1 Preface

The ASSEMBH assembler is available as two separate software packages (selectable
units) with different levels of functionality.

ASSEMBH

assembly of assembler source programs into object modules or link-and-load
modules

availability of the standalone listing generator ASSLG in addition to output of listings
in standard format

support for structured programming, i.e. enhancements including macros for
structured programming and listing generator programs for Nassi-Shneiderman
diagrams and structure lists

ILCS interface for structured programming

symbolic debugging of assembler programs by the creation of LSD records for the
Advanced Interactive Debugger AID

support for the ASSEMBH diagnostic routine ASSDIAG

output of structured lists when using the structured programming macros in
ASSEMBH

support for the ESA instructions

ASSEMBH-BC

The ASSEMBH-BC assembiler is the ASSEMBH basic configuration with reduced
functionality.

assembly of assembler source programs into object modules or link-and-load
modules

output of listings in standard format

U5056-J-2125-3-7600

Preface

1.1 Brief product description

ASSEMBH is a two-pass assembler. The structure of the assembler determines how a
source program is processed. This results in a few incompatibilities with ASSEMB V30
(see section 2.4.3, COMPILER-ACTION option).

Listings are generated from internal log information, i.e. from the

Compiler Information File (CIF).

Functions during the first pass of the assembler

All instructions in the source program, including any COPY elements and macro
elements (see "ASSEMBH (BS2000) Reference Manual” [1]), are read in, subjected to a
syntax analysis, and converted into an intermediate language by completing all required
macro processing steps. Listing information related to the source program is stored.

Functions during the second pass of the assembler
The object module is generated from the intermediate language, and object-related
listing information is stored.

Standard listing generator
The standard listing generator creates listings from the internally logged information.

Overview of the data flow of ASSEMBH
The input and output options of ASSEMBH are discussed in chapter 3.

/ISTART-PROGRAM $ASSEMBH

l

Source program,

User control nacro elements,
/ICOMPILE COPY elements
ASSEMBH
Object CIF Job Messages,
module variables ligtings

General data flow of ASSEMBH

2 U5056-J-2125-3-7600

Preface

1.2 Target group

This manual is intended for users wishing to create, use or maintain assembly or macro
language programs in BS2000. A basic knowledge of the operating system is required.

1.3 Summary of contents

This manual describes the use of ASSEMBH in BS2000.

Chapters 2 and 3 deal with assembly using ASSEMBH,;

chapters 4 and 10 describe the support offered for structured programming;
chapters 5 and 6 explain linking, loading and starting, and the associated listings;
chapter 7 explains how programs written in other programming languages can be
interfaced with ASSEMBH programs;

chapters 8 and 9 describe diagnostic and debugging aids, and

the appendix contains the ASSEMBH messages, an overview of the format of the
assembler instructions and a comparison of *COMOPT and COMPILE statements.

The assembly and macro language for the ASSEMBH assembler is described in the
"ASSEMBH (BS2000) Reference Manual” [1].

U5056-J-2125-3-7600 3

Preface

1.4 Changes since the last version of the manual

Various corrections have been made throughout the manual and are not listed
separately.
The most important technical developments and changes are as follows:

The SOURCE-FORMAT=STRUCTURED operand in the LISTING option (see section
2.4.4) is used to generate structured lists (to do this, you must use the structured
programming macros).

The GENERATE statement (see section 2.5) also allows the standalone list generator to
generate structured lists.

The structured list generated using ASSEMBH is described in section 6.5.
The LISTING option has a hew operand NOPRINT-PREFIX (see section 2.4.4).

The ESA instruction set is generated using the INSTRUCTION-SET=BS2000-ESA
operand of the SOURCE-PROPERTIES option (see section 2.4.1.4). For details on ESA
support, see section 5.8.

A module in LLM format is generated using the MODULE-FORMAT=LLM operand of
the COMPILER-ACTION option (see section 2.4.2.1). See sections 3.2 and 6.6 for
additional information.

The YES operand has been replaced by the AID operand in the TEST-SUPPORT option
(see section 2.4.5).

Chapter 5 on "Linking, loading and starting" has been reworked and restructured and
now includes a new section (section 5.2) on "Linking with BINDER".

The list of machine instructions (see the appendix, section 11.3) now includes the ESA
instructions.

Any functional changes and additions to the current product version can be found in the
chapter "Manual supplements".

4 U5056-J-2125-3-7600

Preface

1.5 Notational conventions

The following notational conventions (metalanguage) are used to represent the format
of BS2000 commands and program instructions in this User Guide:

*STD Uppercase letters, digits, and special characters that are
not part of the metalanguage denote keywords or constants,
all of which must be specified in the given form.

name Lowercase letters denote variables, which must be
replaced by current values during input.

YES Underlining is used to identify the default value that is

NO automatically inserted if no explicit specification is made.

YE Braces enclose alternatives. One of the indicated
values must be selected.

INO | If the underlined default value is desired, no

entry is required.

YES / NO A slash between adjacent entries also indicates alternatives
from which one value must be selected.
No specification is needed if the indicated default value
is desired.

[1] Square brackets enclose optional specifications
which may be omitted.

() Parentheses are constants and must be specified.

- This character indicates that the entry of at least one
space character is essential in the syntax.

Ellipses are used to indicate that the preceding unit
may be repeated more than once.

[,--] A comma followed by ellipses means that the preceding
unit may be repeated more than once, but must be
separated by a comma in each case. The square brackets
indicate that the specification is optional.

Note

A different metasyntax is used for the SDF interface (see section 2.3.2).

U5056-J-2125-3-7600 5

2.1

Assembly

Calling ASSEMBH

The assembler processes one source program at a time. A source program consists of
a sequence of instructions (assembler instruction statements, machine instructions,
macro calls and macro instruction statements) and remarks. Each source program may
be made up of one or more assembly units. Individual assembly units in the source
program are separated from one another by means of END instructions. A separate
object module is generated by the assembler for each assembly unit.

The assembler run is controlled by user options as well as the assembly language
instruction statements in the source program.

Once the assembler has been started, the options are read in and evaluated via the
SDF interface (see "Introductory Guide to the SDF Dialog Interface, User Guide" [5] and
"BS2000/0SD-BC Commands" [6]).

*COMOPT control options continue to be supported (see sections 11.4 and 11.5) for
compatibility reasons.

The ASSEMBH-BC and ASSEMBH assemblers are started via the SDF command
interface as follows:

/ISTART-PROGRAM $ASSEMBH

ASSEMBH-BC ASSEMBH

U5056-J-2125-3-7600

Assembly

2.2 Controlling ASSEMBH

221 Simple assembly
Simple assembly means:
an assembler run with one source program containing a single assembly unit.

From the time the assembler is started up to its termination, the assembler is controlled
by options and the contents of the source program. Options are entered via the SDF
statements (//COMPILE...) of SYSSTMT. //END terminates the assembler run.

The following statements are required for an assembler run:

/ISTART-PROG $ASSEMBH
/ICOMPILE...
/IEND

2.2.2 Multiple assembly
Multiple assembly means:
an assembler run with a source program containing more than one assembly unit.

In the case of a multiple assembly, no options are read between the processing of
assembly units, i.e. all assembly units of the source program are assembled with
exactly the same options from start to finish.

The following statements are required for a multiple assembly:

/ISTART-PROG $ASSEMBH
/ICOMPILE...
/IEND

8 U5056-J-2125-3-7600

Assembly

The source program specified via the COMPILE statement must have the following

format:
START
. 1st assembly unit
END
START
. 2nd assembly unit
END

Note

If the source program as well as the options are read in from SYSDTA, the
assembler is restarted instead of a multiple assembly being performed. Use of the
/IEND instruction allows the assembler to be terminated after each assembly unit
without the generation of an EOF.

2.2.3 Restarting the assembler

Restart means:
that several source programs can be assembled in succession with a single call to the
assembler.

Unless they are explicitly overwritten, all option settings from the preceding assembly
(except those for the source program and the output of the object module) remain in
effect. This is achieved by using the restart function of the assembler, which is activated
by means of the following control statements:

/ISTART-PROG $ASSEMBH
/ICOMPILE SOURCE-=...
/ICOMPILE SOURCE-=...

/ICOMPILE SOURCE-=...
J/ICOMPILE SOURCE-=...
J/END

U5056-J-2125-3-7600

SDF interface of ASSEMBH

2.3 SDF interface of ASSEMBH

ASSEMBH is controlled via the SDF interface, i.e. options must be entered in SDF
format. Commands given on the operating system level may be specified in the earlier
ISP format as well as in SDF format.

SDF provides the following options in interactive mode:

— input from the data terminal with user guidance at three different levels, hereafter
called the "menu mode";

— input from the data terminal without user guidance in two different forms, hereafter
called the "expert mode";

— input from a procedure file

The user can temporarily switch from expert mode to menu mode. When working in
menu mode with medium or minimum guidance, a temporary switch to the next-higher
guidance level is also possible.

Inputs from a procedure file are effected in expert mode.

In addition to a temporary switch from one SDF mode to another, it is also possible to
switch modes permanently. This is achieved by means of the following SDF command
(or the SDF statement //MOD-SDF-OPT; see section 2.3):

/MODIFY-SDF-OPTIONS
GUIDANCE=UNCHANGED/EXPERT/NO/MAXIMUM/MEDIUM/MINIMUM

The meaning of each setting is given below:

UNCHANGED
The existing (default) setting applies.

EXPERT Expert mode; the system prompts for the input of commands and
statements with "/" and "/I", respectively; no interactive syntax checking;
detailed error messages; blocked command input. This mode is set by
default following the LOGON command.

NO Expert mode; the system prompts for the input of commands and
statements with "%CMD:" and "%STMT", respectively; interactive syntax
checking (i.e. correction of incorrect inputs without repeating the entire
command); blocked command input (multiple commands separated by
logical end-of-line characters can be issued simultaneously).

MAXIMUM Menu mode; maximum help level, i.e. all operand values with options;
help texts for commands and operands.

MEDIUM Menu mode; all operand values without options; help texts for
commands only.

MINIMUM Menu mode; minimum help level, i.e. only default values of operands; no
options; no help texts.

10 U5056-J-2125-3-7600

SDF interface of ASSEMBH

2.3.1 Processing the operand form

After starting ASSEMBH, the user can respond to the statement prompt by entering a
'?" or specifying //MOD-SDF-OPT GUIDANCE=MAX in order to call up the operand
form of the COMPILE statement, where each operand is queried individually.

PROGRAM : ASSEMBH STATEMENT: COMPILE
SOURCE = *SYSDTA

MACRO-LIBRARY = *NONE

COPY-LIBRARY = *NONE

SOURCE-PROPERTIES = STD

COMPILER-ACTION = MODULE-GENERATION(MODE=STD,MODULE-FORMAT=0M)
MODULE-LIBRARY = *OMF

COMPILATION-INFO = NONE

LISTING = STD

TEST-SUPPORT = NO

COMPILER-TERMINATION = STD

CORRECTION-CYCLE = NO

COMPILATION-SPACE = STD

NEXT = *CONTINUE

*EXECUTE"F3" or + or Next-stmt or *CANCEL"K1"

Some of the important points to be noted in connection with processing the operand
form are summarized below. A detailed description on the use of SDF can be found in
the manual "Introductory Guide to the SDF Dialog Interface, User Guide" [5].

Special inputs

? as an operand value returns help texts and an indication of the value
range for this operand. If the message "CORRECT INCORRECT
OPERANDS" was issued by SDF following a preceding incorrect entry,
the question mark returns additional and more detailed error messages.
The remainder of the line need not be deleted.

! as an operand value resets the default value for the operand in
guestion, assuming the displayed default value was overwritten earlier.
The remainder of the line need not be deleted.

<operand>(An opening parenthesis after an operand that begins a structure outputs
the sub-form for the associated structure. Operands specified after the
opening parenthesis are shown in the sub-form.

- as the last character in an input line causes a continuation line to be
output (see example in section 5.6; up to 9 continuation lines are
possible per operand).

LZF key deletes all characters in the input line as of the cursor.

U5056-J-2125-3-7600

SDF interface of ASSEMBH

Function keys

K1 terminates the current operand form and switches to the one above it in the
hierarchy. Equivalent to *CANCEL in the NEXT line.

K2 interrupts a running program (e.g. the assembler) or a running procedure.

K3 repeats the operand form that was last output. Equivalent to *RESTORE in the
NEXT line.

F2 checks inputs for syntax errors. Equivalent to *TEST in the NEXT line.

F3 executes the current operation. Equivalent to *EXECUTE in the NEXT line.

NEXT line

Below the NEXT line of each menu page is a list of possible specifications. The
concepts are either self-explanatory or explained in the manual "Introductory Guide to
the SDF Dialog Interface, User Guide" [5].

+, — pages forward and backward in the operand form.

++, -- opens the first or last page of the operand form.

*EXECUTE executes the current operation. Equivalent to the F3 key.

*CONTINUE pages forward in the form if the end of the form has not been
reached. Otherwise, the current operation is executed.

*TEST checks inputs for syntax errors. Equivalent to the F2 key.

*CANCEL terminates the current form and switches to the one above it in the

hierarchy. Equivalent to the K1 key.
*RESTORE repeats the form that was last displayed. Equivalent to the K3 key.

<statement>?
executes the current operation and then outputs the operand form
for the specified <statement>. Operand values that have already
been specified are transferred to the operand form.

<statement>
executes the current operation and then the specified <statement>
as well. If no operand values are explicitly specified, the predefined
operand values are carried over.

? switches to the next (higher) help text level for the current input.

12 U5056-J-2125-3-7600

SDF interface of ASSEMBH

*DOWN(<operand>)
displays the sub-form for the specified <operand>, which is defined
in a structure.

*UP switches from the sub-form back to the operand form that precedes
it in the hierarchy.

Example

The example below illustrates how the operand form of the COMPILE statement is
processed. A source program named testl, which resides as an element with version
number 6 in the PLAM library plamlib, is to be assembled.

The assembled program, the object module, and the assembler listing are to be output
to the PLAM library plamlib.

The name and location of the source program are specified with the SOURCE option;
the location of the object module is specified with the MODULE-LIBRARY option, and
the location of the assembler listing with the LISTING option.

The options of the COMPILE statement are described in section 2.4.

ASSEMBH is started. When the statement prompt (//) appears, entering a question
mark causes the operand form for the COMPILE statement to be displayed.

/ START-PROG $ASSEMBH

% BLS0500 PROGRAM 'ASSEMBH’, VERSION 'V1.xxxx’ OF 'yyyy-mm-dd’ LOADED.

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991. ALL
RIGHTS RESERVED

% ASS6010 V 1l.xxxx OF BS2000 SIEMENS ASSEMBH READY

%ll ?

PROGRAM : ASSEMBH STATEMENT: COMPILE
SOURCE = *SYSDTA

MACRO-LIBRARY = *NONE

COPY-LIBRARY = *NONE

SOURCE-PROPERTIES = STD

COMPILER-ACTION = MODULE-GENERATION(MODE=STD,MODULE-FORMAT=0M)
MODULE-LIBRARY = *OMF

COMPILATION-INFO = NONE

LISTING = STD

TEST-SUPPORT = NO

COMPILER-TERMINATION = STD

CORRECTION-CYCLE = NO

COMPILATION-SPACE = STD

NEXT = *CONTINUE
*EXECUTE"F3" or + or Next-stmt or *CANCEL"K1"

U5056-J-2125-3-7600 13

SDF interface of ASSEMBH

The possible operands for each option can be queried. For example, we could enter a
guestion mark for the SOURCE and LISTING options:

PROGRAM : ASSEMBH STATEMENT: COMPILE
SOURCE =?SYSDTA
MACRO-LIBRARY = *NONE
COPY-LIBRARY = *NONE
SOURCE-PROPERTIES = STD
COMPILER-ACTION = MODULE-GENERATION(MODE=STD,MODULE-FORMAT=0M)
MODULE-LIBRARY = *OMF
COMPILATION-INFO = NONE
LISTING = ?TD
TEST-SUPPORT = NO
COMPILER-TERMINATION = STD
CORRECTION-CYCLE = NO
COMPILATION-SPACE = STD
NEXT = *CONTINUE
*EXECUTE"F3" or + or Next-stmt or *CANCEL"K1"

The possible operands are output:

PROGRAM : ASSEMBH STATEMENT: COMPILE
OPERANDS : SOURCE=*SYSDTA,LISTING=STD

SOURCE = *SYSDTA
*SYSDTA or full-flename_1..54 or *LIBRARY-ELEMENT(LIBRAR

Y=?,ELEMENT=?)
specification of the file containing the source

MACRO-LIBRARY = *NONE

COPY-LIBRARY = *NONE

SOURCE-PROPERTIES = STD

COMPILER-ACTION = MODULE-GENERATION(MODE=STD,MODULE-FORMAT=0M)
MODULE-LIBRARY = *OMF

COMPILATION-INFO = NONE

LISTING = STD

STD or PARAMETERS()
selection of size and structure of the standard listing

TEST-SUPPORT = NO
COMPILER-TERMINATION = STD
CORRECTION-CYCLE = NO
COMPILATION-SPACE = STD

NEXT = *CONTINUE
*EXECUTE"F3" or + or Next-stmt or *CANCEL"K1"

14 U5056-J-2125-3-7600

SDF interface of ASSEMBH

We now enter the operand values for the following options:

SOURCE: library name plamlib and element name test1 with version 6
MODULE-LIBRARY: library name plamlib

LISTING: library name plamlib

PROGRAM : ASSEMBH STATEMENT: COMPILE
OPERANDS : SOURCE=*SYSDTA,LISTING=STD

SOURCE =(plamlib,test1(6))
*SYSDTA or full-filename_1..54 or *LIBRARY-ELEMENT(LIBRAR
Y=?,ELEMENT=?)
specification of the file containing the source

MACRO-LIBRARY = *NONE

COPY-LIBRARY = *NONE

SOURCE-PROPERTIES = STD

COMPILER-ACTION = MODULE-GENERATION(MODE=STD,MODULE-FORMAT=0M)
MODULE-LIBRARY =plamlib

COMPILATION-INFO = NONE

LISTING = par(output=(plamlib))

STD or PARAMETERS()
selection of size and structure of the standard listing

TEST-SUPPORT = NO
COMPILER-TERMINATION = STD
CORRECTION-CYCLE = NO
COMPILATION-SPACE = STD

NEXT = *CONTINUE
*EXECUTE"F3" or + or Next-stmt or *CANCEL"K1"

% ASS6011 ASSEMBLY TIME: 183 MSEC

% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT : NO ERRORS

% ASS6006 LISTING-GENERATOR TIME : 531 MSEC

%ll

Following the assembly, the assembler will once again issue a statement
prompt. The assembler run can now be terminated with the END statement.

%I/l END
% ASS6012 END OF ASSEMBH

U5056-J-2125-3-7600 15

SDF interface of ASSEMBH

2.3.2 Metasyntax for the SDF interface

The format overview of the COMPILE statement (see section 2.4) is divided into two
fields. The first field contains the COMPILE statement (COMPILE); the second field
contains the possible options together with the operand values.

The meanings of special characters (so-called metacharacters) used in the format are
explained in the table below:

Designation Yeaning Ekamples
UPPERCASE Uppercase letters denote LITERAL = YES
keywords. Some keywords
begin with * JOURCE = *SYSDTA
= The equal sign WODULE-LIBRARY = *OMF

associates an operand
name with the associated
operand value.

< > Angle brackets identify VEREION = <text 1..24>
variables for which value
sets are defined by data
types and their suffixes
(see tables 2 and 3).

Underlining Underlining is used to LISTING = STD
indicate the default value
of an operand.

/ A slash separates LASER-PRINTER = NO / ND2
alternative operand values.

(...) Harentheses identify SYMBQL = NO / YES(...)
operand values that
introduce a structure.

Indentation Indentation shows the SYMBPL = NO / YES(...)
respective relationship
with each higher-ranking YES(...)
operand.

16 U5056-J-2125-3-7600

SDF interface of ASSEMBH

Designation

Yeaning

Ekamples

list-poss(n):

Al

The vertical bar identifies
related operands of a
structure. Each bar indi-
cates the start and end of
a structure, within which
further structures may
occur. The number of
vertical bars before an
operand indicates the

level of the structure.

The comma precedes other
operands at the same
structural level.

st can be constructed
from the operand values
that follow list-poss. If
(n) is specified, a maximum
of n elements may appear
in the list. If the list
includes more than one
element, it must be
enclosed in parentheses.

list-poss:

*LIBRARY-ELEMENT(...)

| IBRARY =

ELEMENT =

I\/ERSION =

JMITERAL = NO / YES

,MAGRO = NO / YES

<fyll-filename> / *LINK

list-poss(256): <name 1..1>

Note

Constant operand values sometimes begin with an asterisk (*). This applies if an
alternative to the constant is a data type whose character set allows the string of
the constant to be specified.

Example

ELEMENT = *ALL / <name>

The value "ALL" may be inserted for the data type name. To enable
differentiation, the constant operand value of the same name must therefore
begin with an asterisk (*) : *ALL

U5056-J-2125-3-7600

17

SDF interface of ASSEMBH

Data types and suffixes

Data type

Character set

Meaning

full-filename 1..54

z ,0-09,
$, # ©@,
period, hyphen

Fully qualified name of a cataloged
file, a PLAM library, or a library
ement.

It is not possible to use an

underscore in element names as in LMS.

The first character must be a digit

or letter; the last character must

not constitute a hyphen or period.

Furthermore, the name must not be

made up of only digits or special

characters. The maximum length,
including the user-id and cat-id,
must not exceed 54 characters.

full-filename 1..8

z ,0-09,
$ # @,
period, hyphen

Link name of a cataloged file or PLAM
library. The first character must

bnsist of a letter or digit; the

last character must not be a hyphen
or period. Names made up of only
digits or special characters are

illegal. The maximum permissible

length is 8 characters.

composed-name 1..24

A-Z ,0-09,
$, # @,
period, hyphen

Version designation of a PLAM
library element.
he maximum length is equal to 24
characters.
The character set supported by LMS
may be used.

composed-name 1.64 |A-2Z ,0-09, Name of a PLAM library element.
$, # ©@,
hyphen
name 1..64 A-2Z ,0-09, Prefix for macro and address names.
$ # @ As of SDF V2.0 an underscore is
also possible.
integer 2..255 -9 bcifies an interval (0-32767)
c-string EBCDIC tring of EBCDIC characters enclosed
(character-string) acters in single quotes. The string may be

prefixed with the letter C.

U5056-J-2125-3-7600

SDF interface of ASSEMBH

The data types can have the following suffixes:

Suffix Meaning
1.n Permitted number of characters.
integer m..n Bpecifies an interval.
without
-gen(eration) o file generation or file generation group may
be specified.
-vers(ion) No element version may be specified.
-cat-id No catalog identification may be specified.
Note
_ On 1@1

As of PLAM V1.4,’@’ may no longer be specified as a version for object module

output.

U5056-J-2125-3-7600

19

COMPILE statement

2.4

COMPILE statement

This statement controls the assembly of an assembler source program. It includes the

following operands at the topmost structural level:

COMPILE

For input support:

SOURCE =
,MACRO-LIBRARY =
,COPY-LIBRARY =
,SOURCE-PROPERTIES =

For module generation:

,COMPILER-ACTION =
,MODULE-LIBRARY =

For CIF support:
,COMPILATION-INFO =

Fo

=

listing support:

,LISTING =

For debugging support:
,TEST-SUPPORT =

For terminating the assembly:

,COMPILER-TERMINATION =

Fo

=

activating the correction cycle:

,CORRECTION-CYCLE =

For maintenance support:
,MAINTENANCE-OPTIONS =

For reducing the virtual address space requirement:

,COMPILATION-SPACE =

20

U5056-J-2125-3-7600

COMPILE statement

24.1 Input support options

These options define the source program to be assembled, the macro libraries of the
user, and libraries for COPY elements, along with the format of the source program, the
instruction set, and a value for the global system variable symbol &SYSPARM.

COMPILE

SOURCE = source program

,MACRO-LIBRARY = user macro libraries

,COPY-LIBRARY = libraries for COPY elements

,SOURCE-PROPERTIES = format of the source program, instruction set,
value for &SYSPARM

U5056-J-2125-3-7600 21

SOURCE option COMPILE statement

24.1.1 SOURCE option

Function

The SOURCE option can be used to specify from where the source program is to be
read. If this option is omitted, the source program is read from SYSDTA.

Format

COMPILE

SOURCE = *SYSDTA
*SYSDTA-AFTER-BREAK /
<full-filename 1..54> /
*LIBRARY-ELEMENTY(...)
*LIBRARY-ELEMENTY(...)
LIBRARY = <full-filename 1..54 without-gen-vers>
LELEMENT = <composed-name 1..64>(...)

VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24>

SOURCE = *SYSDTA
The source program is read from SYSDTA.

SOURCE = *SYSDTA-AFTER-BREAK

An interrupt is generated after the options are read, and SYSDTA can be assigned via
SYSCMD by using the ASSIGN-SYSDTA command. The source program will then be
read via SYSDTA. The new assignment of SYSDTA will, however, only take effect after
all options have been processed.

SOURCE = <full-filename 1..54>
Name of a cataloged file containing the source program.

SOURCE = *LIBRARY-ELEMENTY(...)

LIBRARY = <full-filename 1..54>
Name of a PLAM library containing the source program.

22 U5056-J-2125-3-7600

COMPILE statement

SOURCE option

ELEMENT = <composed-name 1..64>(...)
Name of an S-type (source program) element of the specified PLAM library.

VERSION = *HIGHEST-EXISTING
The element with the highest existing version is used.

VERSION = *UPPER-LIMIT
The element with the highest possible version is used.

VERSION = <composed-name 1..24>
Version designation of the element.

Notes

— On entering operands:

The input of *LIBRARY-ELEMENT (LIBRARY=...,ELEMENT=...)' may be omitted
when specifying a library element.

Example

The entry:

/IC SOURCE=*LIBRARY-ELEMENT(LIBRARY=lib,ELEMENT=element(VERSION=007))
can also be written as

/IC SOURCE=(lib,element(007))

— On libraries

In addition to PLAM libraries, OSM source program libraries are allowed.

U5056-J-2125-3-7600

23

MACRO-LIBRARY option COMPILE statement

24.1.2 MACRO-LIBRARY option
Function
The MACRO-LIBRARY option can be used to specify a maximum of 100 user-own
PLAM libraries from which macro elements are to be read (PLAM library elements of
type M).
Format
COMPILE
MACRO-LIBRARY =_*NONH
list-poss(100): <full-filename 1..54 without-gen-vers> /
*LINK(...)
*LINK(...)
LINK-NAME = <full-flename 1..8 without-gen-vers>
MACRO-LIBRARY = *NONE
No user-own macro library is assigned.
MACRO-LIBRARY = list-poss(100): <full-filename 1..54>
Names of the PLAM libraries which contain the macro elements.
MACRO-LIBRARY = list-poss(100): *LINK(...)
LINK-NAME = <full-filename 1..8>)
Designates the assigned link name of a macro library.
24 U5056-J-Z125-3-7600

COMPILE statement MACRO-LIBRARY option

Notes

— On the search order:
See "Search order for macro elements" in section 3.1.2.

— On list-possible
It is possible to mix library names and link names in a list.

Example

/SET-FILE-LINK LINK-NAME=maclink,FILE-NAME=maclib

The link name maclink is assigned to the macro library maclib.
/IC MAC-LIB=(maclibl,maclib2,*LINK(maclink))

The macro libraries maclibl and maclib2 are assigned together with the macro
library maclib, which is assigned via the link name maclink.

— On libraries
Besides the PLAM libraries, OSM macro libraries in MLU format are allowed.

U5056-J-2125-3-7600

25

COPY-LIBRARY option COMPILE statement

24.1.3

COPY-LIBRARY option
Function

The COPY-LIBRARY option can be used to specify up to 100 user-own PLAM libraries
from which COPY elements are to be read (PLAM library elements of type S or M).

Format

COMPILE

COPY-LIBRARY = *NONE/
list-poss(100):
<full-filename 1..54 without gen-vers>(...) /
*LINK(...)
<full-filename 1..54 without gen-vers>(...)
ELEMENT-TYPE = SOURCE-ONLY / MACRO-ONLY_/ BOTH
*LINK(...)

LINK-NAME = <full-flename 1..8 without-gen-vers>

,ELEMENT-TYPE = SOURCE-ONLY / MACRO-ONLY / BOTH

COPY-LIBRARY =*NONE
No user-own COPY library is assigned.

COPY-LIBRARY = list-poss(100): <full-filename 1..54>(...)
Name of the PLAM library containing the COPY elements.

ELEMENT-TYPE = SOURCE-ONLY / MACRO-ONLY / BOTH
Names the type (S, M) of the COPY elements to be read from the specified libraries
(in the case of BOTH, first S, then M).

COPY-LIBRARY = *LINK(...)

LINK-NAME = list-poss(100): <full-filename 1..8>
Designates the assigned link name of a COPY library.

ELEMENT-TYPE = SOURCE-ONLY / MACRO-ONLY / BOTH
Names the type (S, M) of the COPY elements which are to be read from the
specified libraries (in the case of BOTH, first S, then M).

26

U5056-J-2125-3-7600

COMPILE stateme

nt COPY-LIBRARY option

Notes

— On the search order:

See "Search order for COPY elements" in section 3.1.3.

— Onthe ELEMENT-TYPE entry

The ELEMENT-TYPE entry is only valid for the library specified in each case.

— On list-possible

It is possible to mix library names and link names in a list.
Example

/SET-FILE-LINK LINK-NAME=coplink,FILE-NAME=coplib

The link name coplink is assigned to the library coplib.

/IC COPY-LIB=(coplib1(ELEM-TYPE=MAC-O),coplib2,*LINK(coplink))

The libraries coplibl and coplib2 are assigned directly; the library coplib is
assigned via the link name coplink.

— On libraries

In addition to the PLAM libraries, OSM source program libraries and OSM macro
libraries in MLU format are permitted.

U5056-J-2125-3-7600

27

SOURCE-PROPERTIES option

COMPILE statement

24.14

SOURCE-PROPERTIES option
Function

The SOURCE-PROPERTIES option can be used to define the format of the source
program, the instruction set, and a value for the system variable symbol &SYSPARM.

Format

COMPILE

SOURCE-PROPERTIES = STD PARAMETERS(...)
PARAMETERS(...)
FROM-COLUMN = 1 <integer 1..70>
,TO-COLUMN = 71/ <integer 2..255>
,CONTINUATION-COLUMN =_16/ <integer 1..255> / NO-CONTINUATION
,LOW-CASE-CONVERSION = NG YES

INSTRUCTION-SET = HOST-STD / BS2000-ESA / BS2000-XS / BS2000-NXS
/ DUET

,PREDEFINED-VARIABLES = NONE/ SYS(...)

SYS(...)

SYSPARM = <c-string 1..255>

SOURCE-PROPERTIES = STD
The default values of the PARAMETERS(...) structure are used.

SOURCE-PROPERTIES = PARAMETERS(...)

FROM-COLUMN =1 / <integer 1..70>
Defines the begin column for the assembly of a source line.

TO-COLUMN =71 / <integer 2..255>
Defines the end column for the assembly of a source line.

28

U5056-J-2125-3-7600

COMPILE statement SOURCE-PROPERTIES option

CONTINUATION-COLUMN = 16 / <integer 1..255>/ NO-CONTINUATION
Defines the begin column for the continuation line of an instruction in the source.
No continuation line is used if NO-CONTINUATION is selected.

LOW-CASE-CONVERSION = NO / YES
If YES, lowercase letters are converted to uppercase (see "ASSEMBH (BS2000)
Reference Manual" [1]).

INSTRUCTION-SET = HOST-STD / BS2000-ESA / BS2000-XS / BS2000-NXS /
DUET

Defines the instruction set to be used (see section 11.3).

Depending on the hardware/software interface of the CPU, BS2000-ESA, BS2000-XS
or BS2000-NXS is used for HOST-STD.

PREDEFINED-VARIABLES = NONE / SYS(...)
Passes external user information to a system symbol.

SYSPARM = <c-string 1..255>
Assigns a value to the system variable symbol &SYSPARM.

Notes

— On entering operands
The 'SOURCE-PROPERTIES’ and 'PARAMETERS()’ entries may be omitted.

Example

The complete specification

/IC SOURCE-PROPERTIES=PARAMETERS(FROM-COLUMN=2)
can be written as

/IC SOURCE-PROPER=(FROM-COLUMN=2) or

/IC S-PRO=(2) or

/IC FROM-COLUMN=2

'PREDEFINED-VARIABLES' and SYS() may also be omitted when entering
'SYSPARM'.

Example
An alternative way of entering
/IC S-PRO=PREDEFINED-VARIABLES(SYS(SYSPARM="100")) is

/IC S-PRO=(SYSPARM='100)

U5056-J-7125-3-7600 29

SOURCE-PROPERTIES option COMPILE statement

— On the format of the source program
If NO-CONTINUATION is selected, lines will not be continued in the next line.
Otherwise, the continuation character must be entered in the end column + 1,
and the continuation line must begin as of the continuation column. The following
rule must be observed:

begin column < continuation column < end column
The begin column must always be less than the end column.

Default values apply if an illegal entry is made.

— On column specifications

For macro elements
In the case of inputs from macro elements, FROM-COLUMN, TO-COLUMN, and
CONTINUATION-COLUMN are predefined according to standard format as 1,
71, and 16, respectively. This generally applies to all macro elements (from
system macro libraries and user-own macro libraries).

For source deck macros
A macro definition in the source text is processed as a source line, i.e. the
options set for the source text apply.

For COPY elements
COPY elements are read in the same way as the line containing the COPY
instruction statement. This means that a COPY instruction in the source text or
in a source deck macro is processed like a line of source, i.e. with the same
options in effect as those that were set for the source text. A COPY instruction
in a library macro is read in standard format.

30 U5056-J-2125-3-7600

COMPILE statement

Options for object module generation

2.4.2 Options for object module generation

These options control the output of an object module or link-and-load module

COMPILE

,COMPILER-ACTION =
,MODULE-LIBRARY =

generation of object module or link-and-load module
library for modules

U5056-J-2125-3-7600

31

COMPILER-ACTION option COMPILE statement

2421 COMPILER-ACTION option

Function
The COMPILER-ACTION option determines whether an object module or linkand-load
module is to be generated or only a syntax check performed.
Format

COMPILE

COMPILER-ACTION = _MODULE-GENERATIQN) / SYNTAX-CHECK(...)

MODULE-GENERATIQN.)
MODE =_STD F-ASSEMB-COMPATIBLE
,MODULE-FORMAT = OM LLM(...)
LLM(...)
EXTERNAL-NAMES = STD TRUNCATED
SYNTAX-CHECK(...)
MODE = STDY F-ASSEMB-COMPATIBLE

COMPILER-ACTION = MODULE-GENERATION(...)

MODE = STD

A syntax check is performed, and a module is generated.

MODE = F-ASSEMB-COMPATIBLE

Specific incompatibilities with the F-Assembler (ASSEMB) are prevented by

specifying this operand. Processing is then compatible with ASSEMB V30.0A.

MODULE-FORMAT = OM

A module in OM format (object module format) is generated, which is stored either

in the temporary EAM object module file (default) or as an R-type library element

(see the MODULE-LIBRARY option).

32

U5056-J-2125-3-7600

COMPILE statement COMPILER-ACTION option

MODULE-FORMAT = LLM(...)

EXTERNAL-NAMES = STD / TRUNCATED

A module is generated in LLM format (link-and-load module format).
External names are truncated to 32 characters (STD) or 8 characters
(TRUNCATED). It can be stored only as an (L-type) library element (see the
MODULE-LIBRARY option).

COMPILER-ACTION = SYNTAX-CHECK(...)

MODE = STD
No module is generated; only a syntax check is performed.

MODE = F-ASSEMB-COMPATIBLE
Specific incompatibilities with the F-Assembler (ASSEMB) are prevented by
specifying this operand. Processing is then compatible with ASSEMB V30.0A.

Notes

On F-ASSEMB-COMPATIBLE

The programs concerned should be modified since this operand will be dropped
in the future.

On specific incompatibilities

The processing of SETA and SETB operands is compatible with the F-Assembler.

The notation C'..." is permitted in SETA, SETB, and relational expressions. The C
is ignored.

If a character value cannot be converted, no message is issued. The
replacement value null is used for further computations.

Incorrect operands for SPACE and EJECT are ignored.

Remarks with MNOTE
If the delimiting blank between the MNOTE operands and the remarks field is
missing, everything that follows the closing single quote will be treated as a
remark. Errors concerning unpaired quotes are not detected.

U5056-J-2125-3-7600

33

MODULE-LIBRARY option COMPILE statement

2422 MODULE-LIBRARY option

Function

The MODULE-LIBRARY option can be used to specify where the module (object
module or link-and-load module) is to be output.

Format

COMPILE

MODULE-LIBRARY =_*OMF <full-flename 1..54 without gen-vers>(...)
<full-filename 1..54 without gen-vers>(...)

ELEMENT = *STD..) /
<composed-name 1..64>(...)

*STD(...)

VERSION = *UPPER-LIMIT / *INCREMENT / *HIGHEST-EXISTING /
<composed-name 1..24>

<composed-name 1..64>(...)

VERSION = *UPPER-LIMIT / *INCREMENT / *HIGHEST-EXISTING /
<composed-name 1..24>

MODULE-LIBRARY =*OMF
The object module is placed in the temporary EAM object module file.

MODULE-LIBRARY = <full-filename 1..54 without gen-vers>(...)

Name of the PLAM library in which the object module (OM format) or link-and-load
module (LLM format) is to be placed. For LLMs, the MODULE-LIBRARY option must be
used to specify a library. If no library is specified, a message is issued.

ELEMENT = *STD(...)

Name of the object module (library element of type R) or link-and-load module
(library element of type L). The element is assigned the name of the first control
section. If the first control section is unnamed, no module is generated, and an
appropriate message is issued.

VERSION = *UPPER-LIMIT
The element is assigned the highest possible version.

34 U5056-J-2125-3-7600

COMPILE statement MODULE-LIBRARY option

VERSION = *INCREMENT
The element is assigned the incremented version.

VERSION = *HIGHEST-EXISTING
The element is assigned the highest existing version.

VERSION = <composed-name 1..24>
Version designation of the element.

ELEMENT = <composed-name 1..64>(...)
Name of the element.

VERSION = *UPPER-LIMIT
The element is assigned the highest possible version.

VERSION = *INCREMENT
The element is assigned the incremented version.

VERSION = *HIGHEST-EXISTING
The element is assigned the highest existing version.

VERSION = <composed-name 1..24>
Version designation of the element.

Notes

— On the length of the element name
Only element names with a maximum of 8 characters are currently processed by
the linkage editor TSOSLNK. For further processing with the BINDER linkage
editor or the DBL linking loader, element names of LLMs can be up to 32
characters long.

— On'@’
As of PLAM V1.4, '@’ may no longer be specified as a version for object module
output.

— On VERSION = *INCREMENT (incremented version)
See version designation *INCREMENT and automatic version incrementation in
the "LMS User Guide" [8].

U5056-J-2125-3-7600

COMPILATION-INFO option COMPILE statement

2.4.3 Option for CIF support
COMPILATION-INFO option
Function
This option controls whether the CIF information is to be stored in a PLAM library.
Format
COMPILE
COMPILATION-INFO = NONE/ PARAMETERS(...)
PARAMETERS(...)
INFORMATION =_STD/ MAXIMUM
,OUTPUT = *LIBRARY-ELEMENT(...)
*LIBRARY-ELEMENT(...)
LIBRARY = <full-flename 1..54 without gen-vers>
LELEMENT = <composed-name 1..64>(...)
VERSION = *UPPER-LIMIT / *INCREMENT /
*HIGHEST-EXISTING / <composed-name 1..24>
COMPILATION-INFO = NONE
The CIF is only created temporarily in order to generate the listing.
COMPILATION-INFO = PARAMETERS(...)
INFORMATION = STD / MAXIMUM
Defines the scope of information in the CIF.
Meaning of STD: only the information that was requested in the listing operand is
provided.
Meaning of MAXIMUM: the entire information is made available. This has no effect
on the standard listing, which is controlled via the LISTING operand.
36 U5056-J-Z125-3-7600

COMPILE statement COMPILATION-INFO option

OUTPUT = *LIBRARY-ELEMENTY(...)

LIBRARY = <full-filename 1..54 without gen-vers>
Name of a PLAM library in which the CIF information is stored.

ELEMENT = <composed-name 1..64>(...)
Name of the library element (type H).

VERSION = *UPPER-LIMIT
The element is assigned the highest possible version.

VERSION = *INCREMENT
The element is assigned the incremented version.

VERSION = *HIGHEST-EXISTING
The element is assigned the highest existing version.

VERSION = <composed-name 1..24>
Version designation of the element.

Notes

— On the formation of element names in a multiple assembly

In the case of a multiple assembly, a separate CIF element is stored in the
specified library for each assembly unit. The element name for the n-th assembly
unit (where n= 2) is formed by appending '.n’ to the CIF element name of the
first assembly unit:

cifelementname.n (the version remains the same)

— On VERSION = *INCREMENT (incremented version)

See version designation *INCREMENT and automatic version incrementation in
the "LMS User Guide" [8].

U5056-J-2125-3-7600

37

LISTING option COMPILE statement

24.4

Option for listing support
LISTING option
Function

The LISTING option is used to specify the layout and scope of the assembler listing
and where it is to be stored.

Format

COMPILE

LISTING = STD / PARAMETERS(...)
PARAMETERS(...)

SOURCE-PRINT = NO / WITH-OBJECT-CODE.) / SOURCE-ONLY(...) /
ERRORS-ONLY(...)

WITH-OBJECT-CODE(...)

PRINT-STATEMENTS =_ACCEPTED IGNORED
LINE-NUMBERING = NO/ YES

SOURCE-ONLY(...)

PRINT-STATEMENTS = ACCEPTED IGNORED
LINE-NUMBERING = NO/ YES

ERRORS-ONLY(...)

LINE-NUMBERING = NO/ YES
,SOURCE-FORMAT = STD STRUCTURED(...)
STRUCTURED(...)

EVALUATED-NEST-LEVEL = 1/ ALL

JINDENTATION-AMOUNT = 2/ <integer 1..8>

,FIXED-AREA-START = NONE / <integer 60..255>

,STRUCT-MACRO-PRINT = _STD/ OBJECT-CODE-ONLY /
WITH-OBJECT-CODE / NO-OBJECT-CODE

,MACRO-PRINT = STD/ PARAMETERS(...)
PARAMETERS(...)

NOPRINT-NEST-LEVEL = 255 / <integer 1..255>
,NOPRINT-PREFIX = *NONE / list-poss(256): <name 1..64>
,TITLE-STATEMENTS = ACCEPTED / IGNORED
,MACRO-ORIGIN-INFO = SEPARATE / INSERTED

continued>

38

U5056-J-2125-3-7600

COMPILE statement

LISTING option

continued

MIN-MESSAGE-WEIGHT = NOTE / WARNING / SIGNIFICANT/ SERIOUS / FATAL
,CROSS-REFERENCE = STD ALL / NO / PARAMETERS(...)
PARAMETERS(...)
SYMBOL = NQ YES(..)
YES(...)
WITH-ATTRIBUTES = NO / YES
,REFERENCED-ONLY = NO /_YES
PREFIX = ALL / EXCEPT(...) / ONLY(...)
EXCEPT(...)

CHARACTERS = list-poss(256): <name 1..64>

ONLY(...)

CHARACTERS = list-poss(256): <name 1..64>

,LITERAL = NO / YES
,MACRO = _NO/ YES

,COPY = NO/ YES
,DIAGNOSTICS = NO / YES

[EXTERNAL-DICTIONARY = NO / YES

LAYOUT = STD/ PARAMETERS(...)
PARAMETERS(...)

LINES-PER-PAGE = 60 / <integer 15..255>

LASER-PRINTER = NO / ND2

JFORMAT = STD/ F-ASSEMB-COMPATIBLE(...)

F-ASSEMB-COMPATIBLE(...)

MESSAGE-PLACEMENT = SEPARATHNSERTED

,OUTPUT = *SYSLST / *NONE / <full-flename 1..54> /
*LIBRARY-ELEMENT(...) / *SAVLST

*LIBRARY-ELEMENT(...)
LIBRARY = <full-flename 1..54 without-gen-vers>
,ELEMENT = <composed-name 1..64>(...)

VERSION = *UPPER-LIMIT / *INCREMENT / *HIGHEST-EXISTING /
<composed-name 1..24>

U5056-J-2125-3-7600

39

LISTING option COMPILE statement

LISTING = STD
The default values of the PARAMETERS(...) structure are used.

LISTING = PARAMETERS(...)

SOURCE-PRINT =
Controls the listing of the source program.

SOURCE-PRINT = NO
The source program is not listed.

SOURCE-PRINT = WITH-OBJECT-CODE(...)
Listing of source lines with object code.

PRINT-STATEMENTS = ACCEPTED / IGNORED
The NOGEN, OFF, and NOCOPY entries of the PRINT statement are either
executed or ignored.

LINE-NUMBERING = NO / YES
Specifies whether the lines from the source are to be consecutively numbered in
the identification field (columns 73-80) in the assembiler listing.

SOURCE-PRINT = SOURCE-ONLY(...)
Listing of source lines only, i.e. without object code.

PRINT-STATEMENTS = ACCEPTED / IGNORED
The NOGEN, OFF, and NOCOPY entries of the PRINT statement are either
executed or ignored.

LINE-NUMBERING = NO / YES

Specifies whether the lines from the source are to be consecutively numbered in
the identification field (columns 73-80) in the assembiler listing.

Numbering commences at 100 with an increment of 100 to 8 positions. In the
case of source deck macros, no numbering is performed.

SOURCE-PRINT = ERRORS-ONLY(...)
Only source lines containing errors are listed.

LINE-NUMBERING = NO / YES
Specifies whether the lines from the source are to be consecutively numbered in
the identification field (columns 73-80) in the assembiler listing.

40

U5056-J-2125-3-7600

COMPILE statement LISTING option

SOURCE-FORMAT = STD
The default values of the STRUCTURED(...) structure are used.

SOURCE-FORMAT = STRUCTURED(...)
A structured listing is generated provided the predefined structured programming
macros were used in the source program (structure macros, "@-Makros").

EVALUATED-NEST-LEVEL =1 /ALL
Either only those structure macro calls that occur in the source or all of them
are listed (including those called by generation).

INDENTATION-AMOUNT = 2 / <integer 1...8>
Specifies in columns the amount of indentation (and thus also the spacing
between the vertical structure lines).

FIXED-AREA-START = NONE / <integer 60...255>
Specifies the column as of which the source program is not to be changed or
moved by the structuring.

STRUCT-MACRO-PRINT =
Controls the listing of the structure macros.

STRUCT-MACRO-PRINT = STD
Structure macros are listed in the same way as other macros.

STRUCT-MACRO-PRINT = OBJECT-CODE-ONLY

Only the generated object code is output for all structure macros. This has the
same effect as specifying PRINT NOGEN,CODE. The NOPRINT-PREFIX option is
ignored.

STRUCT-MACRO-PRINT = WITH-OBJECT-CODE

The object code is listed with the associated generated source representation. In
the case of macros that are excluded from the listing by means of the NOPRINT-
PREFIX option or a PRINT NOGEN source statement, only the object code is
listed.

STRUCT-MACRO-PRINT = NO-OBJECT-CODE
The object code is not listed for structure macros.

U5056-J-2125-3-7600 41

LISTING option

COMPILE statement

MACRO-PRINT =
Controls the listing of macro elements in the source listing.

MACRO-PRINT = STD
The default values of the PARAMETERS(...) structure are used.

MACRO-PRINT = PARAMETERS(...)

NOPRINT-NEST-LEVEL = 255 / <integer 1..255>
Defines the maximum macro nesting level up to which generation is listed.

NOPRINT-PREFIX = *NONE / <name 1..64>

Defines a list of macro name prefixes (256) that are not to be listed. The
PREFIX-EXCEPTION = <name 1..1> operand is now supported only for
compatibility considerations. When NOPRINT-PREFIX is set, PREFIX-EXCEPTION
is no longer evaluated.

TITLE-STATEMENTS = ACCEPTED / IGNORED
TITLE statements generated by macros are either executed or ignored.

MACRO-ORIGIN-INFO = SEPARATE / INSERTED

Defines where the macro identification line (version, creation date, and link name
of the macro library) is placed in the listing. With SEPARATE, the message is
placed in the macro XREF listing; with INSERTED, it additionally appears after
the macro instruction.

MIN-MESSAGE-WEIGHT = NOTE / WARNING / SIGNIFICANT / SERIOUS /
FATAL

Defines the minimum error weight as of which errors are to be included in the
listing; only these errors are included in the summary line.

CROSS-REFERENCE = STD / ALL / NO / PARAMETERS(...)
Controls the scope of cross-reference listings.

CROSS-REFERENCE = STD
The default values of the PARAMETERS(...) structure are used.

CROSS-REFERENCE = ALL

Signifies that the cross-reference listings are to be output in the most

comprehensive form; that is, the following values are applicable:

SYMBOL=YES (WITH-ATTRIBUTES=YES, REFERENCED-ONLY=NO, PREFIX=ALL),
LITERAL=YES, MACRO=YES, COPY=YES, DIAGNOSTICS=YES.

42

U5056-J-2125-3-7600

COMPILE statement LISTING option

CROSS-REFERENCE = PARAMETERS(...)

SYMBOL = NO / YES(...)
Controls output of the reference list for symbols (symbol XREF).

WITH-ATTRIBUTES = NO/ YES

Determines whether the associated attributes, which refer to the mode of
access, are also to be output.

W Write access

R Read-only access by instructions

A Address access

E EQU/ORG instructions

REFERENCED-ONLY =NO/ YES
Defines whether only referenced symbols are to be output.

PREFIX = ALL / EXCEPT(...) / ONLY(...)
Enables or suppresses the output of symbols with a specific prefix.

PREFIX = EXCEPT(CHARACTERS=<name 1..64>)
Defines the prefix of symbols to be excluded from the output (256).

PREFIX = ONLY(CHARACTERS=<name 1..64>)
Defines the prefix of symbols to be output (256).

LITERAL =NO / YES
Determines output of the reference list for literals.

MACRO =NO / YES
Determines output of the reference list for macros.

COPY =NO/ YES
Determines output of the reference list for COPY elements.

DIAGNOSTICS =NO/ YES
Determines output of the reference list for the assembler flags that have
occurred.

EXTERNAL-DICTIONARY =NO/ YES
Determines whether external references of the assembled module (ENTRY, EXTRN,
WXTRN etc.) are to be included in the listing.

LAYOUT =
Defines the layout of the listing.
LAYOUT = STD

The default values of the PARAMETERS(...) structure are used.

U5056-J-2125-3-7600 43

LISTING option

COMPILE statement

LAYOUT = PARAMETERS(...)

LINES-PER-PAGE = 60 / <integer 15..255>
Defines the number of lines in each page of the listing.

LASER-PRINTER = NO / ND2
Defines whether a laser printer listing is to be output.

FORMAT = STD
The listing is created in the standard format of ASSEMBH.

FORMAT = F-ASSEMB-COMPATIBLE(...)
A listing is produced in a format that is compatible to the F-Assembler (ASSEMB
V30.0A).

MESSAGE-PLACEMENT = SEPARATE /INSERTED

Determines where error messages are to be placed in the listing. SEPARATE
results in a flag in the source line and an entry in the diagnostic XREF listing;
INSERTED causes the error message to be additionally printed after the
incorrect source line.

OUTPUT =
Names the output medium for the assembiler listing.

If you start an assembly by using the diagnostic routine ASSDIAG (see chapter 8)
and require the corresponding listing, this will only be produced if you terminate
ASSDIAG with END L.

(Specifying END without L will not produce a listing.)

OUTPUT =*SYSLST
The assembler listing is output to the system file SYSLST.

OUTPUT = *NONE
The assembler listing is not output.

OUTPUT = <full-filename 1..54>
The assembler listing is output to a cataloged file.

44

U5056-J-2125-3-7600

COMPILE statement LISTING option

OUTPUT = *LIBRARY-ELEMENTY(...)

LIBRARY = <full-filename 1..54>)
Designates the library name for the output of assembler listings.

ELEMENT = <composed-name 1..64>(...)
Name of an element of type P.

VERSION = *UPPER-LIMIT
The element is assigned the highest possible version.

VERSION = *INCREMENT
The element is assigned the incremented version.

VERSION = *HIGHEST-EXISTING
The element is assigned the highest existing version.

VERSION = <composed-name 1..24>
Version designation of the element.

OUTPUT = *SAVLST
The assembler listing is output with an ISAM key (see COMOPT SAVLST).

Notes

On entering operands
— The 'LISTING’ and 'PARAMETERS()’ entries may be omitted.

Example

The specification:

/IC LISTING=PARAMETERS(SOURCE-PRINT=ERRORS-ONLY)
can also be entered as

/IC SOURCE-PRINT=ERRORS-ONLY or

/IC S-PRI=ERR-O

— Entries for ' MACRO-PRINT' (NOPRINT-NEST-LEVEL' etc.) can be made without
specifying 'MACRO-PRINT’ and 'PARAMETERS().

Example

The specification:

/IC MACRO-PRINT=PARAMETERS(NOPRINT-NEST-LEVEL=20)
can also be entered as

/IC NOPRINT-NEST-LEVEL=20

U5056-J-2125-3-7600

45

LISTING option COMPILE statement

— Entries for ' CROSS-REFERENCE’ can be made without specifying 'PARAMETERS()’,
'SYMBOL’, and "YES()'.

Example

The specification:

/IC CROSS-REFERENCE=PARAMETERS(SYMBOL=YES(WITH-ATTRIBUTES=NO))
can also be entered as

/IC CROSS-REF=(WITH-ATTR=NO)

— Entries for 'LAYOUT' can be made without specifying 'PARAMETERS()'.
Example
The specification:
/IC LAYOUT=PARAMETERS(LASER-PRINTER=ND2)
can also be entered as

/IC LAYOUT=(LASER-PRINTER=ND2)

— Entries for 'OUTPUT’ can be made without specifying *LIBRARY-ELEMENT()’.
Example
The specification:
/IC SOURCE=filename,OUTPUT=*LIB-ELEM(LIB=lib)
can also be entered as

/IC SOURCE=filename,OUTPUT=(lib)

— On VERSION = *INCREMENT (incremented version)
See version designation *INCREMENT and automatic version incrementation in

the "LMS User Guide" [8].

46 U5056-J-2125-3-7600

COMPILE statement TEST-SUPPORT option

245

Option for debugging support
TEST-SUPPORT option

Not supported by ASSEMBH-BC !

Function

The TEST-SUPPORT option controls whether LSD information is generated and stored
in the object module.

The LSD information in the object module is a prerequisite for symbolic debugging with
AID (see chapter 9, "The Advanced Interactive Debugger AID", and the manual "AlD,
Debugging of ASSEMBH Programs" [2]).

Format

COMPILE

TEST-SUPPORT =_NO NONE / AID

TEST-SUPPORT = NO / NONE
Symbolic debugging with AID is not supported.

TEST-SUPPORT = AID

Symbolic debugging with AID is supported.

ASSEMBH stores a consistency constant with a length of 8 bytes after the first control
section in the object module. This constant is used by AID to ensure consistency
between the object module and the LSD information.

U5056-J-2125-3-7600 47

COMPILER-TERMINATION option COMPILE statement

2.4.6

Option to terminate assembly
COMPILER-TERMINATION option

Function

The COMPILER-TERMINATION option can be used to define termination conditions and
nesting levels to be interpreted by the assembler.

Format

COMPILE

COMPILER-TERMINATION = STD/ PARAMETERS(...)

PARAMETERS(...)
MAX-ERROR-WEIGHT = WARNING / SIGNIFICANT / SERIOUS / FATAL
MAX-ERROR-NUMBER = 32767 <integer 0..32767>
MAX-MACRO-NEST-LEVEL = 255/ <integer 1..255>

MAX-COPY-NEST-LEVEL = 5/ <integer 1..255>

COMPILER-TERMINATION = STD
The default values of the PARAMETERS(...) structure are used.

COMPILER-TERMINATION = PARAMETERS(...)

MAX-ERROR-WEIGHT = WARNING / SIGNIFICANT / SERIOUS / FATAL
Defines the error severity (weight) as a termination condition, i.e. the error class at
which assembly is to be terminated.

MAX-ERROR-NUMBER = 32767 / <integer 0..32767>
Defines a number of errors as a termination condition. The assembly is to be
terminated as soon as this number is exceeded.

MAX-MACRO-NEST-LEVEL = 255 / <integer 1..255>
Defines the maximum nesting level for macro elements.

MAX-COPY-NEST-LEVEL =5 / <integer 1..255>
Defines the maximum nesting level for COPY elements.

48

U5056-J-2125-3-7600

COMPILE statement COMPILER-TERMINATION option

Notes

— On entering operands

The 'COMPILER-TERMINATION’ and 'PARAMETERS()’ entries may be omitted.
Example

The specification

/IC COMPILER-TERMINATION=PARAMETERS(MAX-ERROR-NUMBER=10)

can also be entered as

/IC MAX-ERROR-NUMBER=10

— The following applies if the maximum nesting level for macro elements (MAX-
MACRO-NEST-LEVEL) and COPY elements (MAX-COPY-NEST-LEVEL) is exceeded:

For macro elements: the macro instruction is ignored.

For COPY elements: the COPY call is ignored.

For COPY within macro definitions: the COPY level at the time the
macro definition was read applies.

U5056-J-2125-3-7600

49

CORRECTION-CYCLE option COMPILE statement

2.4.7 Option to activate the correction cycle
CORRECTION-CYCLE option
Not supported by ASSEMBH-BC !
Function
The CORRECTION-CYCLE option can be used to specify whether and under which
conditions the diagnostic routine ASSDIAG is to be called (see chapter 8) for diagnostic
analysis of the assembly and interactive correction of source code.
Format
COMPILE
CORRECTION-CYCLE = NO YES(...)
YES(...)
ACTIVATION-WEIGHT = ALWAYS / NOTE / WARNING / SIGNIFICANT/ SERIOUS
CORRECTION-CYCLE = NO
CORRECTION-CYCLE = YES(...)
ACTIVATION-WEIGHT =
Defines the error severity (weight) at which ASSDIAG is to be called.
ACTIVATION-WEIGHT = ALWAYS
Regardless of the result of the assembly, ASSDIAG is called at the end of an
assembly unit.
ACTIVATION-WEIGHT = NOTE / WARNING / SIGNIFICANT / SERIOUS
ASSDIAG is called at the end of an assembly unit if the specified error severity is
reached.
Note
ASSDIAG can be used to correct source text lines and start the assembly again. A
corresponding assembler listing is output only if ASSDIAG is terminated with END L.
(If END is given without L, no listing is output.) This cycle is repeated until the set
error weight is no longer reached (i.e. the correction is successful and the assembly
is executed without errors) or until the user terminates the cycle in ASSDIAG (see
chapter 8).
50

U5056-J-2125-3-7600

COMPILE statement MAINTENANCE-OPTIONS option

2.4.8

Option for maintenance support
MAINTENANCE-OPTIONS option

Function

MAINTENANCE-OPTIONS can be used to execute tests for CCW channel instructions.

Format

COMPILE

MAINTENANCE-OPTIONS = STD PARAMETERS(...)
PARAMETERS(...)

CHANNEL-INSTRUCTIONS =_NO YES

MAINTENANCE-OPTIONS = STD
The default values of the PARAMETERS(...) structure are used.

MAINTENANCE-OPTIONS = PARAMETERS(...)

CHANNEL-INSTRUCTIONS = NO / YES
Support of tests for CCW channel instructions.

Note

This option is executed in "expert mode" only, i.e. is not available in interactive
mode with guidance (menu mode).

U5056-J-2125-3-7600 51

COMPILATION-SPACE option COMPILE statement

2.4.9 Option for reducing the virtual address space requirement
COMPILATION-SPACE option
Function
COMPILATION-SPACE enables assembly and list generation to be performed in a
smaller virtual address space, albeit at the cost of some performance degradation.
Format
COMPILE
COMPILATION-SPACE =_STD/ SMALL
COMPILATION-SPACE = STD
Assembly and list generation take place in the virtual XS address space.
COMPILATION-SPACE = SMALL
Assembly and list generation take place in a reduced virtual address space, with
attendant performance degradation.
Note
A user wanting to produce a very extensive listing on a 25-bit machine will have to
set up a CIF (by specifying the SDF option COMPILATION-INFO, see section 2.4.3).
Otherwise there is a risk of storage bottlenecks occurring as a result of the CIF
information placed in virtual memory, and of assembly being aborted.
52 U5056-J-2125-3-7600

GENERATE statement

2.5 The standalone listing generator ASSLG

Not supported by ASSEMBH-BC !

The standalone listing generator is started with the following command:
/START-PROGRAM $ASSLG

251 GENERATE statement

Function

The standalone listing generator ASSLG creates listings from the CIF information stored
in a library (see COMPILATION-INFO, section 2.4.3). This is done via the GENERATE
statement.

U5056-J-2125-3-7600 53

GENERATE statement

Format

GENERATE

COMPILER-INFO-FILE = *LIBRARY-ELEMENT(...)
*LIBRARY-ELEMENT(...)
LIBRARY = <full-flename 1..54 without gen-vers>
LELEMENT = <composed-name 1..64>(...)

VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24>

,SOURCE-PRINT = NO / WITH-OBJECT-CODE..) / SOURCE-ONLY(...) /
ERRORS-ONLY(...)

WITH-OBJECT-CODE(...)
LINE-NUMBERING = NO/ YES
SOURCE-ONLY(...)
LINE-NUMBERING = NO/ YES

ERRORS-ONLY(...)

LINE-NUMBERING = NO/ YES
,SOURCE-FORMAT = STD STRUCTURED(...)
STRUCTURED(...)

EVALUATED-NEST-LEVEL = 1/ ALL

JINDENTATION-AMOUNT = 2/ <integer 1..8>

,FIXED-AREA-START = NONE / <integer 60..255>

,STRUCT-MACRO-PRINT = _STD/ OBJECT-CODE-ONLY /
WITH-OBJECT-CODE / NO-OBJECT-CODE

,MACRO-PRINT = STD/ PARAMETERS(...)
PARAMETERS(...)

MACRO-ORIGIN-INFO = SEPARATE/ INSERTED

,MIN-MESSAGE-WEIGHT = NOTE / WARNING /_SIGNIFICANT/ SERIOUS / FATAL

continued>

54

U5056-J-2125-3-7600

GENERATE statement

continued

,CROSS-REFERENCE = STD ALL / NO / PARAMETERS(...)
PARAMETERS(...)
SYMBOL = NOQ YES(...)
YES(...)
WITH-ATTRIBUTES = NO / YES

,REFERENCED-ONLY = NO / YES
PREFIX = ALL / EXCEPT(..) / ONLY(...)

EXCEPT(...)

CHARACTERS = list-poss(256): <name 1..64>
ONLY(...)

CHARACTERS = list-poss(256): <name 1..64>

,LITERAL = NO / YES
,MACRO = NO/ YES

,COPY = NO/ YES
,DIAGNOSTICS = NO / YES

[EXTERNAL-DICTIONARY = NO / YES
LAYOUT = STD/ PARAMETERS(...)
PARAMETERS(...)
LINES-PER-PAGE = 60 / <integer 15..255>
LASER-PRINTER = NO / ND2
JFORMAT = STD/ F-ASSEMB-COMPATIBLE(...)

F-ASSEMB-COMPATIBLE(...)

MESSAGE-PLACEMENT = SEPARATHNSERTED

,OUTPUT = *SYSLST / *SAVLST / <full-flename 1..54 without gen-vers> /
*LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENTY(...)
LIBRARY = <full-flename 1..54 without gen-vers>
,ELEMENT = <composed-name 1..64>(...)

VERSION = *UPPER-LIMIT / *INCREMENT / *HIGHEST-EXISTING /
<composed-name 1..24>

,GENERATION-SPACE =_STD/ SMALL

U5056-J-2125-3-7600 55

GENERATE statement

COMPILER-INFO-FILE = *LIBRARY-ELEMENT(...)

LIBRARY = <full-flename 1..54>
Name of the library in which the CIF information is stored (see the COMPILATION-
INFO option).

ELEMENT = <composed-name 1..64>(...)
Name of the library element.

VERSION = *HIGHEST-EXISTING
The element is assigned the highest existing version.

VERSION = *UPPER-LIMIT
The element is assigned the highest possible version.

VERSION = <composed-name 1..24>
Version designation of the element.

SOURCE-PRINT =
Controls the listing of the source program.

SOURCE-PRINT = NO
The source program is not listed.

SOURCE-PRINT = WITH-OBJECT-CODE(...)
Listing of source lines with object code.

LINE-NUMBERING = NO / YES
Specifies whether the lines from the source are to be consecutively numbered in the
identification field (columns 73-80) in the assembler listing.

SOURCE-PRINT = SOURCE-ONLY(...)
Listing of source lines only, i.e. without object code.

LINE-NUMBERING = NO / YES
Specifies whether the lines from the source are to be consecutively numbered in the
identification field (columns 73-80) in the assembler listing.

SOURCE-PRINT = ERRORS-ONLY(...)
Only source lines containing errors are listed.

LINE-NUMBERING = NO / YES
Specifies whether the lines from the source are to be consecutively numbered in the
identification field (columns 73-80) in the assembler listing.

SOURCE-FORMAT = STD
The default values of the STRUCTURED(...) structure are used.

SOURCE-FORMAT = STRUCTURED(...)
A structured listing is generated provided the predefined structured programming
macros were used in the source program (structure macros, "@-Makros").

56

U5056-J-2125-3-7600

GENERATE statement

EVALUATED-NEST-LEVEL =1 /ALL
Either only those structure macro calls that occur in the source or all of them
are listed (including those called by generation).

INDENTATION-AMOUNT = 2 / <integer 1...8>
Specifies in columns the amount of indentation (and thus also the spacing
between the vertical structure lines).

FIXED-AREA-START = NONE / <integer 60...255>
Specifies the column as of which the source program is not to be changed or
moved by the structuring.

STRUCT-MACRO-PRINT =
Controls the listing of the structure macros.

STRUCT-MACRO-PRINT = STD
Structure macros are listed in the same way as other macros.

STRUCT-MACRO-PRINT = OBJECT-CODE-ONLY

Only the generated object code is output for all structure macros. This has the
same effect as specifying PRINT NOGEN,CODE. The NOPRINT-PREFIX option is
ignored.

STRUCT-MACRO-PRINT = WITH-OBJECT-CODE

The object code is listed with the associated generated source representation. In
the case of macros that are excluded from the listing by means of the NOPRINT-
PREFIX option or a PRINT NOGEN source statement, only the object code is
listed.

STRUCT-MACRO-PRINT = NO-OBJECT-CODE
The object code is not listed for structure macros.

MACRO-PRINT =
Controls the listing of macro elements in the source listing.

MACRO-PRINT = STD
The default values of the PARAMETERS(...) structure are used.

U5056-J-2125-3-7600

57

GENERATE statement

MACRO-PRINT = PARAMETERS(...)

MACRO-ORIGIN-INFO = SEPARATE / INSERTED

Defines where the macro identification line (version, creation date, and link name of
the macro library) is placed in the listing. With SEPARATE, the message is placed in
the macro XREF listing; with INSERTED, it also appears after the macro instruction.

MIN-MESSAGE-WEIGHT = NOTE / WARNING / SIGNIFICANT / SERIOUS / FATAL
Defines the minimum error weight for errors to be included in the listing; only these
errors are entered in the summary line.

CROSS-REFERENCE = STD / ALL / NO / PARAMETERS(...)
Controls the scope of cross-reference listings.

CROSS-REFERENCE = STD
The default values of the PARAMETERS(...) structure are used.

CROSS-REFERENCE = ALL

Signifies that the cross-reference listings are to be output in the most comprehensive
form; that is, the following values are applicable:

SYMBOL=YES (WITH-ATTRIBUTES=YES, REFERENCED-ONLY=NO, PREFIX=ALL),
LITERAL=YES, MACRO=YES, COPY=YES, DIAGNOSTICS=YES.

CROSS-REFERENCE = PARAMETERS(...)

SYMBOL = NO / YES(...)
Controls output of the reference list for symbols (symbol XREF).

WITH-ATTRIBUTES = NO/ YES

Determines whether the associated attributes, which refer to the mode of access,
are also to be output.

W Write access

R Read-only access by instructions

A Address access

E EQU/ORG instructions.

REFERENCED-ONLY =NO/ YES
Defines whether only referenced symbols are to be output.

PREFIX = ALL / EXCEPT(...) / ONLY(...)
Enables or suppresses the output of symbols with a specific prefix.

PREFIX = EXCEPT(CHARACTERS=<name 1..64>)
Defines the prefix of symbols to be excluded from the output (256).

PREFIX = ONLY(CHARACTERS=<name 1..64>)
Defines the prefix of symbols to be output (256).

58

U5056-J-2125-3-7600

GENERATE statement

LITERAL =NO / YES
Determines output of the reference list for literals.

MACRO =NO / YES
Determines output of the reference list for macros.

COPY =NO/ YES
Determines output of the reference list for COPY elements.

DIAGNOSTICS =NO/ YES
Determines output of the reference list for the assembler flags that have occurred.

EXTERNAL-DICTIONARY =NO/ YES
Determines whether external references of the assembled module (ENTRY, EXTRN,
WXTRN, etc.) are to be included in the listing.

LAYOUT =
Defines the layout of the listing.
LAYOUT = STD

The default values of the PARAMETERS(...) structure are used.
LAYOUT = PARAMETERS(...)

LINES-PER-PAGE = 60 / <integer 15..255>
Defines the number of lines in each page of the listing.

LASER-PRINTER = NO / ND2
Defines whether a laser printer listing is to be output.

FORMAT = STD
The listing is created in the standard format of ASSEMBH.

FORMAT = F-ASSEMB-COMPATIBLE(...)
A listing is produced in a format that is compatible with the F-Assembler (ASSEMB
V30.0A).

MESSAGE-PLACEMENT = SEPARATE /INSERTED

Determines where error messages are to be placed in the listing. SEPARATE
results in a flag in the source line and an entry in the diagnostic XREF listing;
INSERTED causes the error message to be additionally printed after the incorrect
source line.

OUTPUT =
Names the output medium for the assembiler listing.

OUTPUT = *SYSLST
The assembler listing is output to the system file SYSLST.

U5056-J-2125-3-7600

59

GENERATE statement

OUTPUT = *SAVLST
The assembler listing is output with an ISAM key (see COMOPT SAVLST).

OUTPUT = <full-filename 1..54>
The assembler listing is output to a cataloged file.

OUTPUT = *LIBRARY-ELEMENTY(...)

LIBRARY = <full-filename 1..54>
Defines the library name for output of the assembler listing.

ELEMENT = <composed-name 1..64>(...)
Name of the element (type P).

VERSION = *UPPER-LIMIT
The element is assigned the highest possible version.

VERSION = *INCREMENT
The element is assigned the incremented version.

VERSION = *HIGHEST-EXISTING
The element is assigned the highest existing version.

VERSION = <composed-name 1..24>
Version designation of the element.

GENERATION-SPACE = STD / SMALL
When SMALL is specified, the lists are generated in a reduced virtual address space,
with attendant performance degradation.

60 U5056-J-2125-3-7600

3 Input/output of ASSEMBH

3.1 Input sources of ASSEMBH

Input to ASSEMBH consists of source text and user control statements, i.e. options
(see chapter 2).

The source text is stored in a source program. Some parts of the source text can be
generated via macro elements or read in from COPY elements during assembly. The
options control the assembly sequence and the inputs and outputs of the assembler.

— Source program
A source program can be either
— entered via the system file SYSDTA, i.e.
directly from a terminal or
by assigning SYSDTA to a file or library, or
— read from a file or library.
Library elements of type S from a PLAM library or OSM source program library
are permitted.

— Macro element
A macro element is read from a PLAM library (element type M) or from an OSM
macro library (MLU format).

— COPY element
A COPY element is read from a PLAM library (element of type S or M) or from an
OSM source program library or an OSM macro library (MLU format).

U5056-J-2125-3-7600 61

Input/output of ASSEMBH

;

Terminal

INPUT OF SOURCE PROGRAMS

Catalog
file

) (@ 6]

Catalog —
file

Source=*SYSDTA

filename

SYSDTA

ASSEMBH

~
<
N—_
Library
~

SOURCE=

library name

INPUT OF MACRO and COPY MEMBERS

MACROLIB

v

or
link name SYSLIB

MACRO-LIBRARY-option

User-own
library

J

COPY-LIBRARY-option

v

User-own
library

|

Fig. 3-1: Input sources of ASSEMBH

62

U5056-J-2125-3-7600

Input/output of ASSEMBH

3.11

Input of the source program

The assembler interprets the content of a file as source text. The maximum permitted
length for each line of source is 255 characters.

The option SOURCE-PROPERTIES, LOW-CASE-CONVERSION (see section 2.4.1.4)
enables the use of both uppercase and lowercase letters in the source text (see
chapter 2.1 in "ASSEMBH (BS2000) Reference Manual" [1]).

The default settings for the source text to be interpreted are columns 1 (begin column),
71 (end column), 72 (continuation character), and 16 (continuation column).

These values can be changed with the help of the SOURCE-PROPERTIES option (see
section 2.4.1.4).

The default settings for the begin, end, and continuation columns can also be changed
with the ICTL instruction (see "ASSEMBH (BS2000) Reference Manual” [1]).

Input via SYSDTA

Source text is normally entered from the terminal via the system file SYSDTA. After the
start of ASSEMBH and the input of 'C’, i.e.

/ICOMPILE SOURCE=*SYSDTA, ...default values..., ASSEMBH responds with *" and
requests the input of source text.

If the source text is to be read via SYSDTA from a file or a library element, SYSDTA
must be assigned to a cataloged file or a library element (element type S from a PLAM
library or an OSM source program library) before calling the assembler. The assignment
is made using the SDF command ASSIGN-SYSDTA. The file or library element must
contain a //COMPILE statement and an //END statement.

Example

[filename
/ASSIGN-SYSDTA TO-FILE= i

—

*LIB-ELEM(LIB=library, ELEM=element)

/ISTART-PROGRAM $ASSEMBH

Input from files

The input of a source program from cataloged SAM or ISAM files is effected via the
SOURCE option (see section 2.4.1.1).

Example

/ICOMPILE SOURCE=filename

U5056-J-2125-3-7600

63

Input/output of ASSEMBH

Input from libraries

The input of a source program from libraries is effected via the SOURCE option (see
section 2.4.1.1). Library elements of type S from PLAM libraries and from OSM source
program libraries are permitted.

Example

/ICOMPILE SOURCE=(library,element)

3.1.2 Input of macro elements

In most cases, macro definitions are not entered in the source program, but are stored
in macro libraries in the form of macro elements (see "ASSEMBH (BS2000) Reference
Manual" [1]).

Macro elements of type M from PLAM libraries and from OSM macro libraries (MLU
format) are permitted.

The source program itself contains only a macro instruction. During assembly, a
sequence of instruction statements is generated from the macro definition under the
control of parameters, and these instructions are incorporated into the source program.
The columns of text in a macro definition are interpreted on the basis of default values,
i.e. with column 1 as the begin column, column 71 as the end column, column 72 as
the continuation character, and column 16 as the continuation column.

Changes made via the SOURCE-PROPERTIES option or the ICTL instruction have no
effect.

There are two types of macro libraries:
— user-own macro libraries and

— the system macro library MACROLIB ($TSOS.MACROLIB), which is accessible to all
users.

User-own macro libraries

The MACRO-LIBRARY option (see section 2.4.1.2) can be used to specify up to 100
private user macro libraries. If the user-own macro libraries are to be addressed via link
names, the appropriate SET-FILE-LINK command must be issued before starting the
assembler.

Example
/SET-FILE-LINK LINK-NAME=maclink,FILE-NAME=maclib

The link name maclink is assigned to the macro library maclib.

64 U5056-J-2125-3-7600

Input/output of ASSEMBH

3.121

/IC MAC-LIB=(maclibl,maclib2,*LINK(maclink))

The macro libraries maclibl and maclib2 are assigned together with the macro library
maclib, which is assigned via the link name maclink.

System macro library

The system macro library is specified with a file control block (FCB) which contains
LINK=SYSLIB. If a user wishes to use his own file as the system macro library, he can
do so in two different ways:

— by assigning the file link name SYSLIB to his file with the SET-FILE-LINK command.
A corresponding REMOVE-FILE-LINK command must be given by the user in this
case as well.

Example
/SET-FILE-LINK LINK-NAME=SYSLIB,FILE-NAME=filename

— by renaming his file to the standard file name MACROLIB.

Example
/IMOD-FILE-ATTR FILE-NAME=filename,NEW-NAME=MACROLIB

Search order for macro elements

During assembly, the system macro library and up to 100 user-own macro libraries may
be accessed. When a macro instruction is processed, any unknown macro definition is
searched for and read in the following order:

1st user-own macro library

100th user-own macro library
System macro library MACROLIB

The search order for macro elements from user-own macro libraries corresponds to the
order of the libraries specified in the MACRO-LIBRARY option.

If there are several identically named elements of type M in a PLAM library, but with
different versions, the element with the highest version is always used.

Inner macros of macros from the system macro library are searched for in this library
only, assuming the corresponding macro definition has not already been read in.

U5056-J-2125-3-7600

65

Input/output of ASSEMBH

3.1.3

3.1.31

Input of COPY elements

The source program itself contains only the COPY instruction. During the assembly run,
this instruction is executed, and the stored sequence of instructions is copied from the
library into the source program.

COPY elements from a PLAM library (element type S or M), an OSM source program
library, or an OSM macro library (MLU format) can be copied into a source program
with the COPY instruction (see "ASSEMBH (BS2000) Reference Manual" [1]).

The COPY-LIBRARY option (see section 2.4.1.3) can be used to specify up to 100 user-
own libraries. PLAM libraries (element types S and M), OSM source program libraries,
and OSM macro libraries (MLU format) are permitted.

The operand ELEMENT-TYPE = SOURCE-ONLY or MACRO-ONLY can be used to limit
the search for an element to only the source partition or macro partition of a PLAM
library.

Examples

/SET-FILE-LINK LINK-NAME=coplink,FILE-NAME=coplib

The link name coplink is assigned to the library coplib.

/IC COPY-LIB=(coplib2(ELEMENT-TYPE=MACRO-ONLY),coplib2,*LINK(coplink))

The libraries coplibl and coplib2 are assigned directly; the library coplib is assigned via
the link name coplink.

/IC C-L=coplib3(S-0)
The library coplib3 (element type S) is assigned.

Search order for COPY elements

The search order for COPY elements corresponds to the order in which libraries are
specified in the COPY-LIBRARY option (see section 2.4.2).

Example
/IC COPY-LIB=(coplib2,coplibl,coplib3)

The first library to be searched for COPY elements is the library coplib2, then coplib1l,
and finally coplib3.

The type entry is evaluated for each library. If BOTH is specified, the S-partition of the
library will be searched first, followed by the M-partition.

If the source or macro partition of a PLAM library contains a number of elements with
the same name, but different versions, the element with the highest existing version is
always used.

66

U5056-J-2125-3-7600

Input/output of ASSEMBH

3.2 Outputs of ASSEMBH

The following outputs are generated by ASSEMBH under the control of options:

Object modules
Object modules (OMs) are output to a PLAM library (element type R) or to the
*EAM file (OMF).

— Link-and-load modules
Link-and-load modules (LLMs) are output to a PLAM library (element type L).

— Messages
The start and end messages of ASSEMBH are output to SYSOUT (on the display
terminal or to the SYSOUT file).

— Listings
Listings are output via the LISTING, OUTPUT option (see section 2.4.4) to
SYSLST, to a file, or to a PLAM library (element type P). A detailed description of
all listings is provided in chapter 6.

— Compiler Information File (CIF)
The CIF is used for generation of the assembler listing and is created as a
temporary file by default. If desired, it can be output to a PLAM library (element
type H) by using the COMPILATION-INFO option (see section 2.4.3).

— Monitoring job variable (MONJV)
If the user has assigned a monitoring job variable for the assembly, the assembler
supplies this job variable with a status indicator and return code at the end of the
assembly (see section 3.2.3).

U5056-J-2125-3-7600

67

Input/output of ASSEMBH

OUTPUT OF MODULES

— PLAM
library
MODULE-LIBRARY option
T T
Temporary
—— [object module
file *EAM
____’//
OUTPUT OF MESSAGES
ASSEMBH .
Temporary
system file”
SYSOUT
. S~ R
SYSOUT assignment -
B
y/p—\\\R
Terminal
Status indicator and > MONJV
return code

OUTPUT OF LISTS Output initiated

at end of task

\Temporary/
—> system file
SYS LST

. Catalog
OUTPUT option > file
| D
PLAM
CIF option — PLAM
library
Fig. 3-2: Outputs of ASSEMBH

68 U5056-J-2125-3-7600

Input/output of ASSEMBH

3.2.1

Output of the object module

The COMPILER-ACTION option (see section 2.4.2.1) generates by default an object
module, and the MODULE-LIBRARY option (see section 2.4.2.2) can be used to specify
where the object module is to be placed.

Example
/IC MOD-LIB=plamlib

The object module with the name of the first named CSECT is stored in the PLAM
library plamlib.

The assembler translates a source program into machine language. This direct result of
an assembly is an object module (OM) or link-and-load module (LLM). Although the
object module already consists of machine code, it can only be executed after it has
been linked and loaded (see chapter 5: "Linking, loading and starting™).

The assembly language instructions and statements are converted into machine
instructions in accordance with the selected instruction set and output to the object
module as TXT entries. A special option enables the selection of different instruction
sets (see the SOURCE-PROPERTIES, INSTRUCTION-SET option in section 2.4.1.4).

The associated linkage editor and loader information is stored in ESD and RLD entries.

An object module is normally made up of the ESD, TXT, RLD, and END records. If
desired, the TEST-SUPPORT option can be used (see section 2.4.5) to additionally
generate LSD entries for symbolic debugging with AID (this function is not supported
by ASSEMBH-BC).

Entries in the object module

ESD Linkage editor and loader information
(definition and reference of external symbols)

LSD Debugging information for AID

TXT Instructions and statements in machine code

RLD Linkage editor and loader information
(relocation of addresses)

END End information of the object module

ESD = External symbol dictionary
LSD = List for symbolic debugging
TXT = Text information

RLD = Relocation directory

U5056-J-7125-3-7600 69

Input/output of ASSEMBH

3.2.2 Output of a link-and-load module
The COMPILER-ACTION option (see section 2.4.21.) can be used to generate a link-
and-load module (LLM), and the MODULE-LIBRARY option (see section 2.4.2.2) must
then be used to specify the library to which the module is to be output.
Example
/IC COMP-ACT=(MODULE-FORMAT=LLM),MOD-LIB=plamlib
The link-and-load module with the name of the first specified CSECT is stored in the
PLAM library plamlib.
The assembler translates a source program into machine language. This direct result of
an assembly is an object module (OM) or link-and-load module (LLM). Although the
link-and-load module already consists of machine code, it can only be executed after it
has been linked and loaded (see chapter 5: "Linking, loading and starting").
The assembly language instructions and statements are converted into machine
instructions in accordance with the selected instruction set and output to the link-and-
load module as TXT entries. A special option enables the selection of different
instruction sets (see the SOURCE-PROPERTIES, INSTRUCTION-SET option in section
2.4.1.4).
The associated linkage editor and loader information is stored in ESV and LRLD entries.
A link-and-load module is normally made up of the ESV, TXT, LRLD and END records.
If desired, the TEST-SUPPORT option can be used (see section 2.4.5) to additionally
generate LSD entries for symbolic debugging with AID (this function is not supported
by ASSEMBH-BC).
Entries in the link-and-load module
ESV Linkage editor and loader information
(definition and reference of external symbols)
LSD Debugging information for AID
TXT Instructions and statements in machine code
LRLD Linkage editor and loader information
(relocation of addresses)
END End information of the link-and-load module
ESV = External symbols vector
LSD = List for symbolic debugging
TXT = Text information
LRLD = Local relocation dictionary
70 U5056-J-Z125-3-7600

Input/output of ASSEMBH

3.2.3

3.221

Monitoring the assembly with the monitoring job variable MONJV

The software product JV (Job Variables) permits jobs and programs running under
BS2000 to be controlled and monitored (see "JV Job Variables, Reference Manual" [7]).
The user defines a "monitoring job variable" that he specifies as an operand of a
LOGON, ENTER-JOB or START-PROG command. The operating system enters in this
job variable information about the current status of the program ("status indicator") as
well as other information defined on the program level ("return code"). The user can
query this information at the end of the program. Further jobs and programs may then
be controlled on the basis of this information.

After a program has been assembled with the assembler, the monitoring job variable is
supplied with a status indicator and a return code.

If ASSEMBH is called via the subroutine interface, the MONJV value is returned via
parameters.

Since multiple assemblies and restarts are allowed, the following applies:
The program-monitoring job variable contains the values from the assembly section in
which the highest error weight occurred.

Structure of the monitoring job variables

The MONJV value is divided into a status indicator with a length of 3 bytes and a
return code with a length of 4 bytes.

Status Return code
indicator

Byte 1 2 3 4 5 6 7

The status indicator is entered left-justified in the first three bytes; the return code is set
from byte 4 to byte 7.

U5056-J-2125-3-7600

71

Input/output of ASSEMBH

Status indicator

The 3-digit status indicator in the monitoring job variable is set by the assembler as

follows:

Status Termination
indicator cpde TC
$T_ 0 Normal
1 termination
$A_ 2 Abnormal
3 termination

Return code

The 4-digit return code in MONJV is structured as follows:

TC

Pl

Length in bytes 1

3

TC = Termination code

Pl = Program information

72

U5056-J-2125-3-7600

Input/output of ASSEMBH

TC = termination code; may assume the following values:

TC

Explanation

Normal termination.
No warnings or errors occurred, at the most NOTES.

Normal termination.

Warnings or errors of class WARNING/SIGNIFICANT/SERIOUS have
occurred.

(See the table for Pl below).

Abnormal termination.
A termination criterion set by an option was reached.
(Max. error weight, max. error number; see section 2.4.6).

Abnormal termination.
An error of class FATAL, an I/O error, or an assembler error was
identified.

P1 = program information; may assume the following values:

PI Explanation Tekt:HIGHEST ERROR-WEIGHT:
on terminal ih listing
000 No flags and no MNOTES reported. N ERRORS -
No information messages.
001 Information messages were output. NOTES -
002 Highest error class that occurred WARNING
003 Highest error class that occurred SIGNIHICANT 1
004 Highest error class that occurred SERIOPS 2]
005 Highest error class that occurred FATAL 3
006 Assembler error, /O error FAILYURE B

U5056-J-2125-3-7600

73

Input/output of ASSEMBH

Possible combinations

Assembler error weight
Inf. Apsem.
- mess. [WAR SIG SER FAT | error
Status TC
indicator Program information PI
000 | 001 | 002 |003 |004 |0O5 |[006
$T_ 0 X X
$T_ 1 X X X
$A_ 2" X X X
$A_ 3" X X

") In these cases a branch to a job step is made.

The job variable is initialized by the operating system with the command:

/ISTART-PROG $ASSEMBH,MONJV=jvname

jvname may be up to 41 characters in length and may consist of all letters, the digits O

- 9, and the special characters -, @, #, and $.

74

U5056-J-2125-3-7600

Input/output of ASSEMBH

Example

In the example below, the assembly run is monitored with the job variable JOBVAR.
The linkage editor is to be called only if the assembler has reported no errors and no
warnings.

/BEGIN-PROC LOGG=A PAR=YES(PROC-PAR=(&PROG),ESC-CHAR=C'&’)
IASSIGN-SYSDTA TO-FILE=*SYSCMD

/ISTART-PROG $ASSEMBH,MONJV=JOBVAR 1)
/IC SOURCE=(PLAMLIB,&PROG),MOD-LIB=PLAMLIB,LIST=(OUTPUT=(PLAMLIB))

/IEND

/SET-JOB-STEP

/SHOW-JV JV-ID=NAME(JV-NAME=JOBVAR))
/SKIP-COM TO-LABEL=ENDED,IF=JV(COND=(JOBVAR,4,4)>'0001") —)
/ISTART-PROG $TSOSLNK

PROG &PROG,LIB=PLAMLIB

INCLUDE &PROG,PLAMLIB

END

/SKIP-COM TO-LABEL=ENDED

/SET-JOB-STEP

/.ENDED END-PROC

(1) The START-PROG command assigns JOBVAR to the assembler as the program-
monitoring job variable.

(2) The SHOW-JV command displays the value of the job variable.

(3) The SKIP-COM command is used to check whether the return code (bytes 4 - 7)
contains a value greater than '0001'". If this is the case, the assembler has
reported errors in the error class "warnings" or above, and the procedure
branches to the label ".ENDED".

U5056-J-2125-3-7600

75

4.1

Runtime system for structured programming

General information

Structured programming in assembler requires the services of a runtime system (see
"ASSEMBH (BS2000) Reference Manual" [1]) in order to run a program. The runtime
system performs register saving and reserves and releases storage space for saving
registers, and for the automatic and controlled areas.

This runtime system is provided as the module IASSRTS in the library
SYSLIB.ASSEMBH.012.

The requesting and releasing of memory for register saving, automatic and controlled
areas are based on ILCS (Inter-Language Communication Services) routines. The ILCS
initialization module ITOINITS from the SYSLIB.ASSEMBH.012 library loads the required
ILCS routines dynamically.

The ILCS module ITOENTR is also provided in this library; this module contains all the
entries of the ILCS routines apart from ITOINIT(S).

Memory management is completely dynamic.

Assembler objects (with structured programming) that were assembled with the
COLUMBUS Assembler V2.2F are compatible with and executable on the new runtime
system as well.

U5056-J-2125-3-7600

77

Runtime system

4.2

Support for monitoring job variables

The new runtime system supports the use of monitoring job variables by transferring
appropriate return codes to the ILCS routines in the case of normal as well as
abnormal program termination. These return codes are passed on from there to the job

variable.

In some error situations in which the ILCS has not yet been initialized, the monitoring
job variables are set directly in the runtime system.

The runtime system creates the 4-digit return code for MONJV in the following format:

TC

Pl

1

3 Length in bytes

TC = termination code, with the following values:

TC Explanation
0 Normal termination
3 Abnormal termination

PI = program information, with the following values:

PI Explanation

000 No errors occurred during the program run.

001 Errors occurred during the program run.

. The 3-digit numbers correspond to the 3 characters to the right of
the messages of the runtime system (ASS7nnn, see section 11.1).

nnn

The following combinations are possible:

$T 0000 Normal program termination
$A 3001 Abnormal termination

$A 3nnn

78

U5056-J-2125-3-7600

5.1

Linking, loading and starting

General information

When a source program is assembled, one or more object modules or linkand-load
modules are obtained as a result. The object modules generated by the assembler are
placed in the temporary EAM file (OMF) of the current task or saved as elements (of
type R) in a PLAM library. The link-and-load modules generated are saved in a PLAM
library as (type L) elements (see section 3.2,

Outputs of ASSEMBH"). Although these modules already consist of machine code, they
must first be linked into a load module in order to produce an executable program.
Before the linked program can be executed, it must be loaded into working memory.
The executable program is therefore called a "load module" (i.e. module to be loaded).

It is also possible to link in other modules, e.g. separately assembled source programs
or subroutines in other languages. These additional modules may have been assembled
or compiled at different times with different compilers.

The most important function of the linkage editor is to call the modules required for the
executable unit from various sources (files, libraries) and link them to one another.
Linking means that the linkage editor adds to each module those addresses which refer
to areas outside the module (external references).

U5056-J-2125-3-7600

79

Various utilities are available in BS2000 for the tasks related to linking and loading:
» Linkage editor BINDER (as of BS2000 V10.0)

BINDER (see section 5.2) links object modules (OMs) and link-and-load modules
(LLMs) to form a logically and physically structured loadable unit. This unit is known as
a "link-and-load module" (LLM). BINDER stores an LLM as a type L element in a PLAM
library.

* Dynamic Binder Loader DBL (as of BS2000 V10.0)
(Dynamic Linking Loader DLL (up to BS2000 V9.5)

The Dynamic Binder Loader DBL (see section 5.3) links object modules (OMs) and link-
and-load modules (LLMs) into a temporary program, loads it immediately into memory,
and initiates the program run, all in a single operation. The program is automatically
deleted after execution. DBL is primarily suitable for use in the debugging phase.

» Static linkage editor TSOSLNK

The static linkage editor TSOSLNK (see section 5.4) links object modules and stores
the generated executable program (also called a "load module") in a cataloged file or in
a PLAM library (element type C).

» Static loader ELDE

The static loader ELDE (see section 5.5) serves to load an executable program linked
by means of TSOSLNK.

80

U5056-J-2125-3-7600

Linking, loading and starting

BINDER

5.2

Linking with BINDER

BINDER links object modules (OMs) and link-and-load modules (LLMs) to form an LLM,

which it stores as a type L element in a PLAM library. It is described in detail in the

BINDER manual [10].

The object modules generated by ASSEMBH are saved either in the EAM file of the

current task or as type R elements in a PLAM library.
The LLMs are saved as type L elements in a PLAM library.

Control statements for BINDER (selection)

/START-PROGRAM $BINDER

@)

START-LLM-CREATION INT-NAME=name

Jlibrary}
1 .ELEM=

Ielement
[*OMF I [*ALL]

INCLUDE-MODULES LIB=

[INCLUDE-MODULES LIB=..., ELEM=..]]

@)

©)

[RESOLVE-BY-AUTOLINK LIB=SYSLIB.ASSEMBH.012

[RESOLVE-BY-AUTOLINK LIB=..., [SYMBOL-NAME=external-xref]]

[MODIFY-SYMBOL-VISIBILITY ..., VISIBLE=NQ]

SAVE-LLM LIB=library, ELEM=element
END

(1) BINDER is called.

(2) This statement generates a new LLM with the internal name "name" in the work

area. The SAVE-LLM statement (see section 8) is used to save the generated LLM

as atype L element in a PLAM library.

(3) library is the name of the PLAM library containing the modules. *OMF is the name

of the EAM file.
element is the name of a module.

If *ALL is specified, all modules from the specified input source are linked in.

U5056-J-2125-3-7600

81

BINDER

Linking, loading and starting

(4) An additional INCLUDE-MODULE statement can be used to link in additional
modules from different libraries.

(5) The ASSEMBH runtime system (if you want to use structured programming) is
linked in by means of RESOLVE-BY-AUTOLINK.

(6) Further RESOLVE-BY-AUTOLINK statements are used to inform BINDER of the
external references (= module names) and the corresponding libraries or only
those libraries to be searched for as yet unresolved external references using the
autolink method.

(7) The MODIFY-SYMBOL-VISIBILITY statement can be used to mask out further
BINDER runs. By default the symbols remain visible. See the section entitled
'Masking out symbols’.

(8) This statement saves the current LLM, which was generated by means of START-
LLM-CREATION as a type L element in a PLAM library.

(9) The END statement is used to terminate the BINDER run.

With the INCLUDE-MODULES and RESOLVE-BY-AUTOLINK statements, LIB=*BLS-LINK
can be specified instead of the library name (LIB=library). In this case, the libraries to

be searched must be assigned the link name BLSLIBnn (00 < nn < 99). This happens
before the BINDER is called using the ET-FILE-LINK command, e.qg.:

/SET-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=SYSLIB.ASSEMBH.012

Provided all external references have been resolved, an LLM generated using BINDER
can be loaded and started with the DBL without assigning alternative libraries:

START-PROGRAM *MODULE(LIB=library, ELEM=module, RUN-MODE=ADVANCED)

Symbol masking

Unlike with TSOSLNK, symbols (CSECTs, ENTRYSs) are not masked out by default when
BINDER is used for linkage. They then remain visible for subsequent linkage runs with
BINDER or DBL.

This has the following effects during dynamic linkage with DBL.: If a PLAM library
contains individual modules generated by ASSEMBH and LLMs with a runtime system
linked in, the external references to the runtime system are resolved from one of the
prelinked modules during dynamic linkage and not from the runtime library. In this
event, DBL issues a number of "DUPLICATES" warnings. The autolink mechanism first
searches the library in which the individual module is located and then the runtime
libraries assigned using the link name BLSLIBnn.

82

U5056-J-2125-3-7600

Linking, loading and starting DBL

5.3

We recommend the following procedure to ensure that the external references are
always resolved from the current runtime library rather than from one of the other
modules during linkage:

— either store individual modules and prelinked modules in separate libraries

— or mask out the symbols with the MODIFY-SYMBOL-VISIBILITY statement

Dynamic linking and loading with DBL

With the Dynamic Binder Loader (DBL), object modules (OMs) and link-and-load
modules (LLMs) are temporarily linked into a program, loaded into memory, and then
executed. All three steps are performed in a single run. The generated program is
automatically deleted after program execution.

The operation of DBL is described in detail in the manual "Binder-Loader-Starter" [9].

DBL has two modes of operation, or "run modes". The desired mode is selected with
the RUN-MODE operand of the START-PROGRAM and LOAD-PROGRAM commands.

RUN-MODE=STD (default)
In this mode, DBL is compatible with DLL up to BS2000 V9.5 inclusive. Only object
modules can be processed, not link-and-load modules (LLMs).

RUN-MODE=ADVANCED

In this mode, object modules and link-and-load modules (LLMs) can be processed. This
mode is not described in the present manual. A detailed description may be found in
the manual "Binder-Loader-Starter" [9].

The modules generated by the assembler are either placed in the temporary EAM file of
the current task or entered as elements (of type R or L) in a PLAM library.

If object modules from the EAM file are to be linked, this file must be deleted before
assembly by using the DEL-SYS-FILE OMF command.

The linkage run with DBL is initiated with the command START-PROG or LOAD-PROG.
After the START-PROG command, the program is executed immediately. After LOAD-
PROG, further commands (e.g. debugging aid commands) may be entered. In this case
the program can subsequently be started with the RESUME-PROG command.

U5056-J-7125-3-7600 83

DBL

Linking, loading and starting

Commands for DBL

*OMF [,ELEM=*ALL
[START-PROG [*OMF ,ELEMENT=module]
/ j [FROM-FILE=] *MODULE (LIB=

LOAD-PROG library,ELEM=module

[[LRUN-MODE=STDADVANCED]|

*OMF designates the temporary EAM file (OMF) in which the assembler has
placed the object module.

module Name of the module to be loaded.

library Name of the PLAM library which contains the module (OM/LLM) as an

element with the name "module”. This module must be of type R/L. If
several elements with the same name are stored in the library, the
element with the highest version is taken.

RUN-MODE=ADVANCED
This specification is required whenever link-and-load modules (LLMs) are
to be processed.

84

U5056-J-2125-3-7600

Linking, loading and starting

TSOSLNK

5.4 Static linking with TSOSLNK

The static linkage editor TSOSLNK can be used to link object modules into a program
and to save this program in a cataloged file or as an element (of type C) in a PLAM

library.

Control statements for TSOSLNK

/START-PROG $TSOSLNK

*PROGRAM program [,

!FILENAM:fiIe

@)

1] @)

| LIB=library [,ELEM=element]]

module,library / *
*INCLUDE
[(module,...) library

1 ©)

I *]

[*RESOLVE [external-refs],library] 4

*END

®)

(1) The static linkage editor TSOSLNK is called.

(2) The PROGRAM statement defines where the program is to be stored.

program

FILENAM=file

LIB=library,
ELEM=element

The name to be given to the program must be entered
here. If no further operand ("FILENAM or "LIB") has been
specified, the name will be assigned to the cataloged file.

The "file" entry selects a name to be assigned to the
cataloged file. The max. length including the cat-id and
user-id must not exceed 54 characters.

The program is stored under the name "element"

in the named PLAM "library" as an element of type C. If
only the "LIB" operand is specified, "program" will be
assumed as the element name.

U5056-J-2125-3-7600

85

TSOSLNK Linking, loading and starting

(3) The INCLUDE statement can be used to link in one or more modules from a
library. Multiple modules entered in a list must be enclosed within parentheses. An
asterisk (*) can be specified as the library name to designate the EAM file (OMF).
Modules from different libraries can be linked by means of a sequence of
INCLUDE statements.

(4) The RESOLVE statement indicates to the linkage editor the external references
(= object module names) and the corresponding libraries (or just the libraries)
that are to be searched with the autolink procedure (described below) for still
unresolved external references.

(5 Inputs to the linkage editor TSOSLNK must be terminated with the END
statement.

Autolink procedure of TSOSLNK

If the TSOSLNK linkage editor finds external references in an object module which
cannot be resolved with the modules that were specified in INCLUDE statements, it will
proceed according to the following autolink procedure:

— TSOSLNK will first search the library that was explicitly specified in the RESOLVE
statement in connection with the external reference.

— If the external reference cannot be resolved by TSOSLNK in the first step, all
libraries specified in RESOLVE statements are searched. The search proceeds in
reverse order, i.e. the last RESOLVE statement is processed first, the next-to-last
second etc.

Libraries that are not to be searched can be excluded by means of EXCLUDE
statements.

— If the external reference cannot be resolved in the second step either, TSOSLNK wiill
search the library TASKLIB, provided this has not been prevented with the NCAL
statement or a corresponding EXCLUDE statement. If there is no library named
TASKLIB under the user ID of the current task, TSOSLNK will use the library of the
system, i.e. $TSOS.TASKLIB.

If unresolved external references remain even after the autolink procedure, TSOSLNK
will output their names to SYSOUT and SYSLST in the form of a listing.

86 U5056-J-2125-3-7600

Linking, loading and starting

TSOSLNK

Example of a linkage run with TSOSLNK and starting with ELDE

The object modules created from the separate assembly of two program segments are

to be linked into a single program.
The modules PROGL1 and UP1 are located in the library PLAMLIB.

/ START-PROG $TSOSLNK

RIGHTS RESERVED
PROGRAM PROGL1,FILENAM=TESTASS
INCLUDE PROGL,PLAMLIB
INCLUDE UP1,PLAMLIB
END
% LNKO500 PROG BOUND
% LNKO503 PROG FILE WRITTEN: TESTASS
% LNK0504 NUMBER PAM PAGES USED: 3
/ START-PROG TESTASS
% BLS0500 PROGRAM 'PROG1’, VERSIN ' ' OF ’'90-05-24" LOADED.
HERE IS PROG1
HERE IS UP1
HERE IS PROG1 AGAIN

% BLS0500 PROGRAM 'TSOSLNK’, VERSION 'V21.0E00" OF '1992-01-07" LOADED.
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991. ALL

U5056-J-2125-3-7600

87

TSOSLNK Linking, loading and starting

55 Loading and starting programs using the loader ELDE

In order to run a program that has been linked, it must first be loaded into main
memory. The static loader ELDE is provided in BS2000 for this purpose. Like DBL, the
ELDE loader is invoked implicitly by the START-PROG and LOAD-PROG commands:

— The START-PROG command instructs ELDE to load the program into memory and
start it. Since the program run is initiated immediately after loading, the files required
by the program must be assigned beforehand.

— The LOAD-PROG command instructs ELDE to load the program into memory
without starting it. This enables the input of further commands (e.g. for debugging)
before the program run. The program itself can be subsequently started with the
RESUME-PROG command.

The most important entries for the START-PROG and LOAD-PROG commands are
indicated below. A detailed description of both commands can be found in the manual
"BS2000/0SD-BC Commands" [6]. Refer to the previous page for an example.

[LOAD-PROG] [filename

[—

/1 Ci FROM-FILE = i
START-PRO *PHASE(LIB=library,ELEM=module,VERS=version)

filename Name of the cataloged file which contains the program generated by
TSOSLNK.

library Name of the PLAM library that contains the program generated by
TSOSLNK, as an element of type C.

module Name of the library element under which the program is stored.

version Version of the library element, up to 24 characters.

88 U5056-J-2125-3-7600

Linking, loading and starting

TSOSLNK

5.6 Assembling and linking a structured assembler program

When assembling the source, the library SYSLIB.ASSMBH.012, which contains the

macros for structured programming, must be specified as the macro library.

/START-PROGRAM $ASSEMBH
/ICOMPILE SOURCE-=sourcefile,-

I MACRO-LIBRARY=SYSLIB.ASSEMBH.012,-
I MODULE-LIBRARY=module-library
/IEND

When linking the program, the SYSLIB.ASSEMBH.012 library must be specified in order

to link in the assembler runtime system.

/ISTART-PROGRAM $TSOSLNK
PROG structured-program,...
INCLUDE structured-program, module-library

R'ESOLVE,SYSLI B.ASSEMBH.012
END

U5056-J-2125-3-7600

89

XS/ESA support Linking, loading and starting

5.7 XS support

As of version V9.0, BS2000 supports not only the usual hardware, but also XS systems
(XS stands for eXtended System). These systems provide the user with considerably
extended virtual address space: in contrast to the 16 megabytes available on previous
non-XS systems, up to 2 gigabytes can be addressed on an XS system.

This extension of address space on XS systems is enabled by the fact that 31 bits of
an address word are used to form an address instead of 24 bits (as with hon-XS
systems).

Details on XS programming are available in the manual "Introductory Guide to XS
Programming” [3].

5.8 ESA support

A new addressing mode for expanding the virtual address space is supported as of
BS2000 V11.0. This extended addressing mode is only available on systems which
include the appropriate new hardware (e.g. H130). These so-called ESA (Enterprise
Systems Architecture) systems provide additional address space for data.

ESA systems allow you on the one hand to work with 24-bit or 31-bit addresses and,
on the other, to work with data areas or in the program area only (see the "Executive
Macros" User Guide [12]).

The ASSEMBH assembler (= V1.2A) supports the ESA instructions by means of the
INSTRUCTION-SET = BS2000-ESA operand of the SOURCE-PROPERTIES option (see
section 2.4.1.4).

The ESA commands are listed in the Appendix, section 11.3 and described in the
"Assembler Instructions (BS2000)" Language Reference Manual [11].

90 U5056-J-2125-3-7600

6 Description of listings

The LISTING option (see section 2.4.4) can be used to define the layout, scope, and
output location for listings.

Listings are not generated directly by ASSEMBH, but are produced by a listing
generator.

Listings can also be created via the standalone generator ASSLG (see section 2.5),
provided the CIF (Compiler Information File) was stored in a library by specifying the
COMPILATION-INFO option (see section 2.4.3) when assembling the source.

Listings can be created in five different formats:

— Listings in standard format (ASSEMBH)
— Listing compatible with ASSEMB V30
— Laser printer listing

— SAVLST (listing with ISAM key)

— Structured listings

6.1 Listings in standard format

During the assembly, ASSEMBH generates an assembler listing (consisting of the
individual listings described below).

Depending on the values specified in the LISTING option, the following specific listings
can be created:

— an options listing (OPTIONS LISTING); this listing is always produced.
— an ESD listing (EXTERNAL SYMBOL DICTIONARY)

— asource program listing (SOURCE LISTING)

— alisting of used files and libraries

— cross-reference listings (XREF LISTINGS)

U5056-J-2125-3-7600 91

Description of listings

6.1.1 Options listing (OPTIONS LISTING)

The options listing contains all the COMPILE statement options and related operands
and operand values which are valid for the current assembly.

This listing is always created during an assembly, which means that its output cannot
be suppressed.

With *COMOPT control, the used options are output as with SDF control. The entered
COMOPTSs are indicated in an additional listing (see section 6.2, "Listing compatible with
ASSEMB V30").

If the listing is generated with the standalone list generator, the valid operands of the
GENERATE statement are contained in an additional list which precedes the options
listing.

ASSEMBH LISTING 10:36:24 1994-03-07 PAGE 0001
SOURCE=:01KH:$HASSEMB.MES.XREF.ENGL,
MACRO-LIBRARY=MES.PLAM,

COPY-LIBRARY=MES.PLAM
(ELEMENT-TYPE=BOTH),

SOURCE-PROPERTIES=PARAMETERS
(FROM-COLUMN=1,TO-COLUMN=71,CONTINUATION-COLUMN=16,LOW-CASE-CONVERSION=NO,INSTRUCTION-SET=BS2000-XS,
PREDEFINED-VARIABLES=NONE),

COMPILER-ACTION=MODULE-GENERATION
(MODE=STD,MODULE-FORMAT=0M),

MODULE-LIBRARY=MES.PLAM
(ELEMENT=*STD
(VERSION=*UPPER-LIMIT)),

COMPILATION-INFO=NONE,

LISTING=PARAMETERS
(SOURCE-PRINT=WITH-OBJECT-CODE
(PRINT-STATEMENTS=ACCEPTED,LINE-NUMBERING=NO),
SOURCE-FORMAT=STD,
MACRO-PRINT=PARAMETERS
(NOPRINT-NEST-LEVEL=255 NOPRINT-PREFIX=*NONE, TITLE-STATEMENTS=IGNORED,MACRO-ORIGIN-INFO=SEPARATE),
MIN-MESSAGE-WEIGHT=SIGNIFICANT,CROSS-REFERENCE=PARAMETERS
(SYMBOL=YES
(WITH-ATTRIBUTES=YES,REFERENCED-ONLY=NO,PREFIX=ALL),
LITERAL=YES,MACRO=YES,COPY=YES, DIAGNOSTICS=YES),
EXTERNAL-DICTIONARY=YES,LAYOUT=PARAMETERS
(LINES-PER-PAGE=60,LASER-PRINTER=NO,FORMAT=STD),
OUTPUT=MES.LIST.XREF),

TEST-SUPPORT=NO,

COMPILER-TERMINATION=PARAMETERS
(MAX-ERROR-WEIGHT=FATAL,MAX-ERROR-NUMBER=32767,MAX-MACRO-NEST-LEVEL=255,MAX-COPY-NEST-LEVEL=5),

CORRECTION-CYCLE=NO,

MAINTENANCE-OPTIONS=PARAMETERS
(CHANNEL-INSTRUCTIONS=NO),

COMPILATION-SPACE=STD

92 U5056-J-2125-3-7600

Description of listings

6.1.2

ESD listing (EXTERNAL SYMBOL DICTIONARY)

The ESD listing is a listing of definitions and references to external names (symbols)
for:

— control sections (CSECT, including AMODE and RMODE)

— common control sections (COM)

— dummy sections (DSECT, and the external dummy sections XDSEC)

— dummy registers (DXD)

— entry points to own assembly unit (ENTRY)

— entry points or address references to other assembly units (V-type constants,

EXTRN, WXTRN)

The logged ESD information corresponds to the ESD records which are generated
during the assembly and placed in the module. This information is required by the
linkage editor and loader in order to link modules into executable programs.

The ESD listing is created by default. Its output can be suppressed with the option
LISTING(EXTERNAL-DICTIONARY=NO).

Key to columns in the ESD listing:
Column Meaning

SYMBOL External name
This is either specified by the user in the appropriate statements (see
TYPE column) or it is generated by ASSEMBH.
Unnamed CSECTs and COMs are listed as %CSECT and %COM
respectively.
External names that are processed by the linkage editor are restricted
to eight characters. Longer external names are truncated to eight
characters for further processing, and are provided with a message.
If modules are output in LLM format, a maximum of 32 characters are
permitted (see section 6.6).

TYPE Type of external name

CM Name of a common control section
(CM 2 Common Memory; COM statement).
An unnamed common control section is listed as %COM in the
SYMBOL column.

DS Name of a dummy section
(DS 2 Dummy Section; DSECT statement).
In addition, this line has the designation (DUMMY) ahead of the
SYMBOL column.

DX Name of a dummy register
(DXD statement).

U5056-J-7125-3-7600 93

Description of listings

ER Name of an external linkage address
(ER 2 External Reference; EXTRN statement).

LD Name of a linkage address
(LD 2 Label Definition; ENTRY statement).

SD Name of a control section
(SD 2 Section Definition; CSECT or START statement).
An unnamed control section is listed as %CSECT in the SYMBOL
column.

VC Name of an external linkage address
(VC 2 V-Constant).

XD Name of an external dummy section
(XDSEC statement with operand D).
In addition, this line has the designation (DUMMY) ahead of the
SYMBOL column.

XR Name of the reference for an external dummy section
(XDSEC statement with operand R).
In addition, this line has the designation (DUMMY) ahead of the
SYMBOL column.

WX Name of a conditional external linkage address
(Weak External Reference; WXTRN statement).

ID Number of the external name
(ID 2 Identification).
The external names are numbered consecutively for each module,
starting at 0001.

ADDR Displacement from start of module if the module is in OM format or
displacement from the start of the corresponding CSECT for a module
in LLM format (see section 6.6) for definition of external names.

This displacement is given hexadecimally in bytes.

LENGTH Length of a control section or common control section (hexadecimal, in
bytes).
No length specification is given for V-type constants and linkage
addresses.

A/R-MODE In the left column (A-MODE), the addressing mode (24/31/ANY) for a
control section is listed (AMODE statement).

In the right column (R-MODE), the load attribute (24/ANY) for a control
section is listed (RMODE statement).

94 U5056-J-2125-3-7600

Description of listings

ASSEMBH LISTING

10:36:24 1994-03-07 PAGE 0002
SYMBOL LENGTH A/R-MODE EXTERNAL SYMBOL DICTIONARY
TESTXREF SD 0001 00000000 000068 24 24
ADDRCOM VC 0002
(DUMMY) BEGIN DS 0003 00000000 000020

ADDRCOM SD 0004 00000068 000020 24 24
HCOM

CM 0005 00000000 000009 24 24
%CSECT SD 0006 00000088 000002 24 24
%COM CM 0007 00000000 000008 24 24

TYPE ID ADDR

U5056-J-2125-3-7600

95

Description of listings

6.1.3 Source program listing (SOURCE LISTING)
The output of the source program listing is controlled by means of the
LISTING(SOURCE-PRINT=) option.
The source program listing normally contains the source program and the object code.
A message with the total number of errors is printed at the end of the listing. This is
followed by the end message of the assembler with an indication of the version, date
and time.
Key to columns in the ESD listing:
Column Meaning
LOCTN Location counter, hexadecimal (3 bytes).
OBJECT CODE Object code, hexadecimal (6 bytes).
ADDR1 Address of first operand, hexadecimal (4 bytes).
ADDR2 Address of second operand, hexadecimal (4 bytes).
STMNT Consecutive line number, starting at 1.
M One digit, denoting the nesting depth of macros and COPYs:
1 Levell
2 Level2
etc.
+ means that these instructions have been generated by macro
statements in the source program.
SOURCE STATEMENT
Source program text
A line in the source program can comprise five entries. These are,
from left to right:
Names, operations, operands, remarks and continuation character.
In the case of a module in LLM format, see section 6.6 for the contents of the address
fields LOCTN, ADDR1 and ADDR2.
Error indication
The assembler generates diagnostic messages in the event of errors during assembly
(see section 11.1). Such messages follow the lines to which they relate.
The message line begins with an * and may appear as follows:
96 U5056-J-Z125-3-7600

Description of listings

* U1l0 ** ERROR ** ASS2110 SYMBOL UNDEF IS UNDEFINED

Flag

Message number

ASSEMBH LISTING 10:36:24 1994-03-07 PAGE 0003
LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
000000 1 TESTXREF START
2 PRINT NOGEN
3 *
4 COPY MES.EQU
00000005 5 1RS5 EQU 5
00000006 6 1R6 EQU 6
00000007 7 1R7 EQU 7
00000008 8 1RS8 EQU 8
00000009 9 1R9 EQU 9
0000000A 10 1 R10 EQU 10
0000000E 11 1 R14 EQU 14
0000000F 12 1 R15 EQU 15
13 *
000000 05 50 14 BEG BALR R5,0
000002 00000002 15 USING *R5
000002 D2 02 50505053 00000052 00000055 16 MVC FIELD,NUMBER
000008 47 FO 0000 17 B UNDEF
* U10 ** ERROR ** ASS2110 SYMBOL UNDEF IS UNDEFINED
00000C D2 02 5050505E 00000052 00000060 18 MVC FIELD,=C'456
000012 47 FO 5053 00000055 19 B NUMBER
* D7 ** ERROR *** ASS0407 ALIGNMENT ERROR IN OPERAND 1
20 *
21 MNOTE 152,BRANCH ADDRESS IS WRONG’
22 *
000016 41 60 5030 00000032 23 LA R6,INPUT
00001A 00000000 24 USING BEGIN,R6
00001A 58 FO 5056 00000058 25 L R15,=V(ADDRCOM)
00001E 05 EF 26 BALR R14,R15
27 *
000020 28 TERM
31 2 *VERSION 010 00001300
43 *
000032 44 INPUT DS CL32
000052 45 FIELD DS CL3
000055 F1F2F3 46 NUMBER DC C'123
47 *
000000 48 BEGIN DSECT
000000 49 NR DS CL2
000002 50 NAME DS CL10
00000C 51 STREET DS CL20
52 *
000068 53 ADDRCOM CSECT
000068 05 70 54 BALR R7,0
00006A 0000006A 55 USING *R7
00006A 58 80 505A 0000005C 56 L R8,=A(HCOM)
00006E 00000000 57 USING HCOM,R8
00006E D2 04 80045061 00000004 00000063 58 MVC COM2,=C'12345’
000074 59 TERM
62 2 *VERSION 010 00001300
74 *
000000 75 HCOM CcoMm
000000 76 CcoMm1 DS F
000004 7 COoM2 DS CL5
78 *
000088 79 CSECT
U5056-J-2125-3-7600 97

Description of listings

ASSEMBH LISTING 10:36:24 1994-03-07 PAGE 0004
LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
000088 05 90 80 BALR R9,0
00008A 0000008A 81 USING *R9

82 *
000000 83 CoM
000000 84 Com3 DS F
000004 85 COM4 DS F

86 *
000000 87 END BEG
000058 00000000 88 =V(ADDRCOM)
00005C 00000000 89 =A(HCOM)
000060 F4F5F6 90 =C'456’
000063 F1F2F3F4F5 91 =C'12345

FLAGS IN 00002 STATEMENTS, 000 PRIVILEGED FLAGS, 001 MNOTES
HIGHEST ERROR-WEIGHT : SERIOUS ERROR
THIS PROGRAM WAS ASSEMBLED BY ASSEMBH V 1.2A00 ON 1994-03-07 AT 10:33:03

6.1.4 Listing of files and libraries used

This listing shows from where the source was obtained, which module was generated,
and the macro and COPY libraries that were used.

ASSEMBH LISTING 10:36:24 1994-03-07 PAGE 0005
USED FILES AND LIBRARIES
SOURCE FILE : :01KH:$HASSEMB.MES.XREF.ENGL
MODULE LIBRARY : :01KH:$HASSEMB.MES.PLAM
MODULE ELEMENT : TESTXREF
VERS/DATE : @/1994-03-07
MACRO-LIBRARIES LINKNAME LIBRARY-NAME
MES.PLAM
:D:$TSOS.MACROLIB
COPY-LIBRARIES LINKNAME LIBRARY-NAME

:01KH:$HASSEMB.MES.PLAM

98 U5056-J-2125-3-7600

Description of listings

6.1.5 Cross-reference listings

Cross-reference listings show, in ascending order, the locations in the source program
for:

— symbols (SYMBOL-XREF)

— literals (LITERAL-XREF)

— names of macros (MACRO-XREF)

— names of COPY elements (COPY-XREF)

— undefined symbols (UNDEFND SYMBOL-XREF)

— errors detected by the assembler, and user-own messages
(DIAGNOSTIC-XREF: FLAG-XREF and MNOTE-XREF)

The FLAG-XREF and the MNOTE-XREF are created by default. All other cross-reference
listings may be requested by means of the option LISTING(CROSS-REFERENCE).

When a SYMBOL-XREF is requested, the UNDEFND SYMBOL-XREF is also generated.
By default, the attribute associated with the symbol is also shown in the 'REFERENCES’
column of both listings. These attributes refer to the mode of access.

The following attributes are possible:

Address access

EQU / ORG instructions
Read-only access by instructions
Write access

sxom>

In the UNDEFND SYMBOL-XREF, unnamed CSECTs and COMs are listed as %CSECT
and %COM respectively.

In the case of a module in LLM format, see section 6.6 for the contents of the address
field VALUE for the SYMBOL-XREF and LITERAL-XREF.

U5056-J-7125-3-7600 99

Description of listings

ASSEMBH LISTING 10:36:24 1994-03-07 PAGE 0006
SYMBOL LEN VALUE DEFN REFERENCES
%COM 00008 00000000 000083
%CSECT 00002 00000088 000079
ADDRCOM 00032 00000068 000053
ADDRCOM 00000 00000000 000000 000025A
BEG 00002 00000000 000014 000087
BEGIN 00032 00000000 000048 000024 000048
COM1 00004 00000000 000076
COM2 00005 00000004 000077 000058W
COM3 00004 00000000 000084
COM4 00004 00000004 000085
FIELD 00003 00000052 000045 000016W 000018W
HCOM 00009 00000000 000075 000056A 000057 000075
INPUT 00032 00000032 000044 000023A
NAME 00010 00000002 000050
NR 00002 00000000 000049
NUMBER 00003 00000055 000046 000016R 000019A
R10 00001 0000000A 000010
R14 00001 0000000E 000011 000026W
R15 00001 0000000F 000012 000025W 000026R
R5 00001 00000005 000005 000014W 000015
R6 00001 00000006 000006 000023W 000024
R7 00001 00000007 000007 000054W 000055
R8 00001 00000008 000008 000056W 000057
R9 00001 00000009 000009 000080W 000081
STREET 00020 0000000C 000051
TESTXREF 00104 00000000 000001
ASSEMBH LISTING 10:36:24 1994-03-07 PAGE 0007
LITERAL LEN VALUE DEFN REFERENCES
=A(HCOM)
00004 0000005C 000089 000056
=C'12345’
00005 00000063 000091 000058
=C'456’
00003 00000060 000090 000018
=V(ADDRCOM)
00004 00000058 000088 000025
ASSEMBH LISTING 10:36:24 1994-03-07 PAGE 0008
MACRO-NAME LINKNAME TYPE VERSION DATE DEF-STMNT
LIBRARY-NAME/SOURCE-NAME ELEMENT-NAME
REFERENCES
##BAL M 010 1988-06-14
:D:$TSOS.MACROLIB ##BAL
000034 000065
#INTF M 919 1987-12-11
:D:$TSOS.MACROLIB #INTF
000029 000060
IDLKG M 002 1987-12-11
:D:$TSOS.MACROLIB IDLKG
000030 000061
TERM M 010 1988-06-15
:D:$TSOS.MACROLIB TERM
000028 000059
ASSEMBH LISTING 10:36:24 1994-03-07 PAGE 0009
COPY-NAME LIBRARY-NAME LINKNAME TYPE VERSION DATE
REFERENCES
MES.EQU :01KH:$HASSEMB.MES.PLAM S @ 1992-02-28
000004
100 U5056-J-2125-3-7600

Description of listings

ASSEMBH LISTING 10:36:24 1994-03-07 PAGE 0010

UNDEFND-SYMBOL REFERENCES

UNDEF 000017A

ASSEMBH LISTING 10:36:24 1994-03-07 PAGE 0011
DIAGNOSTICS

FLAG MESSAGE AND STATEMENT NUMBERS
D7 ASS0407 ALIGNMENT ERROR IN OPERAND

000019
u1o0 ASS2110 SYMBOL IS UNDEFINED
000017
ASSEMBH LISTING 10:36:24 1994-03-07 PAGE 0012
DIAGNOSTICS
SEVERITY CODES OF MNOTES AND STATEMENT NUMBERS
MNOTE WITH SEVERITY CODE 0152 000021
6.1.6 End message
Assembly time: Time required for an assembly, excluding the time to generate the
listing.

End message of the listing generator with indication of version:

ASSEMBLY TIME : 0.543 SEC.
THIS LISTING WAS GENERATED BY THE LISTING GENERATOR V 1.2A00.

U5056-J-2125-3-7600 101

Description of listings

6.2 Listing compatible with ASSEMB V30

The option LISTING=PAR(LAYOUT=PAR(FORMAT=F-ASSEMB-COMPATIBLE))
generates a listing that is compatible with ASSEMB V30.

Listings generated under *COMOPT control are always compatible with ASSEMB V30.
The specified COMOPTSs are listed in an additional options listing (USER’S OPTIONS).

ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE 11:46:25 94-03-07 PAGE 0001
SOURCE=:01KH:$HASSEMB.MES.TEST1F.ENGL,

MACRO-LIBRARY=*NONE,

COPY-LIBRARY=*NONE,

SOURCE-PROPERTIES=PARAMETERS
(FROM-COLUMN=1,TO-COLUMN=71,CONTINUATION-COLUMN=16,LOW-CASE-CONVERSION=NO,INSTRUCTION-SET=BS2000-NXS,
PREDEFINED-VARIABLES=NONE),

COMPILER-ACTION=MODULE-GENERATION
(MODE=F-ASSEMB-COMPATIBLE,MODULE-FORMAT=0M),

MODULE-LIBRARY=MES.PLAM
(ELEMENT=*STD
(VERSION=*UPPER-LIMIT)),

COMPILATION-INFO=NONE,

LISTING=PARAMETERS
(SOURCE-PRINT=WITH-OBJECT-CODE
(PRINT-STATEMENTS=ACCEPTED,LINE-NUMBERING=NO),
SOURCE-FORMAT=STD,
MACRO-PRINT=PARAMETERS
(NOPRINT-NEST-LEVEL=255 NOPRINT-PREFIX=*NONE,TITLE-STATEMENTS=ACCEPTED,MACRO-ORIGIN-INFO=SEPARATE),
MIN-MESSAGE-WEIGHT=SIGNIFICANT,CROSS-REFERENCE=PARAMETERS
(SYMBOL=YES
(WITH-ATTRIBUTES=NO,REFERENCED-ONLY=NO,PREFIX=ALL),
LITERAL=YES,MACRO=YES,COPY=NO,DIAGNOSTICS=YES),
EXTERNAL-DICTIONARY=YES,LAYOUT=PARAMETERS
(LINES-PER-PAGE=60,LASER-PRINTER=NO,FORMAT=F-ASSEMB-COMPATIBLE
(MESSAGE-PLACEMENT=SEPARATE)),
OUTPUT=*SAVLST-AND-SYSLST),

TEST-SUPPORT=YES,

COMPILER-TERMINATION=PARAMETERS
(MAX-ERROR-WEIGHT=FATAL,MAX-ERROR-NUMBER=32767,MAX-MACRO-NEST-LEVEL=255MAX-COPY-NEST-LEVEL=5),

CORRECTION-CYCLE=NO,

MAINTENANCE-OPTIONS=PARAMETERS
(CHANNEL-INSTRUCTIONS=NO),

COMPILATION-SPACE=STD

ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE 11:46:25 94-03-07 PAGE 0002
*** USER'S OPTIONS ***

*COMOPT SOURCE=MES.TEST1F.ENGL

*COMOPT XREF,ISD,SAVLST

*COMOPT MODULE=MES.PLAM

*END HALT

102 U5056-J-2125-3-7600

Description of listings

ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE 11:46:25 94-03-07 PAGE 0003
SYMBOL TYPE ID ADDR LENGTH A/R-MODE EXTERNAL SYMBOL DICTIONARY
TEST1F SD 0001 00000000 00002E 24 24
ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE 11:46:25 94-03-07 PAGE 0004
FLAG LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
000000 1 TEST1F START
000005 2 R5 EQU 5
3 *
000000 05 50 4 BEGIN BALR R5,0
000002 000002 5 USING *R5
000002 D2 02 501C501F 00001E 000021 6 MvC FIELD,NUMBER
000008 47 FO 501F 000021 7 B NUMBER
8 TERM
9 1 #INTF INTNAME=TERM,REFTYPE=REQUEST,INTCOMP=001
10 1 IDLKG VER=010,ALIGN=F
1 2 *VERSION 010 00001300
00000C 12 2 CNOP 04 00002800
00000C 13 2 DS OF 00003500
14 1 ##BAL 1,*+16
00000C 45 10 501A 00001C 15 2 BAL 1,*+16
000010 01 16 1 DC XL1ror
000011 00 17 1 DC XL1'00
000012 00 18 1 DC XL1'00
000013 04 19 1 DC XL104
000014 40404040 20 1 DC cL4
000018 00000075 21 1 DC XL4’00000075
00001C OA 09 22 1 svC 9
23 *
00001E 24 FIELD DS CL3
000021 F1F2F3 25 NUMBER DC C'123
000024 07 00 26 END NOPR 0
000000 27 END BEGIN
000026 9203101514384858 28 =X'9203101514384858' CONSISTENCY CONSTANT FOR AID
FLAGS IN 00001 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : 1
THIS PROGRAM WAS ASSEMBLED BY ASSEMBHC V 1.2A00
ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE 11:46:25 94-03-07 PAGE 0005
USED FILES AND LIBRARIES
SOURCE FILE : :01KH:$HASSEMB.MES.TEST1F.ENGL
MODULE LIBRARY : :01KH:$HASSEMB.MES.PLAM
MODULE ELEMENT : TEST1F
VERS/DATE : @/1994-03-07
SYSTEM MACROLIBRARY : :D:$TSOS.MACROLIB
MACRO-LIBRARIES LINKNAME LIBRARY-NAME
SYSLIB :D:$TSOS.MACROLIB
103

U5056-J-2125-3-7600

Description of listings

ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE
SYMBOL LEN VALUE DEFN REFERENCES
BEGIN 00002 00000000 000004 000027

END 00002 00000024 000026

FIELD 00003 0000001E 000024 000006

NUMBER 00003 00000021 000025 000006 (000007
R5 00001 00000005 000002 000004 000005
TEST1F 00046 00000000 000001

ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE

MACRO NAME VERS/DATE DEFN REFERENCES
##BAL 010/880614 SYSLIB 000014
#INTF 919/871211 SYSLIB 000009
IDLKG 002/871211 SYSLIB 000010
TERM 010/880615 SYSLIB 000008

ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE

DIAGNOSTICS

FLAG MESSAGE AND STATEMENT NUMBERS

D7 ASS0407 ALIGNMENT ERROR IN OPERAND
000007

ASSEMBLY TIME : 0.212 SEC.

THIS LISTING WAS GENERATED BY THE LISTING GENERATOR V 1.2A00.

11:46:25 94-03-07 PAGE 0006

11:46:25 94-03-07 PAGE 0007

11:46:25 94-03-07 PAGE 0008

104

U5056-J-2125-3-7600

Description of listings

6.3

Laser printer listing

A listing specifically edited for laser printer output (called an "ND listing") can be
generated by specifying the option LISTING=PAR(LAYOUT=PAR(LASER-
PRINTER=ND?2)). It differs from the standard listing in the following respects:

The ND listing (source program listing) is divided into three sections:
— object code

— source program

— additional information

The object code and source program sections are identical to the standard listing.

The additional information consists of:

— ISAM key, if the assembled program is contained in an ISAM file.

— Section names of symbols that represent addresses in instructions.

— OPSYN listing shows the mnemonic operation code that was changed by means
of an OPSYN statement.

— STACK level indicates the nesting level for each STACK or UNSTK instruction:

U for USING (where 1 < | < 4)

X

P, for PRINT (where 1 < < 4)
— MTRAC information is output completely.
Restriction: The value of SETC variables will be printed up to a maximum of 50

characters.

In all cross-reference and diagnostic listings, the statement numbers are increased
to a total of 24 per line.

Hardcopy printout of a laser printer listing.
ASSEMBH can be instructed to generate an ND listing and save it in a file by
specifying the following options:

/I COMPILE...,LISTING=PAR(LAYOUT=PAR(LASER-PRINTER=ND2),OUTPUT=filename)

The maximum line length in the ND listing is 205 characters. Consequently, to
obtain a printout on the laser printer, the appropriate paper format (FORM-NAME=)
and character set (CHARACTER-SETS=) must be specified in the PRINT-FILE
command. Suitable values may be requested from the system administrator.

The following command can be used to obtain a printout of the listing:

/PRINT-FILE FILE-NAME=filename,LAYOUT-CONTROL=PAR(FORM-NAME=format,
CHARACTER-SETS=chars)

U5056-J-2125-3-7600 105

Description of listings

6.4

SAVLST (listing with ISAM key)

The option LISTING=PAR(OUTPUT=*SAVLST) can be used to create a listing that is in
SAVLST format and is compatible with ASSEMB V30.

If an LLM format module is output, the contents of the following address fields change:
ADDR in the ESD list, LOCTN, ADDR1 and ADDR?2 in the source program list and
VALUE in the SYMBOL-XREF and LITERAL-XREF cross reference lists (see section 6.6).
The name field (SYMBOL) in the ESD list is extended to 32 characters.

0001000 ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE 11:46:25 94-03-07 PAGE 0001
0001001 SYMBOL TYPE ID ADDR LENGTH A/R-MODE EXTERNAL SYMBOL DICTIONARY

0001002

0001003 TEST1F SD 0001 00000000 00002E 24 24

0000001000 ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE 11:46:25 94-03-07 PAGE 0002
0000002000 FLAG LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT

0000101001 000000 1 TEST1F START

0000201001 000005 2 R5 EQU 5

0000301001 3 *

0000401001 000000 05 50 4 BEGIN BALR R5,0

0000501001 000002 000002 5 USING *R5

0000601001 000002 D2 02 501C501F O00001E 000021 6 MVC FIELD,NUMBER

0000701001 D 000008 47 FO 501F 000021 7 B NUMBER

0000801001 8 TERM

0000901001 9 1 #INTF INTNAME=TERM,REFTYPE=REQUEST,INTCOMP=001
0001001001 10 1 IDLKG VER=010,ALIGN=F

0001101001 1 2 *VERSION 010 00001300
0001201001 00000C 12 2 CNOP 0,4 00002800
0001301001 00000C 13 2 DS OF 00003500
0001401001 14 1 #H#BAL 1,*+16

0001501001 00000C 45 10 501A 00001C 15 2 BAL 1,*+16

0001601001 000010 01 16 1 DC XL1ov

0001701001 000011 00 17 1 DC XL100

0001801001 000012 00 18 1 DC XL100

0001901001 000013 04 19 1 DC XL1'04

0002001001 000014 40404040 20 1 DC CcL4 !

0002101001 000018 00000075 21 1 DC XL4'00000075’

0002201001 00001C OA 09 22 1 svC 9

0002301001 23 *

0002401001 00001E 24 FIELD DS CL3

0002501001 000021 F1F2F3 25 NUMBER DC C'123

0002601001 000024 07 00 26 END NOPR 0

0002701001 000000 27 END BEGIN

0002801001 000026 9203101514384858 28 =X'9203101514384858' CONSISTENCY CONSTANT FOR AID
0002802000 FLAGS IN 00001 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES

0002803000 HIGHEST ERROR-WEIGHT : 1

0002804000 THIS PROGRAM WAS ASSEMBLED BY ASSEMBHC V 1.2A00

SYSTEM MACROLIBRARY : :D:$3TSOS.MACROLIB
DIAGNOSTIC FILE : :01KH:$HASSEMB.SAVLST.ASSEMBH.TEST1F

106

U5056-J-2125-3-7600

Description of listings

0 ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE
0 SYMBOL LEN VALUE DEFN REFERENCES

0
BEGIN 1 BEGIN
2 00002 00000000 000004 000027
END 1 END
2 00002 00000024 000026
FIELD 1 FIELD
2 00003 0000001E 000024 000006
NUMBER 1 NUMBER
2 00003 00000021 000025 000006 000007
R5 1 R5
2 00001 00000005 000002 000004 000005
TEST1F 1 TESTIF
2 00046 00000000 000001
0 ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE
0 MACRO NAME VERS/DATE DEFN REFERENCES
0
#H#BAL 1 ##BAL
2 010/880614 SYSLIB 000014
#INTF 1 #INTF
2 919/871211 SYSLIB 000009
IDLKG 1 IDLKG
2 002/871211 SYSLIB 000010
TERM 1 TERM
2 010/880615 SYSLIB 000008

D070000010 ASSEMBH LISTING - FORMAT: F_ASSEMB_COMPATIBLE
D070000020 DIAGNOSTICS
D070000030 FLAG MESSAGE AND STATEMENT NUMBERS

D070300011 D7 ASS0407 ALIGNMENT ERROR IN OPERAND

D070300022 000007
0000000001 94-03-07 11:13:38 V 1.2A00 TEST1F
:01KH:$HASSEMB.MES.TEST1F.ENGL 51

THIS LISTING WAS GENERATED BY THE LISTING GENERATOR V 1.2A00.

11:46:25 94-03-07 PAGE 0003

11:46:25 94-03-07 PAGE 0004

11:46:25 94-03-07 PAGE 0005

U5056-J-2125-3-7600

107

Description of listings

6.5 Structured list

The user interface has become more simple now that structured Assembler lists have
been integrated in ASSEMBH (see chapter 10, "Utility routines for structured
programming").

You select the structuring function using the option LISTING=(,SOURCE-FORMAT=
STRUCTURED,) (see section 2.4.4). This is done immediately after assembly.

You must use the predefined macros for structured programming (see the "ASSEMBH
Reference Manual" [1] before you can create a structured list. These macros are also
referred to as "structure macros" below.

You can also generate a structured list from a permanent CIF (H-type element in a
PLAM library) created during a previous assembly run using the standalone list
generator (see section 2.5). Select the structuring function using the SOURCE-
FORMAT=STRUCTURED option in the GENERATE statement. If you choose to do this,
you must ensure that COMPILATION-INFO=PAR(INFO=MAX) was specified for all the
options of the structured list when the CIF was generated (see section 2.4.3).

The structured list is generated in standard ASSEMBH format. If you want to structure a
list using the LISTING=(LAYOUT=(FORMAT=F-ASSEMB-COMPATIBLE)) option, you
must use the relevant utilities (see chapter 10).

6.5.1 Features of the structuring function

1. Structure blocks are indicated by vertical and horizontal bars.
Instructions and comments are indented by a specified value to indicate the
structure level.

2. The indentation value can be specified for each structure level and a fixed column
area can be defined.
Option: SOURCE-FORMAT=STRUCT(IDENTATION-AMOUNT=...,FIXED-AREA-START=...)

3. Logging of structure macros can be controlled.
Option: SOURCE-FORMAT=STRUCT(,STRUCT-MACRO-PRINT=...)

108 U5056-J-2125-3-7600

Description of listings

Examples
1. Assembly with ASSEMBH and structuring of the log in a single run.

START-PROG $ASSEMBH

Options:

SOURCE = Input file containing unstructured source code
MACRO-LIB = Library containing predefined macros

LISTING = (OUTPUT=assemb.list,

NOPRINT-PREFIX=@,
SOURCE-FORMAT=STRUCTURED(,INDENT-AMOUNT=n,
STRUCT-MACRO-PRINT=0OBJECT-CODE-ONLY),
TITLE-STATEM=ACCEPTED,

LINES-PER-PAGE=n)

2. Creation and structuring of the log from the CIF information stored in a library using
the standalone list generator.

The COMPILATION-INFO=PAR(INFO=MAX) option must be specified during
assembly.

START-PROG $ASSLG

Options:

COMPILER-INFO-FILE = Input element containing the permanent CIF

SOURCE-FORMAT = STRUCTURED(INDENT-AMOUNT=N,
STRUCT-MACRO-PRINT=0OBJECT-CODE-ONLY),
LINES-PER-PAGE=n

OUTPUT = assemb.list

Handling of structure errors

Any structure errors are indicated by the structure macros using MNOTES.
Once an error has occurred, the system attempts to continue the structuring process.

U5056-J-7125-3-7600 109

Description of listings

6.5.2

The print-edited assembly log

1. Structure blocks

A structure block begins with a start statement. These include the structure macros
@BEGIN, @IF, @CASE, @CAS2, @WHILE, @CYCLE and @THRU. The structure block
is terminated with the end statement @BEND. A structure block is indicated in the
print-edited list by a horizontal line between the call to the structure macro and the

right margin of the line of source code. At this point, the current structure level is

entered. The start and end of a structure block are linked by a vertical line.

All the instructions and comments which belong to a structure block are logged in
accordance with the nested structure and are indented by the correct amount.

2. Procedures

The body of a procedure is indicated by a horizontal line between @ENTR and @END.
Instructions located outside the body of the procedure, i.e. before @ENTR and after
@END, are not indented. This is not necessary, since it is not possible to nest
procedure declarations. In addition, instructions which lie between @ENTR and the first
structure block and between the last structure block and @END are not indented.
Generally users store data declarations and DSECTS here. The structure of these
remains unchanged.

@ENTR, @END and the first structure block following @ENTR start in column 10.

3. Exiting structure blocks

@BREAK, @EXIT and @PASS allow you to exit structure blocks. These structure
macros are indicated by an arrow to the left which precedes the statement. Any name
entry is entered in a separate line before the structure macro is called.

146
146
152 3
156 Lemmeme @PASS NAME=PROC1

162 1 i}
ELSE *

@THEN *
| OKAY

164 2
165

110

U5056-J-2125-3-7600

Description of listings

6.5.2.1

4. Handling of instructions and comments

The handling of instructions is described in section 6.5.2.1 and the handling of
comments is described in section 6.5.2.2.

5. Logging statements

The EJECT, SPACE and TITLE statements are not logged.

6. Statement numbers

If indentation results in a statement line being split into several separate lines,
continuation lines are assigned the same statement number in the log as the first line.

Handling of instructions

1. Name entry in structure macro calls

Name entries are not indented. If the name is longer than 8 characters, it is entered in
a separate line before the structure macro call as indicated by a horizontal line. The
new line has the same number as the original statement.

If the name is 8 characters or shorter, it is retained in the same line as the call.

2. Name entry in assembler calls

Name entries are not indented. The structure is retained, even in the case of long name
entries. If the name extends to the rightmost vertical structure line, the remainder of the
line, as of the opcode, is stored in a continuation line.

@BEGI * 6-
LR 1,1
SYMBOL_TRANSPORT MVC 0(1,2),0(3)
EXTREMELY_LONG_NAME_ENTRY
MVC SOURCE,TARGET LONG SYMBOL
LAR 2,2
BEND * 6-

3. Source line

The instructions are indented and, where necessary, split across a number of lines. The
opcode, operands and comment field for instructions are indented according to the
standard ICTL values (10,16). Continuation lines are generated if the instruction does
not fit in the line, even when superfluous blanks are removed.

U5056-J-2125-3-7600

111

Description of listings

4. Continuation line

The instruction and all its continuation lines are provided with new line breaks and
indented after any superfluous blanks have been compressed.

Superfluous blanks between the opcode, operand and comment field are compressed
before any continuation lines are generated as a result of the required indentation.
Continuation lines are indented according to the nesting depth and operands are also
indented according to the standard ICTL values (10,16).

@BEGI * 3-
@BEGI * 4-
MVC VERY_LONG_TARGET NAME(L'VERY_LONG_TARGET_NAME),LON*
L G_SOURCE_NAME
BEND * 4-
LR 1,1

BEND * 3-

5. Macro call with operands

The opcode and operands are indented according to the nesting depth. If a line break
is to be added to the line, the operands are also aligned in any continuation lines.

@BEGI * 6-
@BEGI * 7-
@DATA CLASS=C,BASE=BASEREG,LENGTH=2000,INIT=ADDR*
INIT
@BEND * 7-
BEND * 6-

6. Macro call in alternative format

The opcode and operands are indented according to the nesting depth. The operands
are also aligned in any continuation lines. If there is insufficient space in the line, the
continuation lines are also provided with line breaks.

@BEGI * 6-
@BEGI * 7-

@DATA CLASS=C,BASE=BASEREG, F
LENGTH=2000, F
INIT=ADDRINIT

BEND * 7-

BEND * 6-

112 U5056-J-2125-3-7600

Description of listings

6.5.2.2 Handling of comments

1. Comments in structure macro calls

A comment is always separated from the call in order to prevent the horizontal
connection line to the level specification in the right margin from being interrupted. The
comment is placed in a separate line after the call and indented.

The comment line is always placed before the expansion of the macro and assigned
the original statement number. The comment starts immediately below the introductory
"*" when a single-line comment still fits in the line. If there is insufficient space or if the
comment is a multi-line comment (continuation lines), the comment is split over a
number of lines and starts in the opcode field.

M SOURCE STATEMENT

@THEN * 3-
* The structure word comment associated with @THEN
3
3 generated statements
3

2. Comments in Assembler instructions

The comment is retained in the same line. Multiple blanks are compressed starting at
the end of the line and, where necessary, in the text. If there is not sufficient space,
blanks between the operand and comment fields are compressed. If, despite
compression of blanks, there is still insufficient space, the comment is split across a
number of continuation lines. Depending on the length of the rest of the line, the entries
are aligned with the start of the comment or with the operand field. An additional "*"
indicates continuation in the operand field.

(@)= c] P ———— 10-
MVC TARGET1,SOURCE1 COMMENT
*% *
MVC TARGET2,SOURCE2 COMMENT-FIELD*
* -ENTRY 2
*% *
MVC TARGET3,SOURCE3 LONG-COMMENT-*
* *FIELD-ENTRY-THREE
21 N P 10-

U5056-J-2125-3-7600 113

Description of listings

3. Comment line

With comment lines, the introductory * is retained in column 1 and the comment text is
indented according to the nesting depth. If there is insufficient space after the
compression of blanks, the line is split and indented. The comment lines thus generated
are also provided with an asterisk to indicate that they are comments.

@BEGI * 10-
* THIS LINE IS ALIGNED
AR 11
THE COMMENT LINE IS ALIGNED AND CONTINUES IN A CONT*
INUATION LINE
AR 2.2
BEND * 10-

4. Comment lines in comment boxes

If columns 2 and 71 contain entries, this indicates that a comment cannot be moved.
The vertical structure lines are interrupted.

| | | @BEGI * 10-
I
*Comment is not indented *
L] | AR 11
*%k *
*k COMMENT BOX: *
*%k *
*k THE COMMENT LINES IN A COMMENT BOX ARE *
*k INTERRUPTED THROUGH TO THE END OF THE *
*k COMMENT BOX. *
*%k *
xk THE TEXT IS EASY TO READ *
*% *
LR 2,2
BEND * 10-

5. Defining a right-aligned, fixed-position comment field

It is possible use an option to define a column area which cannot be moved. This area
can be used to indicate correction statuses etc.
This does not apply to lines generated by macros (including structure macros).

Option:
LISTING = (OUT=assemb.list, SOURCE-FORMAT=STRUCT(,FIXED-AREA-START=m))

The new option FIXED-AREA-START can assume values 60 through 255
(default=NONE). It specifies the column in the source as of which no changes should
be made during structuring.

114

U5056-J-2125-3-7600

Description of listings

Example

The following example shows an unstructured source program using the LISTING
option SOURCE-FORMAT=STD (default).

** STRUCTURED LISTING ***

LOCTN OBJECT CODE

000000
000000
000004
000006
00000A
00000C
000010
000018
000018
000018
00001A
00001A
00001E
00001E
000022
000024
000024
000028
000028
00002C
000030
000034
000034
000036
000036
00003A

00003A
00003A
00003E
000042
000044
000046
000048

00004C

00004C
000050
000054
000056
000058
00005A
00005C
000060

90 EC DooC
18 AF

58 FO All0
05 EF
00000060

ADDR1

0000000C

00000110

E2E3D9E4D2E3D3C7

12 11

47 70 A028

58 FO Al14
05 EF

47 FO AOB8

89 10 0001
48 11 AOBO
47 F1 A030

1A 11

47 FO AOB8

58 FO Alls
58 50 All1C
05 EF
001C

C35C
00000000

58 FO All8
58 60 A120
0700

05 EF

0020

C3C1
00000108
1A 11

00000028

00000114

000000B8

000000B0
00000030

000000B8

00000118

0000011C

00000118
00000120

ADDR2

17:03:59 1994-01-13 PAGE 0003

STMNT M SOURCE STATEMENT

1
2
3
112
113
118
126
127
128
131
139
146
147
153
156
162
169
170
174
178
185
186
187
188
196
197
203
204
212
213
219
225
226
234
235
236
237
238
239
239
239
245
246
247
254
255
256
257
258
259
260
261
262
263
264

TN

[N

oo

1
1

PRINT NOGEN,CODE
TITLE ™** STRUCTURED LISTING ***

STRUCTLG @ENTR TYP=E

LONG_SYMBOL @BEGIN

RTCCHECK @IF ZE CHECK RTC
LTR 11
@THEN OKAY

@PASS NAME=PROC1

@ELSE NOT OKAY

ERROR @CASE (1) ERROR HANDLING

CASE1 @BEGI CASE 1
AR 11
@BEND END OF CASE 1
CASE2 @BEGI CASE 2
* MACRO CALL AND OPERANDS
@BEGI
DATAC1 @DATA CLASS=C,BASE=5,LENGTH=1000
* MACRO CALL IN ALTERNATIVE FORMAT
DATAC2 @DATA CLASS=C,BASE=BASEREG,
LENGTH=2000,
INIT=ADRINIT
AR 11

* COMMENT ALIGNED

* THIS COMMENT DOES NOT FIT IN A SINGLE LINE IN THE CURRENT STRUCTURE

PRINT GEN

COLMAC@ — MACRO WITH STRUCTURE ELEMENTS
* MACRO WITH STRUCTURE ELEMENTS

@IF EQ

U5056-J-2125-3-7600

115

Description of listings

** STRUCTURED LISTING ***

17:03:59 1994-01-13 PAGE 0004

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
000062 15 11 271 1 CLR 11
272 1 @THEN
000064 47 70 AO7C 0000007C 278 4
281 1 @IF EQ
000068 15 11 288 1 CLR 1,1
289 1 @THEN
00006A 47 70 AO7C 0000007C 205 4
208 1 @F EQ
00006E 15 11 305 1 CLR 11
306 1 @THEN
000070 47 70 AO7A 0000007A 312 4
000074 1A 11 315 1 AR 11
316 1 @ELSE
000076 47 FO AO7C 0000007C 320 2
00007A 1A 12 324 1 AR 172
325 1 @BEND
332 1 @BEND
339 1 @BEND
346 PRINT NOGEN,CODE
347 @BEND
00007C 353 DATAF1 @FREE BASE=5
00007C 58 FO Al124 00000124 362 2
000080 05 EF 369 3
000082 001C 370 2
000084 5C 371 2
00008A 372 DATAF2 @FREE BASE=BASEREG
00008A 58 FO Al124 00000124 381 2
00008E 05 EF 388 3
000090 0020 389 2
000092 5C 390 2
000098 391 CASE2_E @BEND END OF CASE 2
000098 47 FO AOBS 00000088 398 1
00009C 399 @BEGI CASE 3
406 PRINT GEN
407 COLMAC —— MACRO WITHOUT STRUCTURE ELEMENTS
408 1 * MACRO WITHOUT STRUCTURE ELEMENTS
00009C 1A 11 409 1 AR 1,1
00009E 18 11 410 1 LR 1,1
0000A0 1B 11 a1 1 SR 1.1
0000A2 15 11 412 1 CLR 1,1
0000A4 41 10 0002 413 1 LA 12
414 PRINT NOGEN,CODE
0000A8 415 @BEND END OF CASE 3
0000A8 47 FO AOBS 00000088 21 1
0000AC 422 @BEND END OF ERROR HANDLING
0000AC 47 FO AOBS 00000088 28 1
000080 0003 429 1
000082 0004 430 1
0000B4 000A 431 1
0000B6 006C 432 1
000088 434 RTC_END @BEND END OF RTC
442 @BEND
448 *
449 @BEGI
000088 455 @PASS NAME=PROC2
116 U5056-J-Z2125-3-7600

Description of listings

#+ STRUCTURED LISTING *** 17:03:59 1994-01-13 PAGE 0005
LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
000088 58 FO A128 00000128 461 1
0000BC 05 EF 468 2
469 @BEGI
475 @BEGI
0000BE 41 20 0001 481 EXTREMELY_LONG_NAME_ENTRY LA 21
482 @BEGI
488 @BEGI
494 @BEGI
500 @BEGI
506 @BEGI
512 @BEGI
518 * *
0000C2 18 11 519 NAME1 LR 1,1
0000C4 1A 22 520 NAME2 AR 2,2 COMMENT
0000C6 D2 03 AOFCAOF8 000000FC 000000F8 521 MVC LONG_TARGET_FIELD(L'LONG_TARGET_FIELD),LONG_SOURCE
522 * *
0000CC D2 03 AOF4AOFO 000000F4 000000F0 523 EXTREMELY_LONGNAME_ENTRY MVC VERY_LONG_TARGET,VERY_LONG_SOURCE
524 * *
0000D2 41 20 0002 525 LA 22 ASSEMBLER STATEMENT ~ WITH LONG COMMENT
526 * *
527 * BLANK COMPRESSION IN COMMENT FIELD *
0000D6 D2 03 A104A100 00000104 00000100 528 MVC TARGET,SOURCE COMM.FIELD WITH SPACES
529 *
530 ** COMMENT IS NOT INDENTED *
0000DC 1A 11 531 AR 11
532
533 o *
534 ** COMMENT BOX: *
535 o *
536 ** THE STRUCTURE LINES IN A COMMENT BOX ARE *
537 ** INTERRUPTED THROUGH TO THE END OF THE *
538 ** COMMENT BOX *
539 o *
540 ** THE TEXT IS EASY TO READ *
541 o *
542
0000DE 18 22 543 LR 22
544 *
545 @BEND
0000EO0 551 @IF ZE
0000E0 12 11 558 LTR 1.1
0000E2 559 @THEN
0000E2 47 70 AOE8 000000E8 565 3
0000E6 1A 11 568 AR 11
0000E8 569 @BEND
576 @BEND
582 @BEND
588 @BEND
594 @BEND
600 @BEND
606 @BEND
612 @BEND
618 @BEND
0000E8 624 @EXIT
0000E8 58 FO A12C 0000012C 633 2
U5056-J-2125-3-7600 117

Description of listings

*** STRUCTURED LISTING *** 17:03:59 1994-01-13 PAGE 0006
LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT

0000EC 05 EF 640 3

0000EE F1FO 641 2

0000F0 642 VERY_LONG_SOURCE DS F LONG SYMBOL NAME FOR TARGET ADDRE
0000F4 643 VERY_LONG_TARGET DS F LONG NAME FOR SOURCE ADDRESS
0000F8 644 LONG_SOURCE DS F
0000FC 645 LONG_TARGET FIELD DS F
000100 646 SOURCE DS F
000104 647 TARGET DS F
000108 648 ADRINIT DS F

00000006 649 BASEREG EQU 6

000110 650 ENTR_END @END

000110 00000000 654 1

000114 00000130 655 1

000118 00000000 656 1

00011C 000003E8 657 1

000120 000007D0 658 1

000124 00000000 659 1

000128 00000168 660 1

00012C 00000000 661 1

000130 665 PROC1 @ENTR TYP=I

000130 90 EC DoOOC 0000000C 672 1

000134 18 AF 673 1

000136 58 FO A028 00000158 678 2

00013A 05 EF 686 3

00013C 00000060 687 2

000140 D7D9D6C3F1404040 688 2

000148 691 @PASS NAME=PROC2
000148 58 FO A02C 0000015C 697 1

00014C 05 EF 704 2

00014E 705 @EXIT

00014E 58 FO A030 00000160 714 2

000152 05 EF 721 3

000154 F1FO 722 2

000158 723 @END

000158 00000000 727 1

00015C 00000168 728 1

000160 00000000 729 1

000168 733 PROC2 @ENTR TYP=L

000168 741 @EXIT

000168 07 FE 747 1

000170 748 @END

755 END

FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : NO ERRORS

THIS PROGRAM WAS ASSEMBLED BY ASSEMBH V 1.2A00 ON 1994-01-13 AT 17:02:51
** STRUCTURED LISTING *** 17:03:59 1994-01-13 PAGE 0007
USED FILES AND LIBRARIES
SOURCE LIBRARY : :U:$ASS1.ESC.TSTLIB
SOURCE ELEMENT : STR.SOURCE
VERS/DATE : @/1993-08-24
MACRO-LIBRARIES LINKNAME LIBRARY-NAME
:U:$ASS1.ESC.TSTLIB

:U:$ASS1.VO.LIB
:U:$ASS1.ASS1.LIB
‘H:$TSOS.SYSLIB.ASSEMBH.011
ASSEMBLY TIME : 16.081 SEC.
THIS LISTING WAS GENERATED BY THE LISTING GENERATOR V 1.2A00.

118 U5056-J-2125-3-7600

Description of listings

Example

The following example shows a source program structured with the LISTING option
SOURCE-FORMAT=STRUCTURED (see section 2.4.4).

** STRUCTURED LISTING *** 14:53:06 1994-01-13 PAGE 0001

SOURCE=*LIBRARY-ELEMENT
(LIBRARY=:U:$ASS1.ESC.TSTLIB,ELEMENT=STR.SOURCE
(VERSION=*UPPER-LIMIT)),

MACRO-LIBRARY=
(ESC.TSTLIB,VO.LIB,ASS1.LIB,$TSOS.SYSLIB.ASSEMBH.011,$TSOS.SYSLIB.BS2CP.100),

COPY-LIBRARY=*NONE,

SOURCE-PROPERTIES=PARAMETERS
(FROM-COLUMN=1,TO-COLUMN=71,CONTINUATION-COLUMN=16,LOW-CASE-CONVERSION=NO,INSTRUCTION-SET=BS2000-XS,
PREDEFINED-VARIABLES=NONE),

COMPILER-ACTION=MODULE-GENERATION
(MODE=STD,MODULE-FORMAT=0M),

MODULE-LIBRARY=*OMF,

COMPILATION-INFO=PARAMETERS
(INFORMATION=STD,0UTPUT=*LIBRARY-ELEMENT
(LIBRARY=ESC.TSTLIB,ELEMENT=STR.PROT
(VERSION=6789-9876543210))),

LISTING=PARAMETERS
(SOURCE-PRINT=WITH-OBJECT-CODE
(PRINT-STATEMENTS=ACCEPTED,LINE-NUMBERING=NO),
SOURCE-FORMAT=STRUCTURED
(EVALUATED-NEST-LEVEL=ALL,INDENTATION-AMOUNT=2,FIXED-AREA-START=NONE,STRUCT-MACRO-PRINT=0OBJECT-CODE-ONLY),
MACRO-PRINT=PARAMETERS
(NOPRINT-NEST-LEVEL=255,NOPRINT-PREFIX=@, TITLE-STATEMENTS=IGNORED,MACRO-ORIGIN-INFO=SEPARATE),
MIN-MESSAGE-WEIGHT=SIGNIFICANT,CROSS-REFERENCE=PARAMETERS
(SYMBOL=NO,LITERAL=NO,MACRO=NO,COPY=NO,DIAGNOSTICS=YES),
EXTERNAL-DICTIONARY=YES,LAYOUT=PARAMETERS
(LINES-PER-PAGE=60,LASER-PRINTER=NO,FORMAT=STD),
OUTPUT=ESLL.STR.SOURCE),

TEST-SUPPORT=NO,

COMPILER-TERMINATION=PARAMETERS
(MAX-ERROR-WEIGHT=FATAL,MAX-ERROR-NUMBER=32767,MAX-MACRO-NEST-LEVEL=255,MAX-COPY-NEST-LEVEL=5),

CORRECTION-CYCLE=NO,

MAINTENANCE-OPTIONS=PARAMETERS
(CHANNEL-INSTRUCTIONS=NO),

COMPILATION-SPACE=STD

** STRUCTURED LISTING *** 14:53:06 1994-01-13 PAGE 0002
SYMBOL TYPE ID ADDR LENGTH A/R-MODE EXTERNAL SYMBOL DICTIONARY
(DUMMY) @SAV DS 0001 00000000 000058

STRUKTLG SD 0002 00000000 000170 24 24
IASSENTR VC 0003
IASSCNTR VC 0004
IASSFREE VC 0005
IASSEXIT VC 0006

U5056-J-2125-3-7600 119

Description of listings

*** STRUCTURED LISTING *** 14:53:.06 1994-01-13 PAGE 0003
LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
1 PRINT NOGEN,CODE
3 *

000000 3 STRUCTLG @ENTR TYP=E

000000 90 EC DOOC 0000000C 12 1

000004 18 AF 13 1

000006 58 FO Al1l10 00000110 118 2

00000A 05 EF 126 3

00000C 00000060 127 2

000010 E2E3D9E4D2E3D3C7 128 2

000018 131 LONG_SYMBOL DS 0OH
131 @BEGIN * 2-

000018 139 RTCCHECK | @IF ZE * 3-
139 * CHECK RTC

000018 12 11 146 LTR 11

00001A 147 @THEN * 3-
147 * OKAY

00001A 47 70 A028 00000028 153 3

00001E 156 < @PASS NAME=PROC1

00001E 58 FO All4 00000114 162 1

000022 05 EF 169 2

000024 170 @ELSE * 3-
170 * NOT OKAY

000024 47 FO AOB8 000000B8 174 1

000028 178 ERROR @CASE (1) * 4-
178 * ERROR HANDLING

000028 89 10 0001 185 1

00002C 48 11 AOBO 000000B0 186 1

000030 47 F1 A030 00000030 187 1

000034 188 CASE1 @BEGI * 5-
188 * CASE 1

000034 1A 11 196 AR 11

000036 197 @BEND * 5-
197 * END OF CASE 1

000036 47 FO AOB8 000000B8 203 1

00003A 204 CASE2 @BEGI * 5-
204 * CASE 2
212 * MACRO CALL AND OPERANDS
213 @BEGI * 6-

00003A 219 DATAC1 @DATA CLASS=C,BASE=5,LENGTH=1000

00003A 58 FO A118 00000118 225 1

00003E 58 50 A11C 0000011C 226 1

000042 05 EF 234 2

000044 001C 235 1

000046 C35C 236 1

000048 00000000 237 1
238 * MACRO CALL IN ALTERNATIVE FORMAT

00004C 239 DATAC2 @DATA CLASS=C,BASE=BASEREG, F
239 LENGTH=2000, F
239 INIT=ADRINIT

00004C 58 FO A118 00000118 245 1

000050 58 60 A120 00000120 246 1

000054 0700 247 1

000056 05 EF 254 2

000058 0020 255 1

00005A C3C1 256 1

00005C 00000108 257 1

000060 1A 11 258 AR 11

120 U5056-J-2125-3-7600

Description of listings

** STRUCTURED LISTING ***

000062

000064

000068

00006A

00006E

000070
000074

000076
00007A

00007C
00007C
000080
000082
000084
00008A
00008A
00008E
000090
000092
000098

000098
00009C

00009C
00009E
0000A0
0000A2
0000A4

0000A8

0000A8

14:53:06 1994-01-13 PAGE 0004

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
259 * COMMENT ALIGNED
260 * THIS COMMENT DOES NOT FIT IN A SINGLE LINE IN THE *
260 * CURRENT STRUCTURE
261 PRINT GEN
262 COLMAC@— MACRO WITH STRUCTURE ELEMENTS
263 1* MACRO WITH STRUCTURE ELEMENTS
264 1 @F EQ * 7-
15 11 271 1 |cLrR 1,1
272 1 @THEN = 7-
47 70 AO7C 0000007C 278 4
281 1 @F EQ * 8-
15 11 288 1 |cLrR 1,1
289 1 @THEN = 8-
47 70 AO7C 0000007C 205 4
208 1 @F EQ * o
15 11 305 1 |cLrR 11
306 1 @THEN = o-
47 70 AO7A 0000007A 312 4
1A 11 315 1 AR 1,1
316 1 @ELSE * o-
47 FO AO7C 0000007C 320 2
1A 12 324 1 AR 1,2
325 1 @BEND = o
332 1 @BEND = 8-
339 1 @BEND = 7-
346 PRINT NOGEN,CODE
347 @BEND = 6-
353 DATAF1 @FREE BASE=5
58 FO A124 00000124 362 2
05 EF 369 3
001C 370 2
5C 371 2
372 DATAF2 @FREE BASE=BASEREG
58 FO Al124 00000124 381 2
05 EF 388 3
0020 389 2
5C 390 2
391 CASE2_E @BEND = 5
391 * END OF CASE 2
47 FO AOB8 00000088 398 1
399 @BEGI * 5
399 * CASE 3
406 PRINT GEN
407 COLMAC—— MACRO WITHOUT STRUCTURE ELEMENTS
408 1* MACRO WITHOUT STRUCTURE ELEMENTS
1A 11 409 1 AR 1,1
18 11 410 1 LR 1,1
1B 11 411 1 SR 1,1
15 11 412 1 CLR 1,1
41 10 0002 413 1 LA 1,2
414 PRINT NOGEN,CODE
415 @BEND * 5-
415 * END OF CASE 3
47 FO AOB8 00000088 21 1
422 @BEND =+ a4

0000AC

U5056-J-2125-3-7600

121

Description of listings

** STRUCTURED LISTING ***

LOCTN
0000AC
0000B0
0000B2
0000B4

0000B6
0000B8

0000B8
0000B8
0000BC

0000BE

0000C2
0000C4
0000C6

0oooccC

0000D2

0000D6

0000DC

0000DE

OBJECT CODE ADDR1 ADDR2

47 FO AOB8 000000B8
0003
0004
000A
006C

58 FO Al128 00000128
05 EF

41 20 0001

18 11
1A 22
D2 03 AOFCAOF8 000000FC 000000F8

D2 03 AOF4AOF0 000000F4 000000F0

41 20 0002

D2 03 A104A100 00000104 00000100

1A 11

18 22

STMNT M SOURCE STATEMENT

422
428
429
430
431
432
434

434

442

448

449
455

461

468

469

475
481

481

482

488

494

500

506

512

518
519
520
521

521

522

523

523

524
525

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542
543

54

545

ES

*

1
1
1
1
1

RTC_END @BEND *

*

14:53:06 1994-01-13 PAGE 0005

END OF ERROR HANDLING

END OF RTC
@BEND *

@BEGI *
@PASS NAME=PROC2

@BEGI *
| @BEGI *

3-

EXTREMELY_LONG_NAME_ENTRY

LA 2,1
@BEGI *

4-

@BEGI *

5-

6-

@BEGI *

7-

@BEGI *
@BEGI
@BEGI

*

NAME1 LR
NAME2 AR

*

EXTREMELY_LONGNAME_ENTRY

*

ok

MvC

*

MvC

LA

*

VC

COMMENT IS NOT INDENTED
[111ar

8-
* 9-
* 10-

1,1

2,2 COMMENT
LONG_TARGET_FIELD(L'LONG_TARGET_FIELD*
),LONG_SOURCE

VERY_LONG_TARGET,VERY_LONG_SOURCE

2,2 ASSEMBLER STATEMENT WITH LONG *
COMMENT

BLANK COMPRESSION IN COMMENT FIELD *

TARGET,SOURCE COMM.FIELD WITH SPACES

*

11

ok

ok

ok

ok

ok

ok

ok

ok

ok

COMMENT BOX:

THE STRUCTURE LINES IN A COMMENT BOX ARE *
INTERRUPTED THROUGH TO THE END OF THE *

COMMENT BOX

THE TEXT IS EASY TO READ

|LR

@BEND

2,2

* 10-

122

U5056-J-2125-3-7600

Description of listings

#+ STRUCTURED LISTING *** 14:53:06 1994-01-13 PAGE 0006
LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
0000EO 551 @F ZE * 10-
0000E0 12 11 558 |LTR 1,1
0000E2 559 @THEN * 10-
0000E2 47 70 AOE8 000000E8 565 3
0000E6 1A 11 568 AR 1,1
0000E8 569 @BEND * 10-
576 @BEND = o
582 @BEND = 8-
588 @BEND = 7-
594 @BEND = 6-
600 @BEND = 5
606 @BEND = 4
612 @BEND = 3-
618 @BEND = 2-
0000E8 624 <——@EXIT
0000E8 58 FO A12C 0000012C 633 2
0000EC 05 EF 640 3
0000EE F1FO 641 2
0000F0 642 VERY_LONG_SOURCE DS F LONG SYMBOL NAME FOR TARGET ADDRES
0000F4 643 VERY_LONG_TARGET DS F LONG NAME FOR SOURCE ADDRESS
0000F8 644 LONG_SOURCE DS F
0000FC 645 LONG_TARGET_FIELD DS F
000100 646 SOURCE DS F
000104 647 TARGET DS F
000108 648 ADRINIT DS F
00000006 649 BASEREG EQU 6
000110 650 ENTR_END @END
651 *
000110 00000000 654 1
000114 00000130 655 1
000118 00000000 656 1
00011C 000003ES 657 1
000120 000007DO 658 1
000124 00000000 659 1
000128 00000168 660 1
00012C 00000000 661 1
665 *
000130 665 PROC1 @ENTR TYP=l
000130 90 EC D0OC 0000000C 672 1
000134 18 AF 673 1
000136 58 FO A028 00000158 678 2
00013A 05 EF 686 3
00013C 00000060 687 2
000140 D7D9D6C3F1404040 688 2
000148 691 <————@PASS NAME=PROC2
000148 58 FO A02C 0000015C 697 1
00014C 05 EF 704 2
00014E 705 < <——@EXIT
00014E 58 FO A030 00000160 714 2
000152 05 EF 721 3
000154 F1FO 722 2
000158 723 @END
724+
000158 00000000 727 1
00015C 00000168 728 1
000160 00000000 729 1
733 *
000168 733 PROC2 @ENTR TYP=L
000168 741 < ———@EXIT

U5056-J-2125-3-7600 123

Description of listings

** STRUCTURED LISTING *** 14:53:06 1994-01-13 PAGE 0007
LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
000168 07 FE 747 1
000170 748 @END
749 *
755 END

FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : NO ERRORS

THIS PROGRAM WAS ASSEMBLED BY ASSEMBH V 1.2A00 ON 1994-01-13 AT 14:51:58

** STRUCTURED LISTING *** 14:53:06 1994-01-13 PAGE 0008
USED FILES AND LIBRARIES

SOURCE LIBRARY : :U:$ASS1.ESC.TSTLIB

SOURCE ELEMENT : STR.SOURCE

VERS/DATE : @/1993-08-24

MACRO-LIBRARIES LINKNAME LIBRARY-NAME

:U:$ASS1.ESC.TSTLIB
:U:$ASS1.VO.LIB
:U:$ASS1.ASS1.LIB
:H:$TSOS.SYSLIB.ASSEMBH.011
ASSEMBLY TIME : 16.175 SEC.
THIS LISTING WAS GENERATED BY THE LISTING GENERATOR V 1.2A00.

124 U5056-J-2125-3-7600

Description of listings

6.6

Differences in lists where the module is output
in LLM format

In the object module used up to now, the individual CSECTs were addressed
contiguously and in ascending order (module-relative addressing).

Where modules are output in LLM format, CSECT-relative addressing is used, i.e. every
CSECT in the module begins at location 0.

In this respect, a CSECT behaves as a DSECT. The same applies for the corresponding
information in SAVLST (see section 6.4).

CSECT-relative addressing means that the contents of the address fields in the ESD
and source program list and in the SYMBOL-XREF and LITERAL-XREF cross-reference
lists are changed. All address values are offsets from the beginning of the
corresponding CSECT, which always starts at location 0.

List Field

ESD ADDR

SOURCE LOCTN
ADDR1
ADDR2

SYMBOL- | VALUE

XREF,

LITERAL

XREF

The name field (SYMBOL) in the ESD list is extended to 32 characters.

The following examples show the lists in OM and LLM formats.

U5056-J-2125-3-7600

125

Description of listings

6.6.1 Lists in OM format
ESD list
SYMBOL TYPE ID ADDR LENGTH A/R-MODE EXTERNAL SYMBOL DICTIONARY
c1 SD 0001 00000000 000020 24 24
LONGER_N ER 0002
c2 SD 0003 00000020 000008 24 24
(DUMMY) D1 DS 0004 00000000 000004

SOURCE LISTING

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
000000 1 C1 CSECT

2 EXTRN LONGER_NAME
000000 05 AO 3 BALR 10,0
000002 00000002 4 USING *,10
000002 00000020 5 USING C2,11
000002 00000000 6 USING D1,12
000002 58 BO AOQ16 00000018 7 L 11,=A(C2)
000006 41 20 A012 00000014 8 LA 2,C1_AD1
00000A 41 20 BO04 00000024 9 LA 2,C2_AD2
00000E 41 20 CO000 00000000 10 LA 2,D1_AD1
000014 11 Ci1_AD1 DS F

12 LTORG
000018 00000020 13 =A(C2)

14 SPACE
000020 15 C2 CSECT READ
000020 16 C2_AD1 DS CL4
000024 17 C2_AD2 DS F

18 SPACE ,
000000 19 D1 DSECT
000000 20 D1_AD1 DS F
000000 21 END C1

Cross-reference list (SYMBOL-XREF)

SYMBOL LEN VALUE DEFN REFERENCES

C1 00032 00000000 000001 000021
C1_AD1 00004 00000014 000011 0OOOOO8A
Cc2 00008 00000020 000015 000005 000007A 000015

C2_AD1 00004 00000020 000016
C2_AD2 00004 00000024 000017 0O0O009A
D1 00004 00000000 000019 000006 000019
D1_AD1 00004 00000000 000020 0000010A
LONGER_NAME

00000 00000000 000002

126

U5056-J-2125-3-7600

Description of listings

6.6.2 Lists in LLM format

Field contents not compatible with OM format are printed in bold.

ESD list

SYMBOL
C1

LONGER_NAME
Cc2

(DUMMY) D1

SOURCE LISTING

LOCTN OBJECT CODE
000000

000000 05 AO
000002

000002

000002

000002 58 BO AOQ16
000006 41 20 A012
00000A 41 20 BO04
00000E 41 20 CO000
000014

000018 00000000

000000
000000
000004

000000
000000
000000

ADDR1

00000002
00000000
00000000
00000018
00000014
00000004
00000000

ADDR2

TYPE ID

ADDR

LENGTH A/R-MODE

SD 0001 00000000 000020 24 24

ER 0002

SD 0003 00000000 000008 24 24
DS 0004 00000000 000004

STMNT M SOURCE STATEMENT

1
2

3

5

PN N

C1

C1_AD1

c2
C2_AD1
C2_AD2

D1
D1_AD1

Cross-reference list (SYMBOL-XREF)

SYMBOL LEN VALUE DEFN REFERENCES

C1 00032 00000000 000001 000021

C1_AD1 00004 00000014 000011 0O0OO8A

Cc2 00008 00000000 000015 000005 000007A 000015

C2_AD1 00004 00000000 000016
C2_AD2 00004 00000004 000017 O00009A
D1 00004 00000000 000019 000006 000019
D1_AD1 00004 00000000 000020 0000010A

LONGER_NAME

00000 00000000 000002

CSECT

EXTRN LONGER_NAME

BALR 10,0
USING *10

USING

C2,11

USING D1,12
L 11,=A(C2)

LA 2,

LA

C1 _AD1L
2,C2_AD2

LA 2,D1_AD1

CSECT READ

DS
DS

CL4
E

SPACE ,

DSECT
DS
END

E
C1

EXTERNAL SYMBOL DICTION;

U5056-J-2125-3-7600

127

7.1

Language interfaces

Symbolic linking of assembler programs

The text of an assembler source program consists of one or more assembly units. An
assembly unit usually begins with a START or CSECT instruction and is terminated with
an END instruction. The assembly unit is often loosely designated as a "program".

Each assembly unit is assembled into a module.

An assembly unit may be made up of one or more control sections, which are
assembled as parts of a module.

One or more modules can be linked into an executable program (see section 5.4).

Using appropriate instructions (see below), it is possible to

— branch from one program segment to another

— refer to data that is defined in another program segment.

Intercommunication between program segments must be established for this purpose.
— Every individual control section that is addressed must be symbolically addressable.
— The two or more assembly units which are to be linked must be linked symbolically.

Symbolic program linking enables symbols defined in one assembly unit to be
accessed from another unit. To do this, the assembler requires appropriate information,
which it passes on to the linkage editor via ESD entries. The linkage editor replaces
these symbolic references with actual addresses prior to or during loading.

A symbol which is to be accessed from another assembly unit must be identified to the
assembler and the linkage editor via the ENTRY instruction (see "ASSEMBH (BS2000)
Reference Manual" [1]). This defines it as a symbol of an entry point.

U5056-J-2125-3-7600

129

Language interfaces

7.1.1

In an assembly unit where symbols defined in another unit are used, these must be
identified via the EXTRN or WXTRN instruction (see "ASSEMBH (BS2000) Reference
Manual" [1]). In order to access the symbol, a base register must be provided in the
assembly unit which uses the EXTRN address. The value of the address must be
loaded into the base register via an A-type constant (see "ASSEMBH (BS2000)
Reference Manual" [1], DC instruction).

Another method of symbolic linking is the use of V-type constants (see "ASSEMBH
(BS2000) Reference Manual" [1], DC instruction). These constants are regarded as
indirect linkage points, generated from an externally defined symbol. Here, the symbol
must not be identified using the EXTRN instruction.

V-type constants may be used for branching into other assembly units, but not for
references to data in other assembly units.

Data references are typically achieved via the COM, DXD or XDSEC instructions (see
"ASSEMBH (BS2000) Reference Manual" [1]).

During a program run, the general-purpose registers 0-15 are only available collectively
to all modules linked into a program. These registers represent the common
communication level. The following requirement must therefore be met for program
linking:

All general-purpose registers must be available to all subroutines.

This means that when a branch is made from one module to a subsequent module, the
register contents of the calling module must be saved and then reloaded on returning
from the called module.

For more information on linking assembler programs, refer to ASSEMBH (BS2000)
Reference Manual [1], section 3.2, "Program sectioning and program linking".

Interfacing with other languages

— When assembiler is called from some other language:
This means that the assembler program must take the parameter passing
conventions of the calling language into account and restore registers on the
return accordingly.

— When assembler calls some other language:
This is achieved via transfer routines, or the assembler program must take the
parameter passing and register conventions of the called language into account.
The language environment, i.e. the runtime system, of the called language must
be initialized.

Interfacing with other languages such as COBOL, C, and FORTRAN is dealt with in the
individual User Guide for each of these languages.

130

U5056-J-2125-3-7600

Language interfaces

7.2 Linking structured assembler programs

The procedure and data principles of structured programming (see "ASSEMBH
(BS2000) Reference Manual” [1]) allow several subroutines (i.e. procedures) to be linked
to a main program (main procedure). A procedure starts with @ENTR and is terminated
with @END (static procedure end). @PASS calls another procedure so that parameters
can be passed to it. @EXIT terminates the called procedure (dynamic procedure end)
and returns control to the calling procedure.

The following diagram illustrates the relationship between the static program structure
and the dynamic linking of procedures.

U5056-J-2125-3-7600 131

Language interfaces

START B @ENTRTYP=I C @ENTRTYP=L
@ENTR TYP=M @PASS NAME=C @EXIT
@PASS NAME=B @PASS EXTNAME=D @END
@PASS EXTNAME=E 4_L @EXIT END
@EXIT @_END
i A Low-level prozedur
@END
Internal procedure
Main procedure Module 1
START
| | D @ENTRTYP=E
@EXIT
@END
END
External procedure Module 2
odule
START
> E @ENTR TYP=B
@EXIT
@END
END
Base procedure Module 3

Fig. 7-1: Static program structure and dynamic procedure linkage

132 U5056-J-2125-3-7600

Language interfaces

7.2.1

Interfacing structured assembler programs with C programs

In the case of C programs, there is an option of using structured assembler programs
that behave like C programs, i.e. which comply with C conventions with regard to stack
management and the supply of parameters.

The parameter &ENV=C of the @ENTR macro (see "ASSEMBH (BS2000) Reference
Manual" [1]) generates code which calls the program manager for C programs to
manage the save area and the stack.

The program manager for C programs is also called by the @EXIT and @END macros.

The @PASS and @PAR macros ensure that the supply of parameters is generated in
accordance with C conventions.

The @DATA macro can only be used under restrictions.

If memory of storage class C (controlled) is used via the @DATA and @FREE macros,
the C environment must be initialized, i.e. the main program must be a C program.

The following points must be additionally observed with regard to the use of registers,
memory requests, and the passing of parameters:

— Register 12 must not be used.
The parameter LOADR12=YES of the @ENTR macro loads the address of the
program manager for C programs into register 12.

— Register 13 must not be used.
The C program manager uses register 13 as the runtime stack register.

— Storage class A (automatic) must not be declared.
— Only type M and E procedures are permitted.

— Parameter passing may only be done in STANDARD form, i.e. register 1 holds the
address of the parameter list.
This form of passing is mandatory for C programs, i.e. the PASS parameter of the
@ENTR or @PASS macro must not be changed to OPTIMAL form.

U5056-J-2125-3-7600

133

Language interfaces

7.2.2 Interfacing structured assembler programs with COBOL and
FORTRAN programs

If a structured assembler program that is not exclusively made up of type B, L and D
procedures is to be called from a COBOL or FORTRAN main program, the entry
IASSIN must be invoked once in order to initialize the assembler runtime system before
the first call.

The initialization entry IASSIN performs the same functions as in the case of a
structured assembler main program (@ENTR TYP=M).

The IASSIN call is normally made without parameters, and a standard size initial stack
is created.

Notes

— To ensure compatibility with existing COBOL and FORTRAN objects with COLBIN
calls, this entry is supported like IASSIN, where KL5SP specifications are ignored.

— If the size of the initial stack is to be defined, the IASSIN entry must be specified
with a parameter:

in COBOL, of type COMPUTATIONAL PIC 9(n) with5 < n < 9, and
in FORTRAN: of type INTEGER.

Like the STACK specification with @ENTR TYP=M, this parameter defines the size
of the initial stack in bytes where:

[1 page parameter n < 0]
Size of initial stack = j
n bytes paramete r n > 0

Parameter passing to structured assembler procedures

Since parameters are always passed in STANDARD form by COBOL and FORTRAN
programs, they must also be accepted in STANDARD form (see "ASSEMBH (BS2000)
Reference Manual” [1]).

134 U5056-J-2125-3-7600

Language interfaces

Calling structured assembler procedures
Call from COLUMBUS-COBOL or COBOL

with parameters: @PASS name:TYP=E:USING parametersr
CALL "name" USING parameters.

without parameters: @PASS name.:TYP=Eor
CALL "name".

Call from COLUMBUS-FORTRAN or FORTRAN

with parameters: @PASSname(parameters) or
CALL name(parameters)
without parameters: @PASSname or
CALL name

When type B, L, or D procedures are called, the user must ensure that the register
contents are saved and restored by the called procedure.

Return to the calling COBOL or FORTRAN program

The structured assembler procedure returns control to the calling program with

@EXIT

The operands RC, RESTORE, and TO are not permitted. The operand
PROG=FORTRAN must be specified on returning to the FORTRAN segment.

U5056-J-2125-3-7600 135

Language interfaces

7.2.3 Interfacing structured assembler programs with assembler programs

Parameter passing to structured assembler procedures

— Acceptance form: OPTIMAL
Registers 1 through 4 hold the parameters
or register 1 holds the address of a parameter address list for the fourth and
following parameters.
Registers 2 through 4 hold parameters 1 through 3.

— Acceptance form: STANDARD
Standard parameter interface: register 1 holds the address of the parameter address
list.

Calling procedures without the runtime system (type B/L/D)

Structured assembler procedures are called via the standard interface: register 15 holds
the procedure address, and register 14 holds the return address.

Structured assembler procedures can thus be called with

[A]
L 15,= 1VJ (procedure-name)
BALR 14,15
It is the user’s responsibility to ensure that the register contents are saved and restored
by the called procedure.

Calling procedures with the runtime system (type E/l)

These procedures are called like those without the runtime system (except that the
register contents are saved and restored by the assembler runtime system). As with the
interfacing of COBOL and FORTRAN programs with structured assembler programs, the
runtime system must also be initialized in this case by calling the entry IASSIN once via
a standard interface before the first call to a structured assembler procedure.

136 U5056-J-2125-3-7600

Language interfaces

Interface for IASSIN = standard interface

Register 1 Points to a word containing either 0 (no parameter) or the address of the
parameter (in word format).
The meaning of the parameter entry is the same as when interfacing
COBOL or FORTRAN programs (see section 7.2.2).

Register 15 Holds the address of the runtime entry IASSIN.

Register 14 Holds the return address.

Register 13 Points to the default register save area.

Register save area

Word 1 Internally used
Word 2 Points to predecessor, or holds 0 if no predecessor exists
Word 3 Points to successor

Words 4-18 Save area for registers 14,...,12

Word 19 reserved

Word 20 contains the pointer to the PCD (see section 7.3.2). The pointer is
returned by the runtime system.

Return to the calling assembler program

The structured assembler procedure returns control to the calling program with

@EXIT
The operand TO is not permitted.

U5056-J-2125-3-7600 137

Language interfaces

Example of a call to IASSIN and a structured assembler procedure

1. Without parameter passing and with creation of a standard initial stack

LA 13,SAVE

LA 1,PARAMLIS

L 15,=V(IASSIN)

BALR 14,15

i_ 15,=V(procedure-name)

BALR 14,15
PARAMLIS -DC A(0) No parameter passing
SAVE DS oD

DC 3FO’

DS 17F

138 U5056-J-2125-3-7600

Language interfaces

2. With parameter passing and an initial stack of 10000 bytes

STACK

PARAMLIS

PAR1

SAVE

Note

'EQU
LA

LA
L
BALR

L
BALR

DS

DC
DC

DS

DS

10000

13,SAVE

1,PARAMLIS
15,=V(IASSIN)
14,15

15,=V(procedure-name)
14,15

OF
X80’
A(PAR1+X’80000000’)

A(STACK)

oD
3FO’
17F

The address of the same register save area must be passed in register 13 to the
called procedure and the runtime entry IASSIN !

U5056-J-2125-3-7600

139

Language interfaces

7.2.4 Interfacing COBOL and FORTRAN program segments with structured
assembler programs

Parameter passing from structured assembler procedures

COBOL and FORTRAN program segments accept parameter lists in STANDARD form
only. If a COBOL segment is called without parameter passing, register 1 must be
loaded before the call with the address of a word that contains 0. For a call to a
FORTRAN segment without parameter passing, register 1 must be loaded with the value
1 before the call.

Call from structured assembler procedures

The structured assembler procedure passes control to the COBOL or FORTRAN
segment with the instruction @PASS EXTNAME=.

When a call is made from type B, L, and D procedures, the user must ensure that
register 13 contains the address of a save area.

Return to the calling (structured) assembler procedure

Return from COLUMBUS-COBOL or COBOL
@EXIT/@END or EXIT PROGRAM
Return from COLUMBUS-FORTRAN or FORTRAN

@EXIT/@END or RETURN/END

140 U5056-J-2125-3-7600

Language interfaces

7.2.5 Interfacing assembler program segments with structured assembler programs

Parameter passing from structured assembler procedures

— Passing form OPTIMAL
Registers 1 through 4 hold the parameters or register 1 holds the address of a
parameter address list for the fourth and following parameters.
Registers 2 through 4 hold parameters 1 through 3.

— Passing form STANDARD
Standard parameter interface: register 1 holds the address of the parameter address
list.

Call from structured assembler procedures

The structured assembler procedure passes control to the assembler segment with the
instruction @PASS EXTNAME=. Register 14 then contains the return address; register
15 the address of the called program segment.

If the call is made from type B, L, and D procedures, the user must ensure that a
register is loaded with the address of a save area. For a call from type M, E, and |
procedures, register 13 is loaded with the address of a save area.

Return to the calling (structured) assembler procedure

Register 14, which was loaded with the return address by @PASS, must be used for
the return.

U5056-J-2125-3-7600 141

Language interfaces

7.3 The program communication interface ILCS

The program communication interface ILCS (Inter-Language Communication Services)
standardizes communication between the main program and the external subprograms,
and also between the various subprograms, in a language-independent fashion. It
allows the user to write any program segment in any desired ILCS-compatible
programming language without need for special precautions (such as activation of
language initialization routines, connection modules etc.).

ILCS is a combination of software and interface convention:

Firstly, it contains runtime routines which are combined in a PLAM library. Secondly, it
also guarantees the communication interface corresponding to the "standard linkage
conventions in BS2000"; in other words, each module generated by a compiler with
ILCS capability is prepared in accordance with the standard linkage conventions for
interfacing with programs written in the same language and in different languages.

The library of ILCS runtime routines is supplied with every compiler that has ILCS
capability - as an additional runtime system so to speak.

Specifically, ILCS offers the following functions:

— multilateral convention for interfacing programs written in different languages
— uniform guidelines for event handling

— storage management (stack and heap memaories)

— handling of the program mask

The present section describes only the ILCS program interfacing function used by
ASSEMBH structured programming, with the basic ILCS data structures.

Note

Programs translated by ILCS-compliant compilers must be linked by means of ILCS
to form a program system. If a program system contains programs which do not
behave in conformance with ILCS conventions, these programs may need to be
restructured so as to conform to the ILCS conventions. If this is not done, there is a
danger of incompatibility - at least when linking programs written in different
languages.

142 U5056-J-2125-3-7600

Language interfaces

7.3.1 ILCS register conventions

Register loading on program call

The following table gives an overview of the register loading performed by the calling
program before the called program is entered.

Register
number

Contents

0
1
2 -12

13

14

15

Number of parameters
Start address of the parameter address list
Program data

Start address of the save area of the
calling program

Address of the return point to the calling
program

Address of the entry point in the called
program

PM

Program mask: Value from PCD field "program
mask”

Register loading on returning to calling program

The following table gives an overview of the register loading performed by the called
program on returning to the calling program.

Register
number

Contents

0-1

2-14

15

Return values of integer functions
or undefined

Same as under loading on program call

Undefined

PM

Program mask: Value from PCD field "program
mask”

U5056-J-2125-3-7600

143

Language interfaces

7.3.2

ILCS data structures

Save area

The calling program provides the address of a save area in which the called program
can place its current register values. The called program sets up a new save area and
chains the two save areas.

The format of the save area is as follows:

Byte Contents
1-4 Byte 1:
Bit 1: activity bit (1: program active, 0: program inactive)
Bits 2-7: reserved
Bit 8 = normally 0
Byte 2: Version = X'01'
Bytes 3 and 4: X'FEFF
5-8 Start address of the save area of the calling program.
In the first calling program, this field contains -1.
9-12 Start address of the next (chained) save area,
if applicable.
13-16 | Contents of register 14
17-20 | Contents of register 15
21-24 | Contents of register 0
25-28 | Contents of register 1
29-32 | Contents of register 2
69-72 | Contents of register 12
73-76 Reserved for FOR1
77-80 | Address of the PCD
81-84 | Address of the EHL (Event Handler List): If no EHL is defined,
the field contains the value -1.
85-128 | Reserved

144

U5056-J-2125-3-7600

Language interfaces

7.3.3

7.3.4

Prosys common data area (PCD)

The PCD is a common data area which is available to all programming languages. The
size of the PCD is 4096 bytes.

The first part contains the data areas used by ILCS, including the "program mask" field
(in byte 148), which is preset to the value X'0C’. The second part of the PCD contains
the programming language areas, each 128 bytes long, which are available to the
runtime systems of the different languages.

Initialization of the program system

The initialization of a program system takes place in two stages: First, the main
program calls the appropriate ILCS initialization routine. This ILCS initialization routine
then in turn calls all the requisite language-specific initializations so that the language
environments required for the entire program system are set up prior to execution of
the first program statement.

Program mask handling by ILCS

The program mask for program execution is set to the value of the PCD field "program
mask" (preset to X'0C’) during the course of initialization. If it is changed during
program execution, it must be reset prior to the next program call or transfer of control
to the value of the PCD field "program mask".

U5056-J-2125-3-7600

145

Language interfaces

7.3.5

Parameter passing in ILCS program systems

There are significant differences in the semantics of the data types used in the various
programming languages that can be interfaced by means of ILCS. The table below lists
those data types which have the same form of data representation in the individual
programming languages and can therefore be passed as parameters without problems.
When using other data types as parameters, a precise knowledge of the relevant form
of data storage is essential in order to ensure correct program execution.

Data types
cCom -
piler Binary Floating-point Floattng—point String
Word Word Doubleword
COBOLS85 PIC S9(i) COMP COMP-1 COMP-2 USAGE DISPLAY
SYNCHRONIZED
5<=i<=9
FOR1 INT*4 REAL*4 REAL*8 CHAR*i
Pascal-XT [long_integer shart_real long_rgal packed afray
[<range>]of char
PLI1 BIN FIXED(31) BIN FLOAT(21) B|N FLOAT(53) CHAR()
ALIGNED DEC FLOAT(6) DEC FLOAT(16)
C long float dpuble char <var>
[<size>]
ASSEMBH F E D C
(@ macros)
RPG3 Binary array —_— —_— Nphanum. array
with 0 decimal (lixed length)
places

The data must always be stored properly aligned; i.e. 32-bit integers in binary
representation are aligned on a word boundary, floating-point numbers on a word or
doubleword boundary, strings on a byte boundary. The lengths of strings are constant
and known to the called program.

Parameters are passed "by reference", i.e. the address of the data item is transferred.
The calling program creates a list of the transferred addresses. The number of
parameters is transferred in register 0, the address of the list in register 1 (see section
7.3.1).

146

U5056-J-2125-3-7600

Language interfaces

7.3.6

Passing function return values

Return values from integer functions are passed in registers 0 and 1, and return values
from floating-point functions in floating-point register 0.

Passing return values using other data types in registers 0 and 1 is possible, but is not
defined by ILCS. How they are represented is a matter for the various programming
languages.

Notes on linking of ILCS program systems

Static linking

If a program system exclusively contains structured ASSEMBH programs, it is sufficient
- as previously - to link in the ASSEMBH runtime library (SYSLIB.ASSEMBH.012) by
means of the RESOLVE statement of TSOSLNK.

If a program system contains programs in different languages, the initialization routine
ITOINITS must be linked in explicitly from the ILCS library.

Dynamic linking

Program systems exclusively containing programs written in the same language can -
as previously - be dynamically linked to the runtime library by means of the TASKLIB
assignment.

Program systems containing programs in different languages can be linked dynamically
if the user ensures that the ILCS initialization routine ITOINITS is contained in the
runtime library assigned with TASKLIB.

For dynamic linking using DBL (from BS2000 Version 10.0 on), the ILCS library can be
assigned as a further library to be searched by means of the link name BLSLIBnn in
RUN-MODE=ADVANCED.

Linking prelinked modules

When prelinked modules are linked, the ILCS routine ITOINITS may only be linked into
the prelinked module that contains the main program. The entry points and external
references of the prelinked modules must remain visible.

U5056-J-2125-3-7600 147

Language interfaces

7.4

Program interfacing of structured assembler programs via
the ILCS interface

In ASSEMBH Version 1.1A the macros for structured programming (@ macros) have
been extended so that the user can now also write ILCS-compliant programs in
assembler.

Structured programming is not supported by ASSEMBH-BC !

The standardized procedure interface has the following advantages for the user:

— assembler program segments can be used in any desired ILCS-compliant language
environment

— passing of parameters and register conventions are standardized for all languages
— the initialization call COLBIN of ASSEMBH-RTS is not required

— the language-specific macros (such as CENT, CEX and CCALL of C), which
previously supported programming in assembler in the particular language
environment, can all be replaced by the @ macros, since an ILCS-compliant
assembler program behaves the same with respect to all other languages in an
ILCS environment.

Along with the conversion of the procedure interface to the ILCS conventions, the
following new ILCS facilities are available to the assembler programmer through new @
macros in ASSEMBH V1.1A (see "ASSEMBH Reference Manual" [1]).

— uniform event handling

— uniform contingency handling

— uniform STXIT handling

— program mask handling

— setting of monitoring job variables

— language initialization for dynamically loaded modules

— activation of user-own routines for reserving and releasing memory for stack and
heap

— activation of user-own termination routines

— specification of the minimum stack extent size

148

U5056-J-2125-3-7600

Language interfaces

The new @ macros generate the calls to corresponding entries in the standard event
handler (SEH), the standard contingency handler (SCH) and also in the standard STXIT
handler (SSH) of the ILCS interface.

User-own handling routines can thus be activated and deactivated on the procedure
level. The call for these procedures is effected in accordance with ILCS conventions.

7.4.1 Creating an ASSEMBH ILCS object

The following prerequisites must be satisfied before an executable ILCS object
interfacing with the ASSEMBH-RTS (ASSEMBH runtime system) can be generated using
ASSEMBH:

— If the object contains an assembler main procedure (TYP=M), this must be
assembled with the @ENTR parameter ILCS=YES in order to set up the ILCS
environment and initialize the ASSEMBH-RTS and the runtime systems of all other
languages involved.

— If the ASSEMBH ILCS object is called by a non-assembler procedure, this procedure
must first have initialized the ILCS environment and thus the ASSEMBH-RTS.

— Procedures of type E/I must be assembled with the parameter ILCS=YES.
— The ASSEMBH runtime library must be linked in (see section 7.3.6).

U5056-J-2125-3-7600 149

Language interfaces

7.5 ILCS linkage combinations

7.5.1 ILCS object calls ASSEMBH ILCS object

Calling procedure:

The ILCS environment has been initialized by the ILCS non-assembler procedure. This
means that language-specific initialization of the ASSEMBH runtime system (ASSEMBH-
RTS) will also have been performed.

The COLBIN call previously required in the non-assembler procedure can be omitted.

Called procedure:

Procedure prolog:

By means of the macro @ENTR with ILCS=YES. The parameters are expected in
STANDARD format using "call by reference".

Procedure epilog:
If the @ENTR parameter RETURNS=YES was set, the function value is copied from R1
to RO. Registers R2 through R14 are restored.

7.5.2 ASSEMBH ILCS object calls ASSEMBH ILCS object

Calling procedure:

Initialization of the ILCS environment and the ASSEMBH-RTS has taken place in the
main procedure (type M) by means of @ENTR with ILCS=YES. Parameters are passed
in STANDARD format using "call by reference".

Called procedure:

Procedure prolog:

By means of the macro @ENTR with ILCS=YES. The parameters are expected in
STANDARD format using "call by reference".

Procedure epilog:
If the @ENTR parameter RETURNS=YES was set, the function value is copied from R1
to RO. Registers R2 through R14 are restored.

150 U5056-J-2125-3-7600

Language interfaces

7.5.3 ASSEMBH ILCS object calls non-ILCS ASSEMBH object

Calling procedure:

Initialization of the ILCS environment and the ASSEMBH-RTS has taken place in the
main procedure (type M) by means of @ENTR with ILCS=YES. Parameters are passed
in STANDARD format using "call by reference".

Called procedure

Procedure prolog:

By means of the macro @ENTR with ILCS=NO (default). The parameters are expected
in STANDARD format using "call by reference".

Procedure epilog:
The function value is not copied from R1 to RO.

Note

Called procedure:
— may contain no @EXIT with TO operand
— the number of parameters is passed in RO

Calling procedure:
— may not assume that the ILCS conventions are observed by the called
procedure; for example, the function value is not copied from R1 to RO

7.5.4 Non-ILCS ASSEMBH object calls ASSEMBH ILCS object

Calling procedure:

Initialization of the ILCS environment and the ASSEMBH-RTS has taken place in the
non-ILCS main procedure (type M) by means of @ENTR with ILCS=NO. Parameters
are passed in STANDARD format using "call by reference".

Called procedure

Procedure prolog:

By means of the macro @ENTR with ILCS=YES. RO generally does not contain the
number of parameters. The parameters are expected in STANDARD format using "call
by reference".

Procedure epilog:
If the @ENTR parameter RETURNS=YES was set, the function value is copied from R1
to RO. Registers R2 through R14 are restored.

Note

Called procedure:
— may not expect the number of parameters in RO

U5056-J-2125-3-7600 151

Language interfaces

7.5.5 Non-ILCS object calls ASSEMBH ILCS object

Calling procedure
The COLBIN call for initializing the ILCS environment is required.
Parameters are passed in STANDARD format using "call by reference".

Called procedure same as section 7.5.4

Note
Called procedure:
PROG=FORTRAN may not be specified in the @EXIT macro.

7.5.6 Long-jump (@EXIT with parameter TO)

If a program contains ILCS objects and non-ILCS ASSEMBH objects, the user must
ensure that no long-jump is present anywhere within the non-ILCS ASSEMBH objects.
Otherwise, program errors are possible!

152 U5056-J-2125-3-7600

8.1

The ASSEMBH diagnostic routine ASSDIAG

Not supported by ASSEMBH-BC !

Application

The diagnostic routine ASSDIAG is interactively invoked by ASSEMBH within the
framework of the assembler correction cycle. It fulfils the following basic functional
requirements:

» Implicit initiation by ASSEMBH under SDF (or COMOPT) control as soon as a
certain error weight is reached.

» Output of diagnostic information on a preceding assembly.
» Formatted I/O in interactive mode.
» Use of the file editor EDT to correct the source program in interactive mode.

» Restart of ASSEMBH with the set options.

ASSDIAG is dynamically loaded and activated by ASSEMBH from the library
<userid>.SYSLNK.ASSEMBH.011.

Activation is prepared by specifying the following option (see section 2.4.7):

CORRECTION-CYCLE=YES(ACTIVATION-WEIGHT=<error-weight>)
(for COMOPT, with *COMOPT ADIAG=n)

This means that ASSDIAG will be started if the corresponding error weight is detected

during the assembly.
If CORRECTION-CYCLE=YES(ACTIVATION-WEIGHT=ALWAYS)

(or *COMOPT ADIAG=0) is specified, ASSDIAG is started irrespective of the errors that

occur.

Software requirements

To enable the correction of source lines, the diagnostic routine works with the file editor
EDT. The appropriate version required for this purpose is given in the release notice.

U5056-J-2125-3-7600

153

ASSDIAG

8.2 Definition of terms

Diagnostic file
A temporary file that is created by ASSEMBH and deleted on termination of ASSDIAG.

ASSDIAG command

Instructions to the diagnostic routine to perform certain services.

Error class

Every error that is detected by ASSEMBH during the assembly of a program falls under
one of the error classes described below:

Code Description Error classes
SDF COMOPT
NOT NOTE NOTE -

Successful program run possible

WAR WARNING WARNING 1
Successful program run possible

SIG SIGNIFICANT ERROR SIGNIFICANT 2
Program run possible, but with errors

SER SERIOUS ERROR SERIOUS 3
Program run not possible

FAT FATAL ERROR - -
Assembly aborted
Diagnostic file incomplete

FAL FAILURE - internal assembler error - -
Assembly aborted
Diagnostic file incomplete

MNO MNOTE - message - -
Message generated via variable symbols,
with a severity code (MNOTE number) that
can be used to create a corresponding
error class.

(Reactions as described for classes above)

154 U5056-J-2125-3-7600

ASSDIAG

8.3

Flag type

One of the letters A-Z, with which a flag code begins.

Flag code

Flag type followed by one or two digits with which an error is identified by a flag.

Message text

Verbal description of a flag code.

Starting the diagnostic routine

The option CORRECTION-CYCLE=YES(ACTIVATION-WEIGHT=<weight>)

(or the *COMOPT entry ADIAG=n) enables the user to have the diagnostic routine
ASSDIAG started at the end of an assembly unit on the basis of the highest error class
that occurs during the assembly.

The values <weight> and <n> have the following significance:

<weight> <n> |ASSDIAG is started

ALWAYS 0 following an assembly, regardless of the assembly
result

NOTE - at the occurrence of error class NOTE or higher

WARNING 1 at the occurrence of error class WAR or higher

SIGNIFICANT 2 at the occurrence of error class SIG or higher

SERIOUS 3 at the occurrence of error class SER

U5056-J-2125-3-7600

155

ASSDIAG

After the diagnostic file is opened, ASSDIAG evaluates the information that is beyond
the scope of the assembiler listing, outputs this information, and waits for the input of
ASSDIAG commands.

The opening screen contains the following entries:

— name of the diagnostic file

— creation date

— name of the source program (source module)

— version number of the assembler

— number of flags that occurred, classified by error weight

Only the flags that remain detectable by the SDF specification MIN-MESSAGE-
WEIGHT= (or the *COMOPT entry ERRPR=) are displayed and may be processed
further.

8.4 Interrupting the program run
When the user is prompted for the input of an ASSDIAG command, he or she can
press the BREAK key at the terminal and branch to system mode, where BS2000
commands may be entered (this can also be done with the ASSDIAG command
SYSTEM,; see section 8.5.9).
The interrupted ASSDIAG run can be subsequently continued by entering the command
RESUME-PROGRAM.

8.5 ASSDIAG commands
ASSDIAG is controlled by means of commands. These commands, which must always
be entered in the command line of the screen mask, are read with the aid of the
WRTRD macro.
The commands can be shortened to any extent, down to a single character, provided
unigueness is ensured.
General format:
<command-name> [<parameter>[,<parameter>...]|
Scroll function
If the output extends over several screens, it is possible to scroll to the next screen by
means of a null input.

156 U5056-J-2125-3-7600

ASSDIAG

Overview of ASSDIAG commands

Command Function

CDT Calls the file editor EDT for correcting source lines

CONTINUE-| Continues correction processing at the interrupt point

CDT

DISPLAY Outputs error causes and numbers of affected instructions on the
display terminal

END Terminates the diagnostic routine

HELP Lists and explains ASSDIAG commands

LIST Identical to DISPLAY, but with output to SYSLST

PRINT Lists instructions

RERUN Starts the assembler with the applicable COMOPTs or SDF options

SYSTEM Executes a system command

TAGS Lists all symbols that are undefined or multiply defined

XREF Outputs cross-reference data

U5056-J-2125-3-7600 157

ASSDIAG

8.5.1 CDT command
Format
C[DT] [<parameter>]
Parameters
[ALL]
SO[URCE] |
<error-class>
<parameter>::= r
<statement-no.>
l<flag—code> J
<flag-type>
Function
The file editor EDT is started as a subroutine. The source program file or the source
element of a PLAM library is opened and presented for correction.
1. Parameter ALL (default)
The error information for all errors that have occurred is merged into the EDT work
file, following the source statement causing the error, with the attributes 'reduced
brightness’ and 'write-protected’. The information comprises flag code, error weight,
message number and message text.
The errored source line itself is set to 'normal brightness’ and 'overwritable’. The
EDT window is positioned to 2 lines before the first error line in order to show the
error in some context.
In the case of errors in macro and COPY elements, the first-level call in the source
is flagged as errored. The error information here is supplemented by the incorrectly
generated line. It is provided with the statement number for subsequent actions.
2. Parameter SOURCE
The source is presented for correction in the EDT work file without error
information, and can be processed using the EDT facilities. It is the responsibility of
the user to search for and correct errored source lines.
Processing of library elements (macro, COPY) is not possible.
3. Parameter <>
As described under point 1., but only for the specified error scope.
158 U5056-J-2125-3-7600

ASSDIAG

CDT command processing
Scroll function:

In functions 1. and 3., the <K1> key can be used to position the EDT window to the
next errored source line.

Terminating CDT processing:

There are several ways of terminating EDT and saving the processed assembler
sources (source/macro/COPY):

1. EDT command RETURN or
termination of scroll function by last <K1> key

The opened assembler sources are written back and EDT processing is terminated.
With PLAM elements, the version designation is not changed.

2. EDT command HALT
EDT is terminated. The processed elements are not written back.

3. By the ASSDIAG commands RERUN or END

Interruption:
1. ASSDIAG command other than CDT
2. CDT statement

Direct ASSDIAG command entry in the CDT correction screen

Entering ASSDIAG commands during CDT correction processing with EDT causes this
processing to be interrupted and the corresponding ASSDIAG function is invoked.
Continuation of the interrupted CDT correction processing at the point previously
reached can only be effected by entering the ASSDIAG command C[ONTINUE]-C[DT],
which has no parameters. The ASSDIAG command CDT is not permitted from within
the CDT correction screen and will be rejected. Only the C-C command is permitted
following an interruption in correction processing.

The commands LIST and SYSTEM are permitted in the correction screen as understood
by EDT.

Special points concerning ASSDIAG commands issued from the CDT correction screen:

Abbreviations for ASSDIAG commands issued from the CDT correction screen differ
from the possible abbreviations that otherwise apply. See the second line in the format
description of the commands (section 8.5.3 ff).

U5056-J-2125-3-7600 159

ASSDIAG

8.5.11

— END command

Following a query and positive response, all files/library elements opened for correction
are written back to the volume and closed. Otherwise, the program segments are
closed unchanged. The compile correction cycle is terminated. The assembler listing is
output if the parameter L is specified.

In order to maintain unambiguity, the command may not be entered in abbreviated
form within correction mode.

— RERUN command

All files/library elements opened for correction are written back to the volume and
closed without query. The compile correction cycle with the modified program
segments is activated again.

CDT statements

CDT statements allow additional processing operations on the assembler program
elements concerned to be included in the current source correction. These statements
are permitted only during CDT correction processing and result in an error message if
used outside the CDT command. The statements (1.-4.) may be specified from the CDT
correction screen in the command line:

On opening the element, the following information is presented in the second window
(applies to statements 2.-4.):

— library name of the opened element

— element name of the opened element

— version and type of the opened element

— element name of the element written back

CDT statement processing

Scrolling: For SHOW-DEF in the bottom command line with EDT
scroll function (+/-)

Terminate interruption: <K1> key

Return point: Last CDT command processing

Terminate: RETURN, RERUN, END, HALT

CDT command processing or statement processing interrupted by ASSDIAG command:

Terminate interruption: CONTINUE-CDT

Return point: Last CDT command processing

160

U5056-J-2125-3-7600

ASSDIAG

1. Overlaying the definition line(s) on the source
Format

S[HOW]-D[EFINITION] <name>

Function

By means of this statement, all definition lines from the list having the symbol <name>
are placed in the EDT work file. The EDT work file is displayed as a second window at
the bottom of the screen. The list lines merged in are represented in compressed form
and comprise:

Flag column, location counter, statement number, macro/COPY level and source
statement.

EDT statements for scrolling within the EDT work file (+, -, ++, --) must be entered in
the input line of the EDT work file; other CDT statements should be entered in the input
line of the upper window (e.g. EDIT-DEFINITION).

2. Correcting a definition line
Format

E[DIT]-D[EFINITION] <name>

Function

This statement positions the EDT window on the first definition line of the specified
symbol in the corresponding source element (source/macro/COPY). If the definition
line is contained in a macro/COPY element, the element (if not already loaded) is read
into a free EDT work file.

<name> Denotes the first occurrence of the symbol definition <name> in the source. If
a definition line is to be processed and it is not the first definition line of the
symbol <name>, this can be achieved by means of the CDT statements
SHOW-DEFINITION <name> and EDIT <statement-no.>.

After EDIT-DEFINITION, processing is continued by means of the <K1> key.

U5056-J-2125-3-7600 161

ASSDIAG

3. Processing a source or macro/COPY statement with overlaid error information
Format

E[DIT] <statement-number>

Function

Statement number in the source:

If the specified statement number is located in the source part of the assembly unit,
then the work file is positioned on the corresponding source line. The <K1> key then
positions onto the next errored statement, or correction processing is terminated.

Statement number in the macro/COPY element:

The statement number is also output in the overlaid error information relating to the
generated statement for the macro call. This information allows the relationship to the
source element and the line number to be established. The statement causes the
corresponding macro/COPY element to be read into a free work file; this is then
positioned on the errored source line. With the aid of the overlaid error information the
user can correct the line. Function key <K1> causes processing to be continued at the
position reached prior to the EDIT statement.

4. Processing a macro/COPY element without overlaid error information
Format

[M[ACRO]]

E[DIT]- <name>

i C[OPY]

Function

The element is processed without overlaid error information. The EDT window is
positioned to the start of the element. The EDT work file is assigned in the same way
as for processing with overlaid error information. The return to continued processing
following element correction is effected with the <K1> key. Like-named macros are not
supported.

162

U5056-J-2125-3-7600

ASSDIAG

8.5.2 CONTINUE-CDT command

Format

C[ONTINUE]-C[DT]

Function

This command allows CDT correction processing interrupted by an ASSDIAG command
input to be resumed at the point of interruption.

If no CDT correction processing was interrupted, the command will be rejected as
invalid.

U5056-J-7125-3-7600 163

ASSDIAG

8.5.3

DISPLAY command

Format

[D[ISPLAY]]
j [<parameter>]
DIS[PLAY]

The second line gives the minimum abbreviation allowed for command input from the
CDT correction screen (see section 8.5.1).

Parameters

(NOT
WAR
SIG
SER
<parameter>::= FAT
1FAL
MNO
<statement-no.> [-<statement-no.>]
<flag-type>
| <flag-code>

Function

The selected error causes are displayed on the terminal screen, provided the assembly
was not aborted (see "Special case" below).

— Command without parameters
Listing of all detected flags and MNOTESs, arranged by error class, flag code with
message text, and references to the affected statement numbers.

— NOT:
As above, but only for the error class NOTE.

— WAR:
As above, but only for the error class WARNING.

- SIG:
As above, but only for the error class SIGNIFICANT ERROR

— SER:
As above, but only for the error class SERIOUS ERROR

— FAT:
As above, but only for the error class FATAL ERROR

— FAL:
As above, but only for the error class FAILURE

164

U5056-J-2125-3-7600

ASSDIAG

— MNO:
Listing of all MNOTESs with assigned severity code and text, followed by the
statement number.

— <statement-no.> [-<statement-no.>]
The invalid statement or statements (no MNOTES) detected within the specified
number range are output on the terminal, followed by the respective flag code and
message text in each case.

— <flag-type>
Listing of the errors of a flag type, followed by the precise flag code and message
text, and the affected statement numbers.

— <flag-code>
As above, but only for the specified flag code.

Scroll function
If the output extends over several screens, it is possible to scroll to the next screen by
means of a null input.

Special case: Assembly aborted

If the assembly is aborted, a complete diagnostic file cannot be generated. Two
different outputs are then possible, depending on the cause of the abortion:

1. Abortion with error weight SERIOUS (i.e. continuation of assembler run not
possible):
The message text is output with notes concerning possible causes.
All parameters in the DISPLAY command are ignored in this case.

2. Controlled abortion due to the entry of a maximum error weight:

All errored statements thus far are output, including at least the statement that
triggered the abortion (e.g. MNOTE with SEV-CODE=255).

In such cases DISPLAY parameters are accepted with restrictions (statement
references are always excluded).

U5056-J-2125-3-7600

165

ASSDIAG

854 END command

Format
[E[ND]

(L]
END

The second line gives the notation for command input from the CDT correction screen
(see section 8.5.1).

Function

The diagnostic routine is terminated, and control is returned to ASSEMBH. If the
supplement 'L’ is added, the assembiler listing is output in accordance with the options
specified via SDF (or *COMOPT) control. Files that are open are closed.

Any further assembly unit in the same source will no longer be processed.

8.5.5 HELP command

Format
H[ELP] 1

[<command>]
|HEL[P]]

The second line gives the minimum abbreviation permitted for command input from the
CDT correction screen (see section 8.5.1).

Function

Listing of all ASSDIAG commands or description of selected ASSDIAG commands on
the data display terminal.

166 U5056-J-2125-3-7600

ASSDIAG

8.5.6

8.5.7

LIST command

Format

L[IST] [<parameter>]

Parameters

See section 8.5.3, DISPLAY command

Function

Same as the DISPLAY command, but with output to SYSLST.

PRINT command

Format

[<statement-no.>[-<statement-no.>]

PIRINT] [i }][,L][YS]

<symbol>[-<symbol>]

The abbreviation also applies to command input from the CDT correction screen (see
section 8.5.1).

Function

Lists a specific statement or range of statements as they would appear in the
assembler listing. If no range is specified, all statements are output. However, the
rightmost characters of any line extending beyond 80 columns are truncated on the
display terminal.

Specifying 'S’ causes only the following information of a line to be output:
— location counter

— statement number

— and source statement (possibly with associated message text line)

Specifying 'L’ causes an additional complete output of the print lines to SYSLST. The
flag codes and message texts are inserted after the instructions concerned.

U5056-J-2125-3-7600

167

ASSDIAG

8.5.8

Scroll function
If the output extends over several screens, it is possible to scroll to the next screen by
means of a null input.

Note

This may not be possible if the assembly is aborted.

RERUN command

Format
R[ERUN]
RER[UN]

The second line gives the minimum possible abbreviation for command input from the
CDT correction screen (see section 8.5.1).

Function

The RERUN command terminates ASSDIAG and causes ASSEMBH to reassemble the
assembly unit with the options that were set for the preceding assembly.

Notes
— The RERUN command is rejected if the source was read in via SYSDTA.
— No RERUN is possible after the abortion of an assembly.

— It makes no sense to start a correction cycle including module output to *OMF,
since the module generated by RERUN does not overwrite a module of the same
name in *OMF.

168

U5056-J-2125-3-7600

ASSDIAG

8.5.9

SYSTEM command

Format

S[YSTEM]<parameter>

Parameters

<parameter>::="system-command’

Function

The system command enclosed in single quotes may be specified with or without a
slash. It is executed immediately, and ASSDIAG is continued thereafter, provided this is
allowed by the system command that was executed.

All commands that can be called via the CMD macro are permitted (see "BS2000
Executive Macros, Reference Manual" [12])

Note

ASSDIAG remains loaded, and open files are not closed during the execution of the
command.

U5056-J-7125-3-7600 169

ASSDIAG

8.5.10 TAGS command

Format
[TIAGS])

j [<type>[,<type>]][,X[REF]
TAG[S]

The second line gives the minimum possible abbreviation for command input from the
CDT correction screen (see section 8.5.1).

Parameters

wypesi= ||
Ll

Default value: M,U

Function

Displays all undefined (U) and/or multiply defined (M) symbols. If XREF is specified,
cross-references are also indicated.

Scroll function
If the output extends over several screens, it is possible to scroll to the next screen by
means of a null input.

Note

The function may not be possible if the assembly is aborted.

170 U5056-J-2125-3-7600

ASSDIAG

8.5.11

XREF command

Format

X[REF] <parameter>[,<parameter>[,<parameter>]]

The abbreviation also applies to command input from the CDT correction screen (see
section 8.5.1).

Parameters
[<symbol>[-<specification>]]
<parameter>::= i*<macro—name> j
<literal>
[
A
R
<specification>::= 1 Wi
3
(0]
Function

The cross-references for the specified symbols, macro names or literals are displayed
on the terminal.

If the output of references with attributes was specified for the assembly, a specific
selection of cross-references may be requested for symbols:

Address accesses

Read-only accesses by instructions

Write accesses

Symbol of EQU/ORG instruction

Other accesses via assembly-language instructions

omz®a >

Scroll function
If the output extends over several screens, it is possible to scroll to the next screen by
means of a null input.

Note

This may not be possible if the assembly was aborted or if no XREF was requested for
the assembly.

U5056-J-2125-3-7600 171

ASSDIAG

8.6 Formatted screen 1/0O
8.6.1 Basic structure of ASSDIAG formats
CMD: ASSDIAG VERSION: V1.2A00

NAME OF SAVLST
CREATED

SOURCE MODULNAME:

:A:$3ASSEMBH.TMP.SAVLST.ASSEMBH.4THG.104840
94-03-07 10:47:20

TESTXREF

PROGRAM WAS ASSEMBLED BY ASSEMBH V 1.2A00

FLAGS WITH ERROR CLASS MNO : 1

NOT : 0
WAR : 0
SIG : 16
SER : 0
FAT :0
FAL : 0
CMD:
PAGE:
8.6.2 Example: DISPLAY command
CMD: DISPLAY ASSDIAG VERSION: V1.2A00
CLASS FLAG MESSAGE AND STATEMENT NUMBERS
FAL NONE
FAT NONE
SER NONE
SIG B42 ASS0242 'COPY’ MEMBER NOT FOUND
000004
D7 ASS0407 ALIGNMENT ERROR IN OPERAND
000011
U10 ASS2110 SYMBOL IS UNDEFINED
000006 000007 000009 000015 000016 000017 000018 000018
000046 000047 000048 000049 000072 000073
WAR NONE
NOT NONE
MNO MNOTE WITH SEVERITY CODE 0152
000013
CMD:
END OF OUTPUT PAGE: 1

172

U5056-J-2125-3-7600

ASSDIAG

8.6.3 Example: TAGS command

CMD: TAGS ASSDIAG VERSION: V1.2A00

UNDEFND SYMBOL

CMD:
END OF OUTPUT PAGE: 1

U5056-J-2125-3-7600 173

9 The Advanced Interactive Debugger (AID)

9.1 Introduction

Even an assembler program that has no syntax errors may not run as required, as the
program may still contain logical errors. The software product AID (Advanced
Interactive Debugger) is available to assembler programmers for detecting and
eliminating such errors. AID is not subject to special programming requirements and
allows the programmer to search a loaded program for errors during its execution and
directly make corrections during this process.

Only the main features of AID are discussed in this User Guide. A detailed description
of the debugger is provided in the manual "AID, Debugging of ASSEMBH Programs"

[2].

U5056-J-2125-3-7600 175

Advanced Interactive Debugger (AID)

AID is characterized by the following features:

1.

AID supports "symbolic" debugging, which means that symbols from the source
program can be specified in commands instead of hexadecimal addresses,
assuming the requisite LSD information was generated during the assembly and
subsequently passed to the loaded program (see section 9.2).

It is not always necessary to load all such information for the entire program
together with this program. AID permits LSD information to be dynamically loaded
for each assembly unit if the associated modules (with the LSD information) are in
a PLAM library. This provides for more efficient use of resources:

— Less program memory is used, since the LSD information only needs to be
loaded when it is required for debugging (memory requirements for a program
increase by about five times if LSD information is loaded together with the
program).

— Programs that remain free of errors during debugging need not be reassembled
(without LSD information) and linked before being put into productive use.

— If a program needs to be debugged while it is in productive use, the
prerequisite LSD information will already be available without having to
assemble and link the program again.

AID provides functions which can be used to

— interrupt the program run at predetermined locations or when defined events
occur so that AID or BS2000 commands (subcommands) can be executed,

— output the contents of fields on the basis of the data definition in the source
program,

— modify the contents of fields.

Besides the diagnosis of loaded programs, AID also supports the analysis of
memory dumps in disk files.

176

U5056-J-2125-3-7600

Advanced Interactive Debugger (AID)

9.2 Prerequisites for symbolic debugging

To permit debugging on the symbolic level, AID provides a means of addressing
symbols which are defined in the source program and which refer to source program
lines. Specific information on the symbols must be made available to AID for this
purpose. This information consists of two parts:

— the LSD (List for Symbolic Debugging), which lists the symbols and instructions
defined in the module, and

— the ESD (External Symbol Dictionary), in which external references of a module are
registered.

The generation and forwarding of this information can be initiated or suppressed in
each of the following steps:

— assembly with ASSEMBH,

— linking and loading with DLL (up to BS2000 V9.5), DBL as of BS2000 V10.0 or
— linking with TSOSLNK, and

— loading with ELDE or

— linking with BINDER (as of BS2000 V10.0) and loading with DBL

Whereas the ESD information is generated and passed on by default, the LSD
information can be made available to AID in two ways:

If the LSD information was generated during assembly, it can either be

— loaded together with the entire program, or

— loaded dynamically for each assembly unit as required, provided the associated
modules are in a PLAM library.

U5056-J-2125-3-7600 177

Advanced Interactive Debugger (AID)

The table below shows an overview of both cases with the appropriate commands and
operands that must be assigned in each program development step (for more detailed
information, refer to the manual "AID, Debugging of ASSEMBH Programs" [2]):

Program development Commands with operands

steps
If the LSD information If tI|1e LSD information
is to be loaded together is tp be dynamically .
with the program Iqgaded by AID as needed
Assembly with /COMPILE SOURCE-=..., //[QOMPILE SOURCE-=...,
ASSEMBH TEST-SUPPORT=AIQ TEST-SUPPORT=AID,
MODULE-LIBRARY=...
Linking and loading /LOAD-PROGRAM..., or /LOAD-PROGRAM..., or
with DLL/DBL /START-PROGRAM..., /$TART-PROGRAM...,

TEST-OPTION=AID TEST-OPTION=NONE

Linking with TSOSLNK 1PROGRAM...,.SYMTEST=ALL 1PROGRAM...[[SYMTEST=MAP]

Linking with BINDER JTART-LLM-CREATION..., Dyrlamic loading of LSD
(and loading with INCLUSION-DEFAULTS= records is not possible
DBL, see above) (TEST-SUPPORT=YES) for modules in LLM
SAVE-LLM LIB=..., format
TEST-SUPPORT=YES
Loading with ELDE LOAD-PROGRAM..., or /ILDAD-PROGRAM..., or
/ISTART-PROGRAM..., /ISTART-PROGRAM...,
TEST-OPTION=AID TEST-OPTION=NONE

* This is possible only if the associated modules are in a PLAM
library and have been assigned with %SYMLIB.

178 U5056-J-2125-3-7600

Advanced Interactive Debugger (AID)

9.3

9.3.1

COMPUTE THE SUM OF N NUMBERS (N <= 10)

Example of a debugging run

This example demonstrates a debugging session with AID for a small assembler
program. It is intentionally based on a relatively simple approach so that you can easily
see the application and effect of a number of AID commands. The assembler program
is listed in section 9.3.1; the debugging run is explained in section 9.3.2.

To enhance readability, inputs appear in bold print.

Assembler program

Objective

The program SUM is to read in up to 10 two-digit numbers and output the resulting
total. Input of the number 00 serves as the end criterion.

If more than 10 numbers are entered, a message is issued together with the calculated
total.

Source program listing

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
000000 1 SuMm START
2 TITLE '"COMPUTE THE SUM OF N NUMBERS (N <= 10y
3 PRINT NOGEN
000000 00000000 4 RO EQU O
000000 00000001 5 R1 EQU 1
000000 00000002 6 R2 EQU 2
000000 00000003 7 R3 EQU 3
000000 00000004 8 R4 EQU 4
000000 00000005 9 R5 EQU 5
10 SUM AMODE ANY
11 SUM RMODE ANY
12 GPARMOD 31
14 2 *VERSION 010
000000 OD 20 15 BASR R2,R0
000002 00000002 16 USING *R2
17 START WROUT MESS1,END
24 2 *FHDR VERSION 105 / 1988-06-13
48 2 *@DCEO 952 900503 53531004
51 1 * WROUT 005 910215 53121058
000026 58 50 2176 00000178 52 L R5,=F'1’
00002A 5A 50 2176 00000178 53 LOOP A R5,=F'1’
00002E 49 50 2138 0000013A 54 CH R5,TEN
000032 47 20 20BE 000000C0O 55 BH ERROR
56 READ RDATA INPUT, END
63 2 *FHDR VERSION 105 / 1988-06-13
922 2 *,@DCEI 920 881104 53531002
95 1 *,RDATA 006 910215 53121057
000062 D5 05 2121213A 00000123 0000013C 96 COMP CLC INPUT+4,ZERO
000068 47 80 207A 0000007C 97 BE FROM
00006C F2 11 21232121 00000125 00000123 98 ADD PACK PACK,INPUT+4(2)
000072 FA 31 213C2123 0000013E 00000125 99 AP TOTAL,PACK
000078 47 FO 2028 0000002A 100 B LOOP
00007C F3 63 2131213C 00000133 0000013E 101 FROM UNPK RESUL,TOTAL
000082 D3 00 21372140 00000139 00000142 102 MVZ RESUL+6(1),ZONE
103 WROUT MESS2,END
109 2 *FHDR VERSION 105 / 1988-06-13

11:17:32 94-03-08

U5056-J-2125-3-7600

179

Advanced Interactive Debugger (AID)

0000E2 47 FO 207A 0000007C

0000E6 0039

0000E8 404001

0000EB C2C9E3E3C540C2C9
00011F 000000000000
000125 000C

000128 0012

00012A 404001

00012D E2E4D4ADACS57A
000133 40404040404040

00013A 000A
00013C FOFO
00013E 0000000C
000142 FO

000144 0034

000146 404001

000149 C5E240D2D6C5D5D5
000000

000178 00000001

00017C 9101221427002852

133
136
137
140
152
159
183
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

2
1
END
ERROR
2
2
1
B
EJECT
*
* DEFINITIONS
*
MESS1 DC
DC
M1 DC
INPUT DC
PACK DC
*
MESS2 DC
DC
M2 DC
RESUL DC
.
TEN DC
ZERO DC
TOTAL DC
ZONE DC
.
MESS3 ~ DC
DC
M3 DC
END

FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES

HIGHEST ERROR-WEIGHT : NO ERRORS
THIS PROGRAM WAS ASSEMBLED BY ASSEMBH

V1.2A00

53531004
53121058

900503
910215

952
005

*,@DCEO
*WROUT

TERM DUMP=Y

*VERSION 010

WROUT MESS3,END

*FHDR VERSION 105 / 1988-06-13
*@DCEO 952 900503 53531004
*WROUT 005 910215 53121058
FROM

Y(L'M1+5)
X'404001'

C'PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00’
XL6'00’

PL2O’

Y(L'M2+L’'RESUL+5)
X'404001"
c’'sum’
CL7

H'10’
co0’
PL40
X'FO’

Y(L'M3+5)
X'404001’

C'NO MORE THAN 10 NUMBERS CAN BE PROCESSED'
SUM
=F'1

=X'9101221427002852" CONSISTENCY CONSTANT FOR AID

ON 1994-03-08 AT 11:15:54

180

U5056-J-2125-3-7600

Advanced Interactive Debugger (AID)

9.3.2 Debugging run

Step 1

The Assembler source program SUM in the file SOURCE.TEST is assembled using
ASSEMBH. The specified option TEST-SUPPORT=YES causes ASSEMBH to create
LSD information and pass it to the object module. The source program is assembled
without errors.

/ DEL-SYS-FILE OMF
/ START-PROG $ASSEMBH

% BLS0500 PROGRAM 'ASSEMBH’, VERSION '1.XXXX' OF 'yy-mm-dd’ LOADED.

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1991. ALL
RIGHTS RESERVED

% ASS6010 V 1.XXXX OF BS2000 ASSEMBH READY

/I COMPILE SOURCE=SOURCE.TEST,
TEST-SUPPORT=AID

% ASS6011 ASSEMBLY TIME: 80 MSEC

% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS

% ASS6006 LISTING GENERATOR TIME: 102 MSEC

/I END

% ASS6012 END OF ASSEMBH

Step 2

Program SUM is to be executed.

/ START-PROG (*OMF)
% BLS0517 MODULE 'SUM’" LOADED

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
*05

*16

*48

*00

*0

*00

*EN

/

The program always branches back to the input, so there must be a program error.
The program is interrupted by pressing the K2 key.

U5056-J-2125-3-7600 181

Advanced Interactive Debugger (AID)

Step 3

The program is reloaded with TEST-OPTION=AID so that it can be symbolically tested.

/ LOAD-PROG (*OMF),TEST-OPTION=AID
% BLS0517 MODULE 'SUM’" LOADED

[%IN S'96" <%D INPUT;%STOP>
! %R

The %INSERT command is used to set a test point at the line with the statement
number 96, i.e. the CLC instruction. Every time the program reaches this address, the

contents of field INPUT are to be output.

Following output, the program is to be switched to the STOP status so that new

commands can be entered.

The loaded program is started with %RESUME.

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00

*05
** |TN: #004B0O12E’ ** TSN: 2069

SRC_REF: 96 SOURCE: SUM PROC: SUM

INPUT = 00060000 FOF5 ...05

STOPPED AT LABEL: COMP , SRC_REF: 96, SOURCE: SUM ,PROC: SUM
/ %R

*48

INPUT = 00060000 F4F8 ...48

STOPPED AT LABEL: COMP , SRC_REF: 96, SOURCE: SUM ,PROC: SUM
1 %R

*16

INPUT = 00060000 F1F6 ...16

STOPPED AT LABEL: COMP , SRC REF: 96, SOURCE: SUM ,PROC: SUM
/ %R

*00

INPUT = 00060000 FOFO 00

STOPPED AT LABEL: COMP , SRC_REF: 96, SOURCE: SUM ,PROC: SUM

Field INPUT contains the correct value in each case. The program obviously does not

recognize the end criterion.

182

U5056-J-2125-3-7600

Advanced Interactive Debugger (AID)

Step 4

The %DISASSEMBLE command specifies that 5 lines are to be output in "disassembled"
format starting at line 96, i.e. the CLC instruction.

/ %DA 5 FROM S'96’

SUM+62 CLC 121(6,R2),13A(R2) D5 05 2121 213A
SUM+68 BC B’1000’,7A(RO,R2) 47 80 207A
SUM+6C PACK 123(2,R2),121(2,R2) F2 11 2123 2121
SUM+72 AP 13C(4,R2),123(2,R2) FA 31 213C 2123
SUM+78 BC B'1111’,28(R0O,R2) 47 FO 2028

This shows that the length field of the CLC instruction contains '6’ instead of '2'. This is
why the end criterion is not recognized.

The correct assembler instruction reads:

COMP CLC INPUT+4(2),ZERO

Step 5

This error can be provisionally amended by means of the %SET command. The
program is reloaded for this purpose.

/ LOAD-PROG (*OMF),TEST-OPTION=AID
% BLS0517 MODULE 'SUM’" LOADED

[%SET X'D5012121213A’ INTO COMP
/ %DA 1 FROM COMP

SUM+62 CLC 121(2,R2),13A(R2) D5 01 2121 213A
! %R

%SET changes the memory contents at address COMP. An AID literal with the same
length as the CLC instruction and containing the length entry '01’ instead of ‘05’ is
transferred. The CLC instruction is then checked using %DISASSEMBLE and the
program restarted with %RESUME.

U5056-J-7125-3-7600 183

Advanced Interactive Debugger (AID)

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
*05

*16

*48

*12

*10

*15

*17

*19

*29

NO MORE THAN 10 NUMBERS CAN BE PROCESSED
SUM:0000171

% IDAON51 PROGRAM INTERRUPT AT LOCATION '000000BE (SUM), (CDUMP), EC=90’
% IDAON45 DUMP DESIRED? REPLY (Y=USER-/AREADUMP;Y,SYSTEM=SYSTEMDUMP;N=NO)?Y
% IDAONS53 DUMP BEING PROCESSED. PLEASE HOLD ON
% IDAON54 USERDUMP WRITTEN TO FILE ’userid.DUMP.name.2069.00001’
% IDAON55 TITLE: 'TSN-2069 UID-userid AC#-xxxxxxxx USERDUMP
PC-0000BE EC=90 VERS-110 DUMP-TIME 11:37:42 94-03-08'

Another program error exists, since the user has entered only 9 numbers. A dump for
further diagnosis is therefore generated on program termination.

Step 6

The %DUMPFILE command opens the dump file and and assigns it the link name D1.
The %BASE command switches the AID work area to the opened dump file. From now
on, an address without its own base qualification will always cause the dump file data
to be accessed.

| %DUMPFILE D1=DUMP.NAME.2069.00001
| %BASE E=D1

/%D INPUT

* D1: DUMP.NAME.2069.00001

INPUT = 00060000 F2F9 29
/%D R5

“R5 = 00000008

The last number entered in the INPUT field is to be output. The output and log are
identical.

As the number of inputs is counted in register 5, it is now queried.

Register 5 contains the value '11’, although only 9 numbers were entered. A
comparison with the assembly listing shows that register 5 has the initial value "1’ and
not '0’.

The correct assembler instruction reads: L R5,=F'0’

184 U5056-J-2125-3-7600

Advanced Interactive Debugger (AID)

Step 7

This error can be provisionally amended by means of the %SET command. The
program is reloaded for this purpose.

/ LOAD-PROG (*OMF),TEST-OPTION=AID

% BLS0517 MODULE 'SUM’" LOADED

| %BASE

[%SET X’'D5012121213A’ INTO COMP

/ %IN LOOP <%SET #0' INTO _R5; %REM %.>

/ MOD-TEST-OPT DUMP=NO
! %R

First, %BASE must be issued to assign the loaded program to the AID work area.

Reloading the program causes the corrections that have been made to be deleted. To
ensure an error-free program run, the %SET command from step 5 is issued again
here.

%INSERT sets a test pointto the assembler instruction with the name entry LOOP. This
means AID is to execute the following subcmdorior to the add instruction.

The %SET command that gives register 5 the initial value '0’ is contained in the subcmd
of %INSERT. This subcmds deleted with %REM after the first run (as no further
subcommand has been entered for this test-point the test-pointis also deleted), and

the program is then resumed.

As the TERM macro is defined in the source program with the DUMP=Y operand, a
dump is offered every time the program terminates. This can be prevented before the
program is started (%RESUME) with the following command: /MODIFY-TEST-OPTIONS
DUMP=NO

U5056-J-2125-3-7600 185

Advanced Interactive Debugger (AID)

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
*05

*16

*48

*12

*10

*15

*17

*19

*29

*11

NO MORE THAN 10 NUMBERS CAN BE PROCESSED
SUM:0000182

% IDAON51 PROGRAM INTERRUPT AT LOCATION '000000BE (SUM), (CDUMP), EC=90’
% IDAON47 DUMP PROHIBITED BY /OPTION COMMAND
/

After this correction the program executes without errors. The errors can now be
definitively eliminated in the source program.

186 U5056-J-2125-3-7600

10

Utility routines for structured programming

Structured programming with ASSEMBH is supported by the following utility routines:

COLLIST to create structure lists

COLNAS to create Nassi-Shneiderman diagrams

COLINDA to indent structured source programs

COLNUMAto combine structured and assembler information in a list

Fig. 10-1 shows an overview of the function of COLLIST, COLNAS and COLNUMA with
the help of a small example.

The format and meaning of the language elements for structured programming are
described in detail in the "ASSEMBH Reference Manual" [1].
Structured programming is not supported by ASSEMBH-BC !

The COLLIST and COLNAS utilities are independent of the programming language, i.e.
input to these programs may also consist of dummy code.

COLINDA creates an indented source program from the primary program, so that a
clear and transparent listing is generated during assembly.

The COLNUMA utility optionally performs one of the following two functions:

— it extends a source program structure list created by COLLIST by adding to it
information from the corresponding assembler listing;

— it enhances the assembler listing of a source program edited by COLINDA in order
to highlight the program structure.

U5056-J-2125-3-7600 187

COLLIST, COLNAS, COLINDA, COLNUMA

MAIN
WHIL x<10

x=x +1 X=X +2

CYCL

EDT/LMS

3) IMAIN SENTR
TYP=M

(4) awHIL
LT

(7) QIF
EQ

CH X,=H"10°* i

cLc ALPHA,BETA
=THE

+

ELS
AH Xo=H'|AH
1 2

X,=H'2" |

@PASS EXTNAME=I SUB |<=

AWHEN ZE
LTR Yo
<-|aBREA
1.0000 HAUPT START QEXIT ->
2.0000 PRINT NOGEN X EQU RS
3.0000 HAUPT dENTR TYP=N Y EQu R6
4.0000 aWHIL LT ALPHA bs H
5.0000 CH X,=H'10* BETA 8s H
6.0000 abo
7.0000 alF Eq
8.0000 CLC ALPHA,BETA
9.0000 ATHEN
10.0000 AH Xo=H'qe
11.0000 RELSE
12.0000 AR XezH'2'
13.0000 acycL
14.0000 dPASS EXTNAME=UNTER
15.0000 GWHEN 2E COLNAS
16.0000 LTR Y.
17.0000 @BREA
18.0000 aBEND
19.0000 ABEND
20.0000 SBEND
21.0000 AEXIT
22.0000 X EQU RS
23.0000 Y EQU Ré&
24,0000 ALPHA DS H
25.0000 BETA DS H
26.0000 QEND
27.0000 END
COLLIST/COLNUMA
STMNT SRC. * LYCTN OBJECT CODE ADDR1 ADDR2
3 3 +MAIN + |
3 1-3ENT 1-001-1
31 TYpP=mM 1
141 4 | +=auHIL 2-001=1
P TS ¢ 1
149 5 It CH X,=H'10° | 000030 49 50 AOTE 000080
150 6 I 1 2-002-1
159 7 UL 1 +-alf 3-001=1
7 ' i ! EQ I
166 8 I L 1 CLC ALPHA,BETA | 000038 D5 01 AD6BAOGA 00006A 00006C
167 9 | | F=ATHEN====~~=emeaa ———mem—eeI=(02~]
76 10 1 1 | 000042 4A 50 A0B0 000082
177 11 1 | -3ELSE 3-003-1
85 12 1t 1 00004A 4A 50 A082 000084
186 13 1 1t 4-001-1
194 14 *%| 1 H arPa]
203 15 1 1 & | awHeN 1
135 1 1 1 i 1E I
210 16 1t 1 & LTR Y,Y I 000054 12 66
211 17 1 & 1 | GBREA 4 1
221 18 I 1 i +=ABEND 604
230 19 1 | +-GBEND 3004~
238 20 1 +-GBEND 2-003-1
247 21 **1 @EXIT 1
260 22 1 X EQU RS 1 000000 000005
261 23 1 ¥ EQU R6 t 000000 000006
262 24 1 ALPHA DS H I 000064
263 25 | BETA S H 00006¢C
264 26 +-@EN 1=-002~1
Fig. 10-1: Function of COLNAS and COLNUMA

188

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.1

10.1.1

10.1.11

Utilities which edit the structured source program

COLLIST, COLNAS, COLINDA

The COLLIST, COLNAS, and COLINDA utilities edit structured programming source
programs. All three utilities perform syntax checks and indicate the detected syntax
violations at the points where they occur.

COLLIST

The COLLIST utility performs two optional functions:
1. Creation of a structure list to show the nesting of structure blocks,

2. Creation of a procedure list showing the calling hierarchy, and a table of multiply
used procedures.

Structure list

Block handling

— The structure words as well as the procedure header and procedure end are listed
in separate lines, and a horizontal line and a four-digit number are added to the
right end of the line. The first digit of the number indicates the nesting level; the
remaining three digits form a sequence number within a nesting level and a
procedure.

If the maximum nesting level within a procedure is greater than 9, only sequence
numbers starting with 1-000 are generated.

— The structure words within a structure are aligned vertically and linked by a vertical
line.

— Subblocks belonging to structure words are indented relative to these words.
— The right margin of the list is terminated by a vertical line.

— The block name is placed in a separate line before its block.

U5056-J-2125-3-7600

189

COLLIST, COLNAS, COLINDA, COLNUMA

Line handling

— Between the structure word lines, the basic instructions and comments from the
source program are taken over and indented relative to the structure words. Leading
blanks are removed.

— The basic statements @PASS and @EXIT are identified by means of asterisks in the
left margin.

— If there is not enough space for a source line in the listing line, the source line is
continued on one or more listing lines. If there is very little space in the listing line,
i.e. less than 12 characters, the transfer of source lines is suppressed, and the
message "LINE SUPPRESSED" is printed.

— For each listing line, the number of the corresponding source program line is output
in the starting columns.

— Aline identification number from the source program line (columns 73-80) or the
key of the input record can optionally be output beyond the right margin. If no line
identifier is desired, COLLIST pushes the vertical line to the extreme right edge.

Error messages

— Error messages and warnings resulting from syntax checks are printed in a line
before the invalid keyword.

Page feed

— For each procedure there is a page feed and a header line with the name of the
input file, the date, the time of day, and a page number. The procedure number is
specified in a second header.

In the same way, a page feed is generated, and a header line is output before all
program sections which are external to procedures.

If several small procedures are to be printed on one page, they must be separated
in the source program by lines containing only an asterisk in column 1. The
corresponding number of blank lines will then appear between the procedures in the
structure list. Only one header with procedure number is created.

— To meaningfully divide structure lists which occupy more than one printed page, a
page feed can be generated by entering a comments statement with *: in columns
1-2.

This comments statement is not output in the structure list.

190 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

If the *: page feed character comes before the beginning of a procedure
(@ENTRY), only one page feed takes place. This page feed character merely serves

to enhance the clarity of the input file.
The output of the header can be controlled in such cases.

— The user can specify the maximum number of print lines per page.

U5056-J-2125-3-7600 191

COLLIST, COLNAS, COLINDA, COLNUMA

Example

The following example shows the main features of a COLLIST structure list.

Input to COLLIST

Output from COLLIST

NAME @ENTR TYP=X 1 +NAME+

@WHIL CC 1 -@ENTR 1-001-

..... 1 TYP=X

@DO 2 +-@WHIL------mmmmmemee oo 2-001-

@IF CcC 2 CC

..... 3

@THEN 4 -@DO 2-002-

..... 5 +-@IF----------------------3-001-

..... 5 CcC

..... 6

@ELSE 7 -@THEN---------=--=--mm- 3-002-

..... 8

..... 9

..... 10

@CYCL 11 -@ELSE--------------=--——- 3-003-

..... 12

@PASS NAME AECT I N

..... 14

@WHEN CC 15 +-@CYCL---------------- 4-001-

..... 16

@BREA 17 * @PASS NAME

..... 18

..... 19 @WHEN 4

..... 19 CcC

@BEND 2 01 1 1 | 0

@BEND 21 @BREA

@BEND 2 1 1 1 | -

@EXIT 23 1 1 | 1

@END 24 | 1 | 1 ..
25 +-@BEND---------------- 4-004-
26 +-@BEND-----------=--m- oo 3-004-
27 +-@BEND--------=--=-mm oo 2-003-
28 ** @EXIT
29 +-@END 1-002-

Fig. 10-2: COLLIST structure list

192

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.1.1.2 Procedure list

A procedure list, which is similar to a structure list, represents the calling hierarchy of a
primary source program, where all @ENTR and @PASS statements are interpreted.
Following the lists showing the calling hierarchy, there is a final table with information
on multiply called procedures.

Further details on the procedure list are provided in the example.

The generation of procedure lists can be controlled so that if a procedure contained in
the program is called repeatedly, its substructure is no longer output (identified by **).

EXAMPLE DATE 09/03/94 TIME 14:28:03
—CALLING HIERARCHY OF PROCEDURE—
CETLST LN=1
2
AFORM (3) —
IoP (9) —
GETIME —
LISTAB LN=1782
2
GETPRC (2) LN=1647
4
ILPDPF —
4
SYSERR (7) —
3_
SETPSS LN=478
2
PRINT (11) LN=1146
HEADER (2) LN=1289
4
ERS (7) —
IOP (2) —
4
3
HFGTL1 LN=1981
]
RSEQ (3) LN=2067
4
OUTPUT LN=2199
| =
HEADER ** LN=1289
STRL —»
5
4
3
TERM UNIT=STEP,MODE=ABNORMAL—~
2

U5056-J-7125-3-7600 193

COLLIST, COLNAS, COLINDA, COLNUMA

EXAMPLE DATE 09/03/94 TIME 14:28:03
——MULTIPLE CALLED PROCEDURES————
PROCEDURE CALLED FROM

IOP — CETLST (9)
HEADER (2)
HEADER (LN=1289) SETPSS (2)
OUTPUT
Fig. 10-3: Example of a procedure list

Explanatory notes on the example
— The file name of the procedure is EXAMPLE.

— The procedure AFORM is called three times from the procedure CETLST; IOP is
called nine times, GETIME once, and so on. Procedures marked with -- - are not
contained in the interpreted program.

— The procedure LISTAB, on the other hand, is part of the program EXAMPLE. The
corresponding @ENTR statement is in line 1782. LISTAB calls the procedures
GETPRC and SYSERR.

— Procedures marked with ** are contained in the interpreted program. The
procedures subordinate to them have already appeared earlier on in the procedure
list and are not printed out again here (parameter FULPCLST=NO).

— The left column of the final table contains the names of the multiply called
procedures IOP and HEADER. If the called procedure is in the analyzed program,
the start of the procedure is shown there as well.

— The right column of the table contains the names of the calling procedures and, in
parentheses, the number of calls, if there are more than one. The IOP procedure is
called nine times by the CETLIST procedure and twice by HEADER.

Notes

— The primary program may contain up to 300 different procedure names (in @ENTR
and @PASS statements).

— The primary program may contain a maximum of 1000 @ENTR and @PASS
statements (multiple calls to the same procedure from within a procedure are only
counted once).

194 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.1.2

10.1.2.1

COLNAS

Structured programming procedures are represented as Nassi-Shneiderman diagrams in
the lists output by COLNAS.

In particular, related THEN and ELSE subblocks or CASE subblocks are not shown one
below the other, as in COLLIST, but next to each other. This emphasizes the flow of
control more clearly than simple indentation.

A structure block is basically exited via the terminating horizontal line only, and this is
reached via one of any adjacent subblocks.

Although placing subblocks next to one another has definite advantages (clarity, use of
a second dimension), there are also some disadvantages, primarily due to the limited
number of character positions in a line: in blocks with many levels of nesting there are
sometimes so few characters available in the line for each subblock that it is not
possible to meaningfully represent all the information in the source program.

If it is possible to show the information from the source program, however, the listing
provides a good means of checking the program structure, particularly the nesting of
selection structure blocks.

If errors are detected during the syntax check of the structure, the diagram for the
procedure in question is suppressed.

Format of the list

Indentation amount

The user specifies the "indentation amount" in a control parameter (see INDAMT,
section 10.3.5). The default value is 4 characters. The indentation amount determines
the indentation of the loop subblocks within repetition structure blocks (@WHIL,
@CYCL, @THRU) and that of the sequence subblock (@BEG]).

The indentation amount also plays a part in the decision construct (@IF).

Method of showing decisions

— The condition is placed in a rectangular box below the structure word IF, since
diagonal lines cannot be drawn.

— The THEN and ELSE subblocks are indicated at the top edge of the relevant
subblock, if there is still room for this in the line.

— If the ELSE subblock is missing, this is shown by an empty strip on the right-hand
side, with a width equal to the indentation amount.

U5056-J-2125-3-7600 195

COLLIST, COLNAS, COLINDA, COLNUMA

The way in which the available partial lines are divided up within subblocks primarily
depends on the ratio of the number of lines between @THEN and @ELSE or
@ELSE and @BEND. If the ratio is approximately 1 (0.8 - 1.2) or the part line width
is relatively small (6 levels of indentation), this width is halved. Otherwise, a part line
width is divided, according to the line ratio, into integral multiples of the indentation
value. When the line is divided up according to line ratio, a minimum of three
indentation values is made available for one subblock.

Information not transferred to the list

— References to source program lines (as output by COLLIST) are omitted. They are
only generated for keywords which introduce a structure block.

— The contents of columns 73-80 or the record key are not transferred.

— The output of the contents of structure blocks or subblocks is suppressed if less
than two indentation amounts are available for the block in the line.

— When the output of block contents is suppressed, the free space for the block in
the diagram is filled with asterisks (*).

— The line numbers of the suppressed lines are output to the listing device (SYSOUT).

Page feed

— For each procedure, a page feed is generated in the list, and also a header line with
the name of the input file, date, time of day, and page. The number of the
procedure is output in a second header.

There is also a page feed with output of a header line before all program segments
external to procedures.

— The page feed characters *: and * (see section 10.1.1, COLLIST page feed) are
taken into account by COLNAS outside procedures only.

— The user can control how many lines are output per page and whether there is a
header on each page (even between procedures).

Error messages

— If errors are detected in a procedure when checking the syntax of the structure, no
structure diagram is output for the procedure, just a list of structure error messages
with the text of the corresponding lines.

196 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

Example

The following example shows the main features of a COLNAS listing.

Input to COLNAS Output from COLNAS

NAME @ENTR TYP=X + +
@WHILE CC (1) NAME @ENTR
..... TYP=X
@DO + +
@IF CC (2) @WHIL
..... CcC
@THEN | | ...
,,,,, + +
..... (5)] @IF
..... Cd
@ELSE | | | ..
..... +-THEN------+-ELSE +
@cyc. | | |
@PASS NAME (15) @CYCL
@WHEN CC | { { | |
..... @PASS NAME
@BREA (| | -
..... @\HEN CC
..... <} @HREA
@Beno - |
@Beno | |
@Beno - |
@EXIT + +
@END @EXIT

Fig. 10-4: COLNAS listing

->

U5056-J-2125-3-7600

197

COLLIST, COLNAS, COLINDA, COLNUMA

10.1.3 COLINDA

The COLINDA utility takes a structured source program and generates from it one that
is indented in accordance with structure block nesting.

10.1.3.1 Output from COLINDA

The COLINDA utility changes the format of a structured source program as follows: the
operation, operand, and remarks parts of an instruction are indented in accordance
with structure block nesting, and lines which begin with a structure word are terminated
by means of a horizontal line, at the end of which the nesting level is specified. The
name fields of the assembler format are recognized and retained at the left margin.

The generated indented source program serves as input to the assembler and is
reflected in its assembler listing.

198 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

Format of the output source program and thus the
generated assembler listing

All structure words of a structure block are output, indented to the same character
position.

All structure words are emphasized by means of a line in the remarks section.

All structure words contain a number at the end of the line, indicating the
appropriate nesting level.

Remarks concerning structure words are output in the next line in the form of a
comments line.

Names of structure blocks and subblocks are separated and placed before the start
of the block with

DS OH
Subblocks are indented in relation to the structure words to which they belong.

No indentation is performed before the first and after the last structure block within
a procedure (important for data definitions).

Remarks in assembler instructions are also indented if there is sufficient space in the
line; otherwise, they are placed in a separate comments line preceding the
instruction.

The significant part of comments statements (all columns from the first to the last
non-blank column in the range 2 to 71) in subblocks is aligned according to the
nesting level only if it does not need to extend beyond column 71 as a result of the
indentation. If a comments statement in a subblock is to be left unaltered (e.g.
boxed comments), this can be achieved by filling in column 2 and column 71.

Columns 73-80 of the output line are numbered consecutively, so that columns 73-
79 represent the sequential number of the input line within the input source
program, and column 80 is always set to 0. A unique indication of the original
structured source program can thus be found in the assembler listing. This
numbering can be suppressed, in which case the line identification from columns
73-80 of the input is taken over.

U5056-J-7125-3-7600 199

COLLIST, COLNAS, COLINDA, COLNUMA

Example

Input to COLINDA

NAME @ENTR TYP=X *

@WHIL CC

Fig. 10-5:

Output from COLINDA

GENERATED BY COLINDA

NAME @ENTR TYP=X 00000010

@WHIL CC * 2- 00000020

@Dbo * 2- 00000040
@IF cC L 3- 00000050
00000060
O —— 3- 00000070
00000080
00000090
00000100
O —— 3- 00000110
00000120
00000130
00000140
LO—— 4- 00000150
..... 00000160

00000030

00000170
..... 00000180
R 4- 00000190
..... 00000200
R 4- 00000210
..... 00000220
00000230
..... 00000240
@BEND Hommmmmmm oo 00000250
* ---3- 00000260
2- 00000270

@BREA

@BEND
@EXIT

@END

00000280

00000290

COLINDA output

200

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.1.3.2

10.2

10.2.1

Structure functions available in the TOM editor

The COLINDA utility function can be used directly from within the TOM editor TOM-TI.
The two TOM-TI commands COLINDAand COLAare provided for this purpose.

COLINDA
edits a structured assembler program in the TOM-TI work area such that it
corresponds exactly to the output of the COLINDA utility.

COLA
indents the program like COLINDA, but without the following: the line numbers in
columns 73-80, the horizontal line to emphasize structure statements, the indication
of the nesting level, and "name DS OH" before the start of structure blocks.

COLNUMA

COLNUMA is the utility that summarizes all information and thus enables the user to
debug on the "structured programming level". Its functional scope is determined by the
assigned input files.

Extending the structure list

If a structure list of the source program (COLLIST output) is assigned as the input file,
it is enhanced with the addition of information from the assembler listing.

Prerequisites:

— The source program must be numbered in ascending order in positions 73-80. This
can be achieved by using the following EDT command:

@SEQ[UENCE]
— The assembly must be executed with the following assembler statement:
PRINT NOGEN
— The COLLIST structure list must be generated with the following control parameter:

LSTCOL=100

U5056-J-2125-3-7600

201

COLLIST, COLNAS, COLINDA, COLNUMA

Input files for COLNUMA thus consist of the following lists, which originate from a
source program with numbering in character positions 73-80.

— structure list (COLLIST output)
— assembler listing (assembler output)

The output from COLNUMA consists of a COLLIST structure list with the following
insertions:

The corresponding hexadecimal addresses and the generated object code (left part of
a line in the assembler listing) are inserted in the right margin of the structure list. The
statement number of the assembiler listing is inserted in the left margin.

Notes

— Input and output can be controlled via parameters or the link name CLIST, ASMLST
or EWCLIST.

— Lines generated via macros are not included in the output list.

— If the source is not assembled with PRINT NOGEN, there will be no location entry in
the macro instruction line.

— Assembler messages are not taken over.

202 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.2.2 Extending the assembler listing of a program edited by COLINDA

If the structure list is missing, i.e. if only an assembler listing is available, COLNUMA wiill
check whether this listing is based on a program edited by COLINDA. If this is the

case, COLNUMA will process this listing. If the assembler listing involved is not one of
a program edited by COLINDA, the COLNUMA run is terminated with a message.

The following points describe the list that is generated by COLNUMA from the
COLINDA assembiler listing:

— The "@" characters of statements that introduce structure blocks (@BEGIN, @IF,
@CASE, @CAS2, @WHILE, @CYCLE, @THRU) and of the corresponding
statements that end them (@BEND) are connected by vertical strokes, without
overwriting the "@" character and other non-blank characters (e.g. from name fields)
in intervening lines. The parts of a procedure that lie outside structure blocks remain
unaffected. COLINDA does not alter these parts either. The drawing of connecting
strokes is limited to the area of the procedure in which the nesting level is entered
in column 70. If there are structure errors (e.g. a missing @BEND), the strokes end
at the horizontal line before the @END at the very latest. The COLINDA assembler
listing enhanced by COLNUMA thus depicts the structure as clearly as a structure
list created by COLLIST.

— A page feed is generated and a header line is output before each procedure.

— The procedure bodies are already clearly delineated by COLINDA with the horizontal
lines after the @ENTR and before the @END.

— The operation code of structure blocks is output as of column 10. This creates a left
margin for the name field without touching the vertical strokes separating the
structure blocks.

The example on the following page shows these vertical strokes.

Note

Input and output can be controlled via parameters or with the link names ASMLST
and EWCLIST.

U5056-J-7125-3-7600 203

COLLIST, COLNAS, COLINDA, COLNUMA

Example
SOURCE STATEMENT 10:24:17 94-03-09
BLD START
* ERROR: STRUCTURE 201 IN @ENTRY BLOCK
* GENERATED BY COLINDA
ONE @ENTR TYP=B
*
DATA @DATA CLASS=S, INIT=GLOBALS
MNOTE 225, BASE MISSING
MNOTE 225, FAILURES FOUND : ALL SKIPPED
FRAME DS OH
@BEGIN E 2-
COND DS OH
@IF LE * 3-
CR R4, R5
THEN = 3-
LOOP DS OH
@CYCLE (R7) * 4-
TRALALA
LH R4, X
OUTIS DS OH
WHEN ZE —* 4-
LTR R4, R4
BREAK * 4-
LOOPEND DS OH
BEND * 4-
ENDCOND DS OH
@BEND * 3-
MVC XY
@BEND
ENDONE @EXIT
RONE EQU R2
* ERROR |STRUCTURE 301 IN @BEGIN BLOCK
*
@END
MNOTE 250, SYNTAX ERROR : @END ON WRONG PLACE : SKIPPED
DONE EQU 1
END
Fig. 10-6: Extract of a COLINDA assembler listing enhanced by COLINDA

204

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.3 Working with the COLLIST, COLNAS and COLINDA utilities

Data flow of structured assembler programs

The flowchart depicted on the opposite page shows the data flow of structured
assembler programs.

The structured source program serves as the input file for the COLLIST, COLNAS, and
COLINDA utilities. The lines can be numbered consecutively in EDT. The output from
COLLIST and COLNAS is referred to as a "list"; the output from COLINDA is an
"indented file" containing the source program.

The numbered source program file as well as the indented source program file serve as
input to ASSEMBH; also assigned to it is the macro library for structured programming.
The numbered source program file is also the input file for the COLLIST utility.

The structure list output by COLLIST and the assembiler listing can be processed
further by COLNUMA.

ASSEMBH places the module in a module library as specified in the MODULE-LIBRARY
option (see section 2.4.2.2). The linkage editor TSOSLNK links the module with the
assembler runtime system and generates an executable program ("load module"). This
process is described in section 5.6, "Assembling and linking a structured assembler
program".

The designations in the flowchart are also used occasionally when describing the
operations below, especially when the various input and output files need to be
differentiated.

U5056-J-7125-3-7600 205

COLLIST, COLNAS, COLINDA, COLNUMA

COLLIST
COLNAS

-
o=

]

numbered
file

Fi0:C)
Uil;

macro
library

l_I

‘ COLLIST ‘

ASSEMBLER

i

‘.

COLNUMA

l

=

Al

assembler
listing

module
library

!

runtime
library

TSOSLNK

uma st linkage editor
colnuma lis
listing load module

COLINDA

indented file

ASSEMBLER

assembler
listing

COLNUMA

{izfliall;

Fig. 10-7: Data flow of structured assembler programs

206

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.3.1

10.3.2

Input for COLLIST, COLNAS and COLINDA
The structured source programs used as input for the COLLIST, COLNAS and
COLINDA utilities can be files of the following kinds:

— SAM files
— ISAM files
— Elements of a PLAM library

Note, however, that the ISAM files must have an 8-byte numeric key. The record length
is variable.

Files and libraries are assigned either via the FILE command or via parameters. There
are thus three possibilities:

1. With the LINK name for SAM and ISAM files according to the pattern:
/SET-FILE-LINK LINK-NAME=CINPUT,FILE-NAME=file

2. If no FILE command was specified, the assignment can be made via the parameter
CINPUT:

[file

]
PAR CINPUT:’l j
library(element)

3. Ifthe input is obtained from an element of a PLAM library, the assignment can be
made via the LINK name SRCLIB and the parameter SRCELEM:

/SET-FILE-LINK LINK-NAME=SRCLIB,FILE-NAME-=library
PAR SRCELEM=element

Output from COLLIST and COLNAS

— COLLIST and COLNAS lists are output to a SAM file that is identified with the suffix
"CLIST" by default. Thus, if "file" is the structured source program file, the output is
written to

file.CLIST

— The output file can be defined by using the FILE command and the LINK name
CLIST as indicated below:

ISET-FILE-LINK LINK-NAME=clist,FILE-NAME=output-file
— The assignment of the output file can likewise be made using parameters:

PAR CLIST=output-file

U5056-J-2125-3-7600

207

COLLIST, COLNAS, COLINDA, COLNUMA

— Output to a PLAM library is achieved via the parameter assignment:
PAR CLIST=library(element)
— The output lists can be printed with the command:

/PRINT-FILE FILE-NAME=output-file, DELETE-FILE=YES,-
LAYOUT-CONTROL=PAR(FORM-NAME=format, CHARACTER-SETS=chars,-
CONTROL-CHARACTERS=EBCDIC)

10.3.3 Output from COLINDA

— The indented source program generated by COLINDA is output by default to a SAM
file that is identified with the suffix COUT. Thus, if "file" is the name of the structured
source program, the output file will be:

file.COUT

— The output file can also be assigned by means of the FILE command and the LINK
name:

/SET-FILE-LINK LINK-NAME=COUTPUT,FILE-NAME=output-file

— The output file can likewise be assigned via parameters:

PAR COUTPUT=output-file

— If the output is to be placed in an element of a PLAM library, the assignment is
made via a parameter:

PAR COUTPUT=library(element)

— The output file serves as input for the subsequent assembler run. This produces an
assembler listing in indented form. It is generally not advisable to print out the
created file, since the information obtained from it can be more clearly represented
by COLLIST or after processing it with COLNUMA. The created file can, however, be
used as fresh input for COLINDA (possibly after corrections).

208 U5056-J-Z125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

Summary
Based on the explanations in the preceding sections, the commands that are available

for use with the COLLIST, COLNAS, and COLINDA utilities can be summarized as
follows:

Input and output files are BS2000 files

/LOGON ...

ISET-FILE-LINK LINK-NAME=CINPUT,FILE-NAME=file

[/SET-FILE-LINK LINK-NAME=COUTPUT,FILE-NAME=indented-file] (1)
[/SET-FILE-LINK LINK-NAME=CLIST,FILE-NAME-=list])
[/ASSIGN-SYSDTA TO-FILE=parameter] ®)

ASSEMBH.COLLIS
/ISTART-PROG {ASSEMBH.COLNA
[ASSEMBH.COLINDA

Parameter input

[/ASSIGN-SYSDTA=*PRIMARY] @)

/PRINT-FILE FILE-NAME=output-file,DELETE-FILE=YES,-
LAYOUT-CONTROL=PAR(FORM-NAME=format, CHARACTER-SETS=chars,-
CONTROL-CHARACTERS=EBCDIC)

/LOGOFF

(1) for COLINDA

(2) for COLLIST and COLNAS

(3) optional if parameters are entered via SYSDTA (see section 10.3.4 for details)

U5056-J-7125-3-7600 209

COLLIST, COLNAS, COLINDA, COLNUMA

Input and output files are elements of a PLAM library

/LOGON ...
[/SET-FILE-LINK LINK-NAME=SRCLIB,FILE-NAME-=library]
[/ASSIGN-SYSDTA TO-FILE=parameter] ?3)

[ASSEMBH.COLLIST|
ISTART-PROG iASSEMBH.COLNA
ASSEMBH.COLIND

[PAR SRCELEM=input-element]

[PAR CINPUT=input-library(element)]

[PAR CLIST=output-library(element)] 1)
[PAR COUTPUT=output-library(element)] 2)

Additional parameter input

[/ASSIGN-SYSDTA=*PRIMARY] @)

/PRINT-FILE FILE-NAME=output-file,DELETE-FILE=YES,- %)

LAYOUT-CONTROL=PAR(FORM-NAME=format, CHARACTER-SETS=chars,-

CONTROL-CHARACTERS=EBCDIC)

/LOGOFF

(1) for COLLIST and COLNAS

(2) for COLINDA

(3) optional if parameters are entered via SYSDTA (see section 10.3.4 for details)

(4) If the output is placed in a library, the element must be made available in a file
before printing

210 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.3.4 Control of COLLIST, COLNAS and COLINDA

The COLLIST, COLNAS, and COLINDA utilities provide the user with the following
control options, all of which can be specified via parameters:

assignment of files, PLAM or LMS elements for input (CINPUT).
assignment of PLAM or LMS elements for input (SRCELEM).
assignment of files or PLAM elements for output (COUTPUT).
assignment of files or PLAM elements for output of listings (CLIST).

flexible internal memory management to suit the maximum procedure size
(PROCSIZE).

replacement of the default syntax characters
@ : *

by others (DELIM).

definition of the indentation amount (INDAMT).

For COLLIST and COLNAS only

The output of target language statements can be fully or partially suppressed
(STATEMENT).

The output of comments lines is suppressed. Only the target language statements in
structure blocks are output (COMMENT).

If target language statements as well as comments lines are suppressed, only the
structure statements are output in their order and nesting.

The output of structure blocks can be suppressed as of a specified nesting level
(LEVLIM).

Line length; narrow and wide pages can be generated,
e.g. DIN formats (LSTCOL).

The maximum length of input records can be defined (RECLEN).
Variable line identifier (LINEID).

Page feed control (LINELIM).

Control over output of page header (HEADLINE).

U5056-J-2125-3-7600 211

COLLIST, COLNAS, COLINDA, COLNUMA

10.3.5

For COLLIST only
— Request for structure and/or procedure lists (LIST).

— Repeated output of substructures in the procedure list (FULPCLST).

For COLNAS only

— The output of structure blocks can be suppressed up to a specified nesting level
(LEVBEG).

For COLINDA only
— Consecutive numbering of output lines (RENUM).

Input and output from and to files can also be controlled by using link names (see
sections 10.3.1 and 10.3.3).

Parameters

The utilities are controlled via parameters; however, it is only necessary to specify them
in exceptional cases. Normally, the default values for the parameters apply.

Parameters may be entered either in interactive mode or in batch mode. In interactive
mode, the user controls the input of parameters by responding to the terminal prompt
as follows:

PARAMS? (STANDARD/SYSDTA/DIALOG)

Meaning of each response:

STA[NDARD] No further parameter input. Default values are assumed for all
parameters.
[SYS[DTA]] In interactive mode parameter statements in the form

PAR paramq=value q,param ,=value ;...

are read in from SYSDTA until the END statement. Instead of
responding with SYS[DTA], parameter statements may also be
entered directly.

If default values are to be used for all parameters, it is sufficient to
enter END.

The SYS[DTA] response is intended for cases when the parameters
are in a file, and were assigned with /ASSIGN-SYSDTA=parameter
before the program call.

212

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

DIA[LOG] Individual parameters are interactively requested via the terminal
(with the WRTRD macro) with the query:

param; ? (brief description)
Response:

value

Besides the desired values, STANDARD (default values for the
gueried parameter) and END (default value for the queried parameter
and for all that follow) may also be specified as responses to
"param?". If END is not entered as a response, all parameters will be
gueried.

In batch mode (ENTER tasks), parameter statements in the form
PAR paramq=value q,param o=value ,,.....

terminated by

END

must be supplied via SYSDTA, i.e. usually immediately after the /[START-PROG
command. If default values are to be used, only an END statement must be specified.

U5056-J-7125-3-7600 213

COLLIST, COLNAS, COLINDA, COLNUMA

Description of parameters

The following table shows which parameters are applicable to the individual utilities (or
functions). The meanings of the parameters are explained thereafter.

Parameters alue range CPLINDA dOLLIST JOLNAS
STR PR(
[file]
CINPUT:l j X X X X
library(element)
[file]
CLIST=1 J X X X
library(element)
[YES)
COMMEN11= j X X
NO
[file 1
COUTPUTJ[j X
library(element)
["abcd’]
DELIM=1 j X X X X
@)
[YES)
FULPCLST:’l j X
NO
[PROG
HEADLINE=1 J X X
PAG
INDAMT=n 1<n<8 X(n=3) X(n=4_)X | X(n=4)
[
LEVBEG:Lj 1<n<20 X
1
[n]
LEVLIM=LJ 1<n<20 X X
20

214

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

[YES]
STATMENTTNOJ
co

Parameters alue range DLINDA JOLLIST JOLNAS
STR PR(
[n
LINELIM= Jl 0<n<144 X X X
[YES)
LINEID= {NO X X X
KEY]
[STR]
LIST= lPR X X
ALL
[n
LSTCOL i 52<n<240 X X X
100
]
PROCSIZE j 10<n<4000 X X X X
250
[n
RECLEN 80<n<255 X X X
|80
[YES
RENUMT J X
NO
SRCELEM=element X X X X
X X

Alternative values for parameters are enclosed within braces. Default values are

underlined.

U5056-J-2125-3-7600

215

COLLIST, COLNAS, COLINDA, COLNUMA

Meaning of each parameter

CINPUT The CINPUT parameter is used to assign files or elements of a
PLAM or LMS library after calling a utility.

CLIST File or PLAM library element in which output from COLLIST and
COLNAS is to be placed.

COMMENT When COMMENT=YES, remarks are included in the output.

COUTPUT File or PLAM library element in which output from COLINDA is to be
placed.

DELIM 4 printing characters to replace the delimiters in the order @ : *,

where the characters have the following meanings:
@ Prefix for structure words.

Form feed control for COLLIST in combination with the comment
character.

* Comment identifier.
, Separator for parameters.

The characters "@", "*", and "," may only be changed in dummy
code, not in the structured assembler program.

Even if all 4 delimiters are not being replaced, all 4 characters must
be specified.

The 4 characters must be enclosed in single quotes, unless the
value for DELIM is queried interactively.

FULPCLST Controls the procedure list output of COLLIST:
=YES Full-size procedure list (default).
=NO In the case of repeated calls to a procedure contained in the

program, the output of the procedure substructure is suppressed
(identified by **).

HEADLINE Controls the output of the page header.

=PROC The page header appears on the first page and on every page on
which a new procedure begins.

216 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

=PAGE

INDAMT
LEVBEG

LEVLIM

LINEID
=YES

=KEY

The header appears on every page, regardless of how the page feed
was triggered.

A page feed is effected when

— anew procedure or a control section external to procedures
begins,

— a procedure or a control section has more lines than are
predefined in the LINELIM parameter,

— the user forces a page feed with *:
Numeric value between 1 and 8 for the indentation amount.

Numeric value between 1 and 20, specifying the first nesting level as
of which printing is to begin. The LEVBEG parameter only applies to
COLNAS.

Numeric value between 1 and 20 (default value 20)
which defines the last nesting level to be printed.

Columns 73-80 of the input constitute the line identifier. COLLIST
enters this identifier at the right margin of the list. No line identifier is
output by COLNAS.

The value of the RECLEN parameter must be 80; otherwise, a
warning will be issued, and LINEID will be set to NO by COLLIST
and COLNAS.

Columns 73-80 of the input are not interpreted as a line identifier,
but as a part of the program text. The COLLIST and COLNAS
utilities process the entire line.

The vertical line at the right edge in the structure list is pushed to
the extreme right by COLLIST, so that more space is available for
text.

The key of the relevant input record is treated as the line identifier.
In the case of ISAM files, this is the ISAM key (only keypos=5 and
keylen=8 are allowed). In the case of SAM files, the key consists of
the first 8 characters of the record (can be generated in EDT with
"@WRITE'input’KEY"). The key is checked for numeric contents. If it
is not numeric, an error message is issued.

COLLIST and COLNAS process the entire contents of the line (after
the key). COLLIST prints the key in the structure list next to the
vertical stroke at the right margin.

U5056-J-2125-3-7600

217

COLLIST, COLNAS, COLINDA, COLNUMA

LINELIM LINELIM=0 is the lower limit.
LINELIM=64 s the default value.
LINELIM=144 is the upper limit for the value of nn.

Defines the number of lines after which a new page is to begin in
the structure and procedure list (output of COLLIST) and in the
structogram (output of COLNAS), provided a page feed was not
forced earlier by the start or end of a procedure or, for COLLIST, by
the entry of "*:" in columns 1-2.

The automatic page feed after nn lines is suppressed if LINELIM is
assigned the value 0.

LIST Controls the list function of COLLIST:

=STR The structure list is created (default).

=PRC The procedure list is created (if there are no structure errors).

=ALL Both lists are created (if structure errors exist: only the structure list).
LSTCOL Numeric value between 52 and 240 (default value 100).

Last print position in the line.

A value above 132 should only be specified if an appropriate printer
is available.

PROCSIZE Numeric value between 10 and 4000 (default value 250). The
parameter determines the size of the memory area for internal
listings.

PROCSIZE is rounded up in steps of 200, and one page (4 KB) of
virtual memory is requested for each multiple of 200.

The determining factor for the size of the memory area required for
the internal listings is the number of structure statements in a
procedure. The value X of the PROCSIZE parameter can be roughly
estimated according to the formula:

X =3*S
where S is the number of structure statements.

With structograms, the value of PROCSIZE is therefore
approximately equal to the number of source program lines in the
largest procedure (@ENTR to @END).

218 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

The procedure with the highest value for X determines the value of
the PROCSIZE parameter. The default value of 250 should therefore
suffice in most cases, especially since memory is always requested
in units of 4 Kbytes. If there is not enough memory, COLLIST issues
a message recommending a new value for PROCSIZE.

RECLEN RECLEN=80 is the lower limit and default value.
RECLEN=255 is the upper limit.

The RECLEN parameter can be used to control the maximum
permissible length for input records, so that records with more than
80 characters can be used when working with dummy code.

If the value of RECLEN is greater than 80, the contents of columns
73-80 will not be interpreted as the line identifier but as part of the
program text.

In this case the LINEID parameter may only have the values NO and

KEY.
RENUM Numbering of COLINDA output in columns 73-80.
=YES Sequential numbering of lines in steps of 10.
=NO The contents of columns 73-80 from the input line are carried over

to the output line.

SRCELEM This parameter is used to define the library element for the input
after the library has been assigned with the link name SCRLIB.

STATMENT Transfer of target language statements to the output.
With STATMENT=CON, only the conditions will be output, i.e. the
target language texts between @IF and @THEN, @WHILE and
@DO, @THRU and @DO, @WHEN and @BREAK, as well as
@CASE2 and the first @OF.

U5056-J-7125-3-7600 219

COLLIST, COLNAS, COLINDA, COLNUMA

Examples

Interactive mode

Working with default values (for all parameters):

/ SET-FILE-LINK LINK-NAME=CINPUT FILE-NAME=TEST-PROGRAMM

/ START-PROG ASSEMBH.COLLIST

% BLS0500 PROGRAM ’'COLLIST’, VERSION '41B11’ OF ’'1991-05-16" LOADED
% BLS0551 COPYRIGHT (C) SNI 1991. ALL RIGHTS RESERVED

COLLIST VERSION 41B11 - 01.12.91 STARTED
PARAMS?(STANDARD/SYSDTA/DIALOG)

*STA

COLLIST COMPLETED

Input of current parameters from a file read via SYSDTA:

/ START-PROG $EDT

% BLS0500 PROGRAM 'EDT’, VERSION '16.4A’ OF '1992-06-24' LOADED

% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1992. ALL
RIGHTS RESERVED

@EDT

1.
PAR INDAMT=6
2.
PAR RENUM=NO
3.
END
4,
@WTEST.PARAMETER'
4.

@H

EDT NORMAL END

/ SET-FILE-LINK LINK-NAME=CINPUT FILE-NAME=TEST-PROGRAMM
/ ASSIGN-SYDTA TO-FILE=TEST.PARAMETER

/ START-PROG ASSEMBH.COLINDA

% BLS0500 PROGRAM 'COLINDA’, VERSION '22F11" OF °'1991-02-11' LOADED
% BLS0551 COPYRIGHT (C) SNI 1991. ALL RIGHTS RESERVED
COLINDA VERSION 2.2F11 - 01.12.91 STARTED
PARAMS?(STANDARD/SYSDTA/DIALOG)

COLINDA COMPLETED

/ ASSIGN-SYSDTA TO-FILE=*PRIMARY

U5056-J-7125-3-7600 221

COLLIST, COLNAS, COLINDA, COLNUMA

Input of current parameters in interactive mode:

/ START-PROG ASSEMBH.COLLIST

% BLS0500 PROGRAM 'COLLIST’, VERSION '41B11’ OF ’'1991-05-16" LOADED
% BLS0551 COPYRIGHT (C) SNI 1991. ALL RIGHTS RESERVED
COLLIST VERSION 41B11 - 01.12.91 STARTED
PARAMS?(STANDARD/SYSDTA/DIALOG)

*DIA

CINPUT?(NAME OF COLUMBUS-INPUT)

TEST.PROGRAMM

COMMENT?(YES/NO)

YES

STATMENT?(YES/NO/CON)

CON

PROCSIZE?(MAX SIZE OF PROCEDURES IN NO OF STMTS)
STA

LSTCOL?(LAST COLUMN IN LISTING)

60

LINELIM?(LIMIT OF LINES PER PAGE)
END
COLLIST COMPLETED

Input of current parameters via PAR statements:

/ SET-FILE-LINK LINK-NAME=CINPUT,FILE-NAME=TEST-PROGRAMM

/ START-PROG ASSEMBH.COLNAS

% BLS0500 PROGRAM 'COLNAS’, VERSION ’41B11" OF '1991-05-17" LOADED
% BLS0551 COPYRIGHT (C) SNI 1991. ALL RIGHTS RESERVED

COLNAS VERSION 41B11 - 01.12.91 STARTED
PARAMS?(STANDARD/SYSDTA/DIALOG)

*PAR LSTCOL=80,INDAMT=6

*PAR STATMENT=CON

*END

COLNAS COMPLETED

222

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

Batch mode
The following options are available to the user in batch mode (ENTER task):

— Working with default values:
This is done by entering the "END" statement immediately after the utility is loaded
and started with the EXEC command.

— Assignment of current parameter values:
To do this, the user must supply the current values via SYSDTA, which normally
means immediately after the EXEC command. These values are specified in the form
of PAR statements, and must be terminated with the statement "END" (the format is
described earlier in this section).

The following example shows the setup of an ENTER file where current values are
assigned to specific parameters:

/LOGON ...

/SET-FILE-LINK LINK-NAME=CINPUT,FILE-NAME=ERB.CON
/ISTART-PROG ASSEMBH.COLLIST

PAR LSTCOL=80,INDAMT=6

PAR STATMENT=CON

END

/RELEASE CINPUT

/LOGOFF

U5056-J-7125-3-7600 223

COLLIST, COLNAS, COLINDA, COLNUMA

10.4 Working with the COLNUMA utility
The function to be performed by COLNUMA is determined by the input files. COLNUMA
is started with the command:
ISTART-PROG ASSEMBH.COLNUMA

The files and PLAM library elements for input and output are assigned via link names or
parameters.

10.4.1 Extending the structure list

Input

A structure list created by COLLIST and an assembler listing generated by ASSEMBH
must be provided as the input.

The structure list can be assigned in the following ways:
Link name:
SET-FILE-LINK LINK-NAME=CLIST,FILE-NAME=file
Parameters:
[file
PAR CLIST=
Llibrary(element)]
The following methods can be used to assign the assembler listing:
Link name:
SET-FILE-LINK LINK-NAME=ASMLST,FILE-NAME=file
Parameters:

[file]
PAR ASM LSTT J
library(element)

224 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

Notes

— The input assembler listing must be one that was created with the option:
LISTING=PAR(LAYOUT=PAR(FORMAT=F-ASSEMB-COMPATIBLE))

If the input assembiler listing is entered from a library, this library element must be of
type P.

— The structured assembler source program that is the source of the two inputs to
COLNUMA (i.e. the structure list and assembler listing) must be numbered in
columns 73-80 by means of the program $EDT before being processed by COLLIST
or the assembler. These numbers are carried over into the structure list as well as
the assembler listing and establish the reference between the two listings.

— The COLLIST structure list must be a list that was created with the parameter
LSTCOL=100 (default value).

Output

The extended structure list can be output to a SAM file or an element of a PLAM library
by means of the following assignment:

Link name:
SET-FILE-LINK LINK-NAME=EWCLIST,FILE-NAME=output-file
Parameters:
[file 1

PAR EWCLISTT j
library(element)

The input of parameters is terminated with END.

U5056-J-7125-3-7600 225

COLLIST, COLNAS, COLINDA, COLNUMA

Summary

The following commands can be used to create the input files for COLNUMA and to
run the COLNUMA utility:

/LOGON

ISTART-PROG $EDT

@READfile’

@SEQ

@W’'numbered-file’

@H

ISET-FILE-LINK LINK-NAME=CINPUT,FILE-NAME=numbered-file
/SET-FILE-LINK LINK-NAME=CLIST,FILE-NAME=structure-list
ISTART-PROG ASSEMBH.COLLIST

STA

/DELETE-SYSTEM-FILE OMF

/ISTART-PROG $ASSEMBH

/ICOMPILE SOURCE=numbered-file,LISTING=PAR(LAYOUT=PAR(FORMAT=F-ASSEMB-COMPATIBLE),

i PAR(OUTPUT=assembler-listing)),-
1 MACRO-LIBRARY=macro-library
/[END

/SET-FILE-LINK LINK-NAME=CLIST,FILE-NAME=structure-list
/SET-FILE-LINK LINK-NAME=ASMLST,FILE-NAME=assembler-listing
/SET-FILE-LINK LINK-NAME=EWCLIST,FILE-NAME=colnuma-list
/START-PROG ASSEMBH.COLNUMA

[PAR CLIST=structure-list]

[PAR ASMLST=assembler-listing]

[PAR EWCLIST=colnuma-list]

[END]

/DELETE-FILE numbered-file

/DELETE-FILE assembler-listing

/DELETE-FILE structure-list

/PRINT-FILE FILE-NAME=output-file, DELETE-FILE=YES,-
LAYOUT-CONTROL=PAR(FORM-NAME=format, CHARACTER-SETS=chars,-
CONTROL-CHARACTERS=EBCDIC)

226 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.4.2 Enhancing the assembler listing of a program edited by COLINDA

Input

The structured assembler source program must first be edited by COLNUMA (see
sections 10.3.1 and 10.3.3), and the edited program must then be assembled. The
assembler listing that is generated by ASSEMBH and output to SYSLST serves as the
input to COLNUMA.

The input file can be assigned via a link name or parameters:

Link name:
SET-FILE-LINK LINK-NAME=ASMLST,FILE-NAME=file

Parameters:
[file

PAR ASM LSTT j
library(element)

—

Notes

— The input assembler listing must have been created with the following option:
LISTING=PAR(LAYOUT=PAR(FORMAT=F-ASSEMB-COMPATIBLE))

If the input assembiler listing is input from a library, then this must be a type P
library element.

Output

The assembler listing is enhanced with the addition of vertical strokes and page
headers. The assignment of a file or a PLAM library element for output can be made
either via a link name or via parameters:

Link name:
/SET-FILE-LINK LINK-NAME=EWCLIST,FILE-NAME=output-file
Parameters:

file
PAR EWCLIST
Llibrary(element) J

The input of paramters is terminated with END.

U5056-J-7125-3-7600 227

COLLIST, COLNAS, COLINDA, COLNUMA

Summary

The following commands can be used to prepare the input and to run COLNUMA:

/LOGON

ISET-FILE-LINK LINK-NAME=CINPUT,FILE-NAME=file

/SET-FILE-LINK LINK-NAME=COUTPUT,FILE-NAME=indented-file

ISTART-PROG ASSEMBH.COLINDA

*PAR param=value,...

*END

/DELETE-SYS-FILE OMF

/START-PROG $ASSEMBH

/ICOMPILE SOURCE-=indented-file,LISTING=PAR(LAYOUT=PAR(FORMAT=F-ASSEMB-COMPATIBLE),-

I PAR(OUTPUT=assembler-listing)),-
1 MACRO-LIBRARY=macro-library
/[END

[/[SET-FILE-LINK LINK-NAME=ASMLST,FILE-NAME=assembler-listing]
[/SET-FILE-LINK LINK-NAME=EWCLIST,FILE-NAME=colnuma-list]
/START-PROG ASSEMBH.COLNUMA

[PAR ASMLST=assembler-listing]

[PAR EWCLIST=indented-file]

[END]

/DELETE-FILE indented-file

/DELETE-FILE assembler-listing

/PRINT-FILE FILE-NAME=colnuma-list, DELETE-FILE=YES,-
LAYOUT-CONTROL=PAR(FORM-NAME=format, CHARACTER-SETS=chars)

228

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.4.3 Parameters

The following table shows which parameters are applicable to COLNUMA. The
meanings of the parameters are explained thereafter.

Parameters

[file
ASMLST:[
library(element)
[file

EWCLSTT
library(element)

[file
cusni

—_— | —

—

library(element) J

ASMLST File or element of a PLAM library which contains the assembler
listing.

EWCLST File or element of a PLAM library which is to take the output from
COLNUMA.

CLIST File or element of a PLAM library which contains the structure list

created by COLLIST.

U5056-J-7125-3-7600 229

COLLIST, COLNAS, COLINDA, COLNUMA

10.5 Messages from the utilities
There are three classes of error messages within the scope of structured programming.
These are:
— operator error messages and system messages
— error messages relating to structured programming syntax violations, and

— error messages that may appear during execution of a structured program.

10.5.1 Operator error messages and system messages

Operator error messages and system messages are output to SYSOUT.

COLLIST, COLNAS and COLINDA

The table below lists the error numbers for the individual components, to the extent that
they are relevant for structured programming.

The following codes are used:

PR Parameter handling

10 Primary input and output
RQ Memory request

IL Intermediate language
PL Procedure list

SH String handling

Message Meaning Effect

nnn iiii cn

XXX

001 - RQ The memory area Termination

defined by the
PROCSIZE parameter
is not available.

The program is
terminated.

230 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

Message Meaning Effect
nnn iiii cn
XXX
003 - IL The memory area Termination
estimated by the
PROCSIZE parameter
is not sufficient
to process a proce-
dure. The program
is terminated.
005 - PR System error affec- Termination
ting RDATA macro.
006 - PR System error affec-
ting WRTRD macro.
007 - PR System error affec-
ting WROUT macro.
011 - PR Error in parameter The¢ program assumes

parameter statement

st

htement. defad

It values for
the parameters.

014 - PR Error in parameter Pafameter LINEID
parameter statement statement is set to NO by the
RECLEN > 80 and COLLIST and COLNAS
LINEID = YES utility routines.
001 u) IO Error on opening Tefmination
y) the library
name of library
003 u) IO Error on closing
y) the library
name of library
004 u) IO Error on reading
y) a record from a

name of element and
library

ibrary element

U5056-J-2125-3-7600

231

COLLIST, COLNAS, COLINDA, COLNUMA

Message Meaning Effect
nnn iiii cn
XXX
005 u) 10 Error on writing
y) a record to a
name of element ibrary element
007 - 10 System error affec- Termination
ting WROUT macro.
008 - 10 Invalid key in
the input record.
009 x1) IO DMS error.
010 x1) 10 DMS error. Error
in FILE macro.
014 - 10 Invalid file name
generated for the
output file.
023 u) 10 Error on opening Tlermination
y) a library element.
name of library and
element
024 wu) 10 Error on closing
y) a library element.
name of element
015 - PR Wrong format for fermination

parameter line

=

ile or library
name.

016 - PR
parameter line

Wrong format for
element name.

017 - PR

are specified.

CINPUT and SRCELEM

mg

The most recently

de entry applies.

232

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

Message Meaning Effect

nnn iiii cn

XXX

016 - 10 Input record lon- The]|record is

Input record br that preset in truncated.

RECLEN parameter.

020 - PL Too many procedure Reduce size of
names (more than primary program.
300).

021 - PL Too many @ENTR Reduce size of
and @PASS state- primary program.
ments.

022 - PL Recursive proce-
dure call and para-
meter FULPCLST=YES
(A procedure list
is generated with
FULPCLST=NO).

023 - PL At least one @PASS Check the primary
statement is out- prqgram, since the
side a procedure. prpcedure list(s)

may contain errors.

024 - PL At least 2 @ENTR Check the primary
statements with pfogram, since the
the same procedure frocedure list(s)
name have occurred. may contain errors.
Identifier in the
procedure list:
<proc.-name> LN=
*nn where nn =
line number of 1st
@ENTR statement.

U5056-J-2125-3-7600

233

COLLIST, COLNAS, COLINDA, COLNUMA

Message Meaning Effect
nnn iiii cn
XXX
025 - PL No procedure on
"highest" level
present (recursive
call). A procedure
list that begins
with the first
@ENTR statement
is generated.
002 - SH Error in Ipform customer
string handling. seryice department.
004 - SH Insufficient Infofm customer
string memory. service department.
Explanation

ERROR: nnn [iiil COMPONENT: cn
[PROGRAM IS TERMINATED]

[XXXXXXXXXKX. ..o X]
nnn Error number
iiii Additional error designation of the system
cn Abbreviated component name
XXX Supplementary text line

x1) DMS code (see "BS2000 System Messages, Reference Manual")

u) PLAM/ILAM return code
y) Library identifier
P

PLAM
M MLU, LMS (Version 1.0)
C COBLUR
F FMS
U Undefined

Note

Program termination messages which also indicate whether structure errors have
occurred in the source are output to SYSOUT like the operator error messages and

system messages.

234

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

COLNUMA
Message Meaning
NO CLIST No structure list was assigned, and

PROGRAM IS TERMINATED

the program was not edited with COLINDA.

NO ASMLST
PROGRAM IS TERMINATED

No assembler listing was assigned.

WRONG NUMBERS IN COL. 73-80
INPUT FILE OR COLLIST PARAM
LSTCOL NOT = 100 (STANDARD)

The input file is incorrectly numbered or
the structure list is too wide or too
narrow.

END OF ASSEMBLER LISTING

The structure list and assembler listing
are not of the same program.

10.5.2 Syntax error messages

Handling of messages for the individual utility routines

— COLLIST

When COLLIST is used, messages concerning structure errors are inserted into the

list at the places where they occur.

— COLNAS

In the case of structure errors within a procedure, COLNAS outputs no structure
diagram for this procedure, but merely an error list. Warnings are output only if
there is also a structure error in the current procedure.

— COLINDA

The program COLINDA outputs structure errors and warnings in the form of
comment lines in the generated indented structured program at the positions where

they occur.

U5056-J-2125-3-7600

235

COLLIST, COLNAS, COLINDA, COLNUMA

Format of the syntax error messages

[W
1EJ] aabb zz..zz

W Warning
E Error
aa Max. two-digit number (leading zero suppressed), representing a

structural status in which only certain keywords are permitted (see
section 10.5.3 for meanings).

bb Two-digit number representing an invalid or missing keyword:
01 A terminating @BEND or @END is missing in the status
defined by aa (hierarchy level not properly closed).
09-17 Aninvalid keyword has occurred in the status defined by aa.

zz....22 Indication of procedure error or structure block error.

Warnings

Waabb Status of the hierarchy level Expected keywords on the
same hierarchy level

Example

W614 Status after @CYCL @WHEN

@CYCL is followed by a @BEND
without an intervening
@WHEN-@BREAK (termination
conditions missing):

count loop or continuous loop

236 U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.5.3 Meaning of aabb in syntax error messages
aa.. Status of hierarchy level Permiskible
keywords
1. Initial status or status @BEGIN, @IF, @WHILE,
between @BEND and start of HDCASE, @CYCLE, @EXIT
next structure block @PRASS
2. Status after @ENTR @END
3. Status after @BEGIN @BEND, @WHEN
4.. Status after @IF @THEN
5.. Status after @WHILE @po
6.. Status after @CYCLE @WHEN
7. Status after @CASE @OF
8.. Status after @THRU @DO
9.. Status after @ON @DO
10.. Status after @THEN @|ELSE, @BEND, @WHEN
11.. Status after @ELSE @BEND, @WHEN
12.. Status after @DO @BEND, @WHEN
13.. Status after @WHEN @BREAK
14.. Status after @BREAK @BEND, @WHEN
15.. Status after @OF @IOF, @OFREST, @BEND
@WHEN
16.. Status after @OFREST @BEND, @WHEN

U5056-J-2125-3-7600

237

COLLIST, COLNAS, COLINDA, COLNUMA

..bb Keyword missing or invalid

.01 Terminating @BEND or @END missing

Invalid keywords (09-17)

.09 @THEN
.10 @ELSE
.11 @OF

.12 @OFREST

.13 @END

.14 @BEND

.15 @WHEN

.16 @BREAK

.17 @DO

238

U5056-J-2125-3-7600

COLLIST, COLNAS, COLINDA, COLNUMA

10.6 Support for monitoring job variables

If a utility is called with
/ISTART-PROG ASSEMBH.COL... ,MONJV=jvname

where jvname is the name of a job variable defined by the user, program execution can
be monitored, since the utilities place a return code in bytes 4-7 of the job variable.

The user can thus use job variables to control interactive procedures or ENTER tasks.
The following table shows the relationship between error weight and return code in the
job variable. Both operator errors and errors in the presource (e.g. structure errors) are
evaluated.

Job variable values:

Error class Tlermination Retyrn code in
the job variable

No error Normal 000
Warning Normal 1003
Soft error Normal 27o4

Serious error mmediate 2045

U5056-J-2125-3-7600 239

11 Appendix

11.1 ASSEMBH messages

The messages are arranged as follows:

Message number Flag Weight Line 1
Message number Text English Line 2
Message number Text German Line 3

ASS0110 Al10 SIGNIFICANT ERROR
ASS0110 RELOCATABLE TERM IN PRODUCT OR DIVISION
ASS0110 PRODUKT ODER QUOTIENT ENTHAELT RELATIVEN ELEMENTARAUSDRUCK

ASS0111 ...
ASSO0111 ...
ASS0111 ...

ASS0112 ...

U5056-J-2125-3-7600 241

ASSEMBH messages

ASS0110 A10 - SIGNIFICANT ERROR

ASS0110 RELOCATABLE TERM NOT ALLOWED IN MULTIPLICATION OR DIVISION

ASS0110 RELATIVER AUSDRUCK IN MULTIPLIKATION ODER DIVISION UNZULAESSIG
Meaning
The argument used in multiplication/division is a relocatable value.

ASS0111 All - SIGNIFICANT ERROR

ASS0111 'EQU’ EXPRESSION CANNOT BE EVALUATED

ASS0111 'EQU’-AUSDRUCK NICHT BERECHENBAR

ASS0112 Al2 - SIGNIFICANT ERROR

ASS0112 'EQU’ INSTRUCTION WITHIN XDSEC ILLEGAL

ASS0112 'EQU-ANWEISUNG INNERHALB 'XDSEC' UNZULAESSIG

ASS0113 Al13 - SIGNIFICANT ERROR

ASS0113 NEGATIVE RELOCATABLE ADDRESS

ASS0113 RELATIVE ADRESSE NEGATIV

ASS0114 Al4 - SIGNIFICANT ERROR

ASS0114 ADDRESS OF A COMPLEX RELOCATABLE EXPRESSION CANNOT BE FOUND

ASS0114 ADRESSE EINES ZUSAMMENGESETZTEN RELATIVIERBAREN AUSDRUCKS NICHT AUFFINDBAR

ASS0115 A15 SIGNIFICANT ERROR

ASS0115 UNRESOLVABLE EXPRESSION

ASS0115 AUSDRUCK UNAUFLOESBAR

ASS0116 Al16 - SIGNIFICANT ERROR

ASS0116 EXPRESSION CANNOT BE EVALUATED

ASS0116 AUSDRUCK NICHT BERECHENBAR

ASS0117 Al17 - SIGNIFICANT ERROR

ASS0117 EXPRESSION IS NOT RELOCATABLE

ASS0117 AUSDRUCK NICHT RELATIV

ASS0120 A20 - SIGNIFICANT ERROR

ASS0120 VALUE OF EXPRESSION GREATER THAN 2**31 - 1

ASS0120 WERT DES AUSDRUCKS GROESSER ALS 2**31 - 1

ASS0121 A21 - SIGNIFICANT ERROR

ASS0121 ILLEGAL NEGATIVE ADDRESS

ASS0121 NEGATIVE ADRESSE IST UNZULAESSIG

ASS0210 B10 - SIGNIFICANT ERROR

ASS0210 ILLEGAL OPERAND IN ’ICTL’ OR ’ISEQ’ INSTRUCTION

ASS0210 OPERAND IN 'ICTL- ODER ’ISEQ-ANWEISUNG UNZULAESSIG

242 U5056-J-Z125-3-7600

ASSEMBH messages

ASS0211 B11l - SIGNIFICANT ERROR
ASS0211 ICTL” MUST BE THE FIRST INSTRUCTION STATEMENT IN PROGRAM
ASS0211 ICTL” MUSS ERSTE ANWEISUNG IM PROGRAMM SEIN

ASS0212 B12 - SIGNIFICANT ERROR
ASS0212 PRIMARY COLUMN IN ’'ICTL’ OPERAND MISSING
ASS0212 ANFANGSSPALTE IN ’ICTL-OPERAND FEHLT

ASS0213 B13 - SIGNIFICANT ERROR
ASS0213 PRIMARY COLUMN IN 'ICTL’ OPERAND IS NO DIRECT VALUE
ASS0213 ANFANGSSPALTE IN 'ICTL-OPERAND KEIN DIREKTWERT

ASS0214 B14 - SIGNIFICANT ERROR
ASS0214 PRIMARY COLUMN IN 'ICTL’ OPERAND IS WRONG
ASS0214 ANFANGSSPALTE IN ’ICTL-OPERAND FEHLERHAFT

ASS0215 B15 - SIGNIFICANT ERROR
ASS0215 LAST COLUMN IN ’ICTL" OPERAND IS NO DIRECT VALUE
ASS0215 END-SPALTE IN ’"ICTL-OPERAND KEIN DIREKTWERT

ASS0216 B16 - SIGNIFICANT ERROR
ASS0216 LAST COLUMN IN ’ICTL’ OPERAND IS WRONG
ASS0216 END-SPALTE IN ’'ICTL-OPERAND FEHLERHAFT

ASS0217 B17 - SIGNIFICANT ERROR
ASS0217 CONTINUE COLUMN IN ’"ICTL" OPERAND IS WRONG
ASS0217 FORTSETZUNGSSPALTE IN 'ICTL'-OPERAND FEHLERHAFT

ASS0218 B18 - SIGNIFICANT ERROR
ASS0218 MAINTENANCE OPTION 'MONSYS-RECORDS' NOT GIVEN
ASS0218 MAINTENANCE-OPTION 'MONSYS-RECORDS’ NICHT GESETZT

ASS0220 B20 - WARNING
ASS0220 ILLEGAL 'START' INSTRUCTION
ASS0220 'START-ANWEISUNG UNZULAESSIG

ASS0221 B21 SERIOUS ERROR
ASS0221 SECTION (&00) DOES NOT EXIST
ASS0221 SECTION (&00) NICHT VORHANDEN

ASS0230 B30 - SIGNIFICANT ERROR
ASS0230 ILLEGAL 'START' VALUE
ASS0230 'START-WERT UNGUELTIG

ASS0231 B31 - SIGNIFICANT ERROR
ASS0231 ILLEGAL ATTRIBUTE (&00) IN 'CSECT' OR 'START' INSTRUCTION
ASS0231 MERKMAL (&00) IN 'CSECT'- ODER 'START-ANWEISUNG UNZULAESSIG

U5056-J-7125-3-7600 243

ASSEMBH messages

ASS0233
ASS0233
ASS0233

ASS0234
ASS0234
ASS0234

ASS0240
ASS0240
ASS0240

ASS0241
ASS0241
ASS0241

ASS0242
ASS0242
ASS0242

ASS0243
ASS0243
ASS0243

ASS0244
ASS0244
ASS0244

B33 - SIGNIFICANT ERROR
ILLEGAL OPERAND IN 'END’ INSTRUCTION
OPERAND IN 'END’-ANWEISUNG UNGUELTIG

B34 - WARNING
LENGTH OF ATTRIBUTED 'CSECT (&00) IS ZERO; LINK PROBLEMS ARE POSSIBLE
'CSECT (&00) MIT MERKMAL-ANGABE HAT LAENGE NULL; BINDERPROBLEME MOEGLICH

Meaning
A subsequent CSECT may receive the attributes of CSECT (&00) during loading.

Response
Remove the CSECT or attributes.

B40 - SIGNIFICANT ERROR
ILLEGAL OPCODE IN NAME OR OPERAND FIELD OF 'OPSYN' INSTRUCTION
OPERATIONS-CODE IM NAMENS- ODER OPERANDENFELD EINER 'OPSYN'-ANWEISUNG UNGUI

B41 - SIGNIFICANT ERROR
'OPSYN’ INSTRUCTION NOT ALLOWED IN MACROS
'OPSYN'-ANWEISUNG INNERHALB VON MAKROS UNZULAESSIG

B42 - SIGNIFICANT ERROR
'COPY’ MEMBER NOT FOUND
'COPY’-ELEMENT NICHT GEFUNDEN

Response

Possible responses:

- Specify the COPY library in the assembler options;

- Correct the element ("member") name in the COPY operand.

B43 - SIGNIFICANT ERROR
NAME OF 'COPY’ MEMBER INVALID
NAME DES 'COPY'-ELEMENTES FEHLERHAFT

Meaning

The first character in the name of a COPY element ("member") must be alphabetic; the
remaining characters may be either letters or digits. The maximum length for the name
of a COPY element is 64 characters.

B44 - WARNING
MACRO NAME IN PROTOTYPE STATEMENT AND LIBRARY MEMBER NAME DIFFER
MAKRONAME IN MUSTERANWEISUNG UND BIBLIOTHEKSELEMENTNAME UNTERSCHIEDLICH

244

U5056-J-2125-3-7600

ASSEMBH messages

ASS0245
ASS0245
ASS0245

ASS0246
ASS0246
ASS0246

ASS0247
ASS0247
ASS0247

ASS0248
ASS0248
ASS0248

ASS0249
ASS0249
ASS0249

B45 - SIGNIFICANT ERROR
ILLEGAL OPERAND IN 'COPY’ INSTRUCTION
'COPY’-OPERAND FEHLERHAFT

Meaning
There is no operand, more than one operand, or an operand with an illegal syntax in
the COPY instruction. The COPY element ("member") was not inserted.

Response
Correct the operand.

B46 - SIGNIFICANT ERROR
MAXIMUM 'COPY-LEVEL' (&00) EXCEEDED
MAXIMALER 'COPY-LEVEL’ (&00) UEBERSCHRITTEN

B47 - FATAL ERROR
THE MAXIMUM MACRO LEVEL OF (&00) HAS BEEN REACHED
MAXIMALE MAKRO-VERSCHACHTELUNGSTIEFE VON (&00) ERREICHT

Meaning
The maximum macro nesting level specified in the assembler option
(MAX-MACRO-NEST-LEVEL) has been reached (default value: 255).

Response
Correct the assembler option or check the macro calls in the program for an endless
loop.

B48 - NOTE
ATTENTION: SOURCE CONTAINS 'OPSYN' INSTRUCTIONS
VORSICHT: QUELLPROGRAMM ENTHAELT 'OPSYN-ANWEISUNGEN

Meaning

The effectiveness of 'OPSYN' instructions regarding domain and duration, is to be
considered especially in conjunction with (library) macros.

See also ASSEMBH-Beschreibung: Unterschiede ASSEMBH und ASSEMB V30.0A .

B49 - NOTE
'OPSYN’ INACTIVATED
'OPSYN’ INAKTIVIERT

U5056-J-2125-3-7600 245

ASSEMBH messages

ASS0250 B50 - WARNING
ASS0250 UNEXPECTED EOF BEFORE 'END’ INSTRUCTION
ASS0250 EOF VOR 'END’-ANWEISUNG AUFGETRETEN

Meaning
EOF was encountered before the END instruction when reading the source. The
ASSEMBH generates an END instruction statement and continues the assembly.

ASS0251 B51 - NOTE

ASS0251 'MEND’ INSTRUCTION MISSING
ASS0251 'MEND-ANWEISUNG FEHLT
Meaning

MEND instruction missing in library macros. Sequence errors cannot occur, as the
MEND instruction statement is generated.

Response
Insert the MEND instruction statement.

ASS0252 B52 - WARNING
ASS0252 INPUT RECORD TOO LONG; MAXIMUM LENGTH = 256
ASS0252 EINGABESATZ ZU LANG; MAXIMALLAENGE = 256

ASS0254 B54 - WARNING
ASS0254 UNEXPECTED EOF
ASS0254 UNERWARTETES EOF

Meaning
EOF was encountered before the END or MEND instruction when reading a file or a
library element.

Response
Insert the missing END or MEND instruction statement.

ASS0255 B55 - SIGNIFICANT ERROR

ASS0255 'MEND’ INSTRUCTION MISSING
ASS0255 'MEND-ANWEISUNG FEHLT
Meaning

MEND instruction missing in source deck macros or in library macros with inner macro
definitions. This may prevent the macro from being generated or cause it to be
generated incorrectly.

Response
Insert the MEND instruction statement.

246 U5056-J-2125-3-7600

ASSEMBH messages

ASS0256 B56 - NOTE

ASS0256 'END’ INSTRUCTION IS GENERATED

ASS0256 'END’-ANWEISUNG GENERIERT

ASS0257 B57 - NOTE

ASS0257 'END’ INSTRUCTION GENERATED BY MACRO EXPANSION
ASS0257 'END’-ANWEISUNG DURCH MAKRO-GENERIERUNG ERZEUGT

ASS0258 B58 - NOTE
ASS0258 THIS STATEMENT IS NO LONGER SUPPORTED
ASS0258 ANWEISUNG NICHT MEHR UNTERSTUETZT

ASS0259 B59 - NOTE
ASS0259 'CSECT’” WITH NO NAME IS GENERATED
ASS0259 NAMENLOSE 'CSECT' WIRD GENERIERT

ASS0260 B60 - NOTE

ASS0260 THE 'MCALL/GSEQ’ INSTRUCTIONS IN MACRO (&00) ARE NO LONGER NEEDED IN ASSEMB}

ASS0260 IM MAKRO (&00) AUFGETRETENE 'MCALLTGSEQ'-ANWEISUNG IM ASSEMBH NICHT MEHR
BENOETIGT

Meaning
The instructions are no longer required and will be ignored.

ASS0261 B61 - NOTE
ASS0261 INCOMPLETE PROGRAM; NO OBJECT GENERATION
ASS0261 PROGRAMM UNVOLLSTAENDIG; KEINE OBJEKTERZEUGUNG

ASS0262 B62 - NOTE
ASS0262 THE 'MCALL’ OR 'GSEQ’' INSTRUCTION IS NO LONGER NEEDED IN ASSEMBH
ASS0262 'MCALL/GSEQ'-ANWEISUNG IN ASSEMBH NICHT MEHR BENOETIGT

ASS0270 B70 - SIGNIFICANT ERROR
ASS0270 PROCEDURE NAME IN '$LSDL’ STATEMENT MISSING
ASS0270 PROZEDUR-NAME BEI '$LSDL-ANWEISUNG FEHLT

ASS0271 B71 - SIGNIFICANT ERROR
ASS0271 WRONG PROCEDURE NAME IN '$LSDLSAVE' STATEMENT
ASS0271 PROZEDUR-NAME BEI '$LSDLSAVE'-ANWEISUNG FEHLERHAFT

ASS0272 B72 - SIGNIFICANT ERROR
ASS0272 TYPE AND NAME IN '$LSDL’ STATEMENT DO NOT CORRESPOND
ASS0272 TYP UND NAME BEI '$LSDL-ANWEISUNG PASSEN NICHT ZUEINANDER

ASS0273 B73 - SIGNIFICANT ERROR
ASS0273 MORE THAN 3 OPERANDS IN '$LSDL’ STATEMENT
ASS0273 MEHR ALS 3 OPERANDEN IN "$LSDL-ANWEISUNG

U5056-J-2125-3-7600 247

ASSEMBH messages

ASS0274 B74 - SIGNIFICANT ERROR
ASS0274 TYPE IN '$LSDL’ STATEMENT MISSING
ASS0274 TYP BEI '$LSDL-ANWEISUNG FEHLT

ASS0275 B75 - WARNING
ASS0275 'CCW’ FLAG BYTE WAS NOT CHECKED
ASS0275 'CCW'-FLAGBYTE NICHT GEPRUEFT

ASS0276 B76 - WARNING
ASS0276 CONSISTENCY CONSTANT IS GENERATED FOR EMPTY 'CSECT' SECTION
ASS0276 KONSISTENZ-KONSTANTE FUER LEERE 'CSECT GENERIERT

ASS0311 C11 - SIGNIFICANT ERROR
ASS0311 ILLEGAL CONCATENATION
ASS0311 KONKATENIERUNG UNZULAESSIG

Meaning

Only variable symbols (including generated or subscripted symbols) are permitted in
the operand field of an LCL/GBL instruction and in the name field of a SET instruction.
Concatenation is not legal.

ASS0312 C12 - SIGNIFICANT ERROR
ASS0312 ILLEGAL DIMENSION SPECIFIED
ASS0312 DIMENSIONSANGABE FEHLERHAFT

Meaning
The dimension in the operand field of a LCL or GBL instruction must be an unsigned
decimal number.

ASS0313 C13 - SIGNIFICANT ERROR
ASS0313 SYNTAX ERROR IN THE SUBSCRIPT OF A VARIABLE SYMBOL
ASS0313 SYNTAX-FEHLER IM INDEX EINES VARIABLEN PARAMETERS

Meaning
The subscript of a variable symbol must be a SETA expression.

ASS0321 C21 - SIGNIFICANT ERROR
ASS0321 OPERAND (&00) IS A SYMBOLIC PARAMETER IN A MACRO PROTOTYPE STATEMENT
ASS0321 OPERAND (&00) IST SYMBOLISCHER PARAMETER IN MUSTERANWEISUNG

Meaning
A variable symbol cannot be a symbolic parameter and a SET symbol at the same
time.

ASS0322 C22 - SIGNIFICANT ERROR
ASS0322 ILLEGAL SYMBOLIC PARAMETER IN OPERAND FIELD OF 'LCL’ OR 'GBL’' INSTRUCTION
ASS0322 SYMBOLISCHE PARAMETER IM OPERANDENFELD EINER 'LCL/'GBL-ANWEISUNG UNZULAESSI(

248 U5056-J-2125-3-7600

ASSEMBH messages

ASS0335
ASS0335
ASS0335

ASS0336
ASS0336
ASS0336

ASS0337
ASS0337
ASS0337

ASS0338
ASS0338
ASS0338

C35 - SERIOUS ERROR
SERIOUS ERROR(S) FOR 'MACRO’' OR PROTOTYPE STATEMENT OF A LIBRARY MACRO
SERIOUS ERROR(S) ZU 'MACRO’ ODER MUSTERANWEISUNG EINES BIBLIOTHEKSMAKROS

Meaning

Some of the SERIOUS ERRORS for this macro instruction pertain to the associated
macro definition header statement (MACRO) or the macro instruction prototype
statement.

Response
Check MACRO and prototype statement.

C36 - NOTE
MACRO (&00) MULTIPLY DEFINED IN SOURCE
MAKRO (&00) IN DER SOURCE MEHRFACH DEFINIERT

Meaning
Note concerning incompatibility: A macro instruction will always generate the macro
whose definition was processed last.

C37 - NOTE
NOTE(S) FOR 'MACRO’' OR PROTOTYPE STATEMENT OF A LIBRARY MACRO
NOTE(S) ZU 'MACRO’- ODER MUSTERANWEISUNG EINES BIBLIOTHEKSMAKROS

Meaning
Some of the NOTES for this macro instruction pertain to the associated macro
definition header statement (MACRO) or the macro instruction prototype statement.

Response
Check MACRO and prototype statement.

C38 - WARNING
WARNING(S) FOR 'MACRO’' OR PROTOTYPE STATEMENT OF A LIBRARY MACRO
WARNING(S) ZU 'MACRO’- ODER MUSTERANWEISUNG EINES BIBLIOTHEKSMAKROS

Meaning
Some of the WARNINGS for this macro instruction pertain to the associated macro
definition header statement (MACRO) or the macro instruction prototype statement.

Response
Check MACRO and prototype statement.

U5056-J-7125-3-7600 249

ASSEMBH messages

ASS0339
ASS0339
ASS0339

ASS0340
ASS0340
ASS0340

ASS0341
ASS0341
ASS0341

ASS0342
ASS0342
ASS0342

C39 - SIGNIFICANT ERROR
SIGNIFICANT ERROR(S) FOR 'MACRO’' OR PROTOTYPE STATEMENT OF A LIBRARY MACRO
SIGNIFICANT ERROR(S) ZU 'MACRO’- ODER MUSTERANWEISUNG EINES BIBLIOTHEKSMAKRO

Meaning

Some of the SIGNIFICANT ERRORS for this macro instruction pertain to the associated
macro definition header statement (MACRO) or the macro instruction prototype
statement.

Response
Check MACRO and prototype statement.

C40 - SIGNIFICANT ERROR
MACRO PROTOTYPE STATEMENT HAS INVALID OPCODE
OPERATIONSCODE DER MUSTERANWEISUNG UNGUELTIG

Meaning
The macro name is longer than 64 characters or contains illegal characters. The macro
is not generated.

C41 - SIGNIFICANT ERROR
MISSING OPCODE IN MACRO PROTOTYPE STATEMENT
OPERATIONSCODE IN MUSTERANWEISUNG FEHLT

Meaning
The operation code (=macro name) is missing in a macro prototype statement. The
macro is not generated.

C42 - SIGNIFICANT ERROR
WRONG OPCODE IN FIRST STATEMENT OF LIBRARY MACRO
OPERATIONSCODE IN 1.ANWEISUNG EINES BIBLIOTHEKSMAKROS FEHLERHAFT

Meaning
The opcode in the first statement of a library macro (excluding blank lines, comments,
or macro remarks) contains syntax errors or variable symbols.

Response
Correct/insert the MACRO statement.

250

U5056-J-2125-3-7600

ASSEMBH messages

ASS0343 C43 - SIGNIFICANT ERROR
ASS0343 MACRO DOES NOT CONTAIN ANY PROTOTYPE STATEMENT
ASS0343 MAKRO ENTHAELT KEINE MUSTERANWEISUNG

Meaning
No macro prototype statement (the first statement after the macro instruction, excluding
blank lines, comments, or macro remarks) was found when expanding a macro.

Response
Insert or correct the macro prototype statement.

ASS0344 C44 - SIGNIFICANT ERROR
ASS0344 LIBRARY MACRO DOES NOT BEGIN WITH A 'MACRO’' STATEMENT
ASS0344 BIBLIOTHEKSMAKRO BEGINNT NICHT MIT 'MACRO-ANWEISUNG

ASS0346 C46 - SIGNIFICANT ERROR
ASS0346 MISSING OPCODE IN FIRST STATEMENT OF A LIBRARY MACRO
ASS0346 OPERATIONSCODE IN 1.ANWEISUNG EINES BIBLIOTHEKS-MAKROS FEHLT

Meaning

Missing opcode in the first statement of a library macro (excluding blank lines,
comments, or macro remarks). This must always be the macro definition header
statement MACRO.

Response
Insert or correct the macro prototype statement.

ASS0347 C47 - SIGNIFICANT ERROR

ASS0347 ERROR IN OPCODE OR OPERAND FIELD OF THE CORRESPONDING PROTOTYPE STATEMEN
MACRO WILL NOT BE GENERATED

ASS0347 OPCODE- ODER OPERANDENFELD DER ZUGEHOERIGEN MUSTERANWEISUNG FEHLERHAFT;
WIRD NICHT GENERIERT

ASS0348 C48 - SIGNIFICANT ERROR
ASS0348 MEND INSTRUCTION IS GENERATED
ASS0348 '"MEND’-ANWEISUNG WURDE GENERIERT

U5056-J-2125-3-7600 251

ASSEMBH messages

ASS0349
ASS0349
ASS0349

ASS0351
ASS0351
ASS0351

ASS0352
ASS0352
ASS0352

ASS0356
ASS0356
ASS0356

ASS0381
ASS0381

ASS0381

ASS0401
ASS0401
ASS0401

C49 - NOTE
OPERAND FIELD OF THE PROTOTYPE STATEMENT ENDS WITH A COMMA
OPERANDENFELD DER MUSTERANWEISUNG ENDET MIT KOMMA

Meaning

The terminating comma could indicate that further operands follow. If this is the case,
they will begin in the wrong column of the continuation line and thus be treated as
comments.

Response
Check whether the continuation line(s), if any, begin at the correct starting column, or
remove the comma.

C51 - SIGNIFICANT ERROR
SYMBOLIC PARAMETER (&00) OCCURS MORE THAN ONCE IN PROTOTYPE STATEMENT
SYMBOLISCHER PARAMETER (&00) TRITT IN MUSTERANWEISUNG MEHRFACH AUF

C52 - SIGNIFICANT ERROR

PRIMARY VALUE OF KEYWORD PARAMETER IN PROTOTYPE STATEMENT CANNOT BE GENE
GENERIERUNG DES ANFANGSWERTES EINES KENNWORT-OPERANDEN IN MUSTERANWEISUN
UNZULAESSIG

C56 - SIGNIFICANT ERROR
EMPTY PARAMETER IN PROTOTYPE STATEMENT
OPERAND IN MUSTERANWEISUNG LEER

Meaning
An empty parameter is not permitted in the prototype statement.

Response
Correct/insert the empty or missing parameter.

C81 - WARNING

UNDEFINED KEYWORD PARAMETER (&00); OPERAND WAS INTERPRETED AS A POSITIONAL
OPERAND

KENNWORT-OPERAND (&00) UNDEFINIERT; OPERAND WIRD ALS STELLUNGS-OPERAND
INTERPRETIERT

D01 - SIGNIFICANT ERROR
INVALID CONSTANT TYPE
KONSTANTENTYP UNGUELTIG

Meaning
An invalid constant type was specified in a DC or DS instruction or in a literal.

Response
Correct the constant type in the statement.

252

U5056-J-2125-3-7600

ASSEMBH messages

ASS0402 D02 - SIGNIFICANT ERROR
ASS0402 LENGTH MODIFIER ERROR
ASS0402 LAENGENFAKTOR FEHLERHAFT

Meaning
The length modifier of a DC/DS instruction or a literal has a syntax error, or its value
lies outside the permissible range.

Response
Correct the syntax or value of the length modifier.

ASS0403 D03 - SIGNIFICANT ERROR
ASS0403 CONSTANT OF TYPE S ILLEGAL IN A LITERAL STRING
ASS0403 S-KONSTANTE IN LITERALEN UNZULAESSIG

ASS0404 D04 - SIGNIFICANT ERROR
ASS0404 QUOTES NOT PAIRED OR ILLEGAL TERMINATION OF A QUOTED STRING
ASS0404 HOCHKOMMATA NICHT PAARWEISE ODER UNERLAUBTE BEENDIGUNG EINER ZEICHENKETTE

ASS0405 D05 - SIGNIFICANT ERROR
ASS0405 EMPTY OPERAND
ASS0405 OPERAND IST LEER

ASS0407 D07 - SIGNIFICANT ERROR
ASS0407 ALIGNMENT ERROR IN OPERAND (&00)
ASS0407 AUSRICHTUNGSFEHLER IN OPERAND (&00)

Meaning
The operand must be aligned on a halfword, fullword, or doubleword boundary.

ASS0408 D08 - SIGNIFICANT ERROR
ASS0408 UNPAIRED '& IN CONSTANT VALUE OF A DC/DS OPERAND OR LITERAL
ASS0408 UNGEPAARTES '& IM KONSTANTENWERT EINES DC/DS-OPERANDEN ODER LITERALS

ASS0409 D09 - SIGNIFICANT ERROR
ASS0409 DISPLACEMENT IN OPERAND (&00) NOT IN THE RANGE 0 TO 4095
ASS0409 DISTANZANGABE IN OPERAND (&00) NICHT 0 BIS 4095

Meaning
The displacement does not lie in the range 0 to 4095 (inclusive).

ASS0411 D11 - SIGNIFICANT ERROR
ASS0411 LENGTH SPECIFICATION IN OPERAND (&00) NOT IN THE RANGE 1 TO 16
ASS0411 LAENGENANGABE IN OPERAND (&00) NICHT 1 BIS 16

U5056-J-7125-3-7600 253

ASSEMBH messages

ASS0412 D12 - SIGNIFICANT ERROR
ASS0412 DUPLICATION FACTOR ERROR
ASS0412 WIEDERHOLUNGSFAKTOR FEHLERHAFT

Meaning

The duplication factor of a DC/DS operand or literal has a syntax error, or its value lies
outside the legal range.

Permissible range: 0 to 2**24 - 1

Response
Correct the syntax or value of the duplication factor.

ASS0413 D13 - SIGNIFICANT ERROR
ASS0413 SCALE MODIFIER ERROR
ASS0413 SKALENFAKTOR FEHLERHAFT

Meaning
The scale modifier of a DC/DS operand or literal has a syntax error, or its value lies
outside the legal range. The permissible range depends on the type of constant.

Response
Correct the syntax or value of the scale modifier.

ASS0414 D14 - SIGNIFICANT ERROR
ASS0414 EXPONENT MODIFIER ERROR
ASS0414 EXPONENTENFAKTOR FEHLERHAFT

Meaning

The exponent modifier of a DC/DS operand or literal has a syntax error, or its value
lies outside the legal range.

Permissible range: -85 to +75

Response
Correct the syntax or value of the exponent modifier.

ASS0415 D15 - SIGNIFICANT ERROR
ASS0415 PRECISION LOST IN DC CONSTANT
ASS0415 GENAUIGKEITSVERLUST IN DC-KONSTANTE

Meaning
When positions are lost in the constant due to the specification of a scale modifier, the
precision of the constant is reduced.

Response
Specify an appropriate scale modifier.

254 U5056-J-2125-3-7600

ASSEMBH messages

ASS0416 D16 - SIGNIFICANT ERROR
ASS0416 SELFDEFINING TERM (&00) TOO LARGE
ASS0416 SELBSTDEFINIERENDER WERT (&00) ZU GROSS

ASS0417 D17 - SIGNIFICANT ERROR
ASS0417 ARITHMETIC OVERFLOW
ASS0417 ARITHMETISCHER UEBERLAUF

Meaning
The final result or an intermediate result obtained when evaluating an arithmetic
expression does not lie within the range 2**31-1 and -2**31.

Response
Change the arithmetic expression so that an overflow no longer occurs.

ASS0418 D18 - SIGNIFICANT ERROR
ASS0418 FLOATING-POINT CHARACTERISTIC OUT OF RANGE
ASS0418 GLEITPUNKTCHARAKTERISTIK AUSSERHALB DES ZULAESSIGEN BEREICHS

Meaning

The characteristic portion, i.e. the hexadecimal exponent, of a floating-point
number

(type E, D, or L) is less than -64 or greater than 64 and thus lies outside the
permissible range.

Response
Correct the constant.

ASS0419 D19 - SIGNIFICANT ERROR
ASS0419 INVALID CHARACTER IN CONSTANT VALUE OF A DC/DS OPERAND OR LITERAL
ASS0419 UNGUELTIGES ZEICHEN IM KONSTANTEN-WERT EINES DC-/DS-OPERANDEN ODER LITERALS

Meaning
The constant contains characters that are not permitted for this type of constant.

Response
Correct the constant.

ASS0421 D21 - SIGNIFICANT ERROR
ASS0421 SYNTAX ERROR IN 'EQU’ OPERAND
ASS0421 SYNTAX-FEHLER IN 'EQU’-OPERAND

U5056-J-2125-3-7600 255

ASSEMBH messages

ASS0422 D22 - SIGNIFICANT ERROR
ASS0422 INVALID LENGTH ATTRIBUTE IN 'EQU’ OPERAND
ASS0422 LAENGENMERKMAL IN 'EQU’-OPERAND FEHLERHAFT

Meaning
The value of the length attribute must be between 0 and 2**24 - 1.

Response
Correct the explicitly specified length attribute.

ASS0423 D23 - SIGNIFICANT ERROR
ASS0423 INVALID TYPE ATTRIBUTE IN 'EQU’ OPERAND
ASS0423 TYPENMERKMAL IN 'EQU’-OPERAND FEHLERHAFT

Meaning
The type attribute must be a self-defining term (max. 1 byte long).

Response
Correct the explicitly specified type attribute.

ASS0424 D24 - SIGNIFICANT ERROR
ASS0424 LIMIT VALUES OF EXPONENT OUT OF RANGE
ASS0424 GRENZWERTE DER EXPONENTEN AUSSERHALB DES ZULAESSIGEN BEREICHS

Meaning
The sum of the internal and external exponents of a DC constant exceeds or lies below
the prescribed limit values.

Response
Correct the exponent entry.

ASS0425 D25 - SIGNIFICANT ERROR
ASS0425 STRING VALUE (&00) CANNOT BE CONVERTED IN ARITHMETIC VALUE
ASS0425 ZEICHENWERT (&00) IN ARITHMETISCHEN WERT NICHT KONVERTIERBAR

ASS0427 D27 - SIGNIFICANT ERROR
ASS0427 ADDRESS CONSTANT CANNOT BE EVALUATED; NO GENERATION
ASS0427 ADRESSKONSTANTE NICHT BERECHENBAR. KEINE GENERIERUNG

256 U5056-J-2125-3-7600

ASSEMBH messages

ASS0428 D28 - SIGNIFICANT ERROR

ASS0428 CONSTANT VALUE OR EXPONENT OF A DC/DS OPERAND OR LITERAL OUT OF RANGE. DEI
VALUE 0 IS INSERTED

ASS0428 KONSTANTENWERT ODER EXPONENT EINES DC-/DS-OPERANDEN BZW. LITERALS AUSSERHA
DES ZULAESSIGEN BEREICHS; ERSATZWERT '0’ WIRD VERWENDET

Meaning

Possible causes:

— The value of the constant exceeds the value range defined for the type of constant.

— The sum of the exponent and the exponent modifier lies outside the permissible
range.

Permissible range: -85 to +75.

ASS0429 D29 - SIGNIFICANT ERROR
ASS0429 ARITHMETIC OVERFLOW AFTER CONVERSION OF (&00)
ASS0429 ARITHMETISCHER UEBERLAUF NACH (&00) KONVERTIERUNG

Meaning

The self-defining term cannot be converted into the internal (binary) representation,
since the conversion would produce a binary value of more than 32 bits.

(&00): string to be converted.

Response
Correct the self-defining term so that its internal representation can be stored in one
word (32 bits).

ASS0430 D30 - SERIOUS ERROR

ASS0430 INVALID REGISTER SPECIFICATION IN OPERAND (&00); EVEN NUMBERED VALUE BETWEEN
AND 14 REQUIRED

ASS0430 REGISTER-ANGABE IN OPERAND (&00) UNGUELTIG; NUR GERADZAHLIGE NR. ZWISCHEN 0 L
14 ZULAESSIG

ASS0431 D31 - SERIOUS ERROR

ASS0431 INVALID FLOATING-POINT REGISTER SPECIFICATION IN OPERAND (&00); ONLY O, 2, 4,
OR 6 ALLOWED

ASS0431 GLEITPUNKTREGISTER-ANGABE IN OPERAND (&00) UNGUELTIG; NUR O, 2, 4 ODER 6
ZULAESSIG

ASS0432 D32 - SERIOUS ERROR
ASS0432 INVALID REGISTER SPECIFICATION; DIRECT VALUE (0 TO 15) EXPECTED
ASS0432 REGISTER-ANGABE UNGUELTIG; DIREKTWERT (0 BIS 15) WIRD ERWARTET

U5056-J-2125-3-7600 257

ASSEMBH messages

ASS0433 D33 - SIGNIFICANT ERROR
ASS0433 RELOCATABLE VALUE INVALID AS BASE REGISTER; VALUE MUST BE ABSOLUTE AND BETW

0 AND 15

ASS0433 RELATIVWERT ALS BASISREGISTER-ANGABE UNZULAESSIG. ABSOLUTWERT ZWISCHEN 0 UN
ZULAESSIG

ASS0434 D34 - SERIOUS ERROR

ASS0434 INVALID PAIR NUMBER OF FLOATING-POINT REGISTER IN OPERAND (&00); VALUE 0 OR 4
REQUIRED

ASS0434 GLEITPUNKTREGISTER-PAARNUMMER IN OPERAND (&00) UNGUELTIG; NUR 0 ODER 4
ZULAESSIG

ASS0435 D35 - SIGNIFICANT ERROR
ASS0435 ILLEGAL SPECIFICATION OF A BASE REGISTER
ASS0435 BASISREGISTER-ANGABE UNZULAESSIG

Meaning

An operand of the instruction has the wrong format. Instead of a register or direct
value,

a displacement and base register was specified.

Response
Correct the format of the operand.

ASS0436 D36 - SIGNIFICANT ERROR
ASS0436 ILLEGAL SPECIFICATION OF A BASE REGISTER AND INDEX REGISTER OR LENGTH
ASS0436 BASISREGISTER-ANGABE UND INDEXREGISTER- BZW. LAENGENANGABE UNZULAESSIG

Meaning

An operand of the instruction has the wrong format. Instead of a register or direct
value,

a displacement, base register, and index register or length was specified.

Response
Correct the format of the operand.

ASS0437 D37 - SIGNIFICANT ERROR

ASS0437 ILLEGAL INDEX REGISTER OR LENGTH SPECIFICATION
ASS0437 INDEXREGISTER- BZW. LAENGENANGABE UNZULAESSIG
Meaning

An operand of the instruction has the wrong format. An index register or a length was
specified in addition to a displacement and base register.

Response
Correct the format of the operand.

258 U5056-J-2125-3-7600

ASSEMBH messages

ASS0438 D38 - SERIOUS ERROR
ASS0438 ILLEGAL REGISTER SPECIFICATION IN OPERAND (&00)
ASS0438 REGISTERANGABE IN OPERAND (&00) UNGUELTIG

Meaning
Register numbers may only assume specific values for DUET instructions.

ASS0439 D39 - SIGNIFICANT ERROR
ASS0439 ADDRESS VALUE IN OPERAND (&00) OUT OF RANGE
ASS0439 ADRESSWERT IN OPERAND (&00) AUSSERHALB DES ZULAESSIGEN BEREICHS

Meaning
The values of the addresses exceed the permissible limits for DUET instructions.

ASS0441 D41 - SIGNIFICANT ERROR
ASS0441 QUOTES NOT PAIRED
ASS0441 UNGEPAARTE APOSTROPHE

ASS0442 D42 - SIGNIFICANT ERROR
ASS0442 SYNTAX ERROR IN DC/DS INSTRUCTION OR LITERAL
ASS0442 SYNTAX-FEHLER IN DC/DS-ANWEISUNG ODER LITERAL

ASS0443 D43 - SIGNIFICANT ERROR
ASS0443 SCALE OR EXPONENT MODIFIER ILLEGAL
ASS0443 SKALEN- BZW. EXPONENTENFAKTOR UNZULAESSIG

Meaning
A scale and exponent modifier is only permitted for fixed and floating-point constants in
DC instructions and literals.

Response
Omit the scale or exponent modifier, or change the type of constant.

ASS0445 D45 - SIGNIFICANT ERROR

ASS0445 INVALID LENGTH SPECIFIED IN OPERAND (&00); LENGTH MUST BE WITHIN THE RANGE 1 T
256

ASS0445 LAENGENANGABE IN OPERAND (&00) UNGUELTIG; LAENGE 1 BIS 256 ZULAESSIG

ASS0446 D46 - SIGNIFICANT ERROR
ASS0446 ILLEGAL SPECIFICATION OF ADDRESS; DISPLACEMENT WILL BE IGNORED
ASS0446 ADRESSANGABE FEHLERHAFT; DISTANZ WIRD IGNORIERT

Meaning
The specification of an address in the form of a relocatable value in relation to a base
address and the explicit specification of a base register are illegal.

U5056-J-7125-3-7600 259

ASSEMBH messages

ASS0447
ASS0447
ASS0447

ASS0448
ASS0448
ASS0448

ASS0449
ASS0449
ASS0449

ASS0450
ASS0450
ASS0450

ASS0451
ASS0451
ASS0451

ASS0452
ASS0452
ASS0452

ASS0453
ASS0453
ASS0453

ASS0454
ASS0454
ASS0454

ASS0455
ASS0455
ASS0455

D47 - SIGNIFICANT ERROR
ILLEGAL RELOCATABLE VALUE FOR LENGTH; LENGTH 0 WILL BE INSERTED
RELATIVWERT ALS LAENGENANGABE UNZULAESSIG. LAENGE '0'’ WIRD VERWENDET

Meaning
The specified length must be an absolute value.

D48 - SIGNIFICANT ERROR
SYNTAX ERROR IN CONSTANT OF A DC/DS OPERAND OR LITERAL
SYNTAX-FEHLER IM KONSTANTEN-WERT EINES DC/DS-OPERANDEN ODER LITERALS

D49 - NOTE
BASE REGISTER '0’ IS USED
BASISREGISTER 'O’ WIRD VERWENDET

D50 - NOTE
NO OPERAND FIELD ENTRY ALLOWED
OPERANDENFELD-EINTRAG UNZULAESSIG

D51 - SIGNIFICANT ERROR
REQUIRED OPERAND FIELD ENTRY MISSING
ERFODERLICHER OPERANDENFELD-EINTRAG FEHLT

D52 - SIGNIFICANT ERROR
WRONG OPERAND TYPE IN OPERAND (&00). VALUE '0’ IS INSERTED
FEHLERHAFTER OPERANDENTYP IN OPERAND (&00); ERSATZWERT 'O’ WIRD VERWENDET

Meaning
An absolute value is expected (e.g. specification of a register).

D53 - WARNING
EMPTY OPERAND (&00)
OPERAND (&00) IST LEER

Meaning
The named operand is empty, but this does not make sense for the processed
instruction.

D54 - SIGNIFICANT ERROR

REQUIRED NUMBER (&00) OF OPERANDS EXCEEDED; EXCESS OPERANDS WILL BE IGNORE
ERFORDERLICHE OPERANDENANZAHL (&00) UEBERSCHRITTEN; UEBERZAEHLIGE OPERANDEN
IGNORIERT

D55 - SERIOUS ERROR
REQUIRED OPERAND (&00) MISSING
ERFORDERLICHER OPERAND (&00) FEHLT

260

U5056-J-2125-3-7600

ASSEMBH messages

ASS0456 D56 - SIGNIFICANT ERROR
ASS0456 TOO MANY OPERANDS
ASS0456 ZU VIELE OPERANDEN

ASS0457 D57 - SIGNIFICANT ERROR
ASS0457 TOO FEW OPERANDS
ASS0457 ZU WENIG OPERANDEN

ASS0459 D59 - NOTE
ASS0459 OPERAND (&00) HAS NO EFFECT, SINCE THE OPTION 'PREFIX=EXCEPT’ IS SET.
ASS0459 OPERAND (&00) UNWIRKSAM, DA OPTION 'PREFIX=EXCEPT GESETZT

ASS0460 D60 - NOTE
ASS0460 DIVISION BY ZERO
ASS0460 DIVISION DURCH NULL

ASS0461 D61 - SIGNIFICANT ERROR
ASS0461 STRING DOES NOT BEGIN WITH A QUOTE
ASS0461 STRING BEGINNT NICHT MIT HOCHKOMMA

ASS0462 D62 - SIGNIFICANT ERROR
ASS0462 STRING IN '$DSDDI’ OR '$DSDDR’ OPERAND IS TOO LONG
ASS0462 STRING IN '$DSDDI’- BZW. '$DSDDR’-OPERAND ZU LANG

Meaning

The string in the first operand of the $DSDDI or $DSDDR instruction must not exceed
51 characters;

a maximum of 240 characters is permitted in the second operand.

ASS0463 D63 - SIGNIFICANT ERROR
ASS0463 REPRO OPERAND MISSING
ASS0463 'REPRO’-OPERAND FEHLT

ASS0464 D64 - NOTE
ASS0464 OPERAND (&00) IS NO LONGER SUPPORTED
ASS0464 OPERAND (&00) NICHT MEHR UNTERSTUETZT

ASS0504 EO04 - SIGNIFICANT ERROR
ASS0504 WRONG CCWO0/CCW1 OPCODE
ASS0504 CCWO0/CCW1-OPERATIONSCODE FEHLERHAFT

ASS0505 EO5 - SIGNIFICANT ERROR
ASS0505 WRONG CCW OPCODE
ASS0505 CCW-OPERATIONSCODE FEHLERHAFT

ASS0506 EO06 - SIGNIFICANT ERROR
ASS0506 WRONG CCW BYTE COUNTER
ASS0506 CCW-BYTE-ZAEHLER FEHLERHAFT

U5056-J-7125-3-7600 261

ASSEMBH messages

ASS0507
ASS0507
ASS0507

ASS0508
ASS0508
ASS0508

ASS0509
ASS0509
ASS0509

ASS0510
ASS0510
ASS0510

ASS0511
ASS0511
ASS0511

ASS0512
ASS0512
ASS0512

ASS0513
ASS0513
ASS0513

ASS0517
ASS0517
ASS0517

ASS0518
ASS0518
ASS0518

ASS0521
ASS0521
ASS0521

ASS0524
ASS0524
ASS0524

EO7 - SIGNIFICANT ERROR
WRONG CCW FLAG BYTE
CCW-FLAGBYTE FEHLERHAFT

EO08 - SIGNIFICANT ERROR
WRONG CCW1 ADDRESS; A VALUE FROM 0 TO12¥#3 IS PERMITTED
CCW1-ADRESSE UNGUELTIG; WERT 0 BIS 2B - 1 ZULAESSIG

EO09 - SIGNIFICANT ERROR
WRONG CCW/CCWO0 ADDRESS; A VALUE FROM 0 TO42#*2 IS PERMITTED
CCW/CCWO-ADRESSE UNGUELTIG; WERT 0 BIS 2%2- 1 ZULAESSIG

E10 - SIGNIFICANT ERROR
ILLEGAL CONTINUATION LINE
FORTSETZUNGSZEILE UNZULAESSIG

E11 - SIGNIFICANT ERROR
EOF WAS REACHED BEFORE CONTINUATION LINE
EOF VOR FORTSETZUNGSZEILE

E12 - SIGNIFICANT ERROR
LAST QUOTE MISSING IN OPERAND (&00)
ABSCHLIESSENDES HOCHKOMMA IN OPERAND (&00) FEHLT

E13 - SIGNIFICANT ERROR
NULL STRING ILLEGAL AS CONSTANT OF A DC/DS OPERAND OR LITERAL
NULLSTRING ALS KONSTANTENWERT EINES DC/DS-OPERANDEN ODER LITERALS UNZULAES!

E17 - SIGNIFICANT ERROR
SURPLUS 'STACK'/UNSTK' INSTRUCTION (&00) (&01)
UEBERZAEHLIGE 'STACK'/UNSTK'-ANWEISUNG (&00) (&01)

Meaning
(&01): name of the incorrectly stored or released instruction.

E18 - SIGNIFICANT ERROR
ILLEGAL CHARACTER BEFORE CONTINUATION LINE
UNZULAESSIGE(S) ZEICHEN VOR FORTSETZUNGSSPALTE

E21 - SIGNIFICANT ERROR
REQUIRED NAME FIELD ENTRY MISSING
ERFORDERLICHER NAMENSFELD-EINTRAG FEHLT

E24 - SIGNIFICANT ERROR
SYMBOL NOT ALLOWED IN NAME FIELD
SYMBOL IM NAMENSFELD UNZULAESSIG

262

U5056-J-2125-3-7600

ASSEMBH messages

ASS0525
ASS0525
ASS0525

ASS0526
ASS0526
ASS0526

ASS0527
ASS0527
ASS0527

ASS0528
ASS0528
ASS0528

ASS0529
ASS0529
ASS0529

ASS0530
ASS0530
ASS0530

ASS0531
ASS0531
ASS0531

ASS0532
ASS0532
ASS0532

E25 - SIGNIFICANT ERROR
INVALID SYMBOL IN NAME FIELD
SYMBOL IM NAMENSFELD FEHLERHAFT

E26 - SIGNIFICANT ERROR
FIRST OPERAND IN 'AGO’ INSTRUCTION IS EMPTY
ERSTER OPERAND IN 'AGO-ANWEISUNG IST LEER

Meaning

An empty operand was encountered as the first operand in an AGO instruction. A
sequence symbol or arithmetic expression and sequence symbol (computed AGO) are
permitted.

E27 - SIGNIFICANT ERROR
INVALID SEQUENCE SYMBOL (&00) IN OPERAND (&01): NO BRANCH
FOLGESYMBOL (&00) IN OPERAND (&01) UNGUELTIG: KEIN SPRUNG

E28 - SIGNIFICANT ERROR
NAME OF SEQUENCE SYMBOL (&00) IS TOO LONG; MAXIMUM LENGTH = 64
FOLGESYMBOL (&00) ZU LANG; MAXIMALLAENGE = 64

E29 - SIGNIFICANT ERROR
OPERAND IS NOT A SEQUENCE SYMBOL
OPERAND IST KEIN FOLGESYMBOL

E30 - SIGNIFICANT ERROR
SYNTAX ERROR IN OPERAND (&00)
SYNTAX-FEHLER IN OPERAND (&00)

E31 - SIGNIFICANT ERROR
SEMANTIC ERROR IN OPERAND (&00)
SEMANTISCHER FEHLER IN OPERAND (&00)

E32 - NOTE
SYNTAX ERROR IN OPERAND (&00) OF THE 'SPACE’ INSTRUCTION
SYNTAXFEHLER IN OPERAND (&00) DER 'SPACE-ANWEISUNG

Meaning
The operand is incorrect, or a comment was interpreted as the operand.

U5056-J-2125-3-7600

263

ASSEMBH messages

ASS0533 E33 - SIGNIFICANT ERROR
ASS0533 ERROR IN OPERAND (&00)
ASS0533 FEHLER IN OPERAND (&00)

Meaning
A syntax or semantic error has occurred in the named operand. More details are
usually provided in a supplementary error message.

Response
Correct the operand.

ASS0534 E34 - NOTE

ASS0534 DROP ISSUED FOR A RELEASED REGISTER OR ONE NOT ASSIGNED IN A 'USING’
INSTRUCTION

ASS0534 ZU SPERRENDES REGISTER SCHON GESPERRT ODER NOCH NICHT DURCH 'USING'-ANWEIS
ZUGEWIESEN

ASS0535 E35 - SIGNIFICANT ERROR
ASS0535 SEMANTIC ERROR
ASS0535 SEMANTISCHER FEHLER

ASS0538 E38 - SIGNIFICANT ERROR
ASS0538 ATTRIBUTE OF A SYMBOL CANNOT BE EVALUATED
ASS0538 MERKMAL EINES SYMBOLS NICHT BESTIMMBAR

Meaning
The referenced symbol is undefined or cannot be evaluated.

ASS0539 E39 - SIGNIFICANT ERROR
ASS0539 SYNTAX ERROR IN 'SETC’ OPERAND OR IN TEXT REPLACEMENT
ASS0539 SYNTAXFEHLER IN 'SETC-OPERAND ODER BEI TEXTERSETZUNG

ASS0540 E40 - SIGNIFICANT ERROR
ASS0540 LOGICAL EXPRESSION WRONG OR MISSING
ASS0540 LOGISCHER AUSDRUCK FEHLERHAFT BZW. NICHT VORHANDEN

Meaning
The logical expression in the AlF operand is missing or not enclosed in parentheses.

264 U5056-J-2125-3-7600

ASSEMBH messages

ASS0543
ASS0543
ASS0543

ASS0546
ASS0546
ASS0546

ASS0550
ASS0550
ASS0550

ASS0552
ASS0552
ASS0552

ASS0553
ASS0553
ASS0553

ASS0554
ASS0554
ASS0554

ASS0555
ASS0555
ASS0555

E43 - SIGNIFICANT ERROR
NAME OF THE SEQUENCE SYMBOL (&00) IS ILLEGAL
NAME DES FOLGESYMBOLS (&00) UNZULAESSIG

Meaning

The first character in a sequence symbol must be alphabetic; the remaining characters
may be either letters or digits. The maximum length for a sequence symbol is 64
characters.

E46 - SIGNIFICANT ERROR
INVALID SYMBOL REFERENCE
SYMBOLZUGRIFF FEHLERHAFT

E50 - SIGNIFICANT ERROR
PARENTHESIS ERROR
KLAMMERUNG FEHLERHAFT

Meaning

A right parenthesis may be missing:

— after the base register specification in the operand

— in a parenthesized term in the operand

— in the case of a parenthesized duplication factor or modifier in a DC or DS constant
or a literal.

E52 - SIGNIFICANT ERROR
PARENTHESIS ERROR IN OPERAND (&00)
KLAMMERUNG IN OPERAND (&00) FEHLERHAFT

E53 - SIGNIFICANT ERROR
ILLEGAL CHARACTER
UNZULAESSIGES ZEICHEN

E54 - SIGNIFICANT ERROR
ILLEGAL CHARACTER(S) IN OPERAND (&00)
OPERAND (&00) ENTHAELT UNZULAESSIGE(S) ZEICHEN

E55 - SIGNIFICANT ERROR
VALUE OF THE SECOND OPERAND IN SRP IS INVALID; VALUE '0" IS INSERTED
WERT DES 2. SRP-OPERANDEN UNGUELTIG; '0’ WIRD VERWENDET

Meaning
The information cannot be shifted within the possible limits.

U5056-J-7125-3-7600 265

ASSEMBH messages

ASS0556
ASS0556
ASS0556

ASS0557
ASS0557
ASS0557

ASS0566
ASS0566
ASS0566

ASS0571
ASS0571
ASS0571

ASS0572
ASS0572
ASS0572

ASS0580
ASS0580
ASS0580

ASS0581
ASS0581
ASS0581

ASS0582
ASS0582
ASS0582

E56 - SIGNIFICANT ERROR
SYNTAX ERROR IN OPERAND OF A 'SETA’, 'AGO’, OR 'SETC’ INSTRUCTION
SYNTAX-FEHLER IN OPERAND EINER 'SETA'-, 'AGO’- ODER 'SETC’-ANWEISUNG

Meaning

Syntax error in the arithmetic expression:

for SETA - entire operand field;

for 'computed AGO’ - number of sequence symbol;

for SETC - duplication factor and arguments of the substring function (initial position
and length).

E57 - SIGNIFICANT ERROR
SYNTAX ERROR IN LOGICAL EXPRESSION
SYNTAX-FEHLER IN LOGISCHEM AUSDRUCK

E66 - SIGNIFICANT ERROR
OPERAND (&00) IS NOT A SYMBOLIC ADDRESS
OPERAND (&00) IST KEINE SYMBOLISCHE ADRESSE

E71 - SERIOUS ERROR
ILLEGAL LITERAL USE IN OPERAND (&00)
LITERAL IN OPERAND (&00) UNZULAESSIG

E72 - SIGNIFICANT ERROR
CONSTANT OF TYPE Q NOT ALLOWED WITHIN LITERALS
Q-KONSTANTE IN LITERALEN UNZULAESSIG

E80 - NOTE
'TITLE® TEXT EXCEEDS 97 CHARACTERS
'TITLE-TEXT LAENGER ALS 97 ZEICHEN

E81 - SIGNIFICANT ERROR
'TITLE® TEXT MISSING
'TITLE-TEXT FEHLT

E82 - NOTE
EXTERNAL SYMBOL IN OPERAND FIELD IS TRUNCATED TO 8 CHARACTERS
EXTERNES SYMBOL IM OPERANDENFELD AUF ZULAESSIGE 8 ZEICHEN GEKUERZT

Meaning
The symbolic name of the external start address in the END record of the object is
limited to 8 characters. Only the first 8 characters of the specified name are used.

266

U5056-J-2125-3-7600

ASSEMBH messages

ASS0593
ASS0593
ASS0593

ASS0594
ASS0594
ASS0594

ASS0595
ASS0595
ASS0595

ASS0597
ASS0597
ASS0597

ASS0711
ASS0711
ASS0711

ASS0712
ASS0712
ASS0712

ASS0713
ASS0713
ASS0713

ASS0714
ASS0714
ASS0714

E93 - SIGNIFICANT ERROR
ILLEGAL SEQUENCE SYMBOL IN NAME FIELD
FOLGESYMBOL IM NAMENSFELD UNZULAESSIG

E94 - NOTE
SYMBOL IN NAME FIELD IS TRUNCATED TO THE ALLOWED 8 CHARACTERS
SYMBOL IM NAMENSFELD AUF ZULAESSIGE 8 ZEICHEN GEKUERZT

E95 - SIGNIFICANT ERROR
SEQUENCE SYMBOL IS MISSING OR HAS A SYNTAX ERROR
FOLGESYMBOL FEHLT BZW. SYNTAKTISCH FALSCH

E97 - NOTE
NAME FOR OUTPUT TO ESD RECORD IS TRUNCATED TO 8 CHARACTERS
NAME FUER AUSGABE IN ESD-SATZ AUF 8 ZEICHEN GEKUERZT

Meaning
The name for entries in the ESD record of the object is limited to 8 characters. Only
the first 8 characters of the name are used.

G11 - SIGNIFICANT ERROR
ILLEGAL 'MEND’ OR 'MEXIT" INSTRUCTION
'MEND’- ODER 'MEXIT-ANWEISUNG UNZULAESSIG

Meaning
The macro instructions MEND and MEXIT are only allowed within a macro definition.

G12 - WARNING
"* COMMENT IS ILLEGAL OUTSIDE OF MACRO DEFINITION
"*-KOMMENTAR AUSSERHALB VON MAKRODEFINITIONEN UNZULAESSIG

G13 - SIGNIFICANT ERROR
GENERATION OF A MACRO INSTRUCTION IS ILLEGAL
GENERIEREN EINER MAKRO-ANWEISUNG UNZULAESSIG

G14 - SIGNIFICANT ERROR
'MEND’ AND 'MEXIT" INSTRUCTIONS ARE ONLY ALLOWED WITHIN MACRO DEFINITIONS
'MEND’- ODER 'MEXIT-ANWEISUNG NUR IN MAKRODEFINITIONEN ZULAESSIG

Meaning
A MEND or MEXIT instruction was encountered in the source. They are only permitted
in macro definitions.

Response
Remove the statement and check the nesting level of inner macro definitions if required.

U5056-J-7125-3-7600 267

ASSEMBH messages

ASS0724
ASS0724
ASS0724

ASS0730
ASS0730
ASS0730

ASS0732
ASS0732
ASS0732

ASS0734
ASS0734
ASS0734

ASS0736
ASS0736
ASS0736

ASS0737
ASS0737
ASS0737

ASS0740
ASS0740
ASS0740

ASS0811
ASS0811
ASS0811

ASS0910
ASS0910
ASS0910

G24 - SIGNIFICANT ERROR
OVERFLOW OF MAXIMUM COPY LEVEL (&00)
MAXIMALER COPY-LEVEL (&00) UEBERSCHRITTEN

G30 - SIGNIFICANT ERROR
GENERATED OPCODE (&00) IS NOT ALLOWED OR MUST NOT BE GENERATED
GENERIERTER OPERATIONS-CODE (&00) UNZULAESSIG BZW. DARF NICHT GENERIERT WERL

Meaning
The text replacement produced an incorrect operation code or one which must not be
generated.

G32 - SIGNIFICANT ERROR
GENERATED OPCODE CONSISTS OF BLANKS
GENERIERTER OPERATIONS-CODE BESTEHT AUS LEERZEICHEN

G34 - WARNING
GENERATION OF '* COMMENTS IS NOT ALLOWED
GENERIEREN VON '.*-KOMMENTAREN UNZULAESSIG

Meaning
A’.* comment was to be generated.

G36 - SIGNIFICANT ERROR
ILLEGAL USE OF A NULL STRING WHEN A VARIABLE SYMBOL IS GENERATED
NULLSTRING BEI GENERIERUNG EINES VARIABLEN PARAMETERS UNZULAESSIG

G37 - SIGNIFICANT ERROR
GENERATED NAME/OPCODE FIELD CONSISTS OF MORE THAN ONE STRING
GENERIERTES NAMENS-/OPCODE-FELD BESTEHT AUS MEHR ALS EINEM STRING

G40 - SIGNIFICANT ERROR
ILLEGAL GENERATION OF A NULL STRING IN OPCODE FIELD
GENERIERUNG EINES NULLSTRINGS IN OPCODE-FELD UNZULAESSIG

H11 - SIGNIFICANT ERROR
DUMMY REGISTER EXCEEDS 4095 BYTES
PSEUDOREGISTER GROESSER ALS 4095 BYTES

Meaning
The maximum length of a DXD operand (duplication factor * length modifier) must not
exceed 4095 bytes.

110 - SIGNIFICANT ERROR
INVALID DIRECT VALUE IN OPERAND (&00); VALUE MUST BE FROM 0 TO 255
DIREKTWERT IN OPERAND (&00) UNGUELTIG; WERT 0 BIS 255 ZULAESSIG

268

U5056-J-2125-3-7600

ASSEMBH messages

ASS0911 111 - SIGNIFICANT ERROR

ASS0911 INVALID DIRECT VALUE IN OPERAND (&00); VALUE MUST BE FROM 0 TO 15
ASS0911 DIREKTWERT IN OPERAND (&00) UNGUELTIG; WERT 0 BIS 15 ZULAESSIG
ASS0912 112 - SIGNIFICANT ERROR

ASS0912 INVALID ROUNDED VALUE IN OPERAND (&00); VALUE MUST BE FROM 0 TO 9
ASS0912 RUNDUNGSWERT IN OPERAND (&00) UNGUELTIG; WERT 0 BIS 9 ZULAESSIG
ASS0913 113 - SIGNIFICANT ERROR

ASS0913 INVALID MASK SPECIFICATION IN OPERAND (&00); VALUE MUST BE FROM 0 TO 15
ASS0913 MASKENANGABE IN OPERAND (&00) UNGUELTIG; WERT 0 BIS 15 ZULAESSIG
ASS0920 120 - SIGNIFICANT ERROR

ASS0920 INVALID SELF-DEFINING TERM

ASS0920 SELBSTDEFINIERENDER WERT FEHLERHAFT

ASS0921 121 - SIGNIFICANT ERROR
ASS0921 ARITHMETIC VALUE (&00) CONTAINS ILLEGAL CHARACTERS
ASS0921 ARITHMETISCHER WERT (&00) ENTHAELT UNZULAESSIGE ZEICHEN

ASS1110 K10 - WARNING
ASS1110 SEQUENCE SYMBOL (&00) ALREADY DEFINED
ASS1110 FOLGESYMBOL (&00) BEREITS DEFINIERT

ASS1230 L30 - SIGNIFICANT ERROR
ASS1230 RELOCATABLE ADDRESS CONSTANT CONTAINS NAME FROM 'DSECT’
ASS1230 ZU RELATIVIERENDE ADRESSKONSTANTE ENTHAELT NAME AUS 'DSECT’

Meaning
No RLD information can be generated for an entity from a DSECT.

ASS1250 L50 - SERIOUS ERROR
ASS1250 OPERAND 2 OF THE 'CNOP’ INSTRUCTION MUST BE '4’ OR '8
ASS1250 OPERAND 2 DER 'CNOP-ANWEISUNG MUSS '4’ ODER '8 SEIN

ASS1251 L51 - SERIOUS ERROR
ASS1251 OPERAND 1 OF THE 'CNOP’ INSTRUCTION MUST BE 0, 2, '4" OR '6’
ASS1251 OPERAND 1 DER 'CNOP-ANWEISUNG MUSS °'0’, '2', '4’" ODER '6" SEIN

ASS1252 L52 - SERIOUS ERROR
ASS1252 OPERAND 1 OF THE 'CNOP’ INSTRUCTION MUST BE 'O’ OR 2
ASS1252 OPERAND 1 DER 'CNOP-ANWEISUNG MUSS '0’ ODER 2" SEIN

ASS1253 L53 - SERIOUS ERROR
ASS1253 'CNOP’ OPERAND (&00) IS RELOCATABLE; IT MUST BE ABSOLUTE
ASS1253 'CNOP’-OPERAND (&00) IST RELATIV, MUSS JEDOCH ABSOLUT SEIN

U5056-J-7125-3-7600 269

ASSEMBH messages

ASS1254
ASS1254
ASS1254

ASS1310
ASS1310
ASS1310

ASS1320
ASS1320
ASS1320

ASS1321
ASS1321
ASS1321

ASS1324
ASS1324
ASS1324

ASS1325
ASS1325
ASS1325

ASS1330
ASS1330
ASS1330

ASS1332
ASS1332
ASS1332

ASS1350
ASS1350

ASS1350

ASS1351
ASS1351
ASS1351

ASS1352
ASS1352
ASS1352

L54 - SIGNIFICANT ERROR
MISSING 'CNOP’ OPERAND
'CNOP’-OPERAND FEHLT

M10 - SIGNIFICANT ERROR
SYMBOL (&00) IS MULTIPLE DEFINED
SYMBOL (&00) MEHRFACH DEFINIERT

M20 - SIGNIFICANT ERROR
'ENTRY’ NOT ALLOWED IN 'DSECT’, 'COM’, 'XDSEC’, OR 'DXD’
'ENTRY’ IN 'DSECT’,COM’,’XDSEC’,'DXD’ UNZULAESSIG

M21 - SIGNIFICANT ERROR
ENTRY (&00) IS IN 'DSECT' OR 'XDSEC’
'ENTRY’ (&00) LIEGT IN 'DSECT/'XDSEC’

M24 - SIGNIFICANT ERROR
"AMODE’/'RMODE’ INCONSISTENCY
"AMODE’/RMODE’-UNVERTRAEGLICHKEIT

M25 - SIGNIFICANT ERROR

'AMODE’/RMODE’ IS ILLEGAL FOR AN UNNAMED 'COMMON’' CONTROL SECTION

"AMODE’/RMODE’ FUER UNBENANNTEN 'COM-ABSCHNITT UNZULAESSIG

M30 - SIGNIFICANT ERROR
ADDRESS OR DIRECT VALUE NOT WITHIN THE RANGE 0 TO 2*31 - 1

ADRESSE ODER DIREKTWERT NICHT IM BEREICH ZWISCHEN O UND 2**31 - 1

M32 - SIGNIFICANT ERROR
VALUE IN THE OPERAND EXCEEDS 2**24-1
OPERANDENWERT UEBERSCHREITET 2**24-1

M50 - SIGNIFICANT ERROR

SYMBOL (&00) ALREADY DEFINED AS A 'CSECT’, 'START’, 'DSECT’, 'COM’, 'XDSEC’' OR

'DXD’ NAME

SYMBOL (&00) BEREITS ALS 'CSECT'-, 'START-, 'DSECT'-, 'COM'-, 'XDSEC'- ODER

'DXD’-NAME DEFINIERT

M51 - SIGNIFICANT ERROR
SYMBOL (&00) ALREADY DEFINED AS NAME OF 'EXTRN’ OR 'WXTRN’
SYMBOL (&00) BEREITS ALS 'EXTRN’- ODER 'WXTRN'-NAME DEFINIERT

M52 - SIGNIFICANT ERROR
"AMODE’/'RMODE’ ALREADY PRESENT
"AMODE’/RMODE’ BEREITS VORHANDEN

270

U5056-J-2125-3-7600

ASSEMBH messages

ASS1353
ASS1353
ASS1353

ASS1354
ASS1354
ASS1354

ASS1356
ASS1356
ASS1356

ASS1357
ASS1357
ASS1357

ASS1410
ASS1410
ASS1410

ASS1420
ASS1420
ASS1420

ASS1502
ASS1502
ASS1502

ASS1503
ASS1503
ASS1503

M53 - SIGNIFICANT ERROR
SYMBOL (&00) WAS ALREADY REFERENCED AS A Q-CONSTANT
SYMBOL (&00) BEREITS ALS Q-KONSTANTE REFERENZIERT

Meaning
The new symbol to be defined is ignored and can produce sequence errors in following
references.

M54 - SIGNIFICANT ERROR
'XDSEC’ ALREADY DEFINED. OPERAND DOES NOT EQUAL DEFINITION/REFERENCE
'XDSEC’ BEREITS DEFINIERT. OPERAND NICHT GLEICH DEFINITION/REFERENZ

FAILURE
MISSING 'START' OR 'CSECT' INSTRUCTION
'START' BZW. 'CSECT-ANWEISUNG FEHLT

M57 - SIGNIFICANT ERROR
'DSDD’ INFORMATION ALREADY PRESENT
'DSDD’-INFORMATION BEREITS VORHANDEN

N10 - SIGNIFICANT ERROR
VARIABLE SYMBOL (&00) UNDEFINED AT TIME OF GENERATION
VARIABLER PARAMETER (&00) ZUM GENERIERUNGSZEITPUNKT UNDEFINIERT

N20 - SIGNIFICANT ERROR
UNDEFINED SEQUENCE SYMBOL IN OPERAND (&00): NO BRANCH
FOLGESYMBOL IN OPERAND (&00) UNDEFINIERT: KEIN SPRUNG

002 - SIGNIFICANT ERROR
INVALID OPCODE
OPERATIONS-CODE UNGUELTIG

003 - SIGNIFICANT ERROR
ERROR IN 'MACRO’ OR MACRO PROTOTYPE STATEMENT: NO MACRO GENERATED.
FEHLER IN '"MACRO’- ODER MUSTERANWEISUNG: MAKRO WIRD NICHT GENERIERT

Meaning
Errors were encountered in the MACRO statement or in the opcode/operand field of
the prototype statement of the called macro. The macro is not generated.

Response
Correct the MACRO and/or prototype statement.

U5056-J-2125-3-7600 271

ASSEMBH messages

ASS1504
ASS1504
ASS1504

ASS1505
ASS1505
ASS1505

ASS1506
ASS1506
ASS1506

ASS1522
ASS1522
ASS1522

ASS1601
ASS1601
ASS1601

ASS1711
ASS1711
ASS1711

ASS1712
ASS1712
ASS1712

ASS1713
ASS1713
ASS1713

ASS1714
ASS1714
ASS1714

ASS1721
ASS1721
ASS1721

004 - SIGNIFICANT ERROR
MISSING OPCODE
OPERATIONS-CODE FEHLT

Meaning
The statement contains no operation code (possibly due to a missing blank before the
opcode).

Response
Insert the required opcode (or blank).

005 - SIGNIFICANT ERROR
OPCODE (&00) NOT FOUND
OPERATIONS-CODE (&00) NICHT GEFUNDEN

006 - SIGNIFICANT ERROR
INVALID OPCODE IN OPERAND FIELD OF THE 'OPSYN’' INSTRUCTION
OPERATIONS-CODE IN OPERANDENFELD DER 'OPSYN'-ANWEISUNG UNGUELTIG

022 - SIGNIFICANT ERROR
SYMBOL (&00) CANNOT BE EVALUATED
SYMBOL (&00) NICHT BESTIMMBAR

PO1 - WARNING
PRIVILEGED INSTRUCTION
PRIVILEGIERTER BEFEHL

Q11 - SIGNIFICANT ERROR
SYMBOL IN 'ORG’ OPERAND DOES NOT BELONG TO THE CURRENT PROGRAM SECTION
SYMBOL IN 'ORG’-OPERAND LIEGT AUSSERHALB DES AKTUELLEN PROGRAMM-ABSCHNITTS

Q12 - SIGNIFICANT ERROR
OPERAND IS ABSOLUTE; MUST BE RELOCATABLE
OPERAND IST ABSOLUT; MUSS RELATIV SEIN

Q13 - SIGNIFICANT ERROR
VALUE IN 'ORG’ OPERAND DOES NOT BELONG TO CURRENT PROGRAM SECTION
WERT IN 'ORG-OPERAND LIEGT AUSSERHALB DES AKTUELLEN PROGRAMM-ABSCHNITTS

Q14 - SIGNIFICANT ERROR
SYMBOL IN ORG-OPERAND NOT PREVIOUSLY DEFINED
SYMBOL IM ORG-OPERAND NICHT VORHER DEFINIERT

Q21 - SIGNIFICANT ERROR
ILLEGAL SYMBOL REFERENCE IN OPERAND (&00)
SYMBOLZUGRIFF IN OPERAND (&00) FEHLERHAFT

272

U5056-J-2125-3-7600

ASSEMBH messages

ASS1901
ASS1901
ASS1901

ASS1902
ASS1902
ASS1902

ASS1903
ASS1903
ASS1903

ASS1910
ASS1910
ASS1910

ASS1911
ASS1911
ASS1911

ASS1912
ASS1912
ASS1912

ASS1913
ASS1913
ASS1913

S01 - SIGNIFICANT ERROR
SYMBOL TOO LONG; MAXIMUM LENGTH = 64
SYMBOL ZU LANG; MAXIMALLAENGE = 64

Meaning
The symbol in the name or operand field of the assembler instruction is too long.

Response
Shorten the symbol and repeat the run.

S02 - SIGNIFICANT ERROR
SEQUENCE SYMBOL NOT ALLOWED IN NAME FIELD
FOLGESYMBOL IM NAMENSFELD UNZULAESSIG

Meaning
A sequence symbol appears for the first time in the name field, but the specified
sequence symbol is not legal for this opcode.

S03 - WARNING
NAME OF V OR Q CONSTANT TRUNCATED TO 8 CHARACTERS
NAME DER V- BZW. Q-KONSTANTE AUF 8 ZEICHEN GEKUERZT

Meaning
The name of a V-type or Q-type constant must not exceed 8 characters. Only the first 8
characters are taken into account.

Response
Shorten the name of the V-type or Q-type constant if required.

S10 - SIGNIFICANT ERROR
ILLEGAL NAME FIELD ENTRY
NAMENSFELD-EINTRAG UNZULAESSIG

S11 - SIGNIFICANT ERROR
ILLEGAL GENERATION IN NAME FIELD
GENERIERUNG IM NAMENSFELD UNZULAESSIG

S12 - SIGNIFICANT ERROR
'TITLE’ INSTRUCTION WITH NAME FIELD ENTRY IS NOT FIRST 'TITLE' INSTRUCTION
'TITLE-ANWEISUNG MIT NAMENSFELD-EINTRAG IST NICHT ERSTE 'TITLE'-ANWEISUNG

S13 - SIGNIFICANT ERROR
ILLEGAL GENERATION OF A SEQUENCE SYMBOL IN NAME FIELD
GENERIERUNG EINES FOLGESYMBOLS IM NAMENSFELD UNZULAESSIG

Meaning
The sequence symbol generated in the name field is ignored.

U5056-J-2125-3-7600

273

ASSEMBH messages

ASS1914
ASS1914
ASS1914

ASS1915
ASS1915
ASS1915

ASS1916
ASS1916
ASS1916

ASS1917
ASS1917
ASS1917

ASS2010
ASS2010
ASS2010

ASS2013
ASS2013
ASS2013

ASS2014
ASS2014
ASS2014

ASS2015
ASS2015
ASS2015

ASS2110
ASS2110
ASS2110

S14 - SIGNIFICANT ERROR
THE GENERATED NAME (&00) IS ILLEGAL; IT WILL BE IGNORED
GENERIERTER NAME (&00) UNGUELTIG; WIRD IGNORIERT

S15 - SIGNIFICANT ERROR
SEQUENCE SYMBOLS MUST NOT BE GENERATED IN THE NAME FIELD
GENERIEREN VON FOLGESYMBOLEN IM NAMENSFELD UNZULAESSIG

S16 - NOTE
‘TITLE' NAME TRUNCATED TO 4 CHARACTERS
‘TITLE-NAME AUF 4 ZEICHEN GEKUERZT

S17 - NOTE
THE FIRST 'CSECT' IS UNNAMED; NO GENERATION OF 'AID-INFORMATION
KEINE 'AID-INFORMATION ERZEUGT, DA ERSTE 'CSECT’ UNBENANNT

Meaning
The name of the first CSECT is provided as the source module name for AID.

Response
Name the first CSECT.

T10 - SIGNIFICANT ERROR
CHARACTER VALUE TOO LONG; MAXIMUM LENGTH = 1020
ZEICHENWERT ZU LANG; MAXIMALLAENGE = 1020

T13 - SIGNIFICANT ERROR
ILLEGAL AMPERSAND GENERATED AFTER TEXT REPLACEMENT
'&-ZEICHEN NACH TEXTERSETZUNG UNZULAESSIG

T14 - SIGNIFICANT ERROR
ILLEGAL AMPERSAND GENERATED IN OPERAND (&00) AFTER TEXT REPLACEMENT
'&-ZEICHEN NACH TEXTERSETZUNG IN OPERAND (&00) UNZULAESSIG

Meaning
Following text replacement, an ampersand (&) character, i.e. a new point of
substitution, was generated in the named operand. This is illegal.

Response
Check the values of the variable symbols to be replaced.

T15 - SIGNIFICANT ERROR
ILLEGAL CONCATENATION
KONKATENIERUNG UNZULAESSIG

U10 - SIGNIFICANT ERROR
SYMBOL (&00) IS UNDEFINED
SYMBOL (&00) UNDEFINIERT

274

U5056-J-2125-3-7600

ASSEMBH messages

ASS2111
ASS2111
ASS2111

ASS2211
ASS2211

ASS2211

ASS2231
ASS2231

ASS2231

ASS2232
ASS2232

ASS2232

ASS2233
ASS2233

ASS2233

ASS2234
ASS2234
ASS2234

Ull - SIGNIFICANT ERROR
UNDEFINED 'ENTRY’ NAME
'ENTRY’-NAME UNDEFINIERT

Response
Check the ENTRY name.

V11l - SIGNIFICANT ERROR

LOCAL VARIABLE SYMBOL IN OPERAND (&00) ALREADY DEFINED; FIRST DECLARATION IS
VALID

LOKALER VARIABLER PARAMETER IN OPERAND (&00) BEREITS DEFINIERT; ERSTE
DEKLARATION GILT

V31 - SIGNIFICANT ERROR

GLOBAL VARIABLE SYMBOL IN OPERAND (&00) ALREADY DEFINED. FIRST DECLARATION
(&01) IS VALID

GLOBALER VARIABLER PARAMETER IN OPERAND (&00) BEREITS DEFINIERT; ERSTE
DEKLARATION (&01) GILT

Meaning
(&01): STMT number of the first definition.

V32 - SIGNIFICANT ERROR

TYPE INCONSISTENCY BY USE OF THE GLOBAL VARIABLE SYMBOL IN THE NAME FIELD.
(&00)

TYP-UNVERTRAEGLICHKEIT BEI VERWENDUNG DES GLOBALEN VARIABLEN PARAMETERS IM
NAMENSFELD. (&00)

Meaning
(&00): STMT number of the first definition.

V33 - SIGNIFICANT ERROR

VARIABLE SYMBOL IN OPERAND (&00) OF THE 'GBL’' INSTRUCTION IS ALREADY DEFINED A
A LOCAL VARIABLE SYMBOL

VARIABLER PARAMETER IN OPERAND (&00) DER 'GBL-ANWEISUNG BEREITS ALS LOKALER
VARIABLER PARAMETER DEKLARIERT

V34 - SIGNIFICANT ERROR
GLOBAL VARIABLE SYMBOL (&00) ALREADY DEFINED. (&01)
GLOBALER VARIABLER PARAMETER (&00) BEREITS DEFINIERT. (&01)

Meaning
(&01): STMT number of the first definition.

U5056-J-2125-3-7600 275

ASSEMBH messages

ASS2241 V41 - SIGNIFICANT ERROR

ASS2241 SYSTEM VARIABLES NOT ALLOWED IN PROTOTYPE STATEMENT OR IN THE OPERAND FIEL
'‘LCL/'GBL’ INSTRUCTIONS

ASS2241 SYSTEMVARIABLE IN MUSTERANWEISUNG BZW. IM OPERANDENFELD VON 'LCL-/'GBL’-
ANWEISUNGEN UNZULAESSIG

ASS2242 V42 - NOTE
ASS2242 SYSTEM VARIABLE SYMBOLS ILLEGAL IN NAME FIELD OF A PROTOTYPE STATEMENT
ASS2242 VARIABLE SYSTEMPARAMETER IM NAMENSFELD EINER MUSTERANWEISUNG UNZULAESSIG

Meaning
A system variable symbol appeared in the name field of a macro prototype statement.
The name field is ignored.

ASS2244 V44 - SIGNIFICANT ERROR
ASS2244 ILLEGAL USE OF SYSTEM VARIABLE SYMBOL IN SOURCE
ASS2244 VERWENDUNG DES VARIABLEN SYSTEMPARAMETERS IN DER SOURCE UNZULAESSIG

Meaning
Some system variable symbols, e.g. &SYSVERM and &SYSECT, are macro-specific and
may not be used in the source.

Response
Refer to the manual for information on the use of system variable symbols.

ASS2245 V45 - SIGNIFICANT ERROR
ASS2245 ILLEGAL REFERENCE TO THE SYSTEM VARIABLE SYMBOL '&SYSLIST’
ASS2245 ZUGRIFF AUF VARIABLEN SYSTEMPARAMETER '&SYSLIST' FEHLERHAFT

Meaning
No value is assigned to the system variable symbol &SYSLIST. Positional operands (or
their sublist elements) can only be referred to via sublist references (&SYSLIST(x,y,...)).

Response
Only sublist references are permitted.

ASS2246 V46 - SIGNIFICANT ERROR
ASS2246 ILLEGAL VALUE ASSIGNMENT TO SYSTEM VARIABLE SYMBOL
ASS2246 ZUWEISUNG AN VARIABLEN SYSTEMPARAMETER UNZULAESSIG

ASS2247 V47 - SIGNIFICANT ERROR
ASS2247 OPERAND (&00) IS A SYSTEM VARIABLE SYMBOL
ASS2247 OPERAND (&00) IST SYSTEMPARAMETER

Meaning
Itis illegal to declare system variable symbols as SET symbols.

276 U5056-J-2125-3-7600

ASSEMBH messages

ASS2248
ASS2248

ASS2248

ASS2249
ASS2249
ASS2249

ASS2250
ASS2250
ASS2250

ASS2251
ASS2251
ASS2251

ASS2252
ASS2252
ASS2252

ASS2253
ASS2253

ASS2253

V48 - SIGNIFICANT ERROR

ONLY THE VALUE 24" OR '31' IS PERMITTED FOR THE SYSTEM VARIABLE SYMBOL
'&SYSMOD’

FUER VARIABLEN SYSTEMPARAMETER ’'&SYSMOD’ NUR WERT '24’ ODER ’'31" ZULAESSIG

V49 - NOTE
OVERFLOW OF THE SYSTEM VARIABLE SYMBOL '&SYSNDX’
UEBERLAUF DES VARIABLEN SYSTEMPARAMETERS ’'&SYSNDX’

Meaning
This system variable symbol serves as a counter of variable symbols
(maximum permissible value = 10000).

V50 - SIGNIFICANT ERROR
INVALID SYMBOLIC PARAMETER NAME
PARAMETERNAME FEHLERHAFT

Meaning

Possible error causes:

— The parameter name consists of only & characters
— The parameter name begins with a digit

— The parameter name contains illegal characters

V51 - WARNING
INVALID SUBLIST
UNGUELTIGE UNTERLISTE

V52 - SIGNIFICANT ERROR
SUBSCRIPTED GLOBAL VARIABLE SYMBOL (&00) IS REFERENCED WITHOUT SUBSCRIPT. (&0
NICHT-INDIZIERTER ZUGRIFF AUF GLOBALEN INDIZIERTEN VARIABLEN PARAMETER (&00).
(&01)

Meaning
Variable symbols declared with a subscript can only be referenced with subscripts.
(&01): STMT number of the first definition.

V53 - SIGNIFICANT ERROR

ILLEGAL SUBSCRIPT OR SUBLIST REFERENCE TO NONSUBSCRIPTED GLOBAL VARIABLE SYI
(&00). (&01)

INDEX- ODER UNTERLISTENZUGRIFF AUF GLOBALEN NICHT-INDIZIERTEN VARIABLEN
PARAMETER (&00) UNZULAESSIG. (&01)

Meaning
Only subscripted variable symbols can be referenced by using subscripts.
(&01): STMT number of the first definition.

U5056-J-2125-3-7600 277

ASSEMBH messages

ASS2254 V54 - SIGNIFICANT ERROR

ASS2254 ILLEGAL SUBSCRIPT OR SUBLIST REFERENCE TO NONSUBSCRIPTED LOCAL VARIABLE SYM
(&00).
ASS2254 INDEX- ODER UNTERLISTENZUGRIFF AUF LOKALEN NICHT-INDIZIERTEN VARIABLEN

PARAMETER (&00) UNZULAESSIG

Meaning
Only subscripted variable symbols can be referenced by using subscripts.

ASS2255 V55 - SIGNIFICANT ERROR
ASS2255 ILLEGAL SUBLIST REFERENCE TO THE LOCAL VARIABLE SYMBOL (&00)
ASS2255 UNTERLISTENZUGRIFF AUF LOKALEN VARIABLEN PARAMETER (&00) UNZULAESSIG

Meaning
Sublist references are only permitted for symbolic parameters.

ASS2256 V56 - SIGNIFICANT ERROR

ASS2256 INVALID '&SYSLIST' REFERENCE TO NAME FIELD. SUBSTITUTION VALUE: NAME FIELD
ENTRY

ASS2256 '‘&SYSLIST-ZUGRIFF AUF NAMENSFELD FEHLERHAFT. ERSATZWERT: NAMENSFELD-EINTRAG

Meaning
The name field entry can only be referenced via &SYSLIST(0).

ASS2257 V57 - SIGNIFICANT ERROR
ASS2257 ILLEGAL SUBLIST REFERENCE TO THE GLOBAL VARIABLE SYMBOL (&00). (&01)
ASS2257 UNTERLISTENZUGRIFF AUF GLOBALEN VARIABLEN PARAMETER (&00) UNZULAESSIG. (&01)

Meaning
Sublist references are only permitted for symbolic parameters.
(&01): STMT number of the first definition.

ASS2258 V58 - SIGNIFICANT ERROR

ASS2258 THE SUBSCRIPTED LOCAL VARIABLE SYMBOL (&00) CANNOT BE REFERENCED WITHOUT A
SUBSCRIPT.

ASS2258 NICHT-INDIZIERTER ZUGRIFF AUF LOKALEN INDIZIERTEN VARIABLEN PARAMETER (&00)
UNZULAESSIG

Meaning
A variable symbol declared with a subscript can only be referenced with a subscript.

ASS2259 V59 - NOTE
ASS2259 SYMBOLIC PARAMETERS AND 'SET’ SYMBOLS MUST NOT BEGIN WITH 'SYS’
ASS2259 'SET- UND SYMBOLISCHE PARAMETER DUERFEN NICHT MIT 'SYS’ BEGINNEN

278 U5056-J-2125-3-7600

ASSEMBH messages

ASS2260
ASS2260
ASS2260

ASS2262
ASS2262
ASS2262

ASS2263
ASS2263
ASS2263

ASS2264
ASS2264
ASS2264

ASS2265
ASS2265
ASS2265

V60 - SIGNIFICANT ERROR
NAME FIELD CONTAINS ILLEGAL SET SYMBOL
'SET-PARAMETER IM NAMENSFELD FEHLERHAFT

Meaning

Possible error causes:

The SET symbol specified in the name field has a syntax error or is a read-only system
symbol

V62 - SIGNIFICANT ERROR
UNDEFINED VARIABLE SYMBOL IN NAME FIELD OF A 'SET’ INSTRUCTION
VARIABLER PARAMETER IM NAMENSFELD DER 'SET-ANWEISUNG UNDEFINIERT

Meaning
A variable symbol that was not defined or was defined twice appeared in the name field
of the SET instruction.

Response

Possible responses:

— Provide a unique declaration for the SET symbol beforehand
— Use a SETx instruction with a type specification.

V63 - SIGNIFICANT ERROR
ILLEGAL VARIABLE SYMBOL OR 'SETC’ EXPRESSION IN THE NAME FIELD
VARIABLER PARAMETER BZW. 'SETC-AUSDRUCK IM NAMENSFELD UNZULAESSIG

V64 - SIGNIFICANT ERROR
GENERATED 'SET’ SYMBOL IN THE NAME FIELD OF A 'SET' INSTRUCTION IS ILLEGAL
GENERIERTER 'SET-PARAMETER IM NAMENSFELD EINER 'SET-ANWEISUNG UNZULAESSIG

Meaning
A generated variable symbol appeared in the name field of a SET instruction. This is
only permitted for SETx instructions with a type specification.

Response
Use SETx with a type specification instead of SET.

V65 - SIGNIFICANT ERROR

TYPE INCONSISTENCY BY USE OF THE LOCAL VARIABLE SYMBOL IN THE NAME FIELD
TYP-UNVERTRAEGLICHKEIT BEI VERWENDUNG DES LOKALEN VARIABLEN PARAMETERS IM
NAMENSFELD

Meaning
The assigned value does not correspond to the declaration type of the variable symbol.

U5056-J-7125-3-7600 279

ASSEMBH messages

ASS2266 V66 - SIGNIFICANT ERROR

ASS2266 ILLEGAL IMPLICIT DEFINITION OF VARIABLE SYMBOL IN NAME FIELD OF A 'SET
INSTRUCTION

ASS2266 IMPLIZITE DEFINITION DES IM NAMENSFELD EINER 'SET-ANWEISUNG STEHENDEN
VARIABLEN PARAMETERS UNZULAESSIG
Meaning
An implicit definition is only permitted with SETA, SETB or SETC; however, not with
SET.

ASS2267 V67 - SIGNIFICANT ERROR

ASS2267 WRONG NAME FIELD ENTRY IN CORRESPONDING PROTOTYPE STATEMENT

ASS2267 NAMENSFELDEINTRAG IN ZUGEHOERIGER MUSTERANWEISUNG FEHLERHAFT

ASS2268 V68 - SIGNIFICANT ERROR

ASS2268 VARIABLE SYMBOL (&00) TOO LONG; MAXIMUM VALUE = 64

ASS2268 VARIABLER PARAMETER (&00) ZU LANG; MAXIMALLAENGE = 64

ASS2269 V69 - SIGNIFICANT ERROR

ASS2269 SYNTAX ERROR IN VARIABLE SYMBOL (&00)

ASS2269 VARIABLER PARAMETER (&00) SYNTAKTISCH FALSCH

ASS2270 V70 - SIGNIFICANT ERROR

ASS2270 BLANKS ARE NOT ALLOWED AS PART OF VARIABLE OR SEQUENCE SYMBOLS

ASS2270 BLANKS ALS BESTANDTEIL VARIABLER PARAMETER BZW. FOLGESYMBOLE UNZULAESSIG

ASS2271 V71 - SIGNIFICANT ERROR

ASS2271 SYNTAX ERROR IN PARAMETER (&00) OF THE PROTOTYPE STATEMENT

ASS2271 SYNTAX-FEHLER IN OPERAND (&00) DER MUSTERANWEISUNG

ASS2273 V73 - SIGNIFICANT ERROR

ASS2273 ILLEGAL VALUE ASSIGNMENTS TO SUBLIST ELEMENTS

ASS2273 WERTZUWEISUNGEN AN UNTERLISTENELEMENTE UNZULAESSIG

ASS2274 V74 - SIGNIFICANT ERROR

ASS2274 ILLEGAL VALUE ASSIGNMENT TO THE SYSTEM VARIABLE SYMBOL '&SYSLIST

ASS2274 WERTZUWEISUNG AN VARIABLEN SYSTEMPARAMETER '&SYSLIST' UNZULAESSIG
Meaning
No corresponding symbolic parameter was passed in the prototype statement, and no
corresponding entry was made in the macro call.

280 U5056-J-2125-3-7600

ASSEMBH messages

ASS2410
ASS2410
ASS2410

ASS2412
ASS2412

ASS2412

ASS2413
ASS2413
ASS2413

ASS2414
ASS2414
ASS2414

ASS2415
ASS2415
ASS2415

ASS2416
ASS2416
ASS2416

ASS2417
ASS2417
ASS2417

ASS2419
ASS2419
ASS2419

X10 - SIGNIFICANT ERROR
VALUE OF THE SETB EXPRESSION IS NEITHER 'O’ NOR '1’
WERT DES 'SETB’-AUSDRUCKS WEDER '0’ NOCH '1’

Meaning
A logical expression can only have the value 0 or 1.

X12 - WARNING

VALUE OF THE ARITHMETIC EXPRESSION IN THE AGO INSTRUCTION IS

NEGATIVE, '0', OR GREATER THAN THE NUMBER OF SUPPLIED SEQUENCE SYMBOLS: NO
BRANCH

WERT DES ARITHMETISCHEN AUSDRUCKS IN 'AGO’-ANWEISUNG NEGATIV,

‘0’ ODER GROESSER ALS ANZAHL DER MITGEGEBENEN FOLGESYMBOLE: KEIN SPRUNG

X13 - SIGNIFICANT ERROR
'ACTR’ OPERAND IS NEGATIVE
'ACTR’-OPERAND NEGATIV

Meaning
The operand of an ACTR instruction must be a positive arithmetic expression.

X14 - SIGNIFICANT ERROR
STRING IN OPERAND TOO LONG; MAXIMUM VALUE = 1020
ZEICHENSTRING IN OPERAND ZU LANG; MAXIMALLAENGE = 1020

X15 - SIGNIFICANT ERROR

ILLEGAL STRING OR NULL STRING IN DUPLICATION FACTOR OF 'SETC' OPERAND
ZEICHENSTRING ODER NULLSTRING IM WIEDERHOLUNGSFAKTOR IN 'SETC-OPERAND
UNZULAESSIG

X16 - SIGNIFICANT ERROR
ILLEGAL STRING OR NULL STRING AS ARGUMENT OF THE SUBSTRING FUNCTION
ZEICHENSTRING ODER NULLSTRING ALS ARGUMENT DER SUBSTRING-FUNKTION UNZULAES:!

X17 - SIGNIFICANT ERROR
ARGUMENT OF THE SUBSTRING FUNCTION IS '0’ OR NEGATIVE
ARGUMENT DER SUBSTRING-FUNKTION '0’ ODER NEGATIV

X19 - SIGNIFICANT ERROR
NEGATIVE DUPLICATION FACTOR IN 'SETC’ OPERAND
WIEDERHOLUNGSFAKTOR IN 'SETC-OPERAND NEGATIV

U5056-J-7125-3-7600 281

ASSEMBH messages

ASS2420 X20 - SIGNIFICANT ERROR
ASS2420 ILLEGAL ATTRIBUTE REFERENCE
ASS2420 MERKMAL-BEZUG FEHLERHAFT
Meaning
Either no symbol or parameter follows the attribute, or the K or N attribute is followed
by a symbol (only parameters are permitted).
ASS2421 X21 - SIGNIFICANT ERROR
ASS2421 ILLEGAL REFERENCE TO 'T' AND ’'D’ ATTRIBUTE IN A 'SETA’ EXPRESSION
ASS2421 BEZUG AUF 'T'- UND 'D-MERKMAL IM 'SETA’-AUSDRUCK UNZULAESSIG
ASS2422 X22 - SIGNIFICANT ERROR
ASS2422 ILLEGAL REFERENCE TO THE 'K’ ATTRIBUTE FOR VARIABLE SYMBOL (&00)
ASS2422 BEZUG AUF 'K-MERKMAL DES VARIABLEN PARAMETERS (&00) UNZULAESSIG
Meaning
A non-subscripted reference was made to the K attribute of a subscripted SET symbol
or to &SYSLIST.
ASS2423 X23 - SIGNIFICANT ERROR
ASS2423 ILLEGAL SUBSCRIPTED REFERENCE TO THE 'N’ ATTRIBUTE FOR VARIABLE SYMBOL (&00)
ASS2423 BEZUG AUF 'N-MERKMAL DES VARIABLEN PARAMETERS (&00) BEI INDIZIERTEM ZUGRIFF
UNZULAESSIG
Meaning
The N attribute for subscripted SET symbols is only defined for a non-subscripted
reference.
ASS2424 X24 - WARNING
ASS2424 ATTRIBUTE REFERENCE NOT DEFINED; DEFAULT VALUE INSERTED
ASS2424 MERKMAL-BEZUG FEHLERHAFT; ERSATZWERT WIRD VERWENDET
Meaning
Either no symbol or parameter follows the attribute, or the symbol/parameter name
contains a syntax error.
ASS2425 X25 - SIGNIFICANT ERROR
ASS2425 LENGTH OF THE SYMBOL (&00) CANNOT BE EVALUATED
ASS2425 LAENGE DES SYMBOLS (&00) NICHT BESTIMMBAR
ASS2427 X27 - SIGNIFICANT ERROR
ASS2427 ILLEGAL ATTRIBUTE REFERENCE: VALUE OF SYMBOLIC PARAMETER IS SYMBOL NAME
ASS2427 MERKMAL-BEZUG FEHLERHAFT: WERT DES SYMBOLISCHEN PARAMETERS IST SYMBOLNAME
282 U5056-J-2125-3-7600

ASSEMBH messages

ASS2433
ASS2433
ASS2433

ASS2434
ASS2434
ASS2434

ASS2435
ASS2435
ASS2435

ASS2436
ASS2436
ASS2436

ASS2437
ASS2437
ASS2437

ASS2439
ASS2439
ASS2439

ASS2441
ASS2441
ASS2441

ASS2448
ASS2448
ASS2448

X33 - SIGNIFICANT ERROR
SUBSCRIPT OF THE VARIABLE SYMBOL (&00) IS '0' OR NEGATIVE
INDEX DES VARIABLEN PARAMETERS (&00) '0' ODER NEGATIV

Meaning
The subscript must be > 0 for subscripted variable symbols.

Response
Replace the subscript by a value > 0.

X34 - SIGNIFICANT ERROR
ILLEGAL SUBLIST REFERENCE TO VARIABLE SYMBOL (&00) WITH SUBSCRIPT 'O’
UNTERLISTENZUGRIFF AUF VARIABLEN PARAMETER (&00) MIT INDEX 'O’ UNZULAESSIG

Meaning
The subscript 0 is only permitted for reference to the name field &SYSLIST(0) zulaessig.

Response
Replace the subscript by a value > 0.

X35 - SIGNIFICANT ERROR
SUBSCRIPT OF THE VARIABLE SYMBOL (&00) IS '0' OR NEGATIVE
INDEX DES VARIABLEN PARAMETERS (&00) '0'’ ODER NEGATIV

X36 - SIGNIFICANT ERROR
SUBSCRIPTED USE OF PREDEFINED 'SET’ SYMBOL IS ILLEGAL
INDIZIERTE VERWENDUNG VORDEFINIERTER 'SET-PARAMETER UNZULAESSIG

X37 - WARNING
MULTIPLE ASSIGNMENT TO KEYWORD PARAMETER (&00); FIRST ASSIGNMENT IS VALID
MEHRFACH-ZUWEISUNG AN KENNWORTOPERANDEN (&00); ERSTE ZUWEISUNG GILT

X39 - SIGNIFICANT ERROR
SUBSCRIPTING ILLEGAL
INDIZIERUNG UNZULAESSIG

X41 - SIGNIFICANT ERROR

INVALID SEVERITY CODE (> 255) IN 'MNOTE’ INSTRUCTION REPLACED BY ERROR CODE 'O’
UNGUELTIGER FEHLERCODE (GROESSER 255) IN 'MNOTE-ANWEISUNG DURCH FEHLERCODE
ERSETZT

X48 - SIGNIFICANT ERROR
ILLEGAL OPERAND FORMAT IN 'MNOTE’ INSTRUCTION
OPERANDENFORMAT BEI 'MNOTE'-ANWEISUNG FEHLERHAFT

Meaning
The permissible operands for MNOTE are the severity code and the message string
enclosed in single quotes.

U5056-J-7125-3-7600 283

ASSEMBH messages

ASS2449
ASS2449
ASS2449

ASS2451
ASS2451
ASS2451

ASS2452
ASS2452
ASS2452

ASS2453
ASS2453
ASS2453

ASS2454
ASS2454
ASS2454

ASS2455
ASS2455
ASS2455

X49 - SIGNIFICANT ERROR
OPERAND NOT ENCLOSED WITHIN SINGLE QUOTES
OPERAND NICHT IN HOCHKOMMATA EINGESCHLOSSEN

Meaning

The message text of an MNOTE or TITLE instruction is not enclosed within single
quotes

(one or both quotes missing).

Response
Insert the missing single quote(s).

X51 - SIGNIFICANT ERROR
ONLY OPERAND 1 OF THE 'MNOTE’ INSTRUCTION IS VALID
NUR OPERAND 1 BEI 'MNOTE-ANWEISUNG GUELTIG

Meaning
The first operand in the MNOTE instruction is enclosed within single quotes; the
following operands are ignored.

Response
Remove the excess operands or single quotes in the first operand.

X52 - SIGNIFICANT ERROR
INVALID SEVERITY CODE IN 'MNOTE’; THE INSTRUCTION WILL BE IGNORED
FEHLERCODE IN '"MNOTE-ANWEISUNG UNGUELTIG; ANWEISUNG WIRD IGNORIERT

X53 - SIGNIFICANT ERROR
OPERANDS REQUIRED IN THE 'MNOTE’' INSTRUCTION ARE MISSING OR EMPTY
ERFODERLICHE OPERANDEN IN 'MNOTE'-ANWEISUNG FEHLEN BZW. SIND LEER

X54 - WARNING
NO MORE THAN TWO OPERANDS ARE ALLOWED IN THE 'MNOTE' INSTRUCTION
MEHR ALS 2 OPERANDEN IN '"MNOTE-ANWEISUNG UNZULAESSIG

Meaning
Excess operands are treated as comments.

X55 - SIGNIFICANT ERROR
CHARACTER EXPRESSION NOT ALLOWED IN ARITHMETIC OR LOGICAL EXPRESSION
ZEICHENAUSDRUCK IM ARITHMETISCHEN ODER LOGISCHEN AUSDRUCK UNZULAESSIG

Meaning
Character expressions are not permitted as operands in SETA or SETB expressions or
in arithmetic or logical relations.

284

U5056-J-2125-3-7600

ASSEMBH messages

ASS2510
ASS2510
ASS2510

ASS2511
ASS2511
ASS2511

ASS2640
ASS2640
ASS2640

ASS2641
ASS2641
ASS2641

ASS2642
ASS2642
ASS2642

Y10 - SIGNIFICANT ERROR
REFERENCED ADDRESS NOT IN RANGE DEFINED BY 'USING’ INSTRUCTION
ANGESPROCHENE ADRESSE AUSSERHALB DES DURCH 'USING’-ANWEISUNG ERFASSTEN BE

Meaning

Possible error causes:

— The specified address is not covered by a base register.
— The base register is dropped.

Y11 - WARNING
MISSING USING INSTRUCTION; BASE REGISTER '0° USED
'USING’-ANWEISUNG FEHLT, BASISREGISTER '0’ WIRD VERWENDET

Z40 - SIGNIFICANT ERROR
'ACTR’ EXCEEDED WHEN PROCESSING A MACRO
'ACTR’-UEBERLAUF BEI BEARBEITUNG EINES MAKROS

Meaning

The maximum number of AGO and AIF instructions was exceeded. This number is
defined by the ACTR instruction; the default value is 4096. The macro expansion is
terminated.

Response

Possible responses:

— Increment the ACTR counter with the ACTR instruction;
— Check the program for an endless loop.

Z41 - FAILURE
'ACTR’ EXCEEDED WHEN PROCESSING MACRO INSTRUCTIONS IN THE SOURCE
'ACTR’-UEBERLAUF BEI BEARBEITUNG VON MAKROANWEISUNGEN IN DER SOURCE

Meaning
The maximum number of AGO and AIF instructions was exceeded. This number is
defined by the ACTR instruction; the default value is 4096. The assembly is terminated.

Response

Possible responses:

— Increment the ACTR counter with the ACTR instruction;
— Check the program for an endless loop.

Z42 - SIGNIFICANT ERROR
PROGRAM COUNTER OVERFLOW
BEFEHLSZAEHLER UEBERLAUF

U5056-J-7125-3-7600 285

ASSEMBH messages

ASS6000
ASS6000
ASS6000

ASS6001
ASS6001

ASS6001

ASS6002
ASS6002

ASS6002

ASS6003
ASS6003
ASS6003

ASS6004
ASS6004
ASS6004

ASS6005
ASS6005
ASS6005

ASS6006
ASS6006
ASS6006

ASS6007
ASS6007
ASS6007

Z00 - FATAL ERROR
INTERNAL ERROR IN ASSEMBH: UNEXPECTED ’'SPL4_RTS_GET_HEAP_RC’ IN 'lARH850
INTERNER FEHLER IM ASSEMBH: UNZULAESSIGER ’'SPL4_RTS_GET_HAEP_RC’ IN 'lARH850

Response
Inform the system administrator.

FATAL ERROR

INTERNAL ERROR IN ASSEMBH: UNEXPECTED RETURN CODE: (&00) IN MACRO (&01) IN
'IARH850’

INTERNER FEHLER IM ASSEMBH: UNZULAESSIGER RETURN-CODE: (&00) IN MAKRO (&01) IN
'IARH850’

Response
Inform the system administrator.

Z02 - FAILURE

INTERNAL ERROR IN ASSEMBH: UNEXPECTED 'INSTRUCTION-SET’ IN MODULE
'IARH_OCTAB_COPY_700’

INTERNER FEHLER IM ASSEMBH: UNZULAESSIGER 'INSTRUCTION-SET’ IM MODUL
'IARH_OCTAB_COPY_700’

Meaning
Termination of the assembler due to system error.

Response
Inform the system administrator.

NO ERRORS
FILE CANNOT BE OPENED
DATEI KANN NICHT GEOEFFNET WERDEN

Z11 - FAILURE
OVERFLOW OF THE GENERATION BUFFER; MAX. SIZE IS 32K BYTE
MAXIMALE GROESSE DES GENERIERUNGSPUFFERS VON 32K BYTE UEBERSCHRITTEN

NO ERRORS
LISTING GENERATOR TIME FOR 'SAVLST-CREATION: (&00) MSEC
ZEIT DES LISTEN-GENERATORS FUER 'SAVLST-ERSTELLUNG: (&00) MSEC

NO ERRORS
LISTING GENERATOR TIME: (&00) MSEC
ZEIT DES LISTEN-GENERATORS: (&00) MSEC

NO ERRORS
TIME OF THE COMPONENT (&00): (&01) MSEC
ZEIT DER KOMPONENTE (&00): (&01) MSEC

286

U5056-J-2125-3-7600

ASSEMBH messages

ASS6008
ASS6008
ASS6008

ASS6009
ASS6009
ASS6009

ASS6010
ASS6010
ASS6010

ASS6011
ASS6011
ASS6011

ASS6012
ASS6012
ASS6012

ASS6013
ASS6013
ASS6013

ASS6014
ASS6014
ASS6014

ASS6017
ASS6017
ASS6017

NO ERRORS
ABNORMAL PROGRAM TERMINATION; ASSEMBH RETURN CODE: (&00)
ABNORMALE PROGRAMMBEENDIGUNG, ASSEMBH-RETURN-CODE: (&00)

NOTE
'"MNOTE’ WITH 'SEVERITY CODE’ (&00)
'MNOTE’ MIT 'SEVERITY CODE’ (&00)

Meaning
Every line of the MNOTE-XREF begins with this text.
(&00): severity code 0 ... 255 of the 'MNOTE’ instruction.

NO ERRORS
(&00) OF BS2000 ASSEMBH(&01) READY
(&00) DES BS2000 ASSEMBH(&01) READY

NO ERRORS
ASSEMBLY TIME: (&00) MSEC
ZEIT DER ASSEMBLIERUNG: (&00) MSEC

NO ERRORS
END OF ASSEMBH(&00)
ENDE ASSEMBH(&00)

Meaning
(&00): Functional scope of ASSEMBH (BC or XT).

Z13 - FAILURE
INTERNAL ERROR IN ASSEMBH: STXIT IN INSTRUCTION (&00). STXIT ACTIVATED
INTERNER FEHLER IM ASSEMBH: STXIT IN ANWEISUNG (&00). STXIT AKTIVIERT

Z14 - FATAL ERROR
FILE (&00) CANNOT BE CLOSED; RETURN CODE: (&01)
DATEI (&00) KANN NICHT GESCHLOSSEN WERDEN; RETURN-CODE: (&01)

Z17 - FATAL ERROR

INTERNAL ERROR IN ASSEMBH: FILE (&00) CANNOT BE OPENED; RETURN CODE = (&01)

INTERNER FEHLER IM ASSEMBH: OEFFNEN DER DATEI (&00) NICHT
MOEGLICH; RETURN-CODE: (&01)

Meaning
This message is intended for the ASSEMBH development team.

Response
Inform the system administrator.

U5056-J-2125-3-7600

287

ASSEMBH messages

ASS6018
ASS6018
ASS6018

ASS6019
ASS6019
ASS6019

ASS6020
ASS6020

ASS6020

ASS6021
ASS6021
ASS6021

ASS6022
ASS6022
ASS6022

NO ERRORS
(&00) FLAGS, (&01) PRIVILEGED FLAGS, (&02) MNOTES
(&00) FLAGS, (&01) PRIVILEGED FLAGS, (&02) MNOTES

Meaning

Statistical information:

(&00): Total number of flags generated;

(&01): Total number of privileged flags generated;
(&02): Total number of macro notes generated.

NO ERRORS
HIGHEST ERROR-WEIGHT: (&00)
HIGHEST ERROR-WEIGHT: (&00)

Z20 - FAILURE

INTERNAL ERROR IN ASSEMBH: ILLEGAL RECORD TYPE IN THE LOCATION COUNTER BASE
CHAIN (PSTAB)

INTERNER FEHLER IM ASSEMBH: UNZULAESSIGER SATZTYP IN DER ADRESSPEGEL-BASISKE
(PSTAB)

Meaning
Termination of the assembler.

Response
Inform the system administrator.

Z21 - FAILURE

INTERNAL ERROR IN ASSEMBH: ILLEGAL OPCODE IN THE INTERMEDIATE LANGUAGE
INTERNER FEHLER IM ASSEMBH: UNZULAESSIGER OPERATIONS-CODE IN DER
ZWISCHENSPRACHE

Meaning
Termination of the assembler.

Response
Inform the system administrator.

Z22 - FAILURE
INTERNAL ERROR IN ASSEMBH: UNEXPECTED 'FILE-TYPE' IN THE 'FILE-DESCRIPTOR’
INTERNER FEHLER IM ASSEMBH: UNERWARTETER 'FILE-TYPE' IM 'FILE-DESCRIPTOR’

Response
Inform the system administrator.

288

U5056-J-2125-3-7600

ASSEMBH messages

ASS6023
ASS6023
ASS6023

ASS6024
ASS6024
ASS6024

ASS6025
ASS6025
ASS6025

ASS6026
ASS6026

ASS6026

ASS6029
ASS6029
ASS6029

Z23 - FAILURE
INTERNAL ERROR IN ASSEMBH: ILLEGAL RETURN CODE OF THE PARSER
INTERNER FEHLER IM ASSEMBH: UNZULAESSIGER RETURN-CODE DES ZERTEILERS

Response
Inform the system administrator.

Z24 - FAILURE
INTERNAL ERROR IN ASSEMBH: PARSER OVERFLOW
INTERNER FEHLER IM ASSEMBH: UEBERLAUF DES ZERTEILERS

Response
Inform the system administrator.

Z25 - FAILURE
INTERNAL ERROR IN ASSEMBH: ERROR DURING ACCESS TO THE PARSER TABLE
INTERNER FEHLER IM ASSEMBH: FEHLER BEIM ZUGRIFF AUF ZERTEILER-TABELLE

Response
Inform the system administrator.

Z26 - FAILURE

INTERNAL ERROR IN ASSEMBH: UNDERFLOW OF THE SEMANTIC STACK OF THE EXPRESSI
ANALYSIS

INTERNER FEHLER IM ASSEMBH: UNTERLAUF DES SEMANTISCHEN STACKS DER
AUSDRUCKSBEARBEITUNG

Response
Inform the system administrator.

FATAL ERROR
DMS ERROR (&00) WHEN OPENING THE SOURCE. IN SYSTEM MODE: /HELP-MSG DMS(&00)
DVS-FEHLER ’(&00)' BEIM OEFFNEN DER SOURCE. IM SYSTEMMODUS: /HELP-MSG DMS(&00)

Meaning

When calling ASSEMBH as a subroutine, the source could not be opened. For more
detailed information about the DMS error code, enter /[HELP-MSG in system mode or
see the manual 'BS2000 System Messages, Reference Manual’ or one of the
BS2000 DMS manuals.

Response
Specify the source correctly.

U5056-J-7125-3-7600 289

ASSEMBH messages

ASS6030
ASS6030
ASS6030

ASS6031
ASS6031
ASS6031

ASS6032
ASS6032
ASS6032

ASS6033
ASS6033
ASS6033

ASS6034
ASS6034

ASS6034

ASS6035
ASS6035
ASS6035

ASS6036
ASS6036
ASS6036

Z30 - FATAL ERROR
INTERNAL ERROR IN ASSEMBH: SYSDTA OPEN ERROR (&00)
INTERNER FEHLER IM ASSEMBH: SYSDTA OPEN ERROR (&00)

Response
Inform the system administrator.

Z31 - FATAL ERROR
INTERNAL ERROR IN ASSEMBH: OMF CLOSE ERROR (&00)
INTERNER FEHLER IM ASSEMBH: OMF CLOSE ERROR (&00)

Response
Inform the system administrator.

Z32 - FAILURE
PLAM-LIB OPEN ERROR (&00) WHEN WRITING THE OBJECT MODULE
PLAM-LIB OPEN FEHLER (&00) BEI OBJEKTMODUL-AUSGABE

Meaning
An error occurred when opening the PLAM library element.

Z33 - FATAL ERROR
EAM-OMF OPEN ERROR (&00)
EAM-OMF OPEN FEHLER (&00)

Z34 - FATAL ERROR

INTERNAL ASSEMBH ERROR. STREAM-STATUS-LIST IS NOT CORRECT (&00). STREAM COULL
NOT BE OPENED

INTERNER FEHLER IM ASSEMBH: STROM-STATUS-LISTE NICHT KORREKT (&00). STROM
KONNTE NICHT GEOEFFNET WERDEN

Z35 - FATAL ERROR
INTERNAL ERROR IN ASSEMBH: OPEN ERROR (&01) ON INPUT FILE (&00)
INTERNER FEHLER IM ASSEMBH: FEHLER (&01) BEIM EROEFFNEN DER EINGABEDATEI (&00;

Meaning
This message is intended for the ASSEMBH development team.

Z36 - FATAL ERROR
INTERNAL ERROR IN ASSEMBH: INPUT/OUTPUT NOT INITIALIZED
INTERNER FEHLER IM ASSEMBH: EIN-/AUSGABE NICHT INITIALISIERT

Response
Inform the system administrator.

290

U5056-J-2125-3-7600

ASSEMBH messages

ASS6037 Z37 - FATAL ERROR

ASS6037 INTERNAL ERROR IN ASSEMBH: SYSDTA CLOSE ERROR (&00)
ASS6037 INTERNER FEHLER IM ASSEMBH: SYSDTA CLOSE ERROR (&00)
Meaning

This message is intended for the ASSEMBH development team.

Response
Inform the system administrator.

ASS6038 Z38 - FATAL ERROR

ASS6038 INTERNAL ERROR IN ASSEMBH: WRONG FILE TYPE IN DATATAB
ASS6038 INTERNER FEHLER IM ASSEMBH: UNZULAESSIGER DATEITYP IN 'DATATAB’
Response

Inform the system administrator.

ASS6040 Z01 - FAILURE

ASS6040 INTERNAL ASSEMBH ERROR DURING TEXT REPLACEMENT
ASS6040 INTERNER FEHLER IM ASSEMBH: FEHLER BElI TEXTERSETZUNG
Response

Inform the system administrator.

ASS6041 Z10 - FAILURE

ASS6041 INTERNAL ERROR IN ASSEMBH: ILLEGAL SYMBOL TYPE FOR ENTRY PROCESSING
ASS6041 INTERNER FEHLER IM ASSEMBH: UNZULAESSIGER SYMBOLTYP IN ENTRY-BEARBEITUNG
Response

Inform the system administrator.

ASS6042 NO ERRORS
ASS6042 ELAPSED TIME: (&00) SEC
ASS6042 VERBRAUCHTE ZEIT: (&00) SEC

ASS6043 NO ERRORS
ASS6043 OPTION *INCREMENT' FOR READING LIBRARY ACCESS NOT ALLOWED
ASS6043 OPTION *INCREMENT’ BElI LESENDEM BIBLIOTHEKSZUGRIFF UNZULAESSIG

ASS6044 NO ERRORS
ASS6044 OPTION *INCREMENT’ POSSIBLE ONLY WITH LMS/PLAM V2.0A
ASS6044 OPTION *INCREMENT' ERST AB LMS/PLAM V2.0A MOEGLICH

ASS6045 NO ERRORS
ASS6045 OPTION "™*HIGHEST-EXISTING’ POSSIBLE ONLY WITH LMS/PLAM V2.0A
ASS6045 OPTION "*HIGHEST-EXISTING’ ERST AB LMS/PLAM V2.0A MOEGLICH

U5056-J-7125-3-7600 291

ASSEMBH messages

ASS6050 Z50 - FAILURE

ASS6050 INTERNAL ERROR IN ASSEMBH: ERROR (&00) IN MODULE (&01)
ASS6050 INTERNER FEHLER IM ASSEMBH: FEHLER (&00) IM MODUL (&01)
Meaning

This message is intended for the ASSEMBH development team.

Response
Inform the system administrator.

ASS6051 FAILURE

ASS6051 INTERNAL ERROR IN ASSEMBH: INVALID 'SET’ VALUE
ASS6051 INTERNER FEHLER IM ASSEMBH: 'SET’-WERT UNGUELTIG
Response

Inform the system administrator.

ASS6052 Z15 - FAILURE

ASS6052 INTERNAL ERROR IN ASSEMBH: ERROR (&00) IN MODULE (&01) IN INCLUDE (&02)
ASS6052 INTERNER FEHLER IM ASSEMBH: FEHLER (&00) IN MODUL (&01) IM INCLUDE (&02)
Meaning

This message is intended for the ASSEMBH development team.
(&02): Name of INCLUDE.

Response
Inform the system administrator.

ASS6060 FATAL ERROR
ASS6060 SDF SYNTAX FILE NOT CONTAINED IN CATALOG
ASS6060 SDF-SYNTAXDATEI IM KATALOG NICHT ENTHALTEN

Meaning
The SDF syntax file is not defined or not activated in BS2000.

Response
Inform the system administrator.

292 U5056-J-2125-3-7600

ASSEMBH messages

ASS6061
ASS6061
ASS6061

ASS6062
ASS6062
ASS6062

ASS6063
ASS6063
ASS6063

ASS6064
ASS6064
ASS6064

ASS6065
ASS6065
ASS6065

ASS6066
ASS6066
ASS6066

FATAL ERROR
"ASSEMBH’ NOT DEFINED IN SDF SYNTAX FILE
'ASSEMBH’ NICHT IN SDF-SYNTAXDATEI DEFINIERT

Meaning
The name ASSEMBH does not exist in the SDF syntax file.

Response
Inform the system administrator.

FAILURE
INTERNAL ERROR IN ASSEMBH: SDF INPUT BUFFER TOO SMALL
INTERNER FEHLER IM ASSEMBH: SDF-EINGABEPUFFER ZU KLEIN

Response
Inform the system administrator.

FATAL ERROR
SDF NOT LOADED IN BS2000
SDF IN BS2000 NICHT GELADEN

Response
Inform the system administrator.

FATAL ERROR
SDF SYSTEM ERROR; UNEXPECTED RETURN CODE: (&00)
SDF-SYSTEMFEHLER, UNERWARTETER RETURN-CODE: (&00)

Response
Inform the system administrator.

NOTE
INVALID VALUES FOR 'MARGINS’; DEFAULT VALUES ARE USED
'"MARGINS’-WERTE UNGUELTIG; DURCH STANDARDWERTE ERSETZT

Response
Check the permissible values in the User Guide.

766 - NOTE
SOURCE OPEN ERROR: (&00)
FEHLER BEIM OEFFNEN DER SOURCE: (&00)

Meaning
(&00): cause of error.

U5056-J-7125-3-7600 293

ASSEMBH messages

ASS6070 Z70 - FAILURE

ASS6070 INTERNAL ERROR IN ASSEMBH: WRONG 'SYMTAB' ENTRY FOR THE SYMBOL (&00)
ASS6070 INTERNER FEHLER IM ASSEMBH: FEHLERHAFTER 'SYMTAB-EINTRAG FUER SYMBOL (&00)
Response

Inform the system administrator.

ASS6071 Z71 - FAILURE

ASS6071 NO MEMBER NAME SPECIFIED FOR MODULE OUTPUT AND FIRST 'CSECT' UNNAMED; MODL
CANNOT BE OUTPUT

ASS6071 FUER MODULAUSGABE KEIN ELEMENTNAME ANGEGEBEN UND ERSTE 'CSECT UNBENANNT;
WIRD NICHT AUSGEGEBEN

Meaning
The element ("member") name cannot be determined, as the first CSECT is unnamed
and the element name is omitted in the compiler options. The assembly is terminated.

ASS6072 Z72 - FAILURE
ASS6072 ERROR WHILE READING A SOURCE STATEMENT; RETURN CODE: (&00)
ASS6072 FEHLER BEIM LESEN DES SOURCE-STATEMENTS; RETURN-CODE: (&00)

ASS6073 Z73 - WARNING

ASS6073 ERROR ON OPENING THE MACRO/COPY LIBRARY (&00). LIBRARY
IGNORED. ORIGIN ERROR: (&01)

ASS6073 FEHLER BEIM OEFFNEN DER MAKRO-/COPY-BIBLIOTHEK (&00).

BIBLIOTHEK WIRD UEBERGANGEN.
PRIMAERFEHLER: (&01)

Meaning

The specified macro or COPY library could not be opened.
(&00): library name, element name

(&01): cause of error.

ASS6074 Z74 - FAILURE

ASS6074 INTERNAL ERROR IN ASSEMBH: ERROR (&01) WHILE GENERATING A (&00) RECORD
ASS6074 INTERNER FEHLER IM ASSEMBH: FEHLER (&01) BEIM ERZEUGEN EINES (&00)-SATZES
Meaning

This message is intended for the ASSEMBH development team.

Response
Inform the system administrator.

ASS6075 Z75 - FAILURE
ASS6075 INSUFFICIENT MEMORY WHEN GENERATING THE INTERNAL TABLE (&00)
ASS6075 SPEICHERMANGEL BEIM ERZEUGEN DER INTERNEN TABELLE (&00)

Response
The allocated memory must be increased by system administration.

294 U5056-J-2125-3-7600

ASSEMBH messages

ASS6076
ASS6076
ASS6076

ASS6080
ASS6080
ASS6080

ASS6081
ASS6081

ASS6081

ASS6082
ASS6082

ASS6082

ASS6083
ASS6083
ASS6083

ASS6084
ASS6084
ASS6084

ASS6085
ASS6085
ASS6085

ASS6086
ASS6086
ASS6086

ASS6087
ASS6087
ASS6087

Z76 - NOTE
SOURCE FILE OR SOURCE MEMBER HAS WRONG TYPE: (&00)
SOURCE-FILE BZW. SOURCE-ELEMENT HAT FALSCHEN TYP: (&00)

NOTE

INTERNAL ASSEMBH ERROR IN OPTION TREATMENT. DEFAULT OPTION VALUES USED
INTERNER FEHLER IM ASSEMBH: FEHLER IN DER OPTIONS-VERARBEITUNG; STANDARD-
OPTIONS-WERTE VERWENDET

NOTE

INVALID OPTION KEYWORD (&00); OPTION WILL BE IGNORED UNTIL NEXT * OR ' IS
DETECTED

OPTION-SCHLUESSELWORT (&00) UNGUELTIG; OPTION WIRD BIS ZUM NAECHSTEN "* ODER
", IGNORIERT

Meaning
An unidentifiable option keyword was specified after *COMOPT.

NOTE

ONLY * OR ') IS ALLOWED AS A DELIMITER BETWEEN OPTIONS. THE OPTIONS WILL BE
IGNORED UNTIL THEY ARE ENCOUNTERED

ALS TRENNUNGSZEICHEN ZWISCHEN OPTIONEN NUR ™ ODER ',/ ZULAESSIG; BIS ZU DERE
AUFTRETEN WERDEN OPTIONEN IGNORIERT

NOTE
SYNTAX ERROR IN *END’ OPTION
SYNTAX-FEHLER IN ™*END’-OPTION

NOTE
SYNTAX ERROR
SYNTAX-FEHLER

N 'INSTR-SET' OPTION. DEFAULT VALUE IS USED
N 'INSTR-SET-OPTION. STANDARDWERT WIRD VERWENDET

NOTE
SYNTAX ERROR
SYNTAX-FEHLER

N 'ADIAG’ OPTION. 'NOADIAG' IS SET
N 'ADIAG’-OPTION. 'NOADIAG' WIRD GESETZT

NOTE
SYNTAX ERROR
SYNTAX-FEHLER

N A NO LONGER SUPPORTED OPTION
N NICHT MEHR UNTERSTUETZTER OPTION

NOTE
SYNTAX ERROR
SYNTAX-FEHLER

N THE 'SYSPARM' OPTION. THE NULL STRING IS ASSIGNED TO '&SYSPAR
N DER 'SYSPARM’-OPTION. '&SYSPARM' WIRD NULLSTRING ZUGEWIESEN

U5056-J-7125-3-7600 295

ASSEMBH messages

ASS6088 NOTE
ASS6088 SYNTAX ERROR
ASS6088 SYNTAX-FEHLER

N THE 'ERR’ OPTION. DEFAULT VALUES ARE USED
N 'ERR’-OPTION. STANDARDWERTE WERDEN VERWENDET

ASS6089 NOTE
ASS6089 SYNTAX ERROR
ASS6089 SYNTAX-FEHLER

N 'ERRPR’ OPTION. DEFAULT VALUE IS USED
N 'ERRPR’-OPTION. STANDARDWERT WIRD VERWENDET

ASS6090 NOTE
ASS6090 SYNTAX ERROR
ASS6090 SYNTAX-FEHLER

N 'LINECNT' OPTION. DEFAULT VALUE IS USED
N 'LINECNT-OPTION. STANDARDWERT WIRD VERWENDET

ASS6091 NOTE
ASS6091 SYNTAX ERROR
ASS6091 SYNTAX-FEHLER

N 'PRTOFF OPTION. DEFAULT VALUE IS USED
N 'PRTOFF-OPTION. STANDARDWERT WIRD VERWENDET

ASS6092 NOTE
ASS6092 SYNTAX ERROR
ASS6092 SYNTAX-FEHLER

N 'SOURCE’ OPTION. 'SOURCE=*" IS SET
N 'SOURCE’-OPTION. 'SOURCE=* WIRD GESETZT

ASS6093 NOTE
ASS6093 SYNTAX ERROR
ASS6093 SYNTAX-FEHLER

N 'MODULE’ OPTION. 'MODULE=*" IS SET
N 'MODULE’-OPTION. 'MODULE=* WIRD GESETZT

ASS6094 NOTE

ASS6094 ILLEGAL USE OF THE 'DUET’ OPTION TOGETHER WITH 'INSTR=SET2' OR ’'INSTR=SET3’;
THE 'DUET OPTION WILL BE IGNORED
ASS6094 'DUET-OPTION KOMBINIERT MIT 'INSTR=SET2’- BZW. 'INSTR=SET3" -OPTION

UNZULAESSIG,; 'DUET-OPTION WIRD IGNORIERT

ASS6095 NOTE
ASS6095 THE 'ISD’ AND 'ADIAG’ OPTION IS NOT SUPPORTED IN ASSEMBH-BC.

ASS6095 'ISD’- UND 'ADIAG’-OPTION IM ASSEMBH-BC NICHT UNTERSTUETZT

ASS6096 NOTE

ASS6096 INVALID STRING LENGTH IN 'SYSPARM' OPTION; THE NULL STRING IS ASSIGNED TO
'&SYSPARAM’

ASS6096 STRING-LAENGE BEI 'SYSPARM'-OPTION UNGUELTIG; '&SYSPARM’' WIRD NULLSTRING
ZUGEWIESEN

ASS6097 NOTE
ASS6097 INVALID VALUE IN 'ERRPR’ OPTION; DEFAULT VALUE IS USED
ASS6097 WERT IN 'ERRPR’-OPTION UNGUELTIG; STANDARDWERT WIRD VERWENDET

296 U5056-J-2125-3-7600

ASSEMBH messages

ASS6098 NOTE
ASS6098 INVALID VALUE IN 'LINECNT OPTION; DEFAULT VALUE IS USED
ASS6098 WERT IN 'LINECNT-OPTION UNGUELTIG; STANDARDWERT WIRD VERWENDET

ASS6099 NOTE
ASS6099 INVALID VALUE IN THE OPTION 'ERR=N’; DEFAULT VALUE IS USED
ASS6099 WERT IN 'ERR=N-OPTION UNGUELTIG; STANDARDWERT WIRD VERWENDET

ASS6100 NOTE
ASS6100 OPTION (&00) IS NO LONGER SUPPORTED IN ASSEMBH
ASS6100 OPTION (&00) IN ASSEMBH NICHT MEHR UNTERSTUETZT

ASS6101 NOTE
ASS6101 INVALID VALUE IN THE OPTION 'PRTOFF=N’; DEFAULT VALUE IS USED
ASS6101 WERT IN 'PRTOFF=N-OPTION UNGUELTIG; STANDARDWERT WIRD VERWENDET

ASS6102 NOTE

ASS6102 IN THE OPTION 'PRTOFF=X1;X2...; A INVALID CHARACTER IS GIVEN. IT WILL BE
IGNORED

ASS6102 ZEICHEN IN 'PRTOFF=X1;X2...-OPTION UNGUELTIG; ZEICHEN WIRD IGNORIERT

ASS6103 NOTE

ASS6103 ONLY ONE CHARACTER IS ALLOWED PER ENTRY IN THE 'PRTOFF=X1;X2... OPTION; STRINC
ENTRIES ARE IGNORED

ASS6103 IN 'PRTOFF=X1;X2...’-OPTION JEWEILS NUR EIN ZEICHEN ZULAESSIG; STRING-ANGABE
WIRD IGNORIERT

ASS6104 NOTE
ASS6104 LENGTH OF FILE NAME IN 'SOURCE’' OPTION IS INVALID. 'SOURCE=* IS SET
ASS6104 LAENGE DES DATEINAMENS IN 'SOURCE-OPTION UNZULAESSIG; 'SOURCE=* WIRD GESETZT

ASS6105 NOTE

ASS6105 LENGTH OF MEMBER NAME IN 'SOURCE’ OPTION IS INVALID. 'SOURCE=* IS SET

ASS6105 LAENGE DES ELEMENTNAMENS IN 'SOURCE’-OPTION UNZULAESSIG. 'SOURCE=* WIRD
GESETZT

ASS6106 NOTE

ASS6106 LENGTH OF VERSION IN 'SOURCE’ OPTION IS INVALID. 'SOURCE=* IS SET

ASS6106 LAENGE DER VERSIONSANGABE IN 'SOURCE’-OPTION UNZULAESSIG; 'SOURCE=* WIRD
GESETZT

ASS6107 NOTE

ASS6107 LENGTH OF LIBRARY NAME IN 'MODULE' OPTION IS INVALID. '"MODULE=* IS SET

ASS6107 LAENGE DES BIBLIOTHEKNAMENS IN 'MODULE-OPTION UNZULAESSIG; 'MODULE=* WIRD
GESETZT

U5056-J-7125-3-7600 297

ASSEMBH messages

ASS6108 NOTE

ASS6108 LENGTH OF MEMBER NAME IN 'MODULE' OPTION IS INVALID. '"MODULE=* IS SET

ASS6108 LAENGE DES ELEMENTNAMENS IN 'MODULE’-OPTION UNZULAESSIG; 'MODULE=* WIRD
GESETZT

ASS6109 NOTE

ASS6109 LENGTH OF VERSION IN 'MODULE' OPTION IS INVALID. '"MODULE=* IS SET

ASS6109 LAENGE DER VERSIONSANGABE IN 'MODULE'-OPTION UNZULAESSIG; '"MODULE=*" WIRD
GESETZT

ASS6110 FATAL - ERROR
ASS6110 SOURCE CANNOT BE OPENED; (&00); 'HALT' IS SET
ASS6110 SOURCE KANN NICHT GEOEFFNET WERDEN; (&00); 'HALT" WIRD GESETZT

Meaning
(&00): cause of error (e.g. FILE NOT SHAREABLE).

ASS6111 NOTE

ASS6111 ONLY 'COMOPT’, 'END’, OR 'HALT' IS ALLOWED AFTER ™; ALL OTHER ENTRIES ARE
IGNORED

ASS6111 NACH ™ NUR 'COMOPT’, 'END’ ODER 'HALT' ZULAESSIG; ALLES ANDERE WIRD IGNORIERT

ASS6112 NOTE
ASS6112 UNEXPECTED EOF; 'END HALT' IS SET
ASS6112 UNERWARTETES EOF; 'END HALT' WURDE GESETZT

ASS6113 NOTE
ASS6113 UNEXPECTED EOF; 'HALT' IS SET
ASS6113 UNERWARTETES EOF; 'HALT' WURDE GESETZT

ASS6114 NOTE

ASS6114 LAST QUOTE IS MISSING IN THE 'SYSPARM' OPTION. THE NULL STRING IS ASSIGNED TO
'‘&SYSPARM’

ASS6114 IN 'SYSPARM’-OPTION FEHLT ABSCHLIESSENDES APOSTROPH; '&SYSPARM’ WIRD NULLSTRIN
ZUGEWIESEN

ASS6115 NOTE

ASS6115 THE 'DSDD’ OR 'MONSYS RECORDS=YES' OPTION IS ONLY ALLOWED WHEN MODULE IS Ol
TO A PLAM LIBRARY; OPTION WILL BE IGNORED

ASS6115 'DSDD’- BZW. 'MONSYS-RECORDS=YES'-OPTION NUR BEI MODULAUSGABE IN PLAM-
BIBLIOTHEK ZULAESSIG; OPTION WIRD IGNORIERT

298 U5056-J-2125-3-7600

ASSEMBH messages

ASS6117
ASS6117
ASS6117

ASS6121
ASS6121
ASS6121

ASS6122
ASS6122
ASS6122

ASS6123
ASS6123
ASS6123

ASS6124
ASS6124
ASS6124

ASS6125
ASS6125
ASS6125

NOTE
SYNTAX ERROR IN 'SEQ’ OPTION; 'SEQ’ OPTION IS IGNORED
SYNTAXFEHLER IN DER 'SEQ’ OPTION; 'SEQ" OPTION WIRD IGNORIERT

Meaning
'SEQ’ option doesn’t have the form 'SEQ=(<number>[,<length>[,<id>]])’ with 4<=
<length> <=8 and <id> <=4 characters and length from <id>+<length> <=8.

Z19 - WARNING
INTERNAL ERROR IN ASSEMBH: WARNING BY 'CIF’ ACCESS ROUTINE; RETURN CODE: (&00)
INTERNER FEHLER IM ASSEMBH: WARNUNG DURCH 'CIF-ZUGRIFFSROUTINE, RETURN-CODE:
(800)

Meaning
This message is intended for the ASSEMBH development team.

FAILURE
INTERNAL ERROR IN ASSEMBH: ERROR IN 'CIFF ACCESS ROUTINE
INTERNER FEHLER IM ASSEMBH: FEHLER IN 'CIF-ZUGRIFFSROUTINE

Response
Inform the system administrator.

SERIOUS ERROR
INTERNAL ERROR IN ASSEMBH: ERROR BY 'CIF ACCESS ROUTINE; RETURN CODE: (&00)
INTERNER FEHLER IM ASSEMBH: FEHLER DURCH 'CIF-ZUGRIFFSROUTINE, RETURN-CODE:
(800)

Meaning
This message is intended for the ASSEMBH development team.

Response
Inform the system administrator.

SERIOUS ERROR
CC-DMS ERROR (&00) IN 'CIFF ACCESS ROUTINE
CC-DMS-FEHLER (&00) IN 'CIF'-ZUGRIFFSROUTINE

FAILURE
INTERNAL ERROR IN ASSEMBH: 'PIOM’ TERMINATION CAUSED BY WRONG 'CIF
INTERNER FEHLER IM ASSEMBH: 'PIOM’-ABBRUCH VERURSACHT DURCH FEHLERHAFTES 'CI

Response
Inform the system administrator.

U5056-J-7125-3-7600 299

ASSEMBH messages

ASS6126 FAILURE

ASS6126 INTERNAL ERROR IN ASSEMBH: 'PIOM’ TERMINATION CAUSED BY INCOMPATIBLE VERSIONS
OF 'CIFF ACCESS ROUTINES
ASS6126 INTERNER FEHLER IM ASSEMBH: 'PIOM’-ABBRUCH VERURSACHT DURCH INKOMPATIBLE

VERSIONEN DER ’'CIF-ZUGRIFFSROUTINEN

Response
Inform the system administrator.

ASS6127 Z18 - FAILURE
ASS6127 INSUFFICIENT MEMORY FOR VIRTUAL CIF
ASS6127 NICHT AUSREICHEND SPEICHER FUER VIRTUELLEN 'CIFF VORHANDEN

Response
The allocated memory must be increased by system administration.

ASS6128 SERIOUS ERROR

ASS6128 "COMPILER INFORMATION FILE" IS NO PLAM LIBRARY
ASS6128 "COMPILER INFORMATION FILE" IST KEINE PLAM=BIBLIOTHEK
Meaning

No listing is generated.

Response
Specify a PLAM library for "Compiler Information File".

ASS6129 SERIOUS ERROR
ASS6129 THE PLAM LIBRARY MEMBER FOR "COMPILER INFORMATION FILE" IS LOCKED
ASS6129 PLAM-BIBLIOTHEKSELEMENT FUER "COMPILER INFORMATION FILE" IST GESPERRT

Meaning
No listing is generated.

Response
Unlock the PLAM library member for "Compiler Information File".

300 U5056-J-2125-3-7600

ASSEMBH messages

ASS6132
ASS6132
ASS6132

ASS6140
ASS6140

ASS6140

ASS6141
ASS6141

ASS6141

ASS6142
ASS6142
ASS6142

ASS6143
ASS6143

ASS6143

ASS6144
ASS6144
ASS6144

Z29 - FAILURE
COMPILATION CANCELLED DUE TO TERMINATION CONDITION
ABBRUCHKRITERIUM ERREICHT, UEBERSETZUNG ABGEBROCHEN

Meaning

Possible termination condition:

- maximum number of errors exceeded

- maximum error weight reached

- maximum nest level of MACRO or COPY exceeded
- ACTR overflow

Response
Correct the source or increase the limits using COMPILER-TERMINATION option or
ACTR instruction.

FAILURE

INTERNAL ERROR IN ASSEMBH: ERROR IN LISTING GENERATION.
TERMINATION OF THE ASSEMBH RUN WITH LG RETURN CODE: (&00)
INTERNER FEHLER IM ASSEMBH: FEHLER BEI DER LISTING-ERSTELLUNG.
ABBRUCH DES ASSEMBH-LAUFS MIT LG-RETURNCODE: (&00)

Meaning
This message is intended for the ASSEMBH development team.
(&00): Listing Generator return code.

Response
Inform the system administrator.

SIGNIFICANT ERROR

INTERNAL ERROR IN ASSEMBH: ERROR IN LISTING GENERATION. INCOMPLETE OR WRONG
LISTING WAS GENERATED

INTERNER FEHLER IM ASSEMBH: FEHLER BEI DER LISTING-ERSTELLUNG. UNVOLLSTAENDIG
ODER FEHLERHAFTES LISTING WURDE ERZEUGT

NOTE
'AID’ IS NOT SUPPORTED IN ASSEMBH-BC
'‘AID’ IM ASSEMBH-BC NICHT UNTERSTUETZT

NO ERRORS

ASSDIAG COMMAND 'RERUN’ AFTER ABORT OF ASSEMBH NOT ALLOWED; 'END’ COMMAND
ASSUMED

ASSDIAG-KOMMANDO 'RERUN’ NACH ASSEMBH-ABBRUCH UNZULAESSIG; 'END-KOMMANDO V
AUSGEFUEHRT

NO ERRORS
ERRORFILE GENERATION TIME: (&00) MSEC
ZEIT FUER ERRORFILE ERSTELLUNG: (&00) MSEC

U5056-J-7125-3-7600 301

ASSEMBH messages

ASS6145
ASS6145
ASS6145

ASS6146
ASS6146
ASS6146

FAILURE
ILLEGAL VERSION OF SYNTAXFILE FOR ASSEMBH
VERKEHRTE VERSION DES SYNTAX-FILES FUER DEN ASSEMBH

Response

Inform the system administrator so that he/she can install the correct syntax file.

NOTE
UNEXPECTED EOF; '//END’' IS SET
UNERWARTETES EOF; '//[END’ WURDE GESETZT

302

U5056-J-2125-3-7600

Messages of the assembler runtime system

1111

ASS7001
ASS7001

ASS7002
ASS7002
ASS7002

ASS7003
ASS7003

ASS7003

Messages of the assembler runtime system for structured programming

INITIALIZATION OF THE ASSEMBLER RUNTIME SYSTEM NOT POSSIBLE
INITIALISIERUNG DES ASSEMBLER-LAUFZEITSYSTEMS NICHT MOEGLICH

Meaning
Due to memory constraints, the INITIAL STACK cannot be set up for the main
procedure during initialization of the runtime system.

Response
Inform the system administrator (increase the user address space).

FATAL ERROR
INSUFFICIENT MEMORY FOR THE 'INITIAL-STACK’
SPEICHERMANGEL BEI BESCHAFFUNG DES 'INITIAL-STACKS’

Meaning
The administrative data area cannot be set up during initialization of the runtime
system.

Response
Inform the system administrator.

FATAL ERROR

INSUFFICIENT MEMORY TO INITIALIZE THE 'STACK' AS SPECIFIED BY 'STACK-PARAMETER
OF THE @ENTR-MACRO

SPEICHERMANGEL BEI BESCHAFFUNG DES 'STACK' GEMAESS 'STACK'-ANGABE IM '@ENTR’-
MAKRO

Meaning
While initializing the runtime system, the STACK cannot be set up for the main
procedure as required by the user or with the default value.

Response

Possible responses:

— Reduce the STACK requirement;

— Ask the system administrator to increase the user address space.

U5056-J-7125-3-7600 303

Messages of the assembler runtime system

ASS7005 STACK-POINTER DESTROYED; STACK-REGISTER 13 CONTAINS INVALID VALUE.
ASS7005 STACK-ZEIGER ZERSTOERT; STACK-REGISTER 13 ENTHAELT FEHLERHAFTEN WERT.

Meaning

On commencing initialization of the runtime system from external procedures
(FORTRAN, COBOL, ASSEMBLER) or in the procedure prologue, the STACK register
does not point to a valid SAVE AREA.

Response

Possible responses:

— Load the STACK register correctly prior to initialization;

— Do not change the STACK register within the nested procedure.

ASS7006 NO MORE MEMORY AVAILABLE FOR THE 'STACK’
ASS7006 WEITERER SPEICHERPLATZ FUER 'STACK' NICHT VERFUEGBAR

Meaning
Due to memory constraints, the SAVE-AREA or the area for LOCAL data cannot be
initialized in the procedure prologue.

Response

Possible responses:

— Release occupied memory;

— Ask the system administrator to increase the user address space.

ASS7007 NO MORE MEMORY AVAILABLE FOR THE 'AUTOMATIC' AREA
ASS7007 WEITERER SPEICHERPLATZ FUER 'AUTOMATIC-BEREICH NICHT VERFUEGBAR

Meaning
No STACK memory is available for a service request of class AUTOMATIC.

Response

Possible responses:

— Reduce the service request(s);

— Ask the system administrator to increase the user address space.

304 U5056-J-2125-3-7600

Messages of the assembler runtime system

ASS7008
ASS7008

ASS7009
ASS7009
ASS7009

ASS7010
ASS7010
ASS7010

ASS7011
ASS7011

NO MORE MEMORY AVAILABLE FOR THE 'CONTROLLED’ AREA
WEITERER SPEICHERPLATZ FUER 'CONTROLLED-BEREICH NICHT VERFUEGBAR

Meaning
No HEAP memory is available for a service request of class CONTROLLED.

Response

Possible responses:

— Reduce the service request(s);

— Release the HEAP memory not in use;

— Ask the system administrator to increase the user address space.

FATAL ERROR
ERROR IN RELEASING MEMORY OF THE 'CONTROLLED’ AREA
FEHLER BEI FREIGABE EINES 'CONTROLLED-BEREICHS

Meaning
The specified address does not point to an allocated memory area in the HEAP.

Response
Specify the correct address.

WARNING
INITIALIZATION ROUTINE 'IASSIN' WAS ALREADY CALLED
INITIALISIERUNGS-ROUTINE 'IASSIN' WURDE BEREITS AUFGERUFEN

Meaning
Multiple calls to initialize the runtime system from external procedures (FORTRAN,
COBOL, ASSEMBLER).

Response
Avoid multiple initializations.

INCONSISTENT AID-VERSION
INKONSISTENTE AID-VERSION

Bedeutung

Fehler wahrend der Initialisierung des Laufzeitsystems, da im System eine inkonsistente

AlID-Version installiert ist.

U5056-J-2125-3-7600

305

Listing generator messages

11.1.2 Listing generator messages

LGR0001 'CIF ALREADY OPEN

LGR0002 INFORMATION TABLES CLOSED IMPLICITLY
LGR0003 DUPLICATE KEYS EXIST

LGR0004 END OF PARTITION

LGR0005 INFORMATION TABLE CLOSED ABNORMALLY
LGR0006 PARTITION CLOSED IMPLICITLY

LGR0007 'CIF ALREADY CLOSED

LGR0101 'CIFF COULD NOT BE OPENED

LGR0102 'CIFF CURRENTLY LOCKED

LGR0103 SPECIFIED 'CIF DOES NOT EXIST

LGR0104 'CIFF NOT A LIBRARY

LGR0105 'CIF’ IDENTIFIER INVALID

LGR0106 MAXIMUM NUMBER OF 'CIF'S EXCEEDED
LGR0107 OPEN MODE ILLEGAL

LGR0108 ENVIRONMENT UNSUITABLE

LGR0109 ACCESS TO INFORMATION TABLE NOT PERMITTED
LGR0110 IT" NAME INVALID

LGRO111 CLOSE MODE ILLEGAL

LGR0112 SORT ORDER NOT ASCENDING

LGR0113 PARTITION INVALID

LGR0114 SPECIFIED KEY NOT FOUND

LGR0115 FUNCTION NOT SUPPORTED

LGR0116 WRITE ACCESS ILLEGAL

LGR0117 FIELD LENGTH INVALID

306 U5056-J-Z125-3-7600

Listing generator messages

LGRO0118

LGRO0119

LGR0120
LGRO121
LGR0122
LGR0123
LGR0124
LGR0125
LGR0126
LGR0201
LGR0202

LGR0203

LGR0299

SPACE OVERFLOW DURING ALLOCATION

Meaning
During internal space allocation a space overflow occurred

Response
Please erase unnecessary space or increase the space allowance and start the
program again

CC-DMS ERROR (&00) WHEN ACCESSING CIF

Meaning
For more detailed information about the DMS error code enter /[HELP-MSG in system
mode or see the BS2000 manual 'System Messages’

INFORMATION TABLE DOES NOT EXIST
INFORMATION TABLE ALREADY EXISTS
READ ACCESS ILLEGAL

MANDATORY FIELD MISSING

'CIF TYPE INVALID

ENVIRONMENT ILLEGAL

INFORMATION TABLE NOT OPENED
INCOMPATIBLE VERSION IDENTIFIERS
'CIFF DESTROYED

INTERNAL ERROR: CHECK RETURN CODE

Meaning
message for ASSLG development team: ret_code (stat): INTERNAL_ERROR

Response
contact the system administrator

INTERNAL ERROR: RETURN CODE UNKNOWN

Meaning
message for ASSLG development team: ret_code (stat): DEFAULT

Response
contact the system administrator

U5056-J-2125-3-7600

307

Listing generator messages

LGR0301 FILE IS LIBRARY
Meaning
The medium for the assembler listing is wrong
Response
Correct the LISTING option and start again
LGR0302 FILE IS PLAM LIBRARY
Meaning
The medium for the assembler listing is wrong
Response
Correct the LISTING option and start again
LGR0303 UNEXPECTED 'EOF DETECTED
LGR0304 FILE NOT A LIBRARY
Meaning
The medium for the assembler listing is wrong
Response
Correct the LISTING option and start again
LGRO0305 FILE AN OSM LIBRARY
Meaning
The medium for the assembler listing is wrong
Response
Correct the LISTING Option and start again
LGRO0306 FCB TYPE INVALID
LGRO0307 NO FCB TYPE SPECIFIED
LGR0308 WRITE NOT ALLOWED IN OSM LIBRARIES
LGR0309 FILE IS AN UNKNOWN LIBRARY
LGR0310 FILE EMPTY
LGRO0311 FILE NOT CATALOGED
LGRO0312 NO LINK OR FILE NAME FOUND
LGR0313 LIBRARY MEMBER NOT FOUND
LGRO0314 FILE LOCKED
LGRO0315 FILE NOT SHAREABLE
308 U5056-J-Z125-3-7600

Listing generator messages

LGR0316 PASSWORD MISSING
LGRO317 TYPE OF LIBRARY MEMBER INVALID

LGR0318 NAME OF LIBRARY MEMBER INVALID

LGR0319 VERSION OF LIBRARY MEMBER INVALID

LGR0320 MEMORY SPACE SATURATION

LGR0321 LIBRARY MEMBER LOCKED

LGRO322 VARIANT OF LIBRARY MEMBER NOT FOUND

LGR0323 PLAM NOT LOADED IN SYSTEM

LGR0324 FILE NAME INVALID

LGR0325 INSUFFICIENT MEMORY

LGR0326 TOO MANY WILDCARDS

LGR0327 DATE INVALID

LGR0328 FILE IS AN OML LIBRARY

LGR0329 FILE IS A COBLUR LIBRARY

LGR0330 WRONG RETRIEVAL ADDRESS

LGRO331 OPTION *INCREMENT FOR READING LIBRARY ACCESS NOT ALLOWED
LGR0332 OPTION *INCREMENT POSSIBLE ONLY WITH LMS/PLAM V2.0

LGR0333 OPTION *HIGHEST POSSIBLE ONLY WITH LMS/PLAM V2.0

LGR0398 DMS ERROR (&00)

Meaning
For more detailed information about the DMS error code enter /[HELP-MSG in system
mode or see the BS2000 manual 'System Messages’

LGR0399 INTERNAL ERROR: CC-DMS INTERFACE ERROR
LGR1000 TIME FOR LIST GENERATION: (&00) SECONDS
LGR1001 INTERNAL ERROR IN 'ASSLG’ WHEN READING STATEMENT: UNRECOVERABLE SYSTEM ERR(

Meaning
This message is intended for the ASSLG development team.

Response
Contact the system administrator.

U5056-J-7125-3-7600 309

Listing generator messages

LGR1002

LGR1003

LGR1004

LGR1005

LGR1006

LGR1007

LGR2000

LGR2001

LGR2002

INTERNAL ERROR IN 'ASSLG’ WHEN READING STATEMENT: OPERAND ERROR IN MACRO
'RDSTMT’

Meaning
This message is intended for the ASSLG development team.

Response
Contact the system administrator.

INTERNAL ERROR IN 'ASSLG’ WHEN READING STATEMENT: TRANSFER AREA TOO SMALL

Meaning
This message is intended for the ASSLG development team.

Response
Contact the system administrator.

'IIEND’ ASSUMED DUE TO ’'EOF
'SDF’ NOT LOADED

Response
Contact the system administrator.

SYNTAX FILE DOES NOT CONTAIN '//GENERATE STATEMENT’

Response
Contact the system administrator.

INTERNAL ERROR IN 'ASSLG’ WHEN READING STATEMENT: 'SDF-RTC=(&00)’

Meaning
This message is intended for the ASSLG development team.

Response
Contact the system administrator.

MANDATORY FIELD ’(&00) NOT IN CURRENT ASPECT

Meaning
message to ASSLG development team: error in SCRIPT

Response
contact the system administrator

INVALID OPTION NAME ENCOUNTERED IN LINE (&00)

INVALID DIRECTIVE NAME ENCOUNTERED IN LINE (&00)

310

U5056-J-2125-3-7600

Listing generator messages

LGR2003

LGR2004

LGR2005

LGR2006

LGR2007

LGR2008

LGR2009

DIGIT EXPECTED IN LINE (&00)

Meaning

message to ASSLG development team:

Response
contact the system administrator

STRING TOO LONG IN LINE (&00)
NAME TOO LONG IN LINE (&00)

Meaning

message to ASSLG development team:

Response
contact the system administrator

INVALID STRING IN LINE (&00)

Meaning

message to ASSLG development team:

Response
contact the system administrator

KEYWORD IN LINE (&00) INVALID

Meaning

message to ASSLG development team:

Response
contact the system administrator

TEMPLATE ID IN LINE (&00) INVALID

Meaning

message to ASSLG development team:

Response
contact the system administrator

error in SCRIPT

error in SCRIPT

error in SCRIPT

error in SCRIPT

error in SCRIPT

TEMPLATE ID IN LINE (&00) ONLY SIGNIFICANT UP TO 4 CHARACTERS

Meaning

message to ASSLG development team:

Response
contact the system administrator

error in SCRIPT

U5056-J-2125-3-7600

311

Listing generator messages

LGR2010

LGR2011

LGR2012

LGR2013

LGR2014

LGR2015

TEMPLATE IN LINE (&00) NOT DEFINED

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact the system administrator

SECTION SPECIFICATION EXPECTED IN LINE (&00)

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact the system administrator

'DEF’ OR 'ENDDEFS’ EXPECTED IN LINE (&00)

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact system administrator

'ASP’ OR 'ENDASPS’ EXPECTED IN LINE (&00)

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact system administrator

THIS ASP HAS MORE FIELDS THAN ORIGINALLY DEFINED (&00)

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact system administrator

NO MERGE FIELD SPECIFIED. ONLY LAST ’IT" OPENED (&00)

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact system administrator

312

U5056-J-2125-3-7600

Listing generator messages

LGR2016

LGR2017

LGR3000

LGR3001

LGR3002

LGR3003

LGR3004
LGR3005

LGR3006

INTERNAL ERROR. REASON IN LINE (&00)

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact system administrator

DEFINITION OF TEMPLATE WITH INTERNAL CODE ’(&00)" INVALID

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact system administrator

IT NAME ’(&00)’ INVALID

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact the system administrator

IT NUMBER ’(&00)" INVALID

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact the system administrator

FIELD NAME ’(&00) INVALID

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact the system administrator

FIELD NUMBER ’(&00)’ INVALID

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact the system administrator

OPENING OF FILE '(&00) NOT POSSIBLE
LG INTERFACE VERSION NUMBER (&00) INVALID

EXCEPTION HANDLER ’(&00)" MISSING

U5056-J-7125-3-7600 313

Listing generator messages

LGR3007

LGR4000
LGR4001
LGR4002

LGR4999

REQUIRED FIELD ’'(&00)" MISSING IN ASPECT

Meaning
message for ASSLG development team: error in SCRIPT

Response
contact the system administrator

NO MORE MEMORY SPACE AVAILABLE
LG OPTIONS INVALID
PUT-GET BUFFER NOT YET ALLOCATED
INTERNAL LG ERROR

Meaning

This message is intended for the ASSLG development team.

Response
Contact the system administrator.

314

U5056-J-2125-3-7600

Lookahead mechanism

11.2 Lookahead mechanism

The lookahead mechanism is a function that is performed in connection with the use of
macro language elements in the assembler source program text. Lookahead implies
that the source text instructions are read and scanned into an internal file, which can
thus be referenced. Lookahead starts with the instruction that satisfies at least one of
the following criteria up to the end of the assembly unit:

(1) A still undefined sequence symbol in the operand entry of an AGO or AlF
instruction,

(2) A reference to attributes of still undefined symbols in the condition of the AIF
instruction,

(3) A reference to attributes of still undefined symbols in the operand entry of the
SET instruction,

(4) The first occurrence of a sequence symbol in the name entry of an instruction
(1-4, see "ASSEMBH (BS2000) Reference Manual” [1]).

Note

If high performance is required at assembly time, source programs should be written
in such a way that no lookahead is needed.

U5056-J-2125-3-7600 315

Machine instructions

11.3 Format of machine instructions

The instruction list below contains the instructions of the BS2000-NXS (SET1), BS2000-
XS (SET3) and BS2000-ESA instruction sets (the Assembler instructions are described
in the "Assembler Instructions” Language Reference Manual [11]).

The BS2000-NXS instruction set supports systems with 24-bit addressing (NXS stands
for Non-eXtended System).

The BS2000-XS instruction set supports XS systems with 31-bit addressing (XS stands
for eXtended System).

The BS2000-ESA instruction set supports ESA systems, which allow for expansion of
the virtual address space (ESA stands for Enterprise Systems Architecture).

The BS2000-NXS instruction set is incorporated in the BS2000-XS instruction set, and
both are incorporated in the BS2000-ESA instruction set.

The instruction set to which each instruction belongs is indicated by the initial letter N,
X or E inthe NXS / XS / ESA column.

In the list below, the instructions marked N represent the basic instruction set, while
those marked X or E belong to the corresponding extended instruction sets.

316 U5056-J-2125-3-7600

Machine instructions

Mnemonic |Instruction name NX$ Magh. Length Opgrand format
code XS |code
ESA
A Add N 5A 4 R1,D2(X2,B2)
AD Add normalized, long N 6/ 4 R[L,D2(X2,B2)
ADR Add normalized, long N 2A P R1,R2
AE Add normalized, short N 7A 4 R1,D2(X2,B2)
AER Add normalized, short N 34 3 | ,R2
AH Add halfword N [4A 4 R1,D2(X2,B2)
AL Add logical N 8E 4 $1,D2(X2,B2)
ALR Add logical N | E 2 R1,R2
AP Add decimal N [FA 6 D1(L1,B1),D2(L2,B2)
AR Add N 1A R1,R2
AU Add unnormalized, short N 7H 4 R1,D2(X2,B2)
AUR Add unnormalized, short N 3H . R1,R2
AW Add unnormalized, long N 6E il R1,D2(X2,B2)
AWR Add unnormalized, long N 2E 2 R1,R2
AXR Add normalized with N 36 2 H1,R2
extended length

BAL Branch and link N 45 4 R1,D2(X2,B2)
BALR Branch and link N 5 2 RR1,R2
BAS Branch and link N\ 4D 4 R1,D2(X2,B2)
BASR Branch and link N DD 2 R1,R2
BASSM | Branch and save and set mode X 0C 2 R1,R2
BC Branch on condition N ay Il 1,02(X2,B2)
BCR Branch on condition N o7 D I,R2
BCT Branch on count N |46 4 R1,D2(X2,B2)
BCTR Branch on count N 06 2 R1,R2
BSM Branch and save X 0B 2 R1,R2
BXH Branch on index high N 46 4 R1,R3,D2(B2)
BXLE Branch on index low or equal N 87| 4 R1,R3,D2(B2)
C Algebraic comparison N 54 4 R1,D2(X2,B2)

* CCPU Check CPU N| AC D1(B1),I12
CCwW Define channel command word N 8 11,12,13,14
CCWO0 Define channel command word X 8 11,12,13,14

(format 0)
CcCcwi Define channel command word 8 11,12,13,14
(format 1)
CD Compare long N | 69 4 R1,D2(X2,B2)
CDR Compare long N 29 2 R1,R2
CDS Compare double and swap N |BB 4 R1,R3,D2(B2)
CE Compare short N 79 4 R1,D2(X2,B2)
CER Compare short N 39 2 R1,R2
CH Compare halfword N 49 4 R1,D2(C2,B2)
* ClOoC Check /O controller N AD 4 D1(B1),I12
* CKC Check channel N 9F 4 D1(B1)
CL Compare logical N 85 4 R1,D2(X2,B2)
CLC Compare logical N D5 6 D1(L,B1),D2(B2)
CLCL Compare logical characters N OF 2 R1,R2
long
CLI Compare logical N 9b 1 DIL(B1),I12
CLM Compare logical chars. under N BD 4 R1}M3,D2(B2)
mask

U5056-J-2125-3-7600

317

Machine instructions

Mnemonic |Instruction name NX$ Magh. Length Opgrand format
code XS |code
ESA
CLR Compare logical N |15 2 R1,R2
CP Compare decimal N F9 6 D1(L1,B1),D2(L2,B2)
CPYA | Copy Access Register E B24D 4 R1,R2
CR Algebraic comparison N 19 y R1,R2
Cs Compare and swap N BA 4 R1,R3,D2(B2)
* CSCH Clear subchannel 8230 4 No operand
CvB Convert into binary form N | 4F 4 R1,D2(X2,B2)
CVvD Convert into decimal form N 4E 4 R11D2(X2,B2)
D Divide N 5D 4 R1,D2(X2,B2)
DD Divide long N 6D 4 R1,D2(X2,B2)
DDR Divide long N 2D 2 R1,R2
DE Divide short N 1D 4 RR1,D2(X2,B2)
DER Divide short N D 2 R1,R2
* DIG Diagnose N 83 4 D1(B1)
DP Divide decimal N HD 6 D1(L1,B1),D2(L2,B2)
DR Divide N 1D 2 R1,R2
DXR Divide extended B22D 4 R1,R2
EAR Extract Access Register E B2§F 4 R1|R2
ED Edit N |DE 6 D1(L,B1),D2(B2)
EDMK [Edit and mark N DF 6 D1(L,B1),D2(B2)
» EPAR Extract primary ASN X BP26 4 R1
* ESAR Extract secondary AS X Bp27 4 R1
EX Execute N 44 4 R1,D2(X2,B2)
FC Execute special functions N 9A 4 D1(H1),12
* FCAL Execute special functions N B7 4 D1(B1),12
HDR Halve long N 24 2 R1,R2
* HDV Halt device N DE 4 D1(B1)
HER Halve short N 34 2 R1,R2
* HSCH Halt subchannel B231 4 No operand
** JAC Insert address space control E §224 4 R1
IC Insert character N | 43 4 R1,p2(X2,B2)
ICM Insert character with mask N BF 4 R1,M3,D2(B2)
* IDL dle N BO 4 14
** PK Ihsert PSW key X H208 2 No operand
IPM Insert program mask N B222 al Ri1
* ISK nterrogate memory protect key N D9 2 R1,RJ
** |[VSK hsert virtual storage key X B223 4 R1,R2
L Load N | 58 4 R1,D2(X2,B2)
LA Load address N |41 4 R1,D2(X2,B2)
LAE Load Address Extended E b1 4 iR1,D2(X2,B2)
LAM Load Access Multiple E[9A i Ri1,R3,D2(B2)
LCDR Load complement, long] b3 2 R1,R2
LCER Load complement, short N 3B D R1,R2
LCR Load complement N 13 2 R1,R2
LD Load, long N 68 4 R1,D2(X2,B2)
LDR Load, long N 28 2 R1,R2
LE Load, short N '8 4 iR1,D2(X2,B2)
LER Load, short N B8 2 R1,R2
LH Load halfword N K] 4 R1,D2(X2,B2)
LM Load multiple N 98 4 R1,R3,D2(B2)
LNDR Load negative, long N 2L 4 R[L,R2

318

U5056-J-2125-3-7600

Machine instructions

Mnemonic |Instruction name NX$ Magh. Length Opgrand format
code XS |code
ESA
LNER Load negative, short N 3] 2 R1,R2
LNR Load negative N 11 2 R1,R2
LPDR Load positive, long N 20} 2 R1R2
LPER Load positive, short N 30 2 R1R2
LPR Load positive N 10 2 R1,R2
LR Load N 18 2 R1,R2
LRDR Load rounded extended to long N 24 4 R1,R2
LRER Load rounded extended to short N 35 2 R1|R2
* LSM Load shadow memory N D9 6 D1(L,B1),D2(B2)
* LSP Load scratch pad N b8 6 b1(L,B1),D2(B2)
LTDR Load and test, long N 2p p R[L,R2
LTER Load and test, short N 32 2 R1,R2
LTR Load and test N 12 2 R1,R2
M Multiply N bC 4 R1,D2(X2,B2)
MD Multiply, long N| 6¢C i RIL,D2(X2,B2)
MDR Multiply, long N 2C p R1,R2
ME Multiply, short N| 79 4 R1,D2(X2,B2)
MER Multiply, short N 3d . R1,
MH Multiply halfword N 4 4 R1,D2(X2,B2)
MP Multiply decimal N FC b DIL(L1,B1),D2(L2,B2)
MR Multiply N [IC 2 R1,R2
* MSCH Modify subchannel B232 4 b2(B2)
MVC Move characters N D2 6 D1(L,B1),D2(B2)
MVCL Move characters, long N OE P Ri1,R2
** MVCP Move to primary DA 6 PD1(R1,B1),D2(B2),R3
» MVCS Move to secondary K pB 6 D1(R1,B1),D2(B2),R3
MVI Move immediate N 92 4 D1(B1),12
MVN Move numerics N D1 6 D1(L,B1),D2(B2)
MVO Move with offset N F1 6 b1(L1,B1),D2(L2,B2)
MVZ Move zones N | D3 6 D1(L,B1),D2(B2)
MXD Multiply long to extended N 67 4 R1,D2(X2,B2)
MXDR Multiply long to extended N 27 2 R1R2
MXR Multiply extended N 2p 4 R[L,R2
N AND N 54 4 R1,D2(X2,B2)
NC AND N| D4 6 D1(L,B1),D2(B2)
NI IAND N 94 4 D1(B1),12
NR AND N 14 2 R1,R2
o OR N| 56 4 R1,D2(X2,B2)
ocC OR N| D6 6 D1(L,B1),D2(B2)
ol OR N| 96 4 D1(B1),12
OR OR N 16 2 R1,R2
PACK | Pack N| F2 6 D1(L1,B1),D2(L2,B2)
** PC Change function status X B218 4 D2(B2)
» PT Program transfer X B2428 4 R1R2
* RCHP Reset channel path B23B 4 No operand
* RDD Read direct N 85 4 D1(B1),12
* RSCH Resume subchannel X B238 4 No operand
S Subtract N 5B 4 R1,D2(X2,B2)
SAC Set address space control E B21n9 4 D2[B2)

U5056-J-2125-3-7600

319

Machine instructions

Mnemonic |Instruction name NX$ Magh. Length Opgrand format
code XS |code
ESA
* SAL Set address limit X B2B7 4 No| operand
SAR Set Access Register H B24E 4 R1,R2
* SCHM | Set channel monitor X g23C 4 No operand
SD Subtract normalized, long N 6B 4 R1,D2(X2,B2)
SDR Subtract normalized, long N 2B 2 R1,R2
* SDV Start device N aC 4 01(B1)
SE Subtract normalized, short N |7B 4 R1,02(X2,B2)
SER Subtract normalized, short N 3B 2 R1,R2
SH Subtract halfword N 4B 4 R1,D2(X2,B2)
SL Subtract logical N 5F 4 R1{D2(X2,B2)
SLA Shift left single N |[8B 4 R1,02(B2)
SLDA | Shift left double N 8F 4 R1)D2(B2)
SLDL Shift left double logical gD 4 R1,D2[(B2)
SLL Shift left single logical 89 4 R1,D2(B2)
SLR Subtract without overflow N 1F 2 R1,R2
SP Subtract decimal N FB 6 D1(L1,B1),D2(L2,B2)
** SPKA Set PSW key from address B20A 4 D2(B2)
SPM Set program mask N 04 2 R1
SR Subtract N 1B 2 R1,R2
SRA Shift right single N 8A 4 R1,D2(B2)
SRDA | Shift right double N | 8E 4 R1,D2(B2)
SRDL | Shift right double logical N 8C 4 R1,D4(B2)
SRL Shift right single logical 8 4 R1,D2(B2)
SRP Shift and round decimal N Fd q D1(L1,B1),D2(B2),13
* SSCH Start subchannel X B233 a DR(B2)
* SSK Set memory protect key N 0B 4 R[L,R2
* SSM Store shadow memory N DA 6 D1(L,B1),D2(B2)
* SSP Store scratch pad N D b D1(L,B1),D2(B2)
ST Store N |50 4 R1,D2(X2,B2)
STAM | Store Access Multiple E| 9H 4 R1,R3,D2(B2)
STC Store character N ap 4 RIL,D2(X2,B2)
STCK | Store clock N B2 4 P1(B1)
STCM Store character with mask N BE 4 R1,M3,D2(B2)
* STCPS | Store channel path status N | B23A 4 D2(B2)
* STCRW | Store channel report word N B339 4 D4(B2)
STD Store long N [60 4 R1,D2(X2,B2)
STE Store short N F0 4 RR1,D2(X2,B2)
STH Store halfword N 4o 4 R1,D2(X2,B2)
STM Store multiple N 9P 4 RIL,R3,D2(B2)
* STSCH | Store subchannel B234 4 02(B2)
SuU Subtract unnormalized, short N 7F 4 R1,D2(X2,B2)
SUR Subtract unnormalized, short N 3F 2 R1,H2
SvC Supervisor call N (0] p I
SW Subtract unnormalized, long N 6F 4 R1,p2(X2,B2)
SWR Subtract unnormalized, long N 2F 2 R1,R2

320

U5056-J-2125-3-7600

Machine instructions

Mnemonic |Instruction name NX$ Magh. Length Opgrand format
code XS |code
ESA
SXR Subtract normalized extended N | 37 2 R1,R2
TAR Test Access Register E Bp4C a R1,R2
* TDV Test device N DD 4 D1(B1)
™ Test under mask N 91 4 D1(B1),12
* TPI fest pending interruption B236 4 D2(B2
TR Translate N pDC 6 D1(L,B1),D2(B2)
* TRACE | Trace X | 99 4 R1,R3,D2(B2)
TRT Translate and test N DD b DIL(L,B1),D2(B2)
TS Test and set N 93 4 PD1(B1)
* TSCH Test subchannel B235 4 p2(B2)
UNPK | Unpack N F3 6 D1(L1,B1),D2(L2,B2)
* WRD Write direct N 44 4 01(B1),12
X Exclusive-OR operation N 57 4 R1|D2(X2,B2)
XC Exclusive-OR operation N D1 q D1(L,B1),D2(B2)
XI Exclusive-OR operation N 97 4 D1(B1),12
XR Exclusive-OR operation N 17 2 R1}R2
ZAP Zero and add N F8 6 D1(L1,B1),D2(L2,B2)

* Privileged instructions
** Semi-privileged instructions

U5056-J-2125-3-7600

321

*COMOPT statements

11.4 *COMOPT statements
For reasons of compatibility, the ASSEMBH assembler continues to support the earlier
*COMOPT control statements. However, the new features of ASSEMBH are not
supported by *COMOPT.
The ASSEMBH-BC and ASSEMBH assemblers are started for *COMOPT control as
follows:
/START-PROGRAM $ASSEMBHC
ASSEMBH-BC ASSEMBH

*COMOPT statements are read from SYSDTA:
— as soon as the assembler has been loaded,
— at every restart.
A *COMOPT statement begins with *COMOPT and is followed by one or more options,
separated by commas.
It is possible to continue an option beyond the end of a line and into a continuation
line; however, the line may only be broken at positions which could also contain a
space (blank). This means that words cannot be split,
e.g. *COMOPT SOURCE = AN

TONY is incorrect;

*COMOPT SOURCE = __

ANTONY is permitted.
There are no format-specific requirements when entering options (e.g.
SOURCE_=_A_,.). The input of *COMOPT statements is terminated by *END (see
also *END HALT and *HALT below).
The activated *COMOPT statements are listed in SDF format. Errors are output to
SYSOUT and to the listing and may be corrected with the aid of another *COMOPT
statement. When ASSEMBH is run with *COMOPT control, the generated module and
listing are always compatible with the F-Assembler.

322 U5056-J-Z125-3-7600

*COMOPT statements

If *COMOPTSs are entered via SYSDTA and the source program is read from a file or
library, the assembler will, on completing the assembly, request COMOPTSs for the next
assembly. To prevent this, there are two additional methods of terminating the
assembler besides the EOF condition:

— The HALT operand in the *END statement (see section 11.4.1, "Ending the input of
options") terminates the assembler after the assembly.

— The *HALT statement instead of a *COMOPT or *END statement terminates the
assembler immediately.

If an invalid entry is inadvertently made instead of the first *COMOPT statement, the

assembler will interpret this input as the first source program line. By entering _END,
an assembly of this invalid input can be initiated (a listing will also be created here by
default), and the correct options for the next assembly can be entered thereafter.

1141 Table of *COMOPT statements

*COMOPT Meaning

ADIAG=n A diagnostic file is generated (see COMOPT SAVLST).
Following the assembly, the $ASSDIAG routine is
started implicitly when errors with the value n
(see chapter 8) or MNOTEs with a corresponding
severity code are encountered.
0<n=<3

ALTLIB[N] Assigns a macro library or the n-th macro library
(2 =n <5

NOALTLIB[n Default assignment (SYSLIB only)

ATXREF The references in the cross-reference listing are
shown with an attribute that refers to the mode of
access:

w Write access

R Read-only access by instructions
A Address access

E EQU/ORG instructions

Blank Other assembly instructions

NOATXREF Default assignment. No attribute XREF.

DUET Allows TRANSDATA 960 instructions.

NODUET Default assignment

U5056-J-7125-3-7600 323

*COMOPT statements

*COMOPT Meaning

ERR=n If more than n errors occur, the assembly is
terminated with TERM UNIT=STEP,MODE=ABNORMAL.
0 <n =< 255

ERR=Sm If errors with severity (weight) > m or MNOTEs
with a severity code class > m are encountered,

the assembly is terminated with
TERM UNIT=STEP,MODE=ABNORMAL.
0<m=<3

Assignment

Weight Error class

0 Warning

1 Significant

2 Serious

3 Fatal / Failure

ERRFIL Output of the error list to an error file with
the link name ERRLINK. If the file is not known at
assembly time, it is created under the name

<tsn>
ERRFIL.ASSEMBH.
[<CSECT-name>|

The file is only created if the weight set in the
COMOPT statement ERRPR is exceeded. If ERRFIL and
SAVLST are specified simultaneously, ERRFIL will

be ignored.

ERRPR=n Only those error flags with a severity lower than n
are evaluated for the end messages of the assembler
and for the COMOPT ERR.

0<n=<3 Default value: n=1

FLGLST For statements with error flags, the error types
(max. 3) are printed in the left margin of the line,
and the corresponding error texts are printed after
the line.

NOFLGLST For statements with error flags, the error types
(max. 3) are printed in the left margin of the line.

HWTST For special tests the CCW flag byte may be transferred
unmodified (unabbreviated). However, this occurrence
itself will be flagged.

NOHWTST No unmodified transfer of the CCW flag byte.

324 U5056-J-2125-3-7600

*COMOPT statements

*COMOPT Meaning
SET1 Specifies the instruction set to be generated.
INSTR=
[SET3] SET1 instruction set BS2000-NXS
(see section 11.3)
SET3 instruction set BS2000-XS
(see section 11.3)

ISD The assembler also outputs AID information to the
object module.

ISD cards are no longer created.

NOISD Default assignment

LINECNT=n Controls the number of lines per print page, including
the header line (15 < n < 255).

Default assignment :n =60

LIST Default assignment. The assembler listing is output
to SYSLST.

NOLIST Only the invalid instructions are displayed.

MLPRNT The macro identification line consisting of the
version number, creation date, and link name of the
macro library is output to the assembler listing. The
version number consists of blanks if the macro was
placed in the macro library by the MLU utility routine.

NOMLPRNT Default assignment

MODULE= Specifies where the object module is to be placed.

specification If fhis option is not used, the object module is

output to the EAM file.
For a full description of this option, see
section 11.4.3.

U5056-J-2125-3-7600

325

*COMOPT statements

*COMOPT Meaning

NDLIST An assembler listing with a layout edited for
output on laser printer is generated.

NONDLIST Default assignment

PRTALL Generates a complete assembler listing. The options of
the PRINT statement, NOGEN, OFF and NOCOPY, are
suppressed.

NOPRTALL Default assignment

PRTIT The effect of the TITLE statements generated by macros

is retained, even if the printing of TITLE statements
is suppressed by PRINT NOGEN.

NOPRTIT The effect of the TITLE statements generated by macros
is suppressed by PRINT NOGEN.
PRTOFF= The instructions generated by macros are either printed
[n] or not printed, depending on the macro nesting level
i j and the prefix (first character) of the macro name.
X1[;X2]...[;X5]
n Instructions generated by macros from the n-th
level onward are not printed.
1 <n < 250

X1[;X2]...[;X5]
Instructions generated by macros are never printed
if the first character of the macro name is
specified in the list X1 to X5 (regardless of any
macro level that may have been set with PRTOFF=n).
This list may contain up to five first characters
of macro names; all__ macros having names that begin
with one of these characters are affected.

326 U5056-J-2125-3-7600

*COMOPT statements

*COMOPT

Meaning

SAVLST

NOSAVLST

The diagnostic listing for ASSDIAG is output to a
diagnostic file with the link name SAVLINK. If the
file is unknown at assembly time, it is created under
the name:

[<tsn>]
SAVLST.ASSEMBHi j
<CSECT-name>,

The name is created with <tsn> if the CSECT instruction
is unnamed; otherwise, with the <CSECT-name>.

If the assembler is started with the SAVLST option more
than once in a job, a /RELEASE SAVLINK must be issued
before each new start in order to avoid overwriting.

When a SAVLST is requested, a listing is created via
LIST by default. The listing generator of ASSEMBH
cannot produce the two outputs (the SAVLST and listing)
at the same time; they must be generated sequentially.
Since this has an adverse effect on performance, it is
advisable to specify the NOLIST option with SAVLST:

*COMOPT NOLIST,SAVLST

In this way, only the SAVLST is created, and a listing
is no longer output.

Default assignment

SEQ=(number
[lengthl,id]])

(colun

Entries relating to the identification field
hns 73-80) in the assembler listing:

number = Initial numbering with an (implicit)
increment of 100. Leading zeros may be
omitted.

length = Number of positions for numbering,
right-justified in identification field.
4 < length < 8 (default value = 8)

id = Alphanumeric identifier that is taken over
from column 73 into the identification
field (maximum 4 characters).

In the case of expansion of COPY elements or macros,
and with generated literals, no numbering takes place.

SOURCE=
specification

If 1

Specifies from where the source program is to be read.
his option is omitted, the source is read from

SYSDTA. For a full description of this option, see
section 11.4.2.

U5056-J-2125-3-7600

327

*COMOPT statements

*COMOPT Meaning

SYSPARM= The system parameter &SYSPARM (an 8-byte long character
'max. 8 characters’ var|able; see "ASSEMBH (BS2000) Reference Manual" [1])

is assigned the specified entry and can be interpreted

during macro processing.

XREF The cross-reference listing is output.
NOXREF Default assignment. No cross-reference listing output.
Notes

— The following *COMOPT statements are no longer supported:
COPYMAC, MCALL, MDIAG, OUTPUT, PROCOM, UPD and SOURCE = +

— If withdrawn statements are used, an appropriate message is issued.

Ending the input of options

Meaning

*END End of *COMOPT statement input and start of
assembly. Request for new options after assembly.

*END HALT Same as *END, but with termination of the assembler
after assembly.

*HALT Immediate termination of assembler; assembly not
started.

328 U5056-J-2125-3-7600

*COMOPT statements

11.4.2

SOURCE option

The SOURCE option can be used to specify the location from which the source
program is to be read. If the SOURCE option is omitted, the source program will be
read from SYSDTA.

SOURCE = specification
[i)
specification B L
l filename J
plamlib(element[(version)])

If no entry for "specification” is made, the source program will be
read from SYSDTA.

/ An interrupt occurs after the options are read. SYSDTA can be
assigned by the /SYSFILE command via SYSCMD. The source
program is then read in via SYSDTA. The new assignment of
SYSDTA will, however, not take effect until all options have been
processed.

* The source program is read from SYSDTA. This is the default
setting if no specification is made for SOURCE.

filename Name of a cataloged file containing the source program.
The name may be up to 54 characters in length, including
alphanumeric characters, period and hyphen.

plamlib Name of a program library that was created in accordance with
LMS conventions (see "LMS User Guide" [8]) and which
contains the source program (as an element of type S).
In line with BS2000 conventions for file names, the name can have
a maximum length of 54 characters.

element Name of the library element (type = S) in which the source
program is stored.
The maximum admissible length for element is 54 characters.

version Version designation of the element.
The version entry may be up to 24 characters in length.
If no version is specified, the element (type = S) with the highest
existing version is used.

U5056-J-7125-3-7600 329

*COMOPT statements

Notes

— Entries in the SOURCE option (library name, element name, and version) are only
checked for admissible length, not for correct syntax according to LMS conventions
(see "LMS Reference Manual" [8).

— On libraries
In addition to PLAM libraries, OSM source program libraries are also allowed:
lib(name)

11.4.3 MODULE option

This option can be used to control output of the object module. If the option is omitted,
the object module is output to the EAM file.

MODULE = specification

*

*

i plamlib]({Element }[(Version)])] j
* The object module is output to the EAM file.

specification

plamlib Name of a program library created in accordance with LMS
conventions (see "LMS User Guide" [8]). The object module
is stored as an element of type R (module).
If there is no program library under the given name, a new one is
created by the assembler.

element Element name of the object module.
The element name must comply with the "Rules for element
designations in program libraries" (see "LMS User Guidel"
[8]). The element (type = R = module) is stored in the program
library under this name (maximum 54 characters).

* If * (asterisk) is specified, the element is assigned the name of the
first control section (CSECT name) of the object module. If the first
control section is unnamed, the element cannotbe output to the
program library. If the program does not contain a CSECT
instruction (or START instruction), the first DSECT or COM name is
used as the name of the object element. The same applies if only
the library name is specified.

330 U5056-J-2125-3-7600

*COMOPT statements

version

Notes

Version designation of the element.
The version entry may be up to 24 characters in length.

Character set supported by LMS:

Letters: A-Z
Digits: 0-9
Special characters: U@

If this entry is omitted, the element is assigned the highest version
number (represented in the program library by means of a’'@’
character).

The '@’ character may no longer be used as a version as of PLAM
V1.4.

If an element with the same version already exists, it is overwritten.

— The entries in the MODULE option are not checked for syntax (see also the notes
on the SOURCE option).

— The linkage editor currently processes element names with a maximum of 8

characters only.

U5056-J-2125-3-7600

331

*COMOPT statements

11.4.4 Comparison of *COMOPT and COMPILE statements
*COMOPT /ICOMPILE
ADIAG=n CORRECTION-CYCLE=YES
ALTLIB[n] MACRO-LIBRARY=

COPY-LIBRARY=

ATXREF [LISTING]
CROSS-REFERENCE=(SYMBOL=YES)

DUET [SOURCE-PROPERTIES]
INSTRUCTION-SET=DUET

ERR=n [COMPILER-TERMINATION]
MAX-ERROR-NUMBER=N
Default assignmen t : n = 32767; o r n = 0..32767

[WARNING]

SIGNIFICANT
ERR=Sm MAX-ERROR-WEIGHT=
lSERIOUS J
FATAL
ERRFIL
ERRPR=n [LISTING]
NOTE
WARNING
MIN-MESSAGE-WEIGHTSIGNIFICANT
SERIOUS
[FATAL]
FLGLST [LISTING]

MESSAGE-PLACEMENT=INSERTED

HWTST [MAINTENANCE-OPTIONS]
CHANNEL-INSTRUCTIONS=YES

[SOURCE-PROPERTIES]

[SET1) [HOST-STD |
INSTR:i J INSTRUCTION—SET:iBSZOOO—NXSj

SET3 BS2000-XS
ISD TEST-SUPPORT=YES

332 U5056-J-2125-3-7600

*COMOPT statements

*COMOPT /ICOMPILE
LINECNT=n [LISTING]
LAYOUT=(LINES-PER-PAGE=n)
Default assignment :n = 60; or n = 15..255
NOLIST [LISTING]
SOURCE-PRINT=ERRORS-ONLY
MLPRNT [LISTING, MACRO-PRINT]
MACRO-ORIGIN-INFO=INSERTED
MODULE= MODULE-LIBRARY=
specification
NDLIST [LISTING]
LAYOUT=(LASER-PRINTER=ND2)
PRTALL [LISTING]
SOURCE-PRINT=WITH-OBJECT-CODE(PRINT-STATEMENTS=IGNORED)
NOPRTIT [LISTING, MACRO-PRINT]
TITLE-STATEMENTS=IGNORED
PRTOFF= [LISTING, MACRO-PRINT]
[n] NOPRINT-NEST-LEVEL=n
} Default assignmen 't : n = 255 or n = 1.255
[X1[;%2]...[;X5]] PREFIX-EXCEPTION=(A,B,C,...)
A list of up to 256 macro name prefixes is
permitted.
SAVLST

SEQ=(number

[LISTING]

[length[,id]]) SOURCE-PRINT=(LINE-NUMBERING=YES)
SOURCE= SOURCE=

specification

SOURCE=/ SOURCE=*SYSDTA-AFTER-BREAK
SYSPARM= [SOURCE-PROPERTIES]

'max. 8 characters’

SY

SPARM=C’ABC..." or 'ABC...
A maximum of 255 characters are possible.

XREF

[LISTING]

CROSS-REFERENCE=(WITH-ATTRIBUTES=NO)

U5056-J-2125-3-7600

333

12 Manual supplements

This chapter is an update for the present manual valid for ASSEMB V1.2D.

12.1 Controlling ASSEMBH, the standalone listing generator
ASSLG and *COMOPT statements

Section 2.2 Controlling ASSEMBH (page 8),
Section 2.5 The standalone listing generator ASSLG (page 53) and
Section 11.4 *COMOPT statements (page 322)

ASSEMBH and ASSLG as of V1.2 have a separate start command which is assigned
to the SDF "UTILITIES" domain:

COMMAND: START-ASSEMBH

or: START-ASSLG

or: START-ASSEMBHC
OPERANDS : CPU-LIMIT=*JOB-REST,MONJV="NONE
CPU-LIMIT =*JOB-REST or <integer 1..32767>

Maximum CPU time requirement for the program run in seconds
MONJV = *NONE or <full-filename 1..54 without-gen-vers>

Name of the job variable which is to monitor the program run

12.2 COMPILATION-INFO option

Section 2.4.3 COMPILATION-INFO option (page 36ff)
VERSION = *INCREMENT is not supported

U5056-J-Z2125-3-7600 335

LISTING option Manual supplements

12.3

12.4

12.5

12.6

LISTING option

Section 2.4.4 LISTING option (page 38ff)
The correct text for SOURCE-FORMAT = STD is:
A standard listing is generated.

For TITLE-STATEMENTS = ... the default value is IGNORED and the description
should read:

TITLE statements generated by macros are executed, but ignored if the PRINT NOGEN
directive is specified.

OUTPUT option

Section 2.5.1 GENERATE statement (page 53ff)

The operand *SAVLST is no longer supported by the OUTPUT option in the
GENERATE statement.

ESD list

Section 6.1.2 ESD list (page 93ff)

Space for 32 characters is generally provided in the ESD list for the symbol names (as
described under 6.6.2 for the LLM format).

Structured list

Section 6.5 Structured list (starting page 108): 3rd. paragraph

To create a structured list you must use the predefined macros (also called structure
macros in the following) for structured programming (see "ASSEMBH, Reference
Manual" [1]). These must also be fully logged in the list so that a structure block (see
6.5.2) can be correctly edited. If not all of the structure macros are logged, editing of a
structure block can be incomplete or errored.

336

U5056-J-Z125-3-7600

Manual supplements Parameter ENV=C and LOADR12

12.7

12.8

12.9

Parameter ENV=C and LOADR12

Section 7.2.1 Interfacing structured assembler programs with C programs (page 133),
following last paragraph:

The parameters ENV=C and LOADR12 can only be used for C programs that are V1-
compatible.

The parameter ILCS=YES must always be specified for programs that are generated in
CPLUSPLUS-mode.

Working with the COLNUMA utility

Section 10.4.1 Extending the structure list (page 225):
Notes Permitted element types are P, S, M, D, X.

Section 10.4.2 Enhancing the assembler listing of a program edited by COLINDA
(page 227): Notes

Permitted element types are P, S, M, D, X.

Utility program messages

Section 10.5 Utility program messages (page 230)
Missing message:
015 - 10 Meaning: More than 32767 records in the input.

Effect: The excess records are output, but only as text,

U5056-J-Z2125-3-7600 337

Messages

Manual supplements

12.10

12.10.1

ASS0217
ASS0217

ASS0336
ASS0336

ASS0597
ASS0597

ASS0598
ASS0598

ASS1310
ASS1310

ASS1918
ASS1918

Messages

Not included messages

The following ASSEMBH messages have not been included in the User Guide yet or the
texts concerned have been changed:

Supplements and changes of ASSEMBH messages im Section 11.1 ASSEMBH messages
(page 241).:

B17 — SIGNIFICANT ERROR
CONTINUATION COLUMN IN '"ICTL' OPERAND IS WRONG

C36 — NOTE
MACRO (&00): MULTIPLE DEFINITIONS IN SOURCE

Meaning
Note concerning incompatibility: A macro instruction will always generate the macro whose
definition was processed last.

E97 — WARNING
EXTERNAL NAMES TRUNCATED TO 8 CHARACTERS

Meaning
The name for entries in the ESD record of the object is limited to 8 characters. Only the first
8 characters of the name are used.

E98 — WARNING
EXTERNAL NAMES TRUNCATED TO 32 CHARACTERS

M10 — SIGNIFICANT ERROR
SYMBOL (&00): MULTIPLE DEFINITIONS

S18 — SIGNIFICANT ERROR
LSDV OF (&00) (&01) TOO BIG; AID INFORMATION INCOMPLETE

Meaning
The number of elements in a structure exceeds range
(&00): Type of structure (‘'(DSECT' or 'COM' or 'XDSEC")

(&01): Name of structure

Response
None; testing without AID information is possible

338

U5056-J-Z125-3-7600

Manual supplements Messages

ASS6012
ASS6012

ASS6102
ASS6102

ASS6118
ASS6118

ASS6119

ASS6119

ASS6128
ASS6128

ASS6129
ASS6129

ASS6200
ASS6200

NO ERROR
END OF ASSEMBH(&00)

NOTE
IN THE OPTION 'PRTOFF=X1;X2..."'; AN INVALID CHARACTER IS GIVEN. IT WILL
BE IGNORED

NO ERROR
MODULE FORMAT LLM ONLY POSSIBLE WHEN MODULE IS PUT TO A PLAM LIBRARY;
MODUL PUT TO THE STANDARD LIBRARY 'SYS.PROG.LIB'

WARNING
OPTION 'SOURCE-FORMAT=STRUCTURED' NOT POSSIBLE WITH OPTION 'OUTPUT=*SAVLST'

Meaning
All specifications for the structured listing are ignored

SERIOUS ERROR
'COMPILER INFORMATION FILE' IS NO PLAM LIBRARY

Meaning
No listing is generated.

Response
Specify a PLAM library for 'Compiler Information File'.

SERIOUS ERROR
THE PLAM LIBRARY MEMBER FOR 'COMPILER INFORMATION FILE' IS LOCKED

Meaning
No listing is generated.

Response
Unlock the PLAM library member for 'Compiler Information File'.

SIGNIFICANT ERROR
INTERNAL LLM ACCESS ERROR. FUNCTION START-OUTPUT.

Meaning
Error in LLM access with the START-OUTPUT function.

Response
Inform the system administrator.

U5056-J-Z2125-3-7600 339

Messages

Manual supplements

ASS6201 WARNING
ASS6201 INTERNAL LLM ACCESS WARNING. SUB_RC_=(&00).
Meaning
Warning with LLM access.
Response
Inform the system administrator.
ASS6202 SIGNIFICANT ERROR
ASS6202 INTERNAL LLM ACCESS ERROR: FUNCTION= (&00), MAIN-CODE= (&01), SUB-CODE= (&02)
Meaning
Error with LLM access. The error type is shown in the MAIN retcode and the SUB retcode.
Response
Inform the system administrator.
ASS6203 SIGNIFICANT ERROR
ASS6203 INTERNAL LLM ACCESS ERROR. NO LLM GENERATED BECAUSE OF PRECEDING
ASS6204 FATLURE
ASS6204 ILLEGAL VERSION OF LLMAM FOR ASSEMBH
Response
Inform the system administrator, so that he can install the correct LLMAM version.
ASS6205 FATLURE
ASS6205 NO LLM GENERATION POSSIBLE DUE TO PRECEDING ERROR
ASS6206 FATLURE
ASS6206 MEMBER NAME FOR MODULE INVALID: NO LLM GENERATION POSSIBLE
ASS6207 WARNING
ASS6207 '"TEST-SUPPORT=AID' AND 'MODULE-FORMAT=LLM' FOR THE PRESENT ONLY
POSSIBLE WITH 'EXTERNAL-NAMES=TRUNCATED'
LGRO0OO8 STRUCTURE NOT CLOSED
LGRO119 DMS—ERROR (&00) WHEN ACCESSING CIF
LGR2100 INTERNAL ERROR WHEN PROCESSING CIF PARTITIONS, CODE: (&00)
Meaning
Error text for ASSLG development.
Response
Inform the system administrator.
340 U5056-J-Z2125-3-7600

Manual supplements

Messages

12.10.2

ASS7001
ASS7001

ASS7012
ASS7012

ASS7013
ASS7013

New/changed ASSEMBH runtime system messages

Supplements and correction in section 11.1.1 (page 303).

FATAL ERROR
INITIALIZATION OF THE ASSEMBLER RUNTIME SYSTEM NOT POSSIBLE; ILCS—RTC=(&00)

Meaning

Possible causes: RTC= 2: The BS2000 version is not supported
= 3: Version incompatibility ITOSL# and ITOSL@
= 4: Not enough memory for initial stack management
= 5: Not enough memory for initial heap management
= 6: Standard event handler cannot be initialized
= 7: An IxxSINI routine repoted an error in Reg.15

Response
Inform the system administrator.

FATAL ERROR
PROGRAM TERMINATION WITH ERROR; ILCS—-RTC=(&00)

Meaning

Possible causes: RTC= 2: ILCS is not initialized
= 3: Recursive call to an initialization or termination routine
=4: ITOTERM called from within a server coroutine

Response
Inform the system administrator.

FATAL ERROR
NO MORE HEAP AVAILABLE DURING INITIALIZATION OF THE RUNTIME SYSTEM.

Meaning
No HEAP memory can be obtained for management information in the runtime system

Response

- Reduce the data request(s);

- Release HEAP memory that is no longer needed;

- Have the system administrator increase the user address space.

U5056-J-Z2125-3-7600

341

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

ASSEMBH (BS2000)
Reference Manual

AID (BS2000)

Advanced Interactive Debugger
Debugging of ASSEMBH Programs
User Guide

AID (BS2000)

Advanced Interactive Debugger
Core Manual

User Guide

Introductory Guide to XS Programming
(for Assembler Programmers) (BS2000)
User’s Guide

SDF

(BS2000/0SD)

Introductory Guide to the SDF Dialog Interface
User Guide

BS2000/0SD-BC
Commands Volume 1-7
User Guide

BS2000
JV Job Variables

LMS (BS2000)
SDF Format
User Guide

BS2000/0SD-BC
Dynamic Binder Loader / Starter
User Guide

BS2000
Binder
User Guide

U5056-J-2125-3-7600

[11]

[12]

BS2000
Assembler Instructions
Language Reference Manual

BS2000/0SD-BC
ExecutiveMacros
User Guide

U5056-J-2125-3-7600

Index

*COMOPT statements (see COMOPT statements) 322

A
address space, extended 90
address space requirement 52
Advanced Interactive Debugger (AID) 175
AID
Advanced Interactive Debugger 175
example of a debugging run 179
prerequisites for symbolic debugging 177
TEST-SUPPORT option 47
ASSDIAG
command overview 157
CORRECTION-CYCLE option 50
definition of terms 154
error classes 154
formatted screen 1/0 172
function overview 153
interrupting the program run 156
software requirements 153
starting 155
ASSEMBH
basic configuration (BC) 1
calling 7
control 8
diagnostic routine ASSDIAG 153
functionality 1
input sources 61
listings 91
messages 241
outputs 67
restarting 9
SDF interface 10
structure 2

U5056-J-2125-3-7600

Index

ASSEMBH ILCS objects, creating 149
ASSEMBH-BC
calling 7
functionality 1
assembly 7
example 13
monitoring with job variables 71
multiple 8
of structured assembler programs 89
restarting 9
simple 8
terminating an assembly run 48
assembly unit 7, 9
ASSIGN-SYSDTA command 63
ASSLG 53, 91
autolink procedure, TSOSLNK 86
automatic version incrementation 37, 46

B
BINDER
control statements 81
linking with 81
LLMs 80
OMs 80

C
C programs, language interfacing 133
calling ASSEMBH 7
CCW channel instructions, tests 51
CDT command, ASSDIAG 158
CIF support 36
COBOL program, language interfacing 134, 140
COLBIN call, ILCS 150, 152
COLINDA, utility routine for structured programming 187, 198
COLLIST, utility routine for structured programming 187
COLNAS, utility routine for structured programming 187, 195
COLNUMA, utility routine for structured programming 187, 201
COMOPT statements
comparison with COMPILE statements 332
end of input 328
general 322
table 323
compilation space 52
COMPILATION-INFO, option 36
COMPILATION-SPACE option 52

U5056-J-2125-3-7600

Index

COMPILE statement

comparison with COMOPT statements 332

example 13

input in SDF menu mode 11

overview of options 20
COMPILER-ACTION option 32
COMPILER-TERMINATION option 48
CONTINUE-CDT command, ASSDIAG 163
COPY elements

COPY-LIBRARY option 26

input 66

search order 66
COPY-LIBRARY option 26
correction cycle 50, 153
CORRECTION-CYCLE option 50
cross-reference listings 99

D
data structures, ILCS 144
data types, ILCS 146
DBL 80

linking and loading 83

LLMs 80

OMs 80
debugging, with AID 47, 175
diagnostic file 154
diagnostic routine, ASSDIAG (see ASSDIAG) 153
DISPLAY command, ASSDIAG 164
DLL 80

E

ELDE (loader) 88

END command, ASSDIAG 166

error messages (see messages) 230
ESA support 90

ESD information 177

ESD listing 93

executable program 79

expert mode, SDF 10

EXTERNAL SYMBOLIC DICTIONARY (ESD listing) 93
external symbols, masking out 82

U5056-J-2125-3-7600

Index

F

FORTRAN program, language interfacing 134, 140

function keys, SDF menu mode 12

G
GENERATE statement 54

H
HELP command, ASSDIAG 166

I
ILCS 77
program communication interface 142

ILCS (Inter-Language Communication Services) 142

ILCS linkage combinations 150
input
of COPY elements 66
of macro elements 64
of options 8, 10, 11
of source program 63
instruction set option
BS2000-ESA 29
BS2000-NXS 29
BS2000-XS 29
interfacing structured assembler programs 148

J
job variables (see monitoring job variables) 71

L
language interfaces 129
assembler programs 129
language interfacing
assembler program segments 141
assembler programs 136
C programs 133
COBOL and FORTRAN programs 134, 140
structured assembler programs 131, 136, 141
laser printer listings 105
link-and-load module 31
output 70
output location 34
link-and-load module generation 32
linkage editor, BINDER 80

U5056-J-2125-3-7600

Index

linking
example (TSOSLNK) 87
general information 79
ILCS program systems 147
of structured assembler programs 89
temporary 83
with BINDER 81
with DBL 83
with TSOSLNK 85
LIST command, ASSDIAG 167
listing
controlling the output 38
cross-references (XREF) 99
ESD 93
GENERATE statement 54
in ASSEMB V30 compatible format 102
laser printer (ND) 105
options 92
SAVLST (with ISAM key) 106
LISTING option 38
listings
description 91
standard format 91
lists in LLM format 126
LLM, generating with BINDER 81
LLM format 33
load module 79
LOAD-PROGRAM command
calling DBL 83
calling the program 88
loading, general information 79
loading a program 88
long-jump 152
lookahead mechanism 315
LSD information 47, 177

M
machine instructions, format 316
macro elements
input 64
MACRO-LIBRARY option 24
search order 65

U5056-J-2125-3-7600

Index

macro library
system 65
user-own 64
MACRO-LIBRARY option 24
macros, ILCS interface 148
maintenance support 51
MAINTENANCE-OPTIONS option 51
masking out of symbols 82
menu mode, SDF 10
messages
from utilities for structured programming 230
of ASSEMBH 241
metalanguage 5
metasyntax, SDF interface 16
mnemonic operation code, machine instructions 316
MODIFY-SDF-OPTIONS command 10
MODIFY-SYMBOL-VISIBILITY, BINDER statement 83
MODULE option, COMOPT statement 330
MODULE-LIBRARY option 34
monitoring job variables
example 75
monitoring the assembly 71
support by the runtime system 78
multiple assembly 8

N

Nassi-Shneiderman diagrams, COLNAS 187
NEXT line, SDF menu mode 12

notational conventions 5

@)
object module 31

output 69

output location 34
object module generation 32
OM-Format 32
operand form, SDF 11
option, for debugging 47

U5056-J-2125-3-7600

Index

options
CIF support 36
for input support 21
for listing support 38
for maintenance support 51
for object module generation 31
for reducing the virtual address space requirement 52
input 8, 10, 11
overview 20
to activate the correction cycle 50
to terminate assembly 48
OPTIONS LISTING 92
outputs, of ASSEMBH 67

P
parameter passing, ILCS 146
PCD 145
PRINT command, ASSDIAG 167
program
loading 88
permanent 85
starting 88
temporary 83
program interface, ILCS 142
program linking (see language interfaces) 129
program mask 145
PROGRAM statement (TSOSLNK) 85

R

register conventions, ILCS 143

RERUN command, ASSDIAG 168

restart 9

return code, monitoring job variables 72, 78

return values, transfer 147

runtime system, for structured assembly programs 77

S
save area 144
SAVLST (listing with ISAM key) 106
SDF interface
metasyntax 16
of ASSEMBH 10
simple assembly 8
SOURCE LISTING (source program listing) 96

U5056-J-2125-3-7600

Index

SOURCE option 22

COMOPT statement 329
source program

format 28, 63

input 63

input from files 63

input from libraries 64

input via SYSDTA 63

input, SOURCE option 22
source program listing 96
SOURCE-PROPERTIES option 28
standalone listing generator 54
START-PROGRAM command

calling ASSEMBH 7

calling DBL 83

calling the program (ELDE) 88
starting, general information 79
starting a program 88
static linkage (TSOSLNK) 80
static linking (TSOSLNK) 85
status indicator, monitoring job variables 72
structured assembler programs

assembling and linking 89

interfacing 148

language interfacing 131

runtime system for 77

utility routines 187
structured list (ASSEMBH) 108
subroutines, linking (see language interfaces) 129
symbolic program linking 129
SYSDTA, input of source program 63
SYSTEM command, ASSDIAG 169

T
TAGS command, ASSDIAG 170
TEST-SUPPORT option 47
TOM editor 201
TSOSLNK 80
autolink procedure 86
control statements 85
example of a linkage run 87
linking with 85

U5056-J-2125-3-7600

Index

V
V-type constant 130
visibility, of external symbols 82

X
XREF command, ASSDIAG 171
XS support 90

U5056-J-2125-3-7600

Contents

11
1.2
13
1.4
15

21

2.2
221
222
223
2.3
231
2.3.2
2321
2.4
24.1
2411
24.1.2
2413
2414
242
2421
2422
243

244
245
24.6

247

Preface

Brief product descrlptlon
Target group .
Summary of contents

Changes since the last version of the manual

Notational conventions

Assembly .

Calling ASSEMBH

Controlling ASSEMBH

Simple assembly

Multiple assembly

Restarting the assembler

SDF interface of ASSEMBH
Processing the operand form
Metasyntax for the SDF interface
Data types and suffixes

COMPILE statement

Input support options

SOURCE option)
MACRO-LIBRARY option
COPY-LIBRARY option
SOURCE-PROPERTIES opt|on
Options for object module generation
COMPILER-ACTION option
MODULE-LIBRARY option

Option for CIF support
COMPILATION-INFO option
Option for listing support

LISTING option .

Option for debugging support
TEST-SUPPORT option

Option to terminate assembly
COMPILER-TERMINATION option
Option to activate the correction cycle
CORRECTION-CYCLE option

36

38

47

48

50

U5056-J-2125-3-7600

Contents

2.4.8

2.4.9

2.5
251

3.1
3.1.1
3.1.2
3.121
3.1.3
3.131
3.2
3.2.1
3.2.2
3.2.3
3.221

4.1
4.2

51
5.2
5.3
54
55
5.6
5.7
5.8

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.2
6.3
6.4

Option for maintenance support

MAINTENANCE-OPTIONS option .
Option for reducing the virtual address space requwement
COMPILATION-SPACE option

The standalone listing generator ASSLG

GENERATE statement

Input/output of ASSEMBH

Input sources of ASSEMBH
Input of the source program
Input of macro elements

Search order for macro elements
Input of COPY elements

Search order for COPY elements
Outputs of ASSEMBH

Output of the object module
Output of a link-and-load module

Monitoring the assembly with the monltormg jOb varlable MONJV

Structure of the monitoring job variables

Runtime system for structured programming
General information
Support for monitoring job varlables

Linking, loading and starting

General information

Linking with BINDER .

Dynamic linking and loading Wlth DBL

Static linking with TSOSLNK

Loading and starting programs using the Ioader ELDE
Assembling and linking a structured assembler program
XS support

ESA support

Description of listings

Listings in standard format .
Options listing (OPTIONS LISTING) .
ESD listing (EXTERNAL SYMBOL DICTIONARY)
Source program listing (SOURCE LISTING)
Listing of files and libraries used
Cross-reference listings

End message

Listing compatible W|th ASSEMB V3O

Laser printer listing

SAVLST (listing with ISAM key)

51

52
53
53

61
61
63
64
65
66
66
67
69
70
71
71

77

77
78

.79

79
81
83
85
88
89
90
90

.91

91
92
93
96
98
99
101
102
105
106

U5056-J-2125-3-7600

Contents

6.5
6.5.1
6.5.2
6.5.2.1
6.5.2.2
6.6
6.6.1
6.6.2

7.1
7.1.1
7.2
7.2.1
7.2.2

7.2.3
7.2.4

7.2.5

7.3

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.4

7.4.1
7.5

75.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6

8.1
8.2
8.3
8.4

Structured list

Features of the structurlng functlon

The print-edited assembly log

Handling of instructions

Handling of comments

Differences in lists where the module is output in LLM format
Lists in OM format

Lists in LLM format

Language interfaces .

Symbolic linking of assembler programs

Interfacing with other languages

Linking structured assembler programs

Interfacing structured assembler programs with C programs
Interfacing structured assembler programs with COBOL and
FORTRAN programs

Interfacing structured assembler programs WI'[h assembler programs
Interfacing COBOL and FORTRAN program segments with structured

assembler programs

Interfacing assembler program segments W|th structured assembler

programs .

The program communlcatlon mterface ILCS

ILCS register conventions

ILCS data structures .

Initialization of the program system

Program mask handling by ILCS

Parameter passing in ILCS program systems

Notes on linking of ILCS program systems .
Program interfacing of structured assembler programs via
the ILCS interface

Creating an ASSEMBH ILCS object

ILCS linkage combinations

ILCS object calls ASSEMBH ILCS obJect .
ASSEMBH ILCS object calls ASSEMBH ILCS object
ASSEMBH ILCS object calls non-ILCS ASSEMBH object
Non-ILCS ASSEMBH object calls ASSEMBH ILCS object
Non-ILCS object calls ASSEMBH ILCS object

Long-jump (@EXIT with parameter TO)

The ASSEMBH diagnostic routine ASSDIAG
Application

Definition of terms .

Starting the diagnostic routlne

Interrupting the program run

108
108
110
111
113
125
126
127

. 129

129
130
131
133

134
136

140

141
142
143
144
145
145
146
147

148
149
150
150
150
151
151
152
152

153

153
154
155
156

U5056-J-2125-3-7600

Contents

8.5
8.5.1
8.5.1.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.5.8
8.5.9
8.5.10
8.5.11
8.6
8.6.1
8.6.2
8.6.3

9.1
9.2
9.3
9.3.1
9.3.2

10

10.1
10.1.1
10.1.11
10.1.1.2
10.1.2
10.1.2.1
10.1.3
10.1.31
10.1.3.2
10.2
10.2.1
10.2.2

ASSDIAG commands

CDT command

CDT statements .
CONTINUE-CDT command
DISPLAY command

END command

HELP command

LIST command

PRINT command

RERUN command

SYSTEM command

TAGS command

XREF command

Formatted screen I/O .)
Basic structure of ASSDIAG formats
Example: DISPLAY command
Example: TAGS command

The Advanced Interactive Debugger (AID)
Introduction

Prerequisites for symbolrc debuggrng
Example of a debugging run

Assembler program

Debugging run

Utility routines for structured programming
Utilities which edit the structured source program
COLLIST

Structure list

Procedure list

COLNAS

Format of the list

COLINDA .

Output from COLINDA

Structure functions available in the TOM edrtor
COLNUMA

Extending the structure Irst

Extending the assembler listing of a program edrted by COLINDA

156
158
160
163
164
166
166
167
167
168
169
170
171
172
172
172
173

75
175
177
179
179
181

. 187

189
189
189
193
195
195
198
198
201
201
201
203

U5056-J-2125-3-7600

Contents

10.3

10.3.1
10.3.2
10.3.3

10.3.4
10.3.5

10.4
10.4.1

10.4.2

10.4.3
10.5
10.5.1
10.5.2
10.5.3
10.6

11
111
1111
11.1.2
11.2
11.3
11.4
114.1
11.4.2
1143
11.4.4

Working with the COLLIST, COLNAS and COLINDA utilities
Input for COLLIST, COLNAS and COLINDA

Output from COLLIST and COLNAS

Output from COLINDA

Summary

Control of COLLIST COLNAS and COLINDA

Parameters

Examples

Working with the COLNUMA ut|I|ty

Extending the structure list

Summary . .
Enhancing the assembler I|st|ng of a program ed|ted by COLINDA
Summary
Parameters

Messages from the utrlrtres

Operator error messages and system messages

Syntax error messages

Meaning of aabb in syntax error messages

Support for monitoring job variables

Appendix

ASSEMBH messages

Messages of the assembler runtlme system for structured programmrng
Listing generator messages

Lookahead mechanism

Format of machine instructions

*COMOPT statements .

Table of *COMOPT statements

SOURCE option

MODULE option

Comparison of *COMOPT and COMPILE statements

Manual supplements

References

Index

205
207
207
208
209
211
212

221
224
224
226
227
228
229
230
230
235
237
239

. 241

241
303
306
315
316
322
323
329
330
332

U5056-J-2125-3-7600

User Guide - English

ASSEMBH

User Guide

Valid for
ASSEMBH V1.2
With Supplement chapter for ASSEMBH V1.2D

Edition June 2010

(o9
FUJITSU

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2000

To ensure a consistently high quality standard and
user-friendliness, this documentation was created to

meet the regulations of a quality management system which
complies with the requirements of the standard

DIN EN ISO 9001:2000.

cognitas. Gesellschaft fur Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

Copyright © Fujitsu Technology Solutions GmbH 2010.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers

On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Computers. This new subsidiary of
Fujitsu has been renamed Fujitsu Technology Solutions.

This document is a new edition of an earlier manual for a product version which was released a conside-
rable time ago in which changes have been made to the subject matter.

Please note that all company references and copyrights in this document have been legally transferred to
Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology Solutions and have the format
...@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at http://ts.fujitsu.com/...

et @

	Title
	Contents
	Preface
	Brief product description
	Target group
	Summary of contents
	Changes since the last version of the manual
	Notational conventions

	Assembly
	Calling ASSEMBH
	Controlling ASSEMBH
	Simple assembly
	Multiple assembly
	Restarting the assembler

	SDF interface of ASSEMBH
	Processing the operand form
	Metasyntax for the SDF interface
	Data types and suffixes

	COMPILE statement
	Input support options
	SOURCE option
	MACRO-LIBRARY option
	COPY-LIBRARY option
	SOURCE-PROPERTIES option

	Options for object module generation
	COMPILER-ACTION option
	MODULE-LIBRARY option

	Option for CIF support COMPILATION-INFO option
	Option for listing support LISTING option
	Option for debugging support TEST-SUPPORT option
	Option to terminate assembly COMPILER-TERMINATION option
	Option to activate the correction cycle CORRECTION-CYCLE option
	Option for maintenance support MAINTENANCE-OPTIONS option
	Option for reducing the virtual address space requirement COMPILATION-SPACE option

	The standalone listing generator ASSLG
	GENERATE statement

	Input/output of ASSEMBH
	Input sources of ASSEMBH
	Input of the source program
	Input of macro elements
	Search order for macro elements

	Input of COPY elements
	Search order for COPY elements

	Outputs of ASSEMBH
	Output of the object module
	Output of a link-and-load module
	Monitoring the assembly with the monitoring job variable MONJV
	Structure of the monitoring job variables

	Runtime system for structured programming
	General information
	Support for monitoring job variables

	Linking, loading and starting
	General information
	Linking with BINDER
	Dynamic linking and loading with DBL
	Static linking with TSOSLNK
	Loading and starting programs using the loader ELDE
	Assembling and linking a structured assembler program
	XS support
	ESA support

	Description of listings
	Listings in standard format
	Options listing (OPTIONS LISTING)
	ESD listing (EXTERNAL SYMBOL DICTIONARY)
	Source program listing (SOURCE LISTING)
	Listing of files and libraries used
	Cross-reference listings
	End message

	Listing compatible with ASSEMB V30
	Laser printer listing
	SAVLST (listing with ISAM key)
	Structured list
	Features of the structuring function
	The print-edited assembly log
	Handling of instructions
	Handling of comments

	Differences in lists where the module is output in LLM format
	Lists in OM format
	Lists in LLM format

	Language interfaces
	Symbolic linking of assembler programs
	Interfacing with other languages

	Linking structured assembler programs
	Interfacing structured assembler programs with C programs
	Interfacing structured assembler programs with COBOL and FORTRAN programs
	Interfacing structured assembler programs with assembler programs
	Interfacing COBOL and FORTRAN program segments with structured assembler programs
	Interfacing assembler program segments with structured assembler programs

	The program communication interface ILCS
	ILCS register conventions
	ILCS data structures
	Initialization of the program system
	Program mask handling by ILCS
	Parameter passing in ILCS program systems
	Notes on linking of ILCS program systems

	Program interfacing of structured assembler programs via the ILCS interface
	Creating an ASSEMBH ILCS object

	ILCS linkage combinations
	ILCS object calls ASSEMBH ILCS object
	ASSEMBH ILCS object calls ASSEMBH ILCS object
	ASSEMBH ILCS object calls non-ILCS ASSEMBH object
	Non-ILCS ASSEMBH object calls ASSEMBH ILCS object
	Non-ILCS object calls ASSEMBH ILCS object
	Long-jump (@EXIT with parameter TO)

	The ASSEMBH diagnostic routine ASSDIAG
	Application
	Definition of terms
	Starting the diagnostic routine
	Interrupting the program run
	ASSDIAG commands
	CDT command
	CDT statements

	CONTINUE-CDT command
	DISPLAY command
	END command
	HELP command
	LIST command
	PRINT command
	RERUN command
	SYSTEM command
	TAGS command
	XREF command

	Formatted screen I/O
	Basic structure of ASSDIAG formats
	Example: DISPLAY command
	Example: TAGS command

	The Advanced Interactive Debugger (AID)
	Introduction
	Prerequisites for symbolic debugging
	Example of a debugging run
	Assembler program
	Debugging run

	Utility routines for structured programming
	Utilities which edit the structured source program
	COLLIST
	Structure list
	Procedure list

	COLNAS
	Format of the list

	COLINDA
	Output from COLINDA
	Structure functions available in the TOM editor

	COLNUMA
	Extending the structure list
	Extending the assembler listing of a program edited by COLINDA

	Working with the COLLIST, COLNAS and COLINDA utilities
	Input for COLLIST, COLNAS and COLINDA
	Output from COLLIST and COLNAS
	Output from COLINDA
	Summary

	Control of COLLIST, COLNAS and COLINDA
	Parameters

	Examples
	Working with the COLNUMA utility
	Extending the structure list
	Summary

	Enhancing the assembler listing of a program edited by COLINDA
	Summary

	Parameters

	Messages from the utilities
	Operator error messages and system messages
	Syntax error messages
	Meaning of aabb in syntax error messages

	Support for monitoring job variables

	Appendix
	ASSEMBH messages
	Messages of the assembler runtime system for structured programming
	Listing generator messages

	Lookahead mechanism
	Format of machine instructions
	*COMOPT statements
	Table of *COMOPT statements
	SOURCE option
	MODULE option
	Comparison of *COMOPT and COMPILE statements

	Manual supplements
	Controlling ASSEMBH, the standalone listing generator ASSLG and *COMOPT statements
	COMPILATION-INFO option
	LISTING option
	OUTPUT option
	ESD list
	Structured list
	Parameter ENV=C and LOADR12
	Working with the COLNUMA utility
	Utility program messages
	Messages
	Not included messages
	New/changed ASSEMBH runtime system messages

	References
	Index
	A
	B-C
	D-E
	F-L
	M
	N-O
	P-S
	T
	V-X

