User Guide - English FUJ[TSU

JV V15.0

Job Variables

Valid for:

BS2000/0SD-BC V8.0
HIPLEX MSCF V6.0
SDF V4.7

SECOS V5.3

Edition December 2010

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals @ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008

To ensure a consistently high quality standard and
user-friendliness, this documentation was created to

meet the regulations of a quality management system which
complies with the requirements of the standard

DIN EN ISO 9001:2008.

cognitas. Gesellschaft fir Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

Copyright © Fujitsu Technology Solutions GmbH 2010.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Contents

1.1
1.2
1.3
1.4

2.1

2.11
2.1.2
2.1.3

2.2

2.21
2.2.2
2.2.3
224

23

2.3.1
2.3.2
2.3.3
2.3.4

24
25
2.6
2.7

Preface L e e e e e e e e e e e e e e e e e 7
Objectives and target groups of thismanual 8
Summaryofcontents e e e e e e e 9
Changes since the last edition of themanual 11
Notationalconventions e 12
Management and use of jobvariables 13
Storingjobvariables e e e e 14
Permanent user job variables oo oL 15
Temporary user job variableso 15
Special jobvariables 15
Names of userjobvariables, 16
Permanent user job variables oo 16
Wildcard syntax in pathnames 18
Temporary user job variables Lo 19
Link names foruser job variables L Lo 20
Access administration forjobvariables 22
Ownershipofjobvariables 23
Protection mechanisms for accesscontrol 24
Default protection (user defined defaultvalues) 36
Particularities when monitoring and controllingjobs 40
Loss of accesstoajobvariable, 41
Values of the userjobvariables 42
Savinguserjobvariables.o e 42
Special jobvariables e 44
Exit 033 for special jobvariables L L 51

U3616-J-Z2125-10-76

Contents

2.8
2.8.1
2.8.1.1
2.8.1.2
2.8.1.3
2.8.2
2.8.3
2.8.4

2.9

2.91
2.9.2
2.9.3

2.10

3.1

3.2
3.2.1
3.2.2

3.3

3.4

4.1

4.2

4.21
4.2.2
4.2.3
4.2.4

4.3

Job/program monitoring using jobvariables 53
Values for monitoring job variables Lo o 54

Jobmonitoring 55

IMPORT-PUBSET/EXPORT-PUBSET monitoring 58

Program monitoring 59
Identifying jobs by means of monitoring job variables 61
Protecting monitoring job variableso oo 62
Link names of monitoring job variables o L 64
Conditional jobcontrol 65
Conditionsandevents L e 65
Synchronizingevents L e 66
Commands/macros for conditional job control 66
Inputfromjobvariables 70
Commands i i i e e e e e e e e e e e e e e e e e 75
Commands for job variables management 76
Table of commands L 76
Commands for job monitoring, 77
Commands for defining job monitoring L. 77
Commands forjob monitoring 79
Commands for program monitoringo 81
Command overview e e 81
Commands for conditional jobcontrol 82
Conditional expressions L 82
Overview of commands e e e e 85
Macros e 87
Overview of macros o i i i it e e e e e e e e e e e e e e 87
Generalmacrooperands it e e e e e e e e e e 88
The MFoperand e 88
The PREFIX operand e 89
The PARAMoperand e e e 89
The MACID operand e 89
Notational conventions i . 90

U3616-J-Z2125-10-76

Contents

4.4

6.1
6.2

Descriptionofthemacros i 92
CATJV

Catalogjobvariable 92
COPJV

Copyjobvariable e 104
CSWJv

Checkandsetjobvariable 109
DCLJV

Define job variable linkname o 114
DONEVT

Delete condition for job variableevent L. 118
ERAJV

Erasejobvariable 123
GETJV

Getjobvariablevalue 131
JVSEL

Limiting the JV selection of the STAJV macros to specific attributes 136
LNKJV

Link job variables to JV-LINK entries 151
ONEVT

Set condition for job variableevent o oo oL 156
RELJV

Remove JV-LINKentry 163
SETJV

Setjobvariable 166
STAJV

Output job variable attributes L o 172
TERM

Terminate program and procedure stepo 182
TIMJV

Modify ajob monitoringJV L 186
Examples o e e e e e e e e e e e e e e 191
MesSsages o i i i e e e e e e e e e e e e e e e e e s 227
Commandlevel i e e e e 227
Macrolevel @ . . e e e e e e e e e e e 229

U3616-J-Z2125-10-76

Contents

71
7.2
7.3
7.4
7.5

The privileged user 0 i e e e e e e e e e e 235
Installation e e e e e e 235
Privileged accessrights oo e 237
System file SYSCAT.JV o i e e e e e e e e e 237
Monitoring in pubset management 238
Job variables as the object of system monitoring 241
Abbreviations L L L e e e e e e e e e 243
Related publications 245
Index e 247

U3616-J-Z2125-10-76

1 Preface

Job variables (JVs) are storage areas which enable the exchange of information both
between individual jobs and between jobs and the operating system. They have a name and
a value. This value may be used to control jobs and programs. For instance, the user may
specify that job B is not to be started until job A has set the predefined job variable V1 to
the value “START B”. The functions required for working with job variables are provided as
COBOL statements or on the command or macro level.

The user can

generate
modify
interrogate
delete

job variables or instruct the operating system to set a monitoring job value accordingly when
the status of a job or program changes. The user can reference the monitored job in
commands by using a job variable instead of by specifying the TSN. Job variables thus
provide the user with a tool enabling flexible job control. They offer a simple way of defining
dependencies between jobs. Conditional job control gives the user the option of making the
execution of certain actions (e.g. job initiation) dependent on changes in the values of
certain predefined job variables. This is implemented by means of commands to the
operating system which are executed only when, or not until, the user-defined event occurs
(job variable assumes a particular value). These events can be used in the same way as
user or job switches for conditional branches within command sequences and for
synchronous waiting. In contrast to switches (state ON or OFF), job variables can have a
number of different possible values, combinations of which can also be given in conditional
expressions.

Asynchronous waiting is also possible (a command sequence is not executed until the event
occurs and only then is processing interrupted).

The functions described below are available both on a single-computer system and in a
BS2000 cluster.

U3616-J-Z2125-10-76 7

Objectives and target groups of this manual Preface

1.1

Objectives and target groups of this manual

This manual describes possible applications of the JV (Job Variables) software product and
provides information for the non-privileged and privileged user on the administration and
application of job variables.

The job variable functions described are not part of the BS2000 basic configuration. For
these functions, an overview of the command interface is provided. The Assembler
interface (macros) are fully described for these functions. BS2000 commands that have a
JV interface (MONJV function) are summarized in a table.

A knowledge of BS2000 is required, particularly of the commands. This information is
contained in the “Commands” manual [1] and in the “SDF Dialog Interface” manual [2].
The privileged user must be familiar with system administration and system generation (see
the manual “Introductory Guide to Systems Support” [3]).

The programming user should be familiar with Assembler. As far as other software products
that utilize job variable functions are concerned, the relevant description will be found in the
corresponding product manual.

U3616-J-Z2125-10-76

Preface Summary of contents

1.2 Summary of contents

The manual is organized in seven chapters with the following contents:

Chapter 1 “Preface”
contains a short description of the product JV, goals, target groups and this summary
of the contents of the manual, notes on the Readme file as well as the changes since
the last manual for “JV”.

Chapter 2 “Management and use of job variables”
informs you about the various types of job variables and how they are named, access
protection, the values of user and special job variables, the use of job variables for job
and program monitoring and conditional job control and about the input from job
variables.

Chapter 3 “Commands”
contains overviews of commands used to manage job variables, job monitoring,
program monitoring and conditional job control.

Chapter 4 “Macros”
contains an overview of the job variable macro calls, a section with general information
on macro operands and metasyntax as well as a list of descriptions of all job variable
macros in alphabetical order.

Chapter 5 “Examples”
contains examples with commands and macros used to manage job variables, for job
and program monitoring and for conditional job control.

Chapter 6 “Messages”
contains information on system messages and explanations of all return codes in the
program level for which there is no corresponding system message.

Chapter 7 “The privileged user”
informs the privileged user about the installation of the JV product, privileges for access
to the job variables of the system, job monitoring capabilities for pubset administration
and about job variables as a system monitoring object with the SAT functional unit when
using SECOS.

You will find a list of abbreviations and tables as well as a bibliography and index of
keywords at the end of the manual.

References in the text are written using abbreviated titles. You will find the complete title of
every publication in the reference section.

U3616-J-Z2125-10-76 9

Summary of contents Preface

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http.//manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000/0SD

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product>command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

10

U3616-J-Z2125-10-76

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface

Changes since the last edition of the manual

1.3 Changes since the last edition of the manual

The “Job Variables” manual for V15.0 contains the following changes with regard to the
previous edition for JV V14.0:

Pubset backup with snapsets

The snapsets can be used as a logical backup of all files and job variables of a pubset.

Description of the commands

The description of the commands, the SDF syntax notation and the section treating of the
command return codes were removed from this manual. For a complete description of the
commands, the corresponding syntax and the command return codes, refer to the “Com-
mands” manual [1].

New COPY-JV command: Copy job variable
For the functional description, see ,New macro COPJV*“. The “Commands” manual [1] con-
tains a complete description of the command.

New macro COPJV

The COPJV macro copies the contents of a job variable (send JV) into another job variable
(receive JV). If required, the protection properties of the send JV can also be copied along
with the contents, apart from an existing MONJV or CJC protection. Both permanent and
temporary JVs can be copied.

Extension to the CATJV macro

The new NOSTEP operand defines whether an error has occurred, if the specified JV al-
ready exists.

Extension to the STAJV macro

The new SORT operand determines the sorting of catalog entries / path names in the out-
put.

New special job variable

The special job variable $SYSJV.TASK-CPU-USED-LONG displays the CPU time required
for so-called "long-running transactions".

On an SQ server the special job variable $SYSJV.REMAINING-BS2000-RUNTIME dis-
plays the remaining runtime which is available for the BS2000 system to shut down before
the real or virtual machine stops.

U3616-J-Z2125-10-76 11

Notational conventions

1.4 Notational conventions

The following typographical elements are used in this manual:

@ For notes on particularly important information

C This symbol designates special information that points out the possibility that
data can be lost or that other serious damage may occur.

[1 References to other publications within the text are given in abbreviated form
followed by numbers; the full titles are listed in the “References” section at the
back of this manual.

input Inputs and system outputs in examples are shown in typewriter font

12

U3616-J-Z2125-10-76

2 Management and use of job variables

This chapter describes:

which types of job variables exist,

— how job variables are named, stored and protected,
— how they can be used for job/program monitoring,

— how they can be used for conditional job control and

— how they can be used as an input source during the entry of commands and state-
ments.

The syntax and operands of the commands used are described in the “Commands”
manual [1].

There are two types of job variables:
— user job variables and
— special job variables.

User job variables can be stored as permanent job variables or, if the system permits it, as
temporary job variables. The user has sole responsibility for creating these job variables
and providing them with values. Job variables used for monitoring jobs or programs are an
exception to this rule: in this case the system enters values.

Special job variables (see page 44) contain certain operating system information to which
the user has read-only access or which can only be transferred to a user job variable.

U3616-J-Z2125-10-76 13

Storing job variables Management of job variables

Command Macro Function

CREATE-JV CATJV Generate new job variable

COPY-JV COPJV Copy job variable

DELETE-JV ERAJV Delete job variable

MODIFY-JV SETJV Modify contents of job variable

MODIFY-JV-ATTRIBUTES CATJV Modify catalog entry for job variable

MODIFY-JV-CONDITIONALLY CSWJV Modify job variable contents conditionally

MODIFY-MONJV TIMJV Set elements in the system section of a job
monitoring JV

REMOVE-JV-LINK RELJV Delete JV-LINK entry

SET-JV-LINK DCLJV Define job variable link name

SHOW-JV GETJV Output job variable contents

SHOW-JV-ATTRIBUTES STAJV Output job variable attributes

SHOW-JV-LINK LNKJV Output JV-LINK entry

Table 1: Commands/macros for job variable management

The MODIFY-JV and SHOW-JV commands are also available to the operator (see
page 237).

2.1 Storing job variables

User job variables are generated by means of the CREATE-JV command. A job variable
entry is generated in the file catalog (TSOSCAT) for the job variable. The entry contains a
management part (e.g. protection attributes and name of the job variables). Following the
management part, 256 bytes are reserved for storing the job variable value.

Each job variable entry in the TSOSCAT file contains:
— bytes for check information
— a fixed number of bytes for the name of the job variable

— avariable number of bytes (0 - 256) for the value

14 U3616-J-Z2125-10-76

Management of job variables Storing job variables

2.1.1 Permanent user job variables

A permanent job variable (JV) specified in the file catalog (S TSOSCAT) remains in
existence until it is deleted by means of DELETE-JV, regardless of the duration of the job
which creates it. This means that a job variable can be created by one job, used by another,
and deleted by a third one, although these jobs never exist at the same time.

2.1.2 Temporary user job variables

The class 2 system parameter TEMPFILE (see the manual “Introductory Guide to Systems
Support” [3]) can be used by systems support to permit the use of temporary files and job
variables. If, for example, TEMPFILE="#'is set, all job variables and files with names
beginning with the character # are considered to be temporary, i.e. they are automatically
deleted when the job which created them is completed. The default setting in the system is
TEMPFILE='NQO, i.e. no temporary files and job variables are permitted. The permissible
values for TEMPFILE are the characters # and @. The setting TEMPFILE="#" is assumed
in the examples.

Only the generating job can access temporary job variables.

2.1.3 Special job variables

Special job variables have no entry in the file catalog.
During “reading” of a special job variable, the appropriate data is output from system tables
(e.g. date, time; for the possible items of information see page 44).

U3616-J-Z2125-10-76 15

Names of user job variables Management of job variables

2.2

2.2.1

Names of user job variables

Permanent user job variables
Like files, job variables are identified by means of a character string comprising three parts
separated by delimiters:

1. Catalog identifier (catid) identifies the pubset (PVS) in whose file catalog (TSOSCAT)
the job variable has been stored.

2. User identification (userid) identifies the user entry in the user catalog (SYSSRPM) of
the pubset.

3. Job variable name (jvname) uniquely identifies the job variable within the user ID.

This three-part character string is called the “path name”.
It has the following format:

:catid:%userid. jvname

| < pathname >|

— The following characters must be used as delimiters:
A specified catalog identifier “catid” must be enclosed in colons.
A specified user ID “userid” must be enclosed between a dollar sign and a period.

— A path name is incomplete if at least one of the two parts “:catid:” or “$userid.” is not
specified; otherwise it is complete.

— If a path name is specified incompletely, it is completed by DMS using the following
default values. The default catalog identifier of the user ID is used if “catid” is missing.
The user ID of the calling job is used if “userid” is missing.

— The default catalog identifier is defined in the user entry; it can be interrogated using
the SHOW-USER-ATTRIBUTES command.

— Maximum lengths including delimiters:

:catid: 6 characters
$userid. 10 characters
jvname 41 characters

The total length of the pathname must not exceed 54 characters. This means that the
maximum length of jvname is shortened if :catid:$userid. is longer than 13 characters.
With a four-character catalog ID (6 characters including delimiters) and an eight-
character user ID (10 characters including delimiters), it follows that jyname cannot be
more than 38 characters long. For this reason jyname should not be more than 38
characters long so as to allow for a possible change to the catalog ID or user ID.

16

U3616-J-Z2125-10-76

Management of job variables Names of user job variables

— Ifonly “$ (delimiter without user ID) is specified, the system searches for the job
variable under the user ID named with the class 2 system parameter DEFLUID.
Default setting: DEFLUID=TSOS.

— A path name is partially qualified if “lyname” has not been specified or ends with a
period; otherwise it is fully qualified.

— Injvname the same characters as for file names are permitted:

All letters
Digits 0 ... 9
Special characters-, @ ,#,$, .

The job variable name must contain at least one letter.
The TEMPFILE character cannot be the first character for a permanent JV.
The characters “-” and “$” are not permitted as the first character.

Example

This example is designed to illustrate the meaning of the terms “partially/fully qualified” and
“incomplete/complete path name” by using various path name entries..

JV name Partially qualified | Fully qualified | Incomplete | Complete

:V:$PM211052.J0BVAR X X

$PM211194.JV.JOB.STEUER

X
:A:HILFSVARIABLE X
JOBV.VARIABLE.A X

(Ve

$PM211052.

JOBV.A.

X [X | X | X [X [X | X

X | X | X | X

JOB.MON.

Table 2: Examples of path name specifications

U3616-J-Z2125-10-76 17

Names of user job variables Management of job variables

2.2.2 VWildcard syntax in path names

In the following commands and macros, wildcards may be substituted for one or more
characters within a path name:

— DELETE-JV or ERAJV
— SHOW-JV-ATTRIBUTES or STAJV
— SHOW-JV-LINK or LNKJV

Wildcards can be specified in the names of temporary and permanent user job variables
and in the names of special job variables. Non-privileged users may use them within the
catalog identifier and the job variable name. Wildcards may not be used in the $SYSJV
name section of special job variables.

Wildcards cannot replace any delimiters in the path name. In commands, the permissible
use of wildcards is indicated by the suffix with-wild (n) (with-wildcards) in the data types
<filename> and <partial-filename>. The specified length n=80 or n=79 only refers to the
length of the entry. Using wildcards means that the entered path name, including wildcards,
may be longer than 54 characters. Nevertheless, path names formed by this character
string may only contain a maximum of 54 characters. The specification of wildcards in user
IDs is reserved for the privileged user. See the “Commands” manual [1]for more information
on specifying wildcards.

Examples

SHOW=JV-ATTR JV=*ALL
Shows all permanent job variables under the user ID, and in a sum line the
number of all permanent job variables and the total length of their values.

SHOW=JV—ATTR JV=**ALL
Shows all job variables which end with the character string “ALL". The
wildcard “*” at the beginning of the character string must be specified twice.

SHOW=JV-ATTR Jv=///
Shows all job variables whose names are precisely three characters long,
and in a sum line the number of all job variables that are three characters
long and the total length of their values.
(e.g. :catid:$userid.ABC, :catid:$userid.DEF, etc.).

SHOW-JV-ATTR JV=<D,M:0>*
Shows all job variables whose names begin either with D or with a character
from the range M through O, and in a sum line the number of those job
variables and the total length of their values
(e.g. :catid:$userid. DORA,:catid:$userid. DIETER, :catid:$userid. MARTHA,
:catid:$userid. NORDPOL, :catid:$userid.OTTO).

18

U3616-J-Z2125-10-76

Management of job variables Names of user job variables

SHOW=JV=ATTR JV=—*HA
Shows all job variables which do not end in the character string “HA”, and in
a sum line the number of those job variables and the total length of their
values
(e.g. :catid:$userid. ANTON, :catid:$userid.HANS etc.).

SHOW=JV-ATTR $SYSJV.M*
Shows all special job variables which start with M.
(e.g. $SYSJUV.MONAT and $SYSJV.MONTH)

2.2.3 Temporary user job variables

The name of a temporary job variable begins with the character defined in the system
parameter TEMPFILE (i.e. # or @), followed by a jvname up to 27 characters in length,
which may also be partially qualified:

(below, # is assumed as the defined TEMPFILE character)

#jvname e.g. #JOBVARIABLE17
#AUFTR.STEUER.JV2

The special character on its own is used to address all temporary job variables of a job, e.g.
in SHOW—=JV—-ATTR JV=#.

Temporary job variables are stored under the default catalog identifier and user ID of the
creating job and under an internal name. Specification of a foreign user ID or catalog
identifier is not permitted.

The internal name of a temporary JV is structured as follows:

S.sys.nnnn.jvname nnnn task sequence number of the creating job

sys

internal number of the processor, as the TSN is not
unique in the multiprocessor network with shared
pubsets

The internal name part S.sys.nnnn. is specified by the user with the TEMPFILE character.
The internal name is always output by the system.

U3616-J-Z2125-10-76 19

Names of user job variables Management of job variables

224

The maximum length of “jvname” is 27 characters.

pathname: Up to 54 characters
:catid:$userid.S.sys.nnnn.jvname (6+10+38=54)

S.sys.nnnn.jvname (11+27=38) (internal name part 11 characters)
#jvname ('‘#'+27)

In the case of status interrogations with SHOW-JV-ATTRIBUTES, the internal JV name is
always output. The same applies to system messages containing the JV name.

Example

/create—jv Jjv=#work

/show—jv—attr jv=#

%0000000 :10SN:$USER1.S.100.0MH4.WORK

%SUM 00001 JVv'S; JV-VALUE = 00000000 BYTES

/del=jv jv=#,dialog-contr=*jv—-change

% JVS0469 DELETE JOB VARIABLE ':10SN:$USER1.S.100.0MH4.WORK"? REPLY
(Y=YES; N=NO; T=TERMINATE; ,CHECK=NEW MODE)?y

/

Note

The format of internal names of job variables and files is not defined as part of the user
interface and can change from one version to another without prior notice.

Link names for user job variables

A link name may be defined for user job variables (as for files). Assignment of a job variable
to a link name is performed with the SET-JV-LINK command; the path name of the assigned
job variable is stored in the JV-LINK table for the job under the specified link name. The JV-
LINK table is retained until the end of the creating job.

A link name is always assigned uniquely to a job variable. Several entries may exist under
different link names for any one job variable. If a link name is reassigned, the existing entry
is overwritten (implicit deletion).

The link names SMONJVJ and SMONJVP should not be used. The system creates entries
under these default link names in the JV-LINK table for the job during job or program
monitoring (see page 64).

A valid link name consists of up to seven characters (0..9, A..Z, #,@,$); this must be
prefixed by an asterisk (*) in all macros and conditional job control (CJC) commands, and
for job variable substitution. In all other commands the link name is specified without an
asterisk (for reasons of compatibility, however, optional prefixing of an asterisk is allowed).

20

U3616-J-Z2125-10-76

Management of job variables

Names of user job variables

In the following commands and macros (see Table 5) the creating job can use the link name
to address the relevant assigned job variable (via the operand JV="LINK or LINK-NAME).
Other jobs have no access via the defined link name. Using link names enables different
names to be used for job variables in programs and procedures.

The SHOW-JV-LINK command can be used to output the entries of the JV-LINK table. Note
here that entered job variables need be accessible only on creation of the JV-LINK entry but
that a job variable displayed after that time may well no longer be accessible (e.g. because

it has been deleted in the interim).

The REMOVE-JV-LINK command can be used to delete one or more entries from the JV-

LINK table.

Command Macro Function

COPY-JV COPJV Copy job variable
DELETE-JV ERAJV Delete job variable
MODIFY-JV SETJV Modify contents of job variable
MODIFY-JV-CONDITIONALLY CSWJV Check and set job variable
REMOVE-JV-LINK RELJV Delete JV-LINK entry
SET-JV-LINK DCLJV Define job variable link name
SHOW-JV GETJV Output job variable contents
SHOW-JV-ATTRIBUTES STAJV Output job variable attributes
SHOW-JV-LINK LNKJV Output JV-LINK entry

Table 3: Commands or macros in which a link name can be used

Link names can also be used in conditional expressions (see page 82) and in job variable

replacement (see page 70).

U3616-J-Z2125-10-76

21

Access administration for job variables Management of job variables

2.3

Access administration for job variables

The owner and eventual co-owner (the terms are explained in the following section) can
specify who may access the job variable and under what conditions for every job variable.
This can prevent unauthorized reading of a job variable as well as unauthorized changes to
a job variable.

The following standard access control protection attributes can be defined with the JV
product alone:

— Access only for the owner or for all user
— General read or write protection

— General retention period

— Read and write passwords

Significantly finer settings for the access privileges are possible using the SECOS product
or with its GUARDS, GUARDDEF (default protection) and GUARDCOO (co-owner
protection) modules:

— Specify read and write privileges for job variables with the help of individual access
profiles (guards) for every ID.

— Specify administration privileges for job variables: Co-owners of job variables can be
specified with GUARDCOO.

— Specification of default values for protection attributes of job variables with the “default
protection” function.

These privileges can be assigned independent of each other to any number of user IDs or
user groups.

Only the job that created the temporary job variable or systems support can access a
temporary job variable. No protection attributes other than the default settings for CREATE-
JV can be assigned for temporary job variables.

22

U3616-J-Z2125-10-76

Management of job variables Access administration for job variables

2.3.1

Ownership of job variables

The owner and possibly other co-owners have the right to administer job variables, i.e. to
create, change, delete and specify the attributes of job variables.

The owner is the user ID in whose catalog a job variable was created. This ownership
cannot be changed later on.

The co-owner is the user ID TSOS by default. This co-ownership can be changed with the
help of the SECOS product: User IDs can be defined as co-owners, and the co-ownership
for TSOS is also limited. One exception to this are the temporary job variables. There is no
way to control co-ownership for these job variables.

Some protection attributes are specified by the system administration (regardless of the
ownership):

— The system parameter FSHARING specifies if job variables are also accessible for user
IDs that do not have a user entry for the pubset of the job variable.

— When using SECOS systems support can define global pubset default values for
protection attributes of job variables. These values take effect when no protection
attributes were assigned when the job variable was set up and there are no user specific
default values.

Controlling co-ownership

Co-ownership allows a user logged in under a user ID other than that of the owner to create,
modify and delete job variables with the same privileges as the owner of the job variable.

With the GUARDCOO subsystem it is possible to define co-owners of job variables. Co-
ownership allows a user logged in under a user ID other than that of the owner to create,
modify and delete job variables with the same privileges as the owner of the job variable. If
the GUARDCOO subsystem is not activated or an error occurs while checking the access
privileges, then the co-ownership is ignored, i.e. only the common access privileges are in
effect.

GUARDCOOQO is part of the SECOS software product.

The definition of the co-owner is done with GUARDS in two steps:

— Job variables for which the co-owners are to be specified are selected using name
patterns (rules) in rule containers (guards). The name patterns are evaluated for
existing job variables as well as for new job variables, but not for temporary job
variables.

— You then specify who is allowed to execute which administration functions under what
conditions for each guard. Co-ownership can be assigned for certain user IDs,
members of certain user groups or owners of certain global system privileges.

U3616-J-Z2125-10-76 23

Access administration for job variables Management of job variables

2.3.2

You will find more detailed information on controlling co-ownership with SECOS in the
SECOS manuals (see the “SECOS” manual [10]) under the keyword “co-owner
protection”).

Restricted TSOS co-ownership

The owner can restrict the access and administration privileges of the TSOS user ID. Under
the user ID TSOS the protection attributes of an external job variable (i.e. TSOS is not the
owner) cannot be changed anymore, and it is also not possible anymore to delete a job
variable when bypassing the protection attributes (IGNORE=ACCESS): If TSOS co-
ownership is set to *RESTRICTED for a name pattern, then the IGNORE= ACCESS speci-
fication is ignored and the privilege check based on the protection attributes for ACCESS,
basic ACL and GUARDS is used instead.

See also the GUARDS command /ADD-COOWNER-PROTECTION-RULE in the
“SECOS” [10] manual. Primarily affected by the restriction are the JV commands /DELETE-
JV and /MODIFY-JV-ATTRIBUTES (see “Commands” manual [1]).

The restriction of co-ownership for job variables has no effect under the TSOS user ID
because TSOS is the (permanent) owner of the job variables.

You will find more detailed information on the restriction of co-ownership with SECOS in the
SECOS manuals (see the “SECOS” manual [10]) under the keyword “co-owner
protection”).

Protection mechanisms for access control

The following access attributes can be controlled for a job variable (the name(s) of the
protection attribute(s) is (are) shown in the parentheses):

— Users or user groups with access (shareable, multi-user access)

— Read and/or write authorization, possibly separated according to access privileges
(type of access, multi-user access)

— Passwords for access (passwords)

— Limitation (with respect to time) of the access (retention period)

24

U3616-J-Z2125-10-76

Management of job variables Access administration for job variables

Protection Protection capabilities Granularity of access
mechanism privileges
GUARDS — Further differentiation of multi-user | Individual access profiles
access and type of access 1
1
Basic ACL — Differentiation of shareable and Access profiles for groups
type of access
T
Default protection Default access control Owner or all
— Type of access (read/write access)
— shareable

Additional protection capabilities
— Passwords
— Retention periods

Table 4: Overview of protection capabilities for a job variable

The protection capabilities for a job variable are arranged on the three default protection
levels (lowest level), basic ACL and GUARDS (highest level) (see table 4). The strongest
active protection mechanism always applies for the protection of a job variable.

The use of passwords and the retention period (release date) is independent of the active
protection mechanism, i.e. it is also possible for basic ACL and GUARDS. Access control
(shareability and type of access) are further refined for these two protection mechanisms
by creating three groups (OWNER, GROUP and OTHERS) for basic ACL and by creating
access profiles for individual users for GUARDS.

Coexistence of the access mechanisms

GUARDS

Simple access control list (BACL)

Default access control
(type of access (read/write access) and shareability)

Figure 1: Hierarchy of protection mechanisms for job variables

figure 1 clearly shows that the higher protection levels completely include the functionality
of the levels below them.

U3616-J-Z2125-10-76 25

Access administration for job variables Management of job variables

The following rules apply where standard access control (USER-ACCESS, ACCESS),
basic ACL as well as guards are used:

1. The values of the USER-ACCESS or ACCESS operand are entered in the catalog
regardless of the fact that a higher-level protection mechanism (basic ACL or guards)
may currently be in effect. If this is the case, the entries will not be evaluated until the
higher-level protection mechanism is deactivated.

2. The BASIC-ACL operand sets the BASIC-ACL indicators in the catalog entry for the job
variable, regardless of whether the job variable is protected by basic ACL or a higher-
level protection mechanism (guards). If a higher-level protection mechanism is active,
the entries will not be evaluated until the higher-level protection mechanism is deacti-
vated.

Default access protection

The default access control mechanism provides the protection attributes type of access and
shareable. In addition, a retention period and password protection can be specified for a job
variable in the default access protection (but also for basic ACL and GUARDS).

Type of access

A user can specify which type of access to a job variable he wants to permit using the
operands of the CREATE-JV and MODIFY-JV-ATTRIBUTES commands.

ACCESS="BY-PROTECTION-ATTR The type of access is irrespective of the value of the

(default value) operand PROTECTION-ATTR (see section
“Default protection (user defined default values)” on
page 36)

ACCESS=WRITE Read and write access is permitted

ACCESS=READ Read access is permitted

At the macro level (CATJV macro) the operand value PROTECT=DEFAULT corresponds to
the operand value ACCESS="BY-PROTECTION-ATTR for the commands. The PROTECT
operand refers not only to the type of access, but to all protection attributes. The operand
values for read and write access are identical to those of the command operands.

26 U3616-J-Z2125-10-76

Management of job variables Access administration for job variables

Shareable

In the CREATE-JV and MODIFY-JV-ATTRIBUTES commands you specify which user IDs
can access the job variable with the previously assigned access types with the USER-
ACCESS operand (shareability):

USER-ACCESS="BY-PROTECTION-ATTR The access irrespective of the value of the

(default value) operand PROTECTION-ATTR (see section
“Default protection (user defined default
values)” on page 36)

USER-ACCESS="0OWNER-ONLY Only the JV owner has access
USER-ACCESS=*ALL-USERS All user IDs have access

At the macro level (CATJV macro) the operand values SHARE=NO / YES correspond to the
values USER-ACCESS="OWNER-ONLY/ *ALL-USERS.

Retention (protection) period

When a retention period is specified a job variable can be protected against changes and
deletion for a specified period of time.

When the job variable is created, the current date is entered in the EXPIR-DATE output field
of the SHOW-JV-ATTRIBUTES command by default. This date is then updated automati-
cally when the contents of the job variable are changed.

You can specify for how many days from the current date the job variable will be protected
from changes and deletion in the RETENTION-PERIOD operand using the command
MODIFY-JV-ATTRIBUTES. When a retention period is specified, the number of days
specified is added to the current date. The date (in EXPIR-DATE) now shows when the job
variable will be able to be changed again.

The entry in the EXPIR-DATE output field remains unchanged until the retention period
expires. After that, it is automatically modified to reflect the current date when the contents
of the job variable are changed.

At the macro level (CATJV macro) the operand RETPD correspond to the operand
RETENTION-PERIOD.

U3616-J-Z2125-10-76 27

Access administration for job variables Management of job variables

Password protection

Furthermore, you can make access to a job variable dependent upon the knowledge of a
password.

A read password can be defined in the CREATE-JV or MODIFY-JV-ATTRIBUTES command
in the operand READ-PASSWORD and a write password can be defined in the WRITE-
PASSWORD operand.

The value YES in the job variable entry in the READ-PASS and WRITE-PASS fields shows
that a read or write password has been defined. If no password is defined, then the value
is NONE.

A new job variable is not protected by a password by default.

The required password must be entered in the password table of the entry with the ADD-
PASSWORD command before accessing the job variable. This entry is valid until the job is
completed. In some commands the password is specified in the PASSWORD or
JV-PASSWORD operand. Access is only authorized then when the command is executed.
If a password is defined, then this password must be specified by all users who do not have
system administration privileges, even when the protection attributes are to be changed
with the MODIFY-JV-ATTRIBUTES command.

Password protection Additional Required specification for
protection using
a password
READ-PASS | WRITE-PASS Read access Write access
NONE NONE No protection None None
YES NONE Read access Read password Read password
Write access
NONE YES Write access None Write password
YES YES Read access Read or write Write password
Write access password

Table 5: Password protection combinations and specifications for read or write access

When an attempt is made to access a job variable without the required password, then the
non-privileged user is penalized with a time penalty. The duration of the time penalty
depends on the setting for the system parameter PWPENTI and can have a value from 0 to
60 seconds. The user cannot input data during this time.

In the SHOW-JV, MODIFY-JV, MODIFY-JV-CONDITIONALLY, MODIFY-MONJV, DELETE-
JV commands and the corresponding macros the password can still be specified in the
command (PASSWORD operand). When the wrong password is entered, a check is made
to see if the password has already been entered in the password table. If the password is
not in the table, then the access attempt is an unauthorized attempt.

If this is not the case, then the access is authorized and the command is executed.

28

U3616-J-Z2125-10-76

Management of job variables

Access administration for job variables

At the macro level (CATJV macro) the operand values RDPASS and WRPASS correspond
to the READ-PASSWORD and WRITE-PASSWORD operands.

Interface overview

Command/Macro

Function

CREATE-JV/CATJV

Create the job variable and specify protection attributes
with the command operands ACCESS,USERACCESS,
READ-PASSWORD and WRITE-PASSWORD or with the
macro operands ACCESS, SHARE, RDPASS and
WRPASS.

MODIFY-JV-ATTRIBUTES / CATJV

Change the protection attributes with the command
operands ACCESS,USER-ACCESS, READ-PASSWORD,
WRITE-PASSWORD and RETENTION-PERIOD or with
the macro operands ACCESS, SHARE, RDPASS,
WRPASS and RETPD.

SHOW-JV-ATTRIBUTES / STAJV

Output the protection attributes

The job variables can also be selected according to
specific protection attributes using the command operands
ACCESS, USER-ACCESS, PASSWORD and
EXPIRATION-DATE within SELECT="BY-
ATTRIBUTES(...). On the macro level, selection is possible
in the STAJV macro, via the macro JVSEL with the
operands ACCESS, SHARE, PASS and EXDATE.

Table 6: Commands and macros for specifying default protection attributes

The table presents an overview of the commands and macros used to specify the type of
access (ACCESS), shareable (USER-ACCESS / SHARE), retention period (RETENTION-
PERIOD / RETPD) and password protection (READ-PASSWORD and WRITE-
PASSWORD / RDPASS and WRPASS) default protection attributes.

Example

/create—-jv jv=status,prot=*par(access=*write,user—access=*all-users,
read-pass=c'rdpw',write—-pass=c'wrpw')

The job variable status is created with the following properties:

— REad and write access is permitted

— All user IDs have access

— A read protection password ('rdpw') is set
— A write protection password (‘wrpw') is set

U3616-J-Z2125-10-76

29

Access administration for job variables Management of job variables

Basic ACL protection

In a basic ACL (simple access control list) the read and write access privileges can be
assigned explicitly for the user classes OWNER, GROUP and OTHERS.

This protection capability does not exist for temporary job variables.

When basic ACL protection is activated, the required access privilege must be set explicitly
in order to obtain access. In contrast to the default access control (with ACCESS and
USER-ACCESS) in a basic ACL, write access does not implicitly imply that the user has
read privileges. Read access must be set explicitly to have read privileges.

The users are divided into the following user classes:
OWNER is the user ID of the owner or systems support.

GROUP is a collection of all user IDs that belong to the user group of the owner. In the basic
function (without SECOS) these IDs are all other user IDs since only one user group exists.
When the SECOS software product is used, several user groups can be defined using the
SRPM function unit. Access by users that do not explicitly belong to a different group from
the owner are still evaluated according to the access privileges of the GROUP group (the
owner of a job variable can only belong to a maximum of one group). Access by the users
that explicitly belong to a different user group are then evaluated according to the access
privileges of the OTHERS group.

OTHERS are all user IDs that explicitly belong to a different user group from the owner or
that do not belong to any user group. If SECOS is not used, the access privileges are to be
assigned as for GROUP to avoid changes later on when SECOS is used.

The basic ACL protection attributes are only set when at least one access privilege was
assigned explicitly (basic ACL is activated). The basic ACL protection attributes are shown
in the OWNER, GROUP and OTHERS output fields using the SHOW-JV-ATTRIBUTES
command. The values “R W (read and write), “R -” (read only), “- W” (write only) or “- -” (no
access) are shown for each user class. The fields are only shown when basic ACL is
activated.

The basic ACL protection can be activated, access privileges can be changed or the basic
ACL protection can be deactivated with the CREATE-JV or MODIFY-JV-ATTRIBUTES
command in the basic ACL operand by explicitly setting the access privileges.

A job variable is created without basic ACL by default.

When basic ACL is activated, access control is performed according to the access privi-
leges settings. The shareable and type of access standard protection attributes are not
evaluated in this case.

30

U3616-J-Z2125-10-76

Management of job variables

Access administration for job variables

When SECOS is used, several user groups can exist. This means you can also assign
different access privileges to the group of the owner and other user groups.

When the basic ACL protection is activated for an existing job variable, the user can create
a basic ACL by specifying basic ACL="PREVIOUS that matches the values of the default
access control (see the command MODIFY-JV-ATTRIBUTES in the “Commands”

manual [1]). When a job variable is created, a basic ACL can be created by specifying basic
ACL=*STD in which only the owner has all access privileges.

The macros and their operands used to specify the basic ACL protection are listed in the
following interface overview together with the commands.

Interface overview

Command/Macro

Function

CREATE-JV/CATJV

Create a job variable and specify protection attributes with
the command operands BASIC-ACL (suboperands
OWNER,GROUP and OTHERS), READ-PASSWORD and
WRITE-PASSWORD or with the macro operands
OWNERAR, GROUPAR, OTHERAR, RDPASS and
WRPASS.

MODIFY-JV-ATTRIBUTES / CATJV

Change the protection attributes with the command
operands BASIC-ACL (suboperands OWNER, GROUP
and OTHERS), READ-PASSWORD, WRITE-PASSWORD
and RETENTION-PERIOD or with the macro operands
OWNERAR, GROUPAR, OTHERAR, RDPASS, WRPASS
and RETPD.

SHOW-JV-ATTRIBUTES / STAJV

Output the protection attributes

The job variables can also be selected according to
specific protection attributes using the command operands
BASIC-ACL (sub-operand OWNER, GROUP and
OTHERS), PASSWORD and EXPIRATION-DATE within
SELECT=*BY-ATTRIBUTES(...). On the macro level,
selection is possible in the STAJV macro via the macro
JVSEL with the operands BASACL, OWNERAR,
GROUPAR, OTHERAR, PASS and EXDATE.

ADD-USER-GROUP
(SECOS-command)

Enter user group in the user catalog of a pubset and assign
user IDs to a user group

REMOVE-USER-GROUP
(SECOS-command)

Delete the user group

SHOW-USER-GROUP
(SECOS-command)

Show the user group entry

Table 7: Commands and macros for specifying access protection with basic ACL protection

U3616-J-Z2125-10-76

31

Access administration for job variables Management of job variables

Example
/create—jv jv=jv.develop (1)
/add-user—group group—id=developl,add—group—member=userl (2)

/mod—jv—attr jv=jv.develop,protection=(basic—acl=(
owner=(read=*yes,write=*yes),
group=(read=*yes)
others=(read=*no) (3)

(1) A job variable “jv.develop” is created

(2) A group named “develop1” is created by the owner of the job variable “jv.develop”
and his own user ID (USER1 here) is entered as a member of the group.

(3) Access protection is defined using a basic ACL for the job variable “jv.develop”. The
owner of the job variable has read and write access to the job variable. The
members of the group to which the owner of the job variable belongs (“develop1”)
may only read the job variable. All other user IDs (“others”) may not access the job
variable.

GUARDS protection

Access control for job variables can be done using guards (Generally Usable Access
ContRol ADministration System). This type of access protection only takes effect when the
subsystem GUARDS is loaded (part of the SECOS software product, see [10]). There is no
protection capability for temporary job variables.

Access to a job variable is controlled through a special access profile (guard) that contains
all condition under which access is permitted or rejected (date, time, time period, user ID).
Every access profile is created with the corresponding GUARDS commands and is stored
as an entry in the Guards catalog under a name assigned by the user. Every pubset has a
guard catalog that is managed separately from the user files.

Access to a job variable protected by a guard is only possible when the conditions specified
in the guard entry permit it.

32

U3616-J-Z2125-10-76

Management of job variables

Access administration for job variables

Activating guard protection

Guard protection is activated when a value not equal to *NONE is specified in the GUARDS

operand for a CREATE-JV call.

If guards are not assigned for all access privileges, then the access privileges not specified
are also entered in the file catalog as “not specified” (*NONE). The access control will reject
a corresponding access because no privileges were specified. Write privilege does not
implicitly imply read privileges for GUARDS.

The macros and operands used to specify the GUARDS protection are listed in the following
interface overview together with the commands.

Interface overview

Command/Macro

Function

CREATE-JV/CATJV

— Create ajob variable and activate GUARDS protection
with the READ and WRITE suboperands of the
GUARDS operand (same operand names as for the
CATJV macro)

— Specification of additional protection attributes with
the command operands READ-PASSWORD and
WRITE-PASSWORD or with the macro operands
RDPASS and WRPASS

MODIFY-JV-ATTRIBUTES / CATJV

— Activate/deactivate GUARDS protection with the
READ and WRITE suboperands of the GUARDS
operand (same operand names as for the CATJV
macro)

— Specification of additional protection attributes with
the command operands READ-PASSWORD, WRITE-
PASSWORD and RETENTION-PERIOD or with the
macro operands RDPASS, WRPASS and RETPD

SHOW-JV-ATTRIBUTES / STAJV

Output the protection attributes

The job variables can also be selected according to
specific protection attributes using the command operands
GUARDS (sub-operands READ and WRITE),
PASSWORD and EXPIRATION-DATE within
SELECT=*BY-ATTRIBUTES(...). On the macro level,
selection is possible in the STAJV macro via the macro
JVSEL with the operands GUARDS (suboperands READ
and WRITE), PASS and EXDATE.

CREATE-GUARD
(SECOS-command)

Create a guard (does not contain any protection
mechanism yet)

DELETE-GUARD
(SECOS-command)

Delete a guard

Table 8: Commands and macros used to specify access protection GUARDS (part 1 of 2)

U3616-J-Z2125-10-76

33

Access administration for job variables Management of job variables

Command/Macro Function

ADD-ACCESS-CONDITIONS Specify the access conditions of a guard
(SECOS-command)

MODIFY-ACCESS-CONDITIONS Change the access conditions of a guard
(SECOS-command)

SHOW-ACCESS-CONDITIONS Output the access conditions of a guard
(SECOS-command)

SHOW-ACCESS-ADMISSION Output the access conditions of a guard that are valid for
(SECOS-command) the caller's user ID.

Table 8: Commands and macros used to specify access protection GUARDS (part 2 of 2)

A job variable is linked to a guard entry by entering a guard name in the corresponding
operand of the macro/command (CATJV/CREATE-JV, MODIFY-JV-ATTRIBUTES). The link
is maintained in the catalog entry of the job variable.

Example
/create—guard guard—-name=protjv [@D)
/create—jv guardjv,protection=(guards=(read=protjv,write=*none)) — (2)

/add—access—conditions guard-name=protjv,
subjects=*user(user—identification=mueller),
admission=*parameters(time=*interval (from=07:00,

to=17:00))

(3)
(1) The guard “protjv” is created.

(2) The job variable “guardjv” is created and access protection via GUARDS is
activated through the link to the guard “protjv’. Read protection is controlled through
this guard, write access is not permitted.

(3) It is entered in the guard “protjv” that the user “mueller” may access the job variable
“guardjv” between 7:00 and 17:00.
(If the specified guard does not exist yet, then it is created automatically).

The catalog entry for the guard protection can also be created without the GUARDS
subsystem. However, there are no access privileges for the job variable in this case.

If guard protection is activated for a job variable, then all access types of the GUARD
operand (READ and/or WRITE) that are not explicitly set are set to *NONE. Access via
these access types is not possible then. For example, when /modify—jv—-attributes
jvtest,protection=(guards=(read=protjv)) is executed,
protection=(guards=(read=protjv,write=*none)) is set automatically.

34

U3616-J-Z2125-10-76

Management of job variables Access administration for job variables

Only when a job variable protected by guards is accessed is the check to see if the specified
guard entry (guard name) exists, if it can be used and if the user is permitted to access the
job variable using the corresponding type of access based on this access profile.

Note
A job variable cannot be accessed when protection via guards is entered in the catalog
entry for the job variable but there is still no access profile defined in the guard catalog
for the specified guard name. The same is also true when the catalog entry for access
protection via guards is created without the SECOS software product.

You must have access privileges to access the guards of another user ID. The access privi-
leges for a guard are checked only when this guard is required for access control.

Deactivating guard protection

A guard entry is only deactivated by specifying the operand GUARDS="NONE (in the
CREATE-JV and MODIFY-JV-ATTRIBUTES commands). If the job variable does not have
a basic ACL entry after that, then access protection for the job variable is only controlled by
the default access control, the passwords and the retention period.

U3616-J-Z2125-10-76 35

Access administration for job variables Management of job variables

2.3.3 Default protection (user defined default values)

Specifying values for the protection attributes of job variables should correspond to
commonly prescribed patterns. With the “default protection” SECOS function the user can
define his own default values that can then be used instead of the default system values.
These default values can be specified for a certain user or globally for all pubsets. They are
stored in attribute guards (guards used to specify default values for protection attributes).

Default protection values can be set via the ADD-/MODIFY-DEFAULT-PROTECTION-ATTR
command for the following protection attributes of job variables:

Protection attribute Meaning

ACCESS Default access control (type of access)
USER-ACCESS Default access control (access for external users)
BASIC-ACL Basic access control

GUARDS Access control via guards

READ-PASS-WORD Read password

WRITE-PASSWORD Write password

Table 9: Protection attributes of job variables

Each attribute guard is linked to a rule container that contains the rules that determine to
which job variable names these rules apply. See also the SECOS command ADD-
/MODIFY-DEFAULT- PROTECTION-RULE in the “SECOS” [10] manual. Default protection
is activated by creating a rule container.

Commands and macros to use default protection for job variables

Default protection values for protection attributes are implemented with the command
CREATE-JV PROTECTION=*STD (see the “Commands” manual [1]) or the macro CATJV
..., PROTECT= DEFAULT (see page 92). The *STD or DEFAULT specifications are the
default settings.

If default protection is not activated or /CREATE-JV PROTECTION-ATTR="STD or
CATJV...,PROTECT=STD is specified, then the default system values apply when a job
variable is created (first protection attribute entry). You cannot use the default protection
values for existing job variables. The retention period (EXPIRATION-DATE) cannot be
affected by the first entry with default protection. It is implicitly set to *TODAY by default.

The default protection cannot be applied to temporary job variables.

36

U3616-J-Z2125-10-76

Management of job variables Access administration for job variables

The following are the effects of the PROTECTION-ATTR operand (CREATE-JV command)
or PROTECT operand (CATJV macro) on the default values of protection attributes for job
variables:

— PROTECTION-ATTR=*STD
The default system values are used for the default system values of individual protection
attributes (see table 10) if not explicitly specified otherwise.

— PROTECTION-ATTR="BY-DEF-PROT-OR-STD
— Default protection is active: Use the default protection values (from the attribute
guard)

— Default protection is not active: Use the default system values (see table 10)

Protection attribute Default system value
ACCESS WRITE
USER-ACCESS OWNER-ONLY
BASIC-ACL NONE

GUARDS NONE
READ-PASSWORD NONE
WRITE-PASSWORD NONE

Table 10: Default system values for job variable protection attributes

Example

/add-default-protection—-attr guard-name=defprot,user—access=*all-users (@D)]
/show—-default-protection—-attr d* (2)
%

%GUARD :20SG:$USER1.DEFPROT DEFAULT PROTECTION
ATTRIBUTES

%

% % SCOPE: CREATE-OBJECT % SCOPE: MODIFY-OBJECT-ATTR
% % %

%ACCESS % *SYSTEM-STD % *SYSTEM-STD

%USER-ACCESS % *ALL-USERS % *ALL-USERS

%BASTC—ACL % *SYSTEM-STD % *SYSTEM-STD

%GUARDS % *SYSTEM-STD % *SYSTEM-STD
%READ—PASSWORD % *SYSTEM-STD % *SYSTEM-STD
BZWRITE-PASSWORD % *SYSTEM-STD % *SYSTEM-STD
%EXEC—PASSWORD % *SYSTEM-STD % *SYSTEM-STD
%DESTROY-BY-DELETE % *SYSTEM-STD % *SYSTEM-STD
%sSPACE-RELEASE-LOCK % *SYSTEM-STD % *SYSTEM-STD
%EXPIRATION-DATE % *SYSTEM-STD % *SYSTEM-STD
%FREE-FOR-DELETION % *SYSTEM-STD % *SYSTEM-STD

%

%GUARDS SELECTED: 1 END OF DISPLAY

U3616-J-Z2125-10-76 37

Access administration for job variables Management of job variables

/add—-default-protection-rule rule-cont-guard=sys.udj,prot-rule=1lstcharequj,

protect-obj=*par(name=j*,attrib—-guard=defprot) (3)
/show—-default-protection-rule (4)
%

%RULE CONTAINER :20SG:$USER1.SYS.UDJ USR ACTIVE DEFAULT
PROTECTION

%

%1STCHAREQUJ OBJECT = J*

% ATTRIBUTES = $USERI.DEFPROT

% USER-IDS = *ANY-USER-ID

%

%RULE CONTAINER SELECTED: 1 END OF DISPLAY
/create-jv jvdefprot (5)
/show-jv—attributes nodefprotjv,inf=*all (6)

%0000000 :20SG:$USERI.JV.DEFPROT

% USER-ACC = ALL-USERS ACCESS = WRITE

% CRE-DATE = 2010-08-13 EXPIR-DATE = 2010-08-13
% CRE-TIME = 14:38:42 EXPIR-TIME = 00:00:00
% READ—-PASS = NONE

% WRITE-PASS = NONE

%SUM 00001 Jv'S; JV-VALUE = 00000000 BYTES

/create—-jv nodefprotjv (7)
/show—jv—attributes nodefprotjv,inf=*all (8)
%0000000 :20SG:$USER1.NO.JVDEFPROT

% USER-ACC = OWNER-ONLY ACCESS = WRITE

% CRE-DATE = 2010-08-13 EXPIR-DATE = 2010-08-13

% CRE-TIME = 14:41:00 EXPIR-TIME = 00:00:00

% READ-PASS = NONE

% WRITE-PASS = NONE

%SUM 00001 Jv'S; JV-VALUE = 00000000 BYTES

/create-jv jvstd,protection-attr=*std (9)
/show—jv—attributes jvstd,inf=*all (10)
%0000000 :20SG:$USER1.JV.STD-PROT

% USER-ACC = OWNER-ONLY ACCESS = WRITE

% CRE-DATE = 2010-08-13 EXPIR-DATE = 2010-08-13

% CRE-TIME = 14:42:04 EXPIR-TIME = 00:00:00

% READ-PASS = NONE

IS

WRITE-PASS = NONE
%SUM 00001 Jv'S; JV-VALUE = 00000000 BYTES

IS

(1) The attribute guard “DEFPROT” is created and the default value for the ACCESS
protection attribute is also specified.

38 U3616-J-Z125-10-76

Management of job variables Access administration for job variables

(@)

(10)

The default values for the protection attributes are displayed. The values that apply
when a job variable is created are displayed in the “SCOPE: CREATE OBJECT”
column. USER-ACCESS “*ALL-USERS?” is entered for the protection attribute as a
user specific value. The default system values apply to all other protection attributes
(the “SCOPE: MODIFY-OBJECT-ATTR” column does not apply to job variables, it
only applies to files).

The default protection rule “1STCHAREQUJ” is added to the rule container
“SYS.UDJ” (J stands for job variable). You specify via "PROTECT-
OBJ=*PAR(NAME=j*,ATTRIB—GUARD=DEFPROT" that this rule applies to all job
variables whose name begins with J and that the job variables for which this rule
applies are to obtain their default values from the “DEFPROT” attribute guard.

The properties of the rule container and the rules it contains are displayed.

The job variable “JV.DEFPROT” is created. Its name abides by the rule
“1STCHAREQUJ” and therefore the default values are taken from the “DEFPROT”
attribute guard.

You can see that the values came from the “DEFPROT” attribute guard in the
USER-ACCESS attribute: The value “ALL-USERS” is not a default system value.

The job variable “NO.DEFPROT” is created. Its name does nor abide by the rule
“1STCHAREQUJ” and therefore the default system values are used as the default
values.

You can see that the default values are default system values in the USER-ACCESS
attribute: The value “OWNER-ONLY” is a default system value.

The job variable “JV.STD-PROT” is created. Its name abides by the rule
“1STCHAREQUJ”, but the use of the default system values is forces by specifying
"PROTECTION-ATTR=*STD".

You can see that the default values are default system values in the USER-ACCESS
attribute: The value “OWNER-ONLY” is a default system value.

Default protection and monitor job variables

The default protection also applies to monitor job variables. If a protection attribute is set by
the default protection that prevents further access (e.g. using system commands), then the
default protection setting must be changed by the user. For example, in the MONJV handler
a new monitor job variable to be created is only set to USER-ACCESS="ALL-USERS when
default protection does not explicitly set USER-ACCESS=*0OWNER-ONLY.

U3616-J-Z2125-10-76

39

Access administration for job variables Management of job variables

2.3.4 Particularities when monitoring and controlling jobs

Job monitoring

Job variables which monitor a job are protected against deletion and modification of
protection attributes. This protection exists from the time of declaration as a monitoring job
variable until termination of the monitoring function.

The monitoring function ends for an individual job when the job is terminated. For the follow-
up job of a repeat job the monitoring function begins again with the LOGON of the follow-
up job and ends when the job is terminated.

In the case of a calendar job, the monitoring function ends only when the entire calendar
job has been terminated.

A privileged user (TSOS privilege) can also terminate monitoring of a job prematurely with
the MODIFY-JOB-OPTIONS command or transfer it to another job variable. In this case
protection ends with the loss of the monitoring function.

The protection is indicated in a special output line by means of the SHOW-JV-ATTRIBUTES
command. If you enter SELECT="BY-ATTRIBUTES(MONJV=*YES) the job variables which
are protected in this way are displayed. The protection can be explicitly canceled via
MONJV-PROTECTION in the MODIFY-JV-ATTRIBUTES command. if protection is
removed, then the job variable monitoring the job cannot be supplied with current values.
Some components (e.g. JMS) therefore set the protection at each access.

Conditional job control

Job variables which are used in conditional commands or macros during conditional job
control are protected against deletion and against modification of the protection attributes.

The protection is not displayed separately in the output of the SHOW-JV-ATTRIBUTES
command. However, when SELECT="BY-ATTRIBUTES(CJC-PROTECTION=*YES) is
specified, the output can be reduced so that only those job variables are displayed for which
this protection exists.

The protection lasts for as long as a job variable is used in a condition (e.g. from the
activation of the CJC command sequence until its termination, or until the sequence is
deleted, or until the wait time of a WAIT command has expired).

40 U3616-J-Z2125-10-76

Management of job variables

Loss of access to a JV

2.4 Loss of access to a job variable

The following table indicates how the system responds if it is not possible to access a job

variable that is in use.

Situation

The job variable is in the catalog of a different
processor, the connection to which has been
interrupted.

The catalog was entered in the MRSCAT of the
home computer by means of:
ADD-MASTER-CATALOG-ENTRY or via
MODIFY-MASTER-CATALOG-ENTRY and the
following operands:

The job variable is in a catalog which was
exported by means of EXPORT-PUBSET.
The following operands were specified:

DIALOG-WAIT= value
BATCH-WAIT= value

TERMINATE-JOBS=
NO

TERMINATE-JOBS =
YES

or additionally a
FORCE-PUBSET-
EXPORT

Resp

onse

The command (or also the macro) which wants to
access the catalog waits the specified time, then
execution is aborted with an error (spin-off). A
wait time with the value zero results in immediate
abortion.

Without error handling, this results in termination
of the procedure or batch job.

If error handling take place, the next catalog entry
once again leads to the defined wait time.

A current job or the
program can terminate
the access

A current job is termi-
nated immediately

Default: value=30 seconds
value=28800 seconds

initiated (termination)

The catalog is not available for jobs still being

Table 11: System response to failure to access a job variable

Further information on the use of job variables in a multiprocessor network, along with
possible situations precipitating a loss of access, can be found in the manual “HIPLEX

MSCF” [8].

U3616-J-Z2125-10-76

41

Values of the user job variables Management of job variables

2.5

2.6

Values of the user job variables

Any combination of characters, either in character or hexadecimal form, can be assigned
by the user as the value for a job variable. This information must not exceed a length of
256 characters (bytes). It is possible to address the entire length of the job variable or, if
only a certain part of the job variable is needed, to address this part by specifying subareas.
A subarea of the job variable is defined by specifying the position of the first character and
the length of the subarea.

In commands, the job variable values are specified in the same format as character and
hexadecimal constants in Assembler language, e.g. C'ABC' or X'C1C2C3'.
Hexadecimal constants of uneven length are padded on the right with a binary zero.

Note

When character constants are entered, a distinction is made between uppercase and
lowercase letters.

This should be noted particularly when using conditional expressions in job control (see
page 82) and when entering parts of commands from job variables (see page 70).

Saving user job variables

The data backup functions in BS2000/0SD-BC and in the software products ARCHIVE and
HSMS also support the data backup of job variables. If job variables are lost (e.g. accidental
deletion or overwriting), the job variables concerned can be reconstructed using a backup

copy.

Pubset backup with snapsets

A snapset is a backup copy of an SF or SM pubset based on snap units. Each snap unit of
the snap set is a backup of the assigned original disk of the pubset. Snapsets are used as
pubset backups against failure of files and job variables and are generated during pubset
operation by system support or the HSMS administrator and later deleted. The snapsets
can be used as a logical backup of all files and job variables of a pubset. The latest snapset
can also be used in the same way as a physical backup for pubset restoration on a disk
basis.

For detailed information on pubsets refer to the Introductory Guide to Systems Support [3].

The command LIST-JV-FROM-SNAPSET provides information about job variables saved in
a snapset (in the same way as SHOW-JV-ATTRIBUTES provides information about job
variables from the current file catalog). The command is described in the “Commands”
manual [1].

42

U3616-J-Z2125-10-76

Management of job variables Values of the user job variables

If job variables are lost (e.g. accidental deletion or overwriting), the job variables concerned
can be reconstructed on the basis of a snapset:

e The LIST-JV-FROM-SNAPSET command provides information on job variables which
were backed up on a snapset (such as SHOW-JV-ATTRIBUTES, which supplies infor-
mation on job variables from the current file catalog).

At program level, a query using the LIFSNAP macro is possible.

e The RESTORE-JV-FROM-SNAPSET command restores job variables to the status of
a particular snapset or to the most up-to-date status on the basis of all existing snap-
sets. Renaming takes place here using the NEW-JV-NAME operand. The other options
for overwriting (REPLACE option) and controlling log output (OUTPUT, REPORTING
operands) are available in the same way as when restoring files.

At program level, reconstruction using the ROIFSNAP macro is possible.

A detailed description of the commands and macros is provided in the “Commands” [1] and
“DVS Macros” manuals [5].

The command RESTORE-JV-FROM-SNAPSET restores job variables to the state of a
particular snapset or to the latest state based on all available snapsets. Renaming is via the
NEW-JVNAME operand here.

Further options for overwriting (REPLACE operand) and controlling the logging output
(OUTPUT and REPORTING operands) are available as for restoring files. The command is
described in the “Commands” manual [1].

Data backup with ARCHIVE and HSMS

Along with the saving of files, saving of user job variables can also be performed in the
automatic backup runs of a computer center by systems support or by the HSMS
administrator by means of ARCHIVE or HSMS.

In addition, users can also save their own job variables by means of ARCHIVE or HSMS.

If job variables are lost (e.g. accidental deletion or overwriting), the job variables concerned
can be reconstructed on the basis of a backup copy.

A detailed description of the necessary statements can be found in the manuals
“ARCHIVE” [11] and “HSMS” [12].

U3616-J-Z2125-10-76 43

Special job variables Management of job variables

2.7 Special job variables

Special job variables are items of system information which the user can read like job
variables. Special job variables can be addressed via the dummy user ID SYSJV. No
genuine user ID $SYSJV may therefore exist in the system.

There is no catalog entry for special job variables. The path name structure cannot
therefore be used. A catalog ID must not be specified.
The names of special job variables are displayed in the form “$SYSJV.<jvname>".

In the command SHOW-JV-ATTRIBUTES, the entry “JV-NAME=$SYSJV.<jvname>" can
also contain wildcards. Specifying “6SYSJV.” causes the names of all special job variables
available in the system to be output.

With INFORMATION="ALL-ATTRIBUTES, the format of special job variables is desribed in
an additional output line. The description appears in the currently set task language:
English or German (this can be set task-specifically with the command /MODIFY-MSG—
ATTRIBUTES; see the “Commands” manual [1]).

Special job variables can only be read. Their use is possible only in the following
commands:

— MODIFY-JV in the SET-VALUE operand (value transfer)

— MODIFY-JV-CONDITIONALLY in the SET-VALUE operand (value transfer)
— SHOW-JV in the JV-CONTENTS operand (value output)

— SKIP-COMMANDS in the CONDITION operand (in conditional expressions)

Special job variables can also be used in inputing command sections from job variables
(see section “Input from job variables” on page 70).

Access to a special job variable is only possible if the desired item of information also exists
in the system. For example, no program name can be output if the interrogating job has not
loaded a program ($SYSJV.PROGNAME). In this case the user receives message
JVS04B2 indicating that the desired special job variable is “empty” (if zero characters is
possible in the following output format). The following two tables list all special job variables.
The first table is sorted alphabetically and the second table (starting on page 49) is sorted
by category. The second table does not contain descriptions of the special job variables.

44

U3616-J-Z2125-10-76

Management of job variables

Special job variables

Special job variables sorted alphabetically

Name Output format Contents

$SYSJV.ACCOUNT 1-8 characters Account number of the running task

$SYSJV.COUNTER 4 characters, 0001-9999 | Task specific counter 1

$SYSJV.DATE yy-mm-ddiii Current date (ISO format) and the day
(iii) in the current year

$SYSJV.DATE4 yyyy-mm-ddiii Current date (ISO4 format) and the day
(iii) in the current year

$SYSJV.DATE-ISO4 yyyy-mm-dd Current date (ISO4 format)

$SYSJV.DATE-TIME-LONG

yyyy-mm-dd hh:mm:ss

Current date and time (format for text
output)

$SYSJV.DATE-TIME-SHORT

yyyy-mm-dd.hhmmss

Current date and time (format for file
names)

$SYSJV.DATUM dd.mm.yyyy Current date (German format)
$SYSJV.DAY MON, TUE, WED, THU, |Current day of the week, English
FRI, SAT, SUN

$SYSJV.HOME-CATID

1-4 characters

Catalog ID of the home pubset

$SYSJV.HOST

1-8 characters

BCAM name of the local host,
e.g. DO46ZE08

$SYSJV.JOB-CLASS

1-8 characters

Job class of the current task

$SYSJV.JOB-ELAPSED-TIME

-dddddddddd-hh:mm:ss

Time passed since the start of the job
(see $SYSJV.JOB-LOGON), where “d”
is the number of days; the number of
seconds is not exact, as the time of the
job start is only shown to the nearest
minute:

e.g. with a start time of 12:31:34 the
value after 20 Seconds is
-0000000000-00:00:54

$SYSJV.JOB-LOGON

yyyymmdd.hhmm

Time of the start of the job,
e.g. 20010112.0901

$SYSJV.JOB-LOGON-ISO

yyyy-mm-dd hh:mm

Job start time (ISO format)
e.g. 2000-01-12 09:01

$SYSJV.JOB-MONJV

0-54 characters

Name of the job monitoring job variable
MONJV

$SYSJV.JOBNAME

0-8 characters

Job name of the running task

Table 12: Special job variables sorted alphabetically (part 1 of 4)

U3616-J-Z2125-10-76

45

Special job variables

Management of job variables

Name

Output format

Contents

$SYSJV.JOB-SOURCE

1-54 characters

Path of the original source file (ENTER-
or procedure file, also displayed in the
field ORIGFILE in /[SHOW-JOB-
STATUS)

$SYSJV.JOB-SPOOLIN

yyyymmdd.hhmm

Time of the job spoolin
e.g. 20012212.0901

$SYSJV.JOB-SPOOLIN-ISO

yyyy-mm-dd hh:mm

Time of the job spoolin (ISO format)
e.g. 2000-01-12 09:01

MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC

$SYSJV.MONAT JAN, FEB, MRZ, APR, Current month, German
MAI, JUN, JUL, AUG,
SEP, OKT, NOV, DEZ

$SYSJV.MONTH JAN, FEB, MAR, APR, Current month, English

$SYSJV.PERS-ID

0-8 characters

Personal ID for personal logons

$SYSJV.PRINCIPAL

1-256 characters

Principal name of the Kerberos identifi-
cation in the dialog logon

$SYSJV.PRIO

1-3 digits

Priority of the running task

$SYSJV.PROCESSOR

0-8 characters

Processor name of the TIAM station;
e.g. DO46KR11

$SYSJV.PROCESSOR-APPL

0-8 characters

Processor name of the TIAM station in
an application (e.g. OMNIS);
e.g. DO16ZE04

$SYSJV.PROC-LEVEL

1-3 characters

Procedure level

$SYSJV.PROC-SOURCE

1-54 characters

Path name of the copy of the source file
(copied ENTER or procedure file, also
shown in the field CMDFILE of /SHOW-
JOB-STATUS)

$SYSJV.PROG-MONJV

0-54 characters

Name of the program-monitoring
MONJV

$SYSJV.PROGNAME

0-41 characters

Name of the loaded program if this was
loaded from an LMS library or as a * file

$SYSJV.REMAINING-
BS2000-RUNTIME

5 characters: UNDEF,
UNLIM or hh:mm

Remaining runtime which is available to
the BS2000 system to shut down before
the real or virtual machine is stopped;
supported on SQ servers; on other
BS2000 servers the value is always
UNDEF.

$SYSJV.SNO

3 characters

System session number

Table 12: Special job variables sorted alphabetically (part 2 of 4)

46

U3616-J-Z2125-10-76

Management of job variables

Special job variables

Name Output format Contents
$SYSJV.STARTUPTYPE 1 characters Startup type,

eg.Z,FC,W,S
$SYSJV.STATION 0-8 characters Station name of the TIAM station;

e.g. DSB11243

$SYSJV.STATION-APPL

0-8 characters

Station name of the TIAM station in an
application
(e.g. OMNIS); e.g. BT200175

$SYSJV.STATIONTYPE

0-8 characters

Device type of the TIAM station,
e.g. 9750 DDT

$SYSJV.STD-CATID

1-4 characters

Standard user catalog identifier (default
pubset)

$SYSJV.SYSCMD 1-54 characters Name of the assigned file or logical
system file in parentheses
$SYSJV.SYSDTA 1-54 characters Name of the assigned file or logical

system file in parentheses

$SYSJV.SYSID

1-3 characters

System identifier 2

$SYSJV.SYSLST 1-54 characters Name of the assigned file or logical
system file in parentheses
$SYSJV.SYSOUT 1-54 characters Name of the assigned file or logical

system file in parentheses

$SYSJV.SYSTEM-VERSION

10 characters

System version number
e.g. V17.0A00pp with pp=PVLU

$SYSJIV.TAG

MO, DI, MI, DO, FR, SA,
SO

Current day of the week, German

$SYSJV.TASK-CPU-USED

SSSSSS.SSSS

Current CPU time for the task since
LOGON

LONG

$SYSJV.TASK-CPU-USED-

SSSSSSSSSS.SSSS

Current CPU time for the task since
LOGON for so-called "long-running
transactions"

$SYSJV.TASK-MODE

2-6 characters:
BATCH, DIALOG,
SYSTEM, TP

Mode of the running task

$SYSJV.TEMP-PREFIX

1 character

Prefix for temporary job variables and
files, e.g. #

$SYSJV.TIME

hh:mm:ss

Current time

Table 12: Special job variables sorted alphabetically (part 3 of 4)

U3616-J-Z2125-10-76

47

Special job variables

Management of job variables

Name

Output format

Contents

$SYSJV.TIME-ZONE

+hh:mmii

Time difference between the local time
zone and GMT, where the indicator “i”
shows the current time:

— W (winter=standard time)

— S (summertime)

$SYSJIV.TIMESTAMP

yyyy-mm-ddhhmmss

Time stamp with date and time (UTC) in
the same format as in a MONJV

$SYSJV.TOMORROW

yyyy-mm-dd

Tomorrows date

$SYSJV.TSN

4 characters

TSN of the running Task

$SYSJV.USERID

1-8 characters

User ID of the running Task

$SYSJV.VIRTUAL-HOST

0-8 characters

BCAM name of the virtual host (a value
is only returned for TIAM V13.0 and
higher)

$SYSJV.YESTERDAY

yyyy-mm-dd

Yesterdays date

$SYSJV.ZEIT

hh-mm-ss

Current time

Table 12: Special job variables sorted alphabetically (part 4 of 4)

1 Initialized to zero and incremented by one prior to each read access within a task; it thus contains values which
are unique only within a task, e.g. for label generation.

2 A code assigned to a home pubset.

48

U3616-J-Z2125-10-76

Management of job variables

Special job variables

Special job variables sorted by category

Category Name Output format

Date/time $SYSJV.DATE yy-mm-ddiii
$SYSJV.DATE4 yyyy-mm-ddiii
$SYSJV.DATE-ISO4 yyyy-mm-dd

$SYSJV.DATE-TIME-LONG

yyyy-mm-dd hh:mm:ss

$SYSJV.DATE-TIME-SHORT

yyyy-mm-dd.hhmmss

$SYSJV.DATUM dd.mm.yyyy
$SYSJV.DAY MON, TUE, WED, THU, FRl,

SAT, SUN
$SYSJV.MONAT JAN, FEB, MRZ, APR,

MAI, JUN, JUL, AUG,

SEP, OKT, NOV, DEZ
$SYSJV.MONTH JAN, FEB, MAR, APR,

MAY, JUN, JUL, AUG,

SEP, OCT, NOV, DEC
$SYSJIV.TAG MO, DI, MI, DO, FR, SA, SO
$SYSJV.TIME hh:mm:ss
$SYSJV.TIME-ZONE +hh:mmii
$SYSJV.TIMESTAMP yyyy-mm-ddhhmmss
$SYSJV.TOMORROW yyyy-mm-dd
$SYSJV.YESTERDAY yyyy-mm-dd
$SYSJIV.ZEIT hh-mm-ss

Job information $SYSJV.ACCOUNT 1-8 characters
$SYSJV.COUNTER 4 characters, 0001-9999

$SYSJV.JOB-CLASS

1-8 characters

$SYSJV.JOB-ELAPSED-TIME

20 characters

$SYSJV.JOB-LOGON

13 characters

$SYSJV.JOB-LOGON-ISO

16 characters

$SYSJV.JOBNAME

0-8 characters

$SYSJV.JOB-SOURCE

1-54 characters

$SYSJV.JOB-SPOOLIN

13 characters

$SYSJV.JOB-SPOOLIN-ISO

16 characters

$SYSJV.PERS-ID

0-8 characters

Table 13: Special job variables sorted by category (part 1 of 2)

U3616-J-Z2125-10-76

49

Special job variables

Management of job variables

Category Name Output format

Job information (cont.) $SYSJV.PRINCIPAL 1-256 characters
$SYSJV.PRIO 1-3 digits
$SYSJV.PROC-SOURCE 1-54 characters
$SYSJV.PROGNAME 0-41 characters

$SYSJV.STD-CATID

1-4 characters

$SYSJV.TASK-CPU-USED

11 characters, ssssss.ssss

$SYSJV.TASK-CPU-USED-LONG

15 characters, sss5555555.5SSS

$SYSJV.TASK-MODE

2-6 characters:
BATCH, DIALOG, SYSTEM, TP

$SYSJV.TSN

4 characters

$SYSJV.USERID

1-8 characters

Information on job variables

$SYSJV.JOB-MONJV

0-54 characters

$SYSJV.PROG-MONJV

0-54 characters

$SYSJV.TEMP-PREFIX

1 characters

System files and procedures

$SYSJV.PROC-LEVEL

1-3 characters

$SYSJV.SYSCMD 1-54 characters
$SYSJV.SYSDTA 1-54 characters
$SYSJV.SYSLST 1-54 characters
$SYSJIV.SYSOUT 1-54 characters
TIAM-Information $SYSJV.HOST 1-8 characters
$SYSJV.PROCESSOR 0-8 characters
$SYSJV.PROCESSOR-APPL 0-8 characters
$SYSJV.STATION 0-8 characters
$SYSJV.STATION-APPL 0-8 characters
$SYSJV.STATIONTYPE 0-8 characters

$SYSJV.VIRTUAL-HOST

0-8 characters

System data

$SYSJV.HOME-CATID

1-4 characters

$SYSJV.REMAINING-BS2000-
RUNTIME

5 characters: UNDEF, UNLIM or
hh:mm

$SYSJV.SNO

3 characters

$SYSJV.STARTUPTYPE

1 characters

$SYSJV.SYSID

1-3 characters

$SYSJV.SYSTEM-VERSION

10 characters

Table 13: Special job variables sorted by category (part 2 of 2)

50

U3616-J-Z2125-10-76

Management of job variables Special job variables

Exit 033 for special job variables

This exit routine is called when a special job variable that is not supported by the system is
accessed. The access can be made either via the SHOW-JV and MODIFY-JV commands
or using the GETJV and SETJV macros. Values for the special job variable which are
destined for the person using the command can be passed in this exit routine. This makes
it possible to implement separate special job variables.

The address of parameter area EX033 is passed in register 1. The JVSXJV field of the
parameter area contains the name of the special job variable requested by the user.

The following information is passed to the exit routine:
R1 = A(EX033 parameter list)

R12 = A(TPR Program Manager)

R13 = A(Backup area of the calling component)
R14 = A(Indirect return)

R15 = A(Exit routine)

Return information

Return information for the calling system component can be supplied in the parameter list.
The length of the information (1-256) can be entered in the JVSXLEN field, the contents of
the special job variable in the JVSXVAL field. The maincode in the standard header must
be set to X'0000'.

If no exit routine has been specified or the maincode is not equal to X'0000', the following
message is displayed:

% JVS0472 NAME OF SPECIAL JOB VARIABLE NOT PERMITTED. CORRECT COMMAND

DSECT

A DSECT for the parameter list (address in register 1) can be created using the EX033
macro.

EX033 EX033 MF=D

EX033 MFTST MF=D,PREFIX=J,MACID=VSX,ALIGN=F, C
DMACID=VSX, SUPPORT=(D,C,M,L),DNAME=VSXPL

EX033 DSECT ,
* fHHHEHE PREFIX=J, MACID=VSX #H###

JVSXMIN EQU 1 MIN. LENGTH

*

JVSXMAX EQU 256 MAX. LENGTH

*

* end parameterarea

U3616-J-Z2125-10-76 51

Special job variables Management of job variables

JVSXHDR FHDR MF=(C,JVSX), EQUATES=NO STANDARDHEADER
JVSXHDR DS 0A

JVSXFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER

*

JVSXIFID DS 0A 0 INTERFACE IDENTIFIER

JVSXFCTU DS AL2 0 FUNCTION UNIT NUMBER

* BIT 15 HEADER FLAG BIT,

* MUST BE RESET UNTIL FURTHER NOTICE
* BIT 14-12 UNUSED, MUST BE RESET

* BIT 11-0 REAL FUNCTION UNIT NUMBER
JVSXFCT DS ALl 2 FUNCTION NUMBER

JVSXFCTV DS ALl 3 FUNCTION INTERFACE VERSION NUMBER
*

JVSXRET DS 0A 4 GENERAL RETURN CODE

JVSXSRET DS 0ALZ 4 SUB RETURN CODE

JVSXSRZ DS ALl 4 SUB RETURN CODE 2

JVSXSR1 DS ALl 5 SUB RETURN CODE 1

JVSXMRET DS 0ALZ 6 MAIN RETURN CODE

JVSXMRZ DS ALl 6 MAIN RETURN CODE 2

JVSXMRL DS ALl 7 MAIN RETURN CODE 1

JVSXFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
*

* main return codes

JVSXSUCC EQU O NO ERROR DETECTED

JVSXREJE EQU 1 INVALID SPECIAL JV

*

JVSXJV DS CL54 NAME OF THE SPECIAL JV
JVSXLEN DS H RETURNED LENGTH OF JV-VALUE
JVSXUNU DS XL2 UNUSED

JVSXVAL DS CL256 RETURNED VALUE OF THE SPECIAL
* Jv

JVSXUNUL DS XL2 UNUSED

JVSX# EQU *-JVSXHDR

52 U3616-J-Z2125-10-76

Management of job variables Job/program monitoring using job variables

2.8

Job/program monitoring using job variables

The job variables concept is designed primarily for the exchange of information between the
jobs of a user. With the aid of these variables, so-called job chains or job networks can be
set up. Any number of interdependencies between jobs can be mapped onto job variables
so that job start, monitoring of progress (job trace), job restart etc. are practically automatic.
Job variables can be created, updated and interrogated on program level via the macro
interface. This information can likewise be used for job control.

An additional use of job variables within BS2000 is the monitoring of job/program execution
in the system. To do this, the user must define a job variable as a monitoring JV in the
MONUJV operand of the following commands (for more information on job monitoring see
page 64).

MONJV operand in job-monitoring commands:

— ENTER-JOB

— ENTER-PROCEDURE

— PRINT-DOCUMENT

— SET-LOGON-PARAMETERS

— TRANSFER-FILE (see “openFT’[15])

MONJV operand in program-monitoring commands:

— LOAD-EXECUTABLE—PROGRAM (resp. LOAD—PROGRAM)
— RESTART-PROGRAM
— START-EXECUTABLE—PROGRAM (resp. START-PROGRAM)

Privileged users can define a monitoring job variable in the following commands:

— CLEAR-VOLUME (see “SPACEOPT” [16])
— CREATE-VM (see “VM2000” [17])

— EXPORT-PUBSET

— EXTEND-VM-MEMORY (see “VM2000” [17])

— FORCE-PUBSET-EXPORT

— IMPORT-PUBSET

— MODIFY-JOB-OPTIONS

— REDUCE-VM-MEMORY (see “VM2000” [17])

— START-SPACEOPT-JOB (see “SPACEOPT” [16])
— START-SUBSYSTEM

The operating system then assigns fixed, predefined values to this job variable at certain
times. These values can be interrogated by the user within a command sequence in order
to follow and, if necessary, influence the processing of the job/program.

U3616-J-Z2125-10-76 53

Job/program monitoring using job variables Management of job variables

2.8.1

A monitoring job variable can be used in the following commands to identify a job:

— CANCEL-FILE-TRANSFER (see “openFT” [15])
— CANCEL-JOB

— CANCEL-PRINT-JOB

— CHANGE-TASK-PRIORITY

— CANGE-TASK-CPU-LIMIT

— FORCE-JOB-CANCEL

— HOLD-JOB

— HOLD-TASK

— MODIFY-JOB

— MODIFY-JOB-OPTIONS

— MODIFY-PRINT-JOB-ATTRIBUTES

— MOVE-TASK-TO-CATEGORY

— RESUME-JOB

— RESUME-PRINT-JOB

— RESUME-TASK

— SHOW-JOB-STATUS

— SHOW-FILE-TRANSFER (see “openFT" [15])
— SHOW-PRINT-JOB-ATTRIBUTES

— SHOW-RESOURCE-ALLOCATION

Up to the end of the job to be monitored, the job variable entry contains the note that the
job variable has a monitoring function. The job variable entry can then only be changed if
the protection is canceled in the MODIFY-JV-ATTRIBUTES command in the MONJV-
PROTECTION operand. If protection is deactivated, then the job monitoring job variables
cannot be supplied with current values anymore. That is why some components (e.g. JMS)
activate protection each time something is accessed.

Values for monitoring job variables

A monitoring job variable consists of a system section (bytes 1-128) and a user section
(bytes 129-256).

While a job or a program is executing, specific values are set at certain times in the system
section of a monitoring job variable

The fields supplied with values (system section) by the MONJV handler and the system
components are protected against every other write access from the beginning of the job
until the end of the job.

54

U3616-J-Z2125-10-76

Management of job variables

Job/program monitoring using job variables

2.8.1.1

Job monitoring

Job monitoring job variables should, regardless of which interface is used to operate them
(e.g. JMS, SPOOL, BCAM, DSSM) have a uniform structure and uniform contents to the
extent that this is possible. Job monitoring in the sense of this convention are all monitoring
job variables that are not monitoring programs.

The following structure is supported for the system section:

Byte Meaning/possible values Entered by
1-3 Status of the job: System components 1
— 1stcharacter “$”
— 2nd - 3rd characters: “A” to “Z”
From JV V13.0B onwards, “$XY” for example will also be possible
in the future in addition to the previous values “$R”, “$T”, “$A”,
AS$SH and “$M”.
4 Contains the value null (0). MONJV handler
5-8 TSN of the job. System components ')
9-12 Catalog ID of the home pubset. MONJV handler
13-16 | Contains spaces. MONJV handler
17 Type of MONJV: Any character from “A” to “Z” can be chosen System components ")
18-20 | Current system session number MONUJV handler
21-36 | Start of the job (open the MONJV) in GMT time. MONJV handler
Format: yyyy-mm-ddhhmmss
37-52 | Time stamp to be able to log the time of an activity in GMT time | User 2
during a job.
Format: yyyy-mm-ddhhmmss
53-60 | Name of the application to be monitored. User @
61-70 |Reserved.
71-128 | Application specific information. Bytes 105 through 128 may User?
possible be used by the job management system AVAS.

Table 14: Structure of a job monitoring job variable

1 System components that perform the monitoring function (e.g. JMS, SPOOL, DMS).

2 The user can supply these elements via the command MODIFY-MONJV or the macro TIMJV

U3616-J-Z2125-10-76

55

Job/program monitoring using job variables Management of job variables

The TSN and catalog ID serve to identify the monitored job when the name of its job variable
is specified.

Both values are set by the corresponding system components when the job is initiated, i.e.
when either LOGON or ENTER is issued.

The values for the status of the job and catalog ID are always given left-justified and filled
with spaces (X'40"), while the TSN indicator is entered right-justified with leading zeros.
Within the first 128 bytes (system area), all unused bytes are filled with spaces (X'40').

In SPOOL and cancel jobs, parts of the area of the first 128 bytes are required. You will find
more detailed descriptions of the structure of the job variables for spool jobs in the “SPOOL”
manual [13] and for cancel jobs in the “Commands” manual [1]. If the job was terminated
abnormally, the status indicator of a monitoring job variable is set to the value $A. In
addition, the information about the originator in abbreviated form and the comment are
transferred from the TEXT operand of the CANCEL-JOB command to the system part (the
first 128 bytes) of the monitoring job variable.

If the job is started for another user ID, the job variable must also be accessible to this user
ID. If it is not, no status changes can be logged once the job has been accepted. The value
of the status indicator remains on “$S” and the job variable is protected (MONJV protection)
even though the job may have been ended.

An active monitoring job variable cannot simultaneously be assigned as a monitoring job
variable to another job or program.

If access to the monitoring job variable is lost during job processing, the system's response
depends on the status of the catalog containing the JV.

For reasons of job execution security it is advisable to create the monitoring job variable on
the same computer on which the job itself will be processed.

Note
Specifying a temporary job variable, a JV link name or a JV subarea as a monitoring job
variable is not permissible and any attempt to do so will be rejected.

56

U3616-J-Z2125-10-76

Management of job variables Job/program monitoring using job variables

Status values for interactive jobs:

Value Meaning/reason for setting the value

$R The LOGON process was successfully executed and a job was initiated.

$T The job was terminated normally (EXIT-JOB MODE=NORMAL or LOGOFF).

$A The job was terminated abnormally (EXIT-JOB MODE=ABNORMAL, CANCEL-JOB
or system shutdown) or job monitoring was terminated prematurely or transferred to
another job variable (MODIFY-JOB-OPTIONS).

Table 15: Status values for interactive jobs

Status values for batch jobs:

Value Meaning/reason for setting the value

$S The job was entered in the job queue as a result of an ENTER-JOB command after a
successfully completed “SPOOL-IN”.

In the case of the follow-up job of a repeat job, this status does not occur because its
monitoring begins only with the LOGON.

$R The job was selected from the job queue and started.

$M The job was exported from the current job pool with the MOVE-JOBS command

ST The job was terminated normally (EXIT-JOB MODE=NORMAL or LOGOFF).

$A The job was terminated abnormally (EXIT-JOB MODE=ABNORMAL, CANCEL-JOB

or system shutdown) or job monitoring was terminated prematurely or transferred to
another job variable (MODIFY-JOB-OPTIONS).

Table 16: Status values for batch jobs

Examples

The /SHOW-JV command causes the contents of the job monitoring job variable MON.JOB
to be output. The letter J (byte 17) means that the job variable MON.JOB is being used to
monitor a job.

/SHOW-JV JVv=MON.JOB

Ouput: % |$R |0 [1ULW [10SB | J [068 |2010-11-14161559 |2010-11-14161807 | Appl | Info |
Starting at 1 4 5 9 17 18 21 37 53 71
position

The /SHOW-JV command causes the contents of the job monitoring job variable
MON.SPOOL to be output. The letter S (byte 17) means that the job variable MON.SPOOL
is being used to monitor a spool job. For an explanation of all further and additional field
contents, refer to the “SPOOL” manual [13].

U3616-J-Z2125-10-76 57

Job/program monitoring using job variables Management of job variables

2.8.1.2

/SHOW—-JV JV=MON.SPOOL

Ouput: % |$S |0 [1ULW |10SB | S [068 |2010-11-14161559 |2010-11-14161807 | Appl |Info |
Starting at 1 4 5 9 17 18 21 37 53 71
position

IMPORT-PUBSET/EXPORT-PUBSET monitoring

The functions “importing” and “exporting” of public volumes (pubsets) and catalogs are
initiated by means of the IMPORT-PUBSET and EXPORT-PUBSET commands by
privileged users (see page 237). In this case a separate job is created for the required
processing. The processing status can be monitored by means of job variables. Only the
status indicator is supplied with values.

Information on the effects in an MSCF multiprocessor network can be found in the manual
“HIPLEX MSCF” [8].

Status values for IMPORT-PUBSET:

Value Meaning/reason for setting the value

Sl Import job initiated successfully.

$R Pubset imported successfully.

$A Import terminated abnormally.

W For import of a shared pubset, the processor waits for confirmation by the master
processor.

Table 17: Status values for IMPORT-PUBSET

Status values for EXPORT-PUBSET: Monitoring for shared pubset operation

Value Meaning/reason for setting the value

SE Export job started successfully.

$T Export of a pubset completed successfully.

$A Export terminated abnormally or with CANCEL-PUBSET-EXPORT.

Table 18: Status values for EXPORT-PUBSET

Using HIPLEX MSCF allows concurrent shared access to a pubset across a number of
computers. One of the network partners (“sharers”) is nominated as the owner processor
(“master”) of this shareable pubset, and becomes responsible for the administrative tasks
of the network.

On the home pubset of each sharer there is a shared pubset-specific job monitoring job
variable for each shared pubset; this is created when the pubset is imported (if it does not
already exist).

58

U3616-J-Z2125-10-76

Management of job variables Job/program monitoring using job variables

This monitoring job variable can take on the following status values:

Value Meaning/reason for setting the value

$R Shared pubset available. Master switchover successfully completed.

$T Shared pubset is no longer monitored; it will be or has already been exported.
$A Master switchover terminated abnormally, e.g. because master has crashed and

nomination of a new master from the slave processors has failed.

$C Due to master crashing or being shut down, a master switchover has been performed
on the public volume.

Table 19: Status values in shared-pubset mode

2.8.1.3 Program monitoring

Program monitoring job variables are not protected against overwriting. However, the first
128 bytes should not be used here either for user purposes as a system entry can be
overwritten or this part may be overwritten by the system when the status changes.

The operating system sets the following two values in program-monitoring job variables:

Status indicator length: 3 characters
Return code indicator length: 4 characters

The status indicator can have the value “$R”, “$T” or “SA”.

Value Meaning/reason for setting the value

$R The program has been started/loaded or restarted.

ST The program has been executed successfully (macro TERM MODE=NORMAL).

$A The program has been terminated prematurely by a program error or a predefined
error exit (macro TERM MODE=ABNORMAL) or aborted by a CANCEL-PROGRAM
command.

Table 20: Status values for program monitoring

The return code indicator serves to transfer a return code defined by the user on program
level to the job control level. The indicator can be set in the program by means of the TERM
macro. The value is stored left-justified. The default value is for error-free termination.

U3616-J-Z2125-10-76 59

Job/program monitoring using job variables Management of job variables

Example

The command causes the contents of the program-monitoring job variable MONITOR to be
output. The letter P (byte 17) means that job variable is being used to monitor a program.

/SHOW—=JV JV=MONITOR

Output: % | $R ‘ ‘ P ’
Starting at 1 17
position

60 U3616-J-Z125-10-76

Management of job variables Job/program monitoring using job variables

2.8.2

Identifying jobs by means of monitoring job variables

An important function of monitoring job variables is to identify jobs in the commands for job
management (see page 54 for the command list).

In these commands, jobs can be addressed either via the TSN or via a MONJV (monitoring
job variable).

Some of these commands (SHOW-JOB-STATUS, CHANGE-TASK-PRIORITY, CANCEL-
JOB and FORCE-JOB-CANCEL) can be issued on a multiprocessor basis, i.e. they are
effective across more than one computer.

Defining a monitoring job variable in a computer network is useful because the task
sequence number (TSN) of a job is normally not unique in an MSCF network. Using a
monitoring job variable that is unique network-wide can help identify a job wherever it is
running in the MSCF network (see also the manual “HIPLEX MSCF” [8]).

In this case there is no change in the processing characteristics when entering the
monitoring job variable. In particular, users cannot reference other users' jobs, even if they
can access the others' monitoring job variable.

U3616-J-Z2125-10-76 61

Job/program monitoring using job variables Management of job variables

2.8.3 Protecting monitoring job variables

Job variables which are used as monitoring job variables can also be protected against
access like other job variables. In particular, the user can freely allocate passwords for
extended read and write protection.

The system cannot bypass these protection mechanisms when values are to be assigned
to the monitoring job variables. This means that each user is responsible for ensuring that
his or her job variables are accessible. Passwords must therefore be known to the system
when the first access operation is performed (e.g. ADD-PASSWORD command).

If the monitoring job variable cannot be assigned, the job or program is not started.

When monitoring a job or a program, write accesses to monitoring job variables are
necessary in order to set the appropriate values. If access authorization is granted when a
monitoring JV is first accessed, this access right remains assigned to the system for as long
as the job variable is used for monitoring.

This inherited access authorization is restricted to password protection
(READ-PASSWORD/WRITE-PASSWORD).

Changing the protection attributes (e.g. shareability or BASIC-ACL) of job monitoring job
variables is only possible when MONJV protection is deactivated.

The system protects the first 128 bytes (system area) of a job-monitoring job variable
against write access. Certain fields in the system section (see table 14 on page 55) can still
be changed with the command MODIFY-MONUJV or the macro call TIMJV.

The JV entry is also protected against modification. This protection begins with ENTER-
JOB, LOGON or SET-LOGON-PARAMETERS and is canceled at the end of the monitored
job. If this cancellation is not possible, the JV remains locked until the next system initial-
ization or until explicitly released by the user:

/MOD—-JV-ATTR JV-NAME=jvname,PROTECTION=*PAR(MONJV-PROTECTION=*NO)

For the duration of this retention period, the JV cannot be assigned as a monitoring JV to
any other job or program.

During system initialization, access to monitoring job variables is required in the following
instances:

— A monitored job is removed from the job queue. The monitoring job variable is set to $A,
write protection is canceled.

— Ajob was started by means of RERUN-AFTER-CRASH=YES or FLUSH-AFTER-
SHUTDOWN=YES and is still in the job queue. The monitoring job variable remains
protected.

62

U3616-J-Z2125-10-76

Management of job variables Job/program monitoring using job variables

To ensure that the values in monitoring job variables are correct, the variables must be
accessible when the system is initialized. Since more than one pubset can be operated
simultaneously (for details see the manual “Introductory Guide to Systems Support” [3]), the
following should be noted:

A monitoring job variable should reside on the home pubset of the computer on which the
job is executed. Other pubsets cannot be accessed at system initialization time.

If a BS2000 session is terminated abnormally, monitoring job variables indicate the status
of the monitored job or program at the time the last entry was made.

Notes

Note the following when monitoring repeat jobs:

The MONJV contains the TSN and the job status of the first job. The TSN and the job
status of a subsequent repeat are not updated until the point in time at which the repeat
job is started, i.e. at LOGON time. It is not possible to interrogate the status “$S” for
repeat jobs.

This should also be noted when using the MONJV for the identification of jobs (e.g.
CANCEL-JOB). It is necessary to consider whether the job currently running or already
terminated or the repeat job already in type 1 is to be referenced. This repeat job can,
however, only be referenced through the MONJV if it has been started.

In addition, the MONJV is not protected from LOGOFF to the start of the repeat job. The
danger of loss of access in the event of long delays between two repeats is correspond-
ingly high.

By contrast, the following applies to calendar jobs:

The MONUJV is protected for the entire runtime, i.e. also for follow-up jobs of type 1.
The TSN does not change throughout the runtime. From termination of one job to the

start of the next, the MONJV contains the termination status $T or $A of the prede-
Cessor.

U3616-J-Z2125-10-76 63

Job/program monitoring using job variables Management of job variables

2.8.4 Link names of monitoring job variables

When a job variable is defined as a monitoring job variable, a JV-LINK entry is automatically
created with a default link name. Further use of the default link name within the monitored
job or the job calling the program overwrites the entry. Access to the monitoring job variable
via the default link name is thus lost.

Job monitoring:

A job-monitoring job variable (specified in the command ENTER-JOB, ENTER-
PROCEDURE, PRINT-DOCUMENT, SET-LOGON-PARAMETERS or TRANSFER-FILE) is
entered in the JV-LINK table of the job to be monitored with the default link name SMONJVJ
during LOGON processing. The monitoring job variable in commands or macros within the
job can be referenced by means of this link name.

Use of a temporary job variable is not possible.

Program monitoring:

A program-monitoring job variable is entered in the JV-LINK table of the calling job when a
program is started or loaded with the default link name SMONJVP. The monitoring job
variable in commands within the job can be referenced with this link name. The program
can also access the job variable via the link name. The JV-LINK entry exists from the
beginning of monitoring up to the end of the program (TERM or CANCEL-PROGRAM
command). Use of a temporary job variable is possible, but other jobs cannot access it.

64

U3616-J-Z2125-10-76

Management of job variables Conditional job control

2.9 Conditional job control

2.9.1

Conditional job control (CJC) uses job variables and the changes in their values for event-
driven job control. The user can refer to the contents of job variables in conditional
commands. If changes are made to a given job variable (an event occurs), the system
notifies all the jobs in which this JV is used in conditional commands. Even replacing a value
by the same value counts as a change. If the specified condition is satisfied by the occur-
rence of an event, the desired CJC function is executed.

A complex control structure for job chains and job networks can be implemented with the
aid of the functions described below.

Conditions and events

The user can formulate a condition with job variables and constants in the ADD-CJC-
ACTION, SKIP-COMMANDS and WAIT-EVENT commands, and in the ONEVT macro.
Simple conditions can be combined to form complex conditions by means of logical
operators.

The effect of the command depends on the status of the condition in each case (“satisfied”
or “not satisfied”). Changes in this condition status are caused by events, i.e. changes in the
values of the job variables specified there. The system informs the appropriate job of every
event relevant to the condition (e.g. a MODIFY-JV command for a job variable used in the
condition). The condition is evaluated and, if it is “satisfied”, the actions provided for this
case are carried out. The value change can be carried out by any job which possesses the
appropriate access rights for the user job variable. Special job variables which are only
permissible in conditions of the SKIP-COMMANDS command can only be changed by the
system (e.g. date or time).

The order in which the user job is informed of events determines the order in which the
events are processed within the job (i.e. the order of condition analyses). It is not possible
to inform jobs of the creation of job variables. This means that conditional commands whose
job variables do not yet exist are rejected. On the other hand, existing conditional
commands or macros become invalid if the catalog containing the JV is definitively
exported, or if the conditions are explicitly deleted by means of the REMOVE-CJC-ACTION
command or the DONEVT macro.

U3616-J-Z2125-10-76 65

Conditional job control Management of job variables

2.9.2

293

Synchronizing events

Whenever a job changes a number of job variables in succession, these changes are listed
in order of occurrence and analyzed in the same order by all the jobs affected. In a multi-
processor network, unsynchronized value changes to the same job variable caused by a
number of different jobs are not automatically processed in the same order by all the
affected jobs in all the CPUs. If required, the user himself must synchronize these value
changes using the MODIFY-JV-CONDITIONALLY or WAIT-EVENT command.

Commands/macros for conditional job control

SHOW-CJC-STATUS

The user can use this command to obtain information on jobs with currently active applica-
tions of the conditional job control (CJC). The interrogation may be formulated for
processors, catalogs or job variables.

SKIP-COMMANDS

This command causes a branch within the command sequence, depending on the analysis
of a condition specified as an operand.

If a SKIP-COMMANDS occurs in a command sequence, the values of all the job variables
specified in the conditional operand are read immediately and the conditional expression is
analyzed. If the result of the analysis is “condition satisfied”, a branch is made to the
specified point in the command sequence. It is possible to branch to points in the command
sequence which come before or after the SKIP-COMMANDS command. If the analysis
result is “condition not satisfied”, processing continues with the command following the
SKIP-COMMANDS command.

WAIT-EVENT

The WAIT-EVENT command is used to place a job in the wait state until either a specified
condition has been satisfied or a predefined time interval has elapsed. In the latter case the
user can use a label to specify the point at which the job is to be resumed after the interval
has elapsed. The branch destination may be located before or after the WAIT-EVENT
command in the command sequence. If no branch destination is specified, a branch is
made to the next SET-JOB-STEP, EXIT-JOB, LOGOFF, END-PROCEDURE or IF-BLOCK-
ERROR in the command sequence.

66

U3616-J-Z2125-10-76

Management of job variables Conditional job control

ADD-CJC-ACTION

By means of the ADD-CJC-ACTION command a job can wait repeatedly in asynchronous
operation within a given time interval for a specified condition to be satisfied, while
continuing normally with the processing of the next command sequence. Different actions
can be defined for the two cases, “condition satisfied” and “timeout”.

Actions that are permitted include starting jobs (ENTER-JOB), starting procedures
(ENTER-PROCEDURE) and setting job variables (MODIFY-JV)

A CJC command sequence begins with the ADD-CJC-ACTION command and ends with
the END-CJC-ACTION command. Between these commands, two command sequences
for “condition satisfied” and “timeout” may be inserted, with any number of permitted actions
(ENTER-JOB, ENTER-PROCEDURE or MODIFY-JV commands). The command
sequences are stored by the system for subsequent execution. If the “condition satisfied”
event occurs, a command currently being processed is still executed (WAIT-EVENT wait
state is interrupted immediately) and the first CJC command sequence is processed. The
job is then continued normally from the point at which the interruption occurred. Similarly,
the second CJC command sequence is processed if a “timeout” occurs.

If the job is in program mode (including TU contingency), it is immediately interrupted and
the specified CJC command sequence is executed. A return is then made to the point at
which the program was interrupted.

Note

Whenever the “condition satisfied” event occurs, the CJC command sequence is
executed. If several iterations have been specified, a test is carried out before each pass
to check that the condition is still true.

The time interval within which the system is to check the condition (timeout) can also
be specified in the command.

The ADD-CJC-ACTION command remains effective in the system until

— the job is terminated (EXIT-JOB or LOGOFF command) or aborted (CANCEL-JOB
command),

— the maximum number of “condition satisfied” events is reached,

— the time interval expires (timeout),

— the ADD-CJC-ACTION is deleted (REMOVE-CJC-ACTION), or

— acatalog containing one of the job variables involved is exported.

Note

No checkpoint can be written (WRCPT macro) while the ADD-CJC-ACTION command
is effective. A restart (RESTART-PROGRAM command) terminates all ADD-CJC-
ACTION commands still active.

U3616-J-Z2125-10-76 67

Conditional job control Management of job variables

END-CJC-ACTION

The END-CJC-ACTION command is used in the command sequence to terminate the CJC
command sequence. A CJC command sequence begins with an ADD-CJC-ACTION
command and ends with an END-CJC-ACTION command. All the commands which are to
be executed in the case of “condition satisfied” or after expiry of the specified time (timeout)
are contained between these delimiting commands.

After END-CJC-ACTION the CJC command sequence is stored under a job-related local
number. Entering this number deletes a specific CJC command sequence (REMOVE-CJC-
ACTION) again.

REMOVE-CJC-ACTION

When the REMOVE-CJC-ACTION command is specified, either a specific CJC command
sequence or all CJC command sequences still in effect are rendered ineffective (ALL
operand).

All the information stored relating to deleted CJC command sequences is deleted.

ONEVT (macro)

Users can employ the ONEVT macro to make changes in the values of job variables on
program level in order to control the execution of the program. To this end a condition may
be specified as the operand. Each time the value of a job variable used in the program is
changed, the system checks whether the condition has been satisfied. The situation
“condition satisfied” has the characteristics of an event as defined by TU eventing by way
of so-called event items. This means that a corresponding event item must be created first
with the ENAEI macro and either the expected event must be requested with SOLSIG or a
contingency routine must be defined for it.

DONEVT (macro)

The DONEVT macro is used to cancel the ONEVT macro. Since the TIMEOUT value in
SOLSIG can also be employed to stop the system waiting for an ONEVT condition (JV
event), it is advisable (and logically mandatory) to use DONEVT and DISEI to prevent
ONEVT having a “delayed” effect.

Otherwise, if ONEVT and SOLSIG are repeatedly executed using the same event item, this
SOLSIG can be used to request a delayed event of the old ONEVT.

Alternatively, each time the ONEVT macro is called, a different value can be assigned to the
POST operand in order to differentiate events of different ONEVTs and discard old ones.

Further details on the subject of eventing can be found in the “Executive Macros”
manual [4].

68

U3616-J-Z2125-10-76

Management of job variables Conditional job control

The table below shows the application domain for conditional commands and macros.

Command / macro Program Command level
level

Batch mode Interactive mode

Proc. mode | Com.mode | Proc. mode | Com.mode

SHOW-CJC-STATUS -
SKIP-COMMMANDS -
WAIT-EVENT -
ADD-CJC-ACTION -
END-CJC-ACTION -
REMOVE-CJC-ACTION -
ONEVT X -
DONEVT X -- - - -

Table 21: Application domain for conditional commands and macros

X

X | X | X [X | X | X
X | X | X [X | X | X
X | X | X | X | X | X

X | X | X [X

Note

Temporary job variables in the commands/macros for conditional job control are only
possible within the job which creates them.
Access to temporary JVs of another job is not possible.

U3616-J-Z125-10-76 69

Input from job variables Management of job variables

2.10

Input from job variables

A job variable can replace parts of commands or statements. SDF replaces the job variable
with its value prior to execution. The resulting input is checked syntactically by SDF.

Job variable replacement is possible in unguided dialog, in procedures and in batch
operation. In (temporary) guided dialog, replacement is only permissible in the NEXT line
and in the input for operand values.

The job variable is specified:
— directly by its name in the form "&(jv-name)".

— indirectly by its job variable link name in the form "&(*jv-11ink) ". Prior linkage of the link
name with the job variable takes place via the command
SET-JV-LINK LINK-NAME = jv=Tink, JV-NAME = jv-name.

Note
Before job variable replacement, ACS, if required, replaces the alias of a JV by its real
path name (in accordance with the alias catalog entry).

The following restrictions apply to job variable replacement:
— An expression can be replaced only by a job variable in its full length.

— The job variable to be used must have read access, otherwise the input is rejected as
a syntax error.

— Replacement is not possible within CJC command sequences.

— Job variables cannot be substituted for input data. SDF treats statements intended for
programs with SDF interface like commands and not like input data.

— In procedures or ENTER files, job variables cannot replace the leading slash that
precedes commands or the two leading slashes that precede statements, the leading
period of non-S-marks, the semi-colon as command separator and continuation mark.

— Job variables cannot be used as procedure parameters.
This restriction may be circumvented, e.g. by using a link name (see Example 2 below).

— Expressions cannot be nested.

— Ininteractive mode, JV-REPLACEMENT=*AFTER-BUILTIN-FUNCTION is set; i.e. job
variable replacement in the form shown above is performed only if no identically named
S variable or built-in function is known. The replacement is performed in the order:
S variable, built-in function, and, finally, job variable.
When a user or catalog ID is entered in the job variable name, a job variable is uniquely
referenced.

70

U3616-J-Z2125-10-76

Management of job variables Input from job variables

Job variable replacement in S procedures is affected by the JV-REPLACEMENT setting in
the SET-PROCEDURE-OPTIONS command in the following manner:

— In S procedures, JV-REPLACEMENT="NONE is preset; i.e. only S variables or built-in
functions are replaced in the specified order.

— The JV-REPLACEMENT setting can be changed by means of the operand of the same
name in the SET-PROCEDURE-OPTIONS command in S procedures. When JV-
REPLACEMENT="AFTER-BUILTIN-FUNCTION is set, incompatibilities can be
avoided if the JV name is specified with the user ID and/or catalog ID in the previous
form of job variable replacement.

Job variable replacement is also possible using the built-in function JV(). In this case, it is
specified in the form "&(JV(JV-NAME=string_expression,...))". Specification of a
subarea is permissible and optional. See also built-in function JV() in the manual
“Commands” [1].

Example 1: Replacement in dialog

/cre=jv jv=cmd [@D)
/mod-jv jv=cmd,set-value='SHOW-FILE-ATTR' (2)
/&(cmd) (3)
% 3 :20SG:$USERI.ALT.SYS.LOGON.USERPROC. X1

% 51 :20SG:$USER1.ALT.SYSSDF.USER.EXAMPLE.1

% 21 :20SG:$USERI.DATEI.1

% 48 :20SG:$USER1.DATEI.2

% 84 :20SG:$USER1.DATEI.3

% 66 :20SG:$USERI.QUT.SORT1-2

% 3 :20SG:$USERI.PROC.JV

%:20SG: PUBLIC: 7 FILES RES= 276 FRE= 39 REL= 21 PAGES
/mod-jv jv—=cmd,set-value='—-FILE-ATTR FILE-NAME=PROC.' (4)
/set-jv-T1ink link-name=cmdlink,jv—-name=cmd (5)
/sh&(*cmd1ink)

% 3 :20SG:$USERI.PROC.JV (6)
%:20SG: PUBLIC: 1 FILE RES= 3 FRE= 2 REL= 0 PAGES

(1) The job variable name 'CMD" is created.
(2) The job variable CMD contains the value “SHOW-FILE-ATTR”.

U3616-J-Z2125-10-76 71

Input from job variables Management of job variables

(3) After the command has been sent, the variable string is replaced by the command
defined in the job variable and the command is executed.

Note
The job variables are replaced because no S variables or built-in function with
the name “CMD” exists. If a user ID or catalog ID is used in the job variable
name (e.g. “&($userl.cmd)” instead of “&(cmd)”), the job variable “CMD” is
uniquely referenced.

(4) The value of the job variable CMD is changed. It now only contains a part of the
command name “-FILE-ATTR” and the partially qualified file name “PROC.".

(5) The link name “CMDLINK” is assigned to the job variable CMD.

(6) After the command has been sent, the variable string is replaced by the command
part assigned to the job variable and the command is executed. The reference to
the job variable is formed by the link name.

Example 2: Replacement in a non-S procedure

/BEGIN-PROC PAR=YES(PROC—-PAR=(&PARAML)) (1)
/SET=JV-LINK LINK-NAME=PARAMI, JV-NAME=&PARAM1 (2)
/&(*PARAM1) FILE-NAME=LST.JOB (3)
/END—-PROC

(1) The job variable specified by the procedure parameter PARAM1 is to contain the
command to be executed in each case.
Since the specification “&(&PARAM1)” is not permissible, the alternate route via a
link name is taken.

(2) The current job variable name is used for the procedure parameter PARAM1 and is
linked with the link name PARAM1.

(3) The contents of the specified job variable are used for the link name PARAM1. If, for
example, the job variable contains the value PRINT-DOCUMENT the file LST.JOB
is printed out.

72 U3616-J-Z2125-10-76

Management of job variables Input from job variables

Example 3: Replacement in an S procedure

S procedure sproc:

/ SET-PROC-0OPT JV-REPLACE=*AFTER-BUILTIN [@D)
/ DECL-PAR JVY=1(CINIT=*PROMPT) (2)
/ &(JV(JV-NAME=JV-1)) FILE-NAME=LST.JOB (3)
/FEHL: IF-BLOCK—-ERROR

/ WRITE-TEXT C'** Error &MC **'

/ ELSE

/ WRITE-TEXT C'** Command &(&(JV-1)) executed **'

/ END-IF — (4

/ENDE: EXIT-PROC

Calling the sproc procedure:

/create-jv jv=jv.command

/modify-jv jv=jv.command,set-val='SHOW-FILE-ATTRIBUTES'
/call-proc sproc

%JV=1: jv.command

% DMS0533 REQUESTED FILE NOT CATALOGED IN PUBSET '10SN'. COMMAND TERMINATED
% SDP0004 ERROR DETECTED AT COMMAND LINE: 3 IN

PROCEDURE' : 10SN:$USER1.SPROC"

** ERROR DMS0533 ** (5)

(1) The JV-REPLACEMENT operand of the SET-PROCEDURE-OPTIONS command
specifies that job variable replacement is allowed.

(2) Defines the procedure parameter JV-1. The value for this parameter is to be
requested in interactive mode.

(3) Job variable replacement is implemented using the built-in function JV()
(irrespective of the JV-REPLACEMENT setting). When the procedure is called, the
expression &(JV(JV-NAME=JV-1)) is replaced by the value of the job variable
whose name is transferred in the procedure parameter JV-1.

(4) If an error occurs during job variable replacement, the text “** Error” is output with
the corresponding message code (&MC). If the procedure executes without error,
the text of the ELSE loop is displayed. Here too, the expression &(&(JV-1)) is
replaced by the value of the defined job variable. During the first step of the
replacement of &(JV-1), irrespective of the JV-REPLACEMENT setting (JV-1 is
uniquely an S variable), the second step of the replacement is only carried out with
the setting JV-REPLACEMENT=*AFTER-BUILTIN.

(5) The requested file cannot be found in the desired pubset.

U3616-J-Z2125-10-76 73

Input from job variables Management of job variables

74 U3616-J-Z2125-10-76

3 Commands

This chapter lists the BS2000 commands needed in connection with job variables. They are
divided into the following four groups:

— job variables management
— job monitoring

— program monitoring

— conditional job control

The commands for job and program monitoring are summarized together with the relevant
operands in a series of tables.

For a complete description of the command syntax and descriptions of all the
operands, refer to the “Commands” manual [1].

i @

The functionally equivalent macros for the management of job variables are described in
chapter “Macros” on page 87.

U3616-J-Z2125-10-76 75

Job variables management Commands

3.1 Commands for job variables management

Table of commands

Command Macro Function

COPY-JV COPJV Copy job variable

CREATE-JV CATJV Create new job variable

DELETE-JV ERAJV Delete job variable

MODIFY-JV SETJV Modify job variable contents

MODIFY-JV-ATTRIBUTES CATJV Change catalog entry for job variable

MODIFY-JV-CONDITIONALLY CSWJV Modify job variable contents conditionally

MODIFY-MONJV TIMJV Set elements in the system section of a job
monitoring JV

REMOVE-JV-LINK RELJV Delete JV-LINK entry

SET-JV-LINK DCLJV Define job variable link name

SHOW-JV GETJV Output job variable contents

SHOW-JV-ATTRIBUTES STAJV Output job variable attributes

SHOW-JV-LINK LNKJV Output JV-LINK entry

Table 22: Commands for the management of job variables

The commands for managing job variables can be used in interactive mode or batch mode.

A complete description of the commands can be found in the “Commands” manual [1].

76 U3616-J-Z2125-10-76

Commands

Job monitoring

3.2

3.2.1

Commands for job monitoring

This section presents an overview of the commands.

— These are initially commands for which job monitoring by means of job variables is
possible (see table 23)

— There are also commands which perform job management or provide information about
a job. When a job is monitored, it can be named using the name of its monitoring job
variable (MONJV) (see table 24).

A complete description of the commands can be found in the “Commands” manual [1].

Commands for defining job monitoring

The commands below initiate a job (only MODIFY-JOB-OPTIONS refers to an existing job)
and offer the option of defining a job variable for monitoring this job in the MONJV operand.
In addition, a password which is required for job variable access can be specified in the JV-
PASSWORD operand.

Command Function

ENTER-JOB directs the system to execute a command sequence as an inde-
pendent (batch) job (see also Note on ENTER-JOB)

ENTER-PROCEDURE starts a command sequence stored in a procedure file, as a
batch job

MODIFY-JOB-OPTIONS modifies the parameters (logging and job monitoring) of an exis-
ting job (see also Note on MODIFY-JOB-OPTIONS)

PRINT-DOCUMENT initiates a print job

SET-LOGON-PARAMETERS initiates an interactive or batch job (see also Note on ENTER-
JOB)

TRANSFER-FILE transfers a file from the local to the remote system, or vice versa
(see “openFT” [15])

Tabelle 23: Commands for defining job monitoring

Notes on the use of a MONJV

The job variable must not be protected against overwriting.

If the job variable cannot be accessed at the time of command processing, an error
message is output to SYSOUT and the command is rejected. If the specified job variable
does not yet exist under the current user ID, it is created by the system (only if the job is
accepted by the system) and is made shareable.

U3616-J-Z2125-10-76 77

Job monitoring Commands

If the job variable is protected by a password, it can be declared as a monitoring job variable
only if the job submitter has already entered the password in the password table (by means
of ADD-PASSWORD) or specifies it in the JV-PASSWORD operand of one of the
commands listed in table 24 on page 79.

The JV-PASSWORD operand is ignored if no MONJV is declared.

Note on ENTER-JOB

When monitoring a repeat job, the MONJV can only contain one TSN and the associated
job status at a time. Repetition of the repeat job (next job) can only be taken from the start
time of the MONJV. This is especially important when the MONJV is to be used to identify
a job in commands (e.g. CANCEL-JOB).

The status “$S” cannot be queried for job repetitions, since logging begins only at the start
time (with “$R”). It should also be remembered that from the termination of the current job
to the start of the next job, the MONJV is nor protected (risk of loss of access).

Operand entries in the SET-LOGON-PARAMETERS or LOGON command at the start of
the cataloged command sequence are evaluated only if the operand concerned is not spe-
cified in the ENTER-JOB operand and the job is started either at the console or by spe-
cifying DEFAULT-FROM-FILE=*YES. In all other cases a MONJV can consequently only
be defined in the ENTER-JOB command.

A batch job that is to run on a remote processor can only be accessed by a MONJV if each
catalog ID of the home pubset of the partner processor is entered in the MRSCAT of the
processors involved.

Note on SET-LOGON-PARAMETERS

In a batch job, this is the first command in the command sequence to be processed. The
batch job is submitted to the system by means of the ENTER-JOB command.

When a batch job is executed that was not started on the console or by specifying
DEFAULT-FROM-FILE=*YES, the operand entries in the SET-LOGON-PARAMETERS or
LOGON command are not evaluated. In this case a monitoring JV can only be declared by
means of the ENTER-JOB command.

Note on MODIFY-JOB-OPTIONS

Only a privileged user (TSOS privilege) can modify the monitoring of an existing job using
the MODIFY-JOB-OPTIONS command. The privileged user can terminate existing monito-
ring prematurely in the MONJV operand, start monitoring with the specified job variable or,
in the case of existing monitoring, transfer it to the specified job variable.

78

U3616-J-Z2125-10-76

Commands

Job monitoring

3.2.2 Commands for job monitoring

The commands below manage a job or provide information. If the job is monitored by a job
variable, this job can optionally be identified via its monitoring job variable (name or link na-

me) instead of the TSN.

The specification is made in the MONJV operand (with a few exceptions, in the structure
JOB-IDENTIFICATION="MONUJV(...)).

Command

Function

CANCEL-FILE-TRANSFER

cancels a file transfer job running under the current ID or ac-
cessing the current ID (see “openFT” [15])

CANCEL-JOB

cancels an interactive, batch or print job running under the cur-
rent user ID (see also Note on CANCEL-JOB)

CANCEL-PRINT-JOB

cancels a print job running under the current user ID

CHANGE-TASK-PRIORITY

changes the execution priority of a job that has been started

FORCE-JOB-CANCEL

cancels the specified job without delay

HOLD-JOB

places a job that has not yet been started in the wait state

MODIFY-JOB

modifies the attributes of the job (type 1 only)

MODIFY-JOB-OPTIONS

modifies the parameters (logging and job monitoring) of an exis-
ting job

RESUME-JOB

cancels the wait state of the specified job

SET-SYSLST-READ-MARK

sets a read mark in the job’s SYSLST file

SET-SYSOUTREAD-MARK

sets a read mark in the job’s SYSLOUT file

SHOW-FILE-TRANSFER

provides information about a (see “openFT” [15])

SHOW-JOB-STATUS

provides information about a file transfer job

SHOW-RESOURCE-
ALLOCATION

provides information about resources allocated to the job

Tabelle 24: Commands for defining job monitoring

The commands below are rejected if the job variable specified in the JOB-IDENTIFICATION
or SELECT operand does not identify a monitoring job variable. The commands are also
rejected if the monitoring job variable cannot be accessed (protection by password).

The monitoring job variable is automatically entered under the link name SMONJVJ in the
JV-LINK table of the job being monitored. This default link name enables the job to access
its monitoring job variable and the information that it contains, without needing to know the
name beforehand. This is particularly significant for cataloged command sequences when
multiple batch jobs are to run concurrently. It must be noted here that the standard link
name is not assigned explicitly in the job’s command sequence and thus overwrites the
assignment.

U3616-J-Z2125-10-76 79

Job monitoring Commands

Note on CANCEL-JOB

If a job has been terminated abnormally, i.e. the CANCEL-JOB command has been
executed with STEPS="ALL (default setting), the status indicator of a monitoring job
variable is set to the value $A. In addition, the information about the originator is transferred
in shortened form, together with the comment from the TEXT operand of the command, to
the system part (the first 128 bytes) of the monitoring job variable:

— the information about the originator begins at byte 37 and consists of the character
string CAN:info, where info contains the first 27 bytes of the originator information
supplied to SYSOUT;

— the comment begins at byte 70 and consists of the character string TEXT:text, where text
contains the first 51 bytes of the comment specified in the operand.

80 U3616-J-Z125-10-76

Commands

Program monitoring

3.3 Commands for program monitoring

This section provides an overview of commands in which job variables can be defined to
perform program monitoring (see table 25 on page 81).

Command overview

Command Function

LOAD-EXECUTABLE- loads a program (LLM, load or object module) into memory
PROGRAM (or LOAD-PRO-

GRAM)

RESTART-PROGRAM starts a program at its checkpoint (restart)
START-EXECUTABLE- loads and starts a program (LLM, load or object module)
PROGRAM

(or START-PROGRAM)

Table 25: Commands for program monitoring

A complete description of the commands can be found in the “Commands” manual [1].
Additional information on loading and starting programs is contained in the manual
“BLSSERV” [14].

Notes on the use of a MONJV

The job variable must not be protected against overwriting.

If a temporary job variable is used, it should be noted that only the calling job has access
to the monitoring job variable.

If the job variable does not exist, it is created.

If the job variable exists at the time the command is entered, but cannot be accessed
because of a serious error (e.g. catalog destroyed), a message is output to SYSOUT
and the command is rejected.

The default link name SMONJVPenables the program to access its monitoring job
variable without the name needing to be known when the program is written. It should
be noted that assigning the default link name a second time in the job results in this
assignment being overwritten.

U3616-J-Z2125-10-76 81

Conditional job control

Commands

3.4

Commands for conditional job control

This section provides a detailed description of the rules for formulating conditional expres-
sions and an alphabetically ordered list of the commands for conditional job control:

Conditional expressions

A conditional expression is used to make processing of the ADD-CJC-ACTION, SKIP-
COMMANDS or WAIT-EVENT command dependent on job variable values. A conditional
expression may be either “true” or “false”. It is composed of one or more relational expres-
sions <relation.exp> which can be constructed as follows. Alternatives are separated by
“/’; optional entries are enclosed in angle brackets.

<relation.exp>
<term>

<relational-op>
<jvid>
<jvname>

<*jvIlink>

<#jvname>

<special—-jvname>

<jv—subarea—def>
<start>

<length>

<const>

(<term> <comparison-op> <term>)
<jvid> / <jv-subarea—-def> / <const>

</ >/ = [/ <=/ >=/ <>

LT / GT / EQ / LE / GE / NE
<jvname> / <*jvlink> / <#jvname> / <special-jvname>
Name of a permanent user job variable

Link name of a user job variable with
leading asterisk (*)

Name of a temporary user job variable

Name of a special job variable without catalog ID
but with specification of user ID SYSJV (only
permitted in the SKIP-COMMANDS command).

(<jvid> [,[<start>]1[,<length>11)
<integer 1..256> default=1

<integer 1..64> default=64
(with <start>+<length> <= 256)

<c-string 1..64> / <x-string 1..128>

e.g.:
C'HALLO' / '"HALLO' or
X'00FF' / X'OFF'

The operators LT, GT, EQ, LE, GE, NE must be separated from other letters by a blank (in
constants, JV names or link names).

Particular attention should also be paid to differentiating between uppercase and lowercase
notation in conditional expressions.

82

U3616-J-Z2125-10-76

Commands Conditional job control

Compound conditional expressions are produced by combining relational expressions with
the aid of logical operators:

<cond.exp> (<relation.exp> <logical.op> <relation.exp>) /
(<cond.exp> <logical.op> <cond.exp>) /

NOT <cond.exp>)

<logical.op> 1= AND / OR / XOR
lTogical logical exclusive
AND OR OR
Example

(JV1=C'START")
((Jv2=C'0.K.") AND (*LINK<=C'12'))
(((JV4,10,3)=C'NEU') OR (#TEMP.JV=C'Y') AND (*LINK2=X'00'))

Note

A conditional expression is evaluated “from inside to outside”, in accordance with the
parentheses. On the same level of parenthesis, the logical operations are performed in
the following order:

1. NOT
2. AND
3. OR
4. XOR

For example, the expression

(NOT (JVv1=C'ABC") OR (gv2=C'Z'"') AND (JV3<>dJV4))

is evaluated as

((NOT (gv1=C'ABC')) OR ((Jv2=C'Z') AND (JV3<>3dV4)))

When comparing job variable values, certain points must be kept in mind:

— Relational expressions are evaluated one byte at a time from left to right. The appro-
priate bit pattern in EBCDIC code is decisive in determining the result of the
comparison, e.g. the printable digits 0 through 9 (X'FO' through X'F9') are “greater” than
the letters A through Z (X'C1' through X'E9"), and uppercase letters are greater than
lowercase letters.

— If the comparison value lies outside the definition range of a job variable or the job
variable is empty (e.g. after a declaration), the result of the comparison is always “false”,
even if the test is performed using “<>" (not equal).

U3616-J-Z2125-10-76 83

Conditional job control Commands

— If the contents of a job variable consist solely of binary zeros, it is not empty.
Furthermore, if there are two otherwise identical job variable values, the one which is
one binary zero longer is considered the greater of the two.

Example

The following expressions are “true”:

C' ' < C'A
C'a' < C'A! X'8l' < X'Cl'
C'A" < C'B' X'0123' < X'0124"
C'B' < C'BB' X'Cl'" < x'Cl00'
C'GUTEN ABEND' < C'GUTEN MORGEN'
C'777777777" < C'0Q' @D X'FOFOFOFO"' < X'F1'
c'8' < C'9!
€'899999999"' < C'9!' @D X'3FFF' < C!
The following queries are answered with “false”.
(IN) CALL-PROCEDURE NAME=PROC.JV
(IN) /.ANF BEGIN-PROCEDURE LOGGING=*ALL
(IN) /CREATE-JV JVv=gVv1
(IN) /SKIP-COMMANDS TO—-LABEL=END, IF=*JV(CONDITION=((JVv1,11,1) NE '2'))
(ouT) % CJCO011 SKIP COMMAND: CONDITION = FALSE
(IN) /MODIFY=JV JV-CONTENTS=*SUBSTRING
C) (JV-NAME=JV1,POSITION=1, LENGTH=5),SET-VALUE=C'12345"
(IN) /SKIP-COMMANDS TO-LABEL=END, IF=*JV(CONDITION=((JV1,6,2) EQ "Al'))
(ouT) % CJCO011 SKIP COMMAND: CONDITION = FALSE
(IN) /SKIP-COMMANDS TO—-LABEL=END, IF=*JV(CONDITION=((JV1,6,2) NE '"Al'))
(ouT) % CJCO011 SKIP COMMAND: CONDITION = FALSE
(IN) /.END END—PROCEDURE

A conditional expression is rejected in the following cases:
1. Areferenced JV is not accessible (catalog destroyed).
2. Areferenced JV does not exist in the specified catalog.

3. The user is not authorized to access a JV which is either protected by a read password
or not shareable.

84 U3616-J-Z2125-10-76

Commands Conditional job control

Overview of commands

Command Function

ADD-CJC-ACTION Initiates a CJC command sequence

END-CJC-ACTION Identifies the end of a CJC command sequence

REMOVE-CJC-ACTION Ends the effectiveness of a CJC command sequence

SHOW-CJC-STATUS Displays information about jobs currently working with condi-
tional job control

SKIP-COMMANDS Branches conditionally within a command sequence

WAIT-EVENT Initiates a conditional wait state

Table 26: Commands for conditional job control

In the CONDITION operand of the ADD-CJC-ACTION, SKIP-COMMANDS and WAIT-
EVENT commands, a compound condition can be specified with the aid of job variable
names and values. The section “Conditional expressions” on page 82f is devoted to a

detailed description of this central metaconcept “conditional expression”.

(The abbreviation CJC stands for Conditional Job Control.)

A complete description of the commands can be found in the “Commands” manual [1].

U3616-J-Z2125-10-76 85

Conditional job control Commands

86 U3616-J-Z2125-10-76

4 Macros

This chapter describes the macro interface of the job variable functions for Assembler

programmers. The macros have basically the same functions as the equivalent commands.
Specifically, the following macros are described here:

4.1 Overview of macros

Macro Function

CATJV Catalog job variable

COPJV Copy job variable

CSWJV Check and set job variable

DCLJV Define job variable link name

DONEVT Delete condition for job variable event

ERAJV Erase job variable

GETJV Get job variable value

JVSEL Limit job variable selection of the STAJV macro to specific attributes
LNKJV Link job variables to JV-LINK entries

ONEVT Set condition for job variable event

RELJV Remove JV-LINK entry

SETJV Set job variable

STAJV Output job variable attributes

TERM Terminate program and procedure step

TIMJV Supply elements in the system section of a job monitoring JV

Table 27: Overview of macros

S-type macros can use the operands MF, PREFIX, PARAM and MACID. The possible

values and their meanings are described below. The individual macro descriptions specify
which values are permissible or act as the default for the respective macro.

U3616-J-Z2125-10-76

87

General macro operands Macros

4.2 General macro operands

4.2.1 The MF operand

The MF operand determines the type of macro generation.

MF
value

Meaning/effect

MF=S

Default value; first generates the instruction part, then the data area.
The data area does not contain any field names. The standard header is initialized.

MF=D

Generates a data area with field names and explanatory equates. The formation of field
names can be influenced by the PREFIX or MACID operands in the call. The data area
begins with the DSECT statement. This type of macro expansion is referred to below as
generation of a DSECT.

A DSECT describes the structure of a storage area, without itself occupying storage
space. The location counter is reset to zero.

MF=C

Generates a data area with field names and explanatory equates. The formation of field
names can be influenced by the PREFIX or MACID operand in the call.

MF=L

Generates only the data area.
The data area does not contain any field names. The standard header is initialized. The
generated data area can be referenced in a call with MF=E.

MF=E

Only the instructions necessary for calling the function module are generated. The
instruction part usually ends with an SVC. The address of the data area with the
parameter values must be specified in the macro call.

MF=(E,addr)

MF=(E,(r))

Only the processing code (SVC) is generated. addr or the register denoted by r contains
the address of the data area (parameter list) for the MF=L expansion.

MF=E[,PARAM=addr]

MF=E[,PARAM=(r)]

The PARAM operand specifies the address of the operand list.

r = register containing the address of the data area.

The register must be loaded with this address value before the macro call is made.

MF=M

The call generates instructions which supply all explicitly specified function operands in
the existing operand list with the new values.

Table 28: MF operand in macros

When the instruction part and operand list are generated separately, the values specified in
the assembly parameters (VERSION, PARMOD) must be the same.

88

U3616-J-Z2125-10-76

Macros General macro operands

The use of a standard header is dependent on the assembly parameter VERSION. Without
standard header, the SVC 133 is generated in the instruction part; with standard header,
the SVC 190.

Parameter lists must be aligned on a word boundary.

The parameter list should be supplied with values only through the corresponding macro

with the explicitly specified operands. Complex interdependencies often exist between the
individual bits, especially in the case of CATJV. Direct amendment of the parameter list is
therefore inadvisable.

During macro processing, the address of the parameter list is loaded into register R1 (with
MF=E and MF=S).

4.2.2 The PREFIX operand

In the macros it is possible to specify the PREFIX operand in various forms of the
expansion. This controls the generation of the symbolic names for the parameter list. The
prefix consists of up to three letters.

Those macro expansions in which a prefix can be specified are indicated in the “General”
section of each macro description. The option of entering an arbitrary three-letter prefix is
indicated by PREFIX=pre in the macro call format.

4.2.3 The PARAM operand

The PARAM operand specifies the address of the operand list.

PARAM is used to address the operand list.
=addr symbolic address of the operand list.
=(r) register containing the symbolic address of the operand list.

4.2.4 The MACID operand

The MACID operand enables the user to define the second through fourth characters of the
names in a parameter list. Those macro expansions in which a MACID can be specified are
indicated in the “General” section of each macro description. The option of entering an
arbitrary three-letter string is indicated by MACID=macid in the macro call format.

For further information on the MF, PREFIX, PARAM and MACID operands, see the manual
“Executive Macros” [4].

U3616-J-Z2125-10-76 89

Notational conventions

Macros

4.3 Notational conventions

Notation

Meaning

Example

UPPERCASE LETTERS

Uppercase letters denote constants and
must be entered by the user exactly as
shown.

ACCESS=READ

The user must enter
ACCESS=READ

lowercase letters

Lowercase letters denote variables which,
on entry, must be replaced by current
values, i.e. their contents may differ from
case to case.

RDPASS=password

The user must enter,
for instance,
RDPASS=C' OTTO' or
RDPASS=54321 etc.

{7

Braces enclose alternatives, i.e. one entry
must be selected from the specifications
enclosed.

Exception: default values.

READ
ACCESS={WRITE }

The user must enter
ACCESS=READ or
ACCESS=WRITE

/ The slash denotes a choice between WRITE=YES/NO
alternatives; it has the same function as
braces. The user must enter
WRITE=YES or
WRITE=NO
[] Square brackets enclose options, i.e. the |areal,Tength]
entries may be omitted. When a commais
enclosed between square brackets in The user must enter, for
optional entries, it need only be written if |instance,
the option is used. When it is outside the | BADR, 60 or BADR
brackets it must be specified even if the
option is not used .
(Parentheses must be entered.)
ABC Underscoring denotes the default value,

which is the value the system assumes if
the user makes no entry (= system
preset).

If an operand has no default value, speci-
fication of an operand is mandatory.

NEW
STATE= yppaTE }

The user must enter
STATE=NEW or
STATE=UPDATE

(no entry implies
STATE=NEW)

Table 29: Notational conventions for macro descriptions (part 1 of 2)

90

U3616-J-Z2125-10-76

Macros

Notational conventions

Notation

Meaning

Example

Ellipses denote repetition, i.e. the
preceding syntactical unit may be
specified one or more times in
succession.

(protectl,..4)

The user must enter, for
instance, (ACCESS) or
(ACCESS, EXDATE) etc.

This character denotes a blank (X' 40').

STDu

The user must enter' STD'

Table 29: Notational conventions for macro descriptions (part 2 of 2)

U3616-J-Z2125-10-76

91

CATJV

Macros

4.4 Description of the macros

CATJV

Catalog job variable

General

Domain: Job variables

Macro type: Type S (standard form/C/D/E/L form)

see section “The MF operand” on page 88

In the C and D forms of the macro, a prefix (PREFIX = pre, where pre is 1..3 letters) can be
specified (see section “The PREFIX operand” on page 89).

Default value: PREFIX=IDJ

Macro description

The CATJV macro creates or updates the catalog entry of a job variable.

Explicitly deactivating the default protection with CATJV ..., PROTECT=STD is only
supported when the operand VERSION=4 is also specified at the same time.

Using macro versions < 4 can lead to problems in conjunction with default protection: if a
JV receives the protection attribute SHARE=YES or ACCESS=READ or passwords via
default protection, then the non-privileged user can set the protection attribute to
SHARE=NO or ACCESS=WRITE or RDPASS=NONE or WRPASS=NONE. These specifi-
cations are not evaluated, however, as the default protection settings have a higher priority.

Macro call format and operand description

Operation Operands
CATJV Jjvnamel

[,Jjvname?2]

[,sm:{ NEW }]
UPDATE

[,PROTECT={ DEFAULT }]

STD

92

U3616-J-Z2125-10-76

Macros CATJV

Operation Operands

CATJV

(cont.) [,ACCESS={ WRITE }]
READ

[,SHARE={ NO }]

YES
NO-ACCESS
C ONERAR READ={ YES } WRITE:{ YES }
: -]
(r Oy oy,
RN
N N
NO-ACCESS
 eROUPAR READ={ YES } WRITE={ YES } :
’ (c o 1L, o iD)
Rt
N N
NO-ACCESS
[, OTHERAR= READ:{ o } WRITE:{ o }]
' (r Oy o,
atIE R
N N

[,BASACL={ NONE }]
STD

U3616-J-Z125-10-76 93

CATJV

Macros

Operation Operands
CATJV
(cont.) NONE
[,GUARDS=]
([READ={ *NONE }] [,WRITE={ *NONE }])
readguard writeguard
[,MANCLAS={ *NONE }]
manclas
[,RDPASS={ NONE }] [,WRPASS={ NONE }]
password password
[,RETPD={ 0 }]
days
[.MONJ\/:{ UNCHANGED }]
NO
0 5
I | c [104
[.VERSION=4 5 ¢3 [.MF=¢ (p y ¢1 [LPREFIX=¢ —]
T pre
3 D
4 L
jvname1 Fully qualified path name under which the permanent or temporary
job variable is cataloged. Only systems support may specify a user
ID other than their own.
jvname2 Specifies a new name for job variable jvname1. Up to versions < 2,

user ID and catalog ID must not be specified as this could indicate
a change of owner or catalog. From version = 2 on, a fully qualified
path name can be specified, but user ID and catalog ID must match
the IDs specified in jvname1.

This operand is effective only in combination with STATE=UPDATE.

94

U3616-J-Z2125-10-76

Macros

CATJV

STATE

I
m
=

=UPDATE

PROTECT

=DEFAULT

=STD

ACCESS

=WRITE

=READ

SHARE

=NO

=YES

Specifies that a catalog entry is to be created for a job variable
which does not yet exist, or that an existing catalog entry is to be
updated.

Is the default: a new catalog entry is to be created.
Specifies that an existing catalog entry is to be updated.
Note

In UPDATE mode, operands not specified are not set to their
default value. In UPDATE mode, the corresponding value in the
JV entry can only be modified by means of the ACCESS,
SHARE, RDPASS, WRPASS and RETPD operands if it has
been specified explicitly.

Specifies where the protection attributes of the job variable to be
cataloged and whose value is not specified explicitly are to be taken
from. The specification of this operand is only permitted together
with VERSION=4.

See the table “Default system values for job variable protection
attributes” on page 37 for the value assignments.

The default setting: The protection attributes of the new job variable
are cataloged with the values of the default protection function.

The protection attributes of the new job variable are cataloged with
the default system values.

Specifies either read-only or read/write access to a job variable.

Default value if STATE=NEW; read and write access to the job
variable is permitted.

Only read access to the job variable is permitted.

Specifies whether or not the job variable can be used by any other
user ID.

Default value if STATE=NEW; the job variable must not be used by
any other user IDs.

Specifies that the job variable may also be used by other user IDs.

U3616-J-Z2125-10-76

95

CATJV

Macros

OWNERAR

=NO-ACCESS

Specifies the access rights of the owner of the job variable (and of
systems support). Read and write authorization must be explicitly
assigned in each case.

This operand not allowed in combination with VERSION=0.

The owner is explicitly denied both read and write authorization.
This is equivalent to specifying (READ=NO,WRITE=NO).

=(READ=..., WRITE=...)

GROUPAR

=NO-ACCESS

Read and write authorization are assigned as specified explicitly
(READ/WRITE=YES) or not assigned (READ/WRITE=NO).

Specifies the access rights for all user IDs from the same group as
the owner (except for the owner and systems support). This
operand not allowed in combination with VERSION=0.

The definition of user groups is only possible if the software product
SECOS is used.

With a view to the possible use of SECOS, the same rights should
be assigned to GROUP as to OTHERS.

User IDs of the owner group are explicitly denied both read and
write authorization. This is equivalent to specifying (READ=NO,
WRITE=NO).

=(READ=..., WRITE=...)

OTHERAR

Read and write authorization are assigned as specified explicitly
(READ/WRITE=YES) or not assigned (READ/WRITE=NO).

Specifies the access rights of other users who do not belong to the
owner group.
This operand not allowed in combination with VERSION=0.

If SECOS is not used, the access rights should nonetheless be set
in the same way as for the owner group (GROUP) with a view to
future possible use of SECOS.

=(READ=..., WRITE=...)

Read and write authorization are assigned as specified explicitly
(READ/WRITE=YES) or not assigned (READ/WRITE=NO).

96

U3616-J-Z2125-10-76

Macros

CATJV

BASACL

=NONE

=STD

Specifies whether a basic ACL is to be deleted, activated, or newly
created for the job variable.
This operand not allowed in combination with VERSION=0.

An activated basic ACL for the job variable is deleted. When a new
job variable is created (STATE=NEW), NONE is the default value,
meaning that no basic ACL is defined.Access control is then
effected in accordance with the values ACCESS and SHARE
(standard access control).

When the job variable is newly created (STATE=NEW), a basic ACL
is created in which read and write access are permitted for the user
group OWNER, and the user groups GROUP and OTHERS have no
access rights.

If the job variable entry is updated (STATE=UPDATE), the value
STD is evaluated only if no basic ACL was active. In this case a
basic ACL is activated in which the access rights are set in accor-
dance with the standard access control in the job variable entry
(SHARE and ACCESS):

Standard access control BASIC-ACL protection
SHARE ACCESS OWNER GROUP | OTHERS
R w R w R w
NO WRITE Y Y N N N N
NO READ Y N N N N N
YES WRITE Y Y Y Y Y Y
YES READ Y N Y N Y N

Table 30: Standard access control/BASIC-ACL (CATJV macro)

GUARDS

=NONE

Specifies whether a guard is to be deleted, activated or created for
the job variable.

Specification of this operand is permissible only in conjunction with
VERSION=3 or higher.

A previously defined guard is cancelled. When a new job variable is
created (STATE=NEW), NONE is the default value, meaning that no
guard is defined.

=(READ=...,WRITE=...)

Read and/or write access is controlled via the specified guard
(READ/WRITE=readguard/writeguard) or is not permitted at all
(READ/WRITE=*"NONE).

The name of the guard may be up to 8 characters long if specified
without user ID. No catalog ID may be specified.

U3616-J-Z2125-10-76

97

CATJV

Macros

MANCLAS

=NONE

=manclas

RDPASS

=NONE

=password

WRPASS

=NONE

=password

This operand is only evaluated for SM pubsets.

Specifies whether the HSMS functions JV backup, archival and
(long term) archival are to be controlled via a management class
defined via HSMS. See the manual “HSMS” [12] for further details.
Specification of this operand is permissible only in conjunction with
VERSION=3 or higher.

The controlling of HMHS functions via a management class is termi-
nated. When a job variable is renewed (STATE=NEW), NONE is the
default value and means that no management class is defined.

Name of the management class defined with HSMS.

Defines a read password for the job variable or cancels a previously
defined read password.

Cancels a previously defined read password. When a new job
variable is created (STATE=NEW), NONE is the default and means
that no read password is defined.

Defines the read password that must be given in order to access the
job variable. Length < 4 bytes. It must be a C string, an X string or a
decimal number.

C string: C'character constant’; max. 4 characters.
X string: X'hexadecimal constant'’; max. 8 characters.
Decimal number: -2147483648 < number < 2147483647

A password in the form X'00000000' or '0' is ignored. When a job
variable is protected only by a read password, this password must
also be specified in order to modify the job variable.

Defines a write password for the job variable or cancels a previously
defined write password.

Cancels a previously defined write password. When a new job
variable is created (STATE=NEW), NONE is the default and means
that no write password is defined.

Defines the write password that must be given in order to have write
access to the job variable. Length < 4 bytes. It must be a C string,
an X string or a decimal number (see the RDPASS operand).

98

U3616-J-Z2125-10-76

Macros

CATJV

RETPD

=days

MONJV

MF

=UNCHANGED

=NO

PREFIX

VERSION

Specifies the retention period for the job variable.

Default value if STATE=NEW; the retention period is zero days.
This means that the expiration date field of the job variable entry
contains today's date. (see the IDJEEXD field in the DSECT of the
STAJV macro, page 180).

Number of days that the job variable is to remain safe against
modification even if the other protection attributes permit write
access.

The expiration date in the job variable entry contains the date on
which protection is removed. The expiration date is the current date
plus the specified number of days.

This operand is ignored unless STATE=UPDATE is specified, i.e. the
job variable must already be cataloged. The maximum value for
RETPD is 32767 days.

Specifies whether the protection attributes of a monitoring job
variable are to remain unchanged.

Is the default: the protection for a job-monitoring job variable is to
remain unchanged.

Cancels protection of the system area (bytes 1 through 128) for a
monitoring job variable. This specification is only effective in combi-
nation with STATE=UPDATE. Prior to the call, care must be taken to
ensure that the monitored job has actually been removed from the
queue (SHOW-JOB-STATUS).

For a description of the MF and PREFIX operands, see page 88.
Their permitted values are indicated at the beginning of the macro
description and in the macro call format.

Specifies which version of BS2000 the macro expansion is to be
compatible with.

Default value; the macro expansion is compatible with JV < V8.7.
The operand MF=D/C, which generates a DSECT or CSECT
respectively, is not supported by this version (see note on DSECT).

The macro expansion is compatible with JV V10.0.
The macro expansion is compatible with JV V11.0 and V11.2.
The macro expansion is compatible with JV V12.0.

The macro expansion is compatible with JV > V13.0C.

U3616-J-Z2125-10-76

99

CATJV

Macros

Notes concerning the DSECT

— Calling the macro with the operands MF=D and VERSION=1/2/3/4 generates a DSECT
for the operand list of the CATJV macro of the corresponding version.

— A DSECT for the macro with VERSION=0 is generated by calling the macro IDJCA
[D1[,prefix].
Note on the assignment of access rights using a basic ACL:

Abasic ACL is activated if basic ACL rights are specified for at least one authorized user
(in the OWNERAR, GROUPAR or OTHERAR operand) When a basic ACL is activated,
the rights for a user group that is not specified are set as though BASIC-ACL=NO-
ACCESS (neither write nor read access rights) was specified for this user group.

Return information and error flags

see page 229

DSECT

CATJV CATJV MF=D,VERSION=4

* *

* VERSION 410

* *

* CATJYV PARAMETER LI ST *

e e e e ko Ak e ok e o e ko Ak Ak ok ok ok e e ok kA ok ke ok e ok ook ok kR Rk ok ok ok ek ok ok kok ok ko
#INTF REFTYPE=REQUEST, C

INTNAME=CATJV, INTCOMP=004
CATJV DSECT

* *

* UNIT=41, FUNCTION=4, VERSION=<PARAMETER VERSION> *

R R R e R e R R e R R o R b e e R e o R o e R R e R b e R R o R S R R S

FHDR ~ MF=(C,IDJC)

R RN NN RNNMNNRNRNRNRN b b b 2

DS OA
IDJCFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
*
IDJCIFID DS DA 0 INTERFACE IDENTIFIER
IDJCFCTU DS AL2 0 FUNCTION UNIT NUMBER
* BIT 15 HEADER FLAG BIT,
* MUST BE RESET UNTIL FURTHER NOTICE
* BIT 14-12 UNUSED, MUST BE RESET
* BIT 11-0 REAL FUNCTION UNIT NUMBER
IDJCFCT DS ALl 2 FUNCTION NUMBER
IDJCFCTV DS ALl 3 FUNCTION INTERFACE VERSION NUMBER
*
IDJCRET DS 0A 4 GENERAL RETURN CODE

100

U3616-J-Z2125-10-76

Macros CATJV
*
* GENERAL_RETURN_CODE CLEARED (X'00000000"') MEANS
* REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
*
IDJCSRET DS 0AL2 4 SUB RETURN CODE
IDJCSR2 DS ALl 4 SUB RETURN CODE 2
* ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
* Standard subcode?2 values as defined by convention:
IDJCR20K EQU X'00' A11 correct, no additional info
IDJCRZ2NA EQU X'01" Successful, no action was necessary
IDJCR2WA EQU x'02' Warning, particular situation
IDJCSR1 DS ALl 5 SUB RETURN CODE 1
*
* GENERAL INDICATION OF ERROR CLASSES
*
* CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
* CLASS B X'01' — X'1F' PARAMETER SYNTAX ERROR
* CLASS C X'20" INTERNAL ERROR IN CALLED FUNCTION
* CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
*

PR NN MNDMNDMNDMNDMNDMNDMNDMNDNDND NN MNP MNP MNP MNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDNDNDNDDN NN

CLASS E X'80' - X'82' WAIT AND RETRY

*

IDJCRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
IDJCRPER EQU X'o1' PARAMETER SYNTAX ERROR

* 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' - X'1F'
IDJCRFNS EQU X'o1l' CALLED FUNCTION NOT SUPPORTED
IDJCRFNA EQU Xroz2' CALLED FUNCTION NOT AVAILABLE
IDJCRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
*

IDJCRAER EQU X'04' ALIGNMENT ERROR

IDJCRIER EQU X'20' INTERNAL ERROR

IDJCRCAR EQU X'40' CORRECT AND RETRY

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
IDJCRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
* EXPLICITELY BY CREATE-SS
IDJCRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
*

IDJCRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
IDJCRWLR EQU X'81l' " LONG !
IDJCRWUR EQU X8z’ WAIT TIME IS UNCALCULABLY LONG
* BUT RETRY IS POSSIBLE

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' — X'82'
IDJCRTNA EQU X'8l' SS TEMPORARILY NOT AVAILABLE
IDJCRDH EQU X'82' SS IN DELETE / HOLD

*

IDJCMRET DS 0AL2 6 MAIN RETURN CODE

IDJCMRZ DS AL1 6 MAIN RETURN CODE 2

IDJCMR1 DS AL1 7 MAIN RETURN CODE 1

*

U3616-J-Z2125-10-76 101

CATJV

Macros

* SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY')

*

IDJCRLNK EQU
EQU

IDJCFHL

*

X' FFFF!

8

LINKAGE ERROR / REQ. NOT PROCESSED
GENERAL OPERAND LIST HEADER LENGTH

R R R e R R e R R o R e e R e i e R e R S R R e R R o R e R R S R S

* END OF STANDARD HEADER. START OF SPECIAL CATJV PARAMETER LIST *
* *
IDJCHDRI EQU X'00290404',4
IDJRDPAS DS CL4 READ PASSWORD

DS XL12 RESERVED
IDJWRPAS DS CL4 WRITE PASSWORD

DS XL12 RESERVED
IDJRETPD DS H RETENTION PERIOD
IDJCFLAG DS X FLAGS
IDJSTATE EQU X'80' 7-7 1=UPDATE, 0=NEW (STATE)
IDJACCES EQU X'40° 6-6 1=READ, O=WRITE(ACCESS)
IDJSHARE EQU X'20' 5-5 1=YES, 0=NO (SHARE)
IDJRPN EQU X'10' 4-4 1=RDPASS NULL,STATE=U
IDJIWPN EQU X'08' 3-3 1=WRPASS NULL,STATE=U
IDJRETPN EQU X'04' 2-2 1=RETPD NULL, STATE=U /
* RETPD NOT NULL,STATE=NEW
IDJACCEN EQU X'02' 1-1 1=ACCESS NULL,STATE=U
IDJSHARN EQU Xx'01' 0-0 1=SHARE NULL, STATE=U
*
IDJCFLGL DS X FLAGS
IDJCENCR EQU X'80' 7-7 0=YES. 1=NO
* (ENCRYPTION)
IDJTYPE EQU X'00' 6-6 NOT USED (DEL. V11.2)
IDJMONJV EQU X'20' 5-5 1=MONJV=NO, STATE=UPDATE
1DJCP2 EQU X'10° 4-4 1=P2 CALLER,0=P1 CALLER
IDJCECT EQU X'08' 3-3 1=SET BY CMD PROCESSING
IDJBACLN EQU X'04' 2-2 1=SET BASIC-ACL = NONE
IDJBACLS EQU Xx'02' 1-1 1=SET BASIC-ACL = STD
IDINSTEX EQU X'01' 0-0 1=SET NOSTEP=EXISTING
*
IDJJAR DS OX ACCESS RIGHTS
IDJOWNER DS X OWNER
IDJGROUP DS X GROUP
IDJOTHER DS X OTHERS
*
IDJJAUS EQU X'80' 7-7 1=USER CLASS SPECIFIED
IDJJARS EQU X'40' 6-6 1=READ SPECIFIED
IDJJAMS EQU X'20° 5-5 1=WRITE SPECIFIED
IDJJARO EQU X'08' 3-3 1=SET READ
IDJJAWO EQU X'04' 2-2 1=SET WRITE
*
IDJCFLG2 DS X FLAGS

102

U3616-J-Z2125-10-76

Macros

CATJV

1 IDJGRDN EQU X'80' 7-7 :S: GUARDS = *NONE

1 IDJPVSS EQU X'10' 4-4 :S: GUARD PUBSET SPECIFIED
1 IDJRDGS EQU X'o8' 3-3 :S: READ GUARD SPECIFIED

1 IDJWRGS EQU X'04' 2-2 :S: WRITE GUARD SPECIFIED
1 IDJMANSP EQU X'02' 1-1 :S: MANCLAS SPECIFIED

1 *

1 IDJPRFLG DS X PROTECT FLAG

1 IDJPRNSP EQU X'80' 7—=7 :S: PROTECT NOT SPEC(DEFAULT)
1 IDJPRSTD EQU X'40' 6-6 :S: PROTECT STD SPECIFIED
1 IDJACCSP EQU X'o8' 3-3 :S: ACCESS SPECIFIED

1 IDJSHASP EQU X'04' 2-2 :S: SHARE SPECIFIED

1 IDJRDPSP EQU X'02' 1-1 :S: RDPASS SPECIFIED

1 IDJWRPSP EQU X'o1' 0-0 :S: WRPASS SPECIFIED

1 DS X RESERVED

1 *

1 IDJRDG DS CL18 READ GUARD

1 IDJWRG DS CL18 WRITE GUARD

1 IDJPUBS DS CcL4 GUARD PUBSET

1 IDJMANCL DS CL8 MANCLAS

1 *

1 IDJJvl DS CL54 JVNAME

1 IDJJve DS CL54 RENAME JVNAME

1 DS CL54 RESERVED

1 DS A RESERVED

1 DS CL16 RESERVED

1 IDJCJVs DS A RESERVED

1 IDJPLLEN EQU *—~CATJV LENGTH

1 KKKk
1 SPACE

U3616-J-Z2125-10-76

103

COPJV

Macros

COPJV

Copy job variable

General

Domain: Job variables

Macro type: Type S (standard form/C/D/E/L form)

see section “The MF operand” on page 88

In the C and D forms of the macro, a prefix (PREFIX = pre, where pre is 1..3 letters) can be
specified (see section “The PREFIX operand” on page 89).

Default value: PREFIX=IDJ

Macro description

The COPJV macro copies the contents of a job variable (send JV) into another job variable
(receive JV). If required, the protection properties of the send JV can also be copied along
with the contents, apart from an existing MONJV or CJC protection.

Both permanent and temporary JVs can be copied. Read access must be allowed for the
send JV and write access must be allowed for the receive JV. If the receive JV does not exist
it is created, whereby when creating a permanent JV, the maximum number allowed in the
user entry cannot be exceeded (see also CREATE-JV command).

Privileged functions:

The system administrator (TSOS privilege) is the co-owner of all job variables by default
(can therefore also create and copy job variables under all user IDs).

This co-ownership can be restricted for permanent job variables.

104

U3616-J-Z2125-10-76

Macros

COPJV

Macro call format and operand description

Operation

Operands

COPJV

<jvnamel>,<jvname2>

*
sng-{ 220
*YES

*
MRITE:{ REPLACE}

MF=

<

*NEW

OO n

e ,PREFIX={u }
(E, (1)) pre

(E, (<r=>))
(E, <relexp>)

<jvnamei>

,<jvhame2>

SAME

Name of the job variable to be copied (send JV).

Read access must be allowed (with a JV under a foreign user ID, eit-
her USER-ACCESS=ALL-USERS must exist or read rights via
BASIC-ACL or GUARDS, or co-ownership).

Name of the job variable into which copying is to be done (receive
JV).

If the receive JV is not cataloged, it is created. In this case, you can
only specify your own ID or one for which you are co-owner.

If the receive JV is cataloged, write access must be allowed (for a
JV under a foreign user ID, either standard access control with
USER-ACCESS="ALL-USERS must exist or write rights via BASIC-
ACL or GUARDS, or co-ownership).

However, the receive JV will only be overwritten if REPLACE=*YES
(default) is specified.

Specifies whether the protection properties of the send JV are also
to apply for the receive JV.

U3616-J-Z2125-10-76

105

COPJV

Macros

I
Z
@)

=*YES

WRITE

=*REPLACE

=*NEW

MF
PREFIX

The protection properties are not taken over to the receive JV. If a

receive JV is newly created, the system default values are set for the
protection properties (see also the CREATE-JV command default

settings). The previous protection properties remain intact for a re-
ceive JV that already exists.

The receive JV is given the same protection properties as the send
JV (regarding ACCESS, USER-ACCESS, OWNER, GROUP,
OTHERS, EXPIR-DATE, EXPIR-TIME, MAN-CLASS, negotiated
GUARDS, and the same passwords; see also the output fields of the
SHOW-JV-ATTRIBUTES command).

However, an existing MONJV or CJC protection is not taken over.

Specifying PROTECTION=*SAME is ignored in the following cases

(i.e. *NO applies):

— The receive JV is a temporary JV.

— The receive JV is being used by CJC.

— The receive JV is under a foreign ID and the caller is not a co-
owner.

If the send JV is on a foreign user ID and protected with BASIC-ACL
or GUARDS, the properties USER-ACCESS, BASIC-ACL and GU-
ARDS of the receive JV are set to default values.

Specifies whether an existing receive JV is to be overwritten.
An existing receive JV is overwritten without any message.

An existing receive JV is not overwritten. The command is rejected.
The error handling is triggered in procedures (spin-off mechanism
in non-S procedures or SDF-P error handling in S procedures).

For a description of the MF and PREFIX operands, see page 88.
Their permitted values are indicated at the beginning of the macro
description and in the macro call format.

Return information and error flags

see page 229

106

U3616-J-Z2125-10-76

Macros

COPJV

=

=

—_

[NSEEACEEACRENCREACREACRE AR AR O A O A C R A C T A ORI A S O O G G A SR AR AR A G R A G R A G R A G R A OB AC R AC RN AC R AC RN A O RN MO I) O o

COPJV COPJV MF=D

.. *kk

* VERSION 410
Hkk
* COPJYV PARAMETER LIST *
""""""""""""""""""""""""""""""""""" Hokk
#INTF REFTYPE=REQUEST, C

INTNAME=COPJV, INTCOMP=001
COPJV DSECT

* UNIT=41, FUNCTION=35, VERSION=1 *

FHDR MF=(C,IDJP)

DS OA
IDJPFHE DS OXL8 0 GENERAL PARAMETER AREA HEADER
*
IDJPIFID DS OA 0 INTERFACE IDENTIFIER
IDJPFCTU DS AL2 0 FUNCTION UNIT NUMBER
* BIT 15 HEADER FLAG BIT,
* MUST BE RESET UNTIL FURTHER NOTICE
* BIT 14-12 UNUSED, MUST BE RESET
* BIT 11-0 REAL FUNCTION UNIT NUMBER
IDJPFCT DS ALl 2 FUNCTION NUMBER
IDJPFCTV DS ALL 3 FUNCTION INTERFACE VERSION NUMBER
*
IDJPRET DS OA 4 GENERAL RETURN CODE

*

* GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS

* REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
*

IDJPSRET DS 0AL2 4 SUB RETURN CODE

IDJPSR2 DS ALl 4 SUB RETURN CODE 2

* ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'

* Standard subcode? values as defined by convention:

IDJPR20K EQU X'00' A11 correct, no additional info
IDJPR2NA EQU X'0l1"' Successful, no action was necessary
IDJPR2WA EQU x'02' Warning, particular situation
IDJPSR1 DS ALl 5 SUB RETURN CODE 1

*

* GENERAL INDICATION OF ERROR CLASSES

*

* CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED

* CLASS B X'01' — X'1F' PARAMETER SYNTAX ERROR

* CLASS C X'20" INTERNAL ERROR IN CALLED FUNCTION

* CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE

*

CLASS E X'80' - X'82' WAIT AND RETRY

U3616-J-Z2125-10-76 107

COPJV Macros
2 *
2 IDJPRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
2 IDJPRPER EQU X'01' PARAMETER SYNTAX ERROR
2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'0l1' - X'1F'
2 IDJPRFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED
2 IDJPRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
2 IDJPRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
2 *
2 IDJPRAER EQU X'04' ALIGNMENT ERROR
2 IDJPRIER EQU X'20' INTERNAL ERROR
2 IDJPRCAR EQU X'40' CORRECT AND RETRY
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
2 IDJPRECR EQU X'41" SUBSYSTEM (SS) MUST BE CREATED
2 * EXPLICITELY BY CREATE-SS
2 IDJPRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
2 *
2 IDJPRWAR EQU X'80" WAIT FOR A SHORT TIME AND RETRY
2 IDJPRWLR EQU X'81"' ! LONG !
2 IDJPRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
2 * BUT RETRY IS POSSIBLE
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' — Xx'82'
2 IDJPRTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE
2 IDJPRDH EQU X'82" SS IN DELETE / HOLD
2 *
2 IDJPMRET DS 0AL2 6 MAIN RETURN CODE
2 IDJPMR2 DS ALL 6 MAIN RETURN CODE 2
2 IDJPMR1 DS ALL 7 MAIN RETURN CODE 1
2 *
2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY')
2 *
2 IDJPRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 IDJPFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 * *
1 * END OF STANDARD HEADER. START OF SPECIAL COPJV PARAMETER LIST *
1 R R o o o b o o o o i o i b o i b o i o o i g
1 IDJPHDRI EQU X'00292301"' ,4
1 IDJPFLG DS XL1 FLAG
1 IDJPSAME EQU Xx'80' 7-7 1=SAME=YES 0=NO
1 IDJPWRIT EQU X'40' 6-6 1=WRITE=NEW O0=REPLACE
1 * 0=DESCRIPTOR GIVEN
1 IDJPRES DS XL3 RESERVED
1 IDJPJV1 DS CL54 JVNAMEL
1 IDJPJV2 DS CL54 JVNAME?2
1 IDJPJVS DS A RESERVED
1 IDJPPLLN EQU *—COPJV LENGTH OF DSECT
1 R R o o e o e e b o i o b o i e o o i b b i b b i B b b
1 SPACE

108

U3616-J-Z2125-10-76

Macros CSWJv

CSwWJv

Check and set job variable

General

Domain: Job variables

Macro type: Type S (standard form/C/D/E/L form)

see section “The MF operand” on page 88

In the C and D forms of the macro, a prefix (PREFIX = pre, where pre is 1..3 letters) can be
specified (see section “The PREFIX operand” on page 89).

Default value: PREFIX=IDJ

Macro description

The CSWJV macro can be called at program level to set a job variable conditionally (see
also the MODIFY-JV-CONDITIONALLY command).

A specified job variable is compared with the contents of a test field. If they are the same,
the job variable is overwritten with the contents of another field; if they are not the same, the
job variable value is transferred to the test field.

During processing by the macro, the job variable to be checked is protected against access
from other jobs.

Macro call format and operand description

Operation Operands
CSWJV

jvid
(jvid [,start [,lengthl)

,areal, area?

[,PASS=password]

[,VERSION={ 0 }] [.MF=

7 [, prREFIX={ 1BJ {4
X E,.)

pre

—r o ~ O 1um;

U3616-J-Z125-10-76 109

cswuv

Macros

jvid

start

length

areaf

area2

PASS=password

Identifies the job variable to be checked or set. jvid can be:

jvname A fully qualified path name of a permanent or
temporary job variable

*jvlink A valid job variable link name

Specifies the position of the first byte to be checked or set within the
job variable value, where 1 < start < 256. Default value: = 1.

Specifies the number of bytes of the job variable value that are to be
checked or set. The sum of “start” and “length” must not exceed
257. If “length” is not specified, the values entered in the appropriate
record length fields of “area1” and “area2” apply.

Symbolic address of the test field in the user program.

Format 1111xxxx comparison value
<-4 bytes—>
<——1111=total Tlength >

The current value of the job variable “jvid” is compared with
“comparison value”. If they do not match, “comparison value” is
overwritten by the job variable value (return code 0456 or message
JVS0456).

Symbolic address of the fixed value for the job variable.

Format ‘llllxxxx fixed value
<-4 bytes—>
<——1111=total Tength >

If the job variable value of “jvid” matches the comparison value in
“areal”, the job variable value is overwritten by the fixed value.

Defines the password to be input for write access to the job variable
(see the CATJV macro). If the job variable is protected by a
password and the PASS operand is not specified, the password
must be made known to the system by means of the ADD-
PASSWORD command (e.g. via the CMD macro) prior to the first
call of CSWJV.

110

U3616-J-Z2125-10-76

Macros

CSwuyv

MF For a description of the MF and PREFIX operands, see page 88.
PREFIX Their permitted values are indicated at the beginning of the macro
description and in the macro call format.

VERSION Specifies which version of BS2000 the macro expansion is to be
compatible with.

=0 Default value; the macro expansion is compatible with JV < V8.7.
The operand MF=D/C, which generates a DSECT or CSECT
respectively, is not supported by this version (see note on DSECT).

=1 The macro expansion is compatible with JV > V10.0.

Notes concerning the DSECT

— Calling the CSWJV macro with the operands MF=D and VERSION=1 generates a
DSECT for the operand list of the CSWJV macro (VERSION=1).

— A DSECT for the macro with VERSION=0 is generated by calling the macro IDJCS
[D][,prefix].

Return information and error flags

see page 229

DSECT

CSWJv CSWJV MF=D,VERSION=1
1 Kk Kk
1 =* VERSION 203
1 """""""""""""""""""""""""""""""""""" KKK
1 =* CSWJIV PARAMETER LIST *
1 """""""""""""""""""""""""""""""""""" KKK
1 #INTF REFTYPE=REQUEST, C
1 INTNAME=CSWJV, INTCOMP=001
1 CSWJV DSECT
1 """""""""""""""""""""""""""""""""""" KKK
1 ~* UNIT=41, FUNCTION=5, VERSION=<PARAMETER VERSION> *
1 """""""""""""""""""""""""""""""""""" KKK
1 FHDR ~ MF=(C, IDJW)
2 DS 0A
2 IDJWFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 IDJWIFID DS 0A 0 INTERFACE IDENTIFIER
2 IDJWFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,

U3616-J-Z2125-10-76 111

csSwuyv Macros
* MUST BE RESET UNTIL FURTHER NOTICE
* BIT 14-12 UNUSED, MUST BE RESET
* BIT 11-0 REAL FUNCTION UNIT NUMBER
IDIWFCT DS ALL 2 FUNCTION NUMBER
IDJIWFCTV DS ALL 3 FUNCTION INTERFACE VERSION NUMBER
*
IDJWRET DS 0A 4 GENERAL RETURN CODE
*
* GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
* REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
*
IDJIWSRET DS 0ALZ2 4 SUB RETURN CODE
IDJWSR2 DS ALL 4 SUB RETURN CODE 2
* ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
* Standard subcode?2 values as defined by convention:
IDJWR20K EQU X'00' A1l correct, no additional info
IDJWRZNA EQU X'01' Successful, no action was necessary
IDIWRZ2WA EQU X'02' Warning, particular situation
IDJWSR1 DS ALL 5 SUB RETURN CODE 1
*
* GENERAL INDICATION OF ERROR CLASSES
*
* CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
* CLASS B X'01'" — X'1F' PARAMETER SYNTAX ERROR
* CLASS C X'20" INTERNAL ERROR IN CALLED FUNCTION
* CLASS D X'40' = X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
*

PN NN NN MNDMND NN NN NN NN N NN NN NN MNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDNDNDNDND NN

CLASS E X'80' — X'82' WAIT AND RETRY

*

IDJWRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
IDJWRPER EQU X'o1l! PARAMETER SYNTAX ERROR

* 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' —= X'1F'
IDJWRFNS EQU X'o1l' CALLED FUNCTION NOT SUPPORTED
IDJWRFNA EQU Xroz' CALLED FUNCTION NOT AVAILABLE
IDJWRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
*

IDJWRAER EQU X'04' ALIGNMENT ERROR

IDJWRIER EQU X'20' INTERNAL ERROR

IDJWRCAR EQU X'40' CORRECT AND RETRY

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' — X'7F'
IDJWRECR EQU X'41! SUBSYSTEM (SS) MUST BE CREATED
* EXPLICITELY BY CREATE-SS
IDJWRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
*

IDJWRWAR EQU X'80" WAIT FOR A SHORT TIME AND RETRY
IDJWRWLR EQU X'8l' ! LONG !
IDJWRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
* BUT RETRY IS POSSIBLE

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' — X'82'

112

U3616-J-Z2125-10-76

Macros

CSwuyv

el el e e e e N = e R e S e e e e N e el e e S SEU S E SEO S ISR I SR SRS I N

—_

IDJWRTNA EQU X'81° SS TEMPORARILY NOT AVAILABLE
IDJWRDH EQU X'82' SS IN DELETE / HOLD

*

IDJWMRET DS OAL2 6 MAIN RETURN CODE

IDJWMRZ DS ALl 6 MAIN RETURN CODE 2

IDJWMRL DS ALl 7 MAIN RETURN CODE 1

*

* SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY')

*

IDJWRLNK EQU X' FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
IDJWFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
*
KKKk
* END OF STANDARD HEADER. START OF SPECIAL CSWJV PARAMETER LIST *
KKKk
IDJWHDRI EQU X'00290501',4
IDJWAREA DS A AREA 1 ADDRESS
IDJWARE2 DS A AREA 2 ADDRESS
IDJIWJV DS CL54 JVNAME
IDJWPOS DS H SUBSTRING START POSITION
IDJWLEN DS H SUBSTRING LENGTH
DS XL2 RESERVED
IDIWPASS DS CL4 PASSWORD
DS XL12 RESERVED
IDIWFLAG DS X FLAGS
IDJWENCR EQU X'80' 7-7 0=YES. 1=NO
* (ENCRYPTION)
IDJIWFGNY EQU X'00' 6-6 NOT USED (DEL. V12)
IDIWJVIX EQU X'20° 5-5 0=NO, 1=YES
* (JVID INDEXED (SUBSTRING))
IDJIWFEX EQU X'10° 4-4 0=NO, 1=YES
* (PASSWORD GIVEN)
IDJWP2 EQU X'08' 3-3 0=P1 CALLER,1=P2 CALLER
DS XL3 RESERVED
IDJWIVS DS A RESERVED
IDIWPLLN EQU *—CSWJV LENGTH OF DSECT
"""""""""""""""""""""""""""""""""""" *okk
SPACE

U3616-J-Z2125-10-76 113

DCLJV

Macros

DCLJV

Define job variable link name

General

Domain: Job variables

Macro type: Type S (standard form/C/D/E/L form)

see section “The MF operand” on page 88

In the C and D forms of the macro, a prefix (PREFIX = pre, where pre is 1..3 letters) can be
specified (see section “The PREFIX operand” on page 89).

Default value: PREFIX=IDJ

Macro description

The DCLJV macro assigns a link name to a job variable and generates a catalog entry for
a job variable if one does not already exist.

Notes

— The assignments of job variable link names to job variable names is recorded in the JV-
LINK table of the job.

— The JV-LINK table may contain only one entry per link name. A job variable can,
however, be assigned to more than one link name.

Macro call format and operand description

Operation Operands
DCLJV Jjvname
[,LINK=*jv1ink]

,VERSION={ 0 } ,MF=

,PREFIX= 10
1 E...D

pre

— O ~ O 1!

114

U3616-J-Z2125-10-76

Macros

DCLJV

jvname

LINK

=*jvlink

MF
PREFIX

VERSION

Fully qualified path name of a permanent or temporary job variable.
If the job variable already exists, the user must have access autho-
rization. If it is a new job variable, it is cataloged under the specified
name (corresponds to the CATJV macro with default values). In this
case, only systems support may specify a different user ID.

Specifies the link name (with * as the first character) by which the
job variable can be addressed within the job from this point on. If an
assignment for the specified link name already exists, the old link
name assignment is replaced by the new assignment.

Link name for the job variable. The link name may be up to
8 characters long, including the asterisk (*).

For a description of the MF and PREFIX operands, see page 88.
Their permitted values are indicated at the beginning of the macro
description and in the macro call format.

Specifies which version of BS2000 the macro expansion is to be
compatible with.

Default value; the macro expansion is compatible with JV < V8.7.
The MF=D/C operand, which generates a DSECT or CSECT
respectively, is not supported by this version (see note on DSECT).

The macro expansion is compatible with JV > V10.0.

Notes concerning the DSECT

— Calling the DCLJV macro with the operands MF=D and VERSION=1 generates a
DSECT for the operand list of the DCLJV macro (VERSION=1).
— A DSECT for the macro with VERSION=0 is generated by calling the macro IDJDC

[D][,prefix].

Return information and error flags

see page 229

U3616-J-Z2125-10-76

115

DCLJV Macros
DSECT
DCLJV DCLJV MF=D,VERSION=1
1 R R R e B S S B R S e S e S B S S e R S R R S R B e S e R S R e R e R e R S R e R S R S R S R R S e e B e
1 * VERSION 203
1 * *
1 * DCLJV PARAMETER LIST *
1 R R R e B e S S B R S R S S B S e R S R R S R R e S e R S R e R e R e R S R e R e S R S R R S R e e e
1 #INTF REFTYPE=REQUEST, C
1 INTNAME=DCLJV, INTCOMP=001
1 DCLJV DSECT
1 * *
1 * UNIT=41, FUNCTION=6, VERSTON=<PARAMETER VERSION> *
1 R R R e B S e S B R S S S S B S S e S S R R S e B e S e R S e e R e R e R S R R e R S e S R S e R S e e R e
1 FHDR MF=(C,IDJD)
2 DS 0A
2 IDJDFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 IDJDIFID DS 0A 0 INTERFACE IDENTIFIER
2 IDJDFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 IDJDFCT DS ALl 2 FUNCTION NUMBER
2 IDJDFCTV DS ALl 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 IDJDRET DS 0A 4 GENERAL RETURN CODE
2 *
2 * GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
2 * REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
2 *
2 IDJDSRET DS 0ALZ2 4 SUB RETURN CODE
2 IDJDSR2 DS ALL 4 SUB RETURN CODE 2
2 * ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
2 * Standard subcode? values as defined by convention:
2 IDJDR20OK EQU X'00" A1l correct, no additional info
2 IDJDR2NA EQU X'01! Successful, no action was necessary
2 IDJDRZ2WA EQU X'02' Warning, particular situation
2 IDJDSR1 DS ALL 5 SUB RETURN CODE 1
2 *
2 * GENERAL INDICATION OF ERROR CLASSES
2 *
2 * CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
2 * CLASS B X'01' — X'1F' PARAMETER SYNTAX ERROR
2 * CLASS C X'20" INTERNAL ERROR IN CALLED FUNCTION
2 * CLASS D X'40' = X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
2 *

CLASS E X'80' — X'82' WAIT AND RETRY

116

U3616-J-Z2125-10-76

Macros DCLJV

2 *

2 IDJDRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED

2 IDJDRPER EQU X'o1' PARAMETER SYNTAX ERROR

2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' — X'IF'

2 IDJDRENS EQU X'o1' CALLED FUNCTION NOT SUPPORTED

2 IDJDRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE

2 IDJDRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED

2 *

2 IDJDRAER EQU X'04' ALIGNMENT ERROR

2 IDJDRIER EQU X'20' INTERNAL ERROR

2 IDJDRCAR EQU X'40' CORRECT AND RETRY

2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' — X'7F'

2 IDJDRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED

2 * EXPLICITELY BY CREATE-SS

2 IDJDRECN EQU Xt42' SS MUST BE EXPLICITELY CONNECTED

2 *

2 IDJDRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY

2 IDJDRWLR EQU X'8l! ! LONG !

2 IDJDRWUR EQU X8z’ WAIT TIME IS UNCALCULABLY LONG

2 * BUT RETRY IS POSSIBLE

2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' — X'82'

2 IDJDRTNA EQU X'81l' SS TEMPORARILY NOT AVAILABLE

2 IDJDRDH EQU X'82' SS IN DELETE / HOLD

2 *

2 IDJDMRET DS O0AL2 6 MAIN RETURN CODE

2 IDJDMR2 DS AL1 6 MAIN RETURN CODE 2

2 IDJDMR1 DS AL1 7 MAIN RETURN CODE 1

2 *

2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY"')

2 *

2 IDJDRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 IDJDFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *

1 KKKk
1 = END OF STANDARD HEADER. START OF SPECIAL DCLJV PARAMETER LIST *
1 """""""""""""""""""""""""""""""""""" KKK
1 IDJDHDRI EQU X'00290601"',4

1 IDJDJVL DS CL8 JV LINKNAME

1 IDJDJv DS CL54 JVNAME

1 IDJDFLG DS XLz FLAG RESERVED

1 IDJDJVS DS A RESERVED

1 IDJDPLLN EQU *~DCLJV LENGTH OF DSECT

1 """""""""""""""""""""""""""""""""""" KKK
1 SPACE

U3616-J-Z2125-10-76 117

DONEVT Macros

DONEVT

Delete condition for job variable event

General

Domain: Job variables

Macro type: Type S (with version=0): standard form/D/E/L form

Type S (with version=1): standard form/C/D/E/L/M form,
see section “The MF operand” on page 88

Macro description

The DONEVT macro is used to delete one or more conditions previously linked by means
of an ONEVT macro to an event item declared with the ENAEI macro. The user can also
delete all currently existing conditions for job variable events.

The user must issue the DONEVT macro before the DISEI macro, i.e. delete a condition
before specifying the related event item. If this is not done, the results will be incorrect.
Conditions for job variable events can be deleted in the following three ways:

— The ONEVT counter (COUNT operand) reaches the value zero.
— The program terminates.
— A DONEVT macro deletes the condition.

118 U3616-J-Z2125-10-76

Macros DONEVT

Macro call format and operand description

Operation | Operands
DONEVT
*ALL
EIID= addr
(r)
5
(D,pre)
,VERSION=0 ,MF=1 p P ,PREFIX={ DON }
(E...» pre
L
>
C
,VERSION=11[,MF={ D [,PARAM:{ addr }],PREFIX={ J }
E (r) pre
L
M ,M/—\CID={ yst }[,POST={ val }]
macid r
EIID Specifies the conditions to be deleted which were previously set for
a job variable event using the ONEVT macro.
=*ALL All conditions which still exist for job variable events are deleted.
=addr Symbolic address of the event item ID.
=(r) Register containing the symbolic address of the event item ID.
MF For a description of the MF, PREFIX, MACID and PARAM
PREFIX operands, see page 88. The permitted values and defaults for MF
MACID for this macro are indicated at the beginning of the macro
PARAM description, those for PREFIX and MACID in the description of the

VERSION operand.

U3616-J-Z2125-10-76 119

DONEVT

Macros

VERSION

POST

=val

Specifies which version of BS2000 the macro expansion is to be
compatible with.

Default value; the macro expansion is compatible with JV < V8.7.
With the D form of this macro call a prefix (pre=1...3 letters) can be
specified. Default: pre=DON

The macro expansion is compatible with JV > V10.0.

With the C form, D form or M form of the macro call a prefix PREFIX
(p=1 letter) can be specified, and with the C and D forms MACID
also.

Specifies a 2-byte value that can be used at program level to identify
the DONEVT (in combination with the event item ID). The value
must have been set with the ONEVT macro.

Specification of this operand is permissible only in conjunction with
VERSION=1 or higher.

2-byte Assembler constant of any format.

Register containing the address of the 2-byte field in which the user
stored the value.

Return information and error flags

With VERSION=0:

R15 A return code relating to execution of the DONEVT macro (VERSION=0)

b’b ’ a’a is p:issed in register R1_5: o

aa = return switch, bb = secondary indicator)
X'bb' X'aa' Meaning
X'o0' X'00' Execution terminated normally
X'00' X'04' Function not executed: invalid address for event item
X'04' X'04' Function not executed: event item not found
X'08' X'04' Function not executed: system error (space management)
X'FF' Function not executed: CJC not available in the system

120

U3616-J-Z2125-10-76

Macros

DONEVT

With VERSION=1:

Following initialization of the standard header (when MF=S/L is specified in the call), the
return information is made available at the symbolic address <PREFIX><MACID>RET

(4 bytes).
Standard- A return code relating to execution of the DONEVT macro
10290 |]clfafl] (ERSON=D)s passed i e sarardreader,
X'cc' X'bb' X'aaaa' |Meaning
X'00' X'00' X'0000" | Execution terminated normally
X'00' X'o1' X'0004' | Function not executed: invalid address for event item
X'04' X'01' X'0004' | Function not executed: event item not found
X'08' X'20' X'0004' | Function not executed: system error
X'FFFF' | Function not executed: error during initialization of the standard
header (see page 229)

In addition to the return codes named in VERSION=0 or 1, the general JV return codes for
basic errors (e.g. invalid address for the operand list) may also appear. To find their
meaning, see the relevant explanation under macro IDEJVS (page 229).

DSECT
DONEVT DONEVT MF=D,VERSION=1,PREFIX=A

1 DONEVT MFCHK MF=D, C

1 SUPPORT=(C,D,E,L,M,S), C

1 PREFIX=A, C

1 MACID=VSC, C

1 DMACID=VSC, C

1 DNAME=DONPL, C

1 PARAM=, C

1 SVC=190

2 DONEVT DSECT ,

2 * A PREFIX=A, MACID=VSC #####

1 AVSCFHDR FHDR MF=(C,AVSC),EQUATES=NO

2 AVSCFHDR DS 0A

2 AVSCFHE DS OXL8 0 GENERAL PARAMETER AREA HEADER

2 *

2 AVSCIFID DS 0A 0 INTERFACE IDENTIFIER

2 AVSCFCTU DS ALZ2 0 FUNCTION UNIT NUMBER

2 * BIT 15 HEADER FLAG BIT,
U3616-J-Z2125-10-76 121

DONEVT

Macros

*
*

*

AVSCFCT DS
AVSCFCTV DS
*

AVSCRET DS
AVSCSRET DS
AVSCSR2 DS
AVSCSRL DS
AVSCMRET DS
AVSCMR2 DS
AVSCMRL DS
AVSCFHL EQU

*

AVSCPCON DS

AVSCPREG EQU
AVSCXREG EQU
AVSCXSPE EQU
AVSCPTPR EQU
AVSCPKEY EQU

AVSCUNUD DS
AVSCPOST DS
ORG
AVSCPOSR DS
DS
AVSCETIID DS
ORG
AVSCREG DS
AVSCUNUZ2 DS
AVSC# EQU

*

* RETURNCODES

*

PP R PR RPRRPRRPRRRRRERPRRRRRRRRSRREFENDMNDMNDNDMNOMNDMNDNDMNDRN NN RN NN

AVSCOK EQU
AVSCINAD EQU
AVSCINEI EQU
AVSCSYSE EQU

ALl
ALl

0A
0AL2
ALl
ALl
0AL2
ALl
ALl
8

X

X'40'

X'20'

X'04'

X'oz2'

X'o1'

CL1

H
AVSCPOST

ALl
ALl

A

AVSCEIID

X

CL3

*~AVSCFHDR

X'00000000"
X'00010004"
X'04010004"
X'08200004"

w N

N OO D

MUST BE RESET UNTIL FURTHER NOTICE
BIT 14-12 UNUSED, MUST BE RESET

BIT 11-0 REAL FUNCTION UNIT NUMBER
FUNCTION NUMBER

FUNCTION INTERFACE VERSION NUMBER

GENERAL RETURN CODE

SUB RETURN CODE

SUB RETURN CODE 2

SUB RETURN CODE 1

MAIN RETURN CODE

MAIN RETURN CODE 2

MAIN RETURN CODE 1

GENERAL OPERAND LIST HEADER LENGTH

PARAM.—-CONTROL
PARAM. IN REGISTER
POST IN REGISTER
POST SPECIFIED
P2 CALLER
PARAM. IS KEYWORD
UNUSED
POST-VALUE

REG. CONT. POST-VALUE
NOT USED IN THIS CONTEXT
ACIDENTIFIER)

REGISTER #
UNUSED
LENGTH

SUCCESSFUL CALL
INVALID PARM.-LIST
INVALID IDENTIFIER
SYSTEM ERROR

122

U3616-J-Z2125-10-76

Macros

ERAJV

ERAJV

Erase job variable

General

Domain: Job variables

Macro type: Type S (standard form/C/D/E/L form)

see section “The MF operand” on page 88

In the C and D forms of the macro, a prefix (PREFIX = pre, where pre is 1..3 letters) can be
specified (see section “The PREFIX operand” on page 89).

Default value: PREFIX=IDJ

Macro description

The ERAJV macro erases one or more job variable entries from the file catalog, or only the
job variable value (in which case the job variable length is reset to zero).

The job variable name can be entered partially qualified and with wildcards.

Macro call format and operand description

Operation Operands
ERAJV jvid
NONE
LIGNORE=Y 1 rotectl
(protectl,...4)
ST
NO
-CHECK=Y My TIPLE
PVS
SINGLE
NONE
PASS=Y hasswordl
(passwordl,...3)

U3616-J-Z2125-10-76 123

ERAJV

Macros

Operation

Operands

ERAJV

(cont.)

,DATA={ NO }
YES

,VERSION={

[l]

} ,MF=

| 1D0
E) ,PREFIX—{—}
pre

r o~ O 1wm

jvid

IGNORE

Identifies the job variable that is to be erased.

jvid can be:

jvname

*jvlink
temp

A fully or partially qualified path name of a permanent
or temporary job variable.

The use of wildcards is allowed. Only systems support
may specify a different user ID or enter a user ID with
wildcard characters.

The specified path name must consist of at least one
of the three elements: catalog ID, user ID, JV name.

A valid job variable link name.

All temporary job variables of the job are erased.
“temp” stands for the special character defined with
the system parameter TEMPFILE, used to identify
temporary files and job variables (if necessary, ask
systems support which character has been defined).

Specifies whether protection attributes included in the catalog for
the job variable are to be ignored on erasure.

Non-privileged users can ignore the protection attributes
ACCESS=READ, BASIC-ACL and EXDATE greater than the current
date. The operand only takes effect when VERSION=1 is specified.

124

U3616-J-Z2125-10-76

Macros

ERAJV

=(protectl,...4)
=protecti

CHECK

=MULTIPLE

=PVS

Default value; causes an error message to be issued if an attempt
is made to erase a job variable which possesses one of the
specified protection attributes.

Specifies the protection attribute to be ignored.

The following values can be specified individually or in a list:

ACCESS: The protection attributes ACCESS=READ and
BASIC-ACL are ignored.

EXDATE: An expiration date greater than the current date is
ignored.

RDPASS: Privileged users only
Password protection is ignored.

WRPASS: Privileged users only
Protection with a write password is ignored.

Specifies whether it is possible to influence the erasure of job
variables. Option for intervention: response to system query as to
whether erasure is really to take place. In batch mode, this operand
is dynamically adapted in the event of a conflict, as only NO is
meaningful in batch mode. The operand only takes effect when
VERSION=1 is specified

Default value; defines the following: MULTIPLE for interactive mode
(global query) and NO for procedure/batch mode (erasure without
prior warning).

The erasure of job variables cannot be additionally influenced.

Results in a global query for each user ID (message: JVS0465), but
only if more than one job variable is to be erased. MULTIPLE is the
default value in interactive mode.

Results in a global query for each pubset (message: JVS0468), but
only if more than one job variable is to be erased.

U3616-J-Z2125-10-76

125

ERAJV

Macros

=SINGLE

A query is made for each job variable that is to be erased (message:
JVS0469).

Note

With MULTIPLE, PVS and SINGLE, the following query is
appended to each message:

REPLY (Y=YES; N=NO; T=TERMINATE; [,CHECK=model))

Response Effect

Y Erase request is executed

N Erase request is not executed,
message JVS046A

T Erasure is aborted

Any other response | Same effect as “N”

Optional suffix:
CHECK= Check mode is not modified.

CHECK=<mode> Check mode (STD, NO, MULTIPLE, PVS or
SINGLE) is set.

Table 31: Response options in the check dialog with ERAJV

PASS

=NONE

=(password1,...3)
=password1

DATA

Enables the user to erase password-protected job variables. The
operand only takes effect when VERSION=1 is specified.
Passwords specified here are not entered in the password table of
the job.

Default value; prevents the erasure of password-protected job
variables.

Specifies the password that is to be ignored when job variables are
erased. Up to three passwords can be specified in a list.

Determines the scope of erasure. The operand only takes effect
when VERSION=1 is specified

Default value; the job variable entry is erased.

The value of the job variable is reset to zero.

For a description of the MF and PREFIX operands, see page 88.
Their permitted values are indicated at the beginning of the macro
description and in the macro call format.

126

U3616-J-Z2125-10-76

Macros ERAJV
VERSION Specifies which version the macro expansion is to be compatible
with.
=0 Default value: the macro expansion is compatible with JV < V8.7.

The operand MF=C/D, which generates a CSECT or DSECT, is not
supported by this version (see note on DSECT).

=1 The macro expansion is compatible with JV > V10.0.

Notes concerning the CSECT/DSECT

Calling the ERAJV macro with the operands MF=D and VERSION=1 generates a
DSECT for the operand list of the ERAJV macro (VERSION=1).

A CSECT or DSECT can be created by calling the IDJER macro for a ERAJV macro
with VERSION=0. A CSECT is generated with IDJER [,prefix], and a DSECT with
IDJER D[,prefix].

Return information and error flags

see page 229

DSECT

o b b e e) e

—_

RN MNDMNDNDMNDMNDMNDMNDMND N -

ERAJV ERAJV MF=D,VERSION=1

* KKk

* VERSION 400
Hokk
* ERAJYV PARAMETER LIST *
""""""""""""""""""""""""""""""""""" Hokk
#INTF REFTYPE=REQUEST, C

INTNAME=ERAJV, INTCOMP=001
ERAJV DSECT

* UNIT=41, FUNCTION=3, VERSION=<PARAMETER VERSION> *

FHDR MF=(C,IDJE)

DS 0A
IDJEFHE DS OXL8 0 GENERAL PARAMETER AREA HEADER
*
IDJEIFID DS OA O INTERFACE IDENTIFIER
IDJEFCTU DS AL2 0 FUNCTION UNIT NUMBER
* BIT 15 HEADER FLAG BIT,
* MUST BE RESET UNTIL FURTHER NOTICE
* BIT 14-12 UNUSED, MUST BE RESET
* BIT 11-0 REAL FUNCTION UNIT NUMBER
IDJEFCT DS ALL 2 FUNCTION NUMBER
IDJEFCTV DS ALL 3 FUNCTION INTERFACE VERSION NUMBER

U3616-J-Z2125-10-76 127

ERAJV Macros
2*
2 IDJERET DS 0A 4 GENERAL RETURN CODE
2*
2 * GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
2 * REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
2*
2 IDJESRET DS 0AL2 4 SUB RETURN CODE
2 IDJESR2 DS ALL 4 SUB RETURN CODE 2
2 * ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
2 * Standard subcode? values as defined by convention:
2 IDJERZ20K EQU X'00' A1l correct, no additional info
2 IDJERZNA EQU X'01l' Successful, no action was necessary
2 IDJERZWA EQU X'02' Warning, particular situation
2 IDJESR1 DS ALL 5 SUB RETURN CODE 1
2*
2 * GENERAL INDICATION OF ERROR CLASSES
2*
2 * CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
2 * CLASS B X'01' = X'1F' PARAMETER SYNTAX ERROR
2 * CLASS C X'20" INTERNAL ERROR IN CALLED FUNCTION
2 * CLASS D X'40' = X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
2 * CLASS E X'80' - X'82' WAIT AND RETRY
2*
2 IDJERFSP EQU X'00" FUNCTION SUCCESSFULLY PROCESSED
2 IDJERPER EQU X'01' PARAMETER SYNTAX ERROR
2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' — X'1F'
2 IDJERFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED
2 IDJERFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
2 IDJERVNA EQU X'03" INTERFACE VERSION NOT SUPPORTED
2*
2 IDJERAER EQU X'04" ALIGNMENT ERROR
2 IDJERIER EQU X'20" INTERNAL ERROR
2 IDJERCAR EQU X'40" CORRECT AND RETRY
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' — X'7F'
2 IDJERECR EQU X'41" SUBSYSTEM (SS) MUST BE CREATED
2 * EXPLICITELY BY CREATE-SS
2 IDJERECN EQU X'42" SS MUST BE EXPLICITELY CONNECTED
2*
2 IDJERWAR EQU X'80" WAIT FOR A SHORT TIME AND RETRY
2 IDJERWLR EQU X'81' ! LONG !
2 IDJERWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
2 * BUT RETRY IS POSSIBLE
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' — X'82'
2 IDJERTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE
2 IDJERDH EQU X'82" SS IN DELETE / HOLD
2*
2 IDJEMRET DS 0AL2 6 MAIN RETURN CODE
2 IDJEMR2 DS ALL 6 MAIN RETURN CODE 2

128

U3616-J-Z2125-10-76

Macros

ERAJV

NN NN NN NN

—_

2 b b b b b b b b b e b b b b b b b b b b b b) b) e b e e

IDJEMR1I DS AL1 7 MAIN RETURN CODE 1

*

* SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY')

*

IDJERLNK EQU ~ X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
IDJEFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
*
Kk Kk
* END OF STANDARD HEADER. START OF SPECIAL ERAJV PARAMETER LIST *
"""""""""""""""""""""""""""""""""""" *okk
IDJEHDRI EQU X'00290301',4
IDJEJV DS CL8O JVNAME
DS CL40 RESERVED
IDJEFLAG DS X FLAGS
IDJEDATA EQU X'80' 7-7 DATA=YES
* SET JV-VALUE TO NULLSTRING
IDJEECT EQU X'40" 6-6 SET BY CMD PROCESSING
* (NOT USED BY MACROCALLER)
IDJELIST EQU X'20° 5-5 LIST=YES
* (NOT USED BY MACROCALLER)
IDJENPWT EQU X'10° 4-4 NO PASSWORD TEST
* (PRIV CALLER ONLY)
IDJESEVR EQU X'08' 3-3 SEVER PROCESSING
* (ONLY USED BY SEVER-CMD)
IDJETERM EQU X'04' 2-2 TERM. PROCESSING
* (ONLY USED BY LOGOFF-CMD)
IDJEENCR EQU X'02' 1-1 NO ENCRYPTION OF PASSWD
* REQUIRED
IDJENEWT EQU X'01" 0-0 NEW INTERFACE(V9.5 UP)
IDJECHK DS X FLAGS FOR CHECK INDICATOR
IDJECNO EQU X'80" 7-7 CHECK=NO
* ALL JVS ARE DELETED - NO
* FEEDBACK TO CALLER
IDJECMUL EQU X'40' 6-6 CHECK=MULTIPLE
* IT IS ASKED IF ALL JVS OF
* THE CURRENT USERID SHOULD
* BE DELETED
IDJECPVS EQU X'20° 5-5 CHECK=PVS
* IT IS ASKED IF ALL JVS OF
* THE CURRENT PUBSET SHOULD
* BE DELETED
IDJECSIN EQU X'10' 4-4 CHECK=SINGLE
* IT IS ASKED FOR EACH JV IF
* THE THE JV SHOULD BE DELETED
IDJECDEF EQU X'08' 3-3 CHECK=STD
* DEFAULTS ARE USED
* DIALOG: MULTIPLE
* OTHERS: NO

U3616-J-Z2125-10-76 129

ERAJV Macros

1 IDJEIGNO DS X FLAGS FOR IGNORE PARAMETER
1 IDJEINON EQU X'80" 7—7 IGNORE=NONE

1 =* ALL PROTECTIONS ARE CHECKED
1 =* IF PROTECTION DEFINED ERASE
1 * IS REJECTED

1 IDJEIRDP EQU X'40' 6—6 IGNORE=RDPASS

1 =* RDPASS PROTECTION IS

1 =* IGNORED. JV IS DELETED

1 IDJEIWRP EQU X'20' 5-5 IGNORE=WRPASS

1 * WRPASS PROTECTION IS

1 = IGNORED. JV IS DELETED

1 IDJEIACC EQU X'10' 4-4 TIGNORE=ACCESS

1 =* ACCESS=READ IS IGNORED.

1 * JV IS DELETED

1 IDJEIEXD EQU X'08' 3—-3 IGNORE=EXDATE

1 =* IGNORE RETPD DEFINITION.

1 IDJEFLG1 DS X FLAG 1

1 IDJEP? EQU X'80" 7—7 CALLER=P2

1 IDJINSTEP DS 6XL1 3 ERR'S

1 IDJERESE DS 14XL1 UNUSED

1 IDJEPWD1 DS CL4 PASSWORD1 SET DEFAULT 0O

1 IDJEPWDZ DS CL4 PASSWORDZ SET DEFAULT 0

1 IDJEPWD3 DS CL4 PASSWORD3 SET DEFAULT O

1 * THE FOLLOWING FIELD IS SUPPLIED ONLY FOR CMD PROCESSING

1 IDJEADDR DS CL4 SORT TABLE ADDRESS

1 IDJEJVS DS A RESERVED

1 IDJEPLLN EQU *—ERAJV LENGTH OF DSECT

1* *
1 SPACE

130 U3616-J-Z125-10-76

Macros GETJV

GETJV

Get job variable value

General

Domain: Job variables

Macro type: Type S (standard form/C/D/E/L form)

see section “The MF operand” on page 88

In the C and D forms of the macro, a prefix (PREFIX = pre, where pre is 1..3 letters) can be
specified (see section “The PREFIX operand” on page 89).

Default value: PREFIX=IDJ

Macro description

The GETJV macro transfers the value of a user or special job variable to an area of the user
program.

Macro call format and operand description

Operation Operands
GETJV

[jvid |

,area,size
| (jvid [,start [,lengthll) |

[,PASS=password]

, PARMOD= { 24 }

31
>
0 C IDJ
,VERSION=< = MF=< (g ..y -PREFIX=¢ —
1 pre
D
L
jvid Identifies the job variable. “jvid” can be:
jvname Fully qualified path name of a permanent or temporary
job variable.
*jvlink Valid job variable link name.

U3616-J-Z2125-10-76 131

GETJV

Macros

start

length

area

size

PASS=password

PARMOD

MF
PREFIX

Start position for output.
Output length.

Address of an area in the user program to which the value of the job
variable is to be transferred. The area is supplied as follows:

Format 1111xxxx JV value
<-4 bytes—>
<——1111=total Tlength >

Specifies the size of “area”. It must be at least as long as the “length
of the value to be read + 4” and may not be longer than 32767. The
actual size of “area”, i.e. the length of the JV value +4, is entered in
the first two bytes of the area. If the total length of the job variable

value is greater than the maximum value “size - 4”, the job variable
value is truncated so that the maximum value is not exceeded.

Read password.

Controls macro expansion. Either the 24-bit or the 31-bit interface is
generated.

PARMOD is evaluated only when VERSION=0 applies.

If PARMOD is not specified here, macro expansion is performed
according to the specification for the GPARMOD macro or
according to the default setting for the assembler (=24-bit interface).

The 24-bit interface is generated. Data lists and instructions use 24-
bit addresses. (Address space < 16 Mb.)

The 31-bit interface is generated. Data lists and instructions use 31-
bit addresses. (Address space < 2 Gb.) Data lists start with the
standard header.

For a description of the MF and PREFIX operands, see page 88.
Their permitted values are indicated at the beginning of the macro
description and in the macro call format.

132

U3616-J-Z2125-10-76

Macros GETJV

VERSION Specifies which version of BS2000 the macro expansion is to be
compatible with.

=0 Default value; the macro expansion is compatible with JV < V8.7.
The operand MF=D/C, which generates a DSECT or CSECT
respectively, is not supported by this version (see note on DSECT).

=1 The macro expansion is compatible with JV > V10.0.

Note
In contrast to the command level, the length 0 may be specified in the parameter list,
representing the total job variable length.

Notes concerning the DSECT

— Calling the GETJV macro with the operands MF=D and VERSION=1 generates a
DSECT for the operand list of the GETJV macro (VERSION=1).

— A CSECT/DSECT for the macro with VERSION=0 is generated by calling the macro
IDJGE [D][,prefix] [,PARMOD=24/31].

Return information and error flags

see page 229

DSECT

GETJV GETJV MF=D,VERSION=1
1 KKKk
1 =* VERSION 203
1 Kk Kk
1 ~* GETJV PARAMETER LIST *
1 """""""""""""""""""""""""""""""""""" KKK
1 #INTF REFTYPE=REQUEST, C
1 INTNAME=GETJV, INTCOMP=002
1 GETJV DSECT
1 KK Kk
1 ~* UNIT=41, FUNCTION=0, VERSION=1 (V9.0) *
1 ~* VERSION=2 (V10.0) *
1 """""""""""""""""""""""""""""""""""" KKK
1 FHDR MF=(C,IDJG)
2 DS 0A
2 IDJGFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 IDJGIFID DS 0A 0 INTERFACE IDENTIFIER
2 IDJGFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,

U3616-J-Z125-10-76 133

GETJV Macros
* MUST BE RESET UNTIL FURTHER NOTICE
* BIT 14-12 UNUSED, MUST BE RESET
* BIT 11-0 REAL FUNCTION UNIT NUMBER
IDJGFCT DS ALL 2 FUNCTION NUMBER
IDJGFCTV DS ALL 3 FUNCTION INTERFACE VERSION NUMBER
*

IDJGRET DS 0A 4 GENERAL RETURN CODE

*

* GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS

* REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION

*

IDJGSRET DS 0ALZ2 4 SUB RETURN CODE

IDJGSR2 DS ALL 4 SUB RETURN CODE 2

* ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'

* Standard subcode?2 values as defined by convention:

IDJGR20K EQU X'00' A1l correct, no additional info
IDJGRZNA EQU X'01' Successful, no action was necessary
IDJGRZ2WA EQU X'02' Warning, particular situation
IDJGSR1 DS ALL 5 SUB RETURN CODE 1

*

* GENERAL INDICATION OF ERROR CLASSES

*

* CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
* CLASS B X'01'" — X'1F' PARAMETER SYNTAX ERROR

* CLASS C X'20" INTERNAL ERROR IN CALLED FUNCTION

* CLASS D X'40' = X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
*

PN NN NN MNDMND NN NN NN NN N NN NN NN MNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDNDNDNDND NN

CLASS E X'80' — X'82' WAIT AND RETRY

*

IDJGRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
IDJGRPER EQU X'o1l! PARAMETER SYNTAX ERROR

* 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' —= X'1F'
IDJGRFNS EQU X'o1l' CALLED FUNCTION NOT SUPPORTED
IDJGRFNA EQU Xroz' CALLED FUNCTION NOT AVAILABLE
IDJGRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
*

IDJGRAER EQU X'04' ALIGNMENT ERROR

IDJGRIER EQU X'20' INTERNAL ERROR

IDJGRCAR EQU X'40' CORRECT AND RETRY

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' — X'7F'
IDJGRECR EQU X'41! SUBSYSTEM (SS) MUST BE CREATED
* EXPLICITELY BY CREATE-SS
IDJGRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
*

IDJGRWAR EQU X'80" WAIT FOR A SHORT TIME AND RETRY
IDJGRWLR EQU X'8l' ! LONG !
IDJGRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
* BUT RETRY IS POSSIBLE

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' — X'82'

134

U3616-J-Z2125-10-76

Macros GETJV

2 IDJGRTNA EQU X'8l' SS TEMPORARILY NOT AVAILABLE

2 IDJGRDH EQU X8z’ SS IN DELETE / HOLD

2 *

2 IDJGMRET DS O0AL2 6 MAIN RETURN CODE

2 IDJGMR2 DS AL1 6 MAIN RETURN CODE 2

2 IDJGMR1 DS AL1 7 MAIN RETURN CODE 1

2 *

2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY"')

2 *

2 IDJGRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED

2 IDJGFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH

2 *

1 KKKk
1 = END OF STANDARD HEADER. START OF SPECIAL GETJV PARAMETER LIST *
1 KKKk
1 IDJGHDRI EQU X'00290002",4

1 IDJGAR31 DS A AREA ADDRESS(31 BIT FORMAT)
1 IDJGSIZE DS H AREA SIZE

1 IDJGJV DS CL54 JVNAME

1 IDJGPOS DS H SUBSTRING START POSITION

1 IDJGLEN DS H SUBSTRING LENGTH

1 IDJGPASS DS CL4 PASSWORD

1 DS XL12

1 IDJGFLAG DS X FLAGS

1 IDJGENCR EQU X'80' 7=7 0=YES, 1=NO

1 =* (ENCRYPTION)

1 IDJGFGNV EQU X'40' 6—-6 0=NO, 1=YES

1= (NUMERIC-VALUE)

1 IDJGJVIX EQU X'z20' 5-5 0=NO, 1=YES

1 ~* (JVID INDEXED (SUBSTRING))
1 IDJGP2 EQU X'10' 4-4 0=P1 CALLER,1=P2 CALLER
1 IDJGECT EQU X'o8' 3-3 1=SET BY CMD PROCESSING
1 IDJGFGBV EQU X'04' 2—-2 0=NO, 1=YES

1 =* (BOOLEAN-VALUE)

1 IDJGNSTR EQU X'02' 1-1 0=NO, 1=YES

1 ~* (NULLSTRING DEFINED)

1 DS XL3

1 IDJGJVS DS A RESERVED

1 IDJGPLLN EQU *~GETJV LENGTH OF DSECT

1 KKk
1 SPACE

U3616-J-Z125-10-76 135

JVSEL

Macros

JVSEL

Limiting the JV selection of the STAJV macros to specific attributes
General

Domain: Job variables

Macro type: Type S (standard form/C/D/L form)

see section “The MF operand” on page 88

In the C and D forms of the macro, a prefix (PREFIX = pre, where pre is 1..3 letters) can be
specified (see section “The PREFIX operand” on page 89).

Default value: PREFIX=JSE

Macro description

The JVSEL macro limits the job variable set which is transferred to the user area with a
STAJV call, to job variables with specific attributes.

Macro call format and operand description

Operation Operands
JVSEL

*ANY
,ACCESS={ *READ
*WRITE

*ANY
,SHARE={ *YES
*NO

*ANY
*NONE

,PASS={ *RDPASS
*WRPASS
(list-of-pass)

136

U3616-J-Z2125-10-76

Macros

JVSEL

Operation

Operands

JVSEL
(cont.)

[,CRDATE=

, EXDATE=

*ANY

*NONE

date

date(timel, 1)
date(timel,time2)
(datel, 1)
(date(time)l, 1)
(,date)
(,date(time))
(datel,date2)
(datel(time),date2)
(datel, (time),date2(time))

*ANY

*NONE

date

date(timel, 1)
date(timel,time2)
(datel, 1)
(date(time)l, 1)
(,date)
(,date(time))
(datel,date2)
(datel(time),date?2)
(datel, (time),date2(time))

*ANY

,BASACL={ *NONE
*YES

,OWNERAR=

*ANY
*NO-ACCESS
access—1list

U3616-J-Z2125-10-76

137

JVSEL

Macros

Operation

Operands

JVSEL
(cont.)

*ANY

,GROUPAR={ *NO—-ACCESS
access—1list

*ANY

,OTHERAR={ *NO—-ACCESS
access—1list

*ANY

*NONE
*YES

,GUARDS=

(READ=

*ANY
,MANCLAS=4 *NONE

*ANY

*NONE
fname

LWRITE=

<c-string 1..8>

*ANY
,MONJV=3 *YES
*NO

*ANY
,CJC=1 *YES
*NO

*ANY

*LEVEL-0
,PROTACT=¢ *LEVEL-1
*LEVEL-2
(1ist-of-protact)

*ANY

*NONE
fname

138

U3616-J-Z2125-10-76

Macros JVSEL

Operation Operands
JVSEL
(cont.) TANY
nmbr
,SIZE=3 (nmbr[,1)
(,nmbr)

(nmbrl,nmbr2)

*LTI
, TIMBASE=
*UTC

D { JSE }
,VERSION=1 ,MF={ C } ,PREFIX=y —
- pre
L
ACCESS Selects job variablesjob variableson the basis of the access mode
=*ANY Default value; the access mode is not a selection criterion.
=*READ Provides information about job variables for which only read access
is permitted.
=*WRITE Provides information about job variables for which only write access
is permitted.
SHARE Selects and retrieves information on job variables based on whether

or not they are shareable. If a foreign user ID is specified with
“Suserid.”, SHARE=YES applies implicitly.

=*ANY Default value; shareability is not used as a selection criterion.

=*YES Returns information on all job variables that are shareable, i.e.
which are also accessible to other user IDs under active standard
access control.

=*NO Returns information on all job variables that are not shareable, i.e.
that are only accessible to the owner or co-owner under active
standard access control.

PASS Selects and returns information on job variables on the basis of the
password protection defined with CATAL. If several password types
are specified in the form of a list, all job variables that satisfy one of
the named conditions (logical OR) are selected by the system.
Passwords are not output.

U3616-J-Z125-10-76 139

JVSEL Macros

=*ANY Default value; password protection is not used as a selection
criterion.

=*NONE Selects job variables for which no password protection exists.

= *RDPASS Selects job variables which are protected by means of a read
password.

= *WRPASS Selects job variables which are protected by a write password.

= (list-of-pass) The user may specify more than one type of password in the form
of a list. All job variables protected by one of the specified password
types will be selected.

CRDATE Returns information on job variables on the basis of their creation
date (CRDATE); range specifications are inclusive of the limit
values. It is meaningless to specify a CREATION-DATE which lies in
the future!

Here, the user can specify the expiration date in either of two ways:

1. as an absolute date value
a specific date in the form yymmdd or [yy]yy-mm-dd
(yy = year, mm = month, dd = day)

2. as a relative date value
(6 digits with preceding sign), the number of days from today’s
date, in the form -n for dates in the past, and [+]n for dates in the
future; (yesterday = -1 or today = +0)

=*ANY Default value; the creation date is not a selection criterion.

= date Returns information on all job variables that were created on the
specified date.

= (date[,]) Returns information on all job variables that were created on or after
the specified date (creation date > current date).

= (,date) Returns information on all job variables that were created on or
before the specified date (creation date < current date).

= (date1,date2) Returns information on all job variables that were created within the
specified period (date1 < creation date < date2).

= date(time[,]) Returns information on all job variables that were created on the
specified date on or after the specified time.

= date(time1,time2)
Returns information on all job variables that were created on the
specified date within the specified period.

140 U3616-J-Z2125-10-76

Macros

JVSEL

= (date(tlme)[,])

= (,date(time))

Returns information on all job variables that were created on or after
the specified date and time.

Returns information on all job variables that were created before the
specified date and time.

= (date1(time),date2(time))

EXDATE

=*ANY

= date

= (datel,])

= (,date)

= (date1,date2)

= date(timel[,])

Returns information on all job variables that were created within the
specified period. The upper and lower limits of the specified period
are defined more precisely by a time specification in both cases.

Returns information on job variables on the basis of their “expiration
date”, i.e. the date from which write accesses to the job variable are
allowed. It is meaningful to specify a date in the future if retention
periods are being queried.

Here, the user can specify the expiration date as an absolute date
value or as a relative date value (see “CRDATE” on page 140).

Default value; the expiration date is not a selection criterion.

Returns information on all job variables for which the specified
expiration date is defined.

Returns information on all job variables for which the expiration date
is greater than or equal to the specified date.

Returns information on all job variables for which the expiration date
is less than or equal to the specified date.

Returns information on all job variables for which the expiration date
lies within the specified period (date1 < expiration date < date2).

Returns information on all job variables with the specified expiration
date and with an expiration time that is greater than or equal to the
specified time.

Note that the time of expiration (i.e. the time on the expiration date)
is always entered as 00:00:00 hours in the catalog at present!

U3616-J-Z2125-10-76

141

JVSEL

Macros

= date(time1,time2)

= (date(time)[,])

= (,date(time))

Returns information on all job variables with the specified expiration
date and with a time of expiration that lies within the specified time
interval.

Note that the time of expiration (i.e. the time on the expiration date)
is always entered as 00:00:00 hours in the catalog at present!

Returns information on all job variables with the specified expiration
date and with an expiration time that is greater than or equal to the
specified time.

Note that the time of expiration (i.e. the time on the expiration date)
is always entered as 00:00:00 hours in the catalog at present!

Returns information on all job variables for which the expiration date
and time is less than or equal to the specified time.

Note that the time of expiration (i.e. the time on the expiration date)
is always entered as 00:00:00 hours in the catalog at present!

= (date1(time),date2(time))

BASACL

OWNERAR

=*ANY

="NO-ACCESS

Returns information on all job variables for which the expiration date
lies within the specified period (date1 < expiration date < date?2).
The upper and lower limits of the specified period are defined more
precisely by time values in both cases.

Returns information on files which are selected on the basis of a
defined BASIC-ACL.

Default value; the BASIC-ACL is not a selection criterion.

Returns information on all job variables for which no BASIC-ACL
entry is defined.

Returns information on all job variables for which a BASIC-ACL
entry is defined.

Returns information on job variables selected on the basis of the
access rights that are defined for the job variable owner in the
BASIC-ACL entries.

Default value; BASIC-ACL entries for the job variable owner are not
used as a selection criterion.

Returns information on all job variables that the owner is not allowed
to access.

142

U3616-J-Z2125-10-76

Macros

JVSEL

= access-list Returns information on all job variables for which at least one of the
listed access rights has been defined for the file owner in the
BASIC-ACL entry.

access-list has the following format:

READ = *YES WRITE = *YES
R = *Y W = *y

" orean= w0 [P5) wRiTE = A0 [V
R = *N W = *N

The parentheses form part of the operand value and must be specified.

The individual elements of the access list mean the following:

READ="YES or R="Y Selects all job variables that may be accessed by the
owner for reading.

READ=*NO or R="N Selects all job variables that cannot be accessed by the
owner for reading.

WRITE=*YES or W=*Y Selects all job variables that can be accessed by the
owner for writing.

WRITE="NO or W=*N Selects all job variables that cannot be accessed by the
owner for writing.

GROUPAR Selects and returns information on job variables on the basis of the

access rights that are defined for members of the job variable
owner's user group in BASIC-ACL entries.

=*ANY The BASIC-ACL entries for members of the job variable owner's
user group are not used as a selection criterion.

=*NO-ACCESS Returns information on all job variables that cannot be accessed by
the user group of the owner.

= access-list Returns information on all job variables for which at least one of the
access rights specified in the list has been entered for the user
group of the job variable owner in the BASIC-ACL entry.

access-list has the following format:

READ = *YES WRITE = *YES
= * = *Y

i Yol oY 1

READ = *NO WRITE = *NO

R = *N W = %N

The parentheses form part of the operand value and must be specified.

U3616-J-Z2125-10-76

143

JVSEL

Macros

The individual elements of the access list mean the following:

READ=*YES or R="Y

READ="NO or R="N

WRITE="YES or W="Y

WRITE="NO or W="N

Selects all job variables that may be accessed for
reading by the user group of the owner.

Selects all job variables that cannot be accessed for
reading by the user group of the owner.

Selects all job variables that may be accessed for
writing by the user group of the owner.

Selects all job variables that cannot be accessed for
writing by the user group of the owner.

OTHERAR Selects and returns information on job variables based on the
access rights that are defined via BASIC-ACL entries for all users
other than the job variable owners's user group.

=*ANY Default value; the BASIC-ACL entries for all users other than the job
variable owner's user group do not serve as a selection criterion.

=*NO-ACCESS Returns information on all job variables that may be accessed by
users not belonging to the job variable owner's user group.

= access-list Returns information on all job variables for which at least one of the
listed access rights has been defined for users not in the job variable
owner's user group in the BASIC-ACL entries.

access-list has the following format:

READ = *YES WRITE = *YES

R = *v = *y
Y 1)

READ = *NO WRITE = *NO

R = *N W = =N

The parentheses form part of the operand value and must be specified.

The individual elements of the access list mean the following:

READ=*YES or R="Y

READ="NO or R="N

WRITE="YES or W="Y

WRITE="NO or W="N

Selects all job variables that can be accessed for
reading by users who are not in the owner's user group.

Selects all job variables that cannot be accessed for
reading by users who are not in the owner's user group.

Selects all job variables that can be accessed for
writing by users who are not in the owner's user group.

Selects all job variables that cannot be accessed for
writing by users who are not in the owner's user group.

144

U3616-J-Z2125-10-76

Macros

JVSEL

GUARDS

= *NONE

“YES

The user can select job variables to be processed on the basis of
the access protection defined by GUARDS (see the “SECOS” [10]
manual).

Default value; the access protection defined by GUARDS is not a
selection criterion.

Returns information on all job variables which have no access
protection defined by GUARDS.

Returns information on all job variables which have access
protection defined by GUARDS.

(READ=...,WRITE=...)

The type of access protection provided by GUARDS that is to be
used as a selection criterion can be defined by the user in a list. For
each access mode (read and write), the defined protection can be
specified precisely. If no entry is made for an access mode, the
protection defined for that access mode has no effect on the
selection.

For each access mode, one of the following values may be specified:

*ANY
*NONE

fname

MANCLAS

=*ANY

= *NONE

= <c-string 1..8>

MONJV
=*ANY

=*NO

The defined GUARDS protection is not a selection criterion.

No guard has been defined for the specified access mode, i.e. the
corresponding access is denied.

All conditions for granting access in the specified access mode are
defined in the guard fname.

Returns in formation on all job variables according to the HSMS
management class for file backup to SM pubsets.

Default value; the HSMS management class is not a selection
criterion.

All files for which no HSMS management class is defined are
selected.

All files with the specified HSMS management class are selected.

Selects job variables that are used as job monitoring job variables.

Preset value: use as a monitoring job variable is not a selection
criterion.

Selects job variables that do not monitor any jobs.

U3616-J-Z2125-10-76

145

JVSEL

Macros

=*YES Selects job variables that monitor jobs (also see the SHOW-JV-
ATTRIBUTES command, the JV-TYPE IS MONJV output field in the
“Commands” manual [1]]).

CJC Selects job variables according to their use in CJC functions.
=*ANY Default value; use as a job monitoring job variable is not a selection
criteria.
=*NO Selects job variables that are not used in CJC functions.
=*YES Selects job variables that are used in CJC functions.
PROTACT Selects and retrieves information on job variables on the basis of the

protection level provided by the highest activated access control.

When the file is accessed, the highest activated protection level applies. The following table
shows the method used for access control, the protection attribute to be specified in the
CATJV macro and the file protection hierarchy (protection levels):

Access control method Protection attribute (CATJV macro operand) | Protection
level
Standard access control ACCESS u. SHARE 0
Basic access control list BASACL, OWNERAR, GROUPAR, OTHERAR 1
Access control using GUARDS GUARDS 2

All other protection attributes of the file (e.g. passwords) are evaluated independently,
without regard to the implemented protection level.

=*ANY Default value; is the default value; returns information on all job
variables without regard to the protection level of the highest
activated access control.

= *LEVEL-0 Returns information on job variables for which access is controlled
via standard access control.

*LEVEL-1 Returns information on job variables for which access is controlled
via a basic access control list (BASIC-ACL protection).

*LEVEL-2 Returns information on job variables for which access is controlled
via an access control list by GUARDS.

(list-of-protact) The user may specify up to a maximum of three protection levels in
a list. All job variables for which the protection level of the access
control method matches one of those specified are selected.

146

U3616-J-Z2125-10-76

Macros JVSEL

SIZE Selects job variables according to the length of the job variable
values. Range specifications include their respective limit values.
=*ANY Default value; the length of the job variable value is not a selection
criteria.
= nmbr Selects job variables which are the specified number of bytes long.

Possible values: 0 < nmbr < 256

= (nmbrf,]) Returns information about job variables which are at least the
specified number of bytes long (SIZE > specified value).

= (,nmbr) Returns information about job variables which have a length which
is less than or equal to the specified number of bytes (SIZE <
specified value).

= (nmbr1,nmbr2) Returns information about job variables which have a length within
the specified range (nmbr1 < length < nmbr2, where nmbr1 <

nmbr2).
TIMBASE Specifies the timebase which is used when inputing creation or
expiration dates.
=*LTIl Default value: date or time inputs are interpreted as inputs in local
time.
=*UTC Date or time inputs are interpreted as GMT.
MF For a description of the MF and PREFIX operands, see page 88.
PREFIX Their permitted values are indicated at the beginning of the macro

description and in the macro call format.

VERSION Specifies which version of BS2000 the macro expansion is to be
compatible with.

=1 Default value: The macro expansion is compatible with JV V14.0.

U3616-J-Z2125-10-76 147

JVSEL

Macros

Return information and error flags

Currently the only option of using a JVSEL parameter list is to use it as SELADDR in a STA-
JV. The latter supplies a return code in accordance with page 229 and, specifically in the

case of STAJV return code 0491 (error during selection), it also records which selection cri-
terion is faulty in the JSERC field of the JVSEL parameter list.

DSECT

JVSEL
JVSEL
JVSEL

JSETEXT
JSEVERS
JSERC
JSERCOK
JSERCCRD
JSERCEXD
JSERCCRT
JSERCEXT
JSERCUND
*
JSESELIO
JSESICRD
JSESTEXD
JSESTPWP
JSESIPRO
JSESTACC
JSESISHR
JSESIBAC
JSESIGUA
*
JSESELI1
JSESISIZ
JSESIMON
JSESIMCL
JSESICJC
JSEST5UU

*

JSEUNUS1
*
JSEBACL
JSEBACLY

I = T = T = T R R R e T e T e T e T T e T e T S S e e e e e = T = T = B = S =S G RS

JVSEL MF=D

MFCHK MF=D, SUPPORT=(D,C),PREFIX=J,MACID=SE,DMACID=JSE

DSECT ,
* fHHHHE PREFIX=J, MACID=JSE #HHHH

DS 0A

DC C'SELECT'

DC X'o1!

DC X'FF'

EQU X'00' NO ERROR

EQU X'o1l' INVALID CRDATE
EQU X'o2' INVALID EXDATE
EQU X'03" INVALID CRTIME
EQU X'o4' INVALID EXTIME
EQU X'FF' UNDEFINED

DC B'00000000" SELECT INDO

EQU X'80" CREATION-DATE
EQU X'40' EXPIRATION-DATE
EQU X'20! PASSWORD-PROTECTED
EQU X'10' PROTECTION—-LEVEL
EQU X'08' ACCESS

EQU X'o4' SHARE

EQU X0z BASIC-ACL

EQU X'o1l' GUARDS

DC B'00000000" SELECT INDI

EQU X'80" SIZE

EQU X'40' MONJV

EQU X'20! MANAGEMENT—-CLASS
EQU X'10' CcJc

EQU X'OF' —— UNUSED, MUST BE 0 —
DC X'0000"

DC B'00000000" BASIC-ACL

EQU X'80" YES

148

U3616-J-Z2125-10-76

Macros

JVSEL

JSEBACLN
JSEBACLU
*
JSEBOW
JSEBOWRS
JSEBOWWS
JSEBOWUN
JSEBOWRY
JSEBOWWY
JSEBOWNU
JSEBOWNO
JSEBOWUU
*
JSEBGR
JSEBGRRS
JSEBGRWS
JSEBGRUN
JSEBGRRY
JSEBGRWY
JSEBGRNU
JSEBGRNO
JSEBGRUU
*
JSEBOT
JSEBOTRS
JSEBOTWS
JSEBOTUN
JSEBOTRY
JSEBOTWY
JSEBOTNU
JSEBOTNO
JSEBOTUU
*
JSECRD
JSECRT
JSECRD2
JSECRT2
*
JSEEXD
JSEEXT
JSEEXD2
JSEEXT2
*
JSEGUA
JSEGUARS
JSEGUAWS
JSEGUAUN
JSEGUUNU

2 b b b b b b b b b b b b b b e b b b b b b b b b b b) b) b b b b e b e

EQU
EQU

DC

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

DC

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

DC

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

DC
DC
DC
DC

DC
DC
DC
DC

DC

EQU
EQU
EQU
EQU

X'40"
X' 2F!

B'00000000"
X'80'
X'40'
Xr20'
X'10'
X'08'
X'04'
X'02'
X'o1'

B'00000000"
X'80'
X'40'
Xt20'
X'10'
X'o8'
X'04'
Xroz2'
X'o1'

B'00000000"
X'80'
X'40'
Xr20'
X'10'
X'08'
X'04'
Xroz'
X'o1'

cLio"
cLs' !
cLio"
cLs' !

cLio"
cLs' !
cLio"
cLs' !

B'00000000"
X'80' 7=7
X'40' 6—6
X'20' 5-5
X'10' 4-4

T O wnn;m

NONE
—— UNUSED, MUST BE 0 ——

BASIC—-ACL-OWNER
READ-RIGHT-SPECIFIED
WRITE-RIGHT-SPECIFIED

—— UNUSED, MUST BE 0 ——
READ = YES
WRITE = YES

—— UNUSED, MUST BE 0 ——
NO-ACCESS

—— UNUSED, MUST BE 0 ——

BASIC-ACL-GROUP
READ-RIGHT-SPECIFIED
WRITE-RIGHT-SPECIFIED

—— UNUSED, MUST BE 0 —
READ = YES
WRITE = YES

—— UNUSED, MUST BE 0 ——
NO—-ACCESS

—— UNUSED, MUST BE 0 ——

BASIC—-ACL-0THERS
READ-RIGHT-SPECIFIED
WRITE-RIGHT-SPECIFIED

—— UNUSED, MUST BE 0 ——
READ = YES
WRITE = YES

—— UNUSED, MUST BE 0 ——
NO-ACCESS

—— UNUSED, MUST BE 0 ——

CREATION DATE FROM DATE
TIME
— TO DATE

TIME

EXPIRATION DATE

FROM DATE
TIME
TO DATE
TIME

GUARDS SPECIFIED FLAG
READ-SPECIFIED
WRITE-SPECIFIED

—— UNUSED, MUST BE 0 ——

—— UNUSED, MUST BE 0 ——

U3616-J-Z2125-10-76

149

JVSEL

Macros

VA T O T O T T G T O O T T O O T O VO T O T I Y

JSEGUANS
JSEGUAYS
JSEGUAUU
JSEGUAR
JSEGUAW
*

JSEPWP
JSEPWPRD
JSEPWPWR
JSEPWPUN
JSEPWPNO
JSEPWPNU
*
JSEPROL
JSEPROLO
JSEPROL1
JSEPROL2
JSEPROUU
*
JSESELF1
JSEACCRD
JSEACCWR
JSESHARY
JSESHARN
JSEMONY
JSEMONN
JSECJCY
JSECJCN
*
JSESELF2
JSETLTI
JSESF2uUU

*

JSEUNUS2
*
JSESIZE
JSESTZE2
*
JSEMGMCL
JSEFUT4
JSESPLLN

EQU
EQU
EQU
DC
DC

DC

EQU
EQU
EQU
EQU
EQU

DC

EQU
EQU
EQU
EQU

DC

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

DC
EQU
EQU

DC

DC
DC

DC
DC
EQU

X'08' 3-3
X'o4' 2-2
X'03' 1-0
cLis' !

cLig' !

B'00000000"
X'80" 7=7
X'40' -

6-6
X'20' 5-5
X'10' 4-4
X'OF' 3-0

B'00000000"
X'80" 7=7
X'40' 6-6
X'20' 5-5
X'1F' 4-0
B'00000000"
X'80' 7=7
X'40' -

6-6
X'20! 5-5
X'10' 4-4
X'08' 3-3
X'04' 2-2
Xroz' 1-1
X'o1l' 0-0

B'00000000"
X'80" 7-7
X'7F! 6-0

X'000000"

ACO)
ACO)

cLs' !
60X'00"
*=JVSEL

(V2 I RV RV RV RV R Vo RN Vp) o L w;m e BN Vol v BNV N V] wn

wn

GUARDS=NONE SPECIFIED
GUARDS=YES SPECIFIED
—— UNUSED, MUST BE 0 —
GUARDS—-READ
GUARDS-WRITE

PW PROTECT FLAG -
READ
WRITE

—— UNUSED, MUST BE 0 —
NONE

—— UNUSED, MUST BE 0 —

PROTECTION-LEVEL-FLAG
LEVEL O
LEVEL 1
LEVEL 2

—— UNUSED, MUST BE 0 —

SELECT FLAG 1 —
ACCESS = READ
ACCESS = WRITE

SHARE = YES
SHARE = NO
MONJV = YES
MONJV = NO
CJc = YES
CJc = NO

SELECT FLAG 2 —
TIME-BASE = LOCAL
—— UNUSED, MUST BE 0 —

SIZE - FROM
- 10

MANAGEMENT-CLASS

SPACE FOR FUTURE USE, MUST BE O

150

U3616-J-Z2125-10-76

Macros LNKJV

LNKJV

Link job variables to JV-LINK entries

General

Domain: Job variables

Macro type: Type S (standard form/C/D/E/L form)

see section “The MF operand” on page 88

In the C and D forms of the macro, a prefix (PREFIX = pre, where pre is 1..3 letters) can be
specified (see section “The PREFIX operand” on page 89).

Default value: PREFIX=IDJ

Macro description

The LNKJV macro transfers information on the links between job variables and job variable
link names (JV-LINK) from the JV-LINK table to a user area.

Macro call format and operand description

Operation Operands
LNKJV area [,length]

[{ JVYNAME=jvname }]
LINK=*jvTink

,ODSECT={ NO }
YES

.VERSION={

[=]

} M-

1DJ
E..) ,PREFIX={ }
pre

— O ~ O 1un

U3616-J-Z2125-10-76 151

LNKJV

Macros

area

length

JVNAME=jvname

LINK="jvlink

ODSECT

MF
PREFIX

Symbolic address of an area in the program to which the LNKJV
information is to be transferred.

The area is supplied by LNKJV as follows:

114 Jvlinky | jvname; 11, Jvlink,
1 byte | 8 bytes | up to 54 bytes

< >
11 = total length of entry, up to 63 bytes

The end of the listed LNKJV information is identified by means of
one byte; this last byte contains the value X'00' if all the LNKJV infor-
mation has been transferred to the user area. If the user area was
unable to accommodate all entries, the last byte contains the value
X'01".

Explicit length of the user area.
If this operand is omitted, the implicit length of “area” is used. The
user area must be at least 63 bytes long.

Fully or partially qualified path name of a permanent or temporary
job variable whose link name is also to be placed in the defined
area. The use of wildcards is allowed.

Valid link name of a job variable (as defined in DCLJV) whose
complete path name is also to be placed in the defined area.

Specifies whether an additional DSECT for the output of a single
item of LNKJV information is to be generated. This entry only makes
sense with MF=D.

Default value; only one DSECT for the operand list of the LNKJV
macro is generated.

Generates an additional DSECT for the output of a single item of
LNKJV information (for format, see “area” or DSECT).

For a description of the MF and PREFIX operands, see page 88.
Their permitted values are indicated at the beginning of the macro
description and in the macro call format.

152

U3616-J-Z2125-10-76

Macros LNKJV

VERSION Specifies which version of BS2000 the macro expansion is to be
compatible with.
=0 Default value; the macro expansion is compatible with JV < V8.7.
=1 The macro expansion is compatible with JV > V10.0.

Notes concerning the DSECT

— Calling the LNKJV macro with the operand MF=D generates a DSECT.
When VERSION=1 is specified, the DSECT is generated with a standard header.

— A DSECT is generated for the operand list of the LNKJV macro by default.
If ODSECT=YES is specified, a DSECT is additionally generated for the output of an
item of LNKJV information.

Return information and error flags

see page 229

DSECT

LNKJV LNKJV MF=D,VERSION=1,0DSECT=YES
1 KKKk
1 =* VERSION 320
1 KKKk
1 ~* LNKJYV PARAMETER LIST *
1 """""""""""""""""""""""""""""""""""" KKK
1 #INTF REFTYPE=REQUEST, C
1 INTNAME=LNKJV, INTCOMP=001
1 LNKJV DSECT
1 KKKk
1 ~* UNIT=41, FUNCTION=7, VERSION=<PARAMETER VERSION> *
1 """""""""""""""""""""""""""""""""""" KKK
1 FHDR MF=(C,IDJL)
2 DS 0A
2 IDJLFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 IDJLIFID DS 0A 0 INTERFACE IDENTIFIER
2 IDJLFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 IDJLFCT DS AL1 2 FUNCTION NUMBER
2 IDJLFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 IDJLRET DS 0A 4 GENERAL RETURN CODE

U3616-J-Z125-10-76 153

LNKJV Macros
*
* GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
* REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
*
IDJLSRET DS 0ALZ2 4 SUB RETURN CODE
IDJLSR2 DS ALl 4 SUB RETURN CODE 2
* ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
* Standard subcode?2 values as defined by convention:
IDJLR20K EQU X'00' Al1 correct, no additional info
IDJLRZNA EQU X'01! Successful, no action was necessary
IDJLR2WA EQU X'02' Warning, particular situation
IDJLSR1 DS ALl 5 SUB RETURN CODE 1
*
* GENERAL INDICATION OF ERROR CLASSES
*
* CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
* CLASS B X'01' — X'1F' PARAMETER SYNTAX ERROR
* CLASS C X'20" INTERNAL ERROR IN CALLED FUNCTION
* CLASS D X'40' = X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
*

PN NN NN MNDMND NN NN NN NN N NN NN NN MNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDNDNDNDND NN

CLASS E X'80' — X'82' WAIT AND RETRY

*

IDJLRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
IDJLRPER EQU X'o1l' PARAMETER SYNTAX ERROR

* 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' —= X'1F'
IDJLRFNS EQU X'o1l' CALLED FUNCTION NOT SUPPORTED
IDJLRFNA EQU Xroz' CALLED FUNCTION NOT AVAILABLE
IDJLRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
*

IDJLRAER EQU X'04' ALIGNMENT ERROR

IDJLRIER EQU X'20' INTERNAL ERROR

IDJLRCAR EQU X'40' CORRECT AND RETRY

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' — X'7F'
IDJLRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
* EXPLICITELY BY CREATE-SS
IDJLRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
*

IDJLRWAR EQU X'80" WAIT FOR A SHORT TIME AND RETRY
IDJLRWLR EQU X'8l' ! LONG !
IDJLRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
* BUT RETRY IS POSSIBLE

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' — X'82'
IDJLRTNA EQU X'8l' SS TEMPORARILY NOT AVAILABLE
IDJLRDH EQU X'82' SS IN DELETE / HOLD

*

IDJLMRET DS 0AL2 6 MAIN RETURN CODE

IDJLMRZ2 DS ALl 6 MAIN RETURN CODE 2

IDJLMR1 DS ALl 7 MAIN RETURN CODE 1

*

154

U3616-J-Z2125-10-76

Macros LNKJV
2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY")
2 *
2 IDJLRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 IDJLFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 """""""""""""""""""""""""""""""""""" Kk k
1 * END OF STANDARD HEADER — START SPECIAL LNKJV PARAMETERLIST *
1 * kK
1 IDJLHDRI EQU X'00290701'.,4
1 IDJLLINK DS cLs LINKNAME
1 IDJLNAME DS CL80 JOBVARIABLE NAME
1 IDJLUNUZ2 DS CL20 UNUSED
1 IDJLADDR DS A AREA ADDRESS
1 IDJLSIZE DS H AREA SIZE
1 IDJLFLAG DS X INDICATOR
1 IDJLNOLI EQU X'80' LINK NOT SPECIFIED
1 IDJLNONA EQU X'10" JVNAME NOT SPECIFIED
1 IDJLECT EQU X'08' SET BY CMD PROCESSING
1 IDJLP2 EQU X'04' P2 CALLER
1 DS CL1 ALIGNMENT
1 IDJLJVS DS A RESERVED
1 IDJLPLLN EQU *—LNKJV
1 SPACE
T Frkkkkkkkkkkkkok sk k ok ok kk ok sk ke ok ke ko ok ok ok ok ok ok ke ko ok ok ok ok ok ok ok kook sk ok ook ok ok ok kok sk ok ok ok ok ok ok ke kok *kx
1 * L NKJYV OUTPUT *
1 * kK
1 IDJEL DSECT
1 IDJELLN DS C LAYOUT LENGTH
1 IDJELINK DS cLs LINK NAME
1 IDJELJVN DS CL54 JV NAME (FULLY QUALIFIED)
1 IDJELLEN EQU *-IDJEL LENGTH OF MACRO
1 * kK
1 SPACE

U3616-J-Z2125-10-76

155

ONEVT

Macros

ONEVT

Set condition for job variable event

General

Domain: Job variables

Macro type: Type S (with version=0): standard form/C/D/E/L form

Type S (with version=1): standard form/C/D/E/L/M form,
see section “The MF operand” on page 88

Macro description

The ONEVT macro is used to specify a condition and assign an event item. During program
execution, a POSSIG is initiated by the system when the event “condition satisfied” or
“catalog exported” occurs.

A maximum can be set for the number of POSSIG calls to be executed.

For more information on eventing, see the “Executive Macros” manual [4].

Macro call format and operand description

Operation | Operands

ONEVT , ,
cond.expr

addrl
(rl)

.EIID=[addr |
(r)

1

_) val) -
[,POST—{ o }] LCOUNT=1 1.t
(r)

156

U3616-J-Z2125-10-76

Macros

ONEVT

Operation

Operands

ONEVT
(cont.)

S
(D,pre)
D
(VERSION=0,MF={ (¢
C
(C,pre)
L
S
c
,VERSION=1,MF={ D [,PARAM={ add”}],PREFIx:{J }
E (r) pre
L
M ,MACID={@ }
macid

‘cond.expr’

addr1

The condition is specified as a direct operand and must be enclosed
in apostrophes. Because the apostrophe is used as a syntax
character in assembler language, the following rules must be
observed:

Each apostrophe within “cond.expression” must be doubled. The
maximum length of “cond.expression” without the enclosing
apostrophes is 127 bytes.

Special job variables are not allowed.

Symbolic address of a user program area containing the
“cond.expression”.

The record format must be variable. The area starts with a 4-byte
field, the first two bytes of which contain the length of the
“cond.expression” in bytes + 4.

Example
SYMADR1 DC Y(END-SYMADRI)

DS CLZ?

DC ‘'conditional expression'
END EQU *

U3616-J-Z2125-10-76

157

ONEVT

Macros

(r1)

EIID

=addr

POST

=val

Register containing the address of the “cond.expression”, which
must be in the format described under “addr1” above. The
“cond.expression” must not contain special job variables.

Names the event item ID made available to the user program by the
TU eventing macro ENAEI. The ENAEI macro must be called
before the ONEVT macro.

Symbolic address of the event item ID.

Register containing the address of the event item ID.

Specifies a 2-byte value which can be used at program level to
identify ONEVT. Itis passed to the user program in the two rightmost
bytes of the post code. The post code is four bytes long and is
passed to the program when events such as “condition satisfied”
etc. occur.

2-byte long Assembler constant of freely selectable format.

Register containing the address of a 2-byte field in which the user
stored the “value”.

Post code format:

Event-dependent Condition result 'ONEVT'
indicator identification “value”
1 byte 1 byte 2 bytes

Meanings of the first two bytes:

— event-dependent indicator:

X'14' specifies that the event was caused by an ONEVT
macro.

— condition result:
specifies the “reason” for the POSSIG specified by the system.

X'00": condition satisfied
X'08": catalog exported

If the POST operand is not present, no “value” for the ONEVT identi-
fication (i.e. X'00000000") is transferred.

158

U3616-J-Z2125-10-76

Macros

ONEVT

COUNT

=int

MF
PREFIX
MACID
PARAM

VERSION

Function

Specifies the maximum number of POSSIG macros that may be
issued by the system (1 < number < 32767); default value = 1.
The COUNT operand determines how often a program will be
notified of an event.

Number of POSSIG macros permitted for the “condition satisfied”
event.

When this number is reached, the ONEVT macro is deactivated.
Irrespective of the COUNT operand entry, the ONEVT macro is
deactivated immediately following a POSSIG macro caused by the
event “catalog exported”, or by a DONEVT macro.

Register containing the address of a half word in which the value of
the COUNT operand is stored.

For a description of the MF, PREFIX, MACID and PARAM
operands, see page 88. The permitted values and the defaults for
MF for this macro are indicated at the beginning of the macro
description, those for PREFIX and MACID in the description of the
VERSION operand.

Specifies which version of BS2000 the macro expansion is to be
compatible with.

Default value; the macro expansion is compatible with JV < V8.7.
With the C and D forms of this macro call a prefix (pre=1...3 letters)
can be specified. Default: pre=ONE

The macro expansion is compatible with JV > V10.0.
With the C form, D form or M form of the macro call a prefix (p=1
letter) can be specified, and with the C and D forms MACID also.

Users can subject the result “condition satisfied” - about which they are informed by
POSSIG - to BS2000-TU eventing as they see fit. For example, they may wait until
“condition satisfied” has occurred (SOLSIG COND=) or a contingency process is executed
asynchronously when “condition satisfied” applies (SOLSIG COID=...).

U3616-J-Z2125-10-76

159

ONEVT

Macros

Return information and error flags

With VERSION=0:

R15 A return code relating to execution of the ONEVT macro (VERSION=0) is
b’b ’ ’ a’a passed in register R15:
(aa = return switch, bb = secondary indicator)
X'bb' X'aa' Meaning
X'00' X'00' Execution terminated normally
X'00' X'04' Function not executed: invalid address for event item or condition or invalid
COUNT value used
X'04' X'04' Function not executed: event item not found
X'08' X'04' Function not executed: invalid conditional expression
X'10' X'04' Function not executed: specified job variable cannot be accessed
X'FF' Function not executed: CJC not available in the system

With VERSION=1:

Following initialization of the standard header (when MF=S/L is specified in the call), the
return information is made available at the symbolic address <PREFIX><MACID>RET

(4 bytes).
Standard- A return relating to execution of the ONEVT macro (VERSION=1) is
header c‘c ‘ a‘a a‘a passed_in thg standard t:eader:
(aaaa = main code, cc = subcode?)
X'cc' X'aaaa' |Meaning
X'o0' X'0000" | Execution terminated normally
X'00' X'0004' | Function not executed: invalid address for condition or event item, or illegal
value for COUNT
X'04' X'0004' | Function not executed: event item not found
X'08' X'0004' | Function not executed: error in condition
X'10' X'0004' | Function not executed: a specified job variable cannot be accessed
X'14' X'0004' | Function not executed: insufficient memory
X'18' X'0004' | Function not executed: eventing mechanism not available
X'FFFF' | Function not executed: error during initialization of standard header. See
page 229

160

U3616-J-Z2125-10-76

Macros

ONEVT

In addition to the return codes named in VERSION=0 or 1, the general JV return codes for
basic errors (e.g. invalid address for the operand list) may also appear. To find their
meaning, see the relevant explanation under macro IDEJVS (page 229).

DSECT

ONEVT
ONEVT

ONEVT

JVSCFHDR
JVSCFHDR
JVSCFHE
*
JVSCIFID
JVSCFCTU

*
*
*

*

JVSCFCT
JVSCFCTV
*
JVSCRET
JVSCSRET
JVSCSR2
JVSCSR1
JVSCMRET
JVSCMR2
JVSCMR1
JVSCFHL
*
JVSCUNUL
JVSCPCON
JVSCCORE
JVSCEREG
JVSCPREG
JVSCCREG
JVSCPTPR

P P P P R PP RN NN NN NN N MNDNDMNDMNDMNDMNDMNDMNDMND L NN ==

ONEVT MF=D,VERSION=1

MFCHK MF=D,

DS

DS
DS

DS
DS

DS
DS

DS
DS
DS
DS
DS
DS
DS
EQ

ECT

U

DS

DS

EQU
EQU
EQU
EQU
EQU

SUPPORT=(C,D,E,L,M,S),

PREFIX=J,
MACID=VSC,
DMACID=VSC,
DNAME=ONEVTPL,
PARAM=,
SVC=190

s>

O OO OO0 OO0

* . PREFIX=J, MACID=VSC ###H##
FHDR MF=(C,JVSC),EQUATES=NO

0A
0XL8

0A
AL2

AL1
AL1

0A
0AL2
AL1
AL1
O0AL2
AL1
AL1
8

CL3

X'80"
X'40'
X'z20'
X'10'
X'oz2'

0

0

w

(o BRI e NS I N N

GENERAL PARAMETER AREA HEADER

INTERFACE IDENTIFIER

FUNCTION UNIT NUMBER

BIT 15 HEADER FLAG BIT,

MUST BE RESET UNTIL FURTHER NOTICE
BIT 14-12 UNUSED, MUST BE RESET

BIT 11-0 REAL FUNCTION UNIT NUMBER
FUNCTION NUMBER

FUNCTION INTERFACE VERSION NUMBER

GENERAL RETURN CODE

SUB RETURN CODE

SUB RETURN CODE 2

SUB RETURN CODE 1

MAIN RETURN CODE

MAIN RETURN CODE 2

MAIN RETURN CODE 1

GENERAL OPERAND LIST HEADER LENGTH

UNUSED

PARAM.—-CONTROL
ACCONDITION) IN REGISTER
ACIDENTIFIER) IN REGISTER
POST IN REGISTER

COUNT IN REGISTER

P2 CALLER

U3616-J-Z2125-10-76

161

ONEVT

Macros

U TSV O N N VT T N VA T T O N O O T Y

JVSCCOND
JVSCCONR
JVSCETID
JVSCEIDR
JVSCPOST
JVSCPOSR
JVSCCNT

JVSCCNTR

JVSCJIVS
JVSC#

*

DS
ORG

DS
DS

DS

ORG

DS
DS

DS
ORG

DS
DS

DS
ORG

DS
DS

DS

EQU

* RETURNCODES

*

JVSCOK

JVSCINAD
JVSCINEI
JVSCSYTE
JVSCJVNA
JVSCSYSE
JVSCBOER

EQU
EQU
EQU
EQU
EQU
EQU
EQU

A
JVSCCOND
AL1
AL3
A
JVSCETID
AL1
AL3
H
JVSCPOST
AL1
AL
H
JVSCCNT
AL1
AL
F
*~JVSCFHDR

X'00000000"
X'00010004"
X'04010004"
X'08000004"
X'10000004"
X'14000004"
X'18000004"

ACCONDITION)

REG. CONT. A(COND.)
NOT USED IN THIS CONTEXT
ACIDENTIFIER)

REG. CONT. ACIDENTIFIER)
NOT USED IN THIS CONTEXT
POST-VALUE

REG. CONT. POST-VALUE
NOT USED IN THIS CONTEXT
COUNT-VALUE

REG. CONT. COUNT-VALUE
NOT USED IN THIS CONTEXT
RESERVED

LENGTH

SUCCESSFUL CALL

INVALID PARM.—-LIST
INVALID IDENTIFIER

SYNTAX ERROR IN CONDITION
JV NOT ACCESSABLE

SYSTEM ERROR ($GETMEM)
SYSTEM ERROR (BOURSES)

162

U3616-J-Z2125-10-76

Macros RELJV

RELJV

Remove JV-LINK entry

General

Domain: Job variables

Macro type: Type S (standard form/C/D/E/L form)

see section “The MF operand” on page 88

In the C and D forms of the macro, a prefix (PREFIX = pre, where pre is 1..3 letters) can be
specified (see section “The PREFIX operand” on page 89).

Default value: PREFIX=IDJ

Macro description

The RELJV macro deletes one or all JV-LINK entries from the JV-LINK table. The entry to
be deleted is selected via its link name.

Macro call format and operand description

Operation Operands
RELJV CLINK=*jv1ink]
S
C
3 | 1DJ
MF= (E...) ,PREFIX—{ re}
D p
L

LINK="jvlink Valid link name of a job variable (as defined in DCLJV) which is to
be deleted from the JV-LINK table. The link name may be up to
8 characters long, including the asterisk (*).
If a link name consisting of blanks is specified, all entries are deleted
from the JV-LINK table.

MF For a description of the MF and PREFIX operands, see page 88.
PREFIX Their permitted values are indicated at the beginning of the macro
description and in the macro call format.

U3616-J-Z125-10-76 163

RELJV Macros

Return information and error flags

see page 229

DSECT

RELJV RELJV MF=D

R R R e e R R R e e R R o R e R R i e b R e i R o e R R b e R R o R e e S R o R S

* VERSION 310

* *

* RELJYV PARAMETER LIST *

ke e e koA Ak e ok e o e ok ok Rk ok ke ok e e ook kR Ak ok o ok e ok o ook kR Rk ok ok ok ek ok ok kok ok kR ok
#INTF REFTYPE=REQUEST, C

INTNAME=RELJV, INTCOMP=001
RELJV DSECT

* *

* UNIT=41, FUNCTION=33, VERSION=1 *

R R R e R R R e R R o b e e R R e R o e R e R e R R o R R R o S S

FHDR ~ MF=(C,IDJR)

DS OA
IDJRFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
*
IDJRIFID DS OA 0 INTERFACE IDENTIFIER
IDJRFCTU DS AL2 0 FUNCTION UNIT NUMBER
* BIT 15 HEADER FLAG BIT,
* MUST BE RESET UNTIL FURTHER NOTICE
* BIT 14-12 UNUSED, MUST BE RESET
* BIT 11-0 REAL FUNCTION UNIT NUMBER
IDJRFCT DS ALL 2 FUNCTION NUMBER
IDJRFCTV DS ALl 3 FUNCTION INTERFACE VERSION NUMBER
*
IDJRRET DS OA 4 GENERAL RETURN CODE

*

* GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS

* REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
*

IDJRSRET DS 0ALZ2 4 SUB RETURN CODE

IDJRSR2 DS ALL 4 SUB RETURN CODE 2

* ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'

* Standard subcode?2 values as defined by convention:

IDJRR20K EQU X'00' Al1 correct, no additional info
IDJRR2NA EQU X'01! Successful, no action was necessary
IDJRRZ2WA EQU x'02' Warning, particular situation
IDJRSR1 DS ALL 5 SUB RETURN CODE 1

*

* GENERAL INDICATION OF ERROR CLASSES

*

PN NP NN NN NN NN NN NDMNDMNDNDNNNNNNRFRE R R R R R R PR

164 U3616-J-Z2125-10-76

Macros

RELJV

* CLASS A X'00'

* CLASS B X'01°

* CLASS C X'20°

* CLASS D X'40'

* CLASS E X'80'

*

IDJRRFSP EQU ~ X'00°
IDJRRPER EQU ~ X'01°
*

IDJRRFNS EQU ~ X'01°
IDJRRFNA EQU X' 02°
IDJRRVNA EQU ~ X'03'
*

IDJRRAER EQU X' 04'
IDJRRIER EQU ~ X'20°
IDJRRCAR EQU ~ X'40°
*

IDJRRECR EQU ~ X'41°
*

IDJRRECN EQU ~ X'42°
*

IDJRRWAR EQU ~ X'80°
IDJRRWLR EQU ~ X'81°
IDJRRWUR EQU ~ X'82°

*

*

IDJRRTNA EQU X'8l'
IDJRRDH EQU X8z’
*

IDJRMRET DS O0AL2
IDJRMRZ DS AL1
IDJRMR1 DS AL1

*

* SPECIAL LAYOUT OF
*

IDJRRLNK EQU
IDJRFHL EQU

*

8

3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'Ol1'

2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40'

2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80'

X' FFFF'

FUNCTION WAS SUCCESSFULLY PROCESSED

X'1F! PARAMETER SYNTAX ERROR
INTERNAL ERROR IN CALLED FUNCTION
- X'7F! NO CLASS SPECIFIC REACTION POSSIBLE
- X'82' WAIT AND RETRY

FUNCTION SUCCESSFULLY PROCESSED
PARAMETER SYNTAX ERROR

- X'1F'
CALLED FUNCTION NOT SUPPORTED
CALLED FUNCTION NOT AVAILABLE
INTERFACE VERSION NOT SUPPORTED

ALIGNMENT ERROR

INTERNAL ERROR

CORRECT AND RETRY

- X'7F!
SUBSYSTEM (SS) MUST BE CREATED
EXPLICITELY BY CREATE-SS

SS MUST BE EXPLICITELY CONNECTED

WAIT FOR A SHORT TIME AND RETRY
! LONG !

WAIT TIME IS UNCALCULABLY LONG

BUT RETRY IS POSSIBLE

- X'82'

SS TEMPORARILY NOT AVAILABLE

SS IN DELETE / HOLD

6 MAIN RETURN CODE
6 MAIN RETURN CODE 2
7 MAIN RETURN CODE 1

LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY")

LINKAGE ERROR / REQ. NOT PROCESSED

8 GENERAL OPERAND LIST HEADER LENGTH

[l = ACER ACRE ACRE AR ACRE ACRE ACREACEE O RN AC RN A C R AC IR ORI O R A O A C I A C R A C I A O R S O O R AR SR SR A SR AR A SR A R AR AR AR AR AC R NGB AR p N}

1 """""""""""""""""""""""""""""""""""" KKK
1 IDJRHDRI EQU X'00292101"',4

1 IDJRJVL DS CL8 JV LINKNAME

1 IDJRFLG DS XL4 FLAG RESERVED

1 IDJRJVS DS A RESERVED

1 IDJRPLLN EQU *—RELJV LENGTH OF DSECT

1 """""""""""""""""""""""""""""""""""" KKK
1 SPACE

U3616-J-Z2125-10-76

165

SETJV

Macros

SETJV

Set job variable

General

Domain: Job variables

Macro type: Type S (standard form/C/D/E/L form)

see section “The MF operand” on page 88

In the C and D forms of the macro, a prefix (PREFIX = pre, where pre is 1..3 letters) can be
specified (see section “The PREFIX operand” on page 89).

Default value: PREFIX=IDJ

Macro description

The SETJV macro assigns a value to a job variable and stores it in an area of the user
program.

Macro call format and operand description

Operation | Operands

SETJV
{ jvidl }
(jvidll,[startl [,1dangell)

{ ,area }
JEXPR=jvid2

[,PASS=kennwort]

S
C
,VERSION={ 0 } ,PARMOD={ 24 },MF= . ,PREFIX={ 10 }
1 31 T pre
D
L
jvidi Identifies the job variable; jvid can be:
jvname Fully qualified path name of a permanent or temporary
job variable.
*jvlink Valid job variable link name.
start Start position (first byte to be modified) in the JV value.

166

U3616-J-Z2125-10-76

Macros

SETJV

length

area

EXPR=jvid2

PASS=password

MF
PREFIX

VERSION

PARMOD

Number of characters to be set.

Address of an area in the user program containing the job variable
value. The area must begin with a 4-byte length field whose first half
word contains the length of the value + the 4-byte length field.

Specifies that the job variable “jvid” is to be set to the value of the
job variable “jvid2”. The JV names permitted for “jvid2” are the same
as those permitted for “jvid1” as well as those permitted for special
job variables.

Read or write password.

For a description of the MF and PREFIX operands, see page 88.
Their permitted values are indicated at the beginning of the macro
description and in the macro call format.

Specifies which BS2000 version the macro expansion is to be
compatible with.

Default value; the macro expansion is compatible with JV < V8.7.
The operand MF=D/C, which generates a DSECT or CSECT
respectively, is not supported in this version (see note on DSECT).

The macro expansion is compatible with JV > V10.0.

Controls macro expansion. Either the 24-bit or the 31-bit interface is
generated.

PARMOD is evaluated only when VERSION=0 applies.

If PARMOD is not specified here, macro expansion is performed
according either to the specification for the GPARMOD macro or to
the default setting for the assembler (= 24-bit interface).

The 24-bit interface is generated. Data lists and instructions use 24-
bit addresses. (Address space < 16 Mb.)

The 31-bit interface is generated. Data lists and instructions use 31-
bit addresses. (Address space < 2 Gb.) Data lists start with the
standard header.

U3616-J-Z2125-10-76

167

SETJV

Macros

Note concerning the operand list

Unlike at command level, a length of 0 may be specified in the operand list; this then
represents the overall job variable length.

Notes concerning the DSECT

Calling the SETJV macro with the operands MF=D and VERSION=1 generates a
DSECT for the operand list of the SETJV macro (VERSION=1).

A CSECT/DSEC for the macro with VERSION=0 is generated by calling the macro
IDJSE [D][,prefix] [,PARMOD=24/31].

Return information and error flags

see page 229

DSECT
SETJV SETJV MF=D,VERSION=1
SETJV $SETJIV , ,EXPR=,PASS=NONE,ENCR=YES ,MF=D, C
PARMOD=, VERSION=1, CALLER=USER, C

WWWWWwWWwWwWwWwwwwMNNDMNDMND NN MNDMNDMNDMNDNDN -

PREFIX=IDJ,JVTYPE=STRING,NULLSTR=NO

AR AR KRR A A AR KR A AR KR A AR KRR A A AR A A AR A A A AR A A A AR A A AR A A A AR A AR A AR A AR A A A AR A AL A kK

* VERSION 203

ke e ek ok Ak e ok e o ke ok ok ok Ak ok ke ok e e ook ko kR Ak ok e ok e o ook ok kR Rk ok ok ok ek ok kok ok ok ko

* SETJV PARAMETER LIST *

* *
#INTF REFTYPE=REQUEST, C

INTNAME=SETJV, INTCOMP=002
SETJV DSECT

KRR AR KRR A AR AR AR KR A AR AR A A AR KA A A AR A A AR KR A A A A A A A AR A AR AN KA AR AR AR AR A AR AR A A AR XA kK

* UNIT=41, FUNCTION=1, VERSION=2 (V10.0) *

* *
FHDR MF=(C,1DJS)
DS OA

IDJSFHE DS OXL8 0 GENERAL PARAMETER AREA HEADER

*

IDJSIFID DS OA 0 INTERFACE IDENTIFIER

IDJSFCTU DS AL2 0 FUNCTION UNIT NUMBER

* BIT 15 HEADER FLAG BIT,

* MUST BE RESET UNTIL FURTHER NOTICE

* BIT 14-12 UNUSED, MUST BE RESET

* BIT 11-0 REAL FUNCTION UNIT NUMBER

IDJSFCT DS ALL 2 FUNCTION NUMBER

IDJSFCTV DS ALl 3 FUNCTION INTERFACE VERSION NUMBER

*

IDJSRET DS DA 4 GENERAL RETURN CODE

168

U3616-J-Z2125-10-76

Macros SETJV
*
* GENERAL_RETURN_CODE CLEARED (X'00000000"') MEANS
* REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
*
IDJSSRET DS 0AL2 4 SUB RETURN CODE
IDJSSR2 DS ALl 4 SUB RETURN CODE 2
* ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
* Standard subcode?2 values as defined by convention:
IDJSR20K EQU X'00' A11 correct, no additional info
IDJSRZ2NA EQU X'01" Successful, no action was necessary
IDJSR2WA EQU x'02' Warning, particular situation
IDJSSR1 DS ALl 5 SUB RETURN CODE 1
*
* GENERAL INDICATION OF ERROR CLASSES
*
* CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
* CLASS B X'01' — X'1F' PARAMETER SYNTAX ERROR
* CLASS C X'20" INTERNAL ERROR IN CALLED FUNCTION
* CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
*

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWwWWWWWWwWWWWWWwwWwWwWwwWwwww

CLASS E X'80' - X'82' WAIT AND RETRY

*

IDJSRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
IDJSRPER EQU X'o1' PARAMETER SYNTAX ERROR

* 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' - X'1F'
IDJSRFNS EQU X'o1l' CALLED FUNCTION NOT SUPPORTED
IDJSRFNA EQU Xroz2' CALLED FUNCTION NOT AVAILABLE
IDJSRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
*

IDJSRAER EQU X'04' ALIGNMENT ERROR

IDJSRIER EQU X'20' INTERNAL ERROR

IDJSRCAR EQU X'40' CORRECT AND RETRY

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
IDJSRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
* EXPLICITELY BY CREATE-SS
IDJSRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
*

IDJSRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
IDJSRWLR EQU X'81l' " LONG !
IDJSRWUR EQU X8z’ WAIT TIME IS UNCALCULABLY LONG
* BUT RETRY IS POSSIBLE

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' — X'82'
IDJSRTNA EQU X'8l' SS TEMPORARILY NOT AVAILABLE
IDJSRDH EQU X'82' SS IN DELETE / HOLD

*

IDJSMRET DS 0AL2 6 MAIN RETURN CODE

IDJSMRZ DS AL1 6 MAIN RETURN CODE 2

IDJSMR1 DS AL1 7 MAIN RETURN CODE 1

*

U3616-J-Z125-10-76 169

SETJV

Macros

* SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY')

*

IDJSRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
IDJSFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH

*
R R R e R R e R R o R e e R e i e R e R S R R e R R o R e R R S R S

* END OF STANDARD HEADER. START OF SPECIAL SETJV PARAMETER LIST *
* *
IDJSHDRI EQU X'00290102',4
I1DJSJIV DS CL54 JVNAME (JV TO BE SET)
IDJSPOS DS H SUBSTRING START POSITION
IDJSLEN DS H SUBSTRING LENGTH
DS H RESERVED
IDJSPASS DS CL4 PASSWORD
DS XL12 RESERVED
IDJSAR31 DS A SET VALUE ADDR
IDJSLENV DS CLI LENGTH OF SET VALUE
* ONLY USED BY CMD PROCESSING
IDJSIV2 DS CL54 JVNAME2 (JV TO BE READ)
DS XLl ALTGNMENT
IDJSPOS?2 DS H SUBSTRING START POSITION
IDJSLEN? DS H SUBSTRING LENGTH
I1DJSOP DS CLI RESERVED
IDJSF DS X FLAGS
IDJSFSEL EQU X'80' 7-7 PRIV SETJV REQUEST
* 0=P1 CALLER,1=P2 CALLER
IDJSFRD EQU X'40' 6-6 TYPE=READ
IDJISFWT EQU X'20° 5-5 TYPE=WRITE
IDJSFUN EQU X'10° 4-4 TYPE=UNLOCK
IDJSFSH EQU X'08' 3-3 PROT=SHARE
IDJSFEX EQU X'04' 2-2 PASSWD IS GIVEN
IDJSRW EQU X'02' 1-1 RDPSTYPE=READ
IDJINOTF EQU Xx'01' 0-0 NOTIF=NO
IDJSF1 DS X FLAGS
IDJSENCR EQU X'80' 7-7 0=YES, 1=NO
* (ENCRYPTION)
IDJSFINV EQU X'40° 6-6 0=NO, 1=YES
* (NUMERIC VALUE)
IDJSIVIX EQU X'20° 5-5 0=NO, 1=YES
* (JVID (1 OR 2) INDEXED)
* 4-4 RESERVED FOR MONJV—HANDLER
IDJSECT EQU X'08' 3-3 1=SET BY CMD PROCESSING
IDJSF1BV EQU X'04' 2-2 0=NO, 1=YES
* (BOOLEAN VALUE)
IDJSNSTR EQU X'02' 1-1 0=NO, 1=YES
* (NULLSTRING DEFINED)
DS XLl ALTGNMENT
IDJSCTAD DS A CATALOG ENTRY ADDR

170

U3616-J-Z2125-10-76

Macros SETJV

2 IDJSJVER DS CL54 JV IN ERROR

2 DS XL2 RESERVED

2 IDJSJVS DS A RESERVED

2 IDJSPLLN EQu *=SETJV LENGTH OF DSECT

D Kok kA ok ok Ak ok ok Ak ok koA ok k oA ke ko ok ok Ak ke ok Ak ok Aok e ok ke ok ek ok oAk e kok ok ok ok Aok o kA Hokk
2 SPACE

U3616-J-Z2125-10-76 171

STAJV Macros

STAJV

Output job variable attributes

General

Domain: Job variables

Macro type: Type S (standard form/C/D/E/L form)

see section “The MF operand” on page 88

In the C and D forms of the macro, a prefix (PREFIX = pre, where pre is 1..3 letters) can be
specified (see section “The PREFIX operand” on page 89).

Default value: PREFIX=IDJ

Macro description

The STAJV macro transfers the attributes of a job variable to a user area or creates a list
of job variable names in this area.

Macro call format and operand description

Operation Operands
STAJV [jvid]

,area [,sizel

,OUTPUT={ OLD } ,LIST:{ QLD } ,TIMBASE:{ *uTc }
NEW NEW LTI

*
,ODSECT={ NO }[,SELADDR=auswah1],SORT - {LVNAM }
YES NO

,PARMOD={ 24 },MF=

31

,VERSION= E..)

A w =10
r o~ O 1wm

,PREFIX={ IDJ }
pre

172 U3616-J-Z2125-10-76

Macros

STAJV

jvid

area

size

Identifies the job variable whose attributes are to be transferred to
the user area. This is not possible for special job variables.

jvid can be:

jvname

*jvlink
temp

A fully or partially qualified path name of a permanent
or temporary job variable.

The use of wildcards is allowed for versions > 0.

The attributes of a job variable are transferred to the
user area only when a fully qualified name is specified.
Otherwise, a list of job variable names is placed in the
user area.

If a user specifies a different user ID, only the names
of those job variables which the catalog entry identifies
as allowing access by other IDs are transferred to the
user area.

This is SHARE=YES, and R or W for GROUP or
OTHERS if basic ACL protection is in effect.

A valid job variable link name.

A name listis output containing all of the temporary job
variables created for the job.

“temp” stands for the special character defined with
the system parameter TEMPFILE, used to identify
temporary files and job variables (if necessary, ask
systems support which character has been defined).

Specifies the user area to which the information is to be transferred
(see “Function” below).

Specifies the length of the area in bytes.
Up to VERSION=3 the maximum length is 32767 bytes.
The length of the area is dependent on the output format:

OUTPUT=0OLD :
— size > 60 bytes, where 60 bytes are set as default value;

OUTPUT=NEW:

— size = 80 bytes, where 80 bytes are set as default value (when
VERSION=2 is specified (JV V10.0))

— size =120 bytes, where 120 bytes are set as default value (when
VERSION=3 is specified (JV V11.0 und V11.2))

— size > 160 bytes, where 160 bytes are set as default value (when
VERSION=4 is specified (JV > V12.0))

U3616-J-Z2125-10-76

173

STAJV

Macros

OUTPUT

Il
=
O

=NEW

LIST

Specifies the output format for a job variable whose name was
specified in fully qualified form.

This specification is only permitted for Version 2 and higher and when
MF=L or MF=S is specified.

Default value; the requested information contains only the fixed part
of the catalog entry, but without the name of the job variable

(60 bytes). A DSECT for this output format is generated with the
IDJE macro (see also note on DSECT).

The information is requested in the new format.

— If VERSION=2 is specified, the information is output in JV V10.0
layout (80 bytes).

— If VERSION=3 is specified, the information is output in
JV V11.0 or JV V11.2 layout (120 bytes).

— If VERSION=4 is specified, the information is output in
JV = V12.0 layout (160 bytes).

Determines the output format in the user area. This operand only
takes effect when Version > 1 and the path name is specified in
partially qualified form (see “Function” below).

Default value; the old output format (without :catid:$userid.) is
supported.

Outputs the complete path name (with :catid:$userid.).

Determines the time base to be used for the creation date and the
deletion date. This operand only takes effect when VERSION=4 and
OUTPUT=NEW are specified.

Default value; UTC time (global time) is to be used as the time base.

Specifies that the local time set in the calling system is to be used
as the time base.

Specifies for which output format a DSECT is to be generated.
Permitted only when MF=D is specified.

Default value; the DSECT for the old output format can be
generated with the IDJE macro (see OUTPUT=0LD).

The DSECT is generated for the new output format
(80/120/160 bytes; see OUTPUT=NEW).

174

U3616-J-Z2125-10-76

Macros

STAJV

SELADDR

=selection

SORT
=*JVNAM

=NO

MF
PREFIX

VERSION

Limits the jobset specified by the fully or partially qualified path
name jvid, with further selection criteria. If the operand is not
specified, the IDJFJVS field is set to zero, and no further selection
takes place.

Values can only be specified in versions > 2.

Symbolic address of the parameter list which was created with the
desired selection criteria by calling the JVSEL macros (see
page 136ff). See also “Function” on page 176.

Determines the sorting of catalog entries/ path names in the output.

The catalog entries/ path names are sorted alphabetically for out-
put; default.

The catalog entries/ path names are output in the order that they ap-
pear in the catalog.

For a description of the MF and PREFIX operands, see page 88.
Their permitted values are indicated at the beginning of the macro
description and in the macro call format. The MF=D/C operand
used to generate a DSECT or CSECT is only supported in
VERSION=2 and higher (see the DSECT note).

Specifies which BS2000 version the macro expansion is to be
compatible with.

Is the default: the macro expansion is compatible with JV < V8.7.
The following specifications are not supported yet in this version:
— MF=C/D (see the DSECT note)

— LIST=NEW

— OUTPUT=NEW

— SELADDR=

The macro expansion is compatible with JV V8.7. The following
specifications are not supported yet in this version:

— MF=C/D (see the DSECT note)

— OUTPUT=NEW

— SELADDR=

The macro expansion is compatible with JV V10.0.
The macro expansion is compatible with JV V11.0 and V11.2.

The macro expansion is compatible with JV > V12.0.

U3616-J-Z2125-10-76

175

STAJV Macros

PARMOD Controls macro expansion. Either the 24-bit interface or the 31-bit
interface is generated.
PARMOD is evaluated only with VERSION=0.
If PARMOD is not specified, macro expansion is performed
according to the specification for the GPARMOD macro or
according to the default setting for the assembler (= 24-bit
interface).

=24 The 24-bit interface is generated. Data lists and instructions use
24-bit addresses. (Address space < 16 Mb.)

=31 The 31-bit interface is generated. Data lists and instructions use
31-bit addresses. (Address space < 2 Gb.) Data lists start with the
standard header.

Function

If a fully qualified job variable name is specified, the checking information is transferred from
the JV catalog entry to the specified area. The OUTPUT operand determines the format of
the output here.

The DSECT for the catalog entry can be generated with MF=D. The password field is set to
binary zero. If the specified area is too small to accommodate the information, the program
receives the return code X'0490' in the rightmost two bytes of register 15.

If the specified job variable name is not fully qualified (partially qualified or containing
wildcards), or if the special character for temporary job variables is specified, a list of the
job variable names is transferred to the specified area. The format of the information trans-
ferred depends on what is specified in the LIST operand:

LIST=0LD LIST=NEW
name length; 1 byte 1 byte
jvnamel, 1-41 characters 14-54 characters Jjvname,
without catid, with catid, userid
userid
name lengthn 1 byte 1 byte
Jjvnamen 1-41 characters 14-54 characters
without with catid, userid
catid, userid
End 1 byte(X'00'/X'01') 1 byte(X'00'X'01")

“namelength” specifies the length of the associated job variable name (plus 1-character
length field). The proper end of the list is marked by X'00'". If the area is not long enough to
accommodate all the job variable names, the last byte is set to X'01".

When a partially qualified job variable name is specified, an additional corresponding value
(IDJPQFN=X’20’) is returned in the parameter list of the STAJV call.

176 U3616-J-Z2125-10-76

Macros STAJV

Additional selection of job variables

The set of job variable names to be transferred can be limited to the job variables with
specific characteristics. When a fully qualified job variable name is entered, the transfer of
catalog information can be made dependent on specific characteristics.

The desired selection criteria are specified in a JVSEL macro call. In the STAJV call, the
symbolic address of the created JVSEL parameter list must then be specified in the
operand SELADDR. If SELADDR is not specified, the field IDJFJVS is set to zero
(X’00000000’= no selection according to selection criteria).

Note

If no operands are specified, a list is output containing all the job variables included in
the standard catalog of the user ID under which the job executes.

Notes concerning the DSECT

— Calling the STAJV macro with the operands MF=D and VERSION=2/3/4 generates a
DSECT for the operand list of the STAJV macro (VERSION=2/3/4). If ODSECT=YES is
specified, an additional DSECT is generated for output of a catalog entry.

— The following applies to VERSION=0 or VERSION=1:

The macro call IDJE [D][,prefix] generates a CSECT/DSECT for the catalog entry.
The macro call IDJST [D][,prefix][,PARMOD=24/31][,VERSION=0/1] generates a
CSECT/DSECT for the operand list of the STAJV macro.

Return information and error flags

see page 229

U3616-J-Z2125-10-76 177

STAJV Macros
DSECT
STAJV STAJV MF=D,VERSION=4,0DSECT=YES
1 R R R e B S S S B R S R S e S B S e S S R R S R B e S e R e e R e e R S R e R S e S R S R R S S e B e
1 * VERSION 400
1 * *
1 * STAJV PARAMETER LIST *
1 R R R e B S S S B R S e S S B S S e S S R R S R R e S e R R e R e R e R S R e R S R S R S e R S S e R e e
1 #INTF REFTYPE=REQUEST, C
1 INTNAME=STAJV, INTCOMP=005
1 STAJV DSECT
1 * *
1 * UNIT=41, FUNCTION=2, VERSTON=<PARAMETER VERSION> *
1 R R R R B S e S S B R S e S S B S S e S S R R S e B e S e R S e B e R e R e R S R e R S R S R S R R S R S e R e
1 FHDR MF=(C,IDJF)
2 DS 0A
2 IDJFFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 IDJFIFID DS 0A 0 INTERFACE IDENTIFIER
2 IDJFFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 IDJFFCT DS ALl 2 FUNCTION NUMBER
2 IDJFFCTV DS ALl 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 IDJFRET DS 0A 4 GENERAL RETURN CODE
2 *
2 * GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
2 * REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
2 *
2 IDJFSRET DS 0ALZ2 4 SUB RETURN CODE
2 IDJFSR2 DS ALL 4 SUB RETURN CODE 2
2 * ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
2 * Standard subcode? values as defined by convention:
2 IDJFR20K EQU X'00" A1l correct, no additional info
2 IDJFR2NA EQU X'01! Successful, no action was necessary
2 IDJFRZ2WA EQU x'02' Warning, particular situation
2 IDJFSR1 DS ALL 5 SUB RETURN CODE 1
2 *
2 * GENERAL INDICATION OF ERROR CLASSES
2 *
2 * CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
2 * CLASS B X'01' — X'1F' PARAMETER SYNTAX ERROR
2 * CLASS C X'20" INTERNAL ERROR IN CALLED FUNCTION
2 * CLASS D X'40' = X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
2 *

CLASS E X'80' — X'82' WAIT AND RETRY

178

U3616-J-Z2125-10-76

Macros STAJV
2 *
2 IDJFRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
2 IDJFRPER EQU X'01' PARAMETER SYNTAX ERROR
2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'Ol' — X'1F'
2 IDJFRFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED
2 IDJFRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
2 IDJFRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
2 *
2 IDJFRAER EQU X'04' ALIGNMENT ERROR
2 IDJFRIER EQU X'20' INTERNAL ERROR
2 IDJFRCAR EQU X'40' CORRECT AND RETRY
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' — X'7F'
2 IDJFRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
2 * EXPLICITELY BY CREATE-SS
2 IDJFRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
2 *
2 IDJFRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
2 IDJFRWLR EQU X'81' ! LONG !
2 IDJFRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
2 * BUT RETRY IS POSSIBLE
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS x'80' — x'82'
2 IDJFRTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE
2 IDJFRDH EQU Xx'82' SS IN DELETE / HOLD
2 *
2 IDJFMRET DS 0AL2 6 MAIN RETURN CODE
2 IDJFMR2 DS ALl 6 MAIN RETURN CODE 2
2 IDJFMR1 DS AL 7 MAIN RETURN CODE 1
2 *
2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY')
2 *
2 IDJFRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 IDJFFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 * kK
1 * END OF STANDARD HEADER. START OF SPECIAL STAJV PARAMETER LIST *
1 """""""""""""""""""""""""""""""""""" KKk
1 IDJFHDRI EQU X'00290205"',4
1 IDJAR31 DS F AREA ADDRESS(31 BIT FORMAT)
1 IDJSIZE DS F AREA SIZE
1 IDJFLAGS DS X FLAGS
1 IDJPASSW EQU X'00' 7=7 S NOT USED (DEL. V9.5)
1 IDJNAREA EQU X'40' 6-6 S ADDR NOT GIVEN
1 * SET BY JVSTAEX
1 IDJPQFN EQU X'20" 5-5 S PART. QUAL. JVNAME
1 * SET BY JVSTAEX
1 * FOR CMD PROCESSING
1 IDJFECT EQU Xx'10' 4-4 S SET BY CMD PROCESSING
1 IDJLNEW EQU x'08' 3-3 S OUTPUT JVNAME LONG

U3616-J-Z2125-10-76

179

STAJV Macros

IDJFCE EQU X'04' 2-2 S NEW CE OUTPUT V10
IDJFP2 EQU X'02' 1-1 S P2 CALLER
IDJFCE11 EQU X'01' 0-0 S NEW CE OUTPUT V11
IDJFLAGL DS X FLAGS
IDJFCE12 EQU X'80" 7-7 S NEW CE OUTPUT V12
IDJFTLTI EQU X'40' 6-6 S TIME-BASE = LOCAL
IDJFSORT EQU X'20' 5-5 S SORT = NO

DS X RESERVED

DS CL16 RESERVED
IDJFJV DS CL80 JV-NAME

DS CL41 RESERVED

X kK kK kK kK kK kK kK kK kK kX kK kK kK kK kK kK k& kK kX Kk Kk K*k Kk *k Kk KXk Kk

* THE FOLLOWING FIELD IS USED ONLY FOR CMD PROCESSING *

* k k x kK Kk Kk k k Kk k k kK k Kk Kk Kk Kk kx k Kk Kk x * Kk Kk *x X

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 IDJSRTAD DS A ADDRESS OF JVNAME
1 IDJFJVS DS A ADDRESS OF SELECTION PL
1 IDJFPLLN EQU *=STAJV LENGTH OF DSECT

1 SPACE

1* *
1 =* STAJYV OUTPUT *
1* *
1 IDJES DSECT

1 IDJEDMS DS CL1 0 DMS INDICATOR

1 IDJESJV EQU X'04' S SHARE = YES

1 IDJEROA EQU X'08' S READ ONLY ACCESS

1 IDJERPP EQU X'10" S READ PASSWORD SPECIFIED

1 IDJEWPP EQU X'20' S WRITE PASSWORD SPECIFIED
1 IDJEDMZ DS CL1 1 DMS INDICATOR2

1 IDJENSH EQU X'80" S NON-SHARE FLAG

1 IDJECON EQU X'40' S CONVERTED CE

1 IDJENCR EQU X'o1! S PASSWORD IS ENCRYPTED

1 IDJERD DS CL4 2 READ PASSWORD

1 IDJEWRT DS CL4 6 WRITE PASSWORD

1 IDJECRD DS 0CL14 10 CREATION DATE

1 IDJECRY DS CL4 YEAR

1 IDJECRM DS CL2 MONTH

1 IDJECRT DS CL2 DAY

1 IDJECRH DS CL2 HOURS

1 IDJECRI DS CL2 MINUTES

1 IDJECRS DS CL2 SECONDS

1 IDJEEXD DS 0CL14 24 EXPIRATION DATE

1 IDJEEXY DS CL4 YEAR

1 IDJEEXM DS CL2 MONTH

1 IDJEEXT DS CL2 DAY

1 IDJEEXH DS CL2 HOURS

1 IDJEEXI DS CL2 MINUTES

1 IDJEEXS DS CcL2 SECONDS

1 IDJEACL DS CL1 38 ACCESS CONTROL LIST

180 U3616-J-Z125-10-76

Macros STAJV

1 IDJEMAC EQU X'80' S BASIC ACL PRESENT

1 IDJEGACT EQU X'40' S GUARD PRESENT

1 IDJEURD EQU X'z20' S USER: READ-PRIVILEG

1 IDJEUWR EQU X'10' S USER: WRITE-PRIVILEG

1 IDJEGRD EQU X'o8' S GROUP: READ-PRIVILEG

1 IDJEGWR EQU X'04' S GROUP: WRITE-PRIVILEG
1 IDJEORD EQU Xroz' S OTHERS: READ-PRIVILEG
1 IDJEOWR EQU X'o1' S OTHERS: WRITE-PRIVILEG
1 IDJEDIV DS CL1 39 ADDITIONAL CHARASTERISTICS
1 IDJETYP EQU X'80' S NUMERIC-TYPE

1 IDJEMJV EQU X'40' S MONJV

1 IDJETEMP EQU X'z20' S TEMPORARY INDICATOR

1 IDJENSTD EQU X'10' S NULL STRING DEFINED

1 IDJEBLID EQU X'o8' S BOOLEAN-TYPE

1 IDJECAT DS CL4 40 GUARD: CATID

1 IDJEREAD DS CL18 44 GUARD: READ

1 IDJEWRIT DS CL18 62 GUARD: WRITE

1 IDJEMANC DS CL8 80 MANAGEMENT CLASS

1 IDJEVLL DS CL2 88 JV VALUE LENGTH

1 IDJECLN DS CL1 90 CATID LENGTH

1 IDJEULN DS CL1 91 USERID LENGTH

1 IDJEJLN DS CL1 92 JV NAME LENGTH

1 IDJEPLN DS CL1 93 PATHNAME LENGTH

1 IDJENAM DS CL54 94 JV NAME

1 DS CL12 148 RESERVED

1 IDJELEN EQU *-IDJEDMS LENGTH OF FIXED PORTION
1 Kk Kk
1 SPACE

U3616-J-Z2125-10-76 181

TERM

Macros

TERM

Terminate program and procedure step

General

Domain: Job variables

Macro type: Type S (standard form/E form/L form)

Macro description

The TERM macro performs the following functions:

terminate program (default value)

terminate program and procedure step (operand UNIT=STEP)

take memory dump (DUMP operand)

transfer return code to program-monitoring job variable (URETCD operand).

All input/output operations initiated by the program before execution of the macro are
completed prior to program termination.

Macro call format and operand description

Operation Operands
TERM
UNIT={ PRGR },DUMP={ N },MODE={ NLORMALJ }
STEP Y ALBNORMAL]
addr
[.URETCD=9 (pr) 1
code
S
ME=1 (B, L)
L
UNIT Determines whether a distinction according to operating modes is

to be made when the program terminates.

=PRGR Default value; the program is terminated.

182

U3616-J-Z2125-10-76

Macros

TERM

=STEP

MODE
=N[ORMAL

=A[BNORMAL]

Terminates the program, with further action being determined by the
operating mode in which the program executed.

— Interactive mode:
If the program was called in a non-S procedure, the system
additionally branches to the next SET-JOB-STEP, EXIT-JOB or
CANCEL-PROCEDURE command.
If the program was called in an S procedure, the system
additionally initiates SDF-P error recovery.

— Batch mode (ENTER procedure):
The system additionally branches to the next SET-JOB-STER,
EXIT-JOB, ABEND or LOGOFF command.

Note

The following settings are recommended:
UNIT=PRGR with MODE=NORMAL
UNIT=STEP with MODE=ABNORMAL

Determines whether a memory dump is to be taken.
Default value; no memory dump is taken.

A memory dump is taken provided no MODIFY-TEST-OPTIONS
command has been specified with DUMP=NO.

Determines the termination mode of the program.

Default value; the program is to terminate normally.
If a program-monitoring job variable is defined, its status indicator is
setto C'$T.".

The program is to terminate abnormally. The message
“.... ABNORMAL PROGRAM TERMINATION (&00)” is output.

(&00)= NRT0001 if UNIT=PRGR was specified
(&00)= NRT0101 if UNIT=STEP was specified

For users of job variables:
If a program-monitoring job variable has been defined, its status
indicator is set to $A.

Note

see the UNIT operand.

U3616-J-Z2125-10-76

183

TERM

Macros

URETCD This value is passed as the return code to the program-monitoring

MF

job variable (left-justified, bytes 4-7). If this operand is omitted, the
value C'_..."is passed to the program-monitoring job variable.
The operand is ignored if no program-monitoring job variable has
been defined.

=code Specifies an alphanumeric value, 1 to 4 bytes long, in decimal
(C'ceec') or hexadecimal (X'xxxxxxxx') form.

=addr Relative virtual address of a 4-character alphanumeric value.

=(reg) Register containing a 4-character alphanumeric value. If

URETCD=(reg) is specified, register RO is destroyed.

For a general description of the MF operand, its associated operand
values and any succeeding operands, see the section “The MF
operand” on page 88.

The permitted MF values are indicated at the beginning of the
macro description under the macro type, and in the macro call
format.

Function

When this macro is executed the following occurs:

All files assigned to the program are closed.

The memory assigned to the program is released.

The BBS operations list and the entries in the BBS program table are released.

If an STXIT routine has been defined for the TERM event class, it is activated.
AIDSYS is called with the event “TERM”.

In the device table, bytes 8-30 are deleted for each device released. The first byte in the
operation list is set to X'FF'. In the program table entry, the program start address is set
to 0 (4 bytes).

The system then switches to command mode.

Notes

The operand is ignored if an invalid address is specified in the URETCD operand.

Register R1 contains the address of the data area.

If the data area address is invalid or if incorrect operands were specified, TERM
UNIT=STEPMODE=ABNORMAL,DUMP=Y is executed and the following error
message is issued:

%.... ABNORMAL PROGRAM TERMINATION NRTO0601

184

U3616-J-Z2125-10-76

Macros TERM

— Calling the TERM macro with the operand DUMP=Y produces the message
'"PROCESSING INTERRUPTED AT...)'

Whether or not a dump is taken depends on the value of the DUMP operand in the
MODIFY-TEST-OPTIONS command. When DUMP=STD (default value) is set, TERM
causes one of the following messages to be issued:

— Ininteractive mode:

'DUMP DESIRED ? REPLY (Y=YES, N=NO)'

Whether or not a dump is output depends on the user's response.
— In batch mode and in procedures:

"SYSTEM REGULATIONS PROHIBIT DUMP'

No dump is generated.

U3616-J-Z125-10-76 185

TIMJV

Macros

TIMJV

Modify a job monitoring JV

General

Domain: Job variables

Macro type: Type S (standard form/C form/D form/E form /L form)

A PREFIX (pre = 1..3 characters) can be specified for the C form and D form of the macro
call (see section “The PREFIX operand” on page 89);

Default setting: PREFIX=IDJ

Macro description

The following elements in the system section of a job monitoring job variable can be
modified at the program level with the TIMJV macro (see also the command MODIFY-
MONUJV):

— Time stamp (operand TIMESTAMP)
— Name of the job to be monitored (operand DESCRIPTOR)
— Job specific information (operand USER-INFORMATION)

The format and position of the elements in the system section are described in the section
“Values for monitoring job variables” on page 54.

186

U3616-J-Z2125-10-76

Macros TIMJV

Macro call format and operand description

Operation Operands
TIMJV [MONJV=jvid]

,TIMESTAMP=<{ *UNCHANGED }

*SET

,DESCRIPTOR={ ZUNCHANGED }

jobname

*
,INFO={: UNCHANGED }
jobinfo

[,PASS=password]

5
C
M= ,PREFIX={ 10 },VERSION=l
0 T pre
L
MONJV=jvid Name of the monitoring job variable. When no job variable is
specified, the macro affects the monitoring job variable of the job in
which it was called.
TIMESTAMP Specifies if a time stamp is to be set for job monitoring.
="UNCHANGED Default: No time stamp is recorded.
=*"SET A time stamp is recorded in GMT time.
Format: yyyy-mm-ddhhmmss.
DESCRIPTOR Specifies if the name of the job to be monitored is set..
=*UNCHANGED Default: No value is recorded.
=jobname Name of the job to be monitored (max. 8 byte long string).

U3616-J-Z2125-10-76 187

TIMJV Macros

INFO Specifies if job-specific information is to be set.

=*UNCHANGED Default: No value is recorded.

=jobinfo Job-specific information (max. 58 byte long string).
PASS=password Read or write password of the job variable.
MF See page 88 for descriptions or the MF and PREFIX operands.
PREFIX The valid values are shown at the beginning of the macro

description and can be obtained from the call format.

VERSION =1 Default. The macro expansion is compatible with JV > V13.0B.

Note

The operands TIMESTAMP, DESCRIPTOR and INFO may only be specified when
generating macros with MF=S or MF=L

Return information and error flags

See page 229.

DSECT

NN MNOMNNMN R R e

TIMJV TIMJV MF=D

AR AR KR A A AR KR A AR KR A AR AR A A AR KA A AR A A A AR A A AR A A AR KR A AR AR KRR AR AR AR AR A AR A A A AR XA kK

* VERSION 312

e e e o kA Ak e ok e o ek ok kA Rk ok ok ok e e ok ok ok ko Ak ok ok ok e o e ko kR Rk ok ok ok ek ok ok kok ko ok

* TIMJYV PARAMETER LIST *

* *
#INTF REFTYPE=REQUEST, C

INTNAME=TIMJV, INTCOMP=001
TIMJV DSECT

AR AR KRR A A AR KA A AR KR A AR AR A A AR KA A A AR A A AR KR A A AR A A A AR A AR AR KA AR AR AR AR A A AR A A AR A, kK

* UNIT=41, FUNCTION=34, VERSION=1 *

* *
FHDR MF=(C,IDJT)
DS OA

IDJTFHE DS OXL8 0 GENERAL PARAMETER AREA HEADER

*

IDJTIFID DS OA 0 INTERFACE IDENTIFIER

IDJTFCTU DS AL2 0 FUNCTION UNIT NUMBER

* BIT 15 HEADER FLAG BIT,

* MUST BE RESET UNTIL FURTHER NOTICE

188

U3616-J-Z2125-10-76

Macros TIMJV

* BIT 14-12 UNUSED, MUST BE RESET

* BIT 11-0 REAL FUNCTION UNIT NUMBER
IDJTFCT DS AL1 2 FUNCTION NUMBER

IDJTFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER

*

IDJTRET DS 0A 4 GENERAL RETURN CODE

*

* GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS

* REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
*

IDJTSRET DS 0AL2 4 SUB RETURN CODE

IDJTSR2 DS ALl 4 SUB RETURN CODE 2

* ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'

* Standard subcode? values as defined by convention:

IDJTR20K EQU X'00' A11 correct, no additional info
IDJTRZ2NA EQU X'01l' Successful, no action was necessary
IDJTR2WA EQU x'02' Warning, particular situation
IDJTSR1 DS ALl 5 SUB RETURN CODE 1

*

* GENERAL INDICATION OF ERROR CLASSES

*

* CLASS A X'00" FUNCTION WAS SUCCESSFULLY PROCESSED

* CLASS B X'0l' = X'1F' PARAMETER SYNTAX ERROR

* CLASS C X'20' INTERNAL ERROR IN CALLED FUNCTION

* CLASS D X'40' - X'7F! NO CLASS SPECIFIC REACTION POSSIBLE

*

CLASS E X'80' - X'82' WAIT AND RETRY

*

PR NN MNDMNDMNDMNDMNDMNDMNDMNDNDND NN MNP MNP MNP MNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDMNDNDNDNDDN NN

IDJTRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
IDJTRPER EQU X'o1l' PARAMETER SYNTAX ERROR

* 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' —= X'1F'
IDJTRFNS EQU X'o1l! CALLED FUNCTION NOT SUPPORTED
IDJTRFNA EQU Xroz2' CALLED FUNCTION NOT AVAILABLE
IDJTRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
*

IDJTRAER EQU X'04' ALIGNMENT ERROR

IDJTRIER EQU X'20' INTERNAL ERROR

IDJTRCAR EQU X'40' CORRECT AND RETRY

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
IDJTRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
* EXPLICITELY BY CREATE-SS
IDJTRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
*

IDJTRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
IDJTRWLR EQU X'8l' " LONG !
IDJTRWUR EQU X8z’ WAIT TIME IS UNCALCULABLY LONG
* BUT RETRY IS POSSIBLE

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' — X'82'
IDJTRTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE

U3616-J-Z125-10-76 189

TIMJV Macros

2 IDJTRDH EQU X'82' SS IN DELETE / HOLD

2 *

2 IDJTMRET DS 0AL2 6 MAIN RETURN CODE

2 IDJTMR2 DS ALl 6 MAIN RETURN CODE 2

2 IDJTMR1 DS ALl 7 MAIN RETURN CODE 1

2 *

2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY')

2 *

2 IDJTRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED

2 IDJTFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH

2 *

1 R R R R e i S R S B R S R R S Y
1 * END OF STANDARD HEADER. START OF SPECIAL TIMJV PARAMETER LIST *
1 * *
1 IDJTHDRI EQU X'00292201",4

1 IDJTJVv DS CL54 MONJV

1 IDJTFLG DS XL1 FLAG

1 IDJTTIME EQU X'80" 7—7 1=SET TIMESTAMP 0=UNCH
1 IDJTDEUN EQU X'40" 6—6 1=DESCRIPTOR UNCHANGED
1 =* 0=DESCRIPTOR GIVEN

1 IDJTINUN EQU X'20' 5-5 1=INFO UNCHANGED

1 * 0=INFO GIVEN

1 IDJTRES1 DS XL1 RESERVED

1 IDJTPASS DS CL4 PASSWORD

1 DS XL12

1 IDJTDESC DS CL8 DESCRIPTOR

1 IDJTINFO DS CL58 INFO

1 IDJTRESZ DS XL2 RESERVED

1 IDJTJVs DS A RESERVED

1 IDJTPLLN EQU *~TIMJV LENGTH OF DSECT

1 R R R R B S e e e b R e S R R S Y
1 SPACE

190 U3616-J-Z125-10-76

5 Examples

Example 1 (management of job variables)

This example illustrates the use of the commands for the management of job variables:

/show-jv-attr [@D)
%0000000 :4V05:$COGNITAS.JV.PERM.ERRORL

%0000000 :4V05:$COGNITAS.JV.PERM.STATUS1

%0000000 :4V05:$COGNITAS.JV.PERM.STATUS?2

%0000000 :4V05:$COGNITAS.JV.PERM.STATUS3

%SUM 00004 JV'S; JV-VALUE = 00000000 BYTES

/create-jv jv=jv.perm.error2 (2)
/show-jv—attributes jv.perm.error* (3)
%0000000 :4V05:$COGNITAS.JV.PERM.ERROR1

%0000000 :4V05:$COGNITAS.JV.PERM.ERROR2

%SUM 00002 JV'S; JV-VALUE = 00000000 BYTES

/modify-jv jv=jv.perm.error2,set-val=c'No Error' (4)
/show-jv—attr jv=jv.perm.error2,inf=*all-attr (5)
%0000008 :4V05:$COGNITAS.JV.PERM.ERROR2

% USER-ACC = OWNER-ONLY ACCESS = WRITE

% CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04

% CRE-TIME = 14:14:52 EXPIR-TIME = 00:00:00

% READ—PASS = NONE

% WRITE-PASS NONE

%SUM 00001 JV'S; JV-VALUE = 00000008 BYTES

/show—-jv jv=jv.perm.error2 (6)
%No Error

(1) All permanent job variables are output.

(2) The job variable JV.PERM.ERROR2 is created with default values.

(3) All job variables beginning with the character string “JV.PERM.ERROR” are output.
(4) The job variable JV.PERM.ERROR?2 is given the contents 'No Error'.

(5) All attributes of the job variable JV.PERM.ERROR2 are output.

(6) The contents of the job variable JV.PERM.ERROR2 are output.

U3616-J-Z2125-10-76 191

Management of job variables Examples

/mod-jv-attr jv=jv.perm.error2,prot=(write-pass=c'cbaq') (7)
/modify-jv jv=jv.perm.error2,set-val=c'write error' (8)
% JVS04B1 PASSWORD NOT SPECIFIED. COMMAND REJECTED

/add—-pass password=c'cbhaq' (9)
/modify-jv jv=jv.perm.error2,set-val=c'write error'

/show-jv jv=jv.perm.error2 (10)
swrite error

/show—-jv—-attr jv=jv.perm.error2,inf=*all-attr (11)
%0000011 :4V05:$COGNITAS.JV.PERM.ERROR?2

% USER-ACC = OWNER-ONLY ACCESS = WRITE

% CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04

% CRE-TIME = 14:17:41 EXPIR-TIME = 00:00:00

% READ-PASS = NONE

% WRITE-PASS = YES

SUM

00001 JV'S; JV-VALUE = 00000011 BYTES

/create-jv jv=#jv.temp.tl (12)
/show-jv-attr

%0000000 :4V05:$COGNITAS.JV.PERM. ERRORL

%0000011 :4V05:$COGNITAS.JV.PERM.ERROR2

%0000000 :4V05:$COGNITAS.JV.PERM.STATUSI1

%0000000 :4V05:$COGNITAS.JV.PERM.STATUS2

%0000000 :4V05:$COGNITAS.JV.PERM.STATUS3

%SUM 00005 JV'S; JV-VALUE = 00000011 BYTES

/show—jv—attr jv=# (13)

%0000000 :4V05:$COGNITAS.S.187.0FDB.JV.TEMP.T1

%SUM 00001 JVv'S; JV-VALUE = 00000000 BYTES

/show-jv—-attr select=*by-attr(password=*write-pass) (14)

%0000011 :4V05:$COGNITAS.JV.PERM.ERRORZ

%SUM 00001 JV'S; JV-VALUE = 00000011 BYTES

(7) The job variable JV.PERM.ERROR2 is protected against unauthorized writing by
means of the password 'C5AQ' (the password is not logged).

(8) No new contents can be assigned to the write-protected job variable
JV.PERM.ERROR2.

(9) To set new contents, the password had to be entered in the password table of the
job.

(10) Output of the new contents 'write error'.

(11) Output of all attributes of the job variable.

(12) The temporary job variable JV.TEMP.1 is created.

(13) Output of all temporary job variables.

(14) Only permanent job variables which are password protected are displayed.

192

U3616-J-Z2125-10-76

Examples

Management of job variables

/create-jv jv=jv.perm.error3,prot=(basic-acl=*std) (15)
/show-jv—-attr jv=jv.perm.error3,inf=*all-attr
%0000000 :4V05:$COGNITAS.JV.PERM.ERROR3

% USER-ACC = OWNER-ONLY ACCESS = WRITE

% OWNER =RW GROUP = - - OTHERS = - -
% CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04

% CRE-TIME = 14:22:23 EXPIR-TIME = 00:00:00

% READ—PASS = NONE

% WRITE-PASS NONE

%SUM 00001 JVv'S; JV-=VALUE = 00000000 BYTES

/mod-jv-attr jv=jv.perm.error3,new—name=#jv.temp.t3 (16)
% JVS0449 ONLY DEFAULT ATTRIBUTES PERMITTED FOR TEMPORARY JOB VARIABLE.
COMMAND REJECTED

/mod-jv-attr jv=jv.perm.error3,new—name=#jv.temp.t3,prot=(basic—acl=*none)
/show-jv-attr jv=#,inf=*all-attr

%0000000 :4V05:$COGNITAS.S.187.0FDB.JV.TEMP.T1

% USER-ACC = OWNER-ONLY ACCESS = WRITE
% CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04
% CRE-TIME = 14:20:56 EXPIR-TIME = 00:00:00

% READ—PASS NONE
% WRITE-PASS = NONE
%0000000 :4V05:$COGNITAS.S.187.0FDB.JV.TEMP.T3

% USER-ACC = OWNER-ONLY ACCESS = WRITE
% CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04
% CRE-TIME = 14:22:23 EXPIR-TIME = 00:00:00

% READ—PASS = NONE

% WRITE-PASS NONE

%SUM 00002 JV'S; JV-VALUE = 00000000 BYTES
/show-jv—-attr jv=#j*

%0000000 :4V05:$COGNITAS.S.187.0FDB.JV.TEMP.T1
%0000000 :4V05:$COGNITAS.S.187.0FDB.JV.TEMP.T3
%SUM 00002 JV'S; JV-VALUE = 00000000 BYTES

(15) The permanent job variable JV.PERM.ERRORS3 is created and protected by a basic
ACL.

(16) Renaming the permanent job variable JV.PERM.ERRORS3 as the temporary job
variable JV.TEMP.T3 is possible only when the protection attributes are explicitly
reset to the default value.

U3616-J-Z125-10-76 193

Management of job variables

Examples

/delete-jv jv=#jv.temp.

(17)

% JVS0465 DELETE ALL JOB VARIABLES ':4V05:$COGNITAS.S.187.0FDB.JV.TEMP."' OF
USER ID? REPLY (Y=YES; N=NO; T=TERMINATE COMMAND; 7?=EXPLAIN ADDITIONAL

OPTIONS)?y

/delete-jv jv=jv.perm.status*

(18)

% JVS0465 DELETE ALL JOB VARIABLES ':4V05:$COGNITAS.JV.PERM.STATUS*' OF USER
ID? REPLY (Y=YES; N=NO; T=TERMINATE COMMAND; ?=EXPLAIN ADDITIONAL

OPTIONS)?y,check=single

% JVS0469 DELETE JOB VARIABLE ':4V05:$COGNITAS.JV.PERM.STATUS1'? REPLY

(Y=YES; N=NO; T=TERMINATE; ,CHECK=NEW MODE)?y

% JVS0469 DELETE JOB VARIABLE ':4V05:$COGNITAS.JV.PERM.STATUSZ'? REPLY

(Y=YES; N=NO; T=TERMINATE; ,CHECK=NEW MODE)?y

% JVS0469 DELETE JOB VARIABLE ':4V05:$COGNITAS.JV.PERM.STATUS3'? REPLY

(Y=YES; N=NO; T=TERMINATE; ,CHECK=NEW MODE)?y
/show—-jv-attr jv.perm.,inf=*all-attr
%0000000 :4V05:$COGNITAS.JV.PERM.ERRORL

% USER-ACC = OWNER-ONLY ACCESS = WRITE
% CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04
% CRE-TIME = 14:11:13 EXPIR-TIME = 00:00:00

% READ—PASS = NONE
% WRITE-PASS = NONE
%0000011 :4V05:$COGNITAS.JV.PERM. ERRORZ

% USER-ACC = OWNER-ONLY ACCESS = WRITE
% CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04
% CRE-TIME = 14:17:41 EXPIR-TIME = 00:00:00

% READ—PASS = NONE

% WRITE-PASS YES

%SUM 00002 JV'S; JV-VALUE = 00000011 BYTES
/mod-jv-attr jv=jv.perm.errorl,prot=(basic—-acl=*previous)
/show-jv-attr jv.perm.errorl,inf=*all-attr

%0000000 :4V05:$COGNITAS.JV.PERM.ERROR1

(19)

% USER-ACC = OWNER-ONLY ACCESS = WRITE

% OWNER =RW GROUP = - - OTHERS - =

% CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04

% CRE-TIME = 14:11:13 EXPIR-TIME = 00:00:00

% READ-PASS = NONE

% WRITE-PASS = NONE

%SUM 00001 Jv'S; JV-VALUE = 00000000 BYTES

(17) Alltemporary job variables with names beginning with “JV.TEMP.” are to be deleted.

(18) All permanent job variables beginning with JV.PERM.STATUS are to be deleted.
During deletion the check mode is changed for JV.PERM.STATUS* job variables:
the check query is made for each job variable to be deleted.

(19) The job variable JV.PERM.ERROR! is protected by a basic ACL, the values for

which are set in accordance with the standard access control.

194

U3616-J-Z2125-10-76

Examples

Management of job variables

/create-jv jv=jv.perm.status5,prot=(basic-acl=*std) (20)
/show-jv—attr jv=**status5,inf=*all-attr
%0000000 :4V05:$COGNITAS.JV.PERM.STATUSS

% USER-ACC = OWNER-ONLY ACCESS = WRITE

% OWNER =RW GROUP = - - OTHERS = - -
% CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04

% CRE-TIME = 14:32:25 EXPIR-TIME = 00:00:00

% READ—PASS = NONE

% WRITE-PASS
%SUM

NONE
00001 JV'S; JV-VALUE = 00000000 BYTES

/create-jv jv=jv.perm.status6 (21)
/mod-jv-attr jv=jv.perm.status6,prot=(retention-period=10)

/show-jv—attr jv=**status6,inf=*all-attr

%0000000 :4V05:$COGNITAS.JV.PERM.STATUS6

% USER-ACC
% CRE-DATE
% CRE-TIME

= OWNER-ONLY ACCESS = WRITE
= 2003-08-04 EXPIR-DATE = 2003-08-14
= 14:34:54 EXPIR-TIME = 00:00:00

% READ—PASS = NONE

% WRITE-PASS
%SUM

NONE
00001 Jgv'S; JV-VALUE = 00000000 BYTES

/show—-jv—-attr select=*by-attr(basic—acl=*yes) (22)
%0000000 :4V05:$COGNITAS.JV.PERM.ERROR1
%0000000 :4V05:$COGNITAS.JV.PERM.STATUSS

SUM

00002 Jv'S; JV=VALUE = 00000000 BYTES

/set—-jv-1ink link=status6,jv=jv.perm.status6

/set=jv—-1link link=stat, jv=jv.perm.status6 (23)
/show—jv—1ink

% LINK-NAME JV-NAME

% *STAT :4V05: $COGNITAS.JV.PERM.STATUS6
% *STATUS6 :4V05: $COGNITAS.JV.PERM.STATUS6
/set—-jv-1ink link=stat,jv=jv.perm.status5 (24)

/show-jv-Tink

% LINK-NAME JV-NAME

% *STAT :4V05: $COGNITAS.JV.PERM.STATUSS
% *STATUS6 :4V05:$COGNITAS.JV.PERM.STATUS6

(20)

The job variable JV.PERM.STATUS5 is newly created and simultaneously protected
by a basic ACL in which only the owner has all access rights .

Only job variables which are protected with a BASIC-ACL are displayed.

The job variable JV.PERM.STATUSSG is newly created and subsequently protected
against modification for ten days.

For the job variable JV.PERM.STATUSS, two entries under the link names STATUS6
and STAT are set up in the JV-LINK table for the job.

For the job variable JV.PERM.STATUSS5, one entry is set up under the link name
STAT, thereby overwriting the existing link name.

U3616-J-Z2125-10-76

195

Management of job variables Examples

/set—-jv-Tink link=templ, jv=#jv.temp.tl (25)
/show—-jv-Tink
% LINK-NAME JV-NAME

% *STAT :4V05:$COGNITAS.JV.PERM. STATUSS

% *STATUS6 :4V05:$COGNITAS.JV.PERM.STATUSE

% *TEMP1 :4V05:$COGNITAS.S.187.0FDB.JV.TEMP.T1

/show=jv—-attr jv=*1ink(link=templ),inf=*all-attr (26)
%0000000 :4V05:$COGNITAS.S.187.0FDB.JV.TEMP.T1

% USER-ACC = OWNER-ONLY ACCESS = WRITE

% CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04

% CRE-TIME = 14:38:41 EXPIR-TIME = 00:00:00

% READ—PASS = NONE

% WRITE-PASS = NONE

%SUM 00001 Jv'S; JV-VALUE = 00000000 BYTES

/del=jv jv=*Tink(link=status6) (27)
% JVS04A3 ERROR WHEN DELETING JOB VARIABLE ':4V05:$COGNITAS.JV.PERM.STATUSG'
% JVS04B6 EXPIRATION DATE FOR JOB VARIABLE NOT YET REACHED. COMMAND REJECTED
/del=jv jv=*Tink(link=status6),ignore-prot=*expir (28)
/del-jv jv=jv.perm.status5,dialog—-control=*jv-change (29)
% JVS0469 DELETE JOB VARIABLE ':4V05:$COGNITAS.JV.PERM.STATUSS5'? REPLY
(Y=YES; N=NO; T=TERMINATE; ,CHECK=NEW MODE)?y

/show-jv-attr

%0000000 :4V05:$COGNITAS.JV.PERM.ERRORL

%0000011 :4V05:$COGNITAS.JV.PERM.ERROR?

%SUM 00002 JV'S; JV-VALUE = 00000011 BYTES

/show—-jv-Tink (30)
% LINK-NAME JV-NAME

% *STAT :4V05:$COGNITAS.JV.PERM.STATUSS

% *STATUS6 :4V05:$COGNITAS.JV.PERM.STATUS6

% *TEMP1 :4V05:$COGNITAS.S.187.0FDB.JV.TEMP.T1

(25) For the temporary job variable JV.TEMP.T1, an entry is set up under the link name
TEMP1 . Since the job variable does not yet exist, it is newly created by the system.

(26) The job variables can be referenced in commands via the link names.

(27) The job variable JV.PERM.STATUSS is to be deleted; it is to be referenced via its
link name. The job variable cannot be deleted because its expiration date has not
yet been reached.

(28) The job variable JV.PERM.STATUS6 can be deleted if the expiration date is not
taken into consideration.

(29) A control query is executed for the job variable to be deleted by specifying the
operand dialog—control=*jv—change. The job variable JV.PERM.STATUSS is
deleted.

(30) Although the job variables JV.PERM.STATUS5 and JV.PERM.STATUS6 were
deleted, all JV-LINK entries are still present.

196

U3616-J-Z2125-10-76

Examples

Management of job variables

/mod-jv-attr jv=jv.perm.errorl,prot=(basic-acl=(owner=(read=y,write=n),
group=*no—access,others=*no—access)) (31)

/show—jv—attr jv.perm.errorl,inf=*all-attr

%0000000 :4V05:$COGNITAS.JV.PERM.ERRORL

% USER-ACC = OWNER-ONLY ACCESS = WRITE

% OWNER =R - GROUP = - - OTHERS = - -
% CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04

% CRE-TIME = 14:11:13 EXPIR-TIME = 00:00:00

% READ—PASS = NONE

% WRITE-PASS = NONE

%SUM 00001 JV'S; JV-VALUE = 00000000 BYTES

/del-jv jv=jv.perm.errorl,dialog—control=*jv—-change

% JVS0469 DELETE JOB VARIABLE ':4V05:$COGNITAS.JV.PERM.ERRORI'? REPLY
(Y=YES; N=NO; T=TERMINATE; ,CHECK=NEW MODE)?y

% JVSO04A3 ERROR WHEN DELETING JOB VARIABLE ':4V05:$COGNITAS.JV.PERM.ERRORL'

% JVSO04BF REQUESTED ACCESS TO JV NOT PERMITTED DUE TO EXISTING JV
PROTECTION. COMMAND REJECTED

/del-jv jv=jv.perm.errorl,ignore-protection=*access (32)

(31) The job variable is protected with a BASIC-ACL against accidental overwriting.
The owner has read-only access and all other users have no access.

(32) When deleting the job variable JV.PERM.ERROR1, the protection attributes
(here the BASIC-ACL) must be taken into considerations.

U3616-J-Z2125-10-76 197

Program monitoring Examples

Example 2 (program monitoring)

The second example illustrates the use of monitoring job variables for communication
between programs. There are two programs, each within a separate task.

Program 1 is to run whatever the circumstances, while the decision whether program 2 runs
or not depends upon the outcome of program 1. In other words, program 2 must wait for
program 1 to finish and check whether it was terminated normally.

The monitoring job variable is deleted by JOB2 after a check query. Both jobs are started
under the same user ID. The job can provide further processing steps after program 1,
regardless of the execution of job JOB2.

/ SET-LOGON-PARAMETERS JOB-NAME=J0B1

/ START-PROGRAM FROM—-FILE=PROGRAM-1,MONJV=JV.PROG1

/ SET-JOB-STEP

/ SKIP-COMMANDS TO—-LABEL=FEHL,IF=*JV(CONDITION=((JV.PROG1,1,2)=C'$A"))
/ START-EXE FROM—FILE=PROGRAM-XY !

/. FEHL SHOW-JV Jv=JV.PROG1

/ EXIT-JOB

/ SET-LOGON-PARAMETERS JOB-NAME=JOB?Z

/ SHOW-JV JV=JV.PROG1

/ WAIT-EVENT UNTIL=*JV(CONDITION=(((JV.PROG1,1,2)=C'$T"' OR —

/ (JV.PROGL,1,2)=C'$A")), -

/ TIME-LIMIT=3600, TIMEOUT-LABEL=FEHL)

/ SKIP-COMMANDS TO-LABEL=FEHL, IF=JV(CONDITION=((JV.PROG1,1,2)=C"$A"'))
/ START-EXE FROM—-FILE=PROGRAM-2

/.FEHL SHOW-JV JVv=JV.PROG1

/ DELETE-JV JV=JV.PROG1

/ EXIT-JOB

1 As of BLSSERV V2.3, the START-PROGRAM command is replaced by the START-EXECUTABLE-PROGRAM command

198 U3616-J-Z125-10-76

Examples

Program monitoring

Example 3 (program monitoring)

The third example illustrates the use of the TERM macro, via which a user-defined return
code can be entered in the job variable monitoring the program.

In the event of an error, a program PROG1 sets the monitoring job variable to a value
greater than 1. The user can then interrogate this value in order to decide whether or not it
is practical to have a further program PROG2 executed. It should be noted that the status
indicator (3 character positions) is set by the system, with the result that the value updated
by the user begins in position 4. The length of this value is 4 characters. If PROG2 is to be
started by a different job, then PROG2 must first wait for the end of program PROG1:

/WAIT—=EVENT UNTIL=*JV(CONDITION=((ERROR,1,2)=C'$T"') OR ((ERROR,1,2)=C'$A"),
TIME-LIMIT=...,TIMEOUT-LABEL=...)

Program PROG1
PROGL1 START

FEHL3 LR R9,R15

TERM URETCD=(R9) (1)
END

/ SET-LOGON-PARAMETERS JOB—NAME=BEISP3

/ SET-JV-LINK JV-NAME=ERROR

/ START-ASSEMBH

// COMPILE SOURCE=PROGI,...

// END

/ START-EXE FROM—FILE=*OMF,MONJV=ERROR !

/ SET-JOB-STEP

/ SKIP-COMMANDS TO—-LABEL=EXIT,IF=*JV(CONDITION=((ERROR,4,4)>C'0001")
/ START-EXE FROM-FILE=PROG2

/. EXIT EXIT-J0B

(1) The URETCD operand in the TERM macro ensures that the contents of the
specified register are edited and stored to the fourth decimal place in the program-
monitoring job variable after the status indicator, in bytes 4-7 of the value field (see
also the “Executive Macros” manual [4]).

1 As of BLSSERV V2.3, the START-PROGRAM command is replaced by the START-EXECUTABLE-PROGRAM command

U3616-J-Z125-10-76 199

Job monitoring Examples

Example 4 (job monitoring)

The jobs AJOB, BJOB and CJOB are started and monitored from a control job.

/ SET-LOGON-PARAMETERS JOB—-NAME=STEUER
/ ENTER-JOB FROM—-FILE=AJOB,MONJV=JV.AJOB
/ ENTER-JOB FROM—-FILE=BJOB,MONJV=JV.BJOB
/ ENTER-JOB FROM—-FILE=CJOB,MONJV=JV.CJOB (1)
/ SHOW-JOB-STATUS JOB—-ID=*MONJV(JV.AJOB) (2)
/ WAIT-EVENT UNTIL=*JV(CONDITION=((JV.AJOB,1,2)=C'$T' OR -
/ (JV.AJOB,1,2)=C'$A"),—
/ TIME-LIMIT=3600,TIMEOUT-LABEL=FEHL1) — (3)
/ SKIP—-COMMANDS TO-LABEL=NORMAL,IF=*JV(CONDITION=((JV.AJOB,1, -
2)=C'$T1T'")) — (4)

/. FEHLI CANCEL—-JOB JOB—ID=*MONJV(JV.CJOB) (5)
/ .NORMAL SET-JOB-STEP
/ SKIP-COMMANDS TO-LABEL=ENDE, IF=*JV(CONDITION=((JV.BJOB,1,2) —

NE C'$R"))
/ CHANGE-TASK—-PRIORITY JOB—-ID=*MONJV(JV.BJOB),RUN-PRIORITY=130— (6)

/ .ENDE EXIT-JOB

(1) The jobs are started and monitored.

(2) Information about AJOB is interrogated.

(3) Wait until AJOB terminated (normally or abnormally), but for a maximum of
3600 seconds.

(4) Check whether AJOB was terminated normally or abnormally.

(5) In the event of abnormal termination of AJOB, processing of CJOB is likewise
aborted.

(6) If CJOB is still running, the priority is changed.

200 U3616-J-Z125-10-76

Examples Job monitoring

Example 5 (job monitoring)

The following interdependencies exist between the jobs AJOB, BJOB, CJOB, EJOB and
FJOB: AJOB should not be started until BJOB has been normally terminated.

When CJOB has been normally terminated, EJOB and FJOB should be started simulta-
neously.

The desired control is implemented by means of the following coordination job:

/SET-LOGON-PARAMETERS JOB—NAME=MASTER

JREMARK 5kt ek ook ko .
/REMARK ** START BJOB AND CJOB Kok
/REMARK % -

/ENTER-JOB FROM—-FILE=BJOB,MONJV=JV.BJOB,JOB-NAME=BJOB
/ENTER-JOB FROM—-FILE=CJOB,MONJV=JV.CJOB,JOB-NAME=CJOB

JREMARK 5k hokdokod koo ok ok koo ok ko ok ko ok o
/REMARK ** WHEN BJOB FINISHED, START AJOB ok
/REMARK % *ox
/ADD-CJC-ACTION CONDITION=((JV.BJOB,1,2)=C'$T'),-

/ NAME=BJOB, TIME-LIMIT=3600

/ENTER-JOB FROM—-FILE=AJOB, JOB-NAME=AJOB
/END—-CJC—ACTION

JREMARK 45k kb koo ok ook koo ok ko o ek ok ok o
/REMARK ** WHEN CJOB FINISHED, START EJOB AND FJOB*
/REMARK % *ox
/ADD-CJC-ACTION CONDITION=((JV.CJOB,1,2)=C'$T'),-

/ NAME=CJOB, TIME-LIMIT=3600

/ENTER-JOB FROM-FILE=EJOB,JOB-NAME=EJOB
/ENTER-JOB FROM-FILE=FJOB,JOB-NAME=FJOB
/END—-CJC—ACTION

/REMARK *** faled

/REMARK ** WAIT UNTIL ALL EVENTS HAVE OCCURRED **

/REMARK ** AND ALL ACTIONS HAVE BEEN STARTED kel

J/REMARK HAXARA KA F A A A A A AR AR A A A A A KK AR KKK KKK folad
/WAIT-EVENT UNTIL=*JV(CONDITION=(((JV.BJ0B,1,2)=C'$T' OR —

/ (JV.BJOB,1,2)=C'$A"') AND -
/ ((JV.CJ0B,1,2)=C'$T" OR -

/ (JV.CJ0B,1,2)=C'$A")) ,—

/ TIME-LIMIT=3600)

/EXIT-J0B

U3616-J-Z2125-10-76 201

Job monitoring

Examples

Example 6 (job monitoring)

The job SPV checks the execution of JOBA, JOBB and JOBC. By setting the job variable
MONA, JOBA influences both the start of JOBB and the “forced” termination of JOBC
(CANCEL-JOB). MONB and MONC are monitoring job variables for JOBB and JOBC.

Job SPV

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

W1
W2

W3

SET-LOGON-PARAMETERS JOB—-NAME=SPV

ASSIGN-SYSOUT TO-FILE=OUT.E.SPV

REMARK *** DECLARE JOB VARIABLES ***

SET-JV—-LINK JV-NAME=MONA

SET-JV-LINK JV-NAME=MONB

SET=JV-LINK JV-NAME=MONC

REMARK *** START JOBA ***

ENTER-JOB FROM-FILE=JOBA,JOB-CLASS=JCBATCH
SHOW-USER-STATUS

REMARK *** START JOBB IF MONA SET ***

WAIT-EVENT UNTIL=*JV(CONDITION=(MONA=C'START B'),TIME-LIMIT=100)
ENTER-JOB FROM-FILE=JOBB,MONJV=MONB,JOB-CLASS=JCBATCH
SHOW-USER-STATUS

SHOW-JOB-STATUS JOB-ID=*MONJV(MONB)

REMARK *** START JOBC IF JOBB TERMINATED ***
ADD-CJC—-ACTION CONDITION=((MONB,1,2)=C'$T'),TIME-LIMIT=100
ENTER-JOB FROM-FILE=JOBC,MONJV=MONC,JOB-CLASS=JCBATCH
END—-CJC—ACTION

WAIT-EVENT UNTIL=*JV(CONDITION=((MONC,1,2)=C'$R"'))
SHOW-JOB-STATUS JOB-ID=*MONJV(MONC)

REMARK *** CANCEL JOBC IF MONA SET ***

WAIT-EVENT UNTIL=*JV(CONDITION=(MONA=C'CANCEL C'),TIMEOUT=W1)
CANCEL—-JOB JOB—ID=*MONJV(MONC)

WAIT-EVENT UNTIL=*JV(TIME-LIMIT=10,TIMEOUT-LABEL=W2)
SHOW-USER-STATUS

WAIT-EVENT UNTIL=*JV(TIME-LIMIT=20,TIMEOUT-LABEL=W3)
EXIT-JOB

202

U3616-J-Z2125-10-76

Examples

Job monitoring

Job JOBA

/SET-LOGON-PARAMETERS JOB—NAME=JOBA
/ASSIGN-SYSOUT TO=0UT.E.JOBA

/WRITE-TEXT TEXT=C'
/WRITE=TEXT TEXT=C'*** HERE IS JOBA

JWRITE=TEXT TEXT=C"*xksxokstsksohksrsdhdotdhsbothsbotdksdordhbxdhdokdkbdkdors

/MODIFY-JV JV=MONA,SET-VALUE=C'START B'
/WATT—-EVENT UNTIL=*JV(CONDITION=((MONB,1,2)=C'$R"))

/WRITE-TEXT TEXT=C'
/WRITE-TEXT TEXT=C'*** JOBB STARTED

JWRITE=TEXT TEXT=C"*xksrokstsksotkstsdkdotdhbotdhsbddksdordkbxdkdokdkbkdors

/WAIT=EVENT UNTIL=*JV(TIME-LIMIT=60,TIMEOUT-LABEL=W1)
/.W1 MODIFY-JV JV=MONA,SET-VALUE=C'CANCEL C'
/WATT—EVENT UNTIL=*JV(CONDITION=((MONC,1,2)=C'$A"))

/WRITE-TEXT TEXT=C'
/WRITE-TEXT TEXT=C'*** JO0BC CANCELED

JWRITE=TEXT TEXT=C"*xkskksrssohkstdkdothsothbodksdordhbrdkbokdkbkdors

/EXIT-J0B

Job JOBB

/SET-LOGON-PARAMETERS JOB-NAME=J0BB
/ASSIGN-SYSOUT TO=0UT.E.JOBB

/WRITE-TEXT TEXT=C'
/WRITE-TEXT TEXT=C'*** HERE IS JOBB

Kk kK !

/WRITE-TEXT TEXT=C'
/WATT=EVENT UNTIL=*JV(TIME-LIMIT=20,TIMEOUT-LABEL=W1)
/. Wl EXIT-JOB

Job JOBC

/SET-LOGON-PARAMETERS JOB—NAME=J0BC
/ASSIGN-SYSOUT TO=0UT.E.JOBC

/WRITE-TEXT TEXT=C'
/WRITE-TEXT TEXT=C'*** HERE IS JoBC

JWRITE=TEXT TEXT=C"*xksrokstsksohkstsdkdothbthsboddksdordkborddokdkobkkdors

/SET=JV=LINK JV=#LOOP
/.S1 MODIFY-JV JV=#LOOP,SET-VALUE=C'RUN'
/ WATT=EVENT UNTIL=*JV(CONDITION=(#LO0P=C'END'),~—

/ TIME-LIMIT=20, TIMEOUT-LABEL=S1)

/EXIT-JOB

U3616-J-Z2125-10-76

203

Job monitoring Examples

Runtime listing for the checking job SPV (OUT.E.SPV)

REMARK *** DECLARE JOB VARIABLES ***

SET-JV—-LINK JV-NAME=MONA

SET-JV-LINK JV-NAME=MONB

SET=JV-LINK JV-NAME=MONC

REMARK *** START JOBA ***

ENTER-JOB FROM-FILE=JOBA,JOB—-CLASS=JCBATCH

% JMS0066 JOB 'JOBA' ACCEPTED ON 03-08-04 AT 15:54, TSN = OFDN
/ SHOW-USER-STATUS

SN SN N N .

NAME TSN TYPE PRI CPU-USED CPU-MAX ACCOUNT#
JOBA OFDN 1 WT 9 255 0.0 200 89001
COGDIA OFDB 3 DIALOG 0 240 0.7721 32767 89001
SPV OFDM 2 BATCH 9 255 0.0216 200 89001

% SPS0171 NO LOCAL SPOOLOUT JOB PRESENT

% SR00376 NO RSO JOB OF TYPE 'T7' PRESENT

% SPS0420 RSO WARNING : SOME RSO PRINT-JOBS CANNOT BE DISPLAYED

/ REMARK *** START JOBB IF MONA SET ***

/ WAIT—EVENT UNTIL=*JV(CONDITION=(MONA=C'START B'),TIME-LIMIT=100)
% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 15:54:40

% CJC0021 WAIT COMMAND: CONDITION = TRUE AT 15:54:41

/ ENTER-JOB FROM-FILE=JOBB,MONJV=MONB,JOB—-CLASS=JCBATCH

% JMS0066 JOB 'JOBB' ACCEPTED ON 03-08-04 AT 15:54, TSN = OFDP

/ SHOW-USER-STATUS

NAME TSN TYPE PRI CPU-USED CPU-MAX ACCOUNT#
JOBB OFDP 1 WT 9 255 0.0 200 89001
OFDB 3 DIALOG 0 240 0.7721 32767 89001
SPV OFDM 2 BATCH 9 255 0.0311 200 89001
JOBA OFDN 2 BATCH 9 255 0.0150 200 89001

% SPS0171 NO LOCAL SPOOLOUT JOB PRESENT

% SR0O0376 NO RSO JOB OF TYPE 'T7' PRESENT

% SPS0420 RSO WARNING : SOME RSO PRINT-JOBS CANNOT BE DISPLAYED
/ SHOW-JOB—STATUS JOB—ID=*MONJV(MONB)

TSN: OFDP TYPE: 1 WT NOW : 2003-08-04.155441
JOBNAME: JOBB PRI: 9 255 SPOOLIN: 2003-08-04.1554
USERID: COGNITAS JCLASS: JCBATCH INTYPE: 0

ACCNB: 89001 CPU-MAX: 200 START: SOON

REPEAT: NO RERUN: NO FLUSH: NO
ORIGFILE::4V05:$COGNITAS.JOBB

MONJV : :4V05:$COGNITAS .MONB

/ REMARK *** START JOBC IF JOBB TERMINATED ***

/ ADD-CJC—-ACTION CONDITION=((MONB,1,2)=C"'$T'),TIME-LIMIT=100

/ ENTER-JOB FROM-FILE=JOBC,MONJV=MONC,JOB-CLASS=JCBATCH

/ END-CJC-ACTION

% CJCO050 CJC ACTION WITH ID = 2, LABEL = *NONE: ACCEPTED FOR FURTHER
EVENTS AT 15:54:41, COUNT = 1

/ WAIT-EVENT UNTIL=*JV(CONDITION=((MONC,1,2)=C'$R"'))

% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 15:54:41

204 U3616-J-Z2125-10-76

Examples Job monitoring

% CJC0051 CJC ACTION WITH ID = 2, LABEL = *NONE: CONDITION TRUE AT
15:55:04, COUNT = 0

% CJC0064 CJIC ACTION WITH ID = 2, LABEL = *NONE: START OF ON OR TIMEOUT
SEQUENCE

% JMS0066 JOB 'JOBC' ACCEPTED ON 03-08-04 AT 15:55, TSN = OFDR

% CJC0065 CJC ACTION WITH ID = 2, LABEL = *NONE: END OF ON OR TIMEOUT
SEQUENCE

% CJC0052 CJC ACTION WITH ID = 2, LABEL = *NONE: TERMINATION NORMAL

% CJC0021 WAIT COMMAND: CONDITION = TRUE AT 15:55:04
/ SHOW-JOB-STATUS JOB—ID=*MONJV(MONC)

TSN: OFDR TYPE: 2 BATCH NOW : 2003-08-04.155504
JOBNAME: JOBC PRI: 9 255 SPOOLIN: 2003-08-04.1555
USERID: COGNITAS JCLASS: JCBATCH LOGON: 2003-08-04.1555
ACCNB: 89001 CPU-MAX: 200 CPU-USED:000000.0050
REPEAT: NO RERUN: NO FLUSH: NO

MRSCAT : HOLD: NO START: SOON

TID: 00010067 UNP/Q#: 00/000

CMD:

ORIGFILE::4V05:$COGNITAS.JOBC

MONJV : :4V05: $COGNITAS.MONC

/ REMARK *** CANCEL JOBC IF MONA SET **x*

/ WAIT-EVENT UNTIL=*JV(CONDITION=(MONA=C'C CANCELN'), TIMEOUT-LABEL=W1)

% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 15:55:04

% CJC0021 WAIT COMMAND: CONDITION = TRUE AT 15:55:41

/ CANCEL-JOB JOB—-ID=*MONJV(MONC)

% CANOOOK CANCEL PROCESSING STARTED FOR TSN 'OFDR' WITH USER ID 'COGNITAS'
/. W1 WAIT-EVENT UNTIL=*JV(TIME-LIMIT=10,TIMEOUT-LABEL=W2)

% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 15:55:41

% CJC0022 WAIT COMMAND: TIMEOUT AT 15:55:52, SKIP TO TIMEOUT LABEL OR NEXT

STEP

/.W2 SHOW-USER-STATUS

NAME TSN TYPE PRI CPU-USED CPU-MAX ACCOUNT#
OFDB 3 DIALOG 0 240 0.7756 32767 89001

SPV OFDM 2 BATCH 9 255 0.0525 200 89001

JOBB OFDQ 4 PR 255 1 0 0 OFDP

JOBC OFDS 4 PR 255 1 0 0 OFDR

JOBA OFDT 4 PR 255 1 0 0 OFDN

% SPS0420 RSO WARNING : SOME RSO PRINT-JOBS CANNOT BE DISPLAYED

/ WAIT-EVENT UNTIL=*JV(TIME-LIMIT=20,TIMEOUT=W3)

% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 15:55:52

% CJC0022 WAIT COMMAND: TIMEOUT AT 15:56:12, SKIP TO TIMEOUT LABEL OR NEXT
STEP

/.W3 EXIT-J0B

% EXC0419 /LOGOFF AT 1556 ON 03-08-04 FOR TSN 'OFDM'

% EXC0421 CPU TIME USED: 0.0595

U3616-J-Z125-10-76 205

Job monitoring Examples

Runtime listing for job JOBA (OUT.E.JOBA)

/WRITE-TEXT TEXT=C'* ookl
)k Kk *
/WRITE-TEXT TEXT=C'*** HERE IS JO0OBA Hkkk
ok HERE IS JOBA falekolel

/WRITE—TEXT TEXT:C'***'
KA AAAKR KA KA AR KA AA AR KA AR KA A AR A AA AR A A AR AR A A AR XA A AR A A AR A A.)

/MODIFY-JV JV=MONA,SET-VALUE=C'START B'

/WAIT—EVENT UNTIL=*JV(CONDITION=((MONB,1,2)=C'$R"))

% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 15:54:40
% CJC0021 WAIT COMMAND: CONDITION = TRUE AT 15:54:41

/WRITE—TEXT TEXT:C'***'
KA AAAKRA KA AR A AA AR KA AR KA A AR A AA AR KA AR AR R A AR XA A AR A A A XA k.)

/WRITE-TEXT TEXT=C'*** JOBB STARTED Hkkk
folelel JOBB STARTED folalalel
/WRITE-TEXT TEXT=C'* ookl

KA AAAKRKA KA AR KA AR AR KA AR KA A AR KR KAA AR A AR AR A A AR XA A AR A A A XA k.)

/WAIT=EVENT UNTIL=*JV(TIME-LIMIT=60,TIMEOUT-LABEL=W1)

% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 15:54:41

% CJC0022 WAIT COMMAND: TIMEOUT AT 15:55:41, SKIP TO TIMEOUT LABEL OR NEXT
STEP

/. W1 MODIFY-JV JV=MONA,SET-VALUE=C'CANCEL C'

/WATIT—EVENT UNTIL=*JV(CONDITION=((MONC,1,2)=C'$A"))

% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 15:55:41

% CJC0021 WAIT COMMAND: CONDITION = TRUE AT 15:55:42

/WRITE—TEXT TEXT=C ' *F*xkkkhrhhhrhkhhrhhhrhrhrhrhrhrhrhrhrhhhrhhhrhrhrhrk!

)k Kk *
/WRITE-TEXT TEXT=C'*** JOoOBC CANCELED Hkkk
folelel JO0OBC CANCELED falalalel

/WRITE—TEXT TEXT:C'***'
KA AAAKR KA KA AR A AA AR KA AR KA AARKA KA AR KA A AR A A A AR XA A AR A A A XA ,)

/EXIT-J0B
% EXC0419 /LOGOFF AT 1555 ON 03-08-04 FOR TSN 'OFDN'
% EXC0421 CPU TIME USED: 0.0257

206 U3616-J-Z125-10-76

Examples Job monitoring

Runtime listing for job JOBB (OUT.E.JOBB)
/WRITE-TEXT TEXT=C'

ok *k
/WRITE-TEXT TEXT=C'*** HERE IS JOBB HTEEL
faleled HERE IS JOBB falakand
JWRITE-TEXT TEXT=C ' Atk ded otk de A e sk Aok e de A Aok sk ke o ko de Ak de koo ke kokoeh '
ek Ak ok Aok ok Ak Ak e ok koA ok k ok ke kok ok ok Ak ok A Ak ok Ak kA *k

/WATT—-EVENT UNTIL=*JV(TIME-LIMIT=20,TIMEOUT-LABEL=W1)

% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 15:54:41

% CJC0022 WAIT COMMAND: TIMEOUT AT 15:55:02, SKIP TO TIMEOUT LABEL OR NEXT
STEP

/.W1 EXIT-J0B

% EXC0419 /LOGOFF AT 1555 ON 03-08-04 FOR TSN 'OFDP'

% EXC0421 CPU TIME USED: 0.0178

Runtime listing for job JOBC (OUT.E.JOBC)
/WRITE-TEXT TEXT=C'

ok *k
/WRITE-TEXT TEXT=C'*** HERE IS JOBC FEEL
faleled HERE IS JOBC kol
JWRITE=TEXT TEXT=C Atk ded ot de A ke sk Aok e de o Aok sk ke o ko de A koo de koo ke kokoe '
ek Ak ok Aok e ok Aok ok Ak e ok koA ok k ok e kok ok ok Ak kA Ak kA ok kA *k

/SET-JV-LINK JV=#LOOP

/.S1 MODIFY—JV JV=#LOOP,SET-VALUE=C'RUN'

/ WAIT—EVENT UNTIL=*JV(CONDITION=(#LOOP=C'END'),
TIME-LIMIT=20,TIMEOUT-LABEL=S1)

% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 15:55:04
% CJC0022 WAIT COMMAND: TIMEOUT AT 15:55:25, SKIP TO TIMEOUT LABEL OR NEXT
STEP

/.S1 MODIFY—JV JV=#LOOP,SET-VALUE=C'RUN'

/ WAIT—EVENT UNTIL=*JV(CONDITION=(#LOOP=C'END'),
TIME-LIMIT=20,TIMEOUT-LABEL=S1)

% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 15:55:25
% CANOOBY CANCELLED BY 'BTCH OFDM COGNITAS SPV'

% NRTT201 TASK TERMINATION DUE TO /CANCEL(-JOB) COMMAND

% EXC0419 /LOGOFF AT 1555 ON 03-08-04 FOR TSN 'OFDR'

% EXC0421 CPU TIME USED: 0.0245

U3616-J-Z2125-10-76 207

Job variable macros Examples
Example 7 (job variable macros, without ONEVT macro)
The following sample program SRC.BJV illustrates the use of certain JV macros:
Source program SRC.BJV
BJV START
PRINT NOGEN
BALR 3,0
USING *,3
STAJV JV.A,STA,120,0UTPUT=NEW, VERSION=4 (D
DTH1 DCLJV JV.A,LINK=*LINK,VERSION=1 (2)
MVC STA,NULL2
STAJV JV.,STA,120,0UTPUT=NEW, VERSTON=4 (3)
DTH2 CATJV JV.A,JV.N,STATE=U,RDPASS=C'JV"',VERSION=1
SETJV JV.N,SET1,PASS=C'JV',VERSION=1
GETJV JV.N,GET,30,PASS=C'JV',VERSION=1
DTH3 MVC GET,NULL1
SETJV (JV.N,3,4),SET2,PASS=C'JV',VERSION=1 (4)
GETJV JV.N,GET,30,PASS=C'JV',VERSION=1
DTH4 MVC GET,NULL1
SETJV JV.N,SET2,PASS=C'JV',VERSION=1 (5)
GETJV JV.N,GET,30,PASS=C'JV',VERSION=1
DTH5 MVC GET,NULL1
ERAJV JV.N,VERSION=1 (6)
DTH6 MVC STA,NULL2
STAJV JV.,STA,120,0UTPUT=NEW, SELADDR=SEL1,VERSION=4 (7)
DTH7 ERAJV JV.N,PASS=C'JV',VERSION=1 (8)
*
DTH8 TERM
R R R e R e S S e S S S S e S R S e S S S S S R R S e e R e S e e
DS OF
STA DS L120
*
SEL1 JVSEL MF=L,PASS=RDPASS
*
GET DS L50
*
SET1 DC Y(SETEND1-SET1)
DS CcL2
DC "ABCDEFGHIJKLMNOPQRSTUVWXYZ'
SETEND1 EQU *
*
SET2 DC Y (SETEND2-SET2)
DS cL2
DC '34567"
SETEND2 EQU *

*

208

U3616-J-Z2125-10-76

Examples

Job variable macros

NULL1 DS 0CL50
NULL2 DC 120X'00"
END
END

Points (1) to (8) in the source program are explained in the following runtime listing.

Runtime listing

/start—-assembh

% BLS0500 PROGRAM 'ASSEMBH', VERSION '01.2C00' OF '2002-03-06"' LOADED

% BLS0552 COPYRIGHT (C) FUJITSU TECHNOLOGY SOLUTIONS GMBH 2010. ALL RIGHTS
RESERVED

% ASS6010 V01.2C00 OF BS2000 ASSEMBH READY

//compile source=src.bjv,module-lib=ass.plamlib(elem=bjv),test-support=yes
% ASS6011 ASSEMBLY TIME: 430 MSEC

% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES

% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS

% ASS6006 LISTING GENERATOR TIME: 59 MSEC

//end

% ASS6012 END OF ASSEMBH

/Toad-exe from=(lib=ass.plamlib,elem=bjv),test-opt=*aid
% BLS0517 MODULE 'BJV' LOADED

/%insert dthl

/resume-program

STOPPED AT LABEL: DTH1 , SRC_REF: 40, SOURCE: BJV , PROC: BJV

1

/%display %15 (@D]
**% TID: 0001005C **% TSN: OFFF sttt ook dok kb bbbtk bk o *
CURRENT PC: 0000009C CSECT : BJVAH**axxstsrskskskdkdkdddddtxrhhdkdokdddddrgakrkkhs *
%15 = 00000433

(1) The STAJV macro is to transfer the status of job variable JV.A to field STA.
Register 15 shows: JV.A is not in the system.

1 As of BLSSERV V2.3, the LOAD-PROGRAM command is replaced by the LOAD-EXECUTABLE-PROGRAM command

U3616-J-Z125-10-76 209

Job variable macros Examples

/%insert dth2

/resume—program

STOPPED AT LABEL: DTH2 , SRC_REF: 92, SOURCE: BJV , PROC: BJV
/%display sta

SRC_REF: 92 SOURCE: BJV PROC: BJV
KAhhk Ak hkhhhkhkkhhhkhhkkhkhhkhkhkhkhhhkhkhkhhhhkhkhhkhkhkhkhkxk

STA =

| .JV.A.JV.DO.1.JV.E.1.JV.MON.JV.N.JV.PERM.ERROR.JV.PERM.ERROR.READ.JV.PERM.ER
RI

|[OR2.JV.PERM.WAIT.JV.PROG. |

/%display sta%x (2)
CURRENT PC: 000001B4 CSECT: BJV

* KKk *

V'00000868' = STA + #'00000000"

00000868 (00000000) 05D1E54B C108D1E5 4BC4D64B F107D1ES .JV.A.JV.DO.1.JV
00000878 (00000010) 4BC54BF1 07D1E54B D4D6D505 D1ES4BD5 .E.1.JV.MON.JV.N
00000888 (00000020) OEDI1E54B D7C5D9D4 4BC5D9D9 D6D913D1 .JV.PERM.ERROR.J
00000898 (00000030) E54BD7C5 D9D44BC5 D9DID6ED9 4BDICHC1 V.PERM. ERROR.REA
000008A8 (00000040) C40FD1E5 4BD7C5D9 D44BC5D9 DID6DIF2 D.JV.PERM.ERROR2
000008B8 (00000050) ODD1E54B D7C5D9D4 4BE6C1CY E308DI1ES .JV.PERM.WAIT.JV
000008C8 (00000060) 4BD7D9D6 C7000000 00000000 00000000 .PROG...........
000008D8 (00000070) 000OOOOO 0O0OOOCOOCO L.,

/%insert dth3
/resume—program
STOPPED AT LABEL: DTH3 , SRC_REF: 188, SOURCE: BJV , PROC: BJV

/%display get (3)
SRC_REF: 188 SOURCE: BJV PROC: BJV

* k% * k%

GET = |.. ABCDEFGHIJKLMNOPQRSTUVWXYZcvuiiiinnn.. |

(2) The DCLJV macro catalogs job variable JV.A and assigns the link name *LINK to it.
The STAJV macro transfers the names of all job variables beginning with “JV.” in
field STA. The default value LIST=0OLD applies, i.e. the output does not list the
catalog ID or user ID.

(3) JV.A is renamed JV.N and is given the read password “JV”. The user must specify
this password in order to access the job variable.
The SETJV macro sets JV.N to the value specified in field SET1. The GETJV macro
then reads this value into the GET field.

210 U3616-J-Z2125-10-76

Examples Job variable macros

/%insert dth4

/resume—program

STOPPED AT LABEL: DTH4 , SRC_REF: 258, SOURCE: BJV , PROC: BJV

/%display get (4)
SRC_REF: 258 SOURCE: BJV PROC: BJV

/%insert dthb

/resume—program

STOPPED AT LABEL: DTH5 , SRC_REF: 328, SOURCE: BJV , PROC: BJV

/%display get (5)
SRC_REF: 328 SOURCE: BJV PROC: BJV

* %

GET = e BAD67 e e

/%insert dthé
/resume—program
STOPPED AT LABEL: DTH6 , SRC_REF: 360, SOURCE: BJV , PROC: BJV

/%display %15 (6)
CURRENT PC: 000006E6 CSECT: BJV

*x **

%15 = 00000481

(4) Starting at byte 3, four bytes of the job variable value are overwritten with the
contents of field SET2. The GET field shows the job variable value subsequent to
execution of the SETJV macro.

(5) The job variable value is replaced completely, from the start position (=1, default
value), by the contents specified in SET2.

(6) The job variable is to be deleted. Since the required read password has not been
specified, register 15 contains the appropriate error code.

U3616-J-Z2125-10-76 211

Job variable macros Examples

/%insert dth7
/resume—program

STOPPED AT LABEL: DTH7 , SRC_REF: 396, SOURCE: BJV , PROC: BJV
/%display sta
SRC_REF: 396 SOURCE: BJV PROC: BJV

KAAAAKRKAKAAAKRKAAAAAN KA ARKAAA AR KA AR AR A A AR XA A KK

STA =

S L
.

P

/%display sta%x (7)
CURRENT PC: 00000798 CSECT: BJV

* KKk *

V'00000868' = STA + #'00000000"

00000868 (00000000) 05D1E54B D5000000 00000000 00000000 JAVUNG oo

00000878 (00000010) 00000000 00000000 00000000 00000000 ..ovvvvvvvnnn...
REPEATED LINES: 4

000008C8 (00000060) 00000000 00000000 00000000 00000000 ..vvvvvnvvnn...

000008D8 (00000070) 000OOOOO 0O0OOCOCOOCO oL,

/%insert dth8

/resume—program

STOPPED AT LABEL: DTH8 , SRC_REF: 423, SOURCE: BJV , PROC: BJV

/%display %15 (8)
CURRENT PC: 0000084A CSECT: BJV

KKK AAKRKA KA AR KA AA AR KA AR AR AAARAA AR AR A AR ALk AR XA KK

%15 = 00000000

(7) The STAJV macro gives the names of all job variables beginning with “JV.” and
protected with a read password (selection is made with the operand list generated
by the JVSEL macro), in the STA field. The default value is LIST=0LD, i.e. the
output is made without catid and userid.

(8) The read password is specified for the delete operation and the job variable is
successfully deleted.

212 U3616-J-Z2125-10-76

Examples Job variable macros

Example 8 (with ONEVT macro)

The BONEVT program issues an ONEVT macro for the event item ONEVTEST, which
causes a POSSIG call whenever one of the following conditions is satisfied:

— job variable JV1 is set to 'MELDUNG' (= “message”) at the time of the ONEVT macro
call

— JV1is set to 'MELDUNG!

— catalog is exported

The number of POSSIG calls is limited to three (COUNT=3), i.e. the ONEVT macro
registers up to 3 ‘condition satisfied' states. SOLSIG solicits a signal and subsequently the
post code is checked. Depending on the condition result, the program issues a message
(MELD1, MELD2 or FMELD) after every SOLSIG.

Program BONEVT
BONEVT START
BALR 3,0
USING *,3
PRINT NOGEN
ANF DCLJV JVI,VERSION=1 "Define Jvl1"

ENAET EINAME=ONEVTEST,EIIDRET=KUKE,SCOPE=GLOBAL
ONEVT 'Jgvl='"'MELDUNG''',EIID=KUKE,POST="'B1',COUNT=3,VERSION=1

CHECK CHKEI EIID=KUKE "Check queue"
LR 5,1
CMD "%DISPLAY %15,%5'
SIGNAL MVC EMPF,NULL "Solicit signal"
SOLSIG EIID=KUKE,COND=UNCOND,RPOSTAD=EMPF,LIFETIM=10
%x CHECK POST CODE *kkkkkdkkkkskdkhkhdkhhkhdkhkhhkhhrhhkhkkskk ok
PRUEF CLI ANZ,X'14" "Event flag"
BNE FMELD
CLC ONKEN, POST "POST value"
BNE FMELD
CLI ERG,X'00" "JV1 set"
BE MELD1
CLI ERG, X'08" "Catalog exported"
BE MELD?2
B FMELD
*** MESSAGES OUTPUT *** FHk
MELD1 WROUT MLDG1, ENDE "JV1 set"
B CHECK
MELDZ2 WROUT MLDGZ, ENDE "Catalog exported"
B FRAGE
FMELD WROUT FEHLER,ENDE "No POSSIG received by ONEVT"
B FRAGE
FRAGE WRTRD ABFRAG, ,EINB,,5,ENDE "Terminate program?"

CLI ANTW, "N

U3616-J-Z2125-10-76 213

Job variable macros

Examples

BE
CLI
BE
B

DONEVT
ANTW, 'Y
ENDE
FRAGE

DONEVT EIID=KUKE,VERSION=1
DISEI EIID=KUKE
ERAJV JV1,VERSION=1

ANF

"Do not terminate program"

"Terminate"
"Repeat query"

"Delete event item"

*Khk DEFINITIONS KAKAEAAKRKAAAKRKAAAARKAA AR KRR AAAAA A AR A A A AR A AR AR AL X XK

DONEVT
B
ENDE TERM
EMPF DS
ANZ DS
ERG DS
ONKEN DS
POST DC
KUKE DC
NULL DC
MLDG1 DC
DS
DC
DC
END1 EQU
MLDG2 DC
DS
DC
DC
END2 EQU
FEHLER DC
DS
DC
DC
FEND EQU
ABFRAG DC
DS
DC
DC
ABEND EQU
EINB DS
DS
ANTW DS
END

OF
cLl

cL1

cL2

C'Bl'

C'KURZ'

Fro

Y (END1-MLDG1)

L2

X'01'

'JV1 WAS SET!

*

Y (END2-MLDG2)

L2

X'01'

'CATALOG WAS EXPORTED'
*

Y (FEND-FEHLER)

L2

X'01'

Xk K ERROR KKk
*

Y (ABEND-ABFRAG)

cL2

X'01'

'TERMINATE PROGRAM? (Y/N)'

*

0CL5
CL4
CL1

The effect of the ONEVT macro is demonstrated in this example using the condition “JV1
is set to 'MELDUNG" ”:

214

U3616-J-Z2125-10-76

Examples Job variable macros

Runtime listing LST. BONEVT for the BONEVT program

(IN) mod—job—options Togging=*par(listing=*yes)
(IN) delete-system—file system—file=*omf
(IN) start—assembh (@D]

(oum) % BLS0500 PROGRAM 'ASSEMBH',VERSION '01.2C00' OF '2002-03-06' LOADED
(oum) % BLS0552 COPYRIGHT (C) FUJITSU TECHNOLOGY SOLUTIONS GMBH 2010.

) ALL RIGHTS RESERVED
(0uT) % ASS6010 V01.2C00 OF BS2000 ASSEMBH READY
(IN) compile source=bonevt,mod-Tib=ass.plamlib(bonevt),test—-support=yes

(oum) ASS6011 ASSEMBLY TIME: 604 MSEC

(oum) % ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
(oum) % ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS

(oum) % ASS6006 LISTING GENERATOR TIME: 66 MSEC

(IN) end

(ouT) % ASS6012 END OF ASSEMBH

(IN) load—exe from=(lib=ass.plamlib,elem=bonevt),test-opt=*aid (2)
(ouT) % BLS0517 MODULE 'BONEVT' LOADED

(IN) %insert check (3)
(IN) resume—program

(ouT)

(ouT) STOPPED AT LABEL: CHECK ,SRC_REF: 84, SOURCE: BONEVT, PROC: BONEVT
(IN) mod—jv jv=jvl,set—-val='MELDUNG' (4)
(IN) mod—jv jv=jvl,set—-val='MELDUNG'

(IN) mod—jv jv=jvl,set-val="MELDUNG'

(IN) mod—jv jv=jvl,set-val="'MELDUNG'

(IN) mod—jv jv=jvl,set-val="'MELDUNG'

(IN) resume—program

(ouT) *** TID: 0001005E *** TSN: OFDB okl
(NL) CURRENT PC: 000000EO CSECT: BONEVT * okl
(NL) %15 = 2C000000 (5)
(NL) %5 = 00000003 (6)

(1) The BONEVT program is assembled by the ASSEMBH Assembler and is put in the
ASS.PLAMLIB library.

(2) The program is loaded; it is checked using AID (Advanced Interactive Debugger).
(3) The test point CHECK is defined using the AID command %INSERT.

(4) The job variable JV1 is set to 'MELDUNG! five times.

(5) The CHKEI macro shows the POSSIG queue (register 15).

(6) The CHKEI macro shows that the number of POSSIG calls is 3 (register 5).

U3616-J-Z2125-10-76 215

Job variable macros Examples

(0um
(0um
(0uUm

(IN)
(0UT)
(NL)
(NL)

(IN)
(0uU
(NL)
(NL)
(0um
(0um
(IN)
(0UT)
(NL)
(0um
(0um
(IN)
(0um
(NL)
(0uU

(0uUm
(IN)

(0um
(0um

(7)

(8)

JV1 WAS SET (7)

STOPPED AT LABEL: CHECK ,SRC_REF: 84, SOURCE: BONEVT, PROC: BONEVT

%display EMPF%X (8)
CURRENT PC: 000000A8 CSECT: BONEVT — Hkskosbksbkh ko khhhkhkkkkdok
V'0000028C' = EMPF + #'00000000"

0000028C (00000000) 1400C2F1 ..B1

resume—program
CURRENT PC: 000000EQ CSECT: BONEVT — okiobsikobbkobobddobobodhokobookdoe

%15 = 2C000000
%5 = 00000002
JV1 WAS SET

STOPPED AT LABEL: CHECK ,SRC_REF: 84, SOURCE: BONEVT, PROC: BONEVT
resume—program

%15 = 2C000000
%5 = 00000001
JV1 WAS SET

STOPPED AT LABEL: CHECK ,SRC_REF: 84, SOURCE: BONEVT, PROC: BONEVT
resume—program

%15 = 30000000
%5 = 8FO0000AC
fokake ERROR **xx* (9)

TERMINATE PROGRAM? (Y/N)
N

STOPPED AT LABEL: CHECK ,SRC_REF: 84, SOURCE: BONEVT, PROC: BONEVT

The first POSSIG was requested with SOLSIG. The condition result is interrogated
and an appropriate message output.

After the SOLSIG call, the target field EMPF contains the passed post code:

X'14' POSSIG was caused by an ONEVT macro.
X'00' Conditional event “Job variable set”.
X'C2F1' ONVEVT identifier B1.

After all 3 POSSIG calls have been solicited by SOLSIG, the queue is empty
(register 15 of the CHKEI macro: SI=X'30'"). The post code check following a further
SOLSIG produces the message “ERROR”. The response “N” is given after the
prompt, i.e. the program is run one more time starting from the ANF label - a new
ONEVT macro is issued.

216

U3616-J-Z2125-10-76

Examples

Job variable macros

(IN)
(IN)

(IN)
(oum)
(NL)
(oum)
(oum)
(oum)
(IN)
(oum)
(oum)

(IN)
(oum)
(NL)
(oum
(oum
(oum)
(IN)
(oum)
(NL)
(oum
(oum)
(IN)
(oum)
(oum)
(IN)
(oum)
(NL)
(IN)
(oum)
(NL)
(NL)
(NL)
(NL)
(NL)
(NL)

mod—jv jv=jvl,set-val="MELDUNG' (10)
mod—jv jv=jvl,set-val="MELDUNG'

resume—program

%15 = 2€000000
%5 = 00000002 (11)
JV1 WAS SET

STOPPED AT LABEL: CHECK ,SRC_REF: 84, SOURCE: BONEVT, PROC: BONEVT
del=jv jv=jvl (12)
% JVS04A3 ERROR WHEN DELETING JOB VARIABLE ':4V05:$COGNITAS.JV1'

% JVS0447 JV NAME BEING USED BY CJC FUNCTION. COMMAND REJECTED

resume—program
%15

%5

JV1 WAS SET

2€000000
00000001

STOPPED AT LABEL: CHECK ,SRC_REF: 84, SOURCE: BONEVT, PROC: BONEVT
resume—program

%15 = 30000000

%5 = 8F0000AC

*Kkk ERROR KKKk

TERMINATE PROGRAM?(Y/N)

N

STOPPED AT LABEL: CHECK ,SRC_REF: 84, SOURCE: BONEVT, PROC: BONEVT
show—jv—attr jv=jvl (13)
0000000 :4V05:$COGNITAS.JV1

SUM 00001 JVv'S; JV-VALUE = 00000000 BYTES

show—jv—attr jv=jvl,inf=*all-attr

000000 :4V05:$COGNITAS.JV1

USER-ACC = ALL-USERS ACCESS = WRITE
CRE-DATE = 2003-08-04 EXPIR-DATE = 2003-08-04
CRE-TIME = 16:51:15 EXPIR-TIME = 00:00:00
READ-PASS = NONE

WRITE-PASS = NONE

SUM 00001 Jgv'S; JV-VALUE = 00000000 BYTES

The “Set JV1” event is signaled twice.
The number of POSSIG calls is 2.

The attempt to delete job variable JV1 is rejected because job variables used in
macros (and commands) are protected against deletion.

The attributes of job variable JV1 are output.

U3616-J-Z2125-10-76

217

Job variable macros

Examples

(IN)
(0um
()
(IN)
(0uUT
(NL)
(0um
(0um
(IN)
(IN)
(IN)
(0UT)
(IN)

(14)
(15)

show—jv jv=jvl (14)
% JVS04B2 SPECIFIED JOB VARIABLE SUBSTRING EMPTY OR ITLLEGAL.
COMMAND REJECTED
resume—program
%15

%5

* k% ERROR *k*k

TERMINATE PROGRAM?(Y/N)

Y

del—=jv jv=jvl (15)
show=j—attr jv=jvl

% JVS0433 REQUESTED JOB VARIABLE NOT CATALOGED. COMMAND REJECTED
assign-syslst to=*prim

30000000
8FO0000AC

No value is assigned to job variable JV1.

The job variable JV1 can be deleted.

218

U3616-J-Z2125-10-76

Examples

Job variable macros

Example 9

This example demonstrates the use of the MODIFY-JV-CONDITIONALLY command and
the CSWJV, LNKJV and TIMJV macros. Information is exchanged between a procedure
and an ENTER job.

The sample procedure is started by means of the command /CALL-PROCEDURE PROC.BSP9.
The executable module TESTJV must be stored in the library ASS.PLAMLIB.

Procedure PROC.BSP9

.SKIP1

.PRUEF

CWETITI

CWEIT2
.SKIP3

.ENDE

~ O~ N N N N N N e N N N S

BEG-PROC LOGGING=*CMD

ASSIGN-SYSLST TO=LST.PROC

MODIFY-JOB-OPTION LOGGING=*PARAMETER(LISTING=*YES)

SET-JV-LINK JV-NAME=JV.E.1

MODIFY—-dV JV=JV.E.1,SET-VALUE=C"***"

SET-JV-LINK JV-NAME=JV.DO.1

MODIFY—-dV JV=gVv.D0.1,SET-VALUE=C"'***'

SET=JV-LINK JV-NAME=JV.MON

ENTER-JOB FROM—FILE=TEST.ENTER,MONJVY=JV.MON,JOB-CLASS=JCBATCH

SHOW-JV Jv=JV.MON

WAIT-EVENT *JV(CONDITION=((JV.MON,1,2)=C'$R"'), -

TIME-LIMIT=90, TIMEOUT-LABEL=SKIP1)

MODIFY-JV—-CONDITIONALLY JVv=(Jv.D0.1),-
IF-VALUE=C'GESTARTET"',SET-VALUE=C'UNDERSTOOD",-
LABEL=WEIT1

SKIP—-COMMANDS TO-LABEL=PRUEF

SHOW—-JV Jv=JVv.DO0.1

SHOW-JV Jv=JV.E.1

SHOW-JV JVv=JV.MON

SHOW-JOB-STAT *MONJV(JV.MON)

WATIT—EVENT *JV(CONDITION=((JVv.DO.1)=C'CARRY ON'), -

TIME-LIMIT=15, TIMEOUT-LABEL=WEIT1)

MODIFY—-JV Jv=JV.E.1,SET-VALUE=C'PROGRAM CONTINUE'

SKIP-COMMANDS TO-LABEL=ENDE,-
IF=*JV(CONDITION=((JV.E.1,12,3)=C'END"'))

SHOW-USER-STATUS

SHOW-JV Jv=gVv.E.1

SHOW-JV Jv=JV.MON

WAIT-EVENT UNTIL=*JV(TIME-LIMIT=45,TIMEOUT-LABEL=SKIP3)

REMARK **** TESTJOB ENDED ****

SHOW-JV Jv=JV.MON

ASSTGN—-SYSLST TO=*PRIMARY

MODIFY-JOB—-OPTION

END-PROCEDURE

BEG-PROC LOGGING=*CMD
ASSIGN-SYSLST TO=LST.PROC
MODIFY—-JOB-OPTION LOGGING=*PARAMETER(LISTING=*YES)

U3616-J-Z2125-10-76

219

Job variable macros Examples

File TESTENTER

/. TESTJV SET-LOGON-PARAMETERS
/ ASSIGN-SYSOUT TO=0UT.E.TESTJV
SET-JV-LINK JV-NAME=JV.DO.1
SET=JV-LINK JV-NAME=JV.PROG
MODIFY-JV Jv=JV.D0O.1,SET-VALUE=C'GESTARTET'
START-EXE FROM—FILE=(LIB=ALF.ASS.PLAMLIB,ELEM=TESTJV),-
TEST-OPTIONS=*AID,MONJV=JV.PROG
SHOW-JV Jv=JV.MON
SHOW-JV Jv=JV.PROG
SKIP-COMMANDS TO-LABEL=ENDE
SET-JOB-STEP
MODIFY-JV JVv=JV.E.1,SET-VALUE=C'ABNORMAL END'
.ENDE WAIT-EVENT UNTIL=*JV(TIME-LIMIT=120,TIMEOUT-LABEL=TIME)
.TIME ~ MODIFY-gV JV=(JV.E.1,12,3),SET-VALUE=C'END'
EXIT-JOB SYSTEM—-OUTPUT=*NONE

SNOS N S S S S S S S N N

Source program SRC.TESTJV

TESTJV START
TITLE 'TEST PROGRAM FOR CSWJV'

*

REGISTER ASSIGNMENT

BALR 3,0
USING *,3
PRINT NOGEN
*
* JOBVARIABLE JV.E.1 IS ASSIGNED THE LINK NAME *ENTER
* LINK NAME *ENTER IS STORED IN THE LNKBER FIELD
* THE CMD MACRO CAUSES THE CONTENTS OF LNKBER TO BE OUTPUT
*
DCLJV JV.E.1,LINK=*ENTER,VERSION=1
LNKJV LNKBER, LINK=*ENTER,VERSTON=1
CMD '%DISPLAY','LNKBER'
*
* THE VALUE OF JV.DO.1 IS COMPARED WITH THE CONTENTS OF VERGL
* TF THEY ARE EQUAL THE SET VALUE NEUWERT 1S TO BE SET
*
CSWIV CSWJV JV.DO.1,VERGL,NEUWERT,VERSION=1
*
* MESSAGE MELD1 *** CSWJV EXECUTED *** IS QUTPUT
* AND MESSAGE AND TIMESTAMP ARE SET IN MONJV
*

WROUT MELDI, TERM

TIMJV MF=S,MONJV=*SMONJVJ, TIMESTAMP=*SET,DESCRIPTOR="TESTJV', -
INFO="*** CSWJV EXECUTED ***'

CMD 'SHOW-JV', "JV=*LINK(SMONJVJ)"

220 U3616-J-Z2125-10-76

Examples

Job variable macros

* % X ot * % X o

* %k o ot

THE JVDOW FIELD IS SUPPLIED WITH THE CONTENTS OF Jv.DO.1
COMPARISON TO TEST IF JVDOW CONTAINS THE VALUE 'CARRY ON'

GETJV
CLC
BE

AS THE VALUE

Jv.D0.1,JVDOW,30, VERSION=1
JVDOW+4(12),="'CARRY ON'
FORTSETZ

OF Jv.DO.1 IS MOVED TO THE VERGL FIELD IF THE VALUES

ARE NOT EQUAL, VERGL IS RESET TO 'UNDERSTOOD'

MVC
VPASS
B

VERGLF,="UNDERSTOOD'
1
CSWJV

THE JVEW FIELD IS SUPPLIED WITH THE VALUE OF JV.E.1
COMPARISON TO TEST IF JVEW CONTAINS THE VALUE 'CONTINUE PROGRAM'

FORTSETZ EQU

GETJV
CLC
BNE

MESSAGE

*

JV.E.1,JVEW,30,VERSION=1
JVEW+4(19),="CONTINUE PROGRAM'
FORTSETZ

*** PROGRAM CONTINUED *** IS OUTPUT

* AND MESSAGE AND TIMESTAMP ARE SET IN MONJV

ok % of

WROUT
TIMJV

CMD

MELDZ,TERM
MF=S,MONJV=*SMONJVJ, TIMESTAMP=*SET ,DESCRIPTOR="'TESTJV ",
INFO=C'*** PROGRAM CONTINUED ***!

"SHOW=JV', "JV=*LINK(SMONJVJ)"'

MESSAGE *** PROGRAM FINAL SPURT *** IS QUTPUT
AND MESSAGE AND TIMESTAMP ARE SET IN MONJV

BEENDEN EQU

b

WROUT
TIMJV

CMD

*

MELD3, TERM

MF=S,MONJV=*SMONJVJ, TIMESTAMP=*SET,DESCRIPTOR="TESTJV"',
INFO=C'*** PROGRAM FINAL SPURT **x*!
"SHOW-JV"', " JV=*LINK(SMONJVJ)"'

THE VALUE 'NORMAL END' IS ASSIGNED TO JOB VARIABLE JV.E.1
AND MESSAGE AND TIMESTAMP ARE SET IN MONJV

SETJV
TIMJV

TERM TERM

JV.E.1,EWERT,VERSION=1
MF=S,MONJV=*SMONJVJ, TIMESTAMP=*SET ,DESCRIPTOR="'TESTJV ",
INFO=C'*** PROGRAM ENDED ***'

U3616-J-Z2125-10-76

221

Job variable macros

Examples

*
*

*

VERGL

VERGLF
ENDI

*

NEUWERT

END2

EWERT

END3

MELD1

MELDITXT
END4

*

MELD2

MELD2TXT
END5

*

*MELD3

MELD3TXT
END6

*

JVDOW

*

JVEW

*

LNKBER

DEFINITIONS

DC Y(END1-VERGL)
DS CL2

DC "UNDERSTOOD'
EQU =

DC Y (END2-NEUWERT)
DS CL2

DC 'CARRY ON'

EQU *

DC Y (END3—-EWERT)
DS CL2

DC "NORMAL END'
EQU *

DC Y (END4-MELDI)
DS CL2

DC X'o1l'

DC 'xx% CSWJV EXECUTED ***!
EQU *

DC Y (END5-MELD?2)
DS CL2

DC X'o1l'

DC '*x%x PROGRAM CONTINUED ***!
EQU *

DC Y (END6-MELD3)
DS CL2

DC X'o1l'

DC '*%% PROGRAM FINAL SPURT ***!
EQU *

DS CL30

DS CL30

DS CL63

END

222

U3616-J-Z2125-10-76

Examples Job variable macros

Runtime listing LST.PROC for procedure PROC.BSP9
(IN) / MODIFY-JOB—OPTION LOGGING=*PARAMETERCLISTING=*YES)

(IN) / SET-JV-LINK JV-NAME=gV.E.1

(IN) / MODIFY-JV ~ JV=JV.E.1,SET-VALUE=C'***!'

(IN) / SET-JV-LINK JV-NAME=JV.DO.1

(IN) / MODIFY-JV ~ JV=JV.DO.1,SET-VALUE=C'***'

(IN) / SET=JV-LINK JV-NAME=JV.MON

(IN) / ENTER-JOB FROM—FILE=TEST.ENTER,MONJV=JV.MON,JOB-CLASS=
JCBATCH

(oum) % JMS0066 JOB 'TESTJV' ACCEPTED ON 03-08-08 AT 09:22, TSN = 0FFJ
(IN) /.SKIP1 SHOW-JVv Jv=JV.MON

(OUT) $S O0FFJ4v05 J0672003-08-08072201

)

(IN) / WATIT-EVENT *JV(CONDITION=((JV.MON,1,2)=C'$R"),
TIME-LIMIT=90, TIMEOUT—-LABEL=SKIP1)

(oum) % CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 09:22:01
(oum % CJC0021 WAIT COMMAND: CONDITION = TRUE AT 09:22:01

(IN) /.PRUEF MODIFY-JV-CONDITIONALLY JVv=(JV.DO0.1),
IF-VALUE=C'GESTARTET"',SET-VALUE=C'UNDERSTOOD"', LABEL=WEIT1
(IN) / SKIP-COMMANDS TO-LABEL=PRUEF

(IN) /.PRUEF MODIFY-JV-CONDITIONALLY JV=(Jv.D0.1),
IF-VALUE=C'GESTARTET"',SET-VALUE=C'UNDERSTOOD"', LABEL=WEIT1
(IN) / SKIP—-COMMANDS TO-LABEL=PRUEF

(IN) /.PRUEF MODIFY-JV-CONDITIONALLY JVv=(JV.D0.1),
IF-VALUE=C'GESTARTET"',SET-VALUE=C'UNDERSTOOD"', LABEL=WEIT1
(IN) /.WEIT1 SHOW-JV Jv=4v.D0.1

(oum) UNDERSTOOD

(IN) / SHOW-JVv Jv=JV.E.1

(oum) kel

(IN) / SHOW-JV Jv=JV.MON

(OUT) $ROOFFJ4Vv05 J0672003-08-08072201
)

(IN) / SHOW-JOB—-STAT *MONJV (JV.MON)

(oum) TSN: OFFJ TYPE: 2 BATCH NOW : 2003-08-08.092201
(NL) JOBNAME: TESTJV PRI: 9 255 SPOOLIN: 2003-08-08.0922
(NL) USERID: COGNITAS JCLASS: JCBATCH LOGON: 2003-08-08.0922
(NL) ACCNB: 89001 CPU-MAX: 200 CPU-USED:000000.0239
(NL) REPEAT: NO RERUN: NO FLUSH: NO

(NL) MRSCAT : HOLD: NO START: SOON

(NL) TID: 0001005F UNP/Q#: 00/001

(NL) CMD: EXECUTE

(NL) ORIGFILE::4V05:$COGNITAS.TEST.ENTER

(NL) MONJV : :4V05:$COGNITAS.JV.MON

(IN) / WAIT-EVENT *JV(CONDITION=((JV.DO.1)=C'CARRY ON'),
) TIME-LIMIT=15, TIMEOUT-LABEL=WEIT1)

(oum) % CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 09:22:01
(oum) % CJC0021 WAIT COMMAND: CONDITION = TRUE AT 09:22:01

U3616-J-Z2125-10-76 223

Job variable macros Examples

(IN) / .WEITZ2 MODIFY-JV JV=JV.E.1,SET-VALUE=C'PROGRAM CONTINUE'
(IN) /.SKIP3 SKIP-COMMANDS TO-LABEL=ENDE,

(G IF=*JV(CONDITION=((JV.E.1,12,3)=C"END"))

(0uUT) % CJCO011 SKIP COMMAND: CONDITION = FALSE

(IN) / SHOW-USER-STATUS

(0uUm NAME TSN TYPE PRI CPU-USED CPU-MAX ACCOUNT#
(NL) OFFF 3 DIALOG 0 240 0.1275 32767 89001
(NL) C0G2 OFFG 3 DIALOG 0 240 0.2489 32767 89001
(NL) TESTJV OFFJ 2 BATCH 9 255 0.0394 200 89001

(0Um % SPS0171 NO LOCAL SPOOLOUT JOB PRESENT
(0U % SPS0420 RSO WARNING : SOME RSO PRINT-JOBS CANNOT BE DISPLAYED

(IN) / SHOW-JV Jv=4JVv.E.1
(0um NORMALES ENDE
(IN) / SHOW—-JV Jv=JV.MON

(oum) $R O00FFJ4V05 J0672003-08-080722012003-08-08072201TESTJV

*** PROGRAM CONTINUED ***

)

(IN) / WAIT-EVENT UNTIL=*JV(TIME-LIMIT=45,TIMEOUT-LABEL=SKIP3)
(oum) % CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 09:22:01
(oum) % CJC0022 WAIT COMMAND: TIMEOUT AT 09:22:46, SKIP TO TIMEOUT LABEL
OR NEXT STEP

(IN) /.SKIP3 SKIP-COMMANDS TO-LABEL=ENDE,
IF=*JV(CONDITION=((JV.E.1,12,3)=C"END"))

(0Um % CJCO010 SKIP COMMAND: CONDITION = TRUE

(IN) / .ENDE REMARK **** TESTJOB ENDED ****

(IN) / SHOW-JV Jv=JV.MON

(oum) $R O00FFJ4V05 J0672003-08-080722012003-08-08072201TESTJV

*** PROGRAM ENDED ***

)

(IN) / ASSTGN—-SYSLST TO=*PRIMARY

224 U3616-J-Z2125-10-76

Examples Job variable macros

Runtime listing OUT.E.TESTJV for job TEST. ENTER

/ SET-JV-LINK JV-NAME=JV.DO.1

/ SET-JV-LINK JV-NAME=JV.PROG

/ MODIFY—-JV Jv=JdVv.DO.1,SET-VALUE=C'GESTARTET'

/ START-EXE FROM—-FILE=(LIB=ASS.PLAMLIB,ELEM=TESTJV),

TEST-OPTIONS=*AID,MONJV=JV.PROG
% BLS0517 MODULE 'TESTJV' LOADED
% TID: 0001005F * TSN: OFFJ

* %

%

ok Hokx
SRC_REF: 78 SOURCE: TESTJV PROC: TESTJV

ok Ak kA ek kA ok koA ok ok A ok ok ok ok oA ok kAo ok koA ok ok ke ok ke kok oAk ok Aok ek k Aok ek ke ok ke ok ok ok ok Ak
kA kAR K

LNKBER = | .*ENTER

$4VO05:$COGNITAS . IV.E. L. o |
% CSWJV EXECUTED *

$R 00FFJ4V05 J0672003-08-080722012003-08-08072201TESTJV
CSWJV EXECUTED ***

% PROGRAM CONTINUED *

$R 00FFJ4V05 J0672003-08-080722012003-08-08072201TESTJV
PROGRAM CONTINUED ***

*** PROGRAM FINAL SPURT ***

$R OOFFJ4VO05 J0672003-08-080722012003-08-08072201TESTJV
PROGRAM FINAL SPURT ***

/ SHOW-JV Jv=JV.MON

$R 00FFJ4V05 J0672003-08-080722012003-08-08072201TESTJV
PROGRAM ENDED ***

/ SHOW—-JV Jv=JV.PROG
$T p
/ SKIP-COMMANDS TO-LABEL=ENDE

/.ENDE ~ WAIT—EVENT UNTIL=*JV(TIME-LIMIT=120,TIMEOUT-LABEL=TIME)
% CJC0020 WAIT COMMAND: TASK ENTERED WAIT STATE AT 09:22:01

*khk

*khk

* Kk Kk

* kK

% CJC0022 WAIT COMMAND: TIMEOUT AT 09:24:01, SKIP TO TIMEOUT LABEL OR NEXT

STEP
/.TIME ~ MODIFY-JgV Jv=(JV.E.1,12,4),SET-VALUE=C'ENDE'
/ EXIT-JOB SYSTEM-OUTPUT=*NONE

% EXC0419 /LOGOFF AT 0924 ON 03-08-08 FOR TSN 'OFFJ'
% EXC0421 CPU TIME USED: 0.0540

U3616-J-Z2125-10-76

225

Job variable macros Examples

226 U3616-J-Z2125-10-76

6 Messages

6.1 Command level

At the command level, error messages are preceded by a 7-character message code,
comprising three characters indicating the message class and four characters for the error
code. In the case of messages for job variable functions, the message class may be either

JVS, JPM or CJC.

The table below shows the message codes and the components from which the respective
messages originate.

Message class Range of error codes Error reported by/during

CJC 0000 - 0200 Conditional job control

JPM 0200 - 0500 Job/program monitoring

JVS 0400 - 040F Catalog Management System

JVS 0410 - 041F Catalog Management System

JVS 0420 - 042F PAM

JVS 0430 - 043F Catalog Management System

JVS 0440 - 044F CREATE-JV/MODIFY-JV-ATTRIBUTES (CATJV)
processing

JVS 0450 - 045F SET-/REMOVE-/SHOW-JV-LINK (DCLJV)
processing

JvSs 0460 - 046F DELETE-JV (ERAJV) processing

JvSs 0470 - 047F SHOW-JV/MODIFY-JV-CONDITIONALLY
(GETJV) processing

JVS 0480 - 048F MODIFY-JV/MODIFY-JV-CONDITIONALLY
(SETJV) processing

JVS 0490 - 049F SHOW-JV-ATTRIBUTES (STAJV) processing

JVS 04A0 - O4AF General command processing

JVS 04B0 - 04BF Various JV processing operations

JVS 04C8 - 04CA Catalog Management System

Table 32: Message code and original component (part 1 of 2)

U3616-J-Z2125-10-76

227

Command level

Messages

Message class

Range of error codes

Error reported by/during

JVS

04Do0 - 04D8

MONJV handler

JVS

04EOQ - 04E1

Command processor

Table 32: Message code and original component (part 2 of 2)

The command HELP-MSG-INFORMATION displays the message for the specified
message code after SYSOUT in the current job language, from the message file activated
for JV. With INFORMATION-LEVEL="MAXIMUM, additional text and measurements are
displayed. In the operand LANGUAGE a language code (D for German [Deutsch] or E for
English) can be specified for the desired output language.

You can also find the JV messages on the manual server (URL: http://manuals.ts.fujit-
su.com) by means of an HTML application and on the “BS2000/0SD SoftBooks” DVD.

228

U3616-J-Z2125-10-76

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Messages

Macro level

6.2 Macro level

At macro level, a return code is always placed in the rightmost two bytes of register 15 or in
a field provided for this purpose in the parameter list of the called macro (in the standard
header). The meanings of the various return codes are commented on in the IDEJVS macro

(leftmost byte, SI; rightmost byte, RS) or in the standard header of the called macro:

—_

2 b b b b b b b b b e b b b b b b b b b b b b) b b e b e e

MELD IDEJVS

* VERSION 401
#INTF REFTYPE=REQUEST,
INTNAME=ERRJV, INTCOMP=000

HIKK KK KKK KK JVS RETURN CODES

IDRCO000 EQU X'0000" REQUESTED JVS FUNCTION PROCESSED SUCESSFULLY.

*

* JVS RETURN CODES FROM CMS

*

IDRCO401 EQU X'0401" REQUESTED CATALOG NOT ACCESSIBLE.
IDRC0O402 EQU X'0402' REQUESTED CATALOG IN QUIET MODE.
IDRC0O403 EQU X'0403"' MRSCAT CONTAINS ILLEGAL INFORMATION.
IDRC0O404 EQU X'0404"' SYSTEM ERROR IN CMS.

IDRC0O405 EQU X'0405" SYSTEM ERROR IN MC.

IDRC0O406 EQU X'0406' MASTER EXCH OPERATION ABORT.
IDRC0O407 EQU X'0407"' MASTER EXCH WRITE DENIED.

IDRCO410 EQU X'0410" RC FROM SUBFUNCTION.

IDRCO41F EQU X'041F' TASK RPO1 NO DUMP.

IDRC0O412 EQU X'0412'" REQUESTED CATALOG NOT FOUND.
IDRC0O430 EQU X'0430' SYSTEM ERROR IN CMS ($GETMEM).
IDRCO431 EQU X'0431'" INVALID PARAMETER.

IDRC0O432 EQU X'0432" SYSTEM ERROR IN CMS.

IDRC0O433 EQU X'0433"' REQUESTED JOB VARIABLE NOT CATALOGED.
IDRC0O434 EQU X'0434" SYSTEM ERROR IN CMS.

IDRC0O435 EQU X'0435'" JOB VARIABLE NOT SHARABLE.

IDRC0O436 EQU X'0436"' SYSTEM ERROR IN CMS.

* IDRC0O437 EQU X'0437"' SYSTEM ERROR IN CMS.

IDRC0O438 EQU X'0438"' 6 OR LESS BLOCKS REMAINING FOR CATALOG.
IDRC0O439 EQU X'0439' NO MORE SPACE AVAILABLE FOR CATALOG.
IDRC0O43B EQU X'043B' SYSTEM ERROR IN CMS.

IDRC0O43C EQU X'043C' CATALOG FILE SPACE EXHAUSTED.
IDRC0O43D EQU X'043D" SYSTEM ERROR: TSOSCAT DESTROYED.
IDRCO43E EQU X'043E' JV TO BE CREATED ALREADY EXISTS.

*

* JVS RETURN CODES FROM DQPAM

*

* IDRC0O421 EQU X'0421"' SYSTEM ERROR: NO I/0 SLOT AVAILABLE.

IDRCO422 EQU X'0422"' SYSTEM ERROR IN CMS.
IDRCO423 EQU X'0423"' SYSTEM ERROR IN PAM.

202

103
103
103
201
202

005

U3616-J-Z2125-10-76

229

Macro level

Messages

= b b b b b b b b b e b b e b b b b b b b b b b b e b e b b e b e b e b b e e e e

IDRC0O424 EQU
IDRC0O425 EQU
IDRC0O426 EQU
IDRCO427 EQU
IDRCO428 EQU
IDRCO429 EQU
* IDRCO42B
IDRC0O42C EQU
IDRC0O42D EQU
IDRCO42F EQU

*

* JVS RETURN

*

IDRC0440 EQU
IDRC0O441 EQU
IDRCO442 EQU
* IDRC0O443
IDRCO444 EQU
IDRC0O445 EQU
* IDRCO446
IDRC0O447 EQU
IDRC0448 EQU
IDRCO449 EQU
IDRCO44A EQU
IDRCO44B EQU
IDRC0O44C EQU

*

* JVS RETURN

*

IDRC0O450 EQU
IDRCO451 EQU

* IDRCO452
IDRC0O453 EQU
* IDRC0O454

IDRC0O455 EQU
IDRC0O456 EQU
IDRC0O457 EQU
IDRC0O458 EQU

*

* JVS RETURN

*

IDRC0O460 EQU
IDRCO461 EQU
IDRCO462 EQU
IDRC0O463 EQU
IDRC0O464 EQU

*

IDRCO465 EQU

X'0424'
X'o425!
X'0426'
X'0427"'
X'0428'
X'0429'

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

ERROR:

ERROR
ERROR
ERROR
ERROR
ERROR

SYSTEM ADDRESS SPACE EXHAUSTED.

IN
IN
IN
IN
IN

CMS.
CMS.
PAM.
PAM.
PAM.

EQU X'042B' SYSTEM ERROR IN

X'042C" SYSTEM ERROR IN PAM.
X'042D'" SYSTEM ERROR IN PAM.

PAM.

005

005

005

X'042F"' SYSTEM ERROR: RESIDENT PAGE SPACE EXHAUSTED.

X'0440'
X'0441'
X'0442'

X'0445"

EQU X'0446'

X'0449'
X'044A"
X'044B'
X'044C'

X'0450"
X'0451"

EQU X'o452!
X'0453" NO USER AREA.
EQU X'0454"

INVALID JVNAMEL.

INVALID JVNAMEZ.

NEGATIVE RETENTION PERIOD.

EQU X'0443" STATE=NEW AND ACCESS=READ.
X'0444' JVNAMEL1 OR JVNAMEZ2 ALREADY CATALOGED.

CODES FROM JVCATEX

100

INVALID RETENTION PERIOD SPECIFICATION.

RENAME JV NOT SUCCESSFUL.
X'0447"' JVNAME1 IS IN USE BY CJC.
X'0448' MONJV MAY NOT BE CHANGED.

005
001
001

ONLY STANDARD ATTRIBUTES FOR TEMPJV ALLOWED 800
GUARD NAME INVALID

MANAGEMENT-CLASS INVALID
ERROR IN DEFAULT PROTECTION

INVALID LINKNAME.

NO TFT EXISTING.
INVALID JOBVAR NAME.

X'0455" AREA SIZE TO SMALL
X'0456"' COMPARISON IS FALSE

X'0457"

REMOVE ALL ENTRIES ?

INVALID PARAMETER.

X'0458"' REQU WITHDRAWN BY USER.

X'0460"
X'0461"
X'o462'
X'0463"
X'0464"

X'0465"

CODES FROM JVERAEX

INVALID ERASE REQUEST.

ERASE OF SOME JOB VARIABLES IN ERROR.

200
200
300

CODES FROM JVDCLEX, JVRELEX, JVLNKEX AND JVCSWEX

800
003
800
003
800
801
103
103

SEVER PROCESSING BY P1 MACRO CALLER REQUESTED.
ERASE ERROR ON JV.
ERAJV ERROR. USER HAS STILL JOB VARIABLE

CATALOG ENTRIES.
ERASE ALL JV'S ON USERID 7

950

230

U3616-J-Z2125-10-76

Messages

Macro level

2 b b b b b b b b b b b b b b e b b b b b b b b b b b) b) b b b b e b e

IDRC0O466 EQU
IDRC0O468 EQU
IDRC0O469 EQU
IDRCO46A EQU

*

* JVS RETURN

*

IDRC0O470
IDRC0O471
IDRCO472
IDRCO474
IDRCO475

*

EQU
EQU
EQU
EQU
EQU

*

* JVS RETURN

*

IDRC0O480 EQU
IDRCO481 EQU
*

IDRC0O482 EQU
IDRC0O483 EQU
IDRC0O484 EQU
*

IDRC0O485 EQU
* IDRC0O486
IDRC0O487 EQU

*

X'0466' MONJV IS PROTECTED 800
X'0468' ERASE ALL JV'S ON PUBSET 7 950
X'0469' ERASE A SINGLE JVv 7 950
X'046A"' ERASE REQUEST WITHDRAWN BY CALLER 950

CODES FROM JVGETEX

X'0470"
X'0471'
X'0472"
X'0474"
X'0475"

JV VALUE CONTAINS FEWER BYTES THAN REQUESTED.
JOB VARIABLE $SYSJV.LASTMSG NOT ACCESSIBLE. 401
INVALID SPECIAL JOB VARIABLE.

JV VALUE TRUNCATED.

THE SIZE SPECIFIED FOR THE AREA IN THE GETJV
MACRO IS LESS THAN 4 BYTES.

CODES FROM JVSETEX

X'0480"' SPECIAL JOB VARIABLE MAY NOT BE SET.
X'0481' A NON-PRIVILEGED CALLER HAS REQUESTED A
PRIVILEGED SETJV FUNCTION.
THE ADDRESS OF THE JV VALUE IS MISSING.
THE LENGTH OF THE JV VALUE EXCEEDS 256 BYTES.
MORE THAN 1 PRIVILEGED REQUEST HAS BEEN
SPECIFIED IN A SINGLE CALL.
X'0485"'" JVNAMEZ AND VALUE ADDRESS ARE BOTH SPECIFIED.
EQU X'0486' JVNAME1 AND JVNAMEZ ARE NOT OF SAME TYPE120
X'0487"' FIRST BYTES OF MONJV ARE PROTECTED. 800

X'o482'
X'0483"
X'0484"

* JVS RETURN CODES FROM JVSTAEX

*

IDRC0O490 EQU

*

IDRC0O491 EQU

*

* JVS RETURN

*

IDRCO4A0 EQU
*

IDRCO4A1
IDRCO4A2
IDRCO4A3
IDRCO4A4
IDRCO4A5
*

IDRCO4A6 EQU
IDRCO4A7 EQU
* 1DRCO4A8
IDRCO4A9 EQU
IDRCO4AA EQU

EQU
EQU
EQU
EQU
EQU

X'0490"' THE AREA SIZE PARAMETER IS TOO SMALL TO CONTAIN
THE CATALOG ENTRY.
X'0491" INVALID OPERAND IN SELECTION LIST

CODES FROM JVXXXSY, JVSV133, JVSV190, JVSYSCM, JVSYSP2

X'04A0" FUNCTIONAL UNIT
NOT SELECTED.
SYNTAX ERROR IN COMMAND PARAMETER.
JV HAS BEEN ERASED.
ERASE ERROR ON JV.
INVALID FUNCTION CODE SPECIFIED.
A NON-PRIVILEGED CALLER HAS REQUESTED A
PRIVILEGED ENCRYPTION OPTION.

X'04A6"' SYSTEM ERROR IN WROUT

X'04A7' INVALID ADDRESS IN REGISTER 1 DURING SVC133.
EQU X'04A8' INVALID INTERACTIVE MODE.

X'04A9' LABEL NOT FOUND.

X'04AA" INVALID PL IN CURRENT MODE (GET,SET,STA)

"JOB VARIABLE SERVICES" (JVS)
X'04A1"
X'04A2"
X'04A3"
X'04A4"
X'04A5"

007
801
902

U3616-J-Z2125-10-76

231

Macro level

Messages

= b b b b b b b b b e b b e b b b b b b b b b b b e b e b b e b e b e b b e e e e

IDRCO4AB
*

IDRCO4AC
IDRCO4AD

*

* JVS RETURN

*

EQU

EQU
EQU

X'04AB' INVALID PARAMETER IN MACRO PARAMETER LIST 950
(INVALID FLAGS OR OLD INTERFACE USED NEW FUNTIONS

X'04AC' INVALID CONVERSION OF TIME UTC TO LT 101
X'04AD' ERROR DURING VARIABLE PRODUCTION 120

CODES FROM DIFFERENT JVS MODULES

IDRC0O4B0O EQU X'04B0' SIZE FIELD ZERO OR AREA ADDRESS NOT SPECIFIED.
IDRC0O4B1 EQU X'04B1' PASSWORD HAS NOT BEEN PROVIDED.

IDRCO4B2 EQU X'04B2' REQUESTED JOB VARIABLE OR REQUESTED SUBSTRING

* IS EMPTY.

IDRCO4B3 EQU X'04B3" INCORRECT SYNTAX-JVNAME.

IDRC0O4B4 EQU X'04B4' LINKNAME NOT PREVIOUSLY DEFINED.

IDRC0O4B5 EQU X'04B5' SYSTEM ERROR: $GETMEM ERROR. 999
IDRC0O4B6 EQU X'04B6' EXPIRATION DATE ERROR.

IDRCO4B7 EQU X'04B7' SYSTEM ERROR: $RETMEM ERROR. 999
IDRCO4B8 EQU X'04B8' ONLY READ ACCESS IS ALLOWED.

IDRCO4B9 EQU X'04B9"' ILLEGAL SUBSTRING IN GET— OR SETJV.

* IDRCO4BA EQU X'04BA' ILLEGAL SYNTAX FOR NON-NUMERIC JV. 120
IDRC0O4BB EQU X'04BB' ILLEGAL SYNTAX FOR NUMERIC JV. 750
IDRC0O4BC EQU X'04BC' NOT ALL JVS ARE ERASED OR DISPLAYED 950
IDRC0O4BD EQU X'04BD' ERROR OCCURED WHILE USING ACCESS—FUNCTION 001
* TO SYSTEM-TABLE (E.G. TCB) 001
IDRCO4BE EQU X'04BE' USERID DOES NOT EXIST 002
IDRCO4BF EQU X'04BF' JV PROTECTED BY ACL 004

*

* JVS RETURN

*

IDRCO4C8
IDRCO4CA

*

* JVS RETURN

*

IDRC0O4D0O
IDRC0O4D1
IDRCO4D2
IDRCO4D3
IDRC0O4D4
IDRC0O4D5
IDRC0O4D6
IDRCO4D7
IDRCO4D8
IDRCO4D9

*

* JVS RETURN

*

IDRCO4EOD
IDRCO4EL

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

CODES FROM CMS

X'04C8"' Jv LIMIT EXCEEDED 100
X'04CA" JVv LIMIT ERROR 102
CODES FROM JVSMJVH 800
X'04D0' JV NOT ACCESSIBLE. 800
X'04D1' JV NOT ASSIGNED. 800
X'04D2"' JV ALREADY ASSIGNED. 800
X'04D3" JV CANNOT BE CREATED. 800
X'04D4"' JV INCORRECTLY SPECIFIED. 800
X'04D5"' JV CATALOG ENTRY IS LOCKED. 800
X'04D6' JV NOT SUPPLIED WITH TSN. 800
X'04D7"' GCF ERROR OCCURRED. 400
X'04D8"' NO LINKNAME FOR MONJV. 801
X'04D9"' GCF ERROR TO CONSOLE. 400
CODES TO CMD—PROCESSOR 101
X'"04EQ"' CORRECT AND RETRY. 101
X'04E1" WAIT AND RETRY. 101

232

U3616-J-Z2125-10-76

Messages Macro level

1 *

1 >~ JVS RETURN CODES FROM CMS

1 *

1 IDRC14A4 EQU X'14A4" CATALOG INDEX MAX SIZE. 400
1 IDRC14A5 EQU X'14A5" CATALOG INDEX DESTROYED. 400
1 """"""""""""""""""""""""""""""" R R R S S
1 SPACE

The return codes listed correspond in most cases to the error codes of system messages
and can be supplemented to form a message code by adding the message class. You can
thus obtain detailed information in the manner described in section “Command level” on
page 227.

No corresponding system message exists for the following return codes. They have the
following meanings:

X'0000 Execution without error.

X'0450' Invalid link name.

X'0453' User area could not be supplied.

X'0455' User area is too small.

x'0456' Job variable value is not equal to comparison value.

X'0461' Error while deleting job variables. The jvid specified in the ERAJV matches

(e.g. due to a wildcard specification) more than one object (catalog, user ID
and/or JV). Not all of these objects (possibly none at all) could be processed

correctly.

X'0462' User requested REMOVE-USER processing (the IDJESEVR bit was set in
the ERAJV parameter list).

X'0475' The area length is less than 4 bytes.

X'0481' Non-privileged user requested privileged SETJV function.

X'0482' Address for job variable value is missing.

X'0483' The length in the record length field of the job variable value is greater than
260 bytes or less than 4 bytes.

X'0484' More than one privileged request was submitted in one call.

X'0485' Both “jvname2” and a value address were specified.

X'0490' Length of defined area is insufficient for catalog entry.

X'0491' Invalid selection operand was specified (JVSEL).

X'04A4' An invalid function code was specified (SVC 133).

U3616-J-Z2125-10-76 233

Macro level Messages

X'04A5' Non-privileged user requested privileged coding function.

X'04A7' Invalid address in register 1 with SVC 133 or SVC 190.

X'04AA User is in 31-bit mode but used a 24-bit parameter list (GETJV, SETJV or
STAJV).

X'04AB' A new parameter was used in an old parameter list or the user set the flag
byte to an invalid value (ERAJV, STAJV, etc.).

X'04B0 Field length is zero or area address is not defined.

X'04B9 An invalid value range was specified.

The following return codes are returned in the event of incorrect initialization of the standard
header (PARMOD=31):

X'0001FFFF" The unit and/or function number in the header is not supported.

X'0003FFFF": The version number in the header refers to an interface version
which is not supported.

X'0004FFFF" The parameter list is not aligned on a word boundary.

234 U3616-J-Z2125-10-76

7 The privileged user

Privileged users are users authorized to perform systems support, usually working under
the user ID TSOS. When the software product SECOS is installed, the systems support

functions are distributed over different user IDs. Unless expressly stated otherwise, “privi-
leged user” as employed in the following always refers to systems support under the TSOS

user ID.

7.1 Installation

The software product Job Variables (JV) V15.0A is used in the currently released versions
of BS2000/0OSD-BC. It is a chargeable software product not included in the basic configu-

ration of BS2000.

Job Variables 15.0A is supplied as a dynamically loadable subsystem (as defined by

DSSM).

The following components are supplied with JV 15.0A:

File name Contents

SYSFGM.JV.150.D Release Notice (German)

SYSFGM.JV.150.E Release Notice (English)

SYSRME.JV.150.D Readme file (German)

SYSRME.JV.150.E Readme file (English)

SYSLNK.JV.150 Link and load module (LLM) for /390 systems
SPMLNK.JV.150 Link and load module (LLM) for SX servers
SKMLNK.JV.150 Link and load module (LLM) for SQ servers
SYSLIB.JV.150 User macro library

SIPLIB.JV.150 TPR macro library

SYSMES.JV.150 Message file (see chapter “Messages” on page 227)
SYSRMS.JV.150 Delivery package for RMS

SYSSDF.JV.150 Syntax file (see “Syntax files” on page 236)
SYSSSC.JV.150 Subsystem declaration (see “Subsystem declarations” on page 236)

U3616-J-Z2125-10-76

235

Installation

The privileged user

The installation must be done using IMON.

Subsystem declarations

The JV subsystem is loaded by DSSM and is available at “system ready” time. The JV
subsystem must already be declared in the subsystem catalog to permit this. The requisite
subsystem declarations are contained in the file SYSSSC.JV.150. Subsystem catalog
generation is described in the manual “Subsystem Management” [7].

At initialization the JV subsystem opens the system file $TSOS.SYSCAT.JV on the home
pubset for internal use. If the file does not exist, it is created. The file is only closed when
the JV subsystem is closed.

Syntax files

The JV product is supplied with the syntax file SYSSDF.JV.150, which is entered as a
subsystem syntax file in the SDF parameter file by IMON.

The following applies to syntax files created by a user group or individual user whenever
there is a change of version:

— If these files contain JV commands which have been modified with SDF-A, they must
be created again as new files.

— The same applies to group syntax files which are used with HHERARCHY=NO and
contain JV commands.

The management of system and group syntax files and the SDF-I utility routine are
described in the manual “SDF Dialog Interface” [2].

236

U3616-J-Z2125-10-76

The privileged user Privileged access rights

7.2

7.3

Privileged access rights

The privileged user is treated in the same way as the owner in respect of the job variables
of other users (it can be limited, see “Restricted TSOS co-ownership” on page 24). This
also applies to the operator, who is authorized to issue the SHOW-JV, MODIFY-JV and
SHOW-CJC-STATUS commands at the console. With basic ACL protection, the access
rights defined for OWNER are applicable.

The privileged user can use wildcards in all commands and macros which allow wildcards
in the JV name, as well as within the user ID (e.g. SHOW-JV-ATTRIBUTES or STAJV
macro).

During output of the JV entry (SHOW-JV-ATTRIBUTES or STAJV macro), specified
passwords are included in the output for the privileged user. The privileged user can modify
a JV entry (MODIFY-JV-ATTRIBUTES or CATJV macro) without specifying passwords.
When deleting job variables (DELETE-JV or ERAJV macro), the privileged user is able to
ignore the password protection (IGNORE-PROTECTION operand).

The privileged user is also authorized to create job variables under any user ID (CREATE-
JV or CATJV macro), and can also access all temporary job variables in the system.

The systems support group can transfer system administrator functions to the operator (see
“Introductory Guide to Systems Support” [3]). This means that the operator may also issue
other commands in addition to SHOW-JV and MODIFY-JV (such as CREATE-JV and
DELETE-JV) at the console, with the same privileges.

System file SYSCAT.JV

At initialization, the JV subsystem opens the system file $TSOS.SYSCAT.JV on the home
pubset for internal use. If the file does not exist, it is created. The file is only closed when
the JV subsystem is closed.

U3616-J-Z2125-10-76 237

Monitoring in pubset management The privileged user

7.4 Monitoring in pubset management
When managing pubsets, systems support can have the following functions monitored by
job variables:

“Import pubset”
“Export pubset”
“Force pubset export”

When a shared pubset is imported, a job variable is created which indicates the availability
of this pubset.

The following status values are set in a monitoring job variable during import and export of

pubsets:
Value Function Meaning/reason for assigning the value
Export Export aborted due to error or CANCEL-PUBSET-EXPORT command
$A Import Import aborted due to error
SE Export Export job successfully initiated
3l Import Import job successfully initiated
$R Import Pubset successfully imported
$T Export Pubset successfully exported
W Import During import of a shared pubset the processor is waiting for the
acknowledgment from the master

Table 33: Status values when importing/exporting a monitoring job variable

In shared pubset operation within a multiprocessor network, a shared pubset-specific job
variable is created on each home pubset of a sharer in order to monitor operations in the
network. .

Value Meaning/reason for assigning the value

$R Shared pubset available.
Master switchover successfully completed.

$T Shared pubset not available, e.g. due to failure of master.

$A Master switchover aborted due to error, e.g. failure of the master and unsuccessful decla-
ration of a new master from the various slave processors.

$C Due to failure or shutdown of the master, a master switchover is performed on the public
volume.

Table 34: Monitoring job variables in shared-pubset mode

238 U3616-J-Z125-10-76

The privileged user Monitoring in pubset management

An overview of the commands in which systems support can monitor pubset management
by means of job variables is presented in table 35 below.

For more information on pubset management, refer to the manuals “Introductory Guide to
Systems Support” [3] and “HIPLEX MSCF” [8].

Notes on using a monitoring job variable
— The job variable must not be write-protected.

— Ifthe job variable is not cataloged, message DMS0383 is output and the import/export
job is executed without a monitoring job variable.

— If the job variable is protected by a password, it can be declared as a monitoring job
variable only if the user submitting the job has already entered the password in the
password table (with ADD-PASSWORD) or specifies it in the JV-PASSWORD operand
of the following commands.

Command Operands relevant to monitoring of pubset management
EXPORT-PUBSET MONJV=*NONE/<filename 1..54 without-gen>

exports a previously imported defines the monitoring JV.

pubset

JV-PASSWORD=NONE/<c-string 1..4>/<x-string 1..8>/
<integer -2147483648..21484836479>
defines a password for the monitoring JV.

Note on EXPORT-PUBSET:

The command generates a job that performs the pubset export. The pubset to be exported is set to
“inaccessible”. The job waits until all jobs reserving resources have released their allocation (open
files, or reservation of files with SECURE-RESOURCE-ALLOCATION). The export job returns infor-
mation about the number of jobs still reserving the pubset. The task sequence numbers (TSNs) can
be queried using the SHOW-PUBSET-PARAMETER command. Following termination of the wait
state the user catalog is closed and all resources are released. Messages generated by the job are
output at the operator terminal. The wait state during export processing can be terminated with the
operand TERMINATE-JOBS=YES. This causes all jobs still occupying resources to be terminated
in an orderly manner. If the wait state cannot be exited, this can be enforced by means of the
FORCE-CATALOG-EXPORT command.

The change in availability is reported to all active processors of the multiprocessor network.

The export job can be monitored by means of a job variable (see MONJV). Conditional job control
(CJC) can be used to respond to the various processing states.

FORCE-PUBSET-EXPORT MONJV=*NONE/<filename 1..54 without-gen>
forces export of a pubset. defines the monitoring JV.

JV-PASSWORD=NONE/<c-string 1..4>/<x-string 1..8>/
<integer -2147483648..21484836479>
defines a password for the monitoring JV.

Table 35: Commands in which job variables for monitoring in pubset management can be defined (part 1 of 2)

U3616-J-Z2125-10-76 239

Monitoring in pubset management The privileged user

Command Operands relevant to monitoring of pubset management
IMPORT-PUBSET MONJV=*NONE/<filename 1..54 without-gen>
imports a pubset. defines the monitoring JV.

JV-PASSWORD=NONE/<c-string 1..4>/<x-string 1..8>/
<integer -2147483648..21484836479>
defines a password for the monitoring JV.

Note on IMPORT-PUBSET:

The import job can be monitored using a job variable (see MONJV). Conditional job control (CJC)
can be used to respond to the various processing states.

If a shareable pubset was imported, its availability is additionally logged in a separate job variable.
During the import process this is reset or created as a new job variable on the home pubset of the
importing processor: The default name is

:<cat-id home>:$TSOS.SYS.PVS.<cat-id shared-pubset>.MASTER.CONTROL

Possible status values:
$R : Shared pubset available

$T : Shared pubset not available (e.g. due to master processor crash)

Table 35: Commands in which job variables for monitoring in pubset management can be defined (part 2 of 2)

240 U3616-J-Z2125-10-76

The privileged user Job variables as the object of system monitoring

7.5 Job variables as the object of system monitoring

When the software product SECOS is used, job variables belong to the objects which can
be monitored with the function unit SAT (JOB VARIABLES object).

SAT allows logging of accesses to the Job Variables object. Logging of a particular access
(e.g. reading a JV) occurs when the security administrator has allowed the Job Variables
object to be used for monitoring. In addition, the security administrator can make logging of
a particular access dependent on the result: successful (SUCC) or unsuccessful (FAIL).
The result (SUCC or FAIL) and the fully qualified or partially qualified job variable name or
a wildcard string are logged for job variables. Logging of the return information from JV can
also be allowed. The default value here is “NONE; this remains unchanged in the case of
the result “successful access” (SUCC).

General errors occurring during access are not logged (syntax error, parameter list error,
incorrect job variable name). Accesses by the operator are similarly not logged by SAT
(except to the CONSLOG file).

System monitoring with SAT is described in detail in the manual “SECOS” [9].

The events described below can be selected for the JOB VARIABLES object. The short
name for the event is given first, followed by the commands and macros which can trigger
the event:

JVC Create job variable entry (and the protection attributes):
CREATE-JV command or CATJV macro with STATE=NEW; also SET-JV-LINK
command or DCLJV macro if a non-existent job variable is set up.

JVM Modify protection attributes of a job variable:
MODIFY-JV-ATTRIBUTES command or CATJV macro with STATE=UPDATE.

JVR Rename job variable:
NEW-NAME is specified in the MODIFY-JV-ATTRIBUTES command or a second JV
name is given in the CATJV macro with STATE=UPDATE. If protection attributes are
also modified at the same time, then a second SAT record is written for the event
JVM.

JVA Rename job variable with reconstruction via the ARCHIVE utility routine.

JVD Delete job variable entry (and the protection attributes):
DELETE-JV command and ERAJV macro. When using a partially qualified JV
name or wildcards, the list of the affected job variables is not logged. During
deletion, a SAT record is written for an affected job variable.
If only the value of the job variable is deleted (OPTION=DATA or DATA=YES), this
is only a write access (see event JVS).

U3616-J-Z2125-10-76 241

Job variables as the object of system monitoring The privileged user

JvaQ

JVG

JVS

List information about job variables (and the protection attributes):
SHOW-JV-ATTRIBUTES command or STAJV macro.

A specified partially qualified JV name or wildcard string is also logged. A SAT
record is written for each affected job variable.

Read job variable value:
SHOW-JV command or GETJV macro, when used in conditional expressions and
in the job variable substitution.

Write job variable value:
MODIFY-JV, MODIFY-JV-CONDITIONALLY, MODIFY-MONJV commands or
SETJV, CSWJV, TIMJV macro calls.

If the value to be set is taken over from a job variable, then a further SAT record is
written for read access to this job variable (see event JVG).

Logging of a specific access to the JOB VARIABLES object can be made dependent on the
following information:

JVNAME Fully or partially qualified job variable name
JVPATRN Wildcard pattern

NEWJV New job variable name

JVSRC

Return code information

The table below shows which information is mandatory (M), optional (O) or not essential
(“-") in order to enable certain events to be logged for the JOB VARIABLES object

Information Event
JVA JvC JVvD JVG JVM Jva JVR Jvs
JVNAME M M M M M o' M M
JVPATRN - - - - - o" - -
JVSRC O O (0] (0] (0] O O 0]
NEWJV M - - - - - M -
Table 36: Information dependencies for logging an access to the JOB VARIABLES object

1 Either of the two is required.

242

U3616-J-Z2125-10-76

Abbreviations

ACL

BACL

CJC

CMS

DSECT
DSSM
GUARDCOO

GUARDS
ISP

JMS
JPM

Jv

JVS
MONJV

MRSCAT

MSCF

Access Control List

Basic Access Control List
Conditional Job Control

Catalog Management System
Dummy SECTion

Dynamic SubSystem Management
GUARD Co-Owner Protection

Generally Usable Access ContRol ADministration System
(access control monitor)

Interactive String Processor (command decoder in BS2000 used previous
to SDF)

Job Management System

Job Program Management

Job Variable

Job Variable System

MONitoring Job Variable

Catalog of the pubsets imported on the processor; in a multiprocessor
network, the participating processors are also entered in the catalog under

their catalog IDs.

Multi System Control Facility

U3616-J-Z2125-10-76

243

Abbreviations

MF

RS

SAT

SDF

SECOS

SI

TPR

TSOSCAT

TSN

TU

UTC

VSN

Macro Format

Return Switch

Security Audit Trail

System Dialog Facility (standard command decoder)
SEcurity COntrol System

Secondary Indicator

Task PRivileged

System catalog

Task Sequence Number

Task Unprivileged

Universal Time Coordinate (corresponds to Greenwich time)

Volume Serial Number

244

U3616-J-Z2125-10-76

Related publications

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

The manuals are available as online manuals, see http.//manuals.ts.fujitsu.com, or in printed

form which must be paid and ordered separately at http://manualshop.ts.fujitsu.com.

BS2000/0SD-BC
Commands
User Guide

SDF (BS2000/0SD)
SDF Dialog Interface
User Guide

BS2000/0SD-BC
Introductory Guide to Systems Support
User Guide

BS2000/0SD-BC
Executive Macros
User Guide

BS2000/0SD-BC
DMS Macros
User Guide

SDF-P (BS2000/0SD)
Programming in the Command Language
User Guide

DSSM/SSCM
Subsystem Management in BS2000/0SD
User Guide

HIPLEX MSCF (BS2000/0SD)
BS2000 Processor Networks
User Guide

SECOS (BS2000/0SD)

U3616-J-Z2125-10-76

245

http://manuals.ts.fujitsu.com
http://manualshop.ts.fujitsu.com

Related publications

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

Security Control System - Audit
User Guide

SECOS (BS2000/0SD)
Security Control System - Access Control
User Guide

ARCHIVE (BS2000/0SD)
User Guide

HSMS / HSMS-SV (BS2000/0SD)
Hierarchical Storage Management System
User Guide

SPOOL (BS2000/0SD)
User Guide

BLSSERV
Dynamic Binder Loader / Starter in BS2000/0SD
User Guide

openFT (BS2000/0SD)
Enterprise File Transfer in the Open World
User Guide

SPACEOPT (BS2000/0SD)
Disk Optimization and Reorganization
User Guide

VM2000 (BS2000/0SD)
Virtual Machine System
User Guide

246

U3616-J-Z2125-10-76

Index

A
ACCESS (protection attribute) 37
access authorization 23
access control 31
password 28
selection criteria 146
access control list, simple 31
access loss, JV 41
access privileges 31
combinations (table)
access rights 62
access type 26
selection criteria 139
access type fora JV 26
ADD-CJC-ACTION command 65, 67, 82
ADD-DEFAULT-PROTECTION-ATTR
(command) 36
ADD-DEFAULT-PROTECTION-RULE
(command) 36
attribute guard 36

28, 31

B
backup
pubset backup with snapsets 42
BASIC-ACL (protection attribute) 31, 37
selection criteria 142

C

calendar jobs 63

CANCEL-FILE-TRANSFER (command) 79
CANCEL-JOB (command) 79
CANCEL-PRINT-JOB (command) 79
CANCEL-PUBSET-EXPORT command 239, 240
catalog identifier (naming JVs) 16

CATJV macro 92, 237

CHANGE-TASK-PRIORITY (command) 79
CJC protection 40
selection criteria
co-ownership 23
command
ADD-CJC-ACTION 82
ADD-DEFAULT-PROTECTION-ATTR 36
ADD-DEFAULT-PROTECTION-RULE 36
CREATE-JV 36
MODIFY-DEFAULT-PROTECTION-ATTR 36
MODIFY-DEFAULT-PROTECTION-RULE 36
SKIP-COMMANDS 82
WAIT-EVENT 82
conditional expressions 82
lowercase 82
uppercase 82
conditional job control 65
command overview 82, 85
conditions 65

146

COPJV macro 104
copy

job variable 104
CREATE-JV (command) 30, 36
CREATE-JV command 14, 237

140
140

creation date of a JV, selection criteria
creation date of JV, selection criterion
CSWJV macro 109

D

DCLJV macro 114

default link name
SMONJVJ 20, 64, 79
SMONJVP 20, 64

DELETE-JV command

DISEl macro 68

15, 237

U3616-J-Z2125-10-76

247

Index

DONEVT macro 68, 118 J
dummy user ID SYSJV 44 job chain 53, 65
job management

E
END-CJC-ACTION command 68
ENTER-JOB (command) 77
ENTER-PROCEDURE (command) 77
ERAJV macro 123, 237
event-driven job control 65
events 65

synchronizing 66
examples

of JV commands 191

of JV macros 208

of management of job variables 191

CANCEL-FILE-TRANSFER (command) 79
CANCEL-JOB (command) 79
CANCEL-PRINT-JOB (command) 79
CHANGE-TASK-PRIORITY (command) 79
command overview 79
FORCE-JOB-CANCEL (command) 79
HOLD-JOB (command) 79

MODIFY-JOB (command) 79
MODIFY-JOB-OPTIONS (command) 79
RESUME-JOB (command) 79
SET-SYSLST-READ-MARK (command) 79
SHOW-FILE-TRANSFER (command) 79

EXDATE (retention period for JV) 27
expiration date of JV, selection criteria 141
export pubset monitoring 238 (command) 79
EXPORT-PUBSET command 239 job monitoring 55, 77, 200, 201, 202
expressions command overview 77

conditional 82 ENTER-JOB (command) 77

relational 82 ENTER-PROCEDURE (command) 77

link name 64

F MODIFY-JOB-OPTIONS (command) 77
FORCE-PUBSET-EXPORT command 239 selection oriteria 145

SET-LOGON-PARAMETERS (command) 77
TRANSFER-FILE (command) 77
using JVs 53

job network 53, 65

job restart 53

jobtrace 53

H job variable

HOLD-JOB (command) 79 catalog, see CATJV macro 92
HSMS management class check and set, see CSWJV macro 109

SHOW-JOB-STATUS (command) 79
SHOW-RESOURCE-ALLOCATION

G

GETJV macro 131

GROUP, user class 30

GUARDS (protection attribute) 37
selection criteria 145

selection criteria 145 conditional job control 75
copy 104
| create 14
import pubset monitoring 238 define link name 114
IMPORT-PUBSET command 239 definition 7
inheritance, access rights 62 delete condition for event, see DONEVT

input from job variables 70 macro 118
erase, see ERAJV macro 123

get JV-LINK entries, see LNKJV macro 151

248 U3616-J-Z2125-10-76

Index

job variable (continued)
get value, see GETJV macro 131
job monitoring 75
management 75
management (command overview) 76
management part 14
output attributes, see STAJV macro
program monitoring 75
remove JV-LINK entry, see RELJV
macro 163
selecting job variables by selection
criteria 136
set event condition, see ONEVT macro
set value, see SETJV macro 166
supply the elements of a monitoring JV in the
system section with values 186
terminate program/procedure step, see TERM
macro 182
job variable entry, delete 23
job variable replacement 70
built-in function 70
in S procedures 70
restrictions 70
S variables 70
job variable value, length (selection criteria)
job variables management, table 14
JV commands/macros, wildcards 18
JV name (naming JVs) 16
JV-LINK table 20
JVSEL (macro) 136

172

156

147

L
link name
forJVs 20
in conditional expressions 21
in JV replacement 21
job monitoring 64
possible uses (table) 21
program monitoring 64
LNKJV macro 151
LOGON 77

M
macros 87

CATJV 92

CSWJv 109

DCLJV 114

DONEVT 118

ERAJV 123

GETJV 131

JVSEL 136

LNKJV 151

MACID operand 89

metacharacters 90

MF operand 88

ONEVT 156

overview 87

PARAM operand 89

PREFIX operand 89

RELJV 163

SETJV 166

STAJV 172

TERM 182

TIMJV 186
management of job variables, command

overview 76
messages

command level ff 227

macro level ff 229
metacharacters, macros 90
MODIFY-DEFAULT-PROTECTION-ATTR

(command) 36
MODIFY-DEFAULT-PROTECTION-RULE

(command) 36
MODIFY-JOB (command) 79
MODIFY-JOB-OPTIONS (command)
MODIFY-JV (command) 44
MODIFY-JV command 237
MODIFY-JV-ATTRIBUTES (command) 30
MODIFY-JV-ATTRIBUTES command 54, 237
MODIFY-JV-CONDITIONALLY (command) 44
monitoring

export pubset 238

import pubset 238

pubset management

repeat jobs 63

77,79

238

U3616-J-Z2125-10-76

249

Index

monitoring (continued)
shared pubset operation 238
monitoring JV
identifying a job 61
naming 64
values 54
MONJV protection 40
selection criteria 145

N
naming monitoring JVs 64

(0]

ONEVT macro 68, 156

operators, relational - in conditional
expressions 82

OTHERS (user class) 30

OWNER (user class) 30

owner of the JV 23

P
password combinations 28
password protection for JV 28, 62
selection criteria 139
time penalty 28
pathname
structure (naming JVs) 16
total length (naming JVs) 16
permanentJV 13, 15, 16
PRINT-DOCUMENT (command) 77
program monitoring 59, 81, 198, 199
command overview 81
link name 64
protection 36
for job monitoring 40
in conditional job control 40
protection attributes of JV 36
change 23
protection of monitoring job variables 62
pubset backup with snapsets 42
pubset management
CANCEL-PUBSET-EXPORT command 239,
240
EXPORT-PUBSET command 239

FORCE-PUBSET-EXPORT command 239
IMPORT-PUBSET command 239
monitoring 238

monitoring commands 239

status values of a MONJV 238

R

read password for JV 28
READ-PASS-WORD (protection attribute) 37
Readme file 10

relational expressions 82

relational operators in conditional expressions 82
RELJV macro 163

REMOVE-JV-LINK command 21
replacement of job variables 70
RESUME-JOB (command) 79

retention period for JV 27

rule 36

rule container 36

S
SET-JV-LINK command 20, 70
SET-LOGON-PARAMETERS (command) 77
SET-SYSLST-READ-MARK (command) 79
SETJV macro 166
shareability 27
shareability (protection attribute of a JV) 27
selection criteria 139
shared pubset operation
monitoring 238
status values of a MONJV 238
SHOW-CJC-STATUS command 237
SHOW-FILE-TRANSFER (command) 79
SHOW-JOB-STATUS (command) 79
SHOW-JV command 44, 237
SHOW-JV-ATTRIBUTES command 237
SHOW-JV-LINK command 21
SHOW-RESOURCE-ALLOCATION
(command) 79
size of reserved storage space 147
SKIP-COMMANDS command 44, 65, 66, 82
SMONJVJ,
default link name 79
SMONJVJ, default link name 20, 64

250

U3616-J-Z2125-10-76

Index

SMONUJVP, default link name 20, 64
snaptset, pubset backup 42
SOLSIG macro 68
special job variables
access 44
catalog entry 44
output 44
system exit 033 51
STAJV macro 172, 237
status values of a MONJV
pubset management 238
shared pubset operation 238
synchronizing events 66
SYSCAT.JV (system file) 236, 237
SYSJV (dummy user ID) 44
system exit 033 (for special job variables) 51
system file SYSCAT.JV 236, 237
system information, interrogation of 44
system monitoring
events for the JOB VARIABLES object 241
JVs as object of monitoring 241
use of SECOS 241

13, 15, 44

T
table of JV-LINK entries 20
temporary JV 13, 15, 19, 237

accessto 22
TERM macro 182
time penalty for password protection 28
time stamp 55, 186
TIMJV (macro) 186
TRANSFER-FILE (command) 77

U
user class
access privileges 31
GROUP 30
OTHERS 30
OWNER 30
user identification (naming JVs) 16
user job variables 13
name 16
values 42
USER-ACCESS (protection attribute) 37

Vv
values for monitoring JVs 54
in batch jobs 57
in dialog jobs 57
in shared pubset operation 59
program monitoring 59
when exporting pubsets 58
when importing pubsets 58
values for user JV 42

w
WAIT-EVENT command 65, 66, 82
wildcard 123

in JV commands/macros 18

temporary and permanent user job

variables 18

wildcards 44

for temporary and permanent JVs 18
write password for JV 28
WRITE-PASSWORD (protection attribute) 37

U3616-J-Z2125-10-76

251

Index

252 U3616-J-Z2125-10-76

	Contents
	Preface
	Objectives and target groups of this manual
	Summary of contents
	Changes since the last edition of the manual
	Notational conventions

	Management and use of job variables
	Storing job variables
	Permanent user job variables
	Temporary user job variables
	Special job variables

	Names of user job variables
	Permanent user job variables
	Wildcard syntax in path names
	Temporary user job variables
	Link names for user job variables

	Access administration for job variables
	Ownership of job variables
	Protection mechanisms for access control
	Default protection (user defined default values)
	Particularities when monitoring and controlling jobs

	Loss of access to a job variable
	Values of the user job variables
	Saving user job variables
	Special job variables
	Exit 033 for special job variables

	Job/program monitoring using job variables
	Values for monitoring job variables
	Job monitoring
	IMPORT-PUBSET/EXPORT-PUBSET monitoring
	Program monitoring

	Identifying jobs by means of monitoring job variables
	Protecting monitoring job variables
	Link names of monitoring job variables

	Conditional job control
	Conditions and events
	Synchronizing events
	Commands/macros for conditional job control

	Input from job variables

	Commands
	Commands for job variables management
	Table of commands

	Commands for job monitoring
	Commands for defining job monitoring
	Commands for job monitoring

	Commands for program monitoring
	Command overview

	Commands for conditional job control
	Conditional expressions
	Overview of commands

	Macros
	Overview of macros
	General macro operands
	The MF operand
	The PREFIX operand
	The PARAM operand
	The MACID operand

	Notational conventions
	Description of the macros
	CATJV Catalog job variable
	COPJV Copy job variable
	CSWJV Check and set job variable
	DCLJV Define job variable link name
	DONEVT Delete condition for job variable event
	ERAJV Erase job variable
	GETJV Get job variable value
	JVSEL Limiting the JV selection of the STAJV macros to specific attributes
	LNKJV Link job variables to JV-LINK entries
	ONEVT Set condition for job variable event
	RELJV Remove JV-LINK entry
	SETJV Set job variable
	STAJV Output job variable attributes
	TERM Terminate program and procedure step
	TIMJV Modify a job monitoring JV

	Examples
	Messages
	Command level
	Macro level

	The privileged user
	Installation
	Privileged access rights
	System file SYSCAT.JV
	Monitoring in pubset management
	Job variables as the object of system monitoring

	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

