
Edition August 2010

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
a

nu
al

e
\1

00
35

0
5_

M
V

S
\e

n
\m

vs
.v

or

User Guide - English

WebTransactions V7.5
Connection to MVS Applications

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2010.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

WebTransactions for MVS

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

y
20

1
0

 S
ta

nd
 0

9
:5

2.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
5_

M
V

S
\e

n
\m

vs
.iv

z

Contents

1 Preface . 7

1.1 Product characteristics . 7

1.2 Architecture of WebTransactions for MVS . 9

1.3 WebTransactions documentation . 11

1.4 Structure and target group of this manual . 13

1.5 New features . 14

1.6 Notational conventions . 14

2 Installing WebTransactions . 15

2.1 Installation . 15
2.1.1 Windows . 16
2.1.1.1 Installation via the user interface . 16
2.1.1.2 Silent installation . 17
2.1.2 Solaris . 19
2.1.3 Linux . 20
2.1.4 WebLab installation . 21

2.2 Licensing . 21

3 Example session . 23

3.1 Administering the WebTransactions server . 23
3.1.1 Setting the browser . 24
3.1.2 Starting the administration program . 25
3.1.3 Entering licenses . 27
3.1.4 Creating users . 30
3.1.5 Creating a pool . 31
3.1.6 Assigning the pool to a user . 33

Contents

 WebTransactions for MVS

3.2 Connecting a host application to the WWW . 34
3.2.1 Creating a project . 34
3.2.1.1 Creating a base directory . 35
3.2.1.2 Generating the automask template . 39
3.2.2 Saving the project . 40
3.2.3 Starting a session . 42

3.3 Global modification of display . 47

3.4 Format-specific modifications of display . 51
3.4.1 Generating a format-specific template with the capture process 51
3.4.2 Editing a format-specific template . 55

3.5 Starting a WebTransactions application . 60
3.5.1 Creating the start template . 60
3.5.2 Starting a session with WebLab . 62
3.5.3 Alternative ways of starting a WebTransactions application 63

4 Creating the base directory and starting the WebTransactions application 65

4.1 Creating a base directory with WebLab . 65

4.2 Starting the WebTransactions application . 67

5 Integrating a host application without editing . 69

5.1 Master templates MVS.wmt and MVS_Pocket.wmt 70

5.2 AutomaskMVS.htm template . 72
5.2.1 Creating variants of AutomaskMVS.htm . 72
5.2.2 Structure of AutomaskMVS.htm . 75

5.3 wtKeysMVS.htm template . 83

5.4 wtBrowserFunctions.htm template . 84

5.5 Host application with semi-graphics . 84

6 Editing templates . 85

6.1 Capturing with WebLab . 86
6.1.1 Procedure . 86
6.1.2 Editing recognition criteria . 88
6.1.3 Editing the capture database . 88

Contents

WebTransactions for MVS

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

y
20

1
0

 S
ta

nd
 0

9
:5

2.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
5_

M
V

S
\e

n
\m

vs
.iv

z

6.2 Individual templates for pop-up boxes . 89
6.2.1 Without special pop-up handling: identification problems 90
6.2.2 Generating templates for pop-ups . 91

7 Controlling communication . 97

7.1 System object attributes . 97
7.1.1 Overview . 98
7.1.2 Interaction between system object attributes and methods 113

7.2 Host objects . 115
7.2.1 Host data objects . 115
7.2.2 Host control objects . 119

7.3 Terminal functions supported by the browser 123
7.3.1 Terminal functions supported . 123
7.3.2 Interaction between the host control object WT_KEY, the template wtKeysMVS.htm

and the wtKeysMVS.js file . 126
7.3.3 Mapping keys in wtKeysMVS.js . 128
7.3.4 Interaction between wtCommonBrowserFunctions.js and

wt<browser>BrowserFunctions.js . 133
7.3.5 Using the WT_BROWSER object . 137

7.4 Start templates for MVS . 139
7.4.1 MVS-specific start template in the start template set (wtstartMVS.htm) 140
7.4.2 WTBean wtcStartMVS.wtc for the generation of a start template 144

7.5 Creating a new MVS communication object (wtcMVS) 146

8 Using print/asynchronous support . 149

8.1 Enabling print/asynchronous support . 149

8.2 Functionality of print/asynchronous support . 150

8.3 Handling asynchronous messages . 154

8.4 Print support . 158
8.4.1 Terminal hardcopy printing . 159
8.4.2 Host data printing . 162
8.4.2.1 Concept . 162
8.4.2.2 Assigning a printer to a Web browser client . 163
8.4.3 Host data printing on the Windows WebTransactions platform 165
8.4.4 Browser display printing . 168

Contents

 WebTransactions for MVS

8.4.5 Print functions delivered (Windows browser platform) 168
8.4.5.1 Browser print . 168
8.4.5.2 WTAPrint print plugin . 173

Glossary . 179

Abbreviations . 197

Related publications . 199

Index . 201

WebTransactions for MVS 7

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
1

1 Preface
Over the past years, more and more IT users have found themselves working in heteroge-
neous system and application environments, with mainframes standing next to Unix
systems and Windows systems and PCs operating alongside terminals. Different hardware,
operating systems, networks, databases and applications are operated in parallel. Highly
complex, powerful applications are found on mainframe systems, as well as on Unix servers
and Windows servers. Most of these have been developed with considerable investment
and generally represent central business processes which cannot be replaced by new
software without a certain amount of thought.

The ability to integrate existing heterogeneous applications in a uniform, transparent IT
concept is a key requirement for modern information technology. Flexibility, investment
protection, and openness to new technologies are thus of crucial importance.

1.1 Product characteristics

With WebTransactions, Fujitsu Technology Solutions offers a best-of-breed web integration
server which will make a wide range of business applications ready for use with browsers
and portals in the shortest possible time. WebTransactions enables rapid, cost-effective
access via standard PCs and mobile devices such as tablet PCs, PDAs (Personal Digital
Assistant) and mobile phones.

WebTransactions covers all the factors typically involved in web integration projects. These
factors range from the automatic preparation of legacy interfaces, the graphic preparation
and matching of workflows and right through to the comprehensive frontend integration of
multiple applications. WebTransactions provides a highly scaleable runtime environment
and an easy-to-use graphic development environment.

Product characteristics Preface

8 WebTransactions for MVS

On the first integration level, you can use WebTransactions to integrate and link the
following applications and content directly to the Web so that they can be easily accessed
by users in the internet and intranet:

– Dialog applications in BS2000/OSD
– MVS or z/OS applications
– System-wide transaction applications based on openUTM
– Dynamic web content

Users access the host application in the internet or intranet using a web browser of their
choice.

Thanks to the use of state-of-the-art technology, WebTransactions provides a second
integration level which allows you to replace or extend the typically alphanumeric user inter-
faces of the existing host application with an attractive graphical user interface and also
permits functional extensions to the host application without the need for any intervention
on the host (dialog reengineering).

On a third integration level, you can use the uniform browser interface to link different host
applications together. For instance, you can link any number of previously heterogeneous
host applications (e.g. MVS or OSD applications) with each other or combine them with
dynamic Web contents. The source that originally provided the data is now invisible to the
user.

In addition, you can extend the performance range and functionality of the WebTransactions
application through dedicated clients. For this purpose, WebTransactions offers an open
protocol and special interfaces (APIs).

Host applications and dynamic Web content can be accessed not only via WebTransactions
but also by “conventional” terminals or clients. This allows for the step-by-step connection
of a host application to the Web, while taking account of the wishes and requirements of
different user groups.

Preface Architecture of WebTransactions for MVS

WebTransactions for MVS 9

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
1

1.2 Architecture of WebTransactions for MVS

The figure below illustrates the architecture of WebTransactions for MVS:

Figure 1: Architecture of WebTransactions for MVS

K
er

ne
l

H
os

t a
da

pt
erWTPublish

WTEdit

WebLab

Browser
HTML
editor

Browser
user

w
eb

 s
er

ve
r

H
os

t a
pp

lic
at

io
n

WTML
template

Automask
Capture
database

WebTransactions

Runtime

Development time

In
te

gr
at

ed
te

rm
in

al
 e

m
ul

at
io

n

Architecture of WebTransactions for MVS Preface

10 WebTransactions for MVS

Integrated terminal emulation

Both at runtime and during development, WebTransactions for MVS uses a 3270 emulation
which is integrated in the host adapter and handles communications between the
WebTransactions kernel and the host application.

WebLab

WebLab is the WebTransactions development environment which you can use to perform
all the steps from the connection of a host application through the generation and post-
editing of the format-specific templates and on to application testing.

WebLab does not have to be installed on the host on which WebTransactions is running.
You can use WebLab on another machine that is running under a Windows operating
system. All the data required to run a WebTransactions application is administered on the
host on which WebTransactions is running.

For 1:1 depiction or global editing, you can use WebLab to create different variants of the
standard Automask template, which dynamically converts all output formats at runtime.

For individual editing purposes, you may use the capture function to create recognition
criteria which are stored in the capture database and generate a so-called format-specific
template and a format description file (FLD file) from the format. You can post-edit the
format-specific templates with WebLab.

Runtime

At runtime, WebTransactions searches the capture database for a recognition criterium that
matches the screen format sent by the host application. If the recognition criterium is found,
WebTransactions uses the corresponding format-specific template. If an appropriate
criterium is not found, WebTransactions dynamically converts the screen format on the
basis of the standard Automask template.

Preface WebTransactions documentation

WebTransactions for MVS 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
1

1.3 WebTransactions documentation

The WebTransactions documentation consists of the following documents:

● An introductory manual which applies to all supply units:

Concepts and Functions

This manual describes the key concepts behind WebTransactions:

– The various possible uses of WebTransactions.

– The concept behind WebTransactions and the meanings of the objects in
WebTransactions, their main characteristics and methods, their interaction and life
cycle.

– The dynamic runtime of a WebTransactions application.

– The administration of WebTransactions.

– The WebLab development environment.

● A Reference Manual which also applies to all supply units and which describes the
WebTransactions template language WTML. This manual describes the following:

Template Language

After an overview of WTML, information is provided about:

– The lexical components used in WTML.

– The class-independent global functions, e.g. escape() or eval().

– The integrated classes and methods, e.g. array or Boolean classes.

– The WTML tags which contain functions specific to WebTransactions.

– The WTScript statements that you can use in the WTScript areas.

– The class templates which you can use to automatically evaluate objects of the
same type.

– The master templates used by WebTransactions as templates to ensure a uniform
layout.

– A description of Java integration, showing how you can instantiate your own Java
classes in WebTransactions and a description of user exits, which you can use to
integrate your own C/C++ functions.

– The ready-to-use user exits shipped together with WebTransactions.

– The XML conversion for the portable representation of data used for communication
with external applications via XML messages and the conversion of WTScript data
structures into XML documents.

WebTransactions documentation Preface

12 WebTransactions for MVS

● A User Guide for each type of host adapter with special information about the type of
the partner application:

Connection to openUTM applications via UPIC

Connection to OSD applications

Connection to MVS applications (this User Guide)

All the host adapter guides contain a comprehensive example session. The manuals
describe:

– The installation of WebTransactions with each type of host adapter.

– The setup and starting of a WebTransactions application.

– The conversion templates for the dynamic conversion of formats on the web
browser interface.

– The editing of templates.

– The control of communications between WebTransactions and the host applications
via various system object attributes.

– The handling of asynchronous messages and the print functions of
WebTransactions.

● A User Guide that applies to all the supply units and describes the possibilities of the
HTTP host adapter:

Access to Dynamic Web Contents

This manual describes:

– How you can use WebTransactions to access a HTTP server and use its resources.

– The integration of SOAP (Simple Object Access Protocol) protocols in
WebTransactions and the connection of web services via SOAP.

Preface Structure and target group of this manual

WebTransactions for MVS 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
1

● A User Guide valid for all the supply units which describes the open protocol, and the
interfaces for the client development for WebTransactions:

Client APIs for WebTransactions

This manual describes:

– The concept of the client-server interface in WebTransactions.

– The WT_RPC class and the WT_REMOTE interface. An object of the WT_RPC class repre-
sents a connection to a remote WebTransactions application which is run on the
server side via the WT_REMOTE interface.

– The Java package com.siemens.webta for communication with WebTransactions
supplied with the product.

● A User Guide valid for all the supply units which describes the web frontend of
WebTransactions that provides access to the general web services:

Web-Frontend for Web Services

This manual describes:

– The concept of web frontend for object-oriented backend systems.

– The generation of templates for the connection of general web services to
WebTransactions.

– The testing and further development of the web frontend for general web services.

1.4 Structure and target group of this manual

This documentation is intended for everybody who wants to use WebTransactions to
connect MVS or z/OS dialog applications to the Web. The individual chapters describe the
necessary steps. If you have not yet worked with WebTransactions for MVS, you should first
read chapter 3, which presents an example session which will give you an initial insight into
working with WebTransactions.

This manual provides all the MVS-specific information necessary to complement the intro-
ductory WebTransactions manual “Concepts and Functions” and the WebTransactions
reference manual “Template Language“.

Scope of this description

WebTransactions for MVS runs on the Windows system platforms, as well as on Solaris and
Linux. This documentation applies to all platforms. If any information applies to one platform
only, this is specifically indicated.

New features Preface

14 WebTransactions for MVS

1.5 New features

You will find an overview of all the changes in WebTransactions V7.5 in the
WebTransactions manual “Concepts and Functions”.

1.6 Notational conventions

The following notational conventions are used in this documentation:

Name Description

typewriter font Fixed components which are input or output in precisely this
form, such as keywords, URLs, file names

 italic font Variable components which you must replace with real speci-
fications

bold font Items shown exactly as displayed on your screen or on the
graphical user interface; also used for menu items

[] Optional specifications; do not enter the square brackets
themselves

{alternative1 | alternative2 } Alternative specifications. You must select one of the expres-
sions inside the curly brackets. The individual expressions are
separated from one another by a vertical bar. Do not enter the
curly brackets and vertical bars themselves.

... Optional repetition or multiple repetition of the preceding
components

Important notes and further information

Ê Prompt telling you to do something.

Refers to detailed information

i

WebTransactions for MVS 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
2

2 Installing WebTransactions
The WebTransactions installation files can be downloaded from the Web.

 Detailed information on the hardware and software requirements can be found in
the release notice accompanying the product.

2.1 Installation

WebTransactions for MVS consists of the host adapter via which communications with the
MVS applications transit, the WebTransactions runtime system and the host adapter for
dynamic web contents.

WebTransactions for MVS contains the installation package for the WebLab development
environment which you can use to connect host applications to the WWW, edit the
appearance of host formats and extend their functionality. You may need to install WebLab
explicitly on your development machine (see section “WebLab installation” on page 21).

 Before installing WebTransactions, make sure that the web server and, if necessary,
Java are already installed.

Make a note of the Java installation directory together with the following information
from the web server configuration:

– root directory for web pages (=document directory)
– CGI directory
– URL prefix for CGI programs

i

i

Installation Installing WebTransactions

16 WebTransactions for MVS

2.1.1 Windows

For Windows, WebTransactions is available as a Windows installer package
(msi file) WebTransactionsMVS75.msi after it has been downloaded.

2.1.1.1 Installation via the user interface

To perform installation, you must possess Windows administrator rights. There are various
ways of starting installation

– Via the Settings/Control Panel command in the Start menu.

– Via Windows Explorer.
Double click the msi file or single click this file with the right mouse button and then, in
the context menu which appears, select the Install command.

Setting the web server and Java environment settings

When you start WebTransactionsMVS75.msi you will see a series of dialog boxes in which
you must enter the installation directory and the values for your web server:

– Root directory for web pages (= document directory).
– CGI directory and URL prefix.
– ISAPI directory and ISAPI prefix (optional).
– Directory of the Java2 library jvm.dll for Java integration (optional).

When you have entered the values, the installation will be started and the required compo-
nents will be installed. If you install WebTransactions with an additional host adapter on the
same system, these values will be taken over by the new installation.

Selecting components

You can now select all the components you want to install. In the Select Installation Type
dialog box, select one of the following entries:

Typical or Complete
This will install all the WebTransactions components.

Custom
The installation program proposes the following components:

– WebTransactions runtime system.
– WebTransactions demo applications

Installing WebTransactions Installation

WebTransactions for MVS 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
2

2.1.1.2 Silent installation

For a silent installation, use the Windows installer Msiexec.exe. You can find a complete
description of this command in, for example, the Windows online help. In order to run an
installation with Msiexec.exe you will require administrator access rights.

Use the Msiexec.exe command with the following syntax:

Msiexec.exe /I "package" /q
[INSTALLDIR="install-dir"]
[DOCUMENTROOTDIR="documentroot-dir"]
[HTTPSCRIPTSDIR="cgi-dir"]
[JAVA2SYS="java-dir"]
[ISPREFIX="isapi-prefix"]
[URLPREFIX="cgi-prefix"]
[ISAPICHECK="isapicheck"]
[JAVA2CHECK="java2check"]

The parameters have the following meaning:

package
Path for the package to be installed (e.g. C:\tmp\WebTransactionsMVS75.msi).

install-dir
The WebTransactions installation directory.
Default value: C:\Programme\WebTransactionsV75 or
C:\Program Files\WebTransactionsV75

documentroot-dir
Web server document directory.
Default value: C:\InetPub\wwwroot

cgi-dir The CGI directory of the web server.
Default value: C:\InetPub\scripts

java-dir
Directory of the Java2 library jvm.dll. This entry is only necessary when the
support for the Java interface is to be installed.

isapi-prefix
URL prefix for ISAPI.
Default value: scripts

cgi-prefix
URL prefix for CGI.
Default value: scripts

Installation Installing WebTransactions

18 WebTransactions for MVS

isapicheck
This indicates if the ISAPI interface for WebTransactions is to be installed.
Possible values: Yes | No
Default value: No

java2check
This indicates if the support for the Java interface is to be installed.
Possible values: Yes | No
Default value: No

Example

Msiexec.exe /I "C:\tmp\WebTransactionsMVS75.msi" /q
INSTALLDIR="D:\Program Files\WebTransactionsV75"
DOCUMENTROOTDIR="C:\Program Files\Apache Group\Apache\htdocs"
HTTPSCRIPTSDIR="C:\Program Files\Apache Group\Apache\cgi-bin"
JAVA2SYS="D:\Program Files\Java\jdk1.6.0_13\jre\bin\client"
URLPREFIX="cgi-bin" JAVA2CHECK="Yes"

Installing WebTransactions Installation

WebTransactions for MVS 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
2

2.1.2 Solaris

As usual, when you install WebTransactions, you use the installation procedure pkgadd with
root authorization. To do this, enter the absolute path name of the unpacked product file:

pkgadd -d /absolute_path/filename

During installation, the following questions are displayed:

1. Should WebTransactions demos be installed?

If you enter y (yes) the WebTransactions demo applications are also installed.

2. Your Web Server has a ’document default directory’
Where is this directory?

Enter the corresponding path name.

3. The server uses an URL prefix to access WebTransactions CGI program.
URL prefix:

Enter the URL prefix that is set for CGI programs on your web server.

4. Your Web Server has a cgi-bin directory,
in which you install WebTransactions CGI-Program.
Where is this directory?

Here you enter the absolute path to the CGI directory which is configured for your web
server.

During the installation, you will then see the URL which you use to start the demo appli-
cation.

Installation Installing WebTransactions

20 WebTransactions for MVS

2.1.3 Linux

WebTransactions is available as a compressed archive for downloading and has the suffix
.gz (for example, webtransMVSV75.tar.gz). You must first decompress this file using the
command:

gunzip -d webtransMVSV75.tar

Please note that you must not specify the suffix .gz. You can then fetch the installation files
from the archive using the tar command:

tar -xvf webtransMVSV75.tar

Start the installation procedure doinstall with root authorizations:

 ./doinstall

During installation you will be asked the following questions:

You can install WebTransactions into any directory.
 Where is this directory ? [/opt]

You should now enter a different path name if you do not want WebTransactions to be
installed under the default path /opt.

Your Web Server has a directory for CGI programs.
 Where is this directory ? [/usr/local/httpd/cgi-bin]

Enter the corresponding path name.

Your Web Server uses an URL prefix to access the CGI programs in
/usr/local/httpd/cgi-bin
What is this prefix ? [cgi-bin]

Enter the URL prefix used for CGI programs on your web server

Are this settings OK ? [y]

Confirm your specifications to terminate installation.

Installing WebTransactions Licensing

WebTransactions for MVS 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
2

2.1.4 WebLab installation

When you install WebTransactions on any platform, the msi file for the installation of
WebLab under Windows (WebLab75.msi) is written to the web server’s document directory
that is located below the directory webtav75.

Transferring the installer package to the development computer

The WebLab installer package can be downloaded to the required development computer
via a browser call specifying the following URL:

http://web-server/webtav75/wtdownload.htm

Installing WebLab under Windows

When you have downloaded the WebLab installer package to your development computer,
install the msi file as usual via the graphical user interface (see page 16) or with
Msiexec.exe (see page 17).

In both cases, you need only specify the WebLab installation directory.

2.2 Licensing

After installation, you must configure the number of licenses present and the machine-
specific activation key. To do this, you require the WebTransactions administration interface
and select the Licences menu item. For more information on the administration program,
see the WebTransactions manual “Concepts and Functions”.

Licensing Installing WebTransactions

22 WebTransactions for MVS

WebTransactions for MVS 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

3 Example session
In this chapter, you will learn about what you can do with WebTransactions and become
familiar with a number of basic rules for working with WebTransactions. This example
session is intended to serve as a procedural description which will show you how you can
connect a host application to the WWW simply and quickly.

In this example session, you will first use the administration program to create the condi-
tions necessary for your work with WebLab and WebTransactions. Next, you will use
WebLab to connect the host application to the Web. You will then get to know the ways in
which you can make global and format-specific changes in a template.

 Please note that all path specifications are based on the assumption that
WebTransactions has been installed in the initial directory.

3.1 Administering the WebTransactions server

Once you have installed WebTransactions for MVS on a computer (see also chapter
“Installing WebTransactions” on page 15, you must create the conditions necessary for your
work with WebTransactions and WebLab. To do this, you use the administration program
that is described in the WebTransactions manual “Concepts and Functions”.

The first step in WebLab is to set the browser that WebLab is to use to operate the
WebTransactions application. Your work with the administration program is subdivided into
the following steps:

1. Enter the licenses

2. Set up the user

3. Create the pool

4. Assign the pool to the user

i

Administering the WebTransactions server Example session

24 WebTransactions for MVS

3.1.1 Setting the browser

Before you start to work, you should - in WebLab - set the browser which you want WebLab
to use to operate the WebTransactions application. This step is only necessary if you are
working with WebLab for the first time.

Ê Start WebLab with the command Start/Programs/WebTransactions 7.5/WebLab.
The WebLab main window is displayed on the screen. For a detailed description of the
main window and its components, refer to the WebTransactions manual „Concepts and
Functions“ and the online help.

Ê In WebLab you can now select the Options/Preferences command. The Properties
dialog box is displayed on screen with the Programs tab open.

Ê In the lower section, Browser, select the browser which is installed on your computer,
and specify how it is to be used by WebLab.

Ê Click on OK to confirm your settings.

Example session Administering the WebTransactions server

WebTransactions for MVS 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

3.1.2 Starting the administration program

Ê Choose the Administration/Server command to start the administration program
initially. The dialog box Administrate Server opens on the screen.

Ê Under URL of WTPublish, click the Change button. The URL of WTPublish dialog
box will be displayed.

Ê Select the Protocol to be used for the connection.

Ê In the other fields, enter the corresponding values for your host:

Ê Confirm with OK. The values will be entered in the Administrate Server dialog box.

Ê Confirm with OK. The administration program is started and the first window is shown
in the browser.

Server Host computer on which WebTransactions runs.

Port Corresponding port number.

CGI-Path Path for the CGI program WTPublish.

Program CGI program.

Administering the WebTransactions server Example session

26 WebTransactions for MVS

Ê Log on as the admin user. This user is set up without a password when
WebTransactions is set up. The licensing page is now displayed automatically.

 If you are working with the administration program for the first time then, for reasons
of security, you should assign a password for the admin user after login.i

Example session Administering the WebTransactions server

WebTransactions for MVS 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

3.1.3 Entering licenses

Ê Click the Register button on the licensing page.

Administering the WebTransactions server Example session

28 WebTransactions for MVS

This opens the registration page:

Ê To register licenses for a stand-alone server, click on Single Server under
Type of license.

Ê Enter the number of servers that you want to license in the Number of licences field.

Ê Enter your e-mail address and additional parameters as required.

Example session Administering the WebTransactions server

WebTransactions for MVS 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

Ê Click Request Key to submit the form.

The license key will then soon be sent to the specified e-mail address.

Ê Enter the number of acquired licenses and the valid license key notified to you by e-mail
in the Licenses and Key fields of the licensing page.

Ê Confirm by clicking Set followed by Save.

The licenses are activated and the new number of licenses is displayed in the status bar.

Administering the WebTransactions server Example session

30 WebTransactions for MVS

3.1.4 Creating users

Ê Click on the Users menu item to enter new users. The Users window is displayed in the
browser.

Ê Enter the name of the new user in the Username input field in the work area. You can
also change the password for admin here.

Ê If you wish, enter a description or comment for the user in the Comment field and click
on Add. The user is now entered for operations with WebTransactions and WebLab.
However, as yet the user has no rights. You must assign these.

Ê However, you should first click on the Change Password button and enter a password
for the new user.

Example session Administering the WebTransactions server

WebTransactions for MVS 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

3.1.5 Creating a pool

Ê Next, click on the Pools menu item to create a pool under which base directories can
be created. The Pools window is displayed in the browser.

Ê Enter the name of the directory in the Directory input field in the work area (you must
specify the absolute path name). Please note that if this directory does not already exist
you must select the directory creation option.

Ê In the Virtual Path entry field, type the name of a directory below the web server’s
document directory that is allocated to the new pool. This directory corresponds to the
start of the virtual path used by the web server to directly (i.e. without it being necessary
to call WebTransactions) access the files of WebTransactions applications (e.g. images,
entry page etc.) in this directory.

 If you want to use base directories with identical names in different pools, the values
for Virtual Path corresponding to the pools have to be different.i

Administering the WebTransactions server Example session

32 WebTransactions for MVS

Ê You may also enter a description or comment for the pool in the Comment field before
clicking on the Add button. The new pool is now entered for WebTransactions and
WebLab operation. You can enter further pools as required.

You can now use WebLab to create the base directories under the pools which you have
created in this way. However, as yet no WebLab user can access such a pool since the
pool has not yet been assigned to a user.

Example session Administering the WebTransactions server

WebTransactions for MVS 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

3.1.6 Assigning the pool to a user

Ê In the pools table, click on the pool which you have just created. The
Pool window with the newly created pool is displayed in the browser.

This window displays the users who are permitted to access the new pool. Currently no
user is assigned to this pool. A list displays all the users who are permitted to work with
WebTransactions on this host.

Ê Click on an entry in this list to select the user you have just created, and then click on
the Add button. The selected user is entered as possessing access to this pool.

Connecting a host application to the WWW Example session

34 WebTransactions for MVS

3.2 Connecting a host application to the WWW

Once you have performed the preparations for your work with WebTransactions and
WebLab, you can use WebTransactions development environment - WebLab - to connect
the host application to the WWW. To do this, you must perform the following steps:

1. Create the project

– Create a base directory

– Generate an automask

2. Save the project

3. Start a session

3.2.1 Creating a project

The project stores the most important data that is required by WebLab to generate and
edit a WebTransactions application, e.g. the WebTransactions server data.

Ê To create a project, choose the Project/New... command.

Ê In the next dialog box, you are asked whether you want to generate a base directory.
Click Yes. This opens the Connect dialog box, see next section.

Example session Connecting a host application to the WWW

WebTransactions for MVS 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

3.2.1.1 Creating a base directory

The base directory is the fundamental requirement for connecting a host application to the
web using WebTransactions. This directory contains all the necessary files and links to the
programs that constitute a WebTransactions application.

The base directory must always be located on the host on which WebTransactions is
running. In the Connect dialog box, you enter this WebTransactions server and the paths
to the CGI programs WTPublish.exe and WTEdit.exe.

– WTEdit.exe receives all WebLab requests. It performs all the necessary tasks on behalf
of WebLab (which may be running on a different host) on the WebTransactions server
(e.g. creation of a base directory) and enables WebLab to access running
WebTransactions sessions.

– WTPublish.exe receives all requests from the browser. It starts new WebTransactions
sessions or establishes connections to an open session for each subsequent dialog
step.

Ê Under Connection to server - URL of WTPublish, click Change.
The URL of WTPublish dialog box will be displayed.

Connecting a host application to the WWW Example session

36 WebTransactions for MVS

Ê Select the Protocol to be used for the connection; in our example this is HTTP.

Ê In the Server field, enter the name of the host on which WebTransactions is running; in
our example this is diana.

Ê In the Port field, enter the corresponding port number; in our example this is 80.

Ê Enter the path for the CGI program WTPublish; in our example this is scripts.

Ê Enter the name of the CGI program, in our example WTPublish.exe, and then confirm
with OK. These values will now be taken over by the Connect dialog box.

Ê Repeat this procedure for the entries under URL of WTEdit. Once again enter the
values for your host; in our example these are:

Ê When you have finished, in the Connect dialog box, click OK. The connection to the
WebTransactions host computer will now be established with the values entered.

However, you must first log on to WebTransactions. The Name and Password dialog
box is opened to allow you to do this.

Server diana

Port 80

CGI Path scripts

Program WTEdit.exe

Example session Connecting a host application to the WWW

WebTransactions for MVS 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

Ê Enter the user name and password that you specified in section “Creating users” on
page 30.

Ê Click on OK to confirm. The Create Base Directory dialog box is displayed on the
screen.

Connecting a host application to the WWW Example session

38 WebTransactions for MVS

The upper list of this dialog box displays the pools under which the logged on user is
able to create base directories on the WebTransactions server.

Ê In the list, click on the pool which you created in section “Creating a pool” on page 31.

Ê Enter a name in the Name of new Base Directory input field, here example_mvs.

Ê Next select the host adapter via which WebTransactions communicates with the host
application, here MVS. Only those host adapters that are actually installed are
displayed. The host adapter for HTTP is preset by default.

Ê Confirm your entries with OK. The Generate Automask dialog box is displayed, see
next section.

Example session Connecting a host application to the WWW

WebTransactions for MVS 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

3.2.1.2 Generating the automask template

The automask template is the template via which the automatic conversion between the
host formats and the browser display is performed.

The options in the Generate Automask dialog box allow you to make more detailed speci-
fications concerning the generation of the template and its subsequent implementation. The
options are described in the online help.

Ê Enter a name for the communication object, here MVS_0. If you do not enter anything
here, the default setting MVS_0 is used. If you want to open multiple connections during
a session, then it is useful to give the communication object an individualized name. You
must also specify the name of the communication object in the start template.

 Please note that the system differentiates between uppercase and lowercase.

Ê In this example, you confirm all further settings by clicking on Generate. The dialog box
is closed and the base directory and automask are generated using the specified values
at the WebTransactions server. In the WebLab main window, a message window is
opened below the work area. This displays the progress of the operation.

The Define New Project dialog box is now opened, see next section.

A start template that takes the user directly to the first format in the host application will be
created at the end of the example session (see section “Creating the start template” on
page 60).

i

Connecting a host application to the WWW Example session

40 WebTransactions for MVS

3.2.2 Saving the project

You define the settings for the newly created project in the Define New Project dialog box.

Example session Connecting a host application to the WWW

WebTransactions for MVS 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

Ê In this example, you should accept all the default settings and save the project with
Save as...

This opens the Save As dialog box.

Ê In this dialog box you select the directory in which you want to save the project and enter
a name for the project file.

Ê Click on Save.

The project file is created with the suffix .wtp in the selected directory. The name of the
project file is displayed in the WebLab title bar.

You are then connected with your new base directory. For an overview of the created
directories, see the WebTransactions manual “Concepts and Functions”.

Connecting a host application to the WWW Example session

42 WebTransactions for MVS

3.2.3 Starting a session

Once you have created the base directory, you can start a session to the host application.

Ê Choose the File/Start Session command. The Session dialog box is displayed on the
screen.

In this dialog box the connection data such as the web server name, CGI program path
and the base directory name have already been taken over from the project settings.
You just need to specify the name of the start template with which the host application
is to be started.

Ê Enter the name of a start template in the Start Template dialog box, here
wtstart. wtstart.htm is a supplied start template which is copied into the base
directory and can be used for all host applications.

Ê Click on OK to start the session. The dialog box is closed. The set browser is opened
and the general start template wtstart is displayed and calls for a new
WebTransactions session with the start template wtstart. wtstart displays a form in
the browser window.

Example session Connecting a host application to the WWW

WebTransactions for MVS 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

In this form of the general start template, you can now enter the connection parameters for
WebTransactions in order to set up a new communication object.

Ê Select the MVS entry in the PROTOCOL pick list.

Ê Specify the name of the communication object, here MVS_0. The name of the commu-
nication object must correspond to the name which you used when generating the
automask template.

Ê Now click on the create button to create a new communication object. Your specifica-
tions are processed by WebTransactions and the MVS-specific start template
wtstartMVS.htm continues checking and displays the next form.

Connecting a host application to the WWW Example session

44 WebTransactions for MVS

The MVS-specific start template contains the parameter HOST_NAME for the connection
with the host application.

With wtstartMVS you set the connection parameters and open the connection to the host
application, in the same way as if you were connecting to the host application from a
terminal or an emulation.

Ê For HOST_NAME enter the name or the IP adress of the host system.

Ê Now click on the run button to open the connection to the host application. The first
screen of the MVS application is output with AutomaskMVS.htm.

Example session Connecting a host application to the WWW

WebTransactions for MVS 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

The AutomaskMVS.htm template provides you with a button bar for communications with the
MVS application. This button bar replicates the special keys of the 3270 terminal (see
section “Creating variants of AutomaskMVS.htm” on page 72).

If you now want to terminate the connection to the host, click on the Disconnect button.
Processing again branches to the template wtstartMVS (see also.section “MVS-specific
start template in the start template set (wtstartMVS.htm)” on page 140). Select main menu
and click on the go to button to return to the general start template. You can now select quit
to exit the WebTransactions application.

Connecting a host application to the WWW Example session

46 WebTransactions for MVS

In the example session you proceed as follows:

Ê Enter your ID and password to log on to the adtr host application.

Ê Start the adtr host application with Enter. The next format of the adtr host application is
displayed in the browser.

Example session Global modification of display

WebTransactions for MVS 47

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

3.3 Global modification of display

As an example of a global change, a company logo is to be integrated in AutomaskMVS.htm.
To do this, you must first transfer the logo to a directory that can be accessed by the web
server. You can use the directory wwwdocs/image in the base directory to do this.

Performing binary image transfers

Proceed as follows in WebLab to transfer the company logo to the directory wwwdocs/image
in the base directory:

Ê Choose the File/Transfer Binary command. The Choose Files for binary Transfer
dialog box is now displayed.

Ê In this dialog box, you must select the directory in which the company logo is stored and
then click OK to confirm. The Choose destination directory dialog box is now
displayed.

Ê In this dialog box, select the directory wwwdocs/image in the base directory of your
WebTransactions application and then click OK to confirm. The company logo is trans-
ferred to the base directory. This directory is physically created under the web server’s
document directory.

Global modification of display Example session

48 WebTransactions for MVS

Inserting the logo in the Automask template

In this example, the WebTransactions logo is to be inserted as a global change.

Ê To do this, choose the File/Open Current Template command.

– This loads the template AutomaskMVS.htm in the WebLab work area. This template
outputs the current format of the host application

– This also updates the corresponding object tree with all the current variables in the
WebLab object window.

Ê Now scroll through the template until you reach the BODY tag.

Ê Insert an empty line after the BODY tag and choose the Add/HTML/image command.
The Add:img dialog box is now displayed.

In this dialog box you can specify the image file and other parameters for the display
and orientation of the image. The path for the image file must be relative to the web
server’s document directory since the web server only searches this directory for
images. By transferring the image to wwwdocs/image, you ensure that this is the case.

Example session Global modification of display

WebTransactions for MVS 49

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

You can use the system object attribute WWWDOCS_VIRTUAL to access the image without
having to specify a long path name. WWWDOCS_VIRTUAL already contains the full path from
the web server’s document directory through to the wwwdocs directory in the base
directory.

Ê Use Browse to search for the image file. If it is situated in wwwdocs, WebLab will
automatically use VIRTUALand the name will be created as follows:

##WT_SYSTEM.WWWDOCS_VIRTUAL#/image/wtlogo.gif

Ê Click OK to confirm. WebLab inserts the following line in the Automask template after
the BODY tag:

Global modification of display Example session

50 WebTransactions for MVS

Ê To view the changes, choose the Control/Update in Browser command. The changed
display in the Automask template is output in the browser window. If you save the
modified Automask template then this change applies to all subsequent forms since the
Automask template determines the automatic conversion for all forms.

Example session Format-specific modifications of display

WebTransactions for MVS 51

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

3.4 Format-specific modifications of display

As you have seen, changes in the Automask template affect the display of all the formats in
the browser. However, if you want to restrict a browser display modification to a single
format, you need a so-called format-specific template. This requires you to perform the
following steps:

1. Use the capture process to generate the format-specific template

2. Edit the format-specific template

As an example of an individual format design, consider a value-based selection (the user
makes his or her choice by entering a number) mapped to a drop-down list as illustrated in
the table below:

3.4.1 Generating a format-specific template with the capture process

To create individual templates for the formats of the host application, you use capturing in
WebLab. This interactive process allows you to create recognition criteria for individual
screen formats, i.e. patterns for the recognition of known formats.

Ê Choose the Generate/Capture/from current screen command.

 In the start template wtstartMVS.htm for the communication-specific system
object attribute CAPTURE_FILE the pathname config/capture.sdb is entered as
default (see section “Starting a session” on page 42). The default is also used
in the example. The capture database is set up at the first access. This stores
all the recognition criteria that you create using the Capture process.

Before After

i

Format-specific modifications of display Example session

52 WebTransactions for MVS

The Capture dialog box is opened on the screen and contains a display of the current
format.

Ê Use the mouse to drag a rectangle over the indicated section
ABFRAGE UND ÄNDERUNGEN. This specifies that this format is identified through the
presence of ABFRAGE at this position in the format.

Ê Click on OK to start generation. The recognition criterium that you have selected in this
way is saved together with the format name in the capture database and the format-
specific template ABFRAGE_ is created. Instead of the Automask template, the format-
specific template is now used to display the format.

Example session Format-specific modifications of display

WebTransactions for MVS 53

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

Generated template

The text below displays the section from the generated template ABFRAGE_.htm which
depicts the formats of the fields. For the structure of a complete template, see section
“Structure of AutomaskMVS.htm” on page 75.

The generated template ABFRAGE_.htm was generated with the following generation
options: Generation method: Inline script, Display attributes: None.

 <!--
- - - -->
 <!-- begin of host screen section
-->
 <!--
- - - -->
<div style="color:##MVS_0.WT_Color.Default = "\#000000"#"><pre>\

In the capture procedure, a host object is assigned to every field in a format. The individual
host objects are output on the screen one after the other. In the case of output fields, the
evaluation operator ##objectname.HTMLValue# ensures that the contents are displayed on the
screen. To simplify orientation within the template, the contents at the time of capture are
saved in a comment ahead of the evaluation operator.

<wtrem ** **>\
##MVS_0.E_01_001_001.HTMLValue#\
<wtrem **
**>\
##MVS_0.E_01_002_079.HTMLValue#
<wtrem ** **>\
##MVS_0.E_02_001_004.HTMLValue#\
<wtrem ** **>\
##MVS_0.E_02_005_001.HTMLValue#\
<wtrem ** GROSSTEILEFERTIGUNG GMBH **>\
##MVS_0.E_02_006_044.HTMLValue#\
<wtrem ** **>\
##MVS_0.E_02_050_001.HTMLValue#\
<wtrem ** OBERUSINGEN, **>\
##MVS_0.E_02_051_012.HTMLValue#\
...
<wtrem ** GEWUENSCHTER VORGANG **>\
##MVS_0.E_15_009_020.HTMLValue#\
<wtrem ** **>\
##MVS_0.E_15_029_001.HTMLValue#\
<wtrem ** ===> **>\
##MVS_0.E_15_030_004.HTMLValue#\
<wtrem ** **>\
##MVS_0.E_15_034_001.HTMLValue#\

Format-specific modifications of display Example session

54 WebTransactions for MVS

The format’s input fields are represented by input tags of type text if the original field was
unprotected. If the original field was protected (input is invisible), then the tag is of type
password. The specification value="##object-name.Value#" ensures that the value from the
field in the format is entered in the input field.

<input type="##(MVS_0.E_15_035_001.Visible == 'No') ? 'password' : 'text'#"
##(WT_BROWSER.acceptClass) ? 'class="box" style="width:9px"' : ''#
name="E_15_035_001" size="1" maxlength="1"
value="##MVS_0.E_15_035_001.Value#"/>\
<wtrem ** **>\
...
<wtrem ** - UM NAEHERE INFORMATIONEN UEBER **>\
##MVS_0.E_22_045_036.HTMLValue#
<wtrem **
**>\
##MVS_0.E_23_001_045.HTMLValue#\
<wtrem ** **>\
##MVS_0.E_23_046_001.HTMLValue#\
<wtrem ** DAS SYSTEM ZU ERHALTEN **>\
##MVS_0.E_23_047_034.HTMLValue#
<wtrem **
**>\
##MVS_0.E_24_001_080.HTMLValue#

All the input fields are administered in an object.

<wtoncreatescript>
<!--
 wtInputFields = {E_15_035_001:MVS_0.E_15_035_001};
//-->
</wtoncreatescript></pre></div>
 <!--
- - - -->
 <!-- end of host screen section
-->
 <!--
- - - -->
</td>

Example session Format-specific modifications of display

WebTransactions for MVS 55

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

3.4.2 Editing a format-specific template

Ê Choose the command File/Open Current Template to open the format-specific
template ABFRAGE_ in the WebLab work area.

Ê Choose the command Design/Select Hostobjects graphically/From a
Communication Object. The dialogbox Select host objects graphically for the
current template is displayed on the screen.

This dialogbox displays the format as it would appear in an emulation or at a terminal.
All the output fields which cannot be edited have a yellow background. The single input
field in this format has a white background.

Ê Move the mouse pointer to this input field (because of the selection the field becomes
blue) and click on the right mouse button to open the context menu.

Format-specific modifications of display Example session

56 WebTransactions for MVS

Ê Choose the Drop-Down List command from the context menu. The Choose Template
dialog box is displayed on the screen. This dialog box is the first displayed by a wizard
which helps you create a list.

In this dialog box you specify the template in which the list is to be inserted. The option
Template in Active Window is preset. If you have nor previously opened the active
template, select the Current Template option.

Ê Click on Next to confirm this presetting. The second dialog box, Assign Values, is
displayed on the screen.

Example session Format-specific modifications of display

WebTransactions for MVS 57

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

In this example, the Internal Value corresponds to the numerical value which the user
must enter to select an item in the field. The Value on user interface is the description
matching the value and corresponds to an entry in the pick list.

Ê Enter the internal values and the corresponding descriptions (see figure on page 50) in
the input fields. Click on the Add button to take over a pair of values into the list.

Ê When the list is complete, click on Finish to confirm. The corresponding HTML code for
the conversion of a list is entered along with the corresponding values in the template
ABFRAGE_.htm.

Ê To view this replacement, scroll through the template ABFRAGE_.htm until you reach
the host section. This section starts with the comment begin of host screen section.

Format-specific modifications of display Example session

58 WebTransactions for MVS

The format-specific template is constructed in a similar way to the Automask template.
All the fields of the host format are listed by name in the host section, with each name
consisting of the line and column position. The uppermost fields are used to depict the
header; the new list (SELECT tag) corresponds to the old input field and accepts the
selected value. The other fields are responsible for the remainder of the display as you
see it in the browser or the graphical host object selection.

Since the selection is now performed via the list, the explanatory texts in front of the list
are no longer required. Consequently you can delete them from the template
ABFRAGE.htm.

Ê Delete all the fields in the form from the title to the list. You can use the Find command
in the context menu of the dialogbox Select host objects graphically to search for the
relevant fields in the template.

Ê Choose the command Control/Update in Browser to view the result of your change.

Example session Format-specific modifications of display

WebTransactions for MVS 59

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

If you now want to terminate the connection to the host, click the Disconnect button.
Processing branches to the template wtstartMVS.htm (see section “MVS-specific start
template in the start template set (wtstartMVS.htm)” on page 140). You can choose
main menu and click on the go to button to return to the start template. Here you can click
on Quit to exit the WebTransactions application.

Starting a WebTransactions application Example session

60 WebTransactions for MVS

3.5 Starting a WebTransactions application

You start an edited WebTransactions application in WebLab in the same way as an
automatic 1:1 conversion (see section “Starting a session” on page 42). The only difference
is: You must make sure that in the start template wtstartMVS.htm the path name of the
capture database (in this example: config/capture.sdb) is entered correctly in the
CAPTURE_FILE parameter.

However, you can also create your own start template for the integrated host application
which will take the user directly to the first format of the host application.

3.5.1 Creating the start template

WebLab provides you with a special WTBean for creating the application-specific start
template. This is a standalone WTBean.

 Before you can access WTBeans, there must be a connection to the
WebTransactions server.

Ê Choose the File/New/wtcStartMVS command to call the WTBean. This opens the
dialog box Add:wtcStartMVS which contains four tabs in which you can edit the
properties of the WTBean.

You define the name and directory of the start template in the wtcStartMVS tab. By
default, the file name is set to config/forms/startMVS.htm.

Ê Under File name,enter the directory and name of the start template, in this case
config/forms/Start_adtr.htm.

Ê Next, choose the WT_SYSTEM attributes tab.

In this tab you define the most important attributes of the system object. The default
values are sufficient for the example session.

Ê Choose the MVS connection parameter tab.

i

Example session Starting a WebTransactions application

WebTransactions for MVS 61

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

The most important settings are the name of the communication object, the host appli-
cation, the host computer and the capture data base.

Ê Enter the name of the communication object, in this case MVS_0

 You should note that the name of the communication object must be the same
as the name used in the Automask template.

Ê Enter the name or the IP adress of the host system.

Ê Enter the name of the capture database, in this case config/capture.sdb. If you click
Browse you can also perform an interactive search of the capture database in the file
selection box.

Ê Click on the Further options tab.

Here you will see a tree structure in which you can edit other properties relating to the
connection to the MVS application.

Ê Set the properties required for your host application. No further modifications are
required for the sample application.

i

Starting a WebTransactions application Example session

62 WebTransactions for MVS

Ê Click OK. The Add:wtcStartMVS dialog box is closed. The start template Start_adtr.htm
is generated and displayed in the WebLab work area. The start template is stored in the
base directory under config/forms.

The start template Start_adtr.htm will now make the settings undertaken here every time it
is called. You no longer have to make these settings every time you start a session as
described in section “Starting a session” on page 42 with wtstart.htm and
wtstartMVS.htm.

3.5.2 Starting a session with WebLab

There are two ways of starting a WebTransactions session with the application-specific
WebLab start template:

– You select the File/Start Session command. In this case the Start session dialog box
will be displayed.

Ê In the Start Template input field, enter the name of the application-specific start
template.

Ê Confirm with OK.

– In the template tree you click with the right mouse button on the application-specific
start template. In the context menu which appears, select the command Start session.

In both cases WebLab immediately starts the session with the template selected as the
start template.

Example session Starting a WebTransactions application

WebTransactions for MVS 63

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
3

3.5.3 Alternative ways of starting a WebTransactions application

The above example only explains how to start a WebTransactions application from WebLab
during development. In productive operation, however, there are other ways of doing this.
For a complete description, see the WebTransactions manual “Concepts and Functions”.

● You can give the supplied entry page wtadm.htm the name of the start template and
provide the user with this.

● You can write your own entry page in which WebTransactions is started via a form or
link.

Example

<form method="post" action=
"/cgi-prefix/WTPublish.exe/basedir?startTemplate">

<input type="submit" value="Start WebTransactions">
</form>

● You could also start WebTransactions without an entry page by simply entering the URL
directly:

http://WebServer/cgi-prefix/WTPublish.exe/basedir?startTemplate

For basedir you must specify the absolute path of the base directory.

Example

http://diana/scripts/WTPublish.exe/d:\webta\apps\
beispiel_mvs?Start_adtr

Starting a WebTransactions application Example session

64 WebTransactions for MVS

WebTransactions for MVS 65

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
4

4 Creating the base directory and starting the
WebTransactions application
Once you have installed WebTransactions on the WebTransactions server and WebLab on
your personal Windows computer, you can use WebLab to create one or more base direc-
tories. A base directory includes all the files which configure WebTransactions for a specific
application scenario.

If you de-install WebTransactions or install a new product version, the individual configura-
tions are retained.

4.1 Creating a base directory with WebLab

Before you can create a base directory for a WebTransactions application, the WebTrans-
actions administrator must have created a user ID for you and then subsequently released
one or more pools for this user ID in which you can create a base directory.

Before you create a base directory, it is recommended that you first create a project to store
most important data required by WebLab when working with the WebTransactions appli-
cation. When creating a project, you are automatically offered the opportunity to create a
base directory.

To do this, proceed as follows:

Ê Call WebLab, e.g. via Start/Programs/WebTransactions 7.5/WebLab.

Ê There are two possibilities for starting to create a base directory:

Ê Select the Project/New... command and when asked whether you want to create a
base directory, answer Yes (see section “Creating a project” on page 34).

or

Ê Choose the Generate/Basedir... command and specify that a new project is to be
created when the relevant query appears.

In both instances, the Connect dialog box is opened.

Creating a base directory Creating the base directory and starting the application

66 WebTransactions for MVS

Ê Enter the connection parameters in the Connect dialog box and click on OK.

Ê In the following dialog box, enter your user ID and password and click on OK.

Ê Enter the following in the Create Base Directory dialog box:
– from the list of proposed pools, select the pool in which the base directory is to be

created
– enter the name of the new base directory
– check the MVS box in the Host Adapter section
– click on OK.

Ê Enter the required options in the Generate Automask dialog box. These correspond to
the options for the generation of format-specific templates.

Ê Click on Generate. WebLab now creates the base directory together with all the files
that are required for the execution of the WebTransactions application. The structure
and contents of the base directory are described in the WebTransactions manual
“Concepts and Functions”.

Converting a base directory to a new version

Ê Select Generate/Update Base Directory. This opens the Update Base Directory
dialog box.

Ê If you only want to change the links from the base directory to the new installation
directory, select the Update all links option. Select this option when you have updated
the files that are supplied or generated by WebTransactions.

Ê If all files which are copied or generated on creation of the base directory need to be
recreated, select the Overwrite all files option.

Creating the base directory and starting the application Starting

WebTransactions for MVS 67

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
4

4.2 Starting the WebTransactions application

If you do not wish to customize the individual formats and wish only to use the dynamic host
format conversion as described in chapter “Integrating a host application without editing” on
page 69, no further steps are necessary at this point. When you have installed WebTrans-
actions (see page 15) and created a base directory (see page 65), your WebTransactions
application is ready to use. To start the application, you can use the start template set
supplied with the product; this is described in the section “Start templates for MVS” on
page 139 .

For productive operation, you should use the WTBean wtcStartMVS.wtc to create your own
start template in WebLab.

Starting Creating the base directory and starting the application

68 WebTransactions for MVS

WebTransactions for MVS 69

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
5

5 Integrating a host application without editing
WebTransactions for MVS provides special templates for the dynamic conversion of 3270
formats at the Web browser interface. This allows you to adapt the Look & Feel of the host
application so that it resembles normal operation on a real terminal or terminal emulation:

– MVS.wmt/MVS_pocket.wmt
MVS-specific master templates for the general layout of the forms. These templates are
used for the generation of the Automask template and the format-specific templates.

– AutomaskMVS.htm
Conversion template for MVS host applications which is able to use a form to automat-
ically convert all formats of an MVS application to an HTML page.

– wtKeysMVS.htm
This template inserts controls that represent the special keys of the 3270 terminal.
wtKeysMVS.htm is not used only during dynamic conversion. The format-specific
templates generated using the capture process also use wteysMVS.htm.

– wtBrowserFunctions.htm
This template is responsible for keyboard conversion at the browser so that users at the
browser can edit the host application formats in just the same way as at an emulation
or terminal.

With the exception of the master template, these conversion templates are generated
automatically in the directory basedir/config/forms when the base directory is set up.
Variants of the AutomaskMVS.htm template can also be created using WebLab (see
page 72).

Global modifications, e.g. to suit the corporate identity, can be carried out in the
AutomaskMVS.htm template. These are then applied automatically to all formats of the host
application. Global modifications, that you carry out in the master template, get effective, as
soon as you generate templates using this master template (automask or individual
templates). The master template is stored in the weblab directory of the WebLab installation
directory.

If application-specific changes are to be carried out in the master template, it makes sense
to copy the master template from the WebLab computer to the base directory of the
WebTransactions server and make the changes there in order to ensure that the master
template is a component of the base directory.

Master templates Integrating a host application without editing

70 WebTransactions for MVS

5.1 Master templates MVS.wmt and MVS_Pocket.wmt

WebTransactions uses master templates as a model for the generation of the Automask
and the format-specific templates. They therefore ensure a consistent layout. Like any other
template, master templates can contain fixed HTML areas and any WTML tags and
WTScripts. However, in master templates you can also use special master template tags,
known as MT tags, which are described in the WebTransactions manual “Template
Language”.

The use of master templates is especially effective in the case of applications in which large
numbers of formats possess a similar structure: e.g. a fixed subdivision into header,
workspace and footer or in cases where you have generated only selected, format-specific
templates and have converted the less frequent formats using the Automask template.

In such cases, you simply need to define the structure of the master template and assign
this master template as a model on the generation both of the format-specific templates and
the Automask template. All the generated templates will then have the required structure.

WebTransactions for MVS is supplied with the standard master templates MVS.wmt and
MVS_Pocket.wmt. You can customize these templates to your particular needs or use them
unchanged. The standard master templates already contain all the WTML tags and
WTScripts that are the same for all the templates of the product variant in question. It can,
for example, contain the check on whether a private system object exists.

Via the WebLab graphic user interface, you can specify which master template is to be used
for generation. You can define certain generation options (e.g. the generation method) both
in the master template or directly in WebLab. The settings in WebLab override the corre-
sponding settings in the master templates.

Using MVS.wmt or MVS_pocket.wmt

The MVS_Pocket.wmt master template has been developed specially for use with the Pocket
Internet Explorer. You can use it to generate an Automask template (see section
“AutomaskMVS.htm template” on page 72) and for format-specific templates (see section
“Capturing with WebLab” on page 86).

Integrating a host application without editing Master templates

WebTransactions for MVS 71

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
5

MVS_Pocket.wmt has the following additional functions:

● It generates a frameset for the screen. It contains two frames, one for command
inputting and another for the display.

● Only the field where the cursor is currently located can be invoked as the entry field.

● The lines on the screen are automatically made to fit the screen and are colored.

● Extra long outputs are automatically continued on the next page.

● The screen display can be edited during runtime:
– To obtain a 01:01 representation, use the Command/Screen command.
– To adapt the representation to the screen width, use the Command/Compact

command. In this case, the parameters and the corresponding entry field are
displayed on one line.

AutomaskMVS.htm template Integrating a host application without editing

72 WebTransactions for MVS

5.2 AutomaskMVS.htm template

The AutomaskMVS.htm template dynamically creates a representation of the last format
received from the host with receive. It allows you to process any 3270 format without pre-
editing, and is always used by WebTransactions if an individual template is not defined for
the screen. It is possible to choose between different variants using the system object
attribute AUTOMASK.

5.2.1 Creating variants of AutomaskMVS.htm

The AutomaskMVS.htm template is usually generated automatically when a base directory is
created. However, WebLab also allows you to generate variants with different options which
provide optimum support for the various designs of your WebTransactions application. To
do this, choose the command Generate/Automask. The Generate Automask dialog box
is displayed on the screen.

Integrating a host application without editing AutomaskMVS.htm template

WebTransactions for MVS 73

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
5

The parameters that you can set in this dialog box control how the Automask template is
generated. The parameters have the following meanings:

Master Template
Specifies the master template that is to be used for generation of the Automask
template, see also section “Master templates MVS.wmt and MVS_Pocket.wmt” on
page 70. A master template is always required. The supplied master template
MVS.wmt is used by default.

Host Protocol
Specifies the protocol via which the host application communicates with the
WebTransactions host adapter.

Communication Object
Specifies the name of the current communication object. The name of the commu-
nication object is primarily of importance when you want to integrate more than one
host application with WebTransactions. The name must correspond to the name in
the start template.
Default: MVS_0

Dynamic display attributes
All field attributes are supported and read from the host object at runtime.

First line as menu bar
Specifies whether the generated WTML template supports the first line of the format
as the menu bar. If you activate this field, all text fields in the first screen line of the
host application will be generated as buttons.

To set this option can be meaningful to emphasize the menu character of the first
line in the graphical user interface. This buttons however are generated in formats
too, which do not support menu functions in the first line.

 If it is enough to position the cursor with the mouse (not with the cursor keys) to the
corrresponding menu entry on the graphical user interface, this option is not
necessary. The reproduction of the format is more like the original. Positioning the
cursor with the mouse on protected fields is possible, if in the %%LINES tag of the
master template CursorInProtectedField is set to Yes (default).

Automask file
Specifies the directory and the name for the generated template.
Default path:
basedir/config/forms/AutomaskMVS.htm.

If you save the Automask in another directory under config, you can implement
style and language variants. See the WebTransactions manual “Concepts and
Functions”.

AutomaskMVS.htm template Integrating a host application without editing

74 WebTransactions for MVS

Application Prefix
If you want to integrate multiple host applications which may possibly
possess identical format names, then WebLab can insert a prefix for the
FLD file or template in front of the actual file name. The file name then
consists of:
commobj@formatname.fld or commobj@formatname.htm

Integrating a host application without editing AutomaskMVS.htm template

WebTransactions for MVS 75

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
5

5.2.2 Structure of AutomaskMVS.htm

Below you can see the Automask template which was generated using the master template
MVS.wmt (see section “Master templates MVS.wmt and MVS_Pocket.wmt” on page 70).

The comments are the expansion of the statement %%GenerationInfo%.

<HTML>
<wtrem>**</wtrem>
<wtrem>** WTML document: AutomaskMVS **</wtrem>
<wtrem>**</wtrem>
<wtrem>** **</wtrem>
<wtrem>** Document generation based on Master Template : **</wtrem>
<wtrem>** C:\Program Files\webtransactionsv75\weblab\MVS.wmt **</wtrem>
<wtrem>** **</wtrem>
<wtrem>** Generated at Wed Jun 09 18:12:50 2010 **</wtrem>
<wtrem>** **</wtrem>
<wtrem>** Options used by the generator : **</wtrem>
<wtrem>** - %OPTIONS: **</wtrem>
<wtrem>** CommObj = MVS_0 **</wtrem>
<wtrem>** NationalVariant = International - PartialFormatMode = No **</wtrem>
<wtrem>** - %LINES: **</wtrem>
<wtrem>** TaggedInput = Enabled - TaggedOutput = Enabled **</wtrem>
<wtrem>** DisplayAttributes = Dynamic - CursorInProtectedField = Yes **</wtrem>
<wtrem>** MenuBar = No **</wtrem>
<wtrem>** - %RECEIVES: **</wtrem>
<wtrem>** Parameters not specified **</wtrem>
<wtrem>**</wtrem>
<wtrem>** WebTransactions V7.5 Fujitsu Technology Solutions 2010 **</wtrem>
<wtrem>**</wtrem>

References to the communication object and the associated specific system object attribute
are created to ensure uniform access to the connection parameters and host objects.

<wtoncreatescript>
<!--
 //{{WebLab(assignCommunicationObject)
 MVS_0 = WT_HOST.active || WT_HOST.MVS_0;
 if (MVS_0.WT_SYSTEM != null)
 MVS_0_system = MVS_0.WT_SYSTEM; // communication specific system object
 else
 MVS_0_system = WT_SYSTEM; // global system object
 //}}
 // propagate communication object to included WTML documents //////////////
 wtCurrentComm = MVS_0;
 wtCurrentComm_system = MVS_0_system;
 if (wtCurrentComm_system.EDIT_MODE)

AutomaskMVS.htm template Integrating a host application without editing

76 WebTransactions for MVS

The input mode (insert or overwrite) is set according to the specification in EDIT_MODE.

 {
 if (typeof wtCurrentComm_system.isOverwrite == 'undefined' &&
wtCurrentComm_system.EDIT_MODE.match(/OVERWRITE/))
 wtCurrentComm_system.isOverwrite = true;
 else if (wtCurrentComm_system.EDIT_MODE == 'OVERWRITE')
 wtCurrentComm_system.isOverwrite = true;
 else if (wtCurrentComm_system.EDIT_MODE == 'INSERT')
 wtCurrentComm_system.isOverwrite = false;
 } else
 wtCurrentComm_system.isOverwrite = false;
//-->
</wtoncreatescript>

If there is a PROLOG template this will be executed.

<wtif (MVS_0_system.PROLOG)>
 <wtinclude Name="##MVS_0_system.PROLOG#">
</wtif>

After the mandatory establishment of the HTML framework there is the Style tag which sets
the general display characteristics in the browser. Use the WT_BROWSER.charSize attribute
to set the character size (see section “Font size in the attribute WT_BROWSER.charSize”
on page 137).

<head>
<title>WebTransactions V7.5 - session ##MVS_0_system.SYM_DEST#</title>
##WT_SYSTEM.CGI.HTTP_USER_AGENT.indexOf('MSIE') >= 0 ?
 '<meta http-equiv="Pragma" content="no-cache"/>' :
 '<meta http-equiv="Cache-Control" content="no-cache"/>'#
<wtif (WT_BROWSER.acceptClass)>
 <style type="text/css">
 input {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 }
 input.box {
 border: 0 solid;
 padding: 1px 0 1px 0;
 margin-left: -1px;
 margin-top: ##WT_BROWSER.marginTop#px;
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 color: #000000;
 background-color: #FFFFFF;

Integrating a host application without editing AutomaskMVS.htm template

WebTransactions for MVS 77

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
5

 }
 input.button {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 border-width: 1pt;
 margin-left: -1pt;
 }
 select {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 }
 pre {
 font-size: ##WT_BROWSER.charSize#px;
 font-family: courier new, monospace;
 margin: 0;
 }
 </style>
</wtif>
</head>

After this a form (<form>) is opened which enables dialog with the user at the browser.
To operate the dialog, <wtInclude> is used to call the templates wtKeysMVS.htm and
wtBrowserFunctions.htm in order to support the best 01:01 representation. The controls
of these template thus become part of the form.

<body bgcolor="#C0C0C0">
<form WebTransactions name="Automask">
 <table frame="border" rules="all">
 <tr>
 <td>
 <wtinclude name="wtBrowserFunctions">
 <wtinclude name="wtKeysMVS">
 <wtif (MVS_0_system.FORMTPL)>
 <wtinclude Name="##MVS_0_system.FORMTPL#">
 </wtif>
 </td>
 </tr>

This wtOnCreate script defines the display attributes for the host objects. Here, the
taggedOutput() function is used to edit the output fields, and the taggedInput() function
is used to edit the input fields.

 <tr>
 <td>
 <wtoncreatescript>
 <!--

AutomaskMVS.htm template Integrating a host application without editing

78 WebTransactions for MVS

 function taggedInput(hostObject)
 {
 if (hostObject.Type == 'Protected')
 {
 taggedOutput(hostObject);
 return;
 }
 currentLength = hostObject.Length;
 input = '<input type=' + (hostObject.Visible == 'No' ?
'"password"' : '"text"');
 if (WT_BROWSER.is_ie || WT_BROWSER.is_ns61up)
 {
 input += ' class="box" style="width:' + (currentLength *
WT_BROWSER.charWidth + 1) + 'px';
 input += (hostObject.Blinking == 'Yes' ? '; background-
color:#FFC0C0' : '');
 input += (hostObject.Underline == 'Yes' ? (
hostObject.Intensity == 'Reduced' ? '; color:#A0A0FF' : '; color:#0000A0') :
 (
hostObject.Intensity == 'Reduced' ? '; color:#A0A0A0' : '')) + '"';
 }
 input += ' name="' + hostObject.Name + '" size="' + currentLength
 + '" maxlength="' + currentLength
 + '" value="' + hostObject.Value
 + (hostObject.Input == 'Numeric'?'"
numeric="1':'')
 + '"/>';
 document.write(input);
 }

 function taggedOutput(hostObject)
 {
 if (hostObject.Type == 'Unprotected')
 {
 taggedInput(hostObject);
 return;
 }
 output = hostObject.HTMLValue;
 if (hostObject.Visible == 'Yes')
 {
 if (hostObject.Inverse == 'Yes')
 {
 if (hostObject.Color=='#000000')
 output = '<font color="#FFFFFE" style=\"background-
color:#000001\">' + output + '';
 else
 output = '<font color="#000000" style=\"background-color:'
+ hostObject.Color + '\">' + output + '';

Integrating a host application without editing AutomaskMVS.htm template

WebTransactions for MVS 79

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
5

 }
 else if (hostObject.Color != MVS_0.WT_Color.Default)
 output = '' + output
+ '';
 if (hostObject.Intensity == 'Normal')
 output = '' + output + '';
 if (hostObject.Blinking == 'Yes')
 output = '<i>' + output + '</i>';
 if (hostObject.Underline == 'Yes')
 output = '<u>' + output + '</u>';
 document.write(output);
 }
 else
 {
 document.write("
".substr(0,hostObject.Length));
 }
 }
 //-->
 </wtoncreatescript>
 <!--
- - - -->
 <!-- begin of host screen section
-->
 <!--
- - - -->
<div style="color:##MVS_0.WT_Color.Default = "\#000000"#"><pre>\

A key functionality of AutomaskMVS.htm consists in a loop which represents each format
component as an HTML element. For this purpose, the host adapter provides the host
objects $FIRST and $NEXT. With WebLab, the code of the AutomaskMVS template can be influ-
enced by the options selected at generation as well as by the master template. You can
determine, for example, whether attributes such as Blinking are to be represented.

<wtoncreatescript>
<!--
 if (typeof wtInputFields == 'undefined')
 wtInputFields = new Object;
 currentLine = 1;
 document.write('');
 for (element = MVS_0.$FIRST.Name; MVS_0 && element != '$END'; element =
MVS_0.$NEXT.Name)
 {
 currentHostObject = MVS_0[element];
 if (currentHostObject.StartLine != currentLine)
 {
 document.write ('

AutomaskMVS.htm template Integrating a host application without editing

80 WebTransactions for MVS

');
 }
 if (currentHostObject.Type == 'Protected')
 {
 taggedOutput(currentHostObject);
 }
 else
 {
 wtInputFields[element] = currentHostObject;
 taggedInput(currentHostObject);
 }
 }
 document.write('');
//-->
</wtoncreatescript>
</pre></div>
 <!--
- - - -->
 <!-- end of host screen section
-->
 <!--
- - - -->
 </td>
 </tr>
 </table>

A loop is used across the input fields for all the browsers which ignore the maxlength
attribute in the <input> tag. The loops add the client-side attribute MmaxLength to the
appropriate DOM object as this is not available automatically.

 <script type="text/javascript">
 <!--
 <wtoncreatescript>
 <!--
 for(element in wtInputFields)
 {
 if (!WT_BROWSER.acceptMaxLength)
 document.writeln('wtSetMaxLength(\'', element, '\',', wtInputFields[
element].Length, ');');
 }
 //-->
 </wtoncreatescript>
 //-->
 </script>
</form>

Integrating a host application without editing AutomaskMVS.htm template

WebTransactions for MVS 81

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
5

Following the loop involving all the fields, the focus in the web browser window is then set
to the field in whose corresponding screen the cursor was positioned (provided that the field
is an input field).

<wtrem** initial focus selection ***>
<script type="text/javascript">
<!--

wtSetFocus('##MVS_0.WT_FOCUS.Field#'##MVS_0.WT_FOCUS.Offset&&wtCurrentComm_sy
stem.isOverwrite?','+MVS_0.WT_FOCUS.Offset:''#);
//-->
</script>
<wtrem** Script executed after post of HTML page ***************************>

Finally, in an OnReceive script there is one call each to send and receive in order to
synchronize the WebTransactions dialog cycles and the host dialog steps. The
setNextPage() function determines the next template that is to be processed.

<wtonreceivescript>
<!--
 if(WT_POSTED.wt_cursorOffset && WT_POSTED.wt_cursorOffset*1>0)
 {
 wtCursorField = MVS_0[WT_POSTED.wt_cursor];
 MVS_0.WT_FOCUS.Field =
'E_'+wtCursorField.STARTLINE+'_'+(wtCursorField.STARTCOLUMN*1+WT_POSTED.wt_cu
rsorOffset*1)+'_1';
 }
 else
 MVS_0.WT_FOCUS.Field = WT_POSTED.wt_cursor;
 if (MVS_0_system.EDIT_MODE &&MVS_0_system.EDIT_MODE.match(/USER/))
 MVS_0_system.isOverwrite = (WT_POSTED.wt_isOverwrite=='1');
 //{{WebLab(processPostedData)
 for (element in wtInputFields)
 {
 currentHostObject = wtInputFields[element];
 if (currentHostObject.Type == 'Unprotected')
 currentHostObject.Value = WT_POSTED[element];
 }

 //}}
 //{{WebLab(processHostCommunication)
 if (WT_POSTED.wt_special_key == 'Suspend' || MVS_0_system.SUSPEND)
 {
 MVS_0_system.SUSPEND = false;
 }
 else

AutomaskMVS.htm template Integrating a host application without editing

82 WebTransactions for MVS

 {
 try {
 MVS_0.send();
 MVS_0.receive();
 if(MVS_0_system.CAPTURED_FLD == "Yes" &&
MVS_0_system.APPLICATION_PREFIX)
 setNextPage(MVS_0_system.APPLICATION_PREFIX + '@' +
MVS_0_system.FLD);
 else
 setNextPage(MVS_0_system.FLD);
 }
 catch (e) {
 if (WT_SYSTEM.COMMUNICATION_ERROR_FORMAT)
 setNextPage(WT_SYSTEM.COMMUNICATION_ERROR_FORMAT);
 }
 }
 //}}
//-->
</wtonreceivescript>
</body>
<wtif (MVS_0_system.EPILOG)>
 <wtinclude Name="##MVS_0_system.EPILOG#">
</wtif>
</html>

Integrating a host application without editing wtKeysMVS.htm template

WebTransactions for MVS 83

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
5

5.3 wtKeysMVS.htm template

A real terminal has special keys with associated functions that can be reproduced almost
fully in a terminal emulation (e.g. by assigning substitute keys).

The wtKeysMVS.htm template therefore provides controls for the MVS-specific standard
keys. The functions of frequently used keys such as Enter are represented by Submit
buttons, while all the other functions are represented by pick lists. In addition,
wtKeysMVS.htm contains some buttons that do not correspond to any terminal key
(Disconnect, Refresh, Cancel Menu and Print).

The individual controls are described in the table on page 126.

wtKeysMVS.htm includes the file wtKeysMVS.js which contains the mapping of the special
keys for WebTransactions. In this file you can adapt the key mapping to your needs and also
extend it. A complete description of this procedure is given in section “Mapping keys in
wtKeysMVS.js” on page 128).

wtKeysMVS.htm is called by AutomaskMVS.htm and can be used as the basis for your own
templates. Format-specific templates generated using the capture process also usewt-
KeysMVS.htm.

The MVS.wmt master template contains a call (<wtInclude>) to wtKeysMVS.htm. All other
templates created using this master template (whether with Automask or the capture
procedure) will thus also contain this call.

When you select a key function by clicking your mouse or by selecting a list item, the
browser sends the form data to WebTransactions. To do this, wtKeysMVS.htm creates an
invisible input field with the parameters <input type="hidden" and
name="wt_special_key" ...>. The function selected is stored in this field and transferred
together with the visible field to WebTransactions. Here, the desired function in executed by
the terminal emulation integrated in the host adapter using send and receive. Whether or
not there is any communication depends on the key function selected. In some cases (e.g.
REFRESH), the host communication is suppressed.

To implement the key functionality, the host adapter uses the host object WT_KEY (see table
on page 126). All functions provided by wtKeysMVS.htm are mapped to a corresponding
value in WT_KEY.Key (in an OnReceive script). The value of WT_KEY.Key controls the
behavior of the send and receive calls.

wtBrowserFunctions.htm template Integrating a host application without editing

84 WebTransactions for MVS

5.4 wtBrowserFunctions.htm template

A real terminal can also be controlled via the keyboard: this possibility can be largely repro-
duced in a terminal emulation.

The wtBrowserFunctions.htm template uses JavaScript to provide you with keyboard
support in the browser. Different versions of browsers also provide different functionalities.

The MVS.wmt master template contains a call for wtBrowserFunctions.htm. All other
templates created using this master template (whether with Automask or the capture
procedure) will thus also contain this call.
wtBrowserFunctions.htm also uses the <input> tags created by wtKeysMVS.htm

When the user activates a browser function by means of the keyboard, the browser sends
the form data to WebTransactions. Here the required function is executed by the terminal
emulation integrated in the host adapter by means of send and receive.

In section “Terminal functions supported” on page 123 there is a list showing the functions
supported by each browser.

5.5 Host application with semi-graphics

Rectangular frames output by a host application on the screen with the help of semi-
graphics are represented as follows by WebTransactions:

This display mode is also used by the WebTransactions Automask mechanism for
outputting pop-up boxes. However, you can also design your pop-ups individually (see
section “Generating templates for pop-ups” on page 91).

+------+
: :
: :
+------+

WebTransactions for MVS 85

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

15
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
6

6 Editing templates
Once you have connected your host application to the WWW, the way the formats are
displayed at a browser corresponds to that of a terminal (1:1 conversion). In many cases,
this conversion, which is performed by the Automask template, is sufficient and requires no
further design steps.

However, if you want to make use of the many and varied user interface design possibilities
available for Web applications and prepare the host application’s different dialog steps
yourself, then it is no longer enough simply to use the Automask template. Postprocessing
can then be performed using so-called format-specific templates.

You can generate these format-specific templates using the WebLab capture process and
then adapt them to meet your specific requirements. This chapter describes how you
prepare individual browser displays for specific formats.

Here, we can differentiate between the following steps:

1. First you use WebLab to set up a WebTransactions session and then open a host
connection.

2. Next you use the capture function in WebLab to identify the host formats that you intend
to prepare separately (see section “Capturing with WebLab” on page 86).

3. Once you have prepared a format-specific template for a host format which you want to
customize, you can edit it as you wish in WebLab, see WebTransactions manual
“Concepts and Functions”.

Capturing with WebLab Editing templates

86 WebTransactions for MVS

6.1 Capturing with WebLab

Once you have opened a connection to the host application with WebLab you can use the
interactive capture function to create recognition criteria for the individual host formats.

At runtime, WebTransactions recognizes the formats on the basis of the recognition criteria
which are administered in a special database, the capture database. WebTransactions
requires the capture database during the deployment phase in order to assign the appro-
priate format-specific templates to the received host formats. Every entry in this database
links one or more recognition criteria to a format. Whenever a Receive statement is
concluded in a template, WebTransactions works through the capture database sequen-
tially, in order to determine whether there is a criterion corresponding to the received format.
If a hit is found, then the format name is written to the FLD attribute of the private system
object. Otherwise the value from the AUTOMASK attribute is used.

The setNextPage statement in a template specifies which template is to be executed next
after a Receive statement. This can be, for example, the template that is determined via the
recognition criteria in the FLD attribute. See the section on the dialog cycle in the WebTrans-
actions manual “Concepts and Functions”.

6.1.1 Procedure

Ê Check to see whether the correct path name is entered for the start template for the
system object attribute CAPTURE_FILE.

In the start template wtstartUNIX.htm the path name config/capture.sdb is entered
as the default in the CAPTURE_FILE parameter. The format data base that is specified
in the start template will be created on the first access.

Ê Make the appropriate entries in the host application to navigate to the format for which
you want to create a recognition criterium.

Ê Select the Generate/Capture/from current screen command to open the Capture
dialog box with the current format.

If the attribute CAPTURE_FILE was not set when the session was started, the dialog box
Specify capture database will be opened on screen. You can then select a existing
database or specify a new one.

Editing templates Capturing with WebLab

WebTransactions for MVS 87

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

15
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
6

Ê Here you can select the areas that uniquely identify the format. Select one or more
rectangles by dragging the mouse with the default button held down.

Ê Enter a name for the recognition criterium in the Format Name field. You can also select
a name from the list if you have already recorded the format and now, for example, want
to edit its identifying characteristics.

Ê If you select the option Select last criterion the last specified identifying characteristic
is used.

Ê Next, open the dialog box Capture: Options for FLD and Template Generation with
the Generation Options button. In this dialog box you specify the generation options.
In most cases default values are sufficient.

Ê Enter the required generation options and click on OK to confirm. The preset values are
used for input fields in which you make no entry.

Capturing with WebLab Editing templates

88 WebTransactions for MVS

Ê Click on OK to close the Capture dialog box. WebLab then generates an FLD file and
an HTML template for this format:

– FLD files are special description files. They are used by WebLab, the
WebTransactions development environment, to implement the “graphical host
object selection” function. In order for WebTransactions to be able to access these
files at runtime, they must be stored under basedir/config.

– HTML templates are interpreted by WebTransactions at runtime and determine the
user interface displayed at the browser.

6.1.2 Editing recognition criteria

You can edit the individual recognition criteria during the capture process. To do this, click
on the Edit button in the Capture dialog box. The Edit Capture dialog box is displayed on
the screen.

This dialog box presents all the criteria that you have selected for the current host format,
together with their locations and sizes. The Delete button allows you to remove individual
recognition criteria again.

You can use the options Characters and Attributes to determine whether the contents of
the selected area and/or its representation are to be used for the recognition of the
associated format.

6.1.3 Editing the capture database

 You do not need a connection to the host application in order to edit the capture
database.

You edit the capture database in WebLab in the Capture Management dialog box. This
dialog box is opened using the command Generate/Capture Management.

The dialog box shows you in tabular form the formats for which recognition criteria already
exist in the capture database.

The Capture Management dialog box lists the formats in the sequence in which they were
entered in the capture database. When capturing, new formats are added at the end. At
runtime, the capture database is searched through sequentially. For this reason, you can
change the sequence of the formats, for example in order to move frequently used formats
closer to the start and thus reduce the search time or to ensure that if similar formats exist
it is the more precisely specified of them that has priority for recognition.

i

Editing templates Individual templates for pop-up boxes

WebTransactions for MVS 89

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

15
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
6

6.2 Individual templates for pop-up boxes

Host formats can contain pop-up boxes.

If you are working exclusively with the AutomaskMVS.htm conversion template, you need not
make any special arrangements for pop-up boxes, as they are displayed by the Automask
mechanism in the form of semi-graphics within the application format.

For individually adapted templates, WebTransactions provides system object attributes for
pop-up handling. If the USE_POPUP_RECOGNITION attribute is set to "Yes" at runtime, these
pop-ups are automatically recognized and sent to the Web browser in the form of distinct
pages. If characters other than the defaults are used for pop-up recognition, you must use
the system object attributes to set these characters for pop-up display, see also section
“System object attributes” on page 97.

Before describing the WebTransactions pop-up functionality in section “Generating
templates for pop-ups” on page 91, we must first examine the problems that may arise in
the identification of individual templates without special pop-up handling.

Individual templates for pop-up boxes Editing templates

90 WebTransactions for MVS

6.2.1 Without special pop-up handling: identification problems

The WebLab capture process is used to define certain format areas as recognition criteria.
The way these areas are selected may have an effect on the correct functioning of format
recognition. This can be illustrated by means of an example:

For the format (without pop-up box) of a host dialog application, the following area is defined
as a recognition criterium:

However, if a pop-up is displayed which overlays the recognition criterium,
WebTransactions does not recognize the format at runtime since part of the criterium is not
present in the format (because it is hidden by the pop-up). In such a case, WebTransactions
would not display the entire format by using a corresponding format-specific template but
would instead use the conversion template AutomaskAS400.htm.

Editing templates Individual templates for pop-up boxes

WebTransactions for MVS 91

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

15
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
6

If you select the recognition criterium in a way it is not overlayed, WebTransactions can
recognice the format, both with and without a pop-up. At runtime, WebTransactions would
use the same format-specific WTML template in both cases, which results in the following
problems:

If the pop-up was not displayed during the Capture function, it is not contained in the
generated template and does not appear in the browser.

If the pop-up was displayed during the Capture function, it is contained in the generated
template and always appears in the browser irrespective of whether or not it is present in
the actual format.

6.2.2 Generating templates for pop-ups

To avoid the problems outlined in the last section, WebTransactions allows you to create
separate format-specific templates for pop-up boxes.

Requirement

To use this function, you must first set the USE_POPUP_RECOGNITION attribute of the commu-
nication-specific system object to YES.

If you generate your own start template for your application with the WTBean wtcStartMVS
(see section “WTBean wtcStartMVS.wtc for the generation of a start template” on
page 144) then you can place this attribute directly in the start template.

Ê In the Add:wtcStartMVS dialog, choose the Further Options tab.

Ê Under Popup recognition, click the entry Popup recognition/enable.

Ê Click on Popup recognition/enable to change the value of the entry from No to Yes.

If you are already within a session you started with WebLab, you can also create the
attribute for this session dynamically in WebLab:

Ê Select the system object MVS_0_system in the WebLab object tree and open the context
menu.

Ê Choose the New Variable command in the context menu.

Ê Give the new system object attribute the Name USE_POPUP_RECOGNITION, select the
Type string and enter the Value Yes.

 Note that the attribute in this case is only defined for the current session. It has
to be set again in the start template before the next startup.i

Individual templates for pop-up boxes Editing templates

92 WebTransactions for MVS

If the host application does not use the preset values for displaying the pop-up frames you
must also set the other system object attributes for pop-up recognition, see also section
“System object attributes” on page 97. These system object attributes are also required at
runtime.

Popup frames with semigraphic characters

In some MVS applications, pop-up frames are represented by special semigraphic
characters. Here the characters are displayed as „normal characters“:

EsssssssssssssssssssssssN
e e
e e
e e
e e
e e
DsssssssssssssssssssssssM

In order to improve the standard appearance of this type of pop-up frame, WebTransactions
implicitly replaces these semigraphic frames with rectangles with the following structure:

+-----------------------+
: :
: :
: :
: :
: :
+-----------------------+

To permit the automatic recognition and individual processing of such pop-ups, you must
specify the original MVS semigraphic characters when configuring the attributes of the
WebTransactions system object, not the replacement characters used in the
WebTransactions default display. In the case of POPUP.VMIDDLE, for example, you should not
set the value ":" but the value "e". For more information, see also section “System object
attributes” on page 97.

Editing templates Individual templates for pop-up boxes

WebTransactions for MVS 93

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

15
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
6

Procedure

Proceed as follows to record the pop-ups using the capture method:

Ê In the host application, navigate to the format with the pop-up boxes.

Individual templates for pop-up boxes Editing templates

94 WebTransactions for MVS

Ê Choose the Generate/Capture/from current screen command to record the pop-up
box using the capture function. The Capture dialog box is displayed on the screen with
the pop-up box.

Ê Enter a name for the pop-up box and specify the generation options for the template and
FLD file in the dialog box Capture: Options for FLD and Template Generation.

Pop-up recognition at runtime

At WebTransactions runtime, pop-up recognition is performed as follows:

● If a pop-up is recognized in a host format, WebTransactions searches the capture
database (config/application.sdb) for a pop-up with the corresponding recognition
criterium. If an appropriate pop-up is found, WebTransactions uses the identified pop-
up template so that only the pop-up is displayed in the browser but not the host format
behind it.

Editing templates Individual templates for pop-up boxes

WebTransactions for MVS 95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

15
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
6

Below, you can see this procedure on the basis of pop-up converted on the basis of a
format-specific template:

● Recognition of formats with the capture database functions is performed in the following
sequence:

– If popup recognition is active and a popup recognition criterion matches the format,
the individual popup template is used.

– If a normal recognition criterion matches the format, the individual template is used
for the entire format.

– If no recognition criterion is available for the entire format, WebTransactions uses
the conversion template which is named in the AUTOMASK attribute (usually
AutomaskMVS).

 Even if a pop-up is identified and displayed individually by WebTransactions, the
host objects $FIRST and $NEXT refer to the first or next field of the underlying host
format and not to the first or next field of the pop-up.

i

Individual templates for pop-up boxes Editing templates

96 WebTransactions for MVS

Controlling communication System object attributes

WebTransactions for MVS 97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

7 Controlling communication

7.1 System object attributes

Certain system object attributes can be used to control communication between WebTrans-
actions and the MVS application.

This section describes only those attributes which are provided specifically for the MVS
interface connection or which are of special significance to this connection. System object
attributes that are of equal significance to all WebTransactions product variants are
described in the WebTransactions manual “Concepts and Functions”.

If a WT_SYSTEM object (connection-specific system object) exists under the communication
object used, the attributes described in this section must be defined there. Otherwise, they
must be declared as attributes of the global system object WT_SYSTEM. The only exceptions
are the COMMUNICATION_INTERFACE_VERSION and FORMAT attributes, which always refers to
the global system object.

Attributes can be set in the first template (start template) when starting WebTransactions,
and can be retained for the entire session or actively modified during the session (see
sections on active dialog in the WebTransactions manual “Concepts and Functions”).

 General information on connection-specific and global system objects can be found
in the WebTransactions manual “Concepts and Functions”. i

System object attributes Controlling communication

98 WebTransactions for MVS

7.1.1 Overview

The table below provides an overview of the attributes and their effect.

The system object attributes are divided into the following categories:

The category is indicated in the right-hand column of the table below.

o (open)
Attributes evaluated in open

t (temporary)
Attributes used during communication which can be modified in the templates at any
time

r (read only)
Attributes used during communication which cannot be modified in the templates

c (communication module)
Attributes set automatically by the host adapter

Attribute name Meaning Description/category

APPLICATION_PREFIX Prefix for the host appli-
cation name

This prefix makes it possible to identify FLD and
template files which possess the same “format names”
but belong to different host applications.
These FLD and template files must be saved in the
following form:
application_prefix@formatname.fld or
application_prefix@formatname.htm

o

AUTOMASK Default conversion
template

Name of the conversion template to be used if an
identifier for the current screen is not found in the
capture database.
Default value: AutomaskUNIX.

If no identifier was found and the contents of the
AUTOMASK attribute were taken over, but the corre-
sponding template is not available, the template
specified in DEFAULT_FORMAT is used.
If an identifier is found but a corresponding template is
not, the template specified in DEFAULT_FORMAT is
likewise used (see WebTransactions manual “Concepts
and Functions”).

t

Controlling communication System object attributes

WebTransactions for MVS 99

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

BYPASS Bypass print file flag WebTransactions sets this attribute to Yes if a bypass
print file is found during a receive call.
Before evaluation of $MESSAGE.PRINTING, this attribute
should be set to No by the template, as in the
wtasync.htm template provided by WebTransactions.

c,
t

CAPTURE_FILE Capture database Name of the capture database (...\application.sdb)
The name can be specified as an absolute path name
or a relative path name (relative to the base directory),
e.g.:
– absolute specification:

C:\mvsappli1\config2\mvsappl.sdb
– relative specification

(base directory = mvsappli1):
config2\mvsappl.sdb

t

CAPTURED_FLD Criterium for format
recognition

WebTransactions sets this attribute to Yes on a receive
call if the received format is found in the capture
database. If the format is not found, CAPTURED_FLD is
set to No.

c

CODE_PAGE Conversion table Table used by the emulation software for the translation
of host messages from EBCDIC to ASCII and vice versa.
These tables contain conversion rules to support
country or language specific characters.
Possible values:
Belgian
Danish
Dutch
English
French
German
Hebrew
Iceland
Italian
Norwegn
Portugue
Spanish
Swedish
Swefin
UK
CP037
CP273
CP277
CP278
CP280
CP285
CP500

o

Attribute name Meaning Description/category

System object attributes Controlling communication

100 WebTransactions for MVS

COMMUNICATION_
INTERFACE_VERSION

Interface version If this variable contains a value < “3.0”, then the name
of the host format is entered in the global system
attribute FORMAT on reception of a message from the
host (receive). If no format name can be determined,
FORMAT is set to the value of AUTOMASK.
If this variable contains a value “3.0” or higher, no value
is entered for FORMAT since the choice of the next page
(format) is made by the templates themselves (generally
by evaluating the FLD attribute).
Default value: 7.5

o

CONNECTION_INFO Connection information This string can, for example, be used to identify the user
of a given session. The information is saved in a session
information file, which can be desplayed in the
administration.

o

DISCONNECT Template for discon-
nection

This template is activated once the host connection has
been terminated. For example, if the user clicks the
Disconnect button then the template stored in this
attribute is called.
Default value: wtstart

t

END_WAIT_CONDITION.
EXPECTED_BLOCKS

End of screen recog-
nition regarding the
number of sub-
messages that make
up the entire form

When this attribute is set, receive stops waiting,
despite MULTIPLE_IO_TIMEOUT, when the expected
number of sub-messages have arrived.
If additional messages are already waiting in the network
and these can be processed without waiting, then the
RECEIVED_BLOCKS after the receive may be larger
than END_WAIT_CONDITION.EXPECTED_BLOCKS.
Default: empty
See also RECEIVED_BLOCKS.

t

END_WAIT_CONDITION.
FLD_EXPECTED,
END_WAIT_CONDITION.
FLD_DIFFERENT_FROM

End of screen recog-
nition using recognized
format;
Requirement: Must be
using capture database

If a format defined in the capture database is recognized
(attributes FLD and CAPTURED_FLD) and matches the
specifications in the relevant attribute, then receive
stops waiting despite MULTIPLE_IO_TIMEOUT.
Default: empty

t

END_WAIT_CONDITION.
CURSOR_IN_LINE and
END_WAIT_CONDITION.
CURSOR_IN_COLUMN,
END_WAIT_CONDITION.
CURSOR_NOT_IN_LINE
and
END_WAIT_CONDITION.
CURSOR_NOT_IN_COLU
MN

End of screen recog-
nition using the position
of the cursor

If the cursor reaches one of the positions defined in the
set conditions, receive stops waiting despite
MULTIPLE_IO_TIMEOUT.
Default: empty

t

Attribute name Meaning Description/category

Controlling communication System object attributes

WebTransactions for MVS 101

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

END_WAIT_CONDITION.
MATCH_STARTLINE,
END_WAIT_CONDITION.
MATCH_STARTCOLUMN,
END_WAIT_CONDITION.
MATCH_VALUE
and
END_WAIT_CONDITION.
MATCH_OPERATION

End of screen recog-
nition using the field
content in a particular
section of the screen

If the screen buffer has a character string MATCH_VALUE
at the position that is defined with MATCH_STARTLINE
and MATCH_STARTCOLUMN,
(MATCH_OPERATION ="==") or
not (MATCH_OPERATION ="!="), then receive stops
waiting despite MULTIPLE_IO_TIMEOUT.
Default: empty.

t

EPILOG Epilog This attribute contains the name of a template (without
the suffix '.htm'). If the attribute is defined then the corre-
sponding template is included at the end of the
generated template.
Default: No inclusion

 The attribute is only evaluated by the
generated standard template and not by
the host adapter.

See also PROLOG and FORMTPL

t

FIELD_NAMES Use descriptive field
names

If this attribute is set to User-defined descriptive field
names can be used, which are specified in FLD-files.
Otherwise the generic field names generated by the host
adapter are used.
Possible values: User-defined, Generic
Default: User-defined

 Please note, that in the delivered start
templates and Beans Generic is imple-
mented as default.

o

Attribute name Meaning Description/category

i

i

System object attributes Controlling communication

102 WebTransactions for MVS

FIRST_IO_TIMEOUT Timer for the receive
call.

By default the timer is set to 60 seconds. If no message
is received from the host during this period, the receive
call is returned.
This means e.g. that in a single template it is possible to
cater both for host applications which output a welcome
screen on the establishment of the connection as well as
for host applications which immediately expect an input.
To do this, you set FIRST_IO_TIMEOUT to a low value
and then check after the first receive call whether a
message has been received from the host
(RECEIVED_BLOCKS="0")
However, an error is indicated if no message is received
from the host within the time specified in
FIRST_IO_TIMEOUT. If you want WebTransactions to
suppress this message, set
DISABLE_COMMUNICATION_ERROR.

If FIRST_IO_TIMEOUT is greater than
TIMEOUT_APPLICATION, a value derived from
TIMEOUT_APPLICATION is used:
– If TIMEOUT_APPLICATION > 10:

FIRST_IO_TIMEOUT corresponds to
TIMEOUT_APPLICATION -5

– If TIMEOUT_APPLICATION > 1:
FIRST_IO_TIMEOUT corresponds to
TIMEOUT_APPLICATION -1

– If TIMEOUT_APPLICATION =1:
FIRST_IO_TIMEOUT corresponds to
TIMEOUT_APPLICATION

The value is indicated in seconds, in some cases with a
decimal point or comma. The smallest unit is
500 milliseconds.

t

FLD Format name Name of the format that was received from the host
application. If WebTransactions has not recognized any
format name (e.g. even when no capture database is
assigned) then FLD is set to the value of AUTOMASK
(always set by receive).
See also FORMAT

c,
r

Attribute name Meaning Description/category

Controlling communication System object attributes

WebTransactions for MVS 103

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

FORMTPL Form fields This attribute contains the name of a template (without
the suffix '.htm'). If the attribute is defined then the corre-
sponding template is included at the start of the
wtDataForm in the generated templates.
Default: No inclusion

 The attribute is only evaluated by the
generated standard template and not by
the host adapter.

See also PROLOG and EPILOG.

t

FTP_CODE_PAGE Conversion table for file
transfer with $INDFILE

Possible values:
0 - 037 USA
1 - 037C USA C/370
2 - 273 Austria, Germany
3 - 277 Denmark, Norway
4 - 278 Sweden, Finland
5 - 280 Italy
6 - 285 England
7 - 00 International
8 - ASCII
Default value: 2

o

HARDCOPY Hardcopy print file flag WebTransactions sets this attribute to Yes if a hardcopy
print file was prepared when the receive call was
issued (see WT_KEY.key=“PRINT“). Before the evalu-
ation of $MESSAGE.PRINTING, the attributes should be
reset to No by the template as in the wtasync.htm
template provided by WebTransactions.

c,
t

HOST_NAME Name of hostcomputer Name or Internet address of the host computer. If you
use a symbolic name, it must either be specified locally
or in the Domain Name Service (DNS).

o

Attribute name Meaning Description/category

i

System object attributes Controlling communication

104 WebTransactions for MVS

IGNORE_ASYNC Ignore the ASYNC
condition

Usually (IGNORE_ASYNC=’NO’), when using the send
method call, a check is performed to see whether new
data has arrived asynchronously from the host.
If this is the case, data is not sent to the host, instead
REFRESH_BY_ASYNC is set to Yes and WT_KEY.Key is
set to Refresh.The subsequent receive method call
takes the existing host data and does not wait for
additional data with FIRST_IO_TIMEOUT and
MULTIPLE_IO_TIMEOUT.

If IGNORE_ASYNC is set to Yes, the data is sent,
regardless of any asychronously received data. This
avoids manual repeating the send call.
WT_KEY.KEY remains unchanged, REFRESH_BY_ASYNC
is not set to Yes because no refresh has been carried
out. IGNORE_ASYNC suppresses recognition of the
asynchronous message.

Default is NO.
See also MULTIPLE_IO_TIMEOUT, REFRESH_BY_ASYNC

t

IGNORE_EMPTY_BLOCK
S

Handling of messages,
which are not displayed
on the screen

If this attribute is set to Yes then the transition from
FIRST_IO_TIMEOUT to MULTIPLE_IO_TIMEOUT is
disabled when waiting for messages from the host if a
message does not affect the useful area of the terminal
screen and, consequently, the host objects.
This means that you can still operate host applications in
which the first message unlocks the keyboard (change to
status bar) and the second message contains the full
screen (change to screen) with MULTIPLE_IO_TIMEOUT
= "0".
If this attribute is set to Yes then the “empty blocks” are
nevertheless counted in the RECEIVED_BLOCKS
attribute. EXPECTED BLOCKS should nevertheless be set
to “empty blocks”.
Default value: Yes

t

LU_NAME Name of the logical unit
for connection to the
MVS host.

The name of the logical unit (LU) is a character string
8 bytes long (max.). The LU_NAME must only be
entered when this is requested by the environment
configuration (gateway, host).

o

Attribute name Meaning Description/category

Controlling communication System object attributes

WebTransactions for MVS 105

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

MULTIPLE_IO_TIMEOUT Timeout for complete
screen format

Some host applications send their screen formats in the
form of several message segments. Since it is not
always clear when the last message has been received,
a timeout mechanism is used. If a message is not
received from the host within the time period specified in
MULTIPLE_IO_TIMEOUT, the screen format is taken to
be complete.
If you have enabled print/asynchronous support, the
screen is updated automatically at regular intervals so
that formats which are as yet incomplete can be fully
constructed on the next refresh (see page 154).
If you are sure that the host application does not use
message segments, you can set this value to 0.
Default value: 2 (seconds)

The aim is to recognize the end of the screen without
MULTIPLE_IO_TIMEOUT since this timeout
– increases the time elapsed for every stage of the

dialog
– must be set sufficiently high that it does not cause

the end of screen to be recognized too early as a
result of heavy traffic.

You cannot use the test, if the emulation or the keyboard
are locked, for screen end recognition, when the
keyboard is unlocked already with the first message
segment.
The END_WAIT_CONDITION attributes can also be used
to cancel MULTIPLE_IO_TIMEOUT: Only when all of the
conditions that have been set there are fulfilled, will
waiting be cancelled despite the fact that
MULTIPLE_IO_TIMEOUT has not been completed.
See also END_WAIT_CONDITION attributes

t

OFFLINE_COMMUNICATION Switch for playing back
a trace file

Value “Yes”: A previously recorded emulation trace is
“played back” (offline session). The name of the file in
which the session was recorded is specified in the
attribute OFFLINE_TRACEFILE.
Default: No
See also: RECORD_HOST_COMMUNICATION

o

OFFLINE_LOGFILE File name of the
emulation trace to be
generated

File name of the emulation trace which is to be recorded
see also RECORD_HOST_COMMUNICATION

o

OFFLINE_TRACEFILE File name of an
emulation trace

File name of an emulation trace which is to be played
back.
see also OFFLINE_COMMUNICATION

o

Attribute name Meaning Description/category

System object attributes Controlling communication

106 WebTransactions for MVS

PADDING_CHARACTER Padding characters for
unprotected fields

If this attribute contains the value Zero, input fields are
padded out with the null character (\0); otherwise the
space is used as the padding character (default value).

t

POPUP.COLUMN Start column of the
received pop-up

If a pop-up is received following a receive call, and this
pop-up is recognized by the Capture mechanism, this
attribute contains the column number of the top left-hand
corner of the pop-up in the host format.
Possible values:
0 (if there is no pop-up) - maximum number of columns
Default value: 0.

c,
r

POPUP.HEIGHT Height of the received
pop-up

If a pop-up is received following a receive call, and this
pop-up is recognized by the Capture mechanism, this
attribute contains the total height of the pop-up
(including the frame).
Possible values: 0 (if there is no pop-up) - maximum
number of lines (including the frame)
Default value: 0.

c,
r

POPUP.HSTART Pop-up recognition
parameter

Characters used to begin the horizontal frame of a
pop-up panel.
The default value is a colon followed by a period “:.”, i.e.
WebTransactions recognizes the horizontal frame of a
pop-up if it begins with a colon or period.

t

POPUP.HMIDDLE Pop-up recognition
parameter

Characters used to form the horizontal frame of a pop-up
panel.
The default value is a period “.”.

t

POPUP.HEND Pop-up recognition
parameter

Characters used to end the horizontal frame of a pop-up
panel.
The default value is a colon followed by a period “:.”, i.e.
WebTransactions recognizes the horizontal frame of a
pop-up if it ends with a colon or period.

t

POPUP.LINE Line number of the top
left-hand corner of the
received pop-up

If a pop-up is received following a receive call, and this
pop-up is recognized by the Capture mechanism, this
attribute contains the line number of the top left-hand
corner of the pop-up in the host format.
Possible values:0 (if there is no pop-up) - maximum
number of lines.
Default value: 0.

c,
r

POPUP.VSTART Pop-up recognition
parameter

Characters used to begin the vertical frame of a pop-up
panel.
The default value is a period “.”.

t

POPUP.VMIDDLE Pop-up recognition
parameter

Characters used to form the vertical frame of a pop-up
panel.
The default value is a period “.”.

t

Attribute name Meaning Description/category

Controlling communication System object attributes

WebTransactions for MVS 107

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

POPUP.VEND Pop-up recognition
parameter

Characters used to end the vertical frame of a pop-up
panel.
The default value is a colon “:”.

t

POPUP.WIDTH Width of the received
pop-up

If a pop-up is received following a receive call, and this
pop-up is recognized by the Capture mechanism, this
attribute contains the width of the pop-up (number of
columns including the frame).
Possible values:
0 (if there is no pop-up) - maximum number of columns
(including frames)
Default value: 0.

c,
r

PORT_NUMBER Port number Port number for communication with the MVS
application via TCP/IP.
Default: 23

PRINTER_APPEND_
FORMFEED

LU printer control This extends (where necessary) the form feed at the end
of a print file. The attribute is only processed if
PRINTER_LU_NAME is set.
Default value: No

o

PRINTER_CODE_PAGE LU printer control Assigns a EBCDIC-ASCII conversion file.
This attribute is only evaluated if PRINTER_LU_NAME is
set.
Possible values for the configuration supplied:
German_prt
GerWin_prt

o

PRINTER_CONVERT_
NILS_TO_BLANKS

LU printer control This attribute converts all zero characters into blank
spaces. This attribute is only evaluated if
PRINTER_LU_NAME is set.
Default setting: Yes

o

PRINTER_INSERT_
LEADING_FORMFEED

LU printer control This extends the form feed at the start of a print file.
This attribute is only evaluated if PRINTER_LU_NAME is
set.
Default value: No

o

PRINTER_LU_NAME LU_NAME for the
printer

Setting a LU name for PRINTER_LU_NAME will set up a
connection to the dialog (which can then be controlled
with the attribute LU_NAME) and will also set up a printer
connection to the MVS host (see HOST_NAME,
PORT_NUMBER).
The attribute PRINTFILE_NAME should also be set with
a meaningful value. The print data which arrive from the
host will be stored temporarily under this name.

o

Attribute name Meaning Description/category

System object attributes Controlling communication

108 WebTransactions for MVS

PRINTER_REMOVE_
LEADING_FORMFEED

LU printer control Deletes a form feed at the start of a print file.
This attribute is only evaluated if PRINTER_LU_NAME is
set.
Default value: No

o

PRINTFILE_NAME Name of the files to be
printed at the request of
the application

Specifies the pattern to be used for the search for print
files for bypass printing. The value has to be specified
with absolute path names and is completed with “.*”.
PRINTFILE_NAME=“C:\\tmp\\printer1“ recognizes
all files, matching the pattern C:\tmp\printer1.* .
If at least one such file exists, this is specified in the
attribute BYPASS.
PRINTFILE_NAME is used when evaluating
$MESSAGE.PRINTING. This evaluation only occurs
automatically if WT_ASYNC is set to Yes.
If one or more files that correspond to the value of
PRINTFILE_NAME are found at this point, the oldest file
is printed. The files are printed in accordance with the
same principle as terminal hardcopy printing (see also
section “Print support” on page 158).
If the attribute PRINTER_LU_NAME is used, the print data
will also be temporarily stored in the position indicated
under PRINTFILE_NAME.

o,
t

PROLOG Prolog This attribute contains the name of a template (without
the suffix '.htm'). If the attribute is defined then the corre-
sponding template is included at the start of the
generated template.
Default: No inclusion

 The attribute is only evaluated by the
generated standard template and not by
the host adapter.

See also EPILOG and FORMTPL

t

RECEIVED_BLOCKS Number of messages Number of messages processed by the host during the
last receive call. This attribute can be used to check
how many message segments the host used to output
the current format.
If this value is 1 for all formats, the
MULTIPLE_IO_TIMEOUT attribute can be set to 0
because once the first message has been received it is
no longer necessary to wait for further messages in
order to complete the format.
Otherwise, this value can be used with
END_WAIT_CONDITION.EXPECTED_BLOCKS in order to
cancel wait times due to MULTIPLE_IO_TIMEOUT.

c,
r

Attribute name Meaning Description/category

i

Controlling communication System object attributes

WebTransactions for MVS 109

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

RECORD_HOST_-
COMMUNICATION

Switch for emulation
trace

Value “Yes”: Emulation trace activated
Default: “No”
See also: OFFLINE_TRACEFILE

o

REFRESH_BY_ASYNC Automatic setting of
refresh when
asynchronous
messages are received

If this attribute is set to Yes then the host control object
WT_KEY.Key was automatically set to the value
Refresh during the last send because an asynchronous
message has been received since the last receive.
As a result, the old format was updated on the last call of
the form send/receive. In other words, there was no
dialog step with the host application as the user might
expect. The user is presented with the updated format.
To prevent the user from waiting pointlessly for a
response from the host application, you should
- depending on the value of REFRESH_BY_ASYNC -
generate a note for the user.

No (default value) means that the content of the format’s
input fields and the value of WT_KEY.Key are sent to the
host application unchanged (this also sends the
contents of the screen buffer).
See also IGNORE_ASYNC

c

Attribute name Meaning Description/category

System object attributes Controlling communication

110 WebTransactions for MVS

SYNCHRONIZE_ON_EM
PTY_BLOCK

Automatic resend after
reception of
asynchronous protocol
element

The following problem affects emulations that commu-
nicate with the host via Telnet:
After the complete screen, a further asynchronous
protocol element may be received from the host. This
element does not modify the screen but is
acknowledged by the emulation.
During a direct dialog with the user, sufficient time
elapses for these protocol elements to be exchanged.
This is performed by the emulation without any action
being necessary on the part of the host adapter.
However, if the new input is sent immediately (e.g. under
script control) to the host then it is rejected in the network
and the host application is no longer in the expected
state.
Symptom: even though input has been sent to the host,
the old screen continues to be displayed.

SYNCHRONIZE_ON_EMPTY_BLOCK ensures that the sent
message is resent when this type of asynchronous
protocol element is received after the sending of the next
message.
This attribute should only be set if an analysis of the data
transfer between the host and
WebTransactions reveals that such a situation exists.
Otherwise messages would be sent twice even though
the described situation has not occurred. In many cases,
it is normal for a so-called empty message, e.g. to unlock
the keyboard, to be sent by the host before the actual
screen content is sent. The host adapter cannot distin-
guish between these two situations.
Default setting: No

t

Attribute name Meaning Description/category

Controlling communication System object attributes

WebTransactions for MVS 111

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

TERMINAL_TYPE Terminal type Terminal type as simulated by WebTransactions.
Possible values:
"IBM-3278-2" 24x80
"IBM-3278-2-E" 24x80
"IBM-3278-3" 32x80
"IBM-3278-4" 43x80
"IBM-3278-4-E" 43x80
"IBM-3278-5" 27x132
"IBM-3278-5-E" 27x132
"IBM-3279-2-E" 24x80
"IBM-3279-3-E" 32x80
"IBM-3279-4" 43x80
"IBM-3279-4-E" 43x80
"IBM-3279-5" 27x132
"IBM-3279-5-E" 27x132

o

TRACE_LEVEL Trace level This attribute controls the contents of the trace file.
Possible values: 0,1,2,3,3E,3M,3EM
where:
– 0,1,2,3

Different trace levels
– E

Output of the emulation function calls
– M

Output of all host matrices, i.e. “raw” mask data
Default value: 3EM (= maximum trace)

t

USE_POPUP_RECOGNITION Pop-up recognition flag This attribute must be set to Yes if pop-up panels are to
be recognized.
Default value: No.

t

WT_ASYNC Printing and
asynchronous
messages

This attribute is set to Yes if print functions and
asynchronous messages are to be supported.
Default value: No.

t

WT_BROWSER_PRINT Activates browser
printing
only for browser
platform Windows

This attribute must be set to Yes if browser printing is to
be activated (see section “Browser print” on page 168).
The attributes under WT_BROWSER_PRINT_OPTIONS will
only be evaluated when this value is set to Yes.
Default value: No

t

WT_BROWSER_PRINT_
OPTIONS.MODE

Controls browser
printing
only for Windows
browser platform

Indicates if printing is to take place immediately on the
default printer or if a print preview is to be displayed.
Possible values:
Automatic Print on the default printer
Preview Display a print preview

t

Attribute name Meaning Description/category

System object attributes Controlling communication

112 WebTransactions for MVS

WT_BROWSER_PRINT_
OPTIONS.ORIENTATION

Controls browser
printing
only for Windows
browser platform

Indicates the page orientation; only for use with Internet
Explorer.
Possible values:
Portrait vertical orientation
Landscape horizontal orientation

t

WT_BROWSER_PRINT_
OPTIONS.HEADER

Controls browser
printing
only for Windows
browser platform

Text for the page headers; only for use with Internet
Explorer (see the section “Variables in header and footer
lines” on page 170).

t

WT_BROWSER_PRINT_
OPTIONS.FOOTER

Controls browser
printing
only for Windows
browser platform

Text for the page footers; only for use with Internet
Explorer (see the section “Variables in header and footer
lines” on page 170).

t

WT_BROWSER_PRINT_
OPTIONS.LEFT

Controls browser
printing
only for Windows
browser platform

Indicates the size of the left margin in mm; only for use
with Internet Explorer.

t

WT_BROWSER_PRINT_
OPTIONS.RIGHT

Controls browser
printing
only for Windows
browser platform

Indicates the size of the right margin in mm; only for use
with Internet Explorer.

t

WT_BROWSER_PRINT_
OPTIONS.TOP

Controls browser
printing
only for Windows
browser platform

Indicates the size of the top margin in mm; only for use
with Internet Explorer.

t

WT_BROWSER_PRINT_
OPTIONS.BOTTOM

Controls browser
printing
only for Windows
browser platform

Indicates the size of the bottom margin in mm; only for
use with Internet Explorer.

t

Attribute name Meaning Description/category

Controlling communication System object attributes

WebTransactions for MVS 113

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

7.1.2 Interaction between system object attributes and methods

This section contains information on the MVS-specific system object attributes that play a
role in particular method calls.

open - opening a connection to the host

The open method opens a connection to the host application. The connection to be estab-
lished is determined by the following communication-specific system object attribute, which
can be set, for example, in the start template:

When you issue an open call, any existing connection is closed before the new connection
is established. Please note that it is possibly not possible to determine whether or not the
host application is accessible until the first receive call.

close - closing a connection to the host

The close method closes the connection to the host application. This statement must be
executed at the end of a session, and does not usually result in an error message.

System object attribute Value

APPLICATION_PREFIX Prefix for the host application name.
This prefix makes it possible to identify FLD files which possess the
same format names but belong to different host applications. These
FLD files must be saved in the following form:
application_prefix@formatname.fld

HOST_NAME Name of the host computer

LU_NAME Name of the logical unit for connection to the MVS host.

OFFLINE_COMMUNICATION Playback of an emulation trace without connection to the host appli-
cation

OFFLINE_LOGFILE File name of the emulation trace that is to be recorded.

OFFLINE_TRACEFILE File name of an emulation trace that is to be played.

PORT_NUMBER Port number for the communication with the MVS host application via
TCP/IP

RECORD_HOST_
COMMUNICATION

Switch for the emulation trace.

TERMINAL_TYPE Terminal type as simulated by WebTransactions

System object attributes Controlling communication

114 WebTransactions for MVS

send - sending a message to the host application

The send method generally sends a message to the host application. The host object’s
WT_KEY.Key attribute determines whether this involves communication with the host appli-
cation, or whether the call is handled exclusively by the host adapter (e.g. with Refresh).
The templates supply WT_KEY.Key with a value for the functions provided by wtKeysMVS.htm
(see section “wtKeysMVS.htm template” on page 83). An important role is played by the
system object attributes REFRESH_BY_ASYNC and IGNORE_ASYNC. If REFRESH_BY_ASYNC is set
to Yes and IGNORE_ASYNC to No, WT_KEY.Key was set automatically to the value Refresh
during the last send.

receive - receiving a message from the host application

The receive method generally retrieves a message from the host application. The host
object’s WT_KEY.Key attribute determines whether this involves dialog with the host appli-
cation.

The host adapter checks whether the message received from the host application corre-
sponds to a recognition criterium in the capture database. If so, continued processing
depends on the value of the attribute COMMUNICATION_INTERFACE_VERSION.

● COMMUNICATION_INTERFACE_VERSION >= “3.0”

The host adapter enters the value of the FLD attribute at the connection-specific system
object. The template itself must ensure that FORMAT is set correctly. In templates
generated by V3.0, the function setNextPage ensures that FORMAT is set correctly.

● COMMUNICATION_INTERFACE_VERSION < “3.0”

FORMAT is also set in addition to FLD to ensure that “old” templates remain executable.

If no recognition criterium is found in the capture database, FLD or FORMAT is set to the value
of the system object attribute AUTOMASK.

 Additional information can be found in the descriptions for the system object
attributes “FIRST_IO_TIMEOUT” on page 102 and “FIRST_IO_TIMEOUT” on
page 102 as well as the attributes of the END_WAIT_CONDITION group as of
page 100.

i

Controlling communication Host objects

WebTransactions for MVS 115

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

7.2 Host objects

WebTransactions for MVS uses two types of host object:

– host data objects containing data from the host application
– host control objects that control the host interface

7.2.1 Host data objects

Host data objects are provided to allow for communication between WebTransactions and
the host application. They are created by WebTransactions when a new screen format
(possibly including a pop-up) arrives from the host. Each field of the screen format (and of
the pop-up, if any) is assigned to a host object. When a receive call is issued, these objects
are available in the form of a screen image.

The objects are named in accordance with their position in the screen format, which is
defined by the line and column number:

Explanation

These naming conventions allow you to access any sequence of screen characters within
a screen line. For instance, you can access a screen line containing 80 host data objects of
length 1, or one host data object of length 80. If a host data object contains more than one
field or is part of a field, the attributes *Value are set in accordance with yy, xxx and lll. All
other attributes (Input, Modified, etc.) are set in accordance with the field in which the host
data object begins. However, you will generally access host objects that correspond to
screen fields.

 E_yy_xxx_lll (for the fields of a screen format)

F_yy_xxx_lll (for the fields of a pop-up)

E Field of a screen format

F Field of a pop-up

yy Two-character line position, beginning with 1 for the top line
(not including the frame in pop-ups)

xxx Three-character column position, beginning with 1
(not including the frame in pop-ups)

lll Three-character number of screen characters in a screen line beginning with
position yy_xxx

Host objects Controlling communication

116 WebTransactions for MVS

If a host data object extends beyond the field limits, it is truncated at column 80 in screen
formats, and at the last pop-up column in pop-ups.

 Field attributes occupy one screen character. They are represented by a blank, and
form a separate host object with the attributes Type=Protected and Visible=No
(see table on page 117).

Short names for host data objects

Object names can be specified in short form by omitting the length specification or leading
zeros. However, you should be careful when using this option. For instance, WT_FOCUS
always returns the full element name. The first of the following query conditions is thus
never TRUE:

<If (WT_FOCUS.Field == "E_1_2_3")> --> always false
...

<If (WT_FOCUS.Field == "E_01_002_003")> --> true

Descriptive names of host data objects

In templates, you can also work with descriptive names instead of the generic names. You
can specify these descriptive names in the dialogbox Select host objects graphically. To
do this choose the command Rename in the context menu of the objects.

Additionally you must make sure, that the communication-specific system object attribute
FIELD_NAMES contains the value User-defined.

Attributes of host data objects

The table below shows the attributes of the dynamic host data objects. Attributes shown in
bold type can be overwritten.

Objects and attributes are usually case sensitive. However, the attribute names of host
objects are not case sensitive and they can be written in upper or lower case.

i

Controlling communication Host objects

WebTransactions for MVS 117

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

Object name Attribute name Meaning

E_yy_xxx_lll
or
F_yy_xxx_lll

VALUE Contents of the screen field represented by the object name.
Binary zeros (NIL) are replaced by blanks, if the system
object attribute NIL_MODE is set to true. Blanks at the end of
the field are removed. Single quotes, double quotes, and
ampersands (&) are converted for output in HTML.
When using entry fields (see type Unprotected) the content
of the VALUE attribute can be modified. Changing VALUE
emulates the keyboard input of a user at a terminal.

HTMLVALUE This attribute corresponds to the Value attribute, but its
contents are returned in their entirety. The following special
characters are converted for output in HTML:
<, >, ä, ö, ü, Ä, Ö, Ü, ß

RAWVALUE The content of this field is returned as an unconverted
sequence of 8-bit characters; only binary zeros are converted
into spaces.

STARTLINE Line in which the represented screen field begins
Possible values: 1<= n<=maximum screen height
This depends on the screen type:
24x80: n<=24
32x80: n<=32
43x80: n<=43
27x132: n<=27

NAME Name of the field

STARTCOLUMN Column in which the depicted screen field begins
Possible values: 1<=n<=maximum screen width
also see example 1

LENGTH Length of the field
Possible values: 1<=n<=maximum screen width

TYPE Field type
Protected Read-only field
Unprotected Entry field

INPUT Data type of input
Alpha or Numeric

MODIFIED Yes or No

BLINKING Yes or No

UNDERLINE Yes or No

VISIBLE Yes or No

INTENSITY Normal or Reduced

INVERSE Yes or No

Host objects Controlling communication

118 WebTransactions for MVS

1 The difference between RangeStartColumn and StartColumn is shown on the basis of an example.

When receiving data from the host the field E_03_020_010 was recognized:
E_03_020_010. StartColumn returns 20, E_03_020_010.RangeStartColumn also returns 20

Now access different from recognized field:
E_03_022_001.StartColumn returns 20, E_03_022_001.RangeStartColumn returns 22

The same with RangeLength, RangeName ...

COLOR This returns the RGB color value of the relevant field. The
value also depends on the settings of the host object
WT_COLOR (refer to description). If the attributes of
WT_COLOR have not been set then the following values are
returned:
#000000: No color attribute set
#0000FF: Blue
#FF0000: Red
#FFC0CB: Magenta
#008000: Green
#40E0D0: Turquoise
#FFFF00: Yellow
#FFFFFE: White

RangeName Name of the area specified by the host object.

RangeLength Length of the area specified by the host object.

RangeStart-
Column

Column in which the area specified by the host object begins.
Possible values: 1<=n<=maximum screen width

Object name Attribute name Meaning

Controlling communication Host objects

WebTransactions for MVS 119

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

7.2.2 Host control objects

Host control objects are provided for controlling the host interface, and continue to exist for
the entire session.

– the sequence of fields in a screen

– the field in which is cursor is positioned

– the Enter key to be used

– the complete field name

The table below lists all host control objects and their attributes.
Attributes in bold face can be overwritten.

Objects and attributes are usually case sensitive. However, the attribute names of host
objects are not case sensitive and they can be written in upper or lower case.

Object name Attribute Meaning of the attribute

$FIRST Name Full name of the first field in the current screen. If no object
exists, the name $END is returned.

Also all attributes of dynamic host data objects (E_yy_xxx_lll)

$NEXT Name Full name of the next field in the current screen starting from
the field last accessed. You can use this object to work through
each screen field step-by-step.
If there are no further objects, the name $END is returned.
Note: $NEXT also takes attribute fields into account. As 3270
fields begin with an attribute byte, $NEXT initially returns this
attribute byte (represented by a space). The subsequent
$NEXT then returns the field contents.

Also all attributes of dynamic host objects (E_yy_xxx_lll)

$SCREEN CONTENTS All the characters of the whole screen in one string. May
be usefull for comparing two complete screnn images.

Host objects Controlling communication

120 WebTransactions for MVS

IND$FILE LOCAL_FILE Indicates the file which takes part in the transfer on the
WebTransactions pages. This value is processed by the
attributes PUT and GET.

HOST_FILE Indicates the file which takes part in the transfer on the MVS
host pages. This value is processed by the attributes PUT and
GET.
The prefixes TSO:, CICS: or CMS: should be added in front
of the name so that the emulation can be informed about the
state of the dialog session. This entry influences the syntax of
the IND$FILE command.
Default value: TSO:

PUT Setting this attribute triggers a file transfer from the
LOCAL_FILE to the HOST_FILE. The value assigned to the
PUT attribute contains the options to be used for the transfer.
These options are sent to the host as part of the IND$FILE
command.

 Please note that the IND$FILE command is not
accepted in all the states of the dialog session
and that the syntax is dependent on the state
(TSO command mode, CMS, CICS).

GET Setting this attribute triggers a file transfer from the
HOST_FILE to the LOCAL_FILE. The value assigned to the
GET attribute contains the options to be used for the transfer.
These options are sent to the host as part of the IND$FILE
command.

 Please note that the IND$FILE command is not
accepted in all the states of the dialog session
and that the syntax is dependent on the state
(TSO command mode, CMS, CICS).

WT_FOCUS Field Object name of the field in which the cursor is currently
positioned. This name is specified in full in the form
E_yy_xxx_lll, and includes a length specification. Writing this
attribute positions the cursor. If the attribute is empty or invalid,
the cursor is positioned in the first row of the first column.

OFFSET Offset of the cursor from the start of the field to the cursor
position.

WT_FOCUS_
SHORT

Field As for WT_FOCUS, except the object name is stored without a
length specification in the form E_yy_xxx.

Object name Attribute Meaning of the attribute

i

i

Controlling communication Host objects

WebTransactions for MVS 121

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

WT_KEY Key Indicates the special key in the terminal emulation to be
activated when send is executed.
The default values are listed in the table on page 126.
Corresponding keys are included in the current templates by
using wtKeysMVS.htm.
(<wtInclude ...>).

WT_COLOR DEFAULT RGB color values for fields for which no color attribute is set.
Possible values:
#000000: Black (default value)
#0000FF: Blue
#FF0000: Red
#FFC0CB: Magenta
#008000: Green
#40E0D0: Turquoise
#FFFF00: Yellow
#FFFFFE: White

BLUE RGB color value for fields with the color attribute blue
Default value: #0000FF

RED RGB color value for fields with the color attribute red
Default value: #FF0000

PINK RGB color value for fields with the color attribute pink
Default value: #FFC0CB
MAGENTA is also accepted as an alias for PINK in order to
permit shared scripts for different host connections.

GREEN RGB color value for fields with the color attribute green
Default value: #008000

TURQUOISE RGB color value for fields with the color attribute turquoise
Default value: #40E0D0
TURQUOISE is also accepted as an alias for CYAN in order to
permit shared scripts for different host connections.

YELLOW RGB color value for fields with the color attribute yellow
Default value: #FFFF00

WHITE RGB color value for fields with the color attribute white
Default value: #FFFFFE

Object name Attribute Meaning of the attribute

Host objects Controlling communication

122 WebTransactions for MVS

$MESSAGE PRINTING When this attribute is evaluated, WebTransactions sends the
oldest file waiting to be printed to the browser (with the MIME
type webta/hardcopy-print or MIME type
webta/bypass-print).

 Please note that the evaluation of
$MESSAGE.PRINTING terminates the interpre-
tation of the template and suppresses HTML
generation.

PRINTFILE_
NAME

This attribute returns the name of the file which is to be printed
next.
If no file is waiting to be printed, the attribute returns an empty
string.

WAITING This attribute indicates whether WebTransactions has
received an asynchronous message from the host application.
Each time this attribute is queried, WebTransactions checks
the buffer for asynchronous messages.
If it finds a message, $MESSAGE.WAITING is set internally to
“Yes”. WebTransactions then reads the asynchronous
message the next time receive is called.

Object name Attribute Meaning of the attribute

i

Controlling communication Terminal functions

WebTransactions for MVS 123

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

7.3 Terminal functions supported by the browser

In WebTransactions for MVS you can display host application formats in the browser without
any post-editing (01:01 conversion). This function is contained in the master template
MVS.wmt (see page 70). The templates that you generated via the master template include
the templates wtBrowserFunctions.htm and wtKeysMVS.htm which provide the functions
required.

wtBrowserFunctions.htm in turn includes the following Javascript files:

wtCommonBrowserFunctions.js
contains the Javascript code that will be run for all browsers.

wt<browser>BrowserFunctions.js
contains the Javascript code for the current browser.

wtKeysMVS.htm contains the MVS-specific buttons for the standard keys and include the
Javascript file wtKeysMVS.js which contains the special key mapping for WebTransactions
for MVS. In this file you can adapt the key mapping to your needs and also extend it (see
section “Mapping keys in wtKeysMVS.js” on page 128).

7.3.1 Terminal functions supported

The following terminal functions are provided:

– Pixel-precise layout of text and entry fields with the help of style sheets.

– Support for terminal special keys sent to WebTransactions. For some of these keys
there are equivalents on the PC keyboard (e.g. the “F” keys). In some cases key combi-
nations are be used to start terminal functions.

– Support for terminal special keys which work directly in the browser form (e.g. cursor
positioning keys). For some of these keys there are equivalents on the PC keyboard
(e.g. the “F” keys). In other cases, terminal functions are started using key combina-
tions.

– Autotab:
When the maximum length of an entry field is reached the cursor automatically moves
to the next entry field.

– Overwriting fields:
Like a terminal, the browser overwrites the characters already present in the entry field
and does not insert text between the characters as per the browser default settings.

– Transfer of the cursor position from the browser to the host application:
Depending on the browser functions available, the browser transfers the exact cursor
position or only the corresponding entry field to WebTransactions.

Terminal functions Controlling communication

124 WebTransactions for MVS

– Tabulator remains inside the form:
The entry focus does not leave the form generated by WebTransactions. Using the
tabulator key in the browser also automatically moves the focus onto the browsers
controls.

Which of the terminal functions (F keys, cursor positioning keys ...) is actually displayed on
the browser will depend on the type and version of the browser. The tables below show the
terminal functions supported by the various browser types.

Terminal
function

Browser support

Non specialized
browser

Netscape V4.0 Netscape V6.0 or
higher or Gecko

Internet Explorer
V4.0 or higher

Layout of text
and entry fields

no no yes yes

Support for
terminal special
keys sent to
WebTransac-
tions

only via a pick list or
button

only the ENTER
key directly; all
other function via a
pick list or button

by individual configurable mapping via
keys or pick lists or buttons

Support for
terminal special
keys which work
directly in the
browser form

no no by individual configurable mapping via
a key

Autotab no yes yes yes

Overwriting
fields

yes
(simulated in the browser by automatic selection of field
content)

yes

Transmits the
cursor position

Only the position at the start of the last
entry field used

Position at the
start of the last
entry field used
and the exact
position in
protected fields.

Exact position in
protected fields
and in entry fields
(V5.0 or higher)

Tabulator
remains inside
the form

no yes

Controlling communication Terminal functions

WebTransactions for MVS 125

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

Key support by Internet Explorer V4.0 or higher or by a Gecko-based browser

If you use Internet Explorer V4.0 or higher or a Gecko-based browser (Netscape V6 or
higher), then the 3270 terminal keys are as follows1:

1) Here, '+' means that the keys specified must be pressed together at the same time. On some keyboards the STRG key is marked
with CTRL.

Key used in Internet Explorer Corresponding key at the 3270-terminal

ENTER ENTER

F1 ... F12 PF1 ... PF12

SHIFT+F1 ... SHIFT+F12 PF13 ... PF24

CTRL+F1 PA1

CTRL+F2 PA2

CTRL+F3 PA3

ALT+F9 Attn

ALT+F10 Sysreq

Pause Clear

ESC Reset

Terminal functions Controlling communication

126 WebTransactions for MVS

7.3.2 Interaction between the host control object WT_KEY, the template
wtKeysMVS.htm and the wtKeysMVS.js file

The host control object WT_KEY indicates the special key in the terminal emulation which is
to be activated when send is executed.

The default values are given in the table below. The corresponding keys are included in the
current templates by using wtKeysMVS.htm
(<wtInclude ...>). wtKeysMVS.htm includes the JavaScript file wtKeysMVS.js which
contains the mapping of the special keys for WebTransactions for MVS (see section
“Mapping keys in wtKeysMVS.js” on page 128).

The table below shows:

– the controls provided by the wtKeysMVS.htm template and the file wtKeysMVS.js
(included as standard).

– the values stored for the associated functions in the host control object WT_KEY.

Key on 3270
terminal

Value of
WT_KEY key

Meaning

ENTER @E Send data to host

RESET @R Reset an error situation, e.g. after data is entered in a
protected field where data entries are not allowed.

ATTN @A@Q Short message to the host application; no further data is
transferred.

CLEAR @C Clear the screen and send an appropriate short message to
the host application.

PF1..PF9 @1..@9 as per ENTER
Send data to the host but with a different transfer ID.

PF10..PF24 @a..@o as per PF1..PF9

SYSREQ @A@H System request: switch to a second window in which a
system message can be sent.

PA1..PA3 @x..@z Short message to the host application.

Disconnect Close the connection to the host. The subsequent receive
call supplies the system object attribute FLD with the
contents of WT_SYSTEM.DISCONNECT.
This function is similar to switching off a real terminal or
shutting down an emulation program without signing off
properly from the host application.

Controlling communication Terminal functions

WebTransactions for MVS 127

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

Refresh Refresh the display of the HTML page.
This function is required in order to display messages that
arrived asynchronously or were delayed, i.e. after the
screen contents are taken as complete and sent to the
browser in the form of an HTML page
(see also WT_SYSTEM.MULTIPLE_IO_TIMEOUT, page 105).
The Refresh function does not involve dialog with the host
application. Host communication is suppressed with the
send and receive calls.

Cancel Menu With some host applications, pull-down menus can be
opened by means of selectable fields in the first screen line.
The Cancel Menu function closes the menu; the original
screen contents are then redisplayed. This function involves
dialog with the host function.

Print Request a terminal hardcopy printout (see section section
“Terminal hardcopy printing” on page 159).

Key on 3270
terminal

Value of
WT_KEY key

Meaning

Terminal functions Controlling communication

128 WebTransactions for MVS

7.3.3 Mapping keys in wtKeysMVS.js

The browser used will accept all keyboard entries. For the application-defined mapping of
function keys, WebTransactions provides an interface and the file wtKeysMVS.js. A call to
the function wtCreateKeySelectList() will generate a selection list (see section “Inter-
action between wtCommonBrowserFunctions.js and wt<browser>BrowserFunctions.js” on
page 133).

The text below describes the key mapping supplied with WebTransactions. You can adapt
and extend key mapping as required; no special knowledge of browser templates is
required.

After creation of the base directory, the file wtKeysMVS.js is in the directory
<basedir>/wwwdocs/javascript. The interface to be used for adapting the WebTransactions
application is the table (array) wtKeyMappingTableInput given in this file.

The wtKeyMappingTableInput table defines an object with several attributes for each of the
key maps (see table in page 129). These attributes describe:

– the key or key combination

– the action to be triggered when the key (or combination) is pressed

– if this function is also available on a selection list.

Example

wtKeyMappingTableInput = [
{ sl:'title of my select list'},
{ la:'Insert', co:'Insert', ac:doToggleInsert, kc:VK_INS },
{ la:'Reset', co:'RESET', ac:'@R', kc:VK_ESC, mk:MK_SHIFT },
{ la:'PA1', ac:'@x', kc:VK_F1, mk:MK_CTRL }
];

In this definition the mapping is as follows:
– Insert calls up the function doToggleInsert (toggle the Insert mode on and off)
– ESC+SHIFT sends the function code @R (corresponding to Reset) to

WebTransactions
– F1+CRTL sends the function code @x (corresponding to PA1) to WebTransactions

This definition creates a selection list with the following content:

title of my select list

Insert

Reset

PA1

no function

calls up the function doToggleInsert()

sends the function code @R to WebTransactions

sends the function code @x to WebTransactions

Controlling communication Terminal functions

WebTransactions for MVS 129

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

In the wtKeyMappingTableInput table you can enter the following attributes:

Description Attribute Meaning

la label Label, e.g. for entry in the selection list. If the attribute is not
specified, no entry will be generated for the list. The corresponding
key will, however, be mapped on a function.

co comment Comment. This attribute is not evaluated.
This attribute has been provided as an alternative to the attribute la;
by changing the attribute from la to co you can, for example, remove
a key from the selection list.

ac action Action to be executed when the mapped key is pressed or when the
action is selected from a list.

If this attribute is a string type, the content will be transferred to
wt_special_key.value and sent to WebTransactions. This means
that the form is transferred to WebTransactions and as a special
function is given the value of ac (e.g. F1 as function key).

If this attribute is a function type, a client-side function with this
name will be called. This function must be defined.

The Javascript files wt<browser>BrowserFunctions.js provide
the following functions:
– doCursorHome
– doCursorUp
– doCursorDown
– doCursorLeft
– doCursorRight
– doTab
– doBackTab
– doToggleMark
– doToggleInsert.
The implementation of these functions can be empty; this depends
on the browser capabilities (see the section “Callback functions in
key mapping” on page 134).
If this attribute is not defined, no action can be executed. Editing of
the keyboard entries is left to the browser.

kc key code Number assigned to the pressed key in the keyboard driver.
The script wtCommonBrowserFunctions.js has a symbol for many
of the keys; the symbol name begins with VK_.
For key combinations there is also the modifier key (mk).

Terminal functions Controlling communication

130 WebTransactions for MVS

mk modifier
key

Additional modifier key pressed (see definition in
wtCommonBrowserFunctions.js):
– 0 = MK_NONE (= no modifier key pressed)
– 1 = MK_CTRL
– 2 = MK_ALT
– 4 = MK_SHIFT

In key combinations the corresponding values are added:
– 3 = MK_CTRL + MK_ALT
– 5 = MK_CTRL + MK_SHIFT
– etc.
If no mk is specified then the value 0 = MK_NONE is used.

sl select
list

At the start of each selection list to be generated, a component with
the index 0 will be generated as a header. The component has no
function. The text for this “0” component is specified in the attribute
sl.
Any selection lists created previously will be closed when the
attribute sl occurs.
For improved readability, sl can be made to be the only attribute in
the table object.

Description Attribute Meaning

Controlling communication Terminal functions

WebTransactions for MVS 131

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

Structure of wtKeysMVS.js

This section describes the wtKeyMappingTableInput table from the wtKeysMVS.js file
supplied with WebTransactions:

The object wtKeyMappingTableInput is created as literal.

wtKeyMappingTableInput = [

The attribute sl indicates the start of the selection list with the label more keys.

{ sl:'more keys'},

The attribute co indicates a comment for better readability. There is no attribute la for the
following entries. The entries should not appear in the selection list. Use kc and mk to find
the mapping for a PC key. With ac JavaScript functions are specified, which are to be
processed, when the appropriate key or key combination is pressed.

{ co:'ENTER', ac:'@E', kc:13, mk:MK_NONE },
{ co:'Insert', ac:doToggleInsert, kc:VK_INS },
{ co:'CursorUP', ac:doCursorUp, kc:VK_UP },
{ co:'CursorDOWN', ac:doCursorDown, kc:VK_DOWN },
{ co:'CursorLEFT', ac:doCursorLeft, kc:VK_LEFT },
{ co:'CursorRIGHT', ac:doCursorRight, kc:VK_RIGHT },
{ co:'HOME', ac:doCursorHome, kc:VK_HOME },
{ co:'TAB', ac:doTab, kc:VK_TAB },
{ co:'BACKTAB', ac:doBackTab, kc:VK_TAB, mk:MK_SHIFT },

Reset appears as an entry in the selection list (attribute la). RESET is mapped by the ESC key
and by the SHIFT + ESC key combination. A user can therefore trigger a RESET as follows:
– Select RESET from the list
– Press ESC on the keyboard
– Press SHIFT + ESC together on the keyboard.

{ la:'RESET', ac:'@R', kc:VK_ESC, mk:0 },
{ co:'RESET', ac:'@R', kc:VK_ESC, mk:MK_SHIFT },
{ la:'ATTN', ac:'@A@Q', kc:VK_F9, mk:MK_ALT },
{ la:'CLEAR', ac:'@C', kc:VK_PAUSE, mk:0 },
{ co:'CLEAR', ac:'@C', kc:VK_PAUSE, mk:MK_SHIFT },

{ la:'PF1', ac:'@1', kc:VK_F1, mk:0 },
{ la:'PF2', ac:'@2', kc:VK_F2 },
{ la:'PF3', ac:'@3', kc:VK_F3 },
{ la:'PF4', ac:'@4', kc:VK_F4 },
{ la:'PF5', ac:'@5', kc:VK_F5 },
{ la:'PF6', ac:'@6', kc:VK_F6 },

Terminal functions Controlling communication

132 WebTransactions for MVS

{ la:'PF7', ac:'@7', kc:VK_F7 },
{ la:'PF8', ac:'@8', kc:VK_F8 },
{ la:'PF9', ac:'@9', kc:VK_F9 },
{ la:'PF10', ac:'@a', kc:VK_F10 },
{ la:'PF11', ac:'@b', kc:VK_F11 },
{ la:'PF12', ac:'@c', kc:VK_F12 },
{ la:'PF13', ac:'@d', kc:VK_F1, mk:MK_SHIFT },
{ la:'PF14', ac:'@e', kc:VK_F2, mk:MK_SHIFT },
{ la:'PF15', ac:'@f', kc:VK_F3, mk:MK_SHIFT },
{ la:'PF16', ac:'@g', kc:VK_F4, mk:MK_SHIFT },
{ la:'PF17', ac:'@h', kc:VK_F5, mk:MK_SHIFT },
{ la:'PF18', ac:'@i', kc:VK_F6, mk:MK_SHIFT },
{ la:'PF19', ac:'@j', kc:VK_F7, mk:MK_SHIFT },
{ la:'PF20', ac:'@k', kc:VK_F8, mk:MK_SHIFT },
{ la:'PF21', ac:'@l', kc:VK_F9, mk:MK_SHIFT },
{ la:'PF22', ac:'@m', kc:VK_F10, mk:MK_SHIFT },
{ la:'PF23', ac:'@n', kc:VK_F11, mk:MK_SHIFT },
{ la:'PF24', ac:'@o', kc:VK_F12, mk:MK_SHIFT },

{ la:'PA1', ac:'@x', kc:VK_F1, mk:MK_CTRL },
{ la:'PA2', ac:'@y', kc:VK_F2, mk:MK_CTRL },
{ la:'PA3', ac:'@z', kc:VK_F3, mk:MK_CTRL },
{ la:'SYSREQ', ac:'@A@H', kc:VK_F10, mk:MK_ALT },

Do not close the last entry in the table with a comma. If you do close the entry with a comma,
the program will wait for a further entry before the literal end (]).

{ la:'InsClip', ac:doInsertClipBoard, kc:VK_V, mk:MK_CTRL+MK_SHIFT }
];

Controlling communication Terminal functions

WebTransactions for MVS 133

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

7.3.4 Interaction between wtCommonBrowserFunctions.js and
wt<browser>BrowserFunctions.js

The file wtCommonBrowserFunctions.js contains the Javascript code which will be run for
all browsers. The wt<browser>BrowserFunctions.js files contain the Javascript code
which will be run depending on the current browser. For example, wtGeckoBrowserFunc-
tions.js contains the Javascript code for Gecko-based browsers.

After creation of the base directory, the files are located in the directory
<basedir>/wwwdocs/javascript.

If you want to adapt the Javascript code in these files you will need specialist knowledge of
browser behavior and browser interaction with WebTransactions. The following text
describes the interaction between the functions and data structures as supplied with the
product.

Symbols

The file wtCommonbrowserFunctions.js will be called before the files
wt<browser>BrowserFunctions.js and wtKeysMVS.js. This file contains the definition of
the variables for symbolically invoking the keys in the other *.js files.

// some symbolic keycodes /////////
VK_TAB = 9;
VK_RETURN= 13;
VK_SHIFT = 16;
VK_CTRL = 17;
VK_ALT = 18;
VK_PAUSE = 19;
VK_ESC = 27;
VK_PGUP = 33;
VK_PGDN = 34;
VK_END = 35;
VK_HOME = 36;
VK_LEFT = 37;
VK_UP = 38;
VK_RIGHT = 39;
VK_DOWN = 40;
VK_INS = 45;
VK_0 = 48;
VK_1 = 49;
...
MK_NONE = 0;
MK_CTRL = 1;
MK_ALT = 2;
MK_SHIFT = 4;

Terminal functions Controlling communication

134 WebTransactions for MVS

Key mapping functions

function wtCreateKeyMap()
Generates, from the wtKeyMappingTableInput table, a structure which is simpler
and quicker to access at runtime. The call is made from wtKeysMVS.htm. The call is
absolutely necessary; without this call, mapping cannot take place.

function wtCreateKeySelectList()
Generates, from the wtKeyMappingTableInput table, one or more selection lists.
The call is made from wtKeysMVS.htm. It is possible to suppress the list by leaving
out the call for this function in wtKeysMVS.htm; the function keys will remain
operative.

Following this example it is easy to describe other functions. You can, for example,
generate a key or a table component for each function.

function wtHandleKeyboard(modifier, keyCode)
Called from wt<browser>BrowserFunctions.js when a key is pressed. wtHandle-
Keyboard(), on the basis of the structure generated bywtCreateKeyMap(), can now
establish if an action has been assigned to this key: If an action has been assigned,
it will be run. If no action has been assigned, the keyboard event will be left to the
browser.

Callback functions in key mapping

The file wtCommonBrowserFunctions.js also provides functions used by the table wtKey-
MappingTableInput (see the attribute ac on page 129).

Most of these functions return false as a result in order to indicate that no general mapping
for these keyboard entries is available. In this case you should use the default behavior of
the current browser. This default behavior will be uploaded to the wt<browser>BrowserFunc-
tions files where required by functions with the same names.

Controlling communication Terminal functions

WebTransactions for MVS 135

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

Procedure

The behavior described above is obtained as follows:

1. Whenever a PC key is pressed, the browser calls the function onKeyDown from the file
wt<browser>BrowserFunctions.js.

2. The function onKeyDown transmits the modifier key and the key code (see the wtKey-
MappingTableInput table on page 129), and then calls the function wtHandleKeyboard
(if this is present) in the file wtCommonBrowserFunctions.js.

3. The function wtHandleKeyboard recognizes if an action is defined for this key in the table
wtKeyMappingTableInput under ac (see page 129).

If there is a function pointer under ac, the procedure continues as follows:

4. wtHandleKeyboard calls the function and then returns the callback value at onKeyDown.

This occurs with actions such as HOME, TAB or CursorDown. The callback function is used
at this stage to process actions on the client PC with the aid of the browser.

5. The function onKeyDown signals to the browser that the key has just been pressed
(callback value true). In this case the browser will no longer react to the key. If this is
not the case, the browser will run its standard reaction for the current keyboard entry.

If there is a character string under ac, the procedure continues as follows:

6. The content of the string is transferred to the attribute wt_special_key.value (see
section “wtKeysMVS.htm template” on page 83). The form is transferred to
WebTransactions together with the value of ac (e.g. F1 as function key) as a special
function.

7. In this case the callback value to the browser is always true (the key is processed
immediately. The browser no longer reacts to the key.

If the attribute ac is not defined (i.e. no action has been assigned to the key pressed), the
callback value false will be signalled to indicate that the browser will handle the keyboard
entry.

Terminal functions Controlling communication

136 WebTransactions for MVS

WebTransactions-specific callback functions

WebTransactions provides a series of special implementations of the callback functions
designed for individual browser types.

Some of the following functions are uploaded bywtGeckoBrowserFunctions.js depending
on the capabilities of the Gecko browser. wtExplorerBrowserFunctions.js will upload all
these functions (most of the possibilities are recognized by Internet Explorer) and then run
the functions described below.

 You can also develop customized callback functions in order to extend the user
interface. In this case, you should ensure that a function invoked in the tablewtKey-
MappingTableInput (see page 129) is also defined in the file wtCommon-
BrowserFunctions.js and in the corresponding file wt<browser>BrowserFunc-
tions.js.

function doCursorUp()
Positions the cursor in the entry field above the current cursor position.

function doCursorDown()
Positions the cursor in the entry field below the current cursor position.

function doCursorLeft()
If the cursor is at the start of an entry field, moves the cursor to the end of the
previous entry field. Otherwise, the browser will react to the key entry (moving the
cursor inside the field).

function doCursorRight()
If the cursor is at the end of an entry field, moves the cursor to the start of the next
entry field. Otherwise, the browser will react to the key entry (moving the cursor
inside the field).

function doCursorHome()
Positions the cursor at the start of the first entry field.

function doTab()
Skips to the start of the next entry field.

function doBackTab()
Skips to the start of the previous entry field.

function doToggleMark()
The marking of the entry field where the focus is located, is toggled.

function doToggleInsert()
Toggles between the Insert and Overwrite modes.

i

Controlling communication Terminal functions

WebTransactions for MVS 137

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

7.3.5 Using the WT_BROWSER object

In order to avoid having to transmit the browser properties and font sizes many times during
a session, WebTransactions creates the object WT_BROWSER at the beginning of each
session. This object is then available globally throughout the entire session.

The WT_BROWSER object contains the following attributes:

– Browser ID
– Browser version
– Browser properties
– Font size to be used

These attributes are used in the following templates:

– All templates generated with the master templates MVS.wmt or MVS_Pocket.wmt (e.g.
AutomaskMVS.htm).

– wtBrowserFunctions.htm
wtBrowserFunctions.htm includes wt<browser>BrowserFunctions.js and gives the
font size (and other properties).

Font size in the attribute WT_BROWSER.charSize

In the WT_BROWSER object the attribute WT_BROWSER.charSize has the default setting 14
(previous static value).

If the attribute WT_POSTED.wtCharSize already exists at the start of a session then its value
will automatically be taken over by WT_BROWSER.charSize. This feature makes it possible for
individual users to set their own font sizes (depending on the screen resolution setting).

The value of WT_BROWSER.charSize can also be set while a session is running by using the
method WT_BROWSER.setCharSize().

 You should not try to edit the attribute WT_BROWSER.charSize directly because other
attributes depend on this value.

You can re-initialise the object WT_BROWSER using the methodWT_BROWSER.refresh(). This
will also refresh the attributes WT_SYSTEM.CGI.HTTP_USER_AGENT and
WT_POSTED.wtCharSize. This procedure would make sense, for example, when a running
session in a roaming session is taken over by another browser (for details on roaming
sessions, see the WebTransactions manual “Concepts and Functions”).

i

Terminal functions Controlling communication

138 WebTransactions for MVS

Example application of WT_BROWSER.charSize

Allows a user on the call page of a WebTransactions application to select the font size to be
used for displaying the application (e.g. via a selection list):

Font Size:
<select name="wtcharSize">

<option value="12">12
<option value="14" SELECTED>14
<option value="17">17
<option value="20">20

</select>

At the start of the session, these entries will automatically be taken over when the attribute
WT_POSTED.wtCharSize is evaluated. All the size settings in AutomaskMVS.htm and in the
generated templates will depend on this value.

You can also use Javascript to make the entry field for wtcharSize dependent on the screen
width. You can do this, for example, when you call up a page via a Submit button with a entry
field for the font size:

<body onload="document.forms.wtaform.wtCharSize.value =
Math.round(screen.width/75)">

<form method="post" name="wtaform"
action="/scripts/WTPublish.exe/D:/webta/basedir?Start">

<input type="submit" value="Start">
Font Size:
<input type="text" name="wtCharSize">
...
</form>
</body>

Controlling communication Start templates for MVS

WebTransactions for MVS 139

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

7.4 Start templates for MVS

After the WebTransactions application is started (via an entry page or by direct input of the
URL), the parameters for the connection to the host application must be set in a start
template.

WebTransactions provides ready-made start templates, which you can use as the basis for
your own start templates. You have two options:

● the start template set (ready-to-use)

This start template set can be used immediately. The required parameters are re-
entered on every start and most of them are set to normal default values. It is suitable
for starting an individual host application or several host applications integrated in a
WebTransactions application. The set consists of the general start template
wtstart.htm, which you can use, for example, to create communication objects and
switch between different parallel host connections, as well as specific start templates
for the individual host adapters. The start template wtstartMVS.htm is supplied specially
for WebTransactions for MVS, and is described as of page 140. The general start
template is described in the WebTransactions manual “Concepts and Functions”.

● WTBean for the generation of a start template

To connect an individual MVS application, you should use a specially generated start
template. The WTBean wtcStartMVS.wtc helps you to generate such templates.

Start templates for MVS Controlling communication

140 WebTransactions for MVS

7.4.1 MVS-specific start template in the start template set (wtstartMVS.htm)

If you selected the MVS protocol in the general start template wtstart.htm (described in the
WebTransactions manual „Concepts and Functions“) and created a new communication
object, the system branches to the wtstartMVS.htm template. This template allows you to
set MVS-specific parameters:

– You can define connection parameters and open a connection to an MVS application.
If you select the run option, the connection to the host application is established (open)
and the first screen of the application is fetched (receive).

– If you select the open option, a connection is established to the host application and the
wtstartMVS.htm template is displayed again. If the connection was opened success-
fully, this template contains additional buttons for communicating with the MVS appli-
cation. If you select close, the connection to the host application is shut down.

– If you select the receive option, the wtstartMVS.htm template is displayed again. It now
contains a new host attributes section in which you can set the host attributes, for
example, for pop-up recognition. Clicking on the enter dialog button displays the first
screen of the host application.

Controlling communication Start templates for MVS

WebTransactions for MVS 141

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

Setting connection parameters and opening the connection

In the connection parameters area, you can set system object attributes with the same
name to the desired values (see section “System object attributes” on page 97).

Start templates for MVS Controlling communication

142 WebTransactions for MVS

In the workflow area, you define the next action to be performed.

destination
In this field, you can select the template to be used. Then click go to to branch to the
selected page. The default value here is main menu, and allows you to return to the
general entry page wtstart.htm. If several connections are already open, they are also
offered for selection. The system then branches to the respective host adapter-specific
start templates of these connections.

access host
This field contains the actions that can be performed in the current session. If a
connection has not yet been opened, the only options available are open and run:

open
This button opens a connection to the host. The start template now displays
additional buttons for communication.

run
Like open, this button also opens a connection to the host. However, this also
retrieves the first message from the host and displays it in the Web browser.

parameters
The reset button resets the parameters to the status received by the browser. The
update button allows you to send the values of the page to WebTransactions without
engaging in communication with the host.

Controlling communication Start templates for MVS

WebTransactions for MVS 143

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

Establishing communication
(only possible during a connection to the host that was opened using open)

As soon as a connection is opened, the following buttons for communication with the host
application are provided in the workflow area under access host. During communication,
only the buttons supported at each point in the process are offered for selection. If you
selected open, these are the receive and close buttons:

receive / send
The receive and send buttons toggle.

receive receives the next message from the host application and expands the start
template in order to set the host attributes. send sends a message to the host appli-
cation. send sends the current data buffer without modifying the data.

close
This button closes the connection to the host application and returns to the first page
displayed. There you can select and open a new connection.

Setting the host attributes
(only possible when a connection to the host is open and at least one dialog has
taken place with the host using send/receive)

A new section, host attributes, is available in which you can specify the host attributes for
pop-up recognition and key conversion. The following buttons may also be displayed during
communication if a message was received from the host application.

receive / send
The receive and send buttons toggle.

receive receives the next message from the host application and expands the start
template in order to set the host attributes. send sends a message to the host appli-
cation. send sends the current data buffer without modifying the data. If you wish to
send a screen containing modified data to the host application in the first step, you
should select enter dialog.

enter dialog / resume dialog
This button branches directly to the next host application screen. You can then complete
this screen and send it to the host application.

If you return to this page from an active host application by selecting the suspend
button, the resume dialog button appears in place of the enter dialog button.

close
This button closes the connection to the host application and returns to the first page.
There you can select and open a new connection.

Start templates for MVS Controlling communication

144 WebTransactions for MVS

7.4.2 WTBean wtcStartMVS.wtc for the generation of a start template

To connect an individual MVS application you can generate an application-specific start
template. To do this, you use the WTBean wtcStartMVS.wtc. This is a standalone WTBean.

wtcStartMVS.wtc contains the inline WTBean wtcMVS.wtc which can be used to create a
new MVS communication object, and thus to establish a connection to an MVS application
(see the section “Creating a new MVS communication object (wtcMVS)” on page 146).

 Before you can access WTBeans there must be a connection to a WebTransactions
application.

You use the File/New/wtcStartMVS command to open the WTBean for editing. WebLab
generates the Add:wtcStartMVS dialog box which contains four tabs:

– In the wtcStartMVS tab you specify the name of the start template you want to
generate.

– In the WT_SYSTEM attributes tab you specify the most important system object
attributes.

– In the MVS connection parameters tab you specify the most important connection
parameters.

– In the Further options tab you can edit all the parameters for the connection to the
MVS application within a tree structure.

i

Controlling communication Start templates for MVS

WebTransactions for MVS 145

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

The generated start template itself does not generate any pages in the browser. When
WebTransactions is started, the template corresponding to the first format received from the
host application is displayed. This is due to the wtinclude tag at the end of the start
template.

Creating a new MVS communication object (wtcMVS) Controlling communication

146 WebTransactions for MVS

7.5 Creating a new MVS communication object (wtcMVS)

The WTBean wtcMVS is supplied in order to enable you to create a new MVS communication
object in a template and thus establish a connection to an MVS application. You can also
use this WTBean to open multiple connections in parallel. wtcMVS is an inline WTBean. For
more information, refer to the WebTransactions manual „Concepts and Functions“.

 Before you can access inline WTBeans, there must be a connection to the
WebTransactions application and the template in which you want to insert the
WTBean must be open.

You use the Add/WTBean/wtcMVS command to open the WTBean for editing. WebLab
generates the Add:wtcMVS dialog box:

In this dialog box you can edit the parameters for the new communication object. The most
important parameters can be found in the first tab, MVS connection parameters. The
mandatory parameters are displayed in red.

You can edit all the other parameters in a tree structure in the Further options tab.

i

Controlling communication Creating a new MVS communication object (wtcMVS)

WebTransactions for MVS 147

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

01
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
7

Once you have entered the values for the parameters and clicked OK to confirm your
settings, the code of the WTBean is generated from the parameters and the description file
and is then inserted at the cursor position in the opened template.

The WTBean is made up of protected and unprotected code areas. The protected areas are
grayed out. In these areas, you are only able to influence the WTBean via the interface. To
do this, select the Edit WTBean command from the context menu of the start line of the
WTBean (in pink) (see the WebTransactions manual “Concepts and Functions”).

Creating a new MVS communication object (wtcMVS) Controlling communication

148 WebTransactions for MVS

WebTransactions for MVS 149

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

8 Using print/asynchronous support
If you enable print/asynchronous support, WebTransactions automatically checks for
asynchronous messages or print information at definable intervals.

If asynchronous messages are found, the host application screen displayed in the browser
is automatically updated (automatic refresh). If print information is found, it is printed out.

WebTransactions provides print/asynchronous support via the frame set described in
section “Functionality of print/asynchronous support” on page 150. JavaScript must be
permitted in the configuration of your Web browser.

8.1 Enabling print/asynchronous support

To enable print/asynchronous support, you must set the WT_ASYNC attribute of the
connection-specific system object to "YES" (the default value is "NO").

If you use the standard wtstartMVS.htm start template to start the WebTransactions
session, click on the Start radio button for the option Print/Asynchrone support.

If you use your own start template, you must insert an assignment where WT_ASYNC is set to
Yes in order to be able to start print/asynchronous support. This is usually carried out via
the WTBean wtcMVS by setting the Enable asynchronous messages entry to Yes.

The browsers in common use today that support the <iframe> HTML tag enable limited
print support even without the activation of the WT_ASYNC attribute. Existing print data is
checked only for every dialog step triggered by the user. Asynchronous print data using
BYPASS printing may be printed with a delay.

Functionality of print/asynchronous support Using print/asynchronous support

150 WebTransactions for MVS

8.2 Functionality of print/asynchronous support

Print support and asynchronous support operate in accordance with the same principle.

● If the browser does not support the <iframe> HTML tag and print/asynchronous
support is enabled (i.e. WT_ASYNC is set to "Yes"), a script in the
wtBrowserFunctions.htm template starts the frame set wtframes.htm.

wtframes consists of two frames:

– An application frame in which the host application screens are displayed as normal.

– An “invisible” control frame designed exclusively for querying whether
asynchronous messages or print information is available, and for initiating appro-
priate actions if necessary. In this control frame, the template wtasync.htm which is
made available by WebTransactions takes control. It is assigned to the same
session as the application frame. In this template, WebTransactions operates in so-
called asynchronous mode which does not affect the dialog flow of the host appli-
cation.

Since the application frame occupies the entire browser window and the control frame
is not visible on the interface, the Web browser user is not aware that the session is
being conducted with a frame set after print/asynchronous support is enabled. When
you close the connection and return to the start template, the frame set is automatically
unloaded.

Format of the wtframes.htm template

<html>
<head>

 <title>WebTransactions</title>
 </head>
 <frameset rows="100%,*" border="0">
 <frame name="application" src="##WT_System.HREF_ASYNC#" />
 <frame name="control"
src="##WT_System.HREF_ASYNC#&WT_ASYNC_PAGE=wtasync" />
 </frameset>
</html>

● If, on the other hand, the browser supports the <iframe> HTML tag and
print/asynchronous support is activated (i.e. WT_ASYNC has been set to "Yes"), only the
“invisible”
control frame is called inline (with <iframe>) in which the template wtasync.htm made
available by WebTransactions takes control.

Using print/asynchronous support Functionality of print/asynchronous support

WebTransactions for MVS 151

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

Control frame: wtasync.htm

The processing steps involved in handling asynchronous message and the print function-
ality are defined in the control frame. The control frame must contain a wtDataform tag with
the attribute asyncPage="wtasync". This indicates that the template is outside the dialog
sequence (see sections on asynchronous dialog in the WebTransactions manual “Concepts
and Functions”).

The basic framework of the wtasync.htm template is shown below:

<html>
 <body>
 <wtDataform name="async" asyncPage="wtasync">
 </wtDataform>
 <wtOnCreateScript>
 <!--
 host = WT_HOST.active;
 if (host.WT_SYSTEM != null)
 host_system = host.WT_SYSTEM; // Private System Objects
 else
 host_system = WT_SYSTEM; // Public System Objects

Processing steps for print requests
... (see page 160)

Handling of asynchronous messages
... (see page 156)

//-->
 </wtOnCreateScript>
 </body>
</html>

Functionality of print/asynchronous support Using print/asynchronous support

152 WebTransactions for MVS

wtBrowserFunctions.htm template

The wtBrowserFunctions.htm template also plays an important role in print/asynchronous
support. It contains a script that performs the following actions when print/asynchronous
support is enabled:

– starts the wtframes frame set, if this is necessary but has not already been loaded

– begins the cyclical submission of the control frame

Structure of the script in wtBrowserFunctions.htm:

<wtIf (wtCurrentComm_system.WT_ASYNC == 'Yes')>
 <wtrem>support of asynchronous message and printing with browsers not
supporting <iframe>//////</wtrem>
 <script type="text/javascript">
 <!--
 function AutomaticRefresh()
 {
 if(parent.control && parent.control.document.forms[0]) {
 parent.control.document.forms[0].submit();
 }
 setTimeout('AutomaticRefresh()', 5000);
 }
 if(!parent.control)
 {
 self.location.href =
'##WT_SYSTEM.HREF_ASYNC#&DUMMY=##WT_SYSTEM.FORMAT_STATE#' +
 '&WT_ASYNC_PAGE=wtframes';
 }
 else
 {
 ##(wtCurrentComm_system.HARDCOPY == 'Yes' || wtCurrentComm_system.BYPASS
== 'Yes') ?
 'AutomaticRefresh();' :
 'setTimeout("AutomaticRefresh()", 5000);'#

 }
 //-->
</script>
 <wtElse><wtIf ((wtCurrentComm_system.HARDCOPY == 'Yes' ||
wtCurrentComm_system.BYPASS == 'Yes') && WT_BROWSER.acceptIframe)>
 <wtrem>just synchronous support of printing with browsers supporting
<iframe>////////////////////////</wtrem>

Using print/asynchronous support Functionality of print/asynchronous support

WebTransactions for MVS 153

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

<iframe id="asyncFrame"
style="visibility:hidden;height:0;position:absolute;"
src="##WT_SYSTEM.HREF_ASYNC#&WT_ASYNC_PAGE=wtasync"></iframe>
 </wtIf></wtIf></wtIf>

It is possible to modify the time interval at which the control frame is cyclically submitted
(default value: 5000 ms).

Handling asynchronous messages Using print/asynchronous support

154 WebTransactions for MVS

8.3 Handling asynchronous messages

Asynchronous messages are messages sent to the terminal without being expressly
requested by the user - i.e. without the user pressing a particular key or clicking an interface
element.

If you access a host application that uses asynchronous messages via the Web,
WebTransactions acts as a terminal and accepts asynchronous messages. However, by the
time an asynchronous message is received by WebTransactions, the current page has
already been sent to the browser. The modification caused by the asynchronous message
is not apparent until the browser page is refreshed.

Without print/asynchronous support, the following problem occurs: the Web browser user
cannot determine whether WebTransactions has received an asynchronous message and
can therefore only refresh the page “on spec”.

WebTransactions solves this problem by automatically refreshing the browser page each
time an asynchronous message is received - provided that print/asynchronous support is
enabled (WT_SYSTEM.WT_ASYNC="Yes"). For this purpose, WebTransactions uses the
wtframes frame set or the <iframe> HTML tag described in section “Functionality of
print/asynchronous support” on page 150.

Regardless of the value of the WT_ASYNC attribute, REFRESH_BY_ASYNC is set to Yes if an
asynchronous message has been received. The template is able to analyze this value and
warn the user that the last send request was ignored because of an asynchronous message
and request the user to retransmit the message.

Using print/asynchronous support Handling asynchronous messages

WebTransactions for MVS 155

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

Concept

Figure 2: Handling asynchronous messages

1. The host application sends an asynchronous message. This is not immediately
processed by WebTransactions.

2. wtBrowserFunctions.htm starts an additional invisible control frame, if required (if the
browser does not support the HTML tag <iframe>), via the wtframes.htm template.

3. wtBrowserFunctions.htm starts an asynchronous call to WebTransactions with the
wtasync.htm template cyclically in the invisible section (frame or <iframe>).

4. wtasync.htm checks whether there is a message that has not been processed
(WebTransactions responds with "Yes" on evaluating $MESSAGE:WAITING). If the
response is Yes, JavaScript code is generated in the response which then triggers a
refresh (see step 6).

5. The control frame receives the response to the asynchronous call.

6. If unprocessed messages are available, the control frame receives a JavaScript
instruction which automatically triggers a refresh of the application frame (see
page 156).

7. The application frame is then sent to and evaluated by WebTransactions.

WebTransactions

Browser

Application
frame

Control
frame

Application
frame

Control
frame

Application
frame

Control
frame

Host
Host

Buffer

WebTransactions

2

3

4

5

6

7

8

9

1
page

page

page

Handling asynchronous messages Using print/asynchronous support

156 WebTransactions for MVS

8. The template responsible for the current screen performs the send and receive
functions as usual. However, as WT_KEY.KEY contains the value “Refresh”, no new
message is sent to the host, instead all remaining messages from the host are
processed.

9. The screen modified by the asynchronous message is sent to the browser and
displayed in the application frame.

 If you create your own templates for individual formats, you must take account of
the area in which asynchronous messages are displayed. This does not occur
automatically with WebLab if this area is empty and if the static option was set
when the Capture function is executed.

Handling of asynchronous messages defined in wtasync.htm

The following processing steps for handling asynchronous messages are defined in
wtasync.htm.

// Support of Asynchronous message //////////////////////////////////////
else if (host.$MESSAGE.WAITING == "Yes")
 document.write (
 '<script>' +
 ' if(parent.application && parent.application.document.forms[0]
)' +
 ' parent.application.wtSubmitKey(\'Refresh\');' +
 ' else if(parent.document.forms[0] && parent.wtSubmitKey)' +
 ' parent.wtSubmitKey(\'Refresh\');' +
 '</script>');
 else if (host.$CONNECTION.ALIVE == 'No')
 document.write (
 '<script>' +
 ' if(parent.application && parent.application.document.forms[0]
)' +
 ' parent.application.wtSubmitKey(\'Disconnect\');' +
 ' else if(parent.document.forms[0] && parent.wtSubmitKey)' +
 ' parent.wtSubmitKey(\'Disconnect\');' +
 '</script>');

Firstly, the WAITING attribute of the host control object $MESSAGE is queried to establish
whether asynchronous messages are available. Each time this attribute is queried,
WebTransactions checks the buffer for asynchronous messages. If an asynchronous
message is found, the value of $MESSAGE.WAITING is set internally to "Yes".

If the value "Yes" is returned for $MESSAGE.WAITING, the wtasync.htm template automati-
cally refreshes the application frame. During this process, it is first checked whether the
application frame is active and the wtSubmitKey method is present (communication with the
host may have been shut down by a disconnect).

i

Using print/asynchronous support Handling asynchronous messages

WebTransactions for MVS 157

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

Customizing the WTAsync.htm template

It is possible to modify the WTAsync.htm template slightly, thus changing the handling of
asynchronous messages. For instance, you may wish to output a message box informing
the user that asynchronous messages have arrived instead of automatically refreshing the
application frame.

if (host.$MESSAGE.WAITING == "Yes")
document.write ("<script> top.alert ('You received an asynchronous
 message. Please Refresh')</script>");

Print support Using print/asynchronous support

158 WebTransactions for MVS

8.4 Print support

This section describes how to print data with WebTransactions.

The print functions supported by WebTransactions differ depending on the type of infor-
mation to be printed.

WebTransactions offers the following print options:

● Terminal hardcopy printing
This involves printing the alphanumeric display of the host application screen as it would
appear on your terminal or terminal emulation.

● Host data printing
This involves printing information formatted and sent by the host application, i.e. printing
host files.

● Browser display printing
This involves printing the information displayed in the Web browser.

In the case of terminal hardcopy printing and browser display printing, it is possible to distin-
guish whether the print job was initiated by a Web browser user (user-driven), or by the host
application (software-driven). The printing of host data is always software-driven.

 Depending on the print function selected, you may have to configure your Web
browser and possibly a print server. For information on how to configure the Web
browser, see section “WTAPrint print plugin” on page 173. For instructions on
configuring the print server, see the product documentation for the appropriate print
server.

Printouts are normally sent directly to a printer. During configuration, however, you
can define the print process such that printouts are routed to a file. This option is
available for all print functions described in this section.

i

Using print/asynchronous support Print support

WebTransactions for MVS 159

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

8.4.1 Terminal hardcopy printing

With terminal hardcopy printing, the alphanumeric display of the host application screen is
printed as it would appear on your terminal or terminal emulation. In this case,
WebTransactions prints the entire host application screen.

Concept

Terminal hardcopy printing is handled on the basis of the WTFrames frame set described
in section “Functionality of print/asynchronous support” on page 150ff, which consists of an
application frame and a control frame.

Figure 3: Terminal hardcopy printing

When you request a terminal hardcopy printout, WebTransactions generates a corre-
sponding print file (step 1). Triggered by the script in KeysMVS.htm, the control frame is
automatically submitted (step 2) and WebTransactions is asked to confirm whether or not a
print file exists (step 3). If a print file does exist, the prepared file is sent to the browser
(step 4). For instructions on how to configure and start the corresponding print program,
see section “Print functions delivered (Windows browser platform)” on page 168.

 The print file generated by WebTransactions is a pure text file in which lines are
separated by the control characters <CR><LF>.

WebTransactions

Browser

WebTransactions

Formatting a
print file

1

Application
frame

Control
frame

2

3

Application
frame

Control
frame

4

5
page

page

i

Print support Using print/asynchronous support

160 WebTransactions for MVS

Processing steps defined in wtasync.htm for terminal hardcopy printing

// Support of hardcopy print //
if (host_system.HARDCOPY == "Yes")
 {
 host_system.HARDCOPY = "No"; // Reset flag before
 if (!host_system.WT_BROWSER_PRINT ||
host_system.WT_BROWSER_PRINT.toLowerCase() != 'yes')
 host.$MESSAGE.PRINTING; // calling host.$MESSAGE.PRINTING
 else
 {
 WT_SYSTEM._printFile = WT_SYSTEM.BASEDIR + "/tmp/" +
WT_SYSTEM.SESSION + "/" + host.$MESSAGE.PRINTFILE_NAME;
 if (host_system.WT_BROWSER_PRINT_OPTIONS.MODE != "Automatic")
 document.writeln("<script>window.open
('"+WT_SYSTEM.HREF_ASYNC+"&WT_ASYNC_PAGE=wtc_bp_Print','_blank','toolbar=no,s
crollbars=yes,width=800,height=600')</script>");
 else
 {
 document.clear();
 forward ('wtc_bp_Print');
 }
 }
 }

When a terminal hardcopy print file becomes available for printing, WebTransactions sets
the HARDCOPY attribute of the connection-specific system object to "Yes". If a print request
is displayed in this way, HARDCOPY is initially reset to "No" in wtasync.htm.

If the printout is to be carried out with the browser print function, $MESSAGE.PRINTFILE_NAME
is used to determine the name of the print file and a separate template is started for the print
request (wtc_bp_print.htm).

Otherwise, the PRINTING attribute of the host control object $MESSAGE is evaluated which
causes WebTransactions to send the file to be printed to the browser. As a result of the
MIME type, this recognizes the data as print data and passes it to an appropriately
configured application (e.g. WTAPrint.exe).

 Please note that HARDCOPY must be reset to "No" before the host control object’s
$MESSAGE.PRINTING attribute is evaluated. This is because the evaluation process
terminates interpretation of the template and suppresses HTML generation.

i

Using print/asynchronous support Print support

WebTransactions for MVS 161

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

Terminal hardcopy printing initiated by the user

To activate terminal hardcopy printing, simply click the Print button. This button is defined
in the wtKeysMVS.htm template, which is included by the AutomaskMVS.htm conversion
template and by the individual templates created with WebLab.

When you click this button, the current page is sent from the browser to WebTransactions.
WebTransactions interprets the template as normal, apart from one exception: when
executing the send call, WebTransactions recognizes that the Print button has been
activated, and does not send a message to the host. Instead, a print file is generated
containing an alphanumeric representation of the current screen.

Print support Using print/asynchronous support

162 WebTransactions for MVS

8.4.2 Host data printing

The printing of host data includes information that has been prepared and sent by the host
application, for example host files.

8.4.2.1 Concept

When printing host data, the print data cannot be received via the existing dialog connection
between WebTransactions and the host computer. An additional network connection must
be set up in this case between every printer station on the host and a printer or a print
server. The printer station on the host has to be configured in this case as a remote printer.

The print server runs on the WebTransactions server in addition to the WebTransactions
applications. The server accepts the print data from the host and can make it available to
the WebTransactions sessions using a suitable configuration.

WebTransactions for MVS supports the LPD protocol as an interface between the printer
station on the host and the print server.

Two scenarios are possible when printing host data:

● The print output is sent to a central printer that has no logical dependency on the initi-
ating user.

This variant is not changed by using WebTransactions.

● The print output is diverted to distributed printers. The choice of printer is logically
dependent on the initiating user or the terminal used.

In order to send print jobs to a specific printer in the network, you have to install a print
server on the PC to which the printer is connected. This makes network printers acces-
sible for host-controlled print functions.

If WebTransactions is also used, the print output is sent to the client, i.e. it is output by
the terminal browser. Since there is no physical dependency on the side of the host
between the terminal and the selected printer, the logical dependency is created by a
relevant configuration.

This procedure is described below.

Using print/asynchronous support Print support

WebTransactions for MVS 163

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

8.4.2.2 Assigning a printer to a Web browser client

The WebTransactions print function allows users to initiate printing in the browser window
on their PCs and to send this print output to a printer connected to their PCs.

The configuration must therefore:
– accept the print job,
– recognize the dialog session to which it belongs and
– send the print data to this printer precisely.

The path of the print data that such a configuration produces is depicted in the diagram
below:

Figure 4: Path of the print data starting the print in the browser window

Dialog Connections

Web

Assignment USERn
Assignment

PRINTERn

to PRINTFILEn
to PRINTFILEn PRINTFILEn.00n

PRINTFILE_NAME=

Page

Page
Transactions

USERn PRINTERn

Browser configuration for
MIME type webta/bypass-print

Printer Stations

Assignment USERn zu PRINTERn
Host
Page

Browser

Print ServerWebTransactions

This arrow in the graphic shows the way of the print data

Print support Using print/asynchronous support

164 WebTransactions for MVS

The print jobs are addressed on the host via the printer names. It must be ensured here that
the address space is adequate to offer sufficient differentiation criteria for the assignment
of the print output. You may have to extend the assignment in the host application and in
the WebTransactions application.

In order to print the print information on a printer that is accessible from your PC, the print
data has to be directed to the browser by WebTransactions. The configuration of the appli-
cation on the host must use a name assignment in this case that reflects this correlation.

Assigning USERn to PRINTERn

The assignment on the host can be performed as follows:

– statically, for example by a table assignment
– generically, for example based on naming conventions
– dynamically using appropriate dialog input at the host application

Assigning USERn to PRINTFILEn

This assignment in the WebTransactions session can be performed as follows:

– statically, for example by a table assignment
– generically, for example based on naming conventions

Both can be configured using normal WT script statements or with the support of the
ReplaceByConfigFile user exit.

Assigning PRINTERn to PRINTFILEn

This assignment on the print server must be configured statically; it cannot be changed
dynamically by the WebTransactions session. On Unix-based systems the assignment
PRINTER to PRINTFILE_NAME has to be specified with an appropriate configuration of the
spool system.

Using print/asynchronous support Print support

WebTransactions for MVS 165

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

8.4.3 Host data printing on the Windows WebTransactions platform

MVS applications support the routing of print information to specific printers. The
“LUNAME” concept, which is also used for terminals, enables MVS applications to address
individual printers by means of a logical address.

If you wish to implement a similar functionality for Web access to MVS applications, you will
encounter the following problem. In MVS dialog applications, printers are frequently corre-
lated with terminals. With Web access, WebTransactions assumes the role of a terminal. To
allow you to direct print information to your own printer even with Web access, you use
Microsoft Microsoft Host Integration Server (suitable for the Intranet and Internet, but only
for text files), see the following section.

Using Microsoft Host Integration Server as a gateway

This method of printing host data can be used in both the intranet and the internet. It
involves using Microsoft Host Integration Server (kurz MHIS) as a gateway. To do this, the
print files must be pure text files containing only simple control characters, such as <CR>
or <LF>. The method is based on the regimented use of LUs (logical units): a particular end
user uses a special LU for display purposes and a special LU for printing.

When the MVS host sends print information to a certain printer LU, MHIS can save this
information to a file. The file names used must be different for the various printer LUs. If
several files are generated for a particular printer LU, MHIS uses an incremental suffix
(.001, .002, .003, ...).

It must be possible to access the WebTransactions system from the MHIS system via the
network. MSSM and WebTransactions can also run on the same machine.

The system object’s PRINTFILE_NAME attribute must be set to the name of the print files
assigned to this session. This must be specified as an absolute path name without an incre-
mental suffix.

If the $MESSAGE.PRINTING attribute is evaluated in the template, the host files to be printed
which correspond to the name set in PRINTFILE_NAME are sent to the browser. The printing
procedure is the same as with terminal hardcopy printing (see page 159):
if WebTransactions finds a print file with the name set in PRINTFILE_NAME, the system
object’s HARDCOPY attribute is set internally to Yes.

Print support Using print/asynchronous support

166 WebTransactions for MVS

Assigning a particular user to a special MVS display LU

Information Explanation

sym. name/IP address/user ID At the beginning of the WebTransactions session, the user must
be identified:

– In WebTransactions, the symbolic name and IP address of
the system on which the browser runs can be obtained from
certain system object attributes. CGI.REMOTE_HOST
contains the symbolic name and CGI.REMOTE_ADDR
contains the IP address.

– If the browser system is connected to WebTransactions via
a proxy server, however, the CGI.REMOTE_HOST and
CGI.REMOTE_ADDR attributes supply the name and IP
address of the proxy server. In this case, insert a request in
the start template asking the user to enter his/her user ID.

sym. name/IP address/user ID

session index (multisession API
server)

In the start template, you can assign a special session index to
a particular symbolic name, IP address, or user ID.

session index (multisession API
server)

MHIS display LU name

In the multisession API server configuration, you can assign a
special MHIS display LU name to a particular session index.

MHIS display LU name

MVS connection and LU#

In the MHIS configuration, you can assign a special MVS
connection and LU# to the MSSM display LU name.

MVS connection and LU#

MVS display LU name

In the MVS VTAM configuration, you can assign a special MVS
display LU name to an MVS connection and LU#.

Using print/asynchronous support Print support

WebTransactions for MVS 167

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

Assigning a particular user to a special printer LU

Information Explanation

sym. name/IP address/user ID See table for display LU on page 166.

sym. name/IP address/user ID

printfile_name

In the start template, you can assign a special printfile_name to
a particular symbolic name, IP address, or user ID.

printfile_name

MHIS print service session name

In the MHIS configuration, you can assign a special MHIS print
service session name to a particular printfile_name.

MHIS print service session name

MHIS printer LU name

In the MSSM configuration, you can assign a special MHIS
printer LU name to the MHIS print service session name.

MHIS printer LU name

MVS connection and LU#

In the MHIS configuration, you can assign a special MVS
connection and LU# to the MHIS printer LU name.

MVS connection and LU#

MVS printer LU name

In the MVS VTAM configuration, you can assign a special MVS
printer LU name to an MVS connection and LU#.

Print support Using print/asynchronous support

168 WebTransactions for MVS

8.4.4 Browser display printing

This print function is not provided by the program WTAPrint.exe which is made available
with WebTransactions and which must be installed on every client, rather it is based on the
print functionality of the Web browser.

To print the information displayed in the browser window, use the Web browser print
functions (Print... command in the File menu).

8.4.5 Print functions delivered (Windows browser platform)

WebTransactions contains various print functions which you can use for terminal hardcopy
printing (see page 159) and host data printing (see page 162 and page 165). The print
functions are:

– Browser print, which will run without the print plugin installed on the client PC.

– WTAPrint print plugin

The wtKeysMVS.htm template generates an additional Print button if it is possible to trigger
a print function. This is the case when one of the following conditions are fulfilled:

– Print/asynchronous support is activated (i.e. WT_ASYNC has been set to "Yes").

– The browser supports the <iframe> HTML tag.

8.4.5.1 Browser print

The browser print function is implemented as a parameter of the inline WTBean wtcMVS
(see section “Creating a new MVS communication object (wtcMVS)” on page 146 and the
WebTransactions manual “Concepts and Functions”).

WTBean wtcMVS contains an ActiveX component which is automatically loaded and
installed. Depending on the browser setting, the user must confirm that the ActiveX control
indicated can be installed.

In browser printing, unlike in browser display printing, it is not the form that is visible to the
user which is printed, it is an invisible document. This is prepared especially for printing in
order to give the same result as the print function of a terminal.

Using print/asynchronous support Print support

WebTransactions for MVS 169

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

Settings in the start template

In order to be able to use the browser print function, you must set the following parameters
in the start template:

Ê For example, in the dialog box Edit wtcStartMVS select the tab Further options.

Ê Under Global parameter, click the Enable asynchronous messages entry.

Ê Select the Enable asynchronous messages option. The value of the entry is changed
from No to Yes.

If it is sufficient that at each dialog step a check is performed to see whether print data
is available, and if all browsers used support the <iframe> HTML tag, then you do not
need support for asynchronous messages.

Ê Next, under Browser print, click the Enable browser print entry.

Ê Select the Enable browser print option. The value of the entry is changed from No to
Yes.

Print support Using print/asynchronous support

170 WebTransactions for MVS

All the other options under Browser print will only be processed if you have set
Activate browser print to Yes:

Browser print mode

The following settings will only be processed in Internet Explorer. For all other browsers,
you must use the page settings dialog box of the browser used.

Page header
Text for the page header (see “Variables in header and footer lines” below)

Page footer
Text for the page footer (see “Variables in header and footer lines” below)

Page orientation

Left margin, Right margin, Top margin, Bottom margin
Margin width in mm

Variables in header and footer lines

For Internet Explorer you can use the following variable entries in the header and footer
lines.

Automatic The printout will be printed immediately on the standard
printer.

Preview A print preview will be displayed before printing.

Portrait Vertical format

Landscape Horizontal format

&w Window title

&u Page address (URL)

&d Date, short form (e.g. 15/04/03)

&D Date, long form (e.g. Tuesday 15 April 2003)

&t Time (as set in the system control panel)

&T Time, 24-hour format

&p Current page number

&P Total number of pages in the document

&& Ampersand (&)

&b Text after this code will be centred

Using print/asynchronous support Print support

WebTransactions for MVS 171

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

Example

The entry in the header line

page &p of &P&bWebTransactions Browser Print&b&d

on the top-most line of the printout, prints

page number WebTransactions Browser Print today's date

wtc_bp_print.cnv conversion file

Use the wtc_bp_print.cnv conversion file to convert the print control sequence in HTML
code. The file is in the base directory of the corresponding WebTransactions application.
This function converts the print control sequence by reading the print file in the template
wtc_bp_Print.htm. This template specifies the conversion file as a second (optional)
parameter for the call of the Getfile user exit (see the WebTransactions manual “Template
Language”).

The conversion file supplied contains the following entries:

* Printer conversion file
00=20
7F="?"
"<"="<"
">"=">"

Each line in the conversion file must have the following format: search text=replacement text.

search text and replacement text are the old and the new character strings. The entries
are constructed as follows:

– Entries consist of either two-place hexadecimal code or a string, enclosed in double
inverted commas.

– A two-place hexadecimal code can be used inside a character string; the code must be
preceded by a (\).

Example

"\195H"="</pre><pre class=pb>"

replaces the control character sequence with a CSS page break which has already
been defined in the template.

– Backslashes and double inverted commas in character strings must be cancelled with
backslashes (\\ and \").

&b&b The text after the first &b will be centred, the text after the second &b will be
right justified

Print support Using print/asynchronous support

172 WebTransactions for MVS

The conversion rules are used from top to bottom. Additional changes can be made the
template wtc_bp_Print.htm, (e.g. using the replace method of the string class).

Print preview

If the Browser print mode in the Start template is set to Preview, a print preview will be
displayed before printing begins.

 This button will only be displayed if the session was started in WebLab. This opens
another browser window which marks all the control and binary characters in the
printout.
– Characters < 0x20: hexadecimal in red
– Characters > 0x7F (8-bit characters): with any hexadecimal shown in blue in

brackets
– Blank spaces: dots with a yellow background
– The end of the display shows any sequences of control characters found. These

entries can be used by the conversion file (see the section “wtc_bp_print.cnv
conversion file” on page 171).

 In Internet Explorer, this button prints the document on the printer set as the
standard printer. In all other browsers, this button calls up the Print dialog box.

 This button opens and closes the browser print preview. This button is only
displayed in Internet Explorer.

Using print/asynchronous support Print support

WebTransactions for MVS 173

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

 This button opens the page properties settings. This button is only displayed in
Internet Explorer.

8.4.5.2 WTAPrint print plugin

The WTAPrint print plugin is available for downloading on the WebTransactions server. To
download the plugin, use the Wtdownload.htm page. When WebTransactions is installed,
this page is created in the web server document directory under webtav75. When you have
downloaded WTAPrint you can install it on the browser host.

If you install WTAPrint with the installation program WTAPrint2000 (also available as a
download), the registration entries for Internet Explorer will also be created. WTAPrint can
be used for all web browsers running on the Windows platform. You can also use WTAPrint
to edit print data with exchange rules. This procedure can be necessary in order to support
certain printers.

Activation of the print plugin WTAPrint is implemented as a parameter of the inline WTBean
wtcMVS (see section “Creating a new MVS communication object (wtcMVS)” on page 146
and the WebTransactions manual “Concepts and Functions”).

Settings in the start template

In order to be able to use the print plugin, you must set the following parameters in the start
template:

Ê For example, in the dialog box Edit wtcStartMVS select the tab Further options.

Ê Under Global parameter, click the Enable asynchronous messages entry.

Ê Select the Enable asynchronous messages option. The value of the entry is changed
from No to Yes.

If it is sufficient that at each dialog step a check is performed to see whether print data
is available, and if all browsers used support the <iframe> HTML tag, then you do not
need support for asynchronous messages.

Print support Using print/asynchronous support

174 WebTransactions for MVS

Ê Next, under Browser print, check the Enable browser print entry. It must have the
value No.

Configuring the web browser

The WebTransactions print functions send print files with a special MIME type to the
browser.

webta/hardcopy-print
for terminal hard copy printing

webta/bypass-print
bypass printing for host data printing.

This MIME type must be defined in the browser configuration. The procedure for most
common web browsers (Internet Explorer as of V4.0 with all versions of Windows, Netscape
Navigator as of V6, Mozilla) is given below:

Ê Install wtaprint2000.exe.

The browsers listed below then recognize wtaprint.exe as an application for printing.

If your browser requires a default suffix for each MIME type, you can enter the suffix .whp.

Using print/asynchronous support Print support

WebTransactions for MVS 175

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

Assigning a print program

You must assign a suitable print program to these MIME types. Use the following syntax:

"%1"
The browser automatically replaces "%1" with the name of the file to be printed.

method
in accordance with the assigned MIME type.

HARDCOPY
the print data are interpreted as text and prepared for the specified printer via
Windows spool.

BYPASS
the print files are already prepared for the specified printer and are sent to the
printer.

target
Possible values: 0, 1, 2 or 3

filename
Full path name of the file to which the printout is to be appended
(permitted only if target is set to 3)

WTAPrint.exe "%1" method target [filename] [option-file]

0 Manual printer selection (a dialog box opens for each print job allowing you to
select the desired printer).

1 The default printer is used.

2 The printout is saved to a file (a dialog box opens for each print job allowing you
to specify a path).

3 The printout is appended to the file whose full path name is specified in filename.

Print support Using print/asynchronous support

176 WebTransactions for MVS

option file
Full path name of the file in which the options for print file conversion are defined.

This file must have the following structure:

[Options]
[ConversionFile=conversion-file]
[MaxLengthLine=maxlength-line]
[MaxLengthPage=maxlength-page]
[CharSet=charset]
[Font=font]

 Note, you need to enter the square brackets as shown here for [options].
All other brackets in this syntax identify, as usual, optional specifications.

conversion-file
Full pathname of the conversion file. You can use the conversion file to
convert strings, see the example no. 3. The file must be located in the same
directory as WTAPrint. It may contain a maximum of 1023 lines; each line
may have a maximum length of 255 characters and must have the form
hex-old=hex-new. hex-old and hex-new are the old and new strings in their full
hexadecimal notation.

maxlength-line
maximum line length. If this value is not specified, the printing file is
analysed for the longest line.
The smallest calculated value is 80.

The option MaxLengthLine will only be processed if the value HARDCOPY for
the method is present (see page 175).

maxlength-page
maximum page length. If this value is not specified, the printing file is
analysed for the longest page.
The smallest calculated value is 60.

The option MaxLengthPage will only be processed if the value HARDCOPY for
the method is present (see page 175).

i

Using print/asynchronous support Print support

WebTransactions for MVS 177

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.k

0
8

charset
Character set identifier in the Windows interface CreateFont.
Default value: 1 (DEFAULT_CHARSET).

You have to specifiy the following identifiers for the character sets:

ANSI_CHARSET 0
ARABIC_CHARSET 178
CHINESEBIG5_CHARSET 136
DEFAULT_CHARSET 1
EASTEUROPE_CHARSET 238
GB2312_CHARSET 134
GREEK_CHARSET 161
HANGEUL_CHARSET 129
HANGUL_CHARSET 129
HEBREW_CHARSET 177
JOHAB_CHARSET 130
OEM_CHARSET 255
RUSSIAN_CHARSET 204
SHIFTJIS_CHARSET 128
SYMBOL_CHARSET 2
THAI_CHARSET 222
TURKISH_CHARSET 162
VIETNAMESE_CHARSET 163

font name of a font, which has to be present on the Windows system. If you
dont’t specify this value, the first font is used, which fulfills the conditions in
the options MaxLengthLine, MaxLengthPage and CharSet. MaxLengthLine
and MaxLengthPage in this case are converted to a font size.

Print support Using print/asynchronous support

178 WebTransactions for MVS

Examples

1. Configuration for terminal hardcopy printing:

MIME type:
webta/hardcopy-print

Assigned program:
WTAPrint.exe "%1" HARDCOPY 0

2. Configuration for bypass printing with conversion:

MIME type:
webta/bypass-print

Assigned program:
WTAPrint.exe "%1" HARDCOPY 0 "C:\webta\conversion.ini"

Options fileconversion.ini:
[Options]
MaxLengthLine=90
ConversionFile=C:\webta\webtaprint.cnv

Conversion file webtaprint.cnv:

65=8080
66=8182
6567=8A

The following rules apply to this file:

– A complete, hexadecimal, 2-digit representation must be used. It must not contain
spaces or other non-hexadecimal characters.

– The longest matching string in the conversion file is always used. If, for example, the
input file contains the string 6567 then, in this example, this is converted to 8A (not
to 808067).

– If a string (xxxx=...) occurs more than once, the last of these strings is used for
replacement.

WebTransactions for MVS 179

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:5

2.
02

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

05
_M

V
S

\e
n\

m
vs

.m
ix

Glossary
A term in ->italic font means that it is explained somewhere else in the glossary.

active dialog
In the case of active dialogs, WebTransactions actively intervenes in the control
of the dialog sequence, i.e. the next ->template to be processed is determined
by the template programming. You can use the ->WTML language tools, for
example, to combine multiple ->host formats in a single ->HTML page. In this
case, when a host ->dialog step is terminated, no output is sent to the ->browser
and the next step is immediately started. Equally, multiple interactions between
the Web ->browser and WebTransactions are possible within one and the same
host dialog step.

array
->Data type which can contain a finite set of values of one data type. This data
type can be:
– ->scalar
– a ->class
– an array
The values in the array are addressed via a numerical index, starting at 0.

asynchronous message
In WebTransactions, an asynchronous message is one sent to the terminal
without having been explicitly requested by the user, i.e. without the user having
pressed a key or clicked on an interface element.

attribute
Attributes define the properties of ->objects.
An attribute can be, for example, the color, size or position of an object or it can
itself be an object. Attributes are also interpreted as ->variables and their values
can be queried or modified.

Glossary

180 WebTransactions for MVS

Automask template
A WebTransactions ->template created by WebLab either implicitly when gener-
ating a base directory or explicitly with the command Generate Automask. It is
used whenever no format-specific template can be identified. An Automask
template contains the statements required for dynamically mapping formats
and for communication. Different variants of the Automask template can be
generated and selected using the system object attribute AUTOMASK.

base directory
The base directory is located on the WebTransactions server and forms the
basis for a ->WebTransactions application. The base directory contains the
->templates and all the files and program references (links) which are necessary
in order to run a WebTransactions application.

BCAM application name
Corresponds to the openUTM generation parameter BCAMAPPL and is the name
of the −>openUTM application through which −>UPIC establishes the
connection.

browser
Program which is required to call and display ->HTML pages. Browsers are, for
example, Microsoft Internet Explorer or Mozilla Firefox.

browser display print
The WebTransactions browser display print prints the information displayed in
the ->browser.

browser platform
Operating system of the host on which a ->browser runs as a client for
WebTransactions.

buffer
Definition of a record, which is transmitted from a ->service. The buffer is used
for transmitting and receiving messages. In addition there is a specific buffer for
storing the ->recognition criteria and for data for the representation on the
screen.

capturing
To enable WebTransactions to identify the received ->formats at runtime, you
can open a ->session in ->WebLab and select a specific area for each format and
name the format. The format name and ->recognition criteria are stored in the
->capture database. A ->template of the same name is generated for the format.
Capturing forms the basis for the processing of format-specific templates for the
WebTransactions for OSD and MVS product variants.

Glossary

WebTransactions for MVS 181

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:5

2.
02

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

05
_M

V
S

\e
n\

m
vs

.m
ix

capture database
The WebTransactions capture database contains all the format names and the
associated ->recognition criteria generated using the ->capturing technique. You
can use ->WebLab to edit the sequence and recognition criteria of the formats.

CGI
(Common Gateway Interface)
Standardized interface for program calls on ->Web servers. In contrast to the
static output of a previously defined->HTML page, this interface permits the
dynamic construction of HTML pages.

class
Contains definitions of the ->properties and ->methods of an ->object. It provides
the model for instantiating objects and defines their interfaces.

class template
In WebTransactions, a class template contains valid, recurring statements for
the entire object class (e.g. input or output fields). Class templates are
processed when the ->evaluation operator or the toString method is applied to a
->host data object.

client
Requestors and users of services in a network.

cluster
Set of identical ->WebTransactions applications on different servers which are
interconnected to form a load-sharing network.

communication object
This controls the connection to an ->host application and contains information
about the current status of the connection, the last data to be received etc.

conversion tools
Utilities supplied with WebTransactions. These tools are used to analyze the
data structures of ->openUTM applications and store the information in files.
These files can then be used in WebLab as ->format description sources in order
to generate WTML templates and ->FLD files.
COBOL data structures or IFG format libraries form the basis for the conversion
tools. The conversion tool for DRIVE programs is supplied with the product
DRIVE.

daemon
Name of a process type in Unix system/POSIX systems which runs in the
background and performs no I/O operations at terminals.

Glossary

182 WebTransactions for MVS

data access control
Monitoring of the accesses to data and ->objects of an application.

data type
Definition of the way in which the contents of a storage location are to be inter-
preted. Each data type has a name, a set of permitted values (value range), and
a defined number of operations which interpret and manipulate the values of
that data type.

dialog
Describes the entire communication between browser, WebTransactions and -
>host application. It will usually comprise multiple ->dialog cycles. WebTransac-
tions supports a number of different
types of dialog.
– ->passive dialog
– ->active dialog
– ->synchronized dialog
– ->non-synchronized dialog

dialog cycle
Cycle that comprises the following steps when a ->WebTransactions application is
executed:
– construct an ->HTML page and send it to the ->browser
– wait for a response from the browser
– evaluate the response fields and possibly send them to the->host application

for further processing
A number of dialog cycles are passed through while a ->WebTransactions appli-
cation is executing.

distinguished name
The Distinguished Name (DN) in ->LDAP is hierarchically organized and
consists of a number of different components (e.g. “country, and below country:
organization, and below organization: organizational unit, followed by: usual
name”). Together, these components provide a unique identification of an object
in the directory tree.
Thanks to this hierarchy, the unique identification of objects is a simple matter
even in a worldwide directory tree:
– The DN "Country=DE/Name=Emil Person" reduces the problem of achiev-

ing a unique identification to the country DE (=Germany).
– The DN "Organization=FTS/Name=Emil Person" reduces it to the organiza-

tion FTS.
– The DN "Country=DE/Organization=FTS/Name=Emil Person" reduces it to

the organization FTS located in Germany (DE).

Glossary

WebTransactions for MVS 183

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:5

2.
02

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

05
_M

V
S

\e
n\

m
vs

.m
ix

document directory
->Web server directory containing the documents that can be accessed via the
network. WebTransactions stores files for download in this directory, e.g. the
WebLab client or general start pages.

Domain Name Service (DNS)
Procedure for the symbolic addressing of computers in networks. Certain
computers in the network, the DNS or name server, maintain a database
containing all the known host names and IP numbers in their environment.

dynamic data
In WebTransactions, dynamic data is mapped using the WebTransactions
object model, e.g. as a ->system object, host object or user input at the browser.

EHLLAPI
Enhanced High-Level Language API
Program interface, e.g. of terminal emulations for communication with the SNA
world. Communication between the transit client and SNA computer, which is
handled via the TRANSIT product, is based on this interface.

EJB
(Enterprise JavaBean)
This is a Java-based industry standard which makes it possible to use in-house
or commercially available server components for the creation of distributed
program systems within a distributed, object-oriented environment.

entry page
The entry page is an ->HTML page which is required in order to start a
->WebTransactions application This page contains the call which starts
WebTransactions with the first ->template, the so-called start template.

evaluation operator
In WebTransactions the evaluation operator replaces the addressed
->expressions with their result (object attribute evaluation). The evaluation
operator is specified in the form ##expression#.

expression
A combination of ->literals, ->variables, operators and expressions which return
a specific result when evaluated.

FHS
Format Handling System
Formatting system for BS2000/OSD applications.

Glossary

184 WebTransactions for MVS

field
A field is the smallest component of a service and element of a ->record or
->buffer.

field file (*.fld file)
In WebTransactions, this contains the structure of a ->format record (metadata).

filter
Program or program unit (e.g. a library) for converting a given ->format into
another format (e.g. XML documents to ->WTScript data structures).

format
Optical presentation on alphanumeric screens (sometimes also referred to as
screen form or mask).

In WebTransactions each format is represented by a ->field file and a ->template.

format type
(only relevant in the case of ->FHS applications and communication via ->UPIC)
Specifies the type of format: #format, +format, -format or *format.

format description sources
Description of multiple ->formats in one or more files which were generated from
a format library (FHS/IFG) or are available directly at the ->host for the use of
“expressive” names in formats.

function
A function is a user-defined code unit with a name and ->parameters. Functions
can be called in ->methods by means of a description of the function interface (or
signature).

holder task
A process, a task or a thread in WebTransactions depending on the operating
system platform being used. The number of tasks corresponds to the number
of users. The task is terminated when the user logs off or when a time-out
occurs. A holder task is identical to a ->WebTransactions session.

host
The computer on which the- >host application is running.

host adapter
Host adapters are used to connect existing ->host applications to
WebTransactions. At runtime, for example, they have the task of establishing
and terminating connections and converting all the exchanged data.

Glossary

WebTransactions for MVS 185

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:5

2.
02

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

05
_M

V
S

\e
n\

m
vs

.m
ix

host application
Application that is integrated with WebTransactions.

host control object
In WebTransactions, host control objects contain information which relates not
to individual fields but to the entire ->format. This includes, for example, the field
in which the cursor is located, the current function key or global format
attributes.

host data object
In WebTransactions, this refers to an ->object of the data interface to the ->host
application. It represents a field with all its field attributes. It is created by
WebTransactions after the reception of host application data and exists until the
next data is received or until termination of the ->session.

host data print
During WebTransactions host data print, information is printed that was edited
and sent by the ->host application, e.g. printout of host files.

host platform
Operating system of the host on which the ->host applications runs.

HTML
(Hypertext Markup Language)
See ->Hypertext Markup Language

HTTP
(Hypertext Transfer Protocol)
This is the protocol used to transfer ->HTML pages and data.

HTTPS
(Hypertext Transfer Protocol Secure)
This is the protocol used for the secure transfer of ->HTML pages and data.

hypertext
Document with links to other locations in the same or another document. Users
click the links to jump to these new locations.

Hypertext Markup Language
(Hypertext Markup Language)
Standardized markup language for documents on the Web.

Glossary

186 WebTransactions for MVS

Java Bean
Java programs (or ->classes) with precisely defined conventions for interfaces
that allow them to be reused in different applications.

KDCDEF
openUTM tool for generating ->openUTM applications.

LDAP
(Lightweight Directory Access Protocol)
The X.500 standard defines DAP (Directory Access Protocol) as the access
protocol. However, the Internet standard “LDAP” has proved successful specif-
ically for accessing X.500 directory services from a PC.
LDAP is a simplified DAP protocol that does not support all the options available
with DAP and is not compatible with DAP. Practically all X.500 directory services
support both DAP and LDAP. In practice, interpretation problems may arise
since there are various dialects of LDAP. The differences between the dialects
are generally small.

literal
Character sequence that represents a fixed value. Literals are used in source
programs to specify constant values (“literal” values).

master template
WebTransactions template used to generate the Automask and the format-
specific templates.

message queuing (MQ)
A form of communication in which messages are not exchanged directly, rather
via intermediate queues. The sender and receiver can work at separate times
and locations. Message transmission is guaranteed regardless of whether or
not a network connection currently exists.

method
Object-oriented term for a ->function. A method is applied to the ->object in
which it is defined.

module template
In WebTransactions, a module template is used to define ->classes, ->functions
and constants globally for a complete ->session. A module template is loaded
using the import() function.

MT tag
(Master Template tag)
Special tags used in the dynamic sections of ->master templates.

Glossary

WebTransactions for MVS 187

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:5

2.
02

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

05
_M

V
S

\e
n\

m
vs

.m
ix

multitier architecture
All client/server architectures are based on a subdivision into individual
software components which are also known as layers or tiers. We speak of
1-tier, 2-tier, 3-tier and multitier models. This subdivision can be considered at
the physical or logical level:
– We speak of logical software tiers when the software is subdivided into

modular components with clear interfaces.
– Physical tiers occur when the (logical) software components are distributed

across different computers in the network.
With WebTransactions, multitier models are possible both at the physical and
logical level.

name/value pair
In the data sent by the ->browser, the combination, for example, of an ->HTML
input field name and its value.

non-synchronized dialog
Non-synchronized dialogs in WebTransactions permit the temporary deacti-
vation of the checking mechanism implemented in ->synchronized dialogs. In this
way, ->dialogs that do not form part of the synchronized dialog and have no
effect on the logical state of the ->host application can be incorporated. In this
way, for example, you can display a button in an ->HTML page that allows users
to call help information from the current host application and display it in a
separate window.

object
Elementary unit in an object-oriented software system. Every object possesses
a name via which it can be addressed, ->attributes, which define its status
together with the ->methods that can be applied to the object.

openUTM
(Universal Transaction Monitor)
Transaction monitor from Fujitsu Technology Solutions, which is available for
BS2000/OSD and a variety of Unix platforms and Windows platforms.

openUTM application
A ->host application which provides services that process jobs submitted by
->clients or other ->host applications. openUTM responsibilities include trans-
action management and the management of communication and system
resources. Technically speaking, the UTM application is a group of processes
which form a logical unit at runtime.
openUTM applications can communicate both via the client/server protocol
->UPIC and via the emulation interface (9750).

Glossary

188 WebTransactions for MVS

openUTM-Client (UPIC)
The openUTM-Client (UPIC) is a product used to create client programs for
openUTM. openUTM-Client (UPIC) is available, for example, for Unix platforms,
BS2000/OSD platforms and Windows platforms.

openUTM program unit
The services of an ->openUTM application are implemented by one or more
openUTM program units. These can be addressed using transaction codes and
contain special openUTM function calls (e.g. KDCS calls).

parameter
Data which is passed to a ->function or a ->method for processing (input
parameter) or data which is returned as a result of a function or method (output
parameter).

passive dialog
In the case of passive dialogs in WebTransactions, the dialog sequence is
controlled by the ->host application, i.e. the host application determines the next
->template which is to be processed. Users who access the host application via
WebTransactions pass through the same dialog steps as if they were accessing
it from a terminal. WebTransactions uses passive dialog control for the
automatic conversion of the host application or when each host application
format corresponds to precisely one individual template.

password
String entered for a ->user id in an application which is used for user authenti-
cation (->system access control).

polling
Cyclical querying of state changes.

pool
In WebTransactions, this term refers to a shared directory in which WebLab can
create and maintain ->base directories. You control access to this directory with
the administration program.

post
To send data.

posted object (wt_Posted)
List of the data returned by the ->browser. This ->object is created by WebTrans-
actions and exists for the duration of a ->dialog cycle.

Glossary

WebTransactions for MVS 189

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:5

2.
02

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

05
_M

V
S

\e
n\

m
vs

.m
ix

process
The term “process” is used as a generic term for process (in Solaris, Linux and
Windows) and task (in BS2000/OSD).

project
In the WebTransactions development environment, a project contains various
settings for a ->WebTransactions application. These are saved in a project file
(suffix .wtp). You should create a project for each WebTransactions application
you develop, and always open this project for editing.

property
Properties define the nature of an ->object, e.g. the object “Customer” could
have a customer name and number as its properties. These properties can be
set, queried, and modified within the program.

protocol
Agreements on the procedural rules and formats governing communications
between remote partners of the same logical level.

protocol file

● openUTM-Client: File into which the openUTM error messages as are writ-
ten in the case of abnormal termination of a conversation.

● In WebTransactions, protocol files are called trace files.

roaming session
->WebTransactions sessions which are invoked simultaneously or one after
another by different ->clients.

record
A record is the definition of a set of related data which is transferred to a ->buffer.
It describes a part of the buffer which may occur one or more times.

recognition criteria
Recognition criteria are used to identify ->formats of a ->terminal application and
can access the data of the format. The recognition criteria selected should be
one or more areas of the format which uniquely identify the content of the
format.

scalar
->variable made up of a single value, unlike a ->class, an ->array or another
complex data structure.

Glossary

190 WebTransactions for MVS

service (openUTM)
In ->openUTM, this is the processing of a request using an ->openUTM appli-
cation. There are dialog services and asynchronous services. The services are
assigned their own storage areas by openUTM. A service is made up of one or
more ->transactions.

service application
->WebTransactions session which can be called by various different users in turn.

service node
Instance of a ->service. During development and runtime of a ->method a service
can be instantiated several times. During modelling and code editing those
instances are named service nodes.

session
When an end user starts to work with a ->WebTransactions application this opens
a WebTransactions session for that user on the WebTransactions server. This
session contains all the connections open for this user to the
->browsers, special ->clients and ->hosts.
A session can be started as follows:
– Input of a WebTransactions URL in the browser.
– Using the START_SESSION method of the WT_REMOTE client/server interface.
A session is terminated as follows:
– The user makes the corresponding input in the output area of this

->WebTransactions application (not via the standard browser buttons).
– Whenever the configured time that WebTransactions waits for a response

from the ->host application or from the ->browser is exceeded.
– Termination from WebTransactions administration.
– Using the EXIT_SESSION method of the WT_REMOTE client/server interface.
A WebTransactions session is unique and is defined by a ->WebTransactions
application and a session ID. During the life cycle of a session there is one
->holder task for each WebTransactions session on the WebTransactions server.

SOAP
(originally Simple Object Access Protocol)
The ->XML based SOAP protocol provides a simple, transparent mechanism
for exchanging structured and typecast information between computers in a
decentralized, distributed environment.
SOAP provides a modular package model together with mechanisms for data
encryption within modules. This enables the uncomplicated description of the
internal interfaces of a ->Web-Service.

Glossary

WebTransactions for MVS 191

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:5

2.
02

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

05
_M

V
S

\e
n\

m
vs

.m
ix

style
In WebTransactions this produces a different layout for a ->template, e.g. with
more or less graphic elements for different->browsers. The style can be changed
at any time during a ->session.

synchronized dialog
In the case of synchronized dialogs (normal case), WebTransactions automati-
cally checks whether the data received from the web browser is genuinely a
response to the last ->HTML page to be sent to the ->browser. For example, if
the user at the web browser uses the Back button or the History function to
return to an “earlier” HTML page of the current ->session and then returns this,
WebTransactions recognizes that the data does not correspond to the current
->dialog cycle and reacts with an error message. The last page to have been
sent to the browser is then automatically sent to it again.

system access control
Check to establish whether a user under a particular ->user ID is authorized to
work with the application.

system object (wt_System)
The WebTransactions system object contains ->variables which continue to
exist for the duration of an entire ->session and are not cleared until the end of
the session or until they are explicitly deleted. The system object is always
visible and is identical for all name spaces.

TAC
See ->transaction code

tag
->HTML, ->XML and ->WTML documents are all made up of tags and actual
content. The tags are used to mark up the documents e.g. with header formats,
text highlighting formats (bold, italics) or to give source information for graphics
files.

TCP/IP
(Transport Control Protocol/Internet Protocol)
Collective name for a protocol family in computer networks used, for example,
in the Internet.

Glossary

192 WebTransactions for MVS

template
A template is used to generate specific code. A template contains fixed infor-
mation parts which are adopted unchanged during generation, as well as
variable information parts that can be replaced by the appropriate values during
generation.
A template is a ->WTML file with special tags for controlling the dynamic gener-
ation of a ->HTML page and for the processing of the values entered at the -
>browser. It is possible to maintain multiple template sets in parallel. These then
represent different ->styles (e.g. many/few
graphics, use of Java, etc.).
WebTransactions uses different types of template:
– ->Automask templates for the automatic conversion of the ->formats of MVS

and OSD applications.
– Custom templates, written by the programmer, for example, to control an -

>active dialog.
– Format-specific templates which are generated for subsequent post-pro-

cessing.
– Include templates which are inserted in other templates.
– ->Class templates
– ->Master templates to ensure the uniform layout of fixed areas on the

generation of the Automask and format-specific templates.
– Start template, this is the first template to be processed in a

WebTransactions application.

template object
->Variables used to buffer values for a ->dialog cycle in WebTransactions.

terminal application
Application on a ->host computer which is accessed via a 9750 or 3270
interface.

terminal hardcopy print
A terminal hardcopy print in WebTransactions prints the alphanumeric repre-
sentation of the ->format as displayed by a terminal or a terminal emulation.

transaction
Processing step between two synchronization points (in the current operation)
which is characterized by the ACID conditions (Atomicity, Consistency, Isolation
and Durability). The intentional changes to user information made within a
transaction are accepted either in their entirety or not at all (all-or-nothing rule).

Glossary

WebTransactions for MVS 193

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:5

2.
02

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

05
_M

V
S

\e
n\

m
vs

.m
ix

transaction code/TAC
Name under which an openUTM service or ->openUTM program unit can be
called. The transaction code is assigned to the openUTM program unit during
configuration. A program unit can be assigned several transaction codes.

UDDI
(Universal Description, Discovery and Integration)
Refers to directories containing descriptions of ->Web services. This information
is available to web users in general.

Unicode
An alphanumeric character set standardized by the International Standardisa-
tion Organisation (ISO) and the Unicode Consortium. It is used to represent
various different types of characters: letters, numerals, punctuation marks, syl-
labic characters, special characters and ideograms. Unicode brings together all
the known text symbols in use across the world into a single character set.
Unicode is vendor-independent and system-independent. It uses either two-
byte or four-byte character sets in which each text symbol is encoded. In the ISO
standard, these character sets are termed UCS-2 (Universal Character Set 2)
or UCS-4. The designation UTF-16 (Unicode Transformation Format 16-bit),
which is a standard defined by the Unicode Consortium, is often used in place
of the designation UCS-2 as defined in ISO. Alongside UTF-16, UTF-8 (Unicode
Transformation Format 8 Bit) is also in widespread use. UTF-8 has become the
character encoding method used globally on the Internet.

UPIC
(Universal Programming Interface for Communication)
Carrier system for openUTM clients which uses the X/Open interface, which
permity CPI-C client/server communication between a CPI-C-Client application
and the openUTM application.

URI
(Uniform Resource Identifier)
Blanket term for all the names and addresses that reference objects on the
Internet. The generally used URIs are->URLs.

URL
(Uniform Resource Locator)
Description of the location and access type of a resource in the ->Internet.

user exit
Functions implemented in C/C++ which the programmer calls from a
->template.

Glossary

194 WebTransactions for MVS

user ID
User identification which can be assigned a password (->system access control)
and special access rights (->data access control).

variable
Memory location for variable values which requires a name and a ->data type.

visibility of variables
->Objects and ->variables of different dialog types are managed by WebTrans-
actions in different address spaces. This means that variables belonging to a -
>synchronized dialog are not visible and therefore not accessible in a
->asynchronous dialog or in a dialog with a remote application.

web server
Computer and software for the provision of ->HTML pages and dynamic data
via ->HTTP.

web service
Service provided on the Internet, for example a currency conversion program.
The SOAP protocol can be used to access such a service. The interface of a
web service is described in ->WSDL.

WebTransactions application
This is an application that is integrated with ->host applications for internet/
intranet access. A WebTransactions application consists of:
– a ->base directory
– a start template
– the ->templates that control conversion between the ->host and the

->browser.
– protocol-specific configuration files.

WebTransactions platform
Operating system of the host on which WebTransactions runs.

WebTransactions server
Computer on which WebTransactions runs.

WebTransactions session
See ->session

WSDL
(Web Service Definition Language)
Provides ->XML language rules for the description of ->web services. In this
case, the web service is defined by means of the port selection.

Glossary

WebTransactions for MVS 195

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
u

li
2

01
0

 S
ta

n
d

09
:5

2.
02

P
fa

d:
 F

:\W
eb

TA
\V

7
.5

\M
an

ua
le

\1
0

03
5

05
_M

V
S

\e
n\

m
vs

.m
ix

WTBean
In WebTransactions ->WTML components with a self-descriptive interface are
referred to as WTBeans. A distinction is made between inline and standalone
WTBeans:
– An inline WTBean corresponds to a part of a WTML document
– A standalone WTBean is an autonomous WTML document

A number of WTBeans are included in of the WebTransactions product, addi-
tional WTBeans can be downloaded from the WebTransactions homepage
ts.fujitsu.com/products/software/openseas/webtransactions.html.

WTML
(WebTransactions Markup Language)
Markup and programming language for WebTransactions ->templates. WTML
uses additional ->WTML tags to extend ->HTML and the server programming
language ->WTScript, e.g. for data exchange with ->host applications. WTML
tags are executed by WebTransactions and not by the ->browser (serverside
scripting).

WTML tag
(WebTransactions Markup Language-Tag)
Special WebTransactions tags for the generation of the dynamic sections of an
->HTML page using data from the->host application.

WTScript
Serverside programming language of WebTransactions. WTScripts are similiar
to client-side Java scripts in that they are contained in sections that are intro-
duced and terminated with special tags. Instead of using ->HTML-SCRIPT tags
you use ->WTML-Tags: wtOnCreateScript and wtOnReceiveScript. This indicates
that these scripts are to be implemented by WebTransactions and not by the
->browser and also indicates the time of execution. OnCreate scripts are
executed before the page is sent to the browser. OnReceive scripts are
executed when the response has been received from the browser.

XML
(eXtensible Markup Language)
Defines a language for the logical structuring of documents with the aim of
making these easy to exchange between various applications.

XML schema
An XML schema basically defines the permissible elements and attributes of an
XML description. XML schemas can have a range of different formats, e.g. DTD
(Document Type Definition), XML Schema (W3C standard) or XDR (XML Data
Reduced).

Glossary

196 WebTransactions for MVS

WebTransactions for MVS 197

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
5

_M
V

S
\e

n\
m

vs
.a

b
k

Abbreviations
BO Business Object

CGI Common Gateway Interface

DN Distinguished Name

DNS Domain Name Service

EJB Enterprise JavaBean

FHS Format Handling System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IFG Interaktiver Format Generator

ISAPI Internet Server Application Programming Interface

LDAP Lightweight Directory Access Protocol

LPD Line Printer Daemon

MT-Tag Master-Template-Tag

MVS Multiple Virtual Storage

OSD Open Systems Direction

SGML Standard Generalized Markup Language

SOAP Simple Object Access Protocol

Abbreviations

198 WebTransactions for MVS

SSL Secure Socket Layer

TCP/IP Transport Control Protocol/Internet Protocol

Upic Universal Programming Interface for Communication

URL Uniform Resource Locator

WSDL Web Services Description Language

wtc WebTransactions Component

WTML WebTransactions Markup Language

XML eXtensible Markup Language

WebTransactions for MVS 199

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

6.
 J

u
li

2
01

0
 S

ta
n

d
09

:5
2.

02
P

fa
d:

 F
:\W

eb
TA

\V
7

.5
\M

an
ua

le
\1

0
03

5
05

_M
V

S
\e

n\
m

vs
.li

t

Related publications

WebTransactions manuals

You can download all manuals from the Web address http://manuals.ts.fujitsu.com.

WebTransactions
Concepts and Functions
Introduction

WebTransactions
Template Language
Reference Manual

WebTransactions
Client APIs for WebTransactions
User Guide

WebTransactions
Connection to openUTM Applications via UPIC
User Guide

WebTransactions
Connection to OSD Applications
User Guide

WebTransactions
Access to Dynamic Web Contents
User Guide

WebTransactions
Web Frontend for Web Services
User Guide

http://manuals.ts.fujitsu.com

Related publications

200 WebTransactions for MVS

Other publications

EDITION PRINT for Windows NT (MATERNA GmbH)
Installation and Configuration
User Guide

Target group
Anyone who wishes to use a print server of the EDITION PRINT product family.
Contents
The manual describes all steps required for installing, configuring, starting and applying
EDITION PRINT products.

WebTransactions for MVS 201

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

y
20

1
0

 S
ta

nd
 0

9
:5

3.
15

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
5_

M
V

S
\e

n
\m

vs
.s

ix

Index

$FIRST (host control object) 119
$MESSAGE (host control object)

PRINTFILE_NAME 122
PRINTING 122
WAITING 122

$NEXT (host control object) 119
$SCREEN (host control object) 119

3270 screen
dynamic conversion 69

A
active dialog 179, 182
application

frame 150
starting 67

APPLICATION_PREFIX (system object
attribute) 98, 113

architecture
WebTransactions 9

array 179
asynchronous message 154, 179
asynchronous support

concept 155
ATTN 126
attribute 179
Automask 10
AUTOMASK (system object attribute) 72, 98
automask template 180

generating (example) 39
automask variants 72
AutomaskMVS.htm 72

variants 72

B
base data type 179
base directory 180

converting to a new version 66
creating 65
example 35

BCAM application name 180
BCAMAPPL 180
BLINKING (host data object attribute) 117
browser 180

terminal functions 123
browser display print 168, 180
browser platform 180
browser print 168

conversion file 171
start template 169, 173

buffer 180
BYPASS (system object attribute) 99

C
Cancel Menu

function 127
value 127

capture database 181
path name 99

capture function 86
CAPTURE_FILE (system object attribute) 99
CAPTURED_FLD (system object attribute) 99
capturing 180
CGI (Common Gateway Interface) 181
class 181

templates 181
CLEAR 126
client 181
close 113

Index

202 WebTransactions for MVS

cluster 181
CODE_PAGE (system object attribute) 99
COLOR (host data object attribute) 118
communication object 181

connection parameters 146
COMMUNICATION_ INTERFACE_VERSION

(system object attribute) 100
connection

opening multiple 146
CONNECTION_INFO (system object

attribute) 100
control frame 150
controls 126
conversion tools 181
create

base directory 65
project 34

cursor position (field information) 119

D
daemon 181
data

dynamic 183
data access control 182
data type 182

input 117
define

epilog 101
form fields 103
prolog 108

dialog 182
active 182
non-synchronized 182, 187
passive 182, 188
synchronized 182, 191
types 182

dialog cycle 182
Disconnect 126
DISCONNECT (system object attribute) 100
distinguished name 182
document directory 183
Domain Name Service (DNS) 183

E
EHLLAPI 183
EJB 183
element name attributes 119
end of screen recognition 100, 101
END_WAIT_CONDITION (system object

attribute) 105
END_WAIT_CONDITION.

CURSOR_IN_COLUMN (system object
attribute) 100

END_WAIT_CONDITION. CURSOR_IN_LINE
(system object attribute) 100

END_WAIT_CONDITION.
CURSOR_NOT_IN_COLUMN (system object
attribute) 100

END_WAIT_CONDITION.
CURSOR_NOT_IN_LINE (system object
attribute) 100

END_WAIT_CONDITION.
FLD_DIFFERENT_FROM (system object
attribute) 100

END_WAIT_CONDITION. FLD_EXPECTED (sys-
tem object attribute) 100

END_WAIT_CONDITION. MATCH_OPERATION
(system object attribute) 101

END_WAIT_CONDITION.
MATCH_STARTCOLUMN (system object
attribute) 101

END_WAIT_CONDITION. MATCH_STARTLINE
(system object attribute) 101

END_WAIT_CONDITION. MATCH_VALUE (sys-
tem object attribute) 101

END_WAIT_CONDITION.EXPECTED_BLOCKS
(system object attribute) 100

ENTER 126
Enter key 119
enter licenses (example) 27
entry page 183
EPILOG (system object attribute) 101
evaluation operator 183
expression 183

F
FHS 183

Index

WebTransactions for MVS 203

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

y
20

1
0

 S
ta

nd
 0

9
:5

3.
15

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
5_

M
V

S
\e

n
\m

vs
.s

ix

field 184
field file 184
field sequence 119
field type 117
FIELD_NAMES (system object attribute) 101
filter 184
first screen line 127
first template see start template
FIRST_IO _TIMEOUT (system object

attribute) 102
FLD (system object attribute) 102
FLD file 88
fld file 184
font size 137
format 184

#format 184
*format 184
+format 184
-format 184

format description source 184
format identifiers see recognition criteria 86
format type 184
FORMTPL (system object attribute) 103
FTP_CODE_PAGE (system object attribute) 103
function 184

doBackTab() 136
doCursorDown() 136
doCursorHome() 136
doCursorLeft() 136
doCursorRight() 136
doCursorUp() 136
doTab() 136
doToggleInsert() 136
doToggleMark() 136
wtCreateKeyMap() 134
wtCreateKeySelectList() 134
wtHandleKeyboard (modifier, keyCode) 134

G
generate

start template 144

H
HARDCOPY (system object attribute) 103

holder task 184
host 184
host adapter 184
host application 185
host control object 119, 185

WT_KEY 126
host data object 115, 185

name 115
short name 116

host data print 162, 165, 185
host object 115
host platform 185
HOST_NAME (system object attribute) 103, 113
HTML 185
HTMLVALUE (host data object attribute) 117
HTTP 185
HTTPS 185
hypertext 185
Hypertext Markup Language (HTML) 185

I
IGNORE_ASYNC (system object attribute) 104
IGNORE_EMPTY_BLOCKS (system object

attribute) 104
IND$FILE (host control object) 120
individual template

pop-up support 91
inline WTBean 195
INPUT (host data object attribute) 117
insert

inline WTBean 146
standalone WTBean 144

installation
host adapter 15
Linux 20
silent 17
Solaris 19
WebLab 21
WebTransactions 15
Windows 16

integrated terminal emulation 10
INTENSITY (host data object attribute) 117
INVERSE (host data object attribute) 117

Index

204 WebTransactions for MVS

J
Java Bean 186

K
KDCDEF 186
key mapping

defining 128
wtKeysMVS.js 128

key support 125

L
LDAP 186
LENGTH (host data object attribute) 117
licensing 21
literals 186
LU_NAME (system object attribute) 104, 113

M
Markable field 127
master template 186, 192

MVS.wmt 70
MVS_Pocket.wmt 70
tag 186

message
receiving 114
sending 114

message queuing 186
message segment sequence 105
method 186
Microsoft SNA Server Manager 165
MIME type 174
MODIFIED (host data object attribute) 117
module template 186
MT tag 186
MULTIPLE_IO_TIMEOUT (system object

attribute) 105
multitier architecture 187
MVS.wmt 70
MVS_Pocket.wmt 70

N
NAME (host data object attribute) 117
name/value pair 187
non-synchronized dialog 182, 187

O
object 187
OFFLINE_COMMUNICATION (system object

attribute) 105, 113
OFFLINE_LOGFILE (system object

attribute) 105, 113
OFFLINE_TRACEFILE (system object

attribute) 105, 113
open 113
openUTM 187

application 187
Client 188
program unit 188
service 190

operations 182

P
PA1 126
PA2 126
PA3 126
PADDING _CHARACTER (system object

attribute) 106
parameter 188
passive dialog 182, 188
password 188
PF1 ... PF24 126
polling 188
pool 188
pop-up box 89, 91
pop-up frame

with semigraphic characters 92
pop-up recognition 94
POPUP.COLUMN (system object attribute) 106
POPUP.HEIGHT (system object attribute) 106
POPUP.HEND (system object attribute) 106
POPUP.HMIDDLE (system object attribute) 106
POPUP.HSTART (system object attribute) 106
POPUP.LINE (system object attribute) 106
POPUP.VEND (system object attribute) 107
POPUP.VMIDDLE (system object attribute) 106
POPUP.VSTART (system object attribute) 106
POPUP.WIDTH (system object attribute) 107
PORT_NUMBER (system object attribute) 107,

113

Index

WebTransactions for MVS 205

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

y
20

1
0

 S
ta

nd
 0

9
:5

3.
15

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
5_

M
V

S
\e

n
\m

vs
.s

ix

posted object 188
posting 188
preparing formats individually 85
Print (wtKeysMVS.htm) 127
print host data 162, 165
print support 158

browser display print 168
concept 159
host data printing 162, 165
terminal hardcopy printing 159
web browser configuration 174

print/asynchronous support 149
enabling 149
functionality 150

PRINTER_APPEND_ FORMFEED (system object
attribute) 107

PRINTER_CODE_PAGE (system object
attribute) 107

PRINTER_CONVERT_ NILS_TO_BLANKS (sys-
tem object attribute) 107

PRINTER_INSERT_ LEADING_FORMFEED
(system object attribute) 107

PRINTER_LU_NAME (system object
attribute) 107

PRINTER_REMOVE_ LEADING_FORMFEED
(system object attribute) 108

PRINTFILE_NAME (system object attribute) 108
process 189
project 189

creating 34
example 34, 40
saving 40

PROLOG (system object attribute) 108
property 189
protocol 189
protocol file 189
pull-down menu, selectable fields 127

R
RangeLength (host data object attribute) 118
RangeName (host data object attribute) 118
RangeStartColumn (host data object

attribute) 118
RAWVALUE (host data object attribute) 117

reading services (example) 23
receive 114
RECEIVED_ BLOCKS (system object

attribute) 108
recognition criteria 86, 189
record 189
record structure 184
RECORD_HOST_COMMUNICATION (system

object attribute) 109, 113
rectangular frames

semi-graphics 84
Refresh 127
REFRESH_BY_ ASYNC (system object

attribute) 109
RESET 126

S
save

project 40
scalar 189
screen field contents 117
semi-graphics 84
send 114
service (openUTM) 190
service node 190
session 190

start templates 140
WebTransactions 190

SOAP 190
special characters 117
special keys 121, 126

mapping 83
standalone WTBean 195

inserting 144
start

session (WebLab) 62
start template 139, 192

generation 144
setting system object attributes 141
wtstartMVS.htm 140

start template set 139
STARTCOLUMN (host data object attribute) 117
STARTLINE (host data object attribute) 117
style 191

Index

206 WebTransactions for MVS

SYNCHRONIZE_ON_EMPTY_BLOCK (system
object attribute) 110

synchronized dialog 182, 191
SYSREQ 126
system access control 191
system object 191

interaction between attributes and calls 113
MVS-specific attributes 97
set attributes in the start template 141

T
TAC 193
tag 191
TCP/IP 191
template 192

class 181
for pop-up box 89
individual generation 85
master 192
object 192
start 192

terminal application 192
terminal connection

opening 113
terminal functions 123
terminal hardcopy printing 159, 192
TERMINAL_TYPE (system object attribute) 111,

113
Thread 184
TRACE_LEVEL (system object attribute) 111
transaction 192
transaction code/TAC 193
TYPE (host data object attribute) 117

U
UDDI 193
UNDERLINE (host data object attribute) 117
Unicode 193
update

base directory 66
UPIC 193
URI 193
URL 193

USE_POPUP_ RECOGNITION (system object
attribute) 111

user exits 193
user ID 194
UTM see openUTM

V
VALUE (host data object attribute) 117
value range of a data type 182
variable 194
visibility 194
VISIBLE (host data object attribute) 117

W
web browser

configuration for print support 174
web server 194
web service 194
WebLab 10

installing 21
WebTransactions

architecture 9
session 190
starting applications 67

WebTransactions application 194
WebTransactions platform 194
WebTransactions server 194
WSDL 194
WT_ASYNC (system object attribute) 111
WT_Browser 137

font size 137
WT_BROWSER_PRINT (system object

attribute) 111
WT_BROWSER_PRINT_ OPTIONS.BOTTOM

(system object attribute) 112
WT_BROWSER_PRINT_ OPTIONS.FOOTER

(system object attribute) 112
WT_BROWSER_PRINT_ OPTIONS.HEADER

(system object attribute) 112
WT_BROWSER_PRINT_ OPTIONS.LEFT (sys-

tem object attribute) 112
WT_BROWSER_PRINT_ OPTIONS.MODE (sys-

tem object attribute) 111

Index

WebTransactions for MVS 207

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
26

. J
ul

y
20

1
0

 S
ta

nd
 0

9
:5

3.
15

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
5_

M
V

S
\e

n
\m

vs
.s

ix

WT_BROWSER_PRINT_ OPTIONS.ORIENTA-
TION (system object attribute) 112

WT_BROWSER_PRINT_ OPTIONS.RIGHT (sys-
tem object attribute) 112

WT_BROWSER_PRINT_ OPTIONS.TOP (system
object attribute) 112

WT_COLOR (host control object) 121
WT_FOCUS (host control object) 116, 120
WT_FOCUS_SHORT (host control object) 120
WT_KEY (host control object) 83, 114, 121
WT_KEY.Key 83, 114
WTAPrint 168
wtasync.htm 151

handling of asynchronous messages 156
print support 160

WTBean 195
wtcMVS 146
wtcStartMVS.wtc 144

wtBrowserFunctions.htm 123
print/asynchronous support 152

wtc_bp_print.cnv 171
wtc_bp_Print.htm 171
wtcMVS 146
wtCommonBrowserFunctions.js 133
wtcStartMVS 144
wtframes.htm 150
wtKeyMappingTableInput 128
wtKeysMVS.htm 83, 123

controls 126
wtKeysMVS.js 83, 126, 128, 131
WTML 195
WTML tag 195
WTScript 195
wtstartMVS.htm 139
WWW browser 180
WWW server 194

X
XML 195
XML schema 195

Index

208 WebTransactions for MVS

	Contents
	Preface
	Product characteristics
	Architecture of WebTransactions for MVS
	WebTransactions documentation
	Structure and target group of this manual
	New features
	Notational conventions

	Installing WebTransactions
	Installation
	Windows
	Installation via the user interface
	Silent installation

	Solaris
	Linux
	WebLab installation

	Licensing

	Example session
	Administering the WebTransactions server
	Setting the browser
	Starting the administration program
	Entering licenses
	Creating users
	Creating a pool
	Assigning the pool to a user

	Connecting a host application to the WWW
	Creating a project
	Creating a base directory
	Generating the automask template

	Saving the project
	Starting a session

	Global modification of display
	Format-specific modifications of display
	Generating a format-specific template with the capture process
	Editing a format-specific template

	Starting a WebTransactions application
	Creating the start template
	Starting a session with WebLab
	Alternative ways of starting a WebTransactions application

	Creating the base directory and starting the WebTransactions application
	Creating a base directory with WebLab
	Starting the WebTransactions application

	Integrating a host application without editing
	Master templates MVS.wmt and MVS_Pocket.wmt
	AutomaskMVS.htm template
	Creating variants of AutomaskMVS.htm
	Structure of AutomaskMVS.htm

	wtKeysMVS.htm template
	wtBrowserFunctions.htm template
	Host application with semi-graphics

	Editing templates
	Capturing with WebLab
	Procedure
	Editing recognition criteria
	Editing the capture database

	Individual templates for pop-up boxes
	Without special pop-up handling: identification problems
	Generating templates for pop-ups

	Controlling communication
	System object attributes
	Overview
	Interaction between system object attributes and methods

	Host objects
	Host data objects
	Host control objects

	Terminal functions supported by the browser
	Terminal functions supported
	Interaction between the host control object WT_KEY, the template wtKeysMVS.htm and the wtKeysMVS.js file
	Mapping keys in wtKeysMVS.js
	Interaction between wtCommonBrowserFunctions.js and wt<browser>BrowserFunctions.js
	Using the WT_BROWSER object

	Start templates for MVS
	MVS-specific start template in the start template set (wtstartMVS.htm)
	WTBean wtcStartMVS.wtc for the generation of a start template

	Creating a new MVS communication object (wtcMVS)

	Using print/asynchronous support
	Enabling print/asynchronous support
	Functionality of print/asynchronous support
	Handling asynchronous messages
	Print support
	Terminal hardcopy printing
	Host data printing
	Concept
	Assigning a printer to a Web browser client

	Host data printing on the Windows WebTransactions platform
	Browser display printing
	Print functions delivered (Windows browser platform)
	Browser print
	WTAPrint print plugin

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

