.

The user can reduce the amount of time consumed by the checkpoint routine by controlling
the allocation of memory space for the file. The approximate number of PAM blocks used
for a single checkpoint may be calculated using the formula

P = 2n + 12

where n is the number of pages of virtual memory allocated to the program at checkpoint
time. It follows therefore that the checkpoint should be taken at a point in the program where
the amount of class 5 and class 6 memory allocated to the program is at a minimum.

Furthermore, the initial allocation of file space should be large enough to accommodate all
anticipated checkpoints, thus avoiding secondary allocations. If this is not feasible, the next
best alternative is to ensure that the secondary allocation equals or exceeds the
requirements of any one checkpoint.

Upon restart of a program at a checkpoint written with WRCPT, the program is continued
with the next instruction following the WRCPT macro. In order to enable the user to check
whether the checkpoint routine or the restart routine has been executed, the restart routine
sets the secondary return code in byte 5 of the standard header to “R”. Users are thus
enabled to decide whether their own restart routine is to be executed.

Notes on the macro call

– If a WRCPT macro is specified, the existing copies (S.IN.tsn. ..) of procedure/ENTER
files will not be deleted at LOGOFF. These files must exist, otherwise a smooth restart
cannot be guaranteed.

WRCPT Description of the macros

1060 U3291-J-Z125-16-76

– A checkpoint cannot be set:
– in programs using inter-task communication.
– in programs that run as shared code, invoke shared code programs or are invoked

by shared code programs.
– in programs which use, directly or indirectly, the memory pool, serialization, ISAM

SHARED UPDATE, or UPAM SHARED UPDATE.
– if the SDF command language is loaded in memory pools in class 5 memory.
– if RFA connections are open.
– in programs that process tapes in MAV (multijob processing) mode.

– The RESTART-PROGRAM command must be issued from within the same computer
and device configuration and with the same system as the WRCPT macro.

– For file generation groups open at the time of WRCPT, the base value between the time
of WRCPT and the restart time cannot be changed.

– AUDIT functions active at checkpoint time are deactivated.

– The status of user data is not automatically restored at restart time. The user must take
the necessary steps to ensure that it is restored before restart.

– During checkpoint output, HSMS cannot migrate a user file to a background storage
level. The MIGRATE bit in the catalog entry is set to the value INHIBIT (see the “DMS
Macros” manual [7]). If the user file is migrated to a background storage level during
restart, the RESTART-PROGRAM command with the operand FILE-CHANGE=
ALLOWED has to be specified. In this case, the CFID (coded file ID) is not checked.

– If the checkpoint is written in a procedure, the procedure will continue to run as well as
the program after the RESTART-PROGRAM command.

Notes on the checkpoint file

– If the checkpoint file resides on a public volume, only the catalog ID of the user's own
system may be specified (in the FCB of the macro); (see also the “HIPLEX MSCF”
manual [26]).

– The checkpoint file may not reside on NK4 pubsets and must have the following
attributes:
BUF-LEN = STD(1)
BLK-CONTR ≠ DATA

– The checkpoint file may not reside on Net-Storage.

Description of the macros WRCPT

U3291-J-Z125-16-76 1061

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Return information and error flags

Standard
header:

A return code relating to the execution of the WRCPT
macro is transferred in the standard header
(cc=Subcode2, bb=Subcode1, aa=Maincode):

c c b b a a

X'cc' X'aa' Meaning

X'44'
X'00' Checkpoint processed successfully; added note:

temporary files were open or link name for temporary job variables exists.

X'04' Work area cannot be allocated.

X'08' Operand error.

X'14' BUF-LEN of the checkpoint file î STD(1)

X'04'
X'08'
X'10'
X'1C'
X'20'
X'24'
X'28'
X'2C'
X'30'

X'18' File opening error; added notes:
No work area available.
Number of PAM request blocks = 0 (for checkpoint file).
Remote or SHARUPD access or eventing not supported with checkpointing.
Error in connection with job variables.
Error when validating open FCB.
Checkpoint cannot be written (ISAM).
Error when waiting for termination of outstanding I/O for a SAM file.
Checkpoint cannot be output (UPAM)
Checkpoint cannot be output due to asynchronous I/Os for a BTAM file.

X'1C' Checkpoint file is a tape file with LABEL=NSTD or LABEL=NO; no checkpoint.

X'20' Error when reading catalog entry for checkpoint file.

X'24' Memory pool being used or ISAM file being processed for shared update; no
checkpoint.

X'28' Serialization being used; no checkpoint.

X'2C' Eventing being used; no checkpoint.

X'30' Contingency process present; no checkpoint.

X'34' DQPAM error; no checkpoint.

X'38' End of tape reached during checkpoint output; no checkpoint.

X'40' Checkpoint output not supported in secure system; no checkpoint.

X'48' The checkpoint file has the format BLK-CONTR=DATA; no checkpoint output.

X'4C' FASTPAM is still active; no checkpoint output.

X'50' Checkpoint file is not a PAM file.

X'58' Error when accessing checkpoint file. For details about the error see Subcodes; for
an explanation of the error codes see the “Introductory Guide to DMS” [8].
Example: File does not exist at OPEN time (FSTAT error).

X'5C' Incorrect operand in FILE call for checkpoint file (e.g. SHAREUPD=YES).

WRCPT Description of the macros

1062 U3291-J-Z125-16-76

After successful checkpoint processing (X'00') Subcode1 is erased. The restart routine sets
the Subcode1 to C'R'.

X'60' The checkpoint file is already open; no checkpoint output.

X'64' Macro error during checkpoint output; no checkpoint output.

X'68' No checkpoint processing if breakpoints have been defined by means of AID.

X'6C' MAREN error; no checkpoint output.

X'7C' Data space is used.

X'76' POSIX is active.

X'70' Internal error during PCB backup; no checkpoint output.

X'74' Internal problems with SYSFILE environment; no checkpoint output.

X'cc' X'aa' Meaning

Description of the macros WRLST

U3291-J-Z125-16-76 1063

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

WRLST – Write record to SYSLST

General

Application area: Input/output of files and data records; see page 156
Macro type: Type S, MF format 1: 24-bit interface: standard/E/L form

31-bit interface: standard/E/L/C/D form; see page 29

The file SYSLST is a temporary (system) file created by the operating system for each task.
The contents of SYSLST are output to printer on task termination, and the file is erased.
The ASSIGN-SYSLST command gives users the option of assigning their own (cataloged)
file, an S variable or a PLAM library element to the SYSLST file.
In contrast to the SYSLST file, the (system) files SYSLST01 to SYSLST99 are only effective
when cataloged files have been assigned to them (see also the SYSFL macro).

Macro description

The user can employ the WRLST macro to write a record to the file SYSLST or to one of
the files SYSLST01, ..., SYSLST99. Each macro call transfers a record to the specified file.
The entry is made in the SYSLST file, provided that the NUMBER operand is not specified.

Macro format and description of operands

record
Symbolic address of the record to be written to SYSLST. The record starts with the record
length field, followed by print control characters and the data to be transferred.
Format (example):

record DC Y (recend-record)
 DS CL2 Reserved bytes
 DC X'nm' Print control character
data DC C'data-record' Record to be written
recend EQU *

WRLST

[,MF=(D,pre) / D / I / (E,..) / L / C / (C,pre)]]

record,error[,NUMBER=n][,PARMOD= 24

31

]

(1)

WRLST Description of the macros

1064 U3291-J-Z125-16-76

Note
The print control character specifies the type of paper feed desired on the printer. The
valid print control characters are listed below:

X'4n' Advance n lines before printing and 1 line after printing. The range of n is
(0 - F)16 representing up to 16 lines skipped. The setting n = 0 causes a 1-line
feed after printing.

X'0n' Advance n lines after printing. The range of n is (0 - F)16 representing a feed of
up to 15 lines (n = 0 corresponds to no feed).

X'Cn' Skip immediately to channel n of the printer carriage control tape. The range of
n is (1 - B)16.

X'8n' Print and skip to channel n of the printer carriage control tape. The range of n
is (1 - B)16.

error
Symbolic address to be branched to if one of the following errors occurs during execution
of the WRLST macro (see Return information):

– unrecoverable error
– operand error
– truncation error
– memory space saturation

In the event of an error, register R14 contains the address of the next instruction after the
WRLST macro call. The error code is transferred in register R15.
31-bit interface: If error=0 (address X'00..0') is specified, the program is continued with the
instruction following the WRLST macro.

NUMBER=
Specifies one of the files SYSLST01 to SYSLST99.

n
(2-digit) number in the range (01,02, ..., 99).

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

Description of the macros WRLST

U3291-J-Z125-16-76 1065

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

(1)
Register R1 contains the operand list address. The list must be aligned on a word boundary.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

A prefix (pre = 1..3 letters) can be specified in the D form of the macro, as shown in the
macro format. There is no default value.

The standard header is initialized with MF=I.

If MF=E is specified, the standard header of the operand list is not automatically initialized.
The operand list address must be transferred in register R1 and must be aligned on a word
boundary. The layout is given below.

Layout of the data area:

Notes on the macro call

– On normal termination, processing is continued with the instruction following the macro
expansion. Truncation occurs when the length of the record exceeds 137 or 165 bytes
(4-byte length field + 1 byte print control + 132 or 160 characters) in accordance with
the printer type specified in the SYSFL macro. Register R14 contains the address of
the instruction following the macro. Register R15 is unchanged when no error occurs.

– If SYSLST was not cataloged, the following occurs: SYSLST is output to a printer after
job termination. After output, the SYSLST file is erased.

– If SYSLST or SYSLSTn is assigned to a cataloged file, the file can also be processed
on a long-term basis. In this case, the user is responsible for printing or erasing the file.

Addressing
mode

Byte Contents

24-bit mode 0
1-3
4-7

SYSLSTn (n = number of the SYSLST file).
Address of the record to be written (operand “record”).
Address to be branched to in the event of errors (operand “error”).

31-bit mode 0-7

8-11
12-15
16

Standard header; format:
 byte 0-1: X'0024'
 2: X'01'
 3: X'01'
 4-7: return code
Address to be branched to in the event of errors (operand “error”).
Address of the record to be written (operand “record”).
SYSLSTn (number of SYSLST file; operand NUMBER)

WRLST Description of the macros

1066 U3291-J-Z125-16-76

Return information and error flags

31-bit interface:
No return code is transferred in the standard header. A user dump is produced if the
UNIT field of the standard header is supplied with incorrect values.
The two leftmost bytes of register R15 are not used.

If SYSLST is assigned to a cataloged file that does not allow secondary memory space
requests (S-ALLOC=0 in the file catalog) and no more memory space is available in this
file, the return code X'10' is issued.

R15:
A return code relating to the execution of the WRLST
macro is transferred in register R15.0 0 0 0 0 0 a a

X'aa' Meaning

X'04' Unrecoverable error.

X'08' Operand error.

X'0C' The record to be written is truncated. Record contents (without record length field) overflow
the I/O buffer file 2040 = default value, 2044 when output is to a cataloged file.

X'10' No more memory space for the file assigned to SYSLSTn. The last PAM page has been
allocated and can be written to.

Description of the macros WROUT

U3291-J-Z125-16-76 1067

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

WROUT – Write record to SYSOUT

General

Application areas: Input/output of files and records; see page 156
Data terminal communication; see page 160
Communication; see page 163

Macro type: Type S, MF format 1: 24-bit interface: standard/E/L form
31-bit interface: standard/E/L/C/D form; see page 29

● This macro description applies to TIAM V13.2A.

● The following applies when using the 31-bit interface:
– With MF=C/D, no symbolic names and equates are generated for the standard

header. In the event of the operand list being supplied dynamically, the initialization
values for the standard header should be taken from an operand list generated with
MF=L.

– No return code is transferred in the standard header.

● The CUPAB macro generates a DSECT for the operand list of the WROUT macro for
24-bit addressing mode.

Macro description

WROUT sends a message to the SYSOUT file. SYSOUT can be assigned to a PLAM
library element, an S variable, a cataloged SAM or ISAM file or typically - to the user's
terminal.
If the LOGGING=PARAMETERS (LISTING=YES) operand is specified in the SET-LOGON-
PARAMETERS or MODIFY-JOB-OPTIONS command, output to SYSOUT is also routed to
SYSLST.

WROUT Description of the macros

1068 U3291-J-Z125-16-76

Macro format 1 and description of operands

record
Symbolic address of the record to be output. The record starts with the record length field,
followed by the print control character and the message to be output.

WROUT

record,error[,edit]

,RC=OLD / NEW

[,VTSUCBA=addr]

[,ASSIGN=NO /YES]

,PARMOD=24 / 31

[,MF=L / C / (C,pre) / (D,pre) / D / (E,...)]

[

,MODE=COMP ,OTRSUP= NO

YES

,OLINEND=
NO

YES

 ,OHCOPY= NO

YES

,OHDR=
NO

YES

,MODE=LINE ,OHCOPY= NO

YES

,OHOM=
NO

YES

 ,OINFO= NO

YES

,ONOPOSN=
NO

YES

 ,OBELL= NO

YES

,ONOLOGC=
NO

YES

 ,EXTEND= NO

YES

,MODE=PHYS ,OHDR= NO

YES

,OETB=
NO

YES

 ,OTRANS= NO

YES

,MODE=FORM

]

Description of the macros WROUT

U3291-J-Z125-16-76 1069

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Record format and example:

Byte 0-1: Length of the message + 4-byte record length field, the length must be > 5.
Byte 2-3: reserved
Byte 4: Print control character; analyzed for printer output only
Byte 5-n: Message

record DC Y (recend-record)
 DS CL2 reserved bytes
 DC X'nm' print control character
 DC C'message' message to be output
recend EQU *

Note
If SYSOUT is a cataloged file, any records of more than 2044 or 2032 bytes are
truncated (register R15=X'0C'), only the first part of the record being written to the file.
The different maximum output length depends on the use of the PAM key
(FORMAT=NONKEY/KEY).

error
Symbolic address of an error routine in the user program to be branched to in the event of
an error.

In the event of an error, register R14 contains the address of the next instruction after the
WROUT macro call. The error code is transferred in register R15.

31-bit interface: If error = 0 (address X'00..0') is specified, the program is continued with the
instruction following the WROUT call.

edit
Specifies the edit option for a message to be written to the terminal. The edit option is
ignored if SYSOUT is not a terminal. This operand is not necessary if standard functions
(all edit bits = 0) are used, if the MODE= operand is specified or if the VTSU control block
is used. By direct specification (X'xx') only the first edit byte for output can be set to the
meaning described under the CUPAB macro.

Notes
This operand continues to be supported for reasons of compatibility only. The edit bytes
should be defined via MODE specifications (see the MODE operand) or via the VTSU
control block (see the VTSUCBA operand).

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

A prefix (pre = 1..3 letters) can be specified in the C form and D form of the macro, as shown
in the macro format. Default value: pre = CUW

WROUT Description of the macros

1070 U3291-J-Z125-16-76

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit addressing).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

The MODE specifications and edit options continue to be supported for compatibility
reasons only. They are now summarized in the VTSU control block (VTSUCB, see the
VTSUCB macro).

MODE=
This operand is not evaluated unless SYSDTA is assigned to the data display terminal.

COMP
Specifies compatible mode. The symbolic operands OTRSUP through OHDR (see
below) enable the user program to use all the edit options. Any specifications made
directly in the “edit” operand are ignored. Control characters may appear in the output
message but these are not checked by the system. This mode is compatible with
previous versions of the operating system.
This mode is treated as MODE=LINE for the 8160, 8162, 9749, 975x, 9763, 3270 and
X.29 devices. The edit option OLINEND is ignored.
Edit options OTRSUP and OHDR are rejected (RC: X'08').

LINE
Specifies that the current terminal is to be treated as a logical line or page terminal. The
message may be structured through the use of logical control characters (see the
VTCSET macro). If SYSOUT is not a terminal, only logical control characters NL and
NP are evaluated, e.g. in the case of output to printer in batch mode.
Any other control characters are invalid and are converted by the system to a user-
defined substitute (see the command MODIFY-TERMINAL-OPTIONS SUBSTITUTE-
CHARACTER=).

FORM
Specifies format mode. The user program works with the “Terminal Mapping Support”
software component (FHS), which edits the message in a form suitable for output to a
particular terminal.

Description of the macros WROUT

U3291-J-Z125-16-76 1071

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

PHYS
Specifies that the message is to be output physically at the terminal, i.e. without editing
by the system. This permits special device functions to be executed for which the LINE
or FORM mode is insufficient. If none of the valid edit options is specified, the system
prefixes the message by a standard device message header.

EXTEND=
Determines whether the fields for output texts are to be protected or unprotected.

NO
The operator is guided through the system. Only the input request made by the system
or the user program is protected against being overwritten.

Output is unprotected and at reduced brightness.

NIL characters in the output text are converted to the substitute characters; in the case
of input they are removed.

Depending on the operating mode, the screen may be cleared starting at the cursor
when output commences.

YES
(Only for 9749, 975x, 9763, 816x, and 3270 Data Display Terminals)
This entry supports the use of protected and unprotected fields with the aid of logical
control characters EPA, NUM and SPA (see the VTCSET macro).

Text output is protected and at reduced brightness unless specified otherwise. The
message can be structured by means of logical control characters (see VTCSET).
When using 3270 terminals, note that logical control characters occupy space on the
screen. A series of logical control characters, however, requires only one screen
position. Areas which the terminal operator can use for input start with EPA or NUM and
end with SPA.

During input and output, NIL is treated as a permissible character; it is sent to the data
display terminal by the program, and vice versa. When using 3270 terminals, note that
the NIL character is not transferred to the processor. Fields that are returned in
truncated form are filled with NIL characters up to their original length. This ensures that
the fields are always returned to the user in their original (output) length.

The beginning of an output message is displayed at the beginning of the next line
following the cursor. If the message does not begin with VPA, the screen is cleared,
starting at the cursor and before the first text character.
If the end of the screen is reached during output, output is continued at the top of the
screen. This continuation is always unprotected. Overflow control is ineffective here.
Keys RU, EFZ, AFZ and LSP are locked.
Except for OBELL, ILCASE and IGETFC, all other edit options are ignored. See
programming notes.

WROUT Description of the macros

1072 U3291-J-Z125-16-76

OBELL=
Determines whether an audible signal is provided for output.

NO
No audible signal is provided for output.

YES
An audible signal is heard on output at the end of the message (applies only to 9749,
975x, 9763, 816x and 3270 Data Display Terminals with special hardware feature).

OETB=
Determines the final control character of the output message.

NO
Specifies that the message output at the terminal is to be concluded with the control
character ETX.

YES
Specifies that the message output at the terminal is to be concluded with the control
character ETB.

OHCOPY=
Determines whether the message output to a data display terminal is also output on a
hardcopy device (printer) connected to the terminal.

NO
The message is output via the data display terminal only.

YES
The message output to a data display terminal is also output on a hardcopy device
(printer) connected to the terminal. The hardcopy device must be generated or
assigned using TCHNG.

For 3270 Terminals:
The entire screen contents are output via the hardcopy device. This means that the
output may also include previous I/O's. In the event of a series of outputs directly
following one another, the hardcopy function is activated for the last output only.
Hardcopy output is performed only if a hardcopy device was generated for the
terminal when the connection was set up.

There is no hardcopy output if OINFO=YES or EXTEND=YES was specified.

If OHCOPY=YES is used and the message contains one of the logical control
characters SPA, EPA, CHS or NUM, only the last unprotected part of the message is
output and not the whole message.

If, at the same time, OVERFLOW-CONTROL=NO (MODIFY-TERMINAL-OPTIONS
command) was specified, it may be the case that only part of the output is printed on
the hardcopy device.

Description of the macros WROUT

U3291-J-Z125-16-76 1073

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

OHDR=
Specifies how the system is to handle the message header.

NO
The message header (in US ASCII code) is prefixed to the output text by the system.

YES
Indicates that the message contains a user-specific header (message header is to be
specified in US ASCII code) which the system prefixes to the output text. The length of
the message header + 1 must be specified in binary form in byte 5 of the message.

For 3270 Terminals:
The message header is specified in EBCDIC code and consists of the CMD byte
and the WCC byte. This message header must be preceded by a byte containing
X'01' (length of the TRANSDATA message header + 1).

Note
When output is to the 8160, 975x and 9763 Data Display Terminals and printers
locally attached to them, neither the system (MODE=LINE or COMP) nor the
terminal mapping support (MODE=FORM) employs any message header
(PARAM0, PARAM1). Instead, they work with parameter specifications (PAG). The
differences between these two modes are described in the manuals for the data
display terminals or printers.

OHOM=
Specifies whether message output is to be structured or homogeneous.

NO
Specifies that the message is to be output, not homogeneously, but in structured form,
i.e. one logical line is regarded as the output unit. The message length is unrestricted,
provided the logical lines do not exceed 255 characters.

Effect when using mode 1:
Individual logical lines can be separately modified and thus selectively retransferred.

YES
This operand can only be used in conjunction with 816x, 9749, 975x and 9763 Data
Display Terminals.
It specifies that the message is to be output homogeneously, in unstructured form, i.e.
the entire message is regarded as one output unit. The message length is restricted by
the size of the output buffer in the system.

Effect when using mode 1:
By modifying one character in an output message, the entire message can be
retransferred, provided the message contains no logical display control characters.

Note
If SYSOUT is assigned to a file, the WROUT macro is not executed and SYSLST
logging is suppressed.

WROUT Description of the macros

1074 U3291-J-Z125-16-76

OINFO=
Determines whether the message is to be output in a special information line.

NO
The message is not output in the special information line.

YES
The message can be mapped to a special information line without destroying important
data at the terminal.

The entry is intended particularly for user programs sending messages to terminals
“asynchronously” without knowing the current terminal display. Mapping is performed:
– protected, in a hardware display line (e.g. 9749, 9750, 9752 Data Display

Terminals), or
– protected, in the last line on the screen (e.g. 816x, 9751, 9753, 3270 Data Display

Terminals) if specified in the user program (see the TCHNG macro, INFOLIN
operand), after previous output with MODE=FORM or MODE=PHYS.

– in all other cases, as a normal line mode message.
If the message length exceeds one screen line, the message is split up and output line
by line. The system observes the waiting time specified in the MODIFY-TERMINAL-
OPTIONS OVERFLOW-CONTROL=TIME() command.

If OINFO=YES, the OHCOPY=YES entry is ignored, i.e. neither the information line nor
the screen contents are printed.

The hardware display line is only reset after the next input followed by an output.

OLINEND=
Specifies how carriage return/line feed characters are to be handled.

NO
Each message output to a terminal always starts on a new line. The necessary control
characters are either prefixed to the message by the system or inserted into the
message when the physical end-of-line is reached, if the type of terminal requires this
to be done.

YES
The message is output to the terminal without the carriage return/line feed control
characters supplied by the system. Control must be assumed by the user program.

ONOLOGC=
Specifies whether logical control characters are to be evaluated.

NO
All logical characters are evaluated and special physical control characters are
permitted (see the VTCSET macro, e.g. ESC, DC4). Any other characters < X'40' are
replaced by SUB. Characters ≥ X'40' are accepted.

Description of the macros WROUT

U3291-J-Z125-16-76 1075

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

YES
Logical control characters are not evaluated. All characters < X'40' in EBCDIC code are
replaced by SUB. Only characters ≥ X'40' are accepted.

ONOPOSN=
Determines where the message is to start.

NO
The message starts at the beginning of the next line.

YES
The message starts at the beginning of the current line (applies only to printer
terminals).

OTRANS=
Specifies whether the output data is to be transmitted in standardized or transparent form.

NO
Output data is to be transmitted in standardized form, i.e. code conversion takes place.

YES
Output data is to be transmitted in transparent form, i.e. consisting of arbitrary binary
characters (5, 7 or 8 bits per character depending on the device code) which are not
converted during transmission. If the transmission path was not generated “potentially
transparent”, output is rejected with return code X'04'.

OTRSUP=
Specifies whether translation from EBCDIC to device code is suppressed.

NO
Translation of the message from EBCDIC to device code is not suppressed, i.e. the
program provides the message in EBCDIC and the system translates it into device
code.

YES
Translation of the message is suppressed. In this case the program must provide the
message in device code.

RC=
Determines where the return code is to be stored.
This operand may be specified only if the 31-bit interface is used.

OLD
The return code is stored in the rightmost byte of register R15.

NEW
The return code is stored in both register R15 and the standard header. All 4 bytes of
register R15 are allocated for evaluation.
A 4-byte return code is issued only if SYSDTA reads from the data display terminal. In
all other cases only a 1-byte return code is issued, irrespective of the return code value.

WROUT Description of the macros

1076 U3291-J-Z125-16-76

VTSUCBA=addr
Defines the address of a VTSUCB generated with MF=L.
When using the VTSUCBA operand, the MODE operand and the following edit options are
ignored (their value is set to X'FF' in the parameter list). This means that all desired edit
options must be specified in the VTSUCB.
This operand may be specified only if the 31-bit interface is used and is not evaluated unless
SYSDTA is assigned to a data display terminal. By default, the VTSUCB is not used.

ASSIGN=
Defines whether changes in the SYSOUT assignment are to be displayed.
The user program is notified of the initial default assignment and of each subsequent
change to the SYSOUT assignment via the error routine in the user program. When a
change to the SYSOUT assignment is detected, the record is not written.
This operand value is permissible only for the 31-bit interface.

NO
Changes to the SYSOUT assignment are not to be displayed.

YES
Changes to the SYSOUT assignment are to be displayed.

Note

The SYSOUT assignment is entered in an output field of the parameter list.
This permits the user program to react to changed general conditions, perform any
conversion of the output record which may be required, and then to repeat writing with
the corrected record.

Description of the macros WROUT

U3291-J-Z125-16-76 1077

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Programming notes

for use of the MODE=LINE operand with EXTEND=YES
(for 3270 Data Display Terminals see appendix)

When EXTEND=YES is specified in LINE mode, the user can work with formats without
requiring a terminal mapping support component.

– If the user wishes to work with formats, the first output must begin with NP in order to
clear the screen and start with text in position 1.1.

– NL positions to the beginning of the next line and clears the remainder of the screen;
VPAn positions to the beginning of line n, in which case the remainder of the screen is
retained.

– Positioning within a line is only possible with text, spaces or NIL characters.

– After VPAn, NL and CHS, text is protected and displayed with reduced brightness.

– Unprotected fields are output using 'EPA text SPA'.
Numeric fields are output using 'NUM text SPA'.

– VPAn at the end of the message can be used to place the cursor at the start of the first
unprotected field of line n, in which case the screen contents are retained. If no
unprotected field starts in line n, the cursor is positioned to the first unprotected field
following line n.
If no VPAn is specified at the end of the message, the cursor is placed in the first
unprotected field on the screen.

– Continuation of output/screen update
NP generates a new screen.
VPAn at the start of the output changes line n of the screen. VPAn can be used to skip
one or more lines. In the current line, a dark area is produced starting at the cursor and
extending to the end of the line or a field preceding end-of-line. This is followed by
positioning to line n. After completion of the update, the cursor is repositioned using
VPAn, otherwise the screen would be cleared starting at the cursor (see above). When
NL is used within an updating procedure, the screen is likewise cleared starting at the
cursor. If this is to be avoided, VPAn must always be used to jump to a new line.

WROUT Description of the macros

1078 U3291-J-Z125-16-76

Macro format 2 and description of operands

(1)
Register R1 contains the operand list address. The list must be aligned on a word boundary.

PARMOD=
Controls macro expansion; generated as a 24-bit or 31-bit interface.
If PARMOD is omitted, macro expansion corresponds to the specification for the
GPARMOD macro or to the default value for the assembler (= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

WROUT

(1)

[,PARMOD=24 / 31

Description of the macros WROUT

U3291-J-Z125-16-76 1079

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Layout of the data area

When using the 24-bit interface, the values for output edit byte 1/2 should be taken from the
table specified with the CUPAB macro.
When using the 31-bit interface, they should be taken from a list generated with MF=C/D.
This also applies for controlling whether a change to the SYSOUT assignment should be
displayed (byte 26) and for the values of the SYSOUT assignment (byte 27).

Values for changing the SYSOUT assignment

Addressing
mode

Byte Contents

24-bit mode 0
1-3
4

5-7

Output edit byte 1
Address of the record to be output (operand “record”)
Output edit byte 2
Address to be branched to if an error occurs (operand “error”).

31-bit mode 0-7

8-11
12-15

16
17
18
19

20-23
24-25

26

27

Standard header. For details of the structure, see section “Standard
header” on page 43.
The initialization values should be taken from an operand list generated
with MF=L.
No return code is transferred in the standard header if RC=OLD.
Address to be branched to if an error occurs (operand “error”).
Address of the record to be output (operand “record”)
Output edit byte 1
Output edit byte 2
Reserved (X'00')
Flag indicating use of VTSUCB and handling of return codes.
Address of the VTSUCB
Reserved (X'0000')
Notification of a change to the SYSOUT assignment is to be provided
(input value)
Change to the SYSOUT assignment (output value)

Value Meaning

X'00' Assignment for SYSOUT not changed

X'01' SYSOUT is assigned to a file

X'02' SYSOUT is assigned to a terminal

X'03' SYSOUT is assigned to an S-variable

X'04' SYSOUT is assigned to an element of a PLAM library

WROUT Description of the macros

1080 U3291-J-Z125-16-76

Note

If SYSOUT is a cataloged file, any records of more than 2044 or 2032 bytes are
truncated (RC:X'0C'), only the first part of the record being written to the file.
The different maximum output length depends on the use of the PAM key
(FORMAT=NONKEY/KEY).
In the case of EAM files, records of more than 2040 bytes are also truncated
(return code:X'0C').

Return information and error flags

– During macro processing, register R1 contains the operand list address.

if PARMOD=24:

if PARMOD=31:

if RC=OLD:

Return codes that can occur in addition to those described under PARMOD=24 are

and the return codes which, in accordance with conventions, apply to all macros (see the
table “Standard return codes” on page 43).

R15:
A return code relating to the execution of the WROUT
macro is transferred in register R15.0 0 0 0 0 0 a a

X'aa' Meaning

X'04' Unrecoverable error.

X'08' Operand error.

X'0C' Output record truncated. Record contents (without record length field) exceed size of I/O
buffer: for terminals, this depends on the device type and the network generation; for output
to a cataloged file, the relevant value is 2044.

X'10' During execution of the macro, BREAK was issued on the terminal.

X'20' Invalid edit option byte: error corrected by the system.

X'38' Error in connection with POSIX.

X'aa' Meaning

X'00' Normal termination.

X'24' Error in VTSUCB.

Description of the macros WROUT

U3291-J-Z125-16-76 1081

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

if RC=NEW:

The return codes are entered in both the standard header and register R15.

Standard
header:

The following return code relating to the execution of
the WROUT macro is transferred in the standard
header (cc=Subcode2, bb=Subcode1,
aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function processed successfully.

X'00' X'00' X'0020' Function processed successfully; an operand error was corrected by
TIAM/VTSU.

X'00' X'01' X'0008' Operand error not corrected.

X'07' X'01' X'0008' Operand error not corrected: the RESERVED fields are not 0

X'00' X'20' X'0004' Internal error.

X'02' X'20' X'0004' Internal error: BCAM message lost.

X'06' X'20' X'0004' Internal error: negative transport acknowledgment.

X'00' X'20' X'0028' Internal error: problems with memory allocation.
SYSOUT is assigned to a file whose primary assignment occupies the entire
memory and whose secondary assignment is zero.

X'00' X'40' X'000C' Output record truncated.

X'00' X'40' X'0010' BREAK during execution.

X'00' X'40' X'0030' Input/output aborted.

X'01' X'80' X'0004' Internal BCAM bottleneck.

X'09' X'80' X'0038' Error in connection with POSIX: Input/output serialization error.

X'0A' X'40' X'0038' Error in connection with POSIX:
If the LOGON task is in system mode, it is not possible to input/output
processes generated with fork{}.

X'24' VTSU error. In addition to Maincode (rightmost byte), see error
information in VTSUCB header.

WROUT Description of the macros

1082 U3291-J-Z125-16-76

Example 1

WROUT1 START
PRINT NOGEN

WROUT1 AMODE 31
WROUT1 RMODE 24

BALR 3,0
USING *,3
WROUT MESSAGE,ERROR,PARMOD=31

2 *,@DCEO 999 921011 53531004
TERM

ERROR TERM DUMP=Y
*
MESSAGE DC Y(ENDMESS-MESSAGE) Record length

DS CL2 Reserved
DC X'01' Print feed control character
DC 'EXAMPLE WROUT 1' Text

ENDMESS EQU *
END

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,wrout1), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,wrout1))
% ASS6011 ASSEMBLY TIME: 293 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 79 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=wrout1, -
/ prog-mode=*any
% BLS0523 ELEMENT 'WROUT1', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'WROUT1', VERSION ' ' OF '<date> <time>' LOADED
EXAMPLE WROUT 1

Description of the macros WROUT

U3291-J-Z125-16-76 1083

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Example 2

WROUT2 START
PRINT NOGEN
BALR 10,0
USING *,10
WROUT MESSAGE,ERROR,PARMOD=31,MODE=LINE,OBELL=Y

2 *,@DCEO 999 921011 53531004
ERROR NOP 0

TERM
*
MESSAGE DC Y(ENDMESS-MESSAGE)

DS 3X
DC C'Output WROUT 2'

ENDMESS EQU *
END

Example 3

Use of VTSUCB

WROUT3 START
PRINT NOGEN
BALR 10,0
USING *,10
WROUT MESSAGE,ERROR,PARMOD=31,VTSUCBA=VTSUPAR

ERROR NOP 0
TERM

*
VTSUPAR VTSUCB MODE=LINE,BELL=YES

1 *,VTSUCB 350 980309
MESSAGE DC Y(ENDMESS-MESSAGE)

DS 3X
DC C'Output WROUT 3'

ENDMESS EQU *
END

WROUT Description of the macros

1084 U3291-J-Z125-16-76

Example 4

Use of format 2

WROUT4 START
PRINT NOGEN
BALR 10,0
USING *,10
LA 1,PARAM
WROUT (1),PARMOD=31

ERROR NOP 0
TERM

*
PARAM WROUT MESSAGE,ERROR,MF=L,PARMOD=31,MODE=LINE,OBELL=Y

2 *,@DCEO 999 921011 53531004
MESSAGE DC Y(ENDMESS-MESSAGE)

DS 3X
DC C'Output WROUT 4'

ENDMESS EQU *
END

Description of the macros WRTRD

U3291-J-Z125-16-76 1085

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

WRTRD – Combined input/output

General

Application areas: Input/output of files and records; see page 156
Data terminal communication; see page 160
Communication; see page 163

Macro type: Type S, MF format 1:
24-bit interface: standard/E/L form
31-bit interface: standard/E/L/C/D form; see page 29

● This macro description applies to TIAM V13.2A.

● The following applies when using the 31-bit interface:
– The C/D form is called with MF=C/D or MF=(C,p)/(D,p).

p = prefix (up to 3 chars); default value: p = CUB. The prefix modifies field names
only (not symbolic names in equates). Any prefix of more than 3 characters is
truncated to a length of 3.

– With MF=C/D, no symbolic names and equates are generated for the standard
header. In the event of the operand list being supplied dynamically, the initialization
values for the standard header should be taken from an operand list generated with
MF=L.

– No return code is transferred in the standard header.

● The CUPAB macro generates a DSECT for the operand list of the WRTRD macro for
24-bit addressing mode.

Macro description

WRTRD can be used in timesharing mode only. WRTRD writes a record to the terminal and
immediately afterwards reads a message from the terminal. Apart from the message written
to the terminal no other prompt character appears.

On macro execution, if format 1 is used, the specified operands are stored in an operand
table and the start address of this table is loaded into register R1. In the case of format 2 is
used, the table specified in the user program is used.

WRTRD Description of the macros

1086 U3291-J-Z125-16-76

Macro format 1 and description of operands

WRTRD

record1,[edit1],record2,[edit2],[length],error

,RC=OLD / NEW

[,VTSUCBA=addr]

[,TIMER=value]

,PARMOD=24 / 31

[,MF=L / C / (C,pre) / (D,pre) / D / (E,...)]

[

,MODE=COMP ,OTRSUP= NO

YES

,OLINEND=
NO

YES

,OHDR=
NO

YES

,IHDR=
NO

YES

 ,OHCOPY= NO

YES

,ILCASE=
NO

YES

,IGETBS=
NO

YES

,ILINEND=
NO

YES

 ,ITRSUP= NO

YES

,MODE=LINE ,OHCOPY= NO

YES

,OHOM=
NO

YES

,ONOPOSN=
NO

YES

,IGETIC=
NO

YES

 ,OBELL= NO

YES

,ONOLOGC=
NO

YES

,EXTEND=
NO

YES

,IGETFC=
NO

YES

 ,ILCASE= NO

YES

,IGETBS=
NO

YES

,ICFD=
NO

YES

,MODE=FORM ,IGETBS= NO

YES

,ILCASE=
YES

NO

,MODE=PHYS ,OHDR= NO

YES

,OTRANS=
NO

YES

,OETB=
NO

YES

,ITRSUP=
NO

YES

 ,IHDR= YES

NO

,ILCASE=
NO

YES

,IGETBS=
NO

YES

]

Description of the macros WRTRD

U3291-J-Z125-16-76 1087

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

record1
Symbolic address of the record to be output. The record starts with the record length field,
followed by one (any) character and the message to be output.

Record format and example:

Byte 0-1: Length of the message + 4-byte record length field
Byte 2-3: reserved
Byte 4: Any character; neither transferred nor analyzed
Byte 5-n: Data record

RECORD DC Y (RECEND-RECORD)
 DS CL2 reserved bytes
 DC X'00'
 DC C'DATA-RECORD' record to be transferred
RECEND EQU *

edit1
This operand specifies the edit option for the record to be written. Direct specification (X'xx')
permits only the first edit byte for output to be set to the meaning specified in the CUPAB
macro description. This operand is not required when default functions (all edit bits = 0) are
used, when the MODE operand is specified or when the VTSU control block is used.

record2
Symbolic address of a field to which the record from the terminal is to be transferred. The
record is read as a variable-length record (the first 4 bytes specifying the record length).

Record format and example:

Byte 0-1: Length of the message + 4-byte record length field
Byte 2-3: reserved
Byte 4-n: Data record

RECORD2 DS 0CL74
LENGTH DS CL2
RESERV DS CL2
DATA DS CL70

edit2
Specifies the edit option for the record to be read. Direct specification (X'xx') permits only
the first edit byte for output to be set to the meaning described in the CUPAB macro
description. This operand is not required when default functions (all edit bits = 0) are used,
when the MODE operand is specified or when the VTSU control block is used.

Note
Operands edit1 and edit2 continue to be supported for reasons of compatibility only.
Edit bytes should be controlled via MODE specifications or via the VTSU control block
(VTSUCBA operand).

WRTRD Description of the macros

1088 U3291-J-Z125-16-76

length
Length of the field specified with “record2” (including 4-byte record length field);
5 ≤ length ≤ 32767.
If this operand is omitted, the length attribute of the specified field is assumed.

error
Symbolic address to be branched to in the event of an error.
In the event of an error, register R14 contains the address of the next instruction after the
WRTRD macro call. The error code is transferred in register R15.
31-bit interface: If error = 0 (address X'00..0') is specified, the program is continued with the
instruction following the WRTRD macro.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.
A prefix (pre = 1..3 letters) can be specified in the C form and D form of the macro, as shown
in the macro format. Default value: pre = CUB

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

The MODE specifications and edit options continue to be supported for compatibility
reasons only. They are now summarized in the VTSU control block (VTSUCB, see the
VTSUCB macro).

MODE=COMP
Specifies compatible mode. The symbolic operands OTRSUP through OPTAPE (see
below) enable the user program to use all the edit options. Any specifications made directly
in the “edit” operand are ignored. Control characters may appear in the output message but
these are not checked by the system. This mode is compatible with previous versions of the
operating system.
This mode is treated as MODE=LINE for the 8160, 8162, 9749, 975x, 9763, 3270 and X.29
devices. Edit options OLINEND and ILINEND are ignored. Edit options OTRSUP, OHDR,
ITRSUP and IHDR are rejected (RC: X'08').

Description of the macros WRTRD

U3291-J-Z125-16-76 1089

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

LINE
The current terminal is to be treated as a logical line or page terminal. The message
may be structured through the use of logical control characters (see the VTCSET
macro).
Any other control characters are invalid for output and are converted by the system to
a user-defined substitute character (see the command MODIFY-TERMINAL-OPTIONS
SUBSTITUTE-CHARACTER=). If SYSOUT is not a terminal, only logical control
characters NL and NP are evaluated, e.g. for output to printers in batch mode.
The device-specific message header is not supplied during input.

FORM
Specifies format mode. The user program works with the “Terminal Mapping Support”
software component (FHS), which edits the message in a form suitable for output to a
particular terminal.

PHYS
The message is to be output to or read from the terminal physically, i.e without editing
by the system. This permits special device functions to be executed for which the LINE
or FORM mode is insufficient. If none of the valid edit options is specified, the system
prefixes the output message by a standard device message header; the device
message header is not removed from the input message. Lowercase letters are
converted to uppercase letters and a backspace function may be executed.

EXTEND=
Determines whether the fields for output texts are to be protected or unprotected.

NO
The operator is guided through the system. Only the input request made by the system
or the user program is protected against being overwritten.

Output is unprotected and at reduced brightness.

NIL characters in the output text are converted to the substitute characters; in the case
of input they are removed.

Depending on the operating mode, the screen may be cleared starting at the cursor
when output commences.

YES
(Only for 9749, 975x, 9763, 816x, and 3270 Data Display Terminals)
This entry supports the use of protected and unprotected fields with the aid of logical
control characters EPA, NUM and SPA (see the VTCSET macro).
Text output is protected and at reduced brightness unless specified otherwise. The
message can be structured by means of logical control characters (see VTCSET).
When using 3270 terminals, note that logical control characters occupy space on the
screen. A series of logical control characters, however, requires only one screen
position. Areas which the terminal operator can use for input start with EPA or NUM and
end with SPA.

WRTRD Description of the macros

1090 U3291-J-Z125-16-76

During input and output, NIL is treated as a permissible character; it is sent to the data
display terminal by the program, and vice versa. When using 3270 terminals, note that
the NIL character is not transferred to the processor. Fields that are returned in
truncated form are filled with NIL characters up to their original length. This ensures that
the fields are always returned to the user in their original (output) length.

The beginning of an output message is displayed at the beginning of the next line
following the cursor. If the message does not begin with VPA, the screen is cleared,
starting at the cursor and before the first text character.
If the end of the screen is reached during output, output is continued at the top of the
screen. This continuation is always unprotected. Overflow control is ineffective here.
Keys RU, EFZ, AFZ and LSP are locked.
Except for OBELL, ILCASE and IGETFC, all other edit options are ignored.
If the NL control character is recognized in an input message, processing continues and
the return code X'2C' is issued.

ICFD=
Specifies whether confidential data is to be protected.

NO
No precautions are to be taken to protect confidential data.

YES
The input data is confidential and is to remain invisible on the terminal. This is achieved
by blanking or clearing the screen or by overwriting the input line at the printer terminal.

IGETBS=
Determines whether underline characters (X'6D') are to be passed to the user program.
This operand should only be specified for 8103 Data Display Terminals.

NO
Underline characters are not passed to the user program. Instead, the system performs
the correction function

YES
The underline characters (X'6D') are passed to the user program without being
evaluated by the system.

IGETFC=
Determines whether a function key code is transferred.

NO
No function key code is to be transferred.

YES
The first byte of the input area is to contain the standardized function key code. This
code identifies the terminal key used to initiate data transfer. A table with the standard
function key codes is included in the appendix on page 1167.

Description of the macros WRTRD

U3291-J-Z125-16-76 1091

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

IGETIC=
Determines whether the input source is to be changed.

NO
The input source is not to be changed.

YES
Data is to be entered from the connected ID card reader. The input data may consist of
identity card information or short message K14. This entry is permitted only for the
9749, 975x 9763, 816x and 3270 Data Display Terminals with a defined ID card reader
(see also the TSTAT macro, TYPE=TCHAR).
In contrast to TRANSDATA devices, data may be entered on 3270 Data Display
Terminals by a defined ID card reader at any time. If entries are requested by the ID
card reader every other entry is converted into K14.

Note
The IGETIC operand is ignored if the ICFD operand is also specified or if no ID card
reader is connected. The input source remains unchanged.

IHDR=
Specifies how the message header is to be handled.

NO
The message header is not transferred to the user program.

YES
The entire message header is transferred to the user program.
With 3270 terminals, the message header consists of the application ID (AID byte) and
the two-byte cursor position.

ILCASE=
Specifies whether a distinction is to be made between uppercase and lowercase letters.

NO
All lowercase letters are transferred to the user program as uppercase letters.

YES
Lowercase letters are also transferred to the user program.

ILINEND=
Specifies how carriage return/line feed characters are to be handled.

NO
The carriage return and line feed characters are not passed to the user program.

YES
The carriage return and line feed characters are passed to the user program.

WRTRD Description of the macros

1092 U3291-J-Z125-16-76

ITRSUP=
Specifies whether the translation of device code to EBCDIC is to be suppressed.

NO
Translation from device code to EBCDIC is not suppressed. The user program receives
the message in EBCDIC.

Exception
On the 816x, 9749, 975x and 9763 Data Display Terminals the message header is
always supplied in device code.

YES
Translation from device code to EBCDIC is suppressed. The user program receives the
message in device code.

OBELL=
Determines whether an audible signal is provided on output.

NO
No audible signal is provided for output.

YES
An audible signal is heard on output at the end of the message (applies only to 9749,
975x, 9763, 816x and 3270 Data Display Terminals with special hardware feature).

OETB=
Determines the final control character of the output message.

NO
Specifies that the message output at the terminal is to be concluded with the control
character ETX.

YES
Specifies that the message output at the terminal is to be concluded with the control
character ETB.

OHCOPY=
Determines whether the message output to a data display terminal is also output on a
hardcopy device (printer) connected to the terminal.

NO
The message is output via the data display terminal only.

YES
The message output to a data display terminal is also output on a hardcopy device
(printer) connected to the terminal. The hardcopy device must be generated or
assigned using the MODIFY-TERMINAL-OPTIONS command.

Description of the macros WRTRD

U3291-J-Z125-16-76 1093

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

For 3270 Terminals:
The entire screen contents are output via the hardcopy device. This means that the
output may also include previous I/O's. In the event of a series of outputs directly
following one another, the hardcopy function is activated for the last output only.
Hardcopy output is performed only if a hardcopy device was generated for the
terminal when the connection was set up.

There is no hardcopy output if EXTEND=YES or MODE=EXTEN was specified.
If OHCOPY=YES is used and the message contains one of the logical control
characters SPA, EPA, CHS or NUM, only the last unprotected part of the message is
output and not the whole message. If, at the same time, OVERFLOW-CONTROL=NO
(MODIFY-TERMINAL-OPTIONS command) was specified, it may be the case that only
part of the output is printed on the hardcopy device.

OHDR=
Specifies how the system is to handle the message header.

NO
The message header (in US ASCII code) is prefixed to the output text by the system.

YES
Indicates that the message contains a user-specific header (message header is to be
specified in US ASCII code) which the system prefixes to the output text. The length of
the message header + 1 must be specified in binary form in byte 1 of the message.
For 3270 Terminals:

The message header is specified in EBCDIC code and consists of the CMD byte
and the WCC byte. This message header must be preceded by a byte containing
X'01' (length of the TRANSDATA message header + 1).

Note
When output is to the 8160, 975x and 9763 Data Display Terminals and printers
locally attached to them, neither the system (MODE=LINE or COMP) nor the
terminal mapping support (MODE=FORM) employs any message header
(PARAM0, PARAM1). Instead, they work with parameter specifications (PAG). The
differences between these two modes are described in the manuals for data display
terminals or printers.

OHOM=
Specifies whether message output is to be structured or homogeneous.

NO
Specifies that the message is to be output, not homogeneously, but in structured form,
i.e. one logical line is regarded as the output unit. The message length is unrestricted,
provided the logical lines do not exceed 255 characters.
Effect when using 816x, 975x, 9763 and 3270 Data Display Terminals in mode 1:
Individual logical lines can be separately modified and thus selectively retransferred.

WRTRD Description of the macros

1094 U3291-J-Z125-16-76

YES
This operand can only be used in conjunction with 816x, 9749, 975x, 9763 and 3270
Data Display Terminals.

The message is to be output homogeneously, in unstructured form, i.e. the entire
message is regarded as a single output unit. The message length is restricted by the
size of the output buffer in the system.

Effect when using 816x, 975x, 9763 and 3270 Data Display Terminals in mode 1:
By modifying one character in an output message, the entire message can be
retransferred, provided the message is not explicitly structured by logical display control
characters.

OLINEND=
Specifies how carriage return/line feed characters are to be handled.

NO
Each message output to a terminal always starts on a new line. The necessary control
characters are either prefixed to the message by the system or inserted into the
message when the physical end of line is reached, if the type of terminal requires this
to be done.

YES
The message is output to the terminal without the carriage return/line feed control
characters supplied by the system. Control must be assumed by the user program.

ONOLOGC=
Specifies whether logical control characters are to be evaluated.

NO
All logical characters are evaluated and special physical control characters are
permitted (see the VTCSET macro, e.g. ESC, DC4).
Any other characters < X'40' are replaced by SUB. Characters ≥ X'40' are accepted.

YES
Logical control characters are not evaluated. All characters < X'40' in EBCDIC code are
replaced by SUB. Only characters ≥ X'40' are accepted.

ONOPOSN=
Determines where the message is to start.

NO
The message starts at the beginning of the next line.

YES
The message starts at the beginning of the current line (applies only to printer
terminals).

Description of the macros WRTRD

U3291-J-Z125-16-76 1095

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

OTRANS=
Specifies whether the output data is to be transmitted in standardized or transparent form.

NO
Output data is to be transmitted in standardized form, i.e. code conversion takes place.

YES
Output data is to be transmitted in transparent form, i.e. consisting of arbitrary binary
characters (5, 7 or 8 bits per character depending on the device code) which are not
converted during transmission. If the transmission path was not generated “potentially
transparent”, output is rejected with return code X'04'.

OTRSUP=
Specifies whether translation from EBCDIC to device code is suppressed.

NO
Translation of the message from EBCDIC to device code is not suppressed, i.e. the
program provides the message in EBCDIC and the system translates it into device
code.

YES
Translation of the message is suppressed. In this case the program must provide the
message in device code.

RC=
Determines where the return code is to be stored.
This operand may be specified only if the 31-bit interface is used.

OLD
The return code is stored in the rightmost byte of register R15.

NEW
The return code is stored in both register R15 and the standard header. All 4 bytes of
register R15 are allocated for evaluation.
A 4-byte return code is issued only if SYSDTA reads from the data display terminal. In
all other cases only a 1-byte return code is issued, irrespective of the return code value.

TIMER=
Defines a maximum waiting time for input. If no input is received within the defined waiting
time, a return code is issued. This operand may only be specified if the 31-bit interface is
used.

value
Waiting time between 10 and 3600 seconds. The default value is UNLIMITED, i.e. no
timer is used.

WRTRD Description of the macros

1096 U3291-J-Z125-16-76

VTSUCBA=
Defines the address of a VTSUCB generated with MF=L.
When using the VTSUCBA operand, the MODE operand and the following edit options are
ignored (their value is set to X'FF' in the parameter list). This means that all desired edit
options must be specified in the VTSUCB.
This operand may be specified only if the 31-bit interface is used.
By default, the VTSUCB is not used.

addr
Symbolic address (name) of the VTSUCB.

Programming notes

for the use of the MODE=EXTEND or EXTEND=YES operand
(for 3270 Data Display Terminals see appendix)

When MODE=EXTEND or EXTEND=YES is specified in LINE mode, the user can work
with formats without requiring a terminal mapping support component.

– If the user wishes to work with formats, the first output must begin with NP in order to
clear the screen and start with text in position 1.1.

– NL positions to the beginning of the next line and clears the remainder of the screen;
VPAn positions to the beginning of line n, in which case the remainder of the screen is
retained.

– Positioning within a line is only possible with text, spaces or NIL characters.
– After VPAn, NL and CHS, text is protected and displayed with reduced brightness.
– Unprotected fields are created using 'EPA text SPA'.

Blanked, unprotected fields are created using 'DAR text SPA'. Numeric fields are
created using 'NUM text SPA'.

– VPAn at the end of the message can be used to place the cursor at the start of the first
unprotected field of line n, in which case the screen contents are retained. If no
unprotected field starts in line n, the cursor is positioned to the first unprotected field
following line n.
If no VPAn is specified at the end of the message, the cursor is placed in the first
unprotected field on the screen.

– Continuation of output/screen update
NP generates a new screen.
VPAn at the start of the output changes line n of the screen. VPAn can be used to skip
one or more lines. In the current line, a dark area is produced starting at the cursor and
extending to the end of the line or a field preceding end-of-line. This is followed by
positioning to line n. After completion of the update, the cursor is repositioned using
VPAn, otherwise the screen would be cleared starting at the cursor (see above). When
NL is used within an updating procedure, the screen is likewise cleared starting at the
cursor. If this is to be avoided, VPAn must always be used to jump to a new line.

Description of the macros WRTRD

U3291-J-Z125-16-76 1097

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Macro format 2 and description of operands

(1)
Register R1 contains the operand list address. The list must be aligned on a word boundary.

Layout of the data area

WRTRD

(1)

Addressing
mode

Byte Contents

24-bit mode 0
1-3
4

5-7

8
9

10-11
12-15

Output edit byte 1
Address of the record to be output (operand “record1”)
Input edit byte 1
Address of the field to which the record is to be transferred
(operand “record2”)
Output edit byte 1
Input edit byte 2
Maximum length of the record to be read (operand “length”).
Address to be branched to if an error occurs (operand “error”).

31-bit mode 0-7

8-11
12-15
16-19

20
21
22
23

24-25
26
27

28-31
32-33
34-35

Standard header. For details of the structure, see section “Standard
header” on page 43.
The initialization values should be taken from an operand list generated
with MF=L.
No return code is transferred in the standard header if RC=OLD.
Address to be branched to if an error occurs (operand “error”).
Address of the record to be output (operand “record1”)
Address of the field to which the record is to be transferred
(operand “record2”)
Output edit byte 1
Output edit byte 2
Input edit byte 1
Input edit byte 2
Maximum length of the record to be read(operand “length”).
Reserved (X'00')
Flag indicating use of VTSUCB and return code handling
Address of the VTSUCB
Values for timer
Reserved (X'00000000')

WRTRD Description of the macros

1098 U3291-J-Z125-16-76

When using the 24-bit interface, the values for input/output edit byte 1/2 should be taken
from the table specified with the CUPAB macro; when using the 31-bit interface, they
should be taken from a list generated with MF=C/D.

When “BREAK” occurs during a write/read operation, the program count is reset to the
beginning of the macro expansion so that, after the interrupt is processed, the macro is
repeated.
If the length of the record written (minus four bytes for the length field and one byte for the
reserved byte) exceeds the terminal buffer size, the record is truncated. The user receives
control at the error address with error code X'10' in register R15.
If the size of a record read exceeds the designated length (minus four bytes for the length
field), the record is truncated. A branch is made to the error address of the user program
and error code X'OC' is transferred in register R15.

Return information and error flags

Whenever possible, the system corrects any edit options which are invalid for a particular
device or for the MODE selected (return code X'20'). During macro processing, register R1
contains the operand list address.

if PARMOD=24:

R15:
A return code relating to the execution of the WRTRD
macro is transferred in register R15.0 0 0 0 0 0 a a

X'aa' Meaning

X'00' Function executed successfully.

X'04' Unrecoverable error.

X'08' Operand error.

X'0C' Read truncation. Record length exceeds specified length.
A header is prefixed to the input message by the MSV terminal. If the message has already
reached the length of the system buffer, the message is truncated as a result of this header.

X'10' Write truncation. The length of the output record exceeds the size of the terminal buffer.
Excess characters are not output.

X'14' WRTRD was called in a batch job.

X'18' End of input (ETX)

X'20' Invalid edit option byte, corrected by system.

X'2C' Input starts with control character NL (only with edit option EXTEND=YES). Input length is
truncated in 3270.

X'38' Error in connection with POSIX.

Description of the macros WRTRD

U3291-J-Z125-16-76 1099

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

if PARMOD=31:

if RC=OLD:

Return codes that can occur in addition to the return codes described under PARMOD=24

and the return codes which, in accordance with conventions, apply to all macros (see the
table “Standard return codes” on page 43).

if RC=NEW:

The return codes are entered in both the standard header and register R15.

X'aa' Meaning

X'24' Error in VTSUCB.

Standard
header:

The following return code relating to the execution of
the WRTRD macro is transferred in the standard
header (cc=Subcode2, bb=Subcode1,
aaaa=Maincode):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' Function processed successfully.

X'00' X'00' X'0020' Function processed successfully; an operand error was
corrected by TIAM/VTSU.

X'00' X'01' X'0008' Operand error not corrected.

X'07' X'01' X'0008' Operand error not corrected: the RESERVED fields are not 0.

X'08' X'01' X'0008' Operand error not corrected: the value of the TIMER operand is
not within the permitted range of 10 through 3600 seconds.

X'00' X'20' X'0004' Internal error.

X'02' X'20' X'0004' Internal error: BCAM message lost.

X'05' X'20' X'0004' Internal error: input message too long.

X'06' X'20' X'0004' Internal error: negative transport acknowledgment.

X'00' X'40' X'0004' Input/output aborted.

X'00' X'40' X'000C' Input record length > specified length: input record was
truncated.

X'00' X'40' X'0010' Output record truncated.

X'00' X'40' X'0014' BREAK in WRTRD.
If “BREAK” occurs during a read/write operation and RC=NEW,
the user is supplied with the return code '00400014'.
If RC=OLD, the TU program count is reset to the beginning of
the macro expansion so that, after the interrupt is processed, the
macro can be repeated.

WRTRD Description of the macros

1100 U3291-J-Z125-16-76

X'00' X'40' X'0018' End of input.

X'00' X'40' X'002C' NL detected (this return code can only occur for edit options with
EXTEND=YES).

X'00' X'40' X'0034' Timeout (no input received within the defined waiting time).

X'00' X'00' X'0014' SYSFILE error: WRTRD in batch mode.

X'01' X'80' X'0004' Internal BCAM bottleneck.

X'09' X'80' X'0038' Error in connection with POSIX: Input/output serialization error.

X'0A' X'40' X'0038' Error in connection with POSIX: If the LOGON task is in system
mode, no inputs/outputs of processes generated with fork{} are
possible.

X'24' VTSU error. In addition to the main code (rightmost byte), see
error information in VTSUCB header.

X'cc' X'bb' X'aaaa' Meaning

Description of the macros WRTRD

U3291-J-Z125-16-76 1101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Example 1

The example effects the output of a message to which the user must respond. The query
is repeated as long as 'N' is entered as the response. If the response is ≠ 'N' the program
is terminated. The WRTRD macro is called in macro call format 1.

WRTRD1 START
PRINT NOGEN

WRTRD1 AMODE 31
WRTRD1 RMODE 24

BALR 3,0
USING *,3

QUEST WRTRD QUERY,,INPUT,,5,END,PARMOD=31
2 *,@DCEO 999 921011 53531004
2 *,@DCEI 999 921011 53531002

CLI REPLY,'N'
BE QUEST

END WROUT TEXT,TERM,PARMOD=31
2 *,@DCEO 999 921011 53531004
TERM TERM
**** Definitions ****
QUERY DC Y(ENDQU-QUERY)

DS CL2
DC X'01'
DC 'TERMINATE PROGRAM (Y/N) ?'

ENDQU EQU *
INPUT DS 0CL5

DS CL4
REPLY DS CL1
TEXT DC Y(ENDTEXT-TEXT)

DS CL3
DC C'*** The WRTRD1 program was terminated. ***'

ENDTEXT EQU *
END

WRTRD Description of the macros

1102 U3291-J-Z125-16-76

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,wrtrd1), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,wrtrd1))
% ASS6011 ASSEMBLY TIME: 310 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 82 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=wrtrd1, -
/ prog-mode=*any
% BLS0523 ELEMENT 'WRTRD1', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'WRTRD1', VERSION ' ' OF '<date> <time>' LOADED
TERMINATE PROGRAM (Y/N) ?
n
TERMINATE PROGRAM (Y/N) ?
y
*** The WRTRD1 program was terminated. ***

Description of the macros WRTRD

U3291-J-Z125-16-76 1103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Example 2

This example effects the same procedure as Example 1, but the WRTRD macro is called
in macro call format 2.

WRTRD2 START
PRINT NOGEN
BALR 10,0
USING *,10

LOOP LA 1,PARAM
WRTRD (1),PARMOD=31
CLI REPLY,'N'
BE LOOP

END WROUT TEXT,TERM,PARMOD=31
2 *,@DCEO 999 921011 53531004
TERM TERM
**** Definitions ****

DS 0F
PARAM WRTRD QUERY,,INPUT,,5,END,MF=L,PARMOD=31

2 *,@DCEO 999 921011 53531004
2 *,@DCEI 999 921011 53531002

*
QUERY DC Y(ENDQU-QUERY)

DS 3X
DC 'TERMINATE PROGRAM (Y/N) ?'

ENDQU EQU *
INPUT DS 0CL5
LENGTH DS CL2
UNUSED DS CL2
REPLY DS CL1
TEXT DC Y(ENDTEXT-TEXT)

DS CL3
DC C'*** The WRTRD2 program was terminated. ***'

ENDTEXT EQU *
END

WRTRD Description of the macros

1104 U3291-J-Z125-16-76

Example 3

WRTRD3 START
PRINT NOGEN
BALR 10,0
USING *,10
WRTRD MESSAGE,,INPUT,,40,ERROR,PARMOD=31,MODE=LINE, C

OBELL=Y,ILCASE=Y,ICFD=Y
2 *,@DCEO 999 921011 53531004
2 *,@DCEI 999 921011 53531002

ERROR NOP 0
TERM

**** Definitions ****
MESSAGE DC Y(ENDMESS-MESSAGE)

DS 3X
DC C'Output WRTRD example 3'

ENDMESS EQU *
INPUT DS 0CL14
LENGTH DS CL2
UNUSED DS CL2
DATA DS CL10

END

Example 4

Use of VTSUCB

WRTRD4 START
PRINT NOGEN
BALR 10,0
USING *,10
WRTRD MESSAGE,,INPUT,,40,ERROR,PARMOD=31,VTSUCBA=VTSUPAR

ERROR NOP 0
TERM

*
VTSUPAR VTSUCB MODE=LINE,BELL=YES,LOW=YES,SPECIN=C

1 *,VTSUCB 350 980309
MESSAGE DC Y(ENDMESS-MESSAGE)

DS 3X
DC C'Output WRTRD example 4'

ENDMESS EQU *
INPUT DS 0CL40
LENGTH DS CL2
UNUSED DS CL2
DATA DS CL36

END

Description of the macros WRTRD

U3291-J-Z125-16-76 1105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

Example 5

WRTRD with extended line mode

WRTRD5 START
PRINT GEN
BALR 3,0
USING *,3

QUEST WRTRD OUTPUT,,INPUT,,90,END,MODE=LINE,EXTEND=YES,PARMOD=31
1 QUEST ##SPASS S0001S,S0001D A312
2 CNOP 0,4
2 QUEST BAS 1,S0001S ADDRESS AND SKIP PARAMS
1 S0001D DS 0F A340
1 FHDR UNIT=36,FUNCT=19,VERS=2
2 DS 0A
2 DS 0XL8 GENERAL OPERAND LIST HEADER
2 DC AL2(36) FUNCTION UNIT NUMBER
2 DC AL1(19) FUNCTION NUMBER
2 DC AL1(2) FUNCTION INTERFACE VERSION NUMBER
2 DC X'FFFFFFFF' Returncode is virgin
1 DC A(END) ERROR RETURN ADDRESS
1 DC AL4(OUTPUT) MESSAGE AREA ADDRESS
1 DC AL4(INPUT) READ IN AREA DDRESS
1 DS AL1(0) PLACE FOR O.EDIT BYTE 1
1 DS AL1(0) PLACE FOR O.EDIT BYTE 2
1 DS AL1(0) PLACE FOR I.EDIT BYTE 1
1 DS AL1(0) PLACE FOR I.EDIT BYTE 2
1 DC AL2(90) NUMBER OF CHARS. TO BE READ
1 DC AL1(0) RESERVED 2
1 DC AL1(0) FLAG BYTE 1
1 DC AL4(0) VTSUCB ADDRESS
1 DC AL2(0) INPUT TIMER VALUE 009
1 DC H'0' RES_FOR_TIAM 007
1 *
1 @DCEO OTRSUP=,OLINEND=,OMANUAL=, C
1 OHCOPY=,OPTAPE=,ONOPOSN=, C
1 OHDR=,OETB=,OHOM=,OEXTEND=YES, C
1 MODE=LINE,DCEDIT=,OBELL=,OTRANS=, C
1 ONOLOGC=, C
1 RDA1=-16,RDA2=-15
2 ORG *-16
2 DC AL1(4)
2 ORG *+16-1
2 ORG *-15
2 DC AL1(4)
2 ORG *+15-1
2 *,@DCEO 999 921011 53531004
1 *

WRTRD Description of the macros

1106 U3291-J-Z125-16-76

1 @DCEI DCEDIT=,MODE=LINE,RDA1=-14,RDA2=-13, C
1 ITRSUP=,ILINEND=,ICFD=, C
1 IGETBS=,ILCASE=,IHDR=, C
1 IGETFC=,IGETIC=,IEXTEND=YES
2 ORG *-14
2 DC AL1(32)
2 ORG *+14-1
2 ORG *-13
2 DC AL1(32)
2 ORG *+13-1
2 *,@DCEI 999 921011 53531002

1 *
1 S0001S DS 0Y A340
1 SVC 39 SYSFILE SVC
1 *

CLC INLNAME(4),='XXXX'
BNE QUEST

END TERM
1 END DS 0H 206
1 LA 1,S0006D 205
1 B S0006S 200
1 S0006D DS 0F 200
1 FHDR UNIT=6,FUNCT=40,VERS=1 207
2 DS 0A
2 DS 0XL8 GENERAL OPERAND LIST HEADER
2 DC AL2(6) FUNCTION UNIT NUMBER
2 DC AL1(40) FUNCTION NUMBER
2 DC AL1(1) FUNCTION INTERFACE VERSION NUMBER
2 DC X'FFFFFFFF' Returncode is virgin
1 DC XL1'01' 207
1 DC XL1'00'
1 DC XL1'00'
1 DC XL1'04'
1 DC CL4' '
1 S0006S DS 0Y 200
1 SVC 9
*

VTCSET LOG
1 *
1 * VIRTUAL TERMINAL CONTROL CHARACTER SET
1 *
1 *
1 * LOGICAL RECORD DELIMITERS
1 *
1 LOGNL EQU X'15' LOGICAL LINE END (CONT NEXT LINE)
1 LOGNP EQU X'0C' LOGICAL PAGE END (CONT NEXT PAGE)
1 LOGCL EQU X'0D' LOGICAL LINE END (CONT SAME LINE)

Description of the macros WRTRD

U3291-J-Z125-16-76 1107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

1 LOGVPA EQU X'29' LOG VERTICAL POS ABSOLUT (CONT LINE N)
1 LOGHPA EQU X'2A' LOG HORIZONT POS ABSOLUT (CONT COL N)
1 LOGASF EQU X'21' LOG SHEED FEDDING FROM CASETTE N D1
1 LOGCAP EQU X'20' CONTINUE ACTUAL POSITION AT MSG BEGIN
1 *
1 * LOGICAL UNIT DELIMITERS
1 *
1 LOGEM1 EQU X'1D' EMPHASIZED LAYOUT 1
1 LOGEM2 EQU X'1F' EMPHASIZED LAYOUT 2
1 LOGEM3 EQU X'13' EMPHASIZED LAYOUT 3
1 LOGEM4 EQU X'14' EMPHASIZED LAYOUT 4
1 LOGNOR EQU X'1E' NORMAL LAYOUT
1 LOGDAR EQU X'12' DARK LAYOUT
1 LOGPLD EQU X'2B' PARTIAL LINE DOWN
1 LOGPLU EQU X'2C' PARTIAL LINE UP
1 *
1 LOGSO EQU X'0E' SHIFT OUT TO 2ND CHARACTER SET
1 LOGSI EQU X'0F' SHIFT IN TO NORMAL CHARACTER SET
1 *

1 LOGSPA EQU X'36' START PROTECTED AREA
1 LOGEPA EQU X'08' END PROTECTED AREA
1 LOGNUM EQU X'11' START NUMERIC (UNPROTECTED) AREA
1 *
1 LOGCHS EQU X'06' CHARACTER SET D1D2
1 LOGCOL EQU X'17' COLOUR CHOICE
1 LOGLOC EQU X'09' LOCAL ATTRIBUTE START S1
1 LOGLOX EQU X'0A' LOCAL ATTRIBUTE EXIT S1
1 *
1 LOGVMI EQU X'24' VERTICAL MOVEMENT INDICATOR D1
1 LOGHMI EQU X'23' HORIZONTAL MOVEMENT INDICATOR D1
1 LOGLM EQU X'38' LEFT MARGIN D1D2D3
1 LOGPTS EQU X'1A' PROPORTIONAL TYPING START
1 LOGPTX EQU X'1B' PROPORTIONAL TYPING END
1 LOGMLL EQU X'33' MAXIMAL LINE LENGTH
1 LOGMLN EQU X'35' MAXIMAL LINE NUMBER (ON PAGE)
1 LOGNLQ EQU X'39' NEAR LETTER QUALITY START
1 LOGNLX EQU X'3B' NEAR LETTER QUALITY EXIT
1 *
1 * SPECIAL FUNCTIONS
1 *
1 LOGDEL EQU X'07' DELETE
1 LOGBS EQU X'16' BACKSPACE
1 LOGSUB EQU X'3F' SUBSTITUTE
1 *
1 * DELIMITER EXTENSION
1 *
1 LOGEXT EQU X'3E' DELIMITER EXTENSION BYTE

WRTRD Description of the macros

1108 U3291-J-Z125-16-76

1 *
1 * EXTENDED LOGICAL DELIMITERS
1 *
1 LOGTRA EQU C'T' TRANSPARENT OUTPUT X1L1L2
1 LOGDIM EQU C'D' DIMENSION OF SCREEN D1D2D3D4D5
1 LOGRPT EQU C'R' REPEAT NEXT CHARACTER NN TIMES
1 LOGDIS EQU C'I' SET DISPLAY ATTRIBUTES
1 LOGRS EQU X'00' RESET DISPLAY ATTRIBUTES
1 LOGFL EQU X'01' FLASHING
1 LOGUND EQU X'02' UNDERSCORED
1 LOGBLK EQU X'04' BLANKED
1 LOGRIN EQU X'08' REDUCED INTENSITY
1 LOGINV EQU X'10' INVERSE
1 LOGFLD EQU C'F' SET FIELD CHARACTERISTICS
1 LOGINP EQU X'00' INPUT FIELD
1 LOGPNS EQU X'01' PROTECTED NOT SENDABLE
1 LOGPRS EQU X'20' PROTECTED SENDABLE
1 LOGNUF EQU X'02' NUMERIC
1 LOGMOD EQU X'04' PRE-MODIFIED
1 LOGMAR EQU X'08' MARKABLE
1 LOGPRT EQU X'10' PRINTABLE
1 LOGASK EQU X'40' AUTOMATIC SKIP
1 *
1 *
1 * PHYSICAL UNIT DELIMITERS
1 *
1 LOGESC EQU X'27' ESCAPE X

1 LOGDC4 EQU X'3C' DC4 X
1 LOGHT EQU X'05' HORIZONTAL TABULATION
1 LOGVT EQU X'0B' VERTICAL TABULATION
1 *
1 *,VTCSET 080 941024 53531028

INPUT DS 0CL90
DS CL4

INLNAME DS CL20
INFNAME DS CL12
INSTR DS CL30
INZIP DS CL4
INCITY DS CL20
OUTPUT DS 0H

DC Y(ENDOUT-OUTPUT)
DS CL2
DC X'01'
DC AL1(LOGNP)
DC AL1(LOGNL)
DC AL1(LOGNL)
DC AL1(LOGSPA)

Description of the macros WRTRD

U3291-J-Z125-16-76 1109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
Ju

ly
 2

0
17

 S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0\
16

0
38

05
_

m
ak

_a
t\b

hb
\e

n
\m

ak
ro

.v
05

\v
w

z.
do

c

DC AL1(LOGEM3)
DC C'PLEASE ENTER NAME AND ADDRESS'
DC AL1(LOGNL)
DC AL1(LOGNL)
DC AL1(LOGSPA)
DC C' LAST NAME: '
DC AL1(LOGEPA)

NAME DS CL20
DC AL1(LOGNL)
DC AL1(LOGSPA)
DC C' FIRST NAME: '
DC AL1(LOGEPA)

FNAME DS CL12
DC AL1(LOGNL)
DC AL1(LOGSPA)
DC C' STREET: '
DC AL1(LOGEPA)

STREET DS CL30
DC AL1(LOGNL)
DC AL1(LOGSPA)
DC C' ZIP and CITY: '
DC AL1(LOGEPA)
DC AL1(LOGNUM)

ZIP DS CL4
DC AL1(LOGSPA)
DC C' '
DC AL1(LOGEPA)

CITY DS CL20
DC AL1(LOGNL)
DC AL1(LOGNL)
DC AL1(LOGSPA)
DC AL1(LOGEM3)
DC C'FOR PROGRAM TERMINATION, ENTER "XXXX" FOR LAST NAME'

ENDOUT EQU *
END

WRTRD Description of the macros

1110 U3291-J-Z125-16-76

Runtime log:

/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '<ver>' OF '<date>' LOADED
% ASS6010 <ver> OF BS2000 ASSEMBH READY
//compile source=*library-element(macexmp.lib,wrtrd5), -
// compiler-action=module-generation(module-format=llm), -
// module-library=macexmp.lib, -
// listing=parameters(output=*library-element(macexmp.lib,wrtrd5))
% ASS6011 ASSEMBLY TIME: 314 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 116 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-executable-program library=macexmp.lib,element-or-symbol=wrtrd5, -
/ prog-mode=*any
% BLS0523 ELEMENT 'WRTRD5', VERSION '@' FROM LIBRARY

':2OSG:$QM212.MACEXMP.LIB' IN PROCESS
% BLS0524 LLM 'WRTRD5', VERSION ' ' OF '<date> <time>' LOADED
%PLEASE ACKNOWLEDGE

PLEASE ENTER NAME AND ADDRESS

LAST NAME:
FIRST NAME:
STREET:
ZIP and STREET:

FOR PROGRAM TERMINATION, ENTER "XXXX" FOR LAST NAME

U3291-J-Z125-16-76 1111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

6 Appendix

The appendix contains the following sections and tables:

– macros supported only for compatibility

CDUMP
GETSW
GETUS
HSITYPE
MRSINF
MRSSTA
MSG7
SETSW
SETUS
SINF
TABLE

– a table containing all macros described in the manual in alphabetical order

– a table containing all macros described in the manual by SVC numbers

– a table with other macros of BS2000 OSD/BC not described in this manual.

– a table with the standardized function key codes

Macros supported only for compatibility Appendix

1112 U3291-J-Z125-16-76

6.1 Macros supported only for compatibility

CDUMP – Output user, system or area dump

General

Application area: Debugging aids; see page 162
Macro type: for user and system dumps only:

Type S, MF format 1: standard E/L/D form;
for area dumps only:
Type S, MF format 2: standard E/L/D/C form;
see page 29

● The new CDUMP2 macro is available as of BS2000/OSD-BC V3.0.

Macro description

The CDUMP generates a dump (in its own dump task) for the task which has called
CDUMP. By specifying the SCOPE operand, the user can determine whether an area
dump, a user dump or a system dump is to be output.

Macro formats and description of operands

In the following format diagram, separate call formats are specified for generating a system
dump, user dump or area dump.

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

Output of an area dump

Output of a system dump

CDUMP

SCOPE=AREA,

,PC=STD / addr

[,TITLE=addr]

,MODE=STD / EXPANDED

[,DS@=addr]

,MF=S / E / L / C / D

[,PARAM=addr / (r)]

,ID=CD / pre

CDUMP

SCOPE=SYSTEM

,PC=STD / addr / (r)

,EC=STD / addr / (r)

,IW=STD / PC

[,]

[,TITLE=addr / (r)]

,DIAG=NO / YES

[,ELSN=addr / (r)]

,PARMOD=24 / 31

,MF=S / L / (E,..) / D

,ID=CD / pre

NUM=#n

AREAS=((start1,end1),(start2,end2),...)

CODE=
’name’

addr

(r)

INSERT= addr

(r)

Macros supported only for compatibility Appendix

1114 U3291-J-Z125-16-76

Output of a user dump

The operands are described in alphabetical order below.

AREAS=
Defines the areas to be included in the dump by means of their start and end addresses.
These may be specified in any form permissible for an address constant (see example). A
list of up to 4 memory areas may be specified. AREAS is prohibited if MF=C/D is specified.

((start1,end1),....)
start1 = address of the first byte (start address) of the memory area to be dumped.
end1 = address of the last byte (end address) of the memory area to be dumped.

CODE=
Gives a string which identifies the dump. This character string is output with message
IDA0N51. This operand is permitted only in conjunction with SCOPE=USER/SYSTEM.

addr
Symbolic address of the field with any character string;
length = 7 bytes.

(r)
Register containing the address value “addr”.

CDUMP

[SCOPE=USER]

,PC=STD / addr / (r)

,EC=STD / addr / (r)

,IW=STD / PC

[,]

[,TITLE=addr / (r)]

,DS=STD / NO / YES / listaddr

,DIV=STD / NO / YES

,PARMOD=24 / 31

,MF=S / L / (E,..) / D

,ID=CD / pre

CODE=
’name’

addr

(r)

INSERT= addr

(r)

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

'name'
name = any character string; length = 7 characters.

DIAG=
Determines whether or not a message indicating the address of the CDUMP-SVC is sent
to the operator. This operand is permitted only in conjunction with SCOPE=SYSTEM.

NO
Default setting: no message is output.

YES
The message is output.

DIV=
Specifies whether DIV windows are to be included in the user dump. This operand may be
specified only in conjunction with SCOPE=USER and is not evaluated unless
PARMOD=31.
If PARMOD≠31 the value DIV=YES is used irrespective of the parameter specification.
See also the section “Extended addressing with data spaces” on page 61.

STD
Default setting: the value set in the MODIFY-TEST-OPTIONS command determines
whether DIV windows are to be included in the user dump (YES) or not (NO).

NO
No DIV windows are to be included in the user dump.

YES
All DIV windows are to be included in the user dump.

DS=
Determines which data spaces (DS) are to be included in the user dump. This operand may
be specified only in conjunction with SCOPE=USER and is not evaluated unless
PARMOD=31. If PARMOD≠31 the value DS=YES is used irrespective of the parameter
specification. See also the section “Extended addressing with data spaces” on page 61.

STD
Default setting: the value set in the MODIFY-TEST-OPTIONS command determines
whether data spaces are to be included in the user dump (YES) or not (NO).

listaddr
Address of a list of SPIDs (8 bytes per entry). The list must end with a zero entry (D(0)).

NO
No data spaces are to be included in the user dump.

YES
All data spaces (up to 100 data spaces used by the caller) are to be included in the user
dump.

Macros supported only for compatibility Appendix

1116 U3291-J-Z125-16-76

DS@=
Points to a data space control block (DSCB) whose DSECT is generated with MF=D. A data
space and its associated areas can be defined in the DSCB. This operand may be specified
only in conjunction with SCOPE=AREA.

Data structure of a DSCB:

CDDDSCB DSECT , DATA SPACE CTRL BLOCK
CDDDS@ DS A Points to the next DSCB
CDDSPID DS XL8 SPID of the DS
CDDNUM DS H Number of areas in the DS
CDDSTRT DS A Start of the first area
CDDEND DS A End of the first area

By chaining DSCBs, users can specify areas of more than one data space of their task. By
default, no areas of a data space are specified.
See also the section “Extended addressing with data spaces” on page 61.

addr
Symbolic address of the DSCB.
addr = NULL is the default value.

EC=
Defines the location from which the event code (interrupt weight) is to be fetched. This
specification is permissible only in conjunction with SCOPE=USER/SYSTEM; for
SCOPE=AREA the event code is always fetched from the calling stack.

STD
Default setting: the event code is to be fetched from the calling stack.

addr
Symbolic address of the field containing the event code.

(r)
r = Register containing the event code (right-justified)

ELSN=
Specifies the address of a field containing the number of an Error Log Sequence Block to
which specific data of the error logging file has been written by the caller.
Field length = 4 bytes, which must be aligned on a word boundary. The number must be
entered as a binary digit. This operand is only permitted in conjunction with
SCOPE=SYSTEM.

addr
Symbolic address (name) of the field

(r)
r = Register containing the address value “addr”

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

INSERT=
Defines a text to be output with the message IDA0N51. This text could contain more detailed
information on the cause of the dump.
The user must place this text, which may be up to 60 characters long, in a data area with
the following format:

Byte 1: Length (hexadecimal) of the text to be output (in bytes). If byte 1 has the value
0, no INSERT text is output.

Byte 2 through n (n≤61): Text to be output.

The INSERT operand is ignored when SCOPE=AREA.

addr
Symbolic address of the data area which contains length specification and text.

(r)
r= Register with the address of the data area which contains length specification and
text

IW=
Defines the location from which the interrupt weight is to be fetched. This specification is
permissible only in conjunction with SCOPE=USER and only for the 24-bit interface. The
operand is supported for compatibility reasons only; EC=... should be used in programs
instead.

STD
Default setting: specifies that the interrupt weight is to be fetched from the calling stack.

PC
Specifies that the interrupt weight is contained in byte 1 of the field/register specified
with the PC operand.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

A prefix ID (pre = 2 letters) can be specified for MF=C or MF=D, as shown in the macro
format.

The following operands must be specified for area dumps: the SCOPE operand if
MF=C/D/E and additionally the NUM operand if MF=C/D.
For system dumps, the SCOPE operand is mandatory if MF=C/D/E.

Macros supported only for compatibility Appendix

1118 U3291-J-Z125-16-76

MODE=
Defines the scope of the diagnostic data to be output for an area dump. The operand may
be specified only in conjunction with SCOPE=AREA.

STD
Default setting: ensures that only the AIDSYSD module and the areas with COMAREA,
P1-PCB and TCB are dumped in addition to the specified areas in class 6 and class 5
memory (see the section describing macros and area dumps).

EXPANDED
Initiates dumping of the area with COMAREA and all other system areas as in user
dump in addition to the areas specified in class 6 and class 5 memory (see the section
describing macros and user dumps).

NUM=
Gives the number of areas to be dumped. NUM is permissible only in conjunction with
MF=L/C/D. The start and end addresses of the areas to be dumped must be entered in the
generated operand list (dynamically). If MF=C/D, NUM is mandatory.

#n
n = Number of areas to be dumped; 1 ≤ n ≤ 2048.
(The '#' character must precede the number).

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit-interface is generated.

If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro.

24
This specification is not permissible in conjunction with SCOPE=AREA. The 24-bit
interface is generated. Data lists and instructions use 24-bit addresses (address space
≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

PC=
Defines a register or field containing the program counter to be logged.

STD
Default setting: the program counter is to be fetched from the calling stack.

addr
Symbolic address (name) of the field (word) containing the program counter.

(r)
r = Register containing the program counter. This specification is permissible only in
conjunction with SCOPE=USER/SYSTEM.

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

SCOPE=
Defines whether a user, system or area dump is to be generated.

USER
Default setting: a user dump is generated.

SYSTEM
A system dump is generated. This specification may be entered by users with a read
privilege ≥ 3 only.

AREA
An area dump is generated.

TITLE=
Defines a second title line for the memory dump
(length = 132 characters).

Note
This operand is still supported for reasons of compatibility only, i.e. DAMP does not
process this title line. Specifying this operand therefore has no effect.

addr
Symbolic address of the field containing the title line.

(r)
r = Register containing the address value “addr”. This specification is permissible only
in conjunction with. SCOPE=USER/SYSTEM

Macros supported only for compatibility Appendix

1120 U3291-J-Z125-16-76

Return information and error flags

R15 /
standar d
header:

A return code relating to the execution of the CDUMP
macro is transferred in the rigtmost byte of register
R15. When using the 31-bit-interface, the return code
is additionally transferred in the standard header
(main code).

a a

X'aa' Meaning

X'00' Dump completed without errors.

X'04' Dump completed using default values.

X'08' Dump suppressed due to /OPTION DUMP operand.

X'0C' Dump suppressed due to systems standards.

X'10' Dump suppressed due to severe CDUMP operand error.

X'14' Dump suppressed due to insufficient test privilege.

X'18' Dump suppressed due to error in DMS routines.

X'1C' Dump suppressed due to system error.

X'20' Dump suppressed due to previous interruption of CDUMP.

X'24' Dump suppressed due to foreign task dump error.

X'28' Dump suppressed due to shutdown processing.

X'2C' Dump suppressed by calling task.

X'30' All area specifications are invalid. No dump is output.

X'34' Incorrect specification for NUM=.... No dump is output.

X'38' Some dump areas are not located in the caller' s address space or the specifications are
inconsistent. At least one memory area has, however, been output.

X'3C' Dump suppressed since “DMS READY” has not yet been reached.

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

GETSW – Get switch

General

Application area: User and job switches; see page 29
Macro type: Type O; see page 28

● As of BS2000/OSD-BC V1.0, the new macro SWITCH is available. This macro
combines the functionality of the GETSW, GETUS, SETSW and SETUS macros.

Macro description

(For a general description of the job switch see the SETSW macro)

The macro GETSW copies into register R0 the settings of the job switches of the job that is
currently running.
The switches are assigned to the bits of register R0 in ascending sequence (from right to
left):

bit 20 → switch 0
bit 21 → switch 1
 : :
 : :
bit 231 → switch 31

where: bit 2n = 0: switch n off
bit 2n = 1: switch n on
0 ≤ n ≤ 31

There is no return code to report on execution of the macro.

Macro format

GETSW

Macros supported only for compatibility Appendix

1122 U3291-J-Z125-16-76

GETUS – Get user switch

General

Application area: User and job switches; see page 29
Macro type: Type O; see page 28

● As of BS2000/OSD-BC V1.0, the new macro SWITCH is available. This macro
combines the functionality of the GETSW, GETUS, SETSW and SETUS macros.

Macro description

For a general description of the user switch see the SETUS macro.

The macro GETUS copies the settings of the user switches for the specified user ID into
register R0. Users can specify their own user ID or that of another user.
The switches are assigned to the bits of register R0 in ascending sequence (from right to
left):

bit 20 → switch 0
bit 21 → switch 1
 : :
 : :
bit 231 → switch 31

where: bit 2n = 0: switch n off
bit 2n = 1: switch n on
0 ≤ n ≤ 31

Macro format and description of operands

(1)
Register R1. Register R1 must contain the address of a field containing the user ID.
The user ID must be copied left-justified into the address field (specification without “$”; to
be padded with blanks to eight positions, if required).

Macro call without operand
The switch settings for the user ID specified in the SET-LOGON-PARAMETERS command
will be supplied.

GETUS

[(1)]

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

Return information and error flags

R15:
A return code relating to the execution of the GETUS
macro is transferred in the rigtmost byte of register
R15.

0 0 0 0 0 0 a a

X'aa' Meaning

X'00' Normal execution.

X'04' Operand error.

X'08' The user ID does not exist.

X'0C' The user ID is no longer valid.

X'20' Internal error.

Macros supported only for compatibility Appendix

1124 U3291-J-Z125-16-76

HSITYPE – Output information about current HSI

General

Application areas: Requesting and accessing lists and tables; see page 155
XS programming; see page 164

Macro type: Type R; see page 28

● HSITYPE is replaced by the NSIINF macro.

Macro description

The HSITYPE macro provides the user with information about the current HSI (Hardware-
Software Interface). The information is output to a field whose address is stored in a
register. The information provided applies to the entire duration of the current BS2000
session.

Only output value (only XS31 hardware is supported):

XS31: Addressable memory area > 16 Mb; all addresses are interpreted as either
24-bit or 31-bit addresses, depending on the addressing mode.

The macro generates a 31-bit interface.

Macro format and description of operands

(r)
Register containing the address of the field where the information is to be entered. Field
length = 4 bytes; the field must be aligned on a word boundary.

Register contents

– Register R1 is overwritten during macro execution.
– Register R15 contains the return code.

HSITYPE

(r)

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

Return information and error flags

R15:
A return code relating to the execution of the
HSITYPE macro is transferred in register R15.0 0 0 0 0 0 a a

X'aa' Meaning

X'00' Function executed.

X'04' Function not executed. Invalid address was specified or incorrect register.

X'08' Function not executed. System error (in the event of internal REQM call).

X'18' Function not executed. Invalid macro format.

Macros supported only for compatibility Appendix

1126 U3291-J-Z125-16-76

MRSINF – Request MSCF information

General

Application area: Multiprocessor systems; see page 164
Macro type: Type S, MSCF format 2: standard/C/D/L/E/M form; see page 29

● The new macro MCSINFO is available as of BS2000/OSD-BC V3.0 and replaces the
MRSINF and MRSSTA macros.

Macro description

The MRSINF macro gives the user information on selected processors or on all processors
in an MSCF communication network. A record with the following information is placed in an
output area to be made available by the user:
– BCAM name of the processor
– External representation of the SYSID processor
– BS2000 version which is used with this processor
– Attainability of the processor in the MSCF network: a distinction is made between a

local processor, a processor with which a connection exists, and a processor with which
no connection exists.

– Type of processor network: a distinction is made between a processor defined for LCS
(Loosely Coupled System) and one defined for CCS (Closely Coupled System).

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

Macro format and description of operands

KEY=
Indicates whether information is to be output about the entire MSCF network or about a
specific processor and specifies the operands for selecting the processors.

HOST
Default value; information is requested about the processor in the MSCF
communication network whose BCAM name is specified in the HOST operand.

SYSID
Information is requested about the processor in the MSCF communication network
whose SYSID (system identification) is specified in the ESYSID operand.

ALL
Information about the entire MSCF communication network is requested.

HOST=
Specifies with the BCAM name the processor about which information is output.

'bcamname'
BCAM name of the processor about which information is requested. The name must be
enclosed in apostrophes.
This operand value is to be specified with MF=S or MF=L.

addr
Symbolic address of a field in which the user places the BCAM name of the processor.
This operand value can be specified with MF=M.

ESYSID=
Specifies with a SYSID the processor about which information is output.

MRSINF

KEY=HOST / SYSID / ALL

[,HOST='bcamname' / addr]

[,ESYSID='sysid' / addr]

[,AREA=addr / (r)]

[,AREAL=length / addr]

,MF=S / E / L / M / C / D

[,PARAM=addr / (r)]

,PREFIX=M / p

,MACID=RSI / macid

,VERSION=2 / 1

Macros supported only for compatibility Appendix

1128 U3291-J-Z125-16-76

'sysid'
SYSID of the processor about which information is requested. sysid may be one to
three characters long and must be enclosed in apostrophes.
This operand value is to be specified with MF=S or MF=L.

addr
Symbolic address of a field in which the user places the SYSID of the processor.
This operand value can be specified with MF=M.

AREA=
Specifies the address of an output area in which MRSINF transfers the requested
information.

addr
Symbolic address of a field for accepting the requested MCSF information. This field is
to be aligned on a word boundary.
With KEY=ALL, up to 164 output records each 16 bytes in length can be written to this
field. The first output record always contains the information about the local processor.

(r)
r =Register containing the address value “addr”. A register can be specified only with
MF=M.

AREAL
Specifies the length of the output area for the requested MSCF information.
If the output area selected is too small the output information is truncated. The user is
informed of this with a return code.

length
Length (in bytes) of the output area, i.e. the field containing the address “addr”.
This operand value is to be specified with MF=S or MF=L.

addr
Symbolic address of a field (halfword) in which the user places the value for the length
(as a binary number).
This operand value can be specified with MF=M.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “macro type” and are included in the
macro format.

A PREFIX can be specified in the C form, D form or M form of the macro and additionally a
MACID in the C form or M form (see section “S-type macros” on page 29).

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

Return information and error flags

Other return codes which, in accordance with conventions, apply to all macros are given in
the table “Standard header” on page 43.

The calling program is terminated when the following errors occur:

– The data area is not assigned to the caller.
– The data area is not aligned on a word boundary.
– The data area is protected against write access.

standar d
header:

The following return code relating to execution of the
MRSINF macro is transferred in the standard header
(bb=Subcode1,aaa=Maincode).

0 0 b b a a a a

X'bb' X'aaaa' Meaning

X'00' X'0000' Function executed successfully; no error.

X'01' X'0001' Operand values not in the permissible value range.

X'01' X'0002' The output area is too short. Information was truncated.

X'01' X'0003' The output area is not aligned on a word boundary.

X'01' X'0004' An invalid address was output for the output area.

X'20' X'0020' Internal error. The SERSLOG file contains further details on the cause of error.

X'40' X'0040' The specified processor is not known.

X'40' X'0041' The specified SYSID is not known.

X'40' X'0042' The specified SYSID is invalid.

Macros supported only for compatibility Appendix

1130 U3291-J-Z125-16-76

MRSSTA – Display MSCF status

General

Application area: Multiprocessor systems; see page 164
Macro type: Type S, MF format 1: standard/L/E form; see page 29

● The new macro MCSINFO is available as of BS2000/OSD-BC V3.0 and replaces the
MRSINF and MRSSTA macros.

Macro description

This macro is only available to users of the multiprocessor system (see the “HIPLEX MSCF”
manual [26]).

The MRSSTA macro gives information on all active and potential connections between the
local processor and other processors in the MSCF network.

Macro format and description of operands

HOST=
Specifies a host computer whose connection to the local processor is to be interrogated.
If this operand is specified, an appropriate return code will be set in register R15 only.

bcamname
Is the processor's BCAM name (as defined during BCAM generation).

addr1
Symbolic address of a BCAM name.

MRSSTA

,MF=S / (E,..) / L

HOST=
’bcamname’

addr1

(r1)

AREA= addr2

(r2)

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

(r1)
r1 = Register that contains the address of the BCAM name.

AREA=
Specifies the address of an area in which all active and potential connections to the local
processor are to be stored. The area must start on a halfword boundary. Before a macro is
called, the length of the user area must be entered in the first two bytes (length field). After
the macro is executed the length field will contain the total length of all entries for the
processor name. The first name is always the name of the local processor. If the HOST
operand is also specified, the AREA operand will be ignored.

After execution of the macro, the area specified by AREA contains the following
information:

Byte 1 - 8: Processor name
Byte 9: Return code from register R15, which is set when the HOST operand is

specified (except X'04A7')
Byte 10: X'FF' in the last entry, otherwise X'00'

addr2
Symbolic address of the area in which the connections are to be stored.

(r2)
r2 = register which contains the address of the area

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

Notes

Since the length of a processor name entry is 10 bytes, the required size of the user
area is calculated as number of processors * 10 + 2 bytes.

See also the “HIPLEX MSCF” manual [26] for information on MSCF communication.

Macros supported only for compatibility Appendix

1132 U3291-J-Z125-16-76

Return information and error flags

R15:
A return code relating to the execution of the
MRSSTA macro is transferred in the rigtmost byte of
register R15.

0 0 0 0 0 0 a a

Return code Meaning

X'00' HOST is local.

X'00' All known processor names are stored in the user area.

X'04' HOST is connected to the local MSCF.

X'08' HOST is not connected to the local processor.

X'0C' MSCF communication is not active.

X'10' Processor unknown in MSCF network.

X'14' Operand error.

X'18' Specified length too small to store all names.

X'FF' MSCF is not included in this BS2000.

X'04A7' Invalid address of the MRSSTA operand list.

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

MSG7 – Output message

General

Application area: Messages; see page 161
Makrotyp: Type S, MF format 1: 31-bit interface: standard/L/D/C/E form;

see page 29

● The MSG7 macro will not be developed further; new functions will only be offered in the
MSG7X macro which, unlike the MSG7 macro, also uses the new data area layout.

Macro description

The MSG7 macro outputs a system message to SYSOUT, SYSLST, the operator console
or a user program area. The specified message code must contain 7 characters.
The operand values number2, A, B, C, N, R, T serve to structure a CSECT/DSECT and can
be specified only in conjunction with the MF=C/D form of the macro.

Every system message has a 7-character message code. The first 3 characters of the code
denote the message class; the remaining 4 characters are used for consecutive numbering
within a class. System messages may contain variable sections “(&nnn)” that can be
replaced by inserts.

Macro format and description of operands

MSG7

ID=msgid / (r1) / ((r1),(r2)) / (class,(r)) / R / C

[,LAN='language']

,DEST=SYSOUT / SYSLST / CONSOLE / (destination,...)

[,UCDEST='destcode' / (r) / destaddr / N / R / A]

[,INSERT=

(insertlength, addr

base,[index],[displ]

)

((insertlength, addr

base,[index],[displ]

),...)

number1

number2

(number,B)

(number,T)

]

Macros supported only for compatibility Appendix

1134 U3291-J-Z125-16-76

ID=
Specifies the message code of the system message to be output.

msgid
Specifies a 7-character message code.

(r1)
Register pair r1 and r1 + 1 containing the message code:
r1 = Register containing the message class (right-justified).
r1 + 1 = Register containing the message number.
r1 must be even-numbered.

((r1),(r2))
Register pair containing the message code:
r1 = Register containing the message class (right-justified).
r2 = Register containing the message number.

(class,(r))
class = 3-character message class
r = register containing the 4-character message number.

MSG7 (cont.)

,DMS=APPL / NOTAPPL / NA

[,RC=X / (r) / R / N]

,MF=S / C / (C,pre) / (E,...) / (D,pre) / D / L

[,REPLY=

(replylength, addr

base,[index],[displ]

)

REG

N

A

B

R

]

[,BUFFER=

(bufferlength, addr

base,[index],[displ]

)

N

A

B

] [,MAP=NO / YES]

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

INSERT=
Specifies up to 15 lengths and addresses of inserts. An address reference is created in the
message processing operand list for each entry.
If more inserts are specified than can be accommodated by the message, excess inserts
are ignored. An insert consisting solely of blanks is shortened to a single blank.
Trailing blanks in an insert are suppressed.
The character X'01' can be entered at the end of an insert to prevent the suppression of
blanks. When the character X'01' is encountered during message processing, all blanks
that precede it are retained.
If a message text contains more inserts than are specified in the macro call, the default
value is assumed for every excess insert. The substitute insert (&nn) is used if no default
value is present.

(insertlength,...)

Inserts may be skipped by entering commas for omitted positions e.g. INSERT=
(,(insertlength2,addr2),,(insertlength4,addr4)). Inserts omitted in this way are replaced
by their default values or by the substitute insert (&nn).

If insertlength=0, the insert must begin with a record length field (4 bytes):
Bytes 0-1: length of the insert
Bytes 2-3: reserved.

Notes
– The commas should always be entered in the case of indexed addressing.
– An insertion list begins with two parentheses.
– The sum of the insertion lengths ≤ 4079 bytes.

number1
Number of INSERTs for which space is to be reserved in the operand list for message
processing.
“number1” may be specified only in conjunction with MF=L.

number2
Number of inserts for which names are to be generated in the CSECT/DSECT.
“number2” may be specified only in conjunction with the C form or the D form of the
macro.

insertlength
addr
base
index
displ

= length of the insert
= symbolic address (name) of the area
= base register 1)

= index register 1)

= displacement 1)

1) Entries for calculating the address of the insert

Macros supported only for compatibility Appendix

1136 U3291-J-Z125-16-76

(number,B)
Number of inserts whose addresses are to be specified in the form (base,index,displ).
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

(number,T)
Number of inserts for which symbolic addresses are to be specified.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

LAN=
Specifies the language to be used for message output.
This operand is ignored if DEST=CONSOLE is specified.

'language'
1 letter to identify the language:
D = German, E = English.
For additional options please consult system administration. The default value is
defined by the system parameter MSGLPRI; this value is also assumed in the event of
invalid specifications.

REPLY=
Defines a reply area. The area must be aligned on a halfword boundary and begin with a
record length field (4 bytes: bytes 1-2: length of the reply; bytes 3-4 reserved). Before the
macro is executed, bytes 1-2 must contain the length of the reply area (≤ 4095 bytes).
When the macro is executed, the current length of the reply is entered in bytes 1-2.

Lowercase letters are converted to uppercase when entered via the REPLY operand.
REPLY may be specified only in conjunction with DEST=SYSOUT/CONSOLE.

If a “?” reserved in MIP as a keyword is entered as a reply, MIP MIP shows the meaning
and action of the relevant message before the message is again output for reply.

Note
REPLY may be specified only in conjunction with DEST=SYSOUT/CONSOLE.

(replylength,...)

Note
The commas should always be entered in the case of indexed addressing.

replylength
addr2
base
index
displ

= length of the reply area > 4 bytes
= symbolic address (name) of the area
= base register 1)

= index register 1)

= displacement 1)

1) Entries for calculating the address of the area

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

REG
Specifies that the reply is written left-justified in register R1. Reply length ≤ 4 bytes.

N
No reply area is generated in the CSECT/DSECT
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

A
The address of the reply area is a symbolic address.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

B
The address of the reply area is given in the form (base, index,displ).
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

R
The reply is to be transferred in register R1.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

DEST=
Designates destinations for the converted system message. If the REPLY operand is also
specified, only DEST=SYSOUT/CONSOLE is permissible.

SYSOUT
Output to SYSOUT.

SYSLST
Output to SYSLST.

CONSOLE
Output to the operator console.

(...)
Combination of the above-mentioned destinations; entry in parentheses.

BUFFER=
Specifies an area to which the converted system message is to be transferred. BUFFER
must be aligned on a halfword boundary.
A record length field is entered in the first 2 bytes:

Bytes 0-1: length of the area

Bytes 2-3: reserved

Bytes 4: output control character

Bytes 5-n: message text

 WROUT format

Macros supported only for compatibility Appendix

1138 U3291-J-Z125-16-76

(bufferlength,...)

N
No area for the converted system message is generated in the CSECT/DSECT.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

A
The address of the area is a symbolic address.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

B
The address of the area is given in the form (base, index,displ).
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

MAP=
Specifies whether BUFFER is given another structure (mapping format).

NO
BUFFER is created in the WROUT format.

YES
BUFFER is created in the mapping format (see below).

UCDEST=
UCON destination (UCON=Universal CONsole); (see “Introduction to System Adminis-
tration” [10] manual).
The destination of a message can be specified as follows:
– mnemonic device name for a particular console.
– routing code for consoles and authorized user tasks which are allocated a particular

area of activity.
– authorization name for an authorized user task.

Notes
– UCDEST is not executed unless DEST=CONSOLE was specified.
– UCDEST has priority over the RC operand.

bufferlength
addr
base
index
displ

= length of the area > 16 bytes
= symbolic address (name) of the area
= base register 1)

= index register 1)

= displacement 1)

1) Entries for calculating the address of the area

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

'destcod'
The following entries are permissible for 'destcode':
– '(mn)'

where mn = 2-character mnemonic device name.
– '< x'

where x = routing code; < must be specified.
– 'name'

where name = name of the user task (4 characters).

destaddr
Symbolic name of an area (word length) with the entry for “destcode”; left-justified
entries; alignment on a word boundary.

(r)
r = Register containing the entries for “destcode”; left-justified entry.

N
No field for “destcode” is to be generated in the CSECT/DSECT.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

R
The entry for 'destcode' is entered in a register.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

A
The address of the field containing “destcode” is a symbolic address (destaddr).
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

DMS=
Specifies the message search mechanism.

APPL
The message is sought with the aid of DMS (message files and DLAM area).

NOTAPPL / NA
The message is sought at system level only in the DLAM area without DMS). Reply if
the requested message is not found:
msgid,DMS NOT IN MEMORY,program counter,modul,inserts.

RC=
Specifies the routing code for sending a message to the console. The routing code entered
in the message unit is ignored if the RC operand is specified.

x
Routing code (1st character). See also the “Introduction to System Administration”
manual [10].

Macros supported only for compatibility Appendix

1140 U3291-J-Z125-16-76

(r)
Register containing the specification for “x”; right-justified entry.

R
The routing code is entered in a register.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

N
No field for the routing code is generated in the CSECT/DSECT.
This specification is required for the structuring of the CSECT/DSECT; it may be
specified only in conjunction with the C form or the D form of the macro.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

A prefix (pre = 1..4 letters) can be specified in the C form and D form, as shown in the macro
format.
Default values: pre = MSGC for the C form

pre = MSGD for the D form

If less than 4 letters are entered for the prefix, the string MSGx (where x ï 1st letter) results.

The operand list also contains a definition of the output area, reply area and fields for a
maximum of 15 inserts.

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

Mapping format

The mapping format specifies the structure of the BUFFER area in the case of MAP=YES.
Various entries (mapping list) are prefixed to the structure defined under BUFFER.

Structure of the mapping format:

Bytes 0-1: length of the mapping list
Bytes 2-3: C'MP'
Bytes 4-n: entries
Bytes n+1 bis p: remainder of structure as under BUFFER (WROUT format).

The entries contain information on
– the inserts
– the message code
– the routing code
– the message weight
– slack bytes for alignment.

Entries are stored as follows:

Entry on Structure of the entry

(A separate entry
Insert Insert Displacement when ... is created for

length adding in WROUT format each insert)

0H 2 4

Message X' 81' 7-character message code
code

0 1 8

Message X' 20' Message
weight weight

0 1 1

Routing X' 50' Routing code
code (left-justified)

0 1 5

Slack X' 00' - - - X' 00' WROUT format
bytes

0 1 m H

Macros supported only for compatibility Appendix

1142 U3291-J-Z125-16-76

Return information and error flags

The operand list also contains a definition of the output area, reply area and fields for a
maximum of 15 inserts.

R15:
A return code relating to the execution of the MSG7
macro is transferred in the rightmost byte of register
R15.

a a

X'aa' Meaning

X'00' MSG7 macro completed without errors

X'04' Abnormal termination of input/output

X'08' Invalid message number, area address, mnemonic device name, name of the authorized
user task or invalid area length

X'0C' Noninteractive user requests reply

X'10' No memory space available

X'14' Break during WROUT macro

X'18' Truncated message written to output area

X'20' Message output aborted

X'2C' DEST=SYSLST was specified with REPLY=...

X'30' DEST=(...) was specified with REPLY=...

X'41' The MIP subsystem is not loaded

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

SETSW – Set job switch

General

Application area: User and job switches; see page 73
Macro type: Type R; see page 28

● As of BS2000/OSD-BC V1.0, the new macro SWITCH is available. This macro
combines the functionality of the GETSW, GETUS, SETSW and SETUS macros.

Macro description

Users can set any of the switches assigned to their job on or off, or invert them, using the
SETSW macro.

Macro format and description of operands

ON=(...)
The switches specified are set to “on”.

OFF=(...)
The switches specified are set to “off”.

INVERT=(...)
The switches specified are set to “on” if they were “off” and to “off” if they were “on”.

no
Number of a job switch which is to be changed. The job switches are numbered
0 through 31.
Several switches may be specified in any order or as a consecutive series of switches
(e.g. 3-8).

SETSW

[]
ON=(no,...,no)

OFF=(no,...,no)

INVERT=(no,...,no)

Macros supported only for compatibility Appendix

1144 U3291-J-Z125-16-76

Calling the macro without operands:
Instead of specifying the operands, the user may specify the desired settings of all job
switches in register R0. The job switches correspond to the bits of the register, reading from
right to left.

bit 20 → switch 0
bit 21 → switch 1
 : :
 : :
bit 231 → switch 31

where: bit 2n = 0: switch n off
bit 2n = 1: switch n on
0 ≤ n ≤ 31

Return information and error flags

R15:
A return code relating to the execution of the SETSW
macro is transferred in the rigtmost byte of register
R15.

0 0 0 0 0 0 a a

X'aa' Meaning

X'00' The switch setting was changed as desired.

X'04' Operand error. The switch setting was not executed.

X'20' Internal error.

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

SETUS – Set user switch

General

Application area: User and job switches; see page 73
Macro type: Type R; see page 28

● As of BS2000/OSD-BC V1.0, the new macro SWITCH is available. This macro
combines the functionality of the GETSW, GETUS, SETSW and SETUS macros.

Macro description

Users can set any of the user switches assigned to their user ID on or off, or invert them,
using the SETUS macro.

Macro format and description of operands

no
Number of a user switch which is to be changed. The user switches are numbered
0 through 31.
Several switches may be specified in any order or as a consecutive series of switches
(e.g. 3-8).

ON=(...)
The switches specified are set to “on”.

OFF=(...)
The switches specified are set to “off”.

INVERT=(...)
The switches specified are set to “on” if they were “off” and to “off” if they were “on.

SETUS

[]
ON=(no,...,no)

OFF=(no,...,no)

INVERT=(no,...,no)

Macros supported only for compatibility Appendix

1146 U3291-J-Z125-16-76

Calling the macro without operands:
Instead of specifying the operands, the user may specify the desired settings of all user
switches in register R0. The user switches correspond to the bits of the register, reading
from right to left.

bit 20 → switch 0
bit 21 → switch 1
 : :
 : :
bit 231 → switch 31

where: bit 2n = 0: switch n off
bit 2n = 1: switch n on
0 ≤ n ≤ 31

Return information and error flags

R15:
A return code relating to the execution of the SETUS
macro is transferred in the rigtmost byte of register
R15.

0 0 0 0 0 0 a a

X'aa' Meaning

X'00' The switch setting was changed as desired.

X'04' a) Operand error. The switch setting was not executed.
b) The switch settings affect one of the user' s jobs which is in the WHEN queue.
 The specified switch settings have been executed.

X'20' Internal error.

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

SINF – Output system information

General

Application area: Requesting and accessing lists and tables; see page 155
Macro type: Type S, MF format 1: standard/E/L form; see page 29

As of BS2000/OSD-BC V1.0, two new macros NSIINF and NSIOPT are available. These
macros incorporate the full functionality of the SINF macro. The functionality of the SINF
macro has been frozen as of BS2000 V10.0. The macros NSIINF and NSIOPT should be
used for new developments.

Macro description

The SINF macro provides information about the following:

CPU: serial numbers and identifications of available CPUs
BS2000: label and version of the operating system, as well as addressing mode

of the operating system
Memory: size of the (physical) main memory and start address of the operating

system in virtual address space
HSI: HSI base type
Server: type of server (model series)
System parameters:

system parameters of significance for the nonprivileged user such as
DEFLUID or TEMPFILE

The selected information is transferred to a specified field. No more than one item of
information can be requested per macro call (see the list at the end of the description of
operands).

Macro format and description of operands

SINF

INFO='info' / addr / (r)

,FIELD=addr / (r)

,LENGTH=length / (r)

[,PARMOD=24 / 31]

[,MF=(E,..) / L]

Macros supported only for compatibility Appendix

1148 U3291-J-Z125-16-76

INFO=
Specifies the type of information to be output.

'info'
Identifier for the item of information. Please refer to the list at the end of the description
of operands for possible entries.

addr
Symbolic address of an 8-byte field containing the value “info” (left-justified, with trailing
blanks).

(r)
Register containing the address value “addr”.

FIELD=
Specifies the symbolic address of the field to which the requested information is output.
Field length ≥ length of information (cf. list). The information is entered left-justified.

addr
Symbolic address of the field.

(r)
Register containing the address value “addr”.

LENGTH=
Specifies the length of the entry made in the field specified with the FIELD operand (cf. list
below). If an incorrect value is specified for LENGTH, no entry is made in the field specified
with FIELD.
For system parameters of type C, information can be output to an output field which is too
small, provided that only blanks are deleted from the contents of the system parameter (see
also the system parameter DEFLUID, for example).

length
Length in bytes (see list below), specified as a decimal digit.

(r)
Register containing “length”.

MF=
For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix), see section “S-type macros” on page 29. The valid MF values
are given at the start of the macro description under “Macro type” and are included in the
macro format.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb).

List of information that can be requested

Identifier
(info=)

Length
in bytes

Meanings of values output

CONFNAME 8 Server type (model series) e.g.: S210-F (in the old format)
If the server type is not entered in the system, 7.000ËËË is output.
Note
In future, the server designations output in the old format may no longer be
unique. Output in the new expanded format
(INFO=CONFNAMX) is therefore recommended.

CONFNAMX 21 see NSIINF macro on page 702.

CPUID 64 Identifications of the CPUs. The output is split into 8 elements each 8 bytes
in length:
The n-th element contains the identification of the n-th CPU in hexadecimal
form, as it is received from the hardware. If the n-th CPU is not available,
the n-th element contains binary zero (X'00...00')

CPUSER 3 Serial number of the first CPU.

6 Bytes 0- 2: serial number of first CPU.
Bytes 3- 5: serial number of first CPU.

12 Bytes 0- 2: serial number of first CPU.
Bytes 3- 5: serial number of first CPU.
Bytes 6- 8: serial number of third CPU.
Bytes 9-11: serial number of fourth CPU.
For any CPU not present, X'000000' is entered in the corresponding field.
This entry has nothing to do with the CPU addresses.

HSIBASE 6 see NSIINF macro on page 702.

HSILINE 2 see NSIINF macro on page 702.

HSITYPE 4 The attributes of the current HSI type are output.
Output: XS31
addressable memory area > 16 Mb; all addresses are interpreted as either
24-bit addresses or 31-bit addresses, depending on the addressing mode
used.

HSIVM 2 see NSIINF macro on page 702.

MEMSIZE 4 Size of (physical) main memory available for software (in bytes).

Macros supported only for compatibility Appendix

1150 U3291-J-Z125-16-76

Return information and error flags

Register R1 is overwritten.

OSAMODE 2 Provides information about the addressing mode of the operating system.
Output: 31
31-bit addressing mode (address length = 31bits)

OSID 12 Bytes 0-7: program name of the operating system; e.g. 'BS2V190' .
Bytes 8-11: version, e.g. 'V190' .

SYSBASE 4 Start address of the operating system in virtual address space.

<system
parameter>

Value of the system parameter

R15:
A return code relating to the execution of the SINF macro is
transferred in the rightmost byte of register R15.a a

X'aa' Meaning

X'00' The macro call was successful.

X'04' Invalid address or invalid register. No action.

X'08' Internal REQM call not executed. No action.

X'0C' Invalid entry in INFO operand. No action.

X'10' Invalid length entry for output field. No action.

X'14' Illegal system parameter specified in INFO operand. No action.

X'18' Incorrect macro format specified.

Identifier
(info=)

Length
in bytes

Meanings of values output

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

TABLE – Transfer load information

General

Application area: Linking and loading; see page 47
Macro type: 24-bit interface: type R; see page 28

31-bit interface: type S
(standard/E/L/C/D form); see page 29

The following applies when using the 31-bit interface:
No return code is transferred in the standard header.

● TABLE is replaced by the ETABLE and ETABIT macros.

Macro description

The user program employs the TABLE macro to transfer a table of entries to the dynamic
binder loader DBL. These entries provide the DBL with information about the names and
addresses of control sections (CSECT), entry points (ENTRY) and common areas
(COMMON), enabling the DBL to use the transferred values to resolve external references,
etc.

In particular, a user program which was linked by the TSOSLNK linkage editor, loaded with
the ELDE static loader and which used the LINK macro can employ the TABLE macro to
provide the DBL (called by means of the LINK macro) with information about the program
structure. This prevents the DBL from reloading modules which have already been linked
into the program by TSOSLNK.
During macro processing, a check is performed for each table entry as to whether the name
of a load point is already known due to a previous load operation or a previous TABLE
macro call. If the result of this check is positive, a warning is output and macro processing
is continued normally.

Macro format 1 and description of operands

TABLE

[,PARMOD=24 / 31]

[,MF=L / (E,..) / C / D]

addr

(r)

, length
(r)

Macros supported only for compatibility Appendix

1152 U3291-J-Z125-16-76

Format 2

addr
Symbolic address of the table (see format below).

(r)
Register containing the address value “addr”. Register R1 must be used for the 24-bit
interface.
If the 31-bit interface is used, the operand list address is loaded to register R1, which
consequently is no longer available for storing user-specified information.

length
Specifies the length of the table in bytes.

(r)
Register containing “length”. Register R0 must be used for the 24-bit interface.

PARMOD=
Controls macro expansion. Either the 24-bit or the 31-bit interface is generated.
If PARMOD is not specified here, macro expansion is performed according to the
specification for the GPARMOD macro or according to the default setting for the assembler
(= 24-bit interface).

24
The 24-bit interface is generated. Data lists and instructions use 24-bit addresses
(address space ≤ 16 Mb).

31
The 31-bit interface is generated. Data lists and instructions use 31-bit addresses
(address space ≤ 2 Gb). Data lists start with the standard header.

MF=
For the 31-bit interface only:
The C-/D form is called with MF=C/D or MF=(C,p)/(D,p). p = prefix (up to 3 characters);
default setting: p = I. The prefix only changes the field names (not the symbolic names for
equates).If p = * is specified, the symbolic names are generated without a prefix. When the
data area is assigned values dynamically, the initialization values for the standard header
should be transfered from a data area generated with MF=L.

For a general description of the MF operand, its operand values and any subsequent
operands (e.g. for a prefix) see section “S-type macros” on page 29. Valid MF values are
given at the beginning of the macro description in “macro type” and in the call format.

PBTABD

[,MF=(D,p) / (C,p)]

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

The PBTABD macro generates a description of the table as a DSECT or data list for the
31-bit interface, where:

MF=
Specifies whether a DSECT or a data list is generated.
p = prefix (up to 3 chars.) of all symbolic names in the list.
If p = * is specified, names without prefix are generated.

D
A DSECT is generated; default setting.

C
A data list is generated.

Structure of the table for DBL

1. when the 24-bit interface is used:

2. when the 31-bit interface is used:

The PBTABD macro generates the layout of this table.

Displacement Length Entry/function

0

1
9

12

1

8
3
3

X'02': identifies a CSECT or ENTRY
X'03': identifies a labeled COMMON
X'04': identifies a blank COMMON
name of the ENTRY, COMMON or CSECT (8 characters)
computed address
length of the COMMON (applies to COMMON only)

Displacement Length Entry/function

0

1
9

10
12
16

1

8
1

2
4
4

X' F0' : identifies a CSECT
X' F1' : identifies an ENTRY
X' F3' : identifies a COMMON
name of the ENTRY, CSECT or COMMON (8 characters)
attributes: AMODE = 24 → X'02'
 AMODE = 31 → X'04'
 AMODE = ANY → X'06'
X'00' (required for alignment)
load address (31-bit-address)
length of the COMMON: otherwise 4 X'00'

Macros supported only for compatibility Appendix

1154 U3291-J-Z125-16-76

Return information and error flags

A return code relating to the execution of the TABLE macro is transferred in register R15.
Note that a different code is returned depending on the interface used (24-bit or 31-bit
interface, as specified by means of the PARMOD operand or the GPARMOD macro).

if PARMOD=24:

if PARMOD=31:

Register R1 is loaded with the address of the operand list.

R15:
A return code relating to the execution of the TABLE
macro is transferred in the rightmost byte of register
R15.

 a a

Return code Meaning

X'00' Macro successfully executed.

X'04' Macro not successfully executed; contents of register R1 deleted.

R15:
A structured return code relating to the execution of
the TABLE macro is transferred in register R15
(cc=Subcode2, bb=Subcode1, aaaa=Maincode)
where: cc=00: function executed normally
 cc=0C: function not executed.

c c b b a a a a

cc bb aaaa Meaning

00 00 0000 Normal execution.

0C 00 0004 Parameter list not aligned.

0C 00 0008 Parameter list not assigned or address in register R1 outside address space.

0C 00 0014 A register number > 15 was specified.

0C 00 0018 Illegal utilization of a reserved field.

0C 00 0100 Error in length specification (“length” operand).

0C 00 0104 Incorrect name specification (table entry; displacement 1).

0C 00 0108 Wrong type specification; (table entry; displacement 0).

0C 00 010C Incorrect AMODE specification (table entry).

0C 00 0110 Invalid load address specified (table load address). The address is outside
class 6 memory.

0C 00 0200 System error.

Appendix Macros supported only for compatibility

U3291-J-Z125-16-76 1155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

0C 00 0300 Internal error during memory request ($REQM) or release of memory space
($RELM) (System error).

00 01 FFFF Invalid specification for UNIT/FUNCTION in standard header.

00 03 FFFF Invalid specification for VERSION in standard header.

cc bb aaaa Meaning

Macros in alphabetical order Appendix

1156 U3291-J-Z125-16-76

6.2 Macros in alphabetical order

Macro Function SVC16 Description

AINF Measure resource utilization 63 page 168

ALESRV Connect task with data space 0D page 194

ALINF Request information on access lists 0D page 198

AMODE31 Transfer addressing mode - page 201

ARDS Generate user accounting records - page 202

AREC Write user accounting record 63 page 205

ASHARE Load user' s shared code into memory pools B7 page 210

ASPC Enter memory allocation 63 page 222

AUDIT Set audit mode 5F page 224

BIND Link and load load unit B7 page 233

BKPT Interrupt program run 5C page 274

CALL Load segments - page 276

CDUMP Dump without program termination
(31-bit interface)
(24-bit interface)

1A
19

page 1112

CDUMP2 Dump without program termination 1A page 278

CHKEI Check event item 7C page 294

CHKPRV Check privileges 31 page 297

CHKSI Check serialization item 79 page 300

CLCOM Terminate communication 36 page 304

CMD 1 Call command
(31-bit interface)
(24-bit interface

91
58

page 306

CONTXT Access process data 80 page 324

CRYPT Word encryption 10 page 340

CSTAT Change page status
(31-bit interface)
(24-bit interface)

01
4B

page 348

CSTMP Set access type for memory pool
(31-bit interface)
(24-bit interface)

01
7A

page 352

CTIME Time stamp calculations - page 357

CUPAB Address operand table - page 378

DCSTA Display operand table for terminal attributes - page 382

Appendix Macros in alphabetical order

U3291-J-Z125-16-76 1157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

DELFEI Delete SOLSIG or POSSIG entry BB page 399

DEQAR Dequeue access request 79 page 400

DISCO Disable contingency definition 7B page 405

DISEI Disable event item 7C page 408

DISMP Disable memory pool
(31-bit interface)
(24-bit interface)

01
7A

page 411

DISSI Disable serialization item 79 page 415

DJINF Create DSECTs or data areas for JIN macro - page 419

DJSI Create DSECTs or data areas for job scheduler macros
(24-bit interface)

- page 422

DJSIPL Create DSECTs or data areas for job scheduler macros
(31-bit interface)

- page 424

DPOFEI Create POSSIG entry BB page 426

DSHARE Unload shared code from memory pool B7 page 432

DSOFEI Create SOLSIG entry BB page 435

DSPSRV Create or destroy data space 0D page 440

DTMODE Create DSECT or data list for TMODE macro - page 449

ENACO Enable contingency definition 7B page 452

ENAEI Enable event item page 455

ENAMP Enable memory pool
(31-bit interface)
(24-bit interface)

01
7A

page 459

ENASI Enable serialization item 79 page 469

ENQAR Enqueue access request 79 page 473

ENTER 1 Initiate batch job
(31-bit interface)
(24-bit interface)

91
58

page 478

ETABIT Generate or change entry for symbol table B7 page 497

ETABLE Transfer load information B7 page 500

EXIT Terminate STXIT contingency process 80 page 508

GCCSN Display CCS name for command and data input 27 page 511

GEPRT Get program time
(31-bit interface)
(24-bit interface, type O)
(type R)

92
18
23

page 517

Macro Function SVC16 Description

Macros in alphabetical order Appendix

1158 U3291-J-Z125-16-76

GETPRGV Get program version B7 page 521

GETSW Get job switch 48 page 1121

GETUS Get user switch 41 page 1122

GPARMOD Control macro expansion - page 524

GTIME Request date, time and zone information - page 526

HSITYPE Output HSI attributes 87 page 1124

ILEMGT ILE management B7 page 539

ILEMIT Generate or update list entry for ILE list B7 page 545

IOSID Specify operating system identification and version AC page 548

JINF Request job information
(31-bit interface)
(24-bit interface)

BF
51

page 551

JMGDJP Create DSECT or data list for JMGJPAR macro - page 556

JMGJPAR Output job parameters page 557

JOBINFO Request job information 8C page 559

JSATTCH Attach job scheduler to JMS
(31-bit interface)
(24-bit interface)

BF
51

page 563

JSDETCH Detach job scheduler from JMS
(31-bit interface)
(24-bit interface)

BF
51

page 566

JSEXPCT Request JSS events
(31-bit interface)
(24-bit interface)

BF
51

page 568

JSINFO Access STREAM-PARAMETER values
(31-bit interface)
(24-bit interface)

BF
51

page 572

JSRUNJB Transfer job to start
(31-bit interface)
(24-bit interface)

BF
51

page 574

JSWAKE Initiate timer event for job scheduler BF page 577

LDSLICE Load slice B7 page 579

LEVCO Modify priority level of contingency process 7B page 584

LGOFF 1 Terminate job
(31-bit interface)
(24-bit interface)

91
58

page 587

LKCAN Cancel lock requests C4 page 590

Macro Function SVC16 Description

Appendix Macros in alphabetical order

U3291-J-Z125-16-76 1159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

LKCVT Convert existing lock C4 page 593

LKDEQ Dequeue lock C4 page 601

LKENQ Generate and enqueue lock C4 page 605

LKEQU Generate DLM-specific layouts C4 page 615

LKINF Output information on lock requests C4 page 618

LKLSB Generate layout of the Lock Status Block C4 page 623

LPOV Load segment 02 page 625

MINF Output memory map 01 page 629

MRSINF 2 Request MSCF informationen 7F page 1126

MRSSTA 2 Display MSCF status 85 page 1130

MSG7 Output message 60 page 1133

MSG7X Output message 26 page 636

MSGRC Output return codes for message macros - page 653

MSGSHOW Output information about message files 60 page 656

MSGSINIT Modify global area allocation list 60 page 660

MSGSMOD Lock message files or add message files 60 page 662

NKDINF Output information on (peripheral) configuration 0E page 667

NKGTYPE Output device information 66 page 690

NSIINF Output system information 87 page 702

NSIOPT Output system parameters 87 page 710

OPCOM Start ITC participation 32 page 717

OPSGEN Control of S variable generation via MIP C6 page 719

PASS Wait one second 4C page 722

PINF Output global program information B7 page 724

POSSIG Post signal request 7C page 736

RDATA Read record from SYSDATA
(31-bit interface)
(24-bit interface)

27
42

page 745

RDUID Read user ID of current task 31 page 758

RELBF Release receive queue 35 page 760

RELM Release memory
(31-bit interface)
(24-bit interface)

01
4A

page 761

Macro Function SVC16 Description

Macros in alphabetical order Appendix

1160 U3291-J-Z125-16-76

RELMP Release pages in memory pool
(31-bit interface)
(24-bit interface)

01
7A

page 764

REQM Request memory
(31-bit interface)
(24-bit interface)

01
49

page 770

REQMP Request pages in memory pool
(31-bit interface)
(24-bit interface)

01
7A

page 774

RETCO Return from contingency process 7B page 780

RETRN Return to program - page 781

REVNT Receive event 34 page 783

RPOFEI Send POSSIG signal BB page 789

RSOFEI Request POSSIG signal BB page 791

SAVE Save register - page 793

SEGLD Load segments - page 797

SELPRGV Select program version B7 page 799

SETBF Set buffer size 56 page 802

SETIC Set interval timer 80 page 804

SETSW Set job switch 47 page 1143

SETUS Set user switch 40 page 1145

SEVNT Send event 33 page 808

SINF Output system information 87 page 1147

SOLSIG Solicit signal request 7C page 824

SRMUINF Output entry from user catalog B9 page 833

STAMCE Read MRSCAT entries 21 page 847

STXIT Set contingency interrupt address 80 page 883

SUSPEND Suspend task 7B page 895

SWITCH Set and query job and user switches 2A page 897

SYSFL 1 Assign system files and TASKLIB
(31-bit interface)
(24-bit interface)

91
58

page 908

SYSTA 1 Output information on system file and TASKLIB assignment
(31-bit interface)
(24-bit interface)

91
58

page 921

Macro Function SVC16 Description

Appendix Macros in alphabetical order

U3291-J-Z125-16-76 1161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

TABLE Transfer load information (including PBTABD)
(31-bit interface)
(24-bit interface)

B7
6F

page 1151

TCHNG Modify terminal characteristics 46 page 924

TERM Terminate program and procedure step 09 page 928

TINF Output and modify task attributes 87 page 932

TMODE Interrogate job attributes
(31-bit interface)
(24-bit interface)

BF
46

page 940

TSPRIO Output run priorities - page 946

TSTAT Interrogate terminal attributes 46 page 947

TYPIO Write message to console 96 page 957

UNBIND Unload and unlink B7 page 961

VMGINF Output information on VM2000 operation 67 page 972

VPASS Variable-length pass 59 page 977

VSVI1 Output link and load information B7 page 979

VTCSET Define logical control characters - page 1005

VTSUCB Create VTSU parameters for input and output - page 1037

WRCPT Write checkpoint 05 page 1057

WRLST Write record to SYSLST
(31-bit interface)
(24-bit interface)

27
45

page 1063

WROUT Write record to SYSOUT
(31-bit interface)
(24-bit interface)

27
43

page 1067

WRTRD Combined input/output at terminal
(31-bit interface)
(24-bit interface)

27
44

page 1085

1 MCLP macro
2 Macro only for users of the HIPLEX MSCF software product

Macro Function SVC16 Description

Macros arranged according to SVC number Appendix

1162 U3291-J-Z125-16-76

6.3 Macros arranged according to SVC number

SVC16 SVC10 Macros

01 01 CSTMP, DISMP, ENAMP, MINF, RELM, RELMP, REQM, REQMP, CSTAT
(all 31-bit-interface)

02 02 LPOV

05 05 WRCPT

09 09 TERM

0D 13 ALESRV, ALINF, DSPSRV

0E 14 NKDINF

10 16 CRYPT

18 24 GEPRT (type O, 24-bit-interface)

1A 26 CDUMP2 (31-bit-interface)

21 33 STAMCE

23 35 GEPRT (type R)

26 38 MSG7X

27 39 RDATA, WRLST, WROUT, WRTRD (all 31-bit-interface), GCCSN

2A 42 SWITCH

31 49 CHKPRV, RDUID

32 50 OPCOM

33 51 SEVNT

34 52 REVNT

35 53 RELBF

36 54 CLCOM

40 64 SETUS

41 65 GETUS

42 66 RDATA (24-bit-interface)

43 67 WROUT (24-bit-interface)

44 68 WRTRD (24-bit-interface)

45 69 WRLST (24-bit-interface)

46 70 TMODE (24-bit-interface), TCHNG, TSTAT

47 71 SETSW

48 72 GETSW

49 73 REQM (24-bit-interface)

4A 74 RELM (24-bit-interface)

Appendix Macros arranged according to SVC number

U3291-J-Z125-16-76 1163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

4C 75 CSTAT (24-bit-interface)

4C 76 PASS

51 81 JINF, JSATTCH, JSDETCH, JSEXPCT, JSINFO, JSRUNJB
(all 24-bit-interface)

56 86 SETBF

58 88 CMD, ENTER, LGOFF, SYSFL, SYSTA (all 24-bit-interface)

59 89 VPASS

5C 92 BKPT

5F 95 AUDIT

60 96 MSG7, MSGSINIT, MSGSMOD, MSGSHOW

63 99 AINF, AREC, ASPC

66 102 NKGTYPE

67 103 VMGINF

6F 111 TABLE (24-bit-interface)

79 121 ENASI, DISSI, ENQAR, DEQAR, CHKSI

7A 122 ENAMP, DISMP, REQMP, RELMP, CSTMP (all 24-bit-interface)

7B 123 DISCO, ENACO, LEVCO, RETCO, SUSPEND

7C 124 CHKEI, DISEI, ENAEI, POSSIG, SOLSIG

80 128 CONTXT, EXIT, STXIT, SETIC

87 135 HSITYPE, NSIINF, NSIOPT, SINF, TINF

8C 140 JOBINFO

91 145 CMD, ENTER, LGOFF, SYSFL, SYSTA (all 31-bit-interface)

92 146 GEPRT (31-bit-interface)

96 150 TYPIO

AC 172 IOSID

B7 183 TABLE (31-bit-interface), ASHARE, BIND, DSHARE, ETABIT, ETABLE,
GETPRGV, ILEMGT, ILEMIT, LDSLICE, PINF, SELPRGV, UNBIND, VSVI1

B9 185 SRMUINF

BB 187 DELFEI, DPOFEI, DSOFEI, RPOFEI, RSOFEI

BF 191 JINF, JSATTCH, JSDETCH, JSEXPCT, JSINFO, JSRUNJB, JSWAKE, TMODE
(all 31-bit-interface)

C4 196 LKCAN, LKCVT, LKDEQ, LKENQ, LKEQU, LKINF, LKLSB

C6 198 OPSGEN

SVC16 SVC10 Macros

Other macros in BS2000 OSD/BC Appendix

1164 U3291-J-Z125-16-76

6.4 Other macros in BS2000 OSD/BC

This table shows all the macros in BS2000 OSD/BC that are not described in the present
manual. In addition to a brief description of the macro's function, the table also indicates the
manual in which the macro is treated in detail.

Macro Brief description Manual

ADDPLNK Define pool link name [7]

BINDER Call the BINDER as subprogram [5]

BTAM Complete user requirements for BTAM [7]

CALENDR Create, modify and output calendar data [6]

CATAL Process catalog entry [7]

CHKFAR Check access rights to a file [7]

CHNGE Change TFT entry [7]

CLOSE Close file [7]

COMPFIL Compare two files [7]

COPFILE Copy file [7]

CREAIX Create secondary key for ISAM file [7]

CREPOOL Create ISAM pool [7]

DECFILE convert encrypted file into unencrypted file [7]

DELAIX Delete secondary key for ISAM file [7]

DELPOOL Delete or release ISAM pool [7]

DIV Process file via “window” in virtual address space [7]

DROPTFT release TFT entry [7]

EAM Complete user requirements for EAM [7]

ELIM Erase record from ISAM file [7]

ENCFILE convert unencrypted file into encrypted file [7]

ERASE Erase file(s) [7]

EXCALL Call exit routines from TU programs [31]

EXLST Apply exit address list for error routines [7]

EXRTN Return from error routines [7]

FCB Apply file control block [7]

FCBAD Apply FCB addresses [7]

FEOV Close volume and introduce volume change [7]

FILE Define file characteristics and control file processing [7]

FILELST Create variable operand areas for FILE macro [7]

Appendix Other macros in BS2000 OSD/BC

U3291-J-Z125-16-76 1165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

FPAMACC Formulate FASTPAM file access [7]

FPAMSRV Formulate FASTPAM administration calls [7]

FSTAT Request catalog information [7]

GET Read record from file [7]

GETFL Search for marking in file and read record [7]

GETINSP Output installation path [32]

GETINSV Output version of the installation unit [32]

GETKY Read record with specified key [7]

GETPROV Output selected product version [32]

GETR Read next record in direction of start of file [7]

IDBPL Generate DSECT for BTAM action macro [7]

IDFCB Generate DSECT for FCB [7]

IDFCBE Generate DSECT for FCB extension [7]

IDMCB provide MFCB (EAM control block with symbolic name) [7]

IDPPL UPAM: PAM operand list [7]

IMOS... Macros of IMON-BAS [32]

IMOK... Macros of IMON-SIC [32]

IMPNFIL Create a catalog entry for node files (import) [7]

IMPORT Import private files or data media [7]

INSRT Insert record in file [7]

ISREQ Release record, area or data block bar [7]

LBRET Return from user label routines [7]

LFFSNAP Dateien von einem Snapset auflisten [7]

LJFSNAP Jobvariablen von einem Snapset auflisten [7]

MAILFIL Datei per E-Mail an eine Benutzerkennung versenden [7]

MCSINFO Fetch information on HIPLEX-MSCF configuration [26]

NBMAP Describe message scope [10]

NBMHE Describe format of message header [10]

NDWERINF Query status byte [7]

OPEN Open file [7]

OSTAT Output information on opened files [7]

PAM Execute UPAM actions [7]

PRNT... Macros for outputting files [23]

Macro Brief description Manual

Other macros in BS2000 OSD/BC Appendix

1166 U3291-J-Z125-16-76

PUT Write record to file [7]

PUTX Replace record in file [7]

RDTFT Request information from TFT and TST [7]

RELTFT Delete TFT entry [7]

RELSE Close data block and release buffer [7]

REMPLNK Delete pool link name [7]

RETRY Repeat macro [7]

RFFSNAP Dateien von einem Snapset restaurieren [7]

RJFSNAP Jobvariablen von einem Snapset restaurieren [7]

SELPROV Select product version [32]

SETINSP Enter or modify installation path [32]

SETL Position internal file record pointer [7]

SHOPLNK Output information on ISAM pool link name [7]

SHOPOOL Output information on ISAM pool [7]

SHOWAIX Output information on secondary key [7]

SPSINF Output information on SPOOL parameter file [23]

STORE Transfer record to position in file defined by key [7]

VERIF Recreate file [7]

Macro Brief description Manual

Appendix Standardized function key codes

U3291-J-Z125-16-76 1167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17
 S

ta
nd

 1
3:

18
.3

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
05

_
m

ak
_a

t\b
h

b\
en

\m
a

kr
o.

an
h

6.5 Standardized function key codes

The first column (CODE) is divided into
a) the standard function key code
b) the function key code if the screen is erased before input.

Additional notes
1) Reserved for ESCAPE/BREAK function if TIAM access method is used.
2) For default values see VTSU operating parameter COMPKEYS in “VTSU” manual [30].

Code Meaning 8110 8151 8152 816x 974x
9750
9752
9755

9756
9758
9759
9762
9763

3270 2)

a) b)

00

01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E

10 Data
communication
 (normal)

Short message

1
2
3
4
5
6
7
8
9

10
11
12
13
14

DÜ DÜZ,
DÜM
FT1
FT2
1)

DVA

DÜZ,DÜM
,
DÜB
F1
F2 1)

F3
F1+FZ
F2+FZ 1)

F3+FZ

DÜ,
DÜ1,
DÜ2
K1
K2 1)

K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
K13
K14

DÜ,
DÜ1,
DÜ2
K1
K2 1)

K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
K13
K14

SEND

K1
K2 1)

K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
K13
K14

ENTER

PA1
PA2 1)

PA3,PF6
PF7
PF8
PF9
PF10
PF11
PF12
PF13
PF14
PF15
PF16
PF17

10 Erase memory CLEAR

Standardized function key codes Appendix

1168 U3291-J-Z125-16-76

20

21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

30

31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

Data
communication
(marked)

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

DÜZ,
DÜM,
DÜB+FZ F1

F2
F3
F4
F5

DÜZ,
DÜM,
DÜB+F
Z
F1
F2
F3
F4
F5

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15

PF1
PF2
PF3
PF4
PF5
PF18
PF19
PF20
PF21
PF22
PF23
PF24

30 Data
communication
(position data)

PU

40
41
42
43
45

50
51
52
53
55

Data
communication
(special)

Magnetiic ID
Reader

0
1
2
3

Bypass input
Pos. response
Neg. response

X X X

46
47
48
49
4A
4B
4C
4D
4E

56
57
58
59
5A
5B
5C
5D
5E

Data
communication
(marked)

16
17
18
19
20
21
22
23
24

F16
F17
F18
F19
F20
F21
F22
F23
F24

60 Chip card date X

80 ID stuck X X X

Code Meaning 8110 8151 8152 816x 974x
9750
9752
9755

9756
9758
9759
9762
9763

3270 2)

a) b)

U3291-J-Z125-16-76 1169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
ab

k

Abbreviations

AFZ Delete lines (Ausfügen Zeile) - terminal keyboard

AID Advanced Interactive Debugger

AL Access List (for data spaces)

ALE Access List Entry

ALET Access List Entry Token (pointer to data space)

AR Access Register (for data spaces)

ASCII American Standard Code of Information Interchange

BTAM Basic Tape Access Method

CCS Coded character set (code table)

CJC Conditional Job Control

CPU Central Processing Unit

CLT Communication Link Table

CLTF Common Log Task Facility (error source for macros)

CSECT Control SECTion

DBL Dynamic Binder Loader

DCAM Data Communication Access Method

DCM Data Communication Methods

DIV Data In Virtual (access method for data spaces)

DLAM Dynamic Loadable Access Method

DLM Distributed Lock Manager

DMS Data Management System

DRV Dual Recording by Volume

DSECT Dummy Section

DSSM Dynamic SubSystem Management (Subsystemverwaltung)

EAM Evanescent Access Method

EBCDIC Extended Binary Coded Decimal Interchange Code

EFZ Insert lines (Einfgen Zeile) - terminal keyboard

Abbreviations

1170 U3291-J-Z125-16-76

ELDE Static loader in BS2000

EOF End Of File

EOT End Of Tape/Text

ES Event switch

ESA Enterprise System Architecture (extended addressing with data spaces)

ESD External Symbol Dictionary

ETX End of TeXt

FCB File Control Block

FGG File Generation Group

FIFO First In First Out

FMS File Management System

FT File Transfer

Gb Gigabyte; 1 Gb = 1024 Mb = 1.048.576 Kb = 1.073.741.824 bytes

GR General Register

HDR1 HeaDeR label 1

HIPLEX MSCFHIPLEX Multi System Control Facility (software product)

IDA Interactive Debugging Aid (old debugging aid)

II Information Indicator

IOP Input/Output Processor

ISAM Indexed Sequential Access Method (file structure/access method)

ISD Internal Symbol Dictionary

ITC InterTask Communication

ITN Internal Task Number

JCB Job Control Block

JSS Job Scheduling Supports

JTBP Job To Be Processed Block

JTBX Job To Be Processed Extension

JV Job Variable

K Kilobyte; 1K = 1024 bytes

LIFO Last In First Out

LMS Library Maintenance System

LSP Delete screen - terminal keyboard

LZE Logical line end - terminal keyboard

Abbreviations

U3291-J-Z125-16-76 1171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

ul
y

20
1

7
 S

ta
nd

 1
3:

18
.3

4
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0
\1

60
38

0
5_

m
ak

_a
t\

bh
b\

en
\m

a
kr

o.
ab

k

Mb Megabyte; 1 Mb = 1,024 Kb = 1,048,576 bytes

MCLP Macro Command Language Processor

MOPS Million Operations Per Second

MP Memory Pool

MRS Multiprocessor system (Mehrrechnersystem)

MRSCAT MRS CATalog

MSCF Multi System Control Facility (software product)

MPVS Multiple Public Volume Set

NDM Nucleus Device Management

NTL No Time Limit

PAM Primary Access Method (file structure/access method)

PC Program Counter

PCB Process Control Block

PCR Program Control Register

PT Program Table

PVS Public Volume Set

RC Return Code (return information for macro processing)

RFA Remote File Access

RS Return Switch

RU Roll up - terminal keyboard

SAM Sequential Access Method (file structure/access method)

SI Secondary Indicator

SPID SPace IDentification (for data spaces)

SPL Software Programming Language

SPOOL Simultaneous Peripheral Operation OnLine

SVC SuperVisor Call (Assembler command)

TCB Task Control Block

TCS TeleCommunication System (obsolete)

TFT Task File Table

TIAM Terminal Interactive Access Method

TOD Time Of Day

TODR Time Of Day clock Register

TODX Extended Time Of Day clock Register

Abbreviations

1172 U3291-J-Z125-16-76

TOS Tape Operating System (obsolete)

TSN Task Sequence Number

TSOS Time Sharing Operating System

TPR Task Privileged

TU Task Unprivileged

UCON Universal Console

UPAM User-PAM

UTM Universal Transaction Monitor

VFB Vertical Format Buffer

VM Virtual Memory

VSN Volume Serial Number

VTOC Volume Table of Contents

VTSU-B Virtual Terminal Support - Basic

XCS Cross Coupled System

U3291-J-Z125-16-76 1173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
20

1
7

 S
ta

nd
 1

3
:1

8.
34

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0

\1
60

3
80

5_
m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order
printed copies of those manuals which are displayed with an order number.

[1] Assembler Instructions (BS2000)
Reference Manual

[2] ASSEMBH (BS2000)
Reference Manual

[3] AID (BS2000)
Advanced Interactive Debugger
Debugging of ASSEMBH Programs
User Guide

[4] BLSSERV (BS2000)
Dynamic Binder Loader / Starter
User Guide

[5] BINDER (BS2000)
Binder in BS2000
User Guide

[6] BS2000 OSD/BC
CALENDAR
User Guide

[7] BS2000 OSD/BC
DMS Macros
User Guide

[8] BS2000 OSD/BC
Introductory Guide to DMS
User Guide

[9] BS2000 OSD/BC
Diagnostics Handbook
User Guide

http://manuals.ts.fujitsu.com

Related publications

1174 U3291-J-Z125-16-76

[10] BS2000 OSD/BC
Introduction to System Administration
User Guide

[11] BS2000 OSD/BC
System Installation
User Guide

[12] DSSM/SSCM
Subsystem Management in BS2000
User Guide

[13] BS2000 OSD/BC
Accounting Records
User Guide

[14] SECOS (BS2000)
Security Control System
User Guide

[15] DCAM (BS2000)
Macros
User Guide

[16] TIAM (BS2000)
User Guide

[17] VM2000 (BS2000)
Virtual Machine System
User Guide

[18] BS2000 OSD/BC
System Managed Storage
User Guide

[19] BS2000 OSD/BC
Commands
User Guides

[20] SDF-A (BS2000)
System Dialog Facility - Administration
User Guide

Related publications

U3291-J-Z125-16-76 1175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
20

1
7

 S
ta

nd
 1

3
:1

8.
34

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0

\1
60

3
80

5_
m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.li
t

[21] SDF-P (BS2000)
Programming in the Command Language
User Guide

[22] JV (BS2000)
Job Variables
User Guide

[23] BS2000 OSD/BC
Spool & Print - Macros and Exits
User Guide

[24] RSO (BS2000)
Remote SPOOL Output
User Guide

[25] DRV (BS2000)
Dual Recording by Volume
User Guide

[26] HIPLEX MSCF (BS2000)
BS2000 Processor Networks
User Guide

[27] BS2000 OSD/BC
Utility Routines
User Guide

[28] MAREN (BS2000)
Tape Management in BS2000
User Guide

[29] LMS (BS2000)
SDF Format
User Guide

[30] VTSU
Virtual Terminal Support
User Guide

[31] BS2000 OSD/BC
System Exits
User Guide

Related publications

1176 U3291-J-Z125-16-76

[32] IMON (BS2000)
Installation Monitor
User Guide

Related publications

U3291-J-Z125-16-76 1177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. J
ul

y
20

1
7

 S
ta

nd
 1

3
:1

8.
34

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0

\1
60

3
80

5_
m

a
k_

at
\b

hb
\e

n\
m

ak
ro

.li
t

[33] BS2000
User Commands (ISP Format)
User Guide

For compatibility reasons only.

Related publications

1178 U3291-J-Z125-16-76

U3291-J-Z125-16-76 1179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17

S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0
\1

60
38

05
_

m
ak

_a
t\b

h
b\

en
\m

a
kr

o.
si

x

Index

24-bit interface see GPARMOD macro 524
31-bit interface see GPARMOD macro 524

A
access list

information on see ALINF macro 198
access lists (ESA) 64
access protection for memory pools see CSTMP

macro 352
access registers (ESA) 64
accounting 162

enter memory allocation see ASPC
macro 222

generate accounting records see ARDS
macro 202

accounting record
basic structure of a user accounting

record 209
generate see ARDS macro 202
write user accounting record see AREC

macro 205
action macro 28
address space

extended virtual 61, 62
virtual 49

addressing
data spaces 64
in extended address space 64

addressing mode
interrogate current mode see AMODE31

macro 201
affinity task groups see TINF macro 932
AINF macro 168
ALESRV macro 194
ALET (ESA) 64

ALINF macro 198
allocation event (DLM) 150
AMODE31 macro 201
application areas of Executive macros

accounting 162
checkpoints 162
communication 163
data spaces (ESA) 61
data terminal communication 160
debugging aids 162
encryption 161
extended address space (ESA) 61
input/output of files and records 159
job scheduler 165
lists and tables 155
messages 161
multiprocessor systems 164
serialization 91
system files 156
XS programming 164

AR mode (ESA) 65
ARDS macro 202
area dump output see CDUMP2 macro 278
ASHARE macro 210
ASPC macro 222
assignment

of object module file (TASKLIB) see SYSFL
macro 908

of system files see SYSFL macro 908
AUDIT macro 224

Index

1180 U3291-J-Z125-16-76

B
basic information on data terminal see DCSTA

macro 394
basic process 131
batch processing

transfer ENTER job for processing see ENTER
macro 478

BIND macro 233
BKPT macro 274
branch addresses

enter see AUDIT macro 224
BS2000/OSD

components 13
summary 13

C
CALL macro 276
cancel lock see LKCAN macro 590
CDUMP macro (still supported for compatibility

only) 1112
CDUMP2 macro 278
character code set

display CCS name see GCCSN macro 511
check system privileges see CHKPRV

macro 297
checkpoint write see WRCPT macro 1057
checkpoints 162
CHKEI macro 294
CHKPRV macro 297
CHKSI macro 300
class 6 memory, change attributes see CSTAT

macro 348
class list

modify see MSGSINIT macro 660
modify see MSGSMOD macro 662

CLCOM macro 304
CMD macro 306
coding table 511
command

call in a program see CMD macro 306
corresponding macro 45

communication between programs and
system 163

concurrent read mode (CR)

lock mode (DLM) 141
concurrent write mode (CW)

lock mode (DLM) 141
configuration

output information see NKDINF macro 667
console

send message see TYPIO macro 957
contingency message 115
contingency process

access to process data see CONTXT
macro 324

create contingency definition see ENACO
macro 452

delete contingency definition see DISCO
macro 405

event information code 117
general description 110
modify processing level see LEVCO

macro 584
terminate see RETCO macro 780

control characters 1017
logical control characters for input/output see

VTCSET macro 1005
CONTXT macro 324
convert lock request see LKCVT macro 593
CONVERTING

lock request status 142
CPU time

measure used CPU time see GEPRT
macro 517

set time interval see SETIC macro 804
CR

lock mode (DLM) 141
CRYPT macro 340
CSECT 166
CSTAT macro 348
CSTMP macro 352
CTIME macro 357
CUPAB macro 378
CW, lock mode (DLM) 141

Index

U3291-J-Z125-16-76 1181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17

S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0
\1

60
38

05
_

m
ak

_a
t\b

h
b\

en
\m

a
kr

o.
si

x

D
Data Communication Methods (DCM) 13
data display terminal 160

change characteristics see TCHNG
macro 924

change length of input/output buffer see
SETBF macro 802

combined input/output see WRTRD
macro 1085

generate operand table for attributes see DC-
STA macro 382

interrogate attributes see TSTAT macro 947
output record see WROUT macro 1067

Data Management System (DMS) 13
data space (ESA) 61, 62

access list management 194
access registers 64
addressing 64
ALET 64
connect task to see ALESRV macro 194
create and manage see DSPSRV macro 440
information on access list see ALINF

macro 198
information on see DSPSRV macro 440
make addressable 66
SPID 64

date
calculate see CTIME macro 357
get date and time see GTIME macro 526

DCSTA macro 382
debugging aids 162
definition macros 166
DELFEI macro 399
DEQAR macro 400
device information, output see NKGTYPE

macro 691
DISCO macro 405
DISEI macro 408
DISMP macro 411
display control characters 1008
DISSI macro 415
Distributed Lock Manager (DLM) 140

allocation event 150
cancel lock see LKCAN macro 590

convert lock see LKCVT macro 593
converting lock requests 145
deleting lock requests 146
detecting timeouts 147
event specification 150
generating locks 145
lock ID 145
lock mode 141
lock mode, compatibility 142
lock mode, relation 146
lock name 152
lock names for cluster and single

systems 153
lock request 142
lock request, synchronous and

asynchronous 149
lock request, termination sequence 148
Lock Status Block 147
Lock Value Block 143
lock, outputting information 147
output lock information see LKINF

macro 618
release event 150
release lock see LKDEQ macro 601
releasing locks 146
request lock see LKENQ macro 605
scope, global 152
scope, local 152

DJINF macro 419
DJSI macro 422
DJSIPL macro 424
DPOFEI macro 426
DSECT 166
DSHARE macro 432
DSOFEI macro 435
DSPSRV macro 440
DTMODE macro 449
dump

output dump and terminate program see
TERM macro 928

dump output see CDUMP2 macro 278
dynamic binder loader (DBL)

transfer load information see TABLE
macro 1151

Index

1182 U3291-J-Z125-16-76

E
edit parameters for RDATA, WROUT and WRTRD

replace see VTSUCB macro 1037
ENACO macro 452
ENAEI macro 455
ENAMP macro 459
ENASI macro 469
encryption of words see CRYPT macro 340
ENQAR macro 473
ENTER macro 478
epoch 362, 530, 704
error flag (return code)

general 23
ESA systems 61
ETABIT macro 497
ETABLE macro 500
event class

STXIT event class 137
event information code (contingency

process) 117
event specification (DLM) 150

allocation event 150
release event 150

eventing
asynchronous 95
check event item see CHKEI macro 294
delete POSSIG or SOLSIG entry see DELFEI

macro 399
enable event item or declare participation see

ENAEI macro 455
forward 105
generate POSSIG entry see DPOFEI

macro 426
generate SOLSIG entry see DSOFEI

macro 435
information on queue see CHKEI macro 294
optimized 105
post code transfer 96
request event (signal) see SOLSIG

macro 824
request POSSIG signal (event) see RSOFEI

macro 791
send POSSIG signal (event) see RPOFEI

macro 789

signal event see POSSIG macro 736
synchronous 95
terminate participation see DISEI macro 408
user eventing 103

EX
lock mode (DLM) 141

exclusive mode (EX)
lock mode (DLM) 141

Executive 13
EXIT macro 508
extended address space (ESA) 61

access list management see ALESRV
macro 194

access registers 64
addressing 64
AR mode 65
connect task to data space see ALESRV

macro 194
create and manage data space see DSPSRV

macro 440
data space 61, 62
hardware extension 65
information on access list see ALINF

macro 198
make data space addressable 66
program space 61, 62

extended address space(ESA)
see ALINF macro 68

F
FIFO 133
file

ENTER file see ENTER macro 478
input/output 159
input/output see SYSFL macro 908

fork() - generation of new task 465
forward eventing 105
function key codes 1167

Index

U3291-J-Z125-16-76 1183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17

S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0
\1

60
38

05
_

m
ak

_a
t\b

h
b\

en
\m

a
kr

o.
si

x

G
GCCSN macro 511
generate DLM-specific layouts see LKEQU

macro 615
generate lock see LKENQ macro 605
generate or change entry for symbol table see

ETABIT macro 497
generate or update list entry for ILE list see ILEMIT

macro 545
GEPRT macro 517
get program version see GETPRGV macro 521
GETPRGV macro 521
GETSW macro (supported only for

compatibility) 1121
GETUS macro (supported only for

compatibility) 1122
GPARMOD macro 524
GRANTED, lock request status 142
GTIME macro 526

H
HSI

request information see HSITYPE
macro 1124

request information see NSIINF macro 702
request information see SINF macro 1147

HSITYPE macro 1124

I
ILE

list entry for ILE list, generate or update see
ILEMIT macro 545

management, see ILEMGT macro 539
ILEMGT makro 539
ILEMIT macro 545
information

on entries in DBL tables see VSVI1
macro 979

on loaded programs see PINF macro 724
inheritance of memory pool see ENAMP macro

(INHERIT operand) 465
input

combined input/output to data display termi-
nals see WRTRD macro 1085

create VTSU parameters for see VTSUCB
macro 1037

data from SYSDTA see SYSFL macro 908
generate logical control characters for see

VTCSET macro 1005
of a record from SYSDTA see RDATA

macro 745
input/output

address operand table for I/O macros see CU-
PAB macro 378

input/output buffer
for communication with terminal, change see

SETBF macro 802
interrogate current mode see AMODE31

macro 201
interrupt event

STXIT event class 891
STXIT procedure 132

interrupting programs see BKPT macro 274
intertask communication (ITC)

delete message see RELBF macro 760
description 76
eventing 81
open or declare participation see OPCOM

macro 717
request message see REVNT macro 783
send message see SEVNT macro 808
terminate participation see CLCOM

macro 304
interval timer

set for CPU time see SETIC macro 804
set for real time see SETIC macro 804

IOSID macro 548

J
JINF macro 551
JMGDJP macro 556
JMGJPAR macro 557
job 15

ENTER job see ENTER macro 478
interrogate job attributes see TMODE

macro 940
terminate see LGOFF macro 587

Index

1184 U3291-J-Z125-16-76

job data
output see JINF macro 551
output see JOBINFO macro 559

job parameter
output see JMGJPAR macro 557

job scheduler 165
attach to job scheduling system see JSATTCH

macro 563
create DSECT for job scheduler macros see

DJSI macro 422
description of the JSS events 570
detach from the job scheduling system see JS-

DETCH macro 566
request events see JSEXPCT macro 568
transfer job to start see JSRUNJB macro 574

job scheduling
initiate timer event see JSWAKE macro 577
interrogate STREAM-PARAMETER see JSIN-

FO macro 572
job switch

activate/deactivate and query see SWITCH
macro 897

query setting see GETSW macro
(appendix) 1121

job switches
use in BS2000 73

JOBINFO macro 559
JSATTCH macro 563
JSDETCH macro 566
JSEXPCT macro 568
JSINFO macro 572
JSRUNJB macro 574
JSWAKE macro 577

K
keyword operands 19

L
LDSLICE macro 579
LEVCO macro 584
LGOFF macro 587
LIFO 133
link and load

see BIND macro 233

LKCAN macro 590
LKCVT macro 593
LKDEQ macro 601
LKENQ macro 605
LKEQU macro 615
LKINF macro 618
LKLSB macro 623
load and link

see BIND macro 233
load slice see LDSLICE macro 579
loading

of a segment see CALL macro 276
lock (DLM)

generation 145
outputting information 147
release 146

Lock ID (DLM) 145
lock mode (DLM) 141

compatibility 142
CR 141
CW 141
EX 141
NU 141
PR 141
PW 141
relation 146

lock mode see LKCVT macro 593
lock name (DLM) 152
lock request (DLM)

conversion 145
deletion 146
status 142
synchronous and asynchronous 149
termination sequence 148

lock request, asynchronous 623
Lock Status Block (DLM) 147

see LKLSB macro 623
Lock Value Block (DLM) 143
LPOV macro 625

Index

U3291-J-Z125-16-76 1185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17

S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0
\1

60
38

05
_

m
ak

_a
t\b

h
b\

en
\m

a
kr

o.
si

x

M
macro

Assembler 17
call format 28
corresponding command 45
definition 17
formats 18
general description 17
in alphabetical order, with SVC

numbers 1156
in BS2000/OSD-BC 1164
keyword operands 19
Macro Command Language Processor 45
name field 18
operand sublists 19
operation field 18
positional operands 19
use of registers 23

Macro Command Language Processor 45
macro expansion 17

control global see GPARMOD macro 524
SVC in the 27

macro type
action macro 28
call format 28
definition macro 28
general description 28
O-type 28
R-type 28
S-type 29

main code 24
management of ILEs see ILEMGT macro 539
measurement method see AINF macro 168
memory

attributes 50
change page status in user memory see

CSTAT macro 348
enter memory allocation see ASPC

macro 222
load segment see LPOV macro 625
load segment see SEGLD macro 797
release memory area see RELM macro 761
request memory area (contiguous) see REQM

macro 770

request memory pages for memory pool see
REQMP macro 774

size 50
memory attributes

change see CSTAT macro 348
memory classes 50
memory map pages 287
memory map table

output of see MINF macro 629
memory page 49
Memory Pool

output information 810
memory pool

change memory attributes see CSTAT
macro 348

change status 56
characteristics 56
create or participate see ENAMP macro 459
general description 56
information on size and utilization see MINF

macro 629
load shared code see ASHARE macro 210
obtain information 56
release memory pages 56
release memory pages see RELMP

macro 764
request memory pages 56
request memory pages see REQMP

macro 774
terminate participation see DISMP macro 56,

411
unload shared code see DSHARE

macro 432
write protection 56
write protection see CSTMP macro 352

message
message code format 636, 1133
output see MSG7 macro 1133
output see MSG7X macro 636
system messages 636, 1133

message code 636, 1133

Index

1186 U3291-J-Z125-16-76

message file
add or lock see MSGSINIT macro 660
add see MSGSMOD macro 662
class list see MSGSINIT macro 660
output information see MSGSHOW

macro 656
messages 161
metalanguage 12
MF formats (S-type) 29
MINF macro 629
MRSINF macro (supported only for

compatibility) 1126
MRSSTA macro (supported only for

compatibility) 1130
MSG7 macro 1133
MSG7X macro 636
MSGRC macro 653
MSGSHOW macro 656
MSGSINIT macro 660
MSGSMOD macro 662
multiprocessor system

output MRS catalog entry see STAMCE
macro 847

multiprocessor systems 164

N
name field

macro 18
nesting

STXIT processes 134
NKDINF macro 667
NKGTYPE macro 691
NSIINF macro 702
NSIOPT macro 710
null mode (NU)

lock mode (DLM) 141

O
O-type 28
object module file (TASKLIB) 156

assign see SYSFL macro 908
objects

unload and unlink see UNBIND macro 961
one-way encryption see CRYPT macro 340

OPCOM macro 717
operand sublists 19
operating system

output ID and version see IOSID macro 548
operation field 18

macro 18
output

character code set (CCS) name see GCCSN
macro 511

combined input/output to data display termi-
nals see WRTRD macro 1085

create VTSU parameters for see VTSUCB
macro 1037

data to SYSDTA see SYSFL macro 908
device information see NKGTYPE

macro 691
entries from user catalog see SRMUINF

macro 833
generate logical control characters for see

VTCSET macro 1005
generated lists (SYSLSTn) see SYSFL

macro 908
information on configuration see NKDINF

macro 667
information on message file see MSGSHOW

macro 656
messages see MSG7 macro 1133
messages see MSG7X macro 636
messages to SYSOUT see SYSFL

macro 908
of job data see JINF macro 551
of job data see JOBINFO macro 559
of job parameters see JMGJPAR macro 557
to printer see SYSFL macro 908
write record to SYSLST or SYSLST see

WRLST macro 1063
write record to SYSOUT see WROUT

macro 1067
output dump see CDUMP macro

(appendix) 1112
output information about locks see LKINF

macro 618

Index

U3291-J-Z125-16-76 1187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17

S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0
\1

60
38

05
_

m
ak

_a
t\b

h
b\

en
\m

a
kr

o.
si

x

P
PARAM-Operand 33, 34
parent task 465
participation

in eventing, declare see ENAEI macro 455
in eventing, terminate see DISEI macro 408
in ITC, declare see OPCOM macro 717
in ITC, terminate see CLCOM macro 304
in memory pool, declare see ENAMP

macro 459
in memory pool, terminate see DISMP

macro 411
in serialization, declare see ENASI

macro 469
in serialization, terminate see DISSI

macro 415
PASS macro 722
PCB

access to see CONTXT macro 324
PINF macro 724
positional operands 19
POSSIG macro 736
post code (eventing) 96
PR

lock mode (DLM) 141
primary return code 24
printer output 917
priority

interrogate run priority see TSPRIO
macro 946

of a process 136
privileges

check system privileges see CHKPRV
macro 297

process 15
access to process data see CONTXT

macro 324
basic process 131
execution of STXIT processes 133
modify processing level see LEVCO

macro 584
suspend see SUSPEND macro 895
terminate STXIT process see EXIT

macro 508

processing level
of basic or contingency process, modify see

LEVCO macro 584
program

call command see CMD macro 306
interrupt see BKPT macro 274
return from subroutine see RETRN

macro 781
save register contents when calling subroutine

see SAVE macro 793
terminate see TERM macro 928

program counter
process interrupt see CONTXT macro 324

program monitoring
branch addresses see AUDIT macro 224
destination addresses see AUDIT macro 224

program space (ESA) 61, 62
protected read mode (PR)

lock mode (DLM) 141
protected write mode (PW)

lock mode (DLM) 141
PW

lock mode (DLM) 141

Q
queue

information (eventing) see CHKEI macro 294

R
R-type 28
RDATA macro 745
RDUID macro 758
read

user ID see RDUID macro 758
Readme file 10
real time

set time interval see SETIC macro 804
REC macro 205
record control characters 1005
record length field 1068
register 23

reload register contents see RETRN
macro 781

save register contents see SAVE macro 793

Index

1188 U3291-J-Z125-16-76

register R15
transfer of return code 24

RELBF macro 760
release

memory pages in memory pool see RELMP
macro 764

virtual memory see RELM macro 761
release event (DLM) 150
release lock request see LKDEQ macro 601
RELM macro 761
RELMP macro 764
REQM macro 770
REQMP macro 774
resources

utilization measurement see AINF
macro 168

restart routine see WRCPT macro 1057
RETCO macro 780
RETRN macro 781
return code

for all macros in standard header 43
for message macros, output see MSGRC

macro 653
general 23
in register R15 24
in standard header 24
primary 24
secondary 24

return information, general 23
REVNT macro 783
RPOFEI macro 789
RSOFEI macro 791

S
S-type (macro type) 29
SAVE macro 793
scope (DLM)

cluster or single system 153
global 152
local 152

secondary return code 24
SEGLD macro 797

segment
load into memory see LPOV macro 625
load see CALL macro 276
load see SEGLD macro 797

select program version see SELPRGV
macro 799

SELPRGV macro 799
serialization 91

(access) request see ENQAR macro 473
check serialization item see CHKSI

macro 300
create serialization item see ENASI

macro 469
dequeue access request see DEQAR

macro 400
serialization item 91

terminate participation see DISSI macro 415
SETBF macro 802
SETIC macro 804
SEVNT macro 808
shared code

load into memory pools see ASHARE
macro 210

unload from memory pool see DSHARE
macro 432

SHOWMP macro 810
signal

request from event item see RSOFEI
macro 791

send to event item see RPOFEI macro 789
SINF macro 1147
slice

load see LDSLICE macro 579
SOLSIG macro 824
son task 465
source program 17
SPID (ESA) 64
SRMUINF macro 833
STAMCE macro 847
standard header 43

generation 44
return codes for all macros 43
transfer of return code 24

Index

U3291-J-Z125-16-76 1189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 J

u
ly

 2
0

17

S
ta

nd
 1

3:
18

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0
\1

60
38

05
_

m
ak

_a
t\b

h
b\

en
\m

a
kr

o.
si

x

STXIT event class 132
interrupt events 137

STXIT macro 883
STXIT management block

create see STXIT macro 883
STXIT parallelism 134
STXIT process

define see STXIT macro 883
terminate see EXIT macro 508

STXIT routine 131
subcode 24
subroutine

return see RETRN macro 781
save register contents see SAVE macro 793

SUSPEND macro 895
SVC

in the macro expansion 27
macros and SVC numbers 1156

SWITCH macro 897
switches

job switches 73
symbol table

entry, generate or change see ETABIT
macro 497

SYSDTA 156
read in a record from see RDATA macro 745

SYSFL macro 908
SYSIPT 156
SYSLST 908

write record to SYSLST see WRLST
macro 1063

SYSOPT 156
SYSOUT 156

write record to SYSOUT see WROUT
macro 1067

SYSTA macro 921
system

request information about system parameters
see SINF macro 1147

request information on system parameters see
NSIOPT macro 710

request information on the HSI see HSITYPE
macro 1124

request information on VM2000 operation see
VMGINF macro 972

request system information see NSIINF
macro 702

system dump output see CDUMP2 macro 278
system file

define assignment see SYSFL macro 908
input/output see SYSFL macro 908
name of coding table for SYSDTA and SYSC-

MD see GCCSN macro 511
output assignment see SYSTA macro 921
primary assignment 158
reassignment 158
temporary 156
write record to SYSLST or SYSLST see

WRLST macro 1063
system privileges

check see CHKPRV macro 297
system services 13

T
TABLE macro (only supported for reasons of

compatibility) 1151
tabulation 1021
task 15

(task) serialization 91
coordination 94
information transfer between tasks with

eventing 96
interrogate run priorities see TSPRIO

macro 946
one second waiting time see PASS

macro 722
read and modify task attributes see TINF

macro 932
set to wait state see VPASS macro 977

TASKLIB
assign see SYSFL macro 920

tasks
affined see TINF macro 932

TCHNG macro 924
temporary system files 156
TERM macro 928

Index

1190 U3291-J-Z125-16-76

time
calculate and modify time stamp see CTIME

macro 357
calculate see CTIME macro 357
calculate timespans see CTIME macro 357
get date and time see GTIME macro 526
measure used CPU time see GEPRT

macro 517
set time interval see SETIC macro 804

timeout (DLM)
detection 147

timer event 577
timer event for job scheduler

initiate see JSWAKE macro 577
TINF macro 932
TMODE macro 940
transfer load information see ETABLE macro 500
TSPRIO macro 946
TSTAT macro 947
TYPIO macro 957

U
UNBIND macro 961
unload and unlink objects see UNBIND

macro 961
unload shared code from memory pool see

DSHARE macro 432
usage stamp method see AINF macro 168
user catalog

output entry see SRMUINF macro 833
user dump output see CDUMP2 macro 278
user eventing 103
user ID

output entry in user catalog see SRMUINF
macro 833

read see RDUID macro 758
user switch

activate/deactivate and query see SWITCH
macro 897

query setting see GETUS macro
(appendix) 1122

V
VM2000 operation

request information see VMGINF macro 972
VMGINF macro 972
VPASS macro 977
VSVI1 macro 979
VTCSET macro 1005
VTSU parameters for input and output see VT-

SUCB macro 1037
VTSUCB macro 1037

W
wait state

one second waiting time for the task see PASS
macro 722

place process in wait state see SUSPEND
macro 895

set task to wait state see VPASS macro 977
WAITING

lock request status 142
WRCPT macro 1057
write protection for memory pool pages see CST-

MP macro 352
WRLST macro 1063
WROUT macro 1067
WRTRD macro 1085

X
XS programming 164

	Contents
	Preface
	Objectives and target groups of this manual
	Summary of contents
	Changes since the last edition of the manual
	Notational conventions

	BS2000 Components
	Use of macros
	Macro processing by the assembler
	Syntactical representation of macro calls
	Use of registers
	Return information and error flags (return codes)
	Macro expansion
	Types of macro
	O-type macros
	R-type macros
	S-type macros

	Standard header
	Macro Command Language Processor macros

	Application areas and brief descriptions
	Linking and loading
	Virtual address space
	Structure of virtual address space
	Address conversion
	Working with virtual memory
	Common memory areas shared by several users (Memory pools)
	Extended addressing with data spaces

	Task and program execution control
	Starting, interrupting and terminating
	User and job switches
	Intertask communication (ITC)
	(Task) serialization
	Eventing
	Contingency processes
	STXIT procedure with contingency processing
	Distributed Lock Manager (DLM)
	Structure of a DLM lock
	Functions of the DLM
	Synchronous and asynchronous lock requests
	Lock name
	Cluster systems and single systems

	Requesting and accessing lists and tables
	Input/output
	System files
	Files and records
	Data terminal communication
	Messages
	Encryption

	Debugging aids
	Checkpoints
	Accounting
	Communication (programs, users, system)
	Multiprocessor systems
	XS programming
	Job scheduler
	Macros generating only CSECTs or DSECTs

	Description of the macros
	AINF – Measure resource utilization
	ALESRV – Connect task with/disconnect task from data space
	ALINF – Request information on access lists
	AMODE31 – Query addressing mode
	ARDS – Generate accounting records
	AREC – Write user accounting record
	ASHARE – Load user's shared code into common memory pools
	ASPC – Enter memory allocation
	AUDIT – Control audit mode
	BIND – Link and load load unit
	BKPT – Set breakpoint; interrupt current program
	CALL – Load segments
	CDUMP2 – Generate user, system or area dump
	CHKEI – Check event item
	CHKPRV – Check system privileges
	CHKSI – Check serialization item
	CLCOM – Terminate intertask communication
	CMD – Call command
	CONTXT – Access process data
	CRYPT – Word encryption
	CSTAT – Change page status
	CSTMP – Set read/write access for memory pool
	CTIME – Time stamp calculations
	CUPAB – Address operand list (24-bit interface)
	DCSTA – Generate operand table for terminal attributes
	DELFEI – Delete SOLSIG or POSSIG entry
	DEQAR – Dequeue access request
	DISCO – Disable contingency definition
	DISEI – Disable event item
	DISMP – Disable memory pool
	DISSI – Disable serialization item
	DJINF – Create DSECT or data list for JINF macro
	DJSI – Create DSECTs or data areas for job scheduler macros (24-bit interface)
	DJSIPL – Create DSECTs or data areas for job scheduler macros (31-bit interface)
	DPOFEI – Create POSSIG entry
	DSHARE – Unload user's shared code from common memory pool
	DSOFEI – Create SOLSIG entry
	DSPSRV – Control a data space
	DTMODE – Create DSECT or data list for TMODE macro
	ENACO – Enable contingency definition
	ENAEI – Enable event item
	ENAMP – Enable memory pool
	ENASI – Enable serialization item
	ENQAR – Enqueue access request
	ENTER – Initiate ENTER job
	ETABIT – Generate or change entry for symbol table
	ETABLE – Transfer load information
	EXIT – Terminate STXIT process/routine
	GCCSN – Display CCS name for command and data input
	GEPRT – Get program time
	GETPRGV – Get program version
	GPARMOD – Control macro expansion
	GTIME – Get date and time
	ILEMGT – Management of Indirect Linkage Entries (ILEs)
	ILEMIT – Generate or update a list entry for an ILE list
	IOSID – Request operating system identification and version
	JINF – Request job information
	JMGDJP – Create DSECT or data area for JMGJPAR macro
	JMGJPAR – Request job parameters
	JOBINFO – Request job information
	JSATTCH – Attach job scheduler to Job Management System
	JSDETCH – Detach job scheduler from Job Management System
	JSEXPCT – Request JSS events
	JSINFO – Access STREAM-PARAMETER values
	JSRUNJB – Transfer job to start
	JSWAKE – Initiate timer event for job scheduler
	LDSLICE – Load slice
	LEVCO – Modify priority level of contingency process
	LGOFF – Terminate job
	LKCAN – Cancel lock request
	LKCVT – Convert lock request
	LKDEQ – Release lock request
	LKENQ – Generate lock
	LKEQU – Generate DLM-specific layouts
	LKINF – Output information on locks
	LKLSB – Generate Lock Status Block layout
	LPOV – Load segment
	MINF – Output memory map for class 6 memory or memory pool
	MSG7X – Output message
	MSGRC – Output return codes
	MSGSHOW – Output information about system- or task-specific message files
	MSGSINIT – Lock message file or add message file to message system
	MSGSMOD – Lock message files or add message files
	NKDINF – Output data on (peripheral) configuration
	NKGTYPE – Output device information
	NSIINF – Output system information
	NSIOPT – Output system parameters
	OPCOM – Open communication
	OPSGEN – Control of S variable generation via MIP
	PASS – Wait one second
	PINF – Output global program information
	POSSIG – Post signal request
	RDATA – Read record from SYSDTA
	RDUID – Read user ID
	RELBF – Release receive queue
	RELM – Release memory
	RELMP – Release pages in memory pool
	REQM – Request memory
	REQMP – Request pages in memory pool
	RETCO – Return from contingency process
	RETRN – Load return with register
	REVNT – Receive event
	RPOFEI – Send POSSIG signal
	RSOFEI – Request POSSIG signal (event)
	SAVE – Save register contents
	SEGLD – Load segments
	SELPRGV – Select program version
	SETBF – Set buffer size for dialog communication
	SETIC – Set interval timer
	SEVNT – Send event
	SHOWMP – Output memory pools
	SOLSIG – Solicit signal request
	SRMUINF – Read user information from user catalog
	STAMCE – Read MRSCAT entries
	STXIT – Specify interrupt event address
	SUSPEND – Suspend task
	SWITCH – Set and query job and user switches
	SYSFL – Reassign system files
	SYSTA – Output information on system file and TASKLIB assignment
	TCHNG – Modify terminal characteristics
	TERM – Terminate program and procedure step
	TINF – Read or modify task attributes
	TMODE – Interrogate job attributes
	TSPRIO – Output run priorities
	TSTAT – Interrogate terminal attributes
	TYPIO – Write message to console
	UNBIND – Unload and unlink objects
	VMGINF – Output information on VM2000 operation
	VPASS – Variable-length pass
	VSVI1 – Output link and load information
	VTCSET – Define logical control characters
	VTSUCB – Create VTSU parameters for input/output
	WRCPT – Write checkpoint
	WRLST – Write record to SYSLST
	WROUT – Write record to SYSOUT
	WRTRD – Combined input/output

	Appendix
	Macros supported only for compatibility
	CDUMP – Output user, system or area dump
	GETSW – Get switch
	GETUS – Get user switch
	HSITYPE – Output information about current HSI
	MRSINF – Request MSCF information
	MRSSTA – Display MSCF status
	MSG7 – Output message
	SETSW – Set job switch
	SETUS – Set user switch
	SINF – Output system information
	TABLE – Transfer load information

	Macros in alphabetical order
	Macros arranged according to SVC number
	Other macros in BS2000 OSD/BC
	Standardized function key codes

	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

