
Contents
Preface 1
Brief product description 1
Target group 2
Summary of contents 2
Changes since the last version of the manual 4

Introduction to LMS 5

Definitions and conventions 11
What is a library? 11
What libraries are there? 13

Program libraries (PL) 13
Type-related libraries 18
Sequential libraries (archive libraries) 20

What does a program library contain? 22
Member type definition 22
Member designations 25

What do type-related libraries contain? 28
Member type definition 28
Member designation 29

Multiple selection of member designations 31
Construction specification for member designations 34

LMS functions 37
Library assignment 38

Library assignment via LIB 38
Processing of members 42

Adding members to a library 43
Outputting members 46
Listing members 46
Deleting members 47
Numbering records using record numbers and check fields 47
Comparing members 50
Correcting members 53
Renaming members 55
Outputting library directory 55
Storing and calling procedures 56

U817-J-Z125-9-7600

Contents

Filing members using the delta method 58
Delta as a storage form and organizational aid 59
Adding delta members 60
Overview of delta members 61
Deleting delta members 61
Locking delta members 62
Restrictions when using the delta method 62

Controlling the LMS run 63
Effect of processing operands 63
Controlling log output 66
Control of statement input 68
Controlling screen overflow 68
Execution in run or test mode 70
User interfaces 70
Interrupting the LMS run 71
Using job switches 74
PAM key elimination 75

Library files 75
Member processing 76
Summary 80

Statements 81
Overview of statements 85
ADD Add data to a library 91
COM Compare members 105
COR Correct text members 108

Description of the individual correction statements 112
*INSERT Insert records 112
*DELETE Delete records 113
*REPLACE Replace records 113
*CHANGE Change records 114
*END Terminate corrections 116

CTL Define statement input source 117
DEL Delete members 118
DUP Duplicate members and duplicate with structure 120
EDT/EDR

Create, correct and view text members and files 126
END Terminate LMS run 133
LIB Assign and close libraries 134
LST List members 140
NAM Rename members 142
NOP Dummy function 144
NUM Number member records 145
PAR Set processing operands 147

U817-J-Z125-9-7600

Contents

PRT Control log output 148
RST Restart after test mode 150
SEL Output library members to files and FMS libraries 151
SUM Store comparison statistics 158
SUMPRT Output comparison statistics 159
SUMADD Add comparison statistics 159
SUMDEL Delete comparison statistics 160
SYS Issue system commands 160
TCH Change terminal characteristics 161
TOC Output library directory 162
UPD Correct object and load modules and LLMs 164

Description of the correction statements for object modules 168
*BAS Define base address 168
*CON Define cross control number 168
*COR Correct text records 169
*DEL Delete parts of object modules 171
*END Terminate correction input 172
*ID Define identification 172
*INS Insert INCLUDE record 173
*INV Convert corrections 174
*NAM Rename symbols 175
*REM Cancel corrections 175
*REP Insert REP record 176
*SET Modify control section attributes 178

Description of the correction statements for load modules 185
*BAS Define base address 185
*CON Define cross control number 185
*COR Correct text records 186
*DEL Delete correction journal records 188
*END Terminate correction input 188
*ID Define identification 188
*REM Cancel corrections 189
*SEG Define segment 189

Description of the correction statements for LLMs 192
*COR Correct text records 192
*DEL Delete correction journal records 194
*END Terminate correction input 194
*ID Define identification 195
*REM Cancel corrections 195

USE Branch to user programs 196
$ Output statement buffer 201

U817-J-Z125-9-7600

Contents

Processing operands 203
Table of processing operands 205
PAR BASE Define base address 209
PAR CHECK Define check field in input records 210
PAR CSECT Specify a CSECT name 211
PAR COMPARE Control compare function 212
PAR DESTROY Control physical deletion 215
PAR ERRCONS Output messages to SYSOUT 216
PAR FCBTYPE Define FCB type of output file 217
PAR FORMAT Define record format 219
PAR INFO Define scope of output 221
PAR KEY Transfer file attributes and ISAM key 224
PAR LCASE Lowercase/uppercase conversion 225
PAR LINE Define number of lines and columns per log page 227
PAR LOG Log statements 228
PAR LST Define scope and mode of member listings 229
PAR NEWFORM Control form feed 234
PAR OVERWRITE Overwrite identically named members 235
PAR PATH Specify a pathname 236
PAR PHASE Define phase format 237
PAR RANGE Define check field in output records 238
PAR REFERENCE Define reference conditions 239
PAR SEGMENT Define segments of load module 240
PAR SLICE Specify slice 241
PAR SORT Sort directory 242
PAR STRING Define string in check field of output records 243
PAR STRIP Suppress records 244
PAR SUM Generate comparison statistics 245
PAR TERMINATE Control termination procedure in error situations 246
PAR TEST Activate/deactivate and terminate test mode 248
PAR TOC Control output format for directories of program libraries 249
PAR TYPE Predefine member type 251
PAR VALUE Control numbering in check field of output records 252

Examples 253
Simple examples 253

Add, correct and assemble library source programs 253
Duplicate members 258
Compare members 262
Processing delta members 266

Complex examples 269
Correct a source program using COR 269
Correct an object module using UPD 272
Compare members and prepare correction statements 274

U817-J-Z125-9-7600

Contents

Output a member to a file 277
Output comparison statistics 282
Branch to a user program while a member is being listed 285

Old LMS subroutine interface 289

Messages 293
List of messages 293
System queries 317
Access method messages 317

Appendix 325
Conversion of MLU, LMR, COBLUR to LMS 325
BS1000-BS2000 compatibility 326
Statements and processing operands 328
LIBIN Assign input library 329
LIBOUT Assign output library 330

Processing operands 332
PAR DECOMPRESSED

Control compression for macros and source programs 332

References 333

Index 339

U817-J-Z125-9-7600

Contents

Preface
This manual describes the functions and mode of operation of the Library Maintenance
System (LMS).

Brief product description

The Library Maintenance System (LMS) creates and manages program libraries and
processes the members they contain.

Program libraries are BS2000 PAM files which are processed using the library access
method PLAM (Program Library Access Method); hence they are also known as PLAM
libraries.

The main advantages of this method are that

all member types in a library can be processed via uniform statements,

members with identical names but differing type/version designations may exist,

concurrent read/write access to the library by different users is supported,

standardized data management with unified access functions becomes possible for
most of the data elements (=members) created during the software development
cycle, and

the utility routines and compilers can access this data repository and process the
individual members directly.

This eliminates many of the problems arising during the creation, maintenance and
documentation of programs.

U817-J-Z125-9-7600 1

Preface

Target group

This manual is aimed at all BS2000 users who employ libraries to manage their data.

Users should be familiar with BS2000, in particular with its major commands.
Appropriate information can be found in the manual "Introductory Guide for System
Users" [6].

LMS comes with a separate Ready Reference [13]. This is intended as a guide, i.e. brief
operating instructions for the experienced user of LMS. It lists all the LMS statements
and processing operands.

Summary of contents

Manual division

As of Version LMS V2.0A, the manual has been divided into two volumes for the first
time, namely this manual and the "LMS Subroutine Interface" manual. Apart from the
ever increasing functionality of LMS and the resulting increasing scope of the manual,
the main reason for dividing up the previous manual was the independence of the
subroutine from the LMS user interface.

Manual structure

This manual covers the following topics:

• Definitions and conventions
The member types and library formats that can be processed using LMS

• LMS functions
An outline of the facilities provided by LMS

• Statements
All statements in alphabetical order

• Processing operands
All operands in alphabetical order

• Examples
Selected examples of LMS applications

• Old LMS subroutine interface
Description of the conventions and an example

• Messages
The messages issued by LMS arranged according to their code numbers.

2 U817-J-Z125-9-7600

Preface

The alphabetical index at the end of the manual permits explanations of key terms and
concepts to be located quickly within the body of the text.

Throughout the text, reference literature is quoted using abbreviated titles accompanied
by a number in square brackets. The full title of each publication referred to may be
found under the appropriate number in the "References" section.

U817-J-Z125-9-7600 3

Changes

Changes since the last version of the manual

The following new features have been added since publication of the previous version
of the LMS manual (LMS V1.4A):

• What was formerly chapter 8 "LMS as a subroutine" is now described in a separate
manual [15].

• The section on "PAM key elimination" (page 75 ff.) has been expanded.

• The new member type F for IFG format masks and member type U for IFG user
profiles have been introduced. F and U types can be used in conjunction with the
DEL, DUP, LST, NAM and TOC statements.

• Member type L for link and load modules (LLMs) has been newly introduced. L can
be used with the DEL, DUP, LST, NAM, TOC and UPD statements.

• The following new processing operands are available for member type L: PAR
CSECT, PAR PATH and PAR SLICE.

• The correction statements for object modules have been extended by the correction
statement *REM (page 175).

• The chapter "LMS dialog interface" has been renamed "Old LMS subroutine
interface" (page 253).

• The BS2000 commands have been converted from ISP to SDF format.

4 U817-J-Z125-9-7600

Changes

Introduction to LMS
LMS creates and manages program libraries and processes the members contained
therein. A program library is a file with a substructure. It contains members (also called
elements) and a directory (table of contents) listing all the members.

A member is a logically coherent data set such as a file, a procedure, an object
module or a source program. Each member can be individually addressed within the
library.

Each library has an entry in the system catalog. The user can define its name and
other file attributes such as the retention period or shareability.

Storing several files in one library relieves the load on the system catalog, since the
latter only contains an entry for the library and no entries for the various members.
Storage space is also saved, as the members are stored in the library in compressed
form.

If the delta method is used, only the differences (deltas) to each preceding version are
stored when a member has several versions. This yields further savings of storage
space. When such versions are read, LMS merges these deltas at the appropriate
locations so that the complete member is available to the user.

Object modules and load modules can be directly stored in program libraries by the
compilers and TSOSLNK respectively. LMS is also capable of copying object modules
from the EAM area and load modules from files to the program library.

U817-J-Z125-9-7600 5

Introduction to LMS

LMS performs the following functions:

create libraries

add members to a library

edit members

output members to files

copy members to another library

list members

delete members

correct members

rename members

renumber members

compare members

extract and store differences (deltas) between member versions

output library directory (table of contents)

LMS processes the following library formats:

Program libraries for storing source programs, macros, object modules, load
modules, listings, procedures, text, etc.
These libraries are processed by means of the program library access method
(PLAM).

Sequential libraries for storing source programs, object modules, macros and
BS1000 phases on tape.

Moreover, LMS can also process any existing MLU, LMR and COBLUR libraries.

Conversion of previous procedures to PLAM is thus considerably simplified and
facilitated.

The LMS subroutine interface [15] offers the user convenient options for processing
LMS libraries and their contents, direct from the main program, with LMS being loaded
dynamically. This subroutine interface can also be used in the XS (extended system)
area.

6 U817-J-Z125-9-7600

Introduction to LMS

The following figure illustrates the LMS input and output capabilities.

Fig. 1 LMS access options

U817-J-Z125-9-7600 7

Introduction to LMS

Example of an LMS run

/SHOW-FILE-ATTRIBUTES A.
00000003 :N:$USER.A.BEISPIEL
00000003 :N:$USER.A.QUELL.A
:N: PUBLIC: 2 FILES RES= 6 FREE= 3 REL= 0 PAGES
/START-PROGRAM $LMS (01)
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$LIB FILE=UEB.BIBL,BOTH,NEW (02)
$ADDS A.QUELL.A (03)
$PAR LOG=MED (04)
$ADDD A.BEISPIEL>BSP (05)
INPUT FILE
OUTPUT LIBRARY= :N:$USER.UEB.BIBL,DEV=DISK (06)

ADD A.BEISPIEL AS (D)BSP/@(0001)/1991-07-24
$TOC* * (07)
INPUT LIBRARY= :N:$USER.UEB.BIBL,DEV=DISK
TYP NAME VER (VAR#) DATE
(D) BSP @ (0001) 1991-07-24

1 (D)-ELEMENT(S) IN THIS TABLE OF CONTENTS (08)
TYP NAME VER (VAR#) DATE
(S) A.QUELL.A @ (0001) 1991-07-24

1 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
$END (09)
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/

(01) LMS is called.

(02) LMS creates UEB.BIBL as a new program library and assigns it as the input and
output (I/O) library.

(03) File A.QUELL.A is added to the library as a member of type S with member
name A.QUELL.A.

(04) Processing operand LOG=MED causes LMS to output not only error messages
but also positive acknowledgments.

(05) File A.BEISPIEL is added to the library as a member of type D with member
name BSP.

(06) Positive acknowledgment: since processing operand LOG=MED has been
specified, LMS confirms the addition of file A.BEISPIEL as member BSP.

(07) LMS is to output the directory of program library UEB.BIBL.

(08) Directory entry of program library UEB.BIBL.

(09) LMS is terminated.

8 U817-J-Z125-9-7600

Introduction to LMS

LMS in interactive/batch mode

LMS runs in both interactive and batch mode. In interactive mode, LMS normally reads
the statements from the terminal by means of the WRTRD macro. In the course of the
LMS run, statement input can be switched to the system file SYSDTA or to a library
member of type J (S in the case of a source program library) by means of CTL.

Prior to the LMS run, switch 1 (/MODIFY-JOB-SWITCHES ON=1) must be set if LMS is
also to read the LMS statements from the procedure when called in a procedure.
Otherwise LMS will be invoked but will wait for statements from the terminal.

In batch mode, LMS reads the statements from the system file SYSDTA. CTL can be
used to switch statement input to a library member of the type J (S in the case of a
source program library).

If a library is still closed, LMS issues the following message up to 100 times in batch
mode:

FILE (ELEMENT or TYP) IS LOCKED.NEXT ATTEMPT AFTER 6 SECONDS!

After 100 attempts control automatically passes to the next program step.

The LMS log is output to system file SYSOUT (i.e. the terminal in interactive mode) or
to the medium defined by means of PRT (system file SYSLST or library member). If
LMS is to output positive acknowledgments as well as error messages, processing
operand PAR LOG=MED must be set.

U817-J-Z125-9-7600 9

Introduction to LMS

Definitions and conventions

What is a library?

A library is a file with a substructure. It contains members and a directory (table of
contents, TOC). Each new member added is automatically entered in the directory.

A member (also referred to as "element" in examples and messages) is a logically
related set of data, e.g. a file, a procedure, an object module or a source program.
Each member of a library can be referenced individually.

Storing a number of files as members in a library decreases the burden on the system
catalog since each library has only one catalog entry. Storage space is saved because
the members are always stored in compressed form in the library. Furthermore the
members may also be stored as delta members (see section on "Filing members using
the delta method", page 58).

If object modules from the EAM area are stored, the source programs need not be
recompiled.

Each library has a single entry in the system catalog. The user can define the name
and other file attributes such as the retention period or shareability. Catalog entries and
changes to them are made by the user with the aid of system commands.

U817-J-Z125-9-7600 11

Definitions and conventions

Structure of a library

member1 member2 member3 member4 Directory

member1

member2

Members

member3

member4

Fig. 2 Structure of a library

Input and output libraries

LMS processes a library in the form of an input and/or output library. LMS uses the
input library as a medium for entries, while the output library serves as a medium for
outputting members. An input or output library is assigned by means of LIB.

LMS opens an output library for reading and writing. An input library is open for writing
when DEL or NAM is used; otherwise it can only be read.

12 U817-J-Z125-9-7600

Definitions and conventions Library formats

What libraries are there?

LMS processes five library formats:

program libraries

source libraries

macro libraries

object module libraries

sequential libraries

Program libraries (PL)

Program libraries are PAM files that are processed with the library access method
PLAM. Accordingly, they are also referred to as PLAM libraries.

The basic advantages over other library formats are that

• all member types can be stored in a single library,

• members with identical names may exist which are distinguished by type or version
designation,

• the library can be accessed simultaneously by several users, even in write mode.

U817-J-Z125-9-7600 13

Library formats Definitions and conventions

Several member types in a single library

Program libraries may contain any LMS-supported member types.

The member type indicates how the contents of members are to be interpreted by LMS
and what storage unit the member belongs to:

Type Contents of member

S Source programs
M Macros
R Object modules
J Procedures
P Edited data
C Load modules
D Text data
X Data of any format
H Compiler result information
L Link and load modules (LLMs)
F IFG format masks
U IFG user profiles

The program library features permit all data associated with a project, from source
program, through object and load modules, compilation procedures and test data to
documentation, to be stored in the appropriate storage units of a library.

Members of type S, M, J, P or D can also be stored with the aid of the delta method,
whereby only the differences (deltas) to the previous version are stored whenever
several versions of a member are present. This helps save even more storage space.
When such member versions are read, LMS merges these deltas at the appropriate
locations. The user is thus always offered the complete member. In addition,
hierarchical relationships can be established between members (delta sequence, delta
tree).

14 U817-J-Z125-9-7600

Definitions and conventions Library formats

Several versions per member type and member name

In program libraries, a member is uniquely defined by its type, name and version
designation. Furthermore it is possible to store several versions under one member type
and member name.

If the user does not specify the version to be processed, LMS takes the following
actions as a standard procedure:

In read mode
that member is sought whose specified name is accompanied by the highest
version designation. The date is ignored.

In write mode
the actions depend on the statement:

ADD, PRT
The member is generated or overwritten with the highest version number X’FF’. LMS
identifies this version by @.

COR, DUP, EDT, EDR, NAM, NUM, UPD
The output member is given the version designation of the input member.

If an identically named member is overwritten, the internal variant number is
incremented by 1. This serves as a write counter.

The introduction of the delta method supplies the user with the additional option of
selecting between two types of storage methods. The storage method is controlled by
the BASEVERSION operand in ADD and DUP. If it is specified, the member is stored as
a delta member. If it is not specified, the member is added to the library as a non-delta
member.

U817-J-Z125-9-7600 15

Library formats Definitions and conventions

Multiple access to program libraries

A library can be opened by one or more users in write mode as well as in read mode.

A non-delta member can be read simultaneously by several users; it can however be
written to by one user only. When a non-delta member has been opened for writing, no
other access - including read access - to this member can be performed, but access to
other non-delta members of the library is possible.

With the correction functions (COR, EDR, EDT, UPD) the library is simultaneously
assigned as both input and output library. In this case, a user may access the non-
delta member both in read and in write mode.

Delta members can only be used by one user at a time. The container (a unit of
storage in a library) is locked to other users both in read and in write mode.

Fig. 3 Multiple access to members

As a result of the multiple access options to a library a member may still exist while the
directory is being listed, but be no longer in existence when it is subsequently
accessed: another user has deleted it in the meantime. A listing of the library’s directory
(see TOC) will therefore only show the current state of the input library.
The user is responsible for the logical coordination of accesses to the program library
members.

16 U817-J-Z125-9-7600

Definitions and conventions Library formats

Restricting multiple access

LMS always opens a program library with SHARED-UPDATE=YES. A /SET-FILE-LINK
command with SHARED-UPDATE=NO which refers to this library will have no effect.
However, the user may restrict the use of multiple access by means of the following
commands:

/SECURE-RESOURCE-ALLOCATION command:
This command prevents any other user from accessing the library while the task within
which the /SECURE-RESOURCE-ALLOCATION command is issued is executing.

/MODIFY-FILE-ATTRIBUTES command:
This command restricts the multiple access options as desired by assigning read and
write passwords, or by using the operand USER-ACCESS=OWNER-ONLY or
ACCESS=READ.

For a description of these commands, see the manual "User Commands (SDF Format)"
[7].

U817-J-Z125-9-7600 17

Library formats Definitions and conventions

Type-related libraries

The following libraries accept only one member type:

source libraries

macro libraries

object module libraries.

Unlike program libraries, these libraries cannot accept several members that bear the
same name.

LMS does not enter any file protection attributes for libraries or members. If a retention
period (RETENTION-PERIOD) is specified within the /SET-FILE-LINK command, LMS
transfers it to the catalog entry when a library is created.

Parallel access to source program, macro and object module libraries is possible. They
may be read simultaneously by different tasks.

A library is opened by LMS for reading and writing (OPEN=INOUT) if it has been
allocated as the default output library (LIB ...,USAGE=OUT) for the LMS run or has
been specified in DEL, NAM or PRT.

Source libraries (OSM)

Source libraries are ISAM files (KEY-POSITION=5,KEY-LENGTH=8); they can only
recognize member type S. In source libraries, however, procedures, listings and text
data can also be stored as S-type members.

For language processor runs, source programs in libraries can be assigned as input for
language processors. This is effected with the command /ASSIGN-SYSDTA TO-

FILE=*LIBR-ELEM(LIBRARY=library,ELEM=member) or, in a similar fashion, in the
*COMOPT statement.

Procedure calls can be used to start the execution of command sequences in source
libraries.

Macro libraries (OSM)

Macro libraries are ISAM files (KEY-POSITION=5,KEY-LENGTH=8); they can only
recognize member type M.

The assembler takes the macros referenced in the program from the macro library. The
macro library must have been assigned with the /SET-FILE-LINK command.

18 U817-J-Z125-9-7600

Definitions and conventions Library formats

Object module libraries (OMLs)

Object module libraries are files in PAM format. They take the object modules
generated by the language processors as R-type members from the EAM area.

The linkage editor and the dynamic binder loader are capable of reading members from
object module libraries. Up to 3380 modules may be included. The number of
CSECTs/ENTRYs/COMMONs is restricted (from 380 to 800, depending on the space
occupied in the library).
The object module library cannot contain more than 32500 PAM pages.

U817-J-Z125-9-7600 19

Library formats Definitions and conventions

Sequential libraries (archive libraries)

Sequential libraries reside on magnetic tapes. These libraries are tape files with
standard labels and a block size of 2048 bytes.

LMS processes sequential libraries using the BTAM access method.

A sequential library may contain BS1000 phases, object modules, macros and source
programs (or procedures and other texts). Members of the same type are grouped
together in a separate library section. The sequence of the various library sections,
which is mandatory, is as follows: BS1000 phases, object modules, macros, source
programs.

The maximum record length of object modules, macros and source programs is 80
bytes.

The directory of sequential libraries differs from that of other libraries: each member is
preceded by a block which contains the member designation.

Several members of the same type may be written to a sequential library under the
same name. If the members differ with respect to their version number and/or date,
they can be read individually by LMS.

Sequential libraries are subject to the following restrictions:

They cannot be processed by DEL and NAM.

List members cannot be added to tape libraries since they have a record length >
80 characters.
Longer records are truncated.

The creation of continuation tapes is not possible in BS2000.
Continuation tapes created under BS1000 can be processed, however (see page
326).

LMS does not enter any file protection attributes for libraries or members. A retention
period (RETENTION-PERIOD) specified in the /SET-FILE-LINK command is transferred
by LMS into the file header label (HDR1) when LMS creates a library.

20 U817-J-Z125-9-7600

Definitions and conventions Library formats

Rules for member designations in sequential libraries

membername Consisting of up to 8 characters

Character set:
Letters : A-Z
Special
characters : $ # @ & % - (hyphen) _ (underscore)
Digits : 0-9

The first character must be a letter, $, # or @.
Exception: BS1000 job macros.

version Version designation, precisely three characters in length

Character set:
Letters : A-Z
Special
characters : none
Digits : 0-9

Letters can only be used as the first character.

Using the date in member designations

The user date, which is kept for each member, can also be used to select the member
to be processed. The date can be allocated by the user when creating or renaming a
member.
LMS enters the current date by default. The DATE specification causes the current date
to be entered for "date".

Rules for allocation of the date for sequential libraries:

date 6 characters: cccccc
Meaning: YYMMDD

YY Year
MM Month
DD Day

Processing the version number

All correction functions (COR, EDT, EDR, UPD) increment the variant number of the
corrected member by 1. This also applies to the numbering function (NUM).

U817-J-Z125-9-7600 21

Program libraries Definitions and conventions

What does a program library contain?

LMS processes the following member types in program libraries:

Type Contents of library member

S Source programs
M Macros
R Object modules
J Procedures
P Edited data
C Load modules
D Text data
X Data of any format
H Compiler result information
L Link and load modules (LLMs)
F IFG format masks
U IFG user profiles

By specifying an asterisk (*) as a member type in DEL, DUP, LST, NAM and TOC, all
member types stored in the library can be referenced. If you want to have all members
of a program library listed, either TOC or *TOC* */* must be specified.

An asterisk (*) as a member type can only be specified when program, source, macro
and object module libraries are processed. Type "*" is not valid for tape libraries.

Member type definition

The record length of members in program libraries may be up to 32 Kbytes (including
record header).

EDT processes text members with a maximum record length of 256 bytes; EDOR
processes text members with a maximum record length of 244 bytes.

Member type S - source programs

Source programs in libraries can be used as input to compilers and assembler for
language processor runs.

Member type M - macros

The assembler takes the macro members referenced in the program from the assigned
library.

Member type R - object modules

22 U817-J-Z125-9-7600

Definitions and conventions Program libraries

Object modules generated by the compilers or the assembler are normally stored in the
temporary EAM area. LMS can be directed to write such object modules as R-type
members to a program library. Alternatively, the object modules generated by the
compilers or the assembler can be stored directly in a program library.

These members serve as input to the linkage editor TSOSLNK and the dynamic binder
loader DBL.

Member type J - procedures

In this member type BS2000 procedures and LMS statements can be stored.

CTL (see page 117) can be used to read LMS statements directly from procedure
members. These members may have records of any length. However, when BS2000
procedures are used, it should be borne in mind that records exceeding 80 bytes are
not supported.

The invocation of BS2000 procedures from a member of type J, directly from the
library, depends on the system environment.

Note

Job switch 1 must be set if LMS is called in a DO or CALL procedure and is also to
read the statements from the procedure.

Member type P - list members

Edited data is referred to as a list member. The first character of the record must be a
valid feed control character; this is checked on output to SYSLST.
Members of this type can be generated using ADDP (see page 91), DUPP (see page
120), EDTP/EDRP (see page 126) and PRT (see page 148).

List members are printed using LST, taking the feed control character into account,
provided that PRT (LST) has been specified.

U817-J-Z125-9-7600 23

Program libraries Definitions and conventions

Member type C - load modules

A load module generated by the linkage editor TSOSLNK is normally stored in a file.
LMS can be directed to write such a file as a C-type member to a program library.
Alternatively, the load modules generated by the linkage editor can be stored directly in
a program library.

A load module stored in the program library can be used as input to the static loader
ELDE and is invoked as follows:

/START-PROGRAM FROM-FILE(LIB=library,ELEM=member[,(VER[SION]=version)]

Member type D - text data

Any text may be written to D-type members. The same functions are possible as with
S-type members.

Member type X - data of any format

The X-type member can accept ISAM, SAM and PAM files.

Member type H - compiler result information

Members of this type will be generated by the compilers and the assembler and stored
in program libraries. Further details will then be given in the respective user guides.

Member type L - LLMs

The linkage editor BINDER [2] stores the generated link and load modules (LLMs) in
members of this type. This member type is supported as of BS2000 Version 10.0A.

Member type F - IFG format masks

Members of this type will in future be generated by IFG and stored in program libraries.
However this member type cannot be generated by LMS.

Member type U - IFG user profiles

Members of this type will in future be generated by IFG and stored in program libraries.
However this member type cannot be generated by LMS.

24 U817-J-Z125-9-7600

Definitions and conventions Program libraries

Member designations

Members can be addressed individually in program libraries via their member type and
member designation.

The member designation consists of name, version and date, and is specified in the
following form:

membername[/version[/date]]

or

membername[//date]

The specification of version and date is optional. If no value is specified for version in a
statement, the member having the highest value is selected by default. If no value is
entered for date in a statement, the current date is entered by default.

The member designation is specified as an operand:

operationx member

operation Name of the statement

x Member type

member Member designation consisting of member name and, optionally,
version and date

Rules for member designations in program libraries

membername Consisting of up to 64 characters

Character set:
Letters : A-Z
Special
characters : $ # @ . (period) - (hyphen) _ (underscore)
Digits : 0-9

The characters hyphen, underscore and period must not be the first
or the last character, and two identical special characters must be
separated by at least one other character.
The hyphen must not be placed immediately after one of the
characters $, @, #, underscore or period. The member name must
contain at least one letter or one of the special characters @, #, $.

U817-J-Z125-9-7600 25

Program libraries Definitions and conventions

version Version designation, up to 24 characters in length

Character set:
Letters : A-Z
Special
characters : . (period) - (hyphen) @ (commercial at)
Digits : 0-9

The special characters period and hyphen must not be the first or
last character. Identical special characters must be separated by at
least one other character. The hyphen must not be placed
immediately after a period.

If @ (commercial at) is explicitly specified, no other character may
be specified in the version designation.

If a member designation does not contain a version specification
when accessed in write mode, @ is entered by default. This
"commercial at" stands for the highest possible version. If the user
explicitly enters a version beginning with Vd. (d=digit), 0 is prefixed
to the digit (i.e. V0d). This is to ensure that, for instance, V9.x=V09.x
< V10.x.

If a member designation does not contain a version specification
when accessed in read mode, the highest available version will be
read.

Using the date in member designations

The user date, which is kept for each member, can also be used to select the member
to be processed. When copying or renaming a member, the date of the original
member is assumed unless a new date is specified explicitly.
When creating a new member, LMS uses the current date by default, provided no other
date is specified explicitly.

Rules for allocation of the date for program libraries

date 10 characters: cccc-cc-cc
Meaning: YYYY-MM-DD

YYYY Year
MM Month
DD Day

When members are transferred from other libraries, the date is
converted to this format as a standard procedure.
Default value: current date.
The DATE specification causes the current date to be entered for
"date".

26 U817-J-Z125-9-7600

Definitions and conventions Program libraries

Processing the version and variant numbers

Automatic version updating by means of correction and numbering functions for source
libraries, macro libraries and object module libraries is no longer used for program
libraries.

Instead they keep a variant number (not exceeding 4 positions, numeric), which
performs the function of a write access counter. There is only one variant per member.
Once variant number 9999 is reached, the member must be copied for further
processing.

No version updating is performed for the program libraries; instead the variant is
incremented by 1 on each write access to the member. When ADD, COR, EDT, EDR,
UPD or NUM is used, the variant will therefore be incremented if this statement causes
a member of the same type, name and version to be overwritten.

Logging the member designations

Member designations are logged as follows:
(type)membername/version[(variantnumber)]

The variant number is only kept for members in program libraries. It is set to (0001) as
a standard procedure and is incremented by 1 each time ADD, NUM, UPD, COR, EDT
or EDR is executed.

When TOC is executed, the date is output as well:
(type)membername/version[(variantnumber)]/date

U817-J-Z125-9-7600 27

Type-related libraries Definitions and conventions

What do type-related libraries contain?

Type-related libraries contain only one type of member.

Type Contents of the library member Library

S Source programs, procedures, Source library
logs and text data

M Macros Macro library

R Object modules Object module library

Member type definition

Member types S and M have a record length of up to 251 bytes, member type R up to
80 bytes.

Member type S

This member type includes source programs, procedures, logs and text data.

Members can, however, also be referenced using member type P, D or J. Thus it is
possible to distribute the members of an existing source library to the corresponding
member types of a program library.

Source programs in source libraries serve as input to compilers.

If a log taking the feed control characters into account is to be printed using LST,
specification of PRT (LST) and the processing operand PAR FORMAT=P is mandatory.

Member type M

The assembler takes the macro members specified in the program from the assigned
macro library.

Member type R

The object modules generated by the compilers can be stored in object module
libraries and serve as input to the linkage editor TSOSLNK and the dynamic binder
loader DBL.

28 U817-J-Z125-9-7600

Definitions and conventions Type-related libraries

Member designation

The member designation permits each member of a library to be addressed individually.
The member designation consists of a name, version and date, and is specified in the
following form:

membername[/version[/date]]

or

membername[//date]

The specification of version and date is optional. If, in a statement, no value is specified
for "version", the member having the highest version is selected by default. If, in a
statement, no value is specified for "date", the current date is entered by default.

The member designation is specified as an operand:

operationx member

operation Name of the statement

x Member type

member Member designation consisting of member name and, optionally,
version and date

Rules for member designations in source libraries, macro libraries and object
module libraries

membername Consisting of up to 8 characters

Character set:
Letters : A-Z
Special
characters : $ # @ - (hyphen) _ (underscore)
Digits : 0-9

The first character must be a letter, $, # or @.

version Version designation, exactly three digits

Character set:
Letters : A-Z
Special
characters : none
Digits : 0-9

Letters can only be specified as the first character.

U817-J-Z125-9-7600 29

Type-related libraries Definitions and conventions

Using the date in member designations

The user date, which is kept for each member, can also be used to select the member
to be processed. The date can be allocated by the user when creating or renaming a
member.
As the default value, LMS inserts the current date. The DATE specification causes the
current date to be entered for "date".

Rules for allocation of the date for source, macro and object module libraries:

date 6 characters: cccccc
Meaning: YYMMDD

YY Year
MM Month
DD Day

Processing the version number

Source, macro and object module libraries:

All correction functions (COR, EDT, EDR, UPD) increment the version number in the
corrected member by 1. This also applies to the numbering function (NUM).

30 U817-J-Z125-9-7600

Definitions and conventions Multiple selection of member designations

Multiple selection of member designations

The member designation references exactly one member; it may however be defined as
variable in order to select several members for processing. This member designation is
called multiple selection.

To permit member designations to be defined as variable, LMS provides symbols that
have the following meanings for multiple selection:

Symbol Meaning for multiple selection

’ Symbol permitted anywhere in member name, version and date.
(apostrophe) Selected are all members having any character in the

corresponding position in the member designation.

The apostrophe stands for one single character.

For closing apostrophes blanks may used, i.e. the selected
names may be shorter than the multiple selection.

* The asterisk as a member type:
(asterisk)

The specification refers to all member types of the assigned
library.

The asterisk in the member designation:

- in the member name
The asterisk may be combined with other characters or be
used as a single character symbol. If it is combined with
other characters, it must be the last character of the
name. From this position of the character string onwards,
the name may have any length or contents. If * is the only
character, the member name may have any length or
contents.

- as a version
The specification refers to all versions of the member
name concerned.

If * is specified as the only character for the entire
member designation, the specification refers to all members
that designate the highest version.

U817-J-Z125-9-7600 31

Multiple selection of member designations Definitions and conventions

Symbol Meaning for multiple selection

< (less than) These symbols permit limiting values for version and date
> (greater to be specified when selecting the members to be processed.

than) The appropriate symbol is placed between the slash and the
= (equal to) version, or between the slash and the date.
(means not Together with the specified values for version and date,

equal to) they restrict the selection of members to be processed.

-member This specification is to be understood as a "minus member".
It excludes from processing a member that would have been
selected by means of the preceding multiple selection.
"member" may also be used to specify multiple selection in
this case; it must however have an identifier referencing a
group of members or a member within the preceding multiple
selection.
There must be a comma between multiple selection and
"-member".

Examples of multiple selection

• Multiple selection

AB’C* All members whose names begin with AB, have any character in the
3rd, and a C in the 4th position are selected. The contents from the
5th position are freely selectable.

’’’/B* All members having a name length of up to 3 characters and with a
B in the first position of the version number, are selected.

//>1983* All members entered since 1.1.84 are selected.

AB//* All AB members of the highest version, regardless of the date, are
selected.

32 U817-J-Z125-9-7600

Definitions and conventions Multiple selection of member designations

• Multiple selection with limiting values

*/>402 All members having a version number greater than 402 are selected.

A*//<1982* All members of the highest version whose names begin with A and
which have a date earlier than Jan. 1, 1982 are selected.

A*/#B* All members whose names begin with A and which have a version
number that does not begin with B are selected.

AB’/=107 All members whose names begin with AB, are up to 3 characters
long and have the version number 107 (equivalent to specifying
AB’/107), are selected.

• Multiple selection with members for exclusion

AB*,-ABC,C* All members whose names begin with AB or with C, except member
ABC, are selected.

L’’’,-L’’’/001
All members whose names begin with L and are up to 4 characters
long, except those having version number 1, are selected.

U817-J-Z125-9-7600 33

Construction specification for member designations Definitions and conventions

Construction specification for member designations

In addition to the designation of the member to be processed ("member"), some LMS
statements also use an additional member designation ("memberu"), which is specified
after a delimiter (,>=) in the statement. "memberu" has a different meaning for the
following statements:

COM Member designation of the member to be used in the comparison
(=memberu)

ADD, DUP, NAM Member designation for the new member (>memberu)

These member designations can be defined as variable by means of construction
specifications.
The variable positions in the construction specification are taken from the member
("member") to be processed. LMS uses the formalism of multiple selection for forming
construction member designations.

The symbols specified in the member designation "memberu" have the following
meanings in the construction specifications:

Symbols Meaning in the construction specification

’ The position in the construction specification identified by
(apostrophe) the apostrophe is filled with the character occupying the

corresponding position in the member designation "member". An
apostrophe defines one position in the member designation.

If the apostrophe occupies the final position of the
construction specification, then no more characters will be
transferred from the member designation "member".

* The asterisk can only be used as the final character in the
(asterisk) construction specification. It means that from this position

all the characters from the member designation "member" are
to be transferred.

If * is used as the only character, the
entire member designation "member" is transferred.

All other positions remain unchanged.

34 U817-J-Z125-9-7600

Definitions and conventions Construction specification for member designations

Examples of construction specifications

A library contains 3 members with the names:

1. ABC/001

2. ABCD/234

3. ABCDE/101

Statements to be executed Names generated by LMS

NAMS ABC>’’X 1. ABX/001
2. not renamed
3. not renamed

NAMS AB*>XY*/A02 1. XYC/A02
2. XYCD/A02
3. XYCDE/A02

DUPS AB’’>’X’Y/A* 1. AXCY/A01
2. AXCY/A34
3. not duplicated

Note

When making multiple selection and construction specifications

different input designations may possibly be mapped to the same output
designation. The differing data is overwritten in accordance with the way the
OVERWRITE processing operand has been set (example: NAMx A*>B).

if a lexicographically higher member designation is generated by means of a
construction specification, and the designation in turn conforms to the multiple
selection, LMS will find this member again when the directory is sequentially
processed.

If a multiple selection occurs more than once (even beyond a sublist), only the last
multiple selection will be processed:

NAMS A>B,A>C

Only A>C will be processed.

U817-J-Z125-9-7600 35

Definitions and conventions Construction specification for member designations

LMS functions
This chapter gives an overview of the LMS functions. The functions are initiated by
statements.
Processing operands control and affect not only the statements, but also the LMS run
as a whole. Job switches which are set when LMS is invoked likewise affect the LMS
run. The LMS statements are described on page 81 ff, the processing operands on
page 203 ff.

After LMS has been invoked, all processing operands are set to default values. If other
processing operand values are required for certain statements, the processing operand
must be set before entering the statement.

If the execution of each LMS statement (positive acknowledgment) is to be logged in
addition to error messages, processing operand LOG=MED or LOG=MAX must be set.

Libraries cannot be processed until they have been assigned. The libraries that are
assigned may already be in existence, or they may be newly created. Not until the
assignment is successful can new members be entered and/or processed.

U817-J-Z125-9-7600 37

LMS functions

Library assignment

All LMS functions require either an input library or an output library, or both. LMS reads
members from the input library and writes members to the output library.

The LMS statement LIB is used to assign a library as an input library, an output library,
or both. This assignment is valid until a further LIB is issued or until the LMS run is
completed.

Library assignment via LIB

LIB defines

which library is assigned or closed

whether the library is assigned as an input library, an output library, or both

whether the library is a program, source, macro or object module library

whether the library is an existing one, or whether it must be created

Libraries are addressed in LIB via the file name of the library, the link name, or the
short designation for the library.

Link name

If a link name is to be used for the library, a /SET-FILE-LINK command establishing the
link name to the library must be issued prior to the LMS call:

/SET-FILE-LINK FILE-NAME=libraryname, LINK-NAME=linkname

Example

/SET-FILE-LINK FILE-NAME=BIB,LINK-NAME=TEST
/START-PROGRAM $LMS
$LIB TEST,IN
.
.
.

Library A.BIB is assigned the link name TEST; during the LMS run it is referenced via
this link name and opened as an input library.

38 U817-J-Z125-9-7600

LMS functions

Short library designation

The short library designation for a statement can be used to assign another input
library temporarily. This assignment is valid for this statement only, afterwards the LIB
assignment reapplies.

Libraries assigned with LIB are regarded as input or output libraries until new libraries
are assigned. If no other library is assigned, the assignments apply until the end of the
LMS run.

However, LMS also allows another input library to be opened for a statement. In this
case the short designation of the library is specified as an operand in the statement.
The validity of this library assignment expires after execution of this statement.

In the next statement which does not contain a short library designation as an operand,
the input library assigned with LIB resumes its validity.

The short library designation is declared in a /SET-FILE-LINK command using the link
name LIBlib:

/SET-FILE-LINK FILE-NAME=libraryname, LINK-NAME=LIBlib

For "lib" the three digits representing the short designation in the LMS statements
are used.

Leading zeros may be omitted in statements, but not in the /SET-FILE-LINK
command.

in LMS statements, "lib" must be enclosed in parentheses.

Example 1

/SET-FILE-LINK FILE-NAME=BIB,LINK-NAME=LIB001
/START-PROGRAM $LMS
$LIB (1),OUT
.
.
.

Library B.BIB is assigned a short library designation (1); during the LMS run it is
referenced via this short designation and opened as an output library.

U817-J-Z125-9-7600 39

LMS functions

Example 2

/SET-FILE-LINK FILE-NAME=EIN.BIB,LINK-NAME=LIB001
/SET-FILE-LINK FILE-NAME=AUS.BIB,LINK-NAME=LIB002 (01)
/SET-FILE-LINK FILE-NAME=PLA1.BIB,LINK-NAME=LIB003
/SET-FILE-LINK FILE-NAME=PLA2.BIB,LINK-NAME=LIB004
/START-PROGRAM $LMS (02)
$LIB (1),IN
$LIB (2),OUT (03)
$DUPS ELEM1>ELEM01
$COMS ELEM3=ELEM4 (04)
$LSTS ELEMENT1(3)
$TOCS (4) (05)
$LSTS ELEM1
$COMS ELEM1=ELEM3 (06)
$END (07)

(01) The I/O libraries are assigned with the /SET-FILE-LINK command since they are
referenced during the LMS run by way of short designations.

(02) LMS is invoked.

(03) The libraries to be assigned as standard libraries for the statements are assigned
with LIB.

(04) For these statements, which contain no short designation, the libraries assigned
with LIB apply.

(05) Member ELEMENT1 from library PLA1.BIB, for which the short designation (3)
has been defined in the /SET-FILE-LINK command, is listed; the directory of the
library PLA2.BIB for S-type members is output.

(06) These statements again refer to the libraries assigned with LIB.

(07) LMS is terminated.

For a description of the statements in alphabetical order see page 91 ff.

40 U817-J-Z125-9-7600

LMS functions

Sequential libraries

Sequential libraries must be assigned with the /SET-FILE-LINK command. In the /SET-
FILE-LINK command, the operand ACCESS-METHOD=BTAM is mandatory. If the tape
library does not yet have a catalog entry and is to be read, an IMPORT-FILE command
must be issued prior to the /SET-FILE-LINK command:

/IMPORT-FILE SUPPORT=TAPE(VOLUME=vsn, DEVICE-TYP=device, FILE-NAME=filename
/SET-FILE-LINK LINK-NAME=LIBlib, FILE-NAME=filename, ACCESS-METHOD=BTAM

Sequential libraries cannot be created with the aid of LIB; they must be assigned with
LIBOUT and the short designation (see page 330).

U817-J-Z125-9-7600 41

Processing of members LMS functions

Processing of members

The following sections provide an overview of the options for processing members with
LMS:

LMS permits members to be

entered in libraries as non-delta and delta members

output to files

output to other libraries (duplicated)

listed

deleted

numbered

compared

renamed

edited

corrected

LMS also enables the library’s directory to be output.

All statements mentioned in this chapter are described in alphabetical order starting at
page 91 ff.

42 U817-J-Z125-9-7600

LMS functions Processing of members

Adding members to a library

The following statements output members to the assigned output library: ADD, COR,
DUP, EDR, EDT, NUM, PRT and UPD.

The OVERWRITE processing operand determines whether or not an identically named
member in the output library is overwritten.

ADD adds files, modules from the EAM area, members from FMS libraries, and records
from the LMS statement stream to the assigned output library as members. This
statement enables the user to additionally define whether the member is stored as a
non-delta member or as a delta member.
Program libraries permit files with a RECORD-SIZE of up to 32 Kbytes to be stored.

If a sequential library (tape library) is assigned, the ADDC statement converts BS2000
program files to BS1000 phases and stores them as C-type members.

If an ISAM file is added, the KEY processing operand determines whether the ISAM
keys and other file attributes are included. ISAM keys having a length of up to 255
bytes may then be entered.

Adding the ISAM keys to a member is especially useful for archiving.

If processing operand KEY has been set, it is also possible to include files with
RECORD-FORMAT=FIXED; if not, only RECORD-FORMAT=VARIABLE is allowed.

Notes

The ISAM keys of a source program file should not be included in the member,
since the compiler cannot translate the source program from this member without
errors if ISAM keys are present.

If system file SYSDTA is assigned to a member which has stored the ISAM key, the
ISAM keys are also read. The ISAM keys must then be removed from the program
which carries out the processing.

U817-J-Z125-9-7600 43

Processing of members LMS functions

Fig. 4 Adding members with ADD

44 U817-J-Z125-9-7600

LMS functions Processing of members

PRT can be used to write the LMS log to a list member.

Fig. 5 Adding members with PRT

DUP duplicates members from the input library and outputs them to the output library,
storing them there with different member designations, if desired. This statement
enables the user to additionally define whether the member is stored as a non-delta
member or as a delta member.

Fig. 6 Adding members with DUP

EDT and EDR branch to EDT and EDOR respectively in order to process the specified
member of the input library. When EDT or EDOR is terminated, the processed member
is output to the assigned output library, in some cases with a new name.

When no operands are specified for EDT or EDR, a branch is made to EDT or EDOR
but no member is read into the output area.

U817-J-Z125-9-7600 45

Processing of members LMS functions

Outputting members

The members of an input library can be output

to files or FMS libraries by means of SEL

to the output library by means of DUP.

Fig. 7 Output of members

Listing members

The listing of members is controlled by LST and PRT. LST defines the members and
the library whose members are to be output.
PRT defines the output medium.

Processing operands can be used to control the format and size of the output.

46 U817-J-Z125-9-7600

LMS functions Processing of members

Deleting members

DEL deletes one member, several members or all members of an input library
(program, source, macro or object module library).

In the case of program libraries, a distinction is made between logical and physical
deletion:

Logical deletion
The entries in the directory are deleted and storage space for the member
concerned is freed.

Physical deletion
In addition to logical deletion the storage space of the corresponding member is
overwritten with binary zeros.

A member of a program library is physically deleted if the processing operand
DESTROY=YES has been set or if the member of a program library contains a code
indicating physical deletion. Delta members are not deleted physically until the last delta
member of a delta tree, i.e. the complete delta tree, has been deleted.

Numbering records using record numbers and check fields

Some LMS functions, e.g. correction of members, make it necessary to access specific
records.

To do this, LMS offers two criteria:

record numbers

record IDs and check fields

Record numbers

The record number is the position of the member record in relation to the beginning of
the member. When a member is displayed on SYSLST the record number is output to
the member or it is included in the comparison log (see page 51). It is specified as
#number. "number" is a positive integer of up to 8 digits.

The number of the first member record is #1; the number of the second record is #2,
etc.

Example of a member listing

#1>AAAAAAA
#2>BBBBBBB
#3>CCCCCCC

U817-J-Z125-9-7600 47

Processing of members LMS functions

Check fields

LMS is capable of defining and processing check fields in records to be processed.
The contents of the check field are referred to as the record ID.

Record IDs define individual records, e.g. during the correction of members (see page
53), or during the evaluation of the comparison log (see page 51).

A record ID may be

an alphabetic character string

a numeric character string

a combination of both

blanks.

When records are read from an input library or file,

a check field may be defined (processing operand CHECK), and

its record ID checked for ascending sequence (processing operand CHECK).

When records are written to a member,

a check field may be defined (processing operand RANGE),

the record ID can be generated using character strings (processing operand
STRING) and ascending numbering (processing operand VALUE),

the ISAM key can be entered as the record ID (processing operand STRING) if the
records belong to an ISAM file.

48 U817-J-Z125-9-7600

LMS functions Processing of members

Fig. 8 Check field structure

If members already exist, NUM can be used

to generate a new check field with a record ID, or

to renumber an existing check field.

The structure of the check field is controlled by the processing operands RANGE,
STRING and VALUE.

If a member is output to an ISAM file, the ISAM key can be taken from the check fields
of the member records (processing operand CHECK), if no ISAM keys are stored in the
member.

U817-J-Z125-9-7600 49

Processing of members LMS functions

Comparing members

COM is used to compare text members. The members are compared one record at a
time. The range of the comparison operation can be defined with the aid of processing
operands.

LMS compares two members, the member specified in COM before the comparison
operator being defined as the primary member; the one after the comparison operator
as the secondary member. The comparison operator is represented by the character
"=".

The differences thus established can be logged if requested. This log is referred to as a
comparison log. Following the comparison log, LMS issues the comparison statistics in
the form of a table showing the results of the comparison in terms of numbers.

The comparison range must be defined with the COMPARE processing operand, before
COM is issued.

In order to decide whether two records match, a distinction is made between

formal and

logical comparison.

In logical comparisons, blanks are ignored.
In formal comparisons, all record characters are compared.

The results of the two comparison modes (formal and logical) are logged in the same
way.

To permit comparison, two algorithms are provided, namely the Heckel algorithm
(standard feature as of LMS Version 1.3A) and, optionally, the cross comparison.

Experiments with the Heckel algorithm have shown that CPU time is about the same
(for small-scale and medium-scale member sizes) or even lower (for large members)
than when cross comparison is used. The results of the Heckel algorithm with respect
to the number of SAME lines are better. When using formal comparison, the Heckel
algorithm clearly outdoes the cross comparison. This advantage is important where the
processing of delta members is concerned.

50 U817-J-Z125-9-7600

LMS functions Processing of members

Comparison log

Normally, the compared parts of the records are logged and not the complete records.

In the comparison log the results are based on the comparison of two ranges, the
secondary member being taken as the point of reference, i.e. the primary member is
interpreted as the new member and the secondary member as the old one.

Comparison Meaning
result

SAM The compared parts of the two records in the primary and
(same) secondary members match.

DEL The record with this comparison range only occurs in the
(deleted) secondary member.

INS The record with this comparison range only occurs in the
(inserted) primary member.

If, in the COMPARE processing operand, a number is specified for the synchronisation
counter, LMS will switch to cross comparison. The PAR COM= statement makes it
possible to return to the Heckel algorithm.

Setting the processing operand PAR COMPARE=/COR causes the comparison log to
be converted into correction statements (see page 53, "Correction statements from the
comparison log").

U817-J-Z125-9-7600 51

Processing of members LMS functions

Comparison statistics

The comparison statistics supply the following information about a comparison:

total number of records compared in primary and secondary members

number of records inserted

number of records deleted

number of identical records.

In addition the result of the entire comparison is indicated:

Comparison Meaning
results

S (same) No differences were found during the comparison.

C (changed) Differences were found during the comparison.

I (inserted) The secondary member was not found.

D (deleted) The primary member was not found.

ERR (error) An error occurred during the comparison.

Setting the processing operand PAR SUM=YES causes the comparison statistics to be
stored.

Comparison statistics thus stored can be

listed with the aid of SUMPRT,

added to a sum field with SUMADD, and

deleted with SUMDEL.

52 U817-J-Z125-9-7600

LMS functions Processing of members

Correcting members

LMS provides various correction statements for correcting members:

COR, EDR and EDT correct text members (member types S, M, J, P, D, X)

UPD corrects object and load modules (member types R and C) and LLMs
(member type L)

Correction of text members

The member specified via COR is modified with the aid of COR subfunctions, called
correction statements. These correction statements, which can access one or more
member records by way of record numbers or record IDs, make the following changes
in the member:

insert records

delete records

replace records

change records.

Correction statements from the comparison log

When S-type or M-type members are compared using COM, the processing operand
COMPARE defines whether the comparison log is converted into correction statements.

These correction statements, which at the same time establish the differences between
the members that have been compared, are written to the system file SYSOPT. If
SYSOPT is assigned to a file, this file can then again be included as a procedure
member.

By reassigning the statement entry by means of CTL (see page 68), the user can
transfer control of the LMS run to the procedure member. The changes in the
secondary member are thus performed automatically.

This LMS function enables the user to store only one version of a member. All more
recent versions can then be compared with this version, and the differences can be
stored in a procedure member.

U817-J-Z125-9-7600 53

Processing of members LMS functions

EDT and EDR statements

EDT and EDR invoke the respective editors EDT and EDOR as a subroutine. The
member specified is then processed with the aid of EDT or EDOR statements. After the
editor is terminated, the corrected member is written to the output library.

EDT or EDR without a member type and operand specification results in a branch to
EDT or EDOR without a member being read into the work area.

Correction of object and load modules and LLMs

UPD corrects the specified member of the assigned input library. The corrected
member is then written to the assigned output library. In this case the member may be
given a new member designation.

UPD has various substatements for correcting object and load modules and LLMs.
These substatements are read from the statement stream directly after UPD until *END
is encountered.

The substatement functions for object modules (member type R) are as follows:

correct text records

cancel text corrections

convert corrections, i.e. either REP records into text corrections or vice versa

insert REP records

insert INCLUDE records

change control section attributes

exclude record types from the input member

rename symbols

define control numbers

define identifications

define base address

54 U817-J-Z125-9-7600

LMS functions Processing of members

The substatement functions for load modules (member type C) are as follows:

correct text records

cancel text corrections

delete correction journal records

define control numbers

define identifications

define segments

define base address

The substatement functions for LLMs (member type L) are as follows:

correct text records

cancel text corrections

delete correction journal records

define identification

Renaming members

NAM renames the specified members of the assigned input library. This statement also
permits the renaming of members whose designations do not conform to LMS
conventions.

6 Renaming of delta members is not permitted for audit reasons.

Outputting library directory

TOC logs the directory entries of the specified members or of the entire input library.

Processing operand SORT is used to determine whether the directory remains unsorted
or is to be output sorted by name, version number, date or reference name. Unless
otherwise specified, member designations are output sorted by name, version number
and date.

Directories of program libraries are always output sorted alphabetically by member type
and name.

TOC or TOC* */* must be specified to ensure that LMS outputs the complete directory
of a program library.

U817-J-Z125-9-7600 55

Processing of members LMS functions

Storing and calling procedures

Storing procedures

LMS allows the user to store BS2000 procedures and ENTER procedures as members
in libraries (member type J for program libraries, member type S for source libraries).

Existing procedure files can be incorporated as members into libraries by means of
ADD.

Storing procedures in this way, especially where small command files are concerned,
saves storage space. The number of catalog entries is decreased.

Note however that any ISAM keys that have been stored, using PAR KEY=YES, in
members of program libraries, must first be removed from these members before the
procedure is called.

A library member can also be assigned as the system input file (SYSDTA):

vers type
/ASSIGN-SYSDTA TO-FILE=(LIB=libraryname,ELEM=member[,VERSION=][,TYPE=]

*STD *STD

where *STD means the highest available version for VERSION and member type S for
TYPE. Other TYPE options are D and M.

Calling procedures

When calling procedures that are stored as members in a library, the user must specify
the library name and member name instead of the file name:

/DO
/CALL libname(member)
/ENTER

56 U817-J-Z125-9-7600

LMS functions Processing of members

Caution

Valid member names are not always permitted as file names.

When a library member is called, a temporary copy of the member (SAM file) is
created by SYSFILE management under the name

S.IN.libname.membername.tsn.HHMMSS

The library name is truncated to the first twenty characters if it is longer then twenty.
HHMMSS is the time in hours, minutes and seconds. This file is erased when it is
no longer used.

Note

Job switch 1 must be set if LMS is invoked in a DO or CALL procedure and LMS is
also supposed to read the statements from the procedure.

U817-J-Z125-9-7600 57

Delta method LMS functions

Filing members using the delta method

Two methods are available for storing multiple versions of one member name in
program libraries:

the non-delta storage method

the delta storage method

The non-delta storage method is used to store exactly one member, i.e. all records of
a member, in its own container (a unit of storage in the library). If another version is
added under this name, all records of this member will also be kept in an individual
container. Any relationship that may exist between these members is unknown to LMS.
Such members are henceforth referred to as non-delta members.

During processing, e.g. reading a non-delta member, LMS can directly access all
records of the member specified and perform the action. This method applies to all
member types and, because of its fast access features, it is particularly suitable for
members that are still being developed or subject to change.

For text-oriented member types S, M, J, P and D, the delta storage method can be
used to store multiple versions of one member. With this storage-saving method only
the temporarily first member is stored in its entirety in its own container. When other
versions of the same member are added, then only the records that are different from
those of the previous member are identified and inserted (comparison of members). In
addition, the link between new version and previous version reveals the logical
relationship between the individual members.
Such members are henceforth designated as delta members.

During processing, e.g. reading a delta member, the relevant records of the referenced
member are filtered out. This may slow down the entire action if a great number of
related delta members are present. The delta storage method is therefore specially
suited for the efficient and transparent filing of member versions.

58 U817-J-Z125-9-7600

LMS functions Delta method

Delta as a storage form and organizational aid

Delta members can be distinguished from non-delta members not only on account of
their efficient storage form but because of the unique relationship that exists among
delta members.

Storage space is saved due to the delta structure:

Redundant records of a member with respect to the predecessor member can be
identified and will not be stored again.

For records to be identified as redundant a formal comparison is made between the
records of the new version and the specified base version.

Unique relationships are established via:

Unique member names
Delta members that are interrelated have the same member name and thus form a
range of names. For this reason, non-delta members and delta members must have
different member names, which means that

a non-delta member is created only if no delta member exists that has the same
name,
a delta member is created only if no non-delta member exists that has the same
name.

All delta members having the same name form exactly one logically structured "delta
tree" which in its simplest form is a "delta sequence".

One name is associated with exactly one delta tree.

Unique version designations
When a member is included as a delta member, a specification is required as to
what member was the predecessor member, i.e. what member is to be used as a
basis for comparison.

The conventions for member names and version designations that are established when
members are added cannot be altered afterwards, for reasons of auditing and

6 consistency. A new delta tree, if required, may be created by duplicating and
simultaneously renaming the existing delta tree.

U817-J-Z125-9-7600 59

Delta method LMS functions

Adding delta members

Delta members may be added using ADD or DUP. The BASEVERSION operand can be
used for

activating delta processing, and

defining the predecessor member to which a relationship is to be established. The
comparison is also made on the basis of this predecessor member.

If the operand is omitted, a non-delta member will be added; BASEVERSION must be
the last operand of the statement. Furthermore splitting of a specification between
BASEVERSION= and operand value is not allowed. This means that continuation lines
are not possible.

The operand values of the BASEVERSION operand permit the following distinctions to
be made:

BASEVERSION=*NONE
The delta member has no predecessor. This member is the first member of a delta
tree. It must have a unique name. All records are stored in a new container.

BASEVERSION=*HIGH
The predecessor is a delta member having the same name and the highest version
designation. The new delta member is appended to the currently highest version.
The delta quantity is established and stored in the container. The version
designation of the new delta member should be higher than the currently highest
designation.

Example of a delta sequence (the arrows represent the relationships)

EXAMPLE/V1 EXAMPLE/V2 EXAMPLE/V3 ... EXAMPLE/Vn

BASEVERSION=version
The predecessor member is the delta member having the same name and the
specified version designation. This permits tree-like structures to be built. The new
delta member is appended (quasi-laterally) to the specified version. The delta
quantity is established and stored in the container. The relation to the predecessor
member is to be obtained from the version designation of the new delta member.

Example of a delta tree (the arrows represent the relationships)

EXAMPLE/V2 EXAMPLE/V21 EXAMPLE/V22 ... EXAMPLE/V2n

EXAMPLE/V1 EXAMPLE/V31 EXAMPLE/V311 ... EXAMPLE/V31n

EXAMPLE/V3

EXAMPLE/V32 EXAMPLE/V321 ... EXAMPLE/V32n

60 U817-J-Z125-9-7600

LMS functions Delta method

Overview of delta members

When overviews of delta members are generated, the TOC processing operand has the
following effect:

If TOC=F, the previous output is extended to include the FLAG field. The D entry
denotes that the member is a delta member.

If the operand value TOC=D is specified, then a complete delta tree will be listed no
matter what member has been specified via TOC.
As well as the member designations the internal delta numbers of the members are
output to field DELTA# and the internal numbers of the predecessor members are
output to field BASE#.
The delta number reflects the chronological order in which the members have been
included. Both numbers uniquely describe the chaining of members in a tree; they
cannot be controlled by the user. The user can visibly define the chaining of
members by proper version specification.

Deleting delta members

A distinction should be made between logical and physical deletion:

Logical deletion
This merely deletes the entry from the directory. The records and the relationship
with the predecessor member remain intact.

Physical deletion
Controlled by the DESTROY processing operand (it must be specified when the
member is included) the storage place allocated to the member is overwritten with
binary zeros.
When used for delta members this operand will only become active once the last
member of the delta tree is deleted. Specification of DESTROY=YES for a member
suffices to delete the entire container.

U817-J-Z125-9-7600 61

Delta method LMS functions

Locking delta members

When processing

a non-delta member, the specified member will be locked (member = container);

a delta member, all members stored in the referenced container will be locked
(delta tree = container).

In practice this means that a container can only be used for input or output.

Restrictions when using the delta method

Here are some details that should be considered when filing members by means of the
delta method:

Renaming single delta members or an entire delta tree is not possible as this would
6 disrupt the auditability of an archive or put the consistency of data at risk if a

current action is somehow aborted.

Overwriting delta members in the sense of ’replacing existing members’ is not
allowed, i.e. the OVERWRITE=YES operand is ineffective and is rejected with an
error message.

Correcting a delta member is not possible.

62 U817-J-Z125-9-7600

LMS functions Controlling the LMS run

Controlling the LMS run

The LMS run is controlled by means of the

processing operands

job switches.

Effect of processing operands

The different values set in the processing operands affect the execution of LMS and its
individual functions. The operands are set with the aid of PAR.

The following table shows which processing operand can be used to modify a
particular statement or affect the entire LMS run.

LMS statements
A C C D D E E L N N P R S S T U L R
D O O E U D D S A U R S E U O P M U

Processing D M R L P R T T M M T T L M C D S N
operands

B[ASE] *

CH[ECK] * * * * * * *

COM[PARE] *

CS[ECT] * *

DES[TROY] * * * * * * * * * *

E[RRCONS] *

FC[BTYPE] *

FO[RMAT] *

I[NFO] *

K[EY] *

LC[ASE] *

LIN[E] * * * * *

LO[G] * * *

LS[T] *

N[EWFORM] *

U817-J-Z125-9-7600 63

Controlling the LMS run LMS functions

LMS statements
A C C D D E E L N N P R S S T U L R
D O O E U D D S A U R S E U O P M U

Processing D M R L P R T T M M T T L M C D S N
operands

O[VERWRITE] * * * * * * * * * *

PA[TH] * *

PH[ASE] *

RA[NGE] * * * * *

RE[FERENCE] * * * *

SE[GMENT] *

SL[ICE] * *

SO[RT] *

STRIN[G] * * * * * *

STRIP * *

SU[M] *

TER[MINATE] *

TES[T] * *

TO[C] *

TY[PE] * * * * * * * * * * * * *

V[ALUE] * * * * *

64 U817-J-Z125-9-7600

LMS functions Controlling the LMS run

The processing operands define

which member type is predefined (TYPE)

whether members to be deleted are physically deleted (DESTROY)

whether the ISAM key and other file attributes of ISAM files are to be included (KEY)

with which FCB type output files of text members are created (FCBTYPE)

the values of check fields and their interpretation
(CHECK, RANGE, STRING, VALUE)

the execution of comparisons and their interpretation
(COMPARE, SUM)

the overwriting of members (OVERWRITE)

the scope and format of output during listing and logging (LINE, BASE, FORMAT,
INFO, LOG, NEWFORM, LST, PATH, SLICE, CSECT)

in the case of R-type or C-type members, which record types are not to be
accepted as output members (STRIP)

the logging format of the directory of program libraries (TOC)

whether the directory of a library is to remain unsorted or to be output sorted by
version number, date or reference name (SORT)

logging and behavior in the event of an error (ERRCONS, TERMINATE)

whether run or test mode is activated (TEST)

whether only those members satisfying a reference condition are processed
(REFERENCE)

the load module segment which is to be processed (SEGMENT)

the phase format to be generated (PHASE)

whether all entries are to be converted to uppercase (LCASE)

U817-J-Z125-9-7600 65

Controlling the LMS run LMS functions

Controlling log output

The LMS log may include the entered statements, their execution or abnormal
termination, the assigned I/O libraries as well as lists generated, for example, when
members are listed or compared.

The log may be written to SYSOUT, SYSLST or to a library member. PRT is used to
specify the output medium.

If the log is written to a member, LMS creates a member of type P in the case of
program libraries, and type S in the case of source libraries. If the library to which the
member is written is a source library, it must not be the default I/O library of the
current LMS run.

The scope and format of the log is controlled by processing operands and job
switches.

If job switch 4 was set when LMS was invoked, the start and end messages of LMS are
suppressed. Furthermore the LMS log is limited to the minimum (corresponding to the
processing operand PAR LOG=MIN).

If job switch 8 was set when LMS was invoked, the access routine messages (AMCB,
DMS) are not output.

An overview of the effects of processing operands on the LMS log is given in the
following table:

Processing operand Function

LOG Defines whether all statements, or statements only
in the event of an error, or only messages are
logged.

FORMAT Defines the record format of a member being listed.

INFO Defines the output scope of a member being listed.

SORT Defines sorting of the directory.

ERRCONS Defines whether and, if yes, which messages are to
be logged to system file SYSOUT if nothing else is to
be logged to SYSOUT.

LINE Defines the number of lines and columns per log page.

TOC Defines the logging format of the directory (table
of contents) of program libraries.

NEWFORM Controls line and page feed for logs.

COMPARE Defines the range of the comparison log.

66 U817-J-Z125-9-7600

LMS functions Controlling the LMS run

Positive and negative acknowledgments

If the processing operand LOG=MAX or LOG=MED is specified, the execution of each
LMS statement affecting a member will be logged. If the statement is executed
successfully, LMS will issue a positive acknowledgment.

If the statement cannot be executed, LMS will log a negative acknowledgment and, if
applicable, a corresponding error message (for error messages see page 293 ff).

All positive and negative acknowledgments have the following format:

[NO] statement member[word member][cause]

Meaning:

NO The statement has not been executed.

statement Statement name

member Member designation or file name (in ADD and SEL)

word Keyword: AS, INTO, WITH

cause Result: EXISTING, REPLACED, etc.

Example

/SHOW-FILE-ATTRIBUTES
PROQUELL
.
.
.

ADDS PROQUEL>ELEMPRO
NO ADD (S)PROQUEL AS ELEMPRO, OUTPUT EXISTING

ADDS PROQUELL>ELEMPRO
ADD PROQUELL AS (S)ELEMPRO

U817-J-Z125-9-7600 67

Controlling the LMS run LMS functions

Control of statement input

CTL defines the medium from which the LMS statements are to be read.

The statements can be read

from the terminal,

from system file SYSDTA, or

from a library member.

If the statements are read from a member, the member must be of type J in the case
of program libraries, and of type S in the case of source program libraries.

Controlling screen overflow

TCH enables the user to control screen overflow and page turning.

An overflow occurs when an entry at the terminal would cause more lines to be output
than specified in the /MODIFY-TERMINAL-OPTIONS command (see the manual "User
Commands (SDF Format)" [7]).

TCH specifies whether in the event of an impending overflow a time of t seconds will
be waited or not, or whether "PLEASE ACKNOWLEDGE" will be output before new
output appears on the screen.

Furthermore it is possible to specify whether the output is to appear on a new screen
or whether roll-up mode is to be activated in the event of a function change or upon
acknowledgment of "PLEASE ACKNOWLEDGE".

The PLEASE ACKNOWLEDGE message is issued in the following form:

PLEASE ACKNOWLEDGE (NO/TIMER/<ANY INPUT>) / INTERRUPT (NE/NS/NI):

The input options have the following meanings:

NO There is no screen overflow control, i.e. if the screen is full and
further data is to be output, the screen is overwritten.

TIMER The system waits for six seconds before displaying the next screen.

<ANY INPUT> Any specification other than NO, TIMER, NE, NS or NI causes the
next screen to be displayed.

68 U817-J-Z125-9-7600

LMS functions Controlling the LMS run

NE Processing of a member is interrupted. Afterwards the next member
satisfying the current multiple selection is processed.
(NE : NEXT ELEMENT)

NS The next statement is executed. The current statement and all
previously gathered statements, if any, are ignored; the next
statement from the statement buffer or from the procedure member
assigned with the aid of CTL is executed.

Once all statements have been executed, the next statement is read
from the medium valid before CTL was issued.
(NS : NEXT STATEMENT)

NI The next input buffer is processed. All statements currently being
processed are interrupted; statements that are still in the input buffer
or the assigned procedure member are ignored. If a procedure
member has been assigned, the statement input is reassigned to the
medium which was assigned prior to the procedure member.
(NI : NEXT INPUT)

U817-J-Z125-9-7600 69

Controlling the LMS run LMS functions

Execution in run or test mode

LMS distinguishes between two types of program execution: run mode and test mode.

In run mode, all statements are executed. In test mode, only CTL, END, LIB, PAR, PRT
and SYS are executed. Instead of being executed, the remaining statements are
checked by LMS as to whether

they are formally correct

the required libraries have been assigned,

the member names used are permissible,

the position and length of check fields for correction functions and the numbering
are correct.

In test mode, LMS calculates the control numbers for corrections made with UPD.

Thus, test mode permits errors to be detected before a function is executed.

Run mode is activated by default. Test mode is activated and deactivated by means of
the TEST processing operand.

In addition, LMS switches over to test mode if a specific error occurs. The TERMINATE
processing operand defines which errors cause the termination code to be set, resulting
in the switch to test mode. As the default, LMS terminates run mode only in the case of
fatal errors. RST is used to return LMS to run mode.

User interfaces

LMS enables the user to branch to a user program during the listing or comparison of
members.

This subroutine can perform the following actions prior to the processing of a member
record:

manipulate the current member record

insert own records before the current member record, or at the end of the member

exclude the current member record from processing.

For details see page 196, USE.

70 U817-J-Z125-9-7600

LMS functions Controlling the LMS run

Interrupting the LMS run

User interrupt

The user can interrupt the LMS run by pressing a program interrupt key (e.g. K2).

Continuation of the LMS run can be controlled by the INTR command, which may
optionally be supplied with an input text. This input text is subsequently interpreted by
LMS during interrupt handling. The current function is informed of the type of
termination.

The following actions are taken when an interrupt occurs:

LMS is interrupted by BREAK/ESCAPE (K2 or similar).
If LMS is running in interactive mode, the appropriate STXIT routine will be
activated.

LMS executes a BKPT macro (in interactive mode only).

Entering an INTR command causes control to be removed from the BREAK-STXIT
routine and the INTR-STXIT routine to be activated.

LMS analyzes the text supplied with the INTR command, and informs the current
function about the type of termination that is desired.

Control is removed from the INTR-STXIT routine by means of the EXIT macro.

The interrupted function terminates in the requested form.

INTR command

Termination of the current function is controlled by means of the INTR command, which
may optionally be supplied with a text that is passed on to the interrupted function
during interrupt handling. INTR commands include:

INTR NI The next input buffer is processed (NEXT INPUT). All statements
waiting to be executed under LMS are ignored. This means that
statements currently being processed are interrupted, and that
statements that are still in the input buffer, or statements that are still
in the input member, are ignored. Input is reassigned to the medium
that was valid before CTL was issued.

All activities that are pending are ignored.

U817-J-Z125-9-7600 71

Controlling the LMS run LMS functions

INTR [NS] The next statement is executed (NEXT STATEMENT). The current
statement and all previously gathered statements, if any, are ignored;
the next statement from the statement buffer or from the CTL
member is executed.

Once all statements have been executed, the next statement is read
from the medium valid before CTL was issued.

NS is also the default value when the INTR command is entered
without any operands.

INTR NE Processing of a member is interrupted (NEXT ELEMENT).
Processing continues with the next member that satisfies the current
multiple selection.

LMS interrupt caused by errors

Error handling is also controlled by means of the STXIT routine.

Program termination occurs in the event of

program errors ("P errors", SVC errors)

ABEND command (abnormal end) owing to EXECUTE, LOAD, CANCEL, LOGOFF or
line loss

TIMEOUT (program/task runtime elapsed)

In all these cases a check is performed to ensure that the LMS libraries remain
consistent. Basically, LMS makes sure that libraries are closed in an orderly manner.

The following applies to all program termination conditions:

All STXIT routines in LMS are deactivated in order to prevent any incorrect
continuation of processing by INTR.

LMS simulates an END. This causes all open libraries to be closed.

If any libraries are still open at program termination time, these will be closed.

72 U817-J-Z125-9-7600

LMS functions Controlling the LMS run

Program errors

Before END is simulated, the following message is issued on SYSOUT:

PROGRAM ERROR AT loc (IW=iw)

where "loc" is the interrupt address and "iw" the interrupt weight.

LMS terminates with a dump.

Program error handling has the following effects:

Diagnostic documents will be generated at all times.

Any continuation by LMS following program errors (this also applies to other
interrupts) with RESUME, which would be pointless in any case, is prevented.

Diagnostic aids

Setting job switch 31 causes a test condition to be set in LMS. In the event of a
program error, in batch mode, LMS terminates with a dump. In this case the registers
are set in the same way as they were at the time the interrupt occurred. When job
switch 31 is set in interactive mode, the following question is asked:

DO YOU WISH A BKPT (Y/N)?

If the answer is Y, the registers are loaded in the way they were defined at the time of
interrupt. Then a BKPT macro is issued. The INTR interrupt routine is deactivated in
order to prevent any continuation of LMS by INTR.

A dump is taken in any case before a simulated END is executed and LMS is
terminated.

Entering a BKPT makes sense in interactive mode only. This is done by setting job
switch 31.

An important application of this function is the testing of procedures with user exits,
which permit the user to enter his own routines in the LMS run.

U817-J-Z125-9-7600 73

Controlling the LMS run LMS functions

Using job switches

The user can influence the LMS run by means of BS2000 job switches. They must be
set by the system command /MODIFY-JOB-SWITCHES ON=(no,...) before LMS is loaded.

The following job switches affect the LMS run:

Job switch 1:
In interactive mode, standard practice is for the LMS statements to be read from the
terminal using the WRTRD macro. When job switch 1 is set, the statements are read
by the RDATA macro from the file that is assigned to the logical system file
SYSDTA.

When LMS is invoked in BS2000 procedures, job switch 1 must be set if the
statements are to be read from SYSDTA.

Job switch 4:
When job switch 4 is set, the start and end messages for LMS are suppressed.

Job switch 8:
When job switch 8 is set, the access routine messages (AMCB, DMS) are not output
(for messages see page 317 ff).

Job switch 9:
By setting job switch 9, the user can request additional storage space. This makes it
possible to process up to 12,000 non-matching records in one comparison and to
sort extensive directories contiguously with the aid of the TOC function.

Job switch 31:
Job switch 31 permits a test condition to be set that can be used for diagnostic
purposes (see page 71).

The job switches are only interrogated on initialization; any subsequent setting and
resetting has no effect for LMS.

74 U817-J-Z125-9-7600

LMS functions PAM key elimination

PAM key elimination

In future, BS2000 will only support disks with fixed block size (2 Kbytes, 4 Kbytes, etc.).
These fixed block sizes are not readily compatible with PAM keys, for which reason the
PAM keys will be dropped. This process has been termed "PAM key elimination".

As of BS2000 V10 (for ISAM as of BS2000 V9.5) there are two different file formats on
disk for SAM, ISAM and UPAM files; the previous format tied to the PAM key (PK
format) and the non-key format (NK format).
The file format is defined by the BLKCTRL value. BLKCTRL can assume the value
PAMKEY, DATA or NO. For details on the file formats, please refer to the "DMS
Introductory Guide and Command Interface" [14].

Library files

The distinction between PK and NK format is primarily related to DMS. This distinction
is reflected in the following ways in the internal file organization of the libraries:

PLAM

The PAM key is not required for the organization of a PLAM library. With regard to
files, however, there is a difference which is represented by the BLKCTRL file
attribute.

PLAM libraries need not be converted with PAMCONV when migrating between the
PK and the NK environments.

OML

In OMLs the PAM key is used for organizing the library structure and information in
the library; consequently this format can no longer be offered in the NK
environment.
There is no migration. PLAM libraries must replace the OMLs.

OSM

OSMs are based on the ISAM access method. The library utility MLU makes use of
this access method, for which reason it is only indirectly affected by PAM key
elimination.

When migrating betwen the PK environment and the NK environment, OSMs must
be converted with the aid of the product PAMCONV.

U817-J-Z125-9-7600 75

PAM key elimination LMS functions

Member processing

Overview

The following diagram provides an overview of the situations which may arise when
transferring data between the file and library members.
For members, logical information units are listed; for files, the BLKCTR value is given.

The arrows indicate the transfer direction.

F
K-SAM K-UPAM < K phases I
K-ISAM L

E

KEY:=X’00..00’

Member Member Member Member
records records records records L
(variable) (blocked) (blocked) (blocked) I

B
[Attr] Attribute Attribute R
[record] record record A

R
PAM keys Descript. Y

PAM keys
are
lost 12 bytes

in block
are over-
written

F
NK-SAM NK-UPAM NK-UPAM NK I
NK-ISAM BLKCTRL=NO BLKC.=DATA phases L

E

Fig. 9 Transfer of information between the file and library members

76 U817-J-Z125-9-7600

LMS functions PAM key elimination

Use of the ADD statement

The ADD statement is used to store file contents in members as follows:

In the case of SAM/ISAM files:

When SAM and ISAM files are added, the BLKCTRL value is also stored if PAR
KEY=YES has been set, i.e. the original file block structure determined by the
BLKCTRL value is documented in the attribute record.

The individual records are read using the SAM/ISAM logical access method and
written unchanged to the member as variable-format records.
The member structure generated is independent of the original BLKCTRL attribute.

In the case of PAM files

When PAM files are added, the BLKCTRL value, too, is always stored. The blocks of
the file are read using the UPAM access method and stored unchanged as blocks in
the member. If PAM keys are specified, i.e. BLKCTRL=PAMKEY, these PAM keys
are stored in the member.
The generated member thus retains the block structure determined by the BLKCTRL
value.

Phases

When phases are added, the BLKCTRL value is not stored. The corresponding
format specification is stored on file in the phase information. In the PLAM library,
PK phases and NK phases have the same format. The PAM key information is
stored in descriptors.

U817-J-Z125-9-7600 77

PAM key elimination LMS functions

File type BLKCTRL entry in PAM key
ADD file>member attribute record storage

LMS call in V10 SAM/ISAM 1)
(file on NK disk) SAM/ISAM from the catalog no

UPAM from the catalog no

LMS call in V10 SAM/ISAM 1)
(file on PK disk) SAM/ISAM from the catalog no

UPAM from the catalog for BLKCTRL=PAMKEY

LMS call V9.5 SAM/ISAM 1)
SAM/ISAM from the catalog no

UPAM from the catalog yes
(always PAMKEY)

LMS call < V9.5 SAM/ISAM 1)
SAM/ISAM "not specified" no

UPAM "not specified" for BLKCTRL=PAMKEY

1) Storage can be controlled via PAR KEY=YES/NO

Use of the SEL statement

The SEL statement is used to output the contents of members to files. The BLKCTRL
value is determined via the following hierarchy:

1) The specification in the catalog entry, FILE command or LMS parameter

2) BLKCTRL value stored for the member. This is relevant only for files which were
originally PAM files.

3) Setting of the CLASS2 option to PAMKEY or NONKEY

4) Disk attribute PAMKEY or NONKEY

If no catalog entry exists and the BLKCTRL value has not been stored, the CLASS2
option and the disk attribute determine the BLKCTRL value:

CLASS2 option PAMKEY NONKEY

Disk attribute PAMKEY NONKEY PAMKEY NONKEY

BLKCTRL PAMKEY DATA DATA DATA
NO NO NO

78 U817-J-Z125-9-7600

LMS functions PAM key elimination

If the CLASS2 option has been set to PAMKEY, LMS lets the system define the
BLKCTRL value, i.e. BLKCTRL = <not specified>.

If the CLASS2 option has been set to NONKEY has been set, LMS sets BLKCTRL =
DATA for SAM and ISAM files and BLKCTRL = NO for PAM files.

Note the following details:

ISAM files

Variable-length member records are written using the ISAM logical access method.
The BLKCTRL value of the file is determined according to the algorithm described
above; in this case, however, point 2) above does not apply, as the BLKCTRL value
stored for the member is used for documentation purposes only and is ignored.

SAM files

If BLKCTRL=DATA is specified, a DMS error occurs if records in the member are
longer than 32 Kbytes - 16 bytes. In the PK environment these records may have a
length of up to 32 Kbytes - 4 bytes. When selecting records, LMS passes those
which are too long to DMS without checking them.

The BLKCTRL value is determined in the same way as for ISAM files.

PAM files

In the NK environment, the PAM keys are lost. In addition, when BLKCTRL=DATA is
specified, the first 12 bytes of each logical block are overwritten by the system. In
both cases LMS issues no error message.

Phases (C-type members)

Phases (C-type members) are handled in a special way.
In addition to the old phase format (PK phase) there is a new PAM key free phase
format (NK phase) for files. During selection, this format can be controlled with the
parameter PHASE=PK/NK (default PHASE=CLASS2 option).
This parameter alone determines the BLKCTRL value and the phase format.

PHASE=PK > Format=PK and BLKCTRL=PAMKEY

PHASE=NK > Format=NK and BLKCTRL=PAMKEY for BS2000 <V10
BLKCTRL=NO as of BS2000 V10

Thus NK phases can also be generated in BS2000 versions prior to V10.0 (migration
aid); NK phases are only executable, however, as of BS2000 V10.

U817-J-Z125-9-7600 79

PAM key elimination LMS functions

Summary

SAM/ISAM files

It is always possible to add and select files. Any BLKCTRL values stored are used
for documentation purposes only.

The internal file format is always determined by the SAM/ISAM access method. This
method also converts records to the internal block format of the file.

UPAM files

Neither the UPAM access method nor LMS can be used for the automatic
conversion of data, since this would result in a loss of data.

The user has ultimate control.

File type BLKCTRL entry generated/stored
in the attribute record

U P A M
PAMKEY DATA NO

LMS call in V10 1) ADD ADD
(file on NK disk) SEL SEL SEL

LMS call in V10 ADD ADD ADD
(file on PK disk) SEL SEL SEL SEL

LMS call < V10 ADD
(file on NK disk) SEL SEL SEL SEL

1) The value BLKCTRL=PAMKEY is not possible.

2) The selection process must be closed by the user, e.g. by specifying a link
name in the statement.

80 U817-J-Z125-9-7600

LMS functions PAM key elimination

Statements
Statement syntax

The following metacharacters are used for the formal representation of statements and
processing operands:

Formal Meaning Example
representation

UPPERCASE Uppercase letters and special NAMx member(lib)>memberu
and characters indicate constants Enter:
special which must be entered by the NAMR MODLA(1)>AMOD
characters user in the specified form.

lowercase Lowercase letters indicate
variables for which the user
must enter appropriate values.

{ } Braces are used to indicate (LST)
alternatives, i.e. one of the (SYSOUT
enclosed entries must be PRT (BOTH)
selected. member[(lib)]

?
Enter:
PRT (LST) or
PRT (SYSOUT) or
PRT (BOTH) or
PRT PROT(1) or
PRT ?

[] Square brackets indicate that LSTx member[(lib)]
the enclosed entries are Enter:
optional. LSTM MACRO or

LSTM MACRO(3)

... Ellipses indicate repetition; member(lib),...
the preceding syntactical unit Enter:
may be repeated several times A(1) or
in succession. A(1),B(2) or

A(1),B(2),C(3) etc.

U817-J-Z125-9-7600 81

Statements

Formal Meaning Example
representation

Underscoring (underline) YES
indicates the default value. PAR TEST=[]
This is the value assumed by NO
LMS in the absence of a user Enter:
entry. If no value is PAR TEST=YES or
underscored, either different PAR TEST=NO or
values are assumed as defaults PAR TEST=
in interactive and batch (the latter being
modes, or no default equivalent to PAR TEST=NO)
assignment exists.

Statement formats

The LMS statements consist of three parts:

operation

operands

comments

General format:

[$]operation_operands_comments

The first position of a statement may contain a $ character (except for the $ statement);
however, it is not mandatory.

Operation

The statement must start with the operation. This consists of the statement name and -
if members are to be processed by the statement - the member type. The member type
need not be specified if the appropriate member type has been defined in the TYPE
processing operand.

Example

ADDx Represents the statement syntax

ADD Statement name

x Statement type, e.g. ADDS for source programs

The member types supported by each statement are indicated in the description of the
relevant statement.

82 U817-J-Z125-9-7600

Statements

Operands

Separated by at least one space, the operation is followed by the operands. The
operands themselves are separated by commas. In some statements the delimiters "="
and ">" are also used to separate operands. The character ">" represents the arrow
symbol showing the processing direction.

No delimiter may be specified before the first or after the last operand of the complete
statement. No space is allowed in operands or between operands and delimiters.
Statements may have a maximum length of 2028 bytes.

Example

ADDS QUELL.DAT>QUELL.ELEM

The file QUELL.DAT is added to the library as member QUELL.ELEM.

Comments

Following the operands and separated by at least one blank, comments may be added.

No comments may be entered in statements in which the operand specification is
omitted.

Should comments extend over a complete line (comment lines), these lines must be
identified by an asterisk in column 1 and a blank in column 2.

In the comment text the characters ! and X’15’ (NEW-LINE) must not occur, as they
would be interpreted as statement delimiters.

Continuation lines

A statement may consist of one or more lines. The operation portion must appear at
the beginning of the first line; the operand portion may extend over several lines.

In order to indicate a continuation, a continuation character or a space must be
specified immediately after one of the delimiters. The continuation character must be
between columns 1 and 72.

The statement may be continued at any position of the continuation line.

No continuation lines are possible in conjunction with substatements (e.g. *COR
following the UPD statement).

U817-J-Z125-9-7600 83

Statements

Continuation characters

The continuation character may be represented by a hyphen "-" or by the plus sign
"+". The BASEVERSION operand must not be separated from its operand value by
means of a continuation character.

Within a statement, separation is possible after ",", ">" or "=".

Entry of blocked statements

Statements may also be entered in blocked format.
This means that, in interactive mode, each statement need not be entered separately;
instead data transfer can be started for several statements concurrently.

Thus, several statements - separated by the exclamation mark (!) - and statements
extending over several lines - separated by the logical end-of-line character - can be
sent off in one line.

Exception:

Statements entered in block format after a CTL statement are not executed.

The logical end-of-line character is the NEW-LINE character (NL) valid for the particular
type of terminal. Normally it is represented by the character \ or <, depending on the
type of terminal.

84 U817-J-Z125-9-7600

Statements Overview

Overview of statements

Statement Application

filename,... Add data to
ADD[x] LINK=linkname [>memberu] a library

[prefix.](name,...)[.suffix]

*NONE
[,BASEVERSION= version]

*HIGH

ADD[R] *OMF[(module,...)][>memberu]

ADD[x] FMS=fmslib(fmsmember)[>memberu]

*NONE
[,BASEVERSION= version]

*HIGH

(CTL) *NONE
ADD[x] [(CMD)]>memberu[,BASEVERSION= version]

([SYS]DTA) *HIGH

filename
ADD[C]

LINK=linkname

member,...[(lib)] Compare
COM[x] =memberu[(libu)][,{...}=...] members

(lib)

COR[x] member[(lib)][>memberu] Correct text
members

(CMD) Control
([SYS]DTA) statement

CTL (RDR) input
member[(lib)]
?

member[(lib)] Delete
DEL[x] [,...] members

(lib)

member,...[(lib)] Duplicate
DUP[x] [>memberu][,{...}[>...]] members

(lib) and delta
trees

*NONE
[,BASEVERSION= version]

*HIGH

DUP[x] name1[(lib)][>name2],STRUC=Y[ES]

U817-J-Z125-9-7600 85

Overview Statements

Statement Application

EDT[x] member [(lib)][>memberu] Branch to an editor;

EDR[x] member [(lib)][>memberu] create, correct and
view text members

EDT or files

EDR

EDT[x] memberu[(lib)]>*DUMMY

EDR[x] memberu[(lib)]>*DUMMY

END Terminate the
LMS run

FILE=libname Assign and
LINK=linkname IN close libraries

LIB [,[USAGE=] OUT]
[LIBRARY=]name BOTH
[LID=](lib)

PL O[LD]
[,[FORMAT=] OML][,[STATE=] N[EW]]

OSM A[NY]

FILE=libname
LINK=linkname

LIB C[LOSE][,]
[LIBRARY=]name
[LID=](lib)

LIB ?

member[(lib)] List members
LST[x] [,...]

(lib)

member,...[(lib)] Rename members
NAM[x] >memberu[,{...}>...]

(lib)

NOP [string] No operation

member[(lib)] Number
NUM[x] [>memberu] member records

(lib)

parvalue Set processing
parname=[] operands

PAR [? ,{...}]

?

86 U817-J-Z125-9-7600

Statements Overview

Statement Application

(LST) Control log
([SYS]OUT) output
(CON)

PRT
(BOTH)
member[(lib)]
?

RST [STOP] Quit test mode

[prefix.](name)[.suffix] Output members to
SEL[x] member,...[> filename] files and FMS

LINK=linkname libraries

SEL[x] member>FMS=fmslib(fmsmember)

SUM [’text’] Store comparison
statistics

S1 Output comparison
SUMPRT [,’text’] statistics

S2

S1 S1 Add comparison
SUMADD > statistics

S2 S2

S1 Delete comparison
SUMDEL statistics

S2

’systemcommand’ Issue
SYS [] system commands

systemcommand

N[O] Change terminal
A[CK] Y[ES] characteristics

[O[FLOW]=][,N[EWSCREEN]= N[O]]
TCH T[IMER] ?

?

?

{member[(lib)] List directory
TOC[x] [{ ,...] of a

{(lib) library

UPD[x] member[(lib)][>memberu] Update object
and load modules
and LLMs

U817-J-Z125-9-7600 87

Overview Statements

Statement Application

entry Branch to user
LST programs
COMP [= *]
COMS (entry)

libraryu
USE

EDTLIB
EDORLIB =librarys
FMSLIB

?

$ Output statement
buffer

88 U817-J-Z125-9-7600

Statements Valid member types

Member types in statements

The following table shows which members are allowed in the individual statements.

Member type S M R J P C D X H L F U *

Statement

ADD + + + + + + + +

COM + + + + + +

COR + + + + + +

DEL + + + + + + + + + + + + +

DUP + + + + + + + + + + + + +

EDT/EDR + + + + + +

LST + + + + + + + + + + + + +

NAM + + + + + + + + + + + + +

NUM + + + + + +

SEL + + + + + + + +

TOC + + + + + + + + + + + + +

UPD + + +

+: Member type valid in statement

empty field: Member type not valid for statement

U817-J-Z125-9-7600 89

Libraries required Statements

Table of required libraries

The following table shows which libraries are required by the individual LMS statements:

Required by LMS
Function

Input library Output library

ADD no yes
COM 1) yes no
COR 3) yes yes
CTL yes no
DEL 2) yes no
DUP 3) yes yes
EDR 3) yes 4) no
EDT 3) yes 4) no
LST yes no
NAM 2) yes no
NUM 3) yes yes
PRT no yes
TOC yes no
SEL yes no
SUM no no
SUMADD no no
SUMDEL no no
SUMPRT no no
UPD 3) yes yes

1) The comparison members may reside in different input libraries, but they must not
be kept in the same sequential library.

2) The input library is opened for write access.

3) Input and output libraries may be identical, except where sequential libraries are
concerned.

4) The input library is required only if an existing member is corrected with the aid of
the editors.

90 U817-J-Z125-9-7600

LMS statements ADD

ADD Add data to a library

ADD permits

files

modules from the EAM area

members of an FMS library

member records from the LMS statement stream, and

load modules (BS2000 phases) in the form of BS1000 phases in sequential libraries

to be added as library members.

ADD has five different formats to perform the above functions.

Format 1: Add files

Operation Operands

ADD[x] filename,...
LINK=linkname [>memberu]
[prefix.](name,...)[.suffix]

*NONE
[,BASEVERSION= version]

*HIGH

Format 2: Add modules from the EAM area

Operation Operands

ADD[R] *OMF[(module,...)][>memberu]

U817-J-Z125-9-7600 91

ADD LMS statements

Format 3: Transfer a member from an FMS library to a LMS library

Operation Operands

ADD[x] *NONE
FMS=fmslib(fmsmember)[>memberu][,BASEVERSION= version]

*HIGH

Format 4:
Generate a member by adding member records from the LMS statement stream

Operation Operands

ADD[x] (CTL) *NONE
[(CMD)]>memberu[,BASEVERSION= version]

([SYS]DTA) *HIGH

Format 5:
Add BS2000 load modules as BS1000 phases to sequential libraries (tape libraries)

Operation Operands

ADD[C] filename

LINK=linkname

92 U817-J-Z125-9-7600

LMS statements ADD format 1

Format 1: Add files

This format of ADD adds files as members to the open output library. If the output file
is a program library, a member can be stored either as a non-delta or as a delta
member. The output library must previously have been assigned with LIB.

Files cataloged with RECORD-FORMAT=U can also be incorporated in libraries. Files
having RECORD-FORMAT=FIXED can only be stored using PAR KEY=YES.
The BLKSIZE and RECSIZE values may vary. However, the maximum record length of
32 Kbytes (including the record header) must not be exceeded.
File generation groups can only be incorporated using LINK= and a valid LMS member
designation.

Operation Operands

ADD[x] filename,...
LINK=linkname [>memberu]
[prefix.](name,...)[.suffix]

*NONE
[,BASEVERSION= version]

*HIGH

ADDx Statement name and specification of member type.

For non-delta members, the following member types are valid:
S, M, R, J, P, C, D, X

For delta members, only the following text-based member types
are valid:
S, M, J, P, D

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

filename Fully qualified file name or multiple selection. "pathname" can also
be specified for "filename" (see the manual "User Commands (SDF
Format)" [7]).
If temporary files are added, multiple selection is not allowed.
Specification of more than one file name is only meaningful if an *
or a construction specification is made for "memberu".

LINK=linkname Link name referring to the file.

U817-J-Z125-9-7600 93

ADD format 1 LMS statements

[prefix.](name,...)[.suffix]
This specification permits the selection of several files that are to be
added to the library.

prefix
Common prefixed portion of names of the files to be selected.
"prefix" must end with a period.

suffix
Common suffixed portion of names of the files to be selected.
"suffix" must begin with a period.

name
Portion of a name by which prefix and/or suffix are to be
supplemented to form one or more fully qualified file names. This
subname is also used for the generated members added to the
library if "memberu" is not specified. "name" also allows multiple
selection.

Partially qualified file names may be specified in the form
prefix.(*).suffix.

If the parentheses of (name) are omitted, ADD will act as though
filename had been specified.

memberu Designates the member to be created.
When [prefix.](name,...)[.suffix] or multiple selection is specified for
"filename", construction specifications are also permitted. "memberu"
may be omitted, in which case the member created is given the
name of the input file, without prefix and suffix.

The various syntax rules for program libraries (see page 25) and
other library types (see page 29) should be observed when defining
member designations for the members to be created.

BASEVERSION Defines the base member for delta storage. It refers to all members
to be generated (memberu). It must be the last operand of the
statement.
If this operand is not specified, a non-delta member is created.

=*NONE "memberu" is stored as the first member (=base) of a delta tree (first
generation).

=version Base member is the member having "version" as version designation;
this member must be present and stored as a delta member.
A construction specification is not allowed.

94 U817-J-Z125-9-7600

LMS statements ADD format 1

=*HIGH Base member is the member having the highest version designation
(at generation time of the delta member). The generated delta
member is appended to this base member.

Processing operands

TYPE Defines the member type, if no type is specified in the statement
itself.

KEY Defines whether file attributes and existing ISAM keys are to be
included.

DESTROY Defines whether a code for physical deletion is entered in the output
member (only possible in conjunction with program libraries).

OVERWRITE Defines whether an identically named non-delta member in the
output library is overwritten, not overwritten or expanded by means
of new records.
This processing operand cannot be used for delta members.

RANGE Defines the position and length of the check field in the output
records of text members.

VALUE Specifies the initial value and increment for renumbering in the
check field.

STRING Defines whether the ISAM key is to be stored in the check field, or
specifies the character string to be entered left-justified in the check
field of output records.

CHECK Defines the position and length of the check field in input records
and checks for ascending numbering.

U817-J-Z125-9-7600 95

ADD format 1 LMS statements

Example 1

The following files are available:

A.B.C.A A.B.C.B A.B.C.C B.B.C.A C.B.C.A

The following statements permit selection of the files indicated:

ADDx A.B.(*)>X.* files: A.B.C.A member name X.A
(only possible for A.B.C.B member name X.B
program library) A.B.C.C member name X.C

ADDx (A,C).B.C.A files: A.B.C.A member name A
C.B.C.A member name C

Example 2

/START-PROGRAM $LMS
$LIB TESTLIB,OUT
$ADDS S.PROG>SPROG
$END

The source program in file S.PROG is added to the program library TESTLIB as an S-
type member with the member designation SPROG.

Example 3

/SET-FILE-LINK FILE-NAME=PROG.DAT,LINK-NAME=PROG
/SET-FILE-LINK FILE-NAME=TEST.COB,LINK-NAME=TEST
/START-PROGRAM $LMS
$LIB TESTLIB,OUT
$ADDD LINK=PROG>DDAT
$ADDS LINK=TEST>TCOB
$END

The files PROG.DAT and TEST.COB are added to the program library TESTLIB as
members DDAT and TCOB. They are referenced in ADD via their link names.

96 U817-J-Z125-9-7600

LMS statements ADD format 2

Format 2: Add modules from the EAM area

This format of ADD is used to transfer modules from the EAM area of the current task
and to add them as members of type R to the assigned output library. Output libraries
are program libraries, module libraries and sequential libraries.

Operation Operands

ADD[R] *OMF[(module,...)][>memberu]

ADDR Statement name with member type R.

The member type need not be specified if member type R has been
specified in the TYPE processing operand.

module Name of a module in the EAM area, up to 8 characters in length. If
the EAM area contains several identically named members, LMS
transfers the module which was last compiled to the library. The
module specification may be omitted. If so, LMS will transfer all
modules contained in the EAM area. Multiple selection is permitted.

memberu Member designation of the member to be created.
A construction specification is allowed. "memberu" may be omitted.
If so, modules will receive the names they have in the EAM area.

Important notes

If a member designation is specified for "memberu", then for "module" the name of
the module to be added must be specified if there are several modules in the EAM
area.
Otherwise, all modules from the EAM area are incorporated under the designation
"memberu"; the one which was previously added will then be overwritten each time
the process is performed.

Specifying OVERWRITE=EXTEND leads to errors.

Example

/START-PROGRAM $LMS
$LIB TESTLIB,OUT
$ADDR *OMF(MOD1,MOD2)>ELM*
.
.
.

$END

The object modules MOD1 and MOD2 from the EAM area are incorporated in the
output library TESTLIB as members with the names ELM1 and ELM2.

U817-J-Z125-9-7600 97

ADD format 3 LMS statements

Format 3: Transfer a member from an FMS library

This format of ADD is used to transfer members from an FMS library (see the "FMS"
manual [10]) to the open output library. If the output library is a program library, a
member may be stored either as a non-delta member or as a delta member. The
output library must already have been assigned by means of LIB.

This function causes FMS to be invoked internally.

Operation Operands

ADD[x] *NONE
FMS=fmslib(fmsmember)[>memberu][,BASEVERSION= version]

*HIGH

ADDx Statement name with specification of the member type.

For non-delta members, the following member types are valid:
S, M, R, J, P, D, X

For delta members, only the text-based member types are valid:
S, M, J, P, D

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

fmslib Fully qualified file name of an FMS library.
"pathname" can also be specified for "fmslib" (see the manual "User
Commands (SDF Format)" [7]).

fmsmember Complete name of the member to be transferred or *.
* serves to copy an entire FMS library.

memberu Member designation of the member to be created or *.
* causes members to be transferred to the LMS library with the
same names they had in the FMS library.

BASEVERSION Defines the base member for delta storage. It must be the last
operand of the statement.
If this operand is not specified, a non-delta member is created.

=*NONE "memberu" is stored as the first member (=base) of a delta tree (first
generation).

=version Base member is the member having "version" as the version
designation. This member must be present and stored as a delta
member.
A construction specification is not allowed.

98 U817-J-Z125-9-7600

LMS statements ADD format 3

=*HIGH Base member is the member with the highest version designation (at
the time of generating the delta member). The generated delta
member is appended to this delta member.

Notes

If OVERWRITE=EXTEND is specified, the function is aborted with an error.

All records are expected to have variable record format.

Processing operands

RANGE Defines the position and length of the check field in the output
records of text members.

VALUE Specifies the initial value and increment for renumbering in the
check field.

STRING Specifies whether the ISAM key is to be stored in the check field, or
specifies the character string to be entered left-justified in the check
field of the output records.

OVERWRITE Defines whether an identically named non-delta member in the
output library is overwritten, not overwritten or expanded by means
of new records.
This processing operand is not allowed for delta members.

CHECK Defines the position and length of the check field in input records
and checks for ascending numbering.

Example

/START-PROGRAM $LMS
$LIB LMSLIB,OUT,NEW
$ADDS FMS=FMSBIB2(SRC)>SRC1
$END

Member SRC from the FMS library FMSBIB2 is incorporated as member SRC1 in the
program library LMSLIB which is to be created as a new library.

U817-J-Z125-9-7600 99

ADD format 4 LMS statements

Format 4:
Create a member by incorporating member records from the LMS statement stream.

This format of ADD is used to transfer records from an LMS statement sequence to a
member of the open output library. If the output library is a program library, a member
may be stored either as a non-delta or as a delta member. The output library must
already have been assigned with LIB. The records must directly follow ADD. The string
of records must be concluded with *END.

These records are input from

the terminal

system file SYSDTA

a library member.

Operation Operands

ADD[x] (CTL) *NONE
[(CMD)]>memberu[,BASEVERSION= version]

([SYS]DTA) *HIGH

ADDx Statement name and specification of member type.

For non-delta members, the following member types are valid:
S, M, R, J, P, D, X

For delta members, only the text-based member types are valid:
S, M, J, P, D

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

CTL Records are added from the input medium defined using CTL, i.e.
either the terminal, system file SYSDTA or a library member.

CMD In interactive mode, records are read from the terminal, in batch
mode from the system file SYSDTA.

SYSDTA Records are read from system file SYSDTA.

Note

If records are read from the system file SYSDTA, they must not
begin with "/". The reason for this is that the RDATA macro
interprets such records as commands and thus passes the return
code for EOF. Therefore it is not possible to pass system
commands as records.

100 U817-J-Z125-9-7600

LMS statements ADD format 4

memberu Member designation of the member to be generated.
A construction specification is not allowed.
memberu is mandatory.

BASEVERSION Defines the base member for delta storage. It must be the last
operand of the statement.
If this operand is not specified, a non-delta member is created.

=*NONE memberu is stored as the first member (=base) of a delta tree (first
generation).

=version Base member is the member with "version" as its version
designation. This member must be present and be stored as a delta
member. A construction specification is not allowed.

=*HIGH Base member is the member with the highest version designation (at
the time of generating the delta member). The generated delta
member is appended to this base member.

Processing operands

TYPE Defines the member type, if no type is specified in the statement
itself.

DESTROY Defines whether a code for physical deletion is entered in the output
member (only possible in conjunction with program libraries).

OVERWRITE Defines whether an identically named non-delta member in the
output library is overwritten or not. OVERWRITE=EXTEND is not
allowed.
This processing operand is not allowed for delta members.

RANGE Defines the position and length of the check field in the output
records of text members.

STRING Defines whether the ISAM key is to be stored in the check field, or
specifies the character string to be entered left-justified in the check
field of the output records.

VALUE Specifies the initial value and increment for renumbering for text
members in the check field.

U817-J-Z125-9-7600 101

ADD format 4 LMS statements

*END Terminate transfer

*END terminates the transfer of records to a member.

Operation Operands

*END

*END Name of the statement

Example

/START-PROGRAM $LMS
$LIB LIBRARY,BOTH
$ADDD >LETTER.A
* Dear ...
.
.
.
**END
$END

The text "Dear ...," is stored, in uppercase letters, in member LETTER.A. If lowercase
letters are also to be stored in the member, the LCASE processing operand must be
used (see page 225).

102 U817-J-Z125-9-7600

LMS statements ADD format 5

Format 5:
Add BS2000 load modules as BS1000 phases to sequential (tape) libraries

This format of ADD is used to generate BS1000 phases on a library tape from a
BS2000 load module.

Operation Operands

ADD[C] filename

LINK=linkname

ADDC Statement name with the member type C.
The member type need not be specified if member type C has been
defined in the TYPE processing operand.

filename Fully qualified file name of a program file generated with the linkage
editor TSOSLNK. "pathname" may also be specified for "filename"
(see the manual "User Commands (SDF Format)" [7]).

LINK=linkname Link name referencing a BS2000 program file assigned with the
/SET-FILE-LINK command. The file must have been generated with
the linkage editor TSOSLNK.

In the sequential library the member receives the name given to the load module in the
program file.

The library must be assigned beforehand with LIBOUT ...,NEWLIB (see page 330).

For further information, please refer to the section on BS2000-BS1000 compatibility on
page 326).

Processing operand

TYPE Defines the member type if no type is specified in the statement
itself.

U817-J-Z125-9-7600 103

ADD format 5 LMS statements

Example

The BS2000 load module PROG.DAT is incorporated in the tape library DOS-LIB.

/CREATE-FILE FILE-NAME=DOS-LIB, -
/ SUPPORT=TAPE(VOLUME=E1000A, DEVICE-TYP=T9P)
/SET-FILE-LINK FILE-NAME=DOS-LIB, LINK-NAME=LIB001, ACCESS-METHOD=BTAM
/START-PROGRAM $LMS
$LIBOUT (1),NEWLIB
$ADDC PROG.DAT
.
.
.

$END

The tape library DOS-LIB is created using a /CREATE-FILE command and assigned
using the /SET-FILE-LINK command. It is defined as an output library by means of
LIBOUT (1),NEWLIB. The module from the file PROG.DAT is transferred onto the tape
and its name is retained.

104 U817-J-Z125-9-7600

LMS statements COM

COM Compare members

COM permits members to be compared with one another. The differences thus
established are listed in a comparison log and in the comparison statistics. The
members may be located in different libraries. The members to be compared with one
another must not be contained in the same sequential library. The COMPARE
processing operand can be used to determine whether a formal or a logical
comparison is made and which comparison algorithm is to be used. Moreover, it
defines the comparison fields.

For further information on the comparison log and comparison statistics see page 50.
Examples of COM are given on pages 262, 274 and 282.

USE permits the member records to be accessed via a user program, prior to the
actual comparison.

Operation Operands

COM[x] member,... [(lib)]
=memberu[(libu)][,{...}=...]

(lib)

COMx Statement name and specification of the member type:
S, M, J, P, D, X

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

member Member designation of the primary members that are to be
compared with the member "memberu", or multiple selection.

lib Short designation of the input library for "member".

memberu Member designation of the secondary member, or construction
specification.

libu Short designation of the input library for "memberu".

U817-J-Z125-9-7600 105

COM LMS statements

Processing operands

TYPE Defines the member type, if no type is specified in the statement
itself.

LINE Defines the number of lines and columns on a log page for output
to system file SYSLST or to a library member.

CHECK Only effective for cross comparison, i.e. a value between 1 and 9
must be specified in the COMPARE processing operand for the
synchronisation counter.
Defines position and length of the check field in the records to be
compared, and checks for ascending numbering.

COMPARE Controls the length and position of the comparison field, the type of
comparison, the synchronization count, the logging mode and the
generation of correction statements.

SUM Controls the storage of comparison statistics.

The function is executed even if only one of the comparison members is found in the
specified libraries. This permits counting of the records in members.

The SUM processing operand permits the comparison statistics to be stored. Stored
comparison statistics can be further processed with the aid of SUM, SUMADD,
SUMPRT and SUMDEL.

If job switch 9 is set, a maximum of 12,000 non-matching records may be synchronized
(see page 74).

Synchronization

During the comparison operation LMS attempts, whenever possible, to resume on
matching record sequences following non-matching record sequences. This is called
synchronization. If at least as many matching records are found as required in the
COMPARE processing operand, the synchronization attempt is considered to be
successful. If successful synchronization was not possible, even matching records are
logged as being non-matching.

106 U817-J-Z125-9-7600

LMS statements COM

Example

/SET-FILE-LINK FILE-NAME=BIBU,LINK-NAME=LIB005
/START-PROGRAM $LMS
$LIB FILE=PLIB
$PAR COMPARE=5/26/L/MAX
$COMS ASRC=ASRC(5)
.
.
.

$END

The different ASRC members of the libraries BIBU and PLIB are compared. The
COMPARE processing operand (see page 212) is used to define the comparison range
(5th to 30th byte of the member record), the type of comparison (logical comparison)
and the scope of the comparison log (MAX).

For further examples see page 253 ff.

U817-J-Z125-9-7600 107

COR LMS statements

COR Correct text members

COR corrects the specified member and outputs it to the assigned output library. The
corrections are effected by way of correction statements that are expected immediately
after COR.

COR processes member records having a length 251 bytes. Longer records are
truncated, in which case LMS issues a warning message.

In the case of sequential libraries, the input library must not be identical with the output
library. In the case of other libraries, the input library may be identical with the output
library.

Operation Operands

COR[x] member[(lib)][>memberu]

CORx Statement name with specification of member type:
S, M, J, P, D or X

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

member Member designation of the member to be corrected or multiple
selection (no list specification).

lib Short designation of the input library.

memberu Member designation of the output member or construction
specification.

Processing operands

TYPE Defines the member type, if no type is specified in the statement
itself.

DESTROY Defines whether a code for physical deletion is set in the output
member (only possible for program libraries).

CHECK Defines the position and length of the check field in input records
and checks for ascending numbering.

RANGE Defines the position and length of the check field in output records.

VALUE Specifies the initial value and increment for renumbering in the
check field.

108 U817-J-Z125-9-7600

LMS statements COR

STRING Specifies the character string to be entered left-justified in the check
field of output records.

OVERWRITE Controls overwriting of identically named members in the output
library. If,

input library = output library and member = memberu,

this processing operand will have no effect and the input member is
overwritten.

LOG Controls the scope of the correction log.

Note

PAM files stored in the library cannot be corrected.

During the correction process, a new member will only be created if LMS is not in test
mode and if no errors were detected during correction.

If an error is detected in interactive mode, the correction process must be terminated
with *END and subsequently restarted.

In the case of program libraries (see page 27), the corrected member with its old
name, variant number incremented by 1, and time of day is written to the output library;
where other libraries are concerned, the version number is incremented by 1 (see page
30).

If a check field is defined in the input records (CHECK not equal to NO), an input
member with ascending numbering is a prerequisite. Check fields cleared with spaces
are permitted and do not lead to sequence errors. Short records with no check field
are also permitted.

The correction statements must be presented in ascending order (sequential processing
in the member).

If a member is simply to be renumbered, *END following COR is sufficient.

The output mode for the correction journal is controlled by the LOG operand.

When LOG=MIN all changes are listed
LOG=MED the correction statements are also output
LOG=MAX all the records transferred unchanged from

the input member are also logged.

Corrections can be made either via correction statements or by specification of the
record ID of a data record to be inserted or replaced.

U817-J-Z125-9-7600 109

COR LMS statements

Overview of correction statements

Correction statement Function

*INSERT or data record with ID Insert records
or record number

*DELETE Delete records

*REPLACE or data record with ID Replace records
or record number

*CHANGE Change records

*END End correction statements

// Delimit an entered record

Format

Correction statements start with *. The asterisk in column 1 is followed by the
operation, i.e. the name of the correction statement, a space and the record
designation. The record designation is called "recdes" in the description of the
correction statement. The record designation is either a record number or a record
identifier (see page 47).

Record number #number
"number" is a positive integer comprising up to 8 digits. The record
number is the position of the member record relative to the start of
the member (this numbering can be seen from the member listing
by specifying PAR LST=mode/NUM). If "number" is greater than the
highest record number in the member, the correction will be
continued after the last record, i.e. records are appended to the
member.

Examples

#26 denotes the 26th record in the input member.

#0 denotes the position before the first record of the member, i.e.
a record is inserted before the first record of the member.

110 U817-J-Z125-9-7600

LMS statements COR

Record ID Letters, digits and special characters

The position and length of the ID (contents of the check field) are
defined with the processing operand CHECK. This specification for
record designation may therefore be used only when CHECK is not
equal to NO. The length of the ID specified must be as defined in
CHECK. Only leading zeros may be omitted. If it contains spaces,
the ID must be delimited by the characters > and <.

If the ID does not occur in the input member, correction takes place
before the first record,
after the last record, or
before the first record with a greater ID.

Examples

Check field in input member ID
000315 315
xy z >xy z<

In order to be able to address records with an empty check field in
an unnumbered input member, it is also possible to use a mixture of
record number and ID in a single correction run (or even in a single
correction statement).

If the CHECK processing operand has been defined, data records
can be included in the member to be corrected according to their
check field (without having to use *INSERT or *REPLACE).

If there is a record with the specified check field, it is replaced by
the record. If there is no record with the specified check field, the
record is inserted before the first record with a higher check field.
Records with an empty check field, or if CHECK=NO is set, are
inserted at the current position.

Records following *INS or *REP must, unless immediately followed
by *INS, *DEL, *CHA, *REP or *END, be delimited by a record
having the form */*/, so as to separate them from any subsequent
data records with a record ID.

U817-J-Z125-9-7600 111

*INSERT correction statement COR

Description of the individual correction statements

*INSERT Insert records

*INSERT causes records to be inserted at desired positions. The records can either be
input or simply copied from another member that is designated as the secondary
member. The member to be corrected is considered to be the primary member.

Operation Operands

*INS[ERT] recdes[,[x=]member[(lib)][:recdes1[-recdes2]]]

*INSERT Name of the correction statement.

recdes Records are inserted after the record having "recdes" as its record
number or ID. If the specified record number or ID does not exist,
records are inserted before the first record whose record number/ID
is greater than "recdes". Those data records that are read
subsequent to *INSERT are inserted.

x Member type of secondary member:
Allowed are S, M, J, P, D and X

If no type is specified, the primary member type is assumed.

member Name of the secondary member.
Multiple selection is not permitted.

From the specified secondary member the records from "recdes1"
through "recdes2" are inserted into the primary member.

lib Short library designation of the secondary member. Specification of
the library can be omitted if the secondary member is contained in
the input library of the primary member.

recdes1 First or only record number or ID of a record from the secondary
member that is to be inserted into the primary member.

recdes2 All records from "recdes1" through "recdes2" are inserted from the
secondary member into the primary member. If the recdes1 -
recdes2 specification is omitted, the entire secondary member is
inserted.

When records are transferred from a secondary member into the primary member,
additional records can be specified after *INSERT. They are inserted into the primary
member following the records from the secondary member.

112 U817-J-Z125-9-7600

COR *DELETE/*REPLACE correction statement

*DELETE Delete records

*DELETE deletes specified records or record ranges in a member.

Operation Operands

*DEL[ETE] recdes1[-recdes2]

*DELETE Correction statement name.

recdes1-recdes2 Record range. All records having the addresses (record number or
ID) from "recdes1" through "recdes2" are deleted. If only one record
is to be deleted, the "-recdes2" specification can be omitted.

*REPLACE Replace records

*REPLACE causes records or record ranges in the member to be replaced by specified
records.

Operation Operands

*REP[LACE] recdes1[-recdes2]

*REPLACE Correction statement name.

recdes1-recdes2 Record range. All records having the addresses from "recdes1"
through "recdes2" are replaced by the records following this
correction statement. If only one record is to be replaced, the "-
recdes2" specification can be omitted.

If there are more records following *REPLACE than specified by
recdes1 - recdes2, these records are nevertheless inserted at the
current position.

U817-J-Z125-9-7600 113

*CHANGE correction statement COR

*CHANGE Change records

*CHANGE is used to replace portions of text with a specific text or to insert text with a
specific column alignment.

Operation Operands

*CHA[NGE] =:=
[recdes1[-recdes2]]’text1’[<column>][’text2’]

=

*CHANGE Correction statement name.

recdes1-recdes2 Record range. In all records whose addresses (record numbers or
check fields) are greater than or equal to "recdes1" and less than or
equal to "recdes2", each search string found in the specified column
range will be replaced by the correction text (replacement string).

text1 Search string. The string that is to be replaced is any desired
sequence of characters, enclosed in apostrophes (’ ’) or double
quotes (" ").

Note the following with regard to double quotes (" "):

In the record, only when the character immediately to the left of the
first character in the string and the character immediately to the right
of the last character in the string are not alphanumeric is the text
considered to have been found.

If the blank character string ’’ is specified as the search string, the
replacement string will be inserted commencing in the position
defined by "column" (only one value must be specified). If the
permissible record length (251 bytes) is exceeded, truncation takes
place accordingly. Should characters (other than blanks) be lost as
a result, an appropriate warning message will appear in the
correction log.

column Defines a column range column1 - column2 in the record, within
which the search string must begin. If only "column1" is specified,
the search string must begin in this column in the record. If the
search string comprises the blank character string ’’, precisely one
column value must be specified. This denotes the position at which
the replacement string will be inserted.
Specification of the column range may only be omitted if the search
string does not consist of the blank character string. The entire
record is then searched for the search string.

114 U817-J-Z125-9-7600

COR *CHANGE correction statement

=:= Search string and replacement string must be of equal length.

= Search string and replacement string may be of different lengths.

text2 Replacement string. Any desired string of characters, enclosed in
apostrophes or quotes. The specified replacement string replaces
the string found in the column range or (if the search string is the
blank string) is inserted at the column position.

*CHANGE statements for which no record range recdes1 - recdes2 is specified must
always be located at the start of the correction statements for COR.

When a record range is specified, "recdes1" must be greater than or equal to a
"recdes1" specified in a preceding correction statement (*REP, *DEL, *INS). The value
for "recdes2", however, is freely selectable.

U817-J-Z125-9-7600 115

*END correction statement COR

*END Terminate corrections

*END terminates the correction inputs for COR.

Operation Operands

*END

*END Correction statement name.

This correction statement does not have any operands.

Example

/SET-FILE-LINK FILE-NAME=SRC.LIB,LINK-NAME=LIB017
/START-PROGRAM $LMS
$LIB (17),BOTH
$CORS SRC82
**INSERT #3,SRC80:#3-#8
**DEL #21
**END
.
.
.

$END

Member SRC82 of library SRC.LIB is corrected. Following the record with record
number #3, the records having the record numbers #3 through #8 are inserted from
member SRC80. The record bearing the record ID #21 is deleted.

116 U817-J-Z125-9-7600

LMS statements CTL

CTL Define statement input source

CTL serves to define the input source for LMS statements.

Possible input sources are:

the terminal
system file SYSDTA or
a library member.

Operation Operands

CTL (CMD)
[SYS]DTA)
(RDR)
member[(lib)]
?

CTL Statement name.

CMD Statements are read from the terminal in interactive mode and from
SYSDTA in batch mode.

SYSDTA Statements are read from system file SYSDTA.

RDR Has the same effect as the SYSDTA operand and is supported only
for reasons of compatibility.

member Designates the member from which the statements are read. Only
one member may be specified, multiple selection is not permitted.

In the case of program libraries, the member must be type J; in the
case of source libraries, type S. During this LMS run a source library
may not be used for any other purpose.

lib Short designation of the library.

? The current value is logged.

Example

/START-PROGRAM $LMS
$LIB ANWS,BOTH
$CTL BFL
$END

The statements from member BFL are executed. The last statement in this member is
CTL (CMD). The statements, END in this case, are then read from the display terminal
again.

U817-J-Z125-9-7600 117

DEL LMS statements

DEL Delete members

DEL deletes specified members of the assigned input library. The directory entries are
thereby deleted and storage space is released.

In addition, members in program libraries are physically deleted, i.e. the data
overwritten with binary zeros

if the member contains a code for physical deletion

if the processing operand DESTROY=YES has been set.

DEL is not permitted for sequential libraries.

Operation Operands

DEL[x] member[(lib)]
[,...]

(lib)

DELx Statement name with specification of member type. All member
types are permitted: S, M, R, J, P, C, D, X, H, L, F, U

* Stands for all member types (only permissible for program
libraries)

member Member designation or multiple selection.

lib Short designation of the input library.
If no member is specified, the function applies to all members of the
currently highest version of the referenced library, i.e. the whole
library is deleted.

Processing operands

TYPE Defines the member type, if no type is specified in the statement
itself.

DESTROY Defines whether the members are to be physically deleted (only
possible for program libraries).

REFERENCE Defines which reference names the members to be deleted must
have. If the reference condition is not satisfied, the member is not
deleted.
REFERENCE is permitted for member type R only. After a
REFERENCE definition, R must be specified with DEL.

118 U817-J-Z125-9-7600

LMS statements DEL

Note

Every update for a delta tree reorganizes the delta structure, i.e. data records which
are no longer needed are deleted and unused storage space is released.

Example

/START-PROGRAM $LMS
$LIB LS.LIB,BOTH
$DELD DATA
$DEL* TPROG
$END

Member DATA of library LS.LIB is deleted. All members with the name TPROG in library
LS.LIB are deleted, regardless of their member type.

U817-J-Z125-9-7600 119

DUP LMS statements

DUP Duplicate members and duplicate with structure

DUP permits the duplication of members or of entire delta trees, together with their
original structure. Two formats are available for this purpose.

Format 1: Duplicate members

Operation Operands

DUP[x] member,...[(lib)]
[>memberu][,{...}[>...]]

(lib)

*NONE
[,BASEVERSION= version]

*HIGH

Format 2: Duplicate with structure

Operation Operands

DUP[x] name1[(lib)][>name2],STRUC=Y[ES]

120 U817-J-Z125-9-7600

LMS statements DUP format 1

Format 1: Duplicate members

DUP duplicates the specified members of the assigned input library, or an entire library,
to the open output library. Duplicated members may be given new member
designations in the process.

If the output library is a program library, the duplicated members may be stored either
as non-delta or as delta members. If delta members are duplicated and the input library
is identical with the output library, the duplicated delta members must be given new
member names.

An output library must already have been assigned with LIB.

Certain record types may be excluded from the duplication process with the aid of
processing operand STRIP in the case of R-type and C-type members.

Members can be selected for duplication by means of their reference names. If a
reference condition is defined by means of the REFERENCE operand, only those
members satisfying this condition will be duplicated.

Operation Operands

DUP[x] member,...[(lib)]
[>memberu][,{...}[>...]]

(lib)

*NONE
[,BASEVERSION= version]

*HIGH

DUPx Statement name with specification of member type:

For non-delta members, all member types are allowed:
S, M, R, J, P, C, D, X, H, L, F, U

For delta members, only the text-based member types are
allowed: S, M, J, P, D

* Stands for all member types (only permitted for program libraries)

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

U817-J-Z125-9-7600 121

DUP format 1 LMS statements

member Member designation of the member to be duplicated, or multiple
selection.

For "member", names which do not conform to LMS conventions are
also permitted and such members can be further processed.

lib Short designation of the input library.

memberu Member designation of the output member, or construction
specification.

BASEVERSION Defines the base member for delta storage. It refers to all members
to be generated (memberu). It must be the last operand of the
statement.
If this operand is not specified a non-delta member is created from a
delta member.

=*NONE "memberu" is stored as the first member (=base) of a delta tree (first
generation).

=version Base member is the member with "version" as the highest version
designation. This member must be present and be stored as a delta
member. A construction specification is not allowed.

=*HIGH Base member is the member with the highest version designation (at
the time of creating the delta member). The generated delta member
is appended to this base member.

DUPx */* may be used to duplicate all members of one type while retaining the
member designations.

Processing operands

TYPE Defines the member type, if no type is specified in the statement
itself.

OVERWRITE Controls overwriting of identically named non-delta members in the
output library. This processing operand is not allowed for delta
members.

STRIP Only for R-type and C-type members.
Defines which records are to be excluded from the duplication
process.

DESTROY Defines whether a code for physical deletion is set in the output
member (only possible for program libraries).

122 U817-J-Z125-9-7600

LMS statements DUP format 1

REFERENCE Defines which reference names the members to be duplicated must
have. If the reference condition is not satisfied, the member is not
duplicated.
REFERENCE is permitted for member type R only. After a
REFERENCE definition, R must be specified with DUP.

Example

/SET-FILE-LINK FILE-NAME=DUP.LIB,LINK-NAME=LIB002
/START-PROGRAM $LMS
$LIB OLD.LIB,IN
$LIB (2),NEW,OUT
$DUPS OLD1>DUP1/001/1983-02-07,OLD2>DUP2
$END

Members from the library OLD.LIB are duplicated to a program library DUP.LIB that is
to be created.

The link name LIB002 is assigned to the output library DUP.LIB that is to be created.
The input library is assigned explicitly via LIB. Member OLD1 is duplicated as DUP1,
version 1 with a new date. OLD2 is duplicated as DUP2 with unchanged version and
unchanged date.

U817-J-Z125-9-7600 123

DUP format 2 LMS statements

Format 2: Duplicate with structure

When this format is used, LMS recognizes the form in which members are stored in the
PLAM libraries. Correspondingly, delta trees are duplicated as delta trees and all other
members are written to the output file as non-delta members.

Operation Operands

DUP[x] name1[(lib)][>name2],STRUC=Y[ES]

DUPx Statement name with specification of member type.
All member types are permitted:
S, M, R, J, P, C, D, X, H, L, F, U

* Stands for all member types (only permissible for program
libraries).

name1 Name (without version and date) of the input member, or multiple
selection. Only one input member is allowed.

lib Short designation of the input library.

name2 Name (without version and date) of the output member, or
construction specification.

STRUC=YES If "name1" specifies the name range of a delta tree, the delta tree is
duplicated with its structure being retained. "name2" must not yet
exist in the output library (processing operand OVERWRITE has no
effect).

If "name1" specifies the name range of one or more non-delta
members, all non-delta members with the name "name1" are
duplicated as non-delta members (same as "name1/*"). If "name1"
coincides with "name2", processing operand OVERWRITE takes
effect.

Notes

If the duplication process is aborted, the copied part of a delta tree is retained.

No version and date specifications are allowed for "name1" and "name2".

124 U817-J-Z125-9-7600

LMS statements DUP format 2

Processing operands

TYPE Defines the member type, if no type is specified in the statement
itself.

DESTROY Defines whether a code for physical deletion is set in the output
member (only possible for program libraries).

U817-J-Z125-9-7600 125

EDT/EDR LMS statements

EDT/EDR Create, correct and view text members and files

EDT/EDR invokes the file editing programs EDT and EDOR respectively, for the
creation, correction or display of either text members or files. EDT/EDR consequently
has three different formats.

Format 1: Create and correct text members

Operation Operands

EDT[x] member[(lib)][>memberu]

EDR[x] member[(lib)][>memberu]

Format 2: Create and correct files

Operation Operands

EDT

EDR

Format 3: View members

Operation Operands

EDT[x] memberu[(lib)]>*DUMMY

EDR[x] memberu[(lib)]>*DUMMY

Note

PAM files stored in the library cannot be processed using EDT/EDR.

126 U817-J-Z125-9-7600

LMS statements EDT/EDR format 1

Format 1: Creation and correction of text members

This EDT/EDR format invokes EDT or EDOR and reads the specified member from the
assigned input library. When EDT/EDOR is terminated, the corrected member with any
new name assigned is written to the assigned output library.

The editors are described in the manuals on EDT [5] and EDOR [4].

LMS supports EDT versions higher than V16.2A.

In the case of sequential libraries, the input and output libraries must not be identical.
Where other library types are concerned, input and output libraries may be identical.

Operation Operands

EDT[x] member[(lib)][>memberu]

EDR[x] member[(lib)][>memberu]

EDTx

EDRx
Statement names, with specification of member type:
S, M, P, J, D, X

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

member Member designation of the member to be corrected or generated, or
multiple selection.

lib Short designation of the input library.

memberu Member designation of the output member or construction
specification.

Processing operands

TYPE Defines the member type if no type is specified in the statement
itself.

OVERWRITE Controls overwriting of identically named members in the output
library. If

input library = output library and member = memberu,

this processing operand will have no effect and the input member is
overwritten.

U817-J-Z125-9-7600 127

EDT/EDR format 1 LMS statements

DESTROY Defines whether a code for physical deletion is entered in the output
member and whether any scratch file which may have been created
is physically deleted after use (only possible in conjunction with
program libraries).

CHECK Defines the position and length of the check field in input records
and checks for ascending numbering.

RANGE Defines the position and length of the check field in output records.

STRING Specifies whether the ISAM key is to be stored in the check field, or
specifies the character string to be entered left-justified in the check
field of output records.

VALUE Specifies the initial value and increment for renumbering in the
check field.

Scratch file

LMS generates the following scratch file under certain conditions when EDT is called,
and always when EDOR is called:

S.LMS.TSNnnnn.date.time-of-day.member

"member" can be up to 9 characters long. Member names exceeding this limit are
truncated after the first 9 characters. If the "member" suffix would result in an illegal
BS2000 file name (e.g. ’.’ as the ninth character), LMS forms a scratch file name
without the member designation:

S.LMS.TSNnnnn.date.time-of-day

If RECORD-FORMAT=FIXED is stored in the input member, the function is aborted with
an error message. The same applies to KEY-POSITION>5.

If ISAM keys are stored in the input member, they are first transferred to the scratch file
and then (following correction) to the output member.

Transfer of ISAM key from check field

Processing operand CHECK=start/length defines a check field in the input records. The
contents of this check field are entered left-justified in the ISAM key of the record. If
check field (length) and ISAM key (KEY-LENGTH) have varying lengths, LMS takes the
following action:

KEY-LENGTH<length: the check field is truncated on the right.
KEY-LENGTH>length: the ISAM key is padded with zeros on the right.

128 U817-J-Z125-9-7600

LMS statements EDT/EDR format 1

If no ISAM keys have been stored in the input member, an ISAM file with KEY-
POSITION=5 and KEY-LENGTH=8 is created. By default, LMS then generates ISAM
keys with an initial value of 1000 and an increment of 1000. If the member is too large
for this increment (more than 100,000 records), the increment is calculated from the
number of records.

The transfer is effected by means of an internal SEL call. This call permits the same
functions as those provided by SEL with respect to the ISAM keys (see the CHECK,
STRING, VALUE and RANGE processing operands).

Editor run

EDTx membername:
LMS passes the member records on to EDT. The member is then available in virtual
memory. The line number displayed by EDT gives the first six digits of the ISAM
keys.

A scratch file with linkname=EDTISAM will be generated if processing operands
STRING and CHECK are used or when the stored ISAM keys specify a KEY-
POSITION less than 5 or KEY-LENGTH less than 8.

If a file was assigned the link name EDRPRIMR outside of LMS and this assignment
still applies when the user wants to process a member via EDRx, the assignment
must first be cancelled by means of /REMOVE-FILE-LINK LINK-NAME=EDRPRIMR,
because otherwise the file assigned with EDRPRIMR will be processed. On EDOR
termination, however, only the scratch file with the member data will be written
back.

Old libraries (OSM) are closed. Other users can access the library and the member.
Program libraries are not closed, the member processed is locked to other users.

The appropriate editor is now invoked as a subroutine. If a scratch file has been
generated, it is opened and may be processed.

When the editor is invoked LMS-STXIT is terminated, and when control returns from
the editor it is started again.

U817-J-Z125-9-7600 129

EDT/EDR format 1 LMS statements

Termination of the editors:

EDT:

RETURN from work file 0:
The current work file is added as a member to the output library. The EDT
data (files in virtual memory, variables,...) remains intact. This data is
released only in the case of a severe EDT error.

HALT from work file 0:

LMS0420: EDITED ELEMENT

(type)membername/version[(variantnumber])/date TO BE ADDED ?

REPLY (Y=YES, N=NO)?

The response determines whether or not the current work file is added
as a member. The EDT data remains intact. This data is released only in
case of a severe EDT error.

HALT/RETURN from word file 0:
The following message is issued:

LMS0420: EDITED ELEMENT

(type)membername/version[(variantnumber])/date TO BE ADDED ?

REPLY (Y=YES, N=NO)?

If ’N’ is entered, the member is not added. If the reply is ’Y’, the
following dialog is then conducted with the user:

LMS0421: WORKFILE TO BE ADDED (0 = WORKFILE(0),..., N = NONE) If
the reply is ’N’, LMS returns to the EDT work file currently being
processed.

EDT in batch mode:

@RETURN:
The corrected member is added from work file 0 to the output
library, provided that the output library is not empty.

@HALT:
The corrected member is not added to the output library.

EDOR:

H!H The corrected member is added to the output library.

130 U817-J-Z125-9-7600

LMS statements EDT/EDR format 1

Adding processed members to the output library

The following applies, depending on the file processing program used:

A member processed by EDOR is added to the library only if

the scratch file is not empty

EDOR is terminated with H!H

A member processed by EDT is added to the library only if

EDT is terminated with RETURN from work file 0 and the scratch file is not
empty

EDT is terminated with RETURN from a work file or HALT and the response to
the subsequent message "EDITED ELEMENT ..." is "Y"

EDT is terminated with RETURN in batch mode and work file 0 is not empty.

U817-J-Z125-9-7600 131

EDT/EDR formats 2 and 3 LMS statements

Format 2: Creation and correction of files

This EDT/EDR format simply invokes EDT/EDOR. EDT and/or EDOR are then available
for file processing under the conditions described in the relevant manuals [4], [5]. Once
EDT/EDOR is terminated, the interrupted LMS run is resumed. The EDT data (files in
virtual memory, variables,...) is retained.

Operation Operands

EDT

EDR

Format 3: Display of members

This format enables the user to view members without assigning an output library.

Operation Operands

EDT[x] memberu[(lib)]>*DUMMY

EDR[x] memberu[(lib)]>*DUMMY

memberu Member designation of the input member. Multiple selection is
allowed in restricted form (no list input) for program libraries.

lib Short designation of the input library.

*DUMMY The member readied for the editor is not written back; in addition
the following applies:

an output library need not be assigned;
version and date entries are checked for syntax errors;
memberu must exist;
any scratch file will be erased.

132 U817-J-Z125-9-7600

LMS statements END

END Terminate LMS run

END concludes the LMS program. All libraries that are still open are closed.

In interactive mode, LMS always terminates in a normal manner; in batch mode, or in
procedures, the type of termination depends on the termination code (see TERMINATE
processing operand).
If an internal LMS termination code is set, then this is output simultaneously with the
LMS termination message (LMS-TERM-MSG).

Operation Operands

END

The completion code indicates the most serious error that has occurred. It is stored in
the monitoring job variable specified in the call

/START-PROGRAM LMS,MONJV=<name>

Completion code Meaning

0 No error

1 Warning messages were output

2 Error with interrupt code occurred
(see processing operand TERMINATE)

3 Internal LMS error (with dump)

Once LMS is terminated, the status indicator of the program monitoring job variable
contains the completion code (see above) in the first byte, and the internal termination
code (see PAR TERM) in the fourth byte.

U817-J-Z125-9-7600 133

LIB LMS statements

LIB Assign and close libraries

LIB permits input and output libraries to be created, opened and closed. LMS reads
members from the input library and outputs members to the output library.

DEL and NAM are exceptions to the above, since they only affect the assigned input
library.

LIB has three formats:

Format 1: Assign libraries

Operation Operands

LIB FILE=libname
LINK=linkname IN

[,[USAGE=] OUT]
[LIBRARY=]name BOTH
[LID=](lib)

PL O[LD]
[,[FORMAT=] OML][,[STATE=] N[EW]]

OSM A[NY]

Format 2: Close libraries

Operation Operands

LIB FILE=libname
LINK=linkname

C[LOSE][,]
[LIBRARY=]name
[LID=](lib)

Format 3: Display the assigned libraries

Operation Operands

LIB ?

134 U817-J-Z125-9-7600

LMS statements LIB format 1

Format 1: Assign libraries

LIB assigns libraries. It permits specifications to be made in order to

define the library as an input or output library, or both

define the type of library (program library, source library, macro library or object
module library)

define whether the library is to be newly created, whether it already exists, or
whether it is to be newly created if required.

LIB closes the input library previously assigned with LIB by assigning a new input
library. The same applies to output libraries.

The newly assigned library is opened.

Operation Operands

LIB FILE=libname
LINK=linkname IN

[,[USAGE=] OUT]
[LIBRARY=]name BOTH
[LID=](lib)

PL O[LD]
[,[FORMAT=] OML][,[STATE=] N[EW]]

OSM A[NY]

LIB Statement name.

FILE=libname Fully qualified file name of the library. "pathname" may also be
specified for "libname" (see the manual "User Commands (SDF
Format)" [7]).

LINK=linkname Specifies the link name assigned to the library in a /SET-FILE-LINK
command.

LIBRARY=name LMS first attempts to interpret "name" as a link name. If no such link
name has been assigned previously with a /SET-FILE-LINK
command, "name" will be interpreted as a library name.

The keyword "LIBRARY=" may be omitted. In this case, the library
name must not be "CLOSE", since otherwise LIB format 2 will be
assumed.

U817-J-Z125-9-7600 135

LIB format 1 LMS statements

LID=(lib) Specifies the short library designation consisting of up to 3 digits.
The short library designation must have been defined previously
using a /SET-FILE-LINK command with the link name LIBlib.

USAGE This operand specifies whether the library is to be used for input, for
output or for both.

=IN During the LMS run, the library is the input library. Default value
when STATE=OLD.

=OUT During the LMS run, the library is the output library. Default value
when STATE=NEW or STATE=ANY.

=BOTH During the LMS run, the library is both the input and the output
library.

FORMAT This operand specifies the type of the library to be assigned.

The FORMAT operand is only necessary when new libraries are to
be created and the default value PL is undesirable. The library type
of existing libraries is identified by LMS.

=PL Program Library.

=OML Object Module Library.

=OSM Old Source/Macro library.

STATE Determines whether the library is to be created, whether it already
exists, or whether it is to be created if required.

=O[LD] The library already exists.

=N[EW] The library is to be created.
If the library has already been created, the statement is rejected and
an error message is issued.

=A[NY] The library is created if it does not yet exist.

The short library designation in DEL, NAM, NUM, COR, UPD, EDT, EDR, DUP, COM,
LST and TOC permits a library other than the standard input library to be assigned.
This input library is only valid while the statement is executing. Afterwards, the standard
input assignment will resume its validity.

136 U817-J-Z125-9-7600

LMS statements LIB format 1

Example

/SET-FILE-LINK FILE-NAME=LMS.BEI,LINK-NAME=BEILINK
/SET-FILE-LINK FILE-NAME=LMS.EINB,LINK-NAME=LIB001
/START-PROGRAM $LMS
$LIB FILE=LMS.AUS,OUT,NEW
$LIB LINK=BEILINK,IN,
.
.
.

$LIB LID=(001),USAGE=IN
.
.
.

$END

The library LMS.BEI is assigned with a /SET-FILE-LINK command, and linked to LMS
as the input library using LIB with the link name BEILINK and the operand value IN.

The output library (OUT,NEW) LMS.AUS to be created is specified in LIB via the file
name.

On input of the third LIB, which assigns the library LMS.EINB as the input library by
way of the short library designation, the library LMS.BEI is closed.

Assignment of sequential libraries

LIB permits sequential libraries to be assigned as input libraries only. In order to create
sequential libraries LIBOUT (lib),NEWLIB (see page 330) must be used.

Existing sequential output libraries are assigned with LIBOUT (lib).

U817-J-Z125-9-7600 137

LIB format 2 LMS statements

Format 2: Close libraries

This format of LIB is used to close libraries. The input/output library assignment is
cancelled.

Operation Operands

LIB FILE=libname
LINK=linkname

C[LOSE][,]
[LIBRARY=]name
[LID=](lib)

LIB Statement name.

C[LOSE] Causes the library, or libraries, to be closed.

FILE=libname Specifies the fully qualified file name of the library to be closed.
"pathname" may also be specified for "libname" (see the manual
"User Commands (SDF Format)" [7]).

LINK=linkname Specifies the link name of the library to be closed; this library was
assigned with a /SET-FILE-LINK command and must be known to
LMS.

LIBRARY=name LMS first attempts to interpret "name" as the assigned link name of
the library to be closed.
If no such link name is found, "name" is interpreted as a library
name. The link name or the library name must be known to LMS.

LID=(lib) Specifies the short designation of the library to be closed. The
library must have been assigned with the /SET-FILE-LINK command
via the link name LIBlib, and must be known to LMS.

Example

/START-PROGRAM $LMS
$LIB LMS.TEST,BOTH
.
.
.

$LIB C,LMS.TEST
.
.
.

$END

The library LMS.TEST is assigned as both the input and the output library with the first
LIB, and closed with the second LIB.

138 U817-J-Z125-9-7600

LMS statements LIB format 3

Format 3: Display assigned libraries

This format of LIB provides information on the libraries used during the LMS run.

The following information is output:

library function (input library or output library, or both)

library status (opened or closed)

library format

assigned short designation, if any

assigned link name, if any

library file names

Operation Operands

LIB ?

U817-J-Z125-9-7600 139

LST LSM statements

LST List members

LST lists the specified members or all the members of the assigned input library.

Depending on the value of PRT, the output medium is

the terminal, and/or

system file SYSLST, or

a library member.

The scope and format of the listing is controlled by processing operands CSECT,
FORMAT, LINE, PATH, SLICE, INFO and NEWFORM.

For the listing of members of type S, M, J, D, P or X, the user may also branch to user
routines (see the USE statement).

Operation Operands

LST[x] member[(lib)
[,...]

(lib)

LSTx Statement name with specification of member type: All member
types are permitted:
S, M, R, J, P, C, D, X, H, L, F, U

* Stands for all member types (only permitted for program libraries)

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

member Designates the members to be listed, or multiple selection.

lib Short designation of the input library.

Since list members (type P in program libraries and type S in source libraries) may only
be output to the SYSLST system file, PRT (LST) must also be specified. In this case the
processing operand LINE is ignored. (In the case of list members in source libraries,
processing operand PAR FORMAT=P is additionally required.)

LMS error messages are always output to SYSOUT, even if PRT (LST) has been set.

140 U817-J-Z125-9-7600

LSM statements LST

Processing operands

CSECT Defines which control section is to be listed, for type L.

TYPE Defines the member type if no type is specified in the statement
itself.

FORMAT Determines whether records are output in character form, in
hexadecimal form, or using a combination of these. For more details
see the "Systems Standards" manual [12].

INFO Determines whether all records, only certain record types, certain
areas or only the most import member data are output.

LINE Defines the number of lines and columns on a log page for output
to system file SYSLST or to a member.

PATH Defines the sub-LLM to be listed, for type L.

REFERENCE Defines which reference names the members to be listed must have.
If the reference condition is not satisfied, the member is not included
in the list. REFERENCE is permitted for member type R only. After a
REFERENCE definition, R must be specified with LST.

SLICE Defines the member slice to be listed, for type L.

BASE Defines the base address for relations between address areas (see
processing operand INFO); for BS2000 load modules only.

SEGMENT Defines the segments to be listed (for BS2000 load modules only).

NEWFORM Controls line feed of the LMS log.

LST Supported for reasons of compatibility only. The operand values are
replaced internally by the values of the processing operands
FORMAT and INFO.

Example

/SET-FILE-LINK FILE-NAME=TEST.LIB,LINK-NAME=LIB003
/START-PROGRAM $LMS
$PAR INFO=SUMMARY
$LSTS (3)
$END

Information on all S-type members of program library TEST.LIB is listed.

U817-J-Z125-9-7600 141

NAM LMS statements

NAM Rename members

NAM renames the specified members of the assigned input library.
The name is changed solely in the input library’s directory.

NAM is not permitted for delta members and sequential libraries.

Operation Operands

NAM[x] member,...[(lib)]
>memberu[,{...}>...]

(lib)

NAMx Statement name with specification of member type.
All member types are permitted:
S, M, R, J, P, C, D, X, H, L, F, U

* Stands for all member types (only permitted for program libraries)

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

member Member designation that is to be changed, or multiple selection.

For "member" names that do not conform to LMS conventions are
also permitted so as to enable the further processing of such
members.

memberu New member designation; construction specification also permitted.

lib Short designation of the input library.

Processing operands

TYPE Defines the member type, if no type is defined in the statement itself.

DESTROY Determines whether a code for physical deletion is set in the
renamed members (only possible in conjunction with program
libraries).

OVERWRITE Controls overwriting of identically named members.

142 U817-J-Z125-9-7600

LMS statements NAM

Example

/START-PROGRAM $LMS
$LIB PROD.LIB,BOTH
$NAMM MAXOUT>MACOUT
$END

The macro MAXOUT is renamed MACOUT.

U817-J-Z125-9-7600 143

NOP LMS statements

NOP Dummy function

NOP causes no action in LMS. In procedures it can be used to reserve space.

Operation Operands

NOP [string]

NOP Statement name.

string Any text.

Note

"!" and X’15’ (NEW-LINE) must not occur in text, as they are interpreted as
statement delimiters.

Example

NOP is used in a procedure to reserve space for a statement.

/PROC C,(&ANW=NOP,...),SUBDTA=&
.
.
.

/MODIFY-JOB-SWITCHES ON=(1)
/START-PROGRAM $LMS
.
.
.

&ANW ELEM(1)
.
.
.

END
/MODIFY-JOB-SWITCHES OFF=(1)
.
.
.

/END-PROCEDURE

The procedure is called by the command /CALL-PROCEDURE ..., ANW=LSTS. The
procedure then causes the member ELEM from the library with short designation (1) to
be output.

144 U817-J-Z125-9-7600

LMS statements NUM

NUM Number member records

NUM numbers the check field of the specified members. The generated member is
transferred to the assigned output library.

The position, length and contents of the check field are defined by processing
operands.

The record IDs are provided for record identification; they may be
checked for ascending sequence in further statements. For further information
concerning check fields, see page 48.

Input and output libraries must not be identical when sequential libraries are involved.
Where other libraries are concerned, input and output libraries may be identical.

Operation Operands

NUM[x] member[(lib)]
[>memberu]

(lib)

NUMx Statement name with specification of the member type:
S, M, J, P, D, X

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

member Member designation or multiple selection.

lib Short designation of the input library.

memberu Member designation of the output member, or construction
specification.

Processing operands

TYPE Defines the member type if no type is defined in the statement itself.

DESTROY Determines whether a code is set in the output member for physical
deletion (only possible in conjunction with program libraries).

RANGE Defines the position and length of the check field in output records.

VALUE Specifies the initial value and increment for numbering in the check
field.

U817-J-Z125-9-7600 145

NUM LMS statements

STRING Specifies the string to be entered left-justified in the check field of
output records.

OVERWRITE Controls overwriting of identically named members in output library.
If

input library = output library and
member = memberu,

this processing operand will have no effect and the input member is
overwritten.

The member is numbered in accordance with the current values of the processing
operands RANGE, VALUE and STRING.

Example

/START-PROGRAM $LMS
$LIB PROD1.LIB,BOTH
$PAR RANGE=1/8,VALUE=10000000/1000
$NUMS ELM2*
$END

The members whose names start with ELM2 are numbered. The check field of the first
record receives the value 10000000; the second record 10001000, etc.

146 U817-J-Z125-9-7600

LMS statements PAR

PAR Set processing operands

PAR is used to set processing operands. A processing operand can both define a
processing mode and specify the values required for processing.

Operation Operands

PAR parvalue
parname=[]

[? ,{...}]

?

PAR Statement name.

parname Name of the processing operand (see page 203 ff).

parvalue Value of the processing operand (see page 203 ff).

? The current values are listed for all the processing operands, or for
the processing operands specified as "parname".

Default values are defined for all the processing operands. At the start of an LMS run
all the processing operands are set to these default values. The default values are given
under the descriptions of the individual operands (see page 209 ff). If, in PAR, the
values are not specified or are specified but contain errors, the appropriate default
values are set. The processing operands may be specified in any order. Where multiple
specification of the same operand occurs, the last instance will always be the one to
apply. The specifications remain valid until a new value is explicitly defined or until a
PAR without operands causes the operands to be reset to the default values. The
descriptions of the individual functions indicate which processing operands affect which
function.

See page 205 for a summary of the processing operands.

U817-J-Z125-9-7600 147

PRT LMS statements

PRT Control log output

PRT defines the output medium for LMS logs.

The output medium may be:

the terminal

the system file SYSLST, or

a library member.

If the log is written to a member, LMS will generate a P-type member for program
libraries, and an S-type member for source libraries. If the library to which the member
is written is a source library, it must not be the standard input or output library for the
current LMS run.

Operation Operands

PRT (LST)
([SYS]OUT)
(CON)

(BOTH)
member[(lib)]
?

PRT Statement name.

LST Outputs the log to system file SYSLST.

SYSOUT Outputs the log to system file SYSOUT (i.e. to the data display
terminal in interactive mode).

CON Has the same effect as the SYSOUT operand, and is supported for
reasons of compatibility only.

BOTH Outputs the log both to the terminal and to system file SYSLST.

member Outputs the log to library member "member".

lib Short designation of the library to which the member is written.

? The current value is logged.

Note

LMS error messages are always output to SYSOUT, even if PRT(LST) has been set.

148 U817-J-Z125-9-7600

LMS statements PRT

Processing operands

LINE Controls the number of lines and columns of a log page (only
meaningful for SYSLST and "member").

LOG Controls the scope of the log; in order to receive a log, PAR
LOG=MED or PAR LOG=MAX must have been set (default value
LOG=MIN).

NEWFORM Defines feed control for logs.

OVERWRITE Controls overwriting of identically named members in the output
library.

DESTROY Determines whether a code for physical deletion is to be set in the
log (only possible in conjunction with program libraries).

Example

/SET-FILE-LINK FILE-NAME=PROT.LIB,LINK-NAME=LIB002
/START-PROGRAM $LMS
$PRT PROELEM(2)
$LIB EINAUS.LIB,BOTH

:
:

$END

The log for this LMS run is output to member PROELEM of library PROT.LIB.

U817-J-Z125-9-7600 149

RST LMS statements

RST Restart after test mode

RST causes run mode to be resumed following previous activation of test mode on
account of an error (see page 70). The previous input/output libraries are closed. After
that they are "undefined" and must be redefined.

Operation Operands

RST [STOP]

RST Statement name.

STOP Run mode is resumed.
However, the internal termination code is not reset.

If the termination bit is set when LMS terminates, LMS terminates
with TERMJ instead of TERM.
LMS issues the end message "TERMINATED".

If this operand is omitted, the termination code (if set) will be reset
and run mode resumed.

Processing operand

TEST Activates test mode.

If TEST=YES is set, RST has no effect.

150 U817-J-Z125-9-7600

LMS statements SEL

SEL Output library members to files and FMS libraries

SEL outputs specified members of the assigned input libraries to files or FMS libraries.
SEL has two formats for performing these different functions.

Format 1: Output members to files

Operation Operands

SEL[x] [prefix.](name)[.suffix]
member,...[> filename]

LINK=linkname

Format 2: Output members to FMS libraries

Operation Operands

SEL[x] member>FMS=fmslib(fmsmember)

U817-J-Z125-9-7600 151

SEL format 1 LMS statements

Format 1: Output members to files

This format of SEL outputs library members to files.

LMS creates files in accordance with

the file attributes stored (PAR KEY=YES) and the FCBTYPE processing operand

the entry in the task file table (TFT), if the file has been assigned via the link name.
This specification has priority over the file attributes which have been stored.

the catalog entry.

The files can have RECORD-FORMAT=UNDEFINED and arbitrary BUFFER-LENGTH
and RECORD-SIZE values. However, the maximum record length of 32 Kbytes
(including the record header) must not be exceeded.

If the ISAM keys of an ISAM file have been included in the member (by means of PAR
KEY=YES), the ISAM keys are also output when SEL is issued. In this case the
processing operands CHECK, STRING and VALUE are ignored.

For C-type members and for PAM files under type X, PAM files are again generated
when selection is performed.

Operation Operands

SEL[x] [prefix.](name)[.suffix]
member,...[> filename]

LINK=linkname

SELx Statement name with specification of member type:
S, M, R, J, P, D, X

C is permitted only for BS2000 load modules.

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

member Member designation of the member to be output.
Multiple selection is permitted if

filename is not specified

a construction specification was made for "name" in the
[prefix.](name)[.suffix] expression.

152 U817-J-Z125-9-7600

LMS statements SEL format 1

filename Fully qualified file name of the file to be generated.
Multiple selection is not allowed.
"pathname" may also be specified for "filename" (see the manual
"User Commands (SDF Format)" [7]).

LINK=linkname Link name referencing a file which has been assigned with the /SET-
FILE-LINK command. The assigned file must not be a tape file,
rather it must be a disk file.

[prefix.](name)[.suffix]
If multiple selection is specified for the member designation
"member", several members may be output to different files using
this expression. "name" must be a construction specification in this
case.

prefix. Specifies the common prefixed portion of names of files to be
created.
"prefix" must end with a period.

.suffix Specifies the common suffixed portion of names of files to be
created.
"suffix" must begin with a period.

name Specifies part of a name by which prefix and/or suffix are
supplemented to form one or more fully qualified file names. If a
construction specification is given for "name", this part of the file
name is formed from the member names.

Note

Valid member names are not always permitted as file names.

Processing operands

TYPE Defines the member type if no type is specified in the statement
itself.

FCBTYPE Defines the FCB type of the output file for members which contain
text and in accordance with the file attributes specified with PAR
KEY.

OVERWRITE Determines whether an identically named file is overwritten, not
overwritten, or expanded by the records of the input member.

CHECK Defines a check field in input records.

STRING Specifies a character string to be entered left-justified in the ISAM
key field.

U817-J-Z125-9-7600 153

SEL format 1 LMS statements

VALUE Defines the initial value and increment of the numeric value to be
entered in the ISAM key.

PHASE Determines whether an NK or a PK phase is generated.

Processing operands CHECK, STRING and VALUE are ignored if the ISAM key is
stored in the member.

Generation of ISAM files

When members are output to ISAM files, LMS generates the ISAM keys as follows:

If the ISAM keys are also added (PAR KEY=YES) when an ISAM file is included as
a library member, LMS generates the ISAM file with those ISAM keys which have
been stored.

If no ISAM keys have been stored in the member, LMS will generate them.

1. Generation of ISAM key by means of VALUE and STRING processing operands

VALUE defines the initial value and increment for the right-justified numeric value
in the ISAM key. Any character string defined by STRING is entered left-justified
in the ISAM key field.
The CHECK processing operand must have the value NO in this case, i.e. no
check field may be defined in the input records.

2. Generation of ISAM key by way of default values

If processing operands CHECK and VALUE have the value NO, LMS will
generate the ISAM key with an initial value of 1000 and an increment of 1000, as
a standard procedure. The generated values are entered right-justified in the
ISAM key. If processing operand STRING has defined a character string, this
string will be entered left-justified in the key field.

3. Transfer of ISAM key from check field

Processing operand CHECK=start/length defines a check field in the input
records. The contents of this check field are entered left-justified in the ISAM key
of the record. If check field (length) and ISAM key (KEY-LENGTH) have varying
lengths, LMS takes the following action:

KEY-LENGTH<length: the check field is truncated on the right.
KEY-LENGTH>length: the ISAM key is padded with zeros on the right.

Processing operands STRING and VALUE are not interpreted here.

154 U817-J-Z125-9-7600

LMS statements SEL format 1

Notes

R-type members are output up to the END record. Any records which come
afterwards are ignored.

Correction journal records (TXTP) are not included in the output in the case of C-
type members.

RECORD-SIZE is supplied with values only when RECORD-FORMAT=FIXED; when
RECORD-FORMAT=VARIABLE, the value is 0.

If, in the case of SEL and PAR OVERWRITE=YES, a file with the name of the file to
be created already exists, the existing cataloged file must have the same attributes
as the file to be generated.

Example 1

/SET-FILE-LINK FILE-NAME=AUSDAT,LINK-NAME=AUSD, -
ACCESS-METHOD=SAM,RECORD-FORMAT=VARIABLE

/START-PROGRAM $LMS
$LIB EIN.BIB,IN
$SELS ELEM1>LINK=AUSD
$END

SEL causes member ELEM1 to be output to file AUSDAT, which has the specified file
attributes.

Example 2

If all members of a library are to be output under their respective names, the following
statement should be entered:

$SEL[x] *

U817-J-Z125-9-7600 155

SEL format 2 LMS statements

Format 2: Output members to FMS libraries

This format of SEL outputs a member from an LMS library to an FMS library. The
member is written to the FMS library with the attributes defined in the LMS library. A
SAM file is generated in the FMS library as a standard procedure. If a member is
overwritten, it will receive the existing attributes.

This statement causes the FMS program (see the "FMS" manual [10]) to be invoked as
a subroutine.

Operation Operands

SEL[x] member>FMS=fmslib(fmsmember)

SELx Statement name with specification of member type:
S, M, R, J, P, D, X

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

member Designation of the member to be output.
Multiple selection is not permitted.

fmslib Fully qualified file name of the FMS library. "pathname" can also be
specified for "fmslib" (see the manual "User Commands (SDF
Format)" [7]).

fmsmember Complete designation of the member generated in the FMS library.

Processing operands

CHECK Defines a check field in input records.

OVERWRITE Controls overwriting of identically named FMS members. Only the
values YES, NO or ONLY may be specified.

STRING Specifies a character string to be entered left-justified in the ISAM
key field.

VALUE Defines the initial value and increment of the numeric value to be
entered in the ISAM key.

156 U817-J-Z125-9-7600

LMS statements SEL format 2

Example

/START-PROGRAM $LMS
$LIB ERT.LIB,BOTH
$SELS ERTEL>FMS=FMSERT(ERT3)
$DELS ERTEL
$END

Member ERTEL is written as member ERT3 to the FMS library and is subsequently
deleted in library ERT.LIB.

U817-J-Z125-9-7600 157

SUM LMS statements

SUM Store comparison statistics

Comparison statistics are generated when members are compared with the aid of COM.
COM stores these comparison statistics in a sum field with the designation S1, provided
processing operand SUM is set before COM is issued.

SUM performs the following actions:

SUMPRT S1 Outputs the summed comparison statistics in sum field S1, together
with a title.

SUMADD S1>S2 Adds the comparison statistics stored in sum field S1 to sum field
S2.

SUMDEL S1 Sum field S1 is deleted.

Operation Operands

SUM [’text’]

SUM Statement name.

text Text that is output as a title prior to the comparison statistics.

Apostrophes within the text must be given in duplicate. Default
value: AREA S1

Processing operand

SUM Is defined prior to COM and controls storage of the comparison
statistics.

158 U817-J-Z125-9-7600

LMS statements SUMPRT/SUMADD

SUMPRT Output comparison statistics

SUMPRT serves to output one of the sum fields used, S1 or S2. The text enclosed in
apostrophes is output as a title.

Operation Operands

SUMPRT S1
[,’text’]

S2

SUMPRT Statement name.

S1 Designation of the sum field to be output.
S2

text Title for output of the sum field.
Apostrophes within the text must be specified in duplicate.

SUMADD Add comparison statistics

SUMADD adds the comparison statistics stored in sum field S1 or S2 to sum field S2
or S1, respectively.

sum field S2 = sum field S2 + sum field S1 (SUMADD S1>S2)

Operation Operands

SUMADD S1 S1
>

S2 S2

SUMADD Statement name.

U817-J-Z125-9-7600 159

SUMDEL/SYS LMS statements

SUMDEL Delete comparison statistics

SUMDEL deletes the comparison statistics in the specified sum field.

Operation Operands

SUMDEL S1

S2

SUMDEL Statement name.

S1 Designation of the sum field to be deleted.
S2

SYS Issue system commands

SYS enables system commands that are processed with the CMD macro to be issued
without leaving program mode. If no operand is specified, SYS has the same effect as
a BREAK command.

A return to program mode is effected by means of the /RESUME-PROGRAM command.

Operation Operand

SYS ’systemcommand’
[]

systemcommand

SYS Statement name.

systemcommand Name of a command with the necessary or desired operands. The
system command is passed unchanged to the command processor.

160 U817-J-Z125-9-7600

LMS statements TCH

TCH Change terminal characteristics

TCH controls screen overflow and specifies whether the output is to appear on a new
screen or in roll-up mode.

Operation Operands

TCH N[O]
A[CK] Y[ES]

[O[FLOW]=][,N[EWSCREEN]= N[O]]
T[IMER] ?
?

?

OFLOW This operand is based on the OVERFLOW-CONTROL operand of the
/MODIFY-TERMINAL-OPTIONS command (see the manual "User
Commands (SDF Format)" [7]). It controls overwriting of a full
screen of data (overflow control).

The default value for OFLOW is that which has been specified by the
user or the system administrator in the /MODIFY-TERMINAL-
OPTIONS command.

=NO No overflow control, i.e. when the screen is full and further data is
waiting to be displayed, the screen is overwritten.

=ACK When the screen is full and further data is waiting to be displayed,
LMS issues the following message:

PLEASE ACKNOWLEDGE (NO/TIMER/<ANY INPUT>) /
INTERRUPT (NE/NS/NI):

The screen is not overwritten until the user responds with one of the
entries prompted in the PLEASE ACKNOWLEDGE message. Input
options NE/NS/NI are described in the section on "Control of
screen overflow" (see page 69).

<ANY INPUT> means that any option other than those prompted
will cause the next screen to be displayed.

=TIMER The system waits 6 seconds before the next screen is displayed.

NEWSCREEN This operand controls page turning.

=YES After statement input, the screen is cleared before the function
output occurs.

=NO The screen is not cleared after statement input.

? The current value is logged.

U817-J-Z125-9-7600 161

TOC LMS statements

TOC Output library directory

TOC outputs the directory entries of the specified members or of the entire library. With
the aid of processing operand REFERENCE the directory can be limited to the
members containing a certain reference name.

Operation Operands

TOC[x] member[(lib)]
[,...]

(lib)

TOCx Statement name with specification of member type.
All member types are permitted:
S, M, R, P, J, C, D, X, H, L, F, U

* Stands for all member types (not permitted for tape libraries)

The member type need not be specified if the appropriate member
type has been defined in the TYPE processing operand.

member Member designation or multiple selection.

lib Short designation of the input library.

Processing operands

TYPE Defines the member type, if no type is specified in the statement
itself.

REFERENCE Defines which reference names the members to be output must
have. If the reference condition is not satisfied, the member is not
output. REFERENCE is permitted for member type R only. After a
REFERENCE definition, R must be specified with TOC.

SORT Defines the sort criteria for output of the directory.

Default value: The directory is sorted by name, version number
and date.

TOC Controls the format of the directory log for program libraries.

Default value: The format is redefined for each member type in
accordance with the length of the member names.

162 U817-J-Z125-9-7600

LMS statements TOC

LINE Defines the number of lines and columns on a log page for output
to system file SYSLST or to a member.

Directories that cannot be sorted because of their size can be sorted contiguously by
setting job switch 9.

Example

/SET-FILE-LINK FILE-NAME=A.LIB,LINK-NAME=LIB001
/START-PROGRAM $LMS
$LIB INOUT.LIB,BOTH
$TOC* *
$PAR SORT=V
$TOCS (1)
$END

The /SET-FILE-LINK command is used to assign source library A.LIB. Program library
INOUT.LIB is assigned as the standard I/O library. Since this is a program library, *
may be entered as the member type in TOC. With all other libraries, * cannot be
entered as a member type for TOC. By means of the second TOC statement, all S-type
members can be output from A.LIB, sorted by version.

Note

TOC or TOC* */* must be specified in order to obtain the complete directory of a
program library (all members with all versions). This function runs on all library types
on which type "*" is permitted.

U817-J-Z125-9-7600 163

UPD LMS statements

UPD Correct object and load modules and LLMs

UPD corrects the specified member of the assigned input library. The corrected
member is then written to the assigned output library, possibly with a new member
designation.

UPD includes various substatements for corrections to object and load modules and
LLMs. The substatements are read directly after UPD until *END is encountered in the
statement stream.

No continuation lines are possible in substatements.

Input and output libraries must not be identical where sequential libraries are
concerned. For other types of libraries input and output libraries may be identical.

Three UPD formats are available:

Format 1: Correct object modules

Operation Operands

UPD[R] member[(lib)][>memberu]

Format 2: Correct load modules (BS2000 phases)

Operation Operands

UPD[C] elem[(lib)][>elemu]

Format 3: Correct LLMs

Operation Operands

UPD[L] member[(lib)][>memberu]

164 U817-J-Z125-9-7600

LMS statements UPD format 1

Format 1: Correct object modules

Operation Operands

UPD[R] member[(lib)][>memberu]

UPDR Statement name with member type R.
R may be omitted if member type R has been defined in the TYPE
processing operand.

member Complete designation of the member to be corrected, or multiple
selection (no list specification).

lib Short designation of the input library.

memberu Designation of the output member, or construction specification.

Processing operands

TYPE Defines the member type if no type is specified in the statement
itself.

OVERWRITE Controls overwriting of identically named members in the output
library. If,

input library = output library and member = memberu,

this processing operand will have no effect and the input member is
then overwritten.

DESTROY Defines whether a code for physical deletion is entered in the output
member (only possible in conjunction with program libraries).

STRIP Determines which record types are excluded from correction.

LMS first collects the UPD substatements and checks for

correct substatement syntax

uniqueness of corrections (overlapping)

uniqueness of symbols in the case of renaming.

After *END, the substatements which have been entered are first checked to see
whether they can be executed before an attempt is made to execute them.

U817-J-Z125-9-7600 165

UPDR correction statements LMS statements

Correction statements for UPDR

Overview

Correction statement Function

*BAS baseaddr Define a base
address

*CON controlnumber Define the cross
control number

*COR [csectname,][baseaddr+]address, Correct text
records

C C
[[X]’searchstring’=[:=]][X]’replacementstring’

B B

[,ID=’ident’][,CONTROL=number]

rectype Delete parts of
*DEL (rectype,...) object modules

TXTP[,ID=’ident’]

*END Terminate
correction
input

*ID ’ident’ Define the
identification

*INS INCLUDE (module,...)[,library] Insert an INCLDUE
record

REP Convert
*INV corrections

COR[,ID=’ident’]

CSECT: Rename symbols
ENTRY:

*NAM nameold,namenew
EXTRN:
COMMON:

*REM [ID=’ident’] Cancel
corrections

166 U817-J-Z125-9-7600

LMS statements UPDR correction statements

Correction statement Function

*REP [csectname,][baseaddr+]address, Insert a REP
record

C C
[[X]’searchstring’=[:=]][X]’replacementstring’

B B

[,CONTROL=number]

csectname Y Y Change control
*SET [,PRIV=][,PUBLIC=] section

* N N attributes

Y Y Y
[,VISIBLE=][,READONLY=][,PAGE=]

N N N

Y 24 24
[,RESIDENT=][,RMODE=][,AMODE= 31]

N ANY ANY

U817-J-Z125-9-7600 167

UPDR correction statement *BAS/*CON

Description of the correction statements for object modules

*BAS Define base address

*BAS defines a base address. This address is then added to the address in a
subsequent *COR to form the absolute address in the object module, provided that no
base address is explicitly specified in *COR. The default value is 0.

Operation Operands

*BAS baseaddr

baseaddr Defines the base address (in hexadecimal form).
0 baseaddr 7FFFFFFF

*CON Define cross control number

*CON defines the cross control number for the entire correction run. If *CON is
specified more than once, the last specification is always the one which is valid.

Control numbers provide more reliability when making and relaying corrections. During
the correction run, LMS uses the character string in each correction statement to
compute a control number, and from the sum of these numbers LMS in turn computes
the cross control number. These values are also determined in test mode. The control
numbers are output when the relevant correction statement is logged; the cross control
number is output at the end of the correction log. When a correction is relayed or is
definitively performed in run mode, the control numbers and the cross control number
should also be specified. If corrections are to be carried out, LMS compares the
specified numbers with the newly computed ones. If they are found to be not matching,
no correction will be performed.

Operation Operands

*CON controlnumber

controlnumber Defines the cross control number (in hexadecimal form). 0
controlnumber 7FFFFFFF

168 U817-J-Z125-9-7600

UPDR correction statement *COR

*COR Correct text records

*COR corrects text records of an object module and generates a correction journal
record (TXTP record) containing the original contents of the text area.

Operation Operands

*COR [csectname,][baseaddr+]address,

C C
[[X]’searchstring’=[:=]][X]’replacementstring’

B B

[,ID=’ident’][,CONTROL=number]

csectname Specifies the name of a control section (CSECT). If "csectname" is
specified, corrections are made within that CSECT only. With new-
format advanced prelinked modules (with complete ESD),
corrections must always be made via "csectname".

baseaddr Defines the base address (in hexadecimal form). This base address
only applies for this *COR. If "baseaddr" is not specified, the address
given in *BAS is assumed.

0 baseaddr 7FFFFFFF

address Defines the relative address.
"baseaddr" + "address" produce the absolute address in the object
module, or the CSECT relative address if "csectname" is specified.

0 baseaddr+address 7FFFFFFF

C’searchstring’ Specifies the search string in characters. An apostrophe in the text
must be specified in duplicate. "searchstring" may be up to 50
characters in length.

X’searchstring’ Specifies the search string in hexadecimal form.
"searchstring" may be up to 50 bytes in length.

B’searchstring’ Specifies the search string in binary form.
"searchstring" may be up to 50 characters in length.

The original text to be compared with the search string is formed
from the TXT records existing for this area. If there is more than one
text for the same address, the last text is the valid one.

=:= Search string and replacement string must be of equal length.

U817-J-Z125-9-7600 169

UPDR correction statement *COR

= Search string and replacement string may have different lengths.

C’replacementstring’
Specifies the replacement string in characters. An apostrophe in the
text must be specified in duplicate. "replacementstring" may be up to
50 characters in length.

X’replacementstring’
Specifies the replacement string in hexadecimal form.
"replacementstring" may be up to 50 bytes in length.

B’replacementstring’
Specifies the replacement string in binary form.
"replacementstring" may be up to 50 characters in length.

ID=’ident’ Specifies an identifier in character form.
"ident" may be up to 8 characters in length. This identification
applies to this *COR only. If this operand is omitted, the
specification given in *ID is assumed.

CONTROL=number
Defines a local control number (in hexadecimal form).

0 number FFFF

If no TXT record exists or if one exists only for part of the replacement area, LMS will
generate a TXT record and include it in the module.

More than one text record may exist for each address (e.g. as a result of ORG
statements). In such cases several text records may have to be updated.

No *REP may be specified within any of the correction statements, since the text
corrections would then be overwritten in the course of the subsequent linkage process.

170 U817-J-Z125-9-7600

UPDR correction statement *DEL

*DEL Delete parts of object modules

*DEL excludes the following record types from the input member:

ISD records

LSD records

REP records

INCLUDE records

TXTP records

DSDD records

Operation Operands

*DEL rectype
(rectype,...)
TXTP[,ID=’ident’]

rectype Defines the record type which is not to be transferred from the input
member to the output member. Permissible record types are:

ISD
LSD
REP
INCLUDE
TXTP
DSDD

ID=’ident’ Specifies an identifier in character form. This identification applies
only for this *DEL.
"ident" may be up to 8 characters in length.

If this operand is omitted, the specification in *ID applies.

Note

REP, INCLUDE and TXTP records should only be deleted after careful consideration.

U817-J-Z125-9-7600 171

UPDR correction statement *END/*ID

*END Terminate correction input

*END concludes the string of correction statements. Afterwards LMS checks all
statements to see whether they can be executed before it tries to execute them.

Operation Operands

*END

*ID Define identification

*ID defines a global identification. It is valid for all statements in which no local
identification is specified.

Operation Operands

*ID [’ident’]

’ident’ Specifies the global identification in characters.
"ident" may be up to 8 characters in length.

If this operand is omitted, 8 blanks are assumed by default.

172 U817-J-Z125-9-7600

UPDR correction statement *INS

*INS Insert INCLUDE record

*INS inserts an INCLUDE record into an object module. The INCLUDE record is
interpreted by the dynamic binder loader (DBL).

Operation Operands

*INS INCLUDE (module,...)[,library]

module Name of the object module to be linked in. Up to 10 object modules
may be specified. If only one object module is specified, the
parentheses may be omitted. "module" may be up to 8 characters in
length.

library Name of the program or object module library which contains the
specified object modules. If this operand is omitted, DBL assumes
TASKLIB.

Notes

The specification "(module,...)[,library]" may be up to 71 characters in length.

LMS neither checks for the existence of the specified object modules nor does it
check the library entry.

U817-J-Z125-9-7600 173

UPDR correction statement *INV

*INV Convert corrections

*INV converts either REP records to text corrections or text corrections to REP records.

Format 1: Convert REP records to text corrections

All REP records of the object module are converted to text corrections. As a result
processing of REP records is dispensed with when linking and loading take place.
Converted REP records are removed from the object module. LMS creates correction
journal records for converted text records. For new-format advanced prelinked modules
this statement is rejected with an error message.

Operation Operands

*INV REP

Format 2: Convert text corrections to REP records

Either all text corrections or text corrections under a specific identification in an object
module and for which a correction journal record exists are converted to REP records
(see *REP for possible problems with advanced prelinked modules). Thereafter, the
correction journal records are deleted. For new-format advanced prelinked modules this
statement is rejected with an error message.

Operation Operands

*INV COR[,ID=’ident’]

ID=’ident’ Specifies an identification.
"ident" may be up to 8 characters in length.

If this operand is omitted, the specification in *ID is assumed. If no
specification was made in *ID either, all text corrections are
converted.

174 U817-J-Z125-9-7600

UPDR correction statement *NAM/*REM

*NAM Rename symbols

*NAM changes the name of a CSECT, ENTRY, EXTRN or COMMON. Each renaming
results in a modification of the ESD records. LMS checks for the uniqueness of names
within all ESD records, rejecting a new name if that name already exists (in contrast to
LMR).

Operation Operands

*NAM CSECT:
ENTRY:

nameold,namenew
EXTRN:
COMMON:

nameold Old name of the symbol. The name must be specified in full.

namenew New name of the symbol. The name must be specified in full.
"namenew" may be up to 8 characters in length.

Note

Masked CSECT names may also be changed.

*REM Cancel corrections

*REM cancels all text corrections or text corrections of a specific ID for which a
correction journal record exists. The correction journal records are then closed.

Operation Operands

*REM [ID=’ident’]

ID=’ident’ Specifies the local ID in characters.
"ident" may be up to 8 characters in length.

If this operand is not specified, the specification for *ID is valid.

U817-J-Z125-9-7600 175

UPDR correction statement *REP

*REP Insert REP record

*REP adds REP records to the object module. These REP records are interpreted by
the dynamic binder loader (DBL).

Operation Operands

*REP [csectname,][baseaddr+]address,

C C
[[X]’searchstring’=[:=]][X]’replacementstring’

B B

[,CONTROL=number]

csectname Specifies the name of a control section (CSECT).
For new-format advanced prelinked modules this specification is not
permitted. These can only be corrected via absolute addresses.

baseaddr Defines the base address (in hexadecimal form). This base address
applies for this *REP only. If "baseaddr" is omitted, the value
specified in *BAS applies.

0 baseaddr FFFFF

If a base address greater than FFFFF is specified, the specification is
rejected and an error message is issued.

address Defines the relative address.
"baseaddr" + "address" produces the absolute address in the object
module.

0 baseaddr + address FFFFF

The address must lie within the module text area.

C’searchstring’ Specifies the search string in character form. An apostrophe in the
text must be specified in duplicate.
"searchstring" may be up to 50 characters in length.

X’searchstring’ Specifies the search string in hexadecimal form.
"searchstring" may be up to 50 bytes in length. For new-format
advanced prelinked modules, "searchstring" is ignored, i.e. no check
is made for old contents.

176 U817-J-Z125-9-7600

UPDR correction statement *REP

B’searchstring’ Specifies the search string in binary form.
"searchstring" may be up to 50 characters in length. For new-format
advanced prelinked modules, "searchstring" is ignored, i.e. no check
is made for old contents.

The original text for comparison with the search string is formed
from the TXT records existing for this area. When there is more than
one text for the same address, the last text is valid.

=:= Search string and replacement string must be of equal length.

= Search string and replacement string may have different lengths.

C’replacementstring’
Specifies the replacement string in characters. An apostrophe in the
text must be specified in duplicate.
"replacementstring" may be up to 50 characters in length.

X’replacementstring’
Specifies the replacement string in hexadecimal form.
"replacementstring" may be up to 50 bytes in length.

B’replacementstring’
Specifies the replacement string in binary form.
"replacementstring" may be up to 50 characters in length.

CONTROL=number
Defines the local control number (in hexadecimal form).

0 number FFFF

The REP record is inserted only if the control number determined by
LMS matches the control number specified here.

Note

In contrast to *COR, LMS does not check whether REP records already exist for the
replacement area. The replacement of an advanced prelinked module should always
be carried out without CSECT specification and search string, i.e., via relative
addresses within the advanced prelinked module. The full range of functions can
only be utilized with object modules that are the result of a compilation.

U817-J-Z125-9-7600 177

UPDR correction statement *SET

*SET Modify control section attributes

*SET modifies control section attributes.

Operation Operands

*SET csectname Y Y
[,PRIV=][,PUBLIC=]

* N N

Y Y Y
[,VISIBLE=][,READONLY=][,PAGE=]

N N N

Y 24 24
[,RESIDENT=][,RMODE=][,AMODE= 31]

N ANY ANY

csectname Name of a control section whose attributes are to be modified.

* Indicates that the attributes in all control sections are to be modified.

PRIV
=Y Specifies that only privileged system routines are allowed to access

the specified control sections.

=N There are no access restrictions.

PUBLIC
=Y The specified control sections are shareable.

=N The specified control sections are not shareable.

VISIBLE
=Y The specified control sections are not masked (see the "Binder-

Loader-Starter" manual [2]). A secondary name record is created for
these sections, and the names are entered in the directory of
secondary names.

=N The specified control sections are masked. No secondary name
record is created for these sections, and the names are not entered
in the directory of secondary names. Any secondary name record
which happens to exist is deleted.

If all control sections of an object module are masked, a library
member without a secondary name entry is created. This object
module can be located via the primary name only. LMS issues a
warning message to this effect.

178 U817-J-Z125-9-7600

UPDR correction statement *SET

The module name can, however, be derived from the initial control
section name with the aid of all ESD records, since masked control
sections are also used in this case.

Note

The linkage editor cannot process object modules which only
have masked control sections, e.g. when an object module is
excluded with the autolink function.

READONLY
=Y Indicates that only read access to the specified control sections is

permitted while the program is executing.

=N Enables write access to the specified control sections even while the
program is executing.

PAGE
=Y Indicates that the specified control sections are to be aligned on the

page boundary, i.e. the load address should be a multiple of decimal
4096 or hexadecimal 1000.

=N Does not take page boundaries into account. The control sections
always start at the next doubleword address produced during the
linkage process.

RESIDENT
=Y Indicates that the specified control sections are to be loaded in class

3 memory and stored there.

=N Indicates that the specified control sections are not to be loaded in
class 3 memory.

RMODE
=24 Indicates that the specified control sections are to be loaded to the

address area below the 16 MB limit.

=ANY No limitation exists.

AMODE
=24 Indicates that the specified control sections are to be executable in

24-bit mode.

=31 Indicates that the specified control sections are to be executable in
31-bit mode.

=ANY The mode is freely selectable.

U817-J-Z125-9-7600 179

UPDR correction statement *SET

Note

Specification of at least one attribute is mandatory, otherwise an error message is
issued.

180 U817-J-Z125-9-7600

UPDR old format

Old UPDR format

The old UPDR format is supported for reasons of compatibility only.

Operation Operands

UPD[R] member[(lib)][;number]

See the new UPDR format for an explanation of UPDR, "member" and "lib".

number Specifies the cross control number in hexadecimal form.

0 number FFFFFF

See the new UPDR format for the effect of the processing operands.

Correction journal

For each existing record that is to be updated, LMS writes a correction journal record
(TXTP record). This correction journal record contains the original text of the corrected
record.

Description of the correction statement using the old format

1(address)[bitnumber][,[[v]’text1’=[:=]][v]’text2’][,number]

or the short form:

1(address)bitnumber[,number]

If only one bit is to be set to 1, the short form may be used. Correction statements
comprising simply an address specification are not permitted.

Address type: Module address.
address Hexadecimal address, up to 8 digits.

This can be taken from the language processor listing or from the
module listing without conversion. Leading zeros may be omitted.

bitnumber Decimal number, up to 3 digits.
This specifies the number of a bit in the field defined by "address".
The bits are numbered from the left, beginning with 1.

U817-J-Z125-9-7600 181

UPDR old format

v X Text is specified in hexadecimal form
B Text is specified in binary form
v not specified Text is alphanumeric or consists of one special

character.

text1 Search string, up to 50 characters.
An apostrophe in an alphanumeric text must be specified in
duplicate. If the text is hexadecimal, an even number of characters
must be specified. The search string is always compared with the
original text in the object module.

=:= Search string and replacement string must be of equal length.

= Search string and replacement string may be of different lengths.

text2 Replacement string, as "text1"

number Control number, hexadecimal, 4-digit.

Note

If a new-format advanced prelinked module is to be corrected with this correction
statement, the statement will be rejected with an error message.

If a bit number is specified, v=B must be set and vice versa.

The search (replacement) string area is formed from the specified address and the
length of the particular text specified in the correction statement. If a search string is
specified, it is compared with the search string area in the member; when a match is
found, the correction is made and, depending on the value of processing operand
STRIP, a correction journal record is created. If an address in the member occurs more
than once, the last text is checked; when a match is found, all the text positions of the
member that occur in the replacement string area will be changed.

182 U817-J-Z125-9-7600

UPD format 2

Format 2: Correct load modules (BS2000 phases)

Operation Operands

UPD[C] member[(lib)][>memberu]

UPDC Name of statement with member type C.
C may be omitted if member type C has been defined in the TYPE
processing operand.

member Full designation of the member to be corrected. Multiple selection is
not permitted (no list specification).

lib Short designation of the input library.

memberu Designation of the output member, or construction specification.

Processing operands

TYPE Defines the member type if no type is specified in the statement
itself.

OVERWRITE Controls overwriting of identically named members in the output
library. If,

input library = output library and
member = memberu,

this processing operand will have no effect and the input member is
overwritten.

DESTROY Defines whether a code for physical deletion is entered in the output
member (only possible in conjunction with program libraries).

STRIP Defines which record types are excluded from the correction
process.

U817-J-Z125-9-7600 183

UPDC correction statements

Correction statements for UPDC

Overview

Correction statement Function

*BAS baseaddr Define a base address

*CON controlnumber Define the cross
control number

*COR [segment,][baseaddr+]address, Correct text records

C C
[[]’searchstring’=[:=]][]’replacementstring’

X X

[,ID=’ident’][,CONTROL=number]

*DEL TXTP[,ID=’ident’] Delete correction
journal records

*END Terminate
correction input

*ID ’ident’ Define the
identification

*REM [ID=’ident’] Cancel corrections

segment Define a segment
*SEG

%ROOT

184 U817-J-Z125-9-7600

UPDC correction statement *BAS/*CON

Description of the correction statements for load modules

*BAS Define base address

*BAS defines a base address. The base address is then added to the address in a
subsequent *COR to form the absolute address in the load module, provided that no
base address is explicitly specified in *COR. The default value is 0.

Operation Operands

*BAS baseaddr

baseaddr Defines the base address (in hexadecimal form).

0 baseaddr 7FFFFFFF

*CON Define cross control number

*CON defines the cross control number for the complete correction run. If *CON is
specified more than once, the last specification applies.

Operation Operands

*CON controlnumber

controlnumber Defines the cross control number (in hexadecimal form).

0 controlnumber 7FFFFFFF

U817-J-Z125-9-7600 185

UPDC correction statement *COR

*COR Correct text records

*COR corrects text records within a segment and produces a correction journal record
which contains the original contents of the text area.

Operation Operands

*COR [segment][baseaddr+]address,

C C
[[]’searchstring’=[:=]][]’replacementstring’

X X

[,ID=’ident’][,CONTROL=number]

segment Specifies the name of the segment to be corrected.
Corrections can only take place within a segment, and not beyond
the boundaries of a segment. "segment" may be up to 8 characters
in length.

The segment name specified here has priority over the name defined
in *SEG. %ROOT is used to select the root segment.
If this operand is omitted, the specification in *SEG is assumed.

baseaddr Defines the base address (in hexadecimal form). This base address
applies for this *COR only. If "baseaddr" is omitted, the value
specified in *BAS applies.

0 baseaddr 7FFFFFFF

address Defines the relative address.
"baseaddr" + "address" produces the absolute address in the load
module.

0 baseaddr + address 7FFFFFFF

C’searchstring’ Specifies the search string in characters. An apostrophe in the text
must be specified in duplicate.
"searchstring" may be up to 50 characters in length.

X’searchstring’ Specifies the search string in hexadecimal form.
"searchstring" may be up to 50 bytes in length.

=:= Search string and replacement string must be of equal length.

= Search string and replacement string may have different lengths.

186 U817-J-Z125-9-7600

UPDC correction statement *COR

C’replacementstring’
Specifies the replacement string in characters. An apostrophe in the
text must be specified in duplicate.
"replacementstring" may be up to 50 characters in length.

X’replacementstring’
Specifies the replacement string in hexadecimal form.
"replacementstring" may be up to 50 bytes in length.

ID=’ident’ Specifies an identifier in characters.
"ident" may be up to 8 characters in length.

This identification is valid for this *COR only. If this operand is
omitted, the specification in *ID is assumed.

CONTROL=number
Defines a local control number (in hexadecimal form).

0 number FFFF

U817-J-Z125-9-7600 187

UPDC correction statement *DEL/*END*ID

*DEL Delete correction journal records

*DEL excludes correction journal records (TXTPs) from the input member.

Operation Operands

*DEL TXTP[,ID=’ident’]

ID=’ident’ Specifies an identifier in characters.
"ident" may be up to 8 characters in length.

This identification is valid for this *DEL only. If this operand is not
specified, the specification in *ID is assumed.

*END Terminate correction input

*END concludes the string of correction statements. Afterwards LMS checks all
statements to see whether they can be executed before it attempts to execute them.

Operation Operands

*END

*ID Define identification

*ID defines a global identification. It is valid for all statements for which no local
identification has been specified.

Operation Operands

*ID [’ident’]

’ident’ Specifies the global identification in characters.
"ident" may be up to 8 characters in length.

If the operand is omitted, 8 blanks are assumed as the default value.

188 U817-J-Z125-9-7600

UPDC correction statement *REM/*SEG

*REM Cancel corrections

*REM cancels either all text corrections or text corrections under a specific
identification for which a correction journal record exists. The correction journal records
are then deleted.

Operation Operands

*REM [ID=’ident’]

ID=’ident’ Specifies the local identification in characters.
"ident" may be up to 8 characters in length.

If this operand is omitted, the specification in *ID is assumed.

*SEG Define segment

*SEG defines a segment of a load module which is to be corrected with the aid of a
subsequent *COR.

Operation Operands

*SEG segment

%ROOT

segment Specifies the name of the segment to be corrected.
"segment" may be up to 8 characters in length.

%ROOT Specifies that the root segment is to be corrected.

U817-J-Z125-9-7600 189

UPD format 3 LMS statements

Format 3: Correcr LLMs

Operation Operands

UPDL member[(lib)][>memberu]

UPDL Name of statement with member type L.

member Complete member designation of the member to be corrected or a
multiple selection.

lib Short designation of the input library.

memberu Member designation of the output member or construction specification.

Processing operands

CSECT Defines the base for displacement in the *COR substatement.

OVERWRITE Specifies overwriting of output library members with the same name.
This operand is however, not interpreted if

input library = output library and
member = memberu

The input member is then overwritten.

PATH Defines the base for displacement in the *COR substatement.

SLICE Defines the base for displacement in the *COR substatement.

STRIP Defines the type of records to be excluded from correction.

190 U817-J-Z125-9-7600

LMS statements UPDL correction statements

Correction statements for UPDL

Overview

Correction statement Function

*COR [csect,]displ, Correct text
records

C {C}
[[X]’searchstring’=[:=]][{X}]’replacementstring’

B {B}

[,ID=’ident’][,CONTROL=number]

*DEL TXTP,[ID=’ident’] Delete correction
journal records

*END Terminate input
of corrections

*ID [’ident’] Define the ID

*REM [ID=’ident’] Cancel corrections

U817-J-Z125-9-7600 191

UPDL correction statement *COR

Description of the correction statements for LLMs

*COR Correct text records

*COR corrects text records of an LLM.

Operation Operands

*COR [csect,}displ,

C C
[[X]’searchstring’=[:=]][X]’replacementstring’

B B

[,ID=’ident’][,CONTROL=number]

csect CSECT name with a length of 32 characters. If CSECT is specified,
all the CSECTs with the specified name are corrected.

When evaluating the name, the priority is as follows:

1. "csect" has been specified in *COR; the CSECT processing
operand is ignored.

2. PAR CSECT=xxx; only the processing operand PATH or SLICE
may be set.

3. PAR PATH=xxx: the SLICE processing operand must not be set.

4. PAR SLICE=xxx: the PATH processing operand must not be set.

displ Defines the relative address.
"displ" produces the absolute address in the LLM or the CSECT
relative address if "csect" is specified.

0 displ 7FFFFFFF

C’searchstring’ Specifies the search string in characters. An apostrophe in the text
must be specified in duplicate. "searchstring" may be up to 50
characters in length.

X’searchstring’ Specifies the search string in hexadecimal form.
"searchstring" may be up to 50 bytes in length.

192 U817-J-Z125-9-7600

UPDL correction statement *COR

B’searchstring’ Specifies the search string in binary form.
"searchstring" may be up to 50 characters in length.

The original text to be compared with the search string is formed
from the TXT records existing for this area. If there is more than one
text for the same address, the last text is the valid one.

=:= Search string and replacement string must be of equal length.

= Search string and replacement string may have different lengths.

C’replacementstring’
Specifies the replacement string in characters. An apostrophe in the
text must be specified in duplicate. "replacementstring" may be up to
50 characters in length.

X’replacementstring’
Specifies the replacement string in hexadecimal form.
"replacementstring" may be up to 50 bytes in length.

B’replacementstring’
Specifies the replacement string in binary form.
"replacementstring" may be up to 50 characters in length.

ID=’ident’ Specifies an identifier.
"ident" may be up to 8 characters in length.

This identification applies to this *COR only. If this operand is
omitted, the specification given in *ID is assumed.

CONTROL=number
Defines a local control number (in hexadecimal form).

LMS calculates the control number for each *COR statement.

0 number FFFF

U817-J-Z125-9-7600 193

UPDL correction statement *DEL/*END

*DEL Delete correction journal records

Operation Operands

*DEL TXTP[,ID=’ident’]

TXTP Correction journal records are to be excluded from the input
member.

ID=’ident’ Specifies an identifier.
"ident" may be up to 8 characters in length.

This identification is valid only for this *DEL. If this operand is
omitted, the specification in *ID applies.

*END Terminate correction input

*END concludes the string of correction statements. Afterwards LMS checks all
statements to see whether they can be executed before it tries to execute them.

Operation Operands

*END

194 U817-J-Z125-9-7600

UPDL correction statement *ID/*REM

*ID Define identification

*ID defines a global identification. It is valid for all statements in which no local
identification is specified.

Operation Operands

*ID [’ident’]

’ident’ Specifies the global identification.
"ident" may be up to 8 characters in length.

If this operand is omitted, 8 blanks are assumed by default.

*REM Cancel corrections

*REM cancels either all text corrections or text corrections under a specific
identification for which a correction journal record exists. The correction journal records
are then deleted.

Operation Operands

*REM [ID=’ident’]

ID=’ident’ Specifies the local identification.
"ident" may be up to 8 characters in length.

If this operand is omitted, the specification in *ID applies.

U817-J-Z125-9-7600 195

USE LMS statements

USE Branch to user programs

USE permits LMS to branch to a user routine prior to processing a member record.

The function is permitted:

when listing members of the type R, S, M, P, J, D and X using LST, and

when comparing members of the type S, M, P, J, D and X using COM.

Before LMS processes the member record, the following actions are possible:

update the current member record

insert records via the user routine

exclude the current member record from processing

The user routine is informed of start and end of member so as to enable the user to
insert records before the first and after the last member record.

For COM, two user exits are provided: one for the primary member and one for the
secondary member. The user exits for LST and COM can be defined simultaneously.

If several USE statements with the same user exit are defined, the last one specified
applies.

Furthermore, it is possible to define the libraries LMS is to use for the connection of the
EDT, EDOR and FMS subroutines.

Operation Operands

USE entry
LST
COMP =[*]
COMS (entry)

libraryu

EDTLIB
EDORLIB =librarys
FMSLIB

?

USE Statement name.

LST User exit for the LST function.

196 U817-J-Z125-9-7600

LMS statements USE

COMP User exit for the COM function when the primary member is
processed.

COMS User exit for the COM function when the secondary member is
processed.

entry Name of the entry point for the user routine, up to 8 characters in
length.
"entry" must not start with the character string "LMS".

* The user routine is dynamically loaded from the EAM area.

libraryu Name of the library, up to 54 characters in length, in which the user
routine is stored.

EDTLIB User exit for the EDT subroutine.

EDORLIB User exit for the EDOR subroutine.

FMSLIB User exit for the FMS subroutine.

librarys Name of the library, up to 54 characters in length, in which the
appropriate subroutine is to be found.

? The current value is logged.

Dynamically loading the user program

The user program is not loaded dynamically from the library or EAM area until it is
used for the first time. It is always loaded into user-own class 6 memory. If the
specification "*" or "library" is omitted, the user program will first be sought in a private
TASKLIB (assigned with /SET-TASKLIB LIBRARY=library), if present, and then in the
system TASKLIB ($TASKLIB). The same applies if "*" or "library" is specified but the
user program has not been found there.

Deactivating the user exit

If "entry" and "library" are not specified, LMS will deactivate the user exit. It will no
longer be used when the next corresponding LST or COM references it. However, the
user routine will not be deactivated, as it may still be required for other purposes. This
means that the user program need not be linked again for the next USE having the
same entry point.

U817-J-Z125-9-7600 197

USE LMS statements

User exit interface

Register conventions

When the user program is called, LMS will take account of the following register
conventions:

Register 1: Address of a parameter list
Register 13: Address of the save area (18 words)
Register 14: Return address
Register 15: Address of entry point

Structure of the parameter list

The parameter list consists of 5 words:

DC A (job description)
DC A (response description)
DC A (record to be transferred)
DC A (library name)
DC A (member designation)

The first two addresses are provided by LMS. This means that the user can only supply
the response description to the address that is specified by LMS. The record address
can be supplied by both LMS and the user.

1st word: Job description

The job description for the user subroutine consists of 3 bytes and can have the
following contents:

C’BOE’ Beginning of member (element)
C’REC’ Record ready to be processed
C’EOE’ End of member (element)

2nd word: Response description

The response description issued by the user subroutine consists of three bytes and
may have the following contents:

C’CON’ LMS processes the record whose address is in the parameter list on
return from the user program, and then submits the next member record
or EOE.

C’DEL’ LMS bypasses the last submitted member record and branches back to
the user subroutine at the next member record or at EOE.

198 U817-J-Z125-9-7600

LMS statements USE

C’INS’ LMS first processes the record submitted by the user, and then returns to
the user subroutine at the member record submitted previously or at EOE.
This is repeated until the response DEL or CON is given. This means that,
if LMS submits record i, the records returned with INS are processed
before record i.

The following job responses are possible:

Job Response

BOE Irrelevant
REC CON, DEL, INS
EOE INS, CON

If the response is incorrect, the LMS function is aborted and an error message is
issued.

The diagram illustrates the communication between LMS and the user subroutine.

3rd word: Record

This contains the address of the record that is passed by LMS to the user subroutine.
LMS does not provide a value for this record address until the REC job is received.
Prior to this the record address is not supplied with a value, i.e. it contains X’00000000’.

When the user subroutine returns with the response CON or DEL, the same record
address may be used. If the user wants to insert records, he must use a record buffer
he has defined himself. The records exchanged between LMS and the user subroutine
start with a 4-byte record length field. If processing operand FORMAT=P is set, the 5th
byte must be a valid feed control character in order to produce lists with the aid of
LST.

4th word: Library name

This word contains the address of the library name. The library name starts with a
record length field of two bytes.

U817-J-Z125-9-7600 199

USE LMS statements

5th word: Member designation

This word contains the address of the member designation. The member designation
format is: record length field of two bytes, followed by
(type)membername/version[(variantnumber)]/date.

Diagram:

Action in LMS in user program

Start of Job=BOE USER
member PROGRAM

Read
record

Job=REC
USER
PROGRAM

INS CON DEL

Process Process
inserted record
record

:
:

Job=EOE
End of USER
member PROGRAM
reached Process INS

record

End of member CON

See page 285 for an example of the user exit.

200 U817-J-Z125-9-7600

LMS statements $

$ Output statement buffer

The LMS statements can be entered in block mode. This means that they need not be
entered at the display terminal one at a time in order to be processed; instead a
common data transfer of several statements can be started (see section on "Entry of
blocked statements", page 84).

In block mode, the statements are written to a statement buffer. Each sequence of
statements (other than $) causes the buffer to be updated.

$ logs the last statement buffer, which may be changed or reentered at the display
terminal.

Operation Operands

$

$ Statement name.

Following a syntax error, or another severe error, processing of the current statement
buffer is aborted in interactive mode. LMS remains in run mode and expects new
statements from the display terminal.

$ enables the user to display the entire statement buffer, remove already executed
statements, correct the invalid statement and reenter the buffer.

U817-J-Z125-9-7600 201

LMS statements $

Processing operands
The LMS run can be controlled by means of processing operands.

If a processing operand is to control a certain function, it must be set prior to the
appropriate statement.

Processing operands are set with the aid of PAR:

Operation Operands

PAR parvalue
parname=[]

[? ,{...}]

?

See page 205 ff for an overview of the processing operands in table form. The
processing operands are described in alphabetical order on page 209 ff.

The names of the processing operands and operand values may be abbreviated,
provided that the abbreviation is unique among all the processing operands. For
example, BASE can be abbreviated to just B, but STRING may be shortened only to
STRIN (to avoid confusion with STRIP).

The following operands affect the overall operation of LMS, but not individual functions:

ERRCONS Error messages on the display terminal
TERMINATE Termination procedure in the event of an error
NEWFORM Page control for logs
LCASE Lower/upper case
LINE Number of lines per log page

U817-J-Z125-9-7600 203

Processing operands

The following processing operands affect both the entire LMS run and also individual
functions:

TEST Test mode, no library modifications; affects the function RST in
addition to the entire LMS run.

LOG Logging of statements; also affects the logging of the functions COR
and NUM.

The other processing operands affect only individual functions. The descriptions of the
functions indicate which operands affect which functions. A table listing the effects of
processing operands is provided on page 63.

If PAR is specified without any processing operand, then all processing operands will
be set to their default values.

If a processing operand without operand value is specified (e.g. PAR=B), the
processing operand concerned will be reset to its default value.

204 U817-J-Z125-9-7600

Processing operands

Table of processing operands

The following table provides an overview of all processing operands, in alphabetical
order.

Processing operand Application

baseaddr Define a base
B[ASE]=[0 address

?

[start][/length] Define the
CH[ECK]=[NO] check field in

? input records

[[start]/length][/compare[number]][/list][/COR] Control the
COM[PARE]=[1/72/L/MED] comparison

? function

name Define the
CS[ECT]=[] CSECT

? }

YES Control
DES[TROY]=[NO] physical

? deletion

NO Output
2 messages
4 to SYSOUT

E[RRCONS]=[]
ALL
YES
?

ISAM Define FCB
SAM type of

FC[BTYPE]=[STD] output file
CAT
?

C Define record
X format
SYMBOLIC

FO[RMAT]=[XC]
REC
P
?

U817-J-Z125-9-7600 205

Processing operands

Processing operand Application

ALL Define scope
of output

SUMMARY

(rectype,...)

-#recend
rectype[([#recstart][])]

I[NFO]=[:#number]

-addrend
TXT[([addrstart][])

:length

TXTP[([’identl’][-’identu’])]

PHY[SICAL]

NEXT
LOGICAL[()]

ALL

?

YES Transfer
K[EY]=[NO] ISAM key and

? other file
attributes

YES Convert
LC[ASE]=[NO] lowercase to

? uppercase

[lines][/columns] Define number of
LIN[E]=[60/132] lines/columns

? per log page

MAX Log
MED statements

LO[G]=[]
MIN
?

NUM Define scope and
TXT NUM REC[/] mode of listing

[/] NO[NUM] of members
REC NO[NUM] ALL

LS[T]=[] LS[T]=[TXT]
PRT UPD
NO SYM
? NO

?

206 U817-J-Z125-9-7600

Processing operands

Processing operand Application

YES Control
NO form feed

N[EWFORM]=[3]
number
?

YES Overwrite
ONLY identically
NO named members

O[VERWRITE]=[V]
D
EXTEND
?

name Define the
PA[TH]=[] pathname

?

PK Define the
PH[ASE]=[NK] phase format

?

[start][/length] Define the
RA[NGE]=[NO] check field in

? output records

name Define
CSECT reference

RE[FERENCE]=[([name],[ENTRY])] conditions
ALL

?

overlay Define
%ROOT segments of a

SE[GMENT]=[] load module
%ALL
?

name Define the
SL[ICE]=[] slice

?

U Sort
[N][V][D] directory

SO[RT]=[]
R
?

U817-J-Z125-9-7600 207

Processing operands

Processing operand Application

’characterstring’ Define a
NAME string in the

STRIN[G]=[KEY] check field
NO of output
? records

rectype Suppress
(rectype,...) records

STRIP=[YES]
NO
?

YES Generate
SU[M]= NO comparison

? statistics

1 Set termination
2 procedure
3 for error
4 conditions

TER[MINATE]=[]
5
6
7
?

YES Activate,
NO deactivate or

TES[T]=[] quit test mode
ABORT
?

F Control the
D output format

TO[C]=[L] for directories
T of program
? libraries

type Predefine
TY[PE]=[] the member

? type

[start][/inc] Control
V[ALUE]=[NO] numbering in the

? check field of
output records

208 U817-J-Z125-9-7600

Processing operands PAR BASE

PAR BASE Define base address

The BASE processing operand defines a base address to which the area addresses
defined in the INFO processing operand refer. The base address is added to the
specified area address.

Operation Processing operand

PAR baseaddr
B[ASE]=[0]

?

baseaddr Specifies the base address in hexadecimal form:

0 baseaddr 7FFFFFFF

If no area addresses are specified in the INFO processing operand,
the BASE processing operand is ignored.

? The current value is logged.

The BASE processing operand affects LST.

U817-J-Z125-9-7600 209

PAR CHECK Processing operands

PAR CHECK Define check field in input records

The CHECK processing operand defines the position and length of the check field in
input records. This range is checked for ascending sequence. When members are
output to ISAM files the record IDs can be stored as ISAM keys.

Operation Processing operand

PAR [start][/length]
CH[ECK]=[NO]

?

start Start of the check field in the input record.
"start" may have the following values:
1 start 251

length Length of the check field.
"length" may have the following values:
1 length 16

If only "start" is specified, it must be in the following range:
65 start 80

This is because "length" is calculated as:
length = 81 - start.

If only "length" is specified, "start" is calculated as:
start = 81 - length.

If "start" and "length" are specified together, the following applies:
start + length 252

NO No check field is defined in the input areas.

? The current value is logged.

The CHECK processing operand affects:
ADD, COM, COR, EDR, EDT, NUM, SEL

Note

The CHECK processing operand only affects COM in cross comparisons.

210 U817-J-Z125-9-7600

Processing operands PAR CSECT

PAR CSECT Specify a CSECT name

This processing operand is used to specify a CSECT name for UPDL and LSTL.

Operation Processing operand

PAR name
CS[ECT]=[]

?

name CSECT name with a length of up to 32 characters

Only the CSECT with this name is then listed for LSTL.

This name is used as the base for displacement in the *COR substatement
of UPDL.

? The current value is logged.

U817-J-Z125-9-7600 211

PAR COMPARE Processing operands

PAR COMPARE Control compare function

The COMPARE processing operand determines the comparison range, the type of
comparison and the log format for COM. Two algorithms are provided for comparisons:
on the one hand the Heckel algorithm (standard procedure as of LMS Version 1.3A)
and, optionally, the cross comparison. An important feature of the Heckel algorithm is
that a comparison is only made after all records have been read (no piecemeal
comparison). Moreover, only the compared parts of the records are logged and not the
complete records as in a cross comparison.
The comparison results may vary on account of the differing procedures.

Operation Processing operand

PAR [[start]/length][/comparison[number][/list][/COR]
COM[PARE]=[1/72/L/MED]

?

start Start of the comparison field.
"start" may have the following values:

Cross comparison: 1 start 251
Heckel algorithm: 1 start 32764

length Length of the comparison field.
"length" may have the following values:

Cross comparison: 1 length 251
Heckel algorithm: 1 length 32764

The value of "start" plus "length" must not exceed 252 (cross
comparison) and 32765 (Heckel algorithm) respectively.

comparison Type of comparison:

L: Logical comparison
The comparison fields are compared one character at a time,
space characters being skipped.

F: Formal comparison
The comparison fields are first checked for equal length. If they
differ in length, the fields are logged as unequal. If they have
the same length, the fields are compared in their entirety.

212 U817-J-Z125-9-7600

Processing operands PAR COMPARE

number Synchronization counter.
"number" may have the following values:
1 number 9

"number" specifies the minimum number of matching records that
must be found for a synchronization attempt to be considered
successful (cf. page 106). If fewer than "number" matching records
are found after non-matching records, these are assumed to be non-
matching and are logged as such.

Note
If a value has been specified for "number", LMS will switch to
cross comparison. PAR COM= permits a return to the Heckel
algorithm (see page 50).

list Scope of logging.

MAX Detailed comparison log.
All records are logged.
The comparison statistics are output.

MED Standard comparison log.
Non-matching records are logged in their entirety. For
matching records, only range specifications (record number
and any record IDs) are logged. The comparison statistics
are logged.

MIN Minimum comparison log.
Only range specifications (record numbers and any IDs) are
logged for matching and non-matching records.
The comparison statistics are output.

SUM No comparison log.
Only the comparison statistics are output.

NO Neither logging nor comparison log nor comparison
statistics.
NO is only meaningful when processing operand SUM is
used.

COR When text members are compared, correction statements for COR
are generated by LMS from the records INS and DEL of the
comparison log.

The correction statements are output to SYSOPT. If the correction
statements are not to be output on punched cards, the following
command must be issued:

/ASSIGN-SYSOPT TO-FILE=file

U817-J-Z125-9-7600 213

PAR COMPARE Processing operands

In this case, "file" can again be added to a library as a procedure
member, and also be started as a procedure.

See page 269 for an example of this function.

? The current value is logged.

The COMPARE processing operand affects COM.

214 U817-J-Z125-9-7600

Processing operands PAR DESTROY

PAR DESTROY Control physical deletion

The DESTROY processing operand controls whether the storage space released when
deleting should also be physically destroyed. This means that the data to be deleted
will be overwritten with binary zeros.

Only program library members and scratch files created by EDT or EDOR can be
physically deleted.

For this operand to be effective, it must be set as soon as the member is incorporated.
If it is set later, only variants generated from this point in time will be physically deleted.

Operation Processing operand

PAR YES
DES[TROY]=[NO]

?

YES All data to be deleted is physically destroyed, i.e. overwritten with
binary zeros, before the storage space is released.

This means that

program library non-delta members are physically destroyed
when deleted; delta members, however, not until the the last
delta member of a tree, i.e. the whole tree is deleted.

a code for physical deletion is entered when members are written
to program libraries, i.e if such members are deleted later they
will be physically destroyed.

any scratch files that may have been created are physically
destroyed when returning from EDT/EDOR

This operand value only affects members of program libraries and
scratch files generated by EDT or EDOR. When other libraries are
involved, it has the same effect as NO.

NO Only the storage space is released for all data to be deleted.

? The current value is logged.

The DESTROY processing operand affects:
ADD, COR, DEL, DUP, EDR, EDT, NAM, NUM, PRT, UPD

U817-J-Z125-9-7600 215

PAR ERRCONS Processing operands

PAR ERRCONS Output messages to SYSOUT

The ERRCONS processing operand defines which LMS messages are to be additionally
output to system file SYSOUT if the tracer log is not output there (i.e. in the case of
PRT (LST) or PRT member(lib)).

Operation Processing operand

PAR NO
2
4

E[RRCONS]=[]
ALL
YES
?

NO Does not additionally output any messages to system file SYSOUT.

2 Outputs error messages.

4 Outputs error messages and NOT FOUND messages.

ALL Outputs error messages, NOT FOUND, EXISTING and NO OLD
messages.

YES Has the same effect as ALL and is supported for reasons of
compatibility only.

? The current value is logged.

The ERRCONS processing operand affects the entire LMS run.

216 U817-J-Z125-9-7600

Processing operands PAR FCBTYPE

PAR FCBTYPE Define FCB type of output file

The FCBTYPE processing operand defines which FCB type is used to create the file to
which a member is output. This processing operand is only interpreted for members
relating to text, i.e. not for R-type or C-type members.

File attributes specified in the FILE command have priority over specifications in the
FCBTYPE processing operand.
File characteristics are also stored in the member by specifying PAR KEY=YES.

Operation Processing operand

PAR ISAM
SAM

FC[BTYPE]=[STD]
CAT
?

ISAM Creates an ISAM file with the following attributes:

If the FCB type ISAM has been entered in the stored file
attributes, the file is created in accordance with these attributes.

If the FCB type SAM has been entered in the stored file
attributes, an ISAM file with KEY-POSITION=5 and KEY-
LENGTH=8 is created.

If no file attributes are stored, an ISAM file with KEY-
POSITION=5 and KEY-LENGTH=8 is created.

SAM Creates a SAM file. If the FCB type ISAM is entered in the stored file
attributes, a SAM file with or without KEY is created.

STD Creates a SAM or ISAM file in accordance with the file attributes
stored.

If no file attributes are stored, the file is created in accordance with
the entry in the catalog.

If the catalog entry is also missing, an ISAM file with KEY-
POSITION=5 and KEY-LENGTH=8 is created.

U817-J-Z125-9-7600 217

PAR FCBTYPE Processing operands

CAT Creates a SAM or ISAM file in accordance with the entry in the
catalog.

If the catalog entry is missing, the file is created in accordance with
the file attributes stored. If no file attributes are stored, an ISAM file
with KEY-POSITION=5 and KEY-LENGTH=8 is created.

? The current value is logged.

The FCBTYPE processing operand affects SEL.

218 U817-J-Z125-9-7600

Processing operands PAR FORMAT

PAR FORMAT Define record format

The FORMAT processing operand defines the record format for listing members with
the aid of LST. The following record formats are possible:

characters

hexadecimal

characters and hexadecimal, in sequence

characters and hexadecimal, one above the other

characters, where the first character of the record contents is interpreted as a feed
control character.

Operation Processing operand

PAR C
X
SYMBOLIC

FO[RMAT]=[XC
REC
P
?

C Representation in character form.

X Hexadecimal representation, only for members of the type

R and C

X, provided that PAM files have been archived in these members.

2*4 4-byte blocks are output to system file SYSLST and 2*3 4-
byte blocks to system file SYSOUT.

This operand value has the same effect as operand REC on all other
records.

SYMBOLIC Displays the records for the different member types in different ways:

Member type Record format

S, M, J, D, X In characters.

P In characters, where the first character of each
record is interpreted as a feed control character.

U817-J-Z125-9-7600 219

PAR FORMAT Processing operands

R,L The ESD, ISD, RLD, TXT, TXTP, REP and END
information available to LMS is output in edited
form. Other information such as LSD and DSDD,
for example, is output in unedited form, i.e. the
record length field and the record number, if any,
are also output. Consecutive text information is
not split up.

C In characters and hexadecimal, sequential.

XC In characters and hexadecimal, sequentially; only for members of the
type

R, L and C

X, provided that PAM files have been archived in these members.

This operand value has the same effect as REC on all other
members.

REC In characters and hexadecimal, one above the other. This means
that, for each member record, two lines are output, with the
character display in the first line and the hexadecimal representation
in the second line.

P Representation in characters, where the first character of the
contents of each record is interpreted as a feed control character.

This type of output is only advisable in conjunction with edited text
members or log members.

R-type, L-type and C-type members are represented in accordance
with the value of the XC operand.

? The current value is logged.

The FORMAT processing operand affects LST.

220 U817-J-Z125-9-7600

Processing operands PAR INFO

PAR INFO Define scope of output

The INFO processing operand defines the extent of the record when members are
listed with the aid of LST. The following outputs are possible:

all records

the most important member data

specific record types

output of a specific range within a record type.

Operation Processing operand

PAR ALL
SUMMARY
(rectype,...)

-#recend
rectype[([#recstart][])]

:#number
I[NFO]=[]

-addrend
TXT[([addrstart][])]

:length

TXTP[([’identl’][-’identu’])]

PHY[SICAL]
NEXT

LOGICAL[()]
ALL

?

ALL All records of the member are output.

SUMMARY The most important member data is output, i.e.

for members relating to text (types S, M, J, P, D, X) the existing
user record types, the file attributes added using PAR KEY=YES
and the number of records are output in the form of a table.

for R-type members the length of the object module as well as
names, lengths and addresses of the CSECTs are output.

for C-type members the length of the load module as well as
names, lengths and address of the segments are output.

for L-type members the complete logical structure is output.

U817-J-Z125-9-7600 221

PAR INFO Processing operands

rectype The specified record type of an R-type, C-type or L-type member
(see the "Binder-Loader-Starter" manual [2]) is output. In the case of
a member relating to text (types S, M, J, P, D, X) the record type
specification is ignored, i.e. all records of the member are output.

Potential record types are:

for R-type members:
ESD, ISD, LSD, TXT, RLD, TXTP, REP, INCLUDE, DSDD, REF,
END

REF is used to output all reference names belonging to the
object module.

for C-type members:
ESD, ISD, LSD, TXT, RLD, TXTP

for L-type members:
ESVD, ESVR, TXT, LRLD, TXTP

recstart Specifies the first record as of which the specified record type is
output. For R-type members only.

1 recstart 2147483647

recend Specifies the last record up to which the specified record type is
output. For R-type members only.

1 recend 2147483647

number Specifies the number of records of the specified record types which
is output. For R-type members only.

1 number 2147483647, where recstart+number must be
2147483647.

addrstart Specifies in hexadecimal form the start address of the area as of
which the specified TXT is output.
For R-type, L-type and C-type members only.

0 addrstart 7FFFFFFF

addrend Specifies in hexadecimal form the end address of the area up to
which the specified TXT is output.
For R-type, L-type and C-type members only.

0 addrend 7FFFFFFF

222 U817-J-Z125-9-7600

Processing operands PAR INFO

length Specifies in hexadecimal form the length of the address area for the
specified TXT. For R-type, L-type and C-type members only.

1 length 7FFFFFFF

identl Specifies the lower identification limit of the TXTP.

identu Specifies the upper identification limit of the TXTP.

PHYSICAL The physical LLM structure is listed.

LOGICAL The logical LLM structure is listed.

NEXT Only the next level down is listed.
ALL The entire structure is listed.

? The current value is logged.

The INFO processing operand affects LST.

U817-J-Z125-9-7600 223

PAR KEY Processing operands

PAR KEY Transfer file attributes and ISAM key

The KEY processing operand defines whether the file attributes and the ISAM key are
to be included in the output member.

Operation Processing operand

PAR YES
K[EY]=[NO]

?

YES If PAR KEY = YES is specified for ADD, the file attributes such as
filename, ACCESS-METHOD, RECORD-FORMAT, RECORD-SIZE,
BUFFER-LENGTH, PADDING-FACTOR, LOGICAL-FLAG-LENGTH,
VALUE-FLAG-LENGTH, PROPAGATE-VALUE-FLAG, USER-ACCESS
and the ISAM key of each file are transferred to the output member,
without any changes.

This specification is only permissible when processing program
libraries, and is not permissible when processing source libraries.

NO The file attributes and ISAM keys are not transferred. In this case it
is only possible to transfer ISAM files with KEY-POSITION=5, KEY-
LENGTH 16 and RECORD-FORMAT=VARIABLE to the output
member.

? The current value is logged.

Notes

The KEY=YES processing operand is not permitted when source libraries are
processed.

If a member is listed using LST and the member has stored ISAM keys, the KEY-
POSITION and KEY-LENGTH values are also output.

If a file with KEY-POSITION > 5 or RECORD-FORMAT=FIXED is added, the
member containing this file cannot be edited or numbered.

The KEY processing operand affects ADD.

224 U817-J-Z125-9-7600

Processing operands PAR LCASE

PAR LCASE Lowercase/uppercase conversion

Conventionally, LMS converts all terminal input to uppercase characters.
Lowercase/uppercase conversion can be suppressed by means of the LCASE
processing operand for COR and UPDR.

This operand is only effective with input from display terminals; it cannot be used for
input from members or procedures.

Operation Processing operand

PAR YES
LC[ASE]=[NO]

?

YES Lowercase letters are not converted to uppercase type.

NO All lowercase letters are converted to uppercase type.

? The current value is logged.

LCASE=YES is meaningful for operands whose operand values are allowed to consist
of any string of characters (including lowercase letters) enclosed in apostrophes.

These operands are:

the substatement *CHANGE, for COR

the substatements *COR, *DEL, *ID, *INV and *REP, for UPDR.

When LCASE=YES is in force, all LMS statements, operands and operand values
(except for those mentioned above) must be input as uppercase letters.
It is therefore advisable not to activate LCASE=YES until just before a correction and
to reset it to LCASE=NO after the correction.

U817-J-Z125-9-7600 225

PAR LCASE Processing operands

Example

/START-PROGRAM $LMS
$LIB LIBRARY,BOTH
$PAR LCASE=YES
$ADDD >LETTER.A
*Dear ...
.
.
.
**END
$PAR LCASE=NO
$END

The text ’Dear ...’ is stored exactly in this form in member LETTER.A
(cf. ADD, format 4).

The LCASE processing operand affects the entire LMS run.

226 U817-J-Z125-9-7600

Processing operands PAR LINE

PAR LINE Define number of lines and columns per log page

The LINE processing operand determines the length and width of a log page produced
by LMS. The column specification for controlling the page width is interpreted for TOC,
COM and LST. Processing operand LINE is only interpreted when the output medium is
SYSLST or a member.

Operation Processing operand

PAR [lines][/columns]
LIN[E]=[60/132]

?

lines Number of lines per page.
21 lines 255

A new log page is started at the latest after "lines" lines (see PAR
NEWFORM), and is always started whenever a change of function
takes place.

columns Number of columns per line.
21 columns 255

? The current value is logged.

The LINE processing operand affects:
TOC, COM, LST

U817-J-Z125-9-7600 227

PAR LOG Processing operands

PAR LOG Log statements

The LOG processing operand controls the scope of the LMS log.

Operation Processing operand

PAR MAX
MED

LO[G]=[]
MIN
?

MAX Complete log.

MED Statements are logged only in the event of an error. Positive
acknowledgments are logged.

MIN Only error messages, end messages and negative acknowledgments
are logged.

? The current value is logged.

The LOG processing operand affects the entire LMS run and COR, NUM and UPD.

228 U817-J-Z125-9-7600

Processing operands PAR LST

PAR LST Define scope and mode of member listings

The LST processing operand is supported for reasons of compatibility only. Its
functions have been assumed by the processing operands FORMAT and INFO.

The LST processing operand has two different formats:

Format 1: Listing of text members

Operation Operands

PAR TXT NU[M]
[/]

REC NO[NUM]
LS[T]=[]

PRT
NO
?

Format 2: Listing of object modules

Operation Operands

PAR NU[M]
REC[/]

NO[NUM]
ALL

LS[T]=[TXT]
UPD
SYM
NO
?

U817-J-Z125-9-7600 229

Format 1 PAR LST

The functions of processing operand LST are assumed by the processing operands
FORMAT and INFO as shown in the following table:

LST value FORMAT value INFO value

REC REC ALL
ALL SYM ALL
TXT SYM (ESD,TXT,RLD)
UPD SYM (REP,TXTP)
SYM SYM (ESD,ISD,LSD)
NO SYM SUMMARY
PRT P ALL

230 U817-J-Z125-9-7600

PAR LST Format 1

Format 1: Listing of text members

This format applies only to member types S, M, J, P, D, X.
It specifies the scope and mode of the listing process.

Operation Processing operand

PAR TXT NU[M]
[/]

REC NO[NUM]
LS[T]=[]

PRT
NO
?

TXT Alphanumeric output.

REC For each member record, two lines are output:
1. Alphanumeric output
2. Hexadecimal output with prefixed output of the 4-byte record

length field

PRT This specification applies only to list members (type P in program
libraries, type S in source libraries). It has the same effect as the
operand LAYOUT-CONTROL (CONTROL-CHARACTERS=EBCDIC) in
the PRINT-FILE command (see the manual "User Commands (SDF
Format)" [7]), i.e. the 1st character of the record contents is
interpreted as a feed control character. LMS performs a validity
check on this byte and replaces it with X’40’ if it is not a valid feed
control character. Valid feed control characters are all those that are
listed as valid in the "Laser Printer" manual [9]. The user must
ensure that the VFB (Vertical Format Buffer -- see the "Laser Printer"
manual [9]) of the appropriate NDFILEs contains all the control
characters used in the member. On output, one member record
corresponds to one list line.

NO Only the number of member records is output.

? The current value is logged.

NUM The record number of the member record is output before the
record when the output mode is TXT; it is logged before the record
length field when the output mode is REC.

This option has no effect when PRT and NO are specified.

NONUM The record number is not output. This specification has no effect on
output to SYSLST or to a member; in these cases the record
number is always output.

U817-J-Z125-9-7600 231

Format 2 PAR LST

Format 2: Listing of object modules

This format applies only to member type R. It specifies the scope and mode of the
listing process.

Output from object modules can be subdivided into unedited output (REC) and edited
output (ALL, TXT, UPD, SYM). In unedited output, the record length field and, if
specified, the record number are output as well. In edited output, neither record length
field nor record number are output.

Operation Processing operand

PAR NU[M]
REC[/]

NO[NUM]
ALL

LS[T]=[TXT]
UPD
SYM
NO
?

REC All records in the module are output in alphanumeric and
hexadecimal form.
The 4-byte record length field is logged before the hexadecimal line.
The record number can be output (see NUM).

ALL All ESD, ISD, TXT, RLD, TXTP, REP and END information available to
LMS is output in edited form. Other information, e.g. LSD and
DSDD, is output in unedited form. Continuous text information is not
split up.

TXT Lists TXT, ESD and RLD information in edited form. Continuous text
is not split up into records.

UPD The correction journal (TXTP) and REP information are output in
edited form.

SYM ESD and ISD information is output in edited form.

NO The number of member records and the module length are output.

? The current value is logged.

NUM The record number is output before the record length field when
REC is specified. This option is only effective for output to the
display terminal.

NONUM The record number is not logged.

232 U817-J-Z125-9-7600

PAR LST Format 2

Example

/START-PROGRAM $LMS
$LIB LMS.TEST,BOTH
$PAR LST=REC/NUM
$LSTR ERFAS

E S D E R F A S 0
#1 0054000B 02C5E2C4404040404040001040400001C5D9C6C1E2404040F0000000000003

BA40

404040404040404040404040404040404040
T X T & & &

#2 00540014 02E3E7E3400000004040001040400001055041105066410000040A9C451050

1A40

404040404040404040404040404040404040
.
.
.

Member ERFAS is listed in alphabetical and hexadecimal format, prefixed by a record
number.

U817-J-Z125-9-7600 233

PAR NEWFORM Processing operands

PAR NEWFORM Control form feed

The NEWFORM processing operand controls the form feed for the LMS log when the
output medium is system file SYSLST or a member.

Operation Processing operand

PAR YES
NO

N[EWFORM]=[3]
number
?

YES Form feed to a new page either when processing operand LINE
determines there should be a new page (see processing operand
LINE, value "lines") or with each new statement or member.

NO Form feed to a new page only when processing operand LINE
determines there should be a new page.

number Outputs "number" blank lines instead of performing a form feed at
the start of output for a new element. "number" may have a value
from 1 to 15. Default value: 3

? The current value is logged.

Note

If a page feed is to be performed after every member, PAR NEWFORM=YES must
be specified. The default value 3 causes three blank lines to be output instead of a
page feed.

Processing operand NEWFORM affects the entire LMS run.

234 U817-J-Z125-9-7600

Processing operands PAR OVERWRITE

PAR OVERWRITE Overwrite identically named members

The OVERWRITE processing operand controls the overwriting of identically named
members in the output library, or of identically named files or FMS members in
conjunction with SEL.
This operand is not valid for delta members.

Operation Processing operand

PAR YES
ONLY
NO

O[VERWRITE]=[V]
D
EXTEND
?

YES An member or file with the same member designation is overwritten
or, if it does not yet exist, it is created.

ONLY A member is written only if a member or file with the same member
designation already exists.

NO A member or file with the same member designation is not
overwritten and the statement is not executed.

V A member with the same member designation is overwritten only if
version number new > version number old. This entry has the same
effect as NO for program libraries.

D A member with the same member designation is overwritten only if
date new > date old.

EXTEND The member or the file is to be extended. This operand is only
effective in conjunction with ADD and SEL. In the case of the other
statements, EXTEND has the same effect as the operand NO.

A member or a file is, however, extended only if no ISAM keys are
stored in the member and the file attributes stored in the member
match the attributes of the file (apart from the file name). Otherwise
ADD or SEL is rejected and an error message issued.

? The current value is logged.

The OVERWRITE processing operand affects:
ADD, COR, DUP, EDR, EDT, NAM, NUM, PRT, SEL, UPD

U817-J-Z125-9-7600 235

PAR PATH Processing operands

PAR PATH Specify a pathname

This processing operand is used to specify a pathname for UPDL and LSTL.

Operation Processing operand

PAR name
PA[TH]=[]

?

name Pathname with a length of up to 255 characters

If this is specified with LSTL, only the sub-LLM with this pathname is
listed.

If this is specified with UPDL, the name is used as the base for
displacement in the *COR substatement.

? The current value is logged.

The PATH processing operand affects UPDL and LSTL.

Note

If the processing operand SLICE is set, it is reset to ’UNDEFINED’ when the
processing operand PATH is set.

236 U817-J-Z125-9-7600

Processing operands PAR PHASE

PAR PHASE Define phase format

This processing operand defines the phase format to be generated. By default, PK
phases are generated in the PAM key (PK) environment and NK phases in the non-PAM
key (NK) environment. This processing operand can also be used to generate NK
phases in the PK environment.

Operation Processing operand

PAR PK
PH[ASE]=[NK]

?

PK The phase is generated in PK format if it is to be written to a PK disk. If
the phase is to be written to an NK disk, it is generated in NK format.

NK The phase is always generated in NK format.

? The current value is logged.

The default value of the PHASE operand is determined by the CLASS2-OPTION.

The PHASE processing operand affects SELC.

U817-J-Z125-9-7600 237

PAR RANGE Processing operands

PAR RANGE Define check field in output records

The RANGE processing operand defines the position and length of the check field in
output records. The check field can accommodate a value that is determined
dynamically (operands STRING and VALUE). If input consists of an ISAM file, the ISAM
key can be stored in the check field (processing operand STRING=KEY).

Operation Processing operand

PAR [start][/length]
RA[NGE]=[NO]

?

start Start position of the check field.
"start" may have the following values:
1 start 251

length Length of the check field.
"length" may have the following values:
1 length 16

If only "start" is specified, it must be in the range
65 start 80

This is because "length" is calculated as:
length = 81 - start

If only "length" is specified, "start" is calculated as:
start = 81 - length

If "start" and "length" are specified together, the following applies:
start + length 252

NO No check field is defined.

? The current value is logged.

The RANGE processing operand affects:
ADD, COR, EDR, EDT, NUM

238 U817-J-Z125-9-7600

Processing operands PAR REFERENCE

PAR REFERENCE Define reference conditions

The REFERENCE processing operand defines the reference conditions under which
members are selected for processing. The reference condition consist of the pair:
reference name and reference attribute. This processing operand is only evaluated for
type R members in program libraries.

Operation Processing operand

PAR name
CSECT

RE[FERENCE]=[([name],[ENTRY])]
ALL

?

name Specifies the reference name. Multiple selection is allowed.
"name" may be up to 32 characters in length.

CSECT Only reference names with the CSECT attribute are to be processed.

ENTRY Only reference names with the ENTRY attribute are to be processed.

ALL Reference names with any attribute are to be processed.

? The current value is logged.

The specification PAR REFERENCE= resets any existing reference conditions to
"undefined".

PAR REFERENCE=name has the same effect as PAR REFERENCE=(name, ALL).

PAR REFERENCE=(,{...}) has the same effect as PAR REFERENCE=(*,{...}).

The REFERENCE processing operand affects:
LST, TOC, DUP, DEL

Note

The member type R must be specified explicitly, otherwise the reference condition is
ignored.

U817-J-Z125-9-7600 239

PAR SEGMENT Processing operands

PAR SEGMENT Define segments of load module

The SEGMENT processing operand defines which segments of a load module are to be
listed.

Operation Processing operand

PAR overlay
%ROOT

SE[GMENT]=[]
%ALL
?

overlay Name of an overlay. "overlay" may be up to 8 characters in length.

%ROOT Name of the root segment.

%ALL All segments are listed.

? The current value is logged.

The SEGMENT processing operand affects LST.

240 U817-J-Z125-9-7600

Processing operands PAR SLICE

PAR SLICE Specify slice

This processing operand is used to specify a segment for UPDL and LSTL.

Operation Processing operand

PAR name
SL[ICE]=[]

?

name Slice name with a length of up to 32 characters

If this is specified with LSTL, only the slice with this name is listed.

If this is specified with UPDL, the name is used as the base for displacement
in the *COR substatement.

? The current value is logged.

Note

If the processing operand PATH is set, it is reset to ’UNDEFINED’ when the
processing operand SLICE is set.

U817-J-Z125-9-7600 241

PAR SORT Processing operands

PAR SORT Sort directory

The SORT processing operand defines the sort criteria for output of the directory
entries (cf. TOC, page 162).

Operation Processing operand

PAR U
[N][V][D]

SO[RT]=[]
R
?

U Unsorted output:
This parameter is only relevant for sequential libraries. Output follows
the order of the members as they occur in the library.

N Output is sorted by name.

V Output is sorted by version number.

D Output is sorted by date.

R Output is sorted by reference name; these names have been defined
using the REFERENCE processing operand.

If no reference condition has been defined using the REFERENCE
processing operand, LMS outputs the directory of primary names.

? The current value is logged.

N, V and D are the default values: they can be specified in any order and combination.

If more than one sort criterion is specified, sorting takes place in accordance with the
order in which the criteria are specified.

The SORT processing operand affects TOC.

242 U817-J-Z125-9-7600

Processing operands PAR STRING

PAR STRING Define string in check field of output records

The STRING processing operand defines a character string that is entered left-justified
in the check field of the output records (controlled by RANGE) upon renumbering.

The KEY operand is supported for reasons of compatibility only. ISAM keys are added
to the output member using the new processing operand PAR KEY=YES.

Operation Processing operand

PAR ’string’
NAME

STRIN[G]=[KEY]
NO
?

string Alphanumeric and special characters (up to 16 characters). The
apostrophe is not allowed in the character string.

NAME The first 3 characters of the member name are adopted as the
string.

KEY The KEY operand is supported for reasons of compatibility only. It
stores the ISAM key in the check field, but it is ignored if the ISAM
keys have been included in the output member by means of the
PAR KEY=YES processing operand.

If the lengths of the check field (see value "length" in the RANGE
processing operand) and of the ISAM key (KEY-LENGTH) are not
the same, the following rules apply:

length>KEY-LENGTH: check field is padded on the right with zeros.
length<KEY-LENGTH: ISAM key is truncated on the right.

NO No STRING entries are made in the check field.

? The current value is logged.

The STRING processing operand affects:
ADD, COR, EDR, EDT, NUM, SEL

U817-J-Z125-9-7600 243

PAR STRIP Processing operands

PAR STRIP Suppress records

The STRIP processing operand determines which record types are not to be transferred
from the input member to the output member. STRIP is only interpreted in conjunction
with members of the types R, L and C.

Operation Processing operand

PAR rectype
rectype,...)

STRIP=[YES]
NO
?

rectype The specified record type is excluded from transfer to the output
member.

Possible record types are:

ISD, LSD, TXTP, REP, INCLUDE, DSDD
for R-type members

TXTP
for C-type and L-type members

Other specifications are ignored.

YES TXTP records are not transferred to the output member, i.e. the
correction journal is not transferred.

NO All records are transferred to the output member.

? The current value is logged.

The STRIP processing operand affects UPD in the case of R-type, L-type and C-type
members, and DUP in the case of R-type and C-type members.

244 U817-J-Z125-9-7600

Processing operands PAR SUM

PAR SUM Generate comparison statistics

The SUM processing operand controls the storage of comparison statistics resulting
from a comparison specified by means of COM. These comparison statistics are placed
in designated sum fields and can be processed further via SUM, SUMPRT, SUMDEL
and SUMADD.

Operation Processing operand

PAR YES
SUM= NO

?

YES The comparison statistics from subsequent comparisons are added
to sum field S1.

END has the following effect:

1. Sum field S1 is added to sum field S2.

2. Sum field S2 is output.

3. The LMS run is terminated.

NO The comparison statistics from subsequent comparisons are not
stored.

The sum fields are not deleted at the time of their assignment. Deletion of the sum
fields is effected by means of SUMDEL (see page 160).

The SUM processing operand affects COM.

U817-J-Z125-9-7600 245

PAR TERMINATE Processing operands

PAR TERMINATE Control termination procedure in error situations

The TERMINATE processing operand determines which cases are treated as errors and
causes the internal termination code to be set.

If the termination code is set when LMS terminates, the program ends in a normal
manner in interactive mode, but branches to STEP or ABEND or LOGOFF when in
batch mode. Also in batch mode, LMS switches to test mode if serious errors occur,
regardless of the current value.

This processing operand also controls the behavior of LMS after the occurrence of
errors, i.e. it determines which errors cause LMS to switch to test mode.

Operation Processing operand

PAR 1
2
3
4

TER[MINATE]=[]
5
6
7
?

1 Test mode The termination bit is set in the event of serious errors, i.e. errors
that would make continuation pointless (e.g. device errors).

2 Run mode, 3 Test mode
The termination bit is set in the event of serious errors and also
other errors (e.g. syntax error in statement, member could not be
corrected).

4 Run mode, 5 Test mode
As for 2 and 3, and also if a function cannot be executed because a
member could not be found.

6 Run mode, 7 Test mode
As for 4 and 5, and also if a function cannot be executed because
overwriting of an existing member was not permitted
(OVERWRITE=NO) or the member could not be written because
there was not yet a member present with the same name
(OVERWRITE=ONLY).

? The current value is logged.

246 U817-J-Z125-9-7600

Processing operands PAR TERMINATE

With even values (2, 4, 6) the LMS run continues in run mode after the occurrence of
the TERMINATE condition; with odd values (1, 3, 5, 7) LMS switches to test mode
unless it is reading the statements in interactive mode from the display terminal.

The occurrence of each TERMINATE condition is logged.

The TERMINATE processing operand affects the entire LMS run.

U817-J-Z125-9-7600 247

PAR TEST Processing operands

PAR TEST Activate/deactivate and terminate test mode

The TEST processing operand activates test mode, regardless of any error conditions.
It allows for a return to run mode, providing test mode was not caused by errors.
Furthermore, it specifies that LMS terminates when run mode is switched to test mode.

Operation Processing operand

PAR YES
NO

TES[T]=[]
ABORT
?

YES LMS switches to test mode; statements other than END, LIB, PAR,
SYS, CTL and PRT are not executed.

The format of the statements is checked, as are the assignments of
the required libraries. With the correction functions, the format of the
correction statements is checked; also, all checks are performed in
the member. Data records are skipped. Errors occurring during
correction are logged.

NO LMS switches to run mode, i.e. all functions called are executed
(default value).

ABORT When run mode is switched to test mode on account of an error
(see TERMINATE processing operand), LMS terminates.

? The current value is logged.

If PAR TEST=YES is set, RST will have no effect.

The TEST processing operand affects the entire LMS run and RST.

248 U817-J-Z125-9-7600

Processing operands PAR TOC

PAR TOC Control output format for directories of program libraries

The TOC processing operand determines the number of member entries per line and
the way in which they are represented when the directory of a program library is
output. The operand is interpreted together with the LINE processing operand.

Operation Processing operand

PAR F
D

TO[C]=[L]
T
?

F A member is entered for each log line. The maximum length is
reserved for each type of entry (TYP=8, NAME=64, VERSION=24,
VARIANT=4, DATE=10, FLAG=1). If the flag column contains a "D",
the member is stored as a delta member (see Example 1).
Processing operand LINE may be used to shorten the line to a
maximum of 80 characters. If a member entry does not fit into the
log line because its member name is too long, the line is split into
two parts between member name and version.

D A complete tree of delta members is always listed, no matter which
member of the tree has been specified in TOC. The member
specification in TOC causes only the tree to be selected.
As well as the member designation the internal delta number
(DELTA#, reflects the chronological order) and the associated base
number (BASE#) are issued. These internal delta numbers are
unique within a tree, they define the chaining of the members in the
tree (independent of the external user-own version designation).
The output of a tree is always sorted by DELTA#, i.e., the SORT
processing operand is not effective within a tree. Different trees are
separated from each other by means of a continuous line.

The output fields DELTA# and BASE# for non-delta members are
empty (see Example 2).

L The longest member entry in the entire directory is determined, and
the number of possible member entries per log line is calculated on
the basis of this figure. The LINE processing operand may also be
used to reduce the number of characters per line. If member names
are too long, the member entry is extended to 80 characters per line
and, if the need arises, the line is split up between member name
and version.

U817-J-Z125-9-7600 249

PAR TOC Processing operands

T The procedure in this case is similar to that for the value L. The
longest member entry is determined separately for each member
type. Depending on the length of the member name, varying
numbers of member entries per log line can thus be generated for
the various member types.

? The current value is logged.

The TOC processing operand affects TOC.

Example 1

TYP NAME VERSION (VAR#) DATE FLAG

(S) CTL @ (0002) 1991-05-28
(S) DELTA-42 001 (0003) 1991-06-24 D
(S) DELTA-42 002 (0003) 1991-06-23 D
(S) DELTA-42 003 (0003) 1991-05-28 D

Example 2

TYP NAME VERSION (VAR#) DATE DELTA# BASE#

(S) CTL (0002) 1991-05-28

(S) DELTA-42 001 (0003) 1991-06-24 00001 00000
(S) DELTA-42 002 (0003) 1991-06-23 00002 00001
(S) DELTA-42 003 (0003) 1991-05-28 00003 00002

250 U817-J-Z125-9-7600

Processing operands PAR TYPE

PAR TYPE Predefine member type

The TYPE processing operand predefines the member type, thus making it unnecessary
to specify the member type explicitly in the statements.

Operation Processing operand

PAR type
TY[PE]=[]

?

type Specifies the member type to be processed.

Valid member types are:

S Source programs
M Macros
R Object modules (not for delta members)
C Load modules (not for delta members)
H Compiler result information
J Procedures
P Edited data
D Text data
X Data of any format (not for delta members)
* Stands for all member types (only for program libraries and

DEL, DUP, LST, NAM, SEL, TOC)

? The current value is logged.

Specification of PAR TYPE= cancels any predefinition which may exist. The member
type is then undefined.

The TYPE processing operand predefines the member type for:
ADD, COM, COR, DEL, DUP, EDR, EDT, LST, NAM, NUM, SEL, TOC, UPD

U817-J-Z125-9-7600 251

PAR VALUE Processing operands

PAR VALUE Control numbering in check field of output records

The VALUE processing operand determines the initial value and the increment of the
numbers which, during numbering, are entered left-justified in the check field of the
output records, or in the ISAM key (if output is written to an ISAM file). Character
strings defined by means of STRING are entered left-justified.

If STRING=KEY is specified and entry is from an ISAM file (see ADD), the processing
operand VALUE will be ignored.

Operation Processing operand

PAR [start][/inc]
V[ALUE]=[NO]

?

start Initial value for numbering (up to 16 characters).
If this entry is omitted, numbering commences with 0.

inc Increment (up to 16 characters).
If this entry is omitted, numbering takes place in steps of 10.

NO There is to be no numbering (default value).

? The current value is logged.

If an overflow occurs during numbering (into the string portion, if one is present, or out
of the check field), the overflowing digit is truncated and numbering is continued with
the remainder after a warning message has been issued.

If this overflow occurs when output is written to an ISAM file, processing is aborted
since the sequence of the ISAM key is no longer ascending (KEY OUT OF ORDER).

The VALUE processing operand affects:
ADD, COR, EDR, EDT, NUM, SEL

252 U817-J-Z125-9-7600

Processing operands PAR VALUE

Examples

Simple examples

Add, correct and assemble library source programs

A source program is added as an S-type member to a program library and then
assembled. Since errors were found during assembly, the member is corrected with
EDT and subsequently assembled again. The module from the EAM area is added to
the same program library as an R-type member.

/START-PROGRAM $LMS (01)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX (02)
PAR LOG=MAX
$LIB UEB.BIB,NEW,BOTH (03)
LIB UEB.BIB,NEW,BOTH
LIBRARY IS CLEARED AND PREPARED (04)
$ADDS QUELL.ERFASS>ERFASS (05)
ADDS QUELL.ERFASS>ERFASS
INPUT FILE
OUTPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK

ADD QUELL.ERFASS AS (S)ERFASS/@(0001)/1991-07-25 (06)
$TOC* * (07)
TOC* *
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
TYP NAME VER (VAR#) DATE
(S) ERFASS @ (0001) 1991-07-25 (08)

1 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS

U817-J-Z125-9-7600 253

Examples

$LSTS ERFASS (09)
LSTS ERFASS
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
INPUT ELEMENT= (S)ERFASS/@(0001)/1991-07-25

TITLE ’DATA ENTRY’
PRINT NOGEN

ERFAS START
BALR 5,0
USING *,5
OPEN DATEI,OUTPUT

LESEN RDATA SATZ,ENDPGM
PUT DATEI,SATZ (10)
B LESEN

ENDPGM TERM
*
DATEI FXB FCBTYPE=SAM, LINK=DATEN
SATZ DS CL84

END
NUMBER OF PROCESSED RECORDS IS 14
$END (11)
END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/START-PROGRAM $ASSEMB (12)
% BLS0500 PROGRAM ’ASSEMB’, VERSION ’300’ OF ’89-11-03’ LOADED
V30.0A20 OF SIEMENS BS 2000 ASSEMBLER READY
GIVE ASSEMBLER OPTIONS !
**COMOPT SOURCE=UEB.BIB(ERFASS) (13)
GIVE ASSEMBLER OPTIONS!
**END HALT
FLAGS IN 00003 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES (14)
HIGHEST ERROR-WEIGHT : 1
SYSTEM MACROLIBRARY : :M:$TSOS.MACROLIB
SOURCE LIBRARY : :N:$USER.UEB.BIB
SOURCE PROGRAM : ERFASS
SOURCE VERS/DATE: @/910725
ASSEMBLY TIME : 1.5383 SEC.
/START-PROGRAM $LMS (15)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX
PAR LOG=MAX
$LIB UEB.BIB,BOTH (16)
LIB UEB.BIB,BOTH

254 U817-J-Z125-9-7600

Examples

$EDTS ERFASS (17)
EDTS ERFASS

0.10 TITLE ’DATA ENTRY’
0.20 PRINT NOGEN
0.30 ERFAS START
0.40 BALR 5,0
0.50 USING *,5
0.60 OPEN DATEI,OUTPUT
0.70 LESEN RDATA SATZ,ENDPGM
0.80 PUT DATEI,SATZ
0.90 B LESEN
1.00 ENDPGM TERM
1.10 *

x 1.20 DATEI FcB FCBTYPE=SAM, LINK=DATEN
1.30 SATZ DS CL84 (18)
1.40 END
2.40
3.40
4.40
5.40
6.40
7.40
8.40
9.40

OUTPUT ELEMENT= (S)ERFASS/@(0002)/1991-07-25
halt 0000.10:001(0)

EDT0905 EDITED MEMBER TO BE ADDED? REPLY (Y=YES; N=NO) y (19)
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
OUTPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
INPUT ELEMENT= (S)ERFASS/@(0001)/1991-07-25
OUTPUT ELEMENT= (S)ERFASS/@(0002)/1991-07-25 (20)
CORRECT (S)ERFASS/@(0001)/1991-07-25 AS (S)ERFASS/@(0002)/1991-07-25

, OUTPUT REPLACED
$END
END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/DELETE-SYSTEM-FILE FILE-NAME=OMF
/ASSIGN-SYSDTA TO-FILE=*LIBRARY-ELEMENT(LIBRARY=UEB.BIB,

ELEMENT=ERFASS)
/START-PROGRAM $ASSEMB
% BLS0500 PROGRAM ’ASSEMB’, VERSION ’300’ OF ’89-11-03’ LOADED
V30.0A20 OF SIEMENS BS 2000 ASSEMBLER READY (21)
GIVE ASSEMBLER OPTIONS !
FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : -
SYSTEM MACROLIBRARY : :M:$TSOS.MACROLIB
ASSEMBLY TIME : 2.1016 SEC.
/START-PROGRAM $LMS (22)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX
PAR LOG=MAX

U817-J-Z125-9-7600 255

Examples

$LIB UEB.BIB,BOTH (23)
LIB UEB.BIB,BOTH
$ADDR *OMF (24)
ADDR *OMF
INPUT OMF
OUTPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK

ADD ERFAS AS (R)ERFAS/@(0001)/1991-07-25
$END (25)
END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/ASSIGN-SYSDTA TO-FILE=*PRIMARY (26)
/

(01) LMS is called.

(02) All messages and statements are logged.

(03) Library UEB.BIB is to be created as a new program library and assigned as an
I/O library.

(04) Library UEB.BIB has been created.

(05) File QUELL.ERFASS is added to the library as a type-S member having the
name ERFASS.

(06) Positive acknowledgment: member ERFASS, with maximum version designation
@ and variant number 0001, is written to the library.

(07) The directory of library UEB.BIB is to be listed.

(08) Directory entry of library UEB.BIB.

(09) Member ERFASS is to be listed.

(10) Contents of member ERFASS.

(11) LMS is terminated.

(12) The assembler is called.

(13) The source program in member ERFASS of program library UEB.BIB is to be
assembled.

(14) The program contains errors.

(15) LMS is called again.

(16) Program library UEB.BIB is assigned as the I/O library.

(17) Member ERFASS is to be processed with EDT.

256 U817-J-Z125-9-7600

Examples

(18) The error is corrected:

Make line 1.20 overwriteable by entering "x" in the statement column.
Change "FXB" in line 1.20 to "FCB" and terminate EDT by entering HALT in
the statement line.

(19) "Y" causes the corrected member to be added to the output library. Since the
input library and output library are identical and no new name has been
specified for the output member, the invalid input member is overwritten by the
corrected output member.

(20) Positive acknowledgment: input member ERFASS has been corrected. The
output member is given the same name and the same version designation, the
variant number is incremented by 1 to "0002".

(21) The assembly run has been executed successfully.

(22) LMS is called.

(23) Program library UEB.BIB is reassigned as the I/O library.

(24) Module ERFAS is taken from the EAM area and incorporated as member ERFAS.

(25) LMS is terminated.

(26) The system input file SYSDTA is reassigned.

U817-J-Z125-9-7600 257

Examples

Duplicate members

Members from a module library, macro library, source library and program library are
duplicated to a program library.

/SET-FILE-LINK LINK-NAME=LIB001,FILE-NAME=MODUL.LIB
/SET-FILE-LINK LINK-NAME=LIB002,FILE-NAME=MACRO.LIB
/SET-FILE-LINK LINK-NAME=LIB003,FILE-NAME=QUELL.LIB (01)
/SET-FILE-LINK LINK-NAME=LIB004,FILE-NAME=TEST.LIB
/START-PROGRAM $LMS (02)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX
PAR LOG=MAX
$LIB LMSPL.LIB,NEW,BOTH (03)
LIB LMSPL.LIB,NEW,BOTH
LIBRARY IS CLEARED AND PREPARED
$TOCR (1) (04)
TOCR (1)
INPUT LIBRARY= :N:$USER.MODUL.LIB,LINK=LIB001,DEV=DISK
TYP NAME VER (VAR#) DATE
(R) MODERF @ (0001) 1991-07-26

1 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS
$DUPR MODERF(1)>MOD.ERF (05)
DUPR MODERF(1)>MOD.ERF
INPUT LIBRARY= :N:$USER.MODUL.LIB,LINK=LIB001,DEV=DISK
OUTPUT LIBRARY= :N:$USER.LMSPL.LIB,DEV=DISK

DUPLICATE (R)MODERF/@(0001)/1991-07-26 AS (R)MOD.ERF/@(0001)/1991-07-2
$TOCM (2) (06)
TOCM (2)
INPUT LIBRARY= :N:$USER.MACRO.LIB,LINK=LIB002,DEV=DISK
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(M) MAC1 @ (0001) 1991-07-26 MAC2 @ (0001) 1991-07-26

2 (M)-ELEMENT(S) IN THIS TABLE OF CONTENTS
$DUPM MAC*(2)>MU* (07)
DUPM MAC*(2)>MU*
INPUT LIBRARY= :N:$USER.MACRO.LIB,LINK=LIB002,DEV=DISK
OUTPUT LIBRARY= :N:$USER.LMSPL.LIB,DEV=DISK

DUPLICATE (M)MAC1/@(0001)/1991-07-26 AS (M)MUC1/@(0001)/1991-07-26
DUPLICATE (M)MAC2/@(0001)/1991-07-26 AS (M)MUC2/@(0001)/1991-07-26 (08)

$TOCS (3) (09)
TOCS (3)
INPUT LIBRARY= :N:$USER.QUELL.LIB,LINK=LIB003,DEV=DISK
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(S) EDTB @ (0001) 1991-07-26 PROT @ (0001) 1991-07-26
(S) SEINAUS @ (0001) 1991-07-26 SERFAS @ (0001) 1991-07-26

4 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
$DUPS *,-EDTB(3) (10)
DUPS *,-EDTB(3)
INPUT LIBRARY= :N:$USER.QUELL.LIB,LINK=LIB003,DEV=DISK
OUTPUT LIBRARY= :N:$USER.LMSPL.LIB,DEV=DISK

DUPLICATE (S)PROT/@(0001)/1991-07-26 AS (S)PROT/@(0001)/1991-07-26
DUPLICATE (S)SEINAUS/@(0001)/1991-07-26 AS

(S)SEINAUS/@(0001)/1991-07-26
DUPLICATE (S)SERFAS/@(0001)/1991-07-26 AS (S)SERFAS/@(0001)/1991-07-26

258 U817-J-Z125-9-7600

Examples

$TOC* (4) (11)
TOC* (4)
INPUT LIBRARY= :N:$USER.TEST.LIB,LINK=LIB004,DEV=DISK
TYP NAME VER (VAR#) DATE
(S) SERFAS @ (0001) 1991-07-26

1 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
$DUP* (4)>*/007 (12)
DUP* (4)>*/007
INPUT LIBRARY= :N:$USER.TEST.LIB,LINK=LIB004,DEV=DISK
OUTPUT LIBRARY= :N:$USER.LMSPL.LIB,DEV=DISK

DUPLICATE (S)SERFAS/@(0001)/1991-07-26
(S)SERFAS/007(0001)/1991-07-26

$TOC* * (13)
TOC* *
INPUT LIBRARY= :N:$USER.LMSPL.LIB,DEV=DISK
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(M) MUC1 @ (0001) 1991-07-26 MUC2 @ (0001) 1991-07-26

2 (M)-ELEMENT(S) IN THIS TABLE OF CONTENTS
TYP NAME VER (VAR#) DATE
(R) MOD.ERF @ (0001) 1991-07-26

1 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(S) PROT @ (0001) 1991-07-26 SEINAUS @ (0001) 1991-07-26
(S) SERFAS @ (0001) 1991-07-26

3 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
$TOC* */* (14)
TOC* */*
INPUT LIBRARY= :N:$USER.LMSPL.LIB,DEV=DISK
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(M) MUC1 @ (0001) 1991-07-26 MUC2 @ (0001) 1991-07-26

2 (M)-ELEMENT(S) IN THIS TABLE OF CONTENTS
TYP NAME VER (VAR#) DATE
(R) MOD.ERF @ (0001) 1991-07-26

1 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(S) PROT @ (0001) 1991-07-26 SEINAUS @ (0001) 1991-07-26
(S) SERFAS 007 (0001) 1991-07-26 SERFAS @ (0001) 1991-07-26

4 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
$LIB ? (15)
LIB ?
USAGE STATUS FORMAT LID LINKNAME FILENAME
IN OPEN PL :N:$USER.LMSPL.LIB
OUT OPEN PL :N:$USER.LMSPL.LIB

CLOSED PL 001 LIB001 :N:$USER.MODUL.LIB
CLOSED PL 002 LIB002 :N:$USER.MACRO.LIB
CLOSED PL 003 LIB003 :N:$USER.QUELL.LIB
CLOSED PL 004 LIB004 :N:$USER.TEST.LIB

$LIB C (16)
LIB C
$LIB ? (17)
LIB ?
USAGE STATUS FORMAT LID LINKNAME FILENAME

CLOSED PL :N:$USER.LMSPL.LIB
CLOSED PL 001 LIB001 :N:$USER.MODUL.LIB
CLOSED PL 002 LIB002 :N:$USER.MACRO.LIB
CLOSED PL 003 LIB003 :N:$USER.QUELL.LIB
CLOSED PL 004 LIB004 :N:$USER.TEST.LIB

U817-J-Z125-9-7600 259

Examples

$END (18)
END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/

(01) Libraries assigned in this manner can be addressed in the LMS run using their
short designation. In this example they are used as temporary input libraries.

(02) LMS is invoked.

(03) The new program library LMSPL.LIB is to be created, and to be assigned as the
I/O library.

(04) The directory of object module library MODUL.LIB, assigned by way of the short
library designation (1), is to be listed.

(05) Module MODERF from library MODUL.LIB is duplicated to library LMSPL.LIB
under the member name MOD.ERF.

(06) The directory of macro library LIB.MAC, assigned by way of the short library
designation (2), is to be listed.

(07) Those members of library LIB.MAC whose member designations begin with
"MAC" are to be duplicated to library LMSPL.LIB. The new member designations
begin with "MU". The member designations of the input members are transferred,
starting from the third position.

(08) Positive acknowledgment: the selected members, with the new member
designations, are duplicated from the module library to the program library.

(09) The directory of source library QUELL.LIB, assigned by way of the short library
designation (3), is to be listed.

(10) All members from source library QUELL.LIB, with the exception of member
EDTB, are duplicated to the output library.

(11) The directory of program library TEST.LIB, assigned by way of the short library
designation (4), is to be listed.

(12) All members of program library TEST.LIB are duplicated to the output library and
stored under the same name and version number 007.

(13) The directory of the current input library LMSPL.LIB is to be listed.

(14) The directory of the current input library LMSPL.LIB is to be listed with all
members. There are two members with member name SERFAS, but with
different version numbers. TOC* * only indicated the member with the highest
version number, "SERFAS/007".

260 U817-J-Z125-9-7600

Examples

(15) The status of the libraries used during the LMS run is queried.

(16) Library LMSPL.LIB is closed.

(17) The status of the libraries used during the LMS run is queried.

(18) The LMS run is terminated.

U817-J-Z125-9-7600 261

Examples

Compare members

Member ERFASS (listed in the example on page 253) and member EINAUS are
compared. A comparison log is generated.

/START-PROGRAM $LMS (01)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX
PAR LOG=MAX
$LIB UEB.BIB,BOTH (02)
LIB UEB.BIB,BOTH
$ADDS QUELL.EINAUS>EINAUS (03)
ADDS QUELL.EINAUS>EINAUS
INPUT FILE
OUTPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK

ADD QUELL.EINAUS AS (S)EINAUS/@(0001)/1991-07-29
$LSTS EINAUS (04)
LSTS EINAUS
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
INPUT ELEMENT= (S)EINAUS/@(0001)/1991-07-29

TITLE ’DATA ENTRY’
PRINT NOGEN

ERFAS START
BALR 5,0
USING *,5
OPEN DATEI,OUTPUT

LESEN RDATA SATZ,ENDPGM
CLC TEXT(4),=C’/EOF’
BE ENDPGM
MVC ATEXT,TEXT
LH 9,SL
AH 9,=H’1’
STH 9,ASL
WROUT ASATZ,ENDPGM
PUT DATEI,SATZ
B LESEN

ENDPGM TERM
*
DATEI FCB FCBTYPE=SAM,LINK=DATEN

DS OH
SATZ DS CL84
SL DS CL2

DS CL2
TEXT DS CL80
ASATZ DS OCL85
ASL DS CL2

DC X’000001’
ATEXT DS CL80

END
NUMBER OF PROCESSED RECORDS IS 29
$PAR COMPARE=/MAX (05)
PAR COMPARE=/MAX
$COMS EINAUS=ERFASS (06)
COMS EINAUS=ERFASS

262 U817-J-Z125-9-7600

Examples

FUNCTION = C O M P A R E
PAR COMPARE= 00001/00072/L/MAX
PRIMARY LIBRARY= :N:$USER.UEB.BIB
PRIMARY ELEMENT= (S)EINAUS/@(0001)/1991-07-29 (07)
SECONDARY LIBRARY= :N:$USER.UEB.BIB
SECONDARY ELEMENT= (S)ERFASS/@(0002)/1991-07-26

SAME FROM #1 TO #7 AS FROM #1 TO #7 (08)

#1 > TITLE ’DATA ENTRY’<
#2 > PRINT NOGEN<
#3 >ERFAS START<
#4 > BALR 5,0< (09)
#5 > USING *,5<
#6 > OPEN DATEI,OUTPUT<
#7 >LESEN RDATA SATZ,ENDPGM<

INS. FROM #8 TO #14 (10)

#8 > CLC TEXT(4),=C’/EOF’<
#9 > BE ENDPGM<

#10 > MVC ATEXT,TEXT<
#11 > LH 9,SL< (11)
#12 > AH 9,=H’1’<
#13 > STH 9,ASL<
#14 > WROUT ASATZ,ENDPGM<

SAME FROM #15 TO #19 AS FROM #8 TO #12 (12)

#15 > PUT DATEI,SATZ<
#16 > B LESEN<
#17 >ENDPGM TERM< (13)
#18 >*<
#19 >DATEI FCB FCBTYPE=SAM, LINK=DATEN<

INS. #20 (14)

#20 > DS OH< (15)

SAME #21 AS #13 (16)

#21 >SATZ DS CL84< (17)

INS. FROM #22 TO #28 (18)

#22 >SL DS CL2<
#23 > DS CL2<
#24 >TEXT DS CL80<
#25 >ASATZ DS OCL85< (19)
#26 >ASL DS CL2<
#27 > DC X’000001’<
#28 >ATEXT DS CL80<

SAME #29 AS #14 (20)

#29 > END< (21)

PRIMARY ELEMENT= (S)EINAUS/@(0001)/1991-07-29

U817-J-Z125-9-7600 263

Examples

SECONDARY ELEMENT= (S)ERFASS/@(0002)/1991-07-26
RESULT: C PRIMARY= 29 INSERTED= 15 (3) DELETED= 0 (0)

SECONDARY= 14 SAME= 14 (4) (22)
$END (23)
END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/

(01) LMS is invoked.

(02) Program library UEB.BIB is assigned as the input/output library.

(03) File QUELL.EINAUS is added to the library as type-S member EINAUS.

(04) Member EINAUS is listed.

(05) The COMPARE processing operand defines that the comparison log is to be
output in its entirety.

(06) Members EINAUS and ERFASS are compared.

(07) Start of comparison log:
The log includes the values set for the COMPARE processing operand, the
names of the primary and secondary libraries, and the names of the primary and
secondary members.

(08) - (21)
Comparison log

(08) The records with record IDs #1 through #7 are identical in both members.

(09) Output of identical records.

(10) Records #8 through #14 are present in the primary member only and are
represented as INS(erted).

(11) Output of inserted records.

(12) Records #15 through #19 of the primary member are identical to records #8
through #12 of the secondary member.

(13) Output of identical records.

(14) Record #20 is present in the primary member only and is represented as
INS(erted).

(15) Output of inserted record.

(16) Record #21 of the primary member is identical to record #13 of the secondary
member.

264 U817-J-Z125-9-7600

Examples

(17) Output of identical record.

(18) Records #20 through #28 are present in the primary member only and are
represented as INS(erted).

(19) Output of inserted records.

(20) Record #29 of the primary member is identical to record #14 of the secondary
member.

(21) Output of identical record.

(22) Result of the comparison; output of the number of records of the primary and
secondary members, and of the number of inserted, identical and deleted
records.

The numbers in parentheses indicate how many continuous sections (consisting
of consecutive records) have been inserted, identified as identical, or deleted.

(23) LMS is terminated.

U817-J-Z125-9-7600 265

Examples

Processing delta members

/START-PROGRAM $LMS (01)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX
PAR LOG=MAX
$LIB LIB.DELTA,NEW,BOTH (02)
LIB LIB.DELTA,NEW,BOTH
LIBRARY IS CLEARED AND PREPARED
$ADDS WORKELEM>DELTA/V00,BASEVERSION=*NONE (03)
ADDS WORKELEM>DELTA/V00,BASEVERSION=*NONE
INPUT FILE
OUTPUT LIBRARY= :N:$USER.LIB.DELTA,DEV=DISK

ADD WORKELEM AS (S)DELTA/V00(0001)/1991-07-29 , FIRST DELTA VERSION
$EDTS DELTA/V00>VOLLELEM (04)
EDTS DELTA/V00>VOLLELEM

0.10 MINI START
0.20 BALR 3,0
0.30 USING *,3
0.40 OPEN SAMFCB,OUTPUT
0.50 PUT SAMFCB,EINGABE
0.60 TERM
0.70 SAMFCB FCB FCBTYPE=SAM,LINK=MINI
0.80 EINGABE DC C’THERE YOU ARE’
0.90 END
1.90
2.90
3.90
4.90
5.90
6.90
7.90
8.90
9.90
10.90
11.90
12.90
13.90

OUTPUT ELEMENT= (S)VOLLELEM/V00(0001)/1991-07-29
halt 0000.10:001(0)

EDT0905 EDITED MEMBER TO BE ADDED? REPLY (Y=YES; N=NO) y
INPUT LIBRARY= :N:$USER.LIB.DELTA,DEV=DISK
OUTPUT LIBRARY= :N:$USER.LIB.DELTA,DEV=DISK
INPUT ELEMENT= (S)DELTA/V00(0001)/1991-07-29
OUTPUT ELEMENT= (S)VOLLELEM/V00(0001)/1991-07-29

CORRECT (S)DELTA/V00(0001)/1991-07-29 AS
(S)VOLLELEM/V00(0001)/1991-07-29

266 U817-J-Z125-9-7600

Examples

$DUPS VOLLELEM>DELTA/V01,BASEVERSION=*HIGH (05)
DUPS VOLLELEM>DELTA/V01,BASEVERSION=*HIGH
INPUT LIBRARY= :N:$USER.LIB.DELTA,DEV=DISK
OUTPUT LIBRARY= :N:$USER.LIB.DELTA,DEV=DISK

DUPLICATE (S)VOLLELEM/V00(0001)/1991-07-29 AS
(S)DELTA/V01(0002)/1991-07-29 ON BASE
(S)DELTA/V00(0002)/1991-07-29

$LIB LIB.ARBEIT,IN (06)
LIB LIB.ARBEIT,IN
$DUPS INPUT>DELTA/V02,BASEVERSION=V00 (07)
DUPS INPUT>DELTA/V02,BASEVERSION=V00
INPUT LIBRARY= :N:$USER.LIB.ARBEIT,DEV=DISK
OUTPUT LIBRARY= :N:$USER.LIB.DELTA,DEV=DISK

DUPLICATE (S)INPUT/@(0001)/1991-07-29 AS (S)DELTA/V02(0003)/1991-07-29
ON BASE (S)DELTA/V00(0003)/1991-07-29

$LIB LIB.DELTA,IN (08)
LIB LIB.DELTA,IN
$PAR TOC=D (09)
PAR TOC=D
$TOC (10)
$TOC* */* GENERATED BY LMS
INPUT LIBRARY= :N:$USER.LIB.DELTA,DEV=DISK
TYP NAME VERSION (VAR#) DATE DELTA# BASE#
(S) DELTA V00 . . . (0003) 1991-07-29 00001 00000
(S) DELTA V01 . . . (0003) 1991-07-29 00002 00001
(S) DELTA V02 . . . (0003) 1991-07-29 00003 00001

(S) VOLLELEM V00 . . . (0001) 1991-07-29

4 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
$ADDS WORKELEM>DELTA/V11,BASEVERSION=V01 (11)
ADDS WORKELEM>DELTA/V11,BASEVERSION=V01
INPUT FILE
OUTPUT LIBRARY= :N:$USER.LIB.DELTA,DEV=DISK

ADD WORKELEM AS (S)DELTA/V11(0004)/1991-07-29 ON BASE
(S)DELTA/V01(0004)/1991-07-29

$TOC (12)
$TOC* */* GENERATED BY LMS
INPUT LIBRARY= :N:$USER.LIB.DELTA,DEV=DISK
TYP NAME VERSION (VAR#) DATE DELTA# BASE#
(S) DELTA V00 . . . (0004) 1991-07-29 00001 00000
(S) DELTA V01 . . . (0004) 1991-07-29 00002 00001
(S) DELTA V02 . . . (0004) 1991-07-29 00003 00001
(S) DELTA V11 . . . (0004) 1991-07-29 00004 00002

(S) VOLLELEM V00 . . . (0001) 1991-07-29

5 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
$END (13)
END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/

U817-J-Z125-9-7600 267

Examples

(01) LMS is invoked.

(02) Program library LIB.DELTA is created and assigned as the input/output library.

(03) File WORKELEM is added to the library as a new type-S delta member,
DELTA/V00.

(04) Delta member DELTA/V00 is to be processed with EDT. To do so, a new non-
delta member, VOLLELEM, is generated from delta member DELTA/V00.

(05) The processed non-delta member, VOLLELEM, is duplicated as type-S delta
member DELTA/V01 to delta member DELTA/V00 in the output library.

(06) Program library LIB.ARBEIT is assigned as the input library.

(07) Non-delta member INPUT is duplicated as type-S delta member DELTA/V02 to
delta member DELTA/V00 in the output library.

(08) Program library LIB.DELTA is reassigned as the input library.

(09) Processing operand PAR TOC=D is mandatory for the complete delta tree to be
listed when TOC is called.

(10) The directory of library LIB.DELTA is to be listed.

(11) File WORKELEM is added as type-S delta member DELTA/V11 to delta member
DELTA/V01.

(12) The directory of library LIB.DELTA is to be listed.

(13) LMS is terminated.

The delta members have the following structure:

DELTA/V01 DELTA/V11

DELTA/V00

DELTA/V02

268 U817-J-Z125-9-7600

Examples

Complex examples

Correct a source program using COR

Member DAT is corrected with the aid of COR correction statements.

/START-PROGRAM $LMS (01)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX!LIB UEB.BIB,BOTH (02)
PAR LOG=MAX
LIB UEB.BIB,BOTH
$ADDS QUELL.DAT>DAT (03)
ADDS QUELL.DAT>DAT
INPUT FILE
OUTPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK

ADD QUELL.DAT AS (S)DAT/@(0001)/1991-07-30
$PAR LST=TXT/NUM (04)
PAR LST=TXT/NUM
$LSTS DAT (05)
LSTS DAT
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
INPUT ELEMENT= (S)DAT/@(0001)/1991-07-30

#1 >TEST START
#2 >TEST START
#3 > BALR 3.0
#4 > USING *,3
#5 > GDATE DATUM,FORMAT=ISO
#6 > WROUT SATZ1,ENDE
#7 >ENDE TERM (06)
#8 >*
#9 > DS OF

#10 >SATZ1 DC AL2(17)
#11 > DC X’000001’
#12 >DATUM DS CL12
#13 > END TEST

NUMBER OF PROCESSED RECORDS IS 13
$DUPS DAT>SDAT (07)
DUPS DAT>SDAT
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
OUTPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK

DUPLICATE (S)DAT/@(0001)/1991-07-30 AS (S)SDAT/@(0001)/1991-07-30
$CORS DAT (08)
CORS DAT
**DEL #1 (09)
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
OUTPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
INPUT ELEMENT= (S)DAT/@(0001)/1991-07-30
OUTPUT ELEMENT= (S)DAT/@(0002)/1991-07-30
*DEL #1
DEL #1 >TEST START

U817-J-Z125-9-7600 269

Examples

**CHA #3’.0’<17>=:=’,0’ (10)
*CHA #3’.0’<17>=:=’,0’

#1 >TEST START
**REP #5 (11)
*REP #5
HIT #2 > BALR 3,0

#3 > USING *,3
DEL #5 > GDATE DATUM,FORMAT=ISO

GDATE DATUM,FORMAT=ISO,TOD=ZEIT (12)
ADD #4 > GDATE DATUM,FORMAT=ISO,TOD=ZEIT
**INS #6 (13)
*INS #6

#5 > WROUT SATZ1,ENDE
* WROUT SATZ2,ENDE
ADD #6 > WROUT SATZ2,ENDE
**INS #12 (14)
*INS #12

#7 >ENDE TERM
#8 >*
#9 > DS OF
#10 >SATZ1 DC AL2(17)
#11 > DC X’000001’
#12 >DATUM DS CL12

*SATZ2 DC A(13)
ADD #13 >SATZ2 DC A(13)
* DC X’000001’
ADD #14 > DC X’000001’
*ZEIT DS CL8
ADD #15 >ZEIT DS CL8
**END (15)
*END

#16 > END TEST
CORRECT (S)DAT/@(0001)/1991-07-30 AS (S)DAT/@(0002)/1991-07-30

, OUTPUT REPLACED
$LSTS DAT (16)
LSTS DAT
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
INPUT ELEMENT= (S)DAT/@(0002)/1991-07-30

#1 >TEST START
#2 > BALR 3,0
#3 > USING *,3
#4 > GDATE DATUM,FORMAT=ISO,TOD=ZEIT
#5 > WROUT SATZ1,ENDE
#6 > WROUT SATZ2,ENDE
#7 >ENDE TERM
#8 >*
#9 > DS OF
#10 >SATZ1 DC AL2(17)
#11 > DC X’000001’
#12 >DATUM DS CL12
#13 >SATZ2 DC A(13)
#14 > DC X’000001’
#15 >ZEIT DS CL8
#16 > END TEST

NUMBER OF PROCESSED RECORDS IS 16

270 U817-J-Z125-9-7600

Examples

$END (17)
END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/

(01) LMS is invoked.

(02) Two statements separated by an exclamation mark are entered:
a) All messages and statements are to be logged.
b) Program library UEB.BIB is assigned as the input/output library.

(03) File QUELL.DAT is incorporated in the library as an S-type member having the
name DAT.

(04) Processing operand LST defines that the record number is to be output as well
during the listing procedure.

(05) Member DAT is listed.

(06) Contents of member DAT with prefixed record number.

(07) Member DAT is duplicated into member SDAT.

(08) Member DAT is to be corrected with COR.

(09) The record with record number #1 is to be deleted.

(10) Character string ’.0’ in column 17 of the record with number #3 is changed into
’,0’.

(11), (12)
The record with number #5 is replaced by that denoted by (12).

(13), (14)
Subsequent to the records with numbers #6 and #12, records are inserted.

(15) End of correction statements.

(16) The corrected member is listed once more.

(17) LMS is terminated.

U817-J-Z125-9-7600 271

Examples

Correct an object module using UPD

Member USELST is corrected with the aid of UPDR correction statements. The cross
control number is first computed in test mode and then entered for checking purposes
during correction.

/START-PROGRAM $LMS (01)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX,TEST=YES (02)
PAR LOG=MAX,TEST=YES
$LIB UEB.BIB,BOTH (03)
LIB UEB.BIB,BOTH
$PAR LCASE=YES (04)
PAR LCASE=YES
$UPDR USELST (05)
UPDR USELST
**COR C0,’ER’=:=’aa’ (06)
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
OUTPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
INPUT ELEMENT= (R)USELST/@(0001)/1991-07-31
*COR C0,’ER’=:=’aa’
**END (07)
*END
*COR C0,’ER’=:=’aa’
CONTROL NUMBER: 009926
TEXT-ADR: 000000C0
TEXT BEFORE CHANGE: E R

C5D9 (08)
TEXT AFTER CHANGE: a a

8181
CROSS CONTROL NUMBER:00009926

NO CORRECT (R)USELST/@(0001)/1991-07-31 , LMS IN TESTMODE !!! (09)
$PAR TEST=NO (10)
PAR TEST=NO
$UPDR USELST (11)
UPDR USELST
**CON 9926 (12)
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
OUTPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
INPUT ELEMENT= (R)USELST/@(0001)/1991-07-31
OUTPUT ELEMENT= (R)USELST/@(0002)/1991-07-31
*CON 9926
**COR C0,’ER’=:=’aa’ (13)
*COR C0,’ER’=:=’aa’
**END
*END
*CON 9926
*COR C0,’ER’=:=’aa’
CONTROL NUMBER: 009926
TEXT-ADR: 000000C0
TEXT BEFORE CHANGE: E R

C5D9
TEXT AFTER CHANGE: a a

8181

272 U817-J-Z125-9-7600

Examples

CROSS CONTROL NUMBER:00009926
CORRECT (R)USELST/@(0001)/1991-07-31 AS (R)USELST/@(0002)/1991-07-31

, OUTPUT REPLACED (14)
$PAR LCASE=NO (15)
PAR LCASE=NO
$END (16)
END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/

(01) LMS is invoked.

(02) Processing operands LOG and TEST are specified via PAR:

a) All messages and statements are logged.
b) Test mode is activated.

(03) Program library UEB.BIB is assigned as the input/output library.

(04) Lower case letters entered are not converted to upper case.

(05) Module USELST is to be corrected.

(06) The text of address 0000C0 is replaced.

(07) End of correction statements.

(08) LMS checks the correction specifications and computes the control number and
the cross control number.

(09) The corrections are not performed because test mode is activated.

(10) Test mode is deactivated.

(11) Module USELST is to be corrected.

(12) The cross control number is entered.

(13) The text of address 0000C0 is replaced.

(14) The corrections have been performed.

(15) All entries are converted to upper case.

(16) LMS is terminated.

U817-J-Z125-9-7600 273

Examples

Compare members and prepare correction statements

Correction statements are issued when the members DAT and SDAT are compared.
These are written to a file and again incorporated as members. Members DAT and
SDAT are listed in the example on page 269.

/START=PROGRAM $LMS (01)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX,COM=/MAX/COR,SUM=YES (02)
PAR LOG=MAX,COM=/MAX/COR,SUM=YES
$SYS ASSIGN-SYSOPT TO-FILE=COR.ELEM (03)
SYS ASSIGN-SYSOPT TO-FILE=COR.ELEM
$LIB UEB.BIB,BOTH (04)
LIB UEB.BIB,BOTH
$COMS DAT=SDAT (05)
COMS DAT=SDAT
FUNCTION = C O M P A R E
PAR COMPARE= 00001/00072/L/MAX/COR COR-CARD OUTPUT=SYSOPT
PRIMARY LIBRARY= :N:$USER.UEB.BIB
PRIMARY ELEMENT= (S)DAT/@(0002)/1991-08-01
SECONDARY LIBRARY= :N:$USER.UEB.BIB
SECONDARY ELEMENT= (S)SDAT/@(0001)/1991-08-01

SAME #1 AS #1

#1 >TEST START<

DEL. FROM #2 TO #3

#2 >TEST START<
#3 > BALR 3.0<

INS. #2

#2 > BALR 3,0<

SAME #3 AS #4

#3 > USING *,3<

DEL. #5

#5 > GDATE DATUM,FORMAT=ISO<

INS. #4

#4 > GDATE DATUM,FORMAT=ISO,TOD=ZEIT<

SAME #5 AS #6

#5 > WROUT SATZ1,ENDE<

INS. #6

274 U817-J-Z125-9-7600

Examples

#6 > WROUT SATZ2,ENDE<

SAME FROM #7 TO #12 AS FROM #7 TO #12

#7 >ENDE TERM<
#8 >*<
#9 > DS OF<
#10 >SATZ1 DC AL2(17)<
#11 > DC X’000001’<
#12 >DATUM DS CL12<

INS. FROM #13 TO #15

#13 >SATZ2 DC A(13)<
#14 > DC X’000001’<
#15 >ZEIT DS CL8<

SAME #16 AS #13

#16 > END TEST<

PRIMARY ELEMENT= (S)DAT/@(0002)/1991-08-01
SECONDARY ELEMENT= (S)SDAT/@(0001)/1991-08-01
RESULT: C PRIMARY= 16 INSERTED= 6 (4) DELETED= 3 (2)

SECONDARY= 13 SAME= 10 (5)
$SUM (06)
SUM
AREA C1

PRIM. PRIM. INS. SAME DEL. INS+DEL SEC. SEC.
STATISTIC ELEM. LINES LINES LINES LINES LINES LINES ELEM.
S (SAME) 0 0 - 0 - - 0 0
C (CHANGED) 1 16 6 10 3 9 13 1
I (INSERTED) 0 0 0 - - 0 - -
D (DELETED) - - - - 0 0 0 0

TOTAL 1 16 6 10 3 9 13 1
$SYS ASSIGN-SYSOPT TO-FILE=*PRIMARY (07)
SYS ASSIGN-SYSOPT TO-FILE=*PRIMARY
$ADDJ COR.ELEM (08)
ADDJ COR.ELEM
INPUT FILE
OUTPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK

ADD COR.ELEM AS (J)COR.ELEM/@(0001)/1991-08-01
$LSTJ COR.ELEM (09)
LSTJ COR.ELEM
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
INPUT ELEMENT= (J)COR.ELEM/@(0001)/1991-08-01
$PAR CHECK=NO
$CORS SDAT/@/1991-08-01
*DEL #2-#3
*INS #3

BALR 3,0
*DEL #5
*INS #5

GDATE DATUM,FORMAT=ISO,TOD=ZEIT
*INS #6

WROUT SATZ2,ENDE
*INS #12

U817-J-Z125-9-7600 275

Examples

SATZ2 DC A(13)
DC X’000001’

ZEIT DS CL8
*END
NUMBER OF PROCESSED RECORDS IS 15
$END (10)
END
AREA C2

PRIM. PRIM. INS. SAME DEL. INS+DEL SEC. SEC.
STATISTIC ELEM. LINES LINES LINES LINES LINES LINES ELEM.
S (SAME) 0 0 - 0 - - 0 0
C (CHANGED) 1 16 6 10 3 9 13 1
I (INSERTED) 0 0 0 - - 0 - -
D (DELETED) - - - - 0 0 0 0

TOTAL 1 16 6 10 3 9 13 1
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/

(01) LMS is invoked.

(02) Processing operands LOG, COM and SUM are specified via PAR:

a) All messages and statements are to be logged.
b) The comparison log is to be output in its entirety and correction statements

are to be generated.
c) The comparison statistics are to be stored.

(03) System file SYSOPT, to which LMS outputs the correction statements, is
reassigned to file COR.ELEM.

(04) Program library UEB.BIB is assigned as the I/O library.

(05) Members DAT and SDAT are to be compared. Subsequently the comparison log
is output.

(06) The comparison statistics (sum field S1) are output.

(07) System file SYSOPT is reassigned.

(08) File COR.ELEM, which contains the correction statements, is added as an
identically named member of type J.

(09) Member COR.ELEM is listed.

(10) LMS is terminated.

Since SUM was issued during the LMS run (06), sum field S2 is output.

276 U817-J-Z125-9-7600

Examples

Output a member to a file

EDT is used to create a SAM file. This file is added as a member and output in the
form of three different types of file:

as a SAM file, on the basis of the file attributes stored in the member;

as an ISAM file using ISAM keys created by default by setting processing operand
FCBTYPE=ISAM prior to output;

as an ISAM file with ISAM keys which are set using the VALUE processing operand.
Processing operand FCBTYPE must in this case have the value ISAM, as above.

/START-PROGRAM $LMS (01)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX!LIB UEB.BIB,BOTH (02)
PAR LOG=MAX
LIB UEB.BIB,BOTH
$EDT (03)
EDT

1.00 BACH SEBASTIAN MUENCHEN AUF DER HOEHE 7 AB 3
2.00 BERGMANN NORBERT MUENCHEN TORWEG 10 AB 5
3.00 FINK SUSANNE NUERNBERG RINGSTR. 23 AB 1
4.00 MEYER FRANZ NUERNBERG WASSERMUNGENWEG AB 1
5.00 GRUNDLER WOLFGANG BASEL SONNENSTR. 11 AB 2
6.00 KNOLL MONIKA FRANKFURT BAUMALLEE 12 AB 3
7.00 LIEDL ERIKA MUENCHEN IN DER BREITE 1 AB 5
8.00 WAGNER JOHANN AUGSBURG AM SEE 45 AB 4
9.00
10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
write’pers.dat’;halt 0001.00:001(0)

U817-J-Z125-9-7600 277

Examples

$PAR KEY=YES (04)
PAR KEY=YES
$ADDD PERS.DAT>PERDAT (05)
ADDD PERS.DAT>PERDAT
INPUT FILE
OUTPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK

ADD PERS.DAT AS (D)PERDAT/@(0001)/1991-08-05
$TOCD * (06)
TOCD *
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
TYP NAME VER (VAR#) DATE
(D) PERDAT @ (0001) 1991-08-05

1 (D)-ELEMENT(S) IN THIS TABLE OF CONTENTS
$SELD PERDAT (07)
SELD PERDAT
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
OUTPUT FILE

SEL (D)PERDAT/@(0001)/1991-08-05 AS PERDAT
$SYS SHOW-FILE-ATTRIBUTES PERDAT,INFORMATION=ALL (08)
SYS SHOW-FILE-ATTRIBUTES PERDAT,INFORMATION=ALL
00000003 :N:$USER.PERDAT

FCBTYPE = SAM VSNTYPE = PUB
LASTPG = 00000001 2ND ALLO= 00003
SHARE = NO ACCESS = WRITE
ACL = NO AUDIT = NONE DESTROY = NO
CRDATE = 1991-08-05 EXDATE = 1991-08-05 LADATE = 1991-08-05
RDPASS = NONE WRPASS = NONE EXPASS = NONE
ACCESS# = 001 VERSION = 001
LARGE = NO BACKUP = A MIGRATE = ALLOWED
BLKTYPE = STD BLKSIZE = 002048 BLKCTRL = PAMKEY
RECFORM = (V,N) RECSIZE = 000000
VSN/DEV/EXT = PUBN02 / D3480 / 001
EXTCNT = 1

:N: PUBLIC: 1 FILE RES= 3 FREE= 2 REL= 0 PAGES
$PAR FCBTYPE=ISAM!SELD PERDAT>PERSDAT (09)
PAR FCBTYPE=ISAM
SELD PERDAT>PERSDAT
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
OUTPUT FILE

SEL (D)PERDAT/@(0001)/1991-08-05 AS PERSDAT
$SYS SHOW-FILE-ATTRIBUTES PERSDAT,INFORMATION=ALL (10)
SYS SHOW-FILE-ATTRIBUTES PERSDAT,INFORMATION=ALL
00000003 :N:$USER.PERSDAT

FCBTYPE = ISAM VSNTYPE = PUB
LASTPG = 00000002 2ND ALLO= 00003
SHARE = NO ACCESS = WRITE
ACL = NO AUDIT = NONE DESTROY = NO
CRDATE = 1991-08-05 EXDATE = 1991-08-05 LADATE = 1991-08-05
RDPASS = NONE WRPASS = NONE EXPASS = NONE
ACCESS# = 001 VERSION = 001
LARGE = NO BACKUP = A MIGRATE = ALLOWED
BLKTYPE = STD BLKSIZE = 002048 BLKCTRL = PAMKEY
RECFORM = (V,N) RECSIZE = 000000
KEYLEN = 008 KEYPOS = 00005
VSN/DEV/EXT = PUBN01 / D3480 / 001
EXTCNT = 1

:N: PUBLIC: 1 FILE RES= 3 FREE= 1 REL= 0 PAGES

278 U817-J-Z125-9-7600

Examples

$EDT (11)
EDT

0.10 BACH SEBASTIAN MUENCHEN AUF DER HOEHE 7 AB 3
0.20 BERGMANN NORBERT MUENCHEN TORWEG 10 AB 5
0.30 FINK SUSANNE NUERNBERG RINGSTR. 23 AB 1
0.40 MEYER FRANZ NUERNBERG WASSERMUNGENWEG AB 1
0.50 GRUNDLER WOLFGANG BASEL SONNENSTR. 11 AB 2
0.60 KNOLL MONIKA FRANKFURT BAUMALLEE 12 AB 3
0.70 LIEDL ERIKA MUENCHEN IN DER BREITE 1 AB 5
0.80 WAGNER JOHANN AUGSBURG AM SEE 45 AB 4
1.80
2.80
3.80
4.80
5.80
6.80
7.80
8.80
9.80
10.80
11.80
12.80
13.80
14.80
15.80
get’persdat’noreseq 0001.00:001(0)
halt

$PAR VALUE=10000000/200 (12)
PAR VALUE=10000000/200
$SELD PERDAT>PERKEY3 (13)
SELD PERDAT>PERKEY3
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
OUTPUT FILE

SEL (D)PERDAT/@(0001)/1991-08-05 AS PERKEY3

U817-J-Z125-9-7600 279

Examples

$EDT (14)
EDT

1000.00 BACH SEBASTIAN MUENCHEN AUF DER HOEHE 7 AB 3
1000.02 BERGMANN NORBERT MUENCHEN TORWEG 10 AB 5
1000.04 FINK SUSANNE NUERNBERG RINGSTR. 23 AB 1
1000.06 MEYER FRANZ NUERNBERG WASSERMUNGENWEG AB 1
1000.08 GRUNDLER WOLFGANG BASEL SONNENSTR. 11 AB 2
1000.10 KNOLL MONIKA FRANKFURT BAUMALLEE 12 AB 3
1000.12 LIEDL ERIKA MUENCHEN IN DER BREITE 1 AB 5
1000.14 WAGNER JOHANN AUGSBURG AM SEE 45 AB 4
1001.14
1002.14
1003.14
1004.14
1005.14
1006.14
1007.14
1008.14
1009.14
1010.14
1011.14
1012.14
1013.14
1014.14
1015.14
get’perkey3’noreseq 0001.00:001(0)
halt

$END (15)
END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/

(01) LMS is invoked.

(02) Two statements separated by an exclamation mark are entered:

a) All messages and statements are logged.
b) Program library UEB.BIB is assigned as the I/O library.

(03) This format of EDT causes LMS to branch to the editor EDT in order to generate
or process a file.

Subsequently the data is entered and stored as SAM file PERS.DAT by means of
WRITE. HALT terminates the editor EDT and returns control to LMS.

(04) Processing operand PAR KEY is set to YES so that all file attributes can be
transferred.

280 U817-J-Z125-9-7600

Examples

(05) File PERS.DAT is added to the library as a D-type member having the name
PERDAT.

(06) The directory of library UEB.BIB for member type D is to be listed.

(07) Member PERDAT is output as file PERDAT. Since no file attributes have been
specified for this file, LMS generates a SAM file in accordance with the file
attributes stored.

(08) The file attributes of the generated file are listed.

(09) a) Processing operand FCBTYPE=ISAM defines that the
text-based members are to be output as ISAM files.

b) Member PERDAT is output as ISAM file PERSDAT.

(10) The file attributes of the generated file are listed.

(11) LMS branches to EDT. When the ISAM file is listed using EDT, the first six digits
of the ISAM key are visible in the line number display.

LMS generated 8-digit ISAM keys with an initial value of 1000 and an increment
of 1000.

(12) The initial value and increment for the ISAM key are specified so that member
PERDAT can be output again.

(13) Member PERDAT is output as ISAM file PERKEY3. Processing operand VALUE is
interpreted when the ISAM key is generated because the FCBTYPE=ISAM
processing operand in this example is still set.

(14) LMS branches to EDT. The first six digits of the ISAM key are shown in the line
number display in the EDT listing of the ISAM file.

(15) LMS is terminated.

U817-J-Z125-9-7600 281

Examples

Output comparison statistics

All members of several libraries are compared, first with the aid of the traditional cross
comparison and subsequently with the Heckel algorithm. In either case, only
comparison statistics are output.

/SET-FILE-LINK LINK-NAME=LIB001,FILE-NAME=LIB.SOU.V1
/SET-FILE-LINK LINK-NAME=LIB002,FILE-NAME=LIB.MAC.V1 (01)
/SET-FILE-LINK LINK-NAME=LIB003,FILE-NAME=LIB.ALL.V2
/START-PROGRAM $LMS (02)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX,COM=/L2/SUM,SUM=YES (03)
PAR LOG=MAX,COM=/L2/SUM,SUM=YES
$COMS *(3)=*(1) (04)
COMS *(3)=*(1)

PRIMARY ELEMENT= (S)EINAUS/@(0001)/1991-08-09
SECONDARY ELEMENT= (S)EINAUS/@(0003)/1991-08-09
RESULT: S PRIMARY= 8 INSERTED= - (-) DELETED= - (-)

SECONDARY= 8 SAME= 8 (1)

PRIMARY ELEMENT= (S)ERFASS/@(0002)/1991-08-09
SECONDARY ELEMENT= (S)ERFASS/@(0002)/1991-08-09 - (05)
RESULT: S PRIMARY= 14 INSERTED= - (-) DELETED= - (-)

SECONDARY= 14 SAME= 14 (1)

PRIMARY ELEMENT= (S)PROT/@(0001)/1991-08-09
SECONDARY ELEMENT= (S)PROT/@(0003)/1991-08-09
RESULT: S PRIMARY= 5 INSERTED= - (-) DELETED= - (-)

SECONDARY= 5 SAME= 5 (1)
$SUM (06)
SUM
AREA C1

PRIM. PRIM. INS. SAME DEL. INS+DEL SEC. SEC.
STATISTIC ELEM. LINES LINES LINES LINES LINES LINES ELEM.
S (SAME) 3 27 - 27 - - 27 3
C (CHANGED) 0 0 0 0 0 0 0 0
I (INSERTED) 0 0 0 - - 0 - -
D (DELETED) - - - - 0 0 0 0

TOTAL 3 27 0 27 0 0 27 3
$PAR COM= (07)
PAR COM=
$COMM *(3)=*(2) (08)
COMM *(3)=*(2)
FUNCTION = C O M P A R E
PAR COMPARE= 00001/00072/L/MED
PRIMARY LIBRARY= :N:$USER.LIB.ALL.V2
PRIMARY ELEMENT= (M)MAC1/@(0002)/1991-08-09
SECONDARY LIBRARY= :N:$USER.LIB.MAC.V1
SECONDARY ELEMENT= (M)MAC1/@(0003)/1991-08-09

282 U817-J-Z125-9-7600

Examples

SAME FROM #1 TO #5 AS FROM #1 TO #5

PRIMARY ELEMENT= (M)MAC1/@(0002)/1991-08-09 - (09)
SECONDARY ELEMENT= (M)MAC1/@(0003)/1991-08-09
RESULT: S PRIMARY= 5 INSERTED= - (-) DELETED= - (-)

SECONDARY= 5 SAME= 5 (1)
FUNCTION = C O M P A R E
PAR COMPARE= 00001/00072/L/MED
PRIMARY LIBRARY= :N:$USER.LIB.ALL.V2
PRIMARY ELEMENT= (M)MAC2/@(0001)/1991-08-09
SECONDARY LIBRARY= :N:$USER.LIB.MAC.V1
SECONDARY ELEMENT= (M)MAC2/@(0002)/1991-08-09

SAME FROM #1 TO #5 AS FROM #1 TO #5

PRIMARY ELEMENT= (M)MAC2/@(0001)/1991-08-09 - (09)
SECONDARY ELEMENT= (M)MAC2/@(0002)/1991-08-09
RESULT: S PRIMARY= 5 INSERTED= - (-) DELETED= - (-)

SECONDARY= 5 SAME= 5 (1)
FUNCTION = C O M P A R E
PAR COMPARE= 00001/00072/L/MED
PRIMARY LIBRARY= :N:$USER.LIB.ALL.V2
PRIMARY ELEMENT= (M)MUC1/@(0001)/1991-08-09

PRIMARY ELEMENT= (M)MUC1/@(0001)/1991-08-09
RESULT: I PRIMARY= 5 INSERTED= 5 (1) DELETED= - (-) - (09)

SECONDARY= - SAME= - (-)
FUNCTION = C O M P A R E
PAR COMPARE= 00001/00072/L/MED
PRIMARY LIBRARY= :N:$USER.LIB.ALL.V2
PRIMARY ELEMENT= (M)MUC2/@(0001)/1991-08-09

PRIMARY ELEMENT= (M)MUC2/@(0001)/1991-08-09
RESULT: I PRIMARY= 5 INSERTED= 5 (1) DELETED= - (-) - (09)

SECONDARY= - SAME= - (-)
$SUM (10)
SUM
AREA C1

PRIM. PRIM. INS. SAME DEL. INS+DEL SEC. SEC.
STATISTIC ELEM. LINES LINES LINES LINES LINES LINES ELEM.
S (SAME) 2 10 - 10 - - 10 2
C (CHANGED) 0 0 0 0 0 0 0 0
I (INSERTED) 2 10 10 - - 10 - -
D (DELETED) - - - - 0 0 0 0

TOTAL 4 20 10 10 0 10 10 2
$END (11)
END
AREA C2

PRIM. PRIM. INS. SAME DEL. INS+DEL SEC. SEC.
STATISTIC ELEM. LINES LINES LINES LINES LINES LINES ELEM.
S (SAME) 5 37 - 37 - - 37 5
C (CHANGED) 0 0 0 0 0 0 0 0
I (INSERTED) 2 10 10 - - 10 - -
D (DELETED) - - - - 0 0 0 0

TOTAL 7 47 10 37 0 10 37 5

U817-J-Z125-9-7600 283

Examples

END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/

(01) The libraries to be compared are assigned.

(02) LMS is invoked.

(03) Processing operands LOG, COM and SUM are specified via PAR:

a) All messages and statements are logged.
b) The cross comparison method is branched into. No comparison log is

created; only the results are output.
c) The comparison statistics are stored.

(04) All type-S members of program library LIB.ALL.V2 are compared with the
members of source library LIB.SOU.V1.

(05) The result of the comparison is output.

(06) SUM is used to output sum field S1, which contains the comparison statistics of
the entire comparison. The comparison statistics show, for example, that a total
of 56 records have been compared.

(07) The Heckel algorithm is returned to (default value).

(08) All type-M members of program library LIB.ALL.V2 are compared with the
members of macro library LIB.MAC.V1.

(09) The result of the comparison is output.

(10) The comparison statistics of the entire comparison are output.

(11) LMS is terminated.

Sum field S2 is output automatically. The two sets of comparison statistics are
added in sum field S2. Hence these statistics show the results of all comparisons
made in the LMS run.

284 U817-J-Z125-9-7600

Examples

Branch to a user program while a member is being listed

The user program lists only the first 10 input records of a member.
If a member consists of less than 10 records, the program fills it with additional records
to bring it up to 10.

/START-PROGRAM $LMS (01)
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$PAR LOG=MAX!LIB TEST.LIB,BOTH (02)
PAR LOG=MAX
LIB TEST.LIB,BOTH
$LSTS USELST (03)
LSTS USELST
INPUT LIBRARY= :N:$USER.TEST.LIB,DEV=DISK
INPUT ELEMENT= (S)USELST/@(0001)/1991-08-09
* TITLE ’USER EXIT FOR THE FUNCTION: LST’
*
* 1.) THIS SUBROUTINE HAS THE EFFECT THAT ONLY THE FIRST 10
* RECORDS OF EACH MEMBER ARE LISTED.
*
* 2.) IF THE MEMBER CONTAINS LESS THAN 10 RECORDS,
* ADDITIONAL RECORDS ARE INSERTED.
* INPUT FROM LMS: R1=A(PARAMETER LIST)
* R13=A(SAVE AREA), 18 WORDS
* R14=RETURN ADDRESS
* R15=A(USER PROGRAM)
*
PARDSEC DSECT
AUFTRAG DS A A(JOB FROM LMS)
* - ’BOE’:START OF ELEMENT
* - ’REC’:RECORD OFFERED
* - ’EOE’:END OF ELEMENT
ANTWORT DS A A(RESPONSE FROM USER PROGRAM)
* - ’CON’:CONTINUE
* - ’DEL’:DELETE RECORD
* - ’INS’:INSERT NEW RECORD
SATZ DS A A(RECORD, INCL. 4-BYTE HEADER)
* -
PARDSECL EQU *-PARDSEC L’DSECT
USELST CSECT PAGE

STM 0,15,0(13) SAVE REGISTERS
LR 10,15 BASE
USING PARDSEC,1 LMS PARAMETER LIST
USING USELST,10
L 6,AUFTRAG A(JOB)
L 7,ANTWORT A(RESPONSE)
L 8,SATZ A(RECORD)
CLC 0(3,6),REC RECORD OFFERED ?
BE DOSATZ YES ?
CLC 0(3,6),BOE START OF ELEMENT
BE DOBOE YES ?
CLC 0(3,6),EOE END OF ELEMENT
BE DOEOE YES ?

U817-J-Z125-9-7600 285

Examples

B RETURN
*
DOBOE EQU *

ZAP ANZAHL,P0 COUNTER := 0
B RETURN

*
DOSATZ EQU *

CP ANZAHL,P10 ALREADY 10 RECORDS OUTPUT ?
BNL DODEL YES (SKIP REMAINDER) ?
AP ANZAHL,P1 COUNTER := COUNTER +1
B DOCON

*
DOEOE EQU *

CP ANZAHL,P10 ALREADY 10 RECORDS OUTPUT ?
BNL DOCON YES (NO INSERTION) ?
AP ANZAHL,P1 COUNTER := COUNTER +1
B DOINS

*
DOINS EQU *

MVC 0(3,7),INS INSERT RECORD
LA 9,INSSATZ
ST 9,SATZ A(RECORD TO BE INSERTED)
B RETURN

*
DODEL EQU *

MVC 0(3,7),DEL DELETE RECORD
B RETURN

*
DOCON EQU *

MVC 0(3,7),CON CONTINUE
*
RETURN EQU *

LM 0,15,0(13) RESTORE REGISTERS
BR 14
TITLE ’CONSTANTS AND VARIABLES’

BOE DC ’BOE’ START OF ELEMENT
REC DC ’REC’ RECORD OFFERED
EOE DC ’EOE’ END OF ELEMENT
CON DC ’CON’ CONTINUE
DEL DC ’DEL’ DELETE RECORD
INS DC ’INS’ INSERT NEW RECORD
ANZAHL DC PL2’0’
P0 DC PL2’0’
P1 DC PL2’1’
P10 DC PL2’10’
INSSATZ DC Y(INSSATZE-INSSATZ)

DC XL2’4040’
DC ’**************** INSERT BY USER-PROGRAM *************’

INSSATZE EQU *
LTORG
END

NUMBER OF PROCESSED RECORDS IS 89
$USE LST=TEST.LIB(USELST) (04)
USE LST=TEST.LIB(USELST)
$LSTS EINAUS (05)
LSTS EINAUS
INPUT LIBRARY= :N:$USER.TEST.LIB,DEV=DISK
INPUT ELEMENT= (S)EINAUS/@(0001)/1991-08-09

286 U817-J-Z125-9-7600

Examples

USER EXIT TEST.LIB(USELST) FOR LSTE IS ACTIVE
TITLE ’DATA ENTRY’
PRINT NOGEN

ERFAS START
BALR 5,0
USING *,5
OPEN DATEI,OUTPUT

LESEN RDATA SATZ,ENDPGM
CLC TEXT(4),=C’/EOF’
BE ENDPGM
MVC ATEXT,TEXT

NUMBER OF PROCESSED RECORDS IS 10
$LSTS PERSDAT (06)
LSTS PERSDAT
INPUT LIBRARY= :N:$USER.TEST.LIB,DEV=DISK
INPUT ELEMENT= (S)PERSDAT/@(0001)/1991-08-09
USER EXIT TEST.LIB(USELST) FOR LSTE IS ACTIVE
BACH SEBASTIAN MUENCHEN AUF DER HOEHE 7 AB 3
BERGMANN NORBERT MUENCHEN TORWEG 10 AB 5
FINK SUSANNE NUERNBERG RINGSTR. 23 AB 1
MEYER FRANZ NUERNBERG WASSERMUNGENWEG AB 1
GRUNDLER WOLFGANG BASEL SONNENSTR. 11 AB 2
KNOLL MONIKA FRANKFURT BAUMALLEE 12 AB 3
LIEDL ERIKA MUENCHEN IN DER BREITE 1 AB 5
WAGNER JOHANN AUGSBURG AM SEE 45 AB 4
**************** INSERT BY USER-PROGRAM *************
**************** INSERT BY USER-PROGRAM *************
NUMBER OF PROCESSED RECORDS IS 10
$END (07)
END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
/

(01) LMS is invoked.

(02) Two statements separated by an exclamation mark are entered:

a) All messages and statements are logged.
b) Program library TEST.LIB is assigned as the I/O library.

(03) User source program USELST is listed.

(04) Before listing an input record LMS branches to user program USELST, which
resides in library TEST.LIB.

(05) The first 10 records of member EINAUS of the assigned program library
TEST.LIB are listed.

(06) Member PERSDAT is listed. Since it is shorter than 10 records it is padded with
records by the user program.

(07) LMS is terminated.

U817-J-Z125-9-7600 287

Examples

Old LMS subroutine interface
The old subroutine interface described here continues to be supported for reasons of
compatibility.

The new subroutine interface is described in the manual "LMS Subroutine Interface"
[15]

If LMS is invoked as a subroutine with a separate prompting facility, it returns control to
the calling program after END has been processed. LMS remains loaded after END has
been processed. Apart from that, execution is the same as when LMS is loaded with
the /START-PROGRAM command.

Whenever LMS is invoked, it starts its own STXIT routine. On return to the main
program the LMS STXIT routine is terminated; the main program must reactivate its
own STXIT routine.

The following register conventions must be observed when calling the subroutine
interface:

Register 1 must be zero.

Register 13 contains the address of a save area (comprising 18 words) which
must be provided by the calling program. This area is used by LMS
to store the registers of the calling program.

Register 14 contains the return address.

Register 15 contains the entry address LMSUP.

Before returning control to the calling program, LMS places the following return codes
in register 15:

X’00’ LMS terminated normally (corresponds to TERM termination).

X’04’ LMS terminated abnormally (corresponds to TERMJ termination; cf.
PAR TERMINATE, page 246).

U817-J-Z125-9-7600 289

Old LMS subroutine interface

Example

LMS is invoked as a subroutine from the program UPROG. In LMS, a member is
transferred from a program library to a file. After termination of the LMS run, control is
returned to the user program.

/START-PROGRAM $LMS
% BLS0500 PROGRAM ’LMS’, VERSION ’V02.0A10’ OF ’91-05-29’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1990.
% ALL RIGHTS RESERVED
% LMS0310 LMS VERSION V02.0A10 LOADED
$LIB UEB.BIB,BOTH!LSTS LMSCALL (01)
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
INPUT ELEMENT= (S)LMSCALL/@(0001)/1991-08-12
UPROG START

BALR 3,0
USING *,3
MVC OUTPUT,ANMELD

AUFRUF WROUT OUT,TERM
LA 14,RUECK (02)
LA 1,0 (03)
LA 13,SAVE (04)
L 15,=V(LMSUP) (05)
BALR 14,15

RUECK MVC OUTPUT,ABMELD
WROUT OUT,TERM

*
*
TERM TERM
*
*
SAVE DS 18F
*
ANMELD DC ’********** *LMS IS BEING CALLED **************’
ABMELD DC ’***** LMS TERMINATED - PROGRAM CONTINUES *****’
OUT DC Y(ENDE-OUT)

DS CL2
DC X’01’

OUTPUT DS CL50
ENDE EQU *
*
*

END UPROG
NUMBER OF PROCESSED RECORDS IS 29
$END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
.
.
.
/START-PROGRAM FROM-FILE=(LIB=UEB.BIB,ELEM=LMSCALL)
% BLS0500 PROGRAM ’LMSCALL’, VERSION ’007’ OF ’91-08-12’ LOADED
********** *LMS IS BEING CALLED ************

290 U817-J-Z125-9-7600

Old LMS subroutine interface

% LMS0310 LMS VERSION V02.0A10 LOADED (06)
$PAR LOG=MAX!LIB UEB.BIB,BOTH
PAR LOG=MAX
LIB UEB.BIB,BOTH
$TOCC *
TOCC *
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
TYP NAME VER (VAR#) DATE
(C) LMSCALL 007 (0001) 1991-08-12

1 (C)-ELEMENT(S) IN THIS TABLE OF CONTENTS
$SELS LMSCALL>LMSCALL1
SELS LMSCALL>LMSCALL1
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
OUTPUT FILE

SEL (S)LMSCALL/@(0001)/1991-08-12 AS LMSCALL1
$END (07)
END
% LMS0311 LMS V02.0A10 ENDED NORMALLY
***** LMS TERMINATED - PROGRAM CONTINUES *****
/

(01) Two statements separated by an exclamation mark are input:

a) Program library UEB.BIB is assigned as the I/O library.
b) Source program LMSCALL is listed.

(02) The return address is loaded into register 14.

(03) Register 1 is set to 0.

(04) The address of the save area is loaded into register 13.

(05) The entry address LMSUP is loaded into register 15.

(06) LMS is invoked from the user program.

(07) After termination of the LMS run, control is returned to the user program.

U817-J-Z125-9-7600 291

Old LMS subroutine interface

Messages
The error messages are output in the form of a 7-character code (LMSnnnn) and help
texts explaining their meaning and any necessary action.

List of messages

LMS0001 START: NOT ENOUGH MEMORY FOR LMS

Meaning
Contact the system administrator.

LMS0002 LIB ASSIGNMENT LOST DURING LMS RUN

LMS0003 INVALID STATEMENT

Meaning
Possible error causes:

blank between operation and operand missing
the statement is unknown to LMS.

LMS0004 BLANK MISSING IN FRONT OF OPERAND

LMS0005 MEMBER TYPE INVALID OR NOT ASSIGNED

LMS0006 END OR CTL STATEMENT EXPECTED

LMS0007 ELEMENT CONTAINS FORMAT-B RECORDS

LMS0008 SYNTAX ERROR IN OPERAND

LMS0009 SYNTAX ERROR IN STATEMENT

LMS0010 SYNTAX ERROR IN DATE

Meaning
The syntax for date is YYYY-MM-DD or YYMMDD.

U817-J-Z125-9-7600 293

LMS0011 - LMS0023 Messages

LMS0011 SYNTAX ERROR IN VERSION NUMBER

Meaning
The syntax required when specifying the version number of the current library type is
described in the LMS manual.

LMS0012 SYNTAX ERROR IN NAME

LMS0013 SYNTAX ERROR IN (LIB)

LMS0014 LENGTH OF RECORDTYPE 163 MUST BE BETWEEN 36 AND 44

Meaning
Record type 163 consists of 1-32 bytes secondary name followed by 0-8 bytes
secondary attribute.

LMS0015 (LIB) WRONG OR NOT ASSIGNED

LMS0016 INPUT LIBRARY NOT ASSIGNED OR SPECIFICATION INVALID

LMS0017 FUNCTION NOT YET IMPLEMENTED

LMS0018 WARNING: USE CORRECT SYNTAX FOR STATEMENT

LMS0019 REQUESTED MEMBER OF TYPE ’J’ IN CTL STATEMENT DOES NOT EXIST

LMS0020 REQUESTED MEMBER DOES NOT EXIST IN SPECIFIED LIBRARY

LMS0021 LIBRARY IS DESTROYED

Response
Try to duplicate the members into a new library using the DUP statement.

LMS0022 NOT ENOUGH SPACE IN LIBRARY

Meaning
Limits of the library have been reached.

Response
Reorganize the library.

LMS0023 DMS ERROR CODE ’(&00)’. ERROR INFO IN SYSTEM MODE: /HELP DMS(&00),INF=D

Meaning
Repeated attempts proved unsuccessful.
For more detailed information on the DMS error enter the /HELP command in system
mode or see the BS2000 manual ’System Messages’, ’DMS Disk Processing’ or ’DMS
Tape Processing’.

Response
See the DMS error code.

294 U817-J-Z125-9-7600

Messages LMS0024 - LMS0036

LMS0024 ACCESS ERROR ON ’(&00)’ LIBRARY *** (&01)

Meaning
AMCB0010: Address outside of member ; AMCB0016: Compress flag invalid
AMCB0017: Last member erased ; AMCB0018: No OSM library
AMCB0025: No DIR2 entry created ; AMCB0027: No new FP chain created
AMCB0052: Element replaced ; AMCB0054: Empty file replaced
AMCB0108/AMCB109: USER/OPEN-error ; AMCB0120: Filename invalid
AMCB0121: No FT entry for file ; AMCB0122: Open state conflict
AMCB0125: Second access on out. lib.; AMCB0134: CTL element already opened
AMCB0137: Second access on seq. library
AMCB0131: Library is already opened for CTL or PRT
AMCB0255: No SVC PLAM available

LMS0026 FILE IS NOT A LIBRARY

Meaning
The file specified in the LIB statement is not a library.

LMS0027 MEMBER TYPE NOT PERMITTED FOR ’(&00)’ LIBRARY

LMS0029 ORDER OF MEMBER TYPES FOR SEQUENTIAL LIBRARY INVALID. STATEMENT NOT PROCESSED

Meaning
When writing to a sequential library the order R, M, S for member types has not been
observed.

LMS0030 VSN OF VOLUME DOES NOT AGREE WITH SPECIFICATION IN LIBIN OR LIBOUT STATEMENT

Response
Check the VSN.

LMS0031 INTERNAL ERROR. AMCB ERROR CODE ’(&00)’

Meaning
AMCB0002: Invalid OP code
AMCB0003: Missing filename in control block
AMCB0004: No/changed FCB address
AMCB0007/AMCB0012: Conflicting data in control block/FCB
AMCB0013/AMCB0014: Supplementary information missing/invalid
AMCB108/AMCB0109: User/OPEN error
AMCB0127: LT entry missing
AMCB0136: Access error e.g. locked file
AMCB0141: Unknown access method

LMS0033 INTERNAL ERROR WHEN ASSIGNING ’(&00)’ FILE

LMS0036 WARNING: LIBRARY TO BE CLOSED IS NOT ASSIGNED

Response
Check the library name.

U817-J-Z125-9-7600 295

LMS0038 - LMS0049 Messages

LMS0038 READ ERROR ’(&00)’ WHEN READING MEMBER RECORD

Meaning
In the case of a sytem error, enter /HELP in system mode or see the BS2000 manual
’System Messages’, ’DMS Disk Processing’, or ’DMS Tape Processing’.

LMS0039 INPUT AND OUTPUT LIBRARY MAY NOT BE IDENTICAL FOR SEQUENTIAL LIBRARIES

Response
See the COR statement.

LMS0040 WARNING: INVALID VERSION. VERSION ’001’ ASSUMED

Meaning
Error when specifying the version, e.g. the 2nd or 3rd byte is not a digit. Version ’001’
is used.

LMS0041 NOT ENOUGH MEMORY TO PROCESS STATEMENT

LMS0043 CONTROL NUMBER DOES NOT MATCH THE ONE COMPUTED BY LMS

Meaning
The LMS cross control number can be obtained with the aid of TEST-MODE.

Response
Check the UPD statement.

LMS0047 UPDATE NOT (COMPLETELY) IN TEXT AREA

Response
Check the UPD statement.

LMS0048 SPECIFIED CORRECTION ADDRESS DOES NOT EXIST

Meaning
Likely error cause: the address specified in the UPD statement is too small or too large.

Response
Check the UPD statement.

LMS0049 CONTROL TEXT NOT AT SPECIFIED ADDRESS

Response
Check the TXT records using the LST statement and correct the UPD statement
accordingly.

296 U817-J-Z125-9-7600

Messages LMS0050 - LMS0061

LMS0050 ASSIGNMENT FOR (&00) MISSING OR INVALID

LMS0051 OUTPUT LIBRARY WRONG OR NOT ASSIGNED

Response
Assign an output library using LIB...,OUT and reenter the statement.

LMS0052 SYNTAX ERROR IN SPECIFIED ABBREVIATION (LIB)

LMS0054 (LIB) WRONG OR NOT ASSIGNED - (&00)

Meaning
Library not found in TFT - library not assigned.
Assigned file is no library.
No library existing.
AMCB0102: Invalid file type
AMCB0109: OPEN error
AMCB0150: Unknown access method

Response
Assign the library with FILE command or assign a correct one

LMS0055 INPUT MEMBERS SPECIFIED IN COM STATEMENT MAY NOT BE IN THE SAME SEQUENTIAL

LIBRARY

LMS0057 CROSS CONTROL NUMBER NOT DEFINED

Meaning
Assign the cross control number using *CON.

LMS0059 MEMBER TYPE NOT PERMITTED FOR THIS FUNCTION

Response
Member types permitted for this function are listed in the LMS manual.

LMS0060 INPUT AND OUTPUT PERFORMED FOR THE SAME FILE

Meaning
It is not permitted to assign the same file to both input and output library.

LMS0061 INPUT AND OUTPUT MAY NOT BE PERFORMED FOR THE SAME SEQUENTIAL LIBRARY

U817-J-Z125-9-7600 297

LMS0062 - LMS0075 Messages

LMS0062 ILLEGAL STATEMENT FOR SEQUENTIAL INPUT LIBRARY. PROCESSING CONTINUES WITH

NEXT STATEMENT

Meaning
For instance, a NAM or DEL statement is not allowed.

LMS0063 LOG OUTPUT TO SEQUENTIAL INPUT/OUTPUT LIBRARY INVALID

Meaning
Log output to a sequential library serving as input/output library is not allowed.

LMS0065 SYNTAX ERROR IN SPECIFIED VSN

Meaning
Possible error causes:
(1) no brackets have been specified
(2) the specification does not consist of 6 characters
(3) (vsn) is not the last operand in the LIBOUT statement.

LMS0066 WARNING: AT LEAST ONE NON-NUMERIC ISAM KEY GENERATED

Meaning
In the EDTx statement at least one record has been output with a non-numeric ISAM
key that cannot be processed by EDT.

Response
Either use the COR statement or delete such records.

LMS0067 TYPE ’R’ NOT ALLOWED FOR OSM LIBRARIES

LMS0068 FUNCTION NOT ALLOWED FOR THIS LIBRARY TYPE

Meaning
For instance, the PRT or CTL statement is not allowed for tape or OML libraries.

LMS0072 WARNING: NO NAME TO BE PROCESSED

LMS0075 WARNING: NO RANGE FIELD DEFINED FOR OUTPUT RECORDS. NUMBERING NOT PERFORMED

Meaning
Although VALUE has been specified, no range field has been defined for the output
records.

Response
Supply the RANGE operand with values.

298 U817-J-Z125-9-7600

Messages LMS0077 - LMS0100

LMS0077 WARNING: STRING LONGER THAN CHECK FIELD. NO STRING INSERTED.

Meaning
The length specified for the check field of the output records is shorter than the string.
Processing continues, but the string is ignored.

Response
Adjust the values of the RANGE and STRING operands.

LMS0078 WARNING: OVERFLOW WHILE RENUMBERING

Meaning
Renumbering has been performed; however, a number overflow occurred.

LMS0079 WARNING: CHECK FIELDS IN INPUT RECORDS NOT ASCENDING

LMS0086 NAME OR OPERAND IS TOO LONG

Meaning
The specified name or operand may only have up to 8 characters.

LMS0090 INPUT ALLOWED ONLY FROM IMPLICIT INPUT LIBRARY

Meaning
An explicit abbreviation is prohibited.

LMS0091 WARNING: NO RENUMBERING PERFORMED. NUMERIC VALUE FOR VALUE OPERAND TOO HIGH

Response
Compare with the specified RANGE.

LMS0093 MEMBER FOR LOG OUTPUT ALREADY EXISTS

Meaning
Log output (PRT statement) to a member that already exists is not possible if
OVERWRITE=NO is set.

LMS0095 INPUT DATA RECORDS ARE MISSING

LMS0097 VALUE OR STRING OPERAND MISSING. STATEMENT NOT PROCESSED

Response
Supply the appropriate operands with a value.

LMS0098 INCONSISTENT OPERANDS. STATEMENT NOT PROCESSED

LMS0099 OPERAND RANGE=NO SPECIFIED. STATEMENT NOT PROCESSED

LMS0100 INVALID DELIMITER

U817-J-Z125-9-7600 299

LMS0101 - LMS0119 Messages

LMS0101 AT LEAST ONE OPERAND MISSING IN STATEMENT

LMS0102 WARNING: AT LEAST ONE INCOMPLETE MODULE FOUND IN *OMF

Meaning
When transfering modules from the EAM object module library using the ’ADDR *OMF’
statement at least one incomplete module has been detected (e.g. due to an aborted
assembler run).

LMS0103 RECORD(S) OF ILLEGAL TYPE WERE REMOVED

LMS0104 NAME IS TOO LONG

LMS0105 COLUMN IN ’*CHANGE...’ OF COR STATEMENT INCOMPLETE

LMS0106 COLUMN IN ’*CHANGE...’ OF COR STATEMENT TOO LONG

LMS0107 LENGTH OF CONTROL TEXT NOT EQUAL TO LENGTH OF UPDATE TEXT

Meaning
If ’=:=’ has been specified when replacing, the control text and the update text must
have the same length.

LMS0108 INVALID REPLY FROM USER PROGRAM. CORRECT PROGRAM

Meaning
The reply given by a user program connected using USE is not CON, DEL or INS.

LMS0109 WARNING: LIST MEMBER IN OLD FORMAT DESTROYED

Meaning
If desired, copy the list element and assign it again, or repeat the operation.

LMS0110 UPDATE TEXT MISSING

LMS0111 MODIFICATION MISSING

LMS0113 CONTROL TEXT IS PARTLY OR ENTIRELY IN RANGE FIELD

LMS0114 UPDATE TEXT IS PARTLY OR ENTIRELY IN RANGE FIELD

LMS0116 ENTRY-NAME OF USER EXIT MAY NOT START WITH ’LMS’

Response
Correct the entry name.

LMS0117 COLUMN < 1 OR > 80 INVALID

LMS0118 LMS TERMINATED ABNORMALLY

LMS0119 FIRST COLUMN CANNOT BE HIGHER THAN SECOND COLUMN

300 U817-J-Z125-9-7600

Messages LMS0121 - LMS0141

LMS0121 RECORD NUMBER IN CORRECTION STATEMENT INCORRECT

Meaning
The record number has this format: #<digit>.
<digit>: max. positive integer of 8 bytes.

LMS0123 COLUMN IS IN RANGE FIELD

LMS0124 NO COLUMN SPECIFIED

LMS0125 RIGHT STRING DELIMITER MISSING

LMS0126 ILLEGAL /INTR COMMAND SPECIFIED

LMS0127 LENGTH OF CHECK FIELD DOES NOT MATCH CHECK LENGTH

LMS0128 NO CHECK FIELD DEFINED. SUBSEQUENT RECORD INSERTED AT CURRENT POSITION

LMS0129 WARNING: LMS STATEMENT ABORTED DUE TO INTERRUPT

LMS0131 MEMBER EMPTY AFTER PROCESSING COR STATEMENT. MEMBER NOT CORRECTED

Meaning
While processing a COR statement, all the records of the member have been deleted.

LMS0132 PROCESSED MEMBER STILL IN FILE ’(&00)’. USE ADD STATEMENT TO ADD FILE TO

LIBRARY

Meaning
It is not possible to rewrite the member upon returning from the editor.

LMS0133 LMS CANNOT CALL EDT. REDEFINE ’@’ ESCAPE CHARACTER

LMS0134 EDITOR TERMINATED ABNORMALLY

Meaning
Element records with record length = 256 existing.
Element records with record length = 0 existing.

LMS0135 (LIB) OF PRIMARY MEMBER WRONG OR NOT ASSIGNED

LMS0138 CHARACTER ’(&00)’ MISSING IN OPERAND

LMS0139 LIBIN ASSIGNMENT WRONG OR MISSING

LMS0140 WARNING: SPECIFIED STRING LONGER THAN ISAM KEY. NO STRING INSERTED

LMS0141 CRT STATEMENT NO LONGER SUPPORTED. USE COR STATEMENT

U817-J-Z125-9-7600 301

LMS0142 - LMS0154 Messages

LMS0142 WARNING: CHARACTER(S) NOT EQUAL TO ’BLANK’ LOST IN FOLLOWING RECORD

Meaning
In the following record characters that were not blanks were lost when text was
inserted or replaced.

LMS0143 WARNING: ISAM KEY TRUNCATED FROM RIGHT WHEN MOVED TO CHECK FIELD

LMS0144 KEY NOT ASCENDING OR OVERFLOW DURING NUMBERING

Meaning
The content of the check field used to establish the ISAM key is not ascending, or an
overflow occurred when generating the ISAM key using the VALUE operand.

LMS0145 MEMBER NAME NOT PERMITTED FOR PLAM LIBRARY

Meaning
E.g. the member name for PLAM libraries differs from that for OSM libraries.

LMS0146 LOG OUTPUT NOT POSSIBLE, AS OVERWRITE=ONLY SPECIFIED THOUGH NO MEMBER WITH

SAME NAME EXISTS

Meaning
Log output (PRT or OUT statement) is not possible in conjunction with
OVERWRITE=ONLY, if no member exists with the same name.

LMS0147 TEXT AREA TO BE CORRECTED OVERLAPS REP AREA SPECIFIED IN REP STATEMENT

LMS0148 NEWLIB OPERAND MISSING IN LIBOUT STATEMENT FOR SEQUENTIAL LIBRARY

Meaning
In the case of output to sequential libraries the NEWLIB operand must always be
specified in the LIBOUT statement.

LMS0149 EDT OR EDOR CANNOT BE LOADED

LMS0150 USER ROUTINE CANNOT BE LOADED

Meaning
The user routine does not exist.

LMS0151 WARNING: DEFAULT VALUES GENERATED FOR INCORRECT CTL OR PRT STATEMENT

LMS0152 USER EXIT FOR COM STATEMENT NOT ALLOWED WHEN GENERATING COR STATEMENTS FROM COM

LMS0153 GENERATION OF ’COR’ STATEMENT ABORTED PREMATURELY

LMS0154 WARNING: A RECORD NUMBER WAS GENERATED IN AT LEAST ONE COR STATEMENT

Meaning
Despite PAR CHECK not equal NO a record number was generated.

302 U817-J-Z125-9-7600

Messages LMS0155 - LMS0168

LMS0155 NO CORRECTION BY COR SUBSTATEMENT POSSIBLE

Meaning
Identification or record number is lower than current identification or record number.

LMS0156 CHANGE CONTINUATION STATEMENT EXPECTED

LMS0157 MEMBER TYPE ONLY ALLOWED FOR PLAM-LIBRARIES

LMS0158 SYS STATEMENT CANNOT BE PROCESSED BECAUSE OF INCORRECT ’(&00)’

LMS0159 FMS OR $FMSLIB DOES NOT EXIST

Meaning
Either the FMS does not exist in the module library used by the DLL or no $FMSLIB
exists.

LMS0160 THE OUTPUT OF THE ELEMENT AND THE LMS LOG ARE NOT PERMITTED TO SAME OSM LIBRARY

LMS0162 RANGE LIMITS IN LIBRARY WILL SOON BE REACHED (SATURATION). REORGANIZE LIBRARY

LMS0163 WARNING: AT LEAST ONE RECORD TRUNCATED

LMS0164 WARNING: TABLE OF CONTENTS (TOC) COULD NOT BE UPDATED DUE TO ABNORMAL PROGRAM

TERMINATION

Response
Open the library again in write mode in order to automatically update the table of
contents (TOC).

LMS0165 WARNING: TABLE OF CONTENTS (TOC) HAS BEEN UPDATED

Meaning
The library was opened in write mode and the table of contents (TOC) has been
updated.

LMS0166 OVERWRITE OPERAND HAS ILLEGAL VALUE

Meaning
V, D or EXTENT has been specified.

LMS0167 SPECIFIED LINK NAME CANNOT BE ASSIGNED TO ANY FILE

Response
Assign a file to the link name.

LMS0168 FILE FORMAT OF ’(&00)’ FILE NOT SUPPORTED FOR THIS STATEMENT

Meaning
The FCB type of the file to be added ist not allowed.

U817-J-Z125-9-7600 303

LMS0169 - LMS0177 Messages

LMS0169 DMS ERROR ’(&00)’ ON PROCESSING ’(&01)’ FILE. ERROR INFO IN SYSTEM MODE:

/HELP DMS(&00),INF=D

Meaning
For more detailed information on the DMS error enter the /HELP command in system
mode or see the BS2000 manual ’System Messages’, ’DMS Disk Processing’ or ’DMS
Tape Processing’.

LMS0170 NEXT RECORD IN INPUT MEMBER NOT IN CORRECT ORDER

Meaning
The input member is not numbered in ascending order.

LMS0171 RECORD NUMBER OR CHECK FIELD IN PRECEDING CORRECTION STATEMENT NOT IN CORRECT

ORDER. CORRECTION NOT PERFORMED

Meaning
The correction statements for COR are not sorted in ascending order. The operand in
the preceding correction statement for COR is not higher than the operands specified
in previous correction statements.

LMS0172 NO CHECK FIELD DEFINED. INPUT MEMBER NOT CORRECTED

Meaning
Although CHECK=NO has been set, an identification has been specified in a correction
statement. No default values for CHECK are used.

LMS0173 RECORD NUMBER OR CHECK FIELD IN CORRECTION STATEMENT NOT IN CORRECT ORDER

Meaning
The record number or the check field in the next record of the correction statement is
not higher than those specified for COR in preceding statements.

LMS0174 RECORD NUMBER OR CHECK FIELD IN NEXT DATA RECORD LOWER THAN CURRENT POSITION

IN INPUT MEMBER. NO CORRECTION USING ’COR’ POSSIBLE

LMS0175 WARNING: EDITOR CALLED, BUT LMS IS IN TEST MODE. NO CORRECTIONS MADE.

Meaning
Test mode has been set and the updated element will not be stored into the library.

Response
Set TEST=NO or use a correct procedure and edit again.

LMS0176 WARNING: ONLY INPUT MEMBER WITH HIGHEST VERSION IN FMS LIBRARY INCLUDED IN

LIBRARY

LMS0177 TOO MANY DELIMITERS SPECIFIED

304 U817-J-Z125-9-7600

Messages LMS0178 - LMS0195

LMS0178 INTERNAL ERROR ’(&00)’ WHEN WRITING A RECORD

LMS0179 INPUT MEMBER ’(&00)’ OF TYPE ’C’ IS NOT A BS2000 PHASE. ERROR CODE ’(&01)’

LMS0180 MEMBER TYPE ’C’ ONLY PERMITTED WHEN INPUT AS WELL AS OUTPUT LIBRARY IS A TAPE

OR A PLAM LIBRARY

LMS0181 MEMBER TYPE ’C’ ONLY PERMITTED WHEN INPUT LIBRARY IS A TAPE OR PLAM LIBRARY

LMS0182 MEMBER TYPE ’C’ ONLY PERMITTED WHEN OUTPUT LIBRARY IS A TAPE OR PLAM LIBRARY

LMS0183 MISSING SUBSTATEMENTS WHEN CORRECTING USING UPD STATEMENT

LMS0184 IDENTIFICATION SPECIFIED IN UPD SUBSTATEMENT DOES NOT EXIST. CHECK ID

LMS0185 SPECIFIED SEGMENT OF LOAD MODULE TO BE PROCESSED DOES NOT EXIST

LMS0186 UPDATE TEXT OF MEMBER TO BE CORRECTED NOT CONTAINED WITHIN MEMBER

LMS0187 CONTROL TEXT OF MEMBER TO BE CORRECTED NOT CONTAINED WITHIN MEMBER

LMS0188 CROSS CONTROL NUMBER INCORRECT IN UPD SUBSTATEMENT. CHECK CONTROL NUMBER

Meaning
E.g. the cross control number >FFFFFF.

LMS0189 RECORD TYPES NOT EQUAL TO ’1’ ONLY PERMITTED FOR PLAM LIBRARIES

LMS0190 NAME DEFINED IN *NAM SUBSTATEMENT ALREADY EXISTS

Meaning
By means of the *NAM substatement a name was to be defined that already exists in
the member or that has already been created using a preceding *NAM substatement.

LMS0191 REF OPERAND ONLY SUPPORTED FOR PLAM LIBRARIES AND MEMBERS OF TYPE ’R’

LMS0192 CSECT DEFINED IN A SUBSTATEMENT DOES NOT EXIST IN MODULE. CHECK CSECT NAME

LMS0193 NAME TO BE RENAMED USING *NAM SUBSTATEMENT DOES NOT EXIST IN MODULE

LMS0194 BINARY DEFINITION OF CONTROL TEXT OR UPDATE TEXT NOT PERMITTED IN ’*COR’

SUBSTATEMENT OF UPDC STATEMENT

LMS0195 FILE CANNOT BE ADDED, BECAUSE RECSIZE IS LARGER THAN ’(&00)’

U817-J-Z125-9-7600 305

LMS0196 - LMS0208 Messages

LMS0196 MEMBER CANNOT BE EDITED, NUMBERED OR CORRECTED DUE TO ’(&00)’

Meaning
(&00): RECFORM=F or KEYPOS > 5 or KEYLEN > 16.

LMS0197 ELEMENT CANNOT BE EXTENDED DUE TO ’(&00)’

Meaning
(&00): RECFORM=F or KEYPOS <> 5 or KEYLEN > 16.

LMS0198 ABSOLUTE CORRECTION ADDRESS TOO HIGH IN UPD SUBSTATEMENT

Meaning
In a UPD substatement the sum of base address and correction address > 7FFFFFFF.

LMS0199 WARNING:INVALID RECORD LENGTH

Meaning
One or several record(s) of a library member added with fixed record format contain(s)
an incorrect record length field not matching the value stored internally. The record with
the current record length will be processed.

LMS0200 A PHASE BOUNDED VIA COREIM=NO CANNOT BE UPDATED USING A UPDC STATEMENT

LMS0201 WARNING: ONLY COMPARE-AREA OF RECORDS WILL BE LOGGED

LMS0202 FUNCTION NOT PERMITTED FOR STORED PAM FILE

LMS0203 NO ENTRY EXISTS FOR SPECIFIED REFERENCE CONDITION

Meaning
None of the entries in the table of contents matches the specified reference condition
(PAR REF=...).

LMS0204 THIS STATEMENT IS ONLY ALLOWED FOR BS2000-PHASES IN PLAM-LIBRARIES

LMS0205 RENAME NOT ALLOWED FOR DELTA MEMBERS

LMS0206 WARNING: PROGRAM ALREADY LOADED

Meaning
EDT / EDOR / FMS / PLAM is already loaded.

LMS0207 LIBRARY MEMBERS THAT HAVE FORMAT-B RECORDS CANNOT BE STORED AS DELTA MEMBERS

LMS0208 DELTA MEMBER AND BASE MEMBER MUST NOT BE THE SAME.

Response
Define another version for delta element

306 U817-J-Z125-9-7600

Messages LMS0209 - LMS0226

LMS0209 OVERWRITE=EXTEND NOT ALLOWED WHEN CREATING DELTA MEMBERS

LMS0210 ERROR WHEN CLOSING LOG MEMBER

LMS0211 LIBRARY ALREADY EXISTS

LMS0212 *END STATEMENT MISSING

LMS0213 NAME ALREADY EXISTS AS DELTA ELEMENT

LMS0214 NAME FOR DELTA MEMBER ALREADY EXISTS AS FULL MEMBER

LMS0215 STATEMENT NOT ALLOWED FOR PRELINKED MODULES WITH COMPLETE ’ESD’

Meaning
This statement is not allowed in conjunction with prelinked modules in the new format.

LMS0216 USE *REP STATEMENT WITH ABSOLUTE ADDRESS FOR PRELINKED MODULES WITH COMPLETE

’ESD’

Meaning
In the case of prelinked modules in the new format the absolute address within the
main module must be used in the *REP statement.

LMS0217 USE *COR STATEMENT WITH CSECT NAME AND DISTANCE FOR PRELINKED MODULES WITH

COMPLETE ’ESD’

Meaning
In the case of prelinked modules in the new format the CSECT name and the distance
have to be specified in the *COR statement, but not the absolute address.

LMS0218 SYNTAX ERROR IN SPECIFIED BASE VERSION

LMS0219 DELTA MEMBER ONLY ALLOWED FOR PLAM LIBRARIES

LMS0220 VERSION NOT ALLOWED FOR THIS FUNCTION

LMS0221 DATE NOT ALLOWED FOR THIS FUNCTION

LMS0222 NAME LIST NOT ALLOWED FOR THIS FUNCTION

LMS0223 NO PLAM-LIBRARY

LMS0224 DELTA AND BASE ELEMENT MUST HAVE SAME TYPE AND NAME

LMS0225 BUFFER LENGTH < 4

LMS0226 RECORD LENGTH < 4 OR > 32K

Meaning
Record length must be between 4 and 32K

U817-J-Z125-9-7600 307

LMS0227 - LMS0256 Messages

LMS0227 ELEMENT NOT OPENED

LMS0228 NAME ALREADY EXISTING

LMS0229 ILLEGAL TID

LMS0230 ILLEGAL ELEMENT MASK

LMS0231 NO TOCPRIM/TOCSEC ACTIVE

LMS0232 UNABLE TO LINK L M S U P

LMS0233 INVALID CONTROL BLOCK VERSION

LMS0234 INVALID MAXIMUM LENGTH OF LIBRARY NAME

LMS0235 MASK ITEM TOO LONG

LMS0236 INVALID SUBCODE

LMS0240 WARNING: CLOSING BRACKET WAS ADDED

LMS0247 SYNTAX ERROR: ILLEGAL MEMBER TYPE DEFINED

LMS0248 WARNING: OPERAND VALUE OVERWRITTEN BY LAST VALUE SPECIFIED

Meaning
In a statement block an operand has been specified more than once. The last value
overwrites the former one(s).

LMS0249 UPDATE NOT ALLOWED FOR DELTA-ELEMENTS

LMS0250 SYNTAX ERROR: ILLEGAL OPERAND VALUE

LMS0251 PAR PHASE=PK IN NK-WORLD NOT ALLOWED

Meaning
Creation of PAMKEY phases in the NON-PAMKEY world is not possible

LMS0252 SYNTAX ERROR: "=" MISSING BEHIND OPERAND

LMS0253 SYNTAX ERROR: KEYWORD OPERAND MISSING

LMS0254 SYNTAX ERROR: ILLEGAL KEYWORD SPECIFIED

LMS0255 SYNTAX ERROR: ABBREVIATION OF OPERAND IS NOT UNIQUE

LMS0256 INVALID RECORD TYPE

Meaning
Record type not 1 - 159 , 163 , 164

308 U817-J-Z125-9-7600

Messages LMS0257 - LMS0305

LMS0257 THE NAME OF DELTA AND FULL ELEMENTS MUST BE DIFFERENT

LMS0258 INPUT ELEMENT IS EMPTY

LMS0259 PRIMARY AND SECONDARY ELEMENT ARE EMPTY

LMS0260 OUTPUT MEMBER CANNOT BE EXTENDED

LMS0261 MEMBER CANNOT BE EXTENDED DUE TO DIFFERENT ’(&00)’ SPECIFICATIONS

Meaning
The member cannot be extended, as the file attributes stored in the member do not
match those in the file.
(&00): file attributes (FILETYPE, RECFORM, RECSIZE, KEYPOS, KEYLEN,LOGLEN or

VALLEN).

LMS0262 MEMBER CANNOT BE EXTENDED, AS ISAM KEYS ARE STORED IN MEMBER

LMS0263 FILE CANNOT BE ADDED BECAUSE OUTPUT LIBRARY IS NOT A PLAM LIBRARY AND ’(&00)’

Meaning
File cannot be added, as the output library is not a program library and
(&00): PAR KEY=YES or
(&00): the file has the attributes RECFORM=F or KEYPOS>5 or KEYLEN>16

LMS0264 FILE CANNOT BE ADDED BECAUSE ’(&00)’

Meaning
File cannot be added, as the file has either the attributes RECFORM=F, KEYPOS>5 or
KEYLEN>16 and PAR KEY=NO.

LMS0265 INTERNAL LMS ERROR WHEN WRITING A MEMBER RECORD

LMS0266 INPUT MEMBER IS NOT A BS2000 PHASE

LMS0302 NO ’(&00)’ (&01’ ’), INPUT DOES NOT EXIST

Meaning
(&00): statement concerned
(&00): member designation.

LMS0303 NO ’(&00)’ (&01’ ’), NOT IN RANGE OF REFERENCE CONDITION

Meaning
(&00): statement concerned
(&01): member designation.

LMS0305 TERMINATION CODE ’(&00)’. LMS SWITCHES INTO TEST MODE

Response
Return to the RUN mode using RST.

U817-J-Z125-9-7600 309

LMS0306 - LMS0411 Messages

LMS0306 SWITCH TO RUN MODE. LIBRARY NO LONGER ASSIGNED

LMS0307 LMS TERMINATION MESSAGE: (&00)

Meaning
(&00): value of the job variable(s).

LMS0310 LMS VERSION (&00) LOADED

LMS0311 LMS (&00) (&01’ ’) ENDED NORMALLY

Meaning
(&00): LMS version
(&01): PLAM version (if any).

LMS0312 LMS (&00) (&01’ ’) ENDED ABNORMALLY

Meaning
(&00): LMS version
(&01): PLAM version (if any).

LMS0401 FILE (&00’ ’) IS LOCKED. ATTEMPT TO BE REPEATED? REPLY (Y=YES; N=NO)

Meaning
Y: another attempt will be made
N: no further attempt is made.

LMS0402 MEMBER (&00’ ’) IN LIBRARY (&01’ ’) IS LOCKED. ATTEMPT TO BE REPEATED? REPLY

(Y=YES; N=NO)

Meaning
The member (&00) in the library (&01) is protected against writing or against reading
and writing.

Response
Y: another attempt will be made
N: no further attempt is made.

LMS0403 TYPE= (&00’ ’) IN LIBRARY: (&01’ ’) IS LOCKED. ATTEMPT TO BE REPEATED? REPLY

(Y=YES; N=NO)

Response
Y: another attempt will be made
N: no further attempt is made.

LMS0411 FILE (&00’ ’) IS LOCKED. NEXT ATTEMPT STARTED AFTER 6 SECONDS

310 U817-J-Z125-9-7600

Messages LMS0412 - LMS0515

LMS0412 MEMBER (&00’ ’) IN LIBRARY (&01’ ’) IS LOCKED. NEXT ATTEMPT STARTED AFTER

6 SECONDS.

Meaning
The member (&00) in the library (&01) is in use, protected against writing or against
reading and writing.

LMS0413 TYPE (&00’ ’) IN LIBRARY (&01’ ’) IS LOCKED. NEXT ATTEMPT STARTED AFTER 6

SECONDS

LMS0500 INPUT FILE DOES NOT EXIST OR IS NOT ASSIGNED CORRECTLY. AMCB ERROR CODE ’(&00)’

LMS0501 WRONG OP-CODE SEQUENCE

LMS0502 INCOMPLETE MODULE (E.G. MISSING END-RECORD)

LMS0503 WRONG RECORD TYPE IN MODULE

LMS0504 OVERWRITE ERROR

LMS0505 THE INPUT FILE IS EMPTY

LMS0506 NO FILE AVAILABLE

LMS0507 BS2000-PHASE IS NOT CORRECT

LMS0508 1ST RECORD IS NO ESD RECORD

LMS0509 PARAMTER OVERWRITE=NO IS SET, BUT A ELEMENT IS EXISTING

LMS0510 ELEMENT OR BASE NOT FOUND

Meaning
Input element not found
Output element not found, but OVERWRITE=ONLY set
Base element not found

LMS0511 BASE NOT DELTA-STORED

LMS0512 INPUT AND BASE IN THE SAME CONTAINER

LMS0513 NEITHER LINK NAME NOR FILE NAME EXISTING

LMS0514 TOO MANY LIBRARIES HAVE BEEN OPENED

LMS0515 ILLEGAL ELEMENT-NAME

U817-J-Z125-9-7600 311

LMS0516 - LMS2106 Messages

LMS0516 ERROR ON SEQUENTIAL LIBRARY (AMCB: (&00))

Meaning
One of the following errors occurred:
AMCB0040: Wrong BLKSIZE (neither 2048 nor 320 byte)
AMCB0041: Sequence of OUTPUT library sections is wrong
AMCB0042: Rewind beyond actual volume
AMCB0043: Tape restrictions not observed
AMCB0044: Tape and no (LIB)
AMCB0045: File not closed correctly
AMCB0048: Tape mark at reading reverse
AMCB0049: EOV reached during writing

LMS2000 ** LLM WARNING ** : FUNCTIONALITY IS ASSUMED HOWEVER

LMS2001 INVALID PARAMETERS FOR LLM .

LMS2002 CORRECTION REJECTED BY LLM .

LMS2003 PLAM ERROR DETECTED BY LLM .

LMS2004 LLM INTERNAL ERROR

LMS2005 ILLEGAL LLM MAIN RETURNCODE

LMS2020 ERROR IN LLM OPEN FUNCTION

LMS2021 ERROR IN LLM CLOSE FUNCTION

LMS2022 ERROR IN LLM LIST FUNCTION

LMS2023 ERROR IN LLM UPDATE FUNCTION

LMS2040 OCCURENCE CAN ONLY BE FIRST OR ALL

LMS2050 CHARACTER STRING NOT ALLOWED FOR TYPE L

LMS2100 ILLEGAL LLM SECONDARY RETURNCODE

LMS2101 LLM READING NOT COMPLETE: BUFFER SIZE PHYSICALLY LIMITED.

LMS2102 SPECIFIED PATHNAME NOT FOUND

LMS2103 SPECIFIED SLICE NAME NOT FOUND

LMS2104 SPECIFIED CSECT NAME NOT FOUND

LMS2105 LLM: INVALID IDENTIFICATOR

Meaning
Invalid ID passed to LLM

LMS2106 INVALID DISPLACEMENT

312 U817-J-Z125-9-7600

Messages LMS2107 - LMS2112

LMS2107 LLM: INVALID CONTINUATION

Meaning
Invalid continuation flag to LLM

LMS2108 INVALID OLD CONTENT

LMS2109 INVALID LENGTH

LMS2110 LLM: INVALID MODE

Meaning
INVALID OPEN MODE PASSED TO LLM

LMS2111 LLM PARAMETERS HAVE INVALID VALUES

LMS2112 INVALID PATHNAME SPECIFIED

U817-J-Z125-9-7600 313

Messages

Supplementary information

The following supplementary information appears in various combinations in addition to
the actual text of the LMS messages:

supplinfo Meaning

(STATEMENT Statement input from member
MEMBER INPUT)

(COP OR DUP) COP or DUP function

(DATA CARD INPUT) Error in CAT function

(DATA CARD OUTPUT) Error in PCH, LAP function

(FIRST STATEMENT IS The first statement is // ...
// ...)

FUNCTION TERMINATED Function is aborted

(LIBRARY INPUT) Library input

(LIBRARY OUTPUT) Library output

(LISTING-MEMBER- Log output to member
OUTPUT)

(LAST STATEMENT IS The last statement is not
NOT // MENM OR MEND // MENM or // MEND

(SECOND STATEMENT The second statement is not
IS NOT // JOM or // JOB
// JOM OR // JOB)

STATEMENT(S) The entire statement is
IS (ARE) SKIPPED ignored

SYSIPT (CATALOG- OR SYSIPT for reading data
CORRECT-FUNCTION) and correction cards

SYSLST (LISTING) Log output to SYSLST

SYSOPT (PUNCH- SYSOPT for punch function
FUNCTION)

ILLEGAL COMMAND Impermissible command

ILLEGAL OPERAND Impermissible operand

ERROR FROM COMMAND Error attributable to
illegal command

WHOLE ITEM IS Operands are skipped up to the
SKIPPED next comma

314 U817-J-Z125-9-7600

Messages

supplinfo Meaning

OUTPUT-LIBRARY The output library is locked
LOCKED

OPENERROR ON Error occurred when library/member
LIBRARY/ELEMENT was opened

OUTPUT-LIBRARY The output library does not exist
MISSING

OUTPUT-ELEMENT The output member to be created has a
CHANGED different version number

PAR KEY=NO AND Processing operand KEY=NO is set and the
RECFORM=F file has a fixed record format

PAR KEY=NO AND Processing operand KEY=NO is set and the
KEYPOS>5 KEYPOS value of the file to be added is greater than 5

PAR KEY=NO AND Processing operand KEY=NO is set and the
KEYLEN>16 KEYLEN value of the file to be added is greater than 16

PAR KEY=YES AND Processing operand KEY=YES is set and the
OSM-LIBRARY output library is an old source or macro library

RECFORM=F AND The file to be added has records of fixed length and
OSM-LIBRARY the output library is an old source or macro library

KEYPOS>5 AND The file to be added has a KEYPOS greater than 5 and
OSM-LIBRARY the output library is an old source or macro library

KEYLEN>16 AND The file to be added has a KEYLEN greater than 16 and
OSM-LIBRARY the output library is an old source or macro library

RECFORM=F The library member has records of fixed length

KEYPOS>5 The library member has been added using PAR KEY=YES
and KEYPOS is greater than 5

KEYLEN>8 The library member has been added using PAR KEY=YES
and KEYLEN is greater than 8 (applies only when
calling EDT)

KEYLEN>16 The library member has been added using PAR KEY=YES
and KEYLEN is greater than 16 (applies only when
calling EDOR)

PAR KEY=YES Processing operand KEY is set to YES

KEYS DO EXIST IN The library member to be extended has been added
ELEMENT using PAR KEY=YES and contains the ISAM keys

DIFFERENT FILETYPE/ The file type or the "VALUE PROPAGATION" of the file
VALUE PROPAGATION to be added does not match that of the library member
(MIN/MAX) to be extended

U817-J-Z125-9-7600 315

Messages

supplinfo Meaning

DIFFERENT RECORD The record format of the file to be added does not
FORMAT match the record format of the library member to be

extended

DIFFERENT RECORD The record length of the file to be added does not
SIZE match the record length of the library member to be

extended

DIFFERENT The position of the keys of the file to be added does
KEYPOSITION not match the position of the keys of the library

member to be extended

DIFFERENT KEYLENGTH The length of the keys of the file to be added does
not match the length of the keys of the library member
to be extended

DIFFERENT LOGLENGTH The LOGLENGTH of the file to be added does not match
the LOGLENGTH of the library member to be extended

DIFFERENT VALUE The VALLEN value of the file to be added does not match
LENGTH the VALLEN of the library member to be extended

OUTPUT-LIBRARY IS The output library is not a program library
NOT A PLAM-LIBRARY

FIXED RECORD FORMAT- The library member to be extended contains no file
ON INPUT-FILE attributes and the input file has fixed-length

records

KEYPOSITION 5 ON The library member to be extended contains no file
INPUT-FILE attributes and the input file has a key position which

is not equal to 5

KEYLENGTH>16 ON The library member to be extended contains no file
INPUT-FILE attributes and the input file has a key length greater

than 16

RECORD SIZE>2032 ON The file to be added has a record length of more than
INPUT-FILE 2032 bytes

(COMMAND INPUT/ Statement input from a J-type member
TYP J)

316 U817-J-Z125-9-7600

Messages

System queries

The following queries may be output by LMS. The user must answer them with Y or N.

DO YOU WISH A BKPT (Y/N) ?

Meaning
When job switch 31 is set and a program error occurs in interactive mode, LMS asks
whether a BKPT macro should be issued.

LMS0403 TYPE ... IN LIBRARY ... IS LOCKED. ATTEMPT TO BE REPEATED?
REPLY (Y=YES; N=NO)

Meaning
The member type is locked against writing.

LMS0402 MEMBER ... IN LIBRARY ... IS LOCKED. ATTEMPT TO BE REPEATED?
REPLY (Y=YES; N=NO)

Meaning
The member is locked against reading and writing.

Access method messages

The messages issued by the internal LMS access methods have the following format:

AMCB
: xxxx ** DMS: yyyy

PLAM

where

xxxx is the AMCB/PLAM error key.

yyyy is the DMS error code (see system messages).

The error codes from 200 onwards are PLAM error codes. These PLAM error codes
can also be queried using command

/HELP PLAxxxx

U817-J-Z125-9-7600 317

Messages

xxxx Meaning of AMCB error codes

0000 No error
0001 DMS error (for error code see RET3)
0002 Illegal op code
0003 File name missing in control block
0004 No / modified FCB address, or FCB address for FOP with DMS-OPEN

points to active FCB
0005 Incorrect op code sequence
0006 Library type invalid
0007 Contradictory LIB types in control block
0008 Library has been repaired
0009 Library must be repaired
0010 Address not within member limits
0011 On writing: library limit reached
0012 Contradictory information in control block and FCB
0013 Supplementary information missing
0014 Invalid supplementary information
0015 Record too long
0016 Illegal compression flag in directory
0017 Last member in library has been deleted
0019 This is not an LMS library.
0020 TOC area overflow of R-library

DIR1 > 30 PAM pages
0021 TOC area overflow of R-library

DIR2 for this module > 4 PAM pages (too many CSECTs/COMMONs/ENTRYs)
0022 Module not complete (e.g. no END record)
0023 Incorrect record type in module
0024 Warning: library overflow imminent
0025 No DIR2 entry provided
0026 OSM library must be reorganized by means of the /VERIFY command
0040 Incorrect block size on the input library tape, neither 2048 nor

320
0041 Sequence of library sections incorrect for output tape library
0042 With continuation tape processing for input tape libraries,

positioning to a previous reel is required but not permitted
0043 On the input tape library there is a tape mark in conjunction with

*Start block
0044 Tape library and no short designation in the LIB statement
0045 The tape input library was not properly closed
0046 No standard labels for tape input libraries
0047 Reserved
0048 The BOT marker was sensed during positioning on the input tape

library
0049 End of tape was reached when writing the output library tape
0050 Overwrite error
0051 Insufficient memory
0052 Member has been overwritten
0053 Input file is empty
0054 Empty file is replaced
0062 Function not implemented
0063 No files present
0064 FMS cannot be loaded
0065 XFR/PHASE record not present
0066 First record not an ESD record

318 U817-J-Z125-9-7600

Messages

xxxx Meaning of AMCB error codes

0100 Illegal program file
0101 DMS error
0102 Unknown file type
0107 Neither file name nor link name entered
0108 User error
0109 Open error
0111 No free space in file table
0112 FSTAT error
0118 No empty file for CREATE
0119 Open for empty file
0120 File name invalid
0121 File ID has no entry in file table
0122 Requested open status different from actual status
0123 No further space for FCB
0124 No further space for access indicator in file table
0125 Second access to output library
0126 No further space for link table entry
0127 Link table entry missing
0129 VSN check reveals error
0131 Library still open for CTL or PRT
0134 CTL member still open
0135 Link name LIBxxx - xxx is not numeric
0136 Access error, e.g. file locked
0137 Second access to a sequential library
0150 Access method not known

U817-J-Z125-9-7600 319

Messages

xxxx Meaning of PLAM error codes

** 200 - 299 Warnings **
0201 Library does not exist
0202 No library name in the PLCB and no /FILE command
0203 No PLAM library
0204 Library not new
0205 Member does not exist
0206 Member already exists
0207 Variant does not exist
0208 EOF
0209 Record not found
0210 No record transferred
0211 End of record type
0212 No further entry in directory
0214 Format B record truncated
0216 The record that has been read is shortened
0217 Secondary allocation of the library is set to 0;

the library cannot be extended automatically
0219 Access to the library via RFA with SHAREUPD=YES not allowed
0221 Format B record too short
0222 Format B record too long
0255 SVC PLAM not available
0290 Computer center exit routine request rejected

** Multiple access restrictions **
0301 Member opened for different PLCB
0302 Write access to member type
0303 Member type locked

** 401 - 599 User program errors **
0401 Illegal PLCB address
0402 Illegal operands / PLCB
0403 Illegal function
0404 ATTACH not possible for a PLCB
0405 Library not assigned for PLCB
0406 Member opened for PLCB
0407 Neither link name nor library name in PLCB
0408 Incorrect P2-PLCB address
0409 Illegal P2-PLCB
0410 Illegal open mode
0411 Address of data area missing
0412 Member for PLCB not opened
0413 Invalid variant number
0414 Variant number overflow
0415 Member not opened for WRITE/UPDATE/EXTEND
0416 Member not opened for INPUT/UPDATE/EXTEND
0417 Inconsistency in data area
0418 Member designation 1 equal to member designation 2
0419 Illegal data area
0420 Illegal length of data area
0421 Illegal block size
0422 Illegal record type end condition
0423 Illegal ATTACH mode
0424 PLCB assigned for INPUT

320 U817-J-Z125-9-7600

Messages

xxxx Meaning of PLAM error codes

0425 INPUT assignment for destroyed library
0426 Illegal ATTACH condition
0427 Illegal OPEN condition
0428 Invalid entry for KEEP
0429 Illegal RENAME condition
0430 Illegal member type
0431 Illegal member name
0432 Invalid version entry
0433 Invalid entry for INQUIRY
0434 Invalid entry for SECURITY-ERASE
0435 Old member type not equal to new member type
0436 RENAME error
0437 Illegal record length
0438 Invalid record number
0439 Illegal FCB type in the /FILE command
0440 SHARUPD=NO not permitted
0441 Invalid entry for OPEN in the /FILE command
0442 Illegal record type
0443 No member type locked for PLCB
0444 Member type locked for PLCB
0445 Invalid entry for variant selection
0446 Invalid entry for version selection
0447 Invalid member access ID
0448 Invalid user date identifier
0449 Illegal operand for GWRK
0450 Illegal operand for RWRK
0451 Invalid work area address
0452 Invalid work area length
0453 Illegal secondary name
0454 Invalid entry for secondary name selection
0455 Invalid format B buffer address
0456 Invalid format B buffer length
0457 Illegal format B buffer
0458 Invalid entry for format B positioning
0459 Invalid attribute name
0460 ATTACH mode EXCE not for P1
0461 Invalid option for further search under $TSOS
0462 Invalid option for system library
0463 Invalid catalog designation
0464 Invalid option for format B record transfer
0465 Invalid option for format B record masking
0466 Invalid format B record mask
0467 Invalid search default

** 601 - 699 Library data invalid/destroyed
0601 Inconsistency in the member description
0602 Illegal format A control area
0603 Inconsistency in the format A control area
0604 Inconsistency in the format A control area entry
0605 Inconsistency in the format A data area
0606 Inconsistency in the directory
0607 Illegal operation code for restart
0608 Illegal restart block

U817-J-Z125-9-7600 321

Messages

xxxx Meaning of the PLAM error codes

0609 Inconsistent disk storage management
0610 Inconsistent member name
0611 Inconsistency in the variant catalog
0612 Inconsistent format B control area

** 701 - 799 System service
0701 ENASI macro error
0702 DISSI macro error
0703 ENQAR macro error
0704 DEQAR macro error
0705 ENAMP macro error
0706 REQMP macro error
0707 RELMP macro error
0708 OPEN macro error
0709 PAM macro error
0710 CLOSE macro error
0711 FILE macro error
0712 EXRTN macro error
0713 FSTAT macro error
0714 REQM macro error
0715 RELM macro error
0716 $REQM macro error
0717 $RELM macro error
0718 $NCREBO macro error
0719 $NDESBO macro error
0720 $NENQBO macro error
0721 $NDEQBO macro error
0722 Error on STAM macro
0723 Error on RDTFT macro

** Internal PLAM errors **
0801 Illegal LINK P2-PLCB - P1-PLCB
0802 Lock set for end of function
0803 Control area opened for access
0804 Control area not open for access
0805 Search error in control area
0806 Illegal compression mode
0807 Library table not locked
0808 Library not locked
0809 Member not locked
0810 A library for PLCB has already been opened
0811 No library opened for PLCB
0812 Close library but member is open
0813 Member for PLCB already opened
0814 No member opened for PLCB
0815 Illegal open mode for member
0816 Invalid index flag in TOC area
0817 Disk storage management is not locked
0818 Restart memory not locked
0819 Library table header not assigned
0820 Library table header assigned
0821 Error in lock sequence
0822 Invalid name identifier
0823 Key already exists

322 U817-J-Z125-9-7600

Messages

xxxx Meaning of the PLAM error codes

0824 Error during allocation of data area
0825 Member type too long
0826 Member name too long
0827 Member version too long
0828 Key in directory not available
0829 No buffer area available for directory
0830 Directory overflow
0831 Inconsistencies in I/O management
0832 No buffer area available
0833 Buffer address not found
0834 Buffer area not reserved
0835 Buffer management not initialized
0836 Illegal PRIV-FLAG for $REQM
0837 Illegal ACCESS-FLAG for $VALD
0838 Invalid number of bytes
0839 Illegal memory class
0840 Storage not available
0841 Storage area not released
0842 Invalid storage address
0843 Part of page not allocated
0844 Attempt to open an open file
0845 Attempt to close a closed file
0846 Illegal open mode
0847 Library file not open
0848 Invalid number for the I/O request
0849 Illegal LOCK/WAIT identifier
0850 Bourse already generated
0851 Bourse not generated
0852 Lock status error of library table
0853 Lock status error of library
0854 Lock status error of disk storage
0855 Lock status error of member
0856 Library does not exist
0857 Library is empty
0858 Input/output not terminated
0859 Library access ID changed
0860 Member not found
0861 No valid storage area
0862 Invalid directory number
0863 Secondary name too long
0864 Variant number too long
0865 Search error in format B control area
0866 Format B record access not possible
0867 Format B record access possible
0868 Attribute name too long
0869 Invalid option for parallel update
0870 Invalid FCB address

U817-J-Z125-9-7600 323

Messages

xxxx Meaning of the PLAM error codes

1001 Address of system version entry invalid
1002 TASK WORK AREA could not be created
1003 TASK WORK AREA destroyed
1004 Register 1 not equal to 0
1005 Incompatible PLAM version
1006 Member was opened for WRITE, UPDATE or EXTEND
1007 Member no longer exists
1008 Variant was changed
1009 Type lock was set
1010 Invalid link between P1-PLCB and PLCB
1011 Too many calls from RESTART
9999 Unknown error

324 U817-J-Z125-9-7600

Messages

Appendix

Conversion of MLU, LMR, COBLUR to LMS

LMS incorporates the functions of MLU, LMR and COBLUR. It can also access libraries
created by these programs. The following points should be noted:

MLU format

Libraries created by MLU are processed by LMS. Since members processed by MLU
do not contain a version number, LMS assumes the version number 0 (zero) for such
members. Macro and source libraries created by LMS have the MLU format and can be
further processed by MLU. (Program libraries cannot be processed by MLU.)

LMR format

Libraries created by LMR can be processed by LMS. Since members processed by
LMR do not contain a version number, LMS assumes the version number 0 (zero) for
such members. Object module libraries created and processed by LMS (and which are
not empty) can be further processed by LMR. (Program libraries cannot be processed
by LMR.)

COBLUR format

Libraries created by COBLUR can only be read by LMS. Changes cannot be made to
such libraries. Since the members of a COBLUR library contain neither version number
nor date, zero is assumed for both. LMS ignores the organization into library divisions.
It is therefore not possible to determine in which divisions the members are stored by
reference to the log of a directory. If identically named members are stored in a
number of divisions, these names appear a corresponding number of times in the
directory log. If a name that exists in more than one division is specified using LST, the
first member found will appear in the log.

Similarly when DUP is used, only the first member found will be duplicated. First,
identically named members must be renamed with COBLUR. The entire library can then
be duplicated.

U817-J-Z125-9-7600 325

Appendix

BS1000-BS2000 compatibility

Using LMS, libraries on tapes can be transported from BS1000 to BS2000 and vice
versa.

LMS can process BS1000 tape libraries having the old (320 bytes) or the new (2 KB)
block size. The sequential libraries created by LMS, however, always have the new
block size (2-KB blocks).

If a tape library created in BS2000 is subsequently to be processed in BS1000,
ACCESS-METHOD=BTAM must be specified in the /SET-FILE-LINK command.

A BS2000 program file that is to be transferred to a BS1000 library tape (ADDC), must
be linked with COREIM=N in the PROGRAM statement of TSOSLINK.

Standard practice in BS1000 is for tape files to have the file name DOS-LIB unless
some other name is specified by way of VOL and TPLAB cards when the tape is
created.

When assigning member names, it should be noted that names of BS1000 job macros
and modification records must not exceed 7 characters in length. Job macro names
must be prefixed by the character "." (period) and modification records for job macros
by the character "/" (slash).

Processing of continuation tapes

Continuation tapes created under BS1000, can also be processed under BS2000.
However, they must be assigned individually with different short designations in the
/SET-FILE-LINK command, e.g. tape 1 with LIB001, tape 2 with LIB002, etc. Since they
have the same file name, the first input library must be closed and the file name erased
from the catalog before the 2nd tape is assigned.

Special considerations for the storage of BS1000 job macros

Job macros can be entered in source program libraries by means of the WRT function.
The input can only be made from the display terminal; inputs via SYSDTA/SYSIPT are
not possible under BS2000. Job macros are identified by virtue of the fact that the first
character of the name is a period.

LMS checks that job macros observe the following conditions:

1. The first statement must not begin with //. It must be a load operand statement
(see Monitor description in the "JMS1" manual [11]) or be blank.

2. The second statement must begin with // JOM or // JOB.

3. The last statement must begin with // MENM or // MEND.

326 U817-J-Z125-9-7600

Appendix

If these rules are not observed, a job macro will not be cataloged by LMS.

In BS1000 job macros, NOP within the LMS statements reserves space for
modifications.

U817-J-Z125-9-7600 327

Appendix

Statements and processing operands

The following statements are supported for reasons of compatibility only.

CAT Add members via SYSIPT

COP Copy members

LAP List and output to SYSOPT

LIBIN Assign input library

LIBOUT Assign output library

PCH Output members to SYSOPT

WRT Add members to libraries via SYSOPT

328 U817-J-Z125-9-7600

Appendix

LIBIN Assign input library

LIBIN is supported for reasons of compatibility only, since its functions are now
covered by LIB.

This statement defines the implicit input library and closes the previous input library.

Operation Operands

LIBIN (lib)[,(vsn)]
[libname]

LINK=linkname

LIBIN Statement name.

lib Short designation of the input library.

vsn Volume serial number (6 characters).

libname Fully qualified file name of the input library.

linkname Link name referring to the input library.

LIBIN

closes the previous input library

cancels the definition of the implicit input library

defines as the input library that library specified by "libname", "lib" or "linkname".

The implicit input library thus defined remains valid until the next LIBIN. At the start of
the LMS run and following a LIBIN with no operands, the implicit input library is
undefined.

Following errors, the implicit input library is undefined and must be assigned anew.

When a short library designation (lib) or a link name (LINK=...) is used in LIBIN, a
/SET-FILE-LINK command must be given (see page 38).

A volume serial number may be specified by means of the "vsn" operand. This must
match the VSN of the assigned volume.

A sequential library cannot simultaneously serve as input and output library.

U817-J-Z125-9-7600 329

Appendix

LIBOUT Assign output library

LIBOUT is supported for reasons of compatibility only, since its functions are now
covered by LIB. However, LIBOUT must still be used if a sequential library is to be
defined as the output library.

This statement closes the previous output library and defines the new output library.

Operation Operands

LIBOUT (vsn)
(lib)[, NEWLIB]

[NEWLIB(vsn)]
libname
LINK=linkname

LIBOUT Statement name.

lib Short designation of the output library.

vsn Volume serial number (6 characters).

NEWLIB Creation of new library.

libname Fully qualified file name of the output library.

linkname Link name referring to the output library.

LIBOUT

closes the previous output library

cancels the definition of the implicit output library

defines as the output library that library specified by "libname", "lib" or "linkname".

The implicit output library thus defined remains valid until the next LIBOUT. At the start
of the LMS run and following a LIBOUT with no operands, the implicit output library is
undefined.

Following errors, the implicit output library is undefined and must be assigned anew.

A volume serial number may be specified by means of the "(vsn)" operand. This must
match the VSN of the assigned volume.

When a short library designation (lib) or a link name (LINK=...) is used in LIBOUT, a
/SET-FILE-LINK command must be given (see page 38).

330 U817-J-Z125-9-7600

Appendix

A sequential library cannot simultaneously serve as input library and output library.
LIBOUT causes the current output library to be closed. This same library can then be
assigned as the input library.

If a tape is assigned for "lib", a new tape library will always be opened, i.e. new header
labels are written for the library.

For sequential libraries, NEWLIB must always be specified in LIBOUT.

The specification NEWLIB is permitted only for a file that is to be newly created; it
causes the output library to be set up as an empty library. The following attributes must
be given for the file in the FILE command:

Library type FCBTYPE KEYPOS KEYLEN

Source library ISAM 5 8
Macro library ISAM 5 8
Module library PAM
Sequential library BTAM

In the case of an ISAM file, its type is defined as being a macro library or a source
library the first time it is used as an output library.

U817-J-Z125-9-7600 331

Appendix

Processing operands

The following processing operands are supported for reasons of compatibility only.

PAR COLLECT Collect statements

PAR SAVE Save members during correction

PAR DECOMPRESSED
Control compression for macros and source programs

The processing operand DECOMPRESSED is supported for reasons of compatibility
only. For program libraries, it has the same effect as NOP. For other libraries, it
controls compression for the output of macros and source programs to libraries.

Operation Processing operand

PAR YES
DEC[OMPRESSED]=[NO]

?

YES All members are output in decompressed form.

NO All members are output in compressed form.

? The current value is logged.

332 U817-J-Z125-9-7600

Appendix

References
[1] BS2000 System User

Ready Reference

Target group
Experienced BS2000 users.

Contents

An overview of
commands and macros in BS2000
instructions and Assembler statements
statements for the software products and utility routines

EDT, EDOR, SORT, LMS, ARCHIVE, PERCON, LEASY
TSOSLNK, DCAT, PASSWORD, FDEXIM, FDRIVE, DPAGE, SODUMP,
TCOMP2, PRSERVE

principal tables and registers of BS2000
code tables
system conventions

Application

BS2000 interactive and batch modes.

[2] BS2000
Binder-Loader-Starter (BLS)
User Guide

Target group
Software developers
Contents
The binder-loader-starter (BLS) system consists of the following functional
units:

Linkage editor BINDER
Dynamic binder loader DBL
Static loader ELDE

The various sections contain functional descriptions and examples, plus a
reference section with statements, commands and, where applicable, macros.

U817-J-Z125-9-7600 333

References

[3] BS2000
Utility Routines
User Guide

Target group
BS2000 users (non-privileged)
Contents
Utility routines for non-privileged BS2000 users
Applications
BS2000 timesharing mode

[4] EDOR (BS2000)
Reference Manual

Target group
Data entry operators
Programmers

Contents
Description of the statements to the EDOR File Editing System
Applications
BS2000 interactive mode

[5] EDT (BS2000)
Statements
User Guide

Target group
EDT newcomers
End users

Contents
Processing of SAM and ISAM files and elements from program libraries
Introduction to the basic principles of EDT and description of the
operating modes
Creation of EDT procedures
Descriptions of all the EDT statements. Frequent applications are
illustrated with the aid of numerous examples.

Applications
File editing

334 U817-J-Z125-9-7600

References

[6] BS2000
Introductory Guide for System Users
User’s Guide

Target group
BS2000 users
Contents

Introduction to BS2000
Description of the most frequent user commands
Introduction to using the utility routines and software products EDT,
SORT, ARCHIVE, TSOSLNK, LMS and PERCON
Notes for the programmer

Applications
BS2000 interactive mode and batch mode

[7] BS2000
User Commands (SDF Format)
User Guide

Target group
BS2000 users
Contents
BS2000 user commands in the syntax of the dialog interface SDF (System
Dialog Facility)
Applications
BS2000 interactive/batch mode with SDF

[8] BS2000
Executive Macros
User Guide

Target group
BS2000 assembly language programmers (non-privileged)
System administrators

Contents
All Executive macros in alphabetical order with detailed explanations and
examples; selected macros for DMS and TIAM
Macro overview according to application areas
Comprehensice training section dealing with eventing, serialization, inter-
task communication, contingencies

Applications
BS2000 application programs

U817-J-Z125-9-7600 335

References

[9] BS2000
Laser Printer
Reference Manual

BS2000 application programs

[10] BS2000
Software Produce FMS
User’s Guide

[11] BS1000
Systems for Automatic Job Management (JMS)
Reference Manual Part 1

[12] Systems Standards (BS1000, BS2000, TRANSDATA, PDN)
Reference Manual

Target group
Users of Siemens mainframes
Contents

Operating system standards for BS1000, BS2000 and TRANSDATA PDN
Standards for data volumes
Codes for character representation

[13] LMS (BS2000)
Pocket Reference Guide

Target group
Users familiar with LMS
Contents
Overview of the statement formats and processing operands, accompanied
by brief functional descriptions

[14] BS2000
DMS Introductory Guide and Command Interface
User Guide

Target group
Non-privileged BS2000 users
Contents

Functions of DMS in BS2000
Processing of disk and tape file
Access methods UPAM, SAM, BTAM, EAM, ISAM
DMS commands

336 U817-J-Z125-9-7600

References

[15] LMS (BS2000)
Subroutine Interface
User Guide

Target group
LMS users
Programmers

Contents
Overview of the possible applications, call preparations and a description of
the subroutine functions. The subroutine interface is offered for COBOL, C
and Assembler. For each of these programming languages, the parameter
structure is described and an example provided.

Ordering manuals

The manuals listed above and the corresponding order numbers are to be found in the
List of Publications issued by Siemens Nixdorf Informationssysteme AG, which also
tells you how to order manuals. New publications are listed in the Druckschriften-
Neuerscheinungen (New Publications).

You can arrange to have both of these sent to you regularly by having your name
placed on the appropriate mailing list. Your local office will help you.

U817-J-Z125-9-7600 337

References

Index
$ statement 201
*BAS correction statement for load modules 185
*BAS correction statement for object modules 168
*CHANGE correction statement for text members 114
*CON correction statement for load modules 185
*CON correction statement for object modules 168
*COR correction statement for load modules 186
*COR correction statement for object modules 169
*DEL correction statement for load modules 188
*DEL correction statement for object modules 171
*DEL correction statement for text members 113
*END correction record for object modules 172
*END correction statement for load modules 188
*END correction statement for text members 116
*ID correction statement for load modules 188, 195
*ID correction statement for object modules 172
*INS correction statement for object modules 173
*INS correction statement for text members 112
*INV correction statement for object modules 174
*NAM correction statement for object modules 175
*REM correction statement for load modules 189, 195
*REM correction statement for object modules 175
*REP correction statement for object modules 176
*REP correction statement for text members 113
*SEG correction statement for load modules 189
*SET correction statement for object modules 178

A
abnormal termination 246
activating run mode 248
activating test mode 248
ADD statement 91

format 1 93
format 2 96
format 3 97

U817-J-Z125-9-7600 339

Index

format 4 100
format 5 103

adding comparison statistics 159
adding data to a library 91
adding delta members 60
adding files 93
adding load modules 103
adding member records from the LMS statement stream 100
adding members 43
adding members from an FMS library 97
adding object modules 96
adding source programs 253
AMCB error codes 318
archive library 20
assembling source programs 253
assign library temporarily 39
assigning libraries 38, 135
assigning sequential libraries 41, 137
attributes of a library 11

B
base address, definition 168, 185, 209
BASE processing operand 209
BLKCTRL 75
blocked format 84
branching to a user program 285
branching to user programs 196
BS1000 job macros 326
BS1000 phases 20, 103
BS1000 tape libraries 326
BS2000 phases, correction 183

C
calling procedures 56
cancelling corrections 189, 195
changing records 114
check field 48

definition 210, 238
numbering 252
string definition 243

CHECK processing operand 210
closing libraries 138
COBLUR 325
columns, defining number of 227
COM statement 105

340 U817-J-Z125-9-7600

Index

comments 83
compare function, control 212
COMPARE processing operand 212
comparing members 50, 105, 262, 274
comparison base 59
comparison field 212
comparison log 50, 105, 213
comparison result 51
comparison statistics 51, 105, 213

addition 159
creation 245
deletion 160
output 159, 282
storage 158

compatibility, BS1000-BS2000 326
compiler result information 24
construction specification 34

examples 34
symbols 34

container 16, 58
contents of a member 22
continuation characters 84
continuation lines 83
continuation tapes 20, 326
control number 70
control of screen overflow 68
control section attributes, modification 178
control statement input 117
controlling form feed 234
controlling log output 66
controlling physical deletion 215
controlling statement input 68
controlling the compare function 212
controlling the LMS run 63
controlling the log output 148
controlling the output format for directories 249
converting corrections 174
converting lowercase to uppercase type 225
converting REP records 174
converting text corrections 174
COR statement 53, 108
correcting a source program using COR 269
correcting an object module using UPD 272
correcting delta members 62

U817-J-Z125-9-7600 341

Index

correcting files 132
correcting load modules 54, 183
correcting members 53
correcting object modules 54, 165
correcting source programs 253
correcting text members 53, 108, 127
correcting text records 169, 186
correction, cancellation 195
correction input, termination 116, 188
correction journal record 174

deletion 188
correction statements, termination 172
correction statements for COR 109
correction statements for UPDC 183
correction statements for UPDR 165
correction statements from comparison log 53, 213, 274
corrections

cancellation 189
conversion 174
remove 175

creating comparison statistics 245
creating files 132
creating text members 127
cross control number, definition 168, 185
CTL statement 117

D
data, adding to a library 91
deactivating test mode 248
deactivating the user exit 197
DECOMPRESSED processing operand 332
define identification 172
defining a base address 168, 185, 209
defining a segment 189
defining a string in the check field 243
defining an identification 188, 195
defining reference conditions 239
defining segments 240
defining the check field 210, 238
defining the cross control number 168, 185
defining the FCB type 217
defining the number of columns 227
defining the number of lines 227
defining the record format 219

342 U817-J-Z125-9-7600

Index

defining the scope of output 221
DEL statement 118
deleting comparison statistics 160
deleting correction journal records 188
deleting delta members 61
deleting members 47, 118
deleting object module parts 171
deleting records 113
delta as organizational aid 59
delta as storage form 59
delta member 58

adding 60
locking 62
organization 59
storage 59

delta members
correcting 62
deletion 61
overwriting 62
processing 266
renaming 62

delta method 5, 58
delta quantity 60
delta sequence 59
delta storage method 58
delta structure 59
delta tree 59
delta trees, duplicating 124
DESTROY processing operand 215
diagnostic aids 73
directory 11

output 55, 162
sort 242

directory of a library 11
displaying assigned libraries 139
displaying members 132
DSDD record 171
dummy function 144
DUP statement 120

format 1 121
format 2 124

duplicate with structure 124
duplicating delta trees 124
duplicating members 46, 121, 258

U817-J-Z125-9-7600 343

Index

dynamically loading the user program 197

E
edited data 23
editor run 129
EDR statement 126

format 1 127
format 2 132
format 3 132

EDT statement 126
format 1 127
format 2 132
format 3 132

effect of processing operands 63
element 5, 11
END statement 133
entry address LMSUP 289
ERRCONS processing operand 216
error handling 246
error messages 293

F
FCB type, definition 217
FCBTYPE processing operand 217
file

correction 132
creation 132

file attribute BLKCTRL 75
file attributes, transfer 224
files, adding 93
filing members using the delta method 58
FMS library 97, 156
form feed, control 234
formal comparison 50, 105, 212
format of statements 82
FORMAT processing operand 219
functions of LMS 5

G
generating ISAM files 154

344 U817-J-Z125-9-7600

Index

I
identification, definition 172, 188, 195
IFG format masks 24
IFG user profile 24
INCLUDE record 171

insertion 173
increment of numbering 252
INFO processing operand 221
initial value of numbering 252
input library 12
inserting a REP record 176
inserting an INCLUDE record 173
inserting records 112
interface, user exit 198
interrupting the LMS run 71
INTR command 71
INV correction statement

format 1 174
format 2 174

ISAM, SAM and PAM files 24
ISAM file 79

generation 154
ISAM key, transfer 224
ISD record 171
issuing system commands 160

J
job switch 66
job switches, using 74

K
KEY processing operand 224

L
LCASE processing operand 225
leave test mode 150
LIB statement 134

format 1 135
format 2 138
format 3 139

LIBIN statement 329
LIBOUT statement 330
libraries, type-related 18
libraries required 90
library 5, 11

U817-J-Z125-9-7600 345

Index

closing 138
display 139
short designation 39

library assignment 38, 135
library formats 6, 13
LINE processing operand 227
lines, defining number of 227
link name 38, 39
list members 23

printing 140
listing members 46, 140
LLMs 24
LMR 325
LMS functions 5, 37
LMS in batch mode 9
LMS in interactive mode 9
LMS log 66, 148
LMS queries 317
LMS run

controlling 63
interrupting 71

LMS termination 133
LMSUP 289
load module 24
load modules

addition 103
correction 54, 183

locking delta members 62
log output

control 148
controlling 66

LOG processing operand 228
log statements 228
logical comparison 50, 105, 212
logical deletion 47, 61
lowercase/uppercase conversion 225
LSD record 171
LST processing operand 229
LST statement 140

346 U817-J-Z125-9-7600

Index

M
macro library 18, 28
macros 22
member 5, 11

assign as system input file 56
comparison 50, 262, 274
duplication 258
listing 46
output 277

member contents 22, 28
member correction 53
member designation in program libraries 25
member designation in sequential libraries 21
member designation in type-related libraries 29
member processing 42
member record, numbering 47
member records, numbering 145, 252
member records from the LMS statement stream, addition 100
member type 14, 22, 28

predefinition 251
member type C 24
member type D 24
member type F 24
member type H 24
member type J 23
member type L 24
member type M 22, 28
member type P 23
member type R 22, 28
member type S 22, 28
member type U 24
member type X 24
member types per statement 88
member version 15
members

adding 43
adding from an FMS library 97
comparison 105
deleting 47, 118
display 132
duplicating 46
duplication 121
listing 140
output to files 152

U817-J-Z125-9-7600 347

Index

output to FMS library 156
outputting 46
overwriting 235
renaming 55, 142

messages 293
access methods 317
output 216
supplementary information 313

MLU 325
modifying control section attributes 178
multiple access, restriction 17
multiple access to program libraries 15
multiple access to type-related libraries 18
multiple selection 31

examples 32
symbols 31

N
NAM statement 142
negative acknowledgment 67
NEWFORM processing operand 234
non-delta member 58
non-delta storage method 58
NOP statement 144
NUM statement 145
numbering in the check field 252
numbering member records 47, 145, 252

O
object module 22, 28

addition 96
correction 165
correction using UPD 272

object module library 19, 28
object module parts, deletion 171
object modules, correction 54
OML 75
operands 83
operation 82
organization of delta members 59
OSM 75
output format for directories, controlling 249
output library 12
output scope, definition 221
outputting a directory 55, 162

348 U817-J-Z125-9-7600

Index

outputting comparison statistics 159, 282
outputting members 46, 277
outputting members to files 152
outputting members to FMS libraries 156
outputting messages 216
outputting the statement buffer 201
overview of statements 85
OVERWRITE processing operand 235
overwriting delta members 62
overwriting members 235

P
page turning, control 161
PAM file 77, 79
PAM key elimination 75
PAR statement 147, 203
phases, correction 183
physical deletion 47, 61

control 215
PLAM 75
PLAM error codes 320
positive acknowledgment 67
predecessor member 59
predefining the member type 251
printing list members 140
procedure 23, 144

call 56
storage 56

processing delta members 266
processing of members 42
processing operands 203

effect 63
overview 205
setting 147

program error 73
program library 1, 13
PRT statement 148

Q
queries 317

U817-J-Z125-9-7600 349

Index

R
RANGE processing operand 238
record format, definition 219
record ID 48
record length for macros 20
record length for member type M 28
record length for member type R 28
record length for member type S 28
record length for object modules 20
record length for source programs 20
record numbers 47
record suppression 244
records

changing 114
deleting 113
inserting 112
replacing 113

reference conditions, definition 239
REFERENCE processing operand 239
remove corrections 175
renaming delta members 62
renaming members 55, 142
renaming symbols 175
REP record 171

conversion 174
insertion 176

replacing records 113
restricting multiple access 17
restrictions on sequential libraries 20
return address 289
RST statement 150
run, editor 129
run mode 70, 150

activation 248

S
SAM file 79
SAM/ISAM file 77
scratch file, EDT/EDOR call 128
screen overflow control 68, 161
segment, definition 189, 240
SEGMENT processing operand 240

350 U817-J-Z125-9-7600

Index

SEL statement 151
format 1 152
format 2 156

sequential libraries 20
restrictions 20

sequential library, assignment 41, 137
setting processing operands 147
SORT processing operand 242
sorting a directory 242
source library 18, 28
source program 22

addition 253
assembling 253
correction 253
correction using COR 269

statement buffer, output 201
statement input, control 68, 117
statements

blocked format 84
format 82
logging 228
overview 85
syntax 81

storage mode 15
storage unit 14
storing comparison statistics 158
storing delta members 59
storing procedures 56
STRING processing operand 243
STRIP processing operand 244
structure of a library 11
STXIT routine 72
subroutine interface 289
SUM processing operand 245
SUM statement 158
SUMADD statement 159
SUMDEL statement 160
SUMPRT statement 159
suppressing a record 244
symbols, renaming 175
symbols for construction specification 34
symbols for multiple selection 31
synchronization 106
synchronization counter 213

U817-J-Z125-9-7600 351

Index

syntax of statements 81
SYS statement 160
SYSDTA 56
system commands, issuing 160
system input file 56
system queries 317

T
table of contents 11
tape library 20
TCH statement 161
temporary library assignment 39
terminal characteristics, change 161
TERMINATE processing operand 246
terminating correction input 116, 188
terminating correction statements 172
terminating LMS 133
terminating test mode 248
test condition 74
test mode 70

activation 248
deactivation 248
leaving 150
termination 248

TEST processing operand 248
text corrections, conversion 174
text data 24
text member

correction 127
creation 127

text members, correction 53, 108
text record, correction 169, 186
TOC processing operand 249
TOC statement 162
transferring file attributes 224
transferring the ISAM key 224
TXTP record 171
TYPE processing operand 251
type-related libraries 18

352 U817-J-Z125-9-7600

Index

U
UPD statement 54, 164

format 1 165
format 2 183

UPDR statement, old format 181
use of job switches 74
USE statement 196
user exit

deactivation 197
interface 198

user interfaces 70
user program

branch 196, 285
dynamic loading 197

V
VALUE processing operand 252
variant number 27

U817-J-Z125-9-7600 353

