
Edition August 2010

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

a
tio

ns
sy

st
e

m
e

A
G

 1
9

95

P
fa

d:
 F

:\W
e

bT
A

\V
7.

5
\M

a
nu

a
le

\1
00

35
01

_
K

o
nz

e
pt

e_
F

un
kt

io
n

en
\e

n
\k

on
fu

.v
or

User Guide - English

WebTransactions V7.5
Concepts and Functions

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2010.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

WebTransactions Concepts and Functions

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

ly
 2

0
10

S

ta
nd

 1
4:

34
.3

8
P

fa
d

: F
:\

W
e

bT
A

\V
7.

5\
M

a
nu

al
e

\1
00

35
0

1_
K

o
nz

e
pt

e_
F

un
kt

io
ne

n\
en

\k
o

nf
u.

iv
z

Contents

1 Preface . 9

1.1 Product characteristics . 9

1.2 WebTransactions supply units . 11
1.2.1 Application-specific host adapters . 12
1.2.2 Host adapter for dynamic Web content . 14

1.3 WebTransactions documentation . 15

1.4 Structure and target group of this manual . 18

1.5 New features . 19

1.6 General solutions . 20

1.7 Notational conventions . 21

2 Functional overview . 23

2.1 Possible applications . 23

2.2 WebTransactions function range . 29

2.3 WebTransactions components . 37

3 What is a WebTransactions application . 39

3.1 Components of a WebTransactions application 39

3.2 WebTransactions session . 41
3.2.1 Roaming Sessions . 41
3.2.2 Service applications . 45

Contents

 WebTransactions Concepts and Functions

3.3 Templates . 48
3.3.1 WTML templates . 48
3.3.2 Master, class and module templates . 51
3.3.2.1 Master templates . 51
3.3.2.2 Class templates . 52
3.3.2.3 Module templates . 52
3.3.3 WTBeans . 53

3.4 Structure of the base directory . 55
3.4.1 The config subdirectory . 56
3.4.1.1 The forms subdirectory . 56
3.4.1.2 Subdirectories for style and language variants 56
3.4.2 The msg subdirectory . 59
3.4.3 The tmp subdirectory . 59
3.4.4 The wtcUsage subdirectory . 59
3.4.5 The wwwdocs subdirectory . 60

3.5 Dialog cycle . 62
3.5.1 Synchronized dialog . 62
3.5.2 Non-synchronized dialog . 64
3.5.3 Dialog via client interface . 65

3.6 Objects - dynamic data . 66
3.6.1 Lifetime of objects . 69
3.6.2 Object visibility . 70
3.6.3 Global system object WT_SYSTEM - session control and long-term data storage . . . 70
3.6.3.1 Long-term data storage . 71
3.6.3.2 Global session control . 71
3.6.4 Posted object WT_POSTED - data from the browser 82
3.6.5 Host root object WT_HOST - managing connections to host applications 85
3.6.5.1 Host communication object WT_HOST.Comobj - managing a host connection . . 85
3.6.5.2 Host data objects - host application data . 86
3.6.5.3 Host control objects - management data for a format 86
3.6.5.4 Connection-specific system object WT_Host.Comobj.WT_SYSTEM - connection-

specific control functions . 87
3.6.5.5 WTScript and communication objects . 87
3.6.6 Template objects – Short-term intermediate data storage 88

Contents

WebTransactions Concepts and Functions

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

ly
 2

0
10

S

ta
nd

 1
4:

34
.3

8
P

fa
d

: F
:\

W
e

bT
A

\V
7.

5\
M

a
nu

al
e

\1
00

35
0

1_
K

o
nz

e
pt

e_
F

un
kt

io
ne

n\
en

\k
o

nf
u.

iv
z

4 Execution of a WebTransactions application . 89

4.1 Creating a WebTransactions application . 90

4.2 Starting a WebTransactions dialog application 92
4.2.1 Start options . 93
4.2.1.1 Starting by input of the URL . 94
4.2.1.2 Starting using an HTML form . 96
4.2.1.3 Starting with WT_REMOTE . 97
4.2.2 Templates at start time . 98
4.2.2.1 General start template wtstart.htm . 98
4.2.2.2 Connection-specific start templates . 102
4.2.2.3 Interaction between start templates when integrating the application 103

4.3 Data exchange during the session . 105
4.3.1 FORM tag . 105
4.3.2 HTML link . 106

4.4 Dialog between WebTransactions and the host application 108
4.4.1 Passive dialog . 108
4.4.2 Active dialog . 109

4.5 Dialog between WebTransactions and the browser 110
4.5.1 Synchronized dialog . 110
4.5.2 Non-synchronized dialog . 111

4.6 Terminating a session . 116
4.6.1 Terminating a session explicitly . 116
4.6.2 Terminating a session by means of a timeout . 119
4.6.3 Terminating via WT_REMOTE . 120

4.7 Diagnoses in a WebTransactions application . 121
4.7.1 Trace functions . 121
4.7.1.1 Communication traces . 121
4.7.1.2 WebTransactions trace . 121
4.7.2 Recording a session . 123

4.8 Transferring a WebTransactions application . 124
4.8.1 Unpacking an application by command . 124

4.9 Client interface WT_REMOTE . 126

4.10 Administering a WebTransactions application 127

Contents

 WebTransactions Concepts and Functions

5 WebTransactions server . 131

5.1 User concept . 132

5.2 Starting the administration program . 133

5.3 Entering or upgrading licenses . 135
5.3.1 Standalone licenses . 135
5.3.2 On-demand licenses . 136
5.3.3 Cluster licenses . 138

5.4 Managing the WebTransactions server . 139

5.5 Cluster concept . 142
5.5.1 Registering cluster licenses . 143
5.5.2 Setting up a cluster . 145
5.5.3 Editing a cluster’s properties . 146
5.5.4 Starting a cluster session . 146

5.6 WebTransactions on a blade server . 149
5.6.1 Blade server features . 149
5.6.2 Providing WebTransactions on a blade . 150
5.6.2.1 Installation on Linux . 150
5.6.2.2 Installing in Windows . 151
5.6.2.3 Configuring WebTransactions . 151
5.6.3 Providing WebTransactions on several blades of a blade server 152
5.6.4 Providing a WebTransactions cluster on several blades of a blade server 153

6 The WebLab development environment . 155

6.1 Functionality of WebLab . 157

6.2 First Steps . 159
6.2.1 Creating projects . 159
6.2.1.1 Creating a base directory . 160
6.2.1.2 Creating an automask template (OSD, MVS) 161
6.2.1.3 Creating an individual start template . 161
6.2.2 Saving a project . 161
6.2.3 Starting a session . 161

6.3 The WebLab GUI . 162
6.3.1 Main window . 162
6.3.2 Tree structure . 164
6.3.2.1 Template tree . 165
6.3.2.2 Object trees . 167
6.3.3 The value window . 168

Contents

WebTransactions Concepts and Functions

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

ly
 2

0
10

S

ta
nd

 1
4:

34
.3

8
P

fa
d

: F
:\

W
e

bT
A

\V
7.

5\
M

a
nu

al
e

\1
00

35
0

1_
K

o
nz

e
pt

e_
F

un
kt

io
ne

n\
en

\k
o

nf
u.

iv
z

6.4 Generating templates . 169

6.5 Editing templates . 170
6.5.1 General procedure . 170
6.5.2 Designing templates . 170
6.5.2.1 Editing templates . 171
6.5.2.2 Insert snippets . 171
6.5.2.3 Inserting WTBeans . 171
6.5.3 Defining templates for host formats . 175
6.5.3.1 Defining the global layout . 175
6.5.3.2 Design host formats . 176
6.5.3.3 Select host objects graphically . 177
6.5.4 Designing templates for portal use . 177
6.5.5 Designing dialog sequences . 178
6.5.6 Formatting templates . 179
6.5.6.1 Modifying the notation used for HTML and WTML tags 179
6.5.6.2 Formatting the script source text . 179
6.5.6.3 Indenting HTML tags . 180
6.5.6.4 Indenting WTML tags . 182
6.5.7 Documenting templates . 182
6.5.7.1 Format of the comments . 183
6.5.7.2 Inserting comments . 185
6.5.7.3 Generating documentation . 186
6.5.7.4 Format of the display . 187
6.5.7.5 Example . 188

6.6 Testing templates . 191
6.6.1 Testing the design of a template . 191
6.6.2 Testing the execution sequence in the template . 193
6.6.2.1 Tracking execution via a template or a template area 193
6.6.2.2 Monitoring the values of variables . 195

6.7 Integrating server tools in WebLab . 196

6.8 Transferring and distributing a WebTransactions application 198
6.8.1 Scope of transfer . 198
6.8.2 Packing an application . 199
6.8.3 Unpacking an application . 199
6.8.4 Distributing an application . 200

Contents

 WebTransactions Concepts and Functions

7 Appendix: demo applications . 201

Glossary . 203

Abbreviations . 221

Related publications . 223

Index . 225

WebTransactions Concepts and Functions 9

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
38

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
1

1 Preface
Over the past years, more and more IT users have found themselves working in heteroge-
neous system and application environments, with mainframes standing next to Unix
systems and Windows systems and PCs operating alongside terminals. Different hardware,
operating systems, networks, databases and applications are operated in parallel. Highly
complex, powerful applications are found on mainframe systems, as well as on Unix servers
and Windows servers. Most of these have been developed with considerable investment
and generally represent central business processes which cannot be replaced by new
software without a certain amount of thought.

The ability to integrate existing heterogeneous applications in a uniform, transparent IT
concept is a key requirement for modern information technology. Flexibility, investment
protection, and openness to new technologies are thus of crucial importance.

1.1 Product characteristics

With WebTransactions, Fujitsu Technology Solutions offers a best-of-breed web integration
server which will make a wide range of business applications ready for use with browsers
and portals in the shortest possible time. WebTransactions enables rapid, cost-effective
access via standard PCs and mobile devices such as tablet PCs, PDAs (Personal Digital
Assistant) and mobile phones.

WebTransactions covers all the factors typically involved in web integration projects. These
factors range from the automatic preparation of legacy interfaces, the graphic preparation
and matching of workflows and right through to the comprehensive frontend integration of
multiple applications. WebTransactions provides a highly scaleable runtime environment
and an easy-to-use graphic development environment.

Product characteristics Preface

10 WebTransactions Concepts and Functions

On the first integration level, you can use WebTransactions to integrate and link the
following applications and content directly to the Web so that they can be easily accessed
by users in the internet and intranet:

– Dialog applications in BS2000/OSD
– MVS or z/OS applications
– System-wide transaction applications based on openUTM
– Dynamic web content

Users access the host application in the internet or intranet using a web browser of their
choice.

Thanks to the use of state-of-the-art technology, WebTransactions provides a second
integration level which allows you to replace or extend the typically alphanumeric user inter-
faces of the existing host application with an attractive graphical user interface and also
permits functional extensions to the host application without the need for any intervention
on the host (dialog reengineering).

On a third integration level, you can use the uniform browser interface to link different host
applications together. For instance, you can link any number of previously heterogeneous
host applications (e.g. MVS or OSD applications) with each other or combine them with
dynamic Web contents. The source that originally provided the data is now invisible to the
user.

In addition, you can extend the performance range and functionality of the WebTransactions
application through dedicated clients. For this purpose, WebTransactions offers an open
protocol and special interfaces (APIs).

Host applications and dynamic Web content can be accessed not only via WebTransactions
but also by “conventional” terminals or clients. This allows for the step-by-step connection
of a host application to the Web, while taking account of the wishes and requirements of
different user groups.

Preface WebTransactions supply units

WebTransactions Concepts and Functions 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
38

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
1

1.2 WebTransactions supply units

The following table provides an overview of the supply units and platforms for which
WebTransactions is currently available:

Each variant consists of the WebTransactions runtime system together with a special host
adapter via which the communication with the host application is carried out, and a host
adapter for dynamic Web content. Each supply unit contains the WebLab development
environment which you use to link a host application to the WWW and optically prepare the
host formats and also extend their functionality.

Due to the modular architecture of WebTransactions and its compliance with open
standards, new host adapters for additional application types can be implemented quickly
and cost-effectively on request - even within project solutions.

Supply unit WebTransactions platform Supported
protocol

WebTransactions for OSD BS2000/OSD
Solaris
Linux
Windows

9750

WebTransactions for MVS Solaris
Linux
Windows

3270

WebTransactions for openUTM BS2000/OSD
Solaris
Linux
Windows

UPIC

Table 1: WebTransactions supply units

WebTransactions supply units Preface

12 WebTransactions Concepts and Functions

1.2.1 Application-specific host adapters

The host applications usually communicate using a proprietary protocol, which is where the
application-specific host adapters and the individual supply units get their names from.

WebTransactions for openUTM

WebTransactions for openUTM is used to link openUTM host applications which use FHS
or FORMANT formats or operate via the UPIC client server interface, to the Web.
WebTransactions for openUTM is available on the WebTransactions system platforms
BS2000/OSD, Solaris, Linux and Windows.

With Solaris, Linux and Windows, you can use any Web server you wish. Under
BS2000/OSD, WebTransactions requires the Apache Web server.

The openUTM host application can base on any of these platforms. The host adapter for
communication with the host application is based on the openUTM client (UPIC), or in other
words, WebTransactions and the host application can be run on different platforms.

The BS2000 program IFG2FLD is delivered with WebTransactions for openUTM. This is
used to convert the descriptions of the host formats from the IFG library into format source
descriptions. You can then use WebLab to automatically generate templates from these
format source descriptions. These generated templates then form the basis for the
individual layouts of the various formats.

WebTransactions for OSD

WebTransactions for OSD is used to link any BS2000/OSD dialog application (TIAM,
DCAM) to the Web. These applications may also be openUTM applications.

WebTransactions for OSD is available on the system platforms BS2000/OSD, Solaris, Linux
and Windows and operates there with any type of Web server. Under BS2000/OSD,
WebTransactions requires the Apache Web server.

The host adapter used to communicate with the host application is based on a 9750
emulation. WebTransactions can communicate with the host application in the same way as
a 9750 terminal. A so-called Automask template is used to convert the 9750 data stream
1:1 into HTML. The most frequently used keys of a 9750 terminal, such as the DUE, K and
F keys, are shown in the form of buttons in the browser, all the other special keys and
programmable keys in form of a list or in form of buttons too. With current browsers, you can
also control the host application via the keyboard.

Preface WebTransactions supply units

WebTransactions Concepts and Functions 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
38

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
1

You have the following options for further development of the Web interface:

– You can globally edit the entire interface by modifying the Automask template.

– You can edit the formats individually using a special capture mechanism. This process
records “snapshots” of the formats which are then converted to the relevant templates.
These form the basis for individual editing.

– In order to ensure that certain specified areas of the format have the same layout, for
example, the button bar, you can take a master template as a basis when generating
Automask and format-specific templates.

The 9750 emulation is integrated into WebTransactions for OSD.

The BS2000 program IFG2FLD is delivered with WebTransactions for OSD. This is used to
convert the descriptions of the host formats from the IFG library into format source descrip-
tions. You can then use WebLab to automatically generate templates from these format
source descriptions. These generated templates then form the basis for the individual
layouts of the various formats.

WebTransactions for MVS

WebTransactions for MVS is used to link any MVS or z/OS dialog application to the Web.

WebTransactions for MVS is available on the WebTransactions system platforms Solaris,
Linux, Windows and operates there with any type of Web server.

The host adapter used to communicate with the host application is based on a 3270
emulation. WebTransactions can communicate with the host application in the same way as
a 3270 terminal. The so-called Automask template is used to convert the 3270 data stream
1:1 into HTML. Special keys on the 3270 terminal are shown as buttons in the browser or
are given in a list. With current browsers, you can also control the host application via the
keyboard.

As in WebTransactions for OSD you have a range of development options for the Web
interface:

– You can globally edit the entire interface by modifying the Automask template.

– You can edit the formats individually using a special capture mechanism. This process
records “snapshots” of the formats which are then converted to the relevant templates.
These form the basis for individual editing.

– In order to ensure that certain specified areas of the format have the same layout, for
example, the button bar, you can take a master template as a basis when generating
Automask and format-specific templates.

The 3270 emulation is integrated into WebTransactions for MVS.

WebTransactions supply units Preface

14 WebTransactions Concepts and Functions

1.2.2 Host adapter for dynamic Web content

WebTransactions for dynamic Web content is used to access any Web content using the
HTTP protocol and is delivered as additional host adapter with all supply units.

WebTransactions for dynamic Web content is available for the WebTransactions system
platforms BS2000/OSD, Solaris, Linux and Windows and can access any Web server via
the HTTP protocol.

The host adapter via which communication with the Web application is carried out is based
on the HTTP protocol. WebTransactions supports the encryption of messages via HTTPS
as well as client and server authentication via certificates. In this way, WebTransactions can
communicate with the Web application in the same way as a browser. You have the option
of forwarding the data received from the Web application (HTML or XML) either 1:1 to the
browser or modifying the data, for example, to use only certain parts of the data, to regroup
the data or to add additional data.

WebTransactions for dynamic Web content supports the access to Web services. By
importing the Web service descriptions in WSDL (Web Service Description Language), a
simple and transparent mechanism for utilising remote services via SOAP (Simple Object
Access Protocol) is available.

Preface WebTransactions documentation

WebTransactions Concepts and Functions 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
38

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
1

1.3 WebTransactions documentation

The WebTransactions documentation consists of the following documents:

● A Reference Manual which also applies to all supply units and which describes the
WebTransactions template language WTML. This manual describes the following:

Template Language

After an overview of WTML, information is provided about:

– The lexical components used in WTML.

– The class-independent global functions, e.g. escape() or eval().

– The integrated classes and methods, e.g. array or Boolean classes.

– The WTML tags which contain functions specific to WebTransactions.

– The WTScript statements that you can use in the WTScript areas.

– The class templates which you can use to automatically evaluate objects of the
same type.

– The master templates used by WebTransactions as templates to ensure a uniform
layout.

– A description of Java integration, showing how you can instantiate your own Java
classes in WebTransactions and a description of user exits, which you can use to
integrate your own C/C++ functions.

– The ready-to-use user exits shipped together with WebTransactions.

– The XML conversion for the portable representation of data used for communication
with external applications via XML messages and the conversion of WTScript data
structures into XML documents.

WebTransactions documentation Preface

16 WebTransactions Concepts and Functions

● A User Guide for each type of host adapter with special information about the type of
the partner application:

Connection to openUTM applications via UPIC

Connection to OSD applications

Connection to MVS applications

All the host adapter guides contain a comprehensive example session. The manuals
describe:

– The installation of WebTransactions with each type of host adapter.

– The setup and starting of a WebTransactions application.

– The conversion templates for the dynamic conversion of formats on the web
browser interface.

– The editing of templates.

– The control of communications between WebTransactions and the host applications
via various system object attributes.

– The handling of asynchronous messages and the print functions of
WebTransactions.

● A User Guide that applies to all the supply units and describes the possibilities of the
HTTP host adapter:

Access to Dynamic Web Contents

This manual describes:

– How you can use WebTransactions to access a HTTP server and use its resources.

– The integration of SOAP (Simple Object Access Protocol) protocols in
WebTransactions and the connection of web services via SOAP.

Preface WebTransactions documentation

WebTransactions Concepts and Functions 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
38

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
1

● A User Guide valid for all the supply units which describes the open protocol, and the
interfaces for the client development for WebTransactions:

Client APIs for WebTransactions

This manual describes:

– The concept of the client-server interface in WebTransactions.

– The WT_RPC class and the WT_REMOTE interface. An object of the WT_RPC class repre-
sents a connection to a remote WebTransactions application which is run on the
server side via the WT_REMOTE interface.

– The Java package com.siemens.webta for communication with WebTransactions
supplied with the product.

● A User Guide valid for all the supply units which describes the web frontend of
WebTransactions that provides access to the general web services:

Web-Frontend for Web Services

This manual describes:

– The concept of web frontend for object-oriented backend systems.

– The generation of templates for the connection of general web services to
WebTransactions.

– The testing and further development of the web frontend for general web services.

Structure and target group of this manual Preface

18 WebTransactions Concepts and Functions

1.4 Structure and target group of this manual

This WebTransactions manual “Concepts and Functions” provides an introduction to
working with WebTransactions and is intended for anyone not yet familiar with the product.

Rather than going into the syntactic details of individual statements or the specifics of the
interface, this manual explains all the underlying concepts of WebTransactions which are
the same for all the supply units. Equipped with this information, you will easily be able to
find your way around the suite of WebTransactions manuals.

Chapter 2 provides a brief introduction to the features and mode of operation of
WebTransactions. Chapter 3 contains the most important WebTransactions definitions
including a detailed description of the object concept. Chapter 4 concentrates on the
dynamic sequencing of a WebTransactions session. Chapter 5 describes how you admin-
ister WebTransactions. Chapter 6 presents WebLab, the WebTransactions development
environment and describes its most important functions.

The detailed lists at the back of the manual - the abbreviations, glossary, list of related publi-
cations, and the index - allow you to quickly locate specific information in the manual.

Scope of this description

This documentation is valid for all supply units, irrespective of the WebTransactions platform
on which they are running.

Preface New features

WebTransactions Concepts and Functions 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
38

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
1

1.5 New features

This section provides an overview of the most important new features in WebTransactions
Version 7.5 and indicates where you can find a more detailed description.

Type of new feature Description

Global system object attributes:
– New system object attribute LT_REPLACE_STRING
– New system object attribute

PREVENT_EXIT_SESSION

– page 78
– page 79

Global functions:
– New function moveFile()
– New function copyFile()
– New function isRequestWaiting()
– New parameter all in listFolder()

WebTransactions manual
“Template Language”

Built-in classes and methods:
– New method String.fromCharCode
– New method string.charCodeAt
– New method

WT_Filter.dataObjectToFormattedXML
– Change for the output of the toString() method

on objects and arrays: better
serialization/deserialization

WebTransactions manual
“Template Language”

Exceptions:
New attributes strLine, strColumn and strText at the
exception object

WebTransactions manual
“Template Language”

C/C++ user exits:
New argument SendMail

WebTransactions manual
“Template Language”

WebTransactions for openUTM:
– New host data object attribute Unicode
– New attribute Unicode at WT_HOST_MESSAGE

WebTransactions manual
„Connection to openUTM Applica-
tions via UPIC“

WebTransactions for OSD:
– New value for the system object attribute

HOST_CHARSET: 9763-UNICODE
– New value for the system object attribute

TERMINAL_TYPE: UTF-8
– Change for the system object attributes

END_MARK und LZE_CHAR

WebTransactions manual
„Connection to OSD Applications“

General solutions Preface

20 WebTransactions Concepts and Functions

1.6 General solutions

A number of generally applicable solutions are provided free of charge with
WebTransactions Version 7.5. Examples are:

The connection to the SAP Enterprise Portal
A SAP-certified business package enables the seamless integration of
WebTransactions applications into the mySAP enterprise portal.

The connection to portals that support JSR168
A portlet that is compliant with the JSR168 permits the seamless integration of
WebTransactions applications in the corresponding portal.

A mobile portal with WebTransactions
You can quickly create a personalised portal for your host applications with a
WTBean. You receive a portal interface designed for PCs and, in parallel, an
interface for PDA (Personal Digital Assistant, e.g. Pocket LOOX), which is optimized
for mobile access.

The BS2000 console connection
Access to the BS2000 console enables the administration of the BS2000 via a
browser or a PDA (e.g. Pocket LOOX).

 For further information on special solutions refer to the WebTransactions
Homepage (ts.fujitsu.com/products/software/openseas/webtransactions.html). There you
can also download the solutions.

WebTransactions for Dynamic Web Contents:
– New system object attribute

COMMUNICATION_FILE_NAME
– New system object attribute

COMMUNICATION_FILE_TYPE
– New system object attribute METHOD

WebTransactions manual
„Access to Dynamic Web Con-
tents“

Web Frontend for Web Services:
The support of business objects is omitted.

Type of new feature Description

ts.fujitsu.com/products/software/openseas/webtransactions.html

Preface Notational conventions

WebTransactions Concepts and Functions 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
38

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
1

1.7 Notational conventions

The following notational conventions are used in this documentation:

Name Description

typewriter font Fixed components which are input or output in precisely this
form, such as keywords, URLs, file names

 italic font Variable components which you must replace with real speci-
fications

bold font Items shown exactly as displayed on your screen or on the
graphical user interface; also used for menu items

[] Optional specifications; do not enter the square brackets
themselves

{alternative1 | alternative2 } Alternative specifications. You must select one of the expres-
sions inside the curly brackets. The individual expressions are
separated from one another by a vertical bar. Do not enter the
curly brackets and vertical bars themselves.

... Optional repetition or multiple repetition of the preceding
components

Important notes and further information

Ê Prompt telling you to do something.

Refers to detailed information

i

Notational conventions Preface

22 WebTransactions Concepts and Functions

WebTransactions Concepts and Functions 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
2

2 Functional overview
This chapter describes the different fields of application of WebTransactions - from
automatic 1:1 conversion to the integration of several host applications as well as the main
functions of WebTransactions and how to use them (see also section “WebTransactions
function range” on page 29).

2.1 Possible applications

The Internet has long since established itself as the decisive networking technology for data
processing, both commercial and non-commercial. Analysts from the leading management
consultants now believe that only those companies who use Internet technology to handle
their business procedures will be able to compete successfully in the market. The main
reason for this development is the fact that Internet technology not only provides access to
the global “electronic marketplace” through its World Wide Web graphical interface, but the
same technology can be used to process internal or external procedures within an intranet
or extranet.

Most companies today have a heterogeneous system environment in which business-
related applications and data are distributed as required over PC servers, departmental
systems, or mainframes. Standard software and customized solutions coexist in the same
way as the wide variety of operating systems and databases.

To allow for the smooth handling of business processes, all applications and data must be
available immediately wherever they are required. In the context of the further development
and optimization of processes, these applications and data must also be intercompatible.

To achieve your objectives, you will require software compatible with the existing system
environment, which enables you to integrate those applications in which you have invested
heavily into the Internet/Intranet without modification.

WebTransactions is a product which has been tried and tested with great success in various
sectors and scenarios. It comprises the following distinct modules:

Possible applications Functional overview

24 WebTransactions Concepts and Functions

Automatic 1:1 conversion (browser-based emulation)

WebTransactions provides converters for converting proprietary mask formats into browser-
compatible HTML documents. These automatically generated HTML pages have the same
Look & Feel as the terminal.

It is possible the access host applications and other data sources via any Web browser
instead of through terminals or PCs with terminal emulations. This access can take place
enterprise-wide via the Intranet, or even worldwide via the Internet. The system and data
access control mechanisms of your host applications are obviously also available when
accessing via the Web. Furthermore, Web access can also be offered parallel to terminal
access.

Problems in the distribution of client software do not occur, as Web browsers are universally
available and are not restricted to any particular platform.

 For more detailed information, please refer to the manual for the host adapter in
question.

Designing the interface (GUIfication)

Based on the result of the 1:1 conversion, you can edit the design of the Web interface. All
HTML and JavaScript options are supported.

You can thus give your trusty host applications a whole new look, and adapt them to your
company’s corporate design. It is also possible to integrate an online help system. This
makes your host applications more attractive to new users and customer groups, who are
used to working with a PC and find the layout of alphanumeric mask systems both compli-
cated and old-fashioned.

On the other hand, IT experts who have been working with your host applications for years,
and who are used to the minimalist but effective tools, may feel the overhead of a user
guidance system with helpful graphical effects is too much of a good thing.
WebTransactions allows you to provide the same service to various user groups via
different interfaces.

 For more detailed information, please refer to section “Editing templates” on
page 170 and the manual for the host adapter in question.

Functional overview Possible applications

WebTransactions Concepts and Functions 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
2

Designing dialog sequences (interface reengineering)

But WebTransactions offers much more than a “face lift” for your host applications, allowing
you to redesign your dialog sequences. The rigid 1:1 assignment between an HTML page
and host format is now obsolete: with WebTransactions you can actively modify the dialog
strategies provided by the host applications, filter out or add input/output elements, and
combine or expand individual dialog steps.

You can thus design the sequences of the host applications to be more user-friendly,
thereby increasing acceptance and the efficiency of online dialogs.

 For more detailed information, please refer to the sections
“Dialog between WebTransactions and the host application” on page 108 and
“Dialog between WebTransactions and the browser” on page 110.

Integrating applications (business process reengineering)

The laws of market dynamics force business processes to be highly flexible. The IT infra-
structure is faced with the task of providing optimum support for any changes to your
environment. However, due to the complexity of heterogeneous IT systems which have
developed over years, difficulties frequently arise when you try to produce flexible, efficient
adaptations: for each modification, you have to wade through a mire of mutual references
and dependencies. This increases your costs with results that are rarely satisfactory. The
integration of existing heterogeneous systems into a uniform, transparent IT concept is
therefore a key requirement in modern information technology.

WebTransactions facilitates such an integration. Different host applications on different host
platforms can be integrated into a single WebTransactions application on the Web server
and provided with a common Web interface. Existing host applications are accepted just as
they are, they are given a common web interface. You do not have to modify the application
logic. The host applications are addressed by WebTransactions via their existing proven
interfaces.

The integration function is provided at a clearly defined, central location in the templates
and configuration files of WebTransactions.

The end user at the Web browser is generally not aware of which host application provides
the requested services, or of the host platform on which the application runs. When working
with the WebTransactions application, the complexity of the underlying IT infrastructure
remains hidden.

 For more detailed information, please refer to section “Starting a WebTransactions
dialog application” on page 92 and the manual for the host adapter in question.

Possible applications Functional overview

26 WebTransactions Concepts and Functions

Portals

In many companies, various types of information are made available in portals to ensure
that, to the greatest possible extent, the information can be accessed independently of time
and location. A key question when constructing a portal is whether all the relevant applica-
tions and data can be accessed from the portal. For the mySAP Enterprise Portal, the
Oracle portal and all portals that support JSR168 and WSRP, WebTransactions provides
out-of-the-box integration for BS2000/OSD and z/OS applications.

At the same time, you can also use WebTransactions to build your own portal. A supplied
GUI module provides role-specific portal GUIs. The fully functional example installation that
is supplied with the product allows portal users to define and use customized access to their
applications within the portal quickly and easily without any prior knowledge. This means
that a small-scale portal solution containing all the important accesses to applications and
data can be created quickly and efficiently. In addition, the WebTransactions portal provides
a mode of operation that is optimized for PDAs (e.g. the Pocket Loox) and which offers full
roaming capability.

 For notes on WebTransactions applications created for portals, see section
“Designing templates for portal use” on page 177.

Remote applications

XML offers you a basis for further integration. Several remote WebTransactions applications
can be combined to create a network-wide global solution. Data from the participating
WebTransactions applications is exchanged in the form of XML documents using the HTTP
or HTTPS protocols.

One obvious use could be as follows. The branches of a company process locally obtained
data using WebTransactions branch applications. The data resources which are to be used
centrally on an inter-branch basis can be combined according to defined criteria within the
framework of a web integration solution, and can then be made available for access via a
common web interface. Here, the use of cooperating WebTransactions instances, ensures
that the load on the network is kept to a minimum.

 For more information, refer to the WebTransactions manual “Access to Dynamic
Web Contents”.

Functional overview Possible applications

WebTransactions Concepts and Functions 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
2

Using client programs

Often in environments with a range of different procedural policies, new IT solutions are
used in parallel with the old, tried and tested solutions. The new WebTransactions client
concept can be used to combine old and new solutions. The keyword for this is WT_REMOTE.
These open interfaces are used to enable various programs to access the resources of
WebTransactions applications (objects and methods) and to make use of their functionality.
Any application can send a query in the form of a multi-part HTTP message in a particular
format to the web server. The server forwards the message to the WT_REMOTE interface of
WebTransactions, where it is then interpreted and processed.

The main difference between this procedure and using a browser as the default client of a
WebTransactions application is, that it is not only possible to access the HTML page of a
WebTransactions application, it is also possible to directly access the remote application
using a type of remote procedure call. So, for the first time ever, it is now possible for a client
to have active influence over the WebTransactions application, to remotely control this appli-
cation, or to use the functionality of a WebTransactions application for its own purposes.

 For more detailed information, refer to the WebTransactions manual “Client APIs for
WebTransactions”.

Load distribution using clusters

The number of users and frequency of use of the Internet and especially of intranets is
steadily increasing. It is not unusual that, a single integration server, no matter how powerful
it is, is no longer in a position to guarantee all end users the necessary short response times
or to prevent system unavailability caused by overloading.

In terms of performance and reliability, WebTransactions has the perfect answer. Several
integration servers can be combined to form a so-called cluster. These integration servers
do not all need to be of the same type. All of the integration platforms supported by
WebTransactions, such as Windows, OSD, Solaris and LInux, can be combined as
required. The cluster is defined and set up via the administration and development
environment.

One or more of the servers in the cluster takes on the role of the cluster controller on which
the cluster definition is stored. The other integration servers, also known as cluster
members, each have a copy of the WebTransactions application or templates.

At runtime, the controller distributes the total load to the individual integration servers of the
cluster in accordance with the specified strategy. You can choose from a variety of different
distribution strategies, from a simple “round robin” strategy through to a “load balancing”
strategy which takes into account the current load on the individual machines. As far as the

Possible applications Functional overview

28 WebTransactions Concepts and Functions

end user is concerned, apart from the shorter response times, there is no difference
between the a single server configuration and the cluster configuration. As a result,
WebTransactions-based integration solutions are easily scalable.

 For more detailed information, refer to section “Cluster concept” on page 142.

Blade server support

The Blade Server Systems by Fujitsu Technology Solutions have a high level of flexibility,
scalability and availability and are easy to service. Compared to conventional servers, they
provide a high computing performance per space unit with very low energy consumption.
Using the optional deployment software, you can construct an automated multi-server
installation.

WebTransactions is easily installed on the blades of a blade server and is readily available
on many blades using an image. The creation and use of WebTransactions applications on
blade servers are the same as with any standard server.

The creation and administration of a WebTransactions cluster on a blade server is as simple
as the individual installation. A possible use for a cluster here would be, for example, on an
application operated with many clients where it is necessary to distribute the load over
several blades.

 For more information, please refer to section “WebTransactions on a blade server”
on page 149.

Application Mobility

With WebTransactions, you can access your host application’s data at any time and from
any place. Thanks to the automask for small displays, business-critical applications for
BS2000/OSD or z/OS can be made available to PDAs without difficulty.

Thanks to the easy-to-use session roaming capabilities, it is also possible to transfer access
to a session between different client devices or continue working seamlessly after a
temporary loss of connection.

Functional overview Function range

WebTransactions Concepts and Functions 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
2

2.2 WebTransactions function range

This section describes the functions available in all WebTransactions supply units.

WebLab development environment

The WebLab development environment is the tool which allows you to link your host appli-
cation simply and quickly to the Web. It is immaterial whether your WebTransactions server
is an Windows system, a Unix system, or a BS2000 system, since WebLab can create and
manage WebTransactions applications both locally and remotely. Data is transferred from
the server to your PC using the HTTP or HTTPS protocol and is returned via the same
route.

WebLab offers a particularly user-friendly facility for the individual programming and testing
of templates which allows you to edit your templates via the network. Parallel to the editing
session, WebLab manages a WebTransactions session in a Web browser so that you can
view the effects of your changes instantaneously.

WebLab offers direct access to WebTransactions objects, and allows you to insert WTML
tags in your template within a dialog. For convenience, it provides a series of wizards which
simplify those tasks identified from experience as frequently required when integrating your
host application into the intranet/Internet.

 A more detailed introduction to using the WebLab functionality can be found in
chapter “The WebLab development environment” on page 155 and in the intro-
ductory chapter of the WebLab online help system. There you will also find a few
practical examples which explain the workings of WebLab.

Function range Functional overview

30 WebTransactions Concepts and Functions

WTML templates

WTML templates (or simply templates for short) form the core of each WebTransactions
application. They are automatically generated by WebLab from the format definitions of the
host applications and - if desired - can be programmed individually using HTML and WTML
language resources. At runtime, they are evaluated by WebTransactions and define the
layout of the HTML pages displayed in the browser, control the WebTransactions appli-
cation, and define the steps for communicating with the host applications.

In WebTransactions for openUTM, a corresponding template is automatically generated for
each format. The OSD and MVS supply units include an Automask template, which is
responsible for the conversion of all screen formats by default. An option is also available
here for generating individual templates (capture mechanism).

 For more detailed information, refer to chapter “What is a WebTransactions appli-
cation” on page 39 and the manual for the host adapter in question.

Master template for template generation

WebTransactions uses master templates for generating the Automask and format-specific
templates. This gives you a uniform layout. The biggest advantage of the master template
concept can be seen with host applications which use a large number of formats with similar
structures: e.g. fixed header, working area and footer formats.

In such a situation, it is enough to specify the structure once in a master template and
assign this as the template when generating both format-specific templates and Automask
templates. All templates generated as a result of this procedure will automatically have the
desired structure.

 Further information on possible uses can be found in section “Master, class and
module templates” on page 51 and in the manual for the host adapter in question.

Functional overview Function range

WebTransactions Concepts and Functions 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
2

Template language WTML for individual programming

Based on the templates generated, it is possible to design the graphical layout of the Web
interface and - if desired - restructure the dialog sequences.

The template language WTML (WebTransactions Markup Language) is provided for the
individual programming of templates. WTML consists of two components: on the one hand,
the WTML tags with which you embed the WebTransactions-specific section in HTML
pages and, on the other, WTScript, a server-side script language with which, for example,
you can control host applications and process host application data.

WTML therefore allows you not only to modify the appearance of the GUI but also to design
the processing logic to meet your own specific requirements: with WTML, you can actively
control the dialog with the host application or integrate multiple host applications within a
single web GUI.

WTML tags are very similar to HTML. In WTScripts, you can also use a variety of language
resources similar to JavaScript for programming server-side processing steps. This means
that you can use the same language resources and the same language for the template
logic and for programming the presentation logic on the client side.

HTML and client-side JavaScript are not part of WTML, but are transferred to the browser
unchanged. WebTransactions is thus open to future HTML and JavaScript extensions.

The template technique is so flexible that you can even implement any dynamic HTML
structures without an underlying host application.

 For more detailed information, refer to section “WTML templates” on page 48 and
the WebTransactions manual “Template Language”.

Support for XML

WebTransactions provides a number of easy-to-use ways of analyzing XML data. In this
way, you can integrate resources that are present in XML into your WebTransactions appli-
cations quickly and easily.

It is also possible to generate XML from internal data structures. This means, for example,
that you can save internal states and read these when you restart a WebTransactions
session.

Function range Functional overview

32 WebTransactions Concepts and Functions

Support for Unicode

The application-specific host adapters WebTransactions for OSD and WebTransactions for
openUTM support Unicode. They create data encoded in UTF-8, which is passed straight
through to the browser and back.

The following WebTransactions components and application-specific host adapters do not
support Unicode:

– the WebTransactions kernel

The interpreter for the template language WTML (WebTransactions Markup Language
and WTScript) does not support Unicode:
– WTScript templates are still interpreted as ISO-8859 characters.
– Each byte of a string will still be interpreted as one character.

– WebTransactions for MVS

– WebLab (Unicode characters cannot be represented)

 Further information on the Unicode support can be found in the WebTransactions-
manuals „Connection to OSD Applications“ and „Connection to openUTM Applica-
tions via UPIC“.

WTBeans as reusable components

WebTransactions provides you with reusable components, known as WTBeans, for
template programming. WTBeans correspond to a full WTML document or a part of such a
document and a distinction is consequently made between standalone and inline
WTBeans.
WTBeans support both the display of data in the browser and communications with the host
applications.

Every WTBean possesses a description of its properties. WebLab uses these properties to
generate a graphical user interface which enables you to edit the WTBean’s properties.

 Further information on possible uses can be found in section “WTBeans” on
page 53.

Functional overview Function range

WebTransactions Concepts and Functions 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
2

Support for various interface styles and languages

A dialog interface can be assigned various template sequences (interface styles), which
can be selected as desired at the browser. For instance, a host application may be offered
in its previous format for users who are used to this, while also being available in variants
containing lavish graphics. In addition to various interface styles, it is also possible to use
different languages in parallel.

All interface styles are managed centrally on the WebTransactions host, and after modifi-
cation are immediately available to all clients (Web browsers).

 For more detailed information, refer to section “Subdirectories for style and
language variants” on page 56.

Simple concept for integrating several host applications

Based on its concept of communication objects, WebTransactions offers a simple, trans-
parent option for integrating different host applications under a common Web interface. A
separate communication object is created for each host connection. All connection-specific
data - be it control information or exchanged user data - is stored in this object. From the
programmer’s viewpoint, this simplifies and clarifies the handling of several parallel open
connections to different hosts. End users at the Web browser are usually completely
unaware of the fact that they are working with different hosts.

 For more detailed information, refer to section “Host communication object
WT_HOST.Comobj - managing a host connection” on page 85 or the manual for the
host adapter in question.

Security functions

The security mechanisms of the host applications (system access control, data access
control, restart) are obviously also available when accessing via WebTransactions. In
addition, you can restrict system access to the WebTransactions CGI programs using the
security mechanisms of the WebServer software or the file system access rights.

WebTransactions also offers its own security and user concept which allows you regulate
the access to WebTransactions applications for both developers and administrators. Edit
and administration rights can be defined individually using special configuration files.

The administration program is an autonomous WebTransactions application which is
closely connected to WebLab in order to ensure the required access controls.

 For more detailed information, refer to chapter “WebTransactions server” on
page 131.

Function range Functional overview

34 WebTransactions Concepts and Functions

Session management

WebTransactions is responsible for managing active sessions. It records the client from
which a request originates, and the host application with which the user wishes to work.

The WebTransactions administration program can be used to obtain an overview of the
sessions currently active, output the temporary files of individual sessions (e.g. trace files),
terminate sessions, and enable or disable the entire WebTransactions application. Admin-
istration could not be easier and takes place via a separate WebTransactions application.

 For more detailed information on the administration of the WebTransactions appli-
cation, refer to section “Administering a WebTransactions application” on page 127.

Java integration

The Java integration offered by WebTransactions allows you to extend the scope of your
WebTransactions application. In combination with WTScript, the JavaScript-based script
language used by WebTransactions, Java integration offers you the following possibilities:

● Generation and use of Java objects and Java arrays

● Java method calls

● Reading and writing of Java attributes

● Use of WTScript operators on Java objects

● Java-based exception handling

If Java programs or applications are to run on the WebTransactions system then a Java
runtime environment (Java Virtual Machine, JVM) must be available on this system.
Separate Java runtime environments are available for the various WebTransactions
integration platforms (Windows, Solaris, Linux, BS2000/OSD).

 For more detailed information, refer to the WebTransactions manual “Template
Language”.

Functional overview Function range

WebTransactions Concepts and Functions 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
2

Connecting of Web services via the SOAP protocol

WebTransactions allows you to connect to Web services via the Simple Object Access
Protocol (SOAP). The integration of the SOAP protocol in WebTransactions is based on the
WebTransactions HTTP host adapter as well as on the definitions of the SOAP and WSDL
(Web Services Description Language) protocols. WSDL provides XML language rules for
describing the capabilities of Web services.

The XML-based SOAP protocol provides a simple, transparent mechanism for the
exchange of structured, typed information between systems within a decentralized,
distributed environment.

SOAP provides a modular package model together with mechanisms for data encryption
within modules. This permits a simple description of the external interfaces for a remote
application that can be accessed in a web (web service).

 For more detailed information, refer to the WebTransactions manual “Access to
Dynamic Web Contents”.

Using user-defined C/C++ routines (user exits)

User-defined C/C++ routines can be integrated as user exits into WebTransactions applica-
tions, thereby extending the functionality of the host applications. It is also possible to use
several user exit libraries.

With user exits, you can create additional interfaces to the operating system or your own
applications (e.g. file processing or your own applications for which no host adapter exists).

 For more detailed information, refer to the WebTransactions manual “Template
Language”.

Using LDAP directory services

The WT_LdapConnection class is defined in WTScript in order to provide support for the
Internet protocol for directory services LDAP (Lightweight Directory Access Protocol). The
methods in this class enable you to use LDAP directory services such as:

● Retrieve entries using user-specific search criteria

● Add entries

● Delete entries

● Modify entries

● Compare entries

Function range Functional overview

36 WebTransactions Concepts and Functions

In addition, the WT_LdapConnection class contains methods for setting up and terminating
an LDAP session.

 For more detailed information, refer to the WebTransactions manual “Template
Language”.

Accessing dynamic web contents

Via an HTTP host adapter, you can access the content of any resources that are present in
the WWW from within a template. You can then analyze HTML and XML resources with
WTScript.

 For more detailed information, see the WebTransactions manual “Access to
Dynamic Web Contents”.

Web frontend for web services

WebTransactions implements an interface for accessing general web services.

 For further information, see the WebTransactions manual “Web Frontend for Web
Services”.

Accessing WebTransactions functionality from any client

When you work with WebTransactions, you usually convert host applications into dialog
applications for the WWW that will run in any browser. The client interface WT_REMOTE makes
it possible to access the resources of a WebTransactions application from any client. In the
case of Java clients, this functionality is made available in a separate class library.

 For further information, see the WebTransactions manual
“Client APIs for WebTransactions”.

Functional overview Components

WebTransactions Concepts and Functions 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
2

2.3 WebTransactions components

The diagram below provides an overview of the architecture of WebTransactions. The
integrated components of the WebTransactions supply units are indicated by a gray
background.

Figure 1: Components of WebTransactions

The transfer of pages and data in the Web takes place on the basis of the HTTP protocol
(Hypertext Transfer Protocol) or the HTTPS protocol (Hypertext Transfer Protocol Secure).
These standardised protocols are used for accessing WebTransactions, irrespective of
whether these are end-user or administration accesses, for which web browsers are used,
or whether the access is made via the WebTransactions development system, WebLab.

Using the Web server, WebTransactions communicates via the Common Gateway Interface
(CGI), a standard interface for calling programs on a Web server, or via the Microsoft
Internet Server Application Program Interface (ISAPI).

WTPublish, WTEdit

The communication interface to the Web server is formed from the following WebTransac-
tions components:
– WTPublish.exe/WTPublishISAPI.dll for “normal” access by end users
– WTEdit.exe for edit access

This differentiation allows you to implement individual security measures.

S
es

si
on

 c
on

tr
ol

In
te

rp
re

te
r

D
at

a
m

ai
nt

en
an

ceWTPublish

WTEditWebLab

Browser
HTML
editor

Browser
user

W
eb

 s
er

ve
r

H
os

t a
pp

lic
at

io
n

WTML
template

Meta-
data

9750

3270

H
o
st

 a
d
a
p

te
rs

HTTP

openUTM

Components Functional overview

38 WebTransactions Concepts and Functions

Kernel components

The WebTransactions kernel is formed from the following components, which are identical
for all supply units:
– session control
– interpreter for the template language WTML (WebTransactions Markup Language and

WTScript)
– database for dynamic user data

Host adapters

Special host adapters (communication modules) for communicating with the host applica-
tions are provided with the various supply units. These ensure that the host application
interfaces can be used without modification. Using this host adapter technique, the specifi-
cations of different protocols become transparent for the other WebTransactions compo-
nents.

The host adapter for dynamic Web content is supplied with each supply unit, this allows you
to combine individual host applications with dynamic Web content.

Modular, open architecture - new host adapters

Due to the modular architecture of WebTransactions and its compliance with open
standards, new host adapters (communication modules) for additional host application
types can be implemented quickly and cost-effectively when required - even within project
solutions without this affecting the other components.

Program IFG2FLD

With the supply units WebTransactions for OSD and WebTransactions for openUTM the
program IFG2FLD is also supplied. This tool is used to prepare for the conversion of FHS
formats. This tool creates a description file which is then used as input for WebLab when
generating the templates.

WebTransactions Concepts and Functions 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

3 What is a WebTransactions application
A WebTransactions application provides the link between a host application and the Web.
It ensures that data received and transferred by the host application is in a form which can
be processed and displayed by a Web browser. The host applications may be different and
can be located on different host platforms.

A WebTransactions application provides the end user with a dialog interface in a browser
(ultra thin client). For each of the clients connected, WebTransactions manages a session
context on the server, which means Web sessions and dialogs are possible with no
additional programming. The data source and receiver of data may be one or more auton-
omous host applications connected to the WebTransactions application.

The communication between WebTransactions and the host application is carried out by a
so-called host adapter which is served by the protocol of the relevant host application. The
WebTransactions supply unit is named after the protocol used for communication between
the host adapter and the host application.

The computer on which WebTransactions is running is also known as the WebTransactions
server or integration server. The host application may run on the same server as
WebTransactions although this is not usually the case. All stages of the integration of your
host application may be carried out locally using WebLab or remotely on the
WebTransactions server.

3.1 Components of a WebTransactions application

Alongside the protocol-specific supply unit of WebTransactions, a WebTransactions appli-
cation requires a base directory. All your application’s files are stored in this base directory.
These include:

– start template

– Automask template or format-specific WTML templates used to control conversion
between host application and browser

– protocol-specific configuration files

Components of a WebTransactions application What is a WebTransactions application

40 WebTransactions Concepts and Functions

The base directory must always be located on that computer on which WebTransactions is
running. You can create the base directory and the required templates using the WebLab
development environment, as described in chapter “The WebLab development
environment” on page 155.

You can store all the files that have to be accessible directly from the web server when your
template is displayed in the base directory. For this reason, the subdirectory wwwdocs is
created when the base directory is generated. Here you can store images, client-side
scripts etc. that have to be accessible directly from the browser. See also section “The
wwwdocs subdirectory” on page 60.

The structure of the base directory is dependent on the WebTransactions supply unit being
used and is described in section “Structure of the base directory” on page 55.

In order to connect a host application to the WWW, you will, alongside the appropriate
WebTransactions supply unit, also require the following:

– a computer on which a Web server is running, this is to be used as the integration server

– as many other computers as you wish on which a browser is running, these are to be
used to access the WebTransactions application

A WebTransactions application can, therefore, run on one or more computers using a
variety of operating systems: for example, the browser as the client on a Windows
computer, the WebTransactions server running on a Unix computer and the connected host
application on an OSD or MVS mainframe.

Figure 2: Distribution options for a WebTransactions application

Client computer
with browser

Development computer
with WebLab

Integration server
with Web server
and WebTransactions

H
os

t a
pp

lic
at

io
n

and browser

HTTP/

9750
3270

HTTP/HTTPS

MacOS

Unix system

Windows
HTTP/

Windows

BS2000/OSD
Solaris
Linux
Windows

Upic

HTTPS

HTTPS

What is a WebTransactions application WebTransactions session

WebTransactions Concepts and Functions 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

3.2 WebTransactions session

The time period during which a user works with the WebTransactions application is known
as a WebTransactions session. At the beginning of the session, WebTransactions starts a
process in which the WTHolder program runs. This process continues to exist throughout
the entire session. The correlation between the WTHolder program and the user’s browser
is managed by the CGI program WTPublish.The number of active WTHolder processes
thus corresponds to the number of users simultaneously active.

During a WebTransactions session, it is possible to open and close one or more connec-
tions to host applications. If several host connections are used in a WebTransactions
session, this can take place in succession or in parallel.

 For information on starting and ending a WebTransactions session, see the
sections “Start options” on page 93 and “Terminating a session” on page 116.

3.2.1 Roaming Sessions

A roaming session is a WebTransactions session, which can be called by different client
devices either in succession or simultaneously. For example, a user can continue a session
which was started at a workstation, from a mobile device. This mechanism guarantees a
continuous operation even after a client device has crashed. A roaming session thus
supports a restart from the server.

With WebTransactions, the user can determine at the start of a session if the session may
also be called from other client devices. To do this, the user needs a personal session ID.

Roaming sessions can also be used in a cluster (see section “Cluster concept” on
page 142).

WTBean wtcRoaming

The WTBean wtcRoaming is supplied to support the roaming sessions. This WTBean
generates a start template for a roaming session and saves user authentication data at the
beginning of a session. If the connection to a roaming session is re-established, the
WTBean expects the same authentication data as at the beginning of the session.

 WTBean wtcRoaming is described in the WebLab Online Help. It describes how to
create a start template for a roaming session with wtcRoaming and how to test the
restart.

WebTransactions session What is a WebTransactions application

42 WebTransactions Concepts and Functions

WTBean wtcSingleSignOn

The WTBean wtcSingleSignOn provides the Single Sign-On function. You must login using
only the User ID and password at WebTransactions and start the subsequent processes
using the corresponding authentication.

The WTBean wtcSingleSignOn provides a very convenient support for roaming sessions
due to its user concept and identification check.

 You can obtain the WTBean wtcSingleSignOn from the download area of the
WebTransactions home page under the keyword “Ready-to-run”. WTBeans must
be installed separately on the host on which WebLab runs.

 We recommend that you use the WTBeans wtcRoaming or wtcSingleSignOn to
create start templates and to check the authentication data. The following text
describes what you have to be aware of if you decide not to use WTBeans.

Starting a roaming session

To start a roaming session, which can be accessed by several client devices, the value of
the attribute WT_SYSTEM_SESSION containing the session's ID, must start with the prefix R (to
start a session see section “Starting a WebTransactions dialog application” on page 92).

Example

http://myhost/cgi-bin/WTPublish.exe/startup?
WT_SYSTEM_BASEDIR=C:/Base/App&WT_SYSTEM_FORMAT=start&
WT_SYSTEM_SESSION=R-MyRoamingId

In this example, the session ID for the roaming session is R-MyRoamingId.

The session is started using the start template indicated.

If a session with the indicated session ID is already in progress, it is continued at the last
synchronously generated page.

To prevent unauthorised access to the session, the user's authenticity must be verified. The
attribute WT_SYSTEM.ROAMING_FORMAT is used, which has to be provided with a template
name. The authorized access to the session must be controlled with this template. For
instructions on implementing such a template, see section “Checking identity” on page 44.

 On Windows platforms, each session ID of a roaming session can only be used
once. In Windows, two sessions with the same ID cannot be operated, even if the
sessions run in different base directories.

i

i

http://www.fujitsu-siemens.com/webtransactions
http://www.fujitsu-siemens.com/webtransactions

What is a WebTransactions application WebTransactions session

WebTransactions Concepts and Functions 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

The following figure shows the procedure for starting a roaming session:

Request session

Client 2

R-MyRoamingId 1

Client is closed
without terminating the
session

Request session

Client 1

R-MyRoamingId 1

New client is
started

Check identity

Session operation

Session operation

No session in progress

Start session

Session in
progress

WT-
Publish

WebTransactions
session

WT_SYSTEM.
ROAMING_
FORMAT

WebTransactions session What is a WebTransactions application

44 WebTransactions Concepts and Functions

Checking identity

When continuing a session already in progress, the user's authenticity must be re-checked,
otherwise unauthorised access to the session is a possibility. For this purpose you can
either evaluate the attached request data or send an authentication page.

When re-entering a session, WebTransactions sets the attribute WT_SYSTEM.ROAMING to
true, so the status can be reliably verified in other templates as well. Using one template,
it can be distinguished between a new login or the continuation of a session. Thus, it is
possible to use the start template for repeated authentication and to omit different initializa-
tions by using the value WT_SYSTEM.ROAMING when a session is continued.

When access is denied, you should note the following:

– The attribute WT_SYSTEM.SIGNATURE must not be transmitted to the browser. Otherwise,
unauthorised access to the session is possible.

– When calling another form, you should use the wtDataform tag to generate the
respective URL automatically.

– Do not use the attributes HREF and HREF_ASYNC.

In case of a positive verification of identity, normally the last synchronously generated page
of the WebTransactions application must be displayed.

Example

<script>
 document.location = '##WT_SYSTEM.HREF_ASYNC#';
</script>

The output of the last synchronously generated page does not make sense if, for example,
a different device is used on the client side. In this case, the page must be generated from
scratch. In this case, the execution of the wtOnReceive scripts may sometimes be omitted.
The template for the new verification of the authenticity could, for example, switch the style
according to the currently used client device. A new generation using the modified style is
triggered by outputting the following script.

Example

Attaching WT_DISPOSE_RECEIVE_SCRIPTS=true in the following script suppresses the
execution of all wtOnReceive scripts.

<script>
 document.location = '##WT_SYSTEM.HREF#&WT_DISPOSE_RECEIVE_SCRIPTS=true';
</script>

What is a WebTransactions application WebTransactions session

WebTransactions Concepts and Functions 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

Roaming sessions in WebLab

Every session, which was started with WebLab (see section “Starting a session” on
page 161), is also a roaming session.

WebLab provides the option of testing the restart of a roaming session. Use the command
Control/Test Roaming. This command triggers the Test Roaming dialog box. In this
dialog box, additional start parameters can be modified, for example in order to test false
login information.

 The Test Roaming dialog box is described in the WebLab Online Help.

Roaming sessions in a cluster

Roaming sessions can also be used in a WebTransactions cluster (see section “Cluster
concept” on page 142).

To identify a roaming session within a cluster, the session ID must also be transmitted at
the start of a cluster session (see section “Starting a cluster session” on page 146).

Example

http://my-server/cgi-bin/WTCluster.exe/my-cluster-id?
WT_SYSTEM.SESSION=R-MyRoamingId

3.2.2 Service applications

A service application is a WebTransactions session, which can be called in turns by different
users. Service applications are mainly used for dialogs, which are comprised of one step
only. They are used, for example, for frequent retrieval actions involving large amounts of
data.

Such sessions are exclusively operated in a non-synchronised dialog (see section “Non-
synchronized dialog” on page 64). Service applications start automatically if required.

Starting a service application

A service application is called by entering the URL in the browser or by entering the URL in
a form (see section “Starting a WebTransactions dialog application” on page 92):

http[s]://machine/cgiPath/WTPublish.exe/startup?
WT_SYSTEM_BASEDIR=basedir&WT_SERVICE_PAGE=service-template&par1=val1&...

WebTransactions session What is a WebTransactions application

46 WebTransactions Concepts and Functions

machine
Internet address or symbolic name of the computer, where WebTransactions is
installed (with port number for the HTTP server if required).

cgiPath
Path (prefix) for CGI programs set with the HTTP server

basedir
Base directory, where the WebTransactions service application is installed.
basedir is an absolute path (Windows with drive identifier)

service template
Template containing the service. The name of the template must end with the suffix
.service.

Example

basedir/config/forms/myService.service

par1=val1
Under other name/value pairs you can set more parameters for the service appli-
cation.

When WTPublish is called by a service application, it first tries to locate a vacant
WebTransactions session, which was started for providing the services. Session IDs of
service applications receive the prefix WTSVC and a continuous index.

Example

WTSVC-c__basedir_mybasedir-1
WTSVC-c__basedir_mybasedir-2
...

If all sessions in progress are busy, a new session is started for the service. This session
processes the request and is available again after its completion.

 The attribute WT_SYSTEM.TIMEOUT_USER remains in effect for sessions with service
applications. Additional sessions started during periods of high load thus can be
terminated automatically during periods of low load.

i

What is a WebTransactions application WebTransactions session

WebTransactions Concepts and Functions 47

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

Templates for service applications

Templates implementing a service application and referenced as WT_SERVICE_PAGE must
end with the suffix .service.

Since the dialog in a service application has one step only, no information can be saved
from one request to the next. Therefore, the following must be considered when
programming such templates:

– The attributes WT_SYSTEM.HREF_ASYNC and WT_SYSTEM.HREF are not supplied with
SESSION, SIGNATURE and FORMAT_STATE.

– WTDataform is always generated for the non-synchronised dialog.

Service applications in WebLab

To start a service application in WebLab, use the standard command File/Start session
(see section “Starting a session” on page 161). In the Start session dialog box, enter the
template for the service application as the start template.

Templates What is a WebTransactions application

48 WebTransactions Concepts and Functions

3.3 Templates

A template is a model for the generation of specific code. It contains fixed parts that are
taken over on generation and variable parts that are replaced by the corresponding current
values.

This section describes the following template types:

– WTML templates, the associated language resources, the definition of the operating
steps within the template, and the template during execution in the dialog cycle

– Master and class templates for the cross-application, uniform implementation of certain
format areas or objects

– Module templates for the global definition of classes, functions and constants for an
entire session

– WTBeans as re-usable components for template programming

3.3.1 WTML templates

WTML templates (or simply templates for short) form the core of each WebTransactions
application. At runtime, they are evaluated by WebTransactions and define the layout of the
HTML pages displayed in the browser, control the WebTransactions application, and define
the steps for communicating with the host applications.

The Automask templates (OSD, MVS) or format-specific templates (OSD, MVS, openUTM)
use default specifications to create a HTML page from each unit of the host user interface
(alphanumeric format). These automatically generated templates can be used unchanged,
or as the basis for further customization. The template language WTML (WebTransactions
Markup Language) is provided for programming the templates. The WebLab development
environment also offers a convenient means of editing and testing templates.

By default, each format-specific template is stored in a separate file formatname.htm in the
directory basedir/config/forms. However, you can create further template directories for
different layouts and languages, see section “Subdirectories for style and language
variants” on page 56.

What is a WebTransactions application Templates

WebTransactions Concepts and Functions 49

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

WTML template language resources

The following language resources can be used in the templates:

● Standard HTML tags, text, and client-side JavaScript and all other language resources
that can be interpreted by the browser

In the templates, you can use any HTML tags and <SCRIPT> tags or constant text which
can be interpreted by the user’s chosen browser. All JavaScript language resources that
can be interpreted by the user’s chosen browser are thus supported.

Like the standard HTML tags, these scripts are interpreted by the browser rather than
by WebTransactions, and are thus also known as client-side JavaScripts. You can also
use JScript or VBScript in Microsoft Internet Explorer. These HTML areas of the
template (HTML tags and text) are sent to the browser unchanged. From the viewpoint
of WebTransactions, they are part of the HTML area.

● WTML tags

WTML tags allow you to dynamically generate HTML pages and control the host appli-
cation. They are used to calculate values, for instance, or to transmit information from
the host application.

Areas containing WTML tags are interpreted by WebTransactions and the result is sent
to the browser. They do not therefore form part of an HTML area.

● WTScripts

Like client-side JavaScripts, WTScripts are contained in areas delimited by special tags.
Instead of HTML SCRIPT tags, however, you must use the WTML tags
wtOnCreateScript and wtOnReceiveScript. This indicates that these scripts are to be
executed by WebTransactions as opposed to the browser, and allows you to signal the
desired execution time. Similar to OnCreate actions, OnCreate scripts are executed
before the page is sent to the browser. OnReceive scripts, on the other hand, are not
executed until a response is received from the browser.

Like WTML tag areas, WTScript areas are interpreted by WebTransactions and the
result is sent to the browser. WTScript areas do not therefore form part of the HTML
area.

● Evaluation operators

Evaluation operators can be used to query the current values of objects or object
attributes, see section “Objects - dynamic data” on page 66. You can write any
expression as an evaluation operator. This is then evaluated and the result output.

 The WTML template language resources are described in detail in the
WebTransactions manual “Template Language“.

Templates What is a WebTransactions application

50 WebTransactions Concepts and Functions

OnCreate and OnReceive times

The template not only defines the processing steps to be performed immediately by
WebTransactions when generating the HTML page (i.e. OnCreate), but also specifies the
processing steps to be performed when the data posted by the browser is received
(OnReceive) and in response to user input. These OnReceive processing steps are initially
buffered by WebTransactions, and are not executed until after the current HTML page is
generated, sent to the browser, and the data posted by the browser is received.

This mechanism allows you to define a complete dialog cycle in a single template (see also
section “Dialog cycle” on page 62):

– creation of the HTML page sent to the browser

– post-processing of data posted by the browser in response to this page

– transmission of the post-processed data to the host application, and receipt of the next
host message

Although the template is only interpreted once by WebTransactions, the different
processing steps come into effect at different times.

Sample template

This template contains both the HTML definitions for output on the browser, and the state-
ments for processing objects and communicating with the host application.

Template

<HTML>
<BODY>
Please select:

<input type="TEXT" name="SELECT"
value="##WT_HOST.com1.SEL.Value#">

<wtOnReceiveScript>
WT_HOST.com1.SEL.Value=WT_POSTED.S

ELECT;

Static HTML

HTML containing dynamic sections

Object processing and
communication with the
host application

What is a WebTransactions application Templates

WebTransactions Concepts and Functions 51

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

The HTML page sent to the browser appears as follows:

– The text Please select: appears as a static area.

The input field is created. It is called SELECT and is preset to the value contained in the
Value attribute of the host data object SEL.

– The WTML tag <wtOnReceiveScript> starts a WTScript area containing the processing
steps to be executed at OnReceive, i.e. after the browser has posted the user input.

Through a simple assignment, the value stored in the SELECT attribute of the posted
object WT_POSTED is transferred to the Value attribute of the host data object SEL. The
value entered by the user is now contained in the host data object.

A send call is issued which transfers the current host data object SEL to the host appli-
cation together with all data belonging to this message. The next host message is then
retrieved by means of a receive call. The statement setNextPage is used to
determine the next template to be processed. This is specified using the system object
attribute FLD.

3.3.2 Master, class and module templates

Master and class templates provide a consistent application-wide conversion of particular
areas or objects in the formats. Using module templates, you can globally define classes,
functions and constants for an entire session.

3.3.2.1 Master templates

Master templates are used by WebTransactions when generating the Automask and the
format-specific templates and ensure that the layout is consistent.

The master template concept is particularly effective for host applications in which many of
the formats have a similar structure: for example, a fixed format for the header, working and
footer areas. In a situation like this, it is enough to specify the structure in a master template
and to then assign this master template when generating both the format-specific templates
and the Automask. All generated templates automatically have the desired structure.

Master templates, like any other template, can contain fixed HTML areas as well as any
WTML tag and WTScripts. Master templates also have special master template tags, MT
tags for short. These are described in the WebTransactions manual “Template Language“.

Separate master templates are supplied with each of the WebTransactions supply units
which you can modify to suit your requirements or just use unchanged. You can specify
which master template is to be used as the master template during generation.

Templates What is a WebTransactions application

52 WebTransactions Concepts and Functions

3.3.2.2 Class templates

Class templates can be used to automate the evaluation of host data objects. Instead of
writing the same statements, over and over again, for each of the host data objects, you can
define class templates.

A class template in WebTransactions contains valid, recurrent statements for the entire
object class (e.g.input or output field). Class templates are worked through if the evaluation
operator or the toString method is applied to a host data object.

Class templates are inserted in their entirety into the calling template. You can use the same
language resources in class templates as you can for all other templates.

Class templates have the file name suffix .clt (class template) and are, by default, stored
in the directory basedir/config/forms just like normal templates. You can also implement
various styles and languages for class templates, whereby the same search strategy is
used as for normal templates, see also section “Search strategy” on page 57.

 For more information on class templates, see the WebTransactions manual
“Template Language“.

3.3.2.3 Module templates

In module templates, you can define classes, functions and constants for WTScript which
you can then access in WTScripts and evaluation operators throughout the entire
WebTransactions session. In this way, you can, for example, import WTScript functions and
class libraries. You should note that classes, functions and constants must be defined in
wtOnCreate scripts.

A module template is loaded using the import() function. WebTransactions searches the
corresponding template according to the specified language and style, (see section “Search
strategy” on page 57).

What is a WebTransactions application Templates

WebTransactions Concepts and Functions 53

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

3.3.3 WTBeans

WebTransactions provides you with reusable components, known as WTBeans, for
template programming. A distinction is made between inline and standalone WTBeans:

● Inline WTBeans correspond to a part of a WTML document

● Standalone WTBeans represent an autonomous WTML document

WTBeans can also be differentiated between on the basis of their function:

● WTBeans for browser dialogs

● The components control the framework within which one or more dialog steps are
performed. For example, they define whether the dialog is conducted in a single
window, multiple windows or in different frames.

● WTBeans for browser dialog elements
The components are primarily used to display data in the browser, e.g. for GUIs which
can be defined by multiple HTML tags and by client-side Javascript.

Example

The WTBean wtcPopupDate provides a calendar window in which the date can be
selected quickly and conveniently with the mouse.

● WTBeans for processing
The components do not generate a GUI but instead contain an item of processing logic,
for example for communications with a host or interfacing with a user-exit library.

With WTBeans, WebTransactions provides you with a set of reusable components with
which you can control communications both with the browser and with the host application.
In WebTransactions as shipped, only the WTBeans for communication with the host appli-
cation are installed. For more information, refer to the descriptions in the protocol-specific
manuals.

Templates What is a WebTransactions application

54 WebTransactions Concepts and Functions

You can download additional WTBeans from the download area of the WebTransactions
home page under the keyword “Ready-to-run”. WTBeans must be installed separately on
the computer on which WebLab is running. For more information, refer to the relevant
documentation.

Components of WTBeans

Every WTBean has a unique name. As this name is used as a variable name, it is necessary
to differentiate between uppercase and lowercase. The names begin with wtc
(for WebTransactions Component).

Example

wtcStartOSD

Every WTBean is defined in a description file which corresponds to a template. The name
of the description file consists of the name of the WTBean and the suffix .wtc. Alongside
the description file, there may be other files associated with a WTBean such as image files,
files containing exported scripts etc.

Example

wtcStartOSD.wtc

By means of its properties, every WTBean can be adapted to the WebTransactions appli-
cation in which it is used. To this end, the properties are used to generate a GUI for WebLab
in which you can edit the properties simply and conveniently.

A WTBean’s description file contains:

– the prototype of an HTML page, a template or a template wizard

– a description of the used resources

– a description of the GUI for parameter editing

– a list of help files and target paths in the base directory

Following installation, the supplied WTBeans are located in the wtcCollection subdi-
rectory of the WebLab installation directory where they are stored in the corresponding
subdirectories inline or standalone. These directories themselves contain subdirectories
with the names of the corresponding WTBeans.

When you use your first WTBean in WebLab, the wtcUsage subdirectory is created in the
base directory. All the WTBeans that you use for template processing are copied to
wtcUsage. This means that you are also able to edit these WebLab components when
working at another computer.

http://www.fujitsu-siemens.com/webtransactions
http://www.fujitsu-siemens.com/webtransactions
http://www.fujitsu-siemens.com/webtransactions

What is a WebTransactions application Structure of the base directory

WebTransactions Concepts and Functions 55

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

3.4 Structure of the base directory

A base directory (basedir in the various syntax specifications) contains all the files required
to link an application to the Web.

 Information on the structure of base directories that apples to only one individual
supply unit can be found in the corresponding User Guide.

WTHolder (Windows / Unix platforms)

The base directory contains a link with the name WTHolder which points to the corre-
sponding program in the installation directory:

Windows platform install_dir/lib/WTHolder.exe

Unix platform install_dir/lib/WTHolder

The WTHolder program is started in a separate process for each user of a WebTransactions
application. It remains active throughout the entire session, and controls the parsing of
templates and communication between the browser, WebTransactions, and the host appli-
cation. It also ensures that modules are loaded from the shared libraries if required.

Optional: shared libraries (Windows / Unix platform)

WebTransactions makes the individual host adapters available as shared libraries (e.g.
WTCommOSD.dll under Windows or on the Unix platform WTCommOSD.so). These libraries are
not present under OSD as this functionality is integrated in WTHolder here.
These libraries also contain the supplied user exits.

These shared libraries are not automatically created in the base directory when the base
directory is generated. By default, WebTransactions uses the libraries in the installation
directory at runtime. Copies of these libraries in the base directory are only of any use if you
need to use versions different from those in the installation directory. This is the case, for
example, if you have extended the supplied user exit library with your own user exits or have
generated completely new user exit libraries.

Statically linked WTHolder programs (BS2000 / OSD)

Under POSIX it is not possible to use shared libraries. For this reason, the host adapters
are statically linked to the WTHolder programs
(WTHolderUTM, WTHolderUTMV4, WTHolder...).

For this reason, user exits must also be statically linked (see the WebTransactions manual
“Template Language“).

Structure of the base directory What is a WebTransactions application

56 WebTransactions Concepts and Functions

Subdirectories

The base directory also contains the subdirectories msg, tmp, wtcUsage and wwwdocs which
are described in the following sections.

You can also create additional subdirectories yourself, for example in order to archive
master templates or static HTML pages.

3.4.1 The config subdirectory

The config directory contains templates in the forms subdirectory which are used to create
the user interface.

3.4.1.1 The forms subdirectory

The generated templates are stored by default in the config/forms subdirectory. This
subdirectory is always present and should contain a template for each format adapted
individually. The templates stored in forms represent the default style and default language
for the customized templates.

The forms subdirectory also contains the predefined templates which are provided by
WebTransactions.

3.4.1.2 Subdirectories for style and language variants

It is possible to implement different style and language variants of the same logical interface
of a host application in order to address the needs of individual user groups. These template
variants are stored in separate directories.

The directories then also contain the corresponding start templates. The start template is
the first template that is read when a WebTransactions session is started (see section
“Starting a WebTransactions dialog application” on page 92). To enable WebTransactions
to find a start template in another style or language, you must set the system object’s STYLE
and LANGUAGE attributes to the relevant value at session start. In this way, you can control
the layout used by WebTransactions.

What is a WebTransactions application Structure of the base directory

WebTransactions Concepts and Functions 57

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

Different style variants (WT_SYSTEM.STYLE)

The following conditions apply for different style variants:

– The templates for the default style must be stored in the config/forms subdirectory.

– The templates for the other interface styles must be stored in a subdirectory created
under config (parallel to forms). The name of this subdirectory is freely selectable.
This name is entered in the STYLE attribute of the system object.

You can create any number of directories containing templates in another style. For
instance, you may wish to develop variants containing more or fewer graphical elements
for different browser configurations.

Different languages (WT_SYSTEM.LANGUAGE)

If you wish to offer interfaces in the same style but in different languages, you must create
additional directories for the language variants under the style directories. The name of a
language directory is freely selectable, but must be specified in the LANGUAGE attribute of
the system object. This allows you to define the language you wish to use.

Search strategy

You do not need to offer all your templates in all styles or languages variations. WebTrans-
actions uses a search strategy in order to locate the appropriate template.

The selection of a template is controlled by means of the system object attributes BASEDIR,
STYLE, LANGUAGE, FORMAT, and DEFAULT_FORMAT. WebTransactions searches for the appro-
priate template in accordance with the following strategy:

– BASEDIR specifies the base directory.
– The name part config is always automatically appended to the base directory.
– This is followed by the path section taken from the system object attribute STYLE. If no

value is specified in STYLE, the default value forms applies for this path section.
– This is followed by the path section taken from the system object attribute LANGUAGE. If

no value is specified in LANGUAGE, this path section is ignored.
– The name of the template file is contained in the system object attribute FORMAT. The

suffix .htm may be omitted.

 BASEDIR-value/config/{STYLE-value|forms}[/LANGUAGE-value]/FORMAT-value[.htm]

Structure of the base directory What is a WebTransactions application

58 WebTransactions Concepts and Functions

WebTransactions begins by searching for the template in the following directory:

1. BASEDIR-value/config/STYLE-value/LANGUAGE-value

As it is not necessary to output each variant of each template, WebTransactions searches
the directories listed below in the specified sequence if it does not find the template in the
above directory.

2. BASEDIR-value/config/STYLE-value
3. BASEDIR-value/config/forms/LANGUAGE-value
4. BASEDIR-value/config/forms

If the template specified in FORMAT is not found in any of these directories,
WebTransactions attempts to load the template specified in DEFAULT_FORMAT. The same
search strategy is used here.

Example: Style and language variants

format1.htm
format2.htm
...

AutomaskOSD.htm
wtasync.htm
wtBrowserFunctions.htm
wtframes.htm
wtKeysOSD.htm
wtstart.htm
wtstartOSD.htm

config

forms

mystyle1

german

format1.htm
format2.htm
...

english

format1.htm
format2.htm
...

spanish

format1.htm
format2.htm
...

mystyle2

german

format1.htm
format2.htm
...

english

format1.htm
format2.htm
...

spanish

format1.htm
format2.htm
...

What is a WebTransactions application Structure of the base directory

WebTransactions Concepts and Functions 59

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

3.4.2 The msg subdirectory

The msg subdirectory contains links to the message files in the installation directory
(errmsgs, errmsgs*) and to the files used to display messages in the browser, the error
message templates loctmpl and errtmpl:

– WebTransactions uses loctmpl to display errors whose cause can be located at a
particular position in a template. The name of the template in question, the line number,
and the column are specified.

– errtmpl is used to display all the errors whose cause cannot be located in a template.

All the files exist for both English messages (no suffix) and German messages (with the
suffix .de).

If you modify the messages for a WebTransactions application with WebLab then a copy
containing the changes is stored in basedir/msg when you save. The reference to the corre-
sponding file in the installation directory is deleted.

Otherwise, the modified messages would apply to all the WebTransactions applications on
the server. This is the case for both loctmpl and errtmpl.

WebTransactions allows you to make the messages available in different languages. You
can set the language via the system object’s LANGUAGE attribute. WebTransactions then
uses the appropriate error message file errmsg.lang (or errmsg*.lang) together with the
error message templates loctmpl.lang and errtmpl.lang. Here, lang corresponds to the
current value of the system object’s LANGUAGE attribute.

3.4.3 The tmp subdirectory

This subdirectory is used to store temporary files. A session.info file containing information
about the session is created for each WTHolder task. This information can then be
evaluated using the administration functions.

In addition, a session subdirectory is created for each link in tmp. This contains any trace files
or temporary files which are created at runtime. It may, for example, contain HTML files for
frame support or dynamically generated graphics which are to be integrated in the HTML
page.

The name session always corresponds to the value of the system object’s SESSION attribute.

3.4.4 The wtcUsage subdirectory

This subdirectory is not created when the base directory is generated. Instead, it is not
created until you use WTBeans. The description files of the employed WTBeans are stored
in wtcUsage.

Structure of the base directory What is a WebTransactions application

60 WebTransactions Concepts and Functions

3.4.5 The wwwdocs subdirectory

In addition to the templates in the base directory, a WebTransactions application has files
which are needed to construct HTML pages and which the Web server must be able to
access directly (e.g. JavaScript files or image files). You should place these files in the
wwwdocs directory which can be accessed by the web server.

If you save all your application’s files in the base directory then it is an easy matter to
transfer the application from one host to another (see section “Transferring and distributing
a WebTransactions application” on page 198).

The wwwdocs directory is physically located below the web server’s document directory. A
symbolic link pointing to wwwdocs in the web server’s document directory is created in the
base directory. This means that all the files which you save in the wwwdocs subdirectory of
the base directory are physically located in the web server’s document directory. In WebLab
they are treated as a component of the base directory and can consequently be packed in
the archive for transfer and then be unpacked at the target host.

wwwdocs and the symbolic link in the base directory are created when the base directory is
generated. wwwdocs has the following structure which you can extend to meet your own
requirements:

applet Applets
class Java class files
html HTML pages, e.g. start pages
image Image files
javascript Client-side Javascripts
style Stylesheet definitions

wwwdocs

What is a WebTransactions application Structure of the base directory

WebTransactions Concepts and Functions 61

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

Accessing files in wwwdocs

For the purposes of template programming, you can access the files in the wwwdocs
directory via the system object attribute WWWDOCS_VIRTUAL. WWWDOCS_VIRTUAL corresponds
to the virtual path under which the base directories of your WebTransactions applications
are located. You assign this during administration of the WebTransactions
server. For more information, refer to section “Managing the WebTransactions server” on
page 139.

Example

You can directly address the files under wwwdocs in the web server’s document directory as
follows:

document-root/virtual path/basedir/wwwdocs/filename

document-root Path of the web server’s document directory; you specify this path when
installing WebTransactions

virtual path Virtual path which you assign for the directory under which the base
directories of your WebTransactions applications are located during
administration of the WebTransactions server. For more information,
refer to section “Managing the WebTransactions server” on page 139.

basedir Name of the corresponding base directory.

Dialog cycle What is a WebTransactions application

62 WebTransactions Concepts and Functions

3.5 Dialog cycle

A dialog session can be regarded as a sequence of dialog cycles. Depending on the type
of dialog, (synchronized, non-synchronized or remote) a dialog cycle comprises several
phases.

 For more detailed information on the dialog cycle, refer to section “Dialog between
WebTransactions and the browser” on page 110.

3.5.1 Synchronized dialog

Seen from a WebTransactions point of view, a dialog cycle consists of the following three
phases:

1. Interpreting the template / generating HTML (WebTransactions)

WebTransactions interprets the template and from this generates the next HTML page
to be sent to the browser. The HTML tags contained in the template are transferred
unchanged to this HTML page. This procedure is driven by processing steps defined in
the template in special WTML tags and WTScripts, which allow dynamic data to be
entered in the static HTML sections. These steps serve to convert host data into HTML
and to communicate with the host application. An HTML page is thus formed from
HTML areas and WTML areas, and is sent to the browser.

Not all processing steps defined in the template are effective when generating the
HTML page (at the time of “OnCreate”): processing steps defined in OnReceive scripts
are initially buffered by WebTransactions and are not executed until the third phase of
the dialog cycle.

2. Entering data or making a selection (user at the Web browser)

The user can now make the desired entries in the page displayed in the Web browser.
The HTML page is then sent from the Web browser back to the HTTP server, where it
is posted to WebTransactions. WebTransactions checks whether the data sent is up-to-
date. If an older page is received from the session, then the page generated in the first
phase of the dialog is sent to the browser again. If the received data is up-to-date, then
phase three is carried out using this data.

3. Executing OnReceive processing steps (WebTransactions)

WebTransactions now executes the OnReceive processing steps buffered in phase 1.
For instance, this may involve mapping the data sent by the browser to the host appli-
cation format, and then sending this data to the host application. In the last OnReceive
processing step, the next message is generally read by the host application. The follow-

What is a WebTransactions application Dialog cycle

WebTransactions Concepts and Functions 63

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

up template is specified using the setNextPage() function which writes the name of
the next template that is to be processed in the system object attribute
WT_SYSTEM.FORMAT.

The default dialog sequence controlled by the host application can also be actively
modified (see section “Active dialog” on page 109).

The diagram below illustrates a synchronized dialog cycle:

This dialog cycle is part of the synchronized dialog in which WebTransactions expects a
specific set of data from the browser in order to process the outstanding OnReceive rules.
If the user sends an HTML page which is not the one the system expects to receive, then
the most recently generated HTML page is again sent back to the browser.

Web browser WebTransactions Host applicationHTTP
server

1.

Interpret template;
execute OnCreate
processing steps

generate HTML page
and send to browser

2.

Enter data or make
selection

3.

Read browser data;
execute OnReceive
processing steps;

Send message to host
application;

Read next message from
host application

Communication step
from point of view of

host application

...

.........

... ...

Dialog cycle What is a WebTransactions application

64 WebTransactions Concepts and Functions

3.5.2 Non-synchronized dialog

If the dialog is non-synchronized, no check is performed to determine whether the data is
up-to-date (phase 2 in the synchronized dialog). A non-synchronized dialog consists of
possible one-step dialogs without a defined order. It begins with a request from the browser
which must specify the template to be executed. The browser may also post other data.

Every non-synchronized template called generates an HTML page, after processing the
OnCreate rules. This page is then sent to the browser. This action terminates the non-
synchronized dialog and the data sent by the browser is not post-processed using
OnReceive rules. This means that data sent by the browser can only be processed using
On Create rules.

This procedure means that the dialog cycle for a non-synchronized dialog is reduced to the
step “Interpret Template/Generate HTML”. Further information about synchronized and
non-synchronized dialogs can be found in section “Dialog between WebTransactions and
the browser” on page 110.

The diagram below shows a non-synchronized dialog cycle:

Web browser WebTransactions Host applicationHTTP
server

2.

Read browser data

Enter data or make
selection

Execute OnCreate
processing steps

Send message to
host application if

necessary

Read next message from
host application

Generate HTML page and
send to browser

Communication step
from point of view of

host application

The host dialogs
must be status-free

(this can, for
instance, be done by

navigating to the
main menu at the
start of the dialog

...

.........

... ...
WT_ASYNC_PAGE

What is a WebTransactions application Dialog cycle

WebTransactions Concepts and Functions 65

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

3.5.3 Dialog via client interface

No HTML pages are generated when WebTransactions is accessed via the client interface
WT_REMOTE. The browser is replaced by a client program, which exchanges data with the
WebTransactions applications and executes programs in the WebTransactions session.
The individual accesses are therefore not linked to a template, but are controlled directly
from the client program.

The client program can transfer data to WebTransactions. Depending on the contents, this
data is created in the form of new global variables or as attributes of WT_SYSTEM or WT_HOST
in the WebTransactions session. By the same token, the client program can also query data
from the addressed WebTransactions session. In addition,embedded or user-defined
constructors, methods and functions can be executed in the WebTransactions session. The
result of a call such as this is returned to the client program.

The actions, the associated data and the results exchanged between the client program
and WebTransactions are coded in an XML-based language. Please refer to the
WebTransactions manual “Client APIs for WebTransactions“ for further details on the
structure of the messages.

The following diagram shows the basic sequence of the various actions:

Client program WebTransactions Host applicationHTTP
server

Accept and create trans-
ferred data

Send empty acknowl-
edgement to client

Return requested data

If necessary, commu-
nication with host

application

...

.........

... ...
WT_REMOTE

upload

Carry out requested action
Return result

WT_REMOTE

download

WT_REMOTE

create Object
call Method

Objects - dynamic data What is a WebTransactions application

66 WebTransactions Concepts and Functions

3.6 Objects - dynamic data

WebTransactions supports a powerful, yet simple object concept with which the data
exchanged between the browser and the host application is modeled at development time,
and with which the communication processes are controlled during runtime. WebTransac-
tions structures data using the object hierarchy shown in the diagram below:

Figure 3: Object hierarchy of WebTransactions

The frames in the graphic show that the structure consists of objects which, in turn, contain
other objects. The values given in italics show that the names of objects depend on the
specific situation.

WT_HOST

WT_SYSTEM

com1

WT_SYSTEM

host_controlobj

host_dataobj1

WT_POSTED

com2

host_dataobj2

myvar

HTTP

myvar

Global system object

Posted object

Host root object

Communication object

Connection-specific system object

Host control object

Host data object

Template object

Header object

What is a WebTransactions application Objects - dynamic data

WebTransactions Concepts and Functions 67

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

During a dialog cycle – see also section “Dialog cycle” on page 62 – the objects defined by
WebTransactions are used as follows:

– The global system object (WT_SYSTEM) contains attributes that are valid throughout the
entire WebTransactions session. WebTransactions uses these attributes, among other
things, to manage information about the current session.

– The posted object (WT_POSTED) contains the user input.

– The communication objects contain data on the connections that currently exist.
Communication objects are used to send data to the host application and receive data
from it.

– The host data objects are used for communication between WebTransactions and the
host application. They represent the fields of a format of the host application or the data
objects (XML structure) of a partner application with which communication takes place
over the HTTP adapter. They are created when the receive method is called and are
transferred to the host application when send is called.

– Template objects contain data with a short life which is buffered while a template is
being interpreted. They are stored with WTML language resources and functions.

Additionally, there are objects, which have been defined in module templates (see
section “Module templates” on page 52). These objects exist for the entire duration of
the WebTransactions session.

The diagram below indicates the individual actions and the utilization of the objects for a
synchronized dialog cycle in more detail.

Objects - dynamic data What is a WebTransactions application

68 WebTransactions Concepts and Functions

Figure 4: Use of objects in a dialog cycle

The significance of the various objects, their main properties and methods, their interac-
tions and their lifetimes are described in detail in the following sections.

Template

System-
Object

...
<wtDataForm Name="TRAV1“>

....

...

...

WT_SYSTEM
BASEDIR

SESSION

\home\Travel

<form name="TRAV1“>
...
<input type="hidden"

NAME=WT_SYSTEM_BASEDIR
VALUE="\home\Travel">

System-
Object

WT_POSTED
SELECT

COMMAND

...

3

CONFIRM

...

01-04-1998

HTML output
Global system object

OnReceive actions

...
<wtOnReceiveScript
WT_HOST.com1.SELECT.Value

=wt_Posted.SELECT
...

</wtOnReceiveScript

Posted object

User input

849278593-21655
FORMAT TRAV1

##WT_HOST.com1.DATE.HTMLValue#

WT_HOST

com
1

wt_System

SYM_DES
T

con_ut
m1

FLD TRAV1

...

DATE

Value 01-04-
1998

HTMLValu
e

01-04-
1998

SELECT

Communication object

Objects Lifetimes

WebTransactions Concepts and Functions 69

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

3.6.1 Lifetime of objects

The table below shows the lifetime of the objects predefined by WebTransactions:

Object Object lifetime

Global system object
WT_SYSTEM

Duration of the WT session.
Attributes created by you continue to exist until the end of
the WT session or until they are explicitly deleted.

Posted object WT_POSTED Duration of the WT session.
synchronized

These attributes contain the data last received
from the browser, and continue to exist until the
next time data is received from the browser

non-synchronized
These attributes contain the data which was
used to call the browser from the non-synchro-
nized template

remote
only available for analysis purposes

Host root object WT_HOST Duration of the WT session.

Communication object
Attribute of WT_HOST

From its creation using the WT_Communication
constructor call until the end of the session.

Connection-specific system object
Attribute of a communication object

From its creation using the WT_Communication
constructor call until its explicit deletion or the end of the
session.

Host data object
Attribute of a communication object

From its creation using the receive method until the next
time this function is called (at which point older host data
objects are destroyed) or until close.

Host control object
Attribute of a communication object

From its creation using open method until close.

Template objects synchronized/non-synchronized
Objects exist from specific creation in the
template through to the end of the template
processing.

remote
Objects exist from specific creation using
methods, constructors or upload accesses
through to the end of the communication or until
they are deleted explicitly.

Objects from module templates
The objects exist for the duration of the session
or until an explicit deletion occurs.

System object Objects

70 WebTransactions Concepts and Functions

3.6.2 Object visibility

The visibility of objects and variables varies according to the type of access to
WebTransactions. It is dependent on whether the access to the WebTransactions appli-
cation is synchronized, non-synchronized or carried out via the WT_REMOTE interface.
WebTransactions manages the posted and template objects for each type of access
separately, in WebLab this is displayed using different object trees:

– The objects created during a synchronized access are displayed in the synchronous
object tree.

– The objects created during a non-synchronized access are displayed in the
asynchronous object tree

– The variables created during an access via WT_REMOTE are displayed in the remote
object tree.

This split management system also affects visibility and, as a result, access to variables:

– A template which executes a synchronized dialog step cannot access the template
variables and posted object valid for a non-synchronized step and vice versa.

– Variables with the same name may exist simultaneously in different dialog steps
(synchronized, non-synchronized and remote). This variables contain different values
since they are managed separately.

– Functions defined in the current synchronized dialog step are not available in a non-
synchronized access.

3.6.3 Global system object WT_SYSTEM - session control and long-term
data storage

The global system object WT_SYSTEM is created at the beginning of a WebTransactions
session and continues to exist for the entire duration of the session. WebTransactions
stores information about the current status of the session in this object’s attributes.

In addition, some attributes can be created for the purposes of long-term data storage.
These can then be queried in later dialog cycles.

Only one system object exists for each session. Changes in dialog type (synchronized, non-
synchronized, remote) are visible even when using the other dialog type.

Objects System object

WebTransactions Concepts and Functions 71

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

3.6.3.1 Long-term data storage

Since the system object continues to exist for the entire duration of a session, it is suitable
for longer-term data storage. Template objects created using WTScripts exist only for the
respective dialog cycle.

For instance, you can buffer a user profile which is entered in an HTML page and evaluated
on a later page.

Some system object attributes are created and assigned a value by means of a simple
assignment. If an attribute with the selected name already exists, its contents are
overwritten.

 To avoid conflicts with predefined attributes, your own attributes should begin with
the underscore character (_).

Example

A script creates the attribute _NEW_ATTRIBUTE with the value test:

<wtOnCreateScript>
WT_SYSTEM._NEW_ATTRIBUTE="test";

</wtOncreateScript>

3.6.3.2 Global session control

Information as to which template is to be read next, which language is set for the interface,
whether error messages are to be suppressed, etc. is stored in the form of system object
attributes. These attributes can be retrieved and in some cases modified, and control the
behavior of the WebTransactions kernel.

The following table contains an overview of the attributes and their effect (further attributes
are described under the communication interface). Some attributes are set by the kernel at
the start (identified as “start”) or can be modified or queried by actions in the templates
(identified as “template”) in order to implement specific control functions. Other attributes
are sent as hidden fields with each page (identified as “hidden”).

Only those system object attributes that have the same meaning for all WebTransactions
protocol variants are described below. Attributes that exist specially for protocol-specific
connections or that have a specific meaning for protocol-specific connections are described
in the manuals for the supply units in question.

i

System object Objects

72 WebTransactions Concepts and Functions

The type of each attribute is shown in the “Use” column.

Attribute Meaning Control option Use

BASEDIR Base directory for the
WebTransactions appli-
cation

This attribute is set on the start page and
cannot be modified thereafter.
Value: absolute path name /path/basedir

hidden
start

CGI CGI environment
variables

This attribute is of data type object, and
contains the specified attributes, which are of
data type string. It stores the CGI
environment values, which are transferred“
from the HTTP server when the CGI program
WTPublish.exe is called.

start

AUTH_TYPE Authentication procedure to be used.

GATEWAY_INTERFACE CGI version of the server.

HTTP_ACCEPT List of MIME types accepted by the client.

HTTP_ACCEPT_CHARSET Character set accepted by the client.

HTTP_ACCEPT_ENCODING Browser information indicating the type of
documents it can process.

HTTP_ACCEPT_LANGUAGE Language accepted by the client.

HTTP_USER_AGENT Browser identifier.

PATH_INFO Additional path in the requested URL relative to
the root directories set in the WWW server.

PATH_TRANSLATED Path from PATH_INFO in accordance with the
server directory structure to the URL with speci-
fications tagged with?.

QUERY_STRING If a CGI script is called when sending an HTML
form, this environment variable contains the
form data filled out.

CONTENT_LENGTH Number of characters transferred when calling
the CGI script via the POST method.

CONTENT_TYPE MIME type of transferred data when calling via
the POST method.

REFERER_URL URL from which WebTransactions was started.

REMOTE_ADDR IP address of the requesting host.

REMOTE_HOST Name of the requesting host.

REMOTE_IDENT ID of the user on the requesting host.

REMOTE_USER As for REMOTE_IDENT.
The server determines which of these two
variables is set.

Objects System object

WebTransactions Concepts and Functions 73

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

REQUEST_METHOD Method of the HTTP request (Post or Get).

SCRIPT_NAME Virtual path of WTPublish.exe.

SERVER_NAME Name or IP address of the server.

SERVER_PORT No. of the port at which the request arrived.

SERVER_PROTOCOL Name of the HTTP server.

SERVER_SOFTWARE Protocol version/type.

CHARSET Character set specifi-
cation in the Content-
Type field of the HTTP
header

If this attribute is set then the content is written
as a value of the Content-Type field of the HTTP
header in the message generated for the
browser.
Browsers can set the corresponding character
set dynamically.
If the attribute is not set then WebTransactions
generates the following header:

Content-type; text/html;
charset=ISO-8859-1
See also attribute HTTP_HEADER

CHARSET is overwritten by the attribute
HTTP_HEADER

template

COMMUNICATION_
ERROR_FORMAT

Template for error
output

If an error occurred in a OnReceiveScript tag
with open(), send() or receive() calls, and
if this variable is not set to an empty string,
the system branches to the specified template.
If communication errors occur in a
OnCreateScript, this attribute is ignored.
These errors can only be detected and handled
by querying the ERROR attribute.
Values:
Empty string: no error output defined.
File name of the template
template[.htm] :
error output defined.

template

Attribute Meaning Control option Use

System object Objects

74 WebTransactions Concepts and Functions

COMMUNICATION_
ERRORS_DISABLED

Switch for deactivating
communication error
messages

This attribute allows you to control whether or
not communication error messages are to be
forwarded to the browser/user.
In productive mode, you should set this attribute
such that the user is not irritated by any error
messages that may occur. Errors should be
handled in the template, e.g. by querying the
ERROR attribute or setting the
COMMUNICATION_ERROR_FORMAT attribute.
Values:
Empty string: errors are forwarded.
Other value: errors are not forwarded

template

DEFAULT_FORMAT Default for missing
template

If the template specified in FORMAT is not
found, an attempt is made to read the template
specified in DEFAULT_FORMAT.

template

DIALOG_CONTROL_ FORMAT Control template This attribute is used in generated templates to
suspend the dialog conducted by the host appli-
cation and return to a “superordinate" template
(e.g. menu screen). The template is jumped to
using the Suspend button.

template

ERROR Error message After the execution of the communication
functions, WebTransactions stores an error
message in this variable if the action failed. If
the action was successful, the variable is set to
an empty string.
The value of the variable can be queried in a
template (see also
COMMUNICATION_ERROR_FORMAT).
A more elegant method of responding to errors
during communication is the use of exceptions
(see WebTransactions manual “Template
Language“)

template

ERROR_LOGFILE Logfile for errors If a filename is set for this attribute then
WebTransactions does not display any errors.
Instead, these are written to the specified file.
You must specify the filename without the path.
It is created in the base directory.

template

Attribute Meaning Control option Use

Objects System object

WebTransactions Concepts and Functions 75

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

EXIT_SESSION End of session If this attribute is set, WebTransactions ends the
session after the next HTML page is sent to the
browser.
This attribute is defined using the
exitSession() function.
If the PREVENT_EXIT_SESSION attribute exists,
the WebTransactions session is not terminated
even if the exitSession() function is executed.
See also page 79.

template

FORMAT Name of the next
template (synchro-
nized dialog)

In synchronized dialog, this attribute deter-
mines the next template to be read. It can be
specified in the URL, on the start page, or via
WTML tags (assignments) in the template. This
attribute is set using the function
setNextPage() or by means of an explicit
assignment.
Value:
File name of the template template[.htm]
(see “Search strategy” on page 57).

template

FORMAT_STATE State of the current
page

This attribute ensures that no page is
processed outside the specified sequence. It is
automatically set to a value which is unique for
each HTML form. This allows the browser
history to be used for handling user errors.
This attribute cannot be modified.

hidden

HANDLE Name of the current
communication object

This attribute is only supported for compatibility
reasons with regard to V1.0 and V2.0. As of
V3.0, you can name each communication
object in order to work with it directly.
The value of this attribute sets a communication
object to default.

template

Attribute Meaning Control option Use

System object Objects

76 WebTransactions Concepts and Functions

HREF Link.
Data for creating a link
that calls the running
WebTransactions
session synchronously

This attribute can be used in the template to
define a link. It contains the name of the CGI
module WTPublish.exe and a value used for
page identification
(BASEDIR, SESSION, FORMAT, FORMAT_STATE,
LANGUAGE, SIGNATURE,
TIMOUT_APPLICATION).
Values:
url_of_webtransactions&name1=value1&...
of the HTML link.
 .
calls the current WebTransactions session.
See also section “Starting by input of the URL”
on page 94.

template

HREF_ASYNC Header for hyperlink.
Data for creating a link
that calls the running
WebTransactions ses-
sion asynchronously

This attribute contains the header (script name
and name/value pairs of other system
variables) for hyperlinks within a session. Unlike
HREF, this URL opens WebTransactions for a
non-synchronized dialog cycle. The appropriate
template must be specified as an additional
name/value pair with the name
WT_ASYNC_PAGE. An HTLML link in the format
<A HREF=
"##WT_SYSTEM.HREF_ASYNC#&WT_ASYNC_

PAGE=myPage">

calls the current WebTransactions session for
an asychnronous dialog cycle. If
WT_ASYNC_PAGE is not specified,
WebTransactions outputs the last page
generated synchronously again (this may prove
useful, for instance, if frames around dialog
pages are to be dynamically loaded or
unloaded within a dialog, see example in
section “Dialog between WebTransactions and
the browser” on page 110).

template

Attribute Meaning Control option Use

Objects System object

WebTransactions Concepts and Functions 77

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

HTTP_DEFAULT_HEADER HTTP header for entire
session

If this attribute is set then the content is written
to the message generated for the browser as an
HTTP header. The attribute must contain all the
necessary headers. line breaks (CR LF) and
the terminating double line break (CR LF CR
LF).
This header is written to each generated
message as long as HTTP_DEFAULT_HEADER is
set.
WebTransactions no longer generates its own
header fields;
the HTTP server can, however, create
additional HTTP header fields as necessary if
these are not contained in
HTTP_DEFAULT_HEADER.

template

HTTP_HEADER HTTP header If this attribute is set then the content is written
to the message generated for the browser in the
form of an HTTP header. The attribute must
contain all the necessary headers, line feeds
(CR LF) and terminating double line feeds (CR
LF CR LF).
The attribute HTTP_HEADER is deleted after
every generated page and must be reset for
each page with special headers.
If the attribute is not set then WebTransactions
generates the following header:

Content-type; text/html;
charset=ISO-8859-1

HTTP_HEADER overrides the attributes CHARSET
and HTTP_DEFAULT_HEADER.

template

JAVA_CLASSPATH Path of Java classes The Java class files containing the class
methods to be executed in WebTransactions
are assumed to be in the subdirectory java in
the base directory. If the system is to look for
them in a different directory, you can set that
path with this attribute.
Default: basedir/java

template

Attribute Meaning Control option Use

System object Objects

78 WebTransactions Concepts and Functions

JAVA_EXCEPTION Suppress the error
messages for uninter-
cepted exceptions

Unintercepted Java exceptions are not passed
to the browser/user as error messages.
If you define the attribute as a BOOLEAN
variable, it is set to false if the method
executes successfully.
As soon as an exception occurs, this attribute is
set to true. Information about the trace file is
logged.

template

LANGUAGE Interface language This attribute is evaluated as part of the search
strategy for the template and the error message
file. It is usually set on the start page, but can be
modified at any time (e.g. via active user
selection).
See also section “Subdirectories for style and
language variants” on page 56

template

LT_REPLACE_STRING Replace the HTML tag
opening character '<'

This attribute causes the character '<' (less
than) to be replaced by the string contained in
LT_REPLACE_STRING in all data posted by
the browser (attributes of the object
WT_POSTED). This prevents HTML tags from
taking effect in the contents of data entry fields.

template

MAX_NESTING_LEVEL Maximum nesting level With this attribute, you can control the
maximum nesting level of templates to be
included (<wtInclude>, include(),
evaluate()) as well as of function requests.
Default value: 99
The forward() function resets the current
nesting level to 0.

template

PLATFORM WebTransactions
system environment

Possible values: Windows, UNIX, OSD start

Attribute Meaning Control option Use

Objects System object

WebTransactions Concepts and Functions 79

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

POSTED_UNPARSED Unprepared data from
the browser (query
string)

WebTransactions makes the data received from
the browser or the query string for a URL that
points to WebTransactions available as a
WT_POSTED object. If you do not require the
posted data in prepared form, e.g. because you
want to forward the data to another web server
then you can assign this attribute a name which
may not appear as a value in the posted data.
WebTransactions then creates an object with
the corresponding name under the WT_POSTED
object. The unprepared data from the browser
is then available in this object.
Example:
WT_SYSTEM.POSTED_UNPARSED=“myPos
t“
The myPost object then contains the
name/value pair received from the browser.

template

PREVENT_EXIT_SESSION Keeps the session
open despite
exitSession()

If this global system attribute exists, the
WebTransactions session is not terminated
even if the exitSession() function is executed.
This attribute is useful for debugging a session
with WebLab. You do not have to disable all the
exitSession() functions, which may occur at many
locations, to prevent termination of the session.
This means that you can continue to access the
variables and any single-step log of the session
that may have been created. When a new
session is started, the posted value of
WT_SYSTEM_PREVENT_EXIT_SESSION is
passed to
WT_SYSTEM.PREVENT_EXIT_SESSION. This
means that it is not necessary to manipulate the
existing templates. The start parameters
passed with WebLab are sufficient.

template

PROTOCOL Name of the host
adapter to be used

This attribute is only supported for compatibility
reasons regarding Version 1.0.
Starting with V2.0, you can attach the protocol
to each connection to be opened using the
open command.
The value of this variable determines which
host adapter is used to open a connection if the
operand PROTOCOL is not given in the
WT_Communication constructor.
Values: OSD, MVS, UTMV4

template

Attribute Meaning Control option Use

System object Objects

80 WebTransactions Concepts and Functions

ROAMING Re-entry into session On re-entry into a session, WebTransactions
sets the attribute ROAMING to true. This makes
it possible, within a template, to determine
whether a new login has occurred or whether an
existing session is being resumed. In this way, it
is possible to re-use the start template for the
renewed authentication and, for example, omit
a number of initialization operations on
resumption by referring to the values in
ROAMING.
See also section “Roaming Sessions” on
page 41.

template

ROAMING_FORMAT Check authorization to
access a roaming
session

To prevent unauthorized access to a session, it
is necessary to check the authenticity of the
user by means of the ROAMING_FORMAT
attribute if a session is already running with the
specified session ID. To this end, the name of a
template must be entered in ROAMING_FORMAT.
The authorization to access the session must
be checked in this template.
See also section “Roaming Sessions” on
page 41.

template

SEARCH_HOST_OBJECTS Searches for variables
in host objects

For reasons of compatibility with Version 1.0,
WebTransactions also always searches for V2.0
global variables under the default
communication object (see HANDLE attribute).
This search is not carried out by default as of
Version 3.0. If you want to ensure, for compati-
bility reasons, that this search is carried out, you
must set this attribute to "YES".
The set mode is valid for an entire dialog step.
Any changes made to the attribute only then
come into effect for the following dialog steps.
Values: "YES", "NO"
Default: "NO".

template

SESSION Session identifier WebTransactions uses this attribute to find the
task (process/thread) assigned to the current
session. The attribute is created at the
beginning of the session, and is contained in all
follow-up pages as a hidden field. The directory
below tmp which is used to store temporary files
assigned to the session has the same name as
this attribute. This cannot be modified.

hidden

Attribute Meaning Control option Use

Objects System object

WebTransactions Concepts and Functions 81

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

SIGNATURE Signature A signature is generated for each HTML page.
If a page with an inconsistent signature is
received, it is rejected with an error message.
The status of the holder task remains
unchanged.
This attribute cannot be modified.

hidden

STATISTICS Statistical information
about the session

The object STATISTICS contains three numeric
attributes.
BYTES_SENT contains the number of characters
sent by WebTransactions to the browser during
the current session, BYTES_RECEIVED contains
the number of characters received by the
browser.
DIALOG_STEPS contains the number of dialog
steps. The data is updated automatically at
each dialog step.

template

STYLE Style of the interface This attribute is evaluated as part of the search
strategy for the template. It allows you to select
the desired style if several sets of templates are
maintained in parallel (e.g. with numerous/few
graphics, use of JAVA, etc.) and can be
modified at any time.
Value: name of the STYLE directory
(see section “Search strategy” on page 57).

template

TIMEOUT_
APPLICATION

Time in seconds spent
waiting for a response
from the
WebTransactions appli-
cation

This attribute defines the maximum time spent
waiting for a response to a request to
WebTransactions before the session is timed
out.
Value: numerical value
Default: 120 seconds.

start
template
hidden

TIMEOUT_FORMAT Template executed on
session timeout

This attribute specifies the template to be
executed on expiry of TIMEOUT_USER before
the session is terminated.

start,
template

TIMEOUT_USER Time in seconds spent
waiting for a response
from the user

This attribute defines the maximum time spent
by the browser waiting for a response from the
user before the session is timed out. It can be
set at the start and modified at any time. Using
the setting NOLIMIT the timer for the attribute
TIMEOUT_USER is not activated.
Value: numeric value or NOLIMIT.
Default: 600 seconds.

start
template

Attribute Meaning Control option Use

Posted object Objects

82 WebTransactions Concepts and Functions

3.6.4 Posted object WT_POSTED - data from the browser

The posted object stores data sent by the browser. It is updated in the dialog cycle each
time browser data is received. Both synchronized and non-synchronized dialogs (with the
browser) begin by updating the posted object. The data of a posted object is always visible
during the current dialog step and is no longer there for subsequent steps.

The attributes of the posted object and their values correspond to the name/value pairs of
the HTML elements that are returned by the browser, where name is the HTML page
object/field manipulated by the user and value is the resulting value to be processed. The
attributes can be addressed using the name under which the object/field was defined on the
HTML page.

The posted object is a global variable of data type object, and its attributes are of type
string. If the message contains several name/value pairs with the same name, an array
is created with this name. The entries are of type string.
The toString method (WT_POSTED.arrayname.toString()) returns the first attribute.

WTML_VERSION Versions specification
for WTScript

The introduction of version 1.2 of the JavaScript
language has changed the behavior of some
methods in the installed classes. This improved
behavior should also be available in
WebTransactions. If you want to set the old
behavior for these methods, you must set the
value to 2.0.
Values: 7.5, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0
Default value: 7.5

template

WWWDOCS_VIRTUAL Virtual path for the
wwwdocs directory and
base directory

This attribute is required in order to address
resources in the template which are located in
the wwwdocs directory. It is read from the
administration specifications at runtime and
cannot subsequently be changed during the
session.

hidden,
start

Attribute Meaning Control option Use

Objects Posted object

WebTransactions Concepts and Functions 83

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

Example

An HTML page contains the following tags:

<input type=“text“ name="DATE" value="1998-04-01" >
<input type=“text“ name=“TIME“ value=“08:00“ >
<input type=“submit“ name=“COMMAND“ value=“Print“>
<select name=“SELECT“ multiple>
<option value=“Drama“>Drama
<option value=“Story“ selected>Story
<option value=“Joke“ selected>Joke
<option value=“Novel“ selected>Novel
<option value=“Poem“>Poem
</select>

The following name/ value pairs are sent by the browser:

COMMAND=Print
TIME=08:00
DATE=1998-04-01
SELECT=Joke
SELECT=Story
SELECT=Novel

This results in the following object hierarchy:

In the diagram above, objects that themselves contain objects are surrounded by a frame.

WT_POSTED

COMMAND | Print

DATE | 1998-04-01

SELECT

0 | Joke
1 | Story
2 | Novel

TIME | 08:00

Posted object Objects

84 WebTransactions Concepts and Functions

The posted object can only be queried when executing onCreate scripts (non-synchro-
nized) or onReceive scripts and when executing the onCreate script (synchronized) of the
next template. Value assignments are ignored.

The posted object contains the object WT_POSTED.HTTP, under which all HTTP headers of
the respective request are created as attributes. These attributes are also read-only. To edit
the fields in the HTTP header of the response, you must use the system object attributes
WT_SYSTEM.HTTP_HEADER (see page 77) and WT_SYSTEM.HTTP_DEFAULT_HEADER (see
page 77).

By interpreting this browser data as an object, it is possible to preserve a uniform syntax in
the template for access to dynamic data.

Example

If a page contains the following three buttons:

<Input Type="SUBMIT" Name="CHOICE" Value="Arts">
<Input Type="SUBMIT" Name="CHOICE" Value="Recreation">
<Input Type="SUBMIT" Name="CHOICE" Value="Sport">

you can evaluate the values returned by the browser in the next template as follows:

You have opted for ##WT_POSTED.CHOICE#.

When WebTransactions is accessed via the WT_REMOTE interface, the posted object is
supported for analysis purposes. In WebLab, you can see the control and data part of the
posted object for analysis purposes. However, it is not recommended that you access this
data using methods or constructors.

Special attributes of WT_POSTED

File upload

If a POST request arrives at WebTransactions whose content type starts with text/ , the
content of the body is stored in the BODY attribute of the WT_POSTED object, where it is
available for further processing. The body may only contain printable characters, otherwise
the string is regarded as terminated at the first binary zero.

Other special attributes

If you specify /startup when starting a session, the posted values of some system object
attributes WT_SYSTEM_XXX are stored under WT_SYSTEM.XXX. See also the sections “Start
options” on page 93 and “Subdirectories for style and language variants” on page 56. This
concerns the following attributes:

– BASEDIR
– FORMAT

Objects Host root object

WebTransactions Concepts and Functions 85

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

– LANGUAGE
– PREVENT_EXIT_SESSION
– STYLE

3.6.5 Host root object WT_HOST - managing connections to host
applications

All objects that contain information on the connections to host applications opened during
a WebTransactions session are combined under WT_HOST. A separate communication
object is created for each connection, and contains the data (host data objects, host control
objects, connection-specific system object) relating to this connection.

During a WebTransactions session, it is possible to work simultaneously with several open
connections to different host applications and host application types.

There is only one host root object and one communication object per session. Changes in
dialog type (synchronized, non-synchronized, remote) are also visible during the other
dialog types.

3.6.5.1 Host communication object WT_HOST.Comobj - managing a host connection

Because, in each session, multiple connections to different host applications an be opened
either sequentially or in parallel, WebTransactions (and the template programmer) must be
able to distinguish clearly between the different connections. Therefore, a communication
object is generated (explicitly or implicitly for each connection). The names of these commu-
nication objects are freely definable.

For the sake of clarity, WebTransactions generates all communication objects under a
common root, the host root object WT_HOST.

A host communication object contains the following:

● internal management information, including information on the host adapter used by the
connection. This information cannot be accessed.

● the current host data objects and host control objects

● the connection-specific system object, if any. The attributes of this object are dependent
on the host adapter and are described in the corresponding manuals as attributes of the
system object.

Host root object Objects

86 WebTransactions Concepts and Functions

3.6.5.2 Host data objects - host application data

Host data objects are provided for the transfer of data between WebTransactions and the
host application. These correspond to the host application data and store the individual
fields of a screen format. They are created after a host message is received, and are stored
as attributes of the respective communication object. They are then available in the form of
a screen image. They and can be read, overwritten, or transferred, and are destroyed each
time a new host message is received.

For display in the browser, the host data objects are incorporated in the HTML page. All
generated templates are constructed in such a way that the input fields are mapped to the
corresponding HTML interface elements (for example, <Input Type="text" ...>), while
output fields are mapped to HTML text.

Data is sent to and received from the host application by means of the send and receive
methods of the class WTCommunication which are present in the WTScript language scope.
This can occur when the HTML page is created (on Create) or after data is received from
the browser (on Receive). The lifetime of a host object is therefore not linked to the dialog
cycle. Several generations of host objects may appear and disappear again during a dialog
cycle, or even during a particular phase of the dialog cycle (HTML generation or execution
of a receive method), or one particular generation may extend over several dialog cycles.

Host objects exist only if a connection to the host application is open (see WebTransactions
manual “Template Language“, open method).

Since the host adapters create host objects under the corresponding communication
object, several objects with the same name can exist in parallel. However, their names are
unique by virtue of the fact that you address host objects by their fully qualified name, i.e.
using the path to the communication object
(WT_HOST.Comobj.Host_object.attribute).

The precise properties and names of host objects depend on the host adapter used, and
are described in the manual for the relevant host connection.

3.6.5.3 Host control objects - management data for a format

Host control objects are provided for controlling the host connection, and continue to exist
for the entire lifetime of the connection. They supply information not only on an individual
field, but on the entire screen format. For instance, this may indicate the field in which the
cursor is positioned and the layout of fields on your screen.

The precise properties and names of host control objects depend on the host adapter used,
and are described in the manual for the relevant host connection.

Objects WTML language resources

WebTransactions Concepts and Functions 87

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
3

3.6.5.4 Connection-specific system object WT_Host.Comobj.WT_SYSTEM - connection-
specific control functions

The attributes of the connection-specific system object control the connection to a host
application. They are specific to the host adapter used, and are described in the corre-
sponding manuals.

The connection-specific system object is created when the communication object is created
using the constructor of class WT_Communication. As it is a perfectly normal object, it can
be deleted within a WTScript using the delete operator.

If the connection-specific system object exists, WebTransactions only accesses the
attributes of this system object to control the connection. Attributes with the same name
belonging to the global system object are ignored.

3.6.5.5 WTScript and communication objects

The diagram below presents an example of how to use the WTScript statements to
establish a connection to a host application and describes the objects created by
WebTransactions in the process:

Figure 5: Interaction of WTML and communication objects

The WT_Communication constructor call creates a communication object under WT_HOST
and, under this, a connection-specific system object. You also specify the name of the
communication object in this call.

You call all further actions involving this connection as methods at this communication
object.

A connection is opened using the open method call. In these calls, you define the host
adapter with which the connection was established. The host control objects are also
created with this call.

new WT_Communication("mycom");

WT_HOST.mycom.open("protocol1");

WT_HOST.mycom.receive();

WT_HOST

host_ctrl_obj

host_dat_obj

Communication object

Communication-
specific system
object

Template object Objects

88 WebTransactions Concepts and Functions

Data is received from the host application using the receive call. The host data objects are
also created with these calls.

3.6.6 Template objects – Short-term intermediate data storage

Template objects (also known as template variables) offer the template programmer a
short-term storage area for data to be buffered in WTScript areas, WTML tags, or evaluation
operators of a template.

They can be defined anywhere in these areas, and continue to exist from the time they are
defined until the end of the dialog step (synchronized or non-synchronized), until the end of
the session (remote) they are explicitly deleted. The template objects of the various dialog
types (synchronized, non-synchronized and remote) are managed separately and have no
effect on each other.

Template objects are created simply by using a name (identifier that does not correspond
to any predefined WTML object) in a statement or assignment, and can include all variable
types available in WebTransactions (see WebTransactions manual “Template Language“).

Example

<wtonCreateScript> (1)
a = 5;
b = a + 1; (2)
</wtonCreateScript>
##a# is one less then ##b# (3)

(1) In the script area, a template object a is created and assigned the value 5.

(2) The value 1 is added to the value of a in the evaluation operator and the result is copied
to the template variable b thereby created.

(3) In the HTML area, the evaluation operators are used to replace the template objects a
and b with current values.

When you execute these statements with WebTransactions, the HTML page contains the
text:

5 is one less than 6

Template objects can also be used to contain further objects/attributes.

For instance, the WTScript given below creates the template object x and assigns it a new
attribute y with the value 1:

 <wtonCreateScript>
 x = new Object();
 x.y = 1;
 </wtonCreateScript>

WebTransactions Concepts and Functions 89

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

4 Execution of a WebTransactions application
A WebTransactions application is an intermediary between dialog applications on a host
and the graphical interface in the browser. It is, however, also possible to access a
WebTransactions application via a client program and the WT_REMOTE interface. This
chapter describes the two interfaces used to access WebTransactions.

This chapter focuses on work with the dialog interface and the control options for the
template programmer. The description of the dialog interface includes

– the start options for a WebTransactions application: direct input of the URL, link or form.
The inputs that can be processed on the start page are also described.

– the exchange of data during the session: the HTML form and HTML link

– the two control options of a WebTransactions application: passive via the host appli-
cation or active via the template

– the synchronized and non-synchronized dialog

– terminating a session

– diagnostic capabilities

– the transfer of a WebTransactions application

This is followed by a brief presentation of the WT_REMOTE client interface.

Finally, you will find a description of how you can administer a WebTransactions application
from the browser.

Creating a WebTransactions application Execution of a WebTransactions application

90 WebTransactions Concepts and Functions

4.1 Creating a WebTransactions application

You now use the following procedure to link your host application to the Web:

1. Install the appropriate WebTransactions supply unit on your integration server. The
installation procedure for each supply unit is described in the relevant manual.

2. Each WebTransactions supply unit is supplied with an administration program and the
WebLab development environment with which you can carry out all subsequent stages
of the integration. The administration program is described in chapter “WebTransac-
tions server” on page 131.

3. Start WebLab using the command Start/Programs/WebTransactions 7.5/WebLab.
The main window of WebLab is displayed on the screen.

4. When you begin working with WebLab for the first time you must specify the browser
you wish to use, to do this use the command Options/Preferences/Programs.

5. Select the command Administration/Server, to start the administration program.

6. Log in to the administration program as the user admin. When you call the adminis-
tration program for the first time, assign a password to the user admin.

7. Request the required number of licenses and enter these.

8. Set up a WebTransactions user for each developer who is supposed to edit
WebTransactions applications.

9. Create a pool for your base directories and assign access authorization for this pool to
the user admin and possibly to other users.

10. Save the new configuration.

11. Exit the administration program and close the browser.

12. In WebLab, create a new project and a new base directory for your host application
using the command Project/New. In the Create Base Directory dialog box, select one
or more of the host adapters you are offered.

Execution of a WebTransactions application Creating a WebTransactions application

WebTransactions Concepts and Functions 91

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

13. Create an individual start template. Enter the data for your host application in the
connection parameter tab.

If you want to connect a host application to WebTransactions for openUTM, you must
also perform the following steps:

– Log onto the host computer under the ID under which the host application you wish
to integrate is located.

– Use the IFG2FLD tool from the IFG/FHS library to create the format description
sources from which WebLab is to create templates. IFG2FLD is described in the
WebTransactions manual “Connection to openUTM Applications via UPIC”.

– Transfer the format description sources in text mode to the computer on which
WebLab is running.

– In WebLab select the command Generate/Templates/from IFG library to generate
templates for conversion from the format description sources.

14. Use the command File/Start Session with the parameters in the dialog field
Start Session to create a link via WebTransactions to the host application. Enter the
individually created start template as the start template here. The parameters of the
dialog box Start Session are described in section “Starting a session” on page 161 and
in the online help system.

When you confirm this dialog box, the specified browser is started at the development
host. The individual start template establishes the connection to the host application
and displays the first format in the browser. Depending on the configuration of the host
application, this may immediately be the host application’s start format (e.g. openUTM)
or an emulation display (e.g. in the case of $Dialog) in which you then start the host
application.

By completing these steps, you have not only linked your host application to the Web, you
have also created and started a WebTransactions application.

 For a detailed discussion of this topic, see chapter “The WebLab development
environment” on page 155.

Starting a WebTransactions dialog application Execution of a WebTransactions application

92 WebTransactions Concepts and Functions

4.2 Starting a WebTransactions dialog application

You can start a WebTransactions dialog application by means of direct input of a URL or via
a start page in the browser. On this start page, a link or a form points to the first template
of the WebTransactions application, the so-called start template. It is the start template that
actually starts the WebTransactions application. The diagram below shows how a
WebTransactions application is started from a start page.

Figure 6: Starting a WebTransactions application from a start page

Web browser WebTransactionsHTTP
server

......

Start page calls
WebTransactions-
application Start template is

interpreted and a

is then generated.

The first HTML
page of the

application is
displayed

 WebTransactions
The transmitted data is
processed and the next
template is called

Host application

Communication
step as seen by the

host application

...

connection to the host
application is established.
The first HTML page

Execution of a WebTransactions application Starting a WebTransactions dialog application

WebTransactions Concepts and Functions 93

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

WebLab provides a WTBean to support you in creating a start template. You must create
the start page the user sees in the browser yourself. In addition to defining the base
directory and start template for the WebTransactions session, you can also enter additional
data at the browser before the session begins, so that WebTransactions has this information
to hand from the outset

 Please note that the start page for a WebTransactions application must be located
in the web server’s document directory so that it can be found by the web server.
You are recommended to save the start page in the wwwdocs/html directory. This
has the advantage that the file is taken into consideration when the
WebTransactions application is transferred and that the paths for the associated
program calls (wtPublish, wtCluster) are adapted as required.

4.2.1 Start options

Each session begins with user input at the browser. There are various options:

– Specifying the URL address of a WebTransactions application in the browser or
activating a link

– Completing and submitting a form

– Starting via the interface WT_REMOTE

The first two start methods can be simulated with WebLab: in this case, the start specifica-
tions are not made in the web browser but in WebLab.

On all platforms supported by WebTransactions, the CGI interface to the HTTP server is
also supported. The CGI program that you specify in the URL is named WTPublish.exe. For
Windows platforms, a link module for the ISAPI interface (WTPublishISAPI.dll) is also
supplied. You can use this on HTTP servers that support the ISAPI interface (e.g. MS
Internet Information Server). Since ISAPI brings considerably improved performance
compared to CGI, it is advisable to use ISAPI.

If you use the ISAPI interface to WebTransactions, you must replace WTPublish.exe by
WTPublishISAPI.dll in the corresponding URL.

i

Starting a WebTransactions dialog application Execution of a WebTransactions application

94 WebTransactions Concepts and Functions

4.2.1.1 Starting by input of the URL

The URL used to call WebTransactions has the following format:

http[s]://machine/cgiPath/WTPublish.exe/basedir?startTemplate[.htm]

It starts WebTransactions on the specified machine in the corresponding base directory.

machine
 is the Internet address or the symbolic name of the host on which WebTransactions

is installed (with the port number for the HTTP server if applicable).

cgiPath
 is the path (prefix) for CGI programs defined for the HTTP server there.

basedir
 is the base directory under which the WebTransactions application is installed. It is

an absolute path name (and includes the drive name under Windows).

startTemplate
 specifies the first template to be executed. The suffix htm can be omitted. To

generate the first page, the template startTemplate in the style forms is used, i.e. the
file:

basedir/config/forms/startTemplate[.htm]

With this method, no further user data can be sent to WebTransactions in the first step.

This URL can be located directly in the browser or in a link, for example to a called page:

Text or image for starting WebTransactions

Starting with additional values

If you want to specify additional values when starting, you must construct the URL as
follows:

http[s]://machine]/cgiPath/WTPublish.exe/startup?
WT_SYSTEM_BASEDIR=basedir&WT_SYSTEM_FORMAT=startTemplate[.htm]
&myData=data...

Unlike the previous methods, the base directory and start template are specified as name/
value pairs. You must use WT_SYSTEM_BASEDIR and WT_SYSTEM_FORMAT as names. With this
method, further name/value pairs can be entered in QUERY_STRING. These are then made
available by WebTransactions in the first dialog cycle as attributes of the posted object
(WT_POSTED).

The names of the attributes correspond to the names of the name/value pairs. For example,
if your URL contains a pair &User=Person, then you can access the value of this pair in the
start template via WT_POSTED.User.

Execution of a WebTransactions application Starting a WebTransactions dialog application

WebTransactions Concepts and Functions 95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

Starting in another style or language

Starting a session in another language or another style represent special cases of starting
with additional values. Both cases can be defined via specific name/value pairs.

http[s]://machine/cgiPath/WTPublish.exe/startup/WT_SYSTEM_BASEDIR=
/basedir?WT_SYSTEM_FORMAT=startTemplate&WT_SYSTEM_LANGUAGE=language&
WT_SYSTEM_STYLE=style

Here, the name of the preferred style directory is WT_SYSTEM_STYLE, and that of the preferred
language directory WT_SYSTEM_LANGUAGE.

For a detailed description of how WebTransactions searches for the employed templates,
see section “Subdirectories for style and language variants” on page 56.

When you start a session in this way, the start template is searched for in the specified style
and/or the specified language.

Starting at a cluster member

A session at a WebTransactions cluster is started using the following link. See also section
“Cluster concept” on page 142:

http[s]://machine/cgiPath/WTCluster.exe/cluster-id[?WT_SYSTEM_FORMAT
=startTemplate[¶m2....]]

Starting a WebTransactions dialog application Execution of a WebTransactions application

96 WebTransactions Concepts and Functions

4.2.1.2 Starting using an HTML form

An HTML form used to call WebTransactions has the following format:

<FORM METHOD="POST"
ACTION="[http[s]://machine]/cgiPath/WTPublish.exe/basedir?startTemplate[.htm]">
 additional text and data
</FORM>

machine
 is the Internet address or the symbolic name of the host on which WebTransactions

is installed (with the port number for the HTTP server if applicable). This part is
added by the browser and can therefore be omitted if the start page containing this
link was loaded from the same machine.

cgiPath
 is the path (prefix) for CGI programs defined for the HTTP server there.

basedir
 is the base directory under which the WebTransactions application is installed. It is

an absolute path name (and includes the drive name under Windows).

startTemplate
 specifies the first template to be executed. The suffix htm can be omitted. To

generate the first page, the template startTemplate in the style forms is used, i.e. the
file:

basedir/config/forms/startTemplate[.htm]

Within the form, it is possible to specify further HTML input elements (e.g. input fields,
selection lists), which are then sent to WebTransactions in the first dialog cycle when this
method is used. This data is made available as attributes of the WT_POSTED object when
processing the start template.

The names of the attributes correspond to the names of the input elements. If, for example,
your form contains an input field <input type=text name=User> you can access the value
of this field in the start template via WT_POSTED.User.

Execution of a WebTransactions application Starting a WebTransactions dialog application

WebTransactions Concepts and Functions 97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

Starting in another style or language

If you want to start your WebTransactions application with a start template belonging to
another style or another language then you should use the following form:

<FORM METHOD="POST"
ACTION="[http[s]://machine]/cgiPath/WTPublish.exe/startup]">
<input type="hidden" name="WT_SYSTEM_FORMAT" value="startTemplate">
<input type="hidden" name="WT_SYSTEM_BASEDIR" value="basedir">
<input type="hidden" name="WT_SYSTEM_STYLE" value="mystyle">
<input type="hidden" name="WT_SYSTEM_LANGUAGE" value="mylanguage">
additional text and data
</FORM>

Unlike in the preceding method, the base directory and start template are specified in
hidden input fields. You should use WT_SYSTEM_BASEDIR and WT_SYSTEM_FORMAT as the
names of the input fields.

Starting at a cluster member

To start a cluster session from a form you must use the GET method. See also section
“Cluster concept” on page 142:

<form method="get"
 action="http[s]://machine/cgiPath/WTCluster.exe/cluster-id">
 [<input type=“hidden“ name=“WT_SYSTEM_FORMAT“ VALUE="startTemplate">]
additional text and data
</form>

4.2.1.3 Starting with WT_REMOTE

A client program starts a session for exclusive use via the interface WT_REMOTE using the
method START_SESSION.

 Client programming is described in detail in the WebTransactions manual “Client
APIs for WebTransactions” .

Starting a WebTransactions dialog application Execution of a WebTransactions application

98 WebTransactions Concepts and Functions

4.2.2 Templates at start time

At start time, you can either use the supplied start templates or, alternatively, you may
generate application-specific start templates. This section describes the supplied start
templates and indicates the ways in which you can branch from the individual start
templates.

4.2.2.1 General start template wtstart.htm

Special start templates are supplied to help you test your WebTransactions application. You
can use these start templates to set parameters for the host applications and start any
number of host applications in parallel.

The start template wtstart.htm supplied by WebTransactions allows you to

– establish a connection to any host application

– establish several simultaneous connections to several host applications

On this HTML page, you define the global parameters for your WebTransactions session.
When opening a connection, the system branches to the connection-specific start page in
which you enter the parameters specific to this connection.

 In a productive application, you will generally create your own start template which
automatically determines the most important information for your WebTransactions
application and requires minimum user input. WebLab provides a WTBean to help
you during the creation of a start template.

If you are working with several simultaneous connections, you should refer to the examples
on integrating the application (see also section “Interaction between start templates when
integrating the application” on page 103) for information on how to proceed.

 The UTMV4 host adapter does not support the simultaneous operation of two
connections. However, you can establish parallel connections to openUTM applica-
tions via the OSD host adapter.

When creating a base directory, wtstart.htm is stored in the subdirectory
config\forms. This start template can be specified at the beginning of a WebTransactions
session.

i

i

Execution of a WebTransactions application Starting a WebTransactions dialog application

WebTransactions Concepts and Functions 99

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

The diagram below shows the HTML interface of wtstart.htm:

Starting a WebTransactions dialog application Execution of a WebTransactions application

100 WebTransactions Concepts and Functions

All the system parameters are attributes of the system object and are described in section
“Global system object WT_SYSTEM - session control and long-term data storage” on
page 70.

PROTOCOL
Specify the type of host application or communication module.

private WT_SYSTEM
 The option of a connection-specific system object under the communication object

is activated by default.

name of new communication object
 You can assign a name for each communication object and access the communi-

cation object in the template under this name. The name you specify here must
match the name of the communication object in the templates used.

connect webService
Use this button if you want to start a Web frontend for a Web service. The template
wtconnectWebService.htm is displayed in the browser. Here you can select the
templates generated for Web services individually.

create new communication
Use this button to create a new communication object. The protocol-specific start
template (wtstart*.htm) is displayed in the browser to allow you to enter the
parameters for the connection to the host. The * character in wtstart*.htm stands
for the corresponding host adapter. If you then click on the goto main menu button
in the wtstart*.htm template, wtstart.htm is displayed again, thus allowing you
to create a further communication object and, consequently, a further parallel
connection.

If you have already started a connection and interrupt this connection with the
Suspend button, for instance, a slightly modified wtstart.htm is output. In this
case also, you can create additional communication objects.

Execution of a WebTransactions application Starting a WebTransactions dialog application

WebTransactions Concepts and Functions 101

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

select HANDLE
 From the list displayed, select the name of a communication object (HANDLE) for

an existing open connection to a host application.

continue communication
 Continue the connection selected under select HANDLE.

wtstart.htm branches to a connection-specific start template if a connection is established
or the dialog with a connection is continued.

Starting a WebTransactions dialog application Execution of a WebTransactions application

102 WebTransactions Concepts and Functions

4.2.2.2 Connection-specific start templates

The following connection-specific start templates exist:

– wtstartHTTP.htm

– wtstartUTMV4.htm

– wtstartOSD.htm

– wtstartMVS.htm

– wtconnectOpenSEAS.htm

– wtconnectWebServices.htm

When creating a base directory, these start templates are stored in the subdirectory
config\forms. These specific start templates instigate dialogs with the host application.
They are described in the manuals for the relevant communication modules. wtstart.htm
branches to one of these start templates when a connection is established or dialog with a
connection is resumed.

Execution of a WebTransactions application Starting a WebTransactions dialog application

WebTransactions Concepts and Functions 103

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

4.2.2.3 Interaction between start templates when integrating the application

When you call a WebTransactions application on the start page, a WebTransactions session
is started (see section “Starting a WebTransactions dialog application” on page 92). The
following diagram illustrates the various branch options available in the individual start
templates:

Figure 7: Branch options in the start templates

resetData

wtstart

wtstartUTMV4

wtstartOSD

Generated template

Generated template1

Communication object

create continue communication

Open

Send
Receive

DUE Refresh/Reset

Close

go to main menu

enter dialog

DisconnectSuspend

Starting a WebTransactions dialog application Execution of a WebTransactions application

104 WebTransactions Concepts and Functions

wtstart.htm creates a communication object WT_HOST.Comobj for various host applica-
tions. This is achieved by selecting the create button, which initiates the constructor call of
the communication object new wt_Communication (see WebTransactions manual
“Template Language”).

If you return to the general start template, you can use the continue communication
button to continue communication on other existing connections. wt_System.FORMAT is then
set to wtstart*.htm, and the connection-specific start template is output.

In the connection-specific start templates (see manuals for the individual host adapters),
you can return to the general start template using go to main menu. You must select this
option if you wish to establish a connection to a further host application. You can switch to
existing connections directly by means of go to <commobj>.

Furthermore, it is possible to initiate actions with the connection (open the connection, send
data, receive data...). In particular, you can begin a dialog with the connection. With this
option, you use a template of the corresponding host application. If you are working with
WebTransactions generated templates, these pages have a button bar containing the key
assignments.

In addition to the normal key assignments, the following buttons are available in the button
bar:

– Reset for resetting the input fields. In this case, no contact is made with the host appli-
cation.

– Refresh to refresh the screen display.

– Disconnect to terminate the connection to the host application.

– Suspend to interrupt the dialog with a host application (only if the attribute
WT_SYSTEM.DIALOG_CONTROL_FORMAT is present).

Execution of a WebTransactions application Data exchange during the session

WebTransactions Concepts and Functions 105

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

4.3 Data exchange during the session

After a WebTransactions application is started, you make various elements for input,
selection options, etc. available to the user in the browser. The values of your responses
must be returned by the browser to the WebTransactions session. HTML offers two options
for this purpose: the FORM tag and the HTML link.

4.3.1 FORM tag

The HTML tags <FORM> and </FORM> enclose an area which is used for the input data.
Within this area, the values of dialog elements (input fields, pick lists, etc.) are combined
and sent from the browser to a program. In WebTransactions, this option is used by the start
page, for example. In the subsequent dialog cycles, the WTML tags <wtDataform> and
</wtDataform> are used for this area in the template (see the WebTransactions manual
“Template Language”). You no longer need to specify the URL of the processing CGI
program. WebTransactions generates a FORM tag which addresses the current
WebTransactions session from a wtDataform tag on the generated page.

Example

<wtDataform>
Enter your address:
Street: <input type=“text“ name=“STREET“>

City: <input type=“text“ name=“CITY“>

</wtDataform>

<wtOnReceiveScript>
hostapp.STREET.VALUE=WT_POSTED.STREET;
hostapp.CITY.VALUE=WT_POSTED.CITY;

</wtOnReceiveScript>

Data exchange during the session Execution of a WebTransactions application

106 WebTransactions Concepts and Functions

4.3.2 HTML link

If you wish to access WebTransactions via a link, you must specify the URL of the program
to be called yourself, and attach the user input to the URL in the form of name/value pairs.

The HREF attribute of the global system object contains the URL of the WebTransactions
CGI program WTPublish.exe. All name/value pairs required by WebTransactions to
identify the current session are already attached to this URL.

All that remains is to add the name/value pairs corresponding to the user input to the URL.
In other words, a link is defined as follows:

Link

WT_SYSTEM.HREF
This system object attribute contains the URL of the CGI program WTPublish.exe
and, in encrypted form, the hidden fields on the current page (BASEDIR, FORMAT,
FORMAT_STATE, LANGUAGE, SESSION, SIGNATURE,
TIMEOUT_APPLICATION).

name/value
 These name/value pairs are used to define the additional values sent when the link

is activated. If the link is activated by the user, these pairs are available in the posted
object. They must not contain any blanks or the characters & and =. The following
characters should be used instead:

Links enable you to jump to other processing steps in a WebTransactions application (e.g.
return to main menu) and are often used to improve appearance.

It is also possible to offer the user a selection of links which can be activated, e.g. instead
of a drop-down list.

Characters not permitted Replace with

% %25

& %26

= %3D

+ %2B

Blanks %20

/ %2F

: %3A

Execution of a WebTransactions application Data exchange during the session

WebTransactions Concepts and Functions 107

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

Example

A selection of links; the posted data is evaluated in the receive tag/script:

 Continue

 Cancel

<wtOnReceiveScript>
<--
WT_HOST.comobj.Command.Value = WT_POSTED.Command;
!-->
</wtOnReceiveScript>

The HTML link is independent of the FORM tag and Dataform tag. Nevertheless, it can be
entered within a Dataform tag.

Dialog WebTransactions - host application Execution of a WebTransactions application

108 WebTransactions Concepts and Functions

4.4 Dialog between WebTransactions and the host application

Dialog control, i.e. the sequence of HTML pages in the browser corresponds to the format
sequence at the host application in the case of an automatic 1:1 conversion (passive
dialog). However, it is possible to modify the template and thus intervene actively in the
dialog (active dialog).

You also have the option of verifying the sequence of the HTML pages issued and returned
by the browser (synchronised dialog) or not (non-synchronised dialog).

4.4.1 Passive dialog

With the simplest form of dialog control, the host application is entirely responsible for deter-
mining the sequence of events. The resulting dialog sequence is the same as with terminal
operation in which WebTransactions transfers the data for browser output. Each dialog
cycle comprises the following actions:

● WebTransactions creates an HTML page from the current template. The host appli-
cation form is converted to an HTML form.

● WebTransactions buffers the Receive tags/scripts for evaluation at a later stage.

● The HTTP server reads the HTML page and sends it to the browser.

● WebTransactions waits for data from the browser.

● The browser sends its data to the CGI program WTPublish.exe.

● WebTransactions the executes the Receive scripts. In the process, posted data (i.e.
data sent by the browser) is transferred to the interface to the host application, and then
forwarded to the host application. The next data record is received from the host appli-
cation by setting the host objects and the send and receive methods.

● The next template depends on the form received. This is achieved using the receive
method. From the system object attribute, WebTransactions determines the name of the
form received from the host and specifies the corresponding template as the next
template. The dialog cycle then begins again.

During a passive dialog, the steps described above are executed until the session is termi-
nated in the template.This passive dialog control is already implemented in full and is ready
for use when you configure WebTransactions for a particular host application (see section
“Possible applications” on page 23). All automatic conversions can only implement a
passive dialog. For active dialogs, you must intervene in the dialog sequence, i.e. in the
templates.

Execution of a WebTransactions application Dialog WebTransactions - host application

WebTransactions Concepts and Functions 109

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

4.4.2 Active dialog

Dialog control need not necessarily follow the format sequence of the host application. It is
also possible to actively control the dialog using the template.

For instance, you can combine several host formats in an HTML page, thereby breaking the
rule of one host format to one template. You then continue to communicate with the host
application in a template until you have gathered all the data you wish to display on the
HTML page.

An example of this chaining process is the option of scrolling up and down your screen (see
the WebTransactions manual “Template Language” and the chapter “WTML tags”, section
“DO UNTIL loop”). For instance, all the fields of a scrollable form are loaded before an
HTML page is sent to the browser. Thus, at the end of one host dialog step, a follow-up step
is automatically started without concluding the WebTransactions dialog cycle with browser
output.

However, you can also actively determine the next template to be read by calling the
embedded function setNextPage(). At the beginning of the next dialog cycle,
WebTransactions uses the template specified.

This technique is used, for instance, if you wish to present a host format in several pages
on the browser. It could also be used when communicating with several host applications if
the end user wishes to interact with each host application.

A further example of a case where a dialog cycle need not involve contact with the host
application or the browser is the option of selecting between different styles or languages.
The data already received by the host in the previous step is presented again.

The interface offers buttons for switching between variants. Another template is thus
evaluated for the HTML generation. This switching between templates is programmed by
means of a Receive tag/script which assigns the appropriate value to the STYLE or
LANGUAGE attribute of the system object. The FORMAT attribute in the system object
remains unchanged. WebTransactions starts a new dialog cycle without contacting the host
application.

In an extreme case, it is possible to program an application with WebTransactions without
a host application. The dynamic data entered by the user on the HTML page could also be
saved to a file, and interpreted as a catalog of orders for example.

Dialog WebTransactions - browser Execution of a WebTransactions application

110 WebTransactions Concepts and Functions

4.5 Dialog between WebTransactions and the browser

When connecting host applications to the Web, the user interfaces of the host applications
are used. From the host application’s viewpoint, WebTransactions behaves in the same way
as a terminal. It must therefore return forms received from the host application completed
accordingly. To ensure that the logical states of the host application (e.g. open transactions
of a database or transaction monitor) are not violated, the sequence of received and sent
forms must be strictly observed.

In contrast, browsers are permitted to redisplay older HTML pages (History function) and
resend the forms they contain. To avoid problems with the host application, WebTransac-
tions can check whether the data received by the browser originated from the last HTML
page created or whether an obsolete form was sent. WebTransactions then outputs an error
message together with the last HTML page created. The dialog is thus resynchronized with
the browser. This synchronized dialog is the most frequent form and is for instance used by
all generated templates and all templates created by the Capture mechanism.

However, there are cases whether this rigid dialog represents an unnecessary restriction.
For instance, it should be possible at any time to engage in a self-contained intermediate
dialog with the host application or to perform a particular process without accessing the host
application. To cater for this, WebTransactions also offers the option of the non-synchro-
nized dialog, in which the page sent by the browser is not checked for relevance.

4.5.1 Synchronized dialog

In a synchronized dialog with the browser, WebTransactions ensures that only input from
the last generated HTML page is processed. Processing takes place in dialog cycles which
comprise the following steps:

– creation of an HTML page from a template

– user input at the browser

– processing of input (actions or statements in WTML tags or WTScripts of the template
on Receive)

These dialog cycles are arranged in a defined sequence. You can view old output, for
instance, and obtain information from the history (a feature that represents an extension to
dialog control compared to the terminal). However, if you attempt to return one of these
HTML pages, an error message is issued and the current page is output again.

There are two options for transferring user input from the browser to a WebTransactions
session:

– as data of an HTML form, or

– in QUERY_STRING within the URL of a link.

Execution of a WebTransactions application Dialog WebTransactions - browser

WebTransactions Concepts and Functions 111

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

In the case of synchronized dialog, use the DataForm tag without the AsyncPage
parameter (see WebTransactions manual “Template Language”) or a link with the HREF
attribute of the system object (see section “Starting by input of the URL” on page 94). The
table below shows the result of the generation process:

WebTransactions counts the dialog cycles with the browser within a WebTransactions
session. The current value is provided in the FORMAT_STATE attribute of the system object
or in a name/value pair within the HREF attribute. It is also generated as a hidden field in the
HTML page during the conversion of a DataForm tag.

If WebTransactions is then addressed by such a form or link, a value for
WT_SYSTEM_FORMAT_STATE is also returned. WebTransactions can compare this with the
current counter for the dialog cycles and, if necessary, respond with an error message. If
the values match, WebTransactions executes the OnReceive tags/scripts. The next dialog
cycle then begins by reading the template specified in the FORMAT attribute.

4.5.2 Non-synchronized dialog

Open transactions and other limited dialogs prohibit free navigation in the dialog interface
of a host application. However, situations often arise in which it is possible to abandon a
rigid dialog without changing the logical state of the host application and without causing
damage. For instance, you can include a button on an HTML page for displaying help infor-
mation from the active host application in a separate window. This requires a self-contained
intermediate dialog. Alternatively, you may wish to periodically ask the host adapter OSD
whether asynchronous messages or print data has arrived on the active connection without
having to send the current page from the browser each time. To do this, you can use a non-
synchronized dialog which does not check that the interaction sequence is adhered to.

Template HTML page

<wtDataForm> <form method=“post“ action=...>
<input type=“hidden“
 name=“WT_SYSTEM_FORMAT_STATE“
 value = ...> ...

...

<A HREF=“/cgi-bin/WTPublish.exe
?...&WT_SYSTEM_FORMAT_STATE=...">
...

Dialog WebTransactions - browser Execution of a WebTransactions application

112 WebTransactions Concepts and Functions

In the case of non-synchronized dialog, you use a link with the system object attribute
HREF_ASYNC or the DataForm tag with the parameter AsyncPage.The following table shows
the result of generation:

The HREF_ASYNC attribute contains the name/value pair
WT_SYSTEM_FORMAT_STATE=IGNORE. During the conversion of a DataForm tag with the
asyncPage parameter, the value IGNORE is stored in the hidden field
WT_SYSTEM_FORMAT_STATE, and the specification for asyncPage is converted to a hidden
field WT_ASYNC_PAGE.

If WebTransactions is then addressed by such an HTML form or link, the value IGNORE
transferred for WT_SYSTEM_FORMAT_STATE indicates that the sequence is not to be
checked. WebTransactions is to respond to the request outside the rigid dialog. The
template that is to process this request is determined by the value transferred for
WT_ASYNC_PAGE.

This template should be designed such that it can be executed at any time. In principle, the
template allows for communication with the host application, but this option should be
exercised with great caution in view of synchronized access attempts. OnReceive scripts
have no effect in these templates, as they require postprocessing within a synchronized
dialog cycle.

The link with WT_SYSTEM_FORMAT_STATE=IGNORE with no entry for WT_ASYNC_PAGE repre-
sents a special case. In this case, the last synchronized page is output again. Example 2
shows how this function is used.

Template HTML page

<A HREF="##WT_SYSTEM.HREF_ASYNC#
&WT_ASYNC_PAGE=asPage">
...

<A HREF="/cgi-bin/WTPublish.exe
?...&
WT_SYSTEM_FORMAT_STATE=IGNORE
&WT_ASYNC_PAGE=asPage">
...

...

<A HREF="/cgi-bin/WTPublish.exe
?...&
WT_SYSTEM_FORMAT_STATE=IGNORE">
...

<wtDataForm asyncPage="asPage"> <form method=“post“ action=...>
<input type=“hidden“
 name=“WT_SYSTEM_FORMAT_STATE“
 value=“IGNORE“> ...
<input type=“hidden“
 name=“WT_ASYNC_PAGE“
value=“asPage“> ...

Execution of a WebTransactions application Dialog WebTransactions - browser

WebTransactions Concepts and Functions 113

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

Example 1: Requesting help in a separate window

A host application offers an online help text for each input field. For this purpose, a question
mark is inserted in the entry field and the forms are sent. This opens the first help page.
Each help page comprises 23 output lines. The 24th line contains a command field for
scrolling up and down (+ one page forward, - one page back) and for exiting the help
system (QUIT). If further pages are available, the command field is preset to “+”; this
changes to “-” as soon as you reach the end of the text. When you exit Help using the QUIT
command, the host application returns to the original page.

Each HTML page is to be provided with a Help button. When this button is pressed, help
information on the field in which the cursor is positioned is to be output in a separate
window. The page itself is not to be confirmed.

To achieve this, enter the following lines in your template in an HTML form:

<INPUT TYPE="BUTTON" NAME="help" VALUE="Help"
onClick="window.open('##WT_SYSTEM.HREF_ASYNC#'+
'&WT_ASYNC_PAGE=HELP&CURSOR='+
document.forms[0].CURSOR.value,
'Help',
'scrollbars=yes toolbar=0 location=0'+
'status=0 height=400 width=400'+
'left=0 top=0 resizable=1')">

This generates a button which opens a new window displaying the appropriate help infor-
mation. This is generated by means of non-synchronized access to WebTransactions. The
HELP template creates the page (WT_ASYNC_PAGE=HELP). The template is informed of the
name of the current field via the name/value pair CURSOR=... (it is assumed that the name
of the current field is contained in document.forms[0].CURSOR.value). The template
Help.htm is given below:

<HTML>
<HEAD><TITLE>Help</TITLE></HEAD>
<BODY>
<wtonCreateScript>
<!--

WT_HOST.STD[WT_POSTED.CURSOR].VALUE='?';
 first = true;
 while (first || WT_HOST.STD.E_24_001_04.VALUE != "-")
 {
 WT_HOST.STD.send();
 WT_HOST.STD.receive();
 for (i=1;i<24;i++)

Action 1
Action 2
Action 3

Action 4

Action 5

Dialog WebTransactions - browser Execution of a WebTransactions application

114 WebTransactions Concepts and Functions

The template HELP.htm retrieves the help information from the host application, and
navigates back to the original position. The synchronized dialog can then be resumed.

Details of the actions performed by HELP.htm are given below:

Firstly, the field containing the cursor in the HTML page is set to ‘?’ in the form (action 1).
To ensure that the loop is run through at least once, first is set to true (action 2). Using
the method calls send/receive (action 4), the first and all subsequent help pages are
received in the loop (action 3). For each help page received, the first 23 lines of information
are written to the output stream (action 5). The QUIT command returns you to the original
page (action 6). A button is provided at the bottom of the page for closing the help window
(action 7).

Example 2: Loading/unloading a frame during a session

Within a WebTransactions session, some HTML pages are to run in a frame. Buttons for
operating the host application are to be displayed in a second control frame. However, it is
not necessary for the frame set to be present for the entire session, rather only for certain
HTML pages. When loading pages into the browser, therefore, they must be checked to
establish whether or not they are to run in the dialog frame of the frame set. Some pages
must load the frame set if they detect that it is not present; others must unload it if it is
present. This is implemented as follows:

● Enter the following line at the beginning of all templates that are to run in the frame:

<wtInclude name = frameOn>

● The template frameOn.htm contains the following:

<SCRIPT>
if(! parent.ctr)
 self.location.href ="##WT_SYSTEM.HREF_ASYNC#&WT_ASYNC_PAGE=frameset";

 document.writeln(WT_HOST.STD['E_'+i+'_001_80'].HTMLVALUE,
'
');
 first = false;
 }

 for (i=1;i<24;i++)
 WT_HOST.STD.E_24_001_04.VALUE ="QUIT";
 WT_HOST.STD.send();
 WT_HOST.STD.receive();
//-->
</wtonCreateScript>
<FORM>
<input type="BUTTON" name="CLOSE" value="Close"
onClick="window.close()“>
</FORM>
</BODY>
</HTML>

Action 6

Action 7

Execution of a WebTransactions application Dialog WebTransactions - browser

WebTransactions Concepts and Functions 115

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

</SCRIPT>

The client-side Javascript checks whether or not the frame set is already loaded
(existence of the object parent.ctr for the control frame). If so, the page is displayed
in the corresponding frame as normal. If the frame set is not present, it is loaded at the
current position. This takes place by means of non-synchronized access to the
WebTransactions session with the template frameset.htm.

● frameset.htm contains the following:

<HTML>
 <FRAMESET ROWS="20%,80%" BORDER=1>
 <FRAME NAME="ctr" SRC="##WT_SYSTEM.HREF_ASYNC#&WT_ASYNC_PAGE=control">
 <FRAME NAME="dlg" SRC="##WT_SYSTEM.HREF_ASYNC#">
 </FRAMESET>
</HTML>

The frame set contains two frames. In the first frame ctr, for instance, a tool bar is
loaded by means of non-synchronized access to WebTransactions. However, this could
also be defined as a static HTML page and loaded without WebTransactions.

The second frame also loaded by means of non-synchronized access to
WebTransactions. In this case, however, no template is specified. WebTransactions
therefore resends the last synchronized output. The current page is thus loaded into the
frame dlg.

● Enter the following line at the beginning of all templates that are not to run in the frame:

<wtInclude name = frameOff>

● The template frameOff.htm contains the following:

<SCRIPT>
if(parent.ctr)
 parent.location.href = "##WT_SYSTEM.HREF_ASYNC#";
</SCRIPT>

The client-side Javascript checks whether or not the frame set is already loaded
(existence of the object parent.ctr for the control frame). If not, the page is displayed
as normal. If the frame set is present, the current page is loaded in its position
(parent.location) and the frame set is unloaded. WebTransactions outputs the
current page again by means of non-synchronized access without specifying
WT_ASYNC_PAGE.

 Depending on the browser settings, this procedure may lead to problems when
certain URLs are loaded from the browser cache. To force reloading from the
server, you can release the cache or include an additional name/value pair with
values modified step-by-step in the URL.

i

Terminating a session Execution of a WebTransactions application

116 WebTransactions Concepts and Functions

4.6 Terminating a session

A session can be terminated explicitly, by a timeout or via WT_REMOTE.

With WebLab it is possible to terminate any session started with WebLab explicitly.

4.6.1 Terminating a session explicitly

The user explicitly terminates a session in the browser. This means that you must give the
user the option of terminating the session, for example with an Exit button as in the
generated templates.

Figure 8: Explicit termination of a session

Web browser WebTransactionsHTTP
Server

The transmitted data is
processed and the
Exit template is called

Host application

Communication
step as seen by the

host application

...

Template generates an
HTML page with an
Exit button

The Exit button
is clicked in the

In the Exit template, the
connection to the host can
be terminated and
resources can be released. The
last page is generated.

browser

Execution of a WebTransactions application Terminating a session

WebTransactions Concepts and Functions 117

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

The last generated HTML page can no longer establish communications with the
WebTransactions session, as this has already been terminated when the page appears in
the browser. This means that wtDataForm-Tags or links with the URL
WT_SYSTEM.HREF[_ASYNC] should not be used in the corresponding template. onReceive
scripts in the last template are ignored and therefore serve no purpose.

Before termination, WebTransactions closes all open connections to host applications. If
actions other than just closing are required for these connections, this must be explicitly
programmed in the last template.

A session is terminated explicitly by calling the exitSession() function.

This statement creates the system attribute EXIT_SESSION.

If the EXIT_SESSION system attribute exists and the PREVENT_EXIT_SESSION system
attribute does not exist, WebTransactions ends the session after outputting the next page,
i.e.:

● If the action is performed when onCreate is executed, a page is created with the current
template, sent to the browser, and the session is terminated.

● If the action is performed when onReceive is executed, a further template is read after
the statement is processed, and a page is created and sent to the browser. Only then
is the session terminated.

Example

HTML-Template
....
<Input Type="SUBMIT" Name="Exit" Value="End">

<wtRem Terminate communication with host>
<wtonReceiveScript>
if (wt_Posted.Exit == "Exit")
{
WT_HOST.std.close();
exitSession();
setNextPage("final");
}
else
{
WT_HOST.std.send();
WT_HOST.std.receive();
}
</wtonReceiveScript>

In this example, an option for immediate termination of the WebTransactions session is to
be provided in generated templates.

Terminating a session Execution of a WebTransactions application

118 WebTransactions Concepts and Functions

To achieve this, you must integrate a corresponding input element in the page (in this case,
a button labeled Exit). In an OnReceiveScript, a request will now be issued to establish
whether or not this button has been activated. If not (else branch), the dialog with the host
application is continued as normal (method calls send()/receive()). However, if you
wish to terminate the session, the following steps are performed:

– the connection to the host application is closed (method call close()),

– termination of the WebTransactions session is requested (by calling the function
exitSession()), and

– the system switches to the final template final.htm.

This template can contain a concluding text, and any links or forms required to start new
WebTransactions sessions (see section “Starting a WebTransactions dialog application” on
page 92). The template should not contain any wtDataForm tags or links with the URL
wt_System.HREF, as these refer to a session that has already been terminated and will
therefore result in an error message.

Predefined end template

With WebTransactions the general end template wtend.htm is supplied. wtend.htm can be
entered for simple 01:01 connections, e.g. for the editing of disconnect, to obtain a
completed connection.

When creating a base directory (see section “Creating a base directory” on page 160), a
wtend.htm link is generated. If you edit and save wtend.htm in WebLab, the link is canceled
and the modified file is saved in the base directory.

Execution of a WebTransactions application Terminating a session

WebTransactions Concepts and Functions 119

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

4.6.2 Terminating a session by means of a timeout

The HTTP connection between the Web server and the browser is shut down each time an
HTML page is output. While a page is displayed at the browser, there is a logical connection
but no physical connection between the browser and WebTransactions. If you exit the host
application by shutting down the browser, for instance, the proxy process is not informed of
this. To ensure that sessions exited in this way are not left waiting unnecessarily,
WebTransactions supports a timeout mechanism.

Figure 9: Terminating a session by means of a timeout

Web browser WebTransactionsHTTP
server

Host applications

Communication
step as seen by the

host application

...

Template generates an
 HTML page

WebTransactions receives
no further request from the
browser. The session is
terminated after a defined
time or a timeout template

is called.

Terminating a session Execution of a WebTransactions application

120 WebTransactions Concepts and Functions

If no request is issued to WebTransactions within the timeout period, the session is termi-
nated. Before termination, WebTransactions closes all open connections to host applica-
tions. If further actions other than closure are required for these connections, these must be
programmed explicitly in a special timeout template. The name of this template is stored in
the TIMEOUT_FORMAT attribute of the system object. WebTransactions executes this
template as its final action before terminating the session.

 You should note that a timeout template must not contain any output to the browser
since it is only called when the connection to the browser no longer exists.

The number of seconds to be spent by WebTransactions waiting for the next request from
the browser is specified in the TIMEOUT_USER attribute of the system object. For example,
the following statement sets a timeout period of 5 minutes:

<wtOn..Script>
 WT_SYSTEM.TIMEOUT_USER = "300";
</wtOn..Script>

If the TIMEOUT_USER attribute is not set explicitly in a template, WebTransactions assumes
a timeout period of 10 minutes.

Example

In this TIMEOUT template not only an existing connection is terminated, but also the user
is logged off with a special command before termination.

<wtOnCreateScript>
<!--

WT_HOST.osd.send();
WT_HOST.osd.receive();
WT_HOST.osd.E_001_001.VALUE="LOGOFF SYSTEM_OUTPUT=*TAPE_OUTPUT";
WT_HOST.osd.send();
WT_HOST.osd.receive();
WT_HOST.osd.close();

//-->
</wtOnCreateScript>

4.6.3 Terminating via WT_REMOTE

A client program terminates a session via the interface WT_REMOTE using the method
EXIT_SESSION.

i

Execution of a WebTransactions application Diagnoses in a WebTransactions application

WebTransactions Concepts and Functions 121

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

4.7 Diagnoses in a WebTransactions application

A variety of trace functions can be used for diagnostic purposes in a WebTransactions
application. It is also possible to record sessions.

Single step tracking is another method of diagnosis available in WebLab, see also section
“Tracking execution via a template or a template area” on page 193.

4.7.1 Trace functions

You can set different traces for diagnostic purposes:

– communication traces for WebLab and WTEdit

– a session trace for WebTransactions

4.7.1.1 Communication traces

To permit the rapid identification of communication problems between WebLab and WTEdit
you can activate two traces in WebLab using Options/Preferences/Diagnosis:

– the WebLab trace

– the WTEdit race

Both traces log communication between WebLab and WTEdit:

– the WebLab trace logs WebLab communication locally in the specified file

– the WTEdit trace logs WTEdit communication at the WebTransactions server in the
specified file

Both files are required for rapid diagnosis. They provide a complete overview of communi-
cations.

4.7.1.2 WebTransactions trace

The WebTransactions trace logs the entire session. The trace file contains information from
the following sources:

– internal function calls

– host adapter function calls

– user exit calls (provided that these write trace entries)

– the global WTScript function writeToTrace() (for any user-defined trace entries)

Diagnoses in a WebTransactions application Execution of a WebTransactions application

122 WebTransactions Concepts and Functions

Activating tracing in WebLab

In WebLab there are two ways of activating or deactivating the WebTransactions trace:

– by choosing the commands Options/Activate Trace or Deactivate Trace

– by double-clicking on the icon in the status bar

 This setting remains active even after the session has been terminated. You must
explicitly deactivate the trace.

If trace mode is active, WebTransactions creates a file in the base directory under
tmp/session_id/Trace. As long as the session is active, you can find out the session ID with
Option/Show Information.

You can view the trace file with the commands:

– File/Open

– Administration/Application

Activating tracing for an application

You activate the trace function for a WebTransactions application by starting
WebTransactions via an HTML start page which contains a Form tag for the method POST.
The form must contain an input element with the name WT_TRACE for which the value Trace
is set. This can be a hidden input field as presented below. You can also use input fields of
a different type and, for example, display a checkbox to make it possible to select whether
or not the trace function is to be activated.

<form method=“post“ action= "/cgi-prefix/WTPublish.exe/basedir?startTemplate">
<input type="hidden" name="WT_TRACE" value="Trace">

The WT_TRACE field must have the value Trace before you can activate the trace function. All
other values (including undefined) deactivate the trace.

Activating tracing in a template

Instead of using WT_TRACE, you can also use the global function setTraceLevel(). You can
use setTraceLevel("FULL") to activate the trace during an open session and then use
setTraceLevel("NONE") to deactivate it again.

In this way, the trace can be restricted to certain parts of the template in order to keep the
trace file small and restrict it to defined sections of the session. The function is described in
the WebTransactions manual “Template Language”.

i

Execution of a WebTransactions application Diagnoses in a WebTransactions application

WebTransactions Concepts and Functions 123

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

Defining the trace level for host adapters

For the OSD and MVS host adapters, you can not only activate or deactivate the trace but
also define the level at which tracing is to be performed. You can use the connection-
specific system object attribute TRACE_LEVEL to define what is to be logged:

– various trace levels from 0 to 3

– E: output of emulation function calls

– M: output of all host matrixes, i.e. the “raw” screen data

For more detailed information, see the WebTransactions manuals for the corresponding
host adapters.

4.7.2 Recording a session

At runtime, communications between the WebTransactions kernel and the host application
are performed via the terminal emulation that is integrated in the host adapter. By recording
the session, you log all the messages to and from the host application. You can “play back”
an emulation trace in another session. I.e. the recorded session is run again even without
a connection to the host (“offline”). In this way, you can continue to develop a
WebTransactions application without being connected to the host.

To record a session, set the system object attribute RECORD_HOST_COMMUNICATION in the
start template to “Yes”. By default, the file containing the recorded emulation trace has the
name
WEBTADUMP.LOG. However, you can define a different name by means of the system object
attribute OFFLINE_LOGFILE.

RECORD_HOST_COMMUNICATION="Yes"
OFFLINE_LOGFILE=<filename>

“Playing back” the recording

You can play back a recording without being connected to the host application by setting the
following system object attributes:

OFFLINE_COMMUNICATION="Yes"
OFFLINE_TRACEFILE="<trace filename>"

Since there are different system object attributes for the files in which you record and play
back a session, you can create a new recording and play back an existing one in one and
the same session.

Transferring a WebTransactions application Execution of a WebTransactions application

124 WebTransactions Concepts and Functions

4.8 Transferring a WebTransactions application

WebTransactions applications are usually developed and tested at a development machine.
They are then transferred to a production computer for productive use. Maintenance and
further development continue to be performed on the development machine and the version
installed on the production computer must be updated from time to time.

A wizard is available to assist you when transferring a WebTransactions application from
one machine to another. To do this, WebLab is used to pack all the files and subdirectories
below a base directory into an archive which you can transfer to another computer and then
unpack with WebLab. As a result, the base directory on the production computer is set up
in exactly the same way as on the development machine.

You can distribute WebTransactions applications to cluster members using the
Administration/Distribute Application command.

4.8.1 Unpacking an application by command

If you cannot access a WebTransactions server with WebLab then you can use the install
command provided by WTEdit.exe to unpack a WebTransactions application. This
command creates a base directory on the server at which it is executed and unpacks the
specified WebTransactions application in this base directory. You call the command as
follows:

wtedit.exe install name basedir id password wtpublish-path isapi-path cluster-path

 You must specify all the parameters.

name Name of the archive to be unpacked together with its absolute path

basedir Base directory that is to be generated together with its absolute path

id WebTransactions user identification

password Password corresponding to the user identification

wtpublish-path Alias name for the path to WTPublish.exe

isapi-path Alias name for the path to WTPublishISAPI.exe

cluster-path Alias name for the path to WTCluster.exe

i

Execution of a WebTransactions application Transferring a WebTransactions application

WebTransactions Concepts and Functions 125

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

Example

This example unpacks the file packtest.zip to the base directory osd_test. The user ID is ac13
and has no associated password. The command must be entered without line breaks.

wtedit.exe install "d:\projects\packtest.zip" "d:\basedirs\osd_test" ac13 ""
cgi-bin cgi-bin cgi-bin

Client interface WT_REMOTE Execution of a WebTransactions application

126 WebTransactions Concepts and Functions

4.9 Client interface WT_REMOTE

WT_REMOTE provides an interface for any client programs and allows WebTransactions
applications to be used for these client programs. The interface allows access not only to
the data of the underlying dialog applications, but to all the resources of the
WebTransactions session.

WT_REMOTE allows a current WebTransactions session to be accessed. This is done by
specifying the session ID when the client accesses WebTransactions. A WebTransactions
session can also be started independently by a client program. This allows both single-step
transactions and multi-step transactions:

– With a single-step transaction, a WebTransactions session is started in order to execute
a single command. The command is then executed and the session is terminated. This
is done with a single client access to WT_REMOTE.

– With a multi-step transaction, a WebTransactions session is started explicitly with the
WT_REMOTE access START_SESSION. Then a number of client accesses are carried out
with PROCESS_COMMANDS and finally the session is terminated with EXIT_SESSION.

WT_REMOTE provides the methods START_SESSION, PROCESS_COMMANDS and
EXIT_SESSION for communication with the WebTransactions application. These methods
enable clint access. START_SESSION and EXIT_SESSION are the methods used for
explicitly starting and terminating an application within a multi-step transaction.
PROCESS_COMMANDS is used to execute the actual client accesses (for both single-step and
multi-step transactions).

The PROCESS_COMMANDS method allows data to be transferred from the client program to
the WebTransactions application and vice versa. It also allows objects to be created in the
WebTransactions session and methods to be called in the WebTransactions session.

There are many ways of using the WT_REMOTE interface:

– WebTransactions sessions can use the WT_REMOTE interface via the supplied libraries in
order to communicate with each other, thus allowing distributed WebTransactions
sessions (WT.RPC).

– Using predefined classes, JAVA applets can access WebTransactions sessions and
use the services provided for their own purposes.

– You can also combine dialog applications and client programs. For example, an HTML
page can be generated with an applet in a WebTransactions dialog application, and the
applet can in turn communicate with the WebTransactions application via WT_REMOTE.

– On the basis of the open WT_REMOTE interface, you can implement your own client
programs for WebTransactions.

For a detailed description of the client interface, see the WebTransactions manual “Client
APIs for WebTransactions”.

Execution of a WebTransactions application Administering a WebTransactions application

WebTransactions Concepts and Functions 127

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

4.10 Administering a WebTransactions application

You can administer your WebTransactions application in full from the browser. To help you
do this, WebTransactions provides you with an administration program which is based on
our own security and user concepts. For more information, see section “User concept” on
page 132.

The administration program comprises the following functions:

– displaying sessions

– locking and unlocking WebTransactions; when locked, no more sessions are set up

– terminating current sessions

– displaying temporary files relating to current sessions

– cleaning up the tmp directory

Calling the administration program

You can start the administration interface either in WebLab or directly in the browser via a
separate URL.

Call in WebLab:
Select Administration/Application.

Call via URL:
Start any browser and then start the administration program using the following
URL:
http://webta-server/cgi-prefix/WTPublish.exe/server-admin,
where webta-server is the name of the host on which WebTransactions is running
and cgi-prefix is the path to this host for CGI programs.

The administration program is started and the logon window is displayed in the browser. Log
on with the ID which you have been assigned by the WebTransactions administrator in order
to administer your own WebTransactions application. You will now see the window
WebTransactions Application Administration.

Administering a WebTransactions application Execution of a WebTransactions application

128 WebTransactions Concepts and Functions

Structure of the administration interface

The Figure below presents the administration interface:

The user interface of the administration program for application management consists of
three areas:

● The status bar which displays the name of the current WebTransactions server and the
user. If you are editing more than one WebTransactions application on the
WebTransactions server, you can select the one you want to administer from a list.

● A button bar with which you can control administration. Depending on the situation on
the WebTransactions server, the following buttons may be displayed:

Refresh
Updates the contents of the page.
(The page is also automatically updated at regular intervals. The bar at the top edge
of the status bar indicates the time until the next automatic refresh: the shorter this
bar is, the shorter the time.)

Lock
Indicates that WebTransactions will permit new sessions. If you click on this button,
the label changes to UnLock and the WebTransactions application switches to
locked mode. This means that current sessions remain active but no further
sessions can be started. To unlock the WebTransactions application again, click on
the Unlock button.

Terminate all Sessions
Terminates all current sessions.

Delete all files of dead sessions
Deletes all files belonging to terminated sessions. Current sessions are not
affected.

Status bar

Button bar

Work-
space

Execution of a WebTransactions application Administering a WebTransactions application

WebTransactions Concepts and Functions 129

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
01

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
4

Remove all files not related to any session
Deletes all the files in the temporary directory which cannot be assigned to a
session. If present, such files are displayed in a list.

● The workspace in which all the sessions together with their resources and session IDs
are displayed. The following entries can be displayed in the workspace:

Dead Session

If files (e.g. trace files) are still present in the session directory when a session is termi-
nated, the session continues to be displayed as a “dead session” and it is still possible
to access the session files (via the corresponding link in the line Session Files). You
can use the Delete button to delete these files.

Active Session

In the case of active sessions, the administration interface displays the following infor-
mation:

– the operating system resource for process communication between
WebTransactions and the browser or host application (named pipes)

– the start time of the session

– the Internet address of the computer on which the browser is running (or possibly
the address of a proxy computer)

– information about the browser

– temporary session files (e.g. print files) and the trace file

You can use the Terminate button to end any of these sessions, i.e. terminate the
holder task and delete any associated temporary files.

If the user of this deleted session then sends the current HTML page from the browser,
WebTransactions issues an error message. The user must then open a new session.

If a trace file exists for the displayed session, the name of this file is output under
Session Files. You can use the corresponding link to view temporary files.

Administering a WebTransactions application Execution of a WebTransactions application

130 WebTransactions Concepts and Functions

WebTransactions Concepts and Functions 131

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

5 WebTransactions server
You can completely administer the WebTransactions server from the browser. For this,
WebTransactions provides an administration program, which is based on its own security
and user concept, see section “User concept” on page 132. The administration program is
a standalone WebTransactions application, which can be called using WebLab or directly
from the browser. The administration program itself is always executed on the
WebTransactions server.

Figure 10: Administration options

The administration program contains the following functions:

– Enter or upgrade licenses (see page 135)

– Administer the WebTransactions server, i.e. basic administration of users, pools, appli-
cations, sessions, tools, clusters (see page 139)

– Set up and manage clusters (see page 145)

Development computer

WebTransactions server

WebTransactions
application

WebLab

Administration
Browser

User concept WebTransactions server

132 WebTransactions Concepts and Functions

5.1 User concept

The administration of WebTransactions is based on a special user concept which is imple-
mented on the basis of the access controls on the WebTransactions server and on
WebTransactions applications.

WebTransactions recognizes two types of user: admin and other users.

admin corresponds to the administrator under Windows or the superuser in Unix systems,
and is authorized to do everything in the WebTransactions environment on the
WebTransactions server. The user admin is the WebTransactions server administrator and
is set up without a password during the installation of WebTransactions. This user holds all
privileges and cannot be deleted.

 Remember to give the user admin a secure password as soon as installation is
completed. You can change this password at any time.

The other users are set up by the admin user and have those rights and access options
granted to them by the admin user. A user can, for example, take on a role which corre-
sponds to their tasks:

– The application administrators may manage WebTransactions applications. They can
monitor sessions, evaluate trace files, lock or release WebTransactions applications, or
terminate sessions.

– The application developers may use WebLab to create new WebTransactions applica-
tions and develop existing applications.

Thus, the individual application programmers do not need to worry about the settings of the
operating system or the Web server and can assume that their WebTransactions applica-
tions on the server are protected from unauthorized access.

The management functions are dependent on the role fulfilled by the user:

– The WebTransactions administrator can manage the WebTransactions server as an
individual server and as part of a cluster. This form of administration of a
WebTransactions server is described in the following sections.

– Each application programmer can manage their WebTransactions application in the
same way as before using the new administration program. In WebLab, you use the
command Administration/Application, to call the administration program.This form of
administration is described in the relevant product-specific manuals.

i

WebTransactions server Starting the administration program

WebTransactions Concepts and Functions 133

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

5.2 Starting the administration program

You start the administration program either using WebLab or directly in the browser via a
special URL.

Call in WebLab:
Select the command Administration/Server.

Call via URL:
Start the browser of your choice, and start the administration program with the
following URL:
http://webta-server/cgi-prefix/WTPublish.exe/server-admin. webta-server is
the name of the computer on which WebTransactions, cgi-prefix is the path on this
computer for CGI programs.

This starts the administration program and displays the login window in the browser.

When you initially start the WebTransactions administration program, you should first set up
a password for the user admin. Clicking on the Change button allows you to either set a
password or change an existing one.

Every other time you start the administration program, the view will depend on the ID under
which you log in:

admin
You are the server administrator of WebTransactions

other user
You have the privileges granted by admin, see also section “Administering a
WebTransactions application” on page 127.

Starting the administration program WebTransactions server

134 WebTransactions Concepts and Functions

After you have logged in as admin, the first window of the administration program will be
displayed in the browser:

The interface of the administration program consists of

– A status bar containing information about the server to be managed, the number of
sessions and licenses

– A vertical menu on the left of the window contains the menu items Licenses, Users,
Pools, Applications, Sessions, Tools and Clusters. The actual appearance of the
menu will depend on the browser you are using and the supply unit installed.

– A working area to the right of the menu in which you carry out the actual work.

– Buttons which allow you to save or load your settings, refresh the contents of the
browser window or terminate the administration program. Any changes you make
during administration only become effective when you click on the Save button.

 All settings that you enter for the administration of the WebTransactions server and
applications are saved in ASCII format in the file called config/wtaccess in the
installation directory of WebTransactions.

Menu

Working area

Status bar

Buttons

i

WebTransactions server Entering or upgrading licenses

WebTransactions Concepts and Functions 135

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

5.3 Entering or upgrading licenses

WebTransactions offers the following license models:

– Standalone licenses

– On-demand licenses

– Cluster licenses

The following sections describe the detailed procedure for entering licenses.

The license page is displayed automatically when you log on to the administration program.

5.3.1 Standalone licenses

A server on which WebTransactions is installed is licensed for a maximum number of users
simultaneously.

Proceed as follows to enter new standalone licenses or upgrade existing licenses:

Ê Click the Register or Change Registration button on the license page.

The registration page opens

Ê To register licenses for a standalone server, select the option Single Server under
Type of license.

Ê Enter the number of licenses purchased under Number of licences.

Ê Enter your e-mail address and other parameters if required.

Entering or upgrading licenses WebTransactions server

136 WebTransactions Concepts and Functions

Ê Send the form with Request Key.

The license key will soon be sent to the specified e-mail address.

Ê Enter the number of licenses purchased and/or the valid license key sent to you by
e-mail in the Licenses and Key fields in the license page and confirm by selecting Set
followed by Save.

The licenses are activated. The new number of licenses is displayed in the status bar.

5.3.2 On-demand licenses

The number of users who are needed at any one time often reaches a temporary peak
value. Additional, economical on-demand licenses are available to help you respond to
such periods of peak load.

You can use on-demand licenses for both standalone servers and for cluster licenses.

Example

“We need 2000 extra users, but only on Mondays. Otherwise 500 is enough.”

In the past, this load profile demanded the licensing of 2000 simultaneous users if
reliable operation was to be guaranteed.

With the introduction of the new extended license model, licenses are required for only
500 simultaneous users together with 1500 less expensive on-demand licenses for
60 days of the year. 500 users can now work simultaneously at any time. As soon as
the 501st session is started, one day is deducted from the “on-demand days” and
2000 sessions can run in parallel for 24 hours.

At the end of a year, the licensed number of days is again available for the next year
without it being necessary to re-license. The year starts at the date of registration.

WebTransactions server Entering or upgrading licenses

WebTransactions Concepts and Functions 137

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

Proceed as follows to enter new on-demand licenses or upgrade existing ones:

Ê In the license page, click the Register or Change Registration button.

The registration page is opened

Ê In the registration page, specify whether you require on-demand licenses for a
standalone server (Single Server option) or for a cluster (Cluster option).

Ê Select the option On demand licences.

The Number input field for the number of on-demand lists and a Days per Year
selection list for the number of on-demand days (30, 60, 90 or 120) are now displayed.

Ê Specify the number of on-demand licenses and the number of on-demand days.

Ê Enter your e-mail address and additional parameters if necessary.

Ê Send the form with Request Key.

The license key will soon be sent to the specified e-mail address.

Entering or upgrading licenses WebTransactions server

138 WebTransactions Concepts and Functions

Ê Enter the following information in the licensing page:

Ê Confirm with Set, followed by Save.

The licenses are activated. The new number of licenses is displayed in the status bar.

In the license page
– you can check the current “used days” status at any time in the Info area,
– the date of all used on-demand licenses is logged in the License Logging field.

5.3.3 Cluster licenses

To permit the convenient, flexible set-up of WebTransactions clusters on modern hardware,
for example on blade servers, it is necessary to be able to perform license administration
independently of the servers that are currently in use. For this reason, there are cluster
licenses that only need to be entered on the cluster controller and apply to all the servers
in the cluster.

 For detailed information on entering and upgrading cluster licenses, see section
“Registering cluster licenses” on page 143.

Field Specification

Servers Number of servers for which you need licenses

Licences Number of licenses purchased

On Demand Licences Number of on-demand licenses

Days Number of on-demand days

Key Valid license key that was sent to you by e-mail

WebTransactions server Managing the WebTransactions server

WebTransactions Concepts and Functions 139

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

5.4 Managing the WebTransactions server

When you call the administration program for the first time you should first enter the number
of licenses you have. You should only have to do this once. Should you discover you do not
have enough licenses, you can purchase more and then, in the administration program,
adjust the number of licenses accordingly.

 For information on registering licenses, see section “Entering or upgrading licenses”
on page 135.

The administration program has an intuitive interface. During the development phase the
administrator will be mainly responsible for users and directories. Each application
developer can manage their own WebTransactions applications in accordance with the
settings made in the administration program. This privilege must be actively revoked by the
administrator.

Basic operation of the administration program

The following basic processing options are available for each menu item in the adminis-
tration program, e.g. Users, Pools:

 For details that go beyond the scope of this basic introduction to operation, see the
example sessions for the various host adapter variants and the detailed
WebTransactions online help system.

Create, e.g. create user

Ê Click on the required menu item in the drop-down menu.

The window corresponding to the menu item is opened with a list of existing compo-
nents, such as users or pools, together with input fields for new components.

Ê Enter the required new components in the corresponding input fields.

Ê Click Add to add the newly created component to the list.

Managing the WebTransactions server WebTransactions server

140 WebTransactions Concepts and Functions

Edit properties, e.g. edit a user’s properties

Ê Click on the required menu item in the drop-down menu.

The window corresponding to the menu item is opened with a list of existing compo-
nents.

Ê Click on the existing component that you want to edit.

The properties of this component are displayed.

Ê Select a required or superfluous component and click Add or Delete.

or

Ê Activate or deactivate options to assign or withdraw the corresponding properties.

Whenever you click on an option (checkbox), the form is sent immediately.

Delete an existing component, e.g. delete a user

Ê Click Remove to delete an existing component.

Scope

The basic operation of the administration program (see above) applies, in particular to the
following functions:

● Creating and editing users

Only the users you have set up using the administration program are permitted to
administer WebTransactions applications or work with WebLab.

● Setting up pools and editing properties

A WebTransactions pool is a directory in which you can create base directories using
WebLab. You can only set up base directories with WebLab in pools that you have set
up and declared using the administration program.

● Editing the properties of WebTransactions applications

WebTransactions applications are generally set up on the server using the WebLab
command Project/New.... The user who creates the application receives administration
and edit privileges for this application.

You call application administration directly with the Administrate button.

WebTransactions server Managing the WebTransactions server

WebTransactions Concepts and Functions 141

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

● Sessions

The distribution of the open sessions to the local base directories is displayed. Only
those base directories in which there are open sessions are displayed.

Click the Administrate button to call application administration directly. You can then
click on the base directory to edit the application’s properties. If the button or link is
missing then the base directory has not been set up for administration via the GUI. This
is the case, for example, of the administration program itself.

● Defining tools and editing their properties

● Setting up clusters and editing their properties

 See also section “Setting up a cluster” on page 145 and section “Editing a
cluster’s properties” on page 146.

Cluster concept WebTransactions server

142 WebTransactions Concepts and Functions

5.5 Cluster concept

Depending on the performance of the processor and the main memory configuration, the
WebTransactions server has a maximum number of parallel WebTransactions sessions
which, if exceeded, causes performance to drop to level which is no longer acceptable. If
you wish to enable further parallel sessions on a WebTransactions application, you must
distribute the sessions across a number of servers, This can easily be achieved using a
WebTransactions cluster.

Several integration servers can be combined to form a so-called cluster. The integration
servers do not necessarily need to be of the same type. All integration platforms supported
by WebTransactions, Windows, OSD and Unix platforms can be combined in any way you
choose. For this to be possible, WebTransactions must be installed on all the computers of
the planned cluster and the relevant host adapters for the appropriate WebTransactions
platforms must also be available. The cluster is defined and set up using the administration
program.

Figure 11: Setting up a cluster

WebTransactions
application

WebTransactions
server

WebTransactions
application

WebTransactions
server

WebTransactions
application

WebTransactions
server

WebTransactions
application

WebTransactions
server

WebTransactions
cluster controller

Process Distribute

W
ebTransactions cluster m

em
bers

Set up

cluster

Cluster
definition

WebTransactions server Cluster concept

WebTransactions Concepts and Functions 143

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

One or more of the servers in the cluster take on the role of the cluster controller. This server
stores the cluster definition. The other integration servers, also known as cluster members,
each have a copy of the master application. The master application is the one distributed
across the cluster members. Other than this, it is no different from a “normal”
WebTransactions application.

There is a wizard in the WebLab development environment which can be used to help
distribute the master application across the cluster members (Administration/Distribute
Application command). This reads the cluster definition and then copies the base directory
of the master application to the cluster member. You can use cluster licenses for joint
license administration, see also section “Registering cluster licenses” on page 143.

Procedure

Ê First, use WebLab to create a master application on the WebTransactions server.

Ê Then, use the administration program to set up a WebTransactions cluster on the
cluster controller. The cluster controller is that computer on which the cluster definition
has been stored. The URL at the start of a session on the cluster also points to this
server. The cluster controller then decides on which cluster member the
WebTransactions session is to be started.

Ê Use WebLab to distribute the master application to the cluster members using the
command Administration/Distribute Application.

5.5.1 Registering cluster licenses

Cluster licenses are valid for all the servers involved in WebTransactions clusters if these
are addressed via the licensed server that acts as cluster controller. Although
WebTransactions must be installed and applications set up on these computers, they no
longer need to be registered individually.

The number of registered servers is the maximum number of computers that may take part
in the WebTransactions cluster. Individual clusters may also contain fewer individual
computers and cluster members may occur in multiple cluster definitions.

A cluster may also include computers that are not licensed via the cluster but via individually
entered server licenses. WebTransactions automatically determines the license type to be
used when distributing the sessions.

Cluster concept WebTransactions server

144 WebTransactions Concepts and Functions

Proceed as follows to enter new cluster licenses or upgrade existing ones:

Ê Click the Register or Change Registration button on the license page

The registration page is opened

Ê Select the Cluster option under Type of license in the registration page.

The Cluster members selection list is now displayed.

Ê In the Cluster members selection list, select the number of servers that you want to
license.

Ê Enter the number of licenses purchased in the Number of licences field.

Ê Enter your e-mail address and additional parameters if necessary.

Ê Send the form with Request Key.

The license key will soon be sent to the specified e-mail address.

Ê Enter the following information in the license page:

Ê Confirm your specifications with Set, followed by Save.

The cluster is licensed.

Field Specification

Servers Number of cluster members

Licences Number of licenses purchased

Key Valid license key that was sent to you by e-mail

WebTransactions server Cluster concept

WebTransactions Concepts and Functions 145

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

The cluster controller is entered automatically and cannot be deleted.
Proceed as follows to enter the servers that are to use this cluster license:

Ê Click on Clusters in the drop-down menu.

The Licensed cluster members list is displayed.

Ê To enter a new server, enter the server name in the text box and click Add.

This function is available until the maximum number of cluster members is exhausted.

Ê To delete an individual server, click Delete.

Ê To activate the modified configuration, save it with Save

5.5.2 Setting up a cluster

 ● For information on setting up a cluster, see section “Basic operation of the
administration program” on page 139.

● For details that go beyond this introduction to basic operation, see the detailed
WebTransactions online help system.

● The administration facility that is displayed when you click the Administrate
button corresponds to application administration and is described in section
“Administering a WebTransactions application” on page 127.

Cluster concept WebTransactions server

146 WebTransactions Concepts and Functions

5.5.3 Editing a cluster’s properties

You can edit the following cluster properties:

● Define the distribution method

 If at least one cluster member is licensed via the cluster then load balancing is
automatically used as the distribution method.

In the case of session roaming (see also section “Roaming Sessions” on
page 41), load balancing is also always used as the distribution method since
each computer in the cluster is searched for the required session.

For performance reasons, load balancing does not function with HTTPS
servers. It is essential for each computer to possess an HTTP server that
permits access to WTCluster.exe and WTPublish.exe. You can operate this
HTTP server very easily in parallel with an HTTPS server and, if necessary,
restrict it to the use of WTCluster.exe and WTPublish.exe by the cluster
master.

Browser access to the cluster is not affected by this and is also possible without
restriction via HTTPS.

● Test or delete cluster members

● Add new cluster members to the cluster

 ● For information on editing cluster properties, see section “Basic operation of the
administration program” on page 139.

● For details on editing the properties of a cluster, see the detailed
WebTransactions online help system.

5.5.4 Starting a cluster session

Starting a WebTransactions application on a WebTransactions cluster should be trans-
parent for the end user. The user receives a fixed URL which can then be used to start the
session in the same way as on a standalone server.

A session on a WebTransactions cluster is started using the following link:

<a href="http://webta-server/cgi-prefix/WTCluster.exe/cluster-id?[WT_SYSTEM_FORMAT
=startTemplate¶m2....]

webta-server
Cluster controller on which WebTransactions is running

i

WebTransactions server Cluster concept

WebTransactions Concepts and Functions 147

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

cgi-prefix
Path at which the CGI programs are stored on the cluster controller

WTCluster.exe
CGI program used to control the cluster. This is stored when installing
WebTransactions in the script directory of the Web server.

cluster-id
Name of the cluster as specified in the definition.

WT_SYSTEM_FORMAT =startTemplate
Start template with which the WebTransactions application is started on the cluster
member. If no start template is specified in the URL, then WebTransactions uses
the template specified in the cluster definition.

[¶m2....]
Further optional parameters which can be sent to the WebTransactions application.

Example

In the example below, the cluster osdtest is called via its URL. No start template is
specified. The start template stored in the cluster definition is used.

http://id1windhund/cgi-bin/WTCluster.exe/osdtest

Alternatively, you can specify the start template explicitly, in this case wtstart:

http://id1windhund/cgi-bin/WTCluster.exe/osdtest?WT_SYSTEM_FORMAT=wtstart

To start a cluster session from a form you must use the GET method:

<FORM METHOD="GET"
 ACTION="http://webta-server/cgi-prefix/WTCluster.exe/cluster-id">
 [<INPUT TYPE=HIDDEN NAME=WT_SYSTEM_FORMAT VALUE="startTemplate">]
 further optional parameters
</FORM>

The CGI program WTCluster.exe on the cluster controller is responsible for load distri-
bution on the various servers. The name of the cluster is entered as a parameter.

Cluster concept WebTransactions server

148 WebTransactions Concepts and Functions

Figure 12: Access to a cluster session

WTCluster.exe checks the load on the cluster member according to the specified methods
and then returns the URL for the start of the “real” session to the browser. Further commu-
nication between WebTransactions and the browser takes place directly, or in other words,
communication no longer takes places via the cluster controller.

WebTransactions
application

WebTransactions
server

WebTransactions
application

WebTransactions
server

WebTransactions
application

WebTransactions
server

WebTransactions
cluster controller

Call
session Load query

W
ebTransactions cluster m

em
bers

Browser

WebTransactions server WebTransactions on a blade server

WebTransactions Concepts and Functions 149

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

5.6 WebTransactions on a blade server

A blade server is a complex system of independent computer systems (known individually
as server blades). A distinguishing feature of blade servers is that they use a small number
of optimized hardware components. They reduce the resources required and, as a result,
the costs of IT infrastructure. For example, they optimize computer performance for the
network and the number of CPUs per volume.

WebTransactions applications treat blade servers as independent computers. They are not
like multi-processor computers where the operating system manages the processors.
Blade servers, on the other hand, require a cluster software sitting on top of the operating
system to handle the logical applications distributed over various blades.

5.6.1 Blade server features

Blade servers have the following features:

– The process modules (the CPU or server blades) are separate from the I/O modules
(switch or LAN blades).

– The CPU blades can be individually scaled to match processor performance (e.g. they
can be scaled to match the number of users on a terminal server farm or according to
the number of client requests on a Web server farm).

– The network connections can be individually scaled to match data throughput.

– CPU blades use the energy saving processors and hard disks developed for notebook
computers.

– The compact size of CPU blades and their components ensure high levels of seal.

– Components such as the management blade and the power supply unit are separate
from the CPU module.

– CPU blades can be administered, managed and configured remotely over a network. It
is also possible to use a local console for administration, management and configu-
ration.

WebTransactions on a blade server WebTransactions server

150 WebTransactions Concepts and Functions

5.6.2 Providing WebTransactions on a blade

This scenario describes how to install and administer WebTransactions on the blade of a
blade server and how to enter a license.

This scenario applies to a situation where WebTransactions has to be permanently
available on the blade of a blade server with a wide variety of users. You can install
WebTransactions applications in this scenario just as you would on any server.

5.6.2.1 Installation on Linux

Installing and configuring the operating system

Ê Install the Linux operating system.

Ê During installation, use fixed TCP/IP addresses.

Ê Start the operating system.

Ê Once the core operating system is up and running, log on the blade.

Ê Configure the operating system where necessary (e.g. set up the user IDs, assign user
rights, etc.).

Installing and configuring the Web server

Ê If you have not already done so, install the Apache software. An Apache HTTP server
is required software for WebTransactions.

Ê Configure the Apache system where necessary. You might want to edit the default
settings in the http.conf file.

In order to be able to operate WebTransactions, you must disable the Keepalive
function in Internet Explorer because Internet Explorer does not fully support this
function together with Apache. To do this, edit the following line in the httpd.conf file:

BrowserMatch "MSIE" nokeepalive

Ê Start the Web server.

Installing Java (optional)

If you want to call Java objects via WebTransactions, proceed as follows:

Ê If you have not already done so, install a Java run environment.

WebTransactions server WebTransactions on a blade server

WebTransactions Concepts and Functions 151

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

Installing WebTransactions

Ê Transfer the compressed archive with the WebTransactions software to the Linux
computer.

Ê Log on to the computer.

Ê Install WebTransactions following the description given in the host adapter manual.

5.6.2.2 Installing in Windows

Installing and configuring operating system and Web server

Ê Install the Windows operating system.

Ê If you have not already done so, install the Microsoft Internet Information Server or
Apache (see page 150).

Ê During installation, use fixed TCP/IP addresses.

Ê Configure the operating system where necessary (e.g. set up the user IDs, assign user
rights, etc.).

Installing Java (optional)

If you want to call Java objects via WebTransactions, proceed as follows:

Ê if you have not already done so, install a Java run environment.

Installing WebTransactions

Ê Create a configuration file for the unattended installation of WebTransactions. The
description of the parameters for controlling installation are given in the host adapter
manual.

Ê Install WebTransactions as described in the host adapter manual.

5.6.2.3 Configuring WebTransactions

You can use the browser of your choice to administer and configure WebTransactions.

Ê Start the administration program using the following URL:
http://webta-server/cgi-präfix/WTPublish.exe/server-admin. webta-server is the name
of the computer on which WebTransactions is currently running, possibly with port
indication. cgi prefix is the path on this computer for the CGI program.

Ê Following your usual practices, enter a license key, set up users and pools and assign
users pools (see section “Managing the WebTransactions server” on page 139).

WebTransactions on a blade server WebTransactions server

152 WebTransactions Concepts and Functions

5.6.3 Providing WebTransactions on several blades of a blade server

This scenario describes how you can make WebTransactions quickly available on several
blades with the help of an image. This scenario describes the automatic entry of IP
addresses, server names, and the entry of licenses on cloned blades.

This scenario is designed for situations where WebTransactions is to be used for a high load
host application or for many separate host applications with a high total load running on a
blade server.

Installing the reference blade

Ê Install WebTransactions as the reference application on a blade.
Follow the instructions given in the previous section “Providing WebTransactions on a
blade” on page 150.

Creating an image

Ê Create an image of the installation.
In the sections which follow, this image is referred to as the WebTransactions core
image.

Making clones

Ê Distribute the WebTransactions core image over several blades.

Ê Use the same, fixed TCP/IP addresses on the target blades (production blades).

Configuring WebTransactions

The production blades have different names and IP addresses from reference blades.
During the cloning procedure, the license key of the reference blade is copied onto the
production blade. However, this license key is not suitable for identification of the production
server. You must therefore use WebTransactions Administration to obtain and then enter a
suitable license key (see section “Managing the WebTransactions server” on page 139).

WebTransactions server WebTransactions on a blade server

WebTransactions Concepts and Functions 153

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
5

5.6.4 Providing a WebTransactions cluster on several blades of a blade
server

This scenario is similar to the second scenario above with the difference that in this case
you will be distributing a ready-to-use WebTransactions application and a cluster definition
over several blades; you use the image procedure as before.

This scenario is designed for situations where a single application runs with many, many
clients and as a consequence the load has to be distributed over many blades. Installation
in this case is made considerably easier by the image procedure because this automatically
adjusts the number of installed blades to the size of the load.

Configuring the applications, setting up the cluster and distributing the application

WebTransactions is designed to be easy to develop, configure and administer via http
connections. There are no restrictions or special instructions even where blade servers are
used. The procedure is the same as on other platforms and heterogeneous clusters.
Configure your application, set up the clusters and then distribute the master application to
the cluster members (see section “Cluster concept” on page 142).

Saving a dynamic load to clusters

In many Web applications there are regular variations in loads. In order to be able to
guarantee good performance during peak periods, you must set up a specific cluster with a
sufficient number of blades to take the load. However, it often makes sense to assign other
tasks to these blades for use in periods when the loads are lower. To do this enter the
necessary images on the blades.

Proceed as follows:

Ê Install WebTransactions on the maximum necessary number of blades as described in
the section “Providing WebTransactions on several blades of a blade server” on
page 152.

Ê On one or more of the blades which will remain permanently installed, create a
definition for a WebTransactions cluster; this cluster will be responsible for distributing
requests with the Take first with load lower x% method (see section “Editing a
cluster’s properties” on page 146).

The Take first with load lower x% method makes sense here because it does not
take into account cluster members which are not currently active. You can use this
procedure to shutdown blades. The cluster continues to work without problems as long
as at least one CPU blade is active.

Ê Enter all the blades (giving a computer name or IP address) involved in the operation of
a cluster as members of that cluster.

WebTransactions on a blade server WebTransactions server

154 WebTransactions Concepts and Functions

Ê Next, use WebLab to distribute the WebTransactions application to all the blades.

Ê Save an image of all the blades that will be undertaking other tasks at various time (see
“Creating an image” on page 152).

Ê Later recreate these blades using the image saved. This means you will not have to
enter the license key again because the matching key has already been correctly
entered in the saved image.

WebTransactions Concepts and Functions 155

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6 The WebLab development environment
WebLab is the WebTransactions development environment. It is designed to help you
create WebTransactions applications, edit the templates, and view the results. It is used in
conjunction with any Web browser, in which you can check the effects of your changes
immediately (WYSIWYG).

WebLab also offers an import/export interface to an HTML editor of your choice. All HTML
tags can be inserted and edited conveniently under the WebLab interface. WebLab offers
wizards for inserting and editing the most common HTML tags.

WebLab, the HTML editor, and the browser run on a PC under Windows.

Figure 13: The architecture of WebLab

WebLab and the Web browser are connected and coordinated via a WebTransactions
session running in the background. This allows you to adapt WebTransactions applications
“on the fly”, and to check or explicitly reset current values and settings.

H
TM

L
ed

ito
r

W
eb

La
b

B
ro

w
se

r

W
TH

ol
de

r

H
os

t a
pp

li
ca

ti
on

W
T

E
di

t
W

T
P

ub
li

sh

Import
Export/

Temp-
late

W
eb

 s
er

ve
r

D
ev

el
op

m
en

t s
ys

te
m Templates

The WebLab development environment

156 WebTransactions Concepts and Functions

WebLab

WebLab is the central coordination point of the development environment. It starts and
manages a WebTransactions session, which runs in the Web browser. WebLab can load
and save the files (templates and administration files) of this WebTransactions session, and
allows the user to access, view, and if necessary modify the objects of the current session.

Web browser

The browser defined using the Options/Preferences command is used for navigating
around the WebTransactions application and displaying templates. The concept of an
integrated WYSIWYG component in WebLab was deliberately rejected because the
appearance of an HTML page can change depending on the browser used. You can use
the same browser for development purposes as provided for normal operation. Browser-
specific extensions are also supported. To display the current template in the browser, all
you need to do is click on a WebLab menu item. Changes in the layout of a page can thus
be displayed immediately without having to repeat the dialog steps originally performed to
access this page.

HTML editor

As an option, WebLab can be extended to include an HTML editor of your choice.

However, the selected HTML editor must meet the following requirements:

● HTML comments must remain unchanged.

● Unknown tags should not be corrected automatically, or it must be possible to disable
this functionality.

WebLab provides functions for editing templates used for working in the HTML editor. The
HTML editor and WebLab are connected by means of an export/import mechanism.

The WebLab development environment Functionality of WebLab

WebTransactions Concepts and Functions 157

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.1 Functionality of WebLab

To help you integrate your host application and modernize your interfaces, the WebLab
functionality includes the following features:

● Simple, fast integration of existing host applications by:

– creating projects

– creating a base directory

– automatically generating the required templates

– providing support when creating an application-specific start template

● A user-friendly means of editing templates by:

– providing support when entering and modifying WTML tags via dialog boxes for
parameter specifications.

– the various language resources that you can use in a template are marked in
different colors for rapid identification.

– providing support when entering and modifying HTML tags via dialog boxes for
parameter specifications.

– providing support when entering and modifying WTBeans through dialog boxes for
specifying parameters. WTBeans already contained in the template can also be
edited: this is carried out using the same dialog box as when entering the WTBean.
However, in this case, the fields are preset to the current values. The various
components of the WTBeans are displayed against different color backgrounds to
permit rapid identification.

– providing support during the import of comments and the possibility to create HTML
documentation for the templates from the comments.

– granting direct access to the objects of the WebTransactions session. In WebLab,
these objects are displayed in a separate window. Object and attribute names (e.g.
for host data objects originating from the host application) can be inserted in
templates using the mouse.

– permitting the monitoring of variables in a separate window.

– allowing you to select host data objects in a graphical representation of the original
screen.

– enabling you to open referenced includes and class templates within your template
at the click of a mouse.

Functionality of WebLab The WebLab development environment

158 WebTransactions Concepts and Functions

– offering wizards for the provision of typical graphical dialog control techniques (e.g.
drop-down lists or radio buttons). Another wizard offers support when creating a
template from an HTML page. WebLab inserts the WTML language elements
required for data exchange and communication with the host in the HTML page.

● Support during the testing of a WebTransactions application through

– template design tests (see section “Testing the design of a template” on page 191)

– single step tracking (see section “Testing the execution sequence in the template”
on page 193)

– special start templates

● Enhanced security through close cooperation with the administration program

● Simple transfer of entire WebTransactions applications

The WebLab development environment First Steps

WebTransactions Concepts and Functions 159

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.2 First Steps

WebLab runs on a Windows system. However, WebTransactions and thus the integration
server and the host application can run on other platforms. It is possible to integrate the host
application remotely without having to log in to the integration server. The required data is
supplied via the network on the basis of the HTTP or HTTPS protocol.

The following sections describe how to integrate your host application quickly and easily in
the WWW.

 The general concept of postprocessing is described in section “Editing templates”
on page 170. A sample session including a postprocessing phase can be found in
the manuals for the individual WebTransactions supply units.

6.2.1 Creating projects

The project is the main entry point into WebLab. The project file contains the most important
data that WebLab needs when working with a WebTransactions application, for example the
WebTransactions server data. You use a project for the permanent storage of the individual
session settings for a WebTransactions application.

All the commands used to create and administer projects can be found in the Project menu.

You can configure WebLab in such a way that the last project used is loaded immediately
when WebLab is started.

 For a detailed description of all the project-related functions available in WebLab,
refer to the detailed WebLab online help system. To do this, choose the command
?/Contents.

Ê To create a new project, choose the command Project/New... and then click on Yes
when you are asked whether you really want to create a base directory.

The Connection to Server dialog box opens.

Ê You should then proceed as described in the following sections:

Ê To create a base directory, see page 160

Ê To create an automask template, see page 161

Ê To generate an individual start template, see page 161

 For detailed instructions, refer to the manuals corresponding to the individual
WebTransactions supply units and the detailed WebLab online help system.

First Steps The WebLab development environment

160 WebTransactions Concepts and Functions

6.2.1.1 Creating a base directory

The most important steps involved in integrating a host application are creating a base
directory and opening a session.

The base directory is created on the system on which WebTransactions runs. For this
purpose, WebLab establishes a connection with the WebTransactions host and starts the
CGI program WTEdit there. WTEdit reads the necessary information from the
WebTransactions installation directory and uses it to create a base directory.

 Please note that users and at least one pool must be set up for WebTransactions
applications beforehand using the WebTransactions administration program. For
further information, please refer to chapter “WebTransactions server” on page 131.

Figure 14: Procedure for creating a base directory

Ê Establish the connection to the server (Connection to Server dialog box).

To do this, specify the parameters required in order to open a connection (for URL of
WTPublish and URL of WTEdit).

Ê Now enter the properties of your base directory (Create Basedir dialog box).

A new base directory is now created under the entered name in the selected pool.

i

WebLab
W

T
E

di
t

W
eb

 s
er

ve
r Installation

directory

Base
directory

D
ev

el
op

m
en

t s
ys

te
m

The WebLab development environment First Steps

WebTransactions Concepts and Functions 161

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.2.1.2 Creating an automask template (OSD, MVS)

Ê As soon as you confirm the Create Basedir dialog box with OK, the Automask gener-
ation dialog box is displayed.

The automask template controls the automatic conversion of formats into a browser-
compatible form for host applications using the 9750 (OSD) and 3270 (MVS) protocols,
i.e. the formats are emulated directly in the browser without any capture or postpro-
cessing.

Ê The automatic conversion process can be defined using the parameters in the
Automask generation dialog box:

If you wish, you can then create a start template for one of the communication objects
selected during generation.

6.2.1.3 Creating an individual start template

You can generate an individual start template for your host application immediately.
WebLab then opens a dialog box in which you can make specifications concerning the
connection to your host application.

The connection parameter tab contains all the mandatory settings, e.g. the name of the
host application or the name of the computer on which the host application runs.

6.2.2 Saving a project

You can save a project on your hard disk at any time (Project/Save or Save as...).

If the project has not been saved when you close the project or WebLab then you are asked
if you want to save the project.

6.2.3 Starting a session

Ê Select File/Start Session to open the Start Session dialog box.

Ê In this dialog box, you can enter the parameters required to open a session:

Ê Here, you can edit the server connection parameters via URL of WTPublish.

Ê You can also specify other parameters and settings that are of relevance for the
session, e.g. base directory, start template etc.

 For detailed instructions, refer to the manuals corresponding to the individual
WebTransactions supply units and the detailed WebLab online help system.

The WebLab GUI The WebLab development environment

162 WebTransactions Concepts and Functions

6.3 The WebLab GUI

This section contains a brief introduction to the WebLab GUI. For further information on
WebLab, please refer to the WebLab online help system.

6.3.1 Main window

As soon as you start WebLab by selecting Start/Program Files/WebTransactions
7.5/WebLab, the following main window appears:

Figure 15: Main WebLab window

The main window consists of a title bar at the top containing the name of the current
template, followed by a menu bar and a toolbar.

Toolbar
Menu bar

Tree structure

Tabs for
different tree
 structures

Output area

Work area

Title bar

Value windowStatus bar

The WebLab development environment The WebLab GUI

WebTransactions Concepts and Functions 163

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

It is divided into two areas:

● The left-hand side contains various tree structures in which the objects of the current
template and the files in the base directory are arranged in a hierarchy similar to that of
the Windows Explorer.

As soon as a connection is established, the template tree is displayed with the files
present in the base directory of the WebTransactions application. Otherwise the tree
structure is empty.

If a session is started, the object tree of the template that is currently being executed is
displayed in the tree structure.

● The right-hand side contains a work area in which the templates are displayed for
editing. This area can also be used to view the output from the template browser. When
WebLab is started, the work area is initially empty.

● During your work with WebLab, status or error messages are output in various tabs in
the output area below the work area:

– for generator output (e.g. when generating the base directory or format-specific
templates)

– for error messages

– for WebTransactions application distribution

– for the display of variables and values during single step tracking

– for outputting tools at the server

You can switch between these windows using the index tabs.

● The lower area also contains the value window in which variables, objects and the
associated values are displayed.

At the bottom of the main window is a status bar. This displays a short, context-sensitive
help text, and indicates the connected host and the base directory used. When you edit a
template, the line and column number in which the cursor is currently positioned in the
template are also displayed.

The WebLab GUI The WebLab development environment

164 WebTransactions Concepts and Functions

6.3.2 Tree structure

At the bottom of the tree structure, you will see a row of index tabs which can be used to
switch between the various tree structures. The number of tabs that are displayed depends
on the current session.
The following tabs are possible:

Templates
Tree structure of the base directory

synchronous
Object tree of a synchronous dialog

asynchronous
Object tree of an asynchronous dialog

remote
Object tree for accesses via WT_REMOTE

The WebLab development environment The WebLab GUI

WebTransactions Concepts and Functions 165

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.3.2.1 Template tree

As soon as a connection is active, all the files present in the base directory are displayed in
a tree structure. This tree structure is handled in the same way as the Windows Explorer:
you can expand and collapse the different hierarchical levels. A filter allows you to exclude
certain files from the display. To select individual files, simply click on them with your mouse.

Figure 16: Template tree in WebLab

Current templates of
session

Directory for WTBeans

Temporary directory

Directories for files directly
called from browser.

The WebLab GUI The WebLab development environment

166 WebTransactions Concepts and Functions

Context menu

If you select a file in the tree structure and click the right mouse button, a context menu is
opened containing commands specific to the current file.

You can, for example, activate the template browser via the context menu (Show Context).
This presents the various relations between the templates in graphical form.

 For a detailed description of the individual menu items, see the detailed WebLab
online help system.

File selection

There are two ways of filtering the display in the template tree:

● by filename suffix
Files are displayed either if they have one of the specified suffixes or if they do not have
any of the specified suffixes

● by creation date
Files are displayed depending on whether their creation date lies before or after the
specified date. You can also specify a period (from – to).

You can combine the two filter modes using AND or OR operators.

In this way, it is possible, for example, to display only files with the suffix .bak that are more
than one month old.

You can use the Filter off/on button below the template tree to modify the filter settings and
display the active filters.

 For information on setting up new filters or editing existing ones, see the detailed
WebLab online help system.

The WebLab development environment The WebLab GUI

WebTransactions Concepts and Functions 167

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.3.2.2 Object trees

As soon as a session is started, all the objects and variables of the current session are
displayed in a tree structure.

Variables that are available globally for a WebTransaction session, are marked in blue.
These are the attributes that have been imported from WebTransactions modules. In the
Object Tree tab (command Options/Preferences), you can modify the way the object tree
is sorted and hide global session attributes from the object tree.

Figure 17: Object tree in WebLab

The values of objects and variables can be viewed and modified using the context menu
Properties command. The objects and variables themselves can be inserted in the current
template using the Drag&Drop mechanism. You use the following key combinations to
define what is inserted in the template:

Drag the mouse
Inserts the full variable name in the template.

Drag while holding down the Shift key
Inserts the attribute name in the current template.

Current template

Object
Variable

The WebLab GUI The WebLab development environment

168 WebTransactions Concepts and Functions

Drag while holding down the Alt key
Inserts the variables with the evaluation operator in the current template.

Drag while holding down the Ctrl key
Inserts the variable value in the current template.

6.3.3 The value window

The value window, which takes the form of a separate, dockable window, displays variables
and their associated values. You can drag variables and objects from the object tree and
the graphical host object selection into the value window using the mouse.

The objects are displayed in a two-column list as depicted below

In the case of objects that have an associated value, the name and path of the variable are
displayed in the left-hand column and the value in the right-hand column. If you double-click
on a value then this is displayed in a separate window in which line breaks are inserted at
a suitable point in long values

In the case of variables that have a structure, only the name of the variable is displayed in
the left-hand column together with a + character which you can click on to open the
structure.

 For information on working with the value window, see the detailed WebLab online
help system.

The WebLab development environment Generating templates

WebTransactions Concepts and Functions 169

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.4 Generating templates

WebLab allows you to generate the following templates automatically:

– Automask templates (OSD, MVS)

– Format-specific templates by means of the capture procedure (OSD, MVS)

– Format-specific templates from IFG descriptions (OSD, openUTM)

– Templates for simple access to web services

 For a description of the detailed procedure, see the manuals accompanying the
various WebTransactions supply units.

Editing templates The WebLab development environment

170 WebTransactions Concepts and Functions

6.5 Editing templates

Templates can be edited directly in WebLab without having to be transferred explicitly to the
development PC. This automatically takes care of the development environment for you.

6.5.1 General procedure

To edit templates on the server, proceed as follows:

Ê Select File/Start Session to open the Start Session dialog box.

Ê Confirm the dialog box with OK. WebLab then starts the Web browser for running the
WebTransactions session. Once the session is started, the object tree is displayed. This
is reloaded from the server each time the current template is loaded or the
Control/Update in Browser command is selected.

Ê In the browser, navigate to the screen format you wish to edit.

Ê Load the associated template into WebLab by selecting File/Open Current Template.

Ê Edit the template as desired.

Ê Select Control/Update in Browser to view the effect of your changes. WebLab then
updates the template in the browser.

 For a detailed description of all WebLab functions see the detailed WebLab online
help system.

6.5.2 Designing templates

The user interface offered by the format-specific templates reflects the appearance and
functionality of the terminal display. If you want to change the graphic presentation of the
template and, for example, convert the menu into a drop-down list, then you must edit the
templates. You can do this using either the normal resources for web page design or the
WTML template language which is described in detail in the WebTransactions manual
“Template Language”.

i

The WebLab development environment Editing templates

WebTransactions Concepts and Functions 171

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.5.2.1 Editing templates

There are no restrictions to the individual adaptations you can make to your templates: you
can insert animated or clickable images, Java scripts and applets, ActiveX controls, video
and sound sequences etc. You can use all the language resources that are supported by
the intended Web browser.

WebLab provides you with support for inserting and editing the most important HTML tags
(Add/HTML or Edit/Edit Tag commands). You can influence the notation used for the
inserted Tags (Options/Preferences/tab Format command). If you choose the option
Create HTML tags in XHTML form, then WebLab creates all HTML tags XHTML conform.

However, you can also design the HTML user interface with an HTML editor independently
of the generated templates and then use the WebLab Design/Merge command to convert
this into template form.

With WTBeans, WebTransactions provides you with a set of reusable components which
you can use to control the display of your data in the browser and control communication
with the host application. For more information, see the next section and section
“WTBeans” on page 53.

You can use the commands in the Insert/WTScript menu to insert prototypes for all
WTScript functions and classes in a template.

6.5.2.2 Insert snippets

Snippets are text components, which can be taken over unchanged in templates. Snippets
are stored together with user specific data in your computer.

To display previous snippets, choose the command Options/Show Snippets. By double
clicking on the corresponding snippet it is inserted in your template on the cursor position.

Also the context menu in the snippets window offers functions to edit snippets, rename,
delete, as well as to create new folders and new snippets.

6.5.2.3 Inserting WTBeans

The commands differ depending on whether you want to insert a standalone or inline
WTBean.

 Before you can insert or edit WTBeans, a connection to the WebTransactions server
must be established.

When you download WebTransactions, you can also retrieve additional WTBeans
as goodies. These additional WTBeans must be installed separately. For infor-
mation, see the associated documentation. After installation, the additional
standalone
WTBeans are also displayed in the submenu.

i

Editing templates The WebLab development environment

172 WebTransactions Concepts and Functions

Standalone WTBeans

Ê To insert a standalone WTBean you must first connect to a WebTransactions appli-
cation.

Ê To do this, select the File/New command in WebLab. A list of WTBeans for selection is
then displayed in a submenu. The standalone WTBeans for the creation of a start
template are supplied with the product.

WebLab provides a uniform GUI in which you can edit the parameters of all WTBeans.
This GUI is depicted here using the example of the supplied WTBean wtcstartOSD.

You can edit the available parameters in one or more tabs of the displayed dialog box.
The names of the parameters for which the entry of a value is mandatory are displayed
in red. Default values are entered for all the other parameters if you do not specify
anything.

Ê Confirm your specifications with OK. The corresponding template is generated on the
basis of your specifications and the description file and is displayed in the WebLab work
area. For more information, refer to section “Displaying WTBeans in the template” on
page 174.

The generated start template is saved under the path that you enter in the first WTBean
tab. The description file for the used WTBean is stored in the wtcUsage subdirectory of
the base directory.

The WebLab development environment Editing templates

WebTransactions Concepts and Functions 173

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

Inline WTBeans

Ê To insert an inline WTBean, first open the template in which you want to insert the
WTBean in WebLab.

Ê Move to the corresponding position in this template and choose the Insert/WTBean
command. A list of WTBeans for selection is then displayed in a submenu. The inline
WTBeans for the creation of a communication object for the various host adapters are
supplied with the product.

WebLab provides a uniform GUI in which you can edit the parameters of all WTBeans.
This GUI is depicted here using the example of the supplied WTBean wtcOSD.

You can edit the available parameters in one or more tabs of the displayed dialog box.
The names of the parameters for which the entry of a value is mandatory are displayed
in red. Default values are entered for all the other parameters if you do not specify
anything.

Ê Confirm your specifications with OK. The corresponding WTML code is generated on
the basis of your specifications and the description file and is inserted in the template.
The description file for the used WTBean is stored in the wtcUsage subdirectory of the
base directory.

Editing templates The WebLab development environment

174 WebTransactions Concepts and Functions

Displaying WTBeans in the template

You can insert and edit WTBeans in WebLab. For precise information on how to do this,
refer to section “Inserting WTBeans” on page 171. A WTBean consists of the code itself
and blocks of freely definable HTML text in which you can insert texts, scripts or WTBeans
of your choice.

You cannot edit the code of a WTBean, irrespective of whether it is a standalone or inline
WTBean. For this reason, this area is displayed in gray in the template. The start and end
lines of a WTBean are displayed on a pink background. You can subsequently edit the
properties of a WTBean. For more information, refer to section “Editing WTBeans” on
page 175.

The areas of a WTBean in which you can enter text and other WTBeans are identified by a
so-called wtc block the start and end of which are displayed against a blue background.

The WTBean description file also defines what can be inserted in this block:

– If you are able to insert text in the block then you can enter blank lines after the start of
the wtc blocks.

– If you are able to insert further WTBeans then these are displayed in the submenu or in
the wtc block’s context menu when you choose the Insert/WTBean command.

Start of WTBean

Start of wtc-Block

Start of list

End of list

End of wtc-Block

End of WTBean

The WebLab development environment Editing templates

WebTransactions Concepts and Functions 175

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

Editing WTBeans

Even though you cannot edit the code of a WTBean, you can still edit its parameters.

Ê To do this, right-click on the start line of the WTBean to open the context menu.

Ê Choose the Edit WTBean command. The dialog box with the tabs for parameter editing
is opened. The parameters are preset to their current values.

You should note the following changes in WebLab responses when you edit templates that
contain WTBeans

– You can only select the entire WTBean: when you select a line within a WTBean, the
whole WTBean is selected. The only exception here is the text in a wtc block.

– The non-editable areas (gray background) are ignored during search and replace
operations.

6.5.3 Defining templates for host formats

In this section, you will find in-depth information on the following subjects:

– Defining a global layout that applies to all templates

– Designing host formats

– Graphical selection of host objects

6.5.3.1 Defining the global layout

There are a number of different ways of implementing a global layout that applies to all
templates:

– Include templates

– Master templates

– The system object attributes EPILOG, FORMTPL and PROLOG

Include templates

If you want your design measures to affect all the templates, for example if you want to insert
company logos or make general information available on all your pages, then you can write
the corresponding passages in a separate file and insert these in your templates by means
of include tags. This simplifies the task of template maintenance. If something changes then
you need implement the modification only once in the central Include template.

Editing templates The WebLab development environment

176 WebTransactions Concepts and Functions

To include files in WebLab use the command
Add/Include... or
Add/WTScript/Template Functions/include, if you are in a script area.

Master templates

You can also define the global layout via master templates.

You specify the master template that is to be used for generation in the WebLab Options
for FLD and Template Generation dialog box during template generation. Some gener-
ation options (e.g. the method used for generation) can be defined both in the master
template and directly using WebLab.

In this case, the settings in the master template are taken over as the default values in the
dialog box. You can edit them here with the result that the modified values override the
corresponding definitions in the master template. This means that the values displayed in
the dialog box are used whenever a template is generated.

 You can find a detailed description of the master templates in the corresponding
chapter of the WebTransactions manual “Template Language.

The system object attributes EPILOG, FORMTPL and PROLOG

You can also use the attributes EPILOG, FORMTPL and PROLOG of the connection-specific
system object to influence global template design.

The attributes each contain the name of a template that is executed at different times
depending on the attribute in question:

PROLOG at the start of the current template

FORMTPL before execution of the DataForm tag at the end of the current template

EPILOG at the end of the current template

The supplied master templates ensure that the templates specified in the attributes are
included in the generated templates.

6.5.3.2 Design host formats

You can use the WebLab wizards to perform standard beautification steps automatically.
These wizards replace generated input fields (INPUT tags of type “text”) with graphic
elements such as drop-down lists, radio buttons, checkboxes and pushbuttons. (You will find
an associated example session in the manuals for the various supply units).

You can call the wizards from either the Design menu or the context menu for graphical host
object selection.

The WebLab development environment Editing templates

WebTransactions Concepts and Functions 177

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.5.3.3 Select host objects graphically

Since it is not always possible with host data object names to obtain a conclusion for the
use of the object, WebLab offers you for these objects an additional graphic selection possi-
bility (Design/Select Host Objects Graphically command): in a display of the original
object, you can choose a host data object by clicking the corresponding interface element.
With a double click, the corresponding name is inserted in the current cursor position in the
edit area.

Through Drag&Drop completely qualified variable names can also be moved into the work
area. If you push the Shift key during drop and drag, then only the attribute name is used.
If you hold down the Alt key, then the fully qualified name is inserted within an evaluation
operator. Hold down the Ctrl key, to insert the current value of the variable.

6.5.4 Designing templates for portal use

Internally, the portlets or iViews that support the integration of host dialog applications in
portals use a proxy to communicate with the WebTransactions application:

This proxy performs portal-specific modifications to generated pages before they are
displayed in the browser. This ensures that references (e.g. to images) are not resolved
outside of the portal. Due to this design and because the portlets run on only a part of the
page in the portal, the following constraints apply to template design:

Constraint Applies to

Oracle/
JSR-168
Portlets

SAP EP
iViews

Do not use the whole browser window for output:
– In scripts, do not use any constructs such as

top.location = …
– Do not set target="_top" in links.

X X

Portlet Proxy WebTransactions

Portal / Application server

Editing templates The WebLab development environment

178 WebTransactions Concepts and Functions

6.5.5 Designing dialog sequences

WebTransactions does not just allow you to “face lift” your host applications. You can also
redesign your dialog sequences. The inflexible 1:1 correspondence between HTML page
and host format is a thing of the past. With WebTransactions you can actively control and
modify the dialog strategies implemented by the host application: input and output elements
can be filtered out or added while dialog steps can be fused or subdivided.

Recording dialogs in WTScript

WebLab allows you to record dialog steps with your host application in the form of a
WTScript. In this way, you can, for example, combine multiple dialog steps with the host
application in a template. You can record the entire sequence of dialog steps, insert them
in the template and then run them.

To record the dialog steps, you use the commands in the Control/Dialog Recording menu.

The proxy only forwards the http header "User-Agent". X

Substitutions in the responses are made only if the content type is
text/html or text/javascript.

X

Any addresses present in the document are adapted in such a way that
they address the proxy. Addresses are recognized in the href attribute
of a and link tags, in the src attribute of the frame, iframe, img and script
tags, as well as in the action attribute of the form tag. Addresses in
Javascript are only recognized as such (and modified) if they are
present in assignments (after a =) and if the variable to which they are
assigned ends with document.location,
document.location.href or .src.

X

There must be precisely one form tag in each template form; this must
address the WebTransactions application.

X

Constraint Applies to

Oracle/
JSR-168
Portlets

SAP EP
iViews

The WebLab development environment Editing templates

WebTransactions Concepts and Functions 179

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.5.6 Formatting templates

You can format an open template in the following ways (commands Edit/Format Template
and Options/Preferences/Format):

● Modify the notation used for HTML and WTML tags

● Format the script source text

● Indent the HTML tags

● Indent the WTML tags

When you indent tags, any line breaks present in the original are preserved. However, you
may specify that curly brackets and block tags are to be located on a separate line after
formatting.

6.5.6.1 Modifying the notation used for HTML and WTML tags

The notation used for all HTML and WTML tags can be globally modified for a template.

There are the following two variants:

● All tags are written in uppercase, e.g. WTONCREATESCRIPT.

● All tags are written in lowercase, e.g. wtoncreatescript.

6.5.6.2 Formatting the script source text

The formatting of the script areas is subject to the following rules (option Indent lines):

● The indent level is incremented at the start of each block and is decremented again at
the end of the block.

● Any continued statements are indented one level further than the start of the statement.

● Comments are indented to the same level as the surrounding text.

● Blank lines are reduced to just the line feed character.

Editing templates The WebLab development environment

180 WebTransactions Concepts and Functions

Example

if (wtCurrentComm_system.EDIT_MODE)
{
if (typeof wtCurrentComm_system.isOverwrite == 'undefined'
&& wtCurrentComm_system.EDIT_MODE.match(/OVERWRITE/))
wtCurrentComm_system.isOverwrite = true;
} else
wtCurrentComm_system.isOverwrite = false;

becomes:

if (wtCurrentComm_system.EDIT_MODE)
{
 if (typeof wtCurrentComm_system.isOverwrite == 'undefined'
 && wtCurrentComm_system.EDIT_MODE.match(/OVERWRITE/))
 wtCurrentComm_system.isOverwrite = true;
} else
 wtCurrentComm_system.isOverwrite = false;

6.5.6.3 Indenting HTML tags

When an opening block tag is identified, the indentation level of the following lines is incre-
mented and then decremented again when the end tag is identified. This does not affect the
html tag.

In the case of a tag with an optional end tag, the indentation level is decremented as soon
as a tag is recognized that implicitly closes this tag.

If a tag is longer than a line then all the lines through to the closing > are indented an extra
level.

Inline tags and tags that have no end tag are treated as text.

Text within pre-tags is not modified.

 For a subdivision of the HTML tags into classes that are of relevance for the calcu-
lation of the indentation level, see the WebLab online help system.

The WebLab development environment Editing templates

WebTransactions Concepts and Functions 181

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

Unpaired tags

Due to the intermixture of various programming techniques, it is possible that HTML tags
which by definition should be paired actually appear as unpaired tags.
Possible reasons for this include:

– A tag is opened in a script and is then closed in the HTML text or vice versa
– Source text has been exported to Include files.

In this case, it is possible that tags that belong together do not start in the same column.

Example

<html>
 <body>
 <script>
 document.write("<table border=1>");
 </script>
 </table>
</body>
</html>

Style tags

Within a style tag, the style formatting is enclosed in curly brackets. Consequently, inden-
tation is performed within the curly brackets.

Example

<style>
 .h1
 {
 font-family:'Times New Roman', Times, serif;
 font-style:italic;
 font-weight:bold;
 }
</style>

Editing templates The WebLab development environment

182 WebTransactions Concepts and Functions

6.5.6.4 Indenting WTML tags

In so far as possible, WTML tags are treated in the same way as HTML tags. You simply
need to note the following comment for the tags for the control structures:

These tags do not modify the indentation level for HTML tags. However, the indentation level
for further WTML tags for control structures is incremented. This guarantees that the
opening and closing tags start in the same column even even if HTML and WTML tags are
combined, for example if an HTML tag is opened inside an If tag and closed outside of it.

Example

<html>
<body>
<wtIf (a>b)>
 <table>
<wtElse>
 <table bgcolor="#ff00ff">
</wtIf>
 sometext
 <tr>
 <td>
 </td>
 </tr>
 </table>
</body>
</html>

If tags are opened within the If and the Else branch then only the tags of the If branch
are used for the calculation of the indentation depth after the closing If tag.

6.5.7 Documenting templates

WebTransactions applications may contain many templates with complex functions and
must be sufficiently documented. WebLab offers support when inserting comments in
templates and the possibility to create, from the comments, a documentation in form of
HTML pages. To do this, WebLab creates HTML pages from all the files in the base
directory with a suffix .htm, .html, .js, .clt, and .service.

Only the following comments are considered during the generation of documentation:

– File comments, which are at the beginning of a file (see section “File comments” on
page 184).

– Function comments which end in the line directly before the function definition (see
section “Function comments” on page 184).

The WebLab development environment Editing templates

WebTransactions Concepts and Functions 183

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

 To insert comments into templates or to generate HTML pages, you must have a
connection to the WebTransactions server.

6.5.7.1 Format of the comments

All comments must be created according to the following rules. To help you create
comments, WebLab provides a syntactically correct structure you only have to complete
(see section “Inserting comments” on page 185).

– Every comment starts with the string /** .

– Every following line in a comment starts with an asterisk (*).

– The first sentence ends with the first period, occurring in the comment.

– The first sentence of the comment should briefly describe the function. This sentence
is used as a short description in the function overview (see section “Example” on
page 188).

– The description of the function ends with an empty comment line.

– The lines that contain symbols start after this empty comment line (for possible symbols
see page 183).

– Lines containing a symbol must start with this symbol.

– Each comment ends with the string */ .

All HTML tags can be used for the formatting of comments. The text is taken over in the
HTML pages unchanged.

Attention needs to be paid to the following points:

– Symbols which have a special meaning in HTML, must be coded
(i.e. < or > as < or >).

– Line breaks in documentation must be created with HTML tools
(i.e. with the tag
).

– The following symbols can be used in comments (see example on page 188). These
symbols must be at the start of a line.

@author
indicates the author of the data. This symbol is only used in file comments.

@param
describes the parameter of a function. The following format needs to be
maintained:

@param parameter description

i

Editing templates The WebLab development environment

184 WebTransactions Concepts and Functions

@return
describes the return value of the function.

@throws
describes the exception, the function throws. The following format needs to be
maintained:

@throws name_of_exception description

@method
assigns, in a constructor comment, a function as method of a class.
The following format needs to be maintained:

@method method-name function-name

File comments

These comments describe the content of a file. They must be at the beginning of the file.

File comments which are outside the script range must additionally be enclosed in Rem tags
(exception: file comments in JavaScript files).

Example

<wtrem>
/**
*
* @author

*/
</wtrem>
<wtrem>
**
Functions for error handling
**
</wtrem>

Function comments

These comments are assigned to a specified function. Therefore they must end directly on
the line above the function.

Example function comments can be found in section “Function comment” on page 185 and
“Example” on page 188).

The WebLab development environment Editing templates

WebTransactions Concepts and Functions 185

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.5.7.2 Inserting comments

WebLab has various functions which you use to enter comments into templates. You follow
the following steps:

Ê Open the template that you want to edit.

File comment

Ê To add a file comment, in the context menu or in the Add menu, select the command
Insert Comment (File).

WebLab inserts a default for the comment at the file start.

Function comment

Ê To insert a function comment, position the cursor on the line in which the function is
defined.

Ê In the context menu or in the Add menu, select the command Function Comment.

This command is only available if the cursor is in the line in which the function is defined.

WebLab inserts a default for the function comment immediately above the function.
WebLab analyses the function call and inserts the appropriate lines with the symbol
@param for all parameters.

Examples

WebLab inserts, depending on the function call, the following comment:

Function call
function test (a,b,c)

Comment
/**
*
*
* @param a
* @param b
* @param c
* @return
* @throws
*/

Function call
function WT_SOAP(/*string*/ wsdlSrc, /*string*/ proxyHost, /*number*/
proxyPort)

Editing templates The WebLab development environment

186 WebTransactions Concepts and Functions

Comment
/**
*
*
* @param wsdlSrc [string]
* @param proxyHost [string]
* @param proxyPort [number]
* @return
* @throws

*/

6.5.7.3 Generating documentation

To create HTML pages from your comments, use WebLab and proceed as follows:

As the first step, determine where the HTML pages should be created.

Ê Choose the command Options/Preferences.

Ê In the dialog field Preferences choose the tab Documentation.

Ê Indicate in the field Directory, where the HTML pages should be created.
The default for this value is wwwdocs/documentation.

The target directory of the documentation must be available via WebLab, as well as via
the Web server. The directory must be:
– under the directory wwwdocs on the WebTransactions server or
– on the local computer under the root directory for Web pages (= document

directory).

The WebLab development environment Editing templates

WebTransactions Concepts and Functions 187

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

Subsequently the HTML pages can be created:

Ê Choose the command Generate/Documentation.

WebLab creates HTML pages from all files in the base directory with the suffix .htm,
.html, .js, .clt and .service. Links to the installation directory are not taken into
consideration.

The HTML pages are put in the directory indicated in the Preferences dialog box. They
can be opened with any browser.

You can call the documentation from WebLab:

Ê Choose the command ?/Display Documentation.

WebLab opens a browser window with the start page of the documentation

6.5.7.4 Format of the display

You can display the documentation of a WebTransactions application with the command
?/Display Documentation.

There are two display possibilities for the HTML pages. You choose the display through the
button Files or Index at the header of each page.

File display

If the button Files is chosen, an overview of the functions is displayed in sequence of the
order they appear in the file. The HTML page contains in this sequence:

– the file comment.

– an overview of the functions in the file, sorted by server sided and client sided defined
functions. The overview contains for each function the definition and the first sentence
from the function comment. The detail view of the function is available through a Link.

– Detail view of all functions. These contain the complete function comment.

Alphabetic display

To display an alphabetical list of all the functions in the file, select the Index button. For each
function the list gives the definition and the first sentence of the function comment. The
detail view of the function is available through a link.

Editing templates The WebLab development environment

188 WebTransactions Concepts and Functions

6.5.7.5 Example

The file test.htm contains the function WT_SOAP together with the following comments:

<wtrem>
/**
 *
 * Test template for comments

 * WebLab Team
*/
</wtrem>
<wtoncreatescript>

/**
* Constructor of the WT_SOAP class.
 * Builds an object structure from the specified WSDL.
* The parts of the WSDL can be found in the instance's

 * sub objects with the same name.
 * The methods of the web service reside below
 * service.servicename.port.portname.operation
 *
 * @param wsdlSrc WSDL file, specified as URL or as
* filename in the base directory

 * @param proxyHost name of the proxy system (optional)
 * @param proxyPort name of the proxy port (optional)
 * @return returns the image of the WSDL as an object
 * @throws SOCKET: error when accessing the WSDL via the net

(no network
connection) (1)
 * @throws HTTP: error when accessing the WSDL via the net

(error was returned by the http
protocol) (1)
 * @throws FILE: the constructor couldn't access the specified
file (1)
 * @throws WSDL: the WSDL contains elements, which couldn't

be
interpreted (1)
 * @method initFromWSDLUri
WT_SOAP_INIT_FROM_WSDL_URI (2)
 * @method analyseResponse
WT_SOAP_analyzeResponse (2)
 * @method setRunMode
WT_SOAP_SET_RUN_MODE (2)
 * @method executeRequest
WT_SOAP_EXECUTE_REQUEST (2)
*/
function WT_SOAP(wsdlSrc, proxyHost, proxyPort)
....

The WebLab development environment Editing templates

WebTransactions Concepts and Functions 189

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

....

(1) The class WT_SOAP has several exceptions, which differ from each other by name.

(2) In the class WT_SOAP these functions are available as methods.

Editing templates The WebLab development environment

190 WebTransactions Concepts and Functions

In the created documentation the following HTML page is obtained:
Switching between
displays

....

File comment

First line of function
comment

Detail view

The WebLab development environment Testing templates

WebTransactions Concepts and Functions 191

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.6 Testing templates

There are various ways of testing your WebTransactions applications:

– Testing the design of a template
– Testing the execution sequence of a template (single step tracking)

 The test functions of the WebLab development environment are outlined below. For
a detailed description, refer to the WebLab online help.

6.6.1 Testing the design of a template

WebLab provides you with the following user-friendly ways of testing the design of an HTML
page.

i

Testing templates The WebLab development environment

192 WebTransactions Concepts and Functions

Correcting errors

If WebTransactions issues error messages then these are displayed in the WebLab output
area. If you double-click on the error message, the cursor is automatically positioned at the
location of the error in the edit area. You are then able to correct it immediately.

You can use the Control/Update In Browser command to regenerate the modified page
immediately and display it in the browser.

Setting new values

During the test phase, it is often useful to set new values for certain attributes and check
the effect this has. To do this, select the required object in the object tree.

Using the command Properties in the context menu, the current value is shown and can be
edited. Like with error corrections, you can immediately verify the result by using the
command Update in Browser to create and view the page with the modified values.

Notes on the “Update in Browser” function

You use the Control/Update in Browser command to output a page again following a
correction in the template and check your modification.

 However, when using this function you should be aware of certain limitations which
can make the result of regeneration differ from normal output:

– System and host objects are not reset to their original status: if attributes of
these objects are modified in OnCreateScript tags then the regeneration is
based on the modified values.

– Communication steps with the host application are not reset: if the methods
open, close, send and receive are used, their effect cannot be undone. The
communication steps are suppressed on regeneration in order to leave the host
application in its current state. Changes to these OnCreateScripts (add, delete)
therefore have no direct effect. Regeneration may therefore lead to an incon-
sistent host application state.

In contrast, OnReceiveScripts are completely uncritical since regeneration
prevents their execution. I.e. the old statements stored for Receive time are
discarded and the new OnReceive tags or OnReceive scripts are saved (see
also section “Dialog cycle” on page 62).

In rare cases, problems may arise on regeneration. In such cases, you must
navigate back to the test point in order to test the associated template. Normally,
for example in the case of all generated templates, regeneration is performed
without problems and considerably accelerates the user interface test.

i

The WebLab development environment Testing templates

WebTransactions Concepts and Functions 193

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.6.2 Testing the execution sequence in the template

You can track the execution sequence of a template by first logging all the steps that are
performed in the template during the generation of the HTML pages and the processing
Receive scripts. When you do this, WebTransactions writes a logfile using the following
rules.

– The variables and their associated values are logged after every executed line.

– The class templates of host objects are also executed and the results are logged.

– The generation of an HTML area is a single step. It is indicated by the display of the last
line in the HTML area.

– If multiple WebTransactions steps are executed within a single dialog step (e.g. in the
case of framesets), then only the single steps from the last generation are displayed.

WebLab then uses this logfile for single step tracking.

 Please note that WebTransactions normally deletes the log file when the session is
deleted. If you wish to log single steps including the end of the session, you must
also activate the WebTransactions Trace (see section “Trace functions” on
page 121).

You can use single step tracking to

– follow execution through a template

– track execution within a specific area of a template

The current variables and their values are displayed in the Single Step Tracking tab in the
output area.

6.6.2.1 Tracking execution via a template or a template area

Ê You can choose between the following two ways of starting to track execution:

Ê To track the individual steps in a complete template, you activate logging with the
command Control/Single Step Tracking/Record Single Steps.

or:

Ê To test execution only within a given area in the template, you activate logging for
the area directly in the template with the WTScript function
setSingleStep(“on“|“off“). For more information, see the WebTransactions manual
“Template Language” and the example below.

The subsequent steps apply equally to both alternatives.

Ê Run the session using the template that you want to test.

i

Testing templates The WebLab development environment

194 WebTransactions Concepts and Functions

Ê Start single step tracking with the command Control/Single Step Tracking/
Begin Single Step Tracking.

Ê Use the commands in the submenu Control/Single Step Tracking or the icon bar
Single Step Tracking to trace the execution of the program. WebLab highlights the
current statement in the template and displays the variables used by this statement
together with the associated values in the output area.

 For a detailed description of the commands in the Single Step Tracking, see the
detailed WebLab online help system.

Example

In this example, execution is simply tracked for an area of a template:

...
<wtOnCreateScript>
<!--
 wtInputFields = new Object;
 currentLine = 1;
 for (element = OSD_0.$FIRST.Name; OSD_0 && element != '$END'; element =
OSD_0.$NEXT.Name)
 {
 currentHostObject = OSD_0[element];
 if (currentHostObject.StartLine != currentLine)
 {
 document.writeln();
 currentLine++;
 }
 if (currentHostObject.Type == 'Protected' &&
currentHostObject.Markable == 'No')
 {
 setSingleStep ("on");
 taggedOutput(currentHostObject);
 setSingleStep ("off");
 }
 else
 {
 wtInputFields[element] = currentHostObject;
 taggedInput(currentHostObject);
 }
 }
//-->
</wtOnCreateScript>
...

The WebLab development environment Testing templates

WebTransactions Concepts and Functions 195

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

6.6.2.2 Monitoring the values of variables

You can use the value window to monitor the values of variables, see also
section “The value window” on page 168.

 For detailed information on working with the value window, see the detailed WebLab
online help system.

Integrating server tools in WebLab The WebLab development environment

196 WebTransactions Concepts and Functions

6.7 Integrating server tools in WebLab

As the WebTransactions administrator (user ID admin) you can make commands that
execute on a WebTransactions server available to users in WebLab. The term “tools” covers
both commands and programs.

 Please note that the commands must be batch-compatible. This means that the
commands must not require any user input.

You define tools using the command Options/Edit Server Tools.

When you formulate a command, you can use certain keywords for the parameters. When
you execute a WebLab command, these keywords are replaced by the values for the current
session.

You can also define the users who are authorized to work with the tools.When these users
connect to a base directory on the server, they see the tools that are available to them in
the submenu Control/Server Tools. Users can then click on a tool to run it on the server.

Click the tool to run it on the server. When a tool is processed, all the other tools are locked.
If you terminate the connection, operation of the tool will also be terminated.

Keyword Replaced by:

%BASEDIR Current base directory

%CURRENT Name of the file in the current editing window including path
e.g. basedirs\test\config/forms/trav0.htm

%CURRENTNAME Name of the active file, e.g. trav0.htm

%CURRENTPATH Path of the active file
(Windows: without drive specification e.g. \basedirs\test\config\forms)

%DRIVE Drive for the current file (Windows only)

%SESSIONID ID of the current session

%SELTEXT Text selected in the current window

%USER Active WebTransactions user

%1,%2,...,%9 Parameters that all users can specify themselves using
Options/Customize Server Tools.

i

The WebLab development environment Integrating server tools in WebLab

WebTransactions Concepts and Functions 197

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

Outputs from the tools are displayed on two tabs in the output area:

Server tools(stdout)
Contains outputs that the tool sends to the console or the screen.

If a line of the output contains a file name, double click this line to open the file
displayed. If the line also includes a line number, the cursor will be moved to the
line indicated by the number. The lines, which can be processed this way, have
the following format:

filename:linenumber:text
filename(linenumber) text
filename:text

Server tools (stderr)
Contains any tool error messages.

Transferring and distributing an application The WebLab development environment

198 WebTransactions Concepts and Functions

6.8 Transferring and distributing a WebTransactions application

You transfer a WebTransactions application by packing it at the development computer and
then unpacking it at the destination machine. On distribution, the files or directories are read
into WebLab and are then transferred to the destination hosts in a cluster.

The precise procedure is described below.

6.8.1 Scope of transfer

Before packing the data in an archive, you can specify which directories and files you want
to transfer. The table below summarizes how the files in the various subdirectories of the
base directory are transferred.

When you unpack the data at the target computer, you can decide whether you want to
create a new WebTransactions application or whether you want to extend an existing
WebTransactions application. Once an WebTransactions application has been transferred,
the paths of the WebTransactions CGI programs are adapted in all the files in the
wwwdocs/html subdirectory if necessary.

Directory Contents Transfer mode

basedir Program files, libraries Binary

config FLD files Text

forms Templates Text

msg Message files Text

tmp Temporary files Not transferred

wwwdocs Documents for the web server Text

applet Applets Binary

class Java classes Binary

html HTML pages Text

image Images Binary

javascript Client-side JavaScripts Text

style Stylesheet definitions Text

own directory Text

Table 2: Transfer modes for the data in a base directory

The WebLab development environment Transferring and distributing an application

WebTransactions Concepts and Functions 199

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
02

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

k0
6

 Please note that when you unpack and you are connected to a WebTransactions
application, any open, removed files are not automatically reloaded. However,
WebLab informs you that there is a new version of the file on the server and loads
this new version on request.

6.8.2 Packing an application

You pack an application using the command Administration/Pack Application.

During the packing operation, you have two ways of defining which files are to be packed:

● You can activate a filter to hide files from the displayed tree structure. You can filter on
filename suffix and/or creation date, see also “File selection” on page 166.

Files that are not displayed are also not packed.

● In the displayed tree structure, you can also explicitly include or exclude files. You do
this by clicking on the icon located next to each entry.

All the selected files or directories are packed in the WebTransactions archive. In the
WebLab output window, you will see messages informing you of the progress of the pack
operation in the Pack&Go tab.

6.8.3 Unpacking an application

To unpack an archive that contains a WebTransactions application, use the command
Administration/Unpack Application.

If you are connected to a base directory when you call this command, the application is
unpacked to this base directory.

If you are not connected to a base directory then a base directory is created and the appli-
cation is unpacked to this directory.

If the virtual paths to WTPublish.exe, WTPublishISAPI.dll or WTCluster.exe are different
at the source and target hosts, you can adapt these paths during the unpacking operation.

In the WebLab output window, you will see messages informing you of the progress of the
unpack operation in the Pack&Go tab.

i

Transferring and distributing an application The WebLab development environment

200 WebTransactions Concepts and Functions

6.8.4 Distributing an application

Individual files or directories are read into WebLab before being transferred to the target
host in the cluster.

If you want to distribute multiple files or directories, choose the command
Administration/Distribute Application.

In the same way as when you transfer an application (see section “Packing an application”
on page 199 and section “Unpacking an application” on page 199), these files are packed
in an archive file for distribution and this file is then unpacked at all the hosts in the cluster.

You have the same possibilities of defining the scope of the archive as when packing an
application (see section “Packing an application” on page 199). For example, you can use
a filter to distribute only those files that have been modified after a certain date, see
page 166.

WebTransactions Concepts and Functions 201

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

li
20

10

S
ta

nd
 1

4:
34

.3
8

P
fa

d:
 F

:\
W

e
bT

A
\V

7.
5\

M
a

nu
al

e
\1

00
35

0
1_

K
o

nz
e

pt
e_

F
un

kt
io

ne
n\

en
\k

o
nf

u.
an

h

7 Appendix: demo applications
When you install WebTransactions, you can also install a number of demo applications.
These are stored in the web server’s document directory.

You start the demo applications with http://machine/webtav75/startdemos.htm. This
displays a start page on which you can choose between the different demo applications.
Once you have chosen a demo application, a further page explains the operation of the
application. The templates are accompanied by detailed comments.

Appendix: demo applications

202 WebTransactions Concepts and Functions

WebTransactions Concepts and Functions 203

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:3
4.

38
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
1

_K
on

ze
p

te
_F

u
nk

tio
ne

n
\e

n\
ko

n
fu

.m
ix

Glossary
A term in ->italic font means that it is explained somewhere else in the glossary.

active dialog
In the case of active dialogs, WebTransactions actively intervenes in the control
of the dialog sequence, i.e. the next ->template to be processed is determined
by the template programming. You can use the ->WTML language tools, for
example, to combine multiple ->host formats in a single ->HTML page. In this
case, when a host ->dialog step is terminated, no output is sent to the ->browser
and the next step is immediately started. Equally, multiple interactions between
the Web ->browser and WebTransactions are possible within one and the same
host dialog step.

array
->Data type which can contain a finite set of values of one data type. This data
type can be:
– ->scalar
– a ->class
– an array
The values in the array are addressed via a numerical index, starting at 0.

asynchronous message
In WebTransactions, an asynchronous message is one sent to the terminal
without having been explicitly requested by the user, i.e. without the user having
pressed a key or clicked on an interface element.

attribute
Attributes define the properties of ->objects.
An attribute can be, for example, the color, size or position of an object or it can
itself be an object. Attributes are also interpreted as ->variables and their values
can be queried or modified.

Glossary

204 WebTransactions Concepts and Functions

Automask template
A WebTransactions ->template created by WebLab either implicitly when gener-
ating a base directory or explicitly with the command Generate Automask. It is
used whenever no format-specific template can be identified. An Automask
template contains the statements required for dynamically mapping formats
and for communication. Different variants of the Automask template can be
generated and selected using the system object attribute AUTOMASK.

base directory
The base directory is located on the WebTransactions server and forms the
basis for a ->WebTransactions application. The base directory contains the
->templates and all the files and program references (links) which are necessary
in order to run a WebTransactions application.

BCAM application name
Corresponds to the openUTM generation parameter BCAMAPPL and is the name
of the −>openUTM application through which −>UPIC establishes the
connection.

browser
Program which is required to call and display ->HTML pages. Browsers are, for
example, Microsoft Internet Explorer or Mozilla Firefox.

browser display print
The WebTransactions browser display print prints the information displayed in
the ->browser.

browser platform
Operating system of the host on which a ->browser runs as a client for
WebTransactions.

buffer
Definition of a record, which is transmitted from a ->service. The buffer is used
for transmitting and receiving messages. In addition there is a specific buffer for
storing the ->recognition criteria and for data for the representation on the
screen.

capturing
To enable WebTransactions to identify the received ->formats at runtime, you
can open a ->session in ->WebLab and select a specific area for each format and
name the format. The format name and ->recognition criteria are stored in the
->capture database. A ->template of the same name is generated for the format.
Capturing forms the basis for the processing of format-specific templates for the
WebTransactions for OSD and MVS product variants.

Glossary

WebTransactions Concepts and Functions 205

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:3
4.

38
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
1

_K
on

ze
p

te
_F

u
nk

tio
ne

n
\e

n\
ko

n
fu

.m
ix

capture database
The WebTransactions capture database contains all the format names and the
associated ->recognition criteria generated using the ->capturing technique. You
can use ->WebLab to edit the sequence and recognition criteria of the formats.

CGI
(Common Gateway Interface)
Standardized interface for program calls on ->Web servers. In contrast to the
static output of a previously defined->HTML page, this interface permits the
dynamic construction of HTML pages.

class
Contains definitions of the ->properties and ->methods of an ->object. It provides
the model for instantiating objects and defines their interfaces.

class template
In WebTransactions, a class template contains valid, recurring statements for
the entire object class (e.g. input or output fields). Class templates are
processed when the ->evaluation operator or the toString method is applied to a
->host data object.

client
Requestors and users of services in a network.

cluster
Set of identical ->WebTransactions applications on different servers which are
interconnected to form a load-sharing network.

communication object
This controls the connection to an ->host application and contains information
about the current status of the connection, the last data to be received etc.

conversion tools
Utilities supplied with WebTransactions. These tools are used to analyze the
data structures of ->openUTM applications and store the information in files.
These files can then be used in WebLab as ->format description sources in order
to generate WTML templates and ->FLD files.
COBOL data structures or IFG format libraries form the basis for the conversion
tools. The conversion tool for DRIVE programs is supplied with the product
DRIVE.

daemon
Name of a process type in Unix system/POSIX systems which runs in the
background and performs no I/O operations at terminals.

Glossary

206 WebTransactions Concepts and Functions

data access control
Monitoring of the accesses to data and ->objects of an application.

data type
Definition of the way in which the contents of a storage location are to be inter-
preted. Each data type has a name, a set of permitted values (value range), and
a defined number of operations which interpret and manipulate the values of
that data type.

dialog
Describes the entire communication between browser, WebTransactions and -
>host application. It will usually comprise multiple ->dialog cycles. WebTransac-
tions supports a number of different
types of dialog.
– ->passive dialog
– ->active dialog
– ->synchronized dialog
– ->non-synchronized dialog

dialog cycle
Cycle that comprises the following steps when a ->WebTransactions application is
executed:
– construct an ->HTML page and send it to the ->browser
– wait for a response from the browser
– evaluate the response fields and possibly send them to the->host application

for further processing
A number of dialog cycles are passed through while a ->WebTransactions appli-
cation is executing.

distinguished name
The Distinguished Name (DN) in ->LDAP is hierarchically organized and
consists of a number of different components (e.g. “country, and below country:
organization, and below organization: organizational unit, followed by: usual
name”). Together, these components provide a unique identification of an object
in the directory tree.
Thanks to this hierarchy, the unique identification of objects is a simple matter
even in a worldwide directory tree:
– The DN "Country=DE/Name=Emil Person" reduces the problem of achiev-

ing a unique identification to the country DE (=Germany).
– The DN "Organization=FTS/Name=Emil Person" reduces it to the organiza-

tion FTS.
– The DN "Country=DE/Organization=FTS/Name=Emil Person" reduces it to

the organization FTS located in Germany (DE).

Glossary

WebTransactions Concepts and Functions 207

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:3
4.

38
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
1

_K
on

ze
p

te
_F

u
nk

tio
ne

n
\e

n\
ko

n
fu

.m
ix

document directory
->Web server directory containing the documents that can be accessed via the
network. WebTransactions stores files for download in this directory, e.g. the
WebLab client or general start pages.

Domain Name Service (DNS)
Procedure for the symbolic addressing of computers in networks. Certain
computers in the network, the DNS or name server, maintain a database
containing all the known host names and IP numbers in their environment.

dynamic data
In WebTransactions, dynamic data is mapped using the WebTransactions
object model, e.g. as a ->system object, host object or user input at the browser.

EHLLAPI
Enhanced High-Level Language API
Program interface, e.g. of terminal emulations for communication with the SNA
world. Communication between the transit client and SNA computer, which is
handled via the TRANSIT product, is based on this interface.

EJB
(Enterprise JavaBean)
This is a Java-based industry standard which makes it possible to use in-house
or commercially available server components for the creation of distributed
program systems within a distributed, object-oriented environment.

entry page
The entry page is an ->HTML page which is required in order to start a
->WebTransactions application This page contains the call which starts
WebTransactions with the first ->template, the so-called start template.

evaluation operator
In WebTransactions the evaluation operator replaces the addressed
->expressions with their result (object attribute evaluation). The evaluation
operator is specified in the form ##expression#.

expression
A combination of ->literals, ->variables, operators and expressions which return
a specific result when evaluated.

FHS
Format Handling System
Formatting system for BS2000/OSD applications.

Glossary

208 WebTransactions Concepts and Functions

field
A field is the smallest component of a service and element of a ->record or
->buffer.

field file (*.fld file)
In WebTransactions, this contains the structure of a ->format record (metadata).

filter
Program or program unit (e.g. a library) for converting a given ->format into
another format (e.g. XML documents to ->WTScript data structures).

format
Optical presentation on alphanumeric screens (sometimes also referred to as
screen form or mask).

In WebTransactions each format is represented by a ->field file and a ->template.

format type
(only relevant in the case of ->FHS applications and communication via ->UPIC)
Specifies the type of format: #format, +format, -format or *format.

format description sources
Description of multiple ->formats in one or more files which were generated from
a format library (FHS/IFG) or are available directly at the ->host for the use of
“expressive” names in formats.

function
A function is a user-defined code unit with a name and ->parameters. Functions
can be called in ->methods by means of a description of the function interface (or
signature).

holder task
A process, a task or a thread in WebTransactions depending on the operating
system platform being used. The number of tasks corresponds to the number
of users. The task is terminated when the user logs off or when a time-out
occurs. A holder task is identical to a ->WebTransactions session.

host
The computer on which the- >host application is running.

host adapter
Host adapters are used to connect existing ->host applications to
WebTransactions. At runtime, for example, they have the task of establishing
and terminating connections and converting all the exchanged data.

Glossary

WebTransactions Concepts and Functions 209

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:3
4.

38
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
1

_K
on

ze
p

te
_F

u
nk

tio
ne

n
\e

n\
ko

n
fu

.m
ix

host application
Application that is integrated with WebTransactions.

host control object
In WebTransactions, host control objects contain information which relates not
to individual fields but to the entire ->format. This includes, for example, the field
in which the cursor is located, the current function key or global format
attributes.

host data object
In WebTransactions, this refers to an ->object of the data interface to the ->host
application. It represents a field with all its field attributes. It is created by
WebTransactions after the reception of host application data and exists until the
next data is received or until termination of the ->session.

host data print
During WebTransactions host data print, information is printed that was edited
and sent by the ->host application, e.g. printout of host files.

host platform
Operating system of the host on which the ->host applications runs.

HTML
(Hypertext Markup Language)
See ->Hypertext Markup Language

HTTP
(Hypertext Transfer Protocol)
This is the protocol used to transfer ->HTML pages and data.

HTTPS
(Hypertext Transfer Protocol Secure)
This is the protocol used for the secure transfer of ->HTML pages and data.

hypertext
Document with links to other locations in the same or another document. Users
click the links to jump to these new locations.

Hypertext Markup Language
(Hypertext Markup Language)
Standardized markup language for documents on the Web.

Glossary

210 WebTransactions Concepts and Functions

Java Bean
Java programs (or ->classes) with precisely defined conventions for interfaces
that allow them to be reused in different applications.

KDCDEF
openUTM tool for generating ->openUTM applications.

LDAP
(Lightweight Directory Access Protocol)
The X.500 standard defines DAP (Directory Access Protocol) as the access
protocol. However, the Internet standard “LDAP” has proved successful specif-
ically for accessing X.500 directory services from a PC.
LDAP is a simplified DAP protocol that does not support all the options available
with DAP and is not compatible with DAP. Practically all X.500 directory services
support both DAP and LDAP. In practice, interpretation problems may arise
since there are various dialects of LDAP. The differences between the dialects
are generally small.

literal
Character sequence that represents a fixed value. Literals are used in source
programs to specify constant values (“literal” values).

master template
WebTransactions template used to generate the Automask and the format-
specific templates.

message queuing (MQ)
A form of communication in which messages are not exchanged directly, rather
via intermediate queues. The sender and receiver can work at separate times
and locations. Message transmission is guaranteed regardless of whether or
not a network connection currently exists.

method
Object-oriented term for a ->function. A method is applied to the ->object in
which it is defined.

module template
In WebTransactions, a module template is used to define ->classes, ->functions
and constants globally for a complete ->session. A module template is loaded
using the import() function.

MT tag
(Master Template tag)
Special tags used in the dynamic sections of ->master templates.

Glossary

WebTransactions Concepts and Functions 211

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:3
4.

38
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
1

_K
on

ze
p

te
_F

u
nk

tio
ne

n
\e

n\
ko

n
fu

.m
ix

multitier architecture
All client/server architectures are based on a subdivision into individual
software components which are also known as layers or tiers. We speak of
1-tier, 2-tier, 3-tier and multitier models. This subdivision can be considered at
the physical or logical level:
– We speak of logical software tiers when the software is subdivided into

modular components with clear interfaces.
– Physical tiers occur when the (logical) software components are distributed

across different computers in the network.
With WebTransactions, multitier models are possible both at the physical and
logical level.

name/value pair
In the data sent by the ->browser, the combination, for example, of an ->HTML
input field name and its value.

non-synchronized dialog
Non-synchronized dialogs in WebTransactions permit the temporary deacti-
vation of the checking mechanism implemented in ->synchronized dialogs. In this
way, ->dialogs that do not form part of the synchronized dialog and have no
effect on the logical state of the ->host application can be incorporated. In this
way, for example, you can display a button in an ->HTML page that allows users
to call help information from the current host application and display it in a
separate window.

object
Elementary unit in an object-oriented software system. Every object possesses
a name via which it can be addressed, ->attributes, which define its status
together with the ->methods that can be applied to the object.

openUTM
(Universal Transaction Monitor)
Transaction monitor from Fujitsu Technology Solutions, which is available for
BS2000/OSD and a variety of Unix platforms and Windows platforms.

openUTM application
A ->host application which provides services that process jobs submitted by
->clients or other ->host applications. openUTM responsibilities include trans-
action management and the management of communication and system
resources. Technically speaking, the UTM application is a group of processes
which form a logical unit at runtime.
openUTM applications can communicate both via the client/server protocol
->UPIC and via the emulation interface (9750).

Glossary

212 WebTransactions Concepts and Functions

openUTM-Client (UPIC)
The openUTM-Client (UPIC) is a product used to create client programs for
openUTM. openUTM-Client (UPIC) is available, for example, for Unix platforms,
BS2000/OSD platforms and Windows platforms.

openUTM program unit
The services of an ->openUTM application are implemented by one or more
openUTM program units. These can be addressed using transaction codes and
contain special openUTM function calls (e.g. KDCS calls).

parameter
Data which is passed to a ->function or a ->method for processing (input
parameter) or data which is returned as a result of a function or method (output
parameter).

passive dialog
In the case of passive dialogs in WebTransactions, the dialog sequence is
controlled by the ->host application, i.e. the host application determines the next
->template which is to be processed. Users who access the host application via
WebTransactions pass through the same dialog steps as if they were accessing
it from a terminal. WebTransactions uses passive dialog control for the
automatic conversion of the host application or when each host application
format corresponds to precisely one individual template.

password
String entered for a ->user id in an application which is used for user authenti-
cation (->system access control).

polling
Cyclical querying of state changes.

pool
In WebTransactions, this term refers to a shared directory in which WebLab can
create and maintain ->base directories. You control access to this directory with
the administration program.

post
To send data.

posted object (wt_Posted)
List of the data returned by the ->browser. This ->object is created by WebTrans-
actions and exists for the duration of a ->dialog cycle.

Glossary

WebTransactions Concepts and Functions 213

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:3
4.

38
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
1

_K
on

ze
p

te
_F

u
nk

tio
ne

n
\e

n\
ko

n
fu

.m
ix

process
The term “process” is used as a generic term for process (in Solaris, Linux and
Windows) and task (in BS2000/OSD).

project
In the WebTransactions development environment, a project contains various
settings for a ->WebTransactions application. These are saved in a project file
(suffix .wtp). You should create a project for each WebTransactions application
you develop, and always open this project for editing.

property
Properties define the nature of an ->object, e.g. the object “Customer” could
have a customer name and number as its properties. These properties can be
set, queried, and modified within the program.

protocol
Agreements on the procedural rules and formats governing communications
between remote partners of the same logical level.

protocol file

● openUTM-Client: File into which the openUTM error messages as are writ-
ten in the case of abnormal termination of a conversation.

● In WebTransactions, protocol files are called trace files.

roaming session
->WebTransactions sessions which are invoked simultaneously or one after
another by different ->clients.

record
A record is the definition of a set of related data which is transferred to a ->buffer.
It describes a part of the buffer which may occur one or more times.

recognition criteria
Recognition criteria are used to identify ->formats of a ->terminal application and
can access the data of the format. The recognition criteria selected should be
one or more areas of the format which uniquely identify the content of the
format.

scalar
->variable made up of a single value, unlike a ->class, an ->array or another
complex data structure.

Glossary

214 WebTransactions Concepts and Functions

service (openUTM)
In ->openUTM, this is the processing of a request using an ->openUTM appli-
cation. There are dialog services and asynchronous services. The services are
assigned their own storage areas by openUTM. A service is made up of one or
more ->transactions.

service application
->WebTransactions session which can be called by various different users in turn.

service node
Instance of a ->service. During development and runtime of a ->method a service
can be instantiated several times. During modelling and code editing those
instances are named service nodes.

session
When an end user starts to work with a ->WebTransactions application this opens
a WebTransactions session for that user on the WebTransactions server. This
session contains all the connections open for this user to the
->browsers, special ->clients and ->hosts.
A session can be started as follows:
– Input of a WebTransactions URL in the browser.
– Using the START_SESSION method of the WT_REMOTE client/server interface.
A session is terminated as follows:
– The user makes the corresponding input in the output area of this

->WebTransactions application (not via the standard browser buttons).
– Whenever the configured time that WebTransactions waits for a response

from the ->host application or from the ->browser is exceeded.
– Termination from WebTransactions administration.
– Using the EXIT_SESSION method of the WT_REMOTE client/server interface.
A WebTransactions session is unique and is defined by a ->WebTransactions
application and a session ID. During the life cycle of a session there is one
->holder task for each WebTransactions session on the WebTransactions server.

SOAP
(originally Simple Object Access Protocol)
The ->XML based SOAP protocol provides a simple, transparent mechanism
for exchanging structured and typecast information between computers in a
decentralized, distributed environment.
SOAP provides a modular package model together with mechanisms for data
encryption within modules. This enables the uncomplicated description of the
internal interfaces of a ->Web-Service.

Glossary

WebTransactions Concepts and Functions 215

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:3
4.

38
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
1

_K
on

ze
p

te
_F

u
nk

tio
ne

n
\e

n\
ko

n
fu

.m
ix

style
In WebTransactions this produces a different layout for a ->template, e.g. with
more or less graphic elements for different->browsers. The style can be changed
at any time during a ->session.

synchronized dialog
In the case of synchronized dialogs (normal case), WebTransactions automati-
cally checks whether the data received from the web browser is genuinely a
response to the last ->HTML page to be sent to the ->browser. For example, if
the user at the web browser uses the Back button or the History function to
return to an “earlier” HTML page of the current ->session and then returns this,
WebTransactions recognizes that the data does not correspond to the current
->dialog cycle and reacts with an error message. The last page to have been
sent to the browser is then automatically sent to it again.

system access control
Check to establish whether a user under a particular ->user ID is authorized to
work with the application.

system object (wt_System)
The WebTransactions system object contains ->variables which continue to
exist for the duration of an entire ->session and are not cleared until the end of
the session or until they are explicitly deleted. The system object is always
visible and is identical for all name spaces.

TAC
See ->transaction code

tag
->HTML, ->XML and ->WTML documents are all made up of tags and actual
content. The tags are used to mark up the documents e.g. with header formats,
text highlighting formats (bold, italics) or to give source information for graphics
files.

TCP/IP
(Transport Control Protocol/Internet Protocol)
Collective name for a protocol family in computer networks used, for example,
in the Internet.

Glossary

216 WebTransactions Concepts and Functions

template
A template is used to generate specific code. A template contains fixed infor-
mation parts which are adopted unchanged during generation, as well as
variable information parts that can be replaced by the appropriate values during
generation.
A template is a ->WTML file with special tags for controlling the dynamic gener-
ation of a ->HTML page and for the processing of the values entered at the -
>browser. It is possible to maintain multiple template sets in parallel. These then
represent different ->styles (e.g. many/few
graphics, use of Java, etc.).
WebTransactions uses different types of template:
– ->Automask templates for the automatic conversion of the ->formats of MVS

and OSD applications.
– Custom templates, written by the programmer, for example, to control an -

>active dialog.
– Format-specific templates which are generated for subsequent post-pro-

cessing.
– Include templates which are inserted in other templates.
– ->Class templates
– ->Master templates to ensure the uniform layout of fixed areas on the

generation of the Automask and format-specific templates.
– Start template, this is the first template to be processed in a

WebTransactions application.

template object
->Variables used to buffer values for a ->dialog cycle in WebTransactions.

terminal application
Application on a ->host computer which is accessed via a 9750 or 3270
interface.

terminal hardcopy print
A terminal hardcopy print in WebTransactions prints the alphanumeric repre-
sentation of the ->format as displayed by a terminal or a terminal emulation.

transaction
Processing step between two synchronization points (in the current operation)
which is characterized by the ACID conditions (Atomicity, Consistency, Isolation
and Durability). The intentional changes to user information made within a
transaction are accepted either in their entirety or not at all (all-or-nothing rule).

Glossary

WebTransactions Concepts and Functions 217

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:3
4.

38
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
1

_K
on

ze
p

te
_F

u
nk

tio
ne

n
\e

n\
ko

n
fu

.m
ix

transaction code/TAC
Name under which an openUTM service or ->openUTM program unit can be
called. The transaction code is assigned to the openUTM program unit during
configuration. A program unit can be assigned several transaction codes.

UDDI
(Universal Description, Discovery and Integration)
Refers to directories containing descriptions of ->Web services. This information
is available to web users in general.

Unicode
An alphanumeric character set standardized by the International Standardisa-
tion Organisation (ISO) and the Unicode Consortium. It is used to represent
various different types of characters: letters, numerals, punctuation marks, syl-
labic characters, special characters and ideograms. Unicode brings together all
the known text symbols in use across the world into a single character set.
Unicode is vendor-independent and system-independent. It uses either two-
byte or four-byte character sets in which each text symbol is encoded. In the ISO
standard, these character sets are termed UCS-2 (Universal Character Set 2)
or UCS-4. The designation UTF-16 (Unicode Transformation Format 16-bit),
which is a standard defined by the Unicode Consortium, is often used in place
of the designation UCS-2 as defined in ISO. Alongside UTF-16, UTF-8 (Unicode
Transformation Format 8 Bit) is also in widespread use. UTF-8 has become the
character encoding method used globally on the Internet.

UPIC
(Universal Programming Interface for Communication)
Carrier system for openUTM clients which uses the X/Open interface, which
permity CPI-C client/server communication between a CPI-C-Client application
and the openUTM application.

URI
(Uniform Resource Identifier)
Blanket term for all the names and addresses that reference objects on the
Internet. The generally used URIs are->URLs.

URL
(Uniform Resource Locator)
Description of the location and access type of a resource in the ->Internet.

user exit
Functions implemented in C/C++ which the programmer calls from a
->template.

Glossary

218 WebTransactions Concepts and Functions

user ID
User identification which can be assigned a password (->system access control)
and special access rights (->data access control).

variable
Memory location for variable values which requires a name and a ->data type.

visibility of variables
->Objects and ->variables of different dialog types are managed by WebTrans-
actions in different address spaces. This means that variables belonging to a -
>synchronized dialog are not visible and therefore not accessible in a
->asynchronous dialog or in a dialog with a remote application.

web server
Computer and software for the provision of ->HTML pages and dynamic data
via ->HTTP.

web service
Service provided on the Internet, for example a currency conversion program.
The SOAP protocol can be used to access such a service. The interface of a
web service is described in ->WSDL.

WebTransactions application
This is an application that is integrated with ->host applications for internet/
intranet access. A WebTransactions application consists of:
– a ->base directory
– a start template
– the ->templates that control conversion between the ->host and the

->browser.
– protocol-specific configuration files.

WebTransactions platform
Operating system of the host on which WebTransactions runs.

WebTransactions server
Computer on which WebTransactions runs.

WebTransactions session
See ->session

WSDL
(Web Service Definition Language)
Provides ->XML language rules for the description of ->web services. In this
case, the web service is defined by means of the port selection.

Glossary

WebTransactions Concepts and Functions 219

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:3
4.

38
P

fa
d:

 F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
1

_K
on

ze
p

te
_F

u
nk

tio
ne

n
\e

n\
ko

n
fu

.m
ix

WTBean
In WebTransactions ->WTML components with a self-descriptive interface are
referred to as WTBeans. A distinction is made between inline and standalone
WTBeans:
– An inline WTBean corresponds to a part of a WTML document
– A standalone WTBean is an autonomous WTML document

A number of WTBeans are included in of the WebTransactions product, addi-
tional WTBeans can be downloaded from the WebTransactions homepage
ts.fujitsu.com/products/software/openseas/webtransactions.html.

WTML
(WebTransactions Markup Language)
Markup and programming language for WebTransactions ->templates. WTML
uses additional ->WTML tags to extend ->HTML and the server programming
language ->WTScript, e.g. for data exchange with ->host applications. WTML
tags are executed by WebTransactions and not by the ->browser (serverside
scripting).

WTML tag
(WebTransactions Markup Language-Tag)
Special WebTransactions tags for the generation of the dynamic sections of an
->HTML page using data from the->host application.

WTScript
Serverside programming language of WebTransactions. WTScripts are similiar
to client-side Java scripts in that they are contained in sections that are intro-
duced and terminated with special tags. Instead of using ->HTML-SCRIPT tags
you use ->WTML-Tags: wtOnCreateScript and wtOnReceiveScript. This indicates
that these scripts are to be implemented by WebTransactions and not by the
->browser and also indicates the time of execution. OnCreate scripts are
executed before the page is sent to the browser. OnReceive scripts are
executed when the response has been received from the browser.

XML
(eXtensible Markup Language)
Defines a language for the logical structuring of documents with the aim of
making these easy to exchange between various applications.

XML schema
An XML schema basically defines the permissible elements and attributes of an
XML description. XML schemas can have a range of different formats, e.g. DTD
(Document Type Definition), XML Schema (W3C standard) or XDR (XML Data
Reduced).

Glossary

220 WebTransactions Concepts and Functions

WebTransactions Concepts and Functions 221

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

ul
i 2

01
0

 S
ta

nd
 1

4
:3

4.
38

P
fa

d
: F

:\
W

e
bT

A
\V

7.
5\

M
an

u
al

e
\1

00
3

50
1_

K
on

ze
p

te
_F

u
nk

tio
ne

n\
en

\k
o

nf
u.

ab
k

Abbreviations
BO Business Object

CGI Common Gateway Interface

DN Distinguished Name

DNS Domain Name Service

EJB Enterprise JavaBean

FHS Format Handling System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IFG Interaktiver Format Generator

ISAPI Internet Server Application Programming Interface

LDAP Lightweight Directory Access Protocol

LPD Line Printer Daemon

MT-Tag Master-Template-Tag

MVS Multiple Virtual Storage

OSD Open Systems Direction

SGML Standard Generalized Markup Language

SOAP Simple Object Access Protocol

Abbreviations

222 WebTransactions Concepts and Functions

SSL Secure Socket Layer

TCP/IP Transport Control Protocol/Internet Protocol

Upic Universal Programming Interface for Communication

URL Uniform Resource Locator

WSDL Web Services Description Language

wtc WebTransactions Component

WTML WebTransactions Markup Language

XML eXtensible Markup Language

WebTransactions Concepts and Functions 223

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
li

2
01

0
 S

ta
n

d
14

:3
4.

38
P

fa
d

: F
:\W

eb
TA

\V
7.

5\
M

an
u

al
e\

10
03

50
1

_K
on

ze
p

te
_F

u
nk

tio
ne

n
\e

n\
ko

n
fu

.li
t

Related publications

WebTransactions manuals

You can download all manuals from the Web address http://manuals.ts.fujitsu.com.

WebTransactions
Template Language
Reference Manual

WebTransactions
Client APIs for WebTransactions
User Guide

WebTransactions
Connection to openUTM Applications via UPIC
User Guide

WebTransactions
Connection to OSD Applications
User Guide

WebTransactions
Connection to MVS Applications
User Guide

WebTransactions
Access to Dynamic Web Contents
User Guide

WebTransactions
Web Frontend for Web Services
User Guide

http://manuals.ts.fujitsu.com

Related publications

224 WebTransactions Concepts and Functions

WebTransactions Concepts and Functions 225

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

ly
 2

0
10

S

ta
nd

 1
4:

34
.3

8
P

fa
d

: F
:\

W
e

bT
A

\V
7.

5\
M

a
nu

al
e

\1
00

35
0

1_
K

o
nz

e
pt

e_
F

un
kt

io
ne

n\
en

\k
o

nf
u.

si
x

Index

A
activate

WebTransactions trace 122
WT_TRACE trace 122

active dialog 108, 109, 203, 206
administration 127

application 131
interface 127, 128
sessions 129

administration (WebTransactions server)
basic operation 139
entering licenses 135

adopt variable names in WebLab 177
Alt key 177
API

from Microsoft (ISAPI) 37
from Netscape (NSAPI) 37

application
distributing 200
packing 199
unpacking 199

architecture
WebTransactions 37

array 203
for browser data 82

asynchronous message 111, 203
asynchronous object tree 164
asyncPage (parameter) 112
attribute 203

LANGUAGE 57
names 71
STYLE 56

AUTH_TYPE (CGI environment variable) 72
automask template 39, 204

creating 161

B
base data type 203
base directory 39, 204

wtcUsage 54
BASEDIR (system object attribute) 72, 106
BCAM application name 204
BCAMAPPL 204
blade server 149

clone 152
cluster 153
creating an image 152
distributing WebTransactions 152
features 149
installing WebTransactions 150
reference blade 152

browser 204
template 166

browser data 82
checking 110

browser display print 204
browser platform 204
buffer 204
business process reengineering 25
button for help information 111

C
cache of browser

problems 115
capture database 205
capture procedure 30
capturing 204
CGI (Common Gateway Interface) 72, 205
CGI environment variables 72

AUTH_TYPE 72
CONTENT_LENGTH 72

Index

226 WebTransactions Concepts and Functions

CONTENT_TYPE 72
GATEWAY_INTERFACE 72
HTTP_ACCEPT 72
HTTP_ACCEPT_CHARSET 72
HTTP_ACCEPT_ENCODING 72
HTTP_ACCEPT_LANGUAGE 72
HTTP_USER_AGENT 72
PATH_INFO 72
PATH_TRANSLATED 72
QUERY_STRING 72
REFERER_URL 72
REMOTE_ADDR 72
REMOTE_HOST 72
REMOTE_IDENT 72
REMOTE_USER 72
REQUEST_METHOD 73
SCRIPT_NAME 73
SERVER_NAME 73
SERVER_PORT 73
SERVER_PROTOCOL 73
SERVER_SOFTWARE 73

cgiPath 94, 96
CHARSET (system object attribute) 73
class 205

templates 205
class template 52

suffix 52
client 205

interface 126
programs 27

clone 152
close

object lifetime 69
cluster 205

controller 143
editing 146
member 27, 143
stand by on a blade server 153
starting with URL 146

cluster license 143
registering 144

code
WTBean 174

Common Gateway Interface (CGI) 37

communication
between client and host 34
WT_REMOTE 126

communication object 205
lifespan 69

communication trace
WebLab trace 121
WTEdit trace 121

COMMUNICATION_ERROR_FORMAT (system
object attribute) 73

COMMUNICATION_ERRORS_DISABLED (sys-
tem object attribute) 74

components
WebTransactions 37
WTBeans 53

config subdirectory 56
connect

host application to WWW (first steps) 159
connection

to web services 35
WTML language resources 87

connection-specific system object 87
constructor call

WT_Communication 69
CONTENT_LENGTH (CGI environment

variable) 72
CONTENT_TYPE (CGI environment

variable) 72
context menu 166
control frame 114
control template 74
conversion tools 205
counter for dialog cycles 111
create

Automask template 161
project 159

current page 110
current session

status 70

D
daemon 205
data

dynamic 207

Index

WebTransactions Concepts and Functions 227

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

ly
 2

0
10

S

ta
nd

 1
4:

34
.3

8
P

fa
d

: F
:\

W
e

bT
A

\V
7.

5\
M

a
nu

al
e

\1
00

35
0

1_
K

o
nz

e
pt

e_
F

un
kt

io
ne

n\
en

\k
o

nf
u.

si
x

exchange 67
host application 67
storage (long-term) 70, 71

data access control 206
data type 206
Dataform tag 105
dead session 129
DEFAULT_FORMAT (system object attribute) 74
delete

operator 87
demo applications 201
description file

name 54
WTBean 54

design
dialog sequence 178
testing 191

diagnosis 121
dialog 206

active 206
frame 114
non-synchronized 206, 211
passive 206, 212
recording in WTScript 178
synchronized 206, 215
types 206

dialog control
active 108, 109
passive 108
using template 108, 109

dialog cycle 206
client interface 65
non-synchronized dialog 64
number 111
objects 67
synchronized dialog 62
without browser output 109
without host contact 109

dialog element
WTBean 53

dialog management
WTBean 53

dialog sequence
terminal operation 108

dialog via client interface, dialog cycle 65
DIALOG_CONTROL_FORMAT (system object

attribute) 74
directory

base directory 40
wtcCollection 54
wtcUsage 54

display
WTBean 174

distinguished name 206
distribute

WebTransactions application 198, 200
document directory 207
Domain Name Service (DNS) 207
Drag&Drop 177
dynamic HTML 51

E
edit

object tree 167
parameters of a WTBean 175
template 170

edit area (WebLab) 192
EHLLAPI 207
EJB 207
end of session 75
end template 118
entry page 207
error

correcting 192
error output 73
logging 74
suppress message 74

ERROR (system object attribute) 74
ERROR_LOGFILE (system object attribute) 74
evaluation operator 49, 207
execution sequence

testing in templates 193
EXIT_SESSION (system object attribute) 75
expression 207

F
FHS 207
field 208

Index

228 WebTransactions Concepts and Functions

field file 208
file filter 166
file selection

template tree 166
filter 208

files 166
fld file 208
form data, return 105
FORM tag 105
format 208

#format 208
*format 208
+format 208
-format 208
template 179

FORMAT (system object attribute) 75, 106
format description source 208
format type 208
FORMAT_STATE (system object attribute) 75,

106, 111
forms subdirectory 56
frame

loading/unloading 114
fully qualified name (host data object) 86
function 208

setSingleStep() 193
WTBean 53

G
GATEWAY_INTERFACE (CGI environment

variable) 72
global session information 71
goodie

WTBean 54, 171
GUI

WebLab 162
GUIfication 24

H
HANDLE (system object attribute) 75
header for hyperlink 76
help information, intermediate dialog 111
help text, online 113
hidden fields 71, 106

History function 110
holder task 208
host 208
host adapter 38, 39, 208

trace level 123
host application 209

data 67
integrating (first steps) 159

host control object 86, 209
lifespan 69

host data object 86, 209
lifespan 69
name 86

host data print 209
host platform 209
host root object 85

lifetime 69
HREF

tag 106
HREF (system object attribute) 76, 106
HREF_ASYNC (system object attribute) 76, 112
HTML 209

creating tags XHTML conform 171
link 105
starting WebTransactions via a form 96

HTML page, relevance 110
HTML tag, static output 49
HTTP 209

daemon interface 37
HTTP header 84
HTTP_ACCEPT (CGI environment variable) 72
HTTP_ACCEPT_CHARSET (CGI environment

variable) 72
HTTP_ACCEPT_ENCODING (CGI environment

variable) 72
HTTP_ACCEPT_LANGUAGE (CGI environment

variable) 72
HTTP_DEFAULT_HEADER (system object

attribute) 77
HTTP_HEADER (system object attribute) 77
HTTP_USER_AGENT (CGI environment

variable) 72
HTTPS 209
hypertext 209

Index

WebTransactions Concepts and Functions 229

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

ly
 2

0
10

S

ta
nd

 1
4:

34
.3

8
P

fa
d

: F
:\

W
e

bT
A

\V
7.

5\
M

a
nu

al
e

\1
00

35
0

1_
K

o
nz

e
pt

e_
F

un
kt

io
ne

n\
en

\k
o

nf
u.

si
x

Hypertext Markup Language (HTML) 209

I
IFG2FLD

program 38
IGNORE 112
image 152
include tag 175
individual start template

creating 161
inline WTBean 53, 219

parameters 173
input data, returning 105
insert

WTBean 174
install (WTEdit command) 124
installation

Blade Server 150
installation directory

wtcCollection 54
integration

in portal 26
Java 34

interaction of browser - WebTransactions 105
interface

reengineering 25
intermediate dialog 110
ISAPI 37

J
Java

class path 77
integration 34

Java Bean 210
JAVA_CLASSPATH (system object attribute) 77
JAVA_EXCEPTION (system object attribute) 78
JavaScript 31
JSR-168 portlets

template design 177
jump to processing step 106

K
KDCDEF 210
kernel components 38

keywords
for tool parameters 196

L
LANGUAGE (system object attribute) 56, 57, 78,

106
layout

"beautification" 170
different styles 81

LDAP 210
directory services 35

license
cluster 143
entering 135
on-demand 136
registering 135
standalone 135

lifetime
objects 69

Lightweight Directory Access Protocol see LDAP
limited dialog 111
link 76, 106
literals 210
load distribution 27
lock sessions 127
logfile

error 74
single-step tracking 193

logical state of host application 110
login to WebTransactions 93
LT_REPLACE_STRING (system object

attribute) 78

M
machine 94, 96
management information

internal 85
master application 143

distributing 143
master template 30, 210, 216

tag 210
MAX_NESTING_LEVEL (system object

attribute) 78
menu bar 162

Index

230 WebTransactions Concepts and Functions

message queuing 210
method 210
module see module template
module template 52, 210
msg subdirectory 59
MT tag 210
multi-step transactions 126
multitier architecture 211

N
name/value pair 82, 106, 211
named pipes

process communication 129
names

WTBean 54
non-synchronized dialog 110, 206, 211

dialog cycle 64, 76
NSAPI 37

O
object 66, 211
object hierarchy 66

browser data 83
object tree 167

asynchronous 164
editing 167
remote 164
synchronous 164

OFFLINE_LOGFILE (system object
attribute) 123

on-demand license 136
registering 137

open method call 87
openUTM 211

application 211
Client 212
program unit 212
service 214

operations 206
Oracle portlets

template design 177
output area 163
output format

global management data 86

P
pack

application 199
parameter 212
parameters

editing (WTBean) 175
for tools 196
inline WTBeans 173
standalone WTBean 172

parent.ctr 115
parent.location 115
passive dialog 108, 206, 212
password 212
path

java classes 77
virtual 61

PATH_INFO (CGI environment variable) 72
PATH_TRANSLATED (CGI environment

variable) 72
PLATFORM (system object attribute) 78
polling 212
pool 212
portal

integration in 26
portal use

designing templates 177
posted object 82, 212

lifetime 69
POSTED_UNPARSED (system object

attribute) 79
posting 212
predefined end template 118
predefined objects, lifetime 69
PREVENT_EXIT_SESSION (system object

attribute) 79
print data

querying 111
process 213
process communication, named pipes 129
processing

WTBean 53
project 159, 213

creating 159
saving 161

Index

WebTransactions Concepts and Functions 231

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

ly
 2

0
10

S

ta
nd

 1
4:

34
.3

8
P

fa
d

: F
:\

W
e

bT
A

\V
7.

5\
M

a
nu

al
e

\1
00

35
0

1_
K

o
nz

e
pt

e_
F

un
kt

io
ne

n\
en

\k
o

nf
u.

si
x

properties
WTBean 54

property 213
protocol 39, 213

LDAP 35
SOAP 35
WSDL 35

PROTOCOL (system object attribute) 79
protocol file 213

Q
QUERY_STRING (CGI environment variable) 72

R
receive

method call 88
receive object

lifetime 69
recognition criteria 213
record 213
record structure 208
RECORD_HOST_COMMUNICATION (system

object attribute) 123
reference blade 152
REFERER_URL (CGI environment variable) 72
register

cluster licenses 144
license 135
on-demand licenses 137
standalone license 135

relevance
browser data 110
HTML page 110

remote
applications 26
object tree 164

REMOTE_ADDR (CGI environment variable) 72
REMOTE_HOST (CGI environment variable) 72
REMOTE_IDENT (CGI environment variable) 72
REMOTE_USER (CGI environment variable) 72
request

to HTTP daemon 93
REQUEST_METHOD (CGI environment

variable) 73

re-usable component 32
rigid dialog 110, 112
ROAMING (system object attribute) 80
Roaming Session 41

test 45
test identity 44
test restart 45

ROAMING_FORMAT (system object
attribute) 80

S
SAP EP iViews

template design 177
save

project 161
scalar 213
screen format, general information 86
SCRIPT_NAME (CGI environment variable) 73
SEARCH_HOST_OBJECTS (system object

attribute) 80
selection option in the interface 106
sequence

of WebTransactions 62
template 110

server administration 131
server tools 196
SERVER_NAME (CGI environment variable) 73
SERVER_PORT (CGI environment variable) 73
SERVER_PROTOCOL (CGI environment

variable) 73
SERVER_SOFTWARE (CGI environment

variable) 73
service (openUTM) 214
service application 45

starting 45
service node 214
session 80, 214

administering 105, 129
identifier 80
identifying 67
management 34
recording 123
Roaming Session 41
service application 45

Index

232 WebTransactions Concepts and Functions

starting 93
starting service application 45
terminating 116
WebTransactions 214

SESSION (system object attribute) 80, 106
setSingleStep() 193
setTraceLevel() 122
Shift key 177
signature 81
SIGNATURE (system object attribute) 81, 106
Simple Object Access Protocol see SOAP protocol
single-step tracking 193

logfile 193
SOAP 214

protocol 35
standalone license 135

registering 135
standalone WTBean 53, 219

parameters 172
start

session 161
WebLab 162
WebTransactions with additional values 94

start page
for demo applications 201
for trace mode 122

start template 39, 216
for testing 98
wtstart.htm 98

static HTML 51
STATISTICS (system object attribute) 81
status of session 70
structure

WebTransactions 37
style 215
STYLE (system object attribute) 56, 81
subdirectory

config 56
forms 56
msg 59
tmp 59

suffix.clt 52
superordinate template 74

synchronized dialog 206, 215
dialog cycle 62

synchronous
object tree 164

system access control 215
system object 215

lifetime 69
system object attribute

BASEDIR 72
CHARSET 73
COMMUNICATION_ERROR_FORMAT 73
COMMUNICATION_ERRORS_DISABLED 7

4
DEFAULT_FORMAT 74
DIALOG_CONTROL_FORMAT 74
ERROR 74
ERROR_LOGFILE 74
EXIT_SESSION 75
FORMAT 75
FORMAT_STATE 75
HANDLE 75
HREF 76
HREF_ASYNC 76
HTTP_DEFAULT_HEADER 77
HTTP_HEADER 77
JAVA_CLASSPATH 77
JAVA_EXCEPTION 78
LANGUAGE 78
LT_REPLACE_STRING 78
MAX_NESTING_LEVEL 78
PLATFORM 78
POSTED_UNPARSED 79
PREVENT_EXIT_SESSION 79
PROTOCOL 79
ROAMING 80
ROAMING_FORMAT 80
SEARCH_HOST_ OBJECTS 80
SESSION 80
SIGNATURE 81
STATISTICS 81
STYLE 81
TIMEOUT_APPLICATION 81
TIMEOUT_FORMAT 81
TIMEOUT_USER 81

Index

WebTransactions Concepts and Functions 233

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

ly
 2

0
10

S

ta
nd

 1
4:

34
.3

8
P

fa
d

: F
:\

W
e

bT
A

\V
7.

5\
M

a
nu

al
e

\1
00

35
0

1_
K

o
nz

e
pt

e_
F

un
kt

io
ne

n\
en

\k
o

nf
u.

si
x

WTML_VERSION 82
WWWDOCS_VIRTUAL 82

T
TAC 217
tag 215
TCP/IP 215
template 216

activating tracing 122
browser 166
class 205
designing for use in portal 177
follow-up processing 170
formatting 179
master 216
module 52
object 216
start 216
testing areas 193
testing execution 193
testing the design 191
types 48

template object
lifetime 69

template tree
file selection 166
structure 164

terminal application 216
terminal hardcopy printing 216
terminate

session 116
Terminate button (administration) 129
test

execution sequence 193
template area 193
template design 191

Thread 208
TIMEOUT_APPLICATION (system object

attribute) 81, 106
TIMEOUT_FORMAT (system object attribute) 81
TIMEOUT_USER (system object attribute) 81
title bar 162
tmp directory

clean up 127

tmp subdirectory 59
tool 196

parameters 196
trace

level (host adapters) 123
WebLab 121
WebTransactions 121
WTEdit 121

trace file 121, 129
list (administration) 129

transaction 216
transaction code/TAC 217
transfer

applications by command 124
scope 198
WebTransactions application 124, 198
wwwdocs directory 60

tree structure 163
templates 164

U
UDDI 217
Unicode 217
Unicode support 32
unpack

application 199
UPIC 217
URI 217
URL 217

specifying 93
WebTransactions 106
WTPublish 161

user exits 217
C/C++ 35

user ID 218
user input 67
user profile 71
UTM see openUTM

V
value range of a data type 206
value window 168
variable 218
virtual path 61

Index

234 WebTransactions Concepts and Functions

visibility 218

W
web frontend

for web services 36
web server 218
web service 36, 100, 218

connecting to 35
Web Services Description Language see WSDL
WebLab 32, 155

editing template 170
functionality 157
GUI 162
main window 162
object tree 167
starting 162
starting session 161
trace 121

WebTransactions 124
development environment 155
session 214
structure 37
transferring applications 124

WebTransactions application 39, 218
activating tracing 122
creating 90
distributing 198, 200
packing 199
starting in another language 95
starting in another style 95
starting via WT_REMOTE 97
starting with additional values 94
testing (start templates) 98
transferring 198
transferring by command 124
unpacking 199

WebTransactions platform 218
WebTransactions server 218

administering 131
WebTransactions trace 121

activating for a template 122
activating for an application 122
general activation 122

work area 163

WSDL 218
protocol 35

WT_Communication
constructor call 69

WT_HOST 85
WT_HOST.com1.host_control_object 86
wt_Host.handle.wt_System 87
WT_POSTED.HTTP 84
WT_REMOTE 126

multi-step transaction 126
single-step transaction 126
starting WebTransactions applications 97

wt_System.HREF 106
WT_SYSTEM.ROAMING 44
WT_SYSTEM.ROAMING_FORMAT 42
WT_SYSTEM.SIGNATURE 44
WTBean 53, 219

components 54
description file 54
displaying 174
editing parameters 175
function 53
goodie 54, 171
inserting 174
properties 54
wtcRoaming 41

wtcCollection
directory 54

wtcRoaming 41
wtcUsage

directory 54
WTEdit

install command 124
transferring applications by command 124

WTEdit trace 121
wtend.htm 118
WTML 31, 32, 219

template 30, 48
WTML tag 219
WTML tags

dynamic output 49
WTML_VERSION (system object attribute) 82
WTPublish

URL 161

Index

WebTransactions Concepts and Functions 235

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.4

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
u

ly
 2

0
10

S

ta
nd

 1
4:

34
.3

8
P

fa
d

: F
:\

W
e

bT
A

\V
7.

5\
M

a
nu

al
e

\1
00

35
0

1_
K

o
nz

e
pt

e_
F

un
kt

io
ne

n\
en

\k
o

nf
u.

si
x

WTScript 31, 32, 49, 219
recording a dialog 178
version information 82

wtstart.htm 98
WWW browser 204
WWW server 218
wwwdocs

transfer directory 60
WWWDOCS_VIRTUAL (system object

attribute) 82

X
XHTML tags 171
XML 219
XML schema 219
XML support 31

Index

236 WebTransactions Concepts and Functions

	Contents
	Preface
	Product characteristics
	WebTransactions supply units
	Application-specific host adapters
	Host adapter for dynamic Web content

	WebTransactions documentation
	Structure and target group of this manual
	New features
	General solutions
	Notational conventions

	Functional overview
	Possible applications
	WebTransactions function range
	WebTransactions components

	What is a WebTransactions application
	Components of a WebTransactions application
	WebTransactions session
	Roaming Sessions
	Service applications

	Templates
	WTML templates
	Master, class and module templates
	Master templates
	Class templates
	Module templates

	WTBeans

	Structure of the base directory
	The config subdirectory
	The forms subdirectory
	Subdirectories for style and language variants

	The msg subdirectory
	The tmp subdirectory
	The wtcUsage subdirectory
	The wwwdocs subdirectory

	Dialog cycle
	Synchronized dialog
	Non-synchronized dialog
	Dialog via client interface

	Objects - dynamic data
	Lifetime of objects
	Object visibility
	Global system object WT_SYSTEM - session control and long-term data storage
	Long-term data storage
	Global session control

	Posted object WT_POSTED - data from the browser
	Host root object WT_HOST - managing connections to host applications
	Host communication object WT_HOST.Comobj - managing a host connection
	Host data objects - host application data
	Host control objects - management data for a format
	Connection-specific system object WT_Host.Comobj.WT_SYSTEM - connection- specific control functions
	WTScript and communication objects

	Template objects - Short-term intermediate data storage

	Execution of a WebTransactions application
	Creating a WebTransactions application
	Starting a WebTransactions dialog application
	Start options
	Starting by input of the URL
	Starting using an HTML form
	Starting with WT_REMOTE

	Templates at start time
	General start template wtstart.htm
	Connection-specific start templates
	Interaction between start templates when integrating the application

	Data exchange during the session
	FORM tag
	HTML link

	Dialog between WebTransactions and the host application
	Passive dialog
	Active dialog

	Dialog between WebTransactions and the browser
	Synchronized dialog
	Non-synchronized dialog

	Terminating a session
	Terminating a session explicitly
	Terminating a session by means of a timeout
	Terminating via WT_REMOTE

	Diagnoses in a WebTransactions application
	Trace functions
	Communication traces
	WebTransactions trace

	Recording a session

	Transferring a WebTransactions application
	Unpacking an application by command

	Client interface WT_REMOTE
	Administering a WebTransactions application

	WebTransactions server
	User concept
	Starting the administration program
	Entering or upgrading licenses
	Standalone licenses
	On-demand licenses
	Cluster licenses

	Managing the WebTransactions server
	Cluster concept
	Registering cluster licenses
	Setting up a cluster
	Editing a cluster’s properties
	Starting a cluster session

	WebTransactions on a blade server
	Blade server features
	Providing WebTransactions on a blade
	Installation on Linux
	Installing in Windows
	Configuring WebTransactions

	Providing WebTransactions on several blades of a blade server
	Providing a WebTransactions cluster on several blades of a blade server

	The WebLab development environment
	Functionality of WebLab
	First Steps
	Creating projects
	Creating a base directory
	Creating an automask template (OSD, MVS)
	Creating an individual start template

	Saving a project
	Starting a session

	The WebLab GUI
	Main window
	Tree structure
	Template tree
	Object trees

	The value window

	Generating templates
	Editing templates
	General procedure
	Designing templates
	Editing templates
	Insert snippets
	Inserting WTBeans

	Defining templates for host formats
	Defining the global layout
	Design host formats
	Select host objects graphically

	Designing templates for portal use
	Designing dialog sequences
	Formatting templates
	Modifying the notation used for HTML and WTML tags
	Formatting the script source text
	Indenting HTML tags
	Indenting WTML tags

	Documenting templates
	Format of the comments
	Inserting comments
	Generating documentation
	Format of the display
	Example

	Testing templates
	Testing the design of a template
	Testing the execution sequence in the template
	Tracking execution via a template or a template area
	Monitoring the values of variables

	Integrating server tools in WebLab
	Transferring and distributing a WebTransactions application
	Scope of transfer
	Packing an application
	Unpacking an application
	Distributing an application

	Appendix: demo applications
	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

