
1 Preface
AID, the Advanced Interactive Debugger in BS2000, provides users with a powerful
debugging tool. AID V2.0A can be installed in BS2000 versions as of V9.5. Thanks to
AID, error diagnostics, debugging and short-term error recovery of all programs
generated in BS2000 are considerably more rapid and more straightforward than other
approaches, such as inserting debugging aid statements into a program, for example.
AID is permanently available and is extremely adaptable to the particular programming
language. Any program debugged using AID does not have to be recompiled but can
be used in a production run immediately. The range of functions of AID and its
debugging language (using AID commands) are primarily tailored to interactive
applications. AID can, however, also be used in batch mode. AID provides the user with
a wide range of options for monitoring and controlling execution, effecting output and
modification of memory contents; furthermore it provides help information on program
execution as well as information on the AID program itself.

With AID, the user can debug both on the symbolic level of the relevant programming
language as well as on machine code level. If LSD records are generated, data,
statement labels and program sections can be addressed for debugging purposes by
using names the user has assigned in the course of programming. Statements can be
addressed via the numbers or names created by the compiler. If no LSD records have
been generated for a program or module, the user can address data and statements by
using virtual addresses, CSECT names and keywords.
The BS2000 commands occurring in the AID documentation are described in the
EXPERT form of the SDF (System Dialog Facility) format. SDF is the dialog interface to
BS2000. The SDF command language supersedes the previous (ISP) command
language.

Target group

AID is targeted to all software developers working in BS2000 with the programming
languages COBOL, FORTRAN, C, PL/I or ASSEMBH or those who wish to debug or
correct programs on machine code level.

U4298-J-Z125-3-7600 1

Preface

Structure of the AID documentation

AID documentation is comprised of the AID Core Manual, the language-specific
manuals for symbolic debugging, and the manual for debugging on machine code
level. All the information the user requires for debugging can be found by referring to
the manual for the particular language required and the core manual. The manual for
debugging on machine code level can either be used as a substitute for or as a
supplement to any of the language-specific manuals.

AID Core Manual [1]
This basic reference manual contains an overview of AID and a description of the
contents and operands which are common to all the programming languages. As part
of the overview, the BS2000 environment is described; basic concepts are explained
and the AID repertoire of commands is presented. The other chapters describe
prerequisites for debugging; command input; the operands subcmd, compl-memref and
medium-a-quantity; AID literals and keywords. The manual also includes the AID
messages, BS2000 commands not permitted in command sequences, operands
supported for the last time, and a comparison of AID and IDA.

AID - Debugging on Machine Code Level [2]
AID - Debugging of COBOL Programs [3]
AID - Debugging of FORTRAN Programs
AID - Debugging of PL/I Programs [4]
AID - Debugging of ASSEMBH Programs [5]
AID - Debugging of C Programs

The manuals for the specific languages and the manual for debugging on machine
code level list the commands in alphabetical order. All simple memory references are
contained there.

In the language-specific manuals, the description of the operands is tailored to fit the
programming language in question. A prerequisite for this is that the user knows the
particular language scope and operation of the relevant compiler.

The manual for debugging on machine code level can be used for programs for which
no LSD records exist or for which the information from symbolic testing does not
suffice for error diagnosis. Debugging on machine code level means the user can issue
AID commands regardless of the language in which the program was written.

2 U4298-J-Z125-3-7600

Preface

Changes made since AID V1.0C

Data names and statement names can now be used to calculate a position in memory.
As a result, transition from the symbolic debugging level to machine code level and
vice versa is possible. The new operand compl-memref (complex memory reference) is
available for this transition.

Using selectors, the user can access the address (%@), length (%L) or type (%T) of
data names.

The type and length modification can be applied to all data and statement names and
all memory references. Thanks to the type and length selectors the new storage types
and separate application of the type or length modification, the user is provided with
extensive possibilities when it comes to modification.

The new storage types for character (%C), floating-point (%D) and packed (%P) format
provide new ways of redefining memory contents or reformatting output.

The storage types %S and %SX for address interpretation can be used to compute
addresses in conjunction with a subsequent pointer operator (->), as with Assembler
commands from the base register and displacement (%S) or index register, base
register and displacement (%SX).

The AID registers %nG and %nGD provide a program-independent set of registers
which can be freely used as desired.

Both symbolic and machine-oriented qualifications are not checked upon input but only
at runtime.

The %DISPLAY command with %HLLOC(memref) can be used to output symbolic
localization information, i.e. the symbolic names of the environment of a particular
address, for any memory reference.

In a subcommand, a name and/or a condition can be defined. The name can be used
to address the execution counter of the subcommand or delete the subcommand.
Execution of the subcommand can be made dependent on the condition.

The %CONTINUE command starts or continues the program. Unlike the %RESUME
command, it continues any interrupted %TRACE.

The %MOVE command can also be employed on the symbolic level. It modifies
memory contents without checking for the compatibility of storage types sender and
receiver and without converting numeric values.

The %FIND command can be used on the symbolic level within data names. AID stores
the hit address in AID register %0G, and the continuation address in %1G.

U4298-J-Z125-3-7600 3

Preface

The %AID command has been extended:
With the aid of the LOW operand, the user defines whether or not AID is to convert
user entries to uppercase letters.
With the DELIM operand, the user defines delimiters for alphanumeric output of data.
With the OV operand, the user defines whether or not AID is to take the overlay
structure of a program into account. As of Version 2.0A, AID no longer automatically
interprets the overlay structure of a program.
The LANG operand determines whether %HELP outputs information in English or in
German.

4 U4298-J-Z125-3-7600

2 Prerequisites for symbolic debugging
The user can control generation of the LSD records AID requires for symbolic
debugging by specifying the operands described below; these operands must be
specified for compiling, linking and loading operations. A more detailed description of
these operands is given in the "FOR1 User Guide" [8].

2.1 Compilation

As of V2.1A, the FOR1 compiler can be controlled in two ways:
via SDF options or
via COMOPT statements.

Whether the compiler is to generate LSD records can thus be specified as described
below, depending on the control option selected.

SDF control

NO
/START-FOR1-COMPILER,TEST-SUPPORT = PARAMETER (TOOL-SUPPORT =)

AID

NO No LSD records are generated. AID can only be used to debug the program on
machine code level.

AID The compiler generates LSD records. The program can be symbolically
debugged using AID.

COMOPT control

/START-PROGRAM $FOR1
*...

NO
*COMOPT SYMTEST = MAP

ALL

NO No LSD records are generated.

MAP No LSD records are generated, but call hierarchies can be traced.

ALL The compiler generates LSD records. The program can be symbolically
debugged using AID.

U4298-J-Z125-3-7600 5

Prerequisites for symbolic debugging

As of FOR1 V2.1A, LSD records may be generated for optimized programs as well.
However, the optimized program then no longer matches the compiler listing because:

the sequence of statements might be changed
a statement might be split up
statements may be dropped
with %DISPLAY, the previous value of a variable is generally output, since storage of
a value in a variable rarely occurs immediately after the corresponding assignment
statement is processed.

To debug a highly-optimized FORTRAN program (SDF option OPTIMIZATION=HIGH or
COMOPT statements OPTIMIZE={3|4} and PROCEDURE-OPTIMIZATION=SPECIAL) by means
of AID, the user can have a decompiler listing generated (see "FOR1 User Guide" [8]).
Such a listing facilitates debugging of an optimized program. Note, however, that the
%JUMP command cannot be used for the debugging of optimized programs.

Generation of both shareable code and LSD information in the same compilation run is
not possible. If both options are specified, FOR1 resets the SDF option SHAREABLE-

CODE=YES or the COMOPT statement OBJECT=(SHARE) and issues an error message.

Example

/START-FOR1-COMPILER SOURCE = SOURCE.TEST,
TEST-SUPPORT = PARAMETER (TOOL-SUPPORT = AID),
MODULE-LIBRARY = PROGRAMLIB

An object module is to be generated with LSD records when compiling the source
program SOURCE.TEST. The object module is written directly to the PLAM library
PROGRAMLIB.
If COMOPT control is used, the example reads as follows:

/DELETE-SYSTEM-FILE FILE-NAME = OMF
/START-PROGRAM $FOR1
*COMOPT SOURCE=SOURCE.TEST
*COMOPT SYMTEST=ALL
*COMOPT MODULE-LIBRARY=PROGRAMLIB
*END

6 U4298-J-Z125-3-7600

Prerequisites for symbolic debugging

2.2 Linking, loading and starting

During the debugging phase, loading of the program via the LOAD-PROGRAM
command is recommended so that the user can enter the AID commands required for
debugging. START-PROGRAM is used to link, load and start the program. Both SDF
commands are described in the AID Core Manual, chapter 3; they are same for all
programming languages.

The FORTRAN program can also be linked, loaded and started by using the START-
FOR1-PROGRAM command, in which case the SDF operand TESTOPT controls the
way the LSD records are handled.
As of FOR1 V2.2A, START-FOR1-PROGRAM just loads the program without starting it if
the SDF options TESTOPT=AID and RUNOPT=NO are specified. AID commands can
thus be entered for debugging before the program is started using %RESUME.
If a FOR1 version < 2.2A is used, the FORTRAN statement PAUSE should be inserted
at a suitable point in the program. This will interrupt the program run so that AID
commands can be entered.

NONE
/START-FOR1-PROGRAM,TESTOPT =

AID

NONE The program is loaded without LSD records.
If the LSD records with the object module are in a PLAM library, AID can
dynamically load them whenever required. To do so, the library must be
specified using %SYMLIB.

AID The program is loaded with LSD records.
The linkage editor does not check whether the processed object module
actually includes LSD records.

Examples

1. /START-FOR1-PROGRAM FROM-FILE = *MODULE (LIBRARY = *OMF),
TESTOPT = AID, RUNOPT = NO

The dynamic linking loader links the program from the temporary object module
file and loads it with the associated LSD records (as of FOR1 V2.2A).

2. /START-FOR1-PROGRAM FROM-FILE = *PHASE (LIBRARY = PROGRAMLIB,
ELEMENT = ROOTMOD),
TESTOPT = NONE

From the PLAM library PROGRAMLIB the linked program ROOTMOD is loaded
without LSD records and started.

U4298-J-Z125-3-7600 7

3 FORTRAN-specific addressing
This chapter describes the memory references used for symbolic debugging of
FORTRAN programs. For a general description of addressing methods please refer to
the AID Core Manual, chapter 6.

Qualifications

Qualifications must always be specified in the order described below. They are
delimited by periods. Likewise a period must be inserted between the final qualification
and the following operand.

E={VM|Dn}
The base qualification specifies whether the AID work area is to be located in a
loaded program (E=VM) or in a dump file (E=Dn). The base qualification is used in
the same way both for symbolic debugging and for machine-oriented debugging, as
described in the AID Core Manual, chapter 6, and under the %BASE command. A
base qualification can be immediately followed by a data name, statement name,
source reference or complex memory reference.

PROG=program-name
In FORTRAN, the user can employ the PROG qualification as the area qualification,
where program-name designates a program unit from a FORTRAN program.
program-name consists of up to 7 characters specified as part of the PROGRAM,
SUBROUTINE or FUNCTION statement in the source program.
Operands specifying an address area (%CONTROL, %TRACE) or a name range
(%SDUMP) can end with the PROG qualification. The address range or name range
then encompasses the entire program unit.

PROG=program-name•program-name
If the name of a program unit is repeated directly after a PROG qualification, the
user is thus designating the address of the first program unit statement which can
be executed.
This specification can be used in %DISASSEMBLE and %INSERT.

U4298-J-Z125-3-7600 9

FORTRAN-specific addressing

Memory references

Memory references may include all data names and statement labels from the program
which are contained in the LSD records, as well as the statement numbers generated
by the compiler, and may be subjected to all the operations described in the AID Core
Manual, chapter 6.
In all operands in which compl-memref is possible, the user can arbitrarily switch
between the memory references as described in this manual and those for debugging
on machine code level (see [2]).

dataname
stands for all the names of constants, variables and arrays defined in the source
program. arrayname must be indexed if an array element is to be addressed. As
many indexes are required as need to be specified for access in a FORTRAN
statement. Multiple indexes have to be separated by a comma.
index can be specified as follows:

n
data-name
arithmetic-expression

n
is an integer with a value 1 n 231-1.

data-name
designates a numeric variable of type ’integer’ which must be located in the
same program unit as arrayname.

arithmetic-expression
AID calculates the value for index. Valid entries are the arithmetic operators
(+,-,/,*) and the above-listed operands n and data-name.

dataname can be specified in all commands for output and modification of
information (%DISPLAY, %MOVE, %SDUMP, %SET) and in the %FIND command
(search for a string).

L’n’
is a statement name, designating the address of the first executable FORTRAN
statement following a statement label.
n is a statement label (maximum of 5 digits) of the source program; the label is
assigned by the programmer. Leading zeros are not to be specified.
L’n’ may be specified in all operands either designating an address in the
executable part of the program (%DISASSEMBLE, %FIND, %INSERT, %JUMP) or
serving for the output and modification of memory locations (%DISPLAY, %MOVE,
%SET).

10 U4298-J-Z125-3-7600

FORTRAN-specific addressing

S’n’
is a source reference designating the address of an executable FORTRAN
statement.
n is the number of a source program statement; it is assigned by the compiler and
can be found in column STMT of the compiler listing.
S’n’ may be specified in all operands either designating an area (%CONTROLn,
%TRACE) or address (%DISASSEMBLE, %FIND, %INSERT) in the executable part of
the program or serving for the output and modification of memory locations
(%DISPLAY, %MOVE, %SET).

U4298-J-Z125-3-7600 11

4 Metasyntax
The metasyntax shown below is the notational convention used to represent
commands. The symbols used and their meanings are as follows:

UPPERCASE LETTERS
Mandatory string which the user must employ to select a particular function.

lowercase letters
String identifying a variable, in the place of which the user can insert any of the
permissible operand values.

alternative
...

alternative

{ alternative ... alternative }

Alternatives; one of these alternatives must be picked. The two formats have the
same meaning.

[optional]

Specifications enclosed in square brackets indicate optional entries.
In the case of AID command names, only the entire part in square brackets can be
omitted; any other abbreviations cause a syntactical error.

[...]

Reproducibility of an optional syntactical unit. If a delimiter, e.g. a comma, must be
inserted before any repeated unit, it is shown before the periods.

{...}

Reproducibility of a syntactical unit which must be specified at least once. If a
delimiter, e.g. a comma, must be inserted, it is shown before the periods.

U4298-J-Z125-3-7600 13

Metasyntax

Underscoring
Underscoring designates the default value which AID inserts if the user does not
specify a value for the operand.

•
A bullet (period in bold print) delimits qualifications, stands for a prequalification
(see also the %QUALIFY statement), is the operator for a byte offset or part of the
execution counter or subcommand name. The bullet is entered from the keyboard
using the key for a normal period. It is actually a normal period, but here it is
shown in bold to make it stand out better.

All operands in the continuous text of the manual appear in italics.

14 U4298-J-Z125-3-7600

5 AID commands

U4298-J-Z125-3-7600 15

%AID

%AID

The %AID command can be used to declare global settings or to revoke the settings
valid up until then.

By means of the CHECK operand you define whether an update dialog is to be
initiated prior to execution of the %MOVE or %SET commands.

By means of the REP operand you define whether memory updates of a %MOVE
command are to be stored as REPs.

By means of the SYMCHARS operand you define whether AID is to interpret a "-" in
program, data and statement names as a hyphen or as a minus sign. If "-" should
always be interpreted as a minus sign (in accordance with the FORTRAN
conventions), SYMCHARS=NOSTD must be specified.

By means of the OV operand you direct AID to take the overlay structure of a
program into account.

By means of the LOW operand you direct AID to convert lowercase letters of
character literals and names to uppercase, or to interpret them as lowercase. The
default value is OFF.

By means of the DELIM operand you define the delimiters for AID output of
alphanumeric data. The vertical bar is the default delimiter.

By means of the LANG operand you define whether AID is to output %HELP
information in English or German.

Command Operand

CHECK [= {ALL|NO }]

REP [= {YES|NO }]

%AID SYMCHARS [= {STD|NOSTD}]

OV [= {YES|NO }]

LOW [= {ON|OFF}]

C’X’|’X’C|’X’
DELIM [=]

’| ’

LANG [={D | E}

Declarations made using %AID remain valid until superseded by a new %AID command
or until /LOGOFF.

16 U4298-J-Z125-3-7600

%AID

%AID can only be issued as an individual command, it must never be part of a
command sequence or a subcommand.

The %AID command does not alter the program state.

CHECK

ALL
Prior to execution of a %MOVE or %SET command, AID conducts the following
update dialog:

OLD CONTENT:
AAAAAAAA
NEW CONTENT:
BBBBBBBB
% IDA0129 CHANGE? (Y = YES; N = NO) ?

N

I342 NOTHING CHANGED

If Y is entered, the old contents of the array are overwritten and no further
message is issued.
In procedures in batch mode, AID is not able to conduct a dialog and always
assumes Y.

NO
%MOVE and %SET commands are executed without an update dialog.

If the CHECK operand is entered without specification of a value, AID assumes the
default value (NO).

REP

YES
In the event of a memory update caused by a %MOVE command, LMS UPDR
records (REPs) are created. If an object structure list is not available, AID does
not create any REPs and issues an error message to this effect.

AID stores the corrections with the requisite LMS UPDR statements in a file with
the link name F6, from which they can be fetched as a complete package. Care
should therefore be taken that no other outputs are written to the file with link
name F6. If no file with link name F6 is registered (cf. %OUTFILE), the REP
record is stored in the file created by AID (AID.OUTFILE.F6).

U4298-J-Z125-3-7600 17

%AID

User-specific REP files must be created with FCBTYPE=SAM. REP files created
by AID are likewise defined with FCBTYPE=SAM, RECFORM=V and
OPEN=EXTEND.
The file remains open until it is closed via %OUTFILE or until /LOGOFF.

NO
No REPs are generated.

If the REP operand is entered without a value specification, AID inserts the default
(NO). The REP operand of the %MOVE command can supersede the declaration made
with %AID, but only for this particular %MOVE command. For subsequent %MOVE
commands without a REP operand, the declaration made with the %AID command is
valid again.

SYMCHARS

STD
A hyphen "-" is interpreted as an alphanumeric character and can, as such, be
used in program, data and statement names. A hyphen is only interpreted as a
minus sign if a blank precedes it.

NOSTD
A hyphen "-" is always interpreted as a minus sign and cannot be used as a part
of names.

If the SYMCHARS operand is entered without a value specification, AID inserts the
default value (STD).
SYMCHARS=NOSTD must be set if the "-" character, in accordance with the FORTRAN
conventions, is always to be interpreted as a minus sign.

OV

YES
Mandatory specification if the user is debugging a program with an overlay
structure. AID checks each time whether the program unit which has been
addressed originates from a dynamically loaded segment.

NO
AID assumes that the program to be debugged has been linked without an
overlay structure. AID does not check whether the CSECT information or LSD
records belong to the program unit which has been addressed.

If the OV operand is entered without a value specification, AID assumes the default
(NO).

18 U4298-J-Z125-3-7600

%AID

LOW

ON
Lowercase letters in character literals and in program, data and statement names
are not converted to uppercase.

OFF
All lowercase letters from user entries are converted to uppercase.

If no LOW operand has been entered in a debugging session, OFF applies.
If the LOW operand is input without a value specification, AID assumes the default
(ON). In this case LOW=OFF must be entered if conversion to uppercase is to be
reactivated.

DELIM

C’x’|’x’C|’x’
With this operand the user defines a character as the left-hand and right-hand
delimiter for AID output of symbolic data of type ’character’ (%DISPLAY and
%SDUMP commands).

|
-

The standard delimiter is the vertical bar.

If the DELIM operand is entered without value specification, AID inserts the default
value (|).

LANG

D
AID outputs information requested with %HELP in German.

E
AID outputs information requested with %HELP in English.

If the LANG operand is entered without a value specification, AID inserts the default
(D).

U4298-J-Z125-3-7600 19

%AID

Examples

In the SYMCHAR program, the contents of array element IFELD(L+M) are to be
replaced by the contents of IFELD(L-M) with the aid of the %SET command.

Source listing of the SYMCHAR program:

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1/1 1 1 PROGRAM SYMCHAR
1 2 2 PARAMETER (B=3, C=5)
1 3 3 DIMENSION IFELD(B+C)
1 4 4 INTEGER IFELD /1,2,3,4,5,6,7,8/
1 5 5 L=5
1 6 6 M=3
1 7 7 WRITE *,IFELD
1 8 8 WRITE *,IFELD(L+M)
1 9 9 WRITE *, ’ SYMCHAR TERMINATED!’
1 10 10 END

1. Since %AID SYMCHARS = STD has been set, L-M is interpreted as the name of
the element; AID issues the message "L-M NOT FOUND".

/ LOAD-PROG FROM-FILE=*MOD(LIB=*OMF),TEST-OPT=AID
% BLS0001 DLL VER 823
% BLS0517 MODULE ’SYMCHAR’ LOADED
/ %IN S’9’ <%D IFELD;%SET IFELD(L-M) INTO IFELD(L+M);%D IFELD>
/ %R
BS2000 F O R 1 : FORTRAN PROGRAM "SYMCHAR"
STARTED ON 91-02-18 AT 12:04:11
1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
8
** ITN: #’00000047’ *** TSN* 8438 ************************************
SCR_REF: 9 SOURCE: SYMCHAR PROC: SYMCHAR *********************
IFELD(1: 8)
(1) 1 (2) 2 (3) 3 (4) 4
(5) 5 (6) 6 (7) 7 (8) 8
I375 SYMBOL L-M NOT FOUND

STOPPED AT SCR_REF: 9, SOURCE: SYMCHAR , PROC: SYMCHAR

20 U4298-J-Z125-3-7600

%AID

2. After %AID SYMCHARS = NOSTD has been entered, the hyphen in L-M is
interpreted as minus sign. AID then executes the %SET command correctly.

/ LOAD-PROG FROM-FILE=*MOD(LIB=*OMF),TEST-OPT=AID
% BLS0001 DLL VER 823
% BLS0517 MODULE ’SYMCHAR’ LOADED
/ %AID SYMCHARS=NOSTD
/ %IN S’9’ <%D IFELD;%SET IFELD(L-M) INTO IFELD(L+M);%D IFELD>
/ %R
BS2000 F O R 1 : FORTRAN PROGRAM "SYMCHAR"
STARTED ON 91-02-18 AT 12:05:37
1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
8
** ITN: #’00000047’ *** TSN* 8438 ************************************
SCR_REF: 9 SOURCE: SYMCHAR PROC: SYMCHAR *********************
IFELD(1: 8)
(1) 1 (2) 2 (3) 3 (4) 4
(5) 5 (6) 6 (7) 7 (8) 8
IFELD(1: 8)
(1) 1 (2) 2 (3) 3 (4) 4
(5) 5 (6) 6 (7) 7 (8) 2

SYMCHAR TERMINATED !
BS2000 F O R 1 : FORTRAN PROGRAM "SYMCHAR " ENDED PROPERLY AT 12:05:41
CPU - TIME USED : 0.2124 SECONDS
ELAPSED TIME : 4.6430 SECONDS

U4298-J-Z125-3-7600 21

%BASE

%BASE

The %BASE command is used to specify the base qualification. All subsequently
entered memory references without their own base qualification assume the value
declared via %BASE. The %BASE command also defines the AID work area.

With the base operand the user designates either the virtual memory area of the
program which has been loaded or a dump in a dump file.

Command Operand

%BASE [base]

With the %BASE command the user also defines the location of the AID work area.
When debugging FORTRAN programs, the AID work area corresponds to the area
which the current program unit occupies in virtual memory or in a dump file. If the user
fails to enter a %BASE command during a debugging session or enters %BASE without
any operands, the base qualification E=VM applies by default and the AID work area
corresponds to that program unit in virtual memory which contains the current interrupt
point (AID standard work area).

A %BASE command is valid until the next %BASE command is given, until /LOGOFF
or until the dump file declared as the base qualification is closed (see %DUMPFILE).

Memory references within a subcommand are supplemented with current qualifications
during input, i.e. a %BASE command has no effect on subcommands specified
previously.

%BASE can only be entered as an individual command, it must never be part of a
command sequence or subcommand.

%BASE does not alter the program state.

base

defines the base qualification. All subsequently entered memory references without a
separate base qualification assume the value declared with the %BASE command.

base-OPERAND -

VM
E =

Dn

- -

22 U4298-J-Z125-3-7600

%BASE

E=VM
The virtual memory area of the program which has been loaded is declared as
the base qualification. VM is the default value.

E=Dn
A dump in a dump file with the link name Dn is declared as the base
qualification.
n is a number with a value 0 n 7.

Before declaring a dump file as the base qualification, the user must assign the
corresponding dump file a link name and open it, using the %DUMPFILE
command.

U4298-J-Z125-3-7600 23

%CONTINUE

%CONTINUE

The %CONTINUE command is used to start the program which has been loaded or to
continue it at the interrupt point or at the location specified by %JUMP.
As opposed to %RESUME, an interrupted but still active %TRACE command is not
terminated by %CONTINUE, rather it is continued depending on the declarations which
have been made.

Command Operand

%CONT[INUE]

In the following cases a %TRACE command is regarded as interrupted and is resumed
by any %CONTINUE command:

1. When a subcommand has been executed as the result of a monitoring condition
from a %CONTROLn, %INSERT or %ON command having been satisfied, and the
subcommand contained a %STOP.

2. When an %INSERT command terminates with a program interrupt because the
control operand is K or S.

3. When the K2 key has been pressed.
4. When the program was halted by the FORTRAN statement PAUSE.

A subcommand containing only the %CONTINUE command merely increments the
execution counter.

If the %CONTINUE command is given in a command sequence or subcommand, any
subsequent commands are not executed.

%CONTINUE alters the program state.

24 U4298-J-Z125-3-7600

%CONTROLn

%CONTROLn

By means of the %CONTROLn command you may declare up to seven monitoring
functions one after the other, which then go into effect simultaneously. The seven
commands are %CONTROL1 through %CONTROL7.

By means of the criterion operand you may select different types of FORTRAN
statements. If a statement of the selected type is waiting to be executed, AID
interrupts the program and processes subcmd.

By means of the control-area operand you may define the program area in which
criterion is to be taken into consideration.

By means of the subcmd operand you declare a command or a command
sequence and possibly a condition (see AID Core Manual, "Subcommands").
subcmd is executed if criterion is satisfied and any specified condition has been
met.

Command Operand

%C[ONTROL]n [criterion][,...] [IN control-area] <subcmd>

Several %CONTROLn commands with different numbers do not affect one another.
Therefore you may activate several commands with the same criterion for different
areas, or with different criteria for the same area. If several %CONTROLn commands
occur in one statement, the associated subcommands are executed successively,
starting with %C1 and working through %C7.

The individual value of an operand for %CONTROLn is valid until overwritten by a new
specification in a later %CONTROLn command with the same number, until the
%CONTROLn command is deleted or until the end of the program.
A %REMOVE command can be used to delete either an individual %CONTROLn or all
active %CONTROLn declarations.

%CONTROLn can only be used in a loaded program, i.e. the base qualification E=VM
must have been set via %BASE or must be specified explicitly.

%CONTROLn does not alter the program state.

criterion

is the keyword defining the type of the FORTRAN statements prior to whose execution
AID is to process subcmd.

U4298-J-Z125-3-7600 25

%CONTROLn

You can specify several keywords at the same time, which are then valid at the same
time. Any two keywords must be separated by a comma.
If no criterion is declared, AID works with the default value %STMT, unless a criterion
declared in an earlier %CONTROLn command is still valid.

criterion subcmd is processed prior to :

%STMT Every executable FORTRAN statement

%ASSGN Assignment statements

%CALL SUBROUTINE calls (CALL statements)

%COND IF(...) THEN, ELSE IF(...) THEN, ELSE and IF(...) statements

%GOTO GOTO statements

%IO Input/output statements

%LAB Every statement with a label

%PROC STOP, END, RETURN statements as well as the first executable
statement following SUBROUTINE or FUNCTION

control-area

specifies the program area in which the monitoring function will be valid. If the user
exits from the specified program, the monitoring function becomes inactive until another
statement within the program area to be monitored is executed. The default value is the
current program area.

A control-area definition is valid until the next %CONTROLn command with the same
number is issued with a new definition, until the corresponding %REMOVE
%CONTROLn command is issued, or until the end of the program is reached.
%CONTROLn without a control-area operand of its own results in a valid area definition
being taken over. To be valid, such a control-area operand must be defined in a
%CONTROLn command with the same number, and the current interrupt point must be
within this area. If no valid area definition exists, the control-area comprises the current
program unit by default.

control-area-OPERAND -

PROG=program-name
IN [•][E=VM•]

[PROG=program-name•](S’n’ : S’n’)

- -

26 U4298-J-Z125-3-7600

%CONTROLn

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

E=VM
As control-area can only be in the virtual memory of the loaded program, E=VM
need only be specified if a dump file has been declared as the current base
qualification (see %BASE command).

PROG=program-name
program-name is the name of a program unit and may consist of up to 7
characters.
This program unit must have been loaded at the time the %CONTROL command
is entered.

A PROG qualification is required only if a load module was created from several
source modules and the %CONTROLn command does not refer to the current
program unit, or if a previously valid control-area declaration is to be overwritten.

If control-area ends with a PROG qualification, the area covers the entire program
unit specified.

(S’n’ : S’n’)
The control-area is defined by specifying a start address and an end address.
The start and end addresses must be within the same program unit, where the
following applies:
start address end address
where n is the number of a statement (see STMT column in compiler listing).

If control-area is to comprise only one statement, the start and end address must
be the same.

U4298-J-Z125-3-7600 27

%CONTROLn

subcmd

subcmd is processed whenever a statement that satisfies the criterion is awaiting
execution in the control-area. subcmd is processed before execution of the criterion
statement.

Specification of subcmd is mandatory, since AID inserts no <%STOP> for
%CONTROLn.

For a complete description of subcmd see the AID Core Manual, chapter 5.

subcmd-OPERAND -

AID-command
<[subcmdname:] [(condition):] [{;...}]>

BS2000-command

- -

A subcommand may contain a name, a condition and a command part.
Every subcommand has its own execution counter. The command portion can consist
of an individual command or a command sequence; it may contain AID commands,
BS2000 commands and comments.

If the subcommand consists of a name or a condition, but the command part is
missing, AID merely increments the execution counter when a statement of type
criterion has been reached.

In addition to the commands which are not permitted in any subcommand, the subcmd
of a %CONTROLn must not contain the AID commands %CONTROLn, %INSERT,
%JUMP or %ON.

The commands in subcmd are executed consecutively, after which the program is
continued. The commands for runtime control also immediately change the program
state when they are part of a subcommand. They abort subcmd and start the program
(%CONTINUE, %RESUME, %TRACE) or halt it (%STOP). In practice, they are only
useful as the last command in subcmd, since any subsequent commands of the
subcmd will not be executed. Likewise, deletion of the current subcommand via
%REMOVE is only expedient as the last command in subcmd.

28 U4298-J-Z125-3-7600

%CONTROLn

Examples

1. %CONTROL1 %CALL, %PROC IN(S’123’:S’250’) <%DISPLAY COUNTER;%STOP>

%C1 %CALL,%PROC IN(S’123’:S’250’) <%D COUNTER;%STOP>

The two AID commands differ only in their notation.
The first example is written in full and contains a varying number of blanks at the
permissible positions; the second example is abbreviated.

The %CONTROL1 command is valid for the criteria %CALL and %PROC and is to
be effective between statements 123 and 250 (inclusive).

If one of the FORTRAN statements identified via the criteria %CALL and %PROC
occurs during program execution, the %DISPLAY command from subcmd is
executed for the variable COUNTER. Then the program run is interrupted by means
of %STOP, and AID or BS2000 commands may be entered.

2. %CONTROL1 %CALL <%DISPLAY ’CALL’ T=MAX; %STOP>

Prior to the execution of every CALL statement, AID executes the %DISPLAY
command from subcmd and then interrupts the program by executing the %STOP
command.

 3. %CONTROL2 %IO <%SDUMP %NEST P=MAX; %REMOVE C1>

Prior to the execution of an IO statement, AID outputs the current call hierarchy to
the system file SYSLST and then executes the %REMOVE command, which deletes
the declarations of %CONTROL1. Program execution continues.

 4. %C3 %PROC <%STOP>

The %C3 command declares that AID is to execute a %STOP command before a
SUBROUTINE, FUNCTION, RETURN, STOP or END statement is executed.

 5. %C4 %PROC <(SLF LE 10): %D IFELD(1)>

%C4 is used to specify that AID is to output the first array element of IFELD before
any SUBROUTINE, FUNCTION, RETURN, STOP or END statement is executed,
provided that the SLF value is less than or equal to 10.

U4298-J-Z125-3-7600 29

%DISASSEMBLE

%DISASSEMBLE

%DISASSEMBLE enables memory contents to be "retranslated" into symbolic Assembler
notation and displayed accordingly.

The number operand enables you to determine how many instructions are to be
disassembled and output.

The start operand enables you to determine the address where AID is to begin
disassembling.

Command Operand

%DISASSEMBLE
[number] [FROM start]

%DA

Disassembly of the memory contents starts with the first byte. For memory contents
which cannot be interpreted as an instruction, an output line is generated which
contains the hexadecimal representation of the memory contents and the message
INVALID OPCODE. The search for a valid operation code then proceeds in steps of 2
bytes each.

%DISASSEMBLE without a start operand permits the user to continue a previously
issued %DISASSEMBLE command until the test object is switched or a new operand
value is defined by means of a BS2000 or AID command (/LOAD-PROGRAM, /EXEC-
PROGRAM, %BASE). AID continues disassembly at the memory address following the
address last processed by the previous %DISASSEMBLE command. If number is not
specified either, AID generates the same number of output lines as declared before.

If the user has not entered a %DISASSEMBLE command during a test session or has
changed the test object and does not specify current values for one or both operands
in the %DISASSEMBLE command, AID works with the default value 10 for number and
V’0’ for start.

The %OUT command can be used to control how processed memory information is to
be represented and to which output medium it is to be transferred. The format of the
output lines is explained after the description of the start operand.

The %DISASSEMBLE command does not alter the program state.

30 U4298-J-Z125-3-7600

%DISASSEMBLE

number

Specifies how many Assembler commands are to be output.
If no value has been specified for number and no value from a previous
%DISASSEMBLE command applies, AID inserts the default value (10).

number
is an integer with the value:
1 number 231-1

start

Defines the address at which disassembly of memory contents into Assembler
commands is to begin. If the start value is not specified, AID assumes the default value
V’0’ for the first %DISASSEMBLE; on every further %DISASSEMBLE, AID continues after
the Assembler command last disassembled.

start-OPERAN D -

program-name
FROM [•][qua•][...] L’n’

S’n’
compl-memref

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined by a previous %QUALIFY command. Consecutive qualifications
must be delimited by a period. In addition, there must be a period between the
final qualification and the following operand part.

qua
Specify a qualification only if the start value is not within the current AID work
area.

E={VM | Dn}
Only required if the current base qualification is not to apply for start (see
%BASE command).

PROG=program-name
Only required if start is not located in the current program unit (see chapter
3).

U4298-J-Z125-3-7600 31

%DISASSEMBLE

program-name
This specification is only possible following an explicit PROG qualification:
PROG=program-name•program-name

By repeating the program-name entry, start is set to the initial address of the
designated program unit.

L’n’
is a statement name designating the address of the first executable FORTRAN
statement following a statement label.
n is a statement label of up to 5 digits. Leading zeros must not be specified.

S’n’
is a source reference and designates the address of an executable FORTRAN
statement.
n is a statement number; see STMT column of the compiler listing.

compl-memref
designates an address which is to be computed. It should be the start address of
a machine instruction, otherwise the disassembly obtained will be meaningless.
compl-memref may contain the following operations (see AID Core Manual,
chapter 6):

byte offset (•)
indirect addressing (->)
type modification (%A)
length modification (%Ln)
address selection (%@(...))

A statement name L’n’ or a source reference S’n’ can be used within compl-
memref, but only in connection with the pointer operator, e.g. L’n’ ->.4
A type modification makes sense only if the contents of a data element can be
used as an address or if the address is taken from a register,
e.g. %1G.2 %AL2 ->

32 U4298-J-Z125-3-7600

%DISASSEMBLE

Output of the %DISASSEMBLE log

By default, the %DISASSEMBLE log is output with additional information to SYSOUT
(T=MAX). With %OUT the user can select the output media and specify whether or not
additional information is to be output by AID.

The following is contained in a %DA output line if the default value T=MAX is set:
CSECT-relative memory address
memory contents retranslated into symbolic Assembler notation, displacements
being represented as hexadecimal numbers (as opposed to Assembler format)
for memory contents which do not begin with a valid operation code: Assembler
statement DC in hexadecimal format and with a length of 2 bytes, followed by the
note INVALID OPCODE
hexadecimal representation of the memory contents (machine code).

Example of line format with T=MAX

The statement number in the %DISASSEMBLE command refers to the sample
application in section 6.1.

/LOAD-PROG FROM-FILE=*MOD(LIB=*OMF),TEST-OPT=AID
% BLS0001 DLL VER 823
% BLS0517 MODULE ’B1’ LOADED

/%DISASSEMBLE 10 FROM PROG=SORT.S’22’
SORT+90 L R15,1B0(R0,R13) 58 F0 D1B0
SORT+94 A R15,B0(R0,R12) 5A F0 C0B0
SORT+98 ST R15,1B0(R0,R13) 50 F0 D1B0
SORT+9C BC B’1111’,76(R0,R11) 47 F0 B076
SORT+A0 DC X’0000’ INVALID OPCODE 00 00
SORT+A2 BCR B’1100’,R8 07 C8
SORT+A4 DC X’0000’ INVALID OPCODE 00 00
SORT+A6 ISK R3,R8 09 38
SORT+A8 L R15,1B4(R0,R13) 58 F0 D1B4
SORT+AC MH R15,EE(R0,R12) 4C F0 C0EE

The %OUT operand value T=MIN causes AID to create shortened output lines in which
the CSECT-relative address is replaced by the virtual address and the hexadecimal
respresentation of the memory contents is omitted.

U4298-J-Z125-3-7600 33

%DISASSEMBLE

Example of line format with T=MIN

/%OUT %DA T=MIN
/%DISASSEMBLE 1O FROM PROG=SORT.S’22’

000005F8 L R15,1B0(R0,R13)
000005FC A R15,B0(R0,R12)
00000600 ST R15,1B0(R0,R13)
00000604 BC B’1111’,76(R0,R11)
00000608 DC X’0000’ INVALID OPCODE
0000060A BCR B’1100’,R8
0000060C DC X’0000’ INVALID OPCODE
0000060E ISK R3,R8
00000610 L R15,1B4(R0,R13)
00000614 MH R15,EE(R0,R12)

Examples

1. %DISASSEMBLE FROM PROG=EXAMPLE.L’22’

This command initiates disassembly of 10 instructions (default), starting with the
address of the first executable statement following statement label 22 in program
unit EXAMPLE.

2. %DA 2 FROM E=D1.PROG=EXAMPLE.EXAMPLE

Starting with the start address of program unit EXAMPLE in the dump file with link
name D1, two instructions are to be disassembled.

3. %DA FROM S’67’

Since no value is specified for number, AID either inserts the default value (in the
case of the first %DISASSEMBLE for this program) or takes the value from the
previous %DISASSEMBLE. Disassembly starts with the first instruction generated
for the statement with the number 67.

34 U4298-J-Z125-3-7600

%DISPLAY

%DISPLAY

The %DISPLAY command is used to output memory contents, addresses, lengths,
system information and AID literals and to control feed to SYSLST. AID edits the data in
accordance with the definition in the source program, unless you select another type of
output by means of type modification.
Output is via SYSOUT, SYSLST or to a cataloged file.

By means of the data operand you specify data elements, their addresses or
lengths, statements, registers, execution counters of subcommands, and system
information. Here you also define AID literals or you control feed to SYSLST.

By means of the medium-a-quantity operand you specify the output medium AID
uses and whether or not additional information is to be output. This operand
disables a declaration made via the %OUT command, but only for the current
%DISPLAY command.

Command Operand

%D[ISPLAY] data {,...} [medium-a-quantity][,...]

A %DISPLAY command which does not have a qualification for data addresses data of
the current program unit.
If you do specify a qualification, you can access data in a dump file or in any other
program unit which has been loaded, provided this program unit is part of the current
call hierarchy.

If the medium-a-quantity operand is not specified, AID outputs the data in accordance
with the declarations in the %OUT command or, by default, to SYSOUT, together with
additional information (cf. AID Core Manual, chapter 7).

Immediate entry of the command right after loading the program is not recommended,
as data and statements cannot be addressed without an explicit qualification until the
program encounters the first executable statement. The first executable statement is
reached by entering the command sequence:
%INSERT PROG=program-name.program-name
%RESUME

%DISPLAY %SORTEDMAP will produce a list of all program CSECTs, sorted by names
and addresses.
In addition to the operand values described here, you can also use the operand values
described for debugging on machine code level (see [2]).

This command can be used both in the loaded program and in a dump file.

%DISPLAY does not alter the program state.

U4298-J-Z125-3-7600 35

%DISPLAY

data

This operand defines the information AID is to output. You may output the contents,
address and length of variables, arrays or array elements, the contents and length of
constants, as well as the addresses of statements. The contents of registers and
execution counters as well as the system information relevant to your program can be
addressed via keywords. AID literals can be defined to improve the readability of
debugging logs, and feed to SYSLST can be controlled for the same purpose.

AID edits data elements in accordance with the definitions in the source program,
provided that you have not defined another type of output using a type modification
(see also AID Core Manual, section 6.8). If the contents do not match the defined
storage type, output is rejected and an error message is issued. Nevertheless the
contents of the data element can be viewed, for instance by employing the type
modification %X to edit the contents in hexadecimal form.
Modification of the output type via the operand AS {BIN/CHAR/DEC/DUMP/HEX} is
supported for the last time in this version (see AID Core Manual, appendix).

If you enter more than one data operand in a %DISPLAY command, you may switch
from one operand to another between the symbolic entries described here and the non-
symbolic entries described in the manual for debugging on machine code level (see
[2]). Symbolic and machine-oriented specifications can also be combined within a
complex memory reference.

For names which are not contained in the LSD records, AID issues an error message;
the other data of the same command will be processed in the normal way.

data-OPERAND -

dataname
L’n’

[•][qua•][...] S’n’
keyword
compl-memref

%@ dataname
([•][qua•][...]

%L compl-memref

%L=(expression)

AID-literal

feed-control

- -

36 U4298-J-Z125-3-7600

%DISPLAY

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

qua
A qualification need only be specified for memory objects not located within the
current AID work area.

E={VM | Dn}
Specified only if the current base qualification (see %BASE) is not to apply for
a data/statement name, source reference or keyword.

PROG=program-name
Specified only if a data/statement name or source reference not contained in
the current program unit is to be addressed (see chapter 3).

dataname
specifies the name of a constant, variable, array or array element as defined in
the source program.
dataname is an alphanumeric string with up to 15 characters.

If dataname is the name of an array, it must be indexed as in a FORTRAN
statement if an array element is to be addressed. If you specify the name of an
array without the index list, all elements of the array are output.

array-name (index1[, index2][, ...])
index specifies the position within an array. The number of indexes required
for access is the same as that which must be specified in a FORTRAN
statement. When multiple indexes are specified, a comma must be used as a
separator.
index may be specified as follows:

n
data-name
arithmetic-expression

U4298-J-Z125-3-7600 37

%DISPLAY

The following FORTRAN data definitions are output differently, as shown below:
INTEGER*8 as REAL*8
REAL*16 as REAL*8
COMPLEX*32 as COMPLEX*16

If dataname is a data element of type COMPLEX, the real and imaginary portions
of the complex number will be output. You can also limit output either to the real
portion or to the imaginary portion as follows:
%D dataname ._REAL outputs the real part
%D dataname ._IMAG outputs the imaginary part.

L’n’
Specifies a statement name and designates the address of the first executable
FORTRAN statement after a statement label.
n is a statement label (maximum of 5 digits). Leading zeros must not be specified.
If L’n’ is entered without a pointer operator, the corresponding address is output
in hexadecimal representation. With a pointer operator, i.e. with %DISPLAY L’n’->,
AID outputs 4 bytes of the machine code contained at the relevant address.

S’n’
Specifies a source reference and designates the address of an executable
FORTRAN statement.
n is the number of a statement (see STMT column of compiler listing).
If S’n’ is entered without a pointer operator, the corresponding address is output
in hexadecimal representation. With a pointer operator, i.e. with %DISPLAY S’n’->,
AID outputs 4 bytes of the machine code contained at the relevant address.

keyword
Here you may specify all the keywords for program registers, AID registers,
system tables and the one for the execution counter or the symbolic localization
information (see AID Core Manual, chapter 9).
keyword can only be preceded by a base qualification.

%n General register, 0 n 15
%nD|E Floating-point register , n = 0,2,4,6
%nQ Floating-point register , n = 0,4
%nG AID general register, 0 n 15
%nDG AID floating-point registe r n = 0,2,4,6
%MR All 16 general registers in tabular form
%FR All 4 floating-point registers with double precision

edited in tabular form

38 U4298-J-Z125-3-7600

%DISPLAY

%PC Program counter
%CC Condition code
%PCB Process control block
%PCBLST List of all process control blocks
%SORTEDMAP List of all CSECTs of the user program

(sorted by name and address)
%IFR Interrupt flag register
%IMR Interrupt mask register
%ISR Interrupt status register
%PM Program mask
%AMODE Addressing mode of the test object
%AUD1 P1 audit table, plus the SAVE table (if any)

%•subcmdname Execution counter
%• Execution counter of the currently active subcommand

%HLLOC(memref) Localization information on the symbolic level for a
memory reference in the executable part of the
program (high-level location)

%LOC(memref) Localization information on machine code level for a
memory reference in the executable part of the
program (low-level location)

compl-memref
The following operations may occur in a compl-memref (see AID Core Manual,
chapter 6):

byte offset (•)
indirect addressing (->)
type modification (%T(dataname), %X, %C, %P, %D, %F, %A)
length modification (%L(...), %L=(expression), %Ln)
address selection (%@(...))

Following byte offset or indirect addressing, AID outputs the memory contents at
the calculated address in dump format with a length of 4 (%XL4, default).
Using the type modification, data may be edited in any form, provided its
contents match the specified storage type. %X can always be used to output a
data element in hexadecimal format, regardless of its contents and definition in
the source program.
With the length modification you can define the output length yourself, e.g. if you
wish to output only parts of a data element or display a data element using the
length of another data element.

%@(...)
With the address selector you can output the address of a data element or of
compl-memref.
The address selector cannot be used for symbolic constants (including the
statement names L’n’ and the source references S’n’).

U4298-J-Z125-3-7600 39

%DISPLAY

%L(...)
With the length selector you can output the length of a data element.

Example
%DISPLAY %L(AARRAY)

The length of AARRAY will be output.

%L=(expression)
With the length function you can have a value calculated (see AID Core Manual,
sections 6.9 and 6.10).
expression you can link the contents of memory references and constants of type
’integer’ with arithmetic operators (+, -, *, /).

Example
%DISPLAY %L=(AARRAY)

If AARRAY is of type ’integer’, its contents will be output. Otherwise AID issues
an error message.

AID-literal
All AID literals described in the AID Core Manual, chapter 8, may be specified:

{C’x...x’ | ’x...x’C | ’x...x’} Character literal
{X’f...f’ | ’f...f’X} Hexadecimal literal
{B’b...b’ | ’b...b’B} Binary literal
[{±}]n Integer
#’f...f’ Hexadecimal number
[{±}]n.m Fixed-point number
[{±}]mantissaE[{±}]exponent Floating-point number

feed-control
For output to SYSLST, print editing can be controlled by the following two
keywords, where:
%NP results in a page feed
%NL[(n)] results in a line feed by n blank lines.

1 n 255. The default for n is 1.

medium-a-quantity

Defines the medium or media via which output is to take place, and whether additional
information is to be output by AID. If this operand is omitted and no declaration has
been made using the %OUT command, AID uses the presetting T = MAX.

40 U4298-J-Z125-3-7600

%DISPLAY

medium-a-quantity-OPERAN D -

T
H MAX

=
Fn MIN
P

- -

medium-a-quantity is described in full detail in the AID Core Manual, chapter 7.

T Terminal output
H Hardcopy output
Fn File output
P Output to SYSLST

MAX Output with additional information

MIN Output without additional information

Examples

1. %DISPLAY E=D1.PROG=EXAMPLE.INTVAR,’CONTENTS OF DUMP’

Here the contents of a dump are evaluated.

** D1: DUMP.EXAMPLE ***
INTVAR = -89
CONTENTS OF DUMP

2. %DISPLAY %L=(S’13’-S’12’)

AID outputs the length of the machine code sequence generated for statement 12.

+52

3. %BASE

%DISPLAY L’200’

%BASE switches back to the AID standard work area. AID then outputs the
address of the first executable statement following label 200 as a hexadecimal
number.

** ITN: #’00010053’ *** TSN: 6567 ***
SRC_REF: 26 SOURCE: B1 PROC: B1 **************************************
200 = 0000051C

U4298-J-Z125-3-7600 41

%DISPLAY

4. %DISPLAY L’200’->

AID outputs 4 bytes of the machine code generated at the address of label 200.
The pointer operator switches to the machine code level, which causes AID to
display an additional header.

CURRENT PC: 0000CEFA CSECT: IF@STOP **
V’0000051C’ = B1 + #’0000051C’
0000051C (0000051C) 9500D17C n.J@

5. %DISPLAY %HLLOC(L’200’->)

AID outputs symbolic localization information for label 200.

V’0000051C’ = SMOD : B1
PROC : B1
SRC-REF : 82
LABEL : 200

6. %DISPLAY %LOC(L’200’->)

AID outputs localization information on machine code level for label 200.

V’0000051C’ = PROG : QSORT
LMOD : %ROOT
SMOD : B1
OMOD : B1
CSECT : B1 (00000000) + 0000051C

7. %DISPLAY CHARARRAY

The array CHARARRAY comprises 26 array elements and is defined in the
program as follows:
CHARACTER CHARARRAY (26)/’A’,’B’,’C’,’D’,...,’X’,’Y’,’Z’/

As no index list is specified in the %DISPLAY command, AID outputs all the
elements of the array:

** ITN: #’00010053’ *** TSN: 6567 ***
SRC_REF: 66 SOURCE: EXAMPLE PROC: EXAMPLE *********************************
CHARARRAY(1:26)
(1) |A| (2) |B| (3) |C| (4) |D| (5) |E| (6) |F| (7) |G|
(8) |H| (9) |I| (10) |J| (11) |K| (12) |L| (13) |M| (14) |N|
(15) |O| (16) |P| (17) |Q| (18) |R| (19) |S| (20) |T| (21) |U|
(22) |V| (23) |W| (24) |X| (25) |Y| (26) |Z|

42 U4298-J-Z125-3-7600

%DISPLAY

8. The FORTRAN program OUTPUT displays all data types which can be defined in
FOR1.

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1/1 1 1 PROGRAM OUTPUT
2 *

1 2 3 INTEGER * 1 INT1 /-12/
1 3 4 INTEGER * 2 INT2 /234/
1 4 5 INTEGER * 4 INT4 /997/
1 5 6 INTEGER * 8 INT8 /757/

7 *
1 6 8 REAL * 4 REAL4 /123.456/
1 7 9 REAL * 8 REAL8 /128.996/
1 8 10 REAL * 16 REAL16 /-987.772/

11 *
1 9 12 COMPLEX * 8 CPLX8 /(2.5,4.7)/
1 10 13 COMPLEX * 16 CPLX16 /(1.6,9.6)/
1 11 14 COMPLEX * 32 CPLX32 /(3.7,8.9)/

15 *
1 12 16 CHARACTER * 5 CHARC(3) /’AAAAA’,’BBBBB’,’CCCCC’/
1 13 17 CHARACTER * (45,V) CHARV /’44778’/

18 *
1 14 19 LOGICAL * 1 LOG1 /.TRUE./
1 15 20 LOGICAL * 4 LOG4 /.FALSE./

21 *
1 16 22 CHARACTER CTEXT*30 /’CORRESPONDING FORTRAN OUTPUT:’/

23 *
24 *
25 *

1 17 26 WRITE(2,*) CTEXT
1 18 27 WRITE(2,*) INT1
1 19 28 WRITE(2,*) INT2
1 20 29 WRITE(2,*) INT4
1 21 30 WRITE(2,*) INT8
1 22 31 WRITE(2,*)

32 *
1 23 33 WRITE(2,*) CTEXT
1 24 34 WRITE(2,*) REAL4
1 25 35 WRITE(2,*) REAL8
1 26 36 WRITE(2,*) REAL16
1 27 37 WRITE(2,*)

38 *
1 28 39 WRITE(2,*) CTEXT
1 29 40 WRITE(2,*) CPLX8
1 30 41 WRITE(2,*) CPLX16
1 31 42 WRITE(2,*) CPLX32
1 32 43 WRITE(2,*) REAL(CPLX8)
1 33 44 WRITE(2,*) IMAG(CPLX8)
1 34 45 WRITE(2,*)

46 *
1 35 47 WRITE(2,*) CTEXT
1 36 48 WRITE(2,*) CHARC
1 37 49 WRITE(2,*) CHARV
1 38 50 WRITE(2,*)

51 *
1 39 52 WRITE(2,*) CTEXT
1 40 53 WRITE(2,*) LOG1
1 41 54 WRITE(2,*) LOG4
1 42 55 WRITE(2,*)

56 *
1 43 57 END

U4298-J-Z125-3-7600 43

%DISPLAY

/ START-FOR1-COMPILER SOURCE=Q.OUTPUT,OPTIMIZATION=NO,-
/ TEST-SUPPORT=PARAMETER(TOOL-SUPPORT=AID),-
/ LISTING=PARAMETER(OUTPUT=LF.OUTPUT)
% BLS0500 PROGRAM ’FOR1’, VERSION ’2.1A00’ OF ’91-03-06’ LOADED.

FOR1: V2.1A00 READY, GIVE COMPILER OPTION
FOR1: LIST FILE REPLACED = LF.OUTPUT
FOR1: NO ERRORS DURING COMPILATION OF P.U. OUTPUT
END OF F O R 1 COMPILATION; CPU TIME USED: 1.675 SEC.

/ LOAD-PROG FROM-FILE=*MOD(LIB=*OMF),TEST-OPT=AID
% BLS0001 DLL VER 823
% BLS0517 MODULE ’OUTPUT’ LOADED
/ %INSERT S’17’ <%DISPLAY C’AID OUTPUT I*1, I*2, I*4, I*8’,INT1, -
/ INT2, INT4, INT8>
/ %INSERT S’23’ <%DISPLAY C’AID OUTPUT R*4, R*8, R*16’,REAL4,REAL8,REAL16>
/ %INSERT S’28’ <%DISPLAY C’AID OUTPUT C*8, C*16, C*32, REAL(C*8), IMAG(C*8)’,-
/ CPLX8, CPLX16, CPLX32, CPLX8._REAL, CPLX8._IMAG>
/ %INSERT S’35’ <%DISPLAY C’AID OUTPUT CHAR*L, CHAR*(MAXL,V)’,CHARC, CHARV>
/ %INSERT S’39’ <%DISPLAY C’AID OUTPUT LOG*1, LOG*4’, LOG1, LOG4>
/ %RESUME

BS2000 F O R 1 : FORTRAN PROGRAM "OUTPUT"
STARTED ON 91-06-28 AT 11:33:32

Program OUTPUT was compiled without errors and was linked and loaded with LSD
records. Test points were defined via %INSERTs so that each %DISPLAY command is
followed by the corresponding FOR1 output. The text lines "AID OUTPUT" and
"CORRESPONDING FORTRAN OUTPUT" are printed in bold for greater clarity.

AID OUTPUT I*1, I*2, I*4, I*8
** ITN: #’000000DF’ *** TSN: 1627 ***
SRC REF: 17 SOURCE: OUTPUT PROC: OUTPUT ***********************************
INT1 = -12
INT2 = 234
INT4 = 997
INT8 = +.7570000000000000 E+003
CORRESPONDING FORTRAN OUTPUT:
-12
234
997
757

First, all integer variables are output. Unlike FOR1, AID outputs data elements of type
INTEGER*8 as REAL*8 elements.

AID OUTPUT R*4, R*8, R*16
SRC REF: 23 SOURCE: OUTPUT PROC: OUTPUT *********************************
REAL4 = +.1234559 E+003
REAL8 = +.1289960021972656 E+003
REAL16 = -.9877719726562500 E+003
CORRESPONDING FORTRAN OUTPUT:
0.12345599E+03
0.128996002197265625E+03
-0.9877719726562500000000000000000000E+03

The data elements of type REAL*4, REAL*8 and REAL*16 are output. REAL*16
variables are output as REAL*8 variables by AID.

44 U4298-J-Z125-3-7600

%DISPLAY

AID OUTPUT C*8, C*16, C*32, REAL(C*8), IMAG(C*8)
** ITN: #’000000DF’ *** TSN: 1627 ***
SRC REF: 28 SOURCE: OUTPUT PROC: OUTPUT ***********************************
CPLX8

REAL = +.2500000 E+001
IMAG = +.4699999 E+001

CPLX16
REAL = +.1600000381469726 E+001
IMAG = +.9600000381469726 E+001

CPLX32
REAL = +.3699999809265136 E+001
IMAG = +.8899999618530273 E+001

CPLX8. REAL = +.2500000 E+001
CPLX8. IMAG = +.4699999 E+001
CORRESPONDING FORTRAN OUTPUT:
(0.2500000E+01,0.46999998E+01)
(0.160000038146972656E+01,0.960000038146972656E+01)
(0.369999980926513671875000000000000E+01,0.889999961853027343750000000000000E+01)
0.25000000E+01
0.46999998E+01

The real and imaginary parts of complex numbers are always output separately by AID.
This corresponds to the bracketed representation of complex numbers in FOR1.
Like FOR1, AID permits the real and imaginary parts to be addressed individually:
dataname._REAL designates the real part, dataname._IMAG the imaginary part of a
complex variable.

AID OUTPUT CHAR*L, CHAR*(MAXL,V)
SRC REF: 35 SOURCE: OUTPUT PROC: OUTPUT ***********************************
CHARC(1: 3)
(1) AAAAA (2) BBBBB (3) CCCCC
CHARV = 44778
CORRESPONDING FORTRAN OUTPUT:
AAAAABBBBBCCCCC
44778

AID OUTPUT LOG*1, LOG*4
SRC REF: 39 SOURCE: OUTPUT PROC: OUTPUT ***********************************
LOG1 = %TRUE
LOG4 = %FALSE
CORRESPONDING FORTRAN OUTPUT:
T
F

Arrays of type ’character’ are likewise output according to array elements by AID.
Comparison of the various data types is concluded with logical variables as edited in
AID and FOR1 respectively.

U4298-J-Z125-3-7600 45

%DUMPFILE

%DUMPFILE

With %DUMPFILE you assign a dump file to a link name and cause AID to open or
close this file.

With link you select the link name for the dump file to be opened or closed.

With file you designate the dump file to be opened.

Command Operand

%DUMPFILE
[link [=file]]

%DF

If you omit the file operand AID will close the file assigned to the specified link name.

With a %DUMPFILE command without operands, you cause AID to close all open
dump files. If the AID work area was, up until this point, contained in a dump file now
closed, the AID standard work area then reapplies (see also %BASE command).

%DUMPFILE may only be specified as an individual command, i.e. it may not be
 part of a command sequence and may not be included in a subcommand.

%DUMPFILE does not alter the program state.

link

Designates one of the AID link names for input files and has the format Dn, where n is
a number with a value 0 n 7.

file

Specifies the fully-qualified file name under which the dump file AID is to open is
cataloged.
If this operand is omitted, the dump file with the link name link is closed.
An open dump file must first be closed with a separate %DUMPFILE command before
another file can be assigned the same link name.

46 U4298-J-Z125-3-7600

%DUMPFILE

Examples

1. %DUMPFILE D3=DUMP.1234.00001

The file DUMP.1234.00001 with link name D3 is opened.

2. %DF D3

The file assigned to link name D3 is closed.

3. %DF

All open dump files are closed.

U4298-J-Z125-3-7600 47

%FIND

%FIND

With %FIND you can search for a literal in a data element or in the executable part of a
program, and output hits to the terminal (via SYSOUT). In addition, the address of the
hit and the continuation address are stored in AID registers %0G and %1G. %FIND can
be used to search both virtual memory and a dump file.

search-criterion is the character literal or hexadecimal literal to be searched.

With find-area you specify which data element or which section of the executable
part of the program AID is to search for search-criterion. AID can search the virtual
address space of the task as well as dump files. If the find-area value is omitted,
AID searches the entire memory area in accordance with the base qualification
currently set (see %BASE).

With alignment you specify whether the search for search-criterion is to be effected
at a doubleword, word, halfword or byte boundary. When a value for alignment is
not given, searching takes place at the byte boundary.

With ALL you specify that the search is not to be terminated after output of the first
hit, rather the entire find-area is to be searched and all hits are to be output. The
search can only be aborted by pressing the K2 key.

Command Operands

%F[IND] [[ALL] search-criterion [IN find-area] [alignment]]

If the ALL operand is omitted from a %FIND command, the user may continue after
the address of the last hit and up to the end of the find-area by specifying a new
%FIND command without any operand values.

A %FIND command with a separate search-criterion and without any further operands
takes declarations for find-area and alignment from a preceding %FIND command. If
there has not been any preceding %FIND command, AID inserts the default values.

Output of hits is always in dump format (hexadecimal and character representation)
with a length of 12 bytes to the terminal (SYSOUT). In addition to the hit itself, its
address and (insofar as possible) the name of the program unit in which the hit was
found, and the relative address of the hit with respect to the beginning of the program
unit, are output.

In the event of a hit, the hit address is stored in AID register %0G and the continuation
address (hit address + search string length) in AID register %1G. With the ALL
specification, the address of the last hit is stored in %OG and the continuation address
of the last hit is stored in %1G. If the search-criterion has not been found, AID sets
%0G to -1; %1G remains unchanged.

48 U4298-J-Z125-3-7600

%FIND

The two register contents permit you to use the %FIND command in procedures as
well as in subcommands and to further process the results.

The %FIND command does not alter the program state.

search-criterion

is a character literal or hexadecimal literal. search-criterion may contain wildcard
symbols. These symbols are always hits. They are represented by ’%’.

search-criterion-OPERAND -

C’x...x’ | ’x...x’C | ’x...x’
X’f...f’ | ’f...f’X

- -

{C’x...x’|’x...x’C|’x...x’}

Character literal with a maximum length of 80 characters. Lowercase letters can
only be located as character literals after specifying %AID LOW[=ON].

x can be any representable character, in particular the wildcard symbol ’%’, which
always represents a hit. The character ’%’ itself cannot be located when it is in
this form, since C’%’ in a character literal must always result in a hit. For this
reason it must be represented as the hexadecimal literal X’6C’.

{X’f...f’ | ’f...f’X}

Hexadecimal literal with a maximum length of 80 hexadecimal digits or 40
characters. A literal with an odd number of digits is padded with X’0’ on the right.

f can assume any value between 0 and F, as well as the wildcard symbol X’%’.
The wildcard symbol represents a hit for every hexadecimal digit between 0 and
F.

find-area

defines the memory area to be searched for search-criterion. find-area can be a data
element or a section of the executable part of the loaded program or of a dump file.
find-area must not exceed 65535 bytes in length.

If no find-area has been specified, AID inserts the default value %CLASS6 (see AID
Core Manual, chapter 9), i.e. the class 6 memory for the currently set base qualification
is searched (see %BASE).

U4298-J-Z125-3-7600 49

%FIND

find-area-OPERAN D -

dataname
L’n’->

IN [•][qua•] S’n’->

compl-memref

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

qua
A qualification need be specified only if find-area is not within the current AID
work area.

E={VM | Dn}
Need only be specified if the current base qualification is not to apply for find-
area (see also %BASE command).

PROG=program-name
Need only be specified if find-area is not within the current program unit (see
chapter 3).

dataname
is the name of a variable, array or array element defined in the source program.
dataname is an alphanumeric string with up to 15 characters.

If dataname is the name of an array, it must be indexed as in a FORTRAN
statement if an array element is to be addressed. If you specify the name of an
array without an index list, the entire array is searched for search-criterion.

array-name (index1[, index2][, ...])
index specifies the position within an array. The number of indexes required
for access is the same as that necessary in a comparable FORTRAN
statement. Multiple indexes must be separated by commas.

50 U4298-J-Z125-3-7600

%FIND

index may have the following appearance:

n
data-name
arithmetic-expression

L’n’->
designates the memory location at the address of the first executable FORTRAN
statement following a statement label.
n is a statement label of up to 5 digits. Leading zeros must not be specified.

If no length modification value is specified, 4 bytes are searched, starting with the
address stored in the address constant L’n’ .

S’n’->
designates the memory location at the address of the FORTRAN statement with
the specified number.
n is the number of a statement (see STMT column in compiler listing).

If no length modification value is specified, 4 bytes are searched, starting with the
address stored in the address constant S’n’.

compl-memref
designates an area of 4 bytes, starting with the calculated address. If a different
number of bytes is to be searched, compl-memref must terminate with the
appropriate length modification. When modifying the length of data elements, you
must pay attention to area boundaries or switch to machine code level using
%@(dataname)->.
The following operations may occur in compl-memref (see also AID Core Manual,
chapter 6):

byte offset (•)
indirect addressing (->)
type modification (%A)
length modification (%L(...), %L=(expression), %Ln)
address selection (%@(...))

U4298-J-Z125-3-7600 51

%FIND

alignment

defines that the search for search-criterion is to be effected at certain aligned
addresses only.

alignment-OPERAN D -
1
2

ALIGN [=]
4
8

- -

search-criterion is searched for at:

1 byte boundary (default)

2 halfword boundary

4 word boundary

8 doubleword boundary

Examples

1. %FIND X’F0’ IN DATA

The hexadecimal literal X’F0’ is searched for in the variable DATA. Any hit is output
to SYSOUT.

2. %F X’D2’ IN S’12’->%L=(S’13’-S’12’) ALIGN=2

The hexadecimal literal X’D2’ is searched for at a halfword boundary in the
machine code generated for statement 12.

3. %F

The search is continued with the parameters of the last %FIND command behind
the last hit.

52 U4298-J-Z125-3-7600

%HELP

%HELP

By means of %HELP you can request information on the operation of AID. The
following information is output to the selected medium: either all the AID commands or
the selected command and its operands, or the selected error message with its
meaning and possible responses.

By means of the info-target operand you specify the command on which you need
further information or the AID message for which you want an explanation of its
meaning and actions to be taken.

By means of the medium-a-quantity operand you specify to which output media
AID is to output the required information. By means of this operand you temporarily
disable a declaration made via %OUT.

Command Operand

%H[ELP] [info-target] [medium-a-quantity][,...]

%HELP provides information on all the operands of the selected command, i.e. all
language-specific operands for symbolic debugging as well as all operands for
machine-oriented debugging. Refer to the relevant manual to see what is permitted for
the language in which your program is written.

Messages from AIDSYS have the message code format IDA0n and are queried using
/HELP.

%HELP can only be entered as an individual command, i.e. it must not be contained in
a command sequence or subcommand.

The %HELP command does not alter the program state.

info-target

designates a command or a message number about which information is to be output.
If the info-target operand is omitted, the command initiates output of an overview of the
AID commands with a brief description of each command, and of the AID message
number range.

AID responds to a %HELP command containing an invalid info-target operand by
issuing an error message. This is followed by the same overview as for a %HELP
command without info-target. This overview can also be requested via the %?, %H? or
%H %? entries.

U4298-J-Z125-3-7600 53

%HELP

info-target-OPERAN D -

%AID | %AINT | %BASE | %CONT[INUE] | %C[ONTROL]
%DISASSEMBLE | %DA | %D[ISPLAY] | %DUMPFILE | %DF
%F[IND] | %H[ELP] | %IN[SERT] | %JUMP | %M[OVE]
%ON | %OUT | %OUTFILE | %Q[UALIFY]
%REM[OVE] | %R[ESUME] | %SD[UMP]
%S[ET] | %STOP | %SYMLIB | %TITLE | %T[RACE]

In

- -

The AID command names may be abbreviated as shown above.

In designates the message number for which the meaning and possible responses
are to be output.
n is a 3-digit message number.

medium-a-quantity

defines the media via which information on the info-target is to be output.

The {MAX/MIN} specification is not relevant for %HELP, but the syntax requires that
one of these two options must be specified.

If this operand is omitted and no declaration has been made using the %OUT
command, AID works with the default value T=MAX.

medium-a-quantity-OPERAN D -

T
H MAX

=
Fn MIN
P

- -

medium-a-quantity is described in detail in the AID Core Manual, chapter 7.

T Terminal output
H Hardcopy output
Fn File output
P Output to SYSLST

54 U4298-J-Z125-3-7600

%INSERT

%INSERT

By means of %INSERT you can specify a test point and define a subcommand. Once
the program sequence reaches the test point, AID processes the associated
subcommand. In addition, the user can also specify whether AID is to delete the test
point once a specific number of executions has been counted and halt the program
afterwards.

By means of the test-point operand you may define the address of a command in
the program prior to whose execution AID interrupts the program run and to
process subcmd.

By means of the subcmd operand you may define a command or a command
sequence and perhaps a condition. Once test-point has been reached and the
condition has been satisfied, subcmd is executed.

By means of the control operand, you can declare whether test-point is to be
deleted after a specified number of passes and whether the program is then to be
halted.

Command Operand

%IN[SERT] test-point [<subcmd>] [control]

A test-point is deleted in the following cases:

1. When the end of the program is reached.
2. When the number of passes specified via control has been reached and deletion of

test-point has been specified.
3. If a %REMOVE command deleting the test-point has been issued.

If no subcmd operand is specified, AID inserts the subcmd <%STOP>.

The subcmd in an %INSERT command for a test-point which has already been set
does not overwrite the existing subcmd; instead, the new subcmd is prefixed to the
existing one. The chained subcommands are thus processed according to the LIFO rule
(last in, first out).

%REMOVE can be used to delete a subcommand, a test point or all test points
entered.

test-point can only be an address in the program which has been loaded, therefore the
base qualification E=VM must have been set (see %BASE) or must be specified
explicitly.

%INSERT does not alter the program state.

U4298-J-Z125-3-7600 55

%INSERT

test-point

must be the address of an executable machine instruction generated for a FORTRAN
statement. test-point is immediately entered by targeted overwriting of the memory
position addressed and must therefore be loaded in virtual memory at the time the
%INSERT command is input. Since, by entering test-point, the program code is
modified, a test point which has been incorrectly set may lead to errors in program
execution (e.g. data/addressing errors).

When the program reaches the test-point, AID interrupts the program and starts the
subcmd.

test-point-OPERAND -

program-name
[•][qua•][...] L’n’

S’n’
compl-memref

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

qua
A qualification is only required if test-point is not located in the current AID work
area.

E=VM
Since test-point can only be entered in the virtual memory of the program
which has been loaded, specify E=VM only if a dump file has been declared
as the current base qualification (see %BASE command).

PROG=program-name
is specified only if test-point is not in the current program unit (see chapter 3).

program-name
This specification is only possible after an explicit PROG qualification:
PROG=program-name•program-name

By repeating program-name you set test-point to the first statement of the
designated program unit.

56 U4298-J-Z125-3-7600

%INSERT

L’n’
is a statement name, designating the address of the first executable FORTRAN
statement following a statement label, i.e. the address of the first machine
instruction of the code sequence generated for this statement.
n is a statement label and comprises up to 5 digits. Leading zeros must not be
specified.

S’n’
is a source reference and designates the address of an executable FORTRAN
statement, i.e. the address of the first machine instruction of the code sequence
generated for this statement.
n is the number of a statement (see STMT column in compiler listing).

compl-memref
The result of compl-memref must be the start address of an executable machine
instruction.
compl-memref may contain the following operations (see AID Core Manual,
chapter 6):

byte offset (•)
indirect addressing (->)
type modification (%A)
length modification (%Ln)
address selection (%@(...))

A statement name L’n’ or a source reference S’n’ can be used within compl-
memref, but only in connection with the pointer operator (e.g. L’200’ ->.4).
Type modification makes sense only if the contents of a data element can be
used as an address or if you take the address from a register,
e.g. %1G.2 %AL2 ->.

subcmd

subcmd is processed whenever program execution reaches the address designated by
test-point.
If the subcmd operand is omitted, AID inserts a <%STOP>.

A complete description of subcmd can be found in the AID Core Manual, chapter 5.

subcmd-OPERAND -

AID-command
<[subcmdname:] [(condition):] [{;...}]>

BS2000-command

- -

U4298-J-Z125-3-7600 57

%INSERT

A subcommand may contain a name, a condition and a command part. Every
subcommand has its own execution counter. The command portion can comprise a
single command or a command sequence and may contain AID and BS2000
commands as well as comments.

If the subcommand consists of a name or a condition but the command part is
missing, AID merely increments the execution counter when the test point is reached.

subcmd does not overwrite an existing subcommand for the same test-point, rather the
new subcommand is prefixed to the existing one. subcmd may contain the commands
%CONTROLn, %INSERT, %JUMP and %ON. Nesting over a maximum of 5 levels is
possible.

The commands in a subcmd are executed one after the other; program execution is
then continued. The commands for runtime control immediately alter the program state,
even in a subcommand. They abort the subcmd and start the program (%CONTINUE,
%RESUME, %TRACE) or halt it (%STOP). They are thus only effective as the last
command in a subcmd, since any subsequent commands in the subcmd would fail to
be executed. Likewise, deletion of the current subcommand via %REMOVE makes
sense as the last command in subcmd only.

control

specifies whether test-point is to be deleted after the n-th pass and whether the
program is to be halted with the purpose of inserting new commands.
If no control operand has been specified, AID assumes the defaults 65535 (for n) and
K.

control-OPERAN D -

K
ONLY n [S]

C

- -

n
is a number with the value 1 n 65535, specifying after how many test-point
passes the further declarations for this control operand are to go into effect.

K
test-point is not deleted (KEEP).
Program execution is interrupted, and AID expects input of commands.

58 U4298-J-Z125-3-7600

%INSERT

S
test-point is deleted (STOP).
Program execution is interrupted, and AID expects input of commands.

C
test-point is deleted (CONTINUE).
No interruption of the program.

Examples

1. %IN S’48’

The statement with the number 48 is specified as test-point.

2. %IN L’0’ <%DISPLAY X>

The statement with the statement label 0 is specified as test-point.

3. %IN S’3’ <%DISPLAY PERSNO> ONLY 10 S

The statement with the number 3 is specified as the test-point. Whenever the
program sequence arrives at the third statement, the %DISPLAY command of the
subcmd is executed. When test-point is reached for the 10th time, AID sets the
program to STOP and deletes the test point, at which time you may enter new
commands.

4. %IN L’2’ <%DISPLAY TEXTDAT, ’L2’>

%IN S’3’ <%DISPLAY ’INSERT1’, TEXTDAT; %IN L’20’ <%D ’INSERT2’, -

I,J,K, NUMBER; %IN S’172’ <%D ’INSERT3’ ,I,J; %REMOVE L’20’>>>

With the first %INSERT command, the test-point set is the statement with the label
2. If, after the end of command input, the program
execution reaches L’2’, the subcommand is executed. It consists of a %DISPLAY
command (for data name TEXTDAT) and the literal L’2’. Afterwards the program is
continued.

By means of the second %INSERT command, test-point S’3’ is declared. This
%INSERT command contains two other nested %INSERT commands. Their test-
point values are still inactive for AID. They do not become active until the test-point
of the %INSERT command in whose subcmd they are defined is reached.

When program execution reaches statement S’3’, the corresponding subcmd is
executed, i.e. the %DISPLAY command for the literal ’INSERT1’ and the variable
TEXTDAT is executed and the test-point L’20’ is set.

U4298-J-Z125-3-7600 59

%INSERT

The subcmd for test-point L’20’ is still inactive. Thus, in the program to be tested,
the following three test-points have been set at this stage in the program run: L’2’,
S’3’ and L’20’.

As the subcmd for test-point S’3’ does not contain any %STOP command, the
program is continued after execution of subcmd. If program execution is not
interrupted for some other reason, e.g. an error or the occurrence of an event
declared by %ON, and finally reaches the symbolic address L’20’, then the %D
command ’INSERT2’, I, J, K, NUMBER is executed. Furthermore, subcmd contains
a further %INSERT command, whose test-point this time is specified via S’172’, i.e.
statement 172.

If the position marked S’172’ is reached during further program execution, AID
executes the %DISPLAY command for the literal ’INSERT3’ and the contents of
variables I and J. By way of the second command in this subcmd, the %REMOVE
L’20’ command, test-point L’20’ is deleted. This is necessary, for instance, if a test-
point is located in a loop and this would lead to an undesirable chaining of nested
subcommands. Without the %REMOVE command, the following subcmd would be
created for test-point S’172’ during the second pass of L’20’:

<%D ’INSERT3’, I,J; %D ’INSERT3’,I,J>

5. %OUT %DISPLAY P=MAX

%IN L’100’ <%D ’I GE 10’,I,X(I),K,Y(I,K)>

%IN L’100’ <(I LT 10): %D ’I LT 10’,I,X(I); %CONT>

First, all outputs of the %DISPLAY command are directed to SYSLST.
The two subsequent %INSERTs create the following subcommand at test-point
L’100’:
<(I LT 10): %D ’I LT 10’,I,X(I); %CONT; %D ’I GE 10’,I,X(I),K,Y(I,K)>

Every time the program sequence reaches the statement with label 100, a check is
made whether index I contains a value < 10. If the condition is satisfied, AID writes
the comment ’I LT 10’ and the contents of I und X(I) to SYSLST and, as a result of
%CONTINUE, continues the program (with tracing, if the subcommand interrupted
a %TRACE).
If the value of I is 10, AID writes the comment ’I GE 10’ and, in addition to I and
X(I), also the values of index K and array element Y(I,K) to SYSLST and likewise
continues the program. In this case, too, any active %TRACE is continued.

60 U4298-J-Z125-3-7600

%JUMP

%JUMP

With the %JUMP command you define a continuation address at which the program is
to continue with %CONTINUE, %RESUME or %TRACE. With this address you deviate
from the coded program sequence. The command is acknowledged with a message
reporting execution of the branch.

With the continuation operand you designate the position in the program where AID
is to continue following termination of command input. continuation can only be the
address of a FORTRAN statement.

Command Operand

%JUMP continuation

%JUMP can only be used for program units which were compiled with FOR1 as of
V2.1A and which have not been optimized (SDF option OPTIMIZATION=NO or
COMOPT statement OPTIMIZE=NO).

The continuation address must be located in the same program unit in which the
program was interrupted, otherwise AID outputs an error message. AID does not make
any other checks. The user must ensure that the prerequisites (e.g. index or counter
states, file status) for error-free execution of program as of continuation have been
fulfilled. This is especially important if you use the %JUMP command to reach an
address which comes logically before the interrupt point in the course of program
execution.

You may not enter the %JUMP command in the following cases:
immediately after the LOAD-PROGRAM command
if the program has been interrupted by the system, e.g. because a file to be opened
has not yet been assigned
if the K2 key has been used to interrupt the program
if the program has been halted by the FORTRAN statement PAUSE.

The %JUMP command does not alter the program state.

U4298-J-Z125-3-7600 61

%JUMP

continuation

defines the position at which the program is to be continued. continuation must be the
address of an executable statement within the current program unit. If the %JUMP
command is part of a subcommand, continuation must designate a statement in the
program unit which also contains the test point or in which the event defined with %ON
has occurred.

continuation-OPERAND -

L’n’
S’n’

- -

L’n’
is a statement name designating the address of the first executable FORTRAN
statement after a statement label.
n is a statement label and consists of up to 5 digits. Leading zeros must not be
specified.

S’n’
is a source reference designating the address of an executable FORTRAN
statement.
n is the number of a statement (see STMT column of compiler listing).

Examples

1. %JUMP S’24’

The statement with number 24 is declared as the continuation address.

2. %JUMP L’100’

The first executable statement following statement label 100 is declared as the
continuation address.

62 U4298-J-Z125-3-7600

%MOVE

%MOVE

With the %MOVE command you transfer memory contents or AID literals to memory
positions within the program which has been loaded. Transfer is effected without
checking and without matching of sender and receiver storage types.

With the sender operand you designate a variable, an array or an array element, a
length, an execution count, an AID register or an AID literal. sender can be located
in virtual memory of the loaded program or in a dump file.

With the receiver operand you designate a variable, an array or an array element, an
execution counter or an AID register which is to be overwritten. receiver can only be
located in virtual memory of the loaded program.

With the REP operand you specify whether AID is to generate a REP record in
conjunction with a modification which has taken place. This operand has a higher
priority than a default specified in the %AID command but affects only the current
%MOVE.

Command Operand

%M[OVE] sender INTO receiver [REP]

In contrast to the %SET command, AID does not check for compatibility between the
storage types sender and receiver when the %MOVE command is involved, and does
not match these two storage types.

AID passes the information left-justified, with the length of sender. If the length of sender
is greater than that of receiver, AID rejects the attempt to transfer and issues an error
message.

Also in contrast to the %SET command, the %MOVE command can be used to transfer
or overwrite complete COMPLEX data elements. However, you also have the option (as
with %SET) of using the operands dataname._REAL or dataname._IMAG to apply the
modification only to the real or imaginary portion of the complex number.

Input of the command immediately following loading is not recommended, as you
cannot address data and statements without an explicit qualification until the program is
about to process the first executable statement. The following command sequence
must be entered:
%INSERT PROG=program-name.program-name
%RESUME

In addition to the operand values described here, the values described in the manual
for debugging on machine code level can also be employed.

U4298-J-Z125-3-7600 63

%MOVE

Using %AID CHECK=ALL you can also activate an update dialog, which first provides you
with a display of the old and new contents of receiver and offers you the option of
aborting the %MOVE command.

The %MOVE command does not alter the program state.

sender INTO receiver

For sender or receiver you can specify a variable, an array or an array element, a
complex memory reference, an execution counter, or a register. Symbolic constants,
addresses and lengths of data elements as well as AID literals can only be employed
as sender.

sender may be either in the virtual memory area of the program which has been loaded
or in a dump file; receiver, on the other hand, can only be within the virtual memory of
the loaded program.

No more than 3900 bytes can be transferred with a %MOVE command. If the area to
be transferred is larger, you must issue multiple %MOVE commands.

sender-OPERAN D - - - - - - - - - - - - - - receiver-OPERAN D - - - - - - - - -

dataname
L’n’

[•][qua•] S’n’
keyword
compl-memref dataname

L’n’
%@ dataname INTO [•][qua•] S’n’

([•][qua•]) keyword
%L compl-memref compl-memref

%L=(expression)

AID-literal

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

64 U4298-J-Z125-3-7600

%MOVE

qua
A qualification is necessary only if sender or receiver is not within the current AID
work area.

E={VM | Dn} for sender
E=VM for receiver

You specify a base qualification only if the current base qualification is not to
apply for a data/statement name, source reference or keyword (see %BASE).
sender may be either in virtual memory or in a dump file; receiver, on the
other hand, can only be in virtual memory.

PROG=program-name
is to be specified only if you address a data/statement name or source
reference that is not in the current program unit (see chapter 3).

dataname
specifies the name of a constant, variable, array or array element as defined in
the source program. Constants can only be used as sender.
dataname is an alphanumeric string consisting of up to 15 characters.

If dataname is the name of an array, then you must index it as in a FORTRAN
statement if you want to address an array element. If you specify the name of an
array without an index list, this means that all array elements will be transferred
(in the case of sender). If you specify the name of an array without an index list in
the case of receiver, the array will be overwritten beginning at the start address
and using the length of sender, without taking into account the subdivision into
array elements.

array-name (index1[, index2][, ...])
index specifies the position within an array. The number of indexes required
for access is the same as in a FORTRAN statement. Multiple indexes must be
separated by a comma.
index may be specified as follows:

n
data-name
arithmetic-expression

L’n’
is a statement name designating the address of the first executable FORTRAN
statement following a statement label.
n is a statement label and consists of up to 5 digits. Leading zeros must not be
specified.

U4298-J-Z125-3-7600 65

%MOVE

S’n’
is a source reference designating the address of an executable FORTRAN
statement.
n is the number of a statement (see STMT column of compiler listing).

Statement names and source references are address constants and can therefore
only be specified for sender. The address designated using L’n’ or S’n’ is then
transferred.

Example
%MOVE S’5’ INTO %0G

The address of the statement with number 5 is written to AID register %0G.

With L’n’-> or S’n’-> you designate 4 bytes of the machine code at the
corresponding address (see AID Core Manual, section 6.4).
%DISASSEMBLE can be used to output the machine instructions in order to
perform any length modification.
In the case of receiver, you may use statement names and source references only
in connection with the pointer operator (->).

Example
%MOVE S’12’->%L=(S’13’-S’12’) INTO S’24’->

By means of this %MOVE command you modify the code of your program.
The machine code for statement 24 is overwritten by that of statement 12. The
specification %L=(S’13’-S’12’) yields the length of the machine code generated
for statement 12.

keyword
specifies an execution counter, the program counter, or a register. keyword may
only be preceded by a base qualification.

%•subcmdname Execution counter
%• Execution counter of the current subcommand
%PC Program counter
%n General register, 0 n 15
%nD|E Floating-point register , n = 0,2,4,6
%nQ Floating-point register , n = 0,4
%nG AID general register, 0 n 15
%nDG AID floating-point register , n = 0,2,4,6

66 U4298-J-Z125-3-7600

%MOVE

compl-memref
may contain the following operations (see AID Core Manual, chapter 6):

byte offset (•)
indirect addressing (->)
length modification (%L(...), %L=(expression), %Ln)
address selection (%@(...))

A subsequent type modification for compl-memref is pointless, since transfer is
always in binary form, regardless of the storage type of sender and receiver.
However, a type modification may be necessary before a pointer operation (->).

Example
%0G.2%AL2->

The last two bytes of AID register %0G are to be used as the address.

After byte offset (•) or pointer operation (->), the implicit storage type and implicit
length of the original address are lost. At the calculated address, storage type %X
with length 4 applies, if no value for type and length has been explicitly specified
by the user.
For each operand in a complex memory reference the assigned memory area
must not be exceeded as the result of byte offset or length modification,
otherwise AID does not execute the command and writes an error message. By
combining the address selection (%@) with the pointer operator (->) you can exit
from the symbolic level. You may then use the address of a data element without
having to take note of its area boundaries.

Example
The variables CARRAY and CFIELD1 each occupy 5 bytes. The last 2 bytes of
CARRAY as well as the 3 following bytes are to be transferred to CARRAY1.
AID would reject the following command as a violation of the CARRAY area:
%MOVE CARRAY.3%L5 INTO CFIELD1

The correct command reads:
%MOVE %@(CARRAY)->.3%L5 INTO CFIELD1

%@(...)
With the address selector you can use the address of a data element or complex
memory reference as sender (see AID Core Manual, section 6.11). The address
selector produces an address constant as a result.

U4298-J-Z125-3-7600 67

%MOVE

%L(...)
With the length selector you can use the length of a data element or complex
memory reference as sender (see AID Core Manual, section 6.11). The length
selector produces an integer as a result.

Example
%MOVE %L(ARRAY1) INTO %0G

The length of ARRAY1 will be transferred.

%L=(expression)
With the length function you can calculate the value of expression and have it
stored in receiver (see AID Core Manual, sections 6.9 and 6.10). In expression you
may combine the contents of memory references, constants of type ’integer’ and
integers with the arithmetic operators (+,-,*,/). The length function produces an
integer as a result.

Example
%MOVE %L=(ARRAY1) INTO %0G

The contents of ARRAY1 are transferred. FIELD1 must be of type ’integer’,
otherwise AID issues an error message.

AID literal
The following AID literals (see AID Core Manual, chapter 8) can be transferred
using %MOVE:

{C’x...x’ | ’x...x’C | ’x...x’} Character literal
{X’f...f’ | ’f...f’X} Hexadecimal literal
{B’b...b’ | ’b...b’B} Binary literal
[{±}]n Integer
#’f...f’ Hexadecimal number

REP

Specifies whether AID is to generate a REP record after a modification has been
performed. With REP you temporarily deactivate a declaration made with the %AID
command. If REP is not specified and there is no valid declaration in the %AID
command, no REP record is created.

REP-OPERAND -

REP = {Y[ES] NO}

- -

68 U4298-J-Z125-3-7600

%MOVE

REP=Y[ES]
LMS UPDR records (REPs) are created for the update caused by the current
%MOVE. If the object structure list is not available, no REP records are generated
and AID will output an error message.
Also, if receiver is not located completely within one CSECT, AID will output an
error message and not write a REP record. To obtain REP records despite this,
the user may distribute transfer operations over several %MOVE commands in
which the CSECT limits are observed (see [2]).

AID stores the REPs with the requisite LMS UPDR statements in a file with the link
name F6, from which they can be fetched as a complete package. Therefore no
other output should be written to the file with link name F6.

If no file with link name F6 is registered (see %OUTFILE), the REP is stored in the
file AID.OUTFILE.F6 created by AID.

REP=NO
No REPs are created for the current %MOVE command.

Examples

The following variables and arrays are defined in a FORTRAN program:

INTEGER*2 IARRAY(10)
INTEGER*4 JARRAY(10)
REAL*4 RNUMBER
CHARACTER*4 CVAR

1. %MOVE IARRAY INTO JFIELD

No index has been specified for the two arrays: AID therefore transfers the
contents of IARRAY to the symbolic address JARRAY in hexadecimal format and
left-justified, without taking into account any subdivision into array elements.

2. %MOVE 20 INTO JARRAY(2)

AID writes a word containing an integer with the value 20 to the array element
JARRAY(2) of type INTEGER*4.

3. %MOVE 20 INTO RNUMBER

As in example 2, a word with the contents X’00000014’ is written to RNUMBER,
which of course makes no sense when a REAL number is involved. To transfer
value 20 to RNUMBER, you will have to enter a %SET command (see %SET),
which performs conversion prior to the transfer.

U4298-J-Z125-3-7600 69

%MOVE

4. %MOVE X’58F0C160’ INTO CVAR REP=YES

The contents of the CVAR variable are overwritten with the hexadecimal literal
X’58F0C160’. A REP record is created for the correction and is stored in the file
AID.OUTFILE.F6 or the file assigned to link name F6.

70 U4298-J-Z125-3-7600

%ON

%ON

With the %ON command you define events and subcommands. When a selected event
occurs, AID processes the associated subcmd.

With event you define normal or abnormal program termination, a supervisor call
(SVC), a program error or any event for which AID is to interrupt the program in
order to process the subcmd.

With subcmd you define a command or a command sequence and perhaps a
condition. When event occurs and this condition is satisfied, subcmd is executed.

Command Operand

%ON event [<subcmd>]

If an event is not deleted, it remains valid until the program ends.

If the subcmd operand is omitted, AID inserts the subcmd <%STOP>.

The subcmd of an %ON command for an event which has already been defined does
not overwrite the existing subcmd, rather the new subcmd is prefixed to the existing
subcommand. This means that chained subcommands are processed in accordance
with the LIFO principle.

The base qualification E=VM must apply for %ON (see %BASE).

The %ON command does not alter the program state.

event

A keyword is used to specify an event (program error, abnormal termination of the
program, supervisor call, etc.) upon which AID is to process the subcmd specified.

If several %ON commands with different event declarations are simultaneously active
and satisfied, AID processes the associated subcommands in the order in which the
keywords are listed in the table below. If various %TERM events are applicable, the
associated subcommands are processed in the opposite order in which the %TERM
events have been declared (LIFO rule as for chaining of subcommands).
For selection of the SVC numbers see the "Executive Macros" manual [6].

U4298-J-Z125-3-7600 71

%ON

In an %ON command, it is not advisable to define events which are already covered by
FOR1 error recovery routines. Such events include the following interrupt conditions:
%ERRFLG(zzz), %INSTCHK, %ARTHCHK, %ABNORM and %ERRFLG

These events can only be addressed in an %ON command if the FOR1 error recovery
routines have been suppressed (possible only for FOR1 programs without standard
linkage).
To do so, enter the following commands:

/PARAMETER CARD = YES
.
.

/LOAD-PROGRAM
..., TEST-OPT = AID

/START-PROGRAM
.
.
GIVE ’RUNOPT’ OR ’END’ OR ’?’
*RUNOPT STXIT = NO
.
.

72 U4298-J-Z125-3-7600

%ON

event subcmd is processed:

%ERRFLG (zzz) after the occurrence of an error with error weight
zzz and

before abortion of the program

%INSTCHK after the occurrence of an addressing error, an
impermissible supervisor call (SVC), an
operation code which cannot be decoded,
a paging error or a privileged operation and

before abortion of the program

%ARTHCHK after the occurrence of a data error, divide
error, exponent overflow or a zero mantissa
and

before abortion of the program

%ABNORM after the occurrence of one of the errors
covered by the previously described events

%ERRFLG after the occurrence of an error with any error
weight

%SVC(zzz) before execution of the supervisor call (SVC) with
the specified number

%LPOV(xxxxxxxx) after loading of the segment with the specified
name xxxxxxxx (up to 8 alphanumeric chars.)

%LPOV after loading of any arbitrary segment

%TERM(N[ORMAL]) before normal termination of a program

%TERM(A[BNORMAL]) before abnormal termination of a program, but
after output of a memory dump

%TERM before termination of a program by any of the %TERM
events described above

%ANY before termination of a program with %TERM

%SVC before execution of any supervisor call

zzz may be specified in one of two formats:
n unsigned decimal number of up to three digits
#’ff’ two-digit hexadecimal number
The following applies for the value zzz: 1 zzz 255

No check is made whether the specified number of the error weight or the SVC
number is meaningful or permissible.

U4298-J-Z125-3-7600 73

%ON

subcmd

is processed whenever the specified event occurs in the course of program execution.
If the subcmd operand is omitted, AID inserts a <%STOP>.

For a complete description of subcmd refer to the AID Core Manual, chapter 5.

subcmd-OPERAND -

AID-command
<[subcmdname:] [(condition):] [{;...}]>

BS2000-command

- -

A subcommand may comprise a name, a condition and a command part. Every
subcommand has its own execution counter. The command portion can consist of
either an individual command or a command sequence; it may contain AID and BS2000
commands as well as comments.
If the subcommand contains a name or condition but no command part, AID merely
increments the execution counter when the declared event occurs.

subcmd does not overwrite an existing subcommand for the same event. Instead, the
new subcommand is prefixed to the existing one. The %CONTROLn, %INSERT, %JUMP
and %ON commands are permitted in subcmd. The user can form up to 5 nesting
levels. An example can be found under the description of the %INSERT command.

The commands in a subcmd are executed one after the other; then the program is
continued. The commands for runtime control immediately alter the program state, even
in a subcommand. They abort subcmd and continue the program (%CONTINUE,
%RESUME, %TRACE) or halt it (%STOP). They should only be placed as the last
command in a subcmd, since any subsequent commands of the subcmd will not be
executed. Likewise, deletion of the current subcommand via %REMOVE makes sense
only as the last command in subcmd.

Examples

1. %ON %LPOV (MON12) <%D ’%LPOV (MON12)’; %STOP>

After MON12 has been loaded, AID outputs the literal ’%LPOV (MON12)’ and
interrupts the program.

2. %ON %ERRFLG (108)

%ON %ERRFLG (#’6C’)

Both specifications designate the same program error (mantissa equals zero).

3. %ON %ERRFLG (107) <%D ’ERROR’>

This error weight does not exist, therefore the subcmd defined for this event will
never be started.

74 U4298-J-Z125-3-7600

%OUT

%OUT

With %OUT you define the media via which data is to be output and whether output is
to contain additional information, in conjunction with the output commands
%DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and %TRACE.

With target-cmd you specify the output command for which you want to define
medium-a-quantity.

With medium-a-quantity you specify which output media are to be used and
whether or not additional information is to be output.

Command Operand

%OUT [target-cmd [medium-a-quantity][,...]]

In the case of %DISPLAY, %HELP and %SDUMP commands, you may specify a
medium-a-quantity operand which for these commands temporarily deactivates the
declarations of the %OUT command. %DISASSEMBLE and %TRACE include no
medium-a-quantity operand of their own; their output can only be controlled with the
aid of the %OUT command.

Before selecting a file as the output medium via %OUT, you must issue the %OUTFILE
command to assign the file to a link name and open it; otherwise AID creates a default
output file with the name AID.OUTFILE.Fn.

The declarations made with the %OUT command are valid until overwritten by a new
%OUT command, or until /LOGOFF.

An %OUT command without operands assumes the default value T=MAX for all target-
commands.

%OUT may only be specified as an individual command, i.e. it may not be part of a
command sequence or subcommand.

%OUT does not alter the program state.

target-cmd

designates the command for which the declarations are to apply. Any of the commands
listed below may be specified.

%D[IS]A[SSEMBLE]
%D[ISPLAY]
%H[ELP]
%SD[UMP]
%T[RACE]

U4298-J-Z125-3-7600 75

%OUT

medium-a-quantity

In conjunction with target-cmd this specifies the medium or media via which output is
to take place, as well as whether or not AID is to output additional information
pertaining to the AID work area, the current interrupt point and the data to be output.

If the medium-a-quantity operand has been omitted, the default value T=MAX applies
for target-cmd.

medium-a-quantity-OPERAN D -

T
H MAX

=
Fn MIN
P

- -

medium-a-quantity is described in detail in the AID Core Manual, chapter 7.

T Terminal output
H Hardcopy output
Fn File output
P Output to SYSLST

MAX Output with additional information

MIN Output without additional information

Examples

1. %OUT %SDUMP T=MIN,F1=MAX

Data output of the %SDUMP command should be output on the terminal in
abbreviated form, and in parallel to this also to the file with link name F1, along
with additional information.

2. %OUT %TRACE F1=MAX

The TRACE log with additional information is output only to the file with link name
F1.

3. %OUT %TRACE

For the %TRACE command, this specifies that previous declarations for output of
data are erased, and that the default value T=MAX applies.

76 U4298-J-Z125-3-7600

%OUTFILE

%OUTFILE

%OUTFILE assigns output files to AID link names F0 through F7 or closes output files.
You can write output of the commands %DISASSEMBLE, %DISPLAY, %HELP,
%SDUMP and %TRACE to these files by specifying the corresponding link name in the
medium-a-quantity operand of %OUT, %DISPLAY, %HELP or %SDUMP. If a file does
not yet exist, AID will make an entry for it in the catalog and then open it.

With link you select a link name for the file to be cataloged and opened or closed.

With file you assign a file name to the link name.

Command Operand

%OUTFILE [link [= file]]

If you do not specify the file operand, this causes AID to close the file designated
using link. In this way an intermediate status of the file can be printed during
debugging.

An %OUTFILE without operands closes all open AID output files. If you have not
explicitly closed an AID output file using the %OUTFILE command, the file will remain
open until the program terminates.

Without %OUTFILE, you have two options of creating and assigning AID output files:

1. Enter a /SET-FILE-LINK command for a link name Fn which has not yet been
reserved. Then AID opens this file when the first output command for this link
name is issued.

2. Leave the creation, assignment and opening of files to AID. AID then uses default
file names with the format AID.OUTFILE.Fn corresponding to link name Fn.

%OUTFILE does not alter the program state.

link

Designates one of the AID link names for output files and has the format Fn, where n is
a number with a value 0 n 7.

The REP records for the %MOVE command are written to the output file with link name
F6 (see also the %AID and %MOVE commands).

U4298-J-Z125-3-7600 77

%OUTFILE

file

specifies the fully-qualified file name with which AID catalogs and opens the output file.
Use of an %OUTFILE command without the file operand closes the file assigned to link
name Fn.

78 U4298-J-Z125-3-7600

%QUALIFY

%QUALIFY

With %QUALIFY you define qualifications. In the address operand of another command
you may refer to these qualifications by prefixing a period.
Use of this abbreviated format for a qualification is practical whenever you want to
repeatedly reference addresses which are not located in the current AID work area.

By means of the prequalification operand you define qualifications which you would
like to incorporate in other commands by referencing them via a prefixed period.

Command Operand

%Q[UALIFY] [prequalification]

A prequalification specified with the aid of the %QUALIFY command applies until it is
overwritten by a %QUALIFY with a new prequalification or revoked by a %QUALIFY
without operands, or until /LOGOFF.

On input of a %QUALIFY command, only a syntax check is made. Whether the
specified link name has been assigned a dump file or whether the specified program
unit has been loaded or included in the LSD records is not checked until subsequent
commands are executed and the information from prequalification is actually used in
addressing.

The declarations of the %QUALIFY command are only used by commands which are
input subsequently. %QUALIFY has no effect on any subcommands in %CONTROL,
%INSERT and %ON commands entered prior to this %QUALIFY command, even if they
are executed after it.

The same %AID LOW={ON|OFF} setting must apply for input of the %QUALIFY and
for replacement in an address operand.

%QUALIFY may only be specified as an individual command, i.e. it may not be part of
a command sequence or subcommand.

The %QUALIFY command does not alter the program state.

U4298-J-Z125-3-7600 79

%QUALIFY

prequalification

designates a base qualification or a PROG qualification or both qualifications, which
must then be separated by a period.

The reference to a prequalification defined in the %QUALIFY command is effected by
prefixing a period to the address operands of subsequent AID commands.

prequalification operand -

VM
[E=][•PROG=program-name]

Dn

- -

E={VM|Dn}
must be specified if you want to use a base qualification which is different from
the current one (see %BASE command).

PROG=program-name
designates a program unit.

Examples

1. %QUALIFY E=D1.PROG=SORT

%D .CARRAY(1)

Because of the prequalification, the %DISPLAY command has the same effect as
the following %DISPLAY command in full format:

%D E=D1.PROG=SORT.CARRAY(1)

2. %QUALIFY PROG=SUB

%SET .A INTO .B

Because of the prequalification, the %SET command has the same effect as the
following %SET command in full format:

%SET PROG=SUB.A INTO PROG=SUB.B

80 U4298-J-Z125-3-7600

%REMOVE

%REMOVE

With the %REMOVE command you revoke the test declarations for the %CONTROLn,
%INSERT and %ON commands.

With target you specify whether AID is to revoke all effective declarations for a
particular command or whether only a specific test point or event or a subcommand
is to be deleted.

Command Operand

%REM[OVE] target

If a subcommand contains a %REMOVE which deletes this subcommand or the
associated monitoring condition (test-point, event or criterion), any subsequent subcmd
commands will not be executed. Such an entry is therefore only meaningful as the last
command in a subcommand.

The %REMOVE command does not alter the program state.

target

Designates a command for which all the valid declarations are to be deleted, or a test-
point to be deleted, or an event which is no longer to be monitored, or the
subcommand to be deleted. If target is within a nested subcommand and therefore has
not yet been entered, it cannot be deleted either.

target-OPERAND -

%C[ONTROL] | %C[ONTROL]n

%IN[SERT] | test-point

%ON | event

%•[subcmdname]

- -

%C[ONTROL]
The declarations for all %CONTROLn commands entered are deleted.

%C[ONTROL]n
The %CONTROLn command with the specified number (1 n 7) is deleted.

U4298-J-Z125-3-7600 81

%REMOVE

%IN[SERT]
All test points which have been entered are deleted.

test-point
The specified test-point is deleted. test-point is specified as under the %INSERT
command.
Within the current subcommand, test-point can also be deleted with the aid of
%REMOVE %PC->, as the program counter (%PC) contains, at this point in time,
the address of the test-point.

%ON
All events which have been entered are deleted.

event
The specified event is deleted. event is specified with a keyword, as under the
%ON command. The event table with the keywords and explanations of the
individual events can be found under the description of the %ON command.

The following applies for the events %ERRFLG(zzz), %SVC(zzz) and %LPOV(zzz):
%REMOVE event(zzz) deletes only the event with the specified number.
%REMOVE event without specification of a number deletes all events of the
corresponding group.

%•[subcmdname]
deletes the subcommand with the name subcmdname in a %CONTROLn or
%INSERT command.

%• is the abbreviated form of a subcommand name and can only be used within
the subcommand. %REMOVE %. deletes the current subcommand and is thus
only practical as the last command in a subcommand, since any commands
following it within a subcmd will not be executed.

As %CONTROLn cannot be chained, the associated %CONTROLn will be deleted
as well. Deleting the subcommand therefore has the same effect as deleting the
%CONTROLn by specifying the appropriate number.

On the other hand, several subcommands may be chained at a test-point of the
%INSERT command. With the aid of %REMOVE %.[subcmdname] you can delete
an individual subcommand from the chain, while further subcommands for the
same test-point will still continue to exist (see AID Core Manual, chapter 5). If
only the subcommand designated subcmdname was entered for the test-point,
the test-point will be deleted along with the subcommand.

%REMOVE %.[subcmdname] is not permitted for %ON.

82 U4298-J-Z125-3-7600

%REMOVE

Examples

1. %C1 %CALL <CTL1: %D %.>
%REM %C1
%REM %.CTL1

Both %REMOVE commands have the same effect: %C1 is deleted.

2. %IN L’100’ <SUB1: %D I,J,IARRAY(I,J)>
%IN L’100’ <SUB2: %D %PC; %REM %.>
.
.
%REM L’100’

When the test point L’100’ is reached, the program counter is output. Then
subcommand SUB2 is deleted, i.e. this subcommand is executed only once.
Subsequently the indexes I and J and the associated array element IARRAY(I,J) are
output, and the program continues. Whenever test point L’100’ is reached in the
program sequence, subcommand SUB1 is executed. %REM L’100’ deletes the test
point later on. %REM %.SUB1 would have the same effect, as this subcommand is
the only remaining entry for test point L’100’.

U4298-J-Z125-3-7600 83

%RESUME

%RESUME

With %RESUME you start the loaded program or continue it at the interrupt point or the
point specified in the %JUMP command. The program executes without tracing.

If the program has been halted during execution of a %TRACE command, the %TRACE
command will be aborted. If an interrupted %TRACE is to be continued, the
%CONTINUE command must be issued instead of %RESUME.

Command Operand

%R[ESUME]

If a %RESUME command is contained within a command sequence or subcommand,
any commands which follow it will not be executed.
If the %RESUME command is the only command in a subcommand, the execution
counter is incremented and any active %TRACE deleted.

The %RESUME command alters the program state.

84 U4298-J-Z125-3-7600

%SDUMP

%SDUMP

With %SDUMP you can output a symbolic dump: individual data elements, all data
elements of the current call hierarchy, or the program names of the current call
hierarchy. The current call hierarchy extends from the subprogram level on which the
the program was interrupted to the subprograms invoked by CALL statements to the
main program.

With dump-area you designate the variables or arrays which AID is to output, or
you specify that AID is to output the program names of the current call hierarchy.

With medium-a-quantity you specify which output media AID is to use, and whether
or not additional information is to be output. This operand is used to deactivate a
declaration made by the %OUT command, as far as the current %SDUMP
command is concerned.

Command Operand

%SD[UMP] [[dump-area][,...] [medium-a-quantity][,...]]

With the %SDUMP command, data can only be addressed after initialization, i.e. when
the first executable statement of a program unit has been reached. achieve this, enter
the following two commands:

%INSERT PROG=program-name.program-name
%RESUME

If program units for which there are no LSD records, not even in a PLAM library, are
included in the hierarchy, the user can only issue the %SDUMP command individually
for program units for which LSD records have been loaded or can be loaded from a
PLAM library (see %SYMLIB command).

%SDUMP without operands outputs all data elements of the current call hierarchy.
Multiply defined data is also output multiply.

%SDUMP %NEST outputs the names of all program units of the current call hierarchy.

dump-area can be repeated up to 7 times.

With this command the user can work either in the loaded program or in a dump file.

The %SDUMP command does not alter the program state.

U4298-J-Z125-3-7600 85

%SDUMP

dump-area

describes which information AID is to output.
AID can output the program names of the current call hierarchy, all data of the current
call hierarchy, all data of a program unit or individual data elements. AID edits the data
elements in accordance with the definition in the source program. If the contents do
not match the defined storage type, output is rejected and an error message is issued.

If dataname is defined in multiple program units of the current call hierarchy it is also
output repeatedly, unless dump-area has been restricted by a qualification.
If dataname is not contained in the LSD records, AID issues an error message;
subsequent dump-areas of the same command are output, however.

dump-area-OPERAN D -

VM [PROG=program-name[•]] [dataname]
[•][E= [•]]

Dn %NEST

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

E ={VM | Dn}
An explicit base qualification is to be entered only if the current base qualification
is not to apply for the dump-area. If you specify only a base qualification, all data
of the corresponding call hierarchy will be output.

PROG=program-name
A PROG qualification is mandatory if dump-area is to apply only for the specified
program unit. If the definition of dump-area terminates with a PROG qualification,
AID will output all data elements of this program unit.

dataname
is the name of a constant, variable, array or array element as defined in the
source program.
dataname is an alphanumeric string consisting of up to 15 characters. If
dataname is the name of an array, it can be indexed in the same way as in a
FORTRAN statement.

86 U4298-J-Z125-3-7600

%SDUMP

If array-name is specified without an index list, all array elements will be output.

array-name (index1[, index2][, ...])
index specifies the position within an array. The number of indexes required
for access is the same as in a FORTRAN statement. When multiple indexes
are involved, a comma must be used to separate them.
index may be specified as follows:

n
data-name
arithmetic-expression

%NEST
Is an AID keyword which effects output of the current call hierarchy.
For the lowest hierarchical level AID outputs the name of the program unit and
the number of the statement where the program was interrupted. For higher
hierarchical levels AID outputs the name of the calling program and the number of
the CALL statement.

medium-a-quantity

Defines the medium or media via which output is to take place and whether or not AID
is to output additional information. If this operand is omitted and no declaration has
been made in the %OUT command, AID assumes the default value T = MAX.

medium-a-quantity-OPERAN D -

T
H MAX

=
Fn MIN
P

- -

medium-a-quantity is described in detail in the AID Core Manual, chapter 7.

T Terminal output
H Hardcopy output
Fn File output
P Output to SYSLST

MAX Output with additional information

MIN Output without additional information

U4298-J-Z125-3-7600 87

%SDUMP

Examples

The compiler listing for both examples is given in section 6.1.

1. Using the %SD command as a subcommand of the %INSERT command, a
symbolic dump of all program units of the current call hierarchy is requested. All
data elements of the program units EXCHANGE, SORT and B1 are output. The
default value for medium-a-quantity (T=MAX) is used. The subcommand also
includes a %STOP. The program therefore remains interrupted after output of all
the data, and AID writes a STOP message with the number of the statement and
the name of the program unit for the current interrupt point.

/ LOAD-PROG FROM-FILE=*MOD(LIB=*OMF),TEST-OPT=AID
% BLS0001 DLL VER 823
% BLS0517 MODULE ’B1’ LOADED
/ %IN PROG=EXCHANGE.S’5’ <%SD; %STOP>
/ %R
BS2000 F O R 1 : FORTRAN PROGRAM "B1"
STARTED ON 91-06-28 AT 15:18:33

CARRAY UNSORTED
Jimmy
Maria
Jamie
Lesly
Jonny
Donna
Marie
Carol
Frank
** ITN: #’000000CB’ *** TSN: 1114 **************************************
SRC_REF: 5 SOURCE: EXCHANGE PROC: EXCHANGE ***********************
CHAR = Jonny

SRC_REF: 33 SOURCE: SORT PROC: SORT **************************
CARRAY(1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank

IMIDPT = Jonny

L(1: 5)
(1) 1 (2) 0 (3) 0 (4) 0
(5) 0

R(1: 5)
(1) 9 (2) 0 (3) 0 (4) 0
(5) 0

Z = 0
LI = 1
RI = 9
I = 5
J = 9

SRC_REF: 11 SOURCE: B1 PROC: B1 ****************************
CFELD(1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank

K = 10
STOPPED AT SRC_REF: 5 SOURCE: EXCHANGE PROC: EXCHANGE

88 U4298-J-Z125-3-7600

%SDUMP

2. The %SD %NEST command is used to request the current call hierarchy:

%SD %NEST

AID first outputs the number of the statement in the program unit on the lowest
hierarchical level on which the program was interrupted. This is followed by output
of the numbers of the CALL statements used to exit from the program units on
higher hierarchical levels (in this case: the SORT subprogram and main program
B1).

SRC_REF: 5 SOURCE: EXCHANGE PROC: EXCHANGE *************************

SRC_REF: 33 SOURCE: SORT PROC: SORT *****************************

SRC_REF: 11 SOURCE: B1 PROC: B1 *******************************

U4298-J-Z125-3-7600 89

%SET

%SET

With the %SET command you transfer the memory contents or AID literals to memory
positions in the program which has been loaded. Before transfer, the storage types
sender and receiver are checked for compatibility. The contents of sender are matched
to the storage type of receiver.

With sender you designate a variable or an array element, a logical value, a length,
an address, an execution counter, an AID register or an AID literal. sender may be
either within the virtual memory of the loaded program or in a dump file.

With receiver you designate a variable or an array element, an execution counter or
an AID register to be overwritten. receiver may only be located within the virtual
memory of the program which has been loaded.

Command Operand

%S[ET] sender INTO receiver

In contrast to the %MOVE command, AID checks for the %SET command (prior to
transfer) whether the storage type of receiver is compatible with that of sender and
whether the contents of sender match its storage type. In the event of incompatibility,
AID rejects the transfer and outputs an error message.

If sender is longer than receiver, it is truncated on the left or right, depending on its
storage type, and AID issues a warning message. sender and receiver may overlap. In
the case of numeric transfer, sender is converted to the storage type of receiver if
required, and the contents of sender are stored in receiver with the value being
retained. If the value does not fully fit into receiver, a warning is issued.

Transfer with the %SET command thus corresponds to the conventions for the
FORTRAN assignment statement. The following special rules must, however, be
adhered to:
Data elements of the COMPLEX type can only be modified by the %SET command by
targeted modification via dataname ._REAL and dataname ._IMAG, i.e. by altering the
real and imaginary parts of the complex number. If a REAL*4 data element is specified
as sender in the %SET command and a REAL*8 data element as receiver, the rightmost
4 bytes of the REAL*8 data element are padded with binary zeros. This may result in
inaccuracies as in all cases where conversion of numeric values is involved.
The %SET command is not suitable for emulating the FOR1 statement ASSIGN. %SET
always has the effect of an assignment statement, even if receiver is a label variable.

90 U4298-J-Z125-3-7600

%SET

Which storage types are compatible and how transfer takes place is shown in the table
at the end of the description of the %SET command.

Entry of the command immediately after loading the program is not advisable, as the
user cannot address data and statements without an explicit qualification until the
program encounters the first executable statement. This is achieved by entering the
command sequence:

%INSERT PROG=program-name.program-name
%RESUME

In addition to the operand values described here, you can also use those described in
the manual for debugging on machine code level (see [2]).

With %AID CHECK=ALL you can activate an update dialog; this dialog shows you the old
and new contents of receiver prior to transfer and offers the option of aborting the
%SET command.

The %SET command does not alter the program state.

sender INTO receiver

For sender or receiver you may specify a variable, an array element, a complex
memory reference, an execution counter or a register. Symbolic constants, addresses
and lengths of data elements, logic values and AID literals can only be used as sender.
sender may be located either in the virtual memory area of the loaded program (E=VM)
or in a dump file; receiver, on the other hand, may only be located in the virtual
memory area of the loaded program.

sender-OPERAN D - - - - - - - - - - - - - - receiver-OPERAN D - - - - - - - - -

dataname
L’n’

[•][qua•] S’n’
keyword
compl-memref dataname

L’n’
%@ dataname INTO [•][qua•] S’n’

([•][qua•]) keyword
%L compl-memref compl-memref

%L=(expression)

AID-literal

- -

U4298-J-Z125-3-7600 91

%SET

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

qua
A qualification need only be specified if a memory object is not within the current
AID work area.

E={VM | Dn} for sender
E=VM for receiver

need only be specified if the current base qualification (see %BASE command)
is not to apply for a data/statement name, source reference or keyword.
sender can be located either in virtual memory or in a dump file, whereas
receiver must be located in virtual memory.

PROG=program-name
Specified only when addressing a data/statement name or source reference
which is not located in the current program unit (see chapter 3).

dataname
specifies the name of a constant, variable or array element as defined in the
source program. Constants can only be used as sender.
dataname is an alphanumeric string with up to 15 characters.

You can neither transfer nor overwrite an entire array. You may only transfer or
overwrite individual array elements. In order to address an array element, index
the name of the array in the same way as in a FORTRAN statement.

array-name (index1[, index2][, ...])
index specifies the position within an array. The number of indexes required
for access is the same as in a FORTRAN statement. When multiple indexes
are involved, a comma must be used to separate them.
index may be specified as follows:

n
data-name
arithmetic-expression

92 U4298-J-Z125-3-7600

%SET

L’n’
Specifies a statement name and designates the address of the first executable
FORTRAN statement after a statement label.
n is a statement label and has up to 5 digits. Leading zeros must not be
specified.

S’n’
Specifies a source reference and designates the address of an executable
FORTRAN statement.
n is the number of a statement; see STMT column of compiler listing.

Statement names and source references are address constants and can thus only
be specified as sender. The address designated with L’n’ or S’n’ is transferred.

Example
%SET S’5’ INTO %0G

The address of the statement with number 5 is written to AID register %0G.

By means of L’n’ -> or S’n’-> you designate 4 bytes of machine code at the
corresponding address (see AID Core Manual, section 6.4).
Machine instructions can be output by issuing the %DISASSEMBLE command in
order to make any length modification that may be required.
With receiver, you may use statement names and source references only in
connection with the pointer operator (->).

keyword
is a logic value, an execution counter, the program counter or a register. The AID
Core Manual, chapter 9, lists the implicit storage types of the keywords.
The two keywords for .TRUE and .FALSE can only be used as sender. They can
be transferred to any logical variable in the source program.
keyword may only be preceded by a base qualification.

%TRUE Logic value for .TRUE
%FALSE Logic value for .FALSE

%•subcmdname Execution counter
%• Execution counter of the current subcommand

%PC Program counter

%n General register, 0 n 15
%nD|E Floating-point register , n = 0,2,4,6
%nQ Floating-point register , n = 0,4
%nG AID general register, 0 n 15
%nDG AID floating-point register , n = 0,2,4,6

U4298-J-Z125-3-7600 93

%SET

compl-memref
The following operations may occur in compl-memref (see AID Core Manual,
chapter 6):

byte offset (•)
indirect addressing (->)
type modification (%T(dataname), %X, %C, %D, %P, %F, %A)
length modification (%L(...), %L=(expression), %Ln)
address selection (%@(...))

With an explicit type or length modification you can match the storage type for
sender to that of receiver. Memory contents which are incompatible with the
storage type will nevertheless be rejected by AID even if a type modification is
performed (see also AID Core Manual, section 6.8).
Following a byte offset (•) or pointer operation (->), the implicit storage type and
original address length are lost. At the calculated address, storage type %X with a
length of 4 applies unless the user has made an explicit specification for type and
length.
For each operand in a complex memory reference, the assigned memory area
must not be exceeded by a byte offset or length modification, otherwise AID will
reject the command and issue an error message. By combining address selection
(%@) and pointer operator (->) you may exit from the symbolic level. You can
then use the address of a data element without regarding its area boundaries.

Example
The CARRAY and CFIELD1 variables are of type ’character’ and occupy 5
bytes each. The last 2 bytes of CARRAY as well as the next 3 bytes are to be
transferred to CARRAY1.
AID would reject the command shown below, since it represents a violation of
the CARRAY area:
%SET CARRAY.3%CL5 INTO CFIELD1

The correct command reads:
%SET %@(CARRAY)->.3%CL5 INTO CFIELD1

%@(...)
The address selector can be used to specify the address of a data element or
complex memory reference as sender (see also AID Core Manual, section 6.11).
The address selector produces an address constant as a result.

94 U4298-J-Z125-3-7600

%SET

%L(...)
The length selector can be used to specify the length of a data element or
complex memory reference as sender (see also AID Core Manual, section 6.11).
The length selector produces an integer as a result.

Example
%SET %L(ARRAY1) INTO %0G

The length of ARRAY1 will be transferred.

%L=(expression)
With the aid of the length function, you can direct AID to calculate the value of
expression and store it in receiver (see also AID Core Manual, sections 6.9 and
6.10). In expression you can link memory references and integers via the
arithmetic operators (+,-,*,/). The length function produces an integer as a result.

Example
%SET %L=(ARRAY1) INTO %0G

The contents of ARRAY1 are transferred. FIELD1 must be of type ’integer’,
otherwise AID issues an error message.

AID literal
All AID literals described in the AID Core Manual, chapter 8, may be specified.
Note well the conversion options for matching AID literals to the respective
receivers as described in that chapter:

{C’x...x’ | ’x...x’C | ’x...x’} Character literal
{X’f...f’ | ’f...f’X} Hexadecimal literal
{B’b...b’ | ’b...b’B} Binary literal
[{±}]n Integer
#’f...f’ Hexadecimal number
[{±}]n.m Decimal number
[{±}]mantissaE[{±}]exponent Floating-point number

U4298-J-Z125-3-7600 95

%SET

%SET table

The following table provides an overview on permissible combinations of the sender
and receiver types in conjunction with the %SET command.

Receiver

INTEGER COMPLEX CHARACTER LOGICAL %X
Sender REAL %C

COMPLEX._REAL
COMPLEX._IMAG
%F %P %A %D

INTEGER
REAL
COMPL._REAL num * - - bin
COMPL._IMAG
%F %P %A %D
±n #’f...f’

±n.m num * - - -
±mantE±exp

COMPLEX * * - - -

CHARACTER
%C num(1) - char - bin
C’x...x’

LOGICAL
%TRUE - - - bin -
%FALSE

%X
X’f...f’ bin - bin bin bin
B’b...b’

bin Binary transfer
(left-justified)
sender < receiver: padding with binary zeros on the right.
sender > receiver: truncation on the right.
When a transfer is made to storage type %X, a numeric literal (only integers
are permitted) corresponds to a signed integer value with a length of 4 bytes
(%FL4), which are transferred in binary form.

char Character transfer
(left-justified)
sender < receiver: padding with blanks (X’40’) on the right.
sender > receiver: truncation on the right.

96 U4298-J-Z125-3-7600

%SET

num Numeric transfer
(value retained)
sender is matched to the storage type of receiver if required.

num(1) If a sender of type ’character’ contains digits only and is no more than 18
digits in length, transfer is in numeric form, provided that the receiver is of the
numeric type. Any other character type senders cannot be transferred to
numeric receivers.

no transfer
AID reports that the storage types are incompatible.

* no transfer
AID does not effect transfer, in contrast to FOR1.
Complex values can only be transferred separately as real (dataname._REAL)
and imaginary (dataname._IMAG) portions.

Examples

For the following examples the update dialog was activated via %AID CHECK=ALL. This
displays the contents of the receive field before and after the execution of %SET:

1. %SET #’061’ INTO COUNTER

OLD CONTENT:
1

NEW CONTENT:
97

% IDA0129 CHANGE? (Y=YES;N=NO)?
Y

The following command produces the same result:

%SET 97 INTO COUNTER

2. %QUALIFY PROG=SORT

%SET .LI INTO .L(Z)

OLD CONTENT:
0

NEW CONTENT:
10

% IDA0129 CHANGE? (Y=YES;N=NO)?
Y

U4298-J-Z125-3-7600 97

%SET

3. %SET ’ABCDEFG’ INTO CHARVAR

OLD CONTENT:
1234567890

NEW CONTENT:
ABCDEFG

% IDA0129 CHANGE? (Y=YES;N=NO)?
Y

4. %SET 0.12345E-03 INTO COMPLVAR ._REAL

I390 WARNING: SOURCE TRUNCATED
OLD CONTENT:
+.0000000 E+000
NEW CONTENT:
+.1234499 E-003
% IDA0129 CHANGE? (Y=YES;N=NO)?
Y

5. %AID SYMCHARS=NOSTD

%SET ARRAY(I*J-K,L) INTO CARRAY ._IMAG(M+3)

The %AID command causes AID to calculate the index I*J-K correctly. Otherwise
AID would interpret the expression J-K as the name of a variable.

OLD CONTENT:
+.7000000000000000 E+003
NEW CONTENT:
+.8765429999999999 E-003
% IDA0129 CHANGE? (Y=YES;N=NO)?
Y

98 U4298-J-Z125-3-7600

%STOP

%STOP

With the %STOP command you direct AID to halt the program, to switch to command
mode and to issue a STOP message. This message indicates the statement and the
program unit where the program was interrupted.

If the command is entered at the terminal or from a procedure file, the program state is
not altered, since the program is already in the STOP state. In this case you may
employ the command to obtain localization information on the program interrupt point
by referring to the STOP message.

Command Operand

%STOP

If the %STOP command is contained in a command sequence or subcommand, any
commands following it will not be executed.

If the program has been interrupted by pressing the K2 key, the program interrupt point
need not necessarily be within the user program, it may also be located in the runtime
system routines.

The %STOP command alters the program state.

Example

/ %IN PROG=SORT.S’20’ <%D CARRAY; %STOP>
/ %RESUME

CARRAY(1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny

(6) Donna (7) Marie (8) Carol (9) Frank
STOPPED AT SRC_REF: 20 , SOURCE: SORT , PROC: SORT

%INSERT sets a test point for statement 20. The subcommand comprises the
%DISPLAY and %STOP commands. After CARRAY has been output, AID halts the
program and writes a STOP message indicating the statement number and program
unit of the current interrupt point.

U4298-J-Z125-3-7600 99

%SYMLIB

%SYMLIB

With the %SYMLIB command you direct AID to open or close PLAM libraries. AID
accesses open PLAM libraries if symbolic memory references located in a program unit
for which no LSD records have been loaded are addressed in a command.

By means of qualification-a-lib you open or close one or more libraries in which
object modules and their associated LSD records are stored. In order to dynamically
load LSD records, any library can be assigned to the current program or to a dump
file by specifying the appropriate base qualification.

Command Operand

%SYMLIB [qualification-a-lib][,...]

When this command is executed AID checks only whether the specified library can be
opened; it does not check whether the contents of the library match the program being
processed. Thus it is possible to initially open all libraries which you might need later
during a test run. AID does not check whether the object module of the program which
has been addressed matches that of the PLAM library until the dynamically loaded LSD
records are accessed.
If several libraries have been opened for a base qualification, AID scans them in the
order in which they were specified in the %SYMLIB command.
If the AID search is not successful or if no library is open, you may assign the correct
library by way of a new %SYMLIB command after the corresponding message has
been issued. You then repeat the command for whose execution the LSD records were
lacking.

A library remains open until a new %SYMLIB command is issued for the same base
qualification or until it is closed by a %SYMLIB command without operand, or until
/LOGOFF. If a new command contains new file names, these libraries are assigned and
opened.

The %SYMLIB command does not alter the program state.

qualification-a-lib

is a base qualification and/or the file name of a PLAM library.

If you enter a base qualification and a file name, AID assigns the specified library for
this base qualification and opens it. Previously assigned libraries for the same base
qualification are closed.

100 U4298-J-Z125-3-7600

%SYMLIB

If you specify a file name only, AID assigns the library for the base qualification
which is currently applicable (see %BASE command) and opens it. All libraries
previously assigned for the current base qualification will be closed.
If you specify a base qualification only, all open libraries for this qualification will be
closed.

AID can handle up to 15 library assignments. A library which is concurrently assigned
for several base qualifications is counted as often as it is specified.

qualification-a-lib-OPERAN D -

VM
[•][E= •][filename]

Dn

- -

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command and can only stand for
a base qualification.

E=VM
%SYMLIB applies for the loaded program (see also %BASE command).

E=Dn
%SYMLIB applies for a memory dump in a dump file with the link name Dn (see
%BASE command).

filename
is the BS2000 catalog name of a PLAM library which is assigned for the base
qualification specified with prequalification or entered explicitly. If the qualification
is omitted, the library is assigned for the base qualification which currently applies.

Example

%SYMLIB E=D5.PLAMLIB,FOR1OUTPUT

If AID requires LSD records for processing a memory dump in the dump file with
the link name D5, AID attempts to load these records from the PLAMLIB library.
The FOR1OUTPUT library is assigned for the currently set base qualification. If no
%BASE command has been issued, AID uses this library to dynamically load LSD
records for the program being executed.

U4298-J-Z125-3-7600 101

%TITLE

%TITLE

With the %TITLE command you define the text of your own page header. AID uses this
text when the %DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and %TRACE
commands write to the system file SYSLST.

By means of the page-header operand you specify the text of the header and direct
AID to set the page counter to 1 and to position SYSLST to the top of the page
before the next line to be printed.

Command Operand

%TITLE [page-header]

With a %TITLE command without a page-header operand you switch back to the AID
standard header. AID resets the page counter to 1 and positions SYSLST to the top of
the page before the next line to be printed.

A page header defined with %TITLE remains valid until a new %TITLE command is
issued or until the program ends.

The %TITLE command does not alter the program state.

page-header

Specifies the variable part of the page title. AID completes this specification by adding
the time, date and page counter.

page-header
is a character literal in the format {C’x...x’ | ’x...x’C | ’x...x’} and may have a
maximum length of 80 characters. A longer literal is rejected with an error message
outputting only the first 52 positions of the literal.

Up to 58 lines are printed on one page, not counting the title of the page.

102 U4298-J-Z125-3-7600

%TRACE

%TRACE

With the %TRACE command you switch on the AID tracing function and start the
program or continue it at the interrupt point or the point specified in the %JUMP
command.

By means of the number operand you can specify the maximum number of
FORTRAN statements to be traced, i.e. executed and logged.

By means of the criterion operand you select different types of FORTRAN
statements which AID is to log. Logging takes place prior to execution of the
statements selected.

By means of the trace-area operand you define the program area in which the
criterion is to be taken into consideration.

Command Operand

%T[RACE] [number] [criterion][,...] [IN trace-area]

A %TRACE command is terminated if any of the following five events occurs during the
test run:
1. The maximum number of statements to be traced has been reached.
2. A subcommand has been executed because a monitoring condition from a

%CONTROLn, %INSERT or %ON command was satisfied, and this subcommand
contains a %RESUME, %STOP or %TRACE command.

3. An %INSERT command terminates with a program interrupt, as the control
operand is K or S.

4. The K2 key has been used. At the terminal, the SDF option
OVERFLOW-CONTROL = USER-ACKNOWLEDGE

(/MODIFY-TERMINAL-OPTIONS command) must have been set.
5. The program has been halted by the FORTRAN statement PAUSE.

A %TRACE command which is still active after being interrupted by an event described
under points 2 through 5 above may be continued by issuing the %CONTINUE
command.

The operand values of a %TRACE command apply until they are overwritten by the
entries in a subsequent %TRACE command, or until the program is terminated. In a
new %TRACE command, AID therefore assumes the value from the previous %TRACE
command if an operand has not been specified. In the case of the trace-area operand,
this only happens if the current interrupt point is within the trace-area to be assumed. If
there are no values to be taken over, AID assumes the default values 10 (for number)
and the program unit containing the current interrupt point (for trace-area).

U4298-J-Z125-3-7600 103

%TRACE

With the aid of the %OUT command, you can control the information to be contained
in a line of the log and the output medium to which the log is to be written.

If the %TRACE is contained in a command sequence or subcommand, any commands
which follow will not be executed.

trace-area can only be located in the loaded program, therefore the base qualification
E=VM must have been set (see %BASE) or must be specified explicitly.

The %TRACE command alters the program state.

number

specifies the maximum number of FORTRAN statements of type criterion which are to
be executed and logged.

number
is an integer 1 number 231-1. The default value is 10. If there is no value
from a previous %TRACE command, AID inserts the default value in a %TRACE
command without the number operand.

After the specified number of statements has been traced, AID outputs a message via
SYSOUT, the program is halted and the user can enter AID or BS2000 commands. The
message tells you at which statement and in which program unit the program was
halted.

criterion

is a keyword which defines the type of statements to be traced during program
execution. Several keywords can be specified at a time; they take effect simultaneously.
A comma must be used to separate any two keywords.
If no criterion is declared, AID uses the default value %STMT unless a criterion
declaration from an earlier %TRACE command is still valid.

104 U4298-J-Z125-3-7600

%TRACE

criterion Logging takes place prior to execution of:

%STMT Every executable FORTRAN statement

%ASSGN Assignment statements

%CALL SUBROUTINE calls (CALL statements)

%COND IF(...) THEN, ELSE IF(...) THEN, ELSE and
IF(...) statements

%GOTO GOTO statements

%IO Input/output statements

%LAB Every statement with a label

%PROC STOP, END, RETURN statements and the first executable
statement following SUBROUTINE and FUNCTION

trace-area

defines the program area in which tracing is to take place, i.e. only within this area can
monitoring and logging of the statements selected by means of the criterion operand
be effected. The %TRACE command is inactive outside of this area and is activated
again only on returning to this area.

A trace-area remains effective until a new %TRACE command with its own trace-area
operand is entered, until a %TRACE command is issued outside of this area or until the
program ends. If the trace-area operand has been omitted, the area definition from an
earlier %TRACE command is assumed if the current interrupt point is located in this
area. Otherwise AID uses the default value, i.e. the program unit containing the current
interrupt point.

The continuation address for program execution cannot be influenced by the %TRACE
command; such is only possible by means of the %JUMP command.

trace-area-OPERAND -

PROG=program-name
IN [•][E=VM•]

[PROG=program-name•](S’n’ : S’n’)

- -

U4298-J-Z125-3-7600 105

%TRACE

•
If the period is in the leading position it denotes a prequalification, which must
have been defined with a preceding %QUALIFY command. Consecutive
qualifications must be separated by a period. In addition, there must be a period
between the final qualification and the following operand part.

E=VM
As trace-area may only be located in the virtual memory of the program which
has been loaded, enter E=VM only if a dump file has been declared as the
current base qualification (see also %BASE command).

PROG=program-name
program-name is the name of a program unit and consists of up to 7 characters.
This program unit must already be loaded at the time the %TRACE command is
input.

A PROG qualification is required only if a load module has been created from
several program units and the %TRACE command does not refer to the current
program unit or if a previously applicable trace-area declaration is to be
overwritten.

If trace-area ends with a PROG qualification, it covers the entire program unit
specified.

(S’n’ : S’n’)
The trace-area is defined by specifying a start address and an end address. The
start and end addresses must both be within the same program unit and the
following must apply:
start address end address.
n is the number of a statement; see STMT column in compiler listing.

If the trace-area is to cover only one statement, the start address and the end
address must be identical.

106 U4298-J-Z125-3-7600

%TRACE

Output of the %TRACE listing

The %TRACE listing is output in full format via SYSOUT as a standard procedure
(%OUT operand value T=MAX). With the %OUT command, you can define the output
media and the scope of information to be output (see AID Core Manual, chapter 7).

A %TRACE listing with additional information (T=MAX) contains the number and type of
the statement that was executed. If a statement label exists, it will be output as well.

A %TRACE listing without additional information (T=MIN) does not show the statement
type.

Examples

/ %OUT %TRACE T=MAX
/ %T 3

49 33 STMT
50 ASSIGN
51 ASSIGN

STOPPED AT SRC_REF: 51, SOURCE: EXAMPLE, PROC: EXAMPLE

With the aid of the %OUT command, output is switched back to the terminal and
the maximum range of information is defined for output.
The %TRACE command is to trace three FORTRAN statements. After the third
statement the termination message for this %TRACE command follows, to the
effect that program execution was interrupted at statement 51, that statement 51 is
in the program unit EXAMPLE and that the load module has the same name.

/ %OUT %T T=MIN
/ %T 3

49 33
50
51

STOPPED AT SRC_REF: 51, SOURCE: EXAMPLE, PROC: EXAMPLE

With the %OUT command the range of information for the %TRACE command is
reduced. A subsequently entered %TRACE command outputs the log without
additional information.

U4298-J-Z125-3-7600 107

6 Sample application
This chapter illustrates an AID debugging session for a short FORTRAN program. This
sample test is intended to help you understand the application and effect of various AID
commands; for the sake of clarity, a relatively uncomplicated approach has been taken.
The FORTRAN program is shown first, the test run follows afterwards.

6.1 Source listing

PROGRAM UNIT: B1

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1/1 1 1 PROGRAM B1
2 *
3 * SORTING A CHARACTER ARRAY
4 *

1 2 5 IMPLICIT INTEGER (A-Z)
1 3 6 PARAMETER (DIM=9)
1 4 7 COMMON /CB/ CARRAY
1 5 8 CHARACTER * 5 CARRAY(DIM)
1 6 9 DATA CARRAY /’Jimmy’,’Maria’,’Jamie’,’Lesly’,’Jonny’,
1 10 & ’Donna’,’Marie’,’Carol’,’Frank’/
1 7 11 WRITE (2,*) ’ CARRAY UNSORTED’
1 8 12 DO 10 K=1,DIM

1 2 9 13 WRITE (2,*) CARRAY(K)
1 3 10 14 10 CONTINUE

4 11 15 CALL SORT
16 *
17 * OUTPUT FOR CHECKING PURPOSES
18 *

4 12 19 WRITE (2,*) ’ CARRAY SORTED’
4 13 20 DO 20 K=1,DIM

1 5 14 21 WRITE (2,*) CARRAY(K)
1 6 15 22 20 CONTINUE

7 16 23 END

U4298-J-Z125-3-7600 109

Sample application Source program

PROGRAM UNIT: SORT

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1 *
1/1 1 2 SUBROUTINE SORT

3 *
4 * CARRAY IS SORTED
5 *

1 2 6 IMPLICIT INTEGER (A-Z)
1 3 7 PARAMETER (DIM=9)
1 4 8 COMMON /CB/CARRAY
1 5 9 CHARACTER * 5 CARRAY(DIM), IMIDPT
1 6 10 DIMENSION L(5) ! LEFT INTERVAL END POINTS
1 7 11 DIMENSION R(5) ! RIGHT INTERVAL END POINTS

12 *
1 8 13 Z=1 ! NUMBER OF SUBINTERVALS
1 14 ! TO BE SORTED
1 9 15 L(1)=1 ! START = TOTAL INTERVAL
1 10 16 R(1)=DIM

17 *
1 11 18 1 CONTINUE ! SIMULATION OF A "REPEAT LOOP"
1 19 ! THE LOOP IS EXECUTED UNTIL ALL
1 20 ! SUBINTERVALS HAVE BEEN SORTED
1 21 ! WITH RESPECT TO THE INTERVAL MIDPOINT

22 *
23 *
24 * SORTING A SINGLE SUBINTERVAL WITH RESPECT TO
25 * THE INTERVAL MIDPOINT
26 *

2 12 27 LI=L(Z) ! LEFT AND RIGHT INTERVAL END POINTS (10)
2 13 28 RI=R(Z) ! OF THE CURRENT SORTING INTERVAL
2 14 29 Z=Z-1 ! DECREASE NUMBER OF INTERVALS
2 30 ! YET TO BE SORTED
2 15 31 IMIDPT=CARRAY(INT(LI+RI)/2) ! INTERVAL MIDPOINT

32 *
33 * ALGORITHM:
34 * THE ARRAY TO BE SORTED IS REGARDED AS AN INTERVAL
35 * AND THE INTERVAL MIDPOINT IS DETERMINED.
36 * THEN AN ELEMENT LARGER THAN THE INTERVAL MIDPOINT
37 * VALUE IS SOUGHT IN THE LEFT HALF-INTERVAL,
38 * STARTING FROM THE LEFT. SIMILARLY, AN ELEMENT
39 * SMALLER THAN THE INTERVAL MIDPOINT VALUE IS SOUGHT
40 * FROM THE RIGHT. THESE TWO VALUES ARE INTERCHANGED.
41 * IF THE INTERVAL MIDPOINT HAS NOT YET BEEN
42 * REACHED FROM THE LEFT AND RIGHT RESPECTIVELY,
43 * THIS PROCEDURE CONTINUES.
44 *
45 * WHEN AN INTERVAL END POINT HAS BEEN REACHED,
46 * A CHECK IS MADE WHETHER THE ELEMENT OF THE
47 * INTERVAL MIDPOINT CAN BE SUBSTITUTED FOR AN
48 * ELEMENT OF THE LEFT OR RIGHT HALF-INTERVAL.
49 *
50 * THIS PROCEDURE IS NOW FOLLOWED SEPARATELY FOR
51 * THE LEFT AND RIGHT SUBINTERVALS
52 * ETC.
53 * THIS PROCEDURE ENDS WHEN ALL INTERVALS HAVE
54 * BEEN PROCESSED.
55 *

2 16 56 I=LI ! SET SEQUENTIAL INDEX FOR LEFT HALF-INTERVAL
2 17 57 J=RI ! SET SEQUENTIAL INDEX FOR RIGHT HALF-INTERVAL

58 *
2 18 59 2 CONTINUE ! SIMULATION OF A "REPEAT LOOP"
2 60 ! PROCESSING THE CURRENT INTERVAL

61 *
2 19 62 3 CONTINUE ! SIMULATION OF A "DO LOOP"
2 63 ! SEEK ELEMENT TO BE SUBSTITUTED ON THE LEFT
3 20 64 IF (CARRAY(I) .GE. IMIDPT) GOTO 31

65 *
66 * GOTO 31: ELEMENT MUST BE SUBSTITUTED OR
67 * INTERVAL MIDPOINT REACHED
68 *

4 22 69 I=I+1

110 U4298-J-Z125-3-7600

Source program Sample application

70 * CHECK NEXT ELEMENT
4 23 71 GOTO 3
4 24 72 31 CONTINUE

73 *
4 25 74 4 CONTINUE ! SIMULATION OF A "DO LOOP"
5 26 75 IF (CARRAY(J).LE.IMIDPT) GOTO 41 (1)

76 *
77 * GOTO 41: ELEMENT MUST BE SUBSTITUTED OR
78 * INTERVAL MIDPOINT REACHED
79 *

6 28 80 J=J-1
6 29 81 GOTO 4
6 30 82 41 CONTINUE

83 *
7 31 84 IF (I .GE. J)GOTO 21 ! EXIT LOOP (2)

85 *
86 * GOTO 21: NO ELEMENTS ARE TO BE INTERCHANGED
87 * OR ALL NECESSARY SUBSTITUTIONS HAVE
88 * BEEN EFFECTED.
89 *
90 *
91 * SUBSTITUTE ELEMENTS FROM LOWER INTERVAL AREA
92 * FOR ELEMENT FROM UPPER INTERVAL AREA
93 *

8 33 94 CALL EXCHANGE(CARRAY(I),CARRAY(J))
8 34 95 I=I+1
8 35 96 J=J-1
8 36 97 IF (I .LT. J) GOTO 2 ! UNTIL LOOP

98 *
99 * GOTO 2 * CHECK FOR FURTHER SUBSTITUTIONS

100 *
101 * ALL ELEMENTS SUBSTITUTED WITHIN THE INTERVAL
102 *

8 38 103 21 CONTINUE
9 39 104 IF (LI .LT. J) THEN ! ALWAYS SATISFIED (3)

105 * DETERMINE SUBINTERVAL AND STORE IF APPLICABLE
1 10 40 106 IF (LI .EQ. J-1) THEN (4)

107 * SUBINTERVAL CONSISTS OF TWO ELEMENTS ONLY
1 10 108 *
2 11 41 109 IF (CARRAY(LI).GT.CARRAY(J)) THEN

110 *
111 * SUBSTITUTE ELEMENT OF INTERVAL MARGIN
112 *

3 12 42 113 CALL EXCHANGE (CARRAY(J),CARRAY(LI))
3 12 43 114 ENDIF
2 12 44 115 ELSE

116 *
117 * STORE SUBINTERVAL NOT YET PROCESSED
118 *

2 13 45 119 Z=Z+1 (5)
2 13 46 120 L(Z)=I (6)
2 13 47 121 R(Z)=J (7)
2 13 48 122 ENDIF
1 13 49 123 ENDIF

14 50 124 IF (I .LT. RI) THEN (8)
125 * DETERMINE SUBINTERVAL AND STORE IF APPLICABLE

1 15 51 126 IF (I .EQ. RI-1) THEN
127 * SUBINTERVAL CONSISTS OF TWO ELEMENTS ONLY

2 16 52 128 IF (CARRAY(I) .GT. CARRAY(RI)) THEN
129 *
130 * SUBSTITUTE ELEMENT OF INTERVAL MARGIN
131 *

3 17 53 132 CALL EXCHANGE (CARRAY(I),CARRAY(RI))
3 17 54 133 ENDIF
2 17 55 134 ELSE

135 *
136 * STORE SUBINTERVAL NOT YET PROCESSED
137 *

2 18 56 138 Z=Z+1
2 18 57 139 L(Z)=I
2 18 58 140 R(Z)=RI
2 18 59 141 ENDIF
1 18 60 142 ENDIF

U4298-J-Z125-3-7600 111

Sample application Source program

19 61 143 IF (Z .NE. 0) GOTO 1 ! UNTIL SIMULATION (9)
144 *
145 * INTERVAL ARRAY (=STACK SUBSTITUTE) PROCESSED
146 *

20 63 147 RETURN
20 64 148 END

PROGRAM UNIT: EXCHANGE

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1 *
1/1 1 2 SUBROUTINE EXCHANGE (CHAR1,CHAR2)

1 2 3 CHARACTER * 5 CHAR1,CHAR2,CHAR
4 *
5 * ELEMENTS ARE INTERCHANGED
6 *

1 3 7 CHAR=CHAR1
1 4 8 CHAR1=CHAR2
1 5 9 CHAR2=CHAR
1 6 10 RETURN
1 7 11 END

112 U4298-J-Z125-3-7600

Test run Sample application

6.2 Test run

Step 1

The FORTRAN source program B1 in the file QSORT is compiled using FOR1.
Specification of the SDF option TOOL-SUPPORT = AID causes FOR1 to generate LSD
information as a prerequisite for symbolic testing. To facilitate testing with AID, the first
compilation is undertaken without optimization (SDF option OPTIMIZATION = NO; see
chapter 2). The program is compiled without errors.
In the examples below, input is printed in bold for better legibility.

/ START-FOR1-COMPILER SOURCE=QSORT,OPTIMIZATION=NO,-
TEST-SUPPORT=PARAMETER(TOOL-SUPPORT=AID),-
LISTING=PARAMETER(OUTPUT=LF.QSORT),-
SOURCE-PROPERTIES=PARAMETER(LINE-END-COMMENTS=’!’)

% BLS0500 PROGRAM ’FOR1’, VERSION ’2.1A00’ OF ’91-04-29’ LOADED.
FOR1: V2.1A00 READY, GIVE COMPILER OPTION
FOR1: LIST FILE REPLACED = LF.QSORT
FOR1: NO ERRORS DURING COMPILATION OF P.U. B1
FOR1: NO ERRORS DURING COMPILATION OF P.U. SORT
FOR1: NO ERRORS DURING COMPILATION OF P.U. EXCHANGE

END OF F O R 1 COMPILATION; CPU TIME USED: 3.904 SEC.

Step 2

The program likewise runs without errors. However, the result of the sort algorithm is
not correct: the list of names is not output in alphabetical order.

/ SET-TASKLIB LIBRARY=$FOR1MODLIBS
/ START-FOR1-PROGRAM FROM-FILE=*MODULE(LIBRARY=*OMF)

% BLS0001 DLL VER 823
% BLS0517 MODULE ’B1’ LOADED
BS2000 F O R 1 : FORTRAN PROGRAM "B1"
STARTED ON 91-04-29 AT 16:10:53

CARRAY UNSORTED
Jimmy
Maria
Jamie
Lesly
Jonny
Donna
Marie
Carol
Frank

CARRAY SORTED
Jimmy
Maria
Jamie
Lesly
Frank
Donna
Marie
Carol
Jonny
BS2000 F O R 1 : FORTRAN PROGRAM "B1 " ENDED PROPERLY AT 16:11:04
CPU - TIME USED: 0.0937 SECONDS
ELAPSED TIME : 11.4430 SECONDS

U4298-J-Z125-3-7600 113

Sample application Test run

Step 3

To symbolically test the program with AID, it is loaded using the SDF option TEST-
OPTIONS=AID. After the LOAD-PROGRAM command, AID commands may be entered.

/ LOAD-PROGRAM FROM-FILE=*MODULE(LIBRARY=*OMF),-
TEST-OPTIONS=AID

% BLS0001 DLL VER 823
% BLS0517 MODULE ’B1’ LOADED

Step 4

/ %C1 %CALL IN PROG=SORT <%D I,J,IMIDPT,CARRAY,RI; %STOP>

The %CONTROL command declares the CALL statement as the criterion, which is to
be monitored only in subprogram SORT. The subcommand is to be executed prior to
each execution of the CALL statement. The subcommand is to output the sequential
indexes I and J for the left and right interval end points respectively, the value of the
middle array element IMIDPT, the array CARRAY to be sorted, and the right interval end
point RI of the current sorting interval. Following output, the program run is to be
interrupted so that AID commands can be entered.

/ %IN PROG=SORT.S’18’ <%D I,J,IMIDPT,CARRAY,LI,RI; %STOP>

The %INSERT command is used to set a test point for statement number 18 which
initiates processing of the current sorting interval. Data elements I, J, IMIDPT, CARRAY,
LI and RI are to be output prior to each execution of the CONTINUE statement.

Step 5

The %RESUME command starts the loaded program. AID reports the IF statement with
number 20 as the interrupt point instead of the statement with the number 18 specified
in the %INSERT command, since the CONTINUE statement is used merely as a dummy
statement here.

114 U4298-J-Z125-3-7600

Test run Sample application

/ %R
BS2000 F O R 1 : FORTRAN PROGRAM "B1"
STARTED ON 91-04-29 AT 09:43:28

CARRAY UNSORTED
Jimmy
Maria
Jamie
Lesly
Jonny
Donna
Marie
Carol
Frank
** ITN: #’000000DF’ *** TSN: 1627 ***
SRC REF: 20 SOURCE: SORT PROC: SORT ********************************
I = 1
J = 9
IMIDPT = Jonny
CARRAY (1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank
LI = 1
RI = 9

STOPPED AT SRC REF: 20 , SOURCE: SORT, PROC: SORT

Step 6

The AID commands %R "1" through %R "4" respectively are used to resume the
program. The quotes stand for start/end of comment. The program checks each time
whether the array element CARRAY(I) is greater than or equal to the value of the
interval midpoint IMIDPT. Following the comparison, sequential index I for the left half-
interval is incremented by 1 in each case. After execution of the AID command %R "4",
I has the value 5.

/ %R "1"
I = 2
J = 9
IMIDPT = Jonny
CARRAY (1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank
LI = 1
RI = 9

STOPPED AT SRC REF: 20 , SOURCE: SORT, PROC: SORT

/ %R "2"
I = 3
J = 9
IMIDPT = Jonny
CARRAY (1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank
LI = 1
RI = 9

STOPPED AT SRC REF: 20 , SOURCE: SORT, PROC: SORT

U4298-J-Z125-3-7600 115

Sample application Test run

/ %R "3"
I = 4
J = 9
IMIDPT = Jonny
CARRAY (1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank
LI = 1
RI = 9

STOPPED AT SRC REF: 20 , SOURCE: SORT, PROC: SORT

/ %R "4"
I = 5
J = 9
IMIDPT = Jonny
CARRAY (1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank
LI = 1
RI = 9

STOPPED AT SRC REF: 20 , SOURCE: SORT, PROC: SORT

Step 7

The program run is resumed with %R "5". The comparison (CARRAY(I).GE.IMIDPT)
leads to the statement with label 31, the comparison (CARRAY(J).LE.IMIDPT) leads to
the statement with label 41 and to the invocation of subprogram EXCHANGE with
statement number 33. Prior to execution of this CALL statement, the program is
interrupted due to the %C1 command and the associated subcommand is executed.

/ %R "5"
SRC REF: 33 SOURCE: SORT PROC: SORT ********************************

I = 5
J = 9
IMIDPT = Jonny
CARRAY (1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank
RI = 9

STOPPED AT SRC REF: 33 , SOURCE: SORT, PROC: SORT

116 U4298-J-Z125-3-7600

Test run Sample application

Step 8

After the program has been resumed with %R "6", I is incremented by 1 and J is
decremented by 1. These values are then used for a new comparison with the interval
midpoint. Upon the subsequent %RESUME commands %R "7" through %R "9", I is
incremented by 1 in each case.

/ %R "6"
SRC_REF: 20 SOURCE: SORT PROC: SORT ********************************

I = 6
J = 8
IMIDPT = Jonny
CARRAY (1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank
LI = 1
RI = 9

STOPPED AT SRC REF: 20 , SOURCE: SORT, PROC: SORT

/ %R "7"
I = 7
J = 8
IMIDPT = Jonny
CARRAY (1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank
LI = 1
RI = 9

STOPPED AT SRC REF: 20 , SOURCE: SORT, PROC: SORT

/ %R "8"
I = 8
J = 8
IMIDPT = Jonny
CARRAY (1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank
LI = 1
RI = 9

STOPPED AT SRC REF: 20 , SOURCE: SORT, PROC: SORT

/ %R "9"
I = 9
J = 8
IMIDPT = Jonny
CARRAY (1: 9)
(1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny
(6) Donna (7) Marie (8) Carol (9) Frank
LI = 1
RI = 9

STOPPED AT SRC REF: 20 , SOURCE: SORT, PROC: SORT

U4298-J-Z125-3-7600 117

Sample application Test run

Step 9

CARRAY(I)=IMIDPT is true for I=9. The %TRACE command is now to be used to
execute and log the next 8 statements. Output includes the statement numbers, any
statement labels and the statement type. Program execution can be monitored on the
basis of the %TRACE and source listings.

/%T 8 %STMT IN PROG=SORT
26 4 IF (1)
31 41 IF (2)
39 21 IF (3)
40 IF (4)
45 THEN/ELSE, ASSIGN (5)
46 ASSIGN (6)
47 ASSIGN (7)
50 IF (8)

STOPPED AT SRC REF: 50, SOURCE: SORT, PROC: SORT

The program first branches to IF statement (1) with the query (CARRAY(J).LE.IMIDPT),
and from there to IF statement (2) with the query (I.GE.J). I is greater than J, which
triggers a branch to the CONTINUE statement with label 21. The %TRACE listing
exhibits statement label 21 and the statement number of the subsequent IF statement
[see (3)]. The program then branches to IF statement (4) with the query (LI.EQ.J-1) and
executes the assignment statements Z=Z+1, L(Z)=I and R(Z)=J [see (5), (6) and (7)].
The last statement to be logged is the IF statement (8) with the query (I.LT.RI).

Step 10

The AID command %T 2 corresponds to the command %T 2 %STMT IN PROG=SORT.
The default for criterion (type of statement) is %STMT, the default for trace-area is the
program unit containing the current interrupt point. Command %T 2 causes statement
61 [see (9)] to be logged and the sorting algorithm to be executed anew with the
updated interval end points [see (10)].

/ %T 2
61 IF (9)
12 1 ASSIGN (10)

STOPPED AT SRC REF: 12, SOURCE: SORT, PROC: SORT

118 U4298-J-Z125-3-7600

Test run Sample application

Step 11

The %DISPLAY command outputs the number Z of subintervals to be sorted and the
end points of the subinterval which has not yet been processed.

/ %D Z
SRC_REF: 12 SOURCE: SORT PROC: SORT ********************************

Z = 1

/ %D L(1),R(1)
L(1) = 9
R(1) = 8

Following these intermediate results, the left interval end point is greater than the right
end point. The statement with number 46 must read L(Z)=LI and not L(Z)=I.

Step 12

The errored statement can be corrected via the %SET command without recompiling
the program. For this purpose, the program is reloaded:

/ LOAD-PROGRAM FROM-FILE=*MODULE(LIBRARY=*OMF),-
TEST-OPTIONS=AID

% BLS0001 DLL VER 823
% BLS0517 MODULE ’B1’ LOADED

U4298-J-Z125-3-7600 119

Sample application Test run

Step 13

The test point of the %INSERT command is set at statement 47 so that element L(Z) is
overwritten with the correct value LI after execution of the invalid statement L(Z)=I. A
test point for S’46’ would cause the program, prior to execution of the statement, to
execute the subcommand and insert the correct value LI; then the invalid statement
L(Z)=I would be executed. Correction with the aid of the %SET command causes the
program to output a correctly sorted result:

/ %INSERT PROG=SORT.S’47’ <%SET LI INTO L(Z); %RESUME>
/ %R
BS2000 F O R 1 : FORTRAN PROGRAM "B1"
STARTED ON 91-04-29 at 09:47:47

CARRAY UNSORTED
Jimmy
Maria
Jamie
Lesly
Jonny
Donna
Marie
Carol
Frank

CARRAY SORTED
Carol
Donna
Frank
Jamie
Jimmy
Jonny
Lesly
Maria
Marie
BS2000 F O R 1 : FORTRAN PROGRAM "B1" ENDED PROPERLY AT 09:47:58
CPU - TIME USED : 0.2067 SECONDS
ELAPSED TIME : 11.7150 SECONDS

120 U4298-J-Z125-3-7600

Glossary
address operand

This is an operand used to address a memory location or memory area. The
operand may specify virtual addresses, data names, statement names, source
references, keywords, complex memory references or a PROG qualification. The
memory location or area is located either in the program which has been loaded or
in a memory dump in a dump file. To address a data element, statement name or
source reference which is not located in the current program unit, the user must
employ a qualification to reference the relevant position in memory.

AID input files
AID input files are files which AID requires to execute AID functions, as distinguished
from input files which the program requires. AID processes disk files only. AID input
files include:
1. Dump files containing memory dumps (%DUMPFILE)
2. PLAM libraries containing object modules. If the library has been assigned with

the aid of the %SYMLIB command, AID is able to load the LSD records.

AID literals
AID provides the user with both alphanumeric and numeric literals (see AID Core
Manual, chapter 8):

{C’x...x’ | ’x...x’C | ’x...x’} Character literal
{X’f...f’ | ’f...f’X} Hexadecimal literal
{B’b...b’ | ’b...b’B} Binary literal
[{±}]n Integer
#’f...f’ Hexadecimal number
[{±}]n.m Decimal number
[{±}]mantissaE[{±}]exponent Floating-point number

AID output files
AID output files are files to which the user can direct output of the %DISASSEMBLE,
%DISPLAY, %HELP, %SDUMP and %TRACE commands. The files are addressed via
their link names (F0 through F7) in the output commands (see %OUT and
%OUTFILE). The REP records are written to the file assigned to link name F6 (see
%AID REP=YES and %MOVE).

U4298-J-Z125-3-7600 121

Glossary

There are three ways of creating an output file:
1. /%OUTFILE command with link name and file name
2. /FILE command with link name and file name
3. For a link name to which no file name has been assigned, AID issues a FILE

macro with the file name AID.OUTFILE.Fn.
An AID output file always has the format FCBTYPE=SAM, RECFORM=V and
OPEN=EXTEND.

AID standard work area
In conjunction with debugging on machine code level, the AID standard work area
is the non-privileged part of virtual memory (in the user task) which is occupied by
the program and all its connected subsystems.
In conjunction with symbolic debugging, the AID standard work area is the current
program unit of the program which has been loaded. If no presetting has been
made with the %BASE command and no base qualification is specified, the AID
standard work area applies by default.

AID work area
The AID work area is the address area in which the user may reference addresses
without having to specify a qualification.
In symbolic debugging, the AID work area is the current program unit. Only the
data/statement names and source references within the current program unit can be
addressed without a qualification. In the case of the loaded program, the current
program unit is the one currently executing. In the case of a memory dump, the
current program unit is the one which was executing when the memory dump took
place.
You may deviate from the AID work area in a command by specifying a qualification
in the address operand. Using the %BASE command, you can shift the AID work
area from the loaded program to a memory dump, or vice versa.

area check
In the case of byte offset, length modification and the receiver of a %MOVE, AID
checks whether the area limits of the referenced memory objects are exceeded and
issues a corresponding message if necessary.

area limits
Each memory object is assigned a particular area, which is defined by the address
and length attributes in the case of data names and keywords. For virtual
addresses, the area limits are between V’0’ and the last address in virtual memory
(V’7FFFFFFF’). In PROG qualifications, the area limits are determined by the start
and end addresses of the program unit (see AID Core Manual, chapter 6).

122 U4298-J-Z125-3-7600

Glossary

attributes
Each memory object has up to six attributes:
address, name (opt), content, length, storage type, output type.
Selectors can be used to access the address, length and storage type. Via the
name, AID finds all the associated attributes in the LSD records so they can be
processed accordingly.

Address constants and constants from the source program have only up to five
attributes:
name (opt), value, length, storage type, output type.
They have no address. When a constant is referenced, AID does not access a
memory object but merely inserts the value stored for the constant.

base qualification
The base qualification is the qualification the user employs to place the AID work
area in the loaded program or in a memory dump in a dump file. The specification
is made using E={VM | Dn}.
The base qualification can be declared globally with %BASE or specified explicitly in
the address operand for a single memory reference.

command mode
In the AID documentation, the term "command mode" designates the EXPERT mode
of the SDF command language. Users working in a different mode
(GUIDANCE={MAXIMUM|MEDIUM|MINIMUM|NO}) and wishing to enter AID commands
should switch to EXPERT mode via MODIFY-SDF-OPTIONS GUIDANCE=EXPERT.
AID commands are not supported by SDF syntax:

Operands are not queried via menus.
If an error occurs, AID issues an error message but does not offer a correction
dialog.

In EXPERT mode, the system prompt for command input is "/".

command sequence
Several commands are linked to form a sequence via semicolons (;). The sequence
is processed from left to right. A command sequence may contain both AID and
BS2000 commands, like a subcommand. Commands not permitted in a command
sequence are the AID commands %AID, %BASE, %DUMPFILE, %HELP, %OUT and
%QUALIFY as well as the BS2000 commands listed in the appendix of the AID Core
Manual.
If a command sequence contains one of the commands for runtime control, the
command sequence is aborted at that point and the program is started
(%CONTINUE, %RESUME, %TRACE) or halted (%STOP). As a result, any
commands which follow as part of the command sequence are not executed.

U4298-J-Z125-3-7600 123

Glossary

constant
A constant represents a value which cannot be accessed via an address in program
memory.
Constants include the symbolic constants defined in the source program, the results
of length selection, length function and address selection, and the statement names
and source references.

An address constant represents an address. Address constants include statement
names, source references and the result of an address selection. They can be used,
in conjunction with a pointer operator (->), to address the corresponding memory
location.

CSECT information
is contained in the object structure list.

current call hierarchy
The current call hierarchy represents the status of subprogram nesting at the
interrupt point. It ranges from the subprogram level on which the program was
interrupted to the subprograms exited by CALL statements (intermediate levels) to
the main program.
The hierarchy is output using the %SDUMP %NEST command.

current program
The current program is the one loaded in the task in which the user enters AID
commands.

current program unit
The current program unit is the unit in which the program was interrupted. Its name
is output in the STOP message.

data element
Data element is a collective term for all data which can be defined in FORTRAN.

dataname
This operand stands for all names assigned for data in the source program. With
the aid of dataname the user addresses variables, constants and arrays during
symbolic debugging. Array elements can be addressed via an index as in
FORTRAN.

data type
In accordance with the data type declared in the source program, AID assigns an
AID storage type to each data element:

binary string (%X)
character (%C)
numeric (%F, %D)

This storage type determines how the data element is output by %DISPLAY,
transferred or overwritten by %SET, and compared in the condition of a
subcommand.

124 U4298-J-Z125-3-7600

Glossary

ESD
The External Symbol Dictionary (ESD) lists the external references of a module. It is
generated by the compiler and contains, among other items, information on
CSECTs, DSECTs and COMMONs. The linkage editor accesses the ESD when it
creates the object structure list.

global settings
AID offers commands facilitating addressing, saving input efforts and enabling the
behavior of AID to be adapted to individual requirements. The presettings specified
in these commands continue to apply throughout the debugging session (see %AID,
%AINT, %BASE and %QUALIFY).

index
The index is part of an address operand and permits the position of an array
element to be defined. It can be specified in the same way as in FORTRAN or by
means of an arithmetic expression from which AID calculates the index value.

input buffer
AID has an internal input buffer. If this buffer is not large enough to accommodate
a command input, the command is rejected with an error message identifying it as
too long. If fewer of the repeatable operands are specified, the command will be
accepted.

interrupt point
The interrupt point is the address at which a program has been interrupted. From
the STOP message the user can determine both the address at which and the
program unit in which the interrupt point is located. The program is continued at
this point. A different continuation address can be specified with the aid of the
%JUMP command (FOR1 and COBOL85 only).

LIFO
Stands for the "last in, first out" principle. If statements from different entries concur
at a test point (%INSERT) or upon occurrence of an event (%ON), the ones entered
last are processed first (see AID Core Manual, section 5.4).

localization information
%DISPLAY %HLLOC(memref) for the symbolic level and %DISPLAY %LOC(memref)
for the machine code level cause AID to output the static program nesting for a
given memory location.
Conversely, %SDUMP %NEST outputs the dynamic program nesting, i.e. the call
hierarchy for the current program interrupt point.

LSD
The List for Symbolic Debugging (LSD) is a list of the data/statement names defined
in the module. It also contains the compiler-generated source references. The LSD
records are created by the compiler. AID uses them to fetch the information
required for symbolic addressing.

U4298-J-Z125-3-7600 125

Glossary

memory object
A memory object is formed by a set of contiguous bytes in memory. At program
level, this comprises the program data (if it has been assigned a memory area) and
the instruction code. Other memory objects are all the registers, the program
counter, and all other areas that can only be addressed via keywords. Conversely,
any constants defined in the program, as well as statement names, source
references, the results of address selection, length selection and length function, and
the AID literals do not constitute memory objects because they represent a value
that cannot be changed.

memory reference
A memory reference addresses a memory object. Memory references can either be
simple or complex.
Simple memory references include virtual addresses, names whose address AID
fetches from the LSD information, and keywords. Statement names and source
references are allowed as memory references in the AID commands %CONTROLn,
%DISASSEMBLE, %INSERT, %JUMP and %REMOVE although they are merely
address constants.
Complex memory references instruct AID how to calculate a particular address and
which type and length are to apply. The following operations are possible here: byte
offset, indirect addressing, type modification, length modification, address selection.

monitoring
%CONTROLn, %INSERT and %ON are monitoring commands. When the program
reaches a statement of the selected group (%CONTROLn) or the defined program
address (%INSERT), or if the declared event occurs (%ON), program execution is
interrupted and AID processes the specified subcommand.

name range
This comprises all data names stored for a program unit in the LSD records.

object structure list
On the basis of the External Symbol Dictionary (ESD), the linkage editor generates
the object structure list, provided the default SYMTEST=MAP applies or the user
has entered SYMTEST=ALL.

output type
This is an attribute of a memory object and determines how AID outputs the
memory contents. Each storage type has its corresponding output type. The AID
Core Manual, chapter 9, lists the AID-specific storage types together with their
output types. This assignment also applies for the data types used in FORTRAN. A
type modification in %DISPLAY and %SDUMP causes the output type to be
changed as well.

126 U4298-J-Z125-3-7600

Glossary

program state
AID makes a distinction between three program states which the program being
tested may assume:

1. The program has stopped.
%STOP, the K2 key, a PAUSE statement or completion of a %TRACE interrupted
the program. The task is in command mode. The user may enter commands.

2. The program is running without tracing.
%RESUME started or continued the program. %CONTINUE does the same, with the
exception that any active %TRACE is continued.

3. The program is running with tracing.
%TRACE started or continued the program. The program sequence is logged in
accordance with the declarations made in the %TRACE command. %CONTINUE has
the same effect if a %TRACE is still active.

program unit
A FORTRAN program is made up of individual program units. A program unit is
actually a series of program lines which is terminated by an END statement. A
distinction is made between main programs and subprograms. In a subprogram, the
first statement is a SUBROUTINE, FUNCTION or BLOCK DATA statement; BLOCK
DATA program units cannot be addressed using AID commands. In a main
program, the first statement is, as a rule, a PROGRAM statement, although any
other FORTRAN statement is likewise permissible as the first statement.

qualification
A qualification is used to reference an address which is not in the AID work area or
not uniquely defined therein. The base qualification specifies whether the address is
in the loaded program or in a memory dump. The PROG qualification specifies the
program unit in which the address is situated.

If a qualification is found to be superfluous or contradictory, it will be ignored. This
is the case, for example, if a PROG qualification is specified for a data element of
the current program unit.

source reference
A source reference designates an executable statement and is specified via S’n’. n
is the number of a statement; it is created by the compiler and can be found in the
compiler listing under the STMT column.
S’n’ source references, just like L’n’ statement names, are address constants.

U4298-J-Z125-3-7600 127

Glossary

statement name
This designates the first executable FORTRAN statement following a statement label.
The corresponding specification is L’n’ , where n is a source statement label (up to
5 digits) assigned by the programmer. Leading zeros must not be specified.
L’n’ statement names, just like S’n’ source references, are address constants.

storage type
This is either the data type defined in the source program or the one selected by
way of type modification. AID knows the storage types %X, %C, %P, %D, %F and
%A (see AID Core Manual, chapters 6 and 9).

subcommand
A subcommand is an operand of the monitoring commands %CONTROLn,
%INSERT or %ON. A subcommand can contain a name, a condition and a
command part. The latter may comprise a single command or a command
sequence. It may contain both AID and BS2000 commands. Each subcommand has
an execution counter. Refer to the AID Core Manual, chapter 5, for information on
how an execution condition is formulated, how the names and execution counters
are assigned and addressed, and which commands are not permitted within
subcommands.
The command part of the subcommand is executed if the monitoring condition
(criterion, test-point, event) of the corresponding command is satisfied and any
execution condition defined has been met.

tracing
%TRACE is a tracing command, i.e. it can be used to define the type and number
of statements to be logged. Program execution can be viewed on the screen as a
standard procedure.

update dialog
The update dialog is initiated by means of the %AID CHECK=ALL command. It
goes into effect when the %MOVE or %SET command is executed. During the
dialog, AID queries whether updating of the memory contents really is to take place.
If N is entered in response, no modification is carried out; if Y is entered, AID will
execute the transfer.

user area
This is the area in virtual memory which is occupied by the loaded program and all
its connected subsystems. It corresponds to the area represented by the keyword
%CLASS6 (or %CLASS6ABOVE and %CLASS6BELOW).

128 U4298-J-Z125-3-7600

References
[1] AID (BS2000)

Advanced Interactive Debugger
Core Manual
User Guide

Target group
Programmers in BS2000.
Contents
Overview of the AID system; description of facts and operands which
are the same for all programming languages.
Messages; comparison between AID and IDA.
Applications
Testing of programs in interactive or batch mode.

[2] AID (BS2000)
Advanced Interactive Debugger
Debugging on Machine Code Level
User Guide

Target group
Programmers in BS2000.
Contents
Description of the AID commmands for debugging on
machine code level; sample application.
Applications
Testing of programs in interactive or batch mode.

U4298-J-Z125-3-7600 129

References

[3] AID (BS2000)
Advanced Interactive Debugger
Debugging of COBOL Programs
User Guide

Target group
COBOL programmers.
Contents
Description of the AID commands for symbolic debugging of
COBOL programs; sample application.
Applications
Testing of COBOL programs in interactive or batch mode.

[4] AID (BS2000)
Advanced Interactive Debugger
Debugging of PL/I Programs
User Guide

Target group
PL/I programmers.
Contents
Preparations for the symbolic debugging of PL/I programs;
description of all the AID commands available for symbolic
debugging; examples of AID sessions; messages.
Applications
Debugging of PL/I programs in interactive and batch modes.

[5] AID (BS2000)
Advanced Interactive Debugger
Debugging of ASSEMBH Programs
User Guide

Target group
Assembly language programmers
Contents
Prerequisites for symbolic debugging of ASSEMBH-XT programs;
description of all AID commands available for symbolic debugging;
AID sample session;
messages
Applications
Testing of ASSEMBH-XT programs in interactive or batch mode

130 U4298-J-Z125-3-7600

References

[6] BS2000
Executive Macros
User Guide

Target group
BS2000 assembly language programmers (non-privileged); system
administrators.
Contents
All Executive macros in alphabetical order with detailed
explanations and examples; selected macros for DMS and TIAM;
macro overview according to application areas; comprehensive
training section dealing with eventing, serialization, inter-task
communication, contingencies.
Applications
BS2000 application programs.

[7] BS2000
Programmiersystem *
Technische Beschreibung
(Programming System, Technical Description)

Target group
• BS2000 users with an interest in the technical background

of their systems (software engineers, systems analysts,
computer center managers, system administrators).

• Computer scientists interested in studying a concrete
example of a general-purpose operating system.

Contents
Functions and principles of implementation of
• the linkage editor
• the static loader
• the Dynamic Linking Loader
• the debugging aids
• the program library system.
Order number
U3216-J-Z53-1

U4298-J-Z125-3-7600 131

References

[8] FOR1 (BS2000)
FORTRAN Compiler
User’s Guide

Target group
FORTRAN users in BS2000.
Contents
Invocation and control of the FOR1 compiler under BS2000;
input and compilation of source programs;
interactive analysis;
link-editing and execution of object programs;
program execution and error handling;
optimization;
debugging aids;
programming hints;
notes on language interfaces;
software products for the FORTRAN user;
listing of library modules and FOR1 error messages.

[9] FOR1 (BS2000)
FORTRAN Compiler
Reference Manual

Target group
FORTRAN users in BS2000.
Contents
Description of the language range of the FOR1 compiler: basic
elements of FORTRAN, control statements, input/output statements,
specification statements and data initialization statements,
assignment statements and formats; structure and construction of
a FORTRAN program.

The publication(s) marked with an * is/are not published by Siemens Nixdorf
Informationssysteme AG or by Siemens AG.

Ordering manuals

found in the List of Publications issued by Siemens Nixdorf Informationssysteme AG,
which also tells you how to order manuals. New publications are listed in the
Druckschriften-Neuerscheinungen (New Publications).

You can arrange to have both of these sent to you regularly by having your name
placed on the appropriate mailing list. Your local office will help you.

132 U4298-J-Z125-3-7600

Index

Index

%., abbreviation of subcommand name 82
%.subcmdname 66, 93
%.subcmdname, delete 82
%? 53
%0G 48
%1G 48
%AID 16, 63, 68, 91
%BASE 22, 30, 48, 49
%CLASS6 49
%CONTINUE 24, 61, 84, 103
%CONTROL 81
%CONTROLn 25
%DISASSEMBLE 30, 75, 77, 102
%DISASSEMBLE log 33
%DISPLAY 35, 75, 77, 102
%DUMPFILE 22, 46
%ERRFLG 82
%FALSE 93, 96
%FIND 48
%H %? 53
%H? 53
%HELP 53, 75, 77, 102
%HELP information, English or German 16
%INSERT 55, 81
%JUMP 61, 84, 103
%L=(expression) 95
%LPOV 82
%MOVE 63
%MOVE command

REPs 16
update dialog 16

%n 66, 93

U4298-J-Z125-3-7600 133

Index

%nD 66, 93
%nDG 66, 93
%nE 66, 93
%NEST 87
%nG 66
%nQ 66, 93
%ON 71, 81
%OUT 30, 35, 40, 54, 75, 87, 103
%OUTFILE 69, 77
%OUTFILE command 17
%PC 66, 82
%QUALIFY 79
%REMOVE 25, 81
%RESUME 61, 84
%SDUMP 75, 77, 85, 102
%SET 90
%SORTEDMAP 35
%STOP 55, 71, 99
%STOP within a subcommand 99
%subcommand 24
%SVC 82
%SYMLIB 7, 85, 100
%TITLE 102
%TRACE 61, 75, 77, 84, 102, 103
%TRACE listing 107
%TRUE 93, 96

A
additional information 75, 76, 87
address 35, 64, 91
address operand 79
address selection 32, 39, 51, 57, 67, 94
address selector 39, 67, 94
AID commands, help texts 53
AID literal 35, 40, 64, 68, 91, 95
AID message number range, %HELP 53
AID output 30, 35, 40, 54, 87, 106

delimiter 16
AID output file

assign 77
close 77
open 77

AID register 38, 48, 64, 66, 93
AID registers, further processing of %FIND results 48

134 U4298-J-Z125-3-7600

Index

AID standard work area 22
AID work area 22, 46, 76, 79
alignment 48, 52
ALL 48
alter program state 24, 84, 99
area qualification 9
arithmetic expression in indexes 51
array 37, 50, 65, 86, 92
array element 50, 65, 86
assign

link name 46, 77
output file 77

assign PLAM library 100
ASSIGN statement, FORTRAN 90
assignment statement, FORTRAN 90

B
base qualification 9, 22, 27, 31, 37, 50, 56, 65, 66, 80, 86, 92, 93, 100, 106
binary transfer 96
branch 61
brief description of command, %HELP 53
BS2000 catalog name of a PLAM library 101
byte boundary, search at 52
byte offset 32, 39, 51, 57, 67, 94

C
CALL statement 85
cataloging the output file 77, 78
chaining of subcommands 55
character literal 48, 49, 102
character transfer 96
CHECK 16
checking the storage types 90
close

dump file 46
output file 77

close PLAM library 100
code, shareable 6
coded program sequence, deviation from 61
command 30
command mode 99
command sequence 28, 74
COMOPT control 5
compiler listing 6, 11
compl-memref 32, 39, 57

U4298-J-Z125-3-7600 135

Index

COMPLEX 38, 90
constant 10, 37, 65, 86, 92
continuation address

%FIND 48
%JUMP 61

continue program 24, 74, 84
%TRACE 103

control 55, 58
control of the output file 75, 102
control operand, %INSERT 24
control-area 25
creating an AID output file 77
criterion 25, 103
CSECT 35, 69
current call hierarchy 35
current interrupt point 26, 76, 99, 103, 104, 105
current program unit 35

D
data definitions, different output 37
data element 35, 64, 91

definition in the source program 36
data output 35, 75
dataname 37, 50, 65, 86, 92
declare global settings 16
decompiler listing 6
define a continuation address 61
define page header for SYSLST 102
define prequalification 79
delete

%INSERT 82
%ON 82
a specific %CONTROLn command 81
all %CONTROLn command declarations 81
all events of a group 82
all test points 81
event 82
subcommand 82
test point 81

delete test-point 59
delete %CONTROLn 25
delete all events 82
delete test declarations 81
DELIM 16

136 U4298-J-Z125-3-7600

Index

delimiter of AID output fields 16
display

addresses 35
lengths 35
memory contents 35

doubleword boundary, search at 52
dump area 85
dump file

close 46
open 46

dynamic loading of LSD records 100

E
error message 53
event 71
event table 73
execution condition 58, 74
execution control 28, 74, 84, 99, 103
execution counter 28, 35, 38, 58, 64, 66, 74, 84, 91, 93

F
F6 77
feed to SYSLST 35
feed-control 40
file 77
filename 101
find-area 48
find-area 49
FOR1 control 5
FORTRAN statement 10, 11, 32, 38, 51, 56, 57, 65, 93
FORTRAN statement types 26

G
global declaration, define 79

H
halfword boundary, search at 52
help texts 53

output 53
hexadecimal literal 48, 49
hit address 48
hold the program 99

U4298-J-Z125-3-7600 137

Index

I
IDA0n messages 53
In message number 54
index 37, 50, 65, 87, 92
indexing of arrays 37, 50, 65, 86, 92
indirect addressing 32, 39, 51, 57, 67, 94
individual command 46
info-target 53
information

on error messages 53
on the operation of AID 53

input file 46
interpretation of the hyphen 16
interrupting the program 58
interrupting the program run 99

K
K2 key 99
keyword 38, 66, 71, 93

L
L’n’ 32, 38, 51, 62, 65, 92
LANG 16
length 35, 64, 91
length function 40, 68, 95
length modification 32, 39, 51, 57, 67, 94
length selector 39, 68, 95
LIFO principle 55, 71
line feed 40
link 46, 77
link name F6 69
literal, find 48
LMS UPDR record 17, 69
localization information, symbolic 38
logic value 91, 93
LOW 16
lowercase/uppercase 16
LSD records 5, 10, 85, 100

dynamic loading 100

138 U4298-J-Z125-3-7600

Index

M
machine code level 35, 36, 63, 91
matching numeric values 90
medium-a-quantity 35, 53, 75, 85
memory area 49
memory contents, modify 63, 90
memory references 9
message number IDA0n 53
messages from AIDSYS 53
metasyntax 13
modifying memory contents 63, 90
monitor FORTRAN statements 25
monitor program addresses 55
monitoring function 25, 26
monitoring statements 25

N
number 30, 103
number of lines per print page 102
number transfer 96
numeric receiver 90
numeric transfer 90

O
object structure list 17, 69
open, output file 77
open PLAM library 100
opening the output file 78
optimized program 61
optimized programs, LSD records 6
output, literal 48
output %DISASSEMBLE log 33
output %TRACE log 106
output commands

%DISASSEMBLE 75
%DISPLAY 75
%HELP 75
%SDUMP 75
%TRACE 75

output data areas 85
output medium 30, 35, 41, 53, 54, 75, 87, 104
output of hits 48

%FIND 48
output the current call hierarchy 85
output type 36, 39

U4298-J-Z125-3-7600 139

Index

OV 16
overlay 16

P
page counter for SYSLST 102
page feed 40
page-header 102
PAUSE 7, 24
period 27, 31, 37, 50, 56, 64, 79, 86, 92, 101, 106
permissible combinations for %SET 96
PLAM library 6, 85

assign 100
close 100
open 100

prequalification 27, 31, 37, 50, 56, 64, 79, 86, 92, 101, 106
procedures, %FIND 48
PROG qualification 9, 27, 31, 37, 50, 56, 65, 80, 86, 92, 106
program area to be monitored 26, 105
program counter 66, 93
program error 71
program name, output 87
program register 38
program start 103
program termination 71

abnormal 71
normal 71

programs with overlay structure 16

Q
qualification-a-lib 100

R
receiver 63, 64, 90, 91
register 35, 91, 93
REP 16, 63, 68
REP file 69
REP record 17, 68
retranslate memory contents 30
runtime control 58
runtime system 99

140 U4298-J-Z125-3-7600

Index

S
S’n’ 27, 32, 38, 51, 57, 62, 65, 93, 106
SDF control 5
search criterion 48
search string 48

length 48
sender 63, 64, 90, 91
shared code 6
single command 53
source reference 27, 62, 66
start 30
start %TRACE 103
start program 24, 84
START-FOR1-PROGRAM 7
statement 35, 57
statement label 10, 32, 38, 51, 57, 62, 65, 93
statement name 10
statement number 32, 38, 51, 93
statement to be monitored 27
STOP message 99
storage type 36, 39, 86
storage types, check 63
subcmd 25, 55, 71, 74
subcommand 28, 57, 58, 71, 82, 84, 99, 103

condition 28
effect of %QUALIFY 79
name 28

subcommand chaining 58, 74
subcommand name 74
subcommand nesting 58, 74
subcommands, %FIND 48
subprogram nesting 85
supervisor call (SVC) 71
symbolic constant 64, 91
SYMCHARS 16
SYSLST 40, 102
SYSOUT 48
system information 35
system table 38

U4298-J-Z125-3-7600 141

Index

T
target 81
target-cmd 75
terminate %TRACE 103
test object 30
test-point 55
trace area consisting of one statement 106
trace-area 103
tracing 84, 103
transfer

padding during 90
truncating during 90

transfer while retaining values 90
type modification 32, 35, 39, 51, 57, 67, 94

U
update dialog 91

%AID 63
uppercase/lowercase 16

V
variable 10, 37, 50, 65, 86, 92

W
wildcard symbol 49
word boundary, search at 52

142 U4298-J-Z125-3-7600

Contents
1 Preface 1.........................

2 Prerequisites for symbolic debugging 5.............
2.1 Compilation 5........................
2.2 Linking, loading and starting 7..................

3 FORTRAN-specific addressing 9................

4 Metasyntax 13........................

5 AID commands 15......................
%AID Change global settings 16.............
%BASE Define global base qualification 22.........
%CONTINUE Start or continue program, continue any active %TRACE 24
%CONTROLn Monitor selected statements 25..........
%DISASSEMBLE Retranslate memory contents into symbolic Assembler

notation 30..................
%DISPLAY Output the contents of data elements, their addresses and

lengths, system information and literals 35......
%DUMPFILE Open or close dump files and assign link names 46...
%FIND Search for a character string 48..........
%HELP Help function for AID commands and AID messages 53.
%INSERT Set test points for monitoring program execution 55...
%JUMP Declare a continuation address 61.........
%MOVE Change the contents of data elements without type

checking and without converting numerical values 63..
%ON Monitor selected events 71............
%OUT Specify output media and additional information for output

commands 75.................
%OUTFILE Open or close AID output files and assign link names 77.
%QUALIFY Define a prequalification 79............
%REMOVE Delete monitoring declarations 81..........
%RESUME Start or continue program, terminate any active %TRACE 84
%SDUMP Symbolic dump; output data elements or the program

of the current call hierarchy 85...........

U4298-J-Z125-3-7600

Contents

%SET Change the contents of data elements with type checking
and with conversion of numerical values 90......

%STOP Halt program and switch to command mode 99.....
%SYMLIB Specify libraries for dynamic loading of LSD records 100.
%TITLE Define page headers and activate pagination for output to

SYSLST 102..................
%TRACE Start or continue program with tracing 103.......

6 Sample application 109....................
6.1 Source listing 109.......................
6.2 Test run 113.........................

Glossary 121............................

References 129...........................

Index 133.............................

U4298-J-Z125-3-7600

AID V2.0A (BS2000)

Advanced Interactive Debugger
Debugging of FORTRAN Programs
User Guide

Target group
FORTRAN programmers
Contents

Description of the AID commands for symbolic debugging of
FORTRAN programs Sample application
Applications
Testing of FORTRAN programs in interactive or batch mode

Edition: September 1991

File: AID_FOR.PDF

BS2000 is a registered trademark of Siemens Nixdorf Informationssysteme AG.

Copyright © Siemens Nixdorf Informationssysteme AG, 1994. All rights reserved.

The reproduction, transmission, translation or exploitation of this document or its contents
is not permitted without express written authority. Offenders will be liable for damages.

Delivery subject to availability; right of technical modifications reserved.

U4298-J-Z125-3-7600

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Prerequisites for symbolic debugging
	Compilation
	Linking, loading and starting

	FORTRAN-specific addressing
	Metasyntax
	AID commands
	%AID Change global settings
	%BASE Define global base qualification
	%CONTINUE Start or continue program, continue any active %TRACE
	%CONTROLn Monitor selected statements
	%DISASSEMBLE Retranslate memory contents into symbolic Assembler notation
	%DISPLAY Output the contents of data elements, their addresses and lengths, system information and literals
	%DUMPFILE Open or close dump files and assign link names
	%FIND Search for a character string
	%HELP Help function for AID commands and AID messages
	%INSERT Set test points for monitoring program execution
	%JUMP Declare a continuation address
	%MOVE Change the contents of data elements without type checking and without converting numerical values
	%ON Monitor selected events
	%OUT Specify output media and additional information for output commands
	%OUTFILE Open or close AID output files and assign link names
	%QUALIFY Define a prequalification
	%REMOVE Delete monitoring declarations
	%RESUME Start or continue program, terminate any active %TRACE
	%SDUMP Symbolic dump; output data elements or the program of the current call hierarchy
	%SET Change the contents of data elements with type checking and with conversion of numerical values
	%STOP Halt program and switch to command mode
	%SYMLIB Specify libraries for dynamic loading of LSD records
	%TITLE Define page headers and activate pagination for output to SYSLST
	%TRACE Start or continue program with tracing

	Sample application
	Source listing
	Test run

	Glossary
	References
	Index
	A
	B-C
	D
	E-H
	I-L
	M-O
	P-R
	S
	T-W

