
Edition January 1992

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
P

fa
d:

 D
:\h

an
db

uc
h\

en
gl

is
ch

\fo
r1

_t
it_

us
.fm

FOR1 (BS2000) V2.2A
Fortran Compiler

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2009.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

Contents
1 Introduction 1
1.1 Target group 2
1.2 Summary of contents 3
1.3 Metasyntax 5
1.3.1 Metasyntax for representing compiler and runtime options 5
1.3.2 SDF syntax description 6
1.4 Changes since the last version of the manual (FOR1 V2.1A) 11
1.5 General requirements concerning compilation, linking and program

execution 12
1.6 System environment of the FOR1 compiler 13
1.7 Management of programs in program libraries 14
1.8 Preloading the compiler 16
1.9 Runtime system 18
1.9.1 Structure 18
1.9.2 Loading using /ADD-SHARED-PROGRAM and /LOAD-PROGRAM 19
1.9.3 Loading via DSSM 19

2 Controlling the FOR1 compiler 23
2.1 Starting FOR1 24
2.2 Control through SDF commands 26
2.2.1 Entering SDF commands 26
2.2.2 Example of simple compilation and program run with SDF commands 29
2.2.3 Summary: SDF command START-FOR1-COMPILER and corresponding

compiler options 31
2.3 Control through compiler options 41
2.3.1 Entering compiler options 41
2.3.2 Example of simple compilation and program run with compiler options 44
2.3.3 Summary: Compiler options and corresponding SDF operands 46
2.4 Summary: Compile time statements in the source program 52

3 Source program input 55
3.1 Creating the source program 56
3.1.1 Creating a source program file 56
3.1.2 Direct input of the source program 59

U577-J-Z125-7-7600

Contents

3.2 Defining the input location of the source program 60
3.2.1 ASSIGN-SYSDTA command 60
3.2.2 SDF operand SOURCE 64
3.2.3 SOURCE compiler option 65
3.3 Defining the input location of the compiler options 70
3.3.1 ASSIGN-SYSDTA command 70
3.3.2 OPTIONS compiler option 70
3.4 Temporary changing of a source program: UPD compiler option 75
3.5 Inserting source program lines 81
3.5.1 %INCLUDE statement 81
3.5.2 SDF operand INCLUDE-LIBRARY 84
3.5.3 INCLUDE-LIBRARY compiler option 84
3.6 Entering the source program with Interactive Analysis 85
3.6.1 Controlling Interactive Analysis: SDF operand DIALOG 86
3.6.2 Starting Interactive Analysis: DIALOG compiler option 87
3.6.3 Outline 88
3.6.4 Controlling Interactive Analysis output: DIALOG-SAVE and OUTPUT

compiler options 90
3.6.5 Error display 93
3.6.6 Updating the work file 94
3.6.6.1 Line numbering 95
3.6.6.2 Entering statements and commands 97
3.6.6.3 Line break 98
3.6.6.4 Analysis of an update 99
3.6.6.5 Errors in an INCLUDE item 99
3.6.7 Commands for controlling Interactive Analysis 100
3.6.7.1 Rules for the entry of commands 100
3.6.7.2 Summary of all dialog commands 101
3.6.7.3 BATCH (continuation in batch mode) 103
3.6.7.4 CONTINUE (resumption of compiler run) 103
3.6.7.5 COPY (copying a range of lines) 104
3.6.7.6 DELETE (deletion of a range of lines) 104
3.6.7.7 HELP (brief description of all dialog commands) 105
3.6.7.8 INSERT (insertion of a range of lines) 105
3.6.7.9 LOWER (lower/upper case) 105
3.6.7.10 MOVE (moving a range of lines) 106
3.6.7.11 PRINT (prints a range of lines or the error file; paging) 107
3.6.7.12 RENUMBER 108
3.6.7.13 RESTART 108
3.6.7.14 SAVE or WRITE (saving the work file) 109
3.6.7.15 SET (modification of a line) 110
3.6.7.16 STOP (termination of the compiler run) 111
3.6.7.17 SYSTEM (execution of BS2000 commands) 111
3.6.8 Example of Interactive Analysis 112

U577-J-Z125-7-7600

Contents

4 Source program compilation 115
4.1 Specifying and checking the attributes of the source program 115
4.1.1 SDF operand SOURCE-PROPERTIES 115
4.1.2 Specifying and checking the attributes of the source program by

by compiler options 116
4.1.2.1 CCOM option 116
4.1.2.2 LINEEND option 116
4.1.2.3 STANDARD-CHECK option 117
4.1.2.4 IMPLICIT option 119
4.1.2.5 EXPUNDERFLOW option 119
4.1.2.6 SOURCE-FORMAT option 119
4.1.2.7 SAVE-CONSTANT option 120
4.1.2.8 FORTRAN90-CHECK option 121
4.1.2.9 CODE option 121
4.2 Specifying the attributes of the generated code 122
4.2.1 SDF operand COMPILER-ACTION 122
4.2.2 Specifying the attributes of the generated code by compiler options 123
4.2.2.1 OBJECT option 123
4.2.2.2 SHARE-LIBRARY option 124
4.2.2.3 REAL option 124
4.2.2.4 TRUNCONST option 126
4.2.2.5 GEN option 127
4.2.2.6 LINKAGE option 127
4.2.2.7 UNIT option 129
4.2.2.8 COMPATIBLE option 129
4.2.2.9 SUPPLIEDBOUND option 130
4.2.2.10 PAD option 130
4.3 Determining the output location of the generated object module 131
4.3.1 SDF operand MODULE-LIBRARY 131
4.3.2 MODULE-LIBRARY compiler option 132
4.4 Structure and nomenclature of object modules 133
4.5 Object module maintenance 135
4.6 Generating compiler listings 136
4.6.1 Controlling messages and listings: SDF operand LISTING 136
4.6.2 Controlling messages and listings by compiler options 138
4.6.2.1 MSGLEVEL option (diagnostic messages and error degree) 138
4.6.2.2 LIST option (selection of listings) 140
4.6.2.3 COLLECT option (arrangement of listings) 142
4.6.2.4 LIST-OUTPUT option (output location of listings) 143
4.6.2.5 LISTFILE option (output to cataloged file) 145
4.6.2.6 LINECNT option (lines per page) 146
4.6.2.7 EJECT option (form feed) 146
4.6.2.8 EXPAND option (list of insertions) 146
4.6.2.9 TEXT-SEPARATOR option (representation of vertical lines) 147

U577-J-Z125-7-7600

Contents

4.6.3 Controlling the source listing with compile time statements 148
4.6.3.1 %EXPAND statement 148
4.6.3.2 %EJECT statement 149
4.6.3.3 %SPACE statement 149
4.6.3.4 %TITLE statement 150
4.7 Description of compiler listings 151
4.7.1 Options listing 151
4.7.2 Source listing 152
4.7.3 Diagnostic listing 154
4.7.4 Listing of external names (ESD LISTING) 154
4.7.5 Map listing 156
4.7.6 Cross-reference listing 158
4.7.7 Attribute listing 159
4.7.8 Object listing 159
4.7.9 Decompiler listing 161
4.7.10 Summary listing 172
4.7.11 Change listing 172
4.8 Termination of compilation 173
4.8.1 SDF operand COMPILER-TERMINATION 173
4.8.2 Termination of compilation: ERRKILL and MAXERR compiler options 174
4.9 Monitoring of compilation by job variables: SDF operand MONJV 175

Meaning of the job variable indicators 175
4.10 Specifying the message language 180
4.10.1 SDF operand LANGUAGE 180
4.10.2 LANGUAGE compiler option 180
4.11 SDF operand COMPILER 181

5 Linking, loading and starting 183
5.1 Linking, loading, starting: SDF command START-FOR1-PROGRAM,

FROM-FILE operand 185
5.2 Summary: SDF operand FROM-FILE and corresponding DBL and ELDE

control 186
5.3 Static linkage (linkage editor TSOSLNK) 187
5.4 Static loading (loader ELDE) 193
5.5 Dynamic link loading (binder loader DBL) 196
5.6 Memory allocation of started programs 200
5.7 Binder BINDER 203
5.8 Shareable programs 204
5.8.1 Shareable programs using procedure SYSPRC.FOR1.022.SHARE 207
5.8.1.1 Procedure 207
5.8.1.2 Parameters for procedure SYSPRC.FOR1.022.SHARE 209
5.8.1.3 Example 211

U577-J-Z125-7-7600

Contents

5.8.2 Shareable programs without procedure SYSPRC.FOR1.022.SHARE 214
5.8.2.1 Procedure 214
5.8.2.2 Example 214

6 Program execution 217
6.1 Controlling program execution: Operands of the SDF command

START-FOR1-PROGRAM 217
6.2 Summary: SDF operand RUNTIME-OPTIONS and corresponding runtime

options 218
6.3 Controlling program execution with runtime options 220
6.3.1 Entering runtime options 220
6.3.2 Changing file numbers: SUBSTITUTE, ADD, DELETE and NO runtime

options 221
6.3.3 Controlling form feed character generation for output to SYSLST:

RUNOPT OVERPRINT 223
6.3.4 Suppressing the STXIT error handling routine: RUNOPT STXIT 226
6.3.5 Setting the machine address mode: RUNOPT START 227
6.3.6 Setting the exponent underflow handling:

RUNOPT EXPONENT-UNDERFLOW 228
6.4 Internal procedures for initializing and terminating programs 229
6.4.1 Program initialization 229
6.4.2 Program termination 229
6.5 Error handling at runtime 231
6.5.1 Structure of the error messages 231
6.5.2 Program continuation on runtime errors 232
6.5.3 Monitoring program execution with job variables 233
6.5.4 Fatal errors 234
6.5.5 Input/output errors 234
6.5.6 Errors in mathematical library programs 237
6.5.7 Program errors 241
6.5.8 Errors in debug options, debug statements, irregular flow of control 243

7 Debugging aids 247
7.1 Controlling the debugging aids: SDF operand TEST-SUPPORT 247
7.2 Summary: SDF operand TEST-SUPPORT and corresponding compiler

options 248
7.3 Controlling the debugging aids with the TESTOPT compiler option 250
7.4 Debug statements (controlling the debugging aids through statements

in the source program) 254
7.4.1 Overview: Debug statements 254
7.4.2 %DISPLAY statement 256
7.4.3 %CHECK statement 256
7.4.4 %CALLTRACE statement 258
7.4.5 %JUMPTRACE statement 259
7.4.6 %FULLTRACE statement 260

U577-J-Z125-7-7600

Contents

7.4.7 %COUNT statement 261
7.4.8 Example: Using debug statements 263
7.5 Debug subprograms 268
7.5.1 Overview: Debug subprograms 269
7.5.2 Subprograms SLITE and SLITET 270
7.5.3 Subprogram OVERFL 271
7.5.4 Subprogram DVCHK 273
7.5.5 Subprogram FIXOV 274
7.5.6 Subprogram DEBUG 275
7.5.7 Example: Use of the debugging subprograms 275
7.6 Advanced Interactive Debugger (AID) 277
7.6.1 Prerequisite for debugging using AID: SYMTEST option 277
7.6.2 Functional scope of AID 278
7.6.3 Example: Use of Advanced Interactive Debugger AID 280

8 File processing 285
8.1 BS2000 system files 285
8.2 BS2000 user files 287
8.2.1 Access methods of the DMS 288
8.2.2 Record format and record length 289
8.2.3 Data block and buffer 290
8.2.4 Keyed and no-key file formats 292
8.3 Linkage of BS2000 files and FOR1 programs 295
8.3.1 Defining file link names: BS2000 command SET-FILE-LINK 296
8.3.2 Definition of file attributes by DMS 298
8.3.3 FORTRAN input/output units 298
8.3.3.1 Standard assignment of BS2000 system files 299
8.3.3.2 OPEN statement 300
8.4 Mapping of FORTRAN Records to DMS 303
8.4.1 FORTRAN record and DMS record 303
8.4.2 Summary: Relationship between DMS and FORTRAN records 307
8.4.3 Examples: FORTRAN/DMS record 309

9 Optimization 313
9.1 Manual optimization 314
9.2 Controlling optimization 321
9.2.1 SDF operand OPTIMIZATION 322
9.2.2 OPTIMIZE compiler option 323
9.2.3 PROCEDURE-OPTIMIZATION compiler option 328
9.3 FOR1 optimization measures 331
9.3.1 Computation of constant expressions at compile time 331
9.3.2 Optimization of logical expressions 332
9.3.3 Recognition of common subexpressions 333
9.3.4 Subscript computation 335
9.3.5 Loop optimization 338

U577-J-Z125-7-7600

Contents

9.3.6 Global register allocation 346
9.4 Examples of optimization 347
9.4.1 Effect of optimization on a program loop 347
9.4.2 Differences between optimization levels 1 and 3 349

10 Programming considerations 351
10.1 Considerations for individual FOR1 language elements 351
10.2 FOR1 extensions no longer supported by the Fortran90 compiler 353
10.3 High-precision mathematical intrinsic functions 358
10.4 Floating-point arithmetic and fixed-point arithmetic 359
10.5 Alignment of data items 360
10.6 Creating dynamic memory for arrays 362
10.6.1 Declaring dynamic arrays 363
10.6.2 Allocating memory (CALL ALLOC) 363
10.6.3 Releasing memory (CALL DEALLOC) 364
10.6.4 Interrogating the dimension bounds (CALL GETSHAPE) 365
10.6.5 Restrictions on programming using dynamically created arrays 366

11 Program interfacing 367
11.1 The program communication interface ILCS 369
11.1.1 Initialization of the program system 370
11.1.2 ILCS environment 370
11.1.3 Prosys common data area (PCD) 371
11.1.4 Program mask handling by ILCS 371
11.1.5 Parameter transfer in ILCS program systems 371
11.1.6 Notes concerning linking of ILCS program systems 374
11.2 Compatibility 375
11.2.1 Explanation of terms 375
11.2.2 Compatibility when interfacing FOR1 programs 375
11.2.3 Compatibility when interfacing programs in different languages 376
11.3 Subprogram interface: Execution and conventions 376
11.3.1 Program interfacing sequence 377
11.3.2 Structure of the save area 378
11.3.3 Register conventions 380
11.3.4 Parameter address lists 382
11.3.5 Descriptors 386
11.4 Linking program systems without a FOR1 main program 388
11.5 Interfacing of FOR1 with COBOL programs 389
11.5.1 FOR1 program calls COBOL subprogram 389
11.5.2 COBOL program calls FOR1 subprogram 389

Example: COBOL program calls FOR1 subprogram 390
11.6 Interfacing of FOR1 with PLI1 programs 393
11.6.1 FOR1 program calls PLI1 subprogram 394
11.6.2 PLI1 program calls FOR1 subprogram 395

U577-J-Z125-7-7600

Contents

11.7 Interfacing of FOR1 with C programs 396
11.7.1 C program calls FOR1 subprogram 397
11.7.2 FOR1 program calls C function 401
11.7.3 Common file processing 404

12 Function pool FPOOL 405
12.1 Controlling FPOOL processing 407
12.1.1 SDF operand FPOOL-LIBRARY 407
12.1.2 FPOOL compiler option 407
12.1.3 %FPOOL statements in source program 408
12.2 The central FPOOL 411
12.2.1 FPOOL function ACCOUNTNO 412
12.2.2 FPOOL Function DIALOG 413
12.2.3 FPOOL function ELIMCHR 414
12.2.4 FPOOL function ELIMINT 416
12.2.5 FPOOL function FCMD 417
12.2.6 FPOOL function GDATECHAR 419
12.2.7 FPOOL function GDATEINT 421
12.2.8 FPOOL function GEPRTCHAR 422
12.2.9 FPOOL function GEPRTINT 424
12.2.10 FPOOL function GETDATE 425
12.2.11 FPOOL function GETMEMMAPLONG 426
12.2.12 FPOOL function GETMEMMAPSHORT 427
12.2.13 FPOOL function GETODCHAR 428
12.2.14 FPOOL function GETODINT 429
12.2.15 FPOOL function TASKANDUSERID 431
12.2.16 FPOOL function TMODEALL 432
12.2.17 FPOOL function MEMOMAP 434
12.2.18 Summary: Generic, call and connect names 438
12.3 Setting up private FPOOLs (FPOOLITY utility routine) 440
12.4 Example: Application of FOR1.FPOOLLIB interfaces 443

A Appendix 447
A.1 Abbreviations for FOR1 compiler options and option values 447
A.2 Compiler phases 450
A.3 Naming convention for library modules 452
A.4 PARAMETER operands and corresponding compiler options 453
A.5 IOSTAT messages 455
A.6 Examples of compiler listings 460
A.6.1 Source listing with diagnostic listing 460
A.6.2 Source listings (main program and subprogram) 460
A.6.3 Change listing 461
A.6.4 ESD listing 461
A.6.5 Map listing 462
A.6.6 Cross-reference listing 462

U577-J-Z125-7-7600

Contents

A.6.7 Object listing 463
A.6.8 Summary listings for main program and subprogram 470
A.6.9 General summary listing 470
A.6.10 Options listing 471
A.7 Coexistence of OLD, NXS, XS programs 472
A.7.1 31-bit address mode and 24-bit address mode 472
A.7.2 XS, OLD and glue programs 475
A.7.3 Program interfacing for execution in same address space 476
A.7.4 Program interfacing for execution in different address spaces 478
A.8 Language interfacing in non-ILCS environments 486
A.8.1 Routines for language interfacing in non-ILCS environments 486
A.8.2 FOR1/COBOL interfacing in non-ILCS environments 492
A.8.3 FOR1/PLI1 interfacing in non-ILCS environments 493
A.8.4 FOR1/C interfacing in non-ILCS environments 494
A.9 Interfacing FOR1 and assembly language programs 497
A.9.1 Assembly language program calls FOR1 subprogram 498

Example: Assembly language program calls FOR1 subprogram 505
A.9.2 FOR1 program calls assembly language program 508

Example: FOR1 program calls assembly language program 512
A.10 Software products for the FOR1 user 517
A.10.1 Utility routine FPOOLITY 517
A.10.2 Subprogram library for high-precision arithmetic ARITHMOS 517
A.10.3 Methods base library of standardized subprograms for economics and

science MEB 518
A.10.4 Library Maintenance System LMS 520
A.10.5 Job variables 522
A.10.6 Graphical kernel system GKS-GA 523

References 525

Index 539

U577-J-Z125-7-7600

1 Introduction
The FOR1 compiler translates FORTRAN source programs into object modules.

The range of language elements of FOR1 covers the ANS FORTRAN 77 standard (ANSI
X3.9-1978) as well as FORTRAN IV and its extensions. FOR1 adds substantially to the
application capabilities of standard FORTRAN. This compiler features efficient optimiza-
tion as well as a high degree of operating and debugging convenience.

The large number of setting options allows FOR1 to be tailored to a wide variety of
applications. It is possible to control the location of the source program, the process of
compilation, the structure of the object modules generated, and the output of the li-
stings. This certainly does not mean, however, that the user has to make a large num-
ber of specifications for each compiler run: the compiler operates with default values if
the user does not make explicit entries.

The FOR1 compiler can be controlled in two different ways:
by compiler options entered after calling the compiler
through operands of an SDF command

SDF (System Dialog Facility) is the new BS2000 dialog interface. With SDF it is possi-
ble, for example, to enter the commands through menus. Information on the form and
meaning of the permissible entries appears - if required - directly on the screen.
One SDF command is available for the compilation of FOR1 source programs and one
for the dynamic linkage, loading and starting of compiled programs.

The FOR1 compiler subjects the source programs to numerous syntax and and seman-
tic checks. When errors occur during compilation, the compiler issues messages giving
information on the location and cause of the error and corrective action for the compi-
ler. For errors occurring at run time, the runtime system issues informative messages.

Various debugging aids are available to the user for testing the programs. Debugging
aids can also be incorporated in the source program text by means of debugging state-
ments or subprograms. By specifying debugging options it is possible to activate addi-
tional tests at program run time. Along with these debugging aids integrated in FOR1,
you can work with the BS2000 interactive debugging aid AID at program run time (see
"AID - Debugging of FORTRAN Programs" [3]).

U577-J-Z125-7-7600 1

Target group Introduction

In order to enhance the efficiency of the executable programs, the compiler performs
optimization measures, if required. The user has the choice here between optimization
levels of differing intensity.

The various possible settings for FOR1 can be combined with one another almost
without restriction. This means for example that optimization can even take place during
the debugging phase. Object modules generated with different compiler settings are
runtime compatible; they can normally be linked and executed without any problem.

1.1 Target group

This manual is intended for users of FORTRAN in BS2000. The reader should have a
knowledge of the FORTRAN programming language and be familiar with basic usage of
the BS2000 operating system.

The range of language elements of FOR1 is described in the "FOR1 Reference Manual"
[21].

Operating system components are explained briefly at the appropriate points.

2 U577-J-Z125-7-7600

Introduction Summary of contents

1.2 Summary of contents

The following topics are discussed in this user guide:

Supply of FORTRAN source programs in BS2000
Language processing by the FOR1 compiler
Maintenance of object modules
Linkage to executable programs, and loading
Execution of FOR1 programs
Generation of FORTRAN source programs in interactive mode
File usage
Reduction of program runtimes (optimization)
Debugging aids
Efficient programming

This manual is primarily intended as a reference work. A detailed table of contents and
a detailed index make it easier for the reader to find the appropriate information.

In addition, all the compilation options and runtime variants that are available are shown
in summary tables.

SDF metasyntax Section 1.3.2

SDF form for controlling compilation, Tables 2-2 through 2-14
with references to the appropriate
compiler options

SDF form for controlling execution, Section 6.2
with references to the appropriate
runtime options

Compiler options with references to Section 2.3.3
the appropriate SDF operands

Abbreviations for compiler options and
option values Appendix A.1

Compilation operands for the input and Table 1-1
output of PLAM library elements

Summary of compiler control statements Section 2.4

Formats of interactive commands Table 3-1

Formats of debugging statements Section 7.4.1

Structure of debugging aid subprograms Section 7.5.1

Mapping of FORTRAN records to DMS Section 8.4.2

U577-J-Z125-7-7600 3

Summary of contents Introduction

Users who are not familiar with the FOR1 compiler are advised to read chapter 2 first
and then refer to the descriptions of the relevant compiler options or SDF operands.

Users who are already familiar with the FOR1 options and now want to know how to
control the compiler by means of SDF operands are advised to read sections 2.2.1 and
2.2.2. Table 2-15 in section 2.3.3 shows which SDF operands correspond to the indivi-
dual compiler options. The summary Tables 2-2 through 2-14 and Table 6-1 also indi-
cate correspondence between SDF operands and compiler/runtime options.

In addition, the descriptions of the individual compiler and runtime options are prece-
ded in each case by a separate section on the format of the corresponding SDF ope-
rands:

Operands of the START-FOR1-COMPILER command:

SOURCE Section 3.2.2
INCLUDE-LIBRARY Section 3.5.2
DIALOG Section 3.6.1
SOURCE-PROPERTIES Section 4.1.1
COMPILER-ACTION Section 4.2.1
MODULE-LIBRARY Section 4.3.1
LISTING Section 4.6.1
COMPILER-TERMINATION Section 4.8.1
MONJV Section 4.9
LANGUAGE Section 4.10.1
COMPILER Section 4.11
TEST-SUPPORT Section 7.1
OPTIMIZATION Section 9.2.1
FPOOL-LIBRARY Section 12.1.1

Operands of the SDF command START-FOR1-PROGRAM:

FROM-FILE Section 5.1
CPU-LIMIT, TESTOPT, MONJV, Section 6.1
OBJECT-CONTINUATION,
RUNTIME-OPTIONS

4 U577-J-Z125-7-7600

Introduction Metasyntax

1.3 Metasyntax

User inputs are shown in bold print in the representations of dialog examples and exe-
cution listings.

The metalanguage conventions used for representing statements and options in this
manual are described in the following two sections.

1.3.1 Metasyntax for representing compiler and runtime options

OBJECT
Uppercase letters designate keywords and must be input in this form.

name Lowercase letters designate variables for which the user substitutes actual
values in the entries.

YES
NO

Underlining a value indicates that it is a default value inserted by the FOR1
compiler or operating system if no user specification is made.

YES
NO

Braces enclose several alternatives, one of which must be selected by the
user. The alternatives are stacked one above the other. If one of the stacked
entries is a default value, no user specification is needed if the default value
is the one desired.

{YES|NO}

Alternatives are also indicated by a vertical stroke between two adjacent spe-
cifications, one of which has to be selected by the user.

[] Brackets enclose optional entries which may be made or may also be omit-
ted.

() Parentheses form part of the operand and must be entered.

The symbol for a blank (space) is used if at least one blank is needed for
syntactical reasons.

U577-J-Z125-7-7600 5

SDF syntax description Introduction

[,...]

Three dots indicate that the preceding metalanguage unit may be repeated
several times in succession.

:= A syntax variable to the left of the assignment character is defined by the
specification to the right of the assignment character.

Special characters
These must be used unchanged.

1.3.2 SDF syntax description

This syntax description is valid for SDF Version 1.4A. The syntax of the SDF command
language is explained in the following 3 tables.

Table 1: SDF metasyntax

Certain characters and representations are used in the command formats; their me-
aning is explained in Table 1.

Table 2: Data types

Variable operand values are represented in SDF by data types. Each data type repre-
sents a specific value set. The number of data types is limited to those described in
Table 2.

The description of the data types is valid for the entire set of SDF com-
mands/statements. Therefore only deviations (if any) from the attributes described here
are explained in the relevant operand descriptions.

Table 3: Suffixes for data types

Data-type suffixes define additional rules for data-type input. They can be used to limit
or extend the value set

The description of the data-type suffixes is valid for the entire set of com-
mands/statements. Therefore only deviations (if any) from the attributes described here
are explained in the relevant operand descriptions.

6 U577-J-Z125-7-7600

Introduction SDF syntax description

Table 1: SDF metasyntax

Representation Meaning Examples

UPPERCASE Uppercase letters denote TESTOPT = NONE
LETTERS keywords. Some keywords

begin with *. VERSION = *STD

= The equal sign connects an SOURCE-FORMAT = FIXED
operand name with the
associated operand values.

< > Angle brackets denote LIBRARY =
variables whose range of <full-filename 1..54>
values is described by
data types and suffixes
(see Tables 2 and 3).

Underscoring Underscoring denotes the SUMMARY = YES / NO
default value of an
operand.

/ A slash serves to separate TESTOPT = NONE / AID
alternative operand values.

(...) Parentheses denote operand LAYOUT = PARAMETER(...)
values which initiate a
structure.

Indentation Indentation indicates that SOURCE = NO / YES (...)
the operand is dependent on
a higher-ranking operand. YES(...)

INSERT-ERROR-WEIGHT =

A vertical bar identifies *LIBRARY-ELEMENT(...)
related operands within a
structure. Its length marks LIBRARY =
the beginning and end of a
structure. A structure may ,ELEMENT =
contain further structures.
The number of vertical bars VERSION =
preceding an operand
corresponds to the depth
of the structure.

, A comma precedes further ,SOURCE = NO
operands at the same ,DIAGNOSTICS = NO
structure level.

U577-J-Z125-7-7600 7

SDF syntax description Introduction

list-poss(n) "list-poss" signifies that list-poss: <integer 0..99>
the operand values
following it may be entered
as a list. If a value
is specified for (n), it
means that the list may
contain no more than that
number of elements. A list
of two or more elements
must be enclosed in
parentheses.

Table 2: Data types

Data type Character set Special rules

alphanum-name A...Z Must begin with letter or digit.
0...9
$,#,@

c-string EBCDIC characters Must be enclosed in single quotes;
may be preceded with the letter C;
any single quotes occurring within
the c-string must be entered twice.

full-filename A...Z Input format:
0...9
$,#,@ file
hyphen file(no)
period group

:cat:$user.
(*abs)

group (+rel)
(-rel)

:cat:
optional entry of the catalog
identifier; character set limited
to A....Z and 0....9; maximum of 4
characters; must be enclosed in
colons; default value is the
catalog identifier assigned to the
user ID, as specified in the JOIN
entry. .

$user.
optional entry of the user ID;
character set restricted to A...Z
and 0...9; maximum of 8 characters;
$ and period are mandatory; default
value is the user’s own ID.

8 U577-J-Z125-7-7600

Introduction SDF syntax description

$. (special case)
system default ID

file
file or job variable name; last
character must not be a hyphen or
period; a maximum of 41 characters;
must contain at least A...Z.

#file (special case)
@file (special case)

or @ used as the first character
identifies temporary files and job
variables, depending on system
generation.

file(no)
tape file name
no: version number; character set

is A...Z, 0...9, $,
#, @. Parentheses must be
specified.

group
name of a file generation group
(character set: as for "file")

(*abs) name of a file genera-
group (+rel) tion (character set:

(-rel) as for "file")

(*abs)
absolute generation number (1-9999)
* and parentheses must be
specified.

(+rel)
(-rel)

relative generation number (0-99);
positive or negative signs and
parentheses must be specified.

integer 0...9,+,- + or -, if specified, must be the
first character.

name A...Z Must not comprise only 0...9.
0...9
$,#,@

U577-J-Z125-7-7600 9

SDF syntax description Introduction

Table 3: Suffixes for data types

Suffix Meaning

x..y a) with data type "integer": interval specification

x minimum value permitted for "integer". x is an
(optionally signed) integer

y maximum value permitted for "integer". y is an
(optionally signed) integer

b) with the other data types: length specification

x minimum length for the operand value; x is a
whole number.

y maximum length for the operand value; y is a
whole number.

x=y the length of the operand value must be precisely x

10 U577-J-Z125-7-7600

Introduction Changes since FOR1 V2.1A

1.4 Changes since the last version of the manual (FOR1 V2.1A)

The manual has been extensively reorganized.
The ISP command language has been replaced throughout by the SDF command lang-
uage.

The main factual additions and changes are shown in the following table with referen-
ces to the relevant sections.
Corrections to contents and text throughout the manual are not separately indicated.

Subject New Chan- Omit- Section
ged ted

ILCS program communication interface X 11.1 - 11.7

SDF control X
- LINKAGE operand X 2.2.3, 4.2.1
- FORTRAN90-CHECK operand X 2.2.3, 4.1.1
- EXTENDED-SYSTEM operand X
- LISTING form X 2.2.3
- Support for the symbolic version X 2.2.3, 3.2.2

identifier of the LMS 3.6.1, 4.6.1

COMOPT control X
- LINKAGE option X 4.2.2.6
- FORTRAN90-CHECK option X 4.1.2.8
- EXTENDED-SYSTEM option X
- Support for the symbolic version X 3.2.3, 3.6.2

designation of the LMS 4.6.2.2

Mathematical routines X 10.3

FPOOL function GETDATE X 12.2.10

Support for the NK-SAM file format X 8.2.4

Year number entry in compiler lists X 4.7, A.6

Dynamic link loading X 5.5

PARMOD parameter X A.9.1

FOR1MODLIB X

Description of debugging with IDA X

SIA (Scientific Instruction Assist) X

Listing of library modules X

Listing of error messages X

U577-J-Z125-7-7600 11

Requirements Introduction

1.5 General requirements concerning compilation, linking and
program execution

The FOR1 compiler is suitable for machines having a main memory of 2 Mbytes or gre-
ater. Depending on the size of the user programs, additional main memory space may
be advisable.

The following components are required in order to generate an executable FOR1 pro-
gram:

the FOR1 compiler

the FOR1MODLIBS runtime system

to enable the user to preload the compiler (see 1.8):
the ENTER procedure SYSENT.FOR1.022.LOAD1

error text file for I/O errors:
the INCLUDE element IFNIOS in the FOR1 macro library FOR1MACLIB (see A5)

to enable use of the central FPOOLs (see 12.2):
the object module library FOR1.FPOOLLIB and the associated file for the interface
specifications FOR1.FPOOL

The procedure SYSPRC.FOR1.022.SHARE is available for the generation of shareable
modules (see 5.8.1).

In this manual it is assumed that the above components have been entered under the
TSOS user ID (e.g. by calling the compiler using the command: /START-PROGRAM FROM-

FILE=$FOR1).

12 U577-J-Z125-7-7600

Introduction System environment

1.6 System environment of the FOR1 compiler

Fig. 1-1 shows the FOR1 compiler in the BS2000 environment.

This figure is not any longer available for the online pdf.

Fig. 1-1: System environment of the FOR1 compiler

U577-J-Z125-7-7600 13

PLAM connection Introduction

FOR1 and its load modules can be used as application programs under the BS2000
operating system (program class 2 = pageable, processor state TU, memory classes 6,
5, 4).

1.7 Management of programs in program libraries

The FOR1 compiler can access program libraries (PLAM libraries). Program libraries are
PAM files processed using PLAM (Program Library Access Method). Access to PLAM
library elements permits uniform and efficient management of different element types.
The following types (for example) can be stored as elements of a PLAM library:

Type S Source programs, %INCLUDE items
Type M Macros
Type R Object modules
Type C Load modules
Type L Link and load modules (LLMs)
Type P Compiler listings

FOR1 supports type S, R, P and M PLAM library elements.

In PLAM libraries any type of element can be stored in a single library. It is possible for
a number of elements to have the same name. These can be differentiated by type or
version designation.

The maintenance of data in PLAM libraries has the following advantages:

savings of up to 30% of memory space can be achieved by storing different element
types together and by employing additional compression methods

access times are reduced compared with using conventional libraries

EAM memory is freed (object modules are stored directly in the form of PLAM
library elements)

14 U577-J-Z125-7-7600

Introduction PLAM connection

Compilation operands for input/output of PLAM library elements

Input and output of various PLAM library elements is controlled by means of compiler
options or SDF operands. The following types can be processed as PLAM library ele-
ments by FOR1:

Type PLAM element Control by See section SDF
type compiler option operands

Compiler option S OPTIONS 3.3.2 -

Source programs S SOURCE 3.2.3 SOURCE

Change lines S UPD 3.4 -

INCLUDE source program S INCLUDE-LIBRARY 3.5.3 INCLUDE-LIBRARY
sections

Dialog save S DIALOG-SAVE 3.6.4 DIALOG,
SAVE-FILE

Object modules R MODULE-LIBRARY 4.3.2 MODULE-LIBRARY

Shareable object COMPILER-ACTION
modules separate from R SHARE-LIBRARY 4.2.2.2 SHAREABLE-CODE
the nonshareable 5.8 OUTPUT-LIBRARY
object modules

Listings P LIST-OUTPUT 4.6.2.4 LISTING
OUTPUT

Table 1-1: Compiler options and SDF operands for input/output of PLAM library elements

The linkage editors DBL, TSOSLNK and BINDER can also process PLAM library modu-
les; TSOSLNK and BINDER can store the generated modules in PLAM libraries (see
chapter 5).

U577-J-Z125-7-7600 15

Preloading the compiler Introduction

1.8 Preloading the compiler

FOR1 is shareable without having to take special action. In other words once a user
has loaded an overlay of the compiler in virtual memory, this overlay can be shared by
all other tasks.

The overlays of the compiler remain in virtual memory as long as they are used by at
least one task. An overlay is loaded as soon as any one user requires it.

Loading times are eliminated completely if the FOR1 overlays are kept in virtual me-
mory through preloading (batch jobs). The following message appears on the screen at
compile time if the compiler has not been preloaded:

FOR1: COMPILER NOT PRELOADED (BAD LOAD PERFORMANCE)

In the summary listing, the message
"(COMPILER NOT PRELOADED)" appears in the compile time section.

If the compiler has been preloaded, marked savings of CPU time and switch-on time
per program unit will be obtained as a result of the elimination of loading times.

The shareable compiler must be preloaded by the system administrator. A system with
a user address space of more than two megabytes will require a preload job. If no
more than two megabytes are available, a second preload job will be started automati-
cally.

It is advisable to start the preload jobs when the system is started, using the procedure

/CALL-PROC NAME=SYSPRC.FOR1.022.SYSLOD

Preloading can also be started by the user, using the enter file

/ENTER-JOB FROM-FILE=$SYSENT.FOR1.022.LOAD1,RESOURCES=PAR(CPU-LIMIT=50)

This procedure causes the program SYSPRG.FOR1.022.LOAD to be started, which
assigns common memory pools for the compiler overlays. If the user address space is
too small (<2MB), SYSPRG.FOR1.022.LOAD will be interrupted and procedure
SYSENT.FOR1.022.LOAD2 will be started. The procedure SYSENT.FOR1.022.LOAD2 in
turn calls SYSPRG.FOR1.022.LOAD and creates the remaining common memory pools.
The interrupted program SYSPRG.FOR1.022.LOAD is continued, which has now the
task of holding the overlays in the common memory pools if the compiler no longer
requires them (hence the name "holder task").

If the compiler is called after the preload jobs have been started, the individual compiler
overlays will be loaded into the assigned common memory pools. Not until all addres-
sed overlays have been loaded into the common memory pools will the message
"FOR1: COMPILER NOT PRELOADED(...)" cease to be issued. If, for example, compila-
tion has been performed with COMOPT OPTMIZE=1, this message will no longer be
issued after preloading. If, however, a compilation is performed with COMOPT

16 U577-J-Z125-7-7600

Introduction Preloading the compiler

OPTIMIZE=3, the message is issued again, as a compiler overlay that has not yet been
loaded is referenced.

Preload jobs run in a "VPASS-100" loop, i.e. they are mostly in the VPASS queue and
their load on the system is minimal. These preload jobs are terminated by SHUTDOWN,
or prematurely (by the system administrator) by SEND-MESSAGE or CANCEL-JOB.

Example: Preloading the compiler

/ENTER-JOB FROM-FILE=SYSENT.FOR1.022.LOAD1, (1)
RESOURCES=PAR(CPU-LIMIT=50)

/START-PROG FROM-FILE=$FOR1 (2)

% BLS0500 PROGRAM ’FOR1’, VERSION ’2.2A00’ OF ’91-06-05’ LOADED.
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1991 ...
FOR1: V2.2A00 READY, GIVE COMPILER OPTION
*COMOPT SOURCE=QUELLE.TEST,END
FOR1: COMPILER NOT PRELOADED (BAD LOAD PERFORMANCE)
FOR1: NO ERRORS DURING COMPILATION OF P. U. TEST
END OF F O R 1 COMPILATION; CPU TIME USED: 4.649 SEC

/DEL-SYS-FILE FILE-NAME=OMF
/START-PROG FROM-FILE=$FOR1 (3)
% BLS0500 PROGRAM ’FOR1’, VERSION ’2.2A00’ OF ’91-06-05’ LOADED.
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1991 ...
FOR1: V2.2A00 READY, GIVE COMPILER OPTION
*COMOPT SOURCE=QUELLE.TEST, END
FOR1: NO ERRORS DURING COMPILATION OF P. U. TEST
END OF F O R 1 COMPILATION: CPU TIME USED: 4.333 SEC

Explanation of example:

(1) Calling the ENTER procedure SYSENT.FOR1.022.LOAD1 causes the preload job
to be started. The ENTER procedure must run under the user-own ID, in this
case.

(2) The compiler is preloaded when the program is compiled for the first time. The
message "COMPILER NOT PRELOADED" is still issued during this compilation
session.

(3) The compiler has now been preloaded. Message "COMPILER NOT PRELOADED"
will no longer be issued. The preloaded compiler requires less CPU time for the
compilation. The saving in CPU time is especially noticeable for FORTRAN pro-
grams with many subprograms. As a result of preloading, only the first program
unit requires loading time; no loading times are required for subsequent program
units.

U577-J-Z125-7-7600 17

Runtime system Introduction

1.9 Runtime system

In the same way as the FOR1 compiler, the FOR1 runtime system is also shareable.

1.9.1 Structure

The FOR1 runtime system comprises individual modules that are linked together to
form the main module IF@RTS1. This main module is located together with several lang-
uage linkage and debugging aid modules in the library FOR1MODLIBS.

During linking, the required runtime modules are not linked in completely; only linkage
modules are linked in. These linkage modules enable the actual runtime system (main
module IF@RTS1) to be dynamically loaded during program execution. This considera-
bly reduces the memory requirement for stored FOR1 programs.

The FOR1 runtime system is responsible for the following basic tasks:

initializing the runtime communication area (RTCA) and terminating programs
executing I/O operations
supplying predefined functions (intrinsic functions) and subprograms (debug subpro-
grams)
error handling at execution time

The predefined functions include the standard modules for mathematical functions as
well as routines for string handling. In addition to these functions, a number of ready-
made subprograms are provided, mainly for testing purposes.

The I/O section of the runtime system implements input/output statements on three
functional levels:

1. FORTRAN level
Controlling the various types of input/output (formatted, unformatted, NAMELIST-
directed and list-directed).

2. Conversion level
Conversion of data between the internal and external representations

3. System connection level
Calling the input/output functions of the operating system (access operations, posi-
tioning).

The names of the FOR1 library modules are given when runtime errors occur and when
the calling hierarchy is output.

18 U577-J-Z125-7-7600

Introduction Runtime system

1.9.2 Loading using /ADD-SHARED-PROGRAM and /LOAD-PROGRAM

The system administrator loads the runtime system as a shareable system into class-4
memory using the commands

/ADD-SHARED-PROG ENTRY-NAME=IF@RTS1, LIB-NAME=$TSOS.FOR1MODLIBS

/LOAD-PROG *MODULE(LIB=$TSOS.FOR1MODLIBS, ELEM=IF@RTS1)

The main memory requirement for the load module is irrespective of the number and
size of the required runtime modules. The class-4 memory remains occupied until
SHUTDOWN.

If the IF@RTS1 module has not been loaded as a shareable module, almost the entire
runtime system will be dynamically loaded at runtime into the user address space, thus
resulting in a maximum memory requirement. This is the reason why the runtime
system FOR1MODLIBS should always be loaded as a shareable system into class-4
memory.

Only one version of the runtime system may reside in class-4 memory.

1.9.3 Loading via DSSM

Generating the subsystem catalog

The shareable FOR1 runtime system can be loaded into class-4, class-5 or class-6
memory by the system administrator via DSSM, on condition that the FOR1 runtime
system was declared when the subsystem catalog was generated.

Loading the shareable runtime system via DSSM has the following advantages:

loading into class-5 or class-6 memory relieves class-4 memory;
more than one version of the shareable runtime system can be used within one
application by loading an appropriate new subsystem catalog.

The subsystem catalog is generated with UGEN (see "System Installation" manual [38]).
The steps required to generate the subsystem catalog with UGEN are described briefly
below:

1. Call the UGEN utility routine and select the UGEN branch for generating a sub-
system catalog (SSMCAT):

/CALL-PROC NAME=$userid.UGEN

GEN SSC

2. Define the file for SSMCAT:

DSMCAT DSSM-catalog-name,CAT=NEW

U577-J-Z125-7-7600 19

Runtime system Introduction

3. Declare the individual subsystems:

by explicitly specifying their names or
via subsystem input files (ASSIGN-SYSDTA command)

The FOR1 runtime system declarations are defined in the subsystem input files:

$TSOS.SYSSSD.FOR1.022.CL4 for class 4
$TSOS.SYSSSD.FOR1.022.CL5 for class 5
$TSOS.SYSSSD.FOR1.022.CL6 for class 6

The command

/ASSIGN-SYSDTA TO-FILE=$TSOS.SYSSSD.FOR1.022.{CL4|CL5|CL6}

causes the appropriate subsystem input file of the FOR1 runtime system to be used
in order to generate the subsystem catalog.

4. Terminate the UGEN session using the END statement:

END

Activation and deactivation of the FOR1 runtime subsystem

The FOR1LZS subsystem must be activated explicitly by the system administrator by
means of the DSSM command CREATE-SUBSYSTEM:

/CRE-SUBSYS SUBSYS=FOR1LZS, VERSION=’0N.NN00’

where "N.NN" is the name of the version, e.g. 2.2A.

The DELETE-SUBSYSTEM command is used to deactivate the subsystem:

/DEL-SUBSYS SUBSYS=FOR1LZS

The DSSM command SHOW-SUBSYSTEM-STATUS gives information about a sub-
system:

/SHOW-SUBSYS-STA SUBSYS=FOR1LZS

Special considerations concerning expansion of the subsystem catalog

When the subsystem catalog is expanded dynamically to include the shareable
FOR1 runtime system, the user must bear in mind that the subsystem catalog with
which the operating system was started can accommodate up to 20 new sub-
systems with a total of up to 100 entry points.

20 U577-J-Z125-7-7600

Introduction Runtime system

Note that when the subsystem catalog is dynamically expanded, the order of the
existing subsystems does not change and no subsystem will be deleted.

The subsystem name of the shareable runtime system for class-4, class-5 and class-
6 memory is ’FOR1LZS, VERSION 0N.NN00’, where "N.NN" is the name of the ver-
sion, e.g. 2.2A.
Because of this name and version match, more than one subsystem declaration can-
not be used simultaneously for generating a subsystem catalog. Should this never-
theless be necessary, the version numbers in the relevant declaration files will have
to be changed.

U577-J-Z125-7-7600 21

2 Controlling the FOR1 compiler
FOR1 compiles FORTRAN source programs into object modules. More than one pro-
gram unit can be compiled in one compilation run.

With the aid of compilation operands the user can define the conditions for the compila-
tion for each compilation run. Compilation operands control the input of the source pro-
gram, the internal execution of the compilation, the output of the object modules and
the generation and output of log listings.

The compilation operands can be specified in the following ways:

with the SDF command START-FOR1-COMPILER (see section 2.2);
with COMOPT statements (see section 2.3);
with the PARAMETER command, with some restrictions (see appendix A.5.2).
with compile time statements in the source program, certain supplementary ope-
rands (see section 2.4)

Each user can select the suitable variant for his application from the large number of
possible entries for compilation operands. All compilation operands have preset default
values that take effect if no corresponding entry is made. Thus, in the case of a straight-
forward compilation run (see sections 2.2 and 2.3) for example, it is necessary only to
specify the source program file or input the source program.

Multiple entry of compilation operands

If a compilation operand is entered more than once, the value entered last applies. If a
PARAMETER command is valid for a task, the specification of a compiler option or of
an SDF operand overwrites the entry in the corresponding PARAMETER command.

Validity

Compiler options and SDF operands are valid only until the end of the compiler session
for which they are specified.
The PARAMETER command is valid either until a new PARAMETER command is given
or, in procedures, until a STEP command or end-of-task is encountered.

U577-J-Z125-7-7600 23

Calling FOR1 Compiler control

2.1 Starting FOR1

The FOR1 compiler can be started in two ways:

If the compilation operands are to be entered as SDF operands, the user starts the
compiler by specifying the desired operands in the /START-FOR1-COMPILER com-
mand.
The compiler commences the compilation immediately the command is interpreted.

If the compilation operands are to be entered as compiler options, the user starts
the compiler with the /START-PROGRAM $FOR1 command.
After FOR1 has been called, the version number of the compiler is displayed at the
terminal as follows:

% BLS0500 PROGRAM FOR1, VERSION ’2.2A00’ OF ’91-06-05’ LOADED.
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1991 ...
FOR1: V2.2A00 READY, GIVE COMPILER OPTION

In interactive mode FOR1 then displays an asterisk on each line and waits for entry
of compiler options. Once the compiler option END has been entered, the compila-
tion process commences.

Program monitoring by job variables

When the compiler is called, a predefined program monitoring job variable can be speci-
fied. This enables the user to inquire about program termination of the compilation ses-
sion (see section 4.9).

Preloading the compiler

If FOR1 is not preloaded, the following message appears during the compilation:

FOR1: COMPILER NOT PRELOADED (BAD LOAD PERFORMANCE)

Preloading is advisable if the compiler is called fairly often. When the compiler is prelo-
aded, loading time is saved for each user who calls FOR1. The compiler can be prelo-
aded by the system administrator or by the user himself (see section 1.8).

24 U577-J-Z125-7-7600

Compiler control Calling FOR1

Messages from the compiler

When compilation has been successful, the compiler issues the following message for
each program unit compiled:

FOR1: NO ERRORS DURING COMPILATION OF P.U. name

name is the name of the compiled program unit.

At the end of the compilation the compiler issues a message indicating the CPU time
used (in seconds):

END OF F O R 1 COMPILATION; CPU TIME USED: n.nnn SEC

The user can specify whether the compiler messages should be issued in German or in
English. The SDF operand LANGUAGE and the compiler options DIALOG and
LANGUAGE are available for this purpose. The messages are issued in English by
default.

U577-J-Z125-7-7600 25

SDF operands Compiler control

2.2 Control through SDF commands

2.2.1 Entering SDF commands

SDF (System Dialog Facility) encompasses the full functional scope of the previous
BS2000 commands (in ISP format). The capabilities of the SDF command language inc-
lude the following:

The user can enter SDF commands via command menus and operand forms en-
abling him to select between three levels of guidance. In this "guided" interactive
mode even a user who is not very familiar with SDF is capable of issuing a BS2000
command since SDF displays on the screen the operands to be selected, accompa-
nied by brief explanations and permissible values.

The user can also enter operands without the above prompts. He may abbreviate
commands, have a correction dialog displayed in case of invalid entries, or tempora-
rily switch from unguided dialog to guided dialog.

For an introduction to SDF and many examples, see the manual "Introductory Guide to
the SDF Dialog Interface" [16].
The user commands in the SDF command language are dealt with in the "User Com-
mands (SDF Format)" manual [12].

The user can also have information about SDF displayed on the screen by entering the
command /HELP-SDF?. Operand forms are then displayed, from which he may select
the further information he wishes to obtain (e.g. concerning types of dialog guidance,
abbreviation rules, function keys and statements for menu control).

The language in which the explanations of the SDF menus are output is specified by
the system administrator. The language of the SDF messages can be specified by the
user with the MODIFY-MSG-ATTRIBUTES command.

Two SDF commands are available for the compilation and execution of FOR1 pro-
grams, respectively:

START-FOR1-COMPILER is the SDF command provided for the compilation of a
FOR1 source program. With a few exceptions, the operands of this command permit
selection of all variants that can be defined by compiler options.

START-FOR1-PROGRAM is the SDF command for dynamic linking, loading and star-
ting a compiled FOR1 program. The operands of this command permit selection of
the most important functions, which can be specified in the dynamic binder loader
(DBL) call, in the static loader (ELDE) call, as well as by means of runtime options.

26 U577-J-Z125-7-7600

Compiler control SDF operands

Guided dialog

Guided dialog permits SDF commands to be issued with the aid of a menu. A guided
dialog starts with a summary of all application areas displayed on the screen. After
selecting a specific application area (e.g. PROGRAMMING-SUPPORT), the user receives
a summary of all commands belonging to the selected area. When a command has
been selected (e.g. START-FOR1-COMPILER), an operand form is output, which may
be followed by other operand forms or subforms associated with a specific operand.

Using guided dialog the user may choose between minimum, medium or maximum
user guidance. These levels differ in the scope of information that SDF displays. Guided
dialog is especially recommended for users who are not completely familiar with a com-
mand. Dialog guidance and information output directly to the screen about the meaning
and syntax of commands and operands as well as about permissible and preset ope-
rand values obviate the need for having to consult the manual all too frequently. When
an invalid SDF command is input, an error message will be issued and a correction
dialog initiated, making reentry of the entire command unnecessary.
In guided dialog, any desired command can be entered in the NEXT line of a screen,
regardless of the current application area.

Unguided dialog

SDF commands can not only be entered in guided dialog with the aid of menus, but
also in concise form analogous to the former BS2000 command format. In this ungui-
ded dialog mode, the user may choose between two modes of command input, depen-
ding on whether only error messages (expert mode) or error messages plus correction
dialog (NO mode) are requested on invalid input. The SDF command language permits
abbreviations to be made so that SDF commands can be considerably shortened.

Temporary guided dialog

Switching from unguided dialog to guided dialog can be effected at any time by ent-
ering a question mark so as to allow the user to have missing information concerning
commands or operands displayed on the screen whenever he wishes. For example,
after entering

%CMD: START-FOR1-COMPILER? TEST

you will receive the operand form for guided dialog (GUIDANCE = MINIMUM). In the
header of the form, "SOURCE=TEST" has already been registered under "OPERANDS".
By overwriting preset operand values with a question mark, further information about
specific operands may be requested.

U577-J-Z125-7-7600 27

SDF operands Compiler control

Setting the dialog mode

The dialog mode is defined by the GUIDANCE operand in the MODIFY-SDF-OPTIONS
command. The following dialog modes can be selected:

GUIDANCE = {UNCHANGED | MAXIMUM | MEDIUM | MINIMUM | EXPERT | NO}

UNCHANGED The previous definition still applies.

MAXIMUM Guided dialog: maximum guidance, i.e. all operand values with addi-
tions, help texts for commands and operands.

MEDIUM Guided dialog: all operand values without additions, help texts for com-
mands only.

MINIMUM Guided dialog: minimum guidance, i.e. default values of operands only,
no additions, no help texts.

EXPERT Unguided dialog: expert mode, i.e. system displays "/" to request com-
mand input; no syntax error dialog; detailed error messages; blocked
command input.

NO Unguided dialog: system displays "% CMD:" to request command
input; syntax error dialog (correction of invalid entries without reentry
of the entire command), blocked command input (several commands
separated by logical end-of-line characters can be sent off concurrent-
ly).

Command input with keyword operands or positional operands

Operand values can be specified as keyword operands or as positional operands. In
the case of positional operands, a comma must be entered for each omitted operand.

Command with keyword operands:

START-FOR1-COMPILER SOURCE=DAT1,INCLUDE-LIBRARY=*NONE, FPOOL-LIBRARY=*NONE,
DIALOG=YES(LANGUAGE=ENGLISH, DIALOG-INTERRUPT=ERRORS-ONLY,SAVE-FILE=
*STD-NAME (INCLUDE-EXPANSION=YES), LOG-CHANGED-LINES=YES)

Command with positional operands:

/START-FOR1-COMPILER DAT1,,,YES(,ERRORS-ONLY,*STD-NAME(YES),YES)

If, in the operand sequence of a command, an operand is entered in the form "ope-
rand=operand value", all subsequent operands of the same level must also be specified
as keyword operands.

Since the sequence of the operands cannot be guaranteed in the long term, it is advisa-
ble to use only keyword operands in procedures.

28 U577-J-Z125-7-7600

Compiler control SDF operands

Abbreviation rules

Command names, operand names and constant operand values may be abbreviated as
follows:

characters may be omitted from right to left, e.g. START-FOR1-C instead of START-
FOR1-COMPILER, SO= instead of SOURCE=, *LIBRARY-EL instead of *LIBRARY-
ELEMENT.

characters within substrings may also be omitted from right to left, e.g.: S-F-C in-
stead of START-FOR1-COMPILER, S-FO-P instead of START-FOR1-PROGRAM,
*L-E instead of *LIBRARY-ELEMENT.

the abbreviation has to be unique; for example, upon entry of START-FOR1 it is repor-
ted that this is ambiguous with regard to START-FOR1-COMPILER and START-FOR1-
PROGRAM.

Information about the abbreviation rules can be obtained using the /HELP-SDF com-
mand.

2.2.2 Example of simple compilation and program run with SDF commands

A simple compilation run is understood here to mean a compilation which, with the
exception of a few specified operands, is mainly controlled by preset operand values. A
simple program run includes linking, loading and execution of the compiled program by
means of the dynamic binder loader (DBL).

/START-FOR1-COMPILER SOURCE=QUELLE.TEST (1)
% BLS0500 PROGRAM ’FOR1’, VERSION ’2.2A00’ OF ’91-06-05’ LOADED.
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1991 ...
FOR1: V2.2A00 READY,GIVE COMPILER OPTION
FOR1: COMPILER NOT PRELOADED (BAD LOAD PERFORMANCE)
FOR1: NO ERRORS DURING COMPILATION OF P.U. TEST
END OF F O R 1 COMPILATION; CPU TIME USED: 0.210 SEC. (2)

/SET-TASKLIB FOR1MODLIBS (3)
/START-FOR1-PROGRAM (4)
% BLS0001 DBL VERSION 070 RUNNING
% BLS0517 MODUL ’TEST’ LOADED
BS2000 F O R 1 : FORTRAN PROGRAM "TEST "
STARTED ON 1991-07-16 AT 14:17:39
BS2000 F O R 1 : FORTRAN PROGRAM "TEST " ENDED PROPERLY AT 14:17:40
CPU - TIME USED : 0.0031 SECONDS
ELAPSED TIME : 0.8700 SECONDS

Explanation of example:

(1) The SDF command START-FOR1-COMPILER starts FOR1.
In the SOURCE operand, the cataloged file QUELLE.TEST is defined as the input
source for the source program.
By default the source listing, diagnostic listing, map listing, options listing and

U577-J-Z125-7-7600 29

SDF operands Compiler control

summary listing are output to SYSLST (LISTING=STD).
By default the object module is placed in the temporary EAM area (OMF). Object
modules in the temporary EAM area which originate from previous compilations
are automatically deleted (MODULE-LIBRARY=*OMF(DELETE-OLD-
CONTENTS=YES).

(2) The compiler responds with the version number and date. The compiler reports
that FOR1 is not preloaded. No errors were found during the compilation run. The
CPU time used for the compilation is output.

(3) If the modules of the runtime system are not located in the system’s TASKLIB, the
user-own module library must be assigned as TASKLIB before the dynamic binder
loader is called with START-FOR1-PROGRAM. The user-own module library here is
called FOR1MODLIBS.

(4) The SDF command START-FOR1-PROGRAM causes the object module TEST
(name of the program in the cataloged file QUELLE.TEST) to be linked, loaded
and started.
Since no FROM-FILE operand is specified here, the object module TEST is taken
from the temporary EAM area for the current task (default).
The full form of this command would be:
START-FOR1-PROGRAM FROM-FILE=*MODULE(LIBRARY=*OMF,
ELEMENT=*ALL).

Abbreviated form:

By applying the abbreviation rules the SDF commands in the above example can be
entered in a considerably reduced form.

/S-F- QUELLE.TEST
% CMD0187 ABBREVIATION OF OPERATION NAME ’S-F-’ AMBIGUOUS WITH REGARD (2a)
TO ’SET-FILE-ATTRIBUTES, SHOW-FILE-LINK, START-FOR1-COMPILER,...

/S-F-C QUELLE.TEST (2b)
/SE-T FOR1MODLIBS (3)
/S-FO-P (4)

(2a) When the abbreviation is not unique, an error message is issued in expert mode
(a correction dialog will be displayed additionally in other dialog modes).

(2b) The SOURCE operand is specified as a positional operand.
Command and operand names as well as constant operand values can be abbre-
viated by truncating characters from right to left: START-FOR1-COMPILER is
abbreviated to S-F-C.

(3) SET-TASKLIB is abbreviated to SE-T.

(4) START-FOR1-PROGRAM is abbreviated to S-FO-P.
The default for the FROM-FILE operand is *MODULE(LIBRARY=*OMF,
ELEMENT=*ALL), so that the command can be further abbreviated to S-FO-P.

30 U577-J-Z125-7-7600

Compiler control SDF operands

2.2.3 Summary: SDF command START-FOR1-COMPILER and corresponding compiler
options

The following tables contain a complete list of all the operands of the START-FOR1-
COMPILER command. The operands are shown with the corresponding compiler op-
tions. The metalanguage conventions defined in section 1.3 are used in the tables.

The following compiler options have no corresponding SDF operands:
OPTIONS, UPD, CODE, SUPPLIEDBOUND, UNIT, PAD

The default values for some SDF operands differ from the defaults for the correspon-
ding compiler options (see lists in Tables 2-2 through 2-14).

Summary: The main operands of the SDF command START-FOR1-COMPILER

START-FOR1-COMPILER

SOURCE = ...

,INCLUDE-LIBRARY = ...

,FPOOL-LIBRARY = ...

,DIALOG = ...

,SOURCE-PROPERTIES = ...

,COMPILER-ACTION = ...

,MODULE-LIBRARY = ...

,LISTING = ...

,TEST-SUPPORT = ...

,OPTIMIZATION = ...

,COMPILER-TERMINATION = ...

,MONJV = ...

,LANGUAGE = ...

Table 2-1: Main operands of the SDF command START-FOR1-COMPILER

U577-J-Z125-7-7600 31

SDF operands Compiler control

SOURCE form: Input source for source program

SDF form First subform Second subform Corresp. COMOPTs

SOURCE SOURCE
= *SYSDTA = *

= <full-filename 1..54> = file

= *LIBRARY-ELEMENT(...) *LIBRARY-ELEMENT
LIBRARY (LIBRARY
= <full-filename = plamlib,

1..54>
ELEMENT ELEMENT

= <full-filename = name
1..41>(...)

VERSION (VERSION
= *HIGHEST- = *HIGHEST
EXISTING EXISTING))

= <alphanum-name = version))
1..24>

Table 2-2: SDF command START-FOR1-COMPILER, SOURCE form

INCLUDE-LIBRARY form: Access to libraries with %INCLUDE items

SDF form Corresponding COMOPTs

INCLUDE-LIBRARY INCLUDE[-LIBRARY]
= *NONE = *NO

= list-poss: = filename or
<full-filename 1..54> = (filename1[,filename2][,..])

Table 2-3: SDF command START-FOR1-COMPILER, INCLUDE-LIBRARY form

FPOOL-LIBRARY form: Controlling FPOOL processing

SDF form Corresponding COMOPTs

FPOOL-LIBRARY
= *NONE NOFPOOL

= list-poss: FPOOL = fpoolname or
= <full-filename 1..54> FPOOL = ([fpoolname[,fpoolname][,..]])

Table 2-4: SDF command START-FOR1-COMPILER, FPOOL-LIBRARY form

32 U577-J-Z125-7-7600

Compiler control SDF operands

DIALOG form: Interactive analysis

SDF form First subform Second subform Corresp. COMOPTs

DIALOG
= NO NODIALOG

= YES(...) DIALOG
param

= (param[,param]
(param[,param
[,param]])

DIALOG-INTERRUPT param := E[DIT]
= AFTER-ANY-PROG- = ALL

UNIT

= ERRORS-ONLY = NO

SAVE-FILE DIALOG-SAVE
= *NONE No DIALOG-SAVE

option

= *STD-NAME(...) = (*STD-FILE
INCLUDE-EXPANSION ,INCLUDE-EXPANSION

= NO = NO)

= YES = YES)

= <full-filename = ([FILE=]file
1..54>(...) ,INCLUDE-

INCLUDE-EXPANSION EXPANSIONS
= NO = NO)

= YES = YES)

= *LIBRARY-ELEMENT INCLUDE-EXPANSION ,INCLUDE-EXPANSIONS
(...) = NO = NO)

= YES = YES)

= ([FILE=]
*LIBRARY-ELEMENT

LIBRARY (LIBRARY
= <full-filename = plamlib,

1..54>

ELEMENT ELEMENT
= <full-filename = name

1..41> (...)

VERSION (VERSION
= <alphanum-name = version))

1..24>

= *UPPER-LIMIT = *UPPER-LIMIT))

LOG-CHANGED-LINES CHANGE in LIST- or LISTFILE
= NO option not specified

= YES LIST = (CHANGE) or
LISTFILE = listfilename
(CHANGE) if COMOPT DIALOG
is also specified

Table 2-5: SDF command START-FOR1-COMPILER, DIALOG form

U577-J-Z125-7-7600 33

SDF operands Compiler control

As the prefix for dialog commands the @ character is preset for SDF form DIALOG, the
% character for COMOPT DIALOG.

SOURCE-PROPERTIES form: Defining and checking the characteristics of the
source program on compilation

SDF form First subform Corresponding COMOPTs

SOURCE-PROPERTIES
= STD Subform defaults

= PARAMETER(...)

COMPILEABLE- CCOM
COMMENTS
= *NONE no CCOM option

= <c-string = ’comment-marks’
1..60>

LINE-END-COMMENTS LINEEND
= *NONE no LINEEND option

= <c-string = ’endmarks’
1..10>

LANGUAGE-STANDARD STANDARD-CHECK
= FOR1 = NO

= ANS77 = ANS77

IMPLICIT-DECLARATION
= YES IMPLICIT

= NO NOIMPLICIT

EXPONENT-UNDERFLOW
= IGNORED NOEXPUNDERFLOW

= ERROR EXPUNDERFLOW

SOURCE-FORMAT SOURCE-FORMAT
= FIXED = FIXED

= FREE = FREE

SAVE-CONSTANT SAVE-CONSTANT
= *STD = YES for OPT=NO,0,1,2

= NO for OPT=3 or 4

= NO = NO

= YES = YES

FORTRAN90-CHECK FORTRAN90-CHECK
= NO = NO

= YES = YES

Table 2-6: SDF command START-FOR1-COMPILER, SOURCE-PROPERTIES form

34 U577-J-Z125-7-7600

Compiler control SDF operands

COMPILER-ACTION form: Defining the characteristics of the generated code

SDF form First subform Second subform Corresp. COMOPTs

COMPILER-ACTION
= SYNTAX-CHECK NOGEN

= MODULE-GENERATION Subform
(...) defaults

SHAREABLE-CODE OBJECT
= NO no SHARE

operand value

= YES(...) = SHARE

OUTPUT-LIBRARY SHARE-LIBRARY
= *MODULE-LIBRARY = *MODULE-

LIBRARY

= <full-filename = plamlib
1..54>

MINIMAL-PRECISION REAL
= REAL-4(...)

EXTERNAL-DATA
= NO = (4)

= YES = 4

= REAL-8(...)
EXTERNAL-DATA

= NO = (8)

= YES = 8

= REAL-16(...)
EXTERNAL-DATA

= NO = (16)

= YES = 16

CONSTANT-PRECISION
= AS-NEEDED NOTRUNCONST

= REAL-4 TRUNCONST

CANCEL-CONDITION

= NONE GEN/NOGEN=FAILURE

= ERROR NOGEN = ERROR

= SEVERE-ERROR NOGEN = SEVERE

LINKAGE LINKAGE
= STD = STD

= FOR1-SPECIFIC = FOR1-SPECIFIC

Table 2-7: SDF command START-FOR1-COMPILER, COMPILER-ACTION form

U577-J-Z125-7-7600 35

SDF operands Compiler control

MODULE-LIBRARY form: Destination of generated object modules

SDF form First subform Corresp. COMOPTs

MODULE-LIBRARY MODULE-LIBRARY
= <full-filename 1..54> =plamlib

= *OMF(...) =*OMF

DELETE-OLD-CONTENTS
=YES

=NO

Table 2-8: SDF command START-FOR1-COMPILER, MODULE-LIBRARY form

LISTING form: Generation of compiler listings

SDF form First subform Second subform Corresp. COMOPTs

LISTING NOLIST
= NO

= STD Subform
defaults

= PARAMETER
(...)

OPTIONS
= YES LIST = (OPTIONS)

= NO

SOURCE = NO

SOURCE = YES(...) LIST = (SOURCE),
INSERT-ERROR-WEIGHT MSGLEVEL

= NOTE = NOTE

= WARNING = WARNING

= ERROR = ERROR

DIAGNOSTICS
= NO

= YES(...) LIST = (DIAG),
MINIMAL-WEIGHT MSGLEVEL

= NOTE = NOTE

= WARNING = WARNING

= ERROR = ERROR

DATA-ALLOCATION-MAP
= YES LIST = (MAP)

= NO

CROSS-REFERENCE
= NO

= YES LIST = (XREF)

36 U577-J-Z125-7-7600

Compiler control SDF operands

EXTERNAL-DICTIONARY
= NO

= YES LIST = (ESD)

ASSEMBLER-CODE
= NO

= YES LIST = (OBJECT)

SUMMARY
= YES LIST = (SUMMARY)

= NO

OPTIMIZED-SOURCE
= NO

= YES LIST = (DECOMP)

SORTING
= BY-PROG-UNIT NOCOLLECT

= BY-LIST-TYPE COLLECT = (LIST,
LISTFILE)

LAYOUT
= STD LINECNT=64,EJECT

= PARAMETER(...)
LINES-PER-PAGE LINECNT

= 64 = 64

= <integer = number
20..255>

PAGE-EJECT-STMT
= ACCEPTED = EJECT

= IGNORED = NOEJECT

TEXT-SEPARATOR TEXT-SEPARATOR
= ’|’ = ’|’

= ’!’ = ’!’

OUTPUT LIST-OUTPUT
= *SYSLST = *SYSLST

= <full-filename
1..54> = listfilename

= *STD-FILE = *STD-FILE

= *LIBRARY- = *LIBRARY-
ELEMENT(...) ELEMENT

LIBRARY (LIBRARY
= <full-filename = plamlib,

1..54> ELEMENT-
ELEMENT-PREFIX PREFIX

= *NONE = *NONE
= <alphanum-name = prefix

1..38> (...)

VERSION (VERSION
= *UPPER-LIMIT = version))
= <alphanum-name = UPPER-

1..24> LIMIT))

Table 2-9: SDF command START-FOR1-COMPILER, LISTING form

U577-J-Z125-7-7600 37

SDF operands Compiler control

TEST-SUPPORT form: Controlling test facilities

SDF form First subform Second subform Corresp. COMOPTs

TEST-SUPPORT
= STD

= NO

= PARAMETER
(...)

STATEMENT-TABLE
= YES TESTOPT = (STNR)

= NO

TOOL-SUPPORT
= NO SYMTEST = MAP

= AID SYMTEST = ALL,
OPTIMIZE = NO

CHECK-CODE TESTOPT = (STNR)
= NO

= ALL TESTOPT = ALL

= YES(...)
PROCEDURE-ARGUMENTS missing

= NO TESTOPT = (ARG)

= YES TESTOPT = (ARG)

ARRAY-BOUNDS missing
= NO TESTOPT =

(BOUNDS)

= YES TESTOPT = (BOUNDS)

ARRAY-SUBSCRIPTS missing
= NO TESTOPT =

(SUBSCR)

= YES TESTOPT = (SUBSCR)

SUBSTRING-BOUNDS missing
= NO TESTOPT =

(STRING)

= YES TESTOPT = (STRING)

BRANCH-STMTS missing
= NO TESTOPT = (CNTRL)

= YES TESTOPT = (CNTRL)

VARIABLE-ASSIGNMENT missing
= NO TESTOPT = (UNDEF)

= YES TESTOPT = (UNDEF)

USER-DEBUG-STMTS missing
= NO TESTOPT = (DEBUG)

= YES TESTOPT = (DEBUG)

Table 2-10: SDF command START-FOR1-COMPILER, TEST-SUPPORT form

38 U577-J-Z125-7-7600

Compiler control SDF operands

OPTIMIZATION form: Controlling optimization

SDF command First subform Second subform Corresp. COMOPTs

OPTIMIZATION OPTIMIZE
= NO = NO

= LOW = O

= MEDIUM(...)
CONDITIONAL-LOOPS

= IGNORED = 1

= RISK-OPTIMIZED = 2

OPTIMIZE-PROCEDURES PROCEDURE-
OPTIMIZATION

= NO = NO, STD

= YES = YES

= SPECIAL = SPECIAL-
ATTEMPTS

= HIGH(...) OPTIMIZE
CONDITIONAL-LOOPS

= IGNORED = 3

= RISK-OPTIMIZED = 4

OPTIMIZE-PROCEDURES PROCEDURE-
OPTIMIZATION

= NO = NO

= YES = YES, STD

= SPECIAL = SPECIAL-
ATTEMPTS

OPTIMIZATION-HINTS OPTIMIZE = ({3|4},

= STD FUNCTION-SIDEEFFECT
= YES

PARAMETER-
SIDEEFFECT = NO,
REORDER = NO)

= PARAMETER(...)
REORDER-EXPRESSIONS REORDER

= YES = YES

= NO = NO

FUNCTION-SIDEEFFECTS FUNCTION-
SIDEEFFECT

= YES = YES

= NO = NO

ARGUMENT-SIDEEFFECTS PARAMETER-
SIDEEFFECT

= NO = NO

= YES = YES

Table 2-11: SDF command START-FOR1-COMPILER, OPTIMIZATION form

U577-J-Z125-7-7600 39

SDF operands Compiler control

COMPILER-TERMINATION form: Compiler termination conditions

SDF form First subform Corresponding COMOPTs

COMPILER-TERMINATION
= STD

= PARAMETER(...)
CPU-LIMIT

= NONE

= <integer Limiting the maximum
1..32767> compilation time in the

START-PROGRAM command

MAX-ERROR-WEIGHT ERRKILL
= NONE = FAILURE

= ERROR = ERROR

= SEVERE-ERROR = SEVERE

MAX-ERROR-NUMBER MAXERR
= 100 = 100

= <integer = n
1..2147483639>

Table 2-12: SDF command START-FOR1-COMPILER, COMPILER-TERMINATION form

MONJV form: Monitoring the compilation by job variables

SDF form Corresponding COMOPTs

MONJV
= *NONE No definition of a job variable

= <full-filename 1..54> Definition of a job variable with
MONJV = jvname

Table 2-13: SDF command START-FOR1-COMPILER, MONJV form

LANGUAGE form: Specifying the message language

SDF form Corresponding COMOPTs

LANGUAGE
= ENGLISH LANGUAGE=ENGLISH

= DEUTSCH LANGUAGE=GERMAN

Table 2-14: SDF command START-FOR1-COMPILER, LANGUAGE form

The last operand of the START-FOR1-COMPILER command is called COMPILER (see
section 4.11). This operand is not visible in guided dialog and can only be entered in
NO or expert mode.

40 U577-J-Z125-7-7600

Compiler control Compiler options

2.3 Control through compiler options

2.3.1 Entering compiler options

The user specifies the compiler options in one or more COMOPT statements. COMOPT
statements can be entered directly on the screen in interactive mode, they can be writ-
ten to a file or may be contained in the source program file. COMOPT statements can
be entered in the following ways:

The COMOPT statements are read from SYSDTA:

SYSDTA is the primary assignment:
In interactive mode the user can enter the COMOPT statements on the screen after
starting the compiler. The compiler requests the compiler options explicitly by dis-
playing an asterisk (*) in column 1.
In batch mode the COMOPT statements are read from the procedure file.

SYSDTA was assigned to a cataloged file or to a library element:
The COMOPT statements are read from the file or from the library element. If the
assigned file is the source program file, the COMOPT statements must precede the
source program.

SYSDTA was assigned to SYSCMD (compilation procedures):
The COMOPT statements are read from the procedure file.

The assignment of SYSDTA can be changed with the ASSIGN-SYSDTA command (see
section 3.2.1).

Compiler option OPTIONS:

The user specifies the input source for the COMOPT statement(s) in the compiler op-
tion OPTIONS (see section 3.3.2).

Section 2.3.3 contains a summary of all compiler options.

U577-J-Z125-7-7600 41

Compiler options Compiler control

Format of a COMOPT statement

[*]COMOPT option [,option]...

[*]COMOPT is permissible only at the beginning of a COMOPT statement.

A compiler option option comprises a keyword, followed where applicable by an
equal sign and one or more option values.

Example: LIST=(SOURCE, XREF,SUMMARY)

The names of options and option values can be abbreviated. Starting from the right,
as many letters may be omitted as still leave the abbreviated name unique. Additio-
nal abbreviated forms also exist; these are summarized in section 2.3.3 and in ap-
pendix A.1.

If any errors occur when a COMOPT line is processed, the options of that line that
have already been interpreted remain in effect.

COMOPT statements apply for precisely one compilation.

If the compiler options are entered by means of punched cards, only columns 1-72
may be used.

Terminating the COMOPT input

The COMOPT input can be terminated in the following ways:

[[*]COMOPT] END

as the last of the COMOPT statement lines

END

as the last keyword in the sequence of specified compiler options

any desired FORTRAN source program line

Example:

*COMOPT LIST=(SOURCE,XREF,SUMMARY)
*COMOPT LISTFILE=(LIST)
*COMOPT END or *END

or:

[*]COMOPT LIST=(SOURCE,XREF,SUMMARY),LISTFILE=(LIST),END

42 U577-J-Z125-7-7600

Compiler control Compiler options

NO prefix

Most compiler options consist of a keyword and a list of option values. The keyword
may be preceded by the prefix NO. If it is, the compiler option concerned does not
apply to the option values that have been entered; instead it applies to the complemen-
tary set of option values that are possible.

Example:

The LIST option value specification is used for controlling the output of listings.

*COMOPT NOLIST=(MAP,XREF,ESD)

In this case all but the three specified listings will be output.

This principle also covers blank option value lists.

*COMOPT LIST = () No listings are output.
*COMOPT NOLIST=() All listings are output.

If no option value list is present, the NO prefix switches off the option; without the NO
prefix, preset option values are effective.

*COMOPT NOLIST No listings are output.
*COMOPT LIST The standard listings are output.

Explicit request for option values

For certain compiler options, the compiler can be made to explicitly request option
values from the user.

Example:

*COMOPT SOURCE=/

Compilation is interrupted so that the user may assign SYSDTA to the source program
file by means of an ASSIGN-SYSDTA command.

U577-J-Z125-7-7600 43

Compiler options Compiler control

2.3.2 Example of simple compilation and program run with compiler options

A simple compilation run is understood here to mean a compilation which, with the
exception of a few specified operands, is mainly controlled by preset option values. A
simple program run includes linking, loading and execution of the compiled program by
means of the dynamic binder loader (DBL).

/DEL-SYS-FILE OMF (1)
/START-PROGRAM $FOR1 (2)
% BLS0500 PROGRAM ’FOR1’, VERSION ’2.2A00’ OF ’91-06-05’LOADED. (3)
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1991 ...
FOR1: V2.2A00 READY, GIVE COMPILER OPTION

*COMOPT SOURCE=QUELLE.TEST (4)
FOR1: GIVE COMPILER OPTION

*COMOPT LIST
FOR1: GIVE COMPILER OPTION (5)

*COMOPT END
FOR1: COMPILER NOT PRELOADED (BAD LOAD PERFORMANCE)
FOR1: NO ERRORS DURING COMPILATION OF P. U. TEST (6)
END OF F O R 1 COMPILATION; CPU TIME USED: 0.179 SEC

/SET-TASKLIB FOR1MODLIBS (7)
/START-FOR1-PROGRAM (8)
% BLS0001 DBL VERSION 070 RUNNING
% BLS0517 MODULE ’TEST’ LOADED
BS2000 F O R 1 : FORTRAN PROGRAM "TEST "
STARTED ON 1991-07-16 AT 14:20:09
BS2000 F O R 1 : FORTRAN PROGRAM "TEST " ENDED PROPERLY AT 14:20:11 (9)
CPU - TIME USED : 0.0305 SECONDS
ELAPSED TIME : 1.9980 SECONDS

Explanation of example:

 (1) Erases any object modules in the temporary EAM area that were created as a
result of previous compilations. This ensures that the dynamic binder loader uses
the object module from the current compilation when it is next called.

 (2) FOR1 is called with the START-PROGRAM $FOR1 command.

 (3) The compiler responds with version number and date. It displays an asterisk and
awaits the entry of compiler options.

44 U577-J-Z125-7-7600

Compiler control Compiler options

 (4) The entry COMOPT SOURCE=QUELLE.TEST causes the source program to be
read in from the cataloged file QUELLE.TEST.
If the compiler option LIST is specified, the preset option values of the LIST
option apply. In this case the following listings are output to SYSLST (see sec-
tion 4.5):

source listing
diagnostic listing
map listing
summary listing
options listing

 (5) Displaying an asterisk, the compiler awaits further options until [COMOPT] END
is entered. [COMOPT] END terminates the entry of compiler options. The compi-
ler compiles the source program that has been read in.

 (6) The compiler reports that FOR1 has not been preloaded. No errors were found
during compilation. The CPU time used for compilation is displayed.

 (7) If the modules of the runtime system are not included in the TASKLIB of the
system, the user-own module library must be assigned as TASKLIB before the
binder loader DBL is called.
The user-own module library here is called FOR1MODLIBS. If the FOR1 runtime
modules are present in the TASKLIB of the system, then this statement may be
omitted.

 (8) Unless specified otherwise, generated object modules are output to the tempo-
rary EAM area (*OMF). The START-FOR1-PROGRAM command calls the dyna-
mic binder loader which links, loads and starts the object modules. The tempo-
rary EAM area exists only for the duration of the task, i.e. it is deleted at the end
of the task. If the object modules are to be made permanently available, there
are two ways of doing this:

The object modules are output directly to a PLAM library specified with the
MODULE-LIBRARY option (see section 4.3).
The object modules are entered in an object module library by the library pro-
gram LMS (see section 4.5).

 (9) After the program has executed an end message appears, displaying the CPU
time and total time used.

U577-J-Z125-7-7600 45

Summary Compilation operands (COMOPT)

2.3.3 Summary: Compiler options and corresponding SDF operands

All the compiler options are summarized in the following table.
The function of the prefix NO is explained in section 2.3.1.

[*]COMOPT... Code Meaning a) Description in section
b) Corresponding SDF

operand form
c) Corresponding SDF

operand subform

CCOM=’comment-marks’ CC Identifier for the a) 4.1.2.1
compilation of b) SOURCE-PROPERTIES
comment lines c) COMPILEABLE-COMMENTS
(max. 60 characters)

EBCDIC CO Code of source program a) 4.1.2.9
([SOURCE= ISO] or change lines

BCD

EBCDIC
CODE= [,UPD= ISO])

BCD

EBCDIC
ISO
BCD

LIST COL Collects listings of a) 4.6.2.3
COLLECT=() the same type for b) LISTING

LISTFILE[,LIST] several different c) SORTING
program units

NOCOLLECT

BGFOR COMPAT, Avoiding incompati- a) 4.2.2.8
[NO[COMPATIBLE=]] COM, bilities between

BS3FOR BGF, FOR1 compiler and
BS3 Siemens BGFOR or

Telefunken BS3 FORTRAN
compilers

param D DIALOG activates a) 3.6.2
DIALOG [= (param[,param])] Interactive Analysis b) DIALOG

(param[,param,[param]]) LANGUAGE
NODIALOG ND

! ? @ % # $ c) DIALOG-INTERRUPT
param:= D E Default of

E[DIT]={ALL|FIRST|NO} dialog prefix: @

DIALOG-[SAVE]= DIALOG- Outputs results to a
*STD [-FILE] file a) 3.6.4

b) DIALOG
([file] c) SAVE-FILE

[FILE=]
plamspecification

NO
[,[INCLUDE-EXPANSIONS=]])

YES

plamspecification:=
[LIBRARY-ELEMENT] ([LIBRARY=]plamlib,
[ELEMENT=]name[([VERSION=]

*UPPER-LIMIT
)])

version

continued

46 U577-J-Z125-7-7600

Compilation operands (COMOPT) Summary

continued

[*]COMOPT... Code Meaning a) Description in section
b) Corresponding SDF

operand form
c) Corresponding SDF

operand subform

[NO]EJECT EJ Form feed a) 4.6.2.7
b) LISTING
c) LAYOUT, PAGE-EJECT-STMT

END Terminator for a) 2.3.1
compiler options

E[RROR] EK Degree of error at a) 4.8.2
ERRKILL= S[EVERE] which compilation is b) COMPILER-TERMINATION

F[AILURE] to be terminated c) MAX-ERROR-WEIGHT

[NO]EXPAND EX Controlling the output a) 4.6.2.8
of the text inserted b) LISTING
by the %INCLUDE c) TYPE, SOURCE,
statement INCLUDE-EXPANSION

[NO]EXPUNDERFLOW EU Setting the appropriate a) 4.1.2.5
program mask b) SOURCE-PROPERTIES

c) EXPONENT-UNDERFLOW

YES F90 Checks the source a) 4.1.2.8
FORTRAN90-CHECK= program for language b) SOURCE-PROPERTIES

NO extensions incompatible c) FORTRAN90-CHECK
with Fortran90

(fpoolname[,fpoolname]...) F Controlling FPOOL
FPOOL [=] processing a) 12.1.2

fpoolname b) FPOOL-LIBRARY

NOFPOOL

GEN G Controlling generation
of the object program a) 4.2.2.5

E[RROR] b) COMPILER-ACTION
NOGEN [= S[EVERE]] c) CANCEL-CONDITION

F[AILURE]

[NO]IMPLICIT I Implicit type associa- a) 4.1.2.4
tions forbidden by b) SOURCE-PROPERTIES
NOIMPLICIT c) IMPLICIT-DECLARATION

INCLUDE [-LIBRARY]= INC The INCLUDE-LIBRARY a) 3.5.3
option defines b) INCLUDE-LIBRARY

*NO hierarchical access
(filename1[,filename2][,...]) to libraries

LANGUAGE={ENGLISH|GERMAN} LA Language in which FOR1 a) 4.10.2
messages are output b) LANGUAGE
from the moment the
options are read in

STD LNK Generation of standard a) 4.2.2.6
LINKAGE= linkage objects b) COMPILER-ACTIONS

FOR1-SPECIFIC c) LINKAGE

64 LC Number of lines per a) 4.6.2.6
LINECNT= page for compiler b) LISTING

number listings c) LAYOUT, LINES-PER-PAGE

LINEEND=’end-marks’ LE Identifier for a) 4.1.2.2
end-of-line b) SOURCE-PROPERTIES

c) LINE-END-COMMENTS

continued

U577-J-Z125-7-7600 47

Summary Compilation operands (COMOPT)

continued

[*]COMOPT... Code Meaning a) Description in section
b) Corresponding SDF

operand form
c) Corresponding SDF

operand subform

[NO]LIST [=([listentry][,...])] L Selection of listings a) 4.6.2.2
to be output on b) LISTING
SYSLST c) TYPE

listentry:={ALL MIN NONE
OPTIONS
SOURCE DIAG ESD CHANGE:
MAP b) DIALOG
XREF ATR OBJECT DECOMP c) LOG-CHANGED-LINES
SUMMARY CHANGE}

[NO]LISTFILE [=[listfilename] LF Selection of listings a) 4.6.2.5
to be output to a b) LISTING

listentry cataloged file; see c) OUTPUT, TYPE
[(also LIST

LIST

[,...])]]

LIST-OUT[PUT]= LIST- Controlling the listing a) 4.6.2.4
listfilename output to PLAM library b) LISTING
*STD[-FILE] or cataloged file c) OUTPUT
*SYSLST
[*LIBRARY-ELEMENT]
([LIBRARY=]plamlib

prefix
[,[ELEMENT[-PREFIX]=]

*NONE
version

[([VERSION=])]])
*UPPER-LIMIT

100 ME Number of messages at a) 4.8.2
MAXERR= which compilation is b) COMPILER-TERMINATION

number terminated c) MAX-ERROR-NUMBER

*OMF MOD Controlling the output a) 4.3.2
MODULE[-LIBRARY]= of object modules to b) MODULE-LIBRARY

plamlib EAM file or PLAM
library

N[OTE]|W[ARNING] MSG Degree of error at a) 4.6.2.1
|E[RROR] which messages are to b) LISTING

be output c) SOURCE, DIAGNOSTICS
MSGLEVEL= (SOURCE={N W E} INSERT-ERROR-WEIGHT

[,DIAG={N W E}]) MINIMAL-WEIGHT

(DIAG={N W E}
[,SOURCE={N W E}])

SHARE OBJ, O Controlling the a) 4.2.2.1
OBJECT [=] generation of object

* modules and defining b) COMPILER-ACTION
the output medium; c) SHAREABLE-CODE

NOOBJECT generating a shareable
code portion

continued

48 U577-J-Z125-7-7600

Compilation operands (COMOPT) Summary

continued

[*]COMOPT... Code Meaning a) Description in section
b) Corresponding SDF

operand form
c) Corresponding SDF

operand subform

NO OPT
0 Optimization control a) 9.2.2
1
2

OPT[IMIZE]= 3 b) OPTIMIZATION
(3,parameter[,...]) c) CONDITIONAL-LOOPS
4
(4,parameter[,...])

parameter:=
YES

FUNC[TION-SIDEEFFECT]=
NO

YES OPTIMIZATION-HINTS
PARAM[ETER-SIDEEFECT]=

NO

YES
REORDER=

NO

* OPTIO File containing a) 3.3.2
file further compiler

OPTIO[NS]= lib(name) options

plamspecification
/
+

plamspecification: see SOURCE option

filename OU Output to file for a) 3.6.4
Interactive Analysis: b) DIALOG

(filename[,expand]) original program or c) SAVE-FILE
workfile

([WS=]filename
[,OS=filename]

OUTPUT[= [,expand])]

([WS=](filename
[,expand])
[,OS=(filename
[,expand])])

[NO]PAD P Input records are a) 4.2.2.10
padded with blanks b) Default is PAD.

If LANGUAGE-STANDARD=
ANS77, NOPAD is set.

PROCEDURE[-OPTIMIZATION]= PR Controlling a) 9.2.3
STD optimization when b) OPTIMIZATION
NO calling procedures c) OPTIMIZE-PROCEDURES

YES
SPECIAL[-ATTEMPTS]

4 R Defining the minimum a) 4.2.2.3
(4) length for REAL and b) COMPILER-ACTION

REAL= 8 COMPLEX entities c) MINIMAL-PRECISION
(8)
16
(16)

continued

U577-J-Z125-7-7600 49

Summary Compilation operands (COMOPT)

continued

[*]COMOPT... Code Meaning a) Description in section
b) Corresponding SDF

operand form
c) Corresponding SDF

operand subform

NO SA Transferring a copy, a) 4.1.2.7
SAVE-CONSTANT= if constant as actual b) SOURCE-PROPERTIES

YES argument c) SAVE-CONSTANT

*MODULE-LIBRARY SH Storing the shareable a) 4.2.2.2
SHARE-LIB[RARY]= object modules in a b) COMPILER-ACTION

plamlib separate PLAM library c) SHAREABLE-CODE

* SRC Location of source a) 3.2.3
file program b) SOURCE
lib(name)

SOURCE[= plamspecification]
/
+
(PRIMARY)

plamspecification:=
[*LIBRARY-ELEMENT]([LIBRARY=]plamlib, *LIB c) *LIBRARY-ELEMENT
[ELEMENT=]name[([VERSION=]

*HIGHEST-EXISTING
)])

version

SOURCE-FORMAT={FIXED|FREE} SOURCE- Compiling an a) 4.1.2.6
SF unformatted source b) SOURCE-PROPERTIES

program c) SOURCE-FORMAT

ANS77 STD Checking a FOR1 source a) 4.1.2.3
ST[AN]D[ARD-CHECK]= program for deviations b) SOURCE-PROPERTIES

NO from ANS FORTRAN 77 c) LANGUAGE-STANDARD

[NO]SUPPLIEDBOUND SUP, SB Interpretation of a) 4.2.2.9
dimension entry 1 as b) Default is
* in subprograms NOSUPPLIEDBOUND.

SYMTEST={NO|MAP|ALL} SYM Generation of LSD a) 7.6.1
information for b) TEST-SUPPORT
symbolic debugging c) TOOL-SUPPORT
with AID

[NO]TESTOPT [=([testparameter][,...])] TO Selection of debug a) 7.3
functions b) TEST-SUPPORT

c) CHECK-CODE
testparameter:={ALL STNR ARG

BOUNDS SUBSCR
STRING CNTRL UNDEF
DEBUG}

’|’ TEX Vertical lines in a) 4.6.2.9
TEXT-SEPARATOR= lists represented as b) LISTING

’!’ " " or "!" c) LAYOUT

[NO]TRUNCONST TC Truncation of REAL a) 4.2.2.4
constants without b) COMPILER-ACTION
exponent c) CONSTANT-PRECISION

continued

50 U577-J-Z125-7-7600

Compilation operands (COMOPT) Summary

continued

[*]COMOPT... Code Meaning a) Description in section
b) Corresponding SDF

operand form
c) Corresponding SDF

operand subform

READ READ U Assigning file numbers a) 4.2.2.7
WRITE WRITE to input/output

UNIT= (=nn [, =nn]..) statements
PRINT PRINT
PUNCH PUNCH

* UPD Location of update a) 3.4
file file

UPD [= lib(name)]
/
+

Table 2-15: Summary: Compiler options and corresponding SDF operands

U577-J-Z125-7-7600 51

Compile time statements Compilation operands

2.4 Summary: Compile time statements in the source program

Compile time statements control output of the source listing, input of the source text
and processing of FPOOL subprograms.

Compile time statements can also be located in a FORTRAN source program, in addi-
tion to the FORTRAN language statements. These compile time statements are treated
like FORTRAN statements.

A prefixed percent sign identifies compile time statements (with the exception of
*DELETE). The compiler treats these statements just like FORTRAN language state-
ments, assigning them a statement number, to which any error message might also
refer.

Compile time statements can be placed anywhere within the FORTRAN source pro-
gram. A compile time statement is valid only within the program unit in which it is speci-
fied.

Compile time statements, like FORTRAN language statements, may also have continua-
tion lines. Continuation lines are marked by means of an entry in column 6.

The individual compile time statements are described in various sections of this manual,
depending on the subject with which they are associated.

Statements for controlling the source listing

Format Meaning Section number

%EJECT Form feed 4.6.3.2

ON Controlling 4.6.3.1
%EXPAND the output of

OFF texts inserted
by means
of the
%INCLUDE
statement

%SPACE n Insertion of 4.6.3.3
blank lines
in source
listing

%TITLE [’text’] Output of 4.6.3.4
specified
text in
header line
of source
listing

52 U577-J-Z125-7-7600

Compilation operands Compile time statements

Statement for inserting texts in the source program

Format Meaning Section number

name Insertion of 3.5.1
%INCLUDE source program

lib(name) lines in the
FORTRAN source

EBCDIC program
[,CODE [= ISO]]

BCD

[,parameter-list]

Statement for temporary modification of source program lines

Format Meaning Section number

*DELETE i1 [,i2] Temporary 3.4
deletion of
source program
lines

Statements for processing FPOOL subprograms

Format Meaning Section number

Specification
%FPOOL fpoolname [(fpoolfct[,...])] of file with 12.1.3

interface
descriptions
of all listed
functions

All functions
%NOFPOOL (fpoolfct [,fpoolfct,...]) are excluded 12.1.3

from FPOOL
processing

U577-J-Z125-7-7600 53

3 Source program input
The following topics are discussed in this chapter:

Section 3.1, "Creating the source program", describes the possibilities for creating a
source program which FOR1 is to read. A source program may be contained in a file
or be entered directly. Interactive analysis is available as a tool for direct input.

Section 3.2, "Defining the input location of the source program", describes the possible
ways of informing the compiler from where the source program is to be read. The
source program can be assigned to the system file SYSDTA or specified in the compila-
tion operands (by way of the SOURCE compiler option or the SDF command START-
FOR1-COMPILER).

Section 3.3, "Defining the input location of the compiler options", describes where the
compiler can find compiler options that may be present. Compiler options can be made
available via the system file SYSDTA or with the aid of the OPTIONS compiler option.

Section 3.4, "Temporary updating of a source program: UPD compiler option", descri-
bes how the user can change the character string read from the source program file by
specifying change lines for a special compilation process.

Section 3.5, "Inserting source program lines", describes how source program lines can
be inserted during the compilation run. The compile time statement %INCLUDE, the
SDF operand INCLUDE-LIBRARY and the INCLUDE-LIBRARY compiler option are availa-
ble.

Section 3.6, "Entering the source program with Interactive Analysis", describes how the
user can enter, interactively analyze and correct a source program by means of the
DIALOG compiler option or the SDF operand DIALOG.

U577-J-Z125-7-7600 55

Source program creation Source program input

3.1 Creating the source program

A source program may be contained in a source program file or be entered directly.
Interactive Analysis is available as a tool for direct input.

3.1.1 Creating a source program file

Normally a FORTRAN source program is created using an editor, and stored in a file.
The FOR1 compiler reads the source program from this file.
The source program remains accessible in the file and is available for changes and fur-
ther compilation runs after the first compilation. FOR1 can process source programs
from SAM and ISAM files.

A source program file can exist in different forms:

as a cataloged file in the form of a SAM or ISAM file

as an element of a library
Programs are stored in compressed form in libraries.
The input and output of PLAM library elements of type S can be controlled by com-
piler options or SDF operands.

as a group file (GAM file; GAM = Group Access Method)
The term group file refers to a set of ISAM file records whose keys begin with a par-
ticular string of characters, i.e. the name of that group file (see section 3.2.3, exam-
ple 3).

Fig. 3-1 shows the various options for generating a source program file:

In batch mode, a file for source programs stored on floppy disk or punched cards can
be generated with the aid of the DATA command (see "User Commands (ISP Format)"
manual [11]).

In interactive mode, a source program file can be generated as follows:
using the file editor EDT (see "EDT Statements" manual" [20]).
Though the EDT is dialog-oriented, it can also be used in batch mode. Source pro-
gram files can be stored in a PLAM library using the EDT.

using Interactive Analysis of FOR1 by saving the directly entered source program
(see section 3.6).

56 U577-J-Z125-7-7600

Source program input Source program creation

This figure is not any longer available for the online pdf.

 Fig. 3-1: Creating a source program file

U577-J-Z125-7-7600 57

Source program creation Source program input

Copying source programs from magnetic disk or magnetic tape

If the source program is already available on magnetic disk or tape and is to be trans-
ferred to a file, BS2000 offers the following facilities:

The COPY-FILE command for copying files

File conversion programs
These are primarily important when it comes to data structures which deviate from
the standard case (e.g. record lengths greater than 256 characters).

The software product ARCHIVE
ARCHIVE stores files on magnetic tape or disks and permits reconstruction of files
with the aid of these backup copies (see "ARCHIVE" manual [4]).

The software product PERCON
PERCON transfers data from one data medium to another or to several media of
different types. Data can be edited simultaneously and the file attributes modified
(see "PERCON" manual [36]).

Storing a source program file

Source program files can be stored in PLAM libraries with the aid of the library manage-
ment system LMS or with the aid of file editor EDT (as of Version 16.1A).

Modifying a source program file

Source program files may be changed in the following ways:
EDT (see "EDT Statements" manual [20])
Interactive Analysis (see section 3.6; for an example of modifications within the fra-
mework of Interactive Analysis see section 3.6.8).

58 U577-J-Z125-7-7600

Source program input Source program creation

3.1.2 Direct input of the source program

A source program can be input directly into the compiler, i.e. without intermediate sto-
rage in a cataloged file.

To permit this, FOR1 must be called with the command START-PROGRAM $FOR1 or
with the command START-FOR1-COMPILER with no SOURCE operand specified. The
source program can then be input. Input of the source program must concluded with
the characters "/*" in columns 1 and 2.

Example:

The source program is read in from the terminal via SYSDTA. Source program input is
terminated by "/*".

/START-PROG $FOR1 bzw. /START-FOR1-COMPILER
% BLS0500 PROGRAM ’FOR1’ VERSION ’2.2A00’ OF ’91-06-05’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1991 ...
FOR1: V2.2A00 READY, GIVE COMPILER OPTION
* PROGRAM TEST

.

.

.
* END
/

In the case of direct input, the source program is only available for one compiler run.
Error correction requires that the entire source program be reentered.

Interactive Analysis is advisable for direct input (see section 3.6) since the FOR1 compi-
ler stops when format errors such as keying errors occur. Built-in file editing functions
permit immediate correction of these errors, and compilation can continue. A further
advantage offered by Interactive Analysis is that the corrected source program can be
saved in an external file.

U577-J-Z125-7-7600 59

ASSIGN-SYSDTA command Input location of source program

3.2 Defining the input location of the source program

A source program can be input directly to the compiler or may be contained in a file.

The user must inform the compiler of the input location of the source program, i.e. from
where the compiler is to read the source program. The following possibilities exist:

The compiler is to read the source program from the system file SYSDTA. To permit
this, before FOR1 is called SYSDTA is assigned to the source program file by me-
ans of the ASSIGN-SYSDTA command or, in the case of direct input, it is assigned
to the data display terminal. Compiler options contained in the source program file
must precede the source program text.

The user specifies the input location of the source program in the SDF operand
SOURCE or in the SOURCE compiler option.

3.2.1 ASSIGN-SYSDTA command

Operating System BS2000 uses standardized system files for performing inputs and out-
puts. SYSDTA is system file for inputs.

BS2000 provides a standard assignment, the "primary assignment". The primary assign-
ment is the data display terminal in interactive mode and the spoolin file in batch mode.
The primary assignment can be changed.

If FOR1 is to read source programs or compiler options via SYSDTA, the user must
ensure that SYSDTA is correctly assigned before calling FOR1. The assignment of
SYSDTA is changed with the ASSIGN-SYSDTA command.

60 U577-J-Z125-7-7600

Input location of source program ASSIGN-SYSDTA command

ASSIGN-SYSDTA

TO-FILE = <full-filename 1..54> / *LIBRARY-ELEMENT(...) / *PRIMARY /
*SYSCMD / *DISKETTE(...)

*LIBRARY-ELEMENT(...)

LIBRARY = <full-filename 1..51>

,ELEMENT = <full-filename 1..38>(...)

<full-filename 1..38>(...)
VERSION = *STD / <text 0..10>

,TYPE = STD / D / M

*DISKETTE(...)

UNIT = *ANY / <alphanum-name 2..2>

,FILE-NAME = <name 1..8>

,VOLUME = list-poss(10): <alphanum-name 1..6>

TO-FILE =
Input source to which SYSDTA is to be assigned.

TO-FILE = <full-filename 1..54>
Name of the file to which SYSDTA is to be assigned. The file must possess the follo-
wing attributes:

it must already have been cataloged
it must have variable-length records
SAM or ISAM access method
start of ISAM key: byte 5
length of ISAM key: 8 bytes

TO-FILE = *LIBRARY-ELEMENT(...)

LIBRARY = <full-filename 1..51>
Name of an LMS library

ELEMENT = <full-filename 1..38> (...)
Name of an element in the specified library. Hyphens are also permitted, but not as
the last character. The total length of the library name - without catalog ID and user
ID - plus element name must not exceed 39 characters.

U577-J-Z125-7-7600 61

ASSIGN-SYSDTA command Input location of source program

VERSION = *STD / <text 0..10>
Addition of the version to the element name

VERSION = *STD
Latest version

TYPE = STD / D / M
Type of the element
The default value is element type S (source programs)
D Element type D (text data)
M Element type M (macro)

TO-FILE = *PRIMARY
Resets SYSDTA to the primary assignment.

TO-FILE = *SYSCMD
Combines SYSDTA and SYSCMD, i.e. the system reads both commands and data via
SYSCMD.

TO-FILE = *DISKETTE (...)

UNIT = *ANY / <alphanum-name 2..2>
Mnemonic device name of a floppy disk drive.
SYSDTA is assigned to the specified floppy disk drive.

FILE-NAME = <name 1..8>
Name of the floppy disk file

VOLUME = list-poss(10): <alphanum-name 1..6>
Volume serial number of the floppy disk. Up to 10 volume serial numbers are allo-
wed.

A detailed description of the ASSIGN-SYSDTA command is given in the "User Com-
mands (SDF Format)" manual [12].

After compilation, it is advisable to reassign SYSDTA. The primary assignment is resto-
red by entering ASSIGN-SYSDTA TO-FILE=*PRIMARY.

Restriction:

It is not possible to read source program and change lines from SYSDTA simultaneous-
ly.

62 U577-J-Z125-7-7600

Input location of source program ASSIGN-SYSDTA command

Examples

Example 1: Reading from a file

Reading in the source program from file QUELL.MAT:

/ASS-SYSDTA TO-FILE=QUELL.MAT
/START-PROG $FOR1
/ASS-SYSDTA TO-FILE=*PRIMARY

FOR1 cannot find any COMOPT line in QUELL.MATT containing the SOURCE compiler
option and therefore assumes SYSDTA to be the location of the source program (de-
fault).

Example 2: Reading from a library

Reading a source program from the LMS library LMS.BIBL; ELE is the element name.

/ASS-SYSDTA TO-FILE=*LIB-ELEM(LIB=LMS.BIBL,ELEM=ELE)
/START-PROG $FOR1
/ASS-SYSDTA TO-FILE=*PRIMARY

Example 3: Two groups of compiler options in a file

Two groups of compiler options are contained in the file OPT. Each group contains the
location of the source program and is concluded by END.

Contents of OPT:

COMOPT SOURCE=SRC.PROG1, ... ,END
COMOPT SOURCE=SRC.PROG2, ... ,END

FOR1 is to read the compiler options from SYSDTA; the input location of the source
program is specified in the SOURCE compiler option.

Compilation:

/ASS-SYSDTA OPT
/START-PROG $FOR1
/START-PROG $FOR1
/ASS-SYSDTA *PRIMARY

The first compilation uses the first set of options, the second compilation uses the
second set. SYSDTA must not be reassigned between these compilations. Positioning is
thus retained.

U577-J-Z125-7-7600 63

SDF operand SOURCE Source program input

3.2.2 SDF operand SOURCE

The SDF operand SOURCE can be used to inform the compiler of the input location of
a source program file.

START-FOR1-COMPILER

SOURCE = *SYSDTA / <full-filename 1..54> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

LIBRARY = <full-filename 1..54>
,ELEMENT = <full-filename 1..41>(...)

VERSION = *HIGHEST-EXISTING / <alphanum-name 1..24>

The SDF operands and the corresponding compiler options are shown in Table 2-2.

64 U577-J-Z125-7-7600

Input location of source program SOURCE compiler option

3.2.3 SOURCE compiler option

The SOURCE compiler option can be used to inform the compiler of the input location
of the source program.

The following default applies:
If the SOURCE compiler option is missing or if it is specified without an option value,
the source program is read from SYSDTA.

*
file
lib(name)

SOURCE [=]
[*]COMOPT plamspecification

/
+

SOURCE =(PRIMARY)

* The source program is read from SYSDTA. The default is SOURCE=*.
If the source program is input directly, the entry must be concluded with the
characters "/*" in columns 1 and 2 (see section 3.1.2).

file Name of a cataloged file in which the source program is located. Maximum
length including catalog ID and user ID: 54 characters.

lib(name)
lib
Name of a PLAM library or GAM file, from which the source program is read.
lib is first interpreted as a PLAM library and then as a GAM file. Including
catalog ID and user ID, lib may be up to 54 characters in length.

name
Name of a PLAM library element or group key of a GAM file.

PLAM library element: name may be up to 8 characters long.
Group key: name may be up to 12 alphanumeric characters long and
must be shorter than the group key.

U577-J-Z125-7-7600 65

SOURCE compiler option Input location of source program

plamspecification
Specification of a PLAM library element

[*LIBRARY-ELEMENT] ([LIBRARY=]plamlib,
*HIGHEST-EXISTING

[ELEMENT=]name[([VERSION=])])
version

plamlib
Name of a PLAM library. Maximum length including catalog ID and user ID:
54 characters.

name
Name of a PLAM library element. The name may consist of up to 64 charac-
ters.

version
Version designation of the PLAM library element. A version designation may
be up to 24 characters in length.

*HIGHEST-EXISTING
If more than one version of an element exists, the compiler reads the highest
existing version by default.

/ When the the compiler has read all the compiler options, an interrupt occurs
returning control to system mode. The compiler issues the following messa-
ge:

FOR1: ASSIGN SYSDTA TO READ SOURCE

SYSDTA can now be reassigned with the ASSIGN-SYSDTA command. After
the user has entered the RESUME-PROGRAM command, the compiler reads
the source program from SYSDTA and commences the compilation.

+ When the compiler has read all the compiler options, it issues the following
message:

FOR1: GIVE SOURCE FILE SPECIFICATION - OR ?

Now the user can enter the location of the source program via the primary
assignment of SYSDTA, in interactive mode at the terminal.

The following locations can be specified:

*
(SYSCMD)
(PRIMARY)
(CARD)
file
lib(name)
plamspecification

66 U577-J-Z125-7-7600

Input location of source program SOURCE compiler option

*
The source program is read from SYSDTA. No reassignment of SYSDTA
takes place. If a location was specified with the ASSIGN-SYSDTA command,
the source program is read from there.

(SYSCMD)
The system file SYSDTA is combined with SYSCMD. The source program is
read from SYSCMD.

(PRIMARY)
The system file SYSDTA is returned to its primary assignment. The source
program is read from the primary assignment of SYSDTA, i.e. from the termi-
nal.

(CARD)
The system file SYSDTA is assigned a card reader. The source program is
read from the card reader.

file
Name of the file from which the source program is to be read (for descrip-
tion, see above).

lib(name)
Specification of the library element or section of the GAM file from which the
source program is to be read (for description, see above).

plamspecification
Specification of the PLAM library element from which the source program is
to be read (for description, see above).

SOURCE=(PRIMARY)
The source program is input from the terminal in WRITE/READ mode, irre-
spective of the SYSDTA assignment. The specification is only effective in con-
junction with COMOPT DIALOG (see section 3.6) and is necessary if a source
program is to be written in interactive mode during execution of a procedure.

Note

Only in the case of group files (GAM files, see example 3) may source programs
and change lines be contained in the same file.

U577-J-Z125-7-7600 67

SOURCE compiler option Input location of source program

Examples:

Example 1: Reading from cataloged file

Reading the source program from the cataloged file QUELL.MAT

/START-PROG $FOR1
*COMOPT SOURCE=QUELL.MAT
*END

Example 2: Reading from library

Reading the source program from the library PROGLIB. Element name: PROGA

/START-PROG $FOR1
*COMOPT SOURCE=PROGLIB(PROGA)
*END

Example 3: Reading from group file (GAM file)

The group file QUELL.MAT contains three source programs:

GGD (record key 19010000-19900000)
INV (record key 20010000-20570000)
MAT1 (record key 21010000-21500000)

Group files are always ISAM type files. The record keys can be generated in EDT using
the SET statement (see "EDT Statements" manual [20]).

The program INV consists precisely of those lines whose keys begin with the string 20;
this program represents a group file.

Program INV can be compiled using the following statements:

/START-PROG $FOR1
*COMOPT SOURCE=QUELL.MAT(20)
*END

From the group file QUELL.MAT, the compiler only takes into account those records
whose keys begin with 20. Leading zeros must be specified.

68 U577-J-Z125-7-7600

Input location of source program SOURCE compiler option

Example 4: Reading a PLAM library element

With the aid of LMS, a FORTRAN source program is stored as a PLAM library element
of type S, after which FOR1 is called. The PLAM library element ELEM1, version 001, is
specified in the SOURCE option.

/START-PROG $LMS
$LIB BIBL, BOTH, ANY
$ADDS QUELLE.TEST>ELEM1/001
$END

/START-PROG $FOR1
*COMOPT SOURCE = (BIBL,ELEM1(001)), END

Example 5: Compiler options and source program in different files

The options for compiling a program are contained in the file OPT. The location of the
source program is not to be specified until option processing time. The source program
is in the file QUELL.MAT.

1. Request input location of source program with COMOPT SOURCE=+

Contents of file OPT:

COMOPT SOURCE=+
COMOPT LIST=(ALL)
END

Compilation:

/ASS-SYSDTA TO-FILE=OPT
/START-PROG $FOR1
FOR1: GIVE SOURCE FILE SPECIFICATION-OR?
QUELL.MAT

In this case the user can request information about the input possibilities by entering a
question mark after the input prompt.

2. Request input location of source program with COMOPT SOURCE=/

Contents of file OPT:

COMOPT SOURCE=/
COMOPT LIST=(ALL)
END

Compilation:

/ASS-SYSDTA TO-FILE=OPT
/START-PROG $FOR1
FOR1: ASSIGN SYSDTA TO READ SOURCE
/ASS-SYSDTA TO-FILE=QUELL.MAT
/RESUME-PROG

U577-J-Z125-7-7600 69

OPTIONS compiler option Input location of compiler options

3.3 Defining the input location of the compiler options

The user specifies the compiler options in one or more COMOPT statements. Compiler
options can be entered in the following ways:

The user can input the COMOPT statement(s) directly by calling the compiler wi-
thout previously reassigning the system file SYSDTA by means of the ASSIGN-
SYSDTA command. The compiler explicitly requests the compiler options by display-
ing an asterisk (*) in column 1.

The user can write the COMOPT statement(s) to a file and input them via this file.
This file can be the source program file or a user-own file. This file is assigned to
the system file SYSDTA by the ASSIGN-SYSDTA command before the compiler is
called. The compiler reads from the system file SYSDTA. Compiler options that are
located in a source program file must precede the source program text.

The user can specify the input location of the COMOPT statement(s) in the
OPTIONS compiler option (see section 3.3.2). There is no SDF operand correspon-
ding to the OPTIONS compiler option.

3.3.1 ASSIGN-SYSDTA command

The ASSIGN-SYSDTA command is described in section 3.2.1, "ASSIGN-SYSDTA com-
mand".

3.3.2 OPTIONS compiler option

The OPTIONS compiler option informs the compiiler of the input location of the compi-
ler options. There is no SDF operand corresponding to the OPTIONS compiler option.

The following default applies:
If the OPTIONS compiler option is missing or if it is specified without an option value,
the compiler options are read from SYSDTA.

*
file
lib(name)

[*]COMOPT OPTIONS [=]
plamspecification
/
+

70 U577-J-Z125-7-7600

Input location of compiler options OPTIONS compiler option

* The compiler options are read from SYSDTA.

file Name of a cataloged file in which the compiler options are located. Maximum
length including catalog ID and user ID: 54 characters.

lib(name)
lib
Name of a PLAM library or GAM file, from which the compiler options are
read. lib is first interpreted as a PLAM library and then as a GAM file. Inclu-
ding catalog ID and user ID, lib may be up to 54 characters in length.

name
Name of a PLAM library element or group key of a GAM file.

PLAM library element: name may be up to 8 characters long.
Group key: name may be up to 12 alphanumeric characters long and
must be shorter than the group key.

plamspecification
Specification of a PLAM library element

[*LIBRARY-ELEMENT] ([LIBRARY=]plamlib,
*HIGHEST-EXISTING

[ELEMENT=]name[([VERSION=])])
version

plamlib
Name of a PLAM library. Maximum length including catalog ID and user ID:
54 characters.

name
Name of a PLAM library element. The name may consist of up to 64 charac-
ters.

version
Version designation of the PLAM library element. A version designation may
be up to 24 characters in length.

*HIGHEST-EXISTING
If more than one version of an element exists, the compiler reads the highest
existing version by default.

/ When the the compiler has read all the compiler options, an interrupt occurs
returning control to system mode. The compiler issues the following messa-
ge:

FOR1: ASSIGN SYSDTA TO READ OPTION

SYSDTA can now be reassigned with the ASSIGN-SYSDTA command. After
the user has entered the RESUME-PROGRAM command, the compiler reads
the compiler options from SYSDTA and commences the compilation.

U577-J-Z125-7-7600 71

OPTIONS compiler option Input location of compiler options

+ When the compiler has read all the compiler options, it issues the following
message:

FOR1: GIVE OPTION FILE SPECIFICATION - OR ?

Now the user can enter the location of the compiler options via the primary
assignment of SYSDTA, in interactive mode at the terminal.

The following locations can be specified:

*
(SYSCMD)
(PRIMARY)
(CARD)
file
lib(name)
plamspecification

*
The compiler options are read from SYSDTA.No reassignment of SYSDTA
takes place. If a location was specified with the ASSIGN-SYSDTA command,
the compiler options are read from there.

(SYSCMD)
The system file SYSDTA is combined with SYSCMD. The compiler options are
read from SYSCMD.

(PRIMARY)
The system file SYSDTA is returned to its primary assignment. The compiler
options are read from the primary assignment of SYSDTA, i.e. from the termi-
nal.

(CARD)
The system file SYSDTA is assigned a card reader. The compiler options are
read from the card reader.

file
Name of the file from which the compiler options are to be read (for descrip-
tion, see above).

lib(name)
Specification of the PLAM library element or section of the GAM file from
which the compiler options are to be read (for description, see above).

plamspecification
Specification of the PLAM library element from which the compiler options are
to be read (for description, see above).

72 U577-J-Z125-7-7600

Input location of compiler options OPTIONS compiler option

Examples:

Example 1: Compiler options from cataloged file

Reading the compiler options from the cataloged file OPT. The source program is loca-
ted in the cataloged file QUELLE.

Contents of OPT:

COMOPT SOURCE=QUELLE
COMOPT LIST=(ALL)
END

Compilation:

/START-PROG $FOR1
*COMOPT OPTIONS=OPT
*END

Example 2: Compiler options from library

Reading the compiler options from the library PROGLIB. Element name: OPT. See
example 1 for contents of OPT.

/START-PROG $FOR1
*COMOPT OPTIONS=PROGLIB(OPT)
*END

Example 3: Requesting compiler options during the compilation

The options for compiling a program are contained in the file OPT. They are read from
SYSDTA. Further compiler options are contained in the file OPT1, but the location of
these compiler options is not to be specified until the options are processed. The
source program is contained in the file QUELLE.

Contents of file OPT1:

COMOPT LIST=(ALL)
END

U577-J-Z125-7-7600 73

OPTIONS compiler option Input location of compiler options

1. Request input location of compiler options with COMOPT OPTIONS=+

Contents of file OPT:

COMOPT SOURCE=QUELLE
COMOPT OPTIONS=+
END

Compilation:

/ASS-SYSDTA TO-FILE=OPT
/START-PROG $FOR1
FOR1:GIVE OPTION FILE SPECIFICATION - OR ?
OPT1

In this case the user can request information about the input possibilities by entering
a question mark after the input prompt.

2. Request input location of compiler options with COMOPT OPTIONS=/

Contents of file OPT:

COMOPT SOURCE=QUELLE
COMOPT OPTIONS=/
END

Compilation:

/ASS-SYSDTA TO-FILE=OPT
/START-PROG $FOR1
FOR1: ASSIGN SYSDTA TO READ OPTION
/ASS-SYSDTA TO-FILE=OPT1
/RESUME-PROG

74 U577-J-Z125-7-7600

Temporary changing of source program UPD compiler option

3.4 Temporary changing of a source program: UPD compiler
option

The text of a source program can be modified with change lines for the period of com-
pilation. The changes are documented in the source program listing but have no effect
on the source program file.
The input location of the change lines is specified in the UPD compiler option. There is
no SDF operand corresponding to the UPD compiler option.

Requirement

Temporary changing of a source program requires an identification for the source pro-
gram and change lines in columns 73 through 80. The identification must consist of
eight EBCDIC characters. The source program and change line identifiers must be pre-
sent in ascending sequence. The positional value of each individual character results
from the position of the character in the EBCDIC character set (A has a lower positio-
nal value than 1). The change lines are included in the source program according to
the identifiers, or replace those lines which have the same identifiers. If several change
lines are to be inserted consecutively, only the first such change line need be identified
accordingly; subsequent unidentified lines are included immediately thereafter.

Temporary deletion of source program lines: *DELETE statement

If specific lines in the source program are to be skipped, the following statement can
be specified in the change lines:

*DELETE i1[,i2]

i1, i2 eight-character identifiers, i1 i2

All lines in the specified range (i1 through i12) are skipped and no longer printed in the
source program listing.

This statement must begin in column 1. Column 8 must contain a blank. The identifier
i1 must begin in column 9. If identifier i2 is specified, the comma must be in column 17
and the identifier i2 must begin in column 18. There may be no blanks in the range
[i1,i2].

In the source program listing, the *DELETE statement appears as a comment line.

U577-J-Z125-7-7600 75

UPD compiler option Temporary changing of source program

Example: Change lines with *DELETE statement

Source program file Column 73-80

PROGRAM UPDATE AAAA1000
B=8. AAAA2000
D=10. AAAA3000
CONTINUE AAAA4000
A=B+2. AAAA5000
C=D/A AAAA6000
CONTINUE AAAA7000
A=B/(C*D) AAAA7010
WRITE(2,*) C AAAA7020
WRITE(2,*) D AAAA7030
WRITE(2,*) A AAAA7040
END AAAA8000

Change lines

WRITE(2,10) A AAAA6030
10 FORMAT(11X,’NENNER = ’,F8.2) AAAA6060

*DELETE AAAA7020,AAAA7030 AAAA6080
WRITE(2,*) A,B,C,D AAAA7040

This results in the following source listing

PROGRAM UPDATE AAAA1000
B=8. AAAA2000
D=10. AAAA3000
CONTINUE AAAA4000
A=B+2. AAAA5000
C=D/A AAAA6000
WRITE(2,10) A AAAA6030

10 FORMAT(11X,’NENNER = ’,F8.2) AAAA6060
CONTINUE AAAA7000
A=B/(C*D) AAAA7010

*DELETE AAAA7020,AAAA7030 AAAA6080
WRITE(2,*) A,B,C,D AAAA7040
END AAAA8000

76 U577-J-Z125-7-7600

Temporary changing of source program UPD compiler option

UPD compiler option

The UPD compiler option is used to inform the compiler from where it is to read
change lines. There is no SDF operand corresponding to the UPD compiler option.

The following default applies:

If the UPD compiler option is missing, it is assumed that no change lines are pre-
sent.
If the UPD compiler option is specified without an operand value, the change lines
are read from the file having the LINK name FUPDLINK. In this case the update file
must be assigned by means of the following command before FOR1 is called:
/SET-FILE-LINK LINK-NAME=FUPDLINK,FILE-NAME=filename

*
file

[*]COMOPT UPD [= lib(name)]
/
+

* The change lines are read from SYSDTA.

file Name of a cataloged file in which the change lines are located. Maximum
length including catalog ID and user ID: 54 characters.

lib(name)
lib
Name of a LMS library in OSM format or GAM file, from which the change
lines are read. lib is first interpreted as a library and then as a GAM file. Inclu-
ding catalog ID and user ID, lib may be up to 54 characters in length.

name
Name of a library element or group key of a GAM file.

PLAM library element: name may be up to 8 characters long.
Group key: name may be up to 12 alphanumeric characters long and
must be shorter than the group key.

U577-J-Z125-7-7600 77

UPD compiler option Temporary changing of source program

/ When the the compiler has read all the compiler options, an interrupt occurs
returning control to system mode. The compiler issues the following messa-
ge:

FOR1: ASSIGN SYSDTA TO READ SOURCE

SYSDTA can now be reassigned with the ASSIGN-SYSDTA command. After
the user has entered the RESUME-PROGRAM command, the compiler reads
the source program from SYSDTA and commences the compilation.

+ When the compiler has read all the compiler options, it issues the following
message:

FOR1: GIVE UPDATE FILE SPECIFICATION-OR?

Now the user can enter the location of the change lines via the primary
assignment of SYSDTA, in interactive mode at the terminal.

The following locations can be specified:

*
(SYSCMD)
(PRIMARY)
(CARD)
file
lib(name)

*
The change lines are read from SYSDTA. No reassignment of SYSDTA takes
place. If a location was specified with the ASSIGN-SYSDTA command, the
change lines are read from there.

(SYSCMD)
The system file SYSDTA is combined with SYSCMD. The change lines are
read from SYSCMD.

78 U577-J-Z125-7-7600

Temporary changing of source program UPD compiler option

(PRIMARY)
The system file SYSDTA is returned to its primary assignment. The change
lines are read from the primary assignment of SYSDTA, i.e. from the terminal.

(CARD)
The system file SYSDTA is assigned a card reader. The change lines are read
from the card reader.

file
Name of the file from which the change lines are to be read (for description,
see above).

lib(name)
Specification of the library element or section of the GAM file from which the
change lines are to be read (for description, see above).

Restrictions:

COMOPT UPD and %INCLUDE must not be used at the same time.
COMOPT UPD and COMOPT DIALOG should not be used at the same time.
Source program and change lines may only reside in the same file if the file is a
group file.
If SOURCE-FORMAT=FREE compiler option is specified in conjunction with UPD
compiler option, an error message will be issued. The compiler option specified last
applies.

U577-J-Z125-7-7600 79

UPD compiler option Temporary changing of source program

Examples:

Example 1: Source program from file, change lines from file

The source program is read from the file QUELL.MAT. Change lines are located in the
file UP having the specified LINK name FUPDLINK.

/SET-FILE-LINK LINK-NAME=FUPDLINK,FILE-NAME=UP
/ASS-SYSDTA *SYSCMD
/START-PROG $FOR1
*COMOPT UPD
*COMOPT SOURCE=/
*END
FOR1: ASSIGN SYSDTA TO READ SOURCE
/ASS-SYSDTA TO-FILE=QUELL.MAT
/RESUME-PROG

Example 2: Source program from file, change lines from library

The source program is read from the file QUELL.MAT. Change lines are located in the
file ELEMUP in the library LIB.

/ASS-SYSDTA *SYSCMD
/START-PROG $FOR1
*COMOPT SOURCE=QUELL.MAT
*COMOPT UPD=+
*END
FOR1: GIVE UPDATE FILE SPECIFICATION-OR?
LIB(ELEMUP)

80 U577-J-Z125-7-7600

Inserting source program lines %INCLUDE statement

3.5 Inserting source program lines

3.5.1 %INCLUDE statement

The compile time statement %INCLUDE is used to insert source program lines into a
source program. The %INCLUDE statement is written to the source program text like a
FORTRAN statement. During compilation, the source program text specified by the
%INCLUDE statement is inserted at the place occupied by the %INCLUDE statement.
The %INCLUDE statement is only valid in the program unit in which it is specified. The
source program text to be inserted by the %INCLUDE statement can be modified be-
fore it is inserted into the source program.

Insertion of text portions can take place over a number of different levels, i.e.
%INCLUDE statements can be included in a text which has been inserted. Output of
the inserted source program text can be controlled by means of the EXPAND compiler
option (see section 4.6.2.8) or the %EXPAND statement (see section 4.6.3.3).

name EBCDIC
%INCLUDE [,CODE= ISO][,’az1’=’nz1’][,’az2’=’nz2’][...]

lib(name) BCD

name Name of a S-type PLAM library element containing the source program text
to be inserted. If name is specified, a check is first made to determine whe-
ther a PLAM library element with this name exists. Access takes place accor-
ding to the hierarchy of PLAM libraries which has been specified in the SDF
operand INCLUDE-LIBRARY or in the INCLUDE compiler option.

or

File name of a cataloged file containing the source program text to be inser-
ted.

lib(name)
lib is the name of a PLAM library. The library element name of this library
contains the source program text to be inserted.

or

lib is the name of a group file (GAM file). The group key name designates
the source program text to be inserted (see section 3.2.3, example 4).

lib is first assumed to be a PLAM library, then a GAM file. Any hierarchy for
searching through the PLAM libraries as defined by the SDF operand
INCLUDE-LIBRARY or the INCLUDE compiler option is not taken into account
when bibl is specified.

U577-J-Z125-7-7600 81

%INCLUDE statement Inserting source program lines

CODE By default it is assumed that the source program is in EBCDI code. Conver-
sion to ISO or BCD code is possible.

’os1’=’ns1’ [,’os2’=’ns2’] [...]
os : old string
ns : new string

The source program text to be inserted is updated in accordance with the
specifications in this list before it is inserted in the source program. The
source program text is searched in parallel for old string1 and old string2.
old string1 is replaced by new string1, old string2 is replaced by new
string2. Blanks are evaluated during searching and replacing. If the source
program text is lengthened as a result of replacement, continuation records
are generated as required.

In the options listing, only names specified explicitly in the INCLUDE compiler option
are listed (and not those specified in the %INCLUDE statement).

Notes

The PROGRAM, SUBROUTINE, FUNCTION, type FUNCTION, BLOCK DATA, END
statements are ignored if they occur in a text inserted by means of %INCLUDE. For
this reason it is not possible to insert one or more program units by using
%INCLUDE.
The %INCLUDE keyword may not contain any blanks.
Length of old string: 1 length 72.
Length of new string: 0 length 32767.
If old string extends beyond a record boundary, old string will not be recognized
within the text.
Nesting depth of the %INCLUDE statements: 32767.
If an %INCLUDE statement extends over several lines, no intervening comment or
blank lines may occur.

82 U577-J-Z125-7-7600

Inserting source program lines %INCLUDE statement

Example:

In program A, source program lines located in file B are inserted by means of the
%INCLUDE statement. INCLUDE item B contains INCLUDE item C, whose source pro-
gram lines are changed before insertion. INCLUDE item C contains INCLUDE item D.

Program A: File B:

PROGRAM A C TYPE DECLARATION IN
C THE INCLUDE FILE B C FILE B
C IS INSERTED REAL M,N

%INCLUDE B C INCLUDE FILE C
END C IS INSERTED

%INCLUDE C,’N=3.’=’N=5.’

File C: File D:

C CALCULATION IN C RESULT OUTPUT IN
C INCLUDE FILE C C FILE D

M=2. WRITE*,’RESULT=’,X
N=3.
X=M*N

C INCLUDE FILE D
C IS INSERTED

%INCLUDE D

In the source listing, the source program lines of program A and all source program
lines inserted by means of the %INCLUDE statement are printed. Source program line
’N=3.’ in INCLUDE item C is changed to ’N=5.’ The nesting depth of the source pro-
gram sections inserted using the %INCLUDE is displayed in column I of the source pro-
gram listing (see section 4.7.2).

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00DATE = ...
PROGRAM UNIT: A

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1/1 1 1 PROGRAM A
2 C THE INCLUDE FILE B
3 C IS INSERTED

1 2 4 %INCLUDE B
1/0 1 C TYPE DECLARATION IN
1/0 2 C FILE B

1 3 1/0 3 REAL M,N
1/0 4 C INCLUDE FILE C
1/0 5 C IS INSERTED

1 4 1/0 6 %INCLUDE C,’N=3.’=’N=5.’
2/0 1 C CALCULATION IN
2/0 2 C INCLUDE FILE C

1 5 2/0 3 M=2.
1 6 2/0 4 N=5.
1 7 2/0 5 X=M*N

2/0 6 C INCLUDE FILE D
2/0 7 C IS INSERTED

1 8 2/0 8 %INCLUDE D
3/0 1 C RESULT OUTPUT IN
3/0 2 C FILE D

1 9 3/0 3 WRITE *,’RESULT=’,X
1 10 5 END

U577-J-Z125-7-7600 83

INCLUDE-LIBRARY (SDF, COMOPT) Compilation operands

3.5.2 SDF operand INCLUDE-LIBRARY

The SDF operand INCLUDE-LIBRARY defines hierarchical access to a number of libra-
ries. The libraries are searched in the specified sequence for the element specified in
the %INCLUDE statement.

START-FOR1-COMPILER

,INCLUDE-LIBRARY = *NONE / list-poss: <full-filename 1..54>

The SDF operands and corresponding compiler options are shown in table 2-3.

3.5.3 INCLUDE-LIBRARY compiler option

The INCLUDE-LIBRARY compiler option defines hierarchical access to a number of libra-
ries. The libraries are searched in the specified sequence for the element specified in
the %INCLUDE statement.

*NO
[*] COMOPT INCLUDE [-LIBRARY] = filename

(filename1[,filename2][,...])

*NO It is assumed that no search hierarchy exists. In this case the BS2000 catalog
is searched.

filename1[,filename2][,...]
Names of PLAM libraries or GAM files containing %INCLUDE items. The
sequence of library names defines the search hierarchy. Up to 10 library
names may be specified. As the last hierarchical level, the BS2000 catalog is
searched. If a library element was specified in the %INCLUDE statement
using lib(name), then no libraries are searched in accordance with the hierar-
chy defined by the INCLUDE option.

84 U577-J-Z125-7-7600

Interactive Analysis General

3.6 Entering the source program with Interactive Analysis

Interactive Analysis allows correctly formatted programs to be produced in a line-by-line
dialog on unformatted screens. This operating mode is hereinafter referred to as "inte-
ractive", whereas "batch" designates the mode in which the user is not allowed to inter-
vene in the compiler analysis for the duration of the compiler run.

In interactive mode, an error detected by the compiler can be immediately recovered,
using the corrected statement to continue the compiler run. In this section the term "up-
date" refers to changes made to a source program during a compiler interrupt.

In comparison to batch mode, the advantages of interactive mode are as follows:

there is no need to wait for the end of compilation,
evaluation of compiler listings may be dispensed with,
there is no need for source program error recovery by means of an editor,
no recompilation of the whole updated source program (or program unit); correct
program sections are compiled only once,
at the end of compilation, the corrected source program, if requested, is made avai-
lable in an ISAM file (DIALOG-SAVE,OUTPUT option).

The original file remains unchanged throughout Interactive Analysis. When corrections
are necessary, the compiler always uses a copy of the original file, which is hereinafter
referred to as the work file. Following compilation, the original file or the work file may
be deleted or recataloged at the user’s discretion.

The execution of Interactive Analysis is controlled by means of dialog (interactive) com-
mands, referred to simply as "commands" in the following.

Note

Interactive Analysis reports an error whenever the statement sequence in the pro-
gram deviates from the sequence required by the standard (e.g. use of a variable
prior to its declaration).

U577-J-Z125-7-7600 85

SDF operand DIALOG Controlling Interactive Analysis

3.6.1 Controlling Interactive Analysis: SDF operand DIALOG

The SDF operand DIALOG is used for controlling Interactive Analysis.

START-FOR1-COMPILER

,DIALOG = NO / YES(...)

YES(...)

,DIALOG-INTERRUPT = AFTER-ANY-PROG-UNIT / ERRORS-ONLY

,SAVE-FILE = *NONE / *STD-NAME(...) / <full-filename 1..54>(...)/
*LIBRARY-ELEMENT(...)

*STD-NAME(...)
INCLUDE-EXPANSION = NO / YES

<full-filename 1..54>(...)
INCLUDE-EXPANSION = NO / YES

*LIBRARY-ELEMENT(...)
INCLUDE-EXPANSION = NO / YES
LIBRARY = <full-filename 1..41>
,ELEMENT = <full-filename 1..54> (...)

VERSION = *UPPER-LIMIT / <alphanum-name 1..24>

,LOG-CHANGED-LINES = NO / YES

The SDF operands and corresponding compiler options are shown in table 2-5.

86 U577-J-Z125-7-7600

Controlling Interactive Analysis COMOPT DIALOG

3.6.2 Starting Interactive Analysis: DIALOG compiler option

In order to start Interactive Analysis, the compiler is called as usual by /START-PROGRAM
$FOR1 (or using any other given name).
Interactive mode is then entered by specifying the compiler option *COMOPT DIALOG ...

param
DIALOG [= (param[,param])]

[*]COMOPT (param[,param[,param]])

NODIALOG

command prefix
param:= dialog language

editor mode

command prefix:= { !| ? | @ | % | # | $ }

dialog language:= { D | E }

Message text output
D in German
E in English

editor mode:= E[DIT] = { ALL | FIRST | NO }

This operand presents the following options
for a transfer of control to the user at the
beginning of a new program unit
ALL before every new program unit
FIRST only before the first program unit
NO only in the event of an error

Interactive Analysis is interrupted according to the EDIT operand and the follo-
wing message appears:

’FOR1: NEW PROGRAM UNIT - GIVE COMMAND OR @HELP’

The user can input commands, for example, for file processing or input
BS2000 commands with %SYSTEM.

Notes

Presetting for COMOPT DIALOG: %, E, EDIT=ALL
Presetting for SDF operand DIALOG: @, E, EDIT=ALL
COMOPT DIALOG cannot be specified in conjunction with the COMOPT UPD compi-
ler option.

U577-J-Z125-7-7600 87

Outline Interactive Analysis

3.6.3 Outline

Source program input

There are different ways of entering a source program, controlled by the SOURCE
option:

from a file
directly at the terminal

The user can specify direct input of the source program at the terminal by means of

COMOPT SOURCE=*, omitting the SOURCE option or specifying the SOURCE
option without value if the primary assignment of SYSDTA is the terminal;

COMOPT SOURCE=(PRIMARY) if the options are read from a file assigned to
SYSDTA.

The compiler supplies the line number. Then the user must enter the entire statement,
noting the following:

A semicolon as the first character in an input line is replaced by 6 blanks following
its entry. This puts any text which follows the semicolon at column 7 following entry.

As a consequence of entering continuation lines only, the current program unit is
compiled once more (extension of a FORTRAN statement).

Entering a line identifier (columns 73-80) is not permitted (use %SET or %INSERT
command).

The statement length is restricted by the size of the screen.

A number of FORTRAN lines or dialog commands may be entered at the same time,
separated by the end-of-line symbol for the terminal concerned (see MODIFY-
TERMINAL-OPTIONS; "User Commands (SDF Format)" [12]).

FORTRAN statements with a length of more than 72 characters are converted by the
FOR1 compiler to the correct FORTRAN format, including continuation lines.

"/*" in columns 1 and 2 identifies the end of an entry.

Following interactive compilation, the source program, if requested, is available to
the user in the form of a file (WS); the file name must be specified in the OUTPUT
option and/or the %SAVE or %WRITE command.

For further information see section 3.6.6, "Updating the work file".

88 U577-J-Z125-7-7600

Interactive Analysis Outline

Entering dialog commands

Dialog commands may be entered
at any time from the terminal during direct program input
during program input from a file, depending on the EDIT operand:
either before compilation after the entire source program has been read into the
work file (EDIT=FIRST) or before compilation of every individual program unit
(EDIT=ALL).
in "update" mode.

Execution of Interactive Analysis

The compiler reads the source program into a work file, verifying one statement after
the other.
If a syntax error is found, the statement concerned is shown on the screen, identifying
the position where the error occurred, and displaying a message text. Now the compi-
ler is in "update" mode, in which the user can enter FORTRAN statements or com-
mands (for Interactive Analysis). At this point the options are as follows:

Work file update (error correction)
No update; continuation of Interactive Analysis with the next statement or restart of
analysis from the beginning of the current program unit (ignoring any previous cor-
rections)
Cancelation of interactive mode and exit to batch mode
Termination of the compiler run and/or output of listings

Following a correction, Interactive Analysis resumes with the same statement, which is
checked again for valid syntax.

Output of listings or files

The following listings or files can be selected for output:
Compiler listing (as in batch mode)
Change listing: list of modified, inserted or deleted lines with reference to the origi-
nal program, also including commands entered for Interactive Analysis
Original program file (useful in the case of direct input from the terminal): With
direct input from the terminal, the initial input is identical to the original program
Work file (INCLUDE expansions optional)

Output is controlled by the LIST, LIST-OUTPUT, LISTFILE, OUTPUT, DIALOG-SAVE
options or by the SDF operand LISTING.

U577-J-Z125-7-7600 89

DIALOG-SAVE and OUTPUT compiler options Interactive Analysis

3.6.4 Controlling Interactive Analysis output: DIALOG-SAVE and OUTPUT compiler
options

DIALOG-SAVE compiler option

*STD[-FILE]

[*]COMOPT DIALOG-SAVE = ([file]
[FILE=]

plamspecification

NO
[,[INCLUDE-EXPANSIONS=]])

YES

*STD[-FILE]
When *STD-FILE is specified, the result of the interaction is written to a file
with the name

FOR1.SAV.WS.prog[.tsn[.time]]

(see OUTPUT option).

file Name of a cataloged file to which the work file is written. Maximum length
including catalog ID and user ID: 54 characters.

plamspecification
Specification of a PLAM library element to which the work file is written:

[*LIBRARY-ELEMENT] ([LIBRARY=]plamlib,

*UPPER-LIMIT
[ELEMENT=]name[([VERSION=])])

version

plamlib
Name of a PLAM library. Maximum length including catalog ID
and user ID: 54 characters.

name
Name of a PLAM library element. The name may consist of up to 64 charac-
ters.

version
Version designation of the PLAM library element. A version designation can
be up to 24 characters long.

*UPPER-LIMIT
The work file is entered with the highest possible version designation.

90 U577-J-Z125-7-7600

Interactive Analysis DIALOG-SAVE and OUTPUT compiler options

INCLUDE-EXPANSIONS

 =YES The source program text of the INCLUDE items is included in the output, the
associated INCLUDE statements appear in the form of comments.

 =NO Default value: the INCLUDE items are not expanded on output.

Restriction:

The DIALOG-SAVE option must not be specified in conjunction with the OUTPUT op-
tion.

OUTPUT compiler option

filename
(filename [,expand])

[*]COMOPT OUTPUT [= (WS= filename [,OS=filename] [,expand])]
([WS=] (filename [,expand])

[,OS= (filename [,expand])])

filename
For the first two specifications, refers to the work file.

If WS filename and OS filename are identical, the updated workfile overwrites
the original file

if requested, in interactive mode (with prompting)
otherwise in batch mode

If no filename is specified, the compiler generates standard names using the
following format:

FOR1.SAV.WS.prog[.tsn[.time]] for the work file; linkname: EDWSLINK

prog Name of the program unit
tsn Task sequence number, 4-digit
time Compiler start time in the form hhmmss

"tsn", "time" are appended stepwise as required to produce unique file na-
mes.

An OS-file is created only when the OS-operand is specified. The linkname
for the OS-file is EDOSLINK. The assignment of a file to this linkname has
precedence over the filename-specification in the OS-operand.

U577-J-Z125-7-7600 91

DIALOG-SAVE and OUTPUT compiler options Interactive Analysis

expand := [NO]EXPAND (INCLUDE expansions)

Default: NOEXPAND
If EXPAND is used, the INCLUDE items are transferred expanded to the
work file and the associated %INCLUDE statements are shown as comment
lines.

In the third specification, "expand" refers to the work file and to the original
program.

WS Work file (work source)

OS Original program (original source)

The original program file and work file are not created until all program units have been
compiled. In the meantime they can be saved with the %SAVE or %WRITE command.

If an output file with the same name already exists,
it may be overwritten following a prompt in interactive mode;
it will be overwritten in batch mode.

The line numbers generated by the compiler are not used as indices; instead, new indi-
ces are generated for output to ISAM files (default key length: 8 bytes).

Restriction:

The OUTPUT option must not be specified in conjunction with the DIALOG-SAVE op-
tion.

92 U577-J-Z125-7-7600

Interactive Analysis Error display

3.6.5 Error display

During Interactive Analysis, the compiler reads and analyzes the individual statements of
a source program one after the other; it is therefore necessary to observe the order
specified by the FORTRAN 77 standard. All declarative statements must be placed at
the beginning of the program. If an erroneous statement occurs, compilation is interrup-
ted following an analysis of the entire statement.

The following lines are displayed on the screen by the compiler:

Line 1 erroneous statement, including line number.
Line 2 error number and marking of the error position.
Line 3 message text.

To be more precise, the display shows the first line of the erroneous statement as well
as another line for the case that an error position is marked there. If it is a statement
with continuation lines, the user may opt to display the entire statement using the
%PRINT command. It is also possible for more than one error to be displayed.

If one screen is not sufficient to contain all the lines, the user may optionally (prompted
by the system) display another screen, thereby overwriting the previous one.

There are two ways the user can react to an error display:

by entering a FORTRAN statement,
by entering a command (for Interactive Analysis).

Syntax analysis does not detect all errors, for which reason the user is given control at
the following times:

after format analysis, to correct undefined statement labels,
after semantic analysis, to correct semantic errors,
after object module output to the temporary EAM area to correct errors encountered
during the interpretation of DATA statements (before the creation of compiler li-
stings).

In each of these three cases involving correction of an error, the entire program unit
has to be recompiled, but none of the preceding program units.

In the third of the above cases, at the end of compilation, the module exists more than
once for the program unit concerned, which could lead to bind/load errors. If the unit
is the first program unit, this problem can be avoided by deleting the erroneous module
prior to recompilation (using the command %SYS DEL-SYS-FILE OMF). Otherwise the
user may eliminate the erroneous modules by transferring them from the temporary
EAM area to a library in which they are overwritten by the succeeding, corrected modu-
les.

U577-J-Z125-7-7600 93

Updating the work file Interactive Analysis

3.6.6 Updating the work file

The update state begins when a syntax error is displayed by Interactive Analysis. Com-
pilation is interrupted as long as an update is in progress. At this point the user can
correct the source program in the work file created automatically by the compiler, by
recovering errors, moving lines, and adding or deleting FORTRAN statements.

The user specifies whether the compiler is to remain in the update state or whether
compilation is to be resumed:

The update state is ended by:
%CONTINUE
%BATCH
%STOP
%RESTART
mere correction of lines of the illegal current FORTRAN statements
pressing the DÜ (or ENTER) key (equivalent to %CONTINUE)
entering "/*" in columns 1 and 2 (= end of data input from terminal.

The update state is continued by:
any other command
entry of a FORTRAN statement.

Changing the source program:
In the update state, the user can change the source program (in the work file) as fol-
lows; the relevant command is given in parentheses:

replace lines (%SET)
delete lines (%DELETE)
insert lines (%INSERT)
copy lines (%COPY)
move lines (%MOVE)

Other functions include:
work file inspection and paging (%PRINT).
error file inspection (%PRINT ERROR) and paging; all pending errors are listed in
that file.
save work file (%SAVE or % WRITE).
inspection of HELP file (%HELP); it describes the Interactive Analysis.
renumber work file (%RENUMBER).
change processor state (%BATCH; %STOP).
execute BS2000 commands (%SYSTEM).
ignore any corrections made to the current program unit (%RESTART).

Interactive Analysis protects compiled program units against updating. Therefore these
program units cannot be referenced by these commands (exceptions: %SAVE or
%WRITE).

94 U577-J-Z125-7-7600

Interactive Analysis Updating the work file

3.6.6.1 Line numbering

Lines are numbered consecutively in the order they are read in. The line number con-
sists of up to 8 decimal digits, with a decimal point inserted before the last four digits
for better readability. As lines are read in, they are numbered, starting from 1.0000 and
continuing by the current increment (default: 1.0000) for each subsequent line.

The line with the lowest line number can be referenced by %, the line with the highest
line number by $.
If lines from an INCLUDE item are involved, they are assigned a prefix identifying the
lines as INCLUDE item lines. INCLUDE item lines are numbered consecutively begin-
ning with 1. Line numbering within an INCLUDE element also starts with 1.0000 and
continues with the increment of 1.0000.

Example: I3.0012.0000
Interpretation: Line 12 of the 3rd INCLUDE item

If standard numbering is not sufficient, the user must enter an appropriate
%RENUMBER command at the request of the compiler.

Entering line numbers:

When entering line numbers, the following abbreviations may be used, uniqueness per-
mitting:

Leading zeros before the decimal point may be omitted.
Trailing zeros behind the decimal point may be omitted. If the decimal point was
omitted, the system will add ".0000" to the line number.

Example:
Permissible entries for line numbers are: %2; %02.; %2.01; %2.0

Output of line numbers:

On line number output, leading zeros before the decimal point are suppressed, except
the first place preceding the decimal point. Following the decimal point, four places are
always output.

Current line number:

The current line number is the last one which appears in an error message.

U577-J-Z125-7-7600 95

Updating the work file Interactive Analysis

Line range:

The line range [ln1,ln2] includes all currently used lines with the number "k", where ln1
 k ln2.

A list of line ranges, i.e. several line ranges separated by commas, is also allowed
instead of a line range in a command.
"ln1" or "ln2" may also be a construct of the form %+ln1 or $-ln1 or $+ln2. If the range
is blank an error message is issued.

Increment:

The new line number is formed by adding the current increment to the previous line
number. If the new line is already in use, the user is asked by the system whether that
line may be overwritten (%INSERT, %COPY, %MOVE).

By default, the compiler sets the current increment to 1.0000.

If a command allows the entry of a line number, then either the specified increment is
used as the current one, or the increment depends on the number of decimal digits
supplied in the line number.

Example:
Increment 1 is assumed for k=2; 0.1 for k=2.4 and also for k=2.0; increment 0.01 for
k=2.40 etc.

96 U577-J-Z125-7-7600

Interactive Analysis Updating the work file

3.6.6.2 Entering statements and commands

Corrections may also be made to lines whose number is not the current line number,
either through a command (which allows line range entries) or by overwriting output
lines (as in EDT). In this case the user either employs the FORTRAN statement shown
in the error display or statements displayed by means of the %PRINT command.

Anticipatory/retrograde update

If the Update relates to a line whose line number is less than or equal to the current
line number, it is "retrograde update", otherwise it is "anticipatory update". Retrograde
update, which is only allowed within the current program unit, has the effect that the
entire program unit up to the current line number is recompiled. Previously compiled
program units can not be updated any more.

Chaining of statements

A number of statements may be written on the same line, provided that they are separa-
ted by the end-of-line symbol (as in EDT). A line length exceeding 72 characters is allo-
wed. In addition, statements chained in this manner may extend over more than one
line, but not over more than one screen. The compiler will resolve such chains into sin-
gle statements with line numbers of their own, which do not, however, show in the
work file. The end of such chains of statements may also be a command terminating
the update. Lines separated by end-of-line are assigned line numbers. Lines merely cre-
ated by line break are not assigned numbers of their own in the work file. There the
input line is kept at full length.

Positioning to column 7

If a semicolon is entered as the first character of an input line, it is replaced by 6
blanks following entry. As a result, the text following the semicolon is positioned at
column 7 after input.

Line length

For an update, the user must enter the entire line (the whole statement). A line length
exceeding 72 characters is allowed. A break then occurs in column 72, with the compi-
ler generating the necessary continuation lines. Line length is limited by the size of the
screen. If the statement to be corrected has an identifier in columns 73-80, that identi-
fier is also entered in the continuation lines, unless the command requires a different
identifier. At the beginning of the line, however, the FORTRAN input conventions must
be observed. Comments using the LINEEND option are only allowed when the input
line is not longer than 72 characters.

U577-J-Z125-7-7600 97

Updating the work file Interactive Analysis

3.6.6.3 Line break

For a terminal entry consisting of more than 72 characters, a break is generated auto-
matically by the compiler after column 72. If a statement is presented, every continua-
tion line which is necessary begins with an ampersand (&) in column 6. Necessary con-
tinuation lines to a comment line all begin with a C in column 1, four blanks, and a &
character in column 6. CCOM lines are taken into account.

This break is only visible in the source program listing and in the source program out-
put file. The line is shown unbroken on the terminal.

Example:

Column 6 ... Column 72

Input: A=B+ ... C**2+4

Storage in A=B+ ... C**
work file: &2+4

Input: C LONG ... COMMENT LINE

Storage in C LONG ... COMMEN
work file: C &TLINE

Input (COMOPT
LINEEND declared): A=B ... ;";" LINEEND

Storage in A=B ... ;";" L
work file: &INEEND

This causes an error, as the continuation line is not treated as comment.

Input: CC A=B+ ... C**2+4

Storage in CC A=B+ ... C**
work file: CC &2+4

98 U577-J-Z125-7-7600

Interactive Analysis Updating the work file

3.6.6.4 Analysis of an update

The compiler resumes Interactive Analysis with the desired line (more precisely, with the
first statement on that line) governed by line number, which need not be the current
line number. In Interactive Analysis, the update is processed in the order of corrections
and will be interrupted if an error occurs.

Line identifier in columns 73-80

When specified in the appropriate commands, a line identifier is inserted in the associa-
ted line starting with column 73, also in compiler-generated continuation lines. Apostro-
phes in the line identifier must be doubled. Fewer than eight characters are entered left-
justified starting with column 73, padding the line through column 80 with blanks. If the
line identifier contains no character (’’ specified) or more than eight characters, an error
message is issued.

3.6.6.5 Errors in an INCLUDE item

Such errors must be eliminated outside of Interactive Analysis.
In interactive mode, the user can only correct the work file; corrections to an INCLUDE
expansion which occurs in several places must be carried out separately. Modifications
to an INCLUDE statement have no effect on the INCLUDE item itself.

U577-J-Z125-7-7600 99

Commands Interactive Analysis

3.6.7 Commands for controlling Interactive Analysis

Entries referred to as "commands" are used to control Interactive Analysis. In the follo-
wing description they are also called "interactive" or "dialog" commands, to distinguish
them from BS2000 commands.

3.6.7.1 Rules for the entry of commands

All dialog commands except the "paging commands" are entered in command mode.
Paging commands are entered in paging mode, identified by "*+-0" on the terminal.
%PRINT is the command for exiting from command mode to paging mode.

Commands for interactive compilation should only be entered from the terminal. The
original program should only contain comment lines, FORTRAN statements or compile
time statements.

Dialog commands included in the original program, although they are executed in pla-
ce, lead to errors in batch mode because they are not known there (OPTION
NODIALOG). Also they are not transferred to the output file.

Erroneous commands are rejected with an error message indicating the cause of the
error.

Commands overwrite the existing lines only if the user responds to a corresponding
prompt in the affirmative (%INSERT, %COPY, %MOVE).

Pressing the DÜ (or ENTER) key alone has the same effect as
%CONTINUE in command mode,
* in paging mode (see %PRINT command).

Command prefix

Commands begin with a prefix, which the user can define in the DIALOG option. Any of
the characters !, ?, #, $, %, @ is permitted. "%" is the default if Interactive Analysis is
controlled through the DIALOG option; "@" is the default if Interactive Analysis is con-
trolled through the SDF operand DIALOG.

During a compiler run, the command prefix can be changed by means of the following
input:

current command prefix: new command prefix

Example:
Command prefix "#" is to be substituted for the default "%"; enter %:#.

100 U577-J-Z125-7-7600

Interactive Analysis Commands

When entering a source program from a file, a command prefix in column 6 is interpre-
ted as the continuation character of a FORTRAN line.
When input is from the terminal, doubling the prefix causes a line to be interpreted as a
data line.

Abbreviations

By omitting residual letters, command names may be truncated from the right, provided
they are still uniquely identifiable. In addition there are some special abbreviations (see
section 3.6.7.2, Table 3-1).

Blanks

Blanks may be omitted when entering a command, with the exception of a command
followed by an operand value beginning with a letter, a blank is needed to separate the
two, for example %PRINT ERRORS. The user is, however, allowed to insert any num-
ber of blanks.

3.6.7.2 Summary of all dialog commands

The following is a summary of all dialog commands, indicating the shortest command
names possible.

Command Abbrev. Meaning
form

Cancelation of Interactive
%BATCH [{L LF WS CP OS PU ALL} [,...]] B Analysis, transfer of

control to batch mode

%CONTINUE CON Resumption of an interrupted
compiler run

%COPY ln1[-ln2] [,ln3[-ln4]][,...] COP Copying a range of lines
{, TO} ln5[-ln6][,ln7[-ln8]][,...]
[(s)] [,][’id’[(incr)]]

%DELETE ln1[-ln2] [,ln3[-ln4]]... D Deleting a range of lines

%HELP H Brief description of all
dialog commands

%INSERT ln1[(s)] [,][’id’[(incr)]] IN Insertion of a range of
[:string] lines

ON L Lowercase letters allowed
%LOWER L ON

OFF L OF

continued

U577-J-Z125-7-7600 101

Commands Interactive Analysis

continued

Command Abbrev. Meaning
form

%MOVE ln1[-ln2] [,ln3[-ln4]][,...] M Moving a range of lines
{, TO} ln5[-ln6][,ln7[-ln8]][,...]
[(s)] [,][’id’[(incr)]]

ln1[-ln2] [,ln3[-ln4]]... P Prints a range of lines or
%PRINT [[,[NO]EXPAND]] the error file; paging

E[RRORS] possible afterwards

+ Paging commands, used after
+n a %PRINT command
-
-n
--
++
*
0
! Chaining the paging commands

%:{@|#|?|!|%|$} Changing the command prefix

%RENUMBER [ln1 [(s)]] R Renumbering

%RESTART RES Restart with the current
program unit of the
original program

%SAVE [’filename’ [, [NO]EXPAND]] SA Saving the work file
(ISAM)

%[SET] ln1 [(s)] [,] [’id’[(incr)]] SE Changing a line
[:string]

%STOP [{L|LF|WS|CP|OS|PU|ALL} [,...]] ST Stopping a compiler run

%SYSTEM [’BS2000 command’] SY Execution of BS2000 commands

%WRITE [’filename’[,[NO]EXPAND]] W Saving the work file (SAM)

Table 3-1: Summary of all dialog commands

102 U577-J-Z125-7-7600

Interactive Analysis Commands

3.6.7.3 BATCH (continuation in batch mode)

%BATCH [{L | LF | WS | CP | OS | PU | ALL} [, ...]]

L Listing
LF Listfile
WS Work file (work source)
CP Change listing (Change protocol)
OS Original file (Original source)
PU Batch mode for the current program unit
ALL L,LF,WS,CP,OS

Interactive Analysis is canceled and the specified listings are printed after the compiler
run terminates in batch mode. If "PU" is entered, batch mode is activated for the cur-
rent program unit only.

Listing and listfile are printed to the default extents unless they were requested before
by the compiler option.

L and/or LF are relevant for specification of the change listing:
If L and/or LF is specified, the change listing is included in these listings
If neither L nor LF is specified, the change listing is output to SYSLST

3.6.7.4 CONTINUE (resumption of compiler run)

%CONTINUE

This command is used to continue a compiler run interrupted by an error condition.

Note that, after a retrograde update, the compiler resumes at the beginning of the cur-
rent program unit; this is indicated by a corresponding message. Otherwise the compi-
ler resumes with the next statement, recompiling a corrected statement since Interactive
Analysis comprises more than just syntax checking (example: structure of DO loops).

U577-J-Z125-7-7600 103

Commands Interactive Analysis

3.6.7.5 COPY (copying a range of lines)

%COPY ln1 [-ln2] [,ln3[-ln4]][,...]{, | TO} ln5[-ln6][,ln7[-ln8]][,...]
[(s)] [,] [’id’[(incr)]]

ln1,... Line number
s Step
id Line identifier
incr Line identifier increment

The copying range defined by line numbers ln1 and ln2 is copied to the location speci-
fied by line number ln5. The new line numbers are derived from ln5 and s. When "s" is
omitted, the current step width is assumed as the default to determine the new line
number. If "ln1" only is specified, or if ln1 and ln2 are identical, line ln1 is copied.

A line identifier, if specified, is entered left-justified starting with column 73, including
compiler-generated continuation lines.
Apostrophes within a line ID must be doubled. An error message appears for a line ID
which has more than 8 characters or is empty (i.e. either ’ ’ or "). If an increment is
supplied, it is added (from the right) to the numeric value of the line ID for every line
generated by COPY.

The COPY command is not executed (an error message will appear) when the maxi-
mum line number is encountered or the copying range is empty.

Before existing lines are overwritten, the user is prompted for confirmation. Depending
on the reply, the command is executed or rejected.

3.6.7.6 DELETE (deletion of a range of lines)

%DELETE [ln1 [-ln2][,ln3[-ln4]]...]

ln1,... Line number

The range [ln1-ln2]... is deleted.

If the line number specification is omitted, the %DELETE command will delete the
whole range of lines. To prevent inadvertent deletion of the entire range of lines, the
command must be confirmed before it is executed.

104 U577-J-Z125-7-7600

Interactive Analysis Commands

3.6.7.7 HELP (brief description of all dialog commands)

%HELP

A brief description of all commands is output on the terminal.

3.6.7.8 INSERT (insertion of a range of lines)

%INSERT ln1 [(s)] [,] [’id’[(incr)]] [:string]

ln1 Line number
s Step
id Line identifier (columns 73-80)
incr Line identifier increment
string String (FORTRAN line)

From "ln1" and "s", the compiler determines the line numbers to be generated, expec-
ting sequential input. The line number is supplied by the compiler.

If the step is omitted, the current step is assumed as the default.

A line identifier, if specified, is entered left-justified starting at column 73, including any
continuation lines generated by the compiler. Apostrophes within the line ID must be
doubled. If the line has more than 8 characters or is empty (i.e. either ’ ’ or "), an error
message is issued. A specified increment is added (from the right) to the numerical
value of the line ID for every line generated by means of COPY.
Unlike the %SET command, %INSERT never overwrites lines.

3.6.7.9 LOWER (lower/upper case)

%LOWER {OFF|ON}

%LOWER OFF The compiler converts any lowercase letters entered on the screen
to upper case.

%LOWER ON The compiler distinguishes between lowercase and uppercase letters
entered on the screen.

U577-J-Z125-7-7600 105

Commands Interactive Analysis

3.6.7.10 MOVE (moving a range of lines)

%MOVE ln1 [-ln2] [,ln3[-ln4]][,...]{, | TO} ln5[-ln6][,ln7[-ln8]][,...]
[(s)] [,] [’id’[(incr)]]

ln1,... Line number
s Step
id Line identifier
incr Line identifier increment

The MOVE range [ln1,ln2] is moved to the location specified by line number ln5, deri-
ving the new line numbers from "ln5" and "s". If s is not specified, the current step is
used to determine the new line number. If only line ln1 is specified, or if ln1 and ln2 are
identical, line ln1 is moved.

If specified, a line identifier is entered left-justified starting with column 73, including any
continuation lines generated by the compiler. Apostrophes within the line ID must be
doubled. An error message is issued for any line ID which has more than 8 characters
or is empty (i.e. either ’ ’ or ’’). If an increment is specified, it is added (from the right)
to the numeric value of the line ID for every line generated by means of COPY.

The MOVE command remains unexecuted in the following situations:
when the maximum line number is encountered
when the range to be moved is empty

Before existing lines are modified by this command, the user is prompted for confirma-
tion. Whether or not the command is executed depends on his reply.

106 U577-J-Z125-7-7600

Interactive Analysis Commands

3.6.7.11 PRINT (prints a range of lines or the error file; paging)

ln1 [-ln2] [,ln3[-ln4]]... [,expand]
%PRINT []

E[RRORS]

ln1,... Line number, specifically % for the beginning, $ for end.

expand:= [NO] EXPAND
EXPAND INCLUDE items are expanded (default value).
NOEXPAND INCLUDE items are not expanded.

ERRORS Error list is printed.

This command prints the line range [ln1,ln2] of the work file, or, if ERRORS is entered,
the beginning of the error file. This process involves a transfer of control from com-
mand mode to paging mode.

Paging through the line range specified by %PRINT

The following commands are supported in paging mode:

+ Advance one screen
+n Advance n lines (n is an integer)
- Return one screen
-n Return n lines (n is an integer)
-- Position to the beginning of the specified range (%)
++ Position to the end of the specified range ($)
* Advance one screen; at the end of the specified range of lines,

change to command mode; the above commands, however, retain the
paging mode

0 End of paging mode, change to command mode.

Paging commands can be chained by using exclamation marks.

Example:

%PRINT % Shows the line with the lowest number.
%P %-$ Shows the entire work file.
++!- Shows the end of the specified line range.

U577-J-Z125-7-7600 107

Commands Interactive Analysis

3.6.7.12 RENUMBER

%RENUMBER [ln1 [(s)]]

ln1 Line number
s Step

Specification of "s" defines the new current step.

The lines of the work file are renumbered with the current step, starting with ln1.

If "ln1" and "s" are omitted, renumbering starts from 1.0000, setting the current step to
1.0000.

3.6.7.13 RESTART

%RESTART

The compiler run is restarted at the beginning of the current program unit, canceling all
modifications made to that program unit (resetting to the original program). The options
remain unchanged.

If the original program was entered directly from the terminal, it need not be reentered.
The compiler recompiles/reanalyzes all previous FORTRAN lines, unless they were gene-
rated by command (%INSERT, %MOVE,...).

108 U577-J-Z125-7-7600

Interactive Analysis Commands

3.6.7.14 SAVE or WRITE (saving the work file)

{%SAVE|%WRITE}[’filename’[, [NO]EXPAND]]

SAVE Creates an ISAM file.
WRITE Creates a SAM file.
filename File name in accordance with BS2000 conventions. If this name is omit-

ted, the name is taken from the OUTPUT (WS) option or the default is
assumed.

EXPAND INCLUDE items are expanded, displaying the %INCLUDE statements as
comment lines.

NOEXPAND INCLUDE items are not expanded (default).

The current work file is created under the specified name and is thus saved.
If a BS2000 file with the specified name already exists, the user is prompted for permis-
sion to overwrite it.

The original program cannot be overwritten by the %SAVE or %WRITE command if it
has been read from SYSDTA, or if it is a element of an INCLUDE library or a group file
(GAM file).

U577-J-Z125-7-7600 109

Commands Interactive Analysis

3.6.7.15 SET (modification of a line)

%[SET] ln1 [(s)] [,] [’id’[(incr)]] [:string]

ln1 Line number
s Step
id Line identifier
incr Line identifier increment
string String (FORTRAN line)

This command can be used to modify the contents of an existing line ln1. The current
step can be changed at the same time. The line is written with the specified string (star-
ting from column 1).

An existing line identifier is retained and, if necessary, entered in continuation lines,
unless a line ID was specified in the command.

A line identifier, if specified, is entered left-justified starting with column 73, including
continuation lines generated by the compiler. Apostrophes within the line ID must be
doubled. If the line ID has more than 8 characters or if it is empty (i.e. either ’ ’ or "),
an error message is issued. An increment, if supplied, is added (from the right) to the
numeric value of the line ID for every line generated by COPY.

Notes

If there is no line with the number ln1, a new line is generated.
The compiler generates continuation lines as necessary.
Specification of "s" defines the current step.
"SET" may be omitted when this command is entered.

110 U577-J-Z125-7-7600

Interactive Analysis Commands

3.6.7.16 STOP (termination of the compiler run)

%STOP [{L | LF | WS | CP | OS | PU | ALL} [, ...]]

L Listing
LF Listfile
WS Work file (work source)
CP Change list (change protocol)
OS Original file (original source)

PU Cancelation of compilation of the current program unit
No listing output
Resumption with the next program unit.

ALL L,LF,WS,CP,OS

The compiler run is canceled and the specified listings are printed, with the exception
of "PU".

In the case of program entry from the terminal where the current program unit is not
yet complete, the compiler terminates abnormally. The following message appears:

STOP REQUESTED DURING COMPILATION OF P.U. ...

Status indicator for any job variable that may be set: $A2001

Listing and listfile are printed to their default extent, unless they were requested before-
hand in the LIST or LISTFILE option.

L and/or LF are relevant to the specification of the change listing. If L and/or F have
been specified, the change listing is included in those listings. If neither L nor F has
been specified, the change listing is printed output, to SYSLST.

3.6.7.17 SYSTEM (execution of BS2000 commands)

%SYSTEM [’[/]BS2000 command’]]

The BS2000 command enclosed in apostrophes is executed.

If no BS2000 command has been entered, control is transferred to the system (BREAK);
return from this mode with /RESUME-PROGRAM.

U577-J-Z125-7-7600 111

Example Interactive Analysis

3.6.8 Example of Interactive Analysis

The following three-part example outlines how to use Interactive Analysis.

1. Creation of a new program
2. Debug run of this program
3. Extension of this program

Sections A.6.2 through A.6.10 in the Appendix show listings relating to this program.

/DEL-SYS-FILE OMF
/START-PROG $FOR1
% BLS0500 PROGRAM ’FOR1’, VERSION ’2.2A00’ OF ’91-06-05’ LOADED.
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1991 ...
FOR1: V2.2A00 READY, GIVE COMPILER OPTION

*COMOPT D=(D,@),OUT=WS.X,LF=LF.X(SRC,D,OP,XR),END (01)
@ 1. : PROGRAM DIALOG (02)
@ 2. : INTEGER I1,I2
@ 3. : REEL A(10),B
@ 3.0000: REEL A(10),B

........ 1 (03)
1 ERROR MISSPELLED STATEMENT KEYWORD, REAL ASSUMED
@ 3. : REAL A(10),B (04)
@ 4. :****
@ 5. : DO 10 I=1.5< B(I)=A(I)+I (05)
@ 7. :10 A(I)=I
@ 8. : WRITE (2,11) A
@ 9. :11 FORMAT (’ **’,5F5.2)
@ 10. : CALL SUBA(A(1))
@ 11. : END
@ 7.0000:10 A(I)=I (06)
WARNING UNREFERENCED LABEL #10

@ 7. :@P (07)
@ 1.0000: PROGRAM DIALOG
@ 2.0000: INTEGER I1,I2
@ 3.0000: REAL A(10),B
@ 4.0000:****
@ 5.0000: DO 10 I=1.5
@ 6.0000: B(I)=A(I)+I
@ 7.0000:10 A(I)=I
@ 8.0000: WRITE (2,11) A
@ 9.0000:11 FORMAT (’ **’,5F5.2)
@ 10.0000: CALL SUB(A(1))
@ 11.0000: END
@ 7. : (08)
@ 5.0000: DO 10 I=1,5 (09)
@ 5.0001:
@CON (10)
FOR1: RECOMPILATION OF ACTUAL P.U. INITIATED

@ 11.0000: END
WARNING STATEMENT FUNCTION B UNUSED (11)

@ 11. :@I3.5 (12)
@I3.5
!

FOR1: ERROR, WRONG INCLUDE NUMBER
@ 11. :@IN3.5 (13)
@ 3.5 : DIMENSION B(5)
@ 3.6 :@R (14)
@ 13. :@P1-2
@ 1.0000: PROGRAM DIALOG
@ 2.0000: INTEGER I1,I2
@ 13. :@D2 (15)
FOR1: 1 LINE(S) DELETED

@ 13. :@CON

112 U577-J-Z125-7-7600

Interactive Analysis Example

FOR1: RECOMPILATION OF ACTUAL P.U. INITIATED
FOR1: LIST FILE GENERATED = LF.X
FOR1: NO ERRORS DURING COMPILATION OF P.U. DIALOG

@ 13. : SUBROUTINE SUBA(X) (16)
@ 14. : Y=X*X< END
FOR1: NO ERRORS DURING COMPILATION OF P.U. SUBA

@ 16. :/* (17)
FOR1: WS FILE CREATED = WS.X
END OF F O R 1 COMPILATION; CPU TIME USED: 1.142 SEC.

/START-PROG FROM-FILE=*MODULE(*OMF) (18)
% BLS0001 ### DBL VERSION 070 RUNNING
% BLS0517 MODULE ’DIALOG’ LOADED
BS2000 F O R 1 : FORTRAN PROGRAM "DIALOG"
STARTED ON 1991-09-03 AT 14:23:53
** 1.00 2.00 3.00 4.00 5.00
** 0.00 0.00 0.00 0.00 0.00
BS2000 F O R 1 : FORTRAN PROGRAM "DIALOG " ENDED PROPERLY AT 14:23:55
CPU - TIME USED : 0.0205 SECONDS
ELAPSED TIME : 1.7630 SECONDS

/DEL-SYS-FILE OMF
/START-PROG $FOR1
% BLS0500 PROGRAM ’FOR1’, VERSION ’2.2A00’ OF ’91-06-05’ LOADED
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1991 ...
FOR1: V2.2A00 READY, GIVE COMPILER OPTION

*COMOPT SRC=WS.X,D=(D,@,E=FIRST),OUT=WS.X1,END (19)
FOR1: NEW PROGRAM UNIT - GIVE COMMAND OR @HELP @P
@ 1.0000: PROGRAM DIALOG
@ 2.0000: REAL A(10),B
@ 3.0000: DIMENSION B(5)
@ 4.0000:****
@ 5.0000: DO 10 I=1,5
@ 6.0000: B(I)=A(I)+I
@ 7.0000:10 A(I)=I
@ 8.0000: WRITE (2,11) A
@ 9.0000:11 FORMAT (’ **’,5F5.2)
@ 10.0000: CALL SUB(A(1))
@ 11.0000: END
@ 12.0000: SUBROUTINE SUB(X)
@ 13.0000: Y=X*X
@ 14.0000: END
@ 15. :@D7 (20)
FOR1: 1 LINE(S) DELETED

@ 15. :@CON
@ 11.0000: END
SEVERE UNTERMINATED DO-BLOCK CLOSED BY LABELED CONTINUE

@ 11. :@RES (21)
FOR1: RECOMPILATION OF ACTUAL P.U. INITIATED USING ORIGINAL SOURCE
FOR1: NEW PROGRAM UNIT - GIVE COMMAND OR @HELP @M8-9TO13.9 (22)
FOR1: MOVE-LIST TARGET RANGE OVERLAPS EXISTING LINES - OVERWRITE? (Y/N) N

N
FOR1: 0 LINE(S) MOVED

@ 15. :@M8-9T13.5
FOR1: 2 LINE(S) MOVED

@ 13.7 :@P13-14
@ 13.0000: Y=X*X
@ 13.5000: WRITE (2,11) A
@ 13.6000:11 FORMAT (’ **’,5F5.2)
@ 14.0000: END
@ 13.7 :@CON
FOR1: NO ERRORS DURING COMPILATION OF P.U. DIALOG
FOR1: WS FILE CREATED = WS.X1
FOR1: NO ERRORS DURING COMPILATION OF P.U. SUB
END OF F O R 1 COMPILATION; CPU TIME USED: 0.613 SEC. (23)

U577-J-Z125-7-7600 113

Example Interactive Analysis

Explanation of example:

(01) Start of Interactive Analysis; options: DIALOG, OUTPUT, LISTFILE; English error
messages are requested; command prefix @.

(02) Request for entry. The following program is entered directly from the terminal.

(03) An error is marked in line 3. The message text is displayed.

(04) Error correction: reentry.

(05) Two chained FORTRAN statements. The compiler resolves them into two sepa-
rate statements; see current line numbers 5 and 7.

(06) This is a result of the error in statement line 5.

(07) PRINT command.

(08) The current line number remains 7.

(09) Direct overwriting of line 5 in the output area; implicit step width 0.0001 as
shown by the next line number.

(10) CONTINUE command.

(11) B is interpreted as a statement function name because no dimension is declared.

(12) The INSERT command cannot be abbreviated as I.

(13) A dimension is declared.

(14) RENUMBER command.

(15) DELETE command.

(16) Program entry can be continued.

(17) End of entry. The program is stored in the file WS.X.

(18) Program execution.

(19) Program extension; input file WS.X; work file output to WS.X1. Control is only
required before the first program unit (EDIT operand).

(20) Deletion of line 7 causes an unrecoverable error.

(21) RESTART command; resumption with the state of the file WS.X.

(22) MOVE command with 0.1 as implicit step. Since existing lines would be overwrit-
ten, the command is modified and reentered.

(23) The CONTINUE command terminates this run of Interactive Analysis because
EDIT=FIRST was set - unlike the first Interactive Analysis run. See also (01).

114 U577-J-Z125-7-7600

4 Source program compilation

4.1 Specifying and checking the attributes of the source
program

4.1.1 SDF operand SOURCE-PROPERTIES

START-FOR1-COMPILER

,SOURCE-PROPERTIES = STD / PARAMETER(...)

PARAMETER(...)

COMPILEABLE-COMMENTS = *NONE / <c-string 1..60>
,LINE-END-COMMENTS = *NONE / <c-string 1..10>
,LANGUAGE-STANDARD = FOR1 / ANS77
,IMPLICIT-DECLARATION = YES / NO
,EXPONENT-UNDERFLOW = IGNORED / ERROR
,SOURCE-FORMAT = FIXED / FREE
,SAVE-CONSTANT = *STD / YES / NO
,FORTRAN90-CHECK = YES / NO

The SDF operands and corresponding compiler options are shown in table 2-6.

U577-J-Z125-7-7600 115

Compiler options Source program attributes

4.1.2 Specifying and checking the attributes of the source program by compiler options

4.1.2.1 CCOM option

[*]COMOPT CCOM = ’comment-marks’

All comment lines which have one of these specified characters in column 2 are treated
and compiled as ordinary FORTRAN statements after substitution on columns 1 and 2
by two blanks. Comment marks may consist of up to 60 printable characters of the
EBCDIC set, allowing any characters except blanks.
The option COMOPT CCOM = ’ ’ can be used to delete the defined comment marks.

If compiler option SOURCE-FORMAT=FREE is specified in conjunction with the CCOM
option, an error message will be issued. The option specified last applies.

4.1.2.2 LINEEND option

[*]COMOPT LINEEND = ’end-marks’

Each of the characters specified in "end-marks" assumes the function of an end mark if
encountered in any of the columns 7-72 outside of character and Hollerith constants.
Anything following such a character in the program line is treated as comments by the
compiler.
Up to 10 characters may be defined as end marks in the LINEEND option. The charac-
ters specified in end-marks must be within the EBCDIC character set but outside of the
FORTRAN character set. "%" must not be used either, since it is required for FOR1 com-
pile time statements and debug statements.

Blanks in the LINEEND option are ignored and therefore cannot be used as end marks.
The exclamation mark, question mark or vertical line is permitted, for example.

COMOPT LINEEND = ’ ’ can be used to delete the specified end marks.

If compiler option SOURCE-FORMAT=FREE is specified in conjunction with the
LINEEND option, an error message will be issued. The option specified last applies.

116 U577-J-Z125-7-7600

Source program attributes Compiler options

4.1.2.3 STANDARD-CHECK option

Specification of the STANDARD-CHECK=ANS77 option causes the FORTRAN source
program to be inspected for deviations from the ANS FORTRAN 77 standard.

ANS77
[*]COMOPT ST[AN]D[ARD-CHECK] =

NO

Deviations of the FOR1 language from the ANS-FORTRAN-77 language standard are
output in the form of warning messages. Normally deviations from this standard are not
reported.

To distinguish them from other error messages, these deviation messages are given the
suffix ANS FORTRAN 77 DEVIATION following the error type and error number; cf. for
example:

FA206 ANS FORTRAN 77 DEVIATION: MORE THAN 19
CONTINUATION LINES NOT ALLOWED

If the compiler option MSGLEVEL=ERROR is activated, no messages about deviations
are output.

Restrictions:

If the variable I from statement ASSIGN n TO I appears in statements other than a
FORMAT or GOTO statement, the standard checker does not report this as a deviation
from the ANS FORTRAN 77 standard.

If compiler option SOURCE-FORMAT=FREE is specified in conjunction with the
STANDARD-CHECK=ANS77 option, an error message will be issued. The option speci-
fied last applies.

U577-J-Z125-7-7600 117

Compiler options Source program attributes

Example: STANDARD-CHECK option

The program STDTEST is compiled using COMOPT STD=ANS77. Specification of
COMOPT DIALOG=D or COMOPT LANGUAGE=GERMAN provides German messages
on deviations from the ANS77 standard. These deviations are displayed in the SOURCE
listing and in the DIAGNOSTIC listing.

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = ... TIME = 11:49:53 PAGE 1
PROGRAM UNIT: STDTEST

DO/IF SEG STMT I LINE SOURCE-TEXT COL73-80 RECORD-ID.

* 1 1 1 PROGRAM STDTEST 00010000 *
***** WARNING (FA203) ******* -1- *ANS FORTRAN 77 DEVIATION******

2 C 00010100
1 2 3 INTEGER I,J 00020000

* 1 3 4 REAL A(3,3) , B(3) ,E(3) /3*0./ 00030000 *
***** WARNING (FA249) ******* -1- *ANS FORTRAN 77 DEVIATION******
* 1 4 5 NAMELIST /NAM/ A,B 00040000 *
***** WARNING (FA230) ******* *ANS FORTRAN 77 DEVIATION******
***** WARNING (SA088) ******* *ANS FORTRAN77 DEVIATION*******
* 1 5 6 WRITE *, ’ENTER VALUE FOR ARRAY A(3,3) AND VECTOR B(3)’, 00050000 *
* 1 7 1 ’IN NAMELIST-FORMAT /NAM/’ 00060000 *
***** WARNING (FA259) ******* *ANS FORTRAN 77 DEVIATION******
* 1 6 8 READ (1,NAM) 00070000 *

9 C 00070100
***** WARNING (SA089) ******* *ANS FORTRAN77 DEVIATION*******

2 7 10 DO 100, I=1,3 00080000
1 2 8 11 DO 100, J=1,3 00090000
2 3 9 12 E(I) = A(I,J) * B(J) + E(I) 00100000
2 5 10 13 100 CONTINUE 00110000

14 C 00120000
6 11 15 WRITE (2,’(1X,3E20.4E2)’) E 00130000
6 12 16 STOP 00140000
6 13 17 END 00150000

*** DIAGNOSTIC LISTING *** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = ... TIME = 11:49:53 PAGE 2
PROGRAM UNIT: STDTEST

DO/IF SEG STMT I LINE SOURCE-TEXT COL73-80 RECORD-ID.

* 1 1 1 PROGRAM STDTEST 00010000 *
............. 1 ..

1 WARNING (FA203) ANS FORTRAN 77 DEVIATION: IDENTIFIER TOO LONG
* 1 3 4 REAL A(3,3) , B(3) ,E(3) /3*0./ 00030000 *

................................ 1
1 WARNING (FA249) ANS FORTRAN 77 DEVIATION: INITIALISATION IN TYPE STATEMENTS NOT ALLOWED

* 1 4 5 NAMELIST /NAM/ A,B 00040000 *
WARNING (FA230) ANS FORTRAN 77 DEVIATION: NAMELIST INSTRUCTION NOT STANDARD
WARNING (SA088) ANS FORTRAN77 DEVIATION: NAM IS NML SPECIFIER

* 1 5 6 WRITE *, ’ENTER VALUE FOR ARRAY A(3,3) AND VEKTOR B(3)’, 00050000 *
* 1 7 1 ’IN NAMELIST FORMAT /NAM/’ 00060000 *

WARNING (FA259) ANS FORTRAN 77 DEVIATION: WRITE WITHOUT CONTROL PARAM-LIST IS NOT ALLOWED
* 1 6 8 READ (1,NAM) 00070000 *

WARNING (SA089) ANS FORTRAN77 DEVIATION: NAM IS NML SPECIFIER

118 U577-J-Z125-7-7600

Source program attributes Compiler options

4.1.2.4 IMPLICIT option

[*]COMOPT [NO]IMPLICIT

The NOIMPLICIT option prevents implicit type assignment for FORTRAN variables. An
error message is generated in the event of IMPLICIT statements and undefined varia-
bles.

This does not affect the preset type of intrinsic functions.

4.1.2.5 EXPUNDERFLOW option

[*]COMOPT [NO]EXPUNDERFLOW

This option sets the appropriate program mask for underflow.
This program mask is set once and only once. This option is therefore only effective in
conjunction with a main program and therefore for all subprograms.

With NOEXPUNDERFLOW (default), the program is not interrupted when underflow
occurs. The corresponding item is set to 0.

EXPUNDERFLOW causes the program to be interrupted and an error message to be
issued when underflow occurs.

4.1.2.6 SOURCE-FORMAT option

The SOURCE-FORMAT option is used to define whether FOR1 is to compile a
FORTRAN source program with program lines in columnar format (FIXED), or a free-
form source program (FREE).

FIXED
[*]COMOPT SOURCE-FORMAT =

FREE

FIXED The source program format complies with the rules given for columns in the
FOR1 Reference Manual [21].

FREE The form of the source program is free.

If the compiler options STANDARD-CHECK=ANS77, LINEEND, UPD, CCOM and
DIALOG are specified on the one hand and SOURCE-FORMAT=FREE on the other, an
OPTION error message will be issued. The option specified last applies.

U577-J-Z125-7-7600 119

Compiler options Source program attributes

4.1.2.7 SAVE-CONSTANT option

YES
[*]COMOPT SAVE-CONSTANT=

NO

The SAVE-CONSTANT option can be used to control how constants are transferred to
subprograms.

Default: YES when OPTIMIZE = NO, 0, 1, 2 is specified
NO when OPTIMIZE = 3, 4 is specified

YES If an actual argument is a constant, the address of a copy of this constant is
passed to the subprogram, preventing overwriting of the constants in the sub-
program.

NO No copy is created, rather the address of the constants is transferred. As a
result, the constants can be modified by the subprogram.

Example:

PROGRAM CON
PARAMETER (CONST=7.5)
DO 10 I=1,5
CALL SUB1 (CONST)

10 WRITE *, ’ MAIN PROGRAM: CONST = ’,CONST
END
SUBROUTINE SUB1 (X)
REAL*4 X
X=X+2.5
WRITE *, ’ SUBPROGRAM: X = ’,X
RETURN
END

When SAVE-CONSTANT=YES is specified, the copy of the CONST constant is transfer-
red to the subprogram. The constant is protected against overwriting in the subpro-
gram, since only the copy is overwritten when the value is returned to the main pro-
gram. Each time the loop is passed, the following is displayed:

SUBPROGRAM: X = 0.10000000E+02
MAIN PROGRAM: CONST = 0.75000000E+01

On the other hand when SAVE-CONSTANT=NO is specified, the value modified in the
subprogram is returned to the CONST constant in the main program. The following list
is output:

SUBPROGRAM: X = 0.10000000E+02
MAIN PROGRAM: CONST = 0.10000000E+02
SUBPROGRAM: X = 0.12500000E+02
MAIN PROGRAM: CONST = 0.12500000E+02

120 U577-J-Z125-7-7600

Source program attributes Compiler options

SUBPROGRAM: X = 0.15000000E+02
MAIN PROGRAM: CONST = 0.15000000E+02
SUBPROGRAM: X = 0.17500000E+02
MAIN PROGRAM: CONST = 0.17500000E+02
SUBPROGRAM: X = 0.20000000E+02
MAIN PROGRAM: CONST = 0.20000000E+02

4.1.2.8 FORTRAN90-CHECK option

[*]COMOPT FORTRAN90-CHECK = {YES NO}

Specifying the FORTRAN90-CHECK option causes a FORTRAN source program to be
checked for FOR1 extensions not supported by the Fortran90 compiler. Should such
extensions occur in the source program, warning messages are output. In order to
distinguish these from the other error messages, these deviation messages have the
suffix FORTRAN90 DEVIATION following the error type and error number, cf. for exam-
ple:

FA301 FORTRAN90 DEVIATION: NESTED BOOLEAN IF-STATEMENTS

Since the deviation messages are of the WARNING error level, output is suppressed if
the MSGLEVEL=ERROR option is activated.

A description of the FOR1 extensions that are no longer supported by the Fortran90
compiler is given in section 10.2 which also lists the texts of the corresponding devia-
tion messages.

4.1.2.9 CODE option

EBCDIC EBCDIC
([SOURCE= ISO][,UPD= ISO])

BCD BCD
[*]COMOPT CODE =

EBCDIC
ISO
BCD

This option specifies the code in which the source program and change lines of the
UPDATE file are presented. If no keyword SOURCE or UPDATE is specified, the code
applies both to the source program and to the change lines.

The compiler option CODE has no equivalent SDF operand.

U577-J-Z125-7-7600 121

SDF operand COMPILER-ACTION Object module attributes

4.2 Specifying the attributes of the generated code

4.2.1 SDF operand COMPILER-ACTION

START-FOR1-COMPILER

,COMPILER-ACTION = SYNTAX-CHECK / MODULE-GENERATION(...)

MODULE-GENERATION(...)

SHAREABLE-CODE = NO / YES(...)

YES(...)
OUTPUT-LIBRARY = *MODULE-LIBRARY / <full-filename 1..54>

,MINIMAL-PRECISION = REAL-4(...) / REAL-8(...) / REAL-16(...)

REAL-4(...)
EXTERNAL-DATA = NO / YES

REAL-8(...)
EXTERNAL-DATA = NO / YES

REAL-16(...)
EXTERNAL-DATA = NO / YES

,CONSTANT-PRECISION = AS-NEEDED / REAL-4

,CANCEL-CONDITION = NONE / ERROR / SEVERE-ERROR

,LINKAGE = STD / FOR1-SPECIFIC

The SDF operands and the corresponding compiler options are shown in

table 2-7.

122 U577-J-Z125-7-7600

Object module attributes Compiler options

4.2.2 Specifying the attributes of the generated code by compiler options

4.2.2.1 OBJECT option

Using the OBJECT option it is possible to control whether
object modules are to be generated at all;
if object modules are generated, whether these are stored in the EAM area;
shareable object modules are generated.

NOOBJECT

[*]COMOPT SHARE
OBJECT [= ()]

*

 NOOBJECT
No object modules are generated.

 OBJECT=(SHARE)
Shareable object modules are generated.

(See section 5.8).

OBJECT=(*)
By default object modules are generated and entered in the the temporary
EAM file for the current task. The object modules are added to the modules
already contained in the EAM file. If OBJECT=(*) is explicitly specified and
MODULE-LIBRARY is specified, then the sequence of input is decisive: The
more recently specified storage location overwrites the earlier specification. In
such cases the compiler issues the following warning message:
MA 45 OBJECT OUTPUT CONFLICT

Note

When COMOPT NOOBJECT is specified, no object modules are generated. In this
case therefore the following lists are not generated and can thus not be output:

ESD listing
map listing
XREF listing
attribute listing
object listing

U577-J-Z125-7-7600 123

Compiler options Object module attributes

4.2.2.2 SHARE-LIBRARY option

If shareable object modules have been generated by means of the OBJECT=(SHARE)
option, they can be stored in a separate PLAM library using the SHARE-LIBRARY op-
tion.

*MODULE-LIBRARY
[*]COMOPT SHARE-LIB[RARY] =

plamlib

*MODULE-LIBRARY
Shareable and nonshareable object modules are stored in the same way.
They are output either to the PLAM library specified by the MODULE-
LIBRARY option or, by default, to the temporary EAM file.

plamlib Name of a PLAM library in which the shareable object modules are stored.
The nonshareable object modules are stored in accordance with the specifica-
tions in the MODULE-LIBRARY option. The names of the shareable object
modules are determined in accordance with the same rules as for the
MODULE-LIBRARY option. Maximum length including catalog ID and user ID:
54 characters.

4.2.2.3 REAL option

When compiling a program unit by means of the REAL option it is possible to increase
the precision of the REAL and COMPLEX types of floating-point entries, without chan-
ging the source program. This may be necessary in the event of overflow or underflow,
forced convergence of iterative processes in numerically extreme conditions, when trans-
ferring FORTRAN programs to other systems, and in other instances.

Unparenthesized option

4
[*]COMOPT REAL = 8

16

Where REAL=8, all REAL variables, constants, functions and arrays with a length of 4
are converted to entities with a length of 8; all COMPLEX data with a length of 8 are
converted to entities with a length of 16. REAL*16 and COMPLEX*32 type entities
remain unchanged.
Where REAL=16, all REAL entities have a length of 16, while all COMPLEX entities have
a length of 32.

124 U577-J-Z125-7-7600

Object module attributes Compiler options

Restrictions

Some intrinsic functions (e.g. AMAXO) do not exist in all REAL lengths. If this is the
case the compiler issues a message.
COMMON and EQUIVALENCE will change the order of the elements. The compiler
cannot check for correctness.
If program units compiled with different REAL options are linked, errors may occur
due to the different lengths of arguments and functions. Non-equal arguments in the
called subprogram can be detected by specifying TESTOPT=(ARG,...).

Parenthesized option

(4)
[*]COMOPT REAL = (8)

(16)

In the case of REAL=(8) and REAL=(16) options, as with REAL=8 and REAL=16, the
lengths of constants, variables and arrays are increased.

The following remain unchanged, as compared to the unparenthesized option:

Variables and arrays if they are in COMMON.
Variables and arrays if they are actual or dummy arguments of subprograms
(SUBROUTINEs) or external functions.
External function calls, definitions and function input.
Intrinsic functions if they are stated as actual arguments in a subprogram call.

Special considerations

If intrinsic functions are increased in length, the arguments may possibly remain too
short. If this is the case type conversion is performed at runtime and without any
warning.

Variables or arrays which only become actual arguments of user functions when the
dummy arguments in functions are replaced will not remain short, they are lengthe-
ned (see example 1).

REAL and COMPLEX constants used as actual arguments will always be lengthened.
If they occur as actual arguments, REAL and COMPLEX variables will not be lengthe-
ned. Compound variable REAL and COMPLEX expressions used as actual argu-
ments will however only remain short as long as they do not contain any constants
of the REAL or COMPLEX data types; otherwise they will be lengthened (see exam-
ples 3 and 4). If this is not taken into consideration during program linkage, an erro-
red run can be expected if TESTOPT=(ARG,...) is not specified, or an error mes-
sage if TESTOPT=(ARG,...) is specified.

U577-J-Z125-7-7600 125

Compiler options Object module attributes

Example 1:

REAL*4 F,A,B,X
F(X)=1.+A(X) A(X) is an external function.
B =1.
B =F(B) (inserted) B=1.+A(B) With the REAL=(8) option, B is given

the type REAL*8 and will not remain
REAL*4, since the compiler does not
recognize the undesired length until it
is too late. However A stays at length 4.

Example 2:

REAL*4 F,A,B,X
F(X)=X+A(B)
B =1.
B =F(B) (inserted) B=B+A(B) B keeps the length REAL*4 with the

option REAL=(8).

Example 3:

COMPLEX*8 C,D Option REAL=(8)
CALL FU(C,D+1) Both arguments are of type COMPLEX*8.
CALL FU(C,D+(1,0)) The first argument is of type COMPLEX*8,

the second of type COMPLEX*16.

Example 4:

COMPLEX*8 C,D Option REAL = (8)
CALL FUN(C,D,D+C) All three arguments are of the

COMPLEX*8 type.

4.2.2.4 TRUNCONST option

[*]COMOPT [NO]TRUNCONST

The NOTRUNCONST option is used to internally represent REAL constants without a
REAL exponent consisting of more than 7 valid decimal digits as REAL*8 constants and
those with more than 16 valid decimal digits as REAL*16 constants.

Up to 32 valid decimal digits may be employed. These rules also apply for COMPLEX
constants.

126 U577-J-Z125-7-7600

Object module attributes Compiler options

4.2.2.5 GEN option

GEN

[*]COMOPT E[RROR]
NOGEN [= S[EVERE]]

F[AILURE]

GEN The compiler generates object modules.

NOGEN Without operand value specification: the compiler merely checks for syntax
and semantics; no object modules are generated.
The following listings can neither be generated nor output: ESD listing, MAP
listing, XREF listing, attribute listing and object listing.

With operand value specification: no object modules are generated if an error
of the degree of the GEN option or an error of greater severity occurs.

Note

Here the prefix NO does not denote the complementary set of parameters.

4.2.2.6 LINKAGE option

The LINKAGE option serves to specify the conventions to be used as the basis for con-
figuring the interfaces of the generated modules.

[*]COMOPT LINKAGE = { STD FOR1_SPECIFIC }

LINKAGE = STD
Standardized ILCS interfaces are generated (Inter Language Communication
Services = standard linkage). For further details on the standard linkage con-
cept, see chapter 11.

LINKAGE = FOR1-SPECIFIC
Conventional FOR1-specific interfaces are generated (as with FOR1 versions

 2.1).

Compilation with the (default) value LINKAGE = STD is possible only if the following
are also specified:

PROCEDURE-OPTIMIZATION = NO
NOCOMPATIBLE [={BGFOR | BS3FOR}]

U577-J-Z125-7-7600 127

Compiler options Object module attributes

If incompatible option values are specified, the sequence of input determines which
values are actually used:

If an option is input that is incompatible with a previously entered option, then the value
of the previously entered option will be modified accordingly. Thus, for example, by ent-
ering PROCEDURE-OPTIMIZATION=YES or COMPATIBLE=BGFOR, a previously set
LINKAGE=STD option will be switched to LINKAGE=FOR1-SPECIFIC.

The compiler issues warning messages in such cases:

MA43 LINKAGE=FOR1-SPECIFIC EXPECTED

is output if, prior to entry of the option which is incompatible with LINKAGE=STD,
the LINKAGE option was not explicitly specified, e.g. in the case of:
*COMOPT SOURCE=TEST,COMPATIBLE=BGFOR,END

MA20 ILLEGAL OPTION COMBINATION

is output if, in addition to the option which is incompatible with LINKAGE=STD,
LINKAGE=STD is specified explicitly, e.g. in the case of:
*COMOPT SOURCE=TEST,LINKAGE=STD,COMPATIBLE=BGFOR,END

It may also happen that both messages are output, i.e. when LINKAGE=STD is expli-
citly specified after the corresponding incompatible option, e.g. in the case of:

*COMOPT SOURCE=TEST,COMPATIBLE=BGFOR,LINKAGE=STD,END

Since the compiler evaluates the specified compiler options in linear fashion, on evalua-
tion of this COMOPT statement COMPATIBLE=BGFOR first causes the preset
LINKAGE=STD, which is still in effect at this time, to be changed to LINKAGE=FOR1-
SPECIFIC and MA43 to be output. However, since LINKAGE=STD is subsequently spe-
cified explicitly, LINKAGE=FOR1-SPECIFIC is changed back to LINKAGE=STD,
NOCOMPATIBLE is set and MA20 output.

Note

The option setting PROCEDURE-OPTIMIZATION=STD is the subject of special handling. If
the LINKAGE=STD option is set explicitly, the compiler interprets PROCEDURE-
OPTIMIZATION=STD as PROCEDURE-OPTIMIZATION=NO. This fact is indicated by the
following message:

MA42 PROC-OPT=NO BECAUSE LINK=STD

128 U577-J-Z125-7-7600

Object module attributes Compiler options

4.2.2.7 UNIT option

READ READ
WRITE WRITE

[*]COMOPT UNIT=(= nn [, = nn]...)
PRINT PRINT
PUNCH PUNCH

nn Integer value, 0 nn 99

This option defines assignments between input/output statements and file numbers. If
no file number is specified in the input/output statements of the FORTRAN source pro-
gram, the file numbers specified in the UNIT option are assumed.

There is no SDF operand corresponding to this compiler option.

4.2.2.8 COMPATIBLE option

BGFOR
[*]COMOPT [NO[COMPATIBLE=]]

BS3FOR

The COMPATIBLE option serves to avoid incompatibilities between the FOR1 compiler
and Siemens BGFOR or TR440-BS3-FORTRAN compilers.

COMPATIBLE = BGFOR:

1. OPTION NOTRUNCONST is activated.

2. OPTION PAD is activated.

3. Each DO loop is executed at least once (non-reject loop).

4. BLANK=’ZERO’ is preset for all files.

COMPATIBLE = BS3FOR:

Each DO loop is executed at least once (non-reject loop).

There is no SDF operand corresponding to this compiler option.

Notes

Here the prefix NO does not denote the complementary set of parameters.

COMOPT COMPATIBLE and COMOPT LINKAGE=STD are incompatible (see
4.2.2.6).

U577-J-Z125-7-7600 129

Compiler options Object module attributes

4.2.2.9 SUPPLIEDBOUND option

[*]COMOPT [NO]SUPPLIEDBOUND

The SUPPLIEDBOUND option causes the dimensional entry "1" of a one-dimensional
array to be interpreted as "*" in subprograms. This does not apply to arrays which have
been declared as COMMON areas.

There is no SDF operand corresponding to this compiler option.

4.2.2.10 PAD option

[*]COMOPT [NO]PAD

When COMOPT PAD is specified, input records which are too short to satisfy the condi-
tion specified in the program are filled with blanks. The COMPATIBLE=BGFOR option
implicitly activates the PAD option, unless NOPAD has been specified explicitly.

There is no SDF operand corresponding to this compiler option. When the SDF com-
mand START-FOR1-COMPILER is used, PAD is the default. If LANGUAGE-
STANDARD=ANS77, NOPAD is set.

Example:

.

.

.
CHARACTER RECORD*100
READ (10,FMT=’(A100)’) RECORD
.
.
.

If the input record length is shorter than 100 bytes, an I/O message is issued, as long
as COMOPT PAD has not been specified:

IO3A: RECORD POINTER OUTSIDE I/O BUFFER

130 U577-J-Z125-7-7600

Output location of object module SDF operand MODULE-LIBRARY

4.3 Determining the output location of the generated object
module

4.3.1 SDF operand MODULE-LIBRARY

START-FOR1-COMPILER

,MODULE-LIBRARY = *OMF(...) / <full-filename 1..54>

*OMF(...)

DELETE-OLD-CONTENTS = YES / NO

The SDF operands and the corresponding compiler options are shown in table 2-8.

U577-J-Z125-7-7600 131

MODULE-LIBRARY compiler option Output location of object module

4.3.2 MODULE-LIBRARY compiler option

The object modules generated during a compiler run can be output either to the tempo-
rary EAM file of the current task or to a PLAM library. Object module output can be
controlled by means of the MODULE-LIBRARY option.

*OMF
[*]COMOPT MODULE[-LIBRARY] =

plamlib

*OMF Object modules are output to the temporary EAM file as the default.

plamlib Name of a PLAM library to which the generated object modules are to be
output. If the PLAM library does not yet exist, it will be created. plamlib may
be up to 54 characters in length (length of the fully qualified file name).

Each object module contains, as a type R library element, a name formed
from the names of the program unit:

The element name is the name of the program unit if this name is not lon-
ger than 7 characters.

The element name consists of the first 4 and last 3 characters of the pro-
gram unit name if the latter contains more than 7 characters.

The element name is $PU#nnn, beginning with nnn=000, if a main pro-
gram does not include a PROGRAM statement.

For unnamed BLOCK DATA subprograms, elements are generated with
the names of the COMMON blocks.

If a PLAM library element with an identical name already exists, it is overwrit-
ten, without a message being issued.

132 U577-J-Z125-7-7600

Object modules Structure and names

4.4 Structure and nomenclature of object modules

Object modules are either stored directly in a PLAM library or written to the EAM area.

Object modules are composed of 80-byte records. The records can be subdivided into
five different types:

ESD (external symbol dictionary) records: The ESD records provide information
about the external names that are defined or referred to in the module as well as
about the COMMON areas appearing in the module. The ESD records must be pla-
ced at the beginning of a module.

TXT (text) records:
The TXT records contain the object program text to be loaded, i.e. the memory ima-
ges of the instruction sequences, constants and initial values of data.

RLD (relocation dictionary) records:
The RLD records provide information about the address constants in the module.
These address constants must then be modified by the linkage editor or the dyna-
mic binder loader according to the location of the module.

LSD (list for symbolic debugging) records: The LSD records provide information con-
cerning the symbolic debugging in object modules. This information is necessary for
using the Advanced Interactive Debugger (AID) of BS2000. LSD records are genera-
ted only if the SYMTEST=ALL option or the SDF operand TOOL-SUPPORT=AID is
specified.

END record:
The END record is always generated at the end of an object module.

The format of the records is described in detail in the "System Standards" manual [39].

FOR1 compilation generates one or more control sections (CSECTs) for each program
unit. CSECTs are the smallest entities that can be shifted during linkage.

U577-J-Z125-7-7600 133

Structure and names Object modules

The sections generated by FOR1 are as follows:

• Code and constant section
For each program unit except BLOCK DATA there is exactly one code and constant
section. These contain the instruction sequences generated as well as all user-defi-
ned and compiler-generated constants.

For compilation without COMOPT=(SHARE), one object module with the name
of the program unit (prog) is generated, which also contains the code and con-
stant section (in addition to the data section and, where applicable, COMMON
sections).

For compilation with COMOPT=(SHARE), a separate object module is generated
for the code and constant section. The name of this module is the name of the
program unit, padded with the character "@" to a length of 8 (prog[@]...).

BLOCK DATA program units have no code and constant section.

• Data section
For each program unit there is exactly one data section. It contains all variable data
established by the user or the compiler, and their initial values.

For compilation without COMOPT=(SHARE), one object module with the name
of the program unit is generated, which also contains the data section (in addi-
tion to the code section, constant section and, where applicable, COMMON sec-
tions).

For compilation with COMOPT=(SHARE), a separate object module is generated
for the data section (and, where applicable, COMMON sections), which bears the
name of the program unit.

• COMMON section
For each COMMON block in a program unit or BLOCK DATA program unit, FOR1
generates one COMMON section containing the name of the common block. This
section contains all the data of the COMMON block and initial values.

For compilation without COMOPT=(SHARE), one object module is generated,
which also contains the COMMON sections.

For compilation with COMOPT=(SHARE), the COMMON sections are in the
same module as the data section.

For unnamed BLOCK-DATA program units, a separate module is generated for
each COMMON section.

134 U577-J-Z125-7-7600

Object modules Maintenance

4.5 Object module maintenance

The FOR1 compiler can output object modules directly to PLAM libraries. The name of
the PLAM library is defined in the MODULE-LIBRARY option (see 4.3).

If the MODULE-LIBRARY option is not specified, then the compiler outputs the genera-
ted object modules to the temporary object module file (OMF) in the EAM area. This
file exists only for the duration of the task. However, it is also possible to transfer the
object modules subsequently from the EAM area to PLAM libraries (see example).

LMS

The library management program LMS supports the creation and processing of pro-
gram libraries (PLAM libraries). Source programs, INCLUDE files, UPD files, object
modules, load modules, LLMs and listings, for example, can be managed in program
libraries.

For further information concerning the range of functions see appendix A.10.4. A detai-
led description can be found in the "LMS" manual [25].

Example:

/ASSIGN-SYSDTA TO-FILE=QUELLE.TEST
/START-PROG $FOR1
/ASSIGN-SYSDTA TO-FILE=*PRIMARY (1)
/START-PROG $LMS (2)
$LIB BIBL,USAGE=OUT,STATE=NEW (3)
$ADDR *OMF>ELEM1 (4)
$END (5)

Explanation of example:

(1) Before LMS is called, SYSDTA is returned to the primary assignment.
(2) LMS is called.
(3) The LIB statement is used to assign the name of the new output library.
(4) The ADD statement is used to add the module from the EAM area as an element

ELEM1 of type R to the assigned output library.
(5) The END statement concludes the LMS run.

Library element ELEM1 of library BIBL can be further processed using the static loader
TSOSLNK, the binder BINDER or the dynamic binder loader DBL (see chapter 5).

U577-J-Z125-7-7600 135

SDF operand LISTING Generating listings

4.6 Generating compiler listings

During compilation the compiler (if required) generates a number of listings containing
information about the structure of the source program and object program, information
about compiler errors and information about the process of compilation. By entering
options or SDF operands, the user has the ability to control the output of these listings.
He may decide which of the listings are to be output and where these listings are to be
written. The contents and printer format of the individual listings are described in sec-
tion 4.7; examples of compiler listing are given in Appendix A.6.

4.6.1 Controlling messages and listings: SDF operand LISTING

START-FOR1-COMPILER

,LISTING = STD / NO / PARAMETER(...)

PARAMETER(...)

OPTIONS = YES / NO

,SOURCE = NO / YES(...)

YES(...)
INSERT-ERROR-WEIGHT = NOTE / WARNING / ERROR

,DIAGNOSTICS = NO / YES(...)

YES(...)
MINIMAL-WEIGHT = NOTE / WARNING / ERROR

,DATA-ALLOCATION-MAP = YES / NO

,CROSS-REFERENCE = NO / YES

,EXTERNAL-DICTIONARY = NO / YES

,ASSEMBLER-CODE = NO / YES

,SUMMARY = YES / NO

,OPTIMIZED-SOURCE = NO / YES

Fortsetzung>

136 U577-J-Z125-7-7600

Generating listings SDF operand LISTING

Fortsetzung

,SORTING = BY-PROG-UNIT / BY-LIST-TYPE

,LAYOUT = STD / PARAMETER(...)

PARAMETER(...)
LINES-PER-PAGE = 64 / <integer 20..255>

,PAGE-EJECT-STMT = ACCEPTED / IGNORED
,TEXT-SEPARATOR = ’ ’ / ’!’

,OUTPUT = *SYSLST / <full-filename 1..54> / *STD-FILE /
*LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
LIBRARY = <full-filename 1..54>

,ELEMENT-PREFIX = *NONE / <alphanum-name 1..38> (...)
VERSION = *UPPER-LIMIT / <alphanum-name 1..24>

The SDF operands and the corresponding compiler options are shown in table 2-9.

U577-J-Z125-7-7600 137

Compiler options Generating listings

4.6.2 Controlling messages and listings by compiler options

4.6.2.1 MSGLEVEL option (diagnostic messages and error degree)

N[OTE]|W[ARNING]|E[RROR]

[*]COMOPT MSGLEVEL = (SOURCE={N W E}[,DIAG={N W E}])

(DIAG={N|W|E}[,SOURCE={N|W|E}])

This option controls the output of diagnostic messages in the source listing or diagno-
stic listing as a function of error message levels. Five different degrees of error (severity
classes) may occur:

• N [OTE] Notes provide information, for example information on optimization capabili-
ties, and are not the result of errors in the FORTRAN source program in respect of
the FOR1 language. Since notes do not relate to errors, the user need not make
any changes to the program, since the compiled program will still be executed pro-
perly. Notes are only output in the source or dialog listing if the error degree NOTE
has been specified in the MSGLEVEL option.

• W [ARNING] Warnings point to places in the source program which are correct
from a language point of view, but which generally point to logical errors. For exam-
ple, warnings are issued for data items which are specified but never used, for conti-
nuous loops which may occur, for statements which can never reach execution, etc.
When executing programs for which compile time warnings appear, errors may then
occur or inadvertent responses may be the case. The user should therefore check
to make sure that the indicated places in his or her source program are what was
intended, or otherwise determine whether errors have been made.

• E [RROR] This error category delineates errors in the source program relating to the
FOR1 language. The indicated errors can, however, be corrected by the compiler,
so that statements in which an error is encountered may nevertheless be compiled.
The corrective measures taken by the compiler are displayed in the diagnostic text
(in their complete form). Examples of errors include missing parentheses in arithme-
tic expressions, excessively long data item names, etc.
The corrections performed by the compiler may alter the intended meaning of the
statement. For this reason elimination of the causes of errors is best performed by
the user.

138 U577-J-Z125-7-7600

Generating listings Compiler options

• S [EVERE] Severe errors are reported if the compiler recognizes errors but is un-
able to correct them. The compiler automatically takes action, such as assigning
default values, so that it is able to continue. In the least favorable case, an invalid
FORTRAN statement will be completely replaced by a CONTINUE statement.

• F [AILURE] Failures cause the compilation process to be terminated at once. Failu-
res may be due to compiler errors as well as system errors (e.g. addressing errors).

All diagnostic messages of a severity class identical to or more severe than that speci-
fied in the MSGLEVEL option are output.

MSGLEVEL Possible output message levels

N N, W, E, S, F
W W, E, S, F,
E E, S, F

U577-J-Z125-7-7600 139

Compiler options Generating listings

4.6.2.2 LIST option (selection of listings)

By using the LIST option the user specifies which of the possible listings are to be out-
put to system file SYSLST. The LIST option is also used to select the listings which are
output to the file defined in the LIST-OUTPUT option.

[*]COMOPT [NO]LIST [=([listing-entry] [,...])]

listing-entry:= {ALL MIN OPTIONS SOURCE DIAG ESD MAP XREF
ATR OBJECT DECOMP SUMMARY CHANGE NONE}

Output:

ALL All listings except the decompiler listing
MIN Options listing, diagnostic listing and summary listing
SOURCE Source listing
DIAG Diagnostic listing
ESD ESD listing
MAP Map listing
XREF Cross-reference listing
ATR Attribute listing
OBJECT Object listing
DECOMP Decompiler listing
SUMMARY Summary listing
OPTIONS Options listing
CHANGE Listing of changes (see "Interactive Analysis", section 3.6)
NONE No listings

When more than one LIST option is specified, the last one applies. The order in which
the operands are specified bears no relation to the order in which the listings are out-
put. The relations between PARAMETER command and LIST option/SDF operand
LISTING should be borne in mind, as appropriate. The role of the NO prefix is discus-
sed in section 2.3.1. The decompiler listing is generated only when OPTIMIZATION = 3
| 4 and output only when the operand value DECOMP is specified explicitly. All listings
are therefore output only if LIST=(ALL,DECOMP) is specified.

The following cases can be differentiated:

COMOPT LIST with operand values specified:
The desired listings are output.

COMOPT LIST with no operands specified:
The default operands apply. The SOURCE, DIAG, MAP, SUMMARY and OPTIONS
listings are output (standard listings).

140 U577-J-Z125-7-7600

Generating listings Compiler options

COMOPT LIST=(NONE):
No output of listings.

COMOPT NOLIST with operands specified:
The listings specified by the operands are suppressed; all other are output.

COMOPT NOLIST without operand specification:
The LIST option is deactivated; no output of listings.

With the NOGEN and NOOBJECT compiler options the following listings are not genera-
ted since they are dependent on the generation of the object code and cannot there-
fore be output:

ESD listing
map listing
XREF listing
attribute listing
object listing

Examples:

No LIST option
No listing is output to SYSLST.

COMOPT LIST
Listings corresponding to the defaults are output to SYSLST.

COMOPT LIST = (SOURCE,DIAG)
Source program and diagnostic listing are output to SYSLST.

COMOPT NOLIST=(ATR,OBJECT)
All listings except the attribute and object are output to SYSLST.

COMOPT NOLIST or COMOPT LIST = ()
No listings whatsoever are output to SYSLST.

COMOPT NOLIST = ()
All listings are output to SYSLST.

U577-J-Z125-7-7600 141

Compiler options Generating listings

4.6.2.3 COLLECT option (arrangement of listings)

L[IST]
COLLECT=()

[*]COMOPT L[IST]F[ILE] [,L[IST]]

NOCOLLECT

LIST The listings selected with the aid of the LIST option are collected for all pro-
gram units compiled during a compilation run and subsequently output, arran-
ged by type.

LISTFILE
The listings selected by means of the LISTFILE option are collected for all
program units that are compiled during a compilation run, arranged by type.

NOCOLLECT
The listings are output, arranged by program unit.

The COLLECT option is effective only if the listings are output directly via SYSLST, or
are stored in an ISAM file.

If output is to an ISAM file, the listings which have been output are sorted with the aid
of the ISAM key. If the COLLECT option is set, the following identification for the type
of listing is entered in the first position of the key:

SOURCE 0 XREF 5
DIAG 1 ATR 5
CHANGE 2 OBJECT 6
ESD 3 DECOMP 7
MAP 4 SUMMARY 8

OPTIONS 9

Attribute listings and cross-reference listings (XREF) have the same identification. The
information from the attribute listing is contained in its entirety in the cross-reference
listing. If both listings are requested, only the cross-reference listing will therefore be
output.

142 U577-J-Z125-7-7600

Generating listings Compiler options

4.6.2.4 LIST-OUTPUT option (output location of listings)

The LIST-OUTPUT option can be used to define where listings are output. The type and
composition of the listings is selected using the LIST option. The LIST-OUTPUT option
may not be used at the same time as the LISTFILE option.

If a file with the link name SAVLINK was assigned prior to compilation, the listings are
output to this file, not to the one specified by the LIST-OUTPUT option.

listfilename

*STD[-FILE]

*SYSLST
[*]COMOPT LIST-OUT[PUT] =

[*LIBRARY-ELEMENT]([LIBRARY=]plamlib

prefix
[,[ELEMENT[-PREFIX]=]

*NONE

version
[([VERSION=])]])

*UPPER-LIMIT

listfilename
Name of a cataloged ISAM file to which the listings are to be output. The
ISAM file must have variable-length records with a key length of 8 bytes. The
file listfilename is assigned the linkname SAVLINK, which is canceled after
the completion of the compiler run.

*STD[-FILE]
When *STD-FILE is specified, the listings are output to a file with the name
SAVLST.FOR1.prog[.tsn[.time]].
The file name is structured as follows:

prog Name of the first program unit
tsn four-digit task sequence number
time Starting time of the compiler run in the form: hhmmss

Qualification of the file name using tsn and time takes place only if this is
required for the catalog entry to be unambiguous. The linkname SAVLINK,
which is canceled after the compiler run has been completed, is assigned to
the output file.

*SYSLST
Listings are output to system file SYSLST (default value).

U577-J-Z125-7-7600 143

Compiler options Generating listings

*LIBRARY-ELEMENT
Listings are output to a PLAM library element (of type P).

plamlib Name of the PLAM library. Maximum length including catalog ID
and user ID: 54 characters.

[ELEMENT-PREFIX=]
Partial qualification of element name for emphasizing a selection of
library elements.

prefix String defined by means of partial qualification of the ele-
ment name. prefix may be up to 38 characters in length.

*NONE No partial qualification takes place (default value).

[VERSION=]
Version designation for the library element

version String denoting the version; up to 24 charac-
ters in length.

*UPPER-LIMIT
The generated listings are entered with the
highest possible version designation.

The names given to PLAM library elements are dependent on the way the listings are
sorted as selected by the COLLECT option:

If the listings are arranged by program units (default value), all listings from one
compiler run are stored in one library element having the name prog:

prog When COMOPT OBJECT=(NOSHARE) is specified:
Name of the first program unit or $PU#000 when the name is omitted;

When COMOPT OBJECT=(SHARE) is specified:
Name of the first program unit, padded with the character "@" to
achieve a length of 8, or $PU#000@ when the name is omitted.

If the listings are arranged by type (COLLECT=(LIST) specified), one library element
having the name prog.type is created for each desired listing type:

prog.type
prog is formed as described above, type specifies the type of the listings
contained in the library element.

144 U577-J-Z125-7-7600

Generating listings Compiler options

4.6.2.5 LISTFILE option (output to cataloged file)

The LISTFILE option can be used to control output of log lists to an ISAM file. The
listings to be output can be selected individually.
The LISTFILE option may not be used at the same time as the LIST-OUTPUT option.

listing-entry
[*]COMOPT [NO]LISTFILE [=[listfilename] [([,...])]]

LIST

listfilename
Name of a cataloged ISAM file to which the listings are to be output. The
ISAM file must have variable-length records with a key length of 8 bytes. If
listfilename is omitted or the specified file does not meet the requirements, a
separate file with the standard name

SAVLST.FOR1.prog[.tsn[.time]] is created, where:

prog Name of the first program unit
tsn Four-digit task sequence number
time Starting time of the compilation process in the form hhmmss

In this case, "*STD-FILE" appears in the option list instead of the standard
name.

Qualification of the file name with tsn and time takes place only if this is requi-
red for unambiguity of the catalog entry.

listing-entry:= {ALL|MIN|OPTIONS|SOURCE|DIAG|ESD|MAP|XREF|
ATR|OBJECT|DECOMP|SUMMARY|CHANGE|NONE}

The meaning of the operands is the same as in the LIST option. Specification
of COMOPT LISTFILE=listfilename without operands results in output of
OPTIONS, SOURCE, MAP and SUMMARY listings, and, as required, DIAG, to
the file listfilename. Specification of COMOPT LISTFILE without operands cau-
ses these listings to be output to a file generated by the compiler and with a
standard file name.

If the user has specified COMOPT COLLECT=(LF), the listings are arranged
according to type, on output.

LIST Those listings which are output to SYSLST are also written to the specified
file listfilename.

The generated file can be printed using the following command, for example:

/PRINT-FILE listfilename, FILE-PART=PAR(FROM=9), LAYOUT-CONTR=
PAR(CONTR-CHAR=EBCDIC)

U577-J-Z125-7-7600 145

Compiler options Generating listings

4.6.2.6 LINECNT option (lines per page)

64
[*]COMOPT LINECNT =

number

number Integer value

This option controls the number of lines to be output per page.
The specified number must be greater than 19 and less than 256 (19 < number <
256).

4.6.2.7 EJECT option (form feed)

[*]COMOPT [NO]EJECT

This option controls the way form feed is carried out.

EJECT Each form feed is actually carried out.

NOEJECT
Instead of form feeds between different listings, three separator lines are gene-
rated each time. Form feeds due to %EJECT are ignored.

4.6.2.8 EXPAND option (list of insertions)

[*]COMOPT [NO]EXPAND

This option controls the output of text included in the source program by means of the
%INCLUDE statement (EXPAND mode).

EXPAND
The %EXPAND statements supplied in the source program are interpreted,
the EXPAND mode being activated at the same time as a result.

NOEXPAND
The %EXPAND statements supplied in the source program cease to be effecti-
ve; no %INCLUDE insertions are listed.

146 U577-J-Z125-7-7600

Generating listings Compiler options

4.6.2.9 TEXT-SEPARATOR option (representation of vertical lines)

’|’
[*]COMOPT TEXT-SEPARATOR =

’!’

The option defines how vertical lines are represented in compiler listings.

’|’ Vertical lines in compiler listings are represented by the character "|". In the
German character set, "|" corresponds to the "ö" character.

’!’ Vertical lines in compiler listings are represented by the character "!".

U577-J-Z125-7-7600 147

Compile time statements Generating listings

4.6.3 Controlling the source listing with compile time statements

The print image of the source listing is controlled with the following compile time state-
ments, which are written to the source program. The effectiveness of these %EJECT
and %EXPAND statements depends on the COMOPT EJECT and COMOPT EXPAND
options.

Compile time statements are handled like all other FORTRAN statements. They are only
valid for the program unit in which they are specified.

With respect to FORTRAN statements, compile time statements differ as follows:
they are terminated by comment or blank lines
their keyword may not contain blanks.

4.6.3.1 %EXPAND statement

ON
%EXPAND

OFF

%EXPAND ON
The EXPAND mode is activated, i.e. source program parts inserted by means
of the %INCLUDE statement are included in the source listing generated by
the compiler (source text).

%EXPAND OFF
Switches off the EXPAND mode.

An %EXPAND statement acts on %INCLUDE statements on the same nesting level.
The %EXPAND mode is passed on to deeper nesting levels if no new %EXPAND state-
ment follows.

Example:

PROGRAM A

%EXPAND OFF File B File C File D
%INCLUDE B
%INCLUDE D
END [B1 = B2 [C1 = C2 [%EXPAND OFF

[%EXPAND ON [%INCLUDE D [D1 = D2
[%INCLUDE C

148 U577-J-Z125-7-7600

Generating listings Compile time statements

Result: Compiled Source listing I
program

PROGRAM A PROGRAM A
%EXPAND OFF %EXPAND OFF
%INCLUDE B %INCLUDE B
B1 = B2
%EXPAND ON
%INCLUDE C
C1 = C2 C1 = C2 2
%INCLUDE D %INCLUDE D 2
%EXPAND OFF %EXPAND OFF 3
D1 = D2 D1 = D2 3
%INCLUDE D %INCLUDE D
%EXPAND OFF
D1 = D2
END END

I:INCLUDE level

4.6.3.2 %EJECT statement

%EJECT

Under the EJECT option this statement produces a form feed in the source program
listing.

4.6.3.3 %SPACE statement

%SPACE n

n Integer value: 0 n 255

This statement causes n blank lines to be inserted in the source listing. However only
the number of blank lines which still fit into the same page will be inserted. Blank lines
are printed in the source listing only if CONTROL-CHARACTER=EBCDIC is specified in
the PRINT-FILE command.

U577-J-Z125-7-7600 149

Compile time statements Generating listings

4.6.3.4 %TITLE statement

%TITLE [’text’]

This statement has the same effect as %EJECT. In addition, the specified text is printed
in the header line of each subsequent page in the source listing of the same program
unit. The maximum length of the text is 55 characters. If an apostrophe is to be contai-
ned within the text, two apostrophes must be written.

If a %TITLE statement is contained within the first n lines of a source program ((n: 64
or a number of lines defined in the LINECNT option), text is printed on the first page of
the source listing and no form feed is carried out.

150 U577-J-Z125-7-7600

Description of listings

4.7 Description of compiler listings

This section defines the contents and print image of the listings generated by LIST and
LISTFILE. The specified listings refer to the same compilation process.

Listing header

Two header lines are written at the beginning of each page for all listings:

The first line specifies the type of listing, a title, the date and time when compilation
started, as well as a consecutive page number. For the source listing, the predefi-
ned standard title "SIEMENS-NIXDORF FORTRAN COMPILER FOR1 Vn.nn" may be
replaced by a user-supplied title specified in the %TITLE statement of the FORTRAN
source program.

The second line indicates the name of the program unit to which the listing refers.
The date is output in ISO format (yyyy-mm-dd).

4.7.1 Options listing

Output of this listing is effected by supplying the operand value OPTIONS in the LIST
or LISTFILE option.

By default the options listing is output to SYSLST. The options listing consists of three
parts:

Task environment
List of specified options (options file)
List of options in effect

See Appendix A.6.10 for an example of an options listing.

Only the operand values defined by COMOPTs appear in the options listing, even if
other operand values are in effect as the result of % statements (%INCLUDE,
%FPOOL).

"Task environment" displays, besides other information, the task sequence number
(TSN) of the task.
This 4-digit number is assigned to a task at the LOGON command and remains effec-
tive until the LOGOFF command. The TSN is part of the name generated for a file by
the compiler if there is no user-specified file name.

"Options file" also includes messages about invalid options.

U577-J-Z125-7-7600 151

Description of listings

In the list of "options in effect", those options for which the user supplied no entries or
only invalid entries, and which therefore are governed by the predefined default values,
are marked with D (default). A "P" denotes options which have been activated by the
PARAM command (see A.4).

The options listing appears at the end of the complete listing.

4.7.2 Source listing

Output of the source listing is achieved by supplying the operand value SOURCE in the
LIST or LISTFILE option.

Standard output of this listing is to SYSLST. Sections A.6.1 and A.6.2 show source
listings).

Entries in the columns of the source listing have the meaning shown below. If a given
line has no entry in a particular column, the last preceding entry in that column applies.

Column Meaning

DO/IF Nesting depth of the DO loops (except implicit DO) and of BLOCK IF

SEG Number of the highest segment reached in the FORTRAN statement.
A segment refers to the greatest possible sequence of statements that
all have the same entry point. In program execution, all statements of
a given segment are processed sequentially. The segments of a com-
piled program are numbered consecutively, beginning with 1. An I/O
statement with implicit DO may comprise several segments.

As parts of statements may be shifted in the course of loop optimiza-
tion, it is possible for a statement to move to another segment or to
be distributed among two or more segments (see section 9.5.5). In
this case, the source listing does not indicate any of the segment
numbers moved.
The segment numbers specified serve to interpret the results of the
debug statement %COUNT (see 7.4.7). If the compiler option
OPT={3|4} or SOURCE-FORMAT=FREE is specified, no segment
numbers are displayed.

STMT Consecutive number of the FORTRAN statement counted for each
program unit, starting with 1 (no source program line).

152 U577-J-Z125-7-7600

Description of listings

I/H Nesting depth / hierarchical level

I Nesting depth of the text parts inserted by means of the
%INCLUDE statement.

H Hierarchical level of the PLAM-INCLUDE item. H refers to the
order of PLAM libraries as specified in the INCLUDE option.

Thus, for example, 1/3 designates the PLAM library specified in the
third position of the INCLUDE option. The INCLUDE item has a ne-
sting depth of 1.

LINE Consecutive line number, counted for the entire compilation, starting
with 1. For text parts inserted by the %INCLUDE statement, line num-
bering restarts separately from 1.
Thus the line numbers are usually the same as the serial numbers in
the corresponding library elements, which makes changes and correc-
tions easier.

Exceptions to this are source programs that are modified temporarily
(following the first modified line) and elements inserted by the
%INCLUDE statement if text substitutions cause continuation lines to
be generated (from the first continuation line generated onwards).

RECORD-ID. Key of the ISAM records if the source program was read from an
ISAM file.

Message in the event of an error

During compilation, the compiler may generate diagnostic messages, which appear on
the source listing (messages about invalid options are issued on the options listing).
Diagnostic messages, while immediately following the lines they are associated with, are
designed so as not to disturb the listing image of the actual source program text. The
statements concerned are marked by an asterisk in both margins of the page. If a diag-
nostic message relates to a particular column position in the statement, that column will
be marked in the diagnostic message. This marking is also a numbering of the diagno-
stic messages for a statement. Diagnostic messages that do not relate to a particular
statement column position are written at the end of the messages for that statement.

In the left margin the message level is displayed and an error number issued.

In the right margin a short diagnostic text is output, which usually suffices for correc-
tion.

U577-J-Z125-7-7600 153

Description of listings

The action taken by the compiler as a result of the diagnostics is documented in the
full message text in the diagnostic listing.

The MSGLEVEL option may be used to determine the message level (severity class)
from which messages are to appear in the source listing.

4.7.3 Diagnostic listing

Diagnostic listing output is achieved by supplying the parameter value DIAG in the LIST
or LISTFILE option.

Standard diagnostic listing output is to SYSLST. The diagnostic listing displays the mes-
sages about invalid options as well as all messages generated during source program
compilation.

Appendix A.6.1 shows a diagnostic listing.

The statements to which the messages relate are shown in the diagnostic listing in the
same form as in the source listing. In addition to the diagnostics, the corrective action
taken by the compiler is listed in the diagnostic listing.

If a message relates to a specific column in a source program line, then the column
position will be marked by a number in the line beneath. If several messages relate to
the same column of a source program line, then this column position will be marked
only once, with the number corresponding to the first of these messages.

4.7.4 Listing of external names (ESD LISTING)

Output of this listing is achieved by supplying the operand value ESD in the LIST or
LISTFILE option.

Standard output of this listing is to SYSLST. If COMOPT NOGEN or COMOPT
NOOBJECT is set, no ESD listing can be produced since it is dependent on the genera-
tion of the object code.

This listing provides information about the external (linkable) names of the program unit.
The names establish the connection between the program unit and other program units,
runtime routines and external procedures. The ESD information which is output corre-
sponds to the ESD records which are generated in the course of compilation.

Appendix A.6.4 shows an ESD listing.

154 U577-J-Z125-7-7600

Description of listings

The columns of the ESD listing have the following meanings:

Column Meaning

IDENTIFIER External name.
This name may either be defined by the user, e.g. in an EXTERNAL
statement; or the name may be generated by the compiler, e.g. the
name of the data section for the program unit; or it may be predefi-
ned, e.g. the entry point in a predefined function.
If a user-defined name is more than 7 characters in length, it is trunca-
ted to 7 characters for the appropriate ESD record, by using only the
first 4 and the last 3 characters. The listing will show the abridged
name. It is the responsibility of the user to make sure that this trunca-
tion will not create duplicate names. Within the program unit, howe-
ver, the complete name applies.

ESID Number of the external name.
The external names are numbered consecutively for each module,
starting with 1.

TYPE Type of the external name.
There are four types of external names:

SD Section definitions.
These relate to the names of the control sections (CSECTS) of
the program units. The nomenclature for the generated control
sections is described in section 4.4.

CM Names of COMMON blocks external to BLOCK DATA program
units (COMMON block requests).
In the case of an unnamed COMMON block, 8 blank charac-
ters are assumed as a name.

VC V constants, external names that point to code sections and
code entry points of other programs. Used for calling subpro-
grams.

LD Entry points (label definition); i.e. external names defined in the
program entry (ENTRY statement).

At link-edit time, an attempt is made to associate each request of an
external definition (V constant, COMMON block request) with an exi-
sting definition of an external name (section definition, entry point).

U577-J-Z125-7-7600 155

Description of listings

DISPL Displacement from the beginning of the module, for external name
definition. This displacement is specified in bytes in hexadecimal nota-
tion.
When external definitions are requested, the displacement shown from
the beginning of the module is that of the positions in which the
address of the requested COMMON block or subprogram is stored
(address constant).

LENGTH Length of a section or a COMMON block, hexadecimal in bytes. No
length entry appears for V-constants and entry points.

4.7.5 Map listing

Output of the map listing is achieved by specifying the operand value MAP in the LIST
or LISTFILE option. Standard map listing output is to SYSLST. If COMOPT NOGEN or
COMOPT NOOBJECT is set, no map listing can be produced since it is dependent on
the generation of the object code.

Information about the arrangement of the data items used in the program unit is output
to the map listing under the headings SYMBOL, TYPE and ADR. The map listing is sub-
divided according to the sections which are generated for the program unit (CODE +
CONSTANTS SECTION, LOCAL DATA SECTION, COMMON DATA SECTION). Appendix
A.6.5 shows a map listing.

For the code and constants section, it provides information on the occurrence of state-
ment labels. For statement labels that occur in assigned or computed GOTOs as well
as for invoked functions and subprograms, the listing also describes the addresses in
which the addresses of these items are stored. For the data section, the listing contains
information about the data in that program unit as well as, for arrays and CHARACTER
variables, the associated descriptors.

For the COMMON section, the listing only contains information about the data and
about the descriptors of dynamic arrays in the COMMON area. The information about
the associated descriptors is provided in the data section.

There are two forms of map listing output:
sorted in alphabetical order
sorted according to ascending displacement of items from the beginning of the
module.

156 U577-J-Z125-7-7600

Description of listings

The map listing columns have the following meanings:

Column Meaning

SYMBOL Name of the described item
Descriptors are marked by an appended .D; addresses, by an appen-
ded .A.

TYPE Attributes of the items described.

ADR Displacement of the items described, from the beginning of the modu-
le, hexadecimal in bytes.

U577-J-Z125-7-7600 157

Description of listings

4.7.6 Cross-reference listing

Output of this listing is achieved by specifying the operand value XREF in the LIST or
LISTFILE option. It is not output by default. If COMOPT NOGEN or COMOPT
NOOBJECT is set, no cross-reference listing can be produced since it is dependent on
the generation of the object code.

Appendix A.6.6 shows a cross-reference listing.

The XREF listing provides information about attributes and references for all symbolic
names and statement labels which occur in the program unit. Under IDENTIFIER, na-
mes are entered in succession:

symbolic names, sorted in alphabetical order
statement labels, sorted in ascending order.

Further entries are provided for each name under the following columns:

Column Meaning

DISPL Displacement of the items described from the beginning of the modu-
le, hexadecimal in bytes.

DESCR Displacement of the descriptors and addresses from the beginning of
the module, hexadecimal in bytes.

SPEC Statement number where the name was declared. "*" means that the
name was not declared explicitly.

ATTRIBUTES 1. Attributes of the name
AND 2. Listing of statement numbers where the name occurs.
REFERENCES Some numbers are preceded by marks as follows:

"/" indicates that the name is declared there; there are three
types of declarations (type statement, DIMENSION statement,
COMMON statement).

"=" indicates that the value of the variable may change during
program execution (by assignment, actual argument, I/O
listing, etc.).
Accordingly, multiple marks preceding the same statement
number indicate multiple value assignments within one state-
ment.

If the same statement label has both marked and unmarked ent-
ries, then the unmarked ones are shown first.

158 U577-J-Z125-7-7600

Description of listings

4.7.7 Attribute listing

Output of this listing is achieved by specifying the operand value ATR in the LIST or
LISTFILE option. It is not output by default. If COMOPT NOGEN or COMOPT
NOOBJECT is set, no attribute listing can be produced since it is dependent on the
generation of the object code.

The information from the attribute listing is contained in its entirety in the cross-refe-
rence listing. Therefore, when both listings are requested, only the XREF listing is out-
put.

4.7.8 Object listing

This listing is not output by default.

Output of this listing is achieved by supplying the operand value OBJECT in the LIST or
LISTFILE option.

If the NOGEN or NOOBJECT option is in effect, no object program text is generated
and, consequently, no object listing can be output.

In the object listing, the compiler-generated object program text for the code and con-
stant section is shown in the form of an assembly listing. Since a BLOCKDATA program
unit does not contain a code and constant section, there is no object listing output for
a BLOCKDATA program unit.

Appendix A.6.7 shows an object listing.

The layout of the object listing is the same as that of the listings generated by the
assembler.

The columns of the object listing have the following meanings:

Column Meaning

FLG Flag of the instruction sequences generated for an invalid FORTRAN
statement. In this case an asterisk appears on the comment line, indi-
cating the beginning of an instruction sequence for a FORTRAN state-
ment.

DISPL Displacement from the beginning of the module, hexadecimal in
bytes.

OPERATION Object program text in hexadecimal form.

U577-J-Z125-7-7600 159

Description of listings

ADDR1,ADDR2 Addresses used in the instructions. These addresses are the contents
of the base registers added to the displacement. They indicate the
displacement from the beginning of the module and thus correspond
to the entries in the DISPL column.

STMNT Instruction numbering.

ASSEMBLY Generated assembly code.
CODE The numbers that occur here are decimal.

SYMB.ADDR1, Names used in the FORTRAN source program. For constants,
SYMB.ADDR2 the edited value is output. The form of this output depends on the

type of constant.
Since the output for a given instruction does not exceed the line
boundary, constants of greater length may be truncated.
The entities generated by the compiler are in the following form:

%Tnnnnnnnn Temporary auxiliary variable
nnnnnnnn Hexadecimal digits

%Vnn Compiler variable
nn Decimal digits

%Lnnnnn Internal statement label
nnnnn Decimal digits

%Inn Iteration counter for DO loops
nn Decimal digits

The statement labels of the FORTRAN source program also appear in
the assembly code; they are marked by the preceding character #.
In the event of transfer of control to another module, the module
name is shown with the load instruction of the appropriate address.

In addition, comment lines are included in the assembly code. These comment lines are
placed at the beginning of segments and FORTRAN statements, as well as at the begin-
ning of what is referred to as code "slices" (SLICE no.), i.e. code areas with a fixed posi-
tion of the code base register. Comment lines at the beginning of a statement indicate
the type of statement and the corresponding FORTRAN statement from the FORTRAN
source program. For statements shifted in the course of optimization, the type of state-
ment is given as MOVED STMT.

160 U577-J-Z125-7-7600

Description of listings

4.7.9 Decompiler listing

Output of this listing is only achieved by explicitly specifying the DECOMP operand in
the LIST or LISTFILE option. When specifying (ALL) in the LIST or LISTFILE option, the
decompiler listing is not displayed. A prerequisite for output of the decompiler listing ist
that OPT=3 or 4 has been specified.

The optimization results in changes to the code (see chapter 9), so that reference to
the source program can no longer readily be made when debugging with interactive
debugging aids. As the result of optimization, the order of statements may be changed,
for example; a statement can be split up into several statements or can be completely
omitted. Clear-defined tracing of execution or setting of test points on the basis of the
source program is therefore no longer possible.

Updates as a result of optimization (OPTIMIZE=3 or 4) can be displayed in the decom-
piler listing, since the decompiler listing is created from information which contains the
code generation of the optimization. The decompiler listing provides a high-level descrip-
tion of the object code, which facilitates debugging of an optimized program (which
actually cannot be further debugged). When variables are loaded to registers or whe-
ther or not register contents are saved, and when they will be saved, can, however,
only be traced with certainty with the aid of the object listing.

Compared to the original source program, the decompiler listing offers a number of spe-
cial features:

1. The decompiler listing contains not only statements from the original source pro-
gram, but also variables and auxiliary variables which the compiler stores internally.
To distinguish them from FORTRAN source

program variables, the names of the internal variables begin with a "%" character:

%Tnnnnnnnn Temporary auxiliary variable
nnnnnnnn Hexadecimal digits

%Vnn Compiler variable
nn Decimal digits

%Inn Iteration counter for DO loops
nn Decimal digits

These internal variables are listed under the same names in the object listing.

In addition to internal variables, internal statement labels also occur in the decompi-
ler listings:

Lnnnnn internal statement label
nnnnn decimal number, up to 5 digits in length

In the object listing, an internal statement label is displayed in the form %Lnnnnn.

No LSD information is generated for the internal variables and auxiliary variables.

U577-J-Z125-7-7600 161

Description of listings

2. All arrays with the exception of dynamic arrays are declared as one-dimensional
arrays in the decompiler listing. The upper and lower bounds of the array are defi-
ned relative to the imagined address of A(0,0,...,0) (see section 9.3.4) and displayed
in the decompiler listing.

3. For all arrays, addressing of an array element takes place as if the array was a one-
dimensional array. In the decompiler listing, addressing is not represented via the
subscript of an array element, rather via addressing in bytes, divided by length of
the data type.

In the case of constant subscripts and constant array element sizes, the result of
this division is displayed in the decompiler listing. (The division is not performed in
object code because only byte addressing is used on object code level.)

4. During optimization, common subexpressions (array multipliers) are created as the
result of subscript expansion (see 9.3.4). In the case of arrays with variable bounds
as dummy arguments and in the case of dynamic arrays, the array multipliers are
not yet known at compilation time. The array multipliers, which cannot be calculated
until runtime, are displayed in the decompiler listing in the following form:

%array02, %array03, ... , %arrayn
array multipliers of the array named "array"

array Name of a dynamic array or of a formal array
with variable bound

n Dimension of the array named "array"

5. EQUIVALENCE and DATA statements as well as BLOCKDATA subprograms are not
decompiled, i.e. the decompiler listing does not contain these statements.

6. Input/output statements are not decompiled into READ or WRITE statements; in-
stead the corresponding runtime routine calls are displayed.

7. Machine-dependent optimizations, i.e. register allocations (maintenance of frequently
used variables in registers) are not displayed in the decompiler listing.

162 U577-J-Z125-7-7600

Description of listings

Examples

Example 1: Declaration of arrays

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER ...
PROGRAM UNIT: SAMPLE

DO/IF SEG STMT I/H LINE SOURCE-TEXT

* 1/1 1 1 PROGRAM SAMPLE
1 2 2 INTEGER * 4 DYNARRAY(:,:)
1 3 * ,ARRAY(-1:1,-2:2)
1 3 4 END

*** DECOMPILER LISTING *** SIEMENS-NIXDORF FORTRAN COMPILER ...
PROGRAM UNIT: SAMPLE

STMT DECOMPILED TEXT

1 SAMPLE PROGRAM
1 ABNORMAL
1 INTEGER * 4 DYNARRAY (:,:)

* *** DECLARATION OF ARRAY MULTIPLIERS ***
1 INTEGER * 4 %DYNARRAY02

* *** END OF ARRAY MULTIPLIER DECLARATION ***
1 INTEGER * 4 ARRAY (-7:7)

***** STATEMENT 3 (END) ****************
3 END

For the dynamic array DYNARRAY(:,:), the array multiplier %DYNARRAY02 is created.
ARRAY(-1:1,-2:2) is displayed in the decompiler listing as a one-dimensional array.

U577-J-Z125-7-7600 163

Description of listings

Example 2: Arrays in subprograms

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER ...
PROGRAM UNIT: SUBARR

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1/1 1 1 SUBROUTINE SUBARR (ARR1, ARR2, ARR3)
1 2 2 INTEGER * 4 ARR1(-5:5,M,N)
1 3 * ,ARR3(0:10,0:N)
1 3 4 INTEGER * 2 ARR2(0:10,0:*)
1 4 5 COMMON M,N
1 5 6 ARR1(1,1,1) = 5
1 6 7 ARR2(I,J) = 5
1 7 8 END

*** DECOMPILER LISTING *** SIEMENS-NIXDORF FORTRAN COMPILER ...
PROGRAM UNIT: SUBARR

STMT DECOMPILED TEXT

1 SUBROUTINE SUBARR (/ARR1 /,/ARR2 /,/ARR3 /)
1 ABNORMAL
1 INTEGER * 4 M
1 INTEGER * 4 N
1 INTEGER * 4 I
1 INTEGER * 4 J
1 COMMON / / M, N

* *** DECLARATION OF AUXILIARY VARIABLES ***
1 INTEGER * 4 %T00010000
1 INTEGER * 4 %T00010044
1 INTEGER * 4 %T000100CC
1 INTEGER * 4 %T00010110
1 INTEGER * 4 %T00010154

***** STATEMENT 2 (DIMENSION) **********
2 INTEGER * 4 ARR1(-5+

. (11)+

. (11*(M)) :

. 5+(11)*(M)+

. (11*(M))*(N))
* *** DECLARATION OF ARRAY MULTIPLIERS ***

2 INTEGER * 4 %ARR103
2 %ARR103 = 11*(M)

* *** END OF ARRAY MULTIPLIER DECLARATION ***
***** STATEMENT 2 (DIMENSION) **********

2 INTEGER * 4 ARR3(0+0 :
. 10+(11)*(N))

***** STATEMENT 3 (DIMENSION) **********
3 INTEGER * 2 ARR2(*)

***** STATEMENT 1 (ENTRY) **************
***** STATEMENT 5 (ASSIGNMENT) *********

5 %T00010000=11+%ARR103
5 %T00010044=%T00010000*4
5 ARR1((4+%T00010044)/4)=5

***** STATEMENT 6 (ASSIGNMENT) *********
6 %T000100CC=J*11
6 %T00010110=I+%T000100CC
6 %T00010154=%T00010110*2
6 ARR2(%T00010154/2)=5

***** STATEMENT 7 (END) ****************
7 END

ARR1(-5:5,M,N) is a formal array with variable bounds. ARR1 is declared as a one-
dimensional array, whereby the lower and upper bounds are displayed as follows (see
also section 9.3.4):

As=A0 + l(s1*m0 + ... + sn*mn-1)

164 U577-J-Z125-7-7600

Description of listings

The bounds are represented relative to A0:

ARR1(u1*m0 ARR1(-5*1
+u2*m1 +1*11
+u3*m2) : corresponds to +1* (11*M)) :
(o1*m0 (5*1
+o2*m1 +M*11
+o3*m2) +N*(11*M))

Expression 11*M appears here repeatedly and is used as array multiplier %ARR103.

For ARR3, the bounds are calculated as follows:

(u1*m0 + u2*m1 : o1*m0 + o2*m1) = (0 + 0 : (10*1) + (N*11))

Addressing of array element ARR1 is accomplished with the aid of temporary auxiliary
variables and with the aid of array multiplier %ARR103 = 11*M. The address of array
element ARR1(1,1,1) relative to the imagined address A0 is:

l(s1*m0 + s2*m1 + s3*m2) = 4*(1*1 + 1*11 + 1*11*M)

%T00010000 = 11 + (11*M) results in ARR1(4 + %T00010044) = 5.
Subscript list value expression "4+%T00010044" refers to addressing in bytes, so that
this value must be divided by array element size 4, to obtain the subscript list value:
ARR1((4+%T00010044)/4) = 5. ARR2(I*1+J*11) is determined following the same pro-
cedure as for ARR2(I,J). The auxiliary variable is multiplied by 2, according to the length
of the INTEGER 2 variable and then divided again to obtain the subscript list value.

U577-J-Z125-7-7600 165

Description of listings

Example 3: CHARACTER variables

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER ...
PROGRAM UNIT: CHAR

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1/1 1 1 SUBROUTINE CHAR (CHAR1, CHAR2, CHAR3)
1 2 2 CHARACTER * (*) CHAR1
1 3 3 CHARACTER * (*,V) CHAR2
1 4 4 CHARACTER * (N) CHAR3
1 5 5 COMMON N, M
1 6
1 6 7 CHAR1(:) = CHAR2(:M)
1 7 8 CHAR3(M:) = CHAR1(M-1:M+3)
1 8 9 END

*** DECOMPILER LISTING *** SIEMENS-NIXDORF FORTRAN COMPILER ...
PROGRAM UNIT: CHAR

STMT DECOMPILED TEXT

1 SUBROUTINE CHAR (/CHAR1 /,/CHAR2 /,/CHAR3 /)
1 ABNORMAL
1 CHARACTER* (*) CHAR1
1 CHARACTER*(* ,V) CHAR2
1 INTEGER * 4 N
1 INTEGER * 4 M
1 COMMON / / N, M

* *** DECLARATION OF AUXILIARY VARIABLES ***
1 INTEGER * 4 %T00010000
1 INTEGER * 4 %T00010044
1 INTEGER * 4 %T00010088
1 INTEGER * 4 %T000100CC
1 INTEGER * 4 %T00010110
1 INTEGER * 4 %T00010154
1 INTEGER * 4 %T00010198
1 INTEGER * 4 %T000101DC

***** STATEMENT 4 (CHAR) ***************
4 CHARACTER*(N) CHAR3

***** STATEMENT 1 (ENTRY) **************
***** STATEMENT 6 (ASSIGNMENT) *********

6 CHAR1=CHAR2(:M)
***** STATEMENT 7 (ASSIGNMENT) *********

7 %T00010110=M-1
7 %T00010154=M+3
7 CHAR3(M:)=CHAR1(%T00010110:%T00010154)

***** STATEMENT 8 (END) ****************
8 END

The temporary variables listed here are required for subchain processing. The initial and
final positions of the subchain are replaced by temporary auxiliary variables.

166 U577-J-Z125-7-7600

Description of listings

Example 4: Output statements

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00
PROGRAM UNIT: IO

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1/1 1 1 SUBROUTINE IO (IAR)
1 2 2 INTEGER * 4 IAR(10),
1 3 * INCREMENT
1 3 4 N = 2
1 4 5 WRITE(10,FMT=99) N
3 5 6 WRITE(2,FMT=’(I4)’) (IAR(J),J=1,10)
3 6 7 RETURN
3 7 8 99 FORMAT(I4)
3 8 9 END

*** DECOMPILER LISTING *** SIEMENS-NIXDORF FORTRAN COMPILER ...
PROGRAM UNIT: IO

STMT DECOMPILED TEXT

1 SUBROUTINE IO (/IAR /)
1 ABNORMAL
1 INTEGER * 4 IAR (1:10)
1 INTEGER * 4 INCREMENT
1 INTEGER * 4 N
1 INTEGER * 4 J
1 INTEGER * 4 %I1

* EXTERNAL PROC. REFERENCE IF@XICA
* EXTERNAL PROC. REFERENCE IF@XFCO
* EXTERNAL PROC. REFERENCE IF@XTCA
* *** DECLARATION OF AUXILIARY VARIABLES ***

1 INTEGER * 4 %T00010154
1 INTEGER * 4 %T00010220

***** STATEMENT 1 (ENTRY) **************
***** STATEMENT 3 (ASSIGNMENT) *********

3 N=2
* ******** BEGIN OF I/O - STATEMENT *******
***** STATEMENT 4 (WRITE) **************

4 CALL IF@XICA(’FORMATTED,SEQUENTIAL FILE ,WRITE/ENCODE’,
. UNIT = 10,
. FMT = ’(I4)’)

4 CALL IF@XFCO(N)
4 CALL IF@XTCA

* ******** END OF I/O - STATEMENT *******
* ******** BEGIN OF I/O - STATEMENT *******
***** STATEMENT 5 (WRITE) **************

5 CALL IF@XICA(’FORMATTED,SEQUENTIAL FILE ,WRITE/ENCODE’,
. UNIT = 2,
. FMT = ’(I4)’)

* ******** END OF I/O - STATEMENT *******
***** STATEMENT 5 (MOVED STMT) *********

5 %T00010220=4
5 %I1=10
5 L12 CALL IF@XFCO(IAR((%T00010220)/4))

***** STATEMENT 5 (INCR STMT) **********
5 %T00010220=%T00010220+4
5 %I1 = %I1- 1
5 IF (%I1 .NE. 0) GOTO L12
5 L13 CALL IF@XTCA

***** STATEMENT 6 (RETURN) *************
6 RETURN
6 END

Input/output statements are represented by the corresponding runtime calls. In addi-
tion, the respective parameters of the runtime routines (type, unit, format, etc.) are
listed.

U577-J-Z125-7-7600 167

Description of listings

Example 5: DO loop

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER ...
PROGRAM UNIT: LOOP

DO/IF SEG STMT I/H LINE SOURCE-TEXT

* 1/1 1 1 SUBROUTINE LOOP (N)
1 2 2 INTEGER * 4 IAR(10),
1 3 . INCREMENT
1 3 4 DO 10,I=1,N,INCREMENT

1 3 4 5 10 IAR(I) = 5
3 5 6 END

*** DECOMPILER LISTING *** SIEMENS-NIXDORF FORTRAN COMPILER ...
PROGRAM UNIT: LOOP

STMT DECOMPILED TEXT

1 SUBROUTINE LOOP (N)
1 ABNORMAL
1 INTEGER * 4 N
1 INTEGER * 4 IAR (1:10)
1 INTEGER * 4 INCREMENT
1 INTEGER * 4 I
1 INTEGER * 4 %I1
1 INTEGER * 4 %V1
1 INTEGER * 4 %V2

* *** DECLARATION OF AUXILIARY VARIABLES ***
1 INTEGER * 4 %T00010000
1 INTEGER * 4 %T00010044

1 INTEGER * 4 %T000100CC
1 INTEGER * 4 %T00010110
1 INTEGER * 4 %T00010154

***** STATEMENT 1 (ENTRY) **************
***** STATEMENT 3 (DO) *****************

3 %T00010000=N-1
3 %T00010044=%T00010000+INCREMENT
3 %I1=%T00010044/INCREMENT (1)
3 IF (%I1 .LE. 0) GO TO L13

***** STATEMENT 4 (MOVED STMT) *********
4 L14 %T00010110=4 (2)
4 %T00010154=INCREMENT*4

***** STATEMENT 4 (ASSIGNMENT) *********
4 L3 CONTINUE (7)
4 10 IAR(%T00010110/4)=5 (3)

***** STATEMENT 4 (INCR STMT) **********
4 %T00010110=%T00010110+%T00010154 (4)

***** STATEMENT 4 (DOEND) **************
4 %I1 = %I1- 1 (5)
4 IF (%I1 .NE. 0) GOTO L3 (6)
4 L15 CONTINUE

***** STATEMENT 5 (END) ****************
5 L13 END

168 U577-J-Z125-7-7600

Description of listings

In the decompiler listing, loop initialization, loop control and loop continuation of an opti-
mized DO loop are evident (cf. chapter 9):

(1) The number of loop passes is calculated as
(final value - begin value + increment) / increment.
This value is determined with the aid of temporary auxiliary variables and iteration
counter %I1.

(2) The initial value and increment of the loop are assigned prior to the loop range
and expressed in the form of bytes.

(3) In the loop range, the DO variable %T00010110 is again divided by the size, in
order to obtain the subscript list value.

(4) The DO variable is increased by the distance between the array elements.
(5) The iteration counter is reduced by 1.

(6) The iteration counter is checked for 0.
(7) If %I1 is not equal to zero, the loop range is passed again.

U577-J-Z125-7-7600 169

Description of listings

Example 6: Optimizations in the loop range

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER ...
PROGRAM UNIT: OPT

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1/1 1 1 PROGRAM OPT
1 2 2 DO 1 I=1,5

1 1 3 3 L=7
1 2 4 4 M=M+N*L
1 2 5 5 K=I*3+L*4
1 4 6 6 1 N=N*7+K

4 7 7 END
*** DECOMPILER LISTING *** SIEMENS-NIXDORF FORTRAN COMPILER ...

PROGRAM UNIT: OPT
STMT DECOMPILED TEXT

1 PROGRAM OPT
1 ABNORMAL
1 INTEGER * 4 I
1 INTEGER * 4 L
1 INTEGER * 4 M
1 INTEGER * 4 N
1 INTEGER * 4 K
1 INTEGER * 4 %I1

* *** DECLARATION OF AUXILIARY VARIABLES ***
1 INTEGER * 4 %T00010000
1 INTEGER * 4 %T00010044
1 INTEGER * 4 %T00010198

***** STATEMENT 2 (DO) *****************
***** STATEMENT 3 (MOVED STMT) *********

3 L=7 (1)
***** STATEMENT 5 (MOVED STMT) *********
***** STATEMENT 5 (MOVED STMT) *********

5 %T00010198=31 (4)
5 %I1=5

***** STATEMENT 3 (ASSIGNMENT) *********
***** STATEMENT 4 (ASSIGNMENT) *********

4 L3 %T00010000=N*7 (2)
4 M=M+%T00010000 (3)

***** STATEMENT 5 (ASSIGNMENT) *********
5 K=%T00010198 (6)

***** STATEMENT 6 (ASSIGNMENT) *********
6 1 N=%T00010000+K (3)

***** STATEMENT 5 (INCR STMT) **********
5 %T00010198=%T00010198+3 (5)

***** STATEMENT 6 (DOEND) **************
6 %I1 = %I1- 1
6 IF (%I1 .NE. 0) GOTO L3

***** STATEMENT 7 (END) ****************
7 L5 END

170 U577-J-Z125-7-7600

Description of listings

In this example (cf. 9.4.1) with OPT=3, continuing optimizations in the loop range are
peformed, which are then displayed in the decompiler listing:

(1) Assignment L=7 is placed in front of the loop range.
(2) L is replaced by the constant 7.
(3) As a result, (N*7) is recognized as a common subexpression of statements 1 and

4 and is replaced by %T00010110.
(4) The begin value of K when I=1 is %T00010198=1*3+28=31.
(5) Multiplication with DO variable I in statement 5 is replaced by an addition in which

3 is added each time as the increment. As a result, continuation of the DO varia-
bles is superfluous.

(6) Calculation of the value of K is simplified to assignment of temporary auxiliary
value %T00010198.

U577-J-Z125-7-7600 171

Description of listings

4.7.10 Summary listing

This listing can be output by entering SUMMARY in the LIST or LISTFILE option.

By default this listing is output to SYSLST.

Appendix A.6.8 shows a summary listing.

If several program units are compiled in one run, the system will then (at the end of
compilation and in addition to the summary listing for each program unit) generate an
overall summary listing containing the statistics for the total compilation, such as:

Listing of all modules generated
Accumulated errors in a given error class
Total CPU time and ELAPSED time, etc.
The message "(COMPILER NOT PRELOADED)", if such was the case.

The layout of the overall summary listing is the same as that of the summary listing.

Appendix A.6.9 shows an overall summary listing.

4.7.11 Change listing

The change listing includes all command entries as well as source lines which have
been replaced and inserted.

This listing can be output by supplying CHANGE in the LIST or LISTFILE option.

CHANGE is only effective together with COMOPT DIALOG.

Appendix A.6.3 shows a listing of changes. It was generated in the example given in
section 3.6.8.

172 U577-J-Z125-7-7600

Termination of compilation SDF operand COMPILER-TERMINATION

4.8 Termination of compilation

4.8.1 SDF operand COMPILER-TERMINATION

START-FOR1-COMPILER

,COMPILER-TERMINATION = STD / PARAMETER(...)

PARAMETER(...)

CPU-LIMIT = NONE / <integer 1..32767>

,MAX-ERROR-WEIGHT = NONE / ERROR / SEVERE-ERROR

,MAX-ERROR-NUMBER = 100 / <integer 1..2147483639>

The SDF operands and the corresponding compiler options are shown in table 2-12.

U577-J-Z125-7-7600 173

ERRKILL-/MAXERR option Termination of compilation

4.8.2 Termination of compilation: ERRKILL and MAXERR compiler options

ERRKILL option

E [RROR]
[*]COMOPT ERRKILL = S [EVERE]

F [AILURE]

The ERRKILL option specifies that compilation of a program is to be abnormally termina-
ted if an error occurs whose message level is the same as that of the ERKILL option,
or more severe.

ERRKILL Termination at error level

E E,S,F
S S,F
F F

MAXERR option

100
[*]COMOPT MAXERR =

n

n Integer value 231-1

Compilation terminates abnormally once the number of errors (ERRORs) specified in
the option has been reached.

174 U577-J-Z125-7-7600

Monitoring of compilation SDF operand MONJV

4.9 Monitoring of compilation by job variables:
SDF operand MONJV

START-FOR1-COMPILER

,MONJV = *NONE / <full-filename 1..54>

The SDF operands and the corresponding compiler options are shown in table 2-13.

Meaning of the job variable indicators

With the aid of software product JV (Job Variables), jobs and programs run under
BS2000 can be monitored and controlled (see "BS2000 Job
 Variables" manual [24]).
The user defines a monitoring job variable, which is specified as an operand in a
LOGON, ENTER-JOB or START-PROGRAM command. The operating system takes this
job variable and enters in it information on the current status of a program ("status indi-
cator") and further information defined at program level ("return code indicator"). After
the program has terminated, the user can interrogate this information; this same infor-
mation can also be used to control further jobs and programs.

A job variable can monitor both a FOR1 compiler run and the execution of a FORTRAN
program (see section 6.5.3). Status and return code indicators of the monitoring job
variables are supplied with TERM macro parameters by the FOR1 or FORTRAN object
program.

The status indicator of the job variables is set as a function of the parameter in the
MODE operand, the return code indicator as a function of the parameter in the
URETCD operand (see "Executive Macros" manual [26]).

U577-J-Z125-7-7600 175

SDF operand MONJV Monitoring of compilation

Job variables for program monitoring are structured as follows:

Status Return code
indicator indicator

Byte 1 2 3 4 5 6 7

Program information

Termination code

The status indicator is set left-justified in the first three bytes of the job variable.

$T Program terminated normally.

$A Program aborted. This indicator is likewise set by the system upon program
abortion.

$R Once a program has started, the status indicator is set to "$R".

The return code indicator is entered in bytes 4 to 7 of the job variable. The first byte of
the return code indicator contains the termination code. When the URETCD parameter
in the TERM macro is omitted (see "Executive Macros" manual [26]) or when the pro-
gram is aborted by the system, 4 blanks are entered in the return code indicator.

After a FOR1 compiler run, the termination code may contain the following information:

0 The compiler completed the compilation run normally. No warnings were issued
and no errors detected.

1 The compiler completed the compilation run normally, however warnings or
errors (ERRORS, SEVERE ERRORS) were reported while the source program
was being compiled. The results of the compilation are usable, but subject to
restriction.

2 The compiler run was free of error, however compilation was prematurely termi-
nated due to the specifications in the MAXERR or ERRKILL options. The results
of compilation are usable, but subject to restriction.

3 The compiler terminated the compilation run due to a defined compiler error.
Results of the compilation run are unavailable or unusable.

Bytes 5 to 7 of the return code contain the program information. After a compiler run
the program information may include the following:

000 The compiler has completed the compilation run normally. While the source pro-
gram was being compiled, no error messages (NOTE, WARNING, ERROR,
SEVERE or FAILURE) were output.

176 U577-J-Z125-7-7600

Monitoring of compilation SDF operand MONJV

001 The compiler completed the compilation run normally, however notes have
been reported.

002 The compiler completed the compilation run normally, however warnings were
reported.

003 The compiler completed the compiler run normally, but errors have been repor-
ted, for which a correction has been made.

004 The compiler completed the compiler run normally. Severe errors which cannot
be remedied have occurred.

006 Due to severe errors, the compiler terminated the compiler run, but in a control-
led manner. Object programs are unusable or not available.

The following table shows the relationship between status indicator, termination code
and program information:

Status Termination Program Remarks
indicator code information

$T 0 000 No errors, WARNINGS, NOTES
during compilation.

$T 0 001 NOTES were reported during
the compilation process.

$T 1 002 WARNINGS reported during
compilation.

$T 1 003 ERRORS reported during
compilation.

$T 1 004 SEVERE ERRORS reported during
compilation.

$A 2 003 Compilation prematurely
terminated due to ERRKILL=E
or because the MAXERR limit
was reached.

$A 2 004 Compilation prematurely
terminated due to ERRKILL=S or
because the MAXERR limit was
reached.

$A 3 006 Compilation prematurely
terminated due to compiler
error (FATAL ERRORS).

$A - Compilation terminated in an
(undefined) (undefined) undefined manner due to severe

compiler error (DUMP).

Table 4-1: Status indicator, termination code and program information for job variables

U577-J-Z125-7-7600 177

SDF operand MONJV Monitoring of compilation

Example:

A FOR1 run is monitored with the aid of job variable JOBVAR1. After compilation, the
linkage editor should only be called if the compiler has not output any messages or
notes whatsoever.

/BEGIN-PROC LOG=C, PAR=YES(PROC-PAR=(&PROGRAM), ESC-CHAR=C’&’)
/REMARK COMPILING AND LINKING A FORTRAN PROGRAM
/DEL-SYS-FILE OMF
/ASSIGN-SYSDTA TO-FILE=*SYSCMD
/CRE-JV JOBVAR1 (01)
/START-PROG $FOR1, MONJV=JOBVAR1 (02)
*COMOPT SOURCE=QUELLE.&PROGRAM
*COMOPT END
/SET-JOB-STEP
/SHOW-JV JV-NAME(JOBVAR1) (03)
/SKIP-COMM TO-LABEL=ENDE, IF=JV(CONDITION=(JOBVAR1,5,3)>’001’) (04)
/START-PROG $TSOSLNK
PROG LADE.&PROGRAM
INCLUDE *
RESOLVE ,$RZ.FOR1MODLIBS
END
/.ENDE DEL-JV JV-NAME(JOBVAR1) (05)
/END-PROC

Explanation of example:

(01) The job variable JOBVAR1 is entered in the catalog.

(02) With the START-PROGRAM command, the job variable JOBVAR1 is assigned as
a program-monitoring job-variable to the program to be called.

(03) The value of the job variable is output to SYSOUT by means of the SHOW-JV
command.

(04) The SKIP-COMMANDS command is used to test whether the program informa-
tion (bytes 5 through 7) of the job variables contains a value greater than 001. If
this is the case, the compiler has issued warnings or error messages. If this is
the condition, a branch is made to the statement using the end mark ".ENDE".

178 U577-J-Z125-7-7600

Monitoring of compilation SDF operand MONJV

When ERRORS is reported, the runtime log will appear as follows:

.

.

.
(IN) /SHOW-JV JV-NAME(JOBVAR1)
(OUT) %$T 1003
()
(IN) /SKIP-COMM TO-LABEL=ENDE, IF=JV(CONDITION=(JOBVAR1,5,3)>’001’)
(OUT) % CJC0010 SKIP COMMANDS: CONDITION = TRUE
(IN) /.ENDE DEL-JV JV-NAME(JOBVAR1)
(IN) /END-PROC
.
.
.

If no error messages or merely NOTES (program information ’000’ or ’001’) have
been displayed, the linkage editor is called. The runtime log will then appear as
follows:

.

.

.
(IN) /SHOW-JV JV-NAME(JOBVAR1)
(IN) /GETJV (JOBVAR1,1),CHAR
(OUT) %$T 0000
()
(IN) /SKIP-COMM TO-LABEL=ENDE, IF=JV(CONDITION=(JOBVAR1,5,3)>’001’)
(OUT) % CJC0011 SKIP COMMANDS: CONDITION = FALSE
(IN) /START-PROG $TSOSLNK
.
.
.

(05) The DELETE-JV command is used to delete the job variable entry from the cata-
log.

U577-J-Z125-7-7600 179

Message language Compilation

4.10 Specifying the message language

4.10.1 SDF operand LANGUAGE

START-FOR1-COMPILER

,LANGUAGE = ENGLISH / DEUTSCH

The SDF operands and the corresponding compiler options are shown in table 2-14.

4.10.2 LANGUAGE compiler option

[*]COMOPT LANGUAGE={ENGLISH GERMAN}

ENGLISH
When the compiler options have been read in, FOR1 messages will be output
in English.

GERMAN
When the compiler options have been read in, FOR1 messages will be output
in German.

180 U577-J-Z125-7-7600

Compilation SDF operand COMPILER

4.11 SDF operand COMPILER

The last operand of the SDF command START-FOR1-COMPILER is

COMPILER = $FOR1 / <full-filename 1..54>

It permits the file name of the compiler to be specified if this name should deviate from
the preset designation.

The COMPILER operand is not visible in guided dialog and can only be specified in NO
or EXPERT mode.

U577-J-Z125-7-7600 181

5 Linking, loading and starting
A FORTRAN source program is compiled into an object module (= module to be lin-
ked, or bound) by the FOR1 compiler. Object modules are held available in a PLAM
library, an object module library or the temporary EAM file (*OMF).

Object modules themselves consist of machine code but are unable to execute in this
form at this stage since the machine code is not yet complete. Each object module
contains references to external addresses (external references), i.e. to further modules
which must supplement it in order to allow execution.

The additionally required modules are runtime system modules (see section 1.9) and
possibly further object modules such as separately compiled source programs or sub-
programs in other languages, for example.

The main functions of the linkage editor comprise calling the object modules required
for the load module from the various sources (files, libraries) and linking them together.
The process of linking (or binding) itself consists in the linkage editor supplementing
each object module with those addresses that relate to areas outside the object modu-
le.

The end result of linkage is a load module (module for loading) or a link and load
module ((LLM). These still have to be loaded into main memory and started. Link and
load modules are not described in the present manual; they are described in detail in
the "Binder-Loader-Starter" manual [13].

The following possible means of linking, loading and starting are available:

Static linkage editor TSOSLNK

TSOSLNK links one or more object modules to produce a load module and stores this
load module in a cataloged file or in a PLAM library (as a type C element).
Before modules generated by TSOSLNK can be executed, they must be loaded into
main memory using the loader ELDE.

U577-J-Z125-7-7600 183

Linking, loading, starting

Binder BINDER

BINDER links modules (object modules, link and load modules) to form a logically and
physically structured loadable unit. This unit is referred to as a link and load module
(LLM). BINDER stores link and load modules in PLAM libraries (element type L).
BINDER is available from operating system version V10; a detailed description may be
found in the "Binder-Loader-Starter" manual [13].

Dynamic binder loader DBL

DBL links modules (object modules, link and load modules) in a single process to pro-
duce a temporarily loadable unit, loads this unit into main memory and starts it. The
linked program is no longer available once it has been executed.
Dynamic linking (binding) and loading is advantageous principally in the debugging pha-
se.

SDF command START-FOR1-PROGRAM

The operands of this command control the main functions of the dynamic binder loader
DBL and of the static loader ELDE. Object modules and load modules can be proces-
sed.

184 U577-J-Z125-7-7600

Linking, loading, starting (SDF) START-FOR1-PROGRAM/FROM-FILE

5.1 Linking, loading, starting: SDF command START-FOR1-
PROGRAM, FROM-FILE operand

The FROM-FILE operand of the SDF command START-FOR1-PROGRAM offers the follo-
wing facilities:

An object module generated by FOR1 can be linked, loaded and started using DBL
(*MODULE(...)/<full-filename 1..54>).

A load module generated by TSOSLNK can be laoded and started using ELDE
(PHASE(...)).

START-FOR1-PROGRAM

FROM-FILE = <full-filename 1..54> / *MODULE(...) / *PHASE(...)

*MODULE(...)

LIBRARY = *OMF / *STD / <full-filename 1..54>

,ELEMENT = *ALL / <full-filename 1..32>

,PROGRAM-MODE = 24 / ANY

*PHASE(...)

LIBRARY = <full-filename 1..54>

,ELEMENT = <full-filename 1..41>(...)
VERSION = *HIGHEST-EXISTING / <alphanum-name 1..24>

Table 5-1: SDF operand FROM-FILE: Linking and loading

The SDF operands and corresponding commands are summarized below.

U577-J-Z125-7-7600 185

START-FOR1-PROGRAM/FROM-FILE Linking, loading, starting (SDF)

5.2 Summary: SDF operand FROM-FILE and corresponding
DBL and ELDE control

The following table compares the SDF operands of the START-FOR1-PROGRAM com-
mand with the corresponding operands in the call for ELDE and DBL.

SDF operands are given in accordance with the metasyntax of section 1.3.2

SDF form First subform Second subform Corresponds in Corresponds in
ELDE to DBL to

FROM-FILE Cataloged file
= <full-filename containing the

1..54> load module

= *MODULE(...) LIBRARY Temporary
= *OMF EAM object

file

= *STD Object module
library
Search hierar-
chy of the DBL
if the object
module library
is not speci-
fied.

= <full-filename Name of the
1..54> object module

library

ELEMENT Object module
= *ALL All object

modules of the
specified
library

= <full-filename Name of the
1..32> object module

PROGRAM-MODE PROG-MOD
= 24 = 24

= ANY = ANY

= *PHASE(...) LIBRARY Name of the
= <full-filename load module

1..54> library

ELEMENT Name of the
= <full-filename load module

1..41>(...)
VERSION Version
= <alphanum..name designation

1..24> of library
element

= *HIGHEST- Highest
EXISTING version

Table 5-2: SDF form FROM-FILE (specifications concerning object/load module)

186 U577-J-Z125-7-7600

Linking, loading, starting Linkage editor TSOSLNK

5.3 Static linkage (linkage editor TSOSLNK)

The static linkage editor TSOSLNK links:

one or more object modules to form a load module and stores this load module in
either a cataloged file or a PLAM library (as a type C element). The PROGRAM state-
ment of TSOSLNK is used for this purpose.
The load module is loaded and started by the static loader ELDE.

several object modules to form a single prelinked module (main module) and stores
this in the temporary EAM area (*OMF) or in a PLAM library (as a type R element).
The MODULE statement is used for this purpose (see "TSOSLNK" manual [41]).
The prelinked module generated is used as input either for TSOSLNK or the dyna-
mic binder loader DBL.

Control statements for linkage editor TSOSLNK

Only a limited number of control statements for TSOSLNK are given here. A complete
description is contained in the "TSOSLNK" manual [41].

/START-PROG $TSOSLNK (1)
FILENAM=file

PROGRAM program [,] (2)
LIB[RARY]=lib[,ELEM[ENT]=element[(version)]]

[,SYMTEST={ALL N MAP}] (3)

[,MAP={Y N}] (4)

[,LOADPT={address *XS}] (5)

module[(version)][,lib]
(module[(version)],...)[,lib]
,lib

INCLUDE (6)
module,*
(module,...),*
*

module
RESOLVE [],lib (7)

(module,...)

END (8)

U577-J-Z125-7-7600 187

Linkage editor TSOSLNK Linking, loading, starting

Explanation:

(1) Linkage editor TSOSLNK is called.

(2) The PROGRAM statement defines the name of the load module and where the
load module is to be stored.

program The name that the load module is to receive must be specified
here. If no other operand (FILENAM or LIB) is specified, the
cataloged file is given this name.

FILENAM=file
file selects a name which the cataloged file in which the load
module is stored, is to receive. The maximum length including
catalog ID and user ID is 54 characters.

LIB=lib [,ELEM=element]
The load module is stored in the PLAM library with the name lib
as a type C element under the name element. If only the LIB
operand is specified, program is assumed as the element name.
If the library lib does not yet exist, it will be created.

version Version designation of the PLAM library element element

(3) SYMTEST=ALL
SYMTEST=ALL permits symbolic addresses to be referenced for debugging
using the Advanced Interactive Debugger (AID). FOR1 programs can be debug-
ged symbolically using an AID version 1.0C. To allow symbolic debugging, the
compiler option SYMTEST=ALL must be specified at compile time.

SYMTEST=N
The program cannot be symbolically debugged.

SYMTEST=MAP
The linkage editor will generate an object structure listing which is also written to
the load module. This information permits minimum debugging. Full-scale symbo-
lic debugging is only possible when AID loads the symbolic information dynami-
cally.

(4) MAP=Y causes an overview of programs to be output to SYSLST which contains
information on the size, length and addresses of the object modules that have
been input.

188 U577-J-Z125-7-7600

Linking, loading, starting Linkage editor TSOSLNK

(5) LOADPT=address specifies a virtual address (hexadecimal: X’...’) to which the
loader is to load a program. If this operand is omitted, the virtual address
X’000000’ will be assumed.
LOADPT=*XS specifies the program’s load address in the address space above
16 megabytes. All control sections (CSECTs) must have the attribute
RMODE=ANY. The static loader ELDE will then start the program in the 31-bit
addressing mode.

(6) The INCLUDE statement defines the object modules that TSOSLNK is to link.

Object modules can reside:

in the temporary EAM area (*OMF) if they were generated by FOR1 during
the current task.
in an object module library created by the LMS library management program.
in a PLAM library generated by the LMS library management program or by
the MODULE-LIBRARY compiler option.

module Name of the object module that is to be read in from the temporary
EAM area (*OMF) or from the object module library or PLAM library
lib. If more than one object module is specified (maximum 20), the list
must be enclosed in parentheses.

version Version designation of the object module module. The version designa-
tion applies only to PLAM libraries. If the version specification is omit-
ted, the object module having the highest version designation will be
linked in.

lib Name of the object module library or PLAM library from which the
object modules are to be read in.
If the module specification is omitted, the linkage editor will read in all
the object modules from the library.
If the lib specification is omitted, the linkage editor will search for the
object module module in the library TASKLIB.

* Temporary EAM area (*OMF) for the current task. If the module specifi-
cation is omitted, the linkage editor reads in all object modules contai-
ned in the temporary EAM area.

(7) The RESOLVE statement serves to inform the linkage editor of the libraries which
are to be searched using the Autolink procedure for previously unresolved exter-
nal references.

U577-J-Z125-7-7600 189

Linkage editor TSOSLNK Linking, loading, starting

TSOSLNK Autolink procedure:

If TSOSLNK finds external references in an object module which cannot be resol-
ved by the modules that were specified in INCLUDE statements, then it uses the
following Autolink procedure:

TSOSLNK first searches to determine whether a library was specified in con-
junction with the external reference in a RESOLVE statement.

If TSOSLNK cannot resolve the external reference in the first step, then it will
search all libraries specified in RESOLVE statements. Here the last RESOLVE
statement is taken into consideration first; the penultimate, second etc.
Libraries that are not to be searched can be excluded from the search by
means of EXCLUDE statements.

If TSOSLNK is also unable to resolve the external reference in the second
stage, it will search the TASKLIB library unless this has been prevented by
the NCAL statement or a corresponding EXCLUDE statement. If there is no
library called TASKLIB under the user ID of the current task, TSOSLNK uses
the system library $TSOS.TASKLIB.

If unresolved external references still exist after the Autolink procedure, TSOSLNK
outputs their names in a list to SYSOUT and SYSLST.

If the FOR1 runtime system is not incorporated into the TASKLIB library of the
user or the system TASKLIB, then it must be specified in a RESOLVE statement:

RESOLVE ,$userid.FOR1MODLIBS

If the function pool FPOOL is used, the object module library
$userid.FOR1.FPOOLLIB must be specified in a RESOLVE statement:

RESOLVE ,$userid.FOR1.FPOOLLIB

(8) The entries for TSOSLNK must be concluded with the END statement.

190 U577-J-Z125-7-7600

Linking, loading, starting Linkage editor TSOSLNK

Example:

Compilation:

/DEL-SYS-FILE OMF
/START-PROG $FOR1
*COMOPT SOURCE=QUELL.MAT
*COMOPT MODULE-LIBRARY=PLAM.LIB (1)
*COMOPT FPOOL=fpool
*END

Linkage with TSOSLNK:

/START-PROG $TSOSLNK
*PROGRAM PROGAB,FILENAM=OBJ.MAT (2)
*INCLUDE (MODA,MODB),PLAM.LIB (3)
*RESOLVE (FUNKT1,FUNKT2),FUNKLIB (4)
*RESOLVE ,FOR1MODLIBS (5)
*RESOLVE ,$TSOS.FOR1.FPOOLLIB (6)
*END
/
.
.
.

Explanation of example:

(1) The object modules MODA and MODB are generated during compilation and writ-
ten to the PLAM library PLAM.LIB.

(2) The load module is to receive the name PROGAB and is to be stored in the cata-
loged file OBJ.MAT.

(3) Statement for linking the object modules MODA and MODB from the library
PLAM.LIB.

(4) The external references FUNKT1 and FUNKT2 are resolved by object modules
from the library FUNKLIB. If a BLOCKDATA module (for initializing a named
COMMON block) is to be linked in from FUNKLIB, this must be effected with an
INCLUDE statement.

(5) The external references to modules of the FOR1 runtime system are resolved.
Only adapter modules are linked in. The actual runtime system is dynamically
loaded at runtime. If the FOR1 runtime system is contained in the system
TASKLIB or in the TASKLIB of the user ID, statement (5) can be omitted.

(6) The external references to modules from the FPOOL are resolved.

U577-J-Z125-7-7600 191

Linkage editor TSOSLNK Linking, loading, starting

Linking BLOCK DATA subprograms

When linking is performed using TSOSLNK, BLOCK DATA subprograms must also be
linked in. If the BLOCK DATA subprograms reside in the temporary EAM file, they will
be linked in by the "INCLUDE *" statement.
If the BLOCK DATA subprograms do not reside in the temporary EAM file, they must
be explicitly specified in the INCLUDE statement.

The name of the object module to be specified in the INCLUDE statement in the case
of a named BLOCK DATA program unit is the name of this very program unit. When
the BLOCK DATA program unit is unnamed, the names of all COMMON blocks of this
program unit must be specified in INCLUDE statements.

Example: Linking an unnamed BLOCK DATA subprogram

Source program in the cataloged file QUELL.TEST:

PROGRAM TEST
COMMON /A/I,/B/R
WRITE *,I,R
END
BLOCK DATA
COMMON /A/I,/B/R
DATA I,R/1,2.2/
END

Compilation:

/START-PROG $FOR1
*COMOPT SOURCE=QUELL.TEST
*COMOPT MODULE-LIBRARY=PLAM.LIB
*END

Linkage:

/START-PROG $TSOSLNK
*PROGRAM TEST,FILENAM=L.TEST
*INCLUDE TEST,PLAM.LIB
*INCLUDE A,PLAM.LIB
*INCLUDE B,PLAM.LIB
*RESOLVE ,$TSOS.FOR1MODLIBS
*END

Initializing named COMMON blocks

A named COMMON block can be initialized not only in a BLOCK DATA subprogram,
but in any program unit. If the same COMMON block is initialized in several program
units at the same time, the linkage editor (TSOSLNK; DBL) will issue the message
"DUPLICATE CSECT". If this linkage editor message is ignored, unwanted reinitializa-
tions may be effected in overlay systems.

If a COMMON block is initialized in all program units, the linkage editor will be unable
to recognize it as a COMMON block. The corresponding information will be lost.

192 U577-J-Z125-7-7600

Linking, loading, starting Loader ELDE

5.4 Static loading (loader ELDE)

To enable a load module generated by TSOSLNK to be executed it must be loaded
into main memory. The loader ELDE is available in BS2000 for this purpose.
ELDE is called when a START-PROGRAM or LOAD-PROGRAM command is entered
that refers to a cataloged file or an element of a PLAM library (element type C):

The START-PROGRAM command instructs ELDE to load the load module into me-
mory and start it.

The LOAD-PROGRAM command instructs ELDE to load the load module into me-
mory without starting it. In this way it is possible to enter further commands prior to
program execution, for debugging purposes for example. The program can then be
started with the RESUME-PROGRAM command.

Calling ELDE

Only a limited number of specifications for the START-PROGRAM and LOAD-PROGRAM
commands are given here. A complete description of both commands is contained in
the "TSOSLNK" manual [41].

START-PROGRAM or LOAD-PROGRAM

FROM-FILE = <full-filename 1..54> / *PHASE(...)

*PHASE(...)

LIBRARY = <full-filename 1..54>

,ELEMENT = <full-filename 1..41>

,VERSION = *STD / <text 1..24>

,TEST-OPTIONS = NONE / AID
,MONJV = *NONE / <full-filename 1..54>

FROM-FILE =
Specifies the input source.

FROM-FILE = <full-filename 1..54>
The input source is the cataloged file containing the load module generated by
TSOSLNK.

U577-J-Z125-7-7600 193

Loader ELDE Linking, loading, starting

FROM-FILE = *PHASE(...)
The input source is the PLAM library containing the load module generated by
TSOSLNK as a type C element.

LIBRARY = <full-filename 1..54>
Name of the PLAM library in which the load module is stored.

ELEMENT = <full-filename 1..41>
Name of the library element in which the load module is stored. The library element
must be a type C element.

VERSION =
Specifies the version designation of the element.

VERSION = *STD
The element with the highest version designation is used.

VERSION = <text 1..24>
Explicit specification of the element version.

TEST-OPTIONS =
Specifies whether symbolic addresses may be used in the source program during
debugging with AID. Programs using symbolic addresses can only be debugged if LSD
information has been generated for the programs during compilation (SYMTEST=ALL
compiler option).

TEST-OPTIONS = NONE
The LSD information is not copied into the load module. Symbolic debugging with AID
is still possible by using a %SYMLIB statement to specify to AID a library containing the
LSD information.

TEST-OPTIONS = AID
Permits the use of symbolic addresses in the source program during debugging with
AID.

MONJV = *NONE / <full-filename 1..54>
Name of a job variable which is to monitor the program. If *NONE is specified, the pro-
gram is not monitored with a job variable.
On execution, the program stores a code in the return code indicator of this job varia-
ble, which provides information on possible execution errors, The individual codes and
their meanings are summarized in a table in section 4.9.
This operand is only available to users having the software product "Job Variables" (see
section A.10.5).

194 U577-J-Z125-7-7600

Linking, loading, starting Loader ELDE

Example:

The load module PROGAB generated in the example given in section 5.3 can be lo-
aded and executed by the following command:

/START-PROGRAM FROM-FILE=OBJ.MAT

OBJ.MAT is the cataloged file to which the PROGAB load module is written.

U577-J-Z125-7-7600 195

Binder loader DBL Linking, loading, starting

5.5 Dynamic link loading (binder loader DBL)

The dynamic binder loader DBL temporarily links modules (object modules, link and
load modules) to produce a loadable unit, loads them into memory and executes them
in a single process. The generated load unit is automatically deleted after the program
has executed.
The mode of operation of DBL is described in detail in the "Binder-Loader-Starter"
manual [13].

DBL has two run modes. The mode is selected using the RUN-MODE operand of the
START-PROGRAM and LOAD-PROGRAM commands.

RUN-MODE=STD
In this mode, DBL is fully compatible with DLL. DLL is only supplied up to and inclu-
ding BS2000 V9.5.
RUN-MODE=STD is the default.

RUN-MODE=ADVANCED
In this mode, DBL can also process link and load modules (LLMs), and supports the
new functions of BS2000 V10 and up. This mode is not described here. A detailed desc-
ription may be found in the "Binder-Loader-Starter" manual [13].

Calling DBL

DBL is called by entering a START-PROGRAM or LOAD-PROGRAM command referring
to the temporary EAM area, an element of an object module library or an element of a
PLAM library (element type R):

The START-PROGRAM command instructs DBL to link, load and immediately start
the object module.

The LOAD-PROGRAM command instructs DBL to link and load the object module.
After link loading, further commands (e.g. debugging commands) can be entered.
The user then starts the program with the RESUME-PROGRAM command.

Only a limited number of specifications for the START-PROGRAM and LOAD-PROGRAM
commands are given here. A complete description of both commands is contained in
the "Binder-Loader-Starter" manual [13].

196 U577-J-Z125-7-7600

Linking, loading, starting Binder loader DBL

START-PROGRAM or LOAD-PROGRAM

FROM-FILE = *MODULE(...)

*MODULE(...)

LIBRARY = *STD / *OMF / <full-filename 1..54>

,ELEMENT = *ALL / <full-filename 1..8>

,PROGRAM-MODE = 24 / ANY

,TEST-OPTIONS = NONE / AID

, MONJV = *NONE / <full-filename 1..54>

FROM-FILE = *MODULE (...)
The dynamic binder loader DBL is called.

LIBRARY =
Specifies the input source from which object modules are fetched. The input source
for object modules can be the temporary EAM area (*OMF), an object module library
or a PLAM library (type R elements).

LIBRARY = *STD
The input source is the library assigned with the SET-TASKLIB command. If the
object module is not found there, then the library called TASKLIB for the current task
and subsequently the system TASKLIB ($TSOS.TASKLIB) are searched.

LIBRARY = *OMF
The input source is the temporary EAM area.

LIBRARY = <full-filename 1..8>
Name of an object module library or PLAM library that is used as the input source.

ELEMENT =
Specifies the modules to be fetched from the specified library.

ELEMENT = *ALL
Permissible only for object modules from the temporary EAM area. All object modu-
les are fetched from the EAM area.

U577-J-Z125-7-7600 197

Binder loader DBL Linking, loading, starting

ELEMENT = <full-filename 1..32>
Name of the object module
full-filename may be:

name of an object module
name of a control section (CSECT name)
name of an entry point (ENTRY name)
name of a COMMON block

Elements from PLAM libraries must be of element type R.

PROGRAM-MODE =
Determines the part of the address space (above or below 16 Mbytes) in which the
program is to be loaded.

PROGAM-MODE = 24
The module is loaded below 16 Mbytes. The program is executed in 24-bit addres-
sing mode. External references are resolved only by CSECTs or ENTRYs which lie
below 16 Mbytes.
Loading a program with 31-bit addressing mode (AMODE=31) is aborted with an
error message.

PROG-MODE = ANY
The module can be loaded above or below 16 Mbytes. The load address is defined
by evaluating the RMODE and AMODE attributes:
If RMODE=24, the load address will lie below 16 Mbytes.
If RMODE=ANY and AMODE=ANY, the load address will be above 16 Mbytes.

TEST-OPTIONS =
Specifies whether symbolic addresses may be used in the source program during
debugging with AID.
Programs using symbolic addresses can only be debugged if LSD information has
been generated for the programs during compilation (SYMTEST=ALL compiler op-
tion).

TEST-OPTIONS = NONE
The LSD information is not copied into the load module. Symbolic debugging with
AID is still possible by using a %SYMLIB statement to specify to AID a library contai-
ning the LSD information.

TEST-OPTIONS = AID
Symbolic addresses can be referenced during debugging with AID.

198 U577-J-Z125-7-7600

Linking, loading, starting Binder loader DBL

MONJV = *NONE / <full-filename 1..54>
Name of a job variable which is to monitor the program. If *NONE is specified, the
program is not monitored with a job variable.
On execution, the program stores a code in the return code indicator of this job varia-
ble, which provides information on possible execution errors, The individual codes
and their meanings are summarized in a table in section 4.9.
This operand is only available to users having the software product "Job Variables"
(see section A.10.5).

Example:

Compilation:

/DEL-SYS-FILE OMF
/START-PROG $FOR1
*COMOPT SOURCE=QUELL.MAT
COMOPT OBJECT=() (1)
*END

Linkage, loading, starting:

/SET-TASKLIB FOR1MODLIBS (2)
/START-PROG FROM-FILE=*MODULE(LIB=*OMF) (3)

Explanation of example:

(1) The object modules generated are stored in the temporary EAM area (*OMF).

(2) Assigns the FOR1 runtime system. This is only necessary if the FOR1 runtime
system is not contained in the TASKLIB of the current task or in the system
TASKLIB.

(3) All object modules from the temporary EAM area are to be linked, loaded and
started using DBL (ELEMENT=*ALL is the default).

U577-J-Z125-7-7600 199

Started programs, memory allocation Linking, loading, starting

5.6 Memory allocation of started programs

The memory area of a started program comprises the generated load module and the
memory area set up at the commencement of execution. The program is executed
under the control of the FOR1 runtime system.
Fig. 5-1 shows the memory allocation for object programs loaded without explicit speci-
fication of a load address.

Beginning of the load
module and available
storage space User module

.

.

User module

Library module

.

.

Library module

Run time

communication area

BLANK COMMON

COMMON-1

.

.

COMMON-n
End of load module

Dynamischer
Speicherbereich

End of the available
storage space

Fig. 5-1: Memory allocation for a started program

200 U577-J-Z125-7-7600

Linking, loading, starting Started programs, memory allocation

User modules

These are modules created from object modules by resolving external references.

Library modules

These are modules that the linkage editor adds (from the FOR1 runtime library or other
module libraries) at the time the external references are resolved.

Run time communication area (RTCA)

The RTCA contains information used to control the execution of the started program.
The RTCA is set up by the program initialization routine after the user and library modu-
les and is about 4 Kbytes long. The RTCA information includes the following:

Table of input/output units
This table provides a reference for each file number to the associated input/output
routines as well as indicating the type of the relevant file.

Hash table for access to the file descriptors.
File descriptors are established for each file in the dynamic memory area by the
FOR1 runtime system.

Address of the "current" file descriptor, i.e. the file currently being accessed.

Address of the "current" input/output routine

Address for the error exit when input/output operations are executed

Information on the current task, such as date, time of day, CPU time used

COMMON-n, BLANK COMMON

Common storage area allocated by the linkage editor for the COMMON blocks.

Dynamic memory area

The dynamic memory area is used for the following purposes:

Input/output buffer areas

Transfer to or from a file is not made separately for each record but the complete con-
tents of a buffer area are transferred at a time.

Conversion buffers

Most input/output operations involve conversions between the internal and external
representation of data. The conversion routines use dynamically allocated conversion
buffers for larger volumes of data.

U577-J-Z125-7-7600 201

Started programs, memory allocation Linking, loading, starting

File descriptors

The properties of a file in the FORTRAN program are described in a file descriptor. This
enables the validity of an input/output operation to be verified and the information requi-
red for the INQUIRE statement to be made available. Also entered is the most recent
input/output operation carried out on this file, providing a capability for checking the
validity of the succession of input/output operations. Each access to the file causes the
associated file descriptor to be modified.

File control block (FCB)

The file control block is the dominant communication area for all input/output opera-
tions. It describes the characteristics of a file from the viewpoint of the Data Manage-
ment System. One file control block exists for each file, except for EAM files and
system files.

FORMAT descriptors for variable FORMAT

The results of interpreting variable formats are stored in the form of FORMAT descrip-
tors so that the interpretation, once accomplished, may be used again, if required.

202 U577-J-Z125-7-7600

Linking, loading, starting Binder BINDER

5.7 Binder BINDER

BINDER links modules (object modules, link and load modules) to form a logically and
physically structured loadable unit. This unit is known as a link and load module (LLM).
BINDER stores link and load modules in PLAM libraries (element type L).
BINDER is available as of BS2000 V10. BINDER is described in detail in the "Binder-
Loader-Starter" manual [13].

U577-J-Z125-7-7600 203

Shareable programs

5.8 Shareable programs

In large programs it may be advantageous for particular program sections to be decla-
red shareable if they are accessed by several users (tasks) concurrently.

Shareable program sections have the following advantages:
storage space savings (the shareable module is held in working storage only once)
time savings through reduced paging.

Program execution with shareable and nonshareable programs

The following diagrams illustrate program execution with shareable and nonshareable
programs:

Memory allocation for nonshareable programs (module Z is loaded into class 6 memory
three times):

Module XY1 Module XY2 Module XYn

Module Z Module Z Module Z

Class 6 memory Class 6 memory Class 6 memory
for task A for task B for task n

Memory allocation for shareable programs (module Z is loaded once into class 4 memo-
ry):

Module XY1 Module XY2 Module XYn

Class 6 memory Class 6 memory Class 6 memory
for task A for task B for task n

Module Z

Class 4 memory,
shareable for all tasks
that use module Z

204 U577-J-Z125-7-7600

Shareable programs

Generating shareable programs

Shareable programs are generated as follows:

The source program is compiled using the OBJECT=(SHARE) compiler option.
This compiler option separates the shareable portion of the source program (code
section) from the nonshareable portion (data section).
FOR1 generates a shareable object module and a nonshareable object module.

The shareable code section must not contain any address reference to the nonshare-
able data section. The link between code section and data section is therefore est-
ablished in such a way that a small code section is placed in the data section. This
small code section will contain the registers giving the addresses of the code and
data sections. Subsequently, a branch is taken to the code section proper (see Fig.
5-2).

Shareable object modules and nonshareable object modules are stored in PLAM
libraries.

Shareable and nonshareable object modules can be further processed either with or
without the SHARE procedure SYSPRC.FOR1.022.SHARE. These two methods are
described in sections 5.8.1 and 5.8.2.

The system administrator declares the shareable portion as shareable by means of
the ADD-SHARED-PROGRAM command. The shareable portion is loaded into class
4 memory as soon as the first user requests it. It then remains available there until
all tasks have been terminated by SHUTDOWN.

The nonshareable portion is loaded into class 6 for each task.

Restrictions:

The OBJECT=(SHARE) and SYMTEST=ALL compiler options are mutually exclusive.
If both are specified, the latter specification applies and an error message is issued.

Intervention by means of the symbolic debugger AID is not possible since shareable
program sections are in class 4 memory.

In the case of language combinations, shareable and nonshareable programs must
not be mixed.

U577-J-Z125-7-7600 205

Shareable programs

** D A T A A R E A **

** NON-SHARE ENTRY CODE PART **

*
MUPS CSECT

USING *,15
STM 0,12,20(13)
LR 9,13 (1) Load address of data section
LA 13,24(0,15) (2) Load address of code section
L 11,20(0,15)
MVI 0(9),236
BCR 15,11 (3) Branch to code section
DROP 15
DC V(MUPS@@@@)

** NON-SHARE DATA PART **

*

DS 0D
USING *,13
DS 312C
ORG MUPS+96
DC A(I@@@RTCA) RUNTIME COMMUNICATION AREA
ORG MUPS+104
DC X’03’
DC ’MUPS ’

.

.

.

** C O D E A R E A **

*
MUPS@@@@ EQU *
*
***** STATEMENT 1 (ENTRY) *************
* INTEGER FUNCTION MUPS(J)
* **** SEGMENT 1 ****
* CODE SLICE BEGIN * (SLICE 1)

USING *,15
USING *,11
L 12,16(0,11)
BC 15,20(0,11)
DC AL1(03)
DC CL7’MUPS ’
DC A(MUPS####)
USING MUPS####,12
USING MUPS,13
LR 15,11
STM 14,15,12(9)
LR 14,11
ST 13,8(0,9)
CLI 0(13),0
BC 8,76(0,11)
STM 12,0,104(9)

.

.

.

Fig. 5-2: Generated code with COMOPT OBJECT=(SHARE). Extracts from the OBJECT listing

206 U577-J-Z125-7-7600

Shareable programs SHARE procedure

5.8.1 Shareable programs using procedure SYSPRC.FOR1.022.SHARE

5.8.1.1 Procedure

1. Compilation using OBJECT=(SHARE) compiler option

If shareable programs are to be generated, this action must be initiated during the
compilation by specifying the following compiler option:

COMOPT OBJECT=(SHARE)

This compiler option separates the shareable portion of the source program (code
section) from the nonshareable portion (data section).

FOR1 generates a shareable object module and a nonshareable object module.

The name of the shareable object module corresponds to the name of the program
unit and is padded out to eight characters on the right with @.

The nonshareable object module is given the name of the program unit.

2. Storage of shareable and nonshareable object modules in PLAM libraries. The follo-
wing methods are open to the user.

The user uses the SHARE-LIBRARY and MODULE-LIBRARY compiler options for
the compilation.

Shareable object modules are stored in accordance with the specifications in the
SHARE-LIBRARY compiler option (see section 4.2.2.2). If the SHARE-LIBRARY
compiler option is omitted, the shareable object modules will be stored in accor-
dance with the specifications in the MODULE-LIBRARY compiler option.

Nonshareable object modules are stored in accordance with the specifications in
the MODULE-LIBRARY compiler option (see section 4.3.2).

After the compilation, the shareable and nonshareable object modules are placed
in PLAM libraries by the library management program LMS.

U577-J-Z125-7-7600 207

SHARE procedure Shareable programs

3. Using the SHARE procedure

Before the SHARE procedure SYSPRC.FOR1.022.SHARE is called the user must
write to a file the names of those shareable object modules that are to be combined
to form a single shareable module (see example). The names are specified without
@.

The user then calls the SHARE procedure.

The SHARE procedure generates two adapter modules: one adapter module for the
shareable module and one adapter module for the nonshareable module. These
adapter modules establish the link between shareable module and nonshareable
module.

The SHARE procedure links together the shareable adapter module and the share-
able object module to form a shareable module and stores the nonshareable adap-
ter module in the specified library.

The SHARE procedure can be called in both batch and interactive tasks. In a batch
task, the parameters must be specified on calling the SHARE procedure. In an inte-
ractive task, the parameters can be specified either on calling the procedure or they
are requested through prompting on the screen during procedure execution.

The call and parameters for the SHARE procedure are described in section 5.8.1.2.

4. Declaring module as shareable and loading into class 4 memory

The shareable module generated by the SHARE procedure remains to be declared
shareable by the system administrator (ADD-SHARED-PROGRAM command) and
loaded into class 4 memory. This is described in the "BS2000 System Administra-
tion" manual [40].

5. Linking the nonshareable modules using TSOSLNK

The user still has to link the nonshareable object module, the nonshareable adapter
module and where appropriate further object modules to form a load module, using
the linkage editor TSOSLNK.

6. Starting the program

The user starts the program using the loader ELDE by calling the nonshareable load
module:

/START-PROGRAM FROM-FILE= ... or
/LOAD-PROGRAM FROM-FILE= ...

208 U577-J-Z125-7-7600

Shareable programs SHARE procedure

5.8.1.2 Parameters for procedure SYSPRC.FOR1.022.SHARE

/CALL-PROCEDURE SYSPRC.FOR1.022.SHARE, [SHRNAMES=name[,X[,breg]]

,LIBN=libn,LIBS=libs, LIBT=libt

,ADAPTS=adapts,ADAPTN=adaptn,SHRMOD=shrmod

[,HELP={YES NO}][,ER={YES NO}][,XS = {YES NO}]

[,MACLIB = {$TSOS.MACROLIB libname}]]

name Name of the file containing the names of the shareable modules.
The name is padded right-justified with the character "@" to a length of 8 cha-
racters. X and breg not specified: The base register is 11.

X Base register is 15.

breg Base register is used as a branch register to the shareable modules.

libn Name of the nonshareable module library.
This module library contains the nonshareable modules and the nonshareable
adapter modules generated by the SHARE procedure.

libs Name of the shareable module library.
This module library contains the shareable modules and the shareable adap-
ter modules generated by the SHARE procedure.

libt Type of the module libraries (LMS or LMR) in which the modules are stored.

adapts Name that the shareable adapter module is to receive.
This module is required for linking the nonshareable program sections with
the shareable sections. It is linked ahead of the shareable module by the
SHARE procedure.

adaptn Name that the nonshareable adapter module is to receive.
This module is required for linking the nonshareable program sections with
the shareable sections.

shrmod Name that the shareable module is to receive.
shrmod contains the shareable object module and the shareable adapter
module.

U577-J-Z125-7-7600 209

SHARE procedure Shareable programs

YES
HELP=

NO
Default is YES. After the SHARE procedure has started, a brief explanation is
given on the meaning of the individual parameters.

YES
ER=

NO
Default is YES. The generated auxiliary files T.T.T.T.SHR, T.T.T.T.LNK and
T.T.T.T.LST.SHR.&SHRMOD are deleted.

NO
XS=

YES
=NO: The program is loaded below 16 Mbytes.
=YES: The program is loaded above 16 Mbytes.

$TSOS.MACROLIB
MACLIB=

libname

The MACLIB operand assigns the system macro library for the assembly of
adapter modules. Permissible operand values are $TSOS.MACROLIB (default)
or another library name libname. If XS=YES has been set, a macro library
with modules from a BS2000 version 9.0 must be specified.

Portability

The names of the shareable module and the associated module library can be changed
for portability reasons, although they were defined with the aid of the SHARE procedure
when they were generated.

This can be accomplished by changing the appropriate names in the nonshareable
adapter, where the names are stored at the relative address 0 in the form:

DC CL8’MODS’
DC CL54’MODBIBS’

The change can then be made with the aid of LMS during transfer of object modules,
or with the aid of DPAGE during transfer of load modules.

The addresses of the individual object modules can be found in the linkage editor
listing.

210 U577-J-Z125-7-7600

Shareable programs SHARE procedure

5.8.1.3 Example

The main program PROG is contained in the file S.PROG and is to be compiled as
nonshareable.

The subprograms SUB1 and SUB2 are contained in the file S.SUB and are to be compi-
led as shareable.

PROGRAM PROG
INTEGER A,B
CALL SUB1(A,B)
IF (A.EQ.100 .AND. B.EQ.20) WRITE (2,*) A,B,’CALL AND RETURN OK’
END

SUBROUTINE SUB1(X,Y)
INTEGER X,Y
X=10
Y=10.50
CALL SUB2(X,Y)
IF (X.EQ.100 .AND. Y.EQ.20) WRITE (2,*) X,Y,’CALL AND RETURN FROM

-SUB2 OK’
RETURN
END

SUBROUTINE SUB2(X,Y)
INTEGER X,Y
X=X*X
Y=Y+Y
WRITE (2,*) ’HERE SUBROUTINE SUB2’
RETURN
END

1. Compilation:

Compilation of main program PROG:

/START-PROG $FOR1
*COMOPT SOURCE=S.PROG,LIST=(SRC,D,OP,XR)
*END

Compilation of subprograms SUB1 and SUB2:

COMOPT OBJECT=(SHARE) separates the shareable code section and the nonshare-
able data section.

/START-PROG $FOR1
*COMOPT SOURCE=S.SUB,LIST=(SRC,D,OP,XR)
*COMOPT OBJECT=(SHARE)
*END

U577-J-Z125-7-7600 211

SHARE procedure Shareable programs

2. Storing the shareable and nonshareable object modules:

The nonshareable object modules are stored in the library LIB.NOSHARE. The share-
able object modules are stored in the library LIB.SHARE.

Main program:

/START-PROG $FOR1
*COMOPT SOURCE=S.PROG,MODULE-LIBRARY=LIB.NOSHARE,END

Subprograms:

/START-PROG $FOR1
*COMOPT SOURCE=S.SUB,OBJECT=(SHARE),SHARE-LIBRARY=LIB.SHARE
*COMOPT MODULE-LIBRARY=LIB.NOSHARE,END

3. SHARE procedure:

Using the EDT, the names of the shareable modules are written to a file having the
name SHRNAM before the SHARE procedure is called.

/START-PROG $EDT
SUB1
SUB2
@W’SHRNAM’
@H

SHARE procedure call SYSPRC.FOR1.022.SHARE:

/CALL-PROC SYSPRC.FOR1.022.SHARE, SHRNAMES=SHRNAM,LIBN=LIB.NOSHARE,
LIBS=LIB.SHARE,LIBT=LMS,ADAPTS=ADAPTS,ADAPTN=ADAPTN,
SHRMOD=SHRMOD,HELP=NO,ER=NO

Two adapter modules are generated for linking the shareable and nonshareable pro-
gram sections. The adapter module called ADAPTS is linked ahead of the shareable
object module. The shareable module produced is given the name SHRMOD. The
adapter module called ADAPTN for the nonshareable object module is stored in the
library LIB.NOSHARE.

4. Declaration of shareability and loading of the shareable module called SHRMOD are
tasks performed by the system administrator (see "BS2000 System Administration"
manual [40]).

212 U577-J-Z125-7-7600

Shareable programs SHARE procedure

5. Linking the nonshareable modules using TSOSLNK:

/START-PROG $TSOSLNK
PROG PROG,FILENAM=L.PROG (1)
INCLUDE PROG,LIB.NOSHARE (2)
INCLUDE ADAPTN,LIB.NOSHARE
RESOLVE ,LIB.NOSHARE (3)
RESOLVE ,FOR1MODLIBS
END

(1) The load module is to receive the name PROG and be stored in the catalo-
ged file L.PROG.

(2) The nonshareable object module PROG and the nonshareable adapter mo-
dule called ADAPTN are to be linked in. Both are contained in the library
LIB.NOSHARE.

(3) External references are to be resolved by the libraries LIB.NOSHARE and
FOR1MODLIBS.

6. Starting the program by starting the nonshareable load module:

/SET-TASKLIB FOR1MODLIBS
/START-PROGRAM FROM-FILE=L.PROG

U577-J-Z125-7-7600 213

Generation without SHARE procedure Shareable programs

5.8.2 Shareable programs without procedure SYSPRC.FOR1.022.SHARE

5.8.2.1 Procedure

1. Compilation using OBJECT=(SHARE) compiler option (see section 5.8.1.1).

2. Storage of shareable and nonshareable object modules in PLAM libraries (see sec-
tion 5.8.1.1).

3. Declaring as shareable and loading shareable object module into class 4 memory

The system administrator declares the shareable object module as shareable using
the ADD-SHARED-PROGRAM command and loads it into class 4 memory (see
"BS2000 System Administration" manual [40]).

4. Starting the program

The user starts and loads the program using the dynamic binder loader DBL by
calling the nonshareable object module.

/START-PROGRAM FROM-FILE=*MODULE ... or
/LOAD-PROGRAM FROM-FILE=*MODULE ...

5.8.2.2 Example

The main program PRNOSHR is contained in the file SOURCE.PRNOSHR and is to be
compiled as nonshareable.

The subprograms SUBSHR1, SUBSHR2 and SUBSHR3 are contained in the file
SOURCE.SUB123 and are to be compiled as shareable.

PROGRAM PRNOSHR
WRITE (2,*) ’START PRNOSHR’
CALL SUBSHR1 ()
WRITE (2,*) ’END PRNOSHR’
END

SUBROUTINE SUBSHR1 ()
WRITE (2,*) ’ START SUBSHR1’
CALL SUBSHR2 ()
WRITE (2,*) ’ END SUBSHR1’
END

SUBROUTINE SUBSHR2 ()
WRITE (2,*) ’ START SUBSHR2’
CALL SUBSHR3 ()
WRITE (2,*) ’ END SUBSHR2’
END

SUBROUTINE SUBSHR3 ()
WRITE (2,*) ’ START SUBSHR3’
WRITE (2,*) ’ END SUBSHR3’
END

214 U577-J-Z125-7-7600

Shareable programs Generation without SHARE procedure

1. Compilation and storing the object modules in PLAM libraries

Subprograms SUBSHR1, SUBSHR2 and SUBSHR3:

COMOPT OBJECT=(SHARE) separates the shareable code section and the nonsha-
reable data section.
The shareable object module is stored in the library SHR.LIB.
The nonshareable object module is stored in the library MOD.LIB.

/START-PROG $FOR1
*COMOPT SOURCE=SOURCE.SUB123
*COMOPT OBJECT=(SHARE),MODULE-LIBRARY=MOD.LIB,SHARE-LIBRARY=SHR.LIB
*COMOPT END

Main program PRNOSHR:

The main program PRNOSHR is compiled and the generated object module is sto-
red in the library MOD.LIB:

/START-PROG $FOR1
*COMOPT SOURCE=SOURCE.PRNOSHR,MODULE-LIBRARY=MOD.LIB
*COMOPT END

2. Declaration of shareability and loading of the shareable module into class 4 memory
are tasks performed by the system administrator (see "BS2000 System Administra-
tion" manual [40]).

3. Assigning the TASKLIB and starting the program, using DBL:

/SET-TASKLIB LIBRARY=FOR1MODLIBS
/START-PROG FROM-FILE=*MODULE(LIBRARY=MOD.LIB,ELEMENT=PRNOSHR)

During program execution, the following messages are output to SYSOUT:

START PRNOSHR
START SUBSHR1

START SUBSHR2
START SUBSHR3
END SUBSHR3

END SUBSHR2
END SUBSHR1

END PRNOSHR

U577-J-Z125-7-7600 215

6 Program execution

6.1 Controlling program execution:
Operands of the SDF command START-FOR1-PROGRAM

START-FOR1-PROGRAM

FROM-FILE = ...

,CPU-LIMIT = JOB-REST / <integer 1..32767>

,TESTOPT = NONE / AID

,MONJV = *NONE / <full-filename 1..54>

,OBJECT-CONTINUATION = NO / YES 1)

,RUNTIME-OPTIONS = NO / YES(...)

YES(...)

LINE-OVERPRINT = LASER / YES / NO

,SYSDTA-UNIT = (1,5,97) / list-poss: <integer 0..99>

,SYSOPT-UNIT = (7,98) / list-poss: <integer 0..99>

,SYSLST-UNIT = (6,99) / list-poss: <integer 0..99>

,SYSIPT-UNIT = 8 / list-poss: <integer 0..99>

,SYSOUT-UNIT = 2 / list-poss: <integer 0..99>

,FOR1-COUNT-UNIT = 6 / list-poss: <integer 0..99>

,START = NOT-XS / XS

,EXPONENT-UNDERFLOW = UNCHANGED / YES / NO

1) The operand OBJECT-CONTINUATION=YES (continuation of program execution in
the event of an error) can only be used in batch mode.

U577-J-Z125-7-7600 217

Runtime options Program execution

6.2 Summary: SDF operand RUNTIME-OPTIONS and
corresponding runtime options

SDF form First subform Corresp. runtime option

RUNTIME-OPTIONS /PARAMETER CARD
= NO = NO

= YES(...) = YES

LINE-OVERPRINT RUNOPT OVERPRINT
= LASER = LASER

= YES = YES

= NO = NO

SYSDTA-UNIT
= (1,5,97) Standard file numbers

for SYSDTA: 1,5,97

= list-poss: SUBSTITUTE,
<integer 0..99> DTA: n,n,...,END

SYSOPT-UNIT
= (7,98) Standard file numbers

for SYSOPT: 7,98

= list-poss: SUBSTITUTE,
<integer 0..99> OPT: n,n,...,END

SYSLST-UNIT
= (6,99) Standard file numbers

for SYSLST: 6,99

= list-poss: SUBSTITUTE,
<integer 0..99> LST: n,n,...,END

SYSIPT-UNIT
= 8 Standard file number

for SYSIPT: 8

= list-poss: SUBSTITUTE,
<integer 0..99> IPT: n,n,...,END

SYSOUT-UNIT
= 2 Standard file number

for SYSOUT: 2

= list-poss: SUBSTITUTE,
<integer 0..99> OUT: n,n,...,END

218 U577-J-Z125-7-7600

Program execution Runtime options

FOR1-COUNT-UNIT
= 6 Output of the

%COUNT listing via SYSLST

= list-poss: SUBSTITUTE,
<integer 0..99> CNT: n,n,...,END

START RUNOPT START
= XS = XS

= NOT-XS No RUNOPT START

EXPONENT-UNDERFLOW RUNOPT EXPONENT-UNDERFLOW
= UNCHANGED No RUNOPT EXPONENT-

UNDERFLOW

= YES = YES

= NO = NO

Table 6-1: SDF form RUNTIME-OPTIONS and corresponding runtime options

U577-J-Z125-7-7600 219

Runtime options Program execution

6.3 Controlling program execution with runtime options

By specifying runtime options the user can influence program execution after the pro-
gram has been called.

Runtime options enable the user to:

change the predefined assignment of I/O units for the system files (standard
FORTRAN files),

control the interpretation of form feed characters for the printers,

suppress FOR1 STXIT handling during FOR1 initialization,

change the machine address mode to 31 during execution of a FOR1 program,

update the settings of the exponent underflow handling facility.

6.3.1 Entering runtime options

 Entry of runtime options is made possible by means of the CARD operand in the
 PARAMETER command:

YES
/PARAM[ETER] CARD =

NO

CARD = YES
After the program has been called, the user may enter runtime options by
specifying CARD=YES.

The runtime options may be read either from

a file with the linkname FOR1RUN (/SET-FILE-LINK LINK-
NAME=FOR1RUN, FILE-NAME=filename) or

from SYSDTA, if no linkname has been issued.

CARD = NO
Default. The user specifies none of the runtime options listed below. The
default values are assumed for the program run.

The command remains in force until LOGOFF, SET-JOB-STEP or until the next PARAM
CARD =... command.

Entry of the runtime options is concluded with END. The entry may comprise up to 320
characters in total.

220 U577-J-Z125-7-7600

Program execution Runtime options

Example:

/PARAM CARD = YES
/START-PROGRAM program

(out) GIVE RUNOPT OR END CARD OR ? (1)
(in) RUNOPT OVERPRINT = YES
(out) GIVE RUNOPT OR END CARD OR ?
(in) A,DTA:11,END (2)

(1) In a batch job, output of the request "GIVE RUNOPT OR..." is suppressed, but
input is still possible.

(2) If the standard assignment of BS2000 system files is changed, the corresponding
runtime option must be the last RUNOPT entry since runtime options which
change the assignment must be terminated by END.

If "?" is entered, the following help information is displayed:

STANDARD PRECONNECTION IS:
SYSDTA : 1 , 5 , 97
SYSOPT : 7 , 98
SYSLST : 6 , 99
SYSIPT : 8
SYSOUT : 2
%COUNT : 6
PLEASE CHANGE THIS PRECONNECTION IN THE FORM:
S<UBSTITUTE>/A<DD>/D<ELETE>/N<O>,(DTA:MM,NN,...)(,OPT:OO,PP,...)
(,LST:...)(,IPT:...)(,OUT:...)(,CNT:...),END
() MEANS OPTIONAL

6.3.2 Changing file numbers: SUBSTITUTE, ADD, DELETE and NO runtime options

DTA DTA
S[UBSTITUTE] OPT OPT
A[DD] LST LST

[*] , :n [,n] ... [, :n [,n] ...] ...,END
D[ELETE] IPT IPT
N[O] OUT OUT

CNT CNT

S[UBSTITUTE]
The predefined file numbers (see section 8.3.3.1) for the specified standard
files are replaced by the specified numbers.

Restriction:
No file number can be simultaneously assigned to more than one BS2000
system file.

A[DD] The predefined file numbers for the specified standard files are extended to
include the specified numbers.

U577-J-Z125-7-7600 221

Runtime options Program execution

D[ELETE]
The specified file numbers are removed from the set of predefined file num-
bers. If the UNIT parameter of an I/O statement is an asterisk ("*") and the
file number preset for the asterisk is removed, the number is replaced by
another predefined file number. If all preset file numbers for a standard file
are deleted, an error (IC02) occurs when "*" is specified as the UNIT parame-
ter in an I/O statement.

N[O] No changes to the files numbers are requested.

n Integer value, 0 n 99

Note

Since these entries terminate with an END, any other RUNOPT entries must precede
them.

Examples:

Input Effect

SUBSTITUTE,DTA:10,37,END The system file SYSDTA is assigned the file numbers
10 and 37. The predefined numbers 1, 5 and 97 are
no longer valid for SYSDTA.

ADD,OPT:11,12,OUT:13,END In addition to the predefined numbers 7 and 98, num-
bers 11 and 12 are also valid for the system file
SYSOPT. Accordingly, the numbers 2 and 13 are valid
for SYSOUT.

S,CNT:15,END The dynamic listing (%COUNT) is not output via file
number 6 (SYSLST), but via file number 15.

DELETE,DTA:1,END Predefined file number 1 is deleted. The FORTRAN
statement "READ *,A" may now result in input via file
number 5, for example.

222 U577-J-Z125-7-7600

Program execution Runtime options

6.3.3 Controlling form feed character generation for output to SYSLST:
RUNOPT OVERPRINT

For output to SYSLST, RUNOPT OVERPRINT controls the generation of printer control
characters; FORTRAN control characters are converted into hexadecimal form feed cha-
racters (see table 6-2). These hexadecimal form feed characters are then interpreted
during printing.

Y[ES]
[*]RUNOPT O[VERPRINT] [=[N[O]]]

L[ASER]

O=YES A FORTRAN control character other than "+" generates an additional data
line that contains the hexadecimal form feed characters (two-line solution).
"+" signifies only that no additional data line is generated; the predecessor
record is not suppressed, however.

O=NO Overprinting of records is excluded. For records with a form feed character
other than "+", there is a definite saving in CPU and elapsed time because
only one line per FORTRAN form feed character is output (single-line solu-
tion).
The form feed character "+" is interpreted as " ".

O=LASER
Default: Physical overprinting of a record on laser printer is possible exactly
once. Records are not immediately output but are buffered (single-line solu-
tion with buffering). A record output with the form feed character "+" physi-
cally overprints its predecessor record. An attempt to output two succeeding
records with the form feed character "+" is rejected and results in abortion of
the print process.

If more than one RUNOPT OVERPRINT entry is specified, the last one applies. If the
operand portion of the OVERPRINT parameter is empty, e.g. RUNOPT O or RUNOPT O
=, it is regarded as not specified and the default value is assumed.

U577-J-Z125-7-7600 223

Runtime options Program execution

The following table shows the conversion of FORTRAN control characters:

FORTRAN Form feed Conversion to control character
form feed
character O V E R P R I N T

YES NO LASER

+ No form feed 00aaaa 40aaaa 00aaaa

41
’ ’ 1 line 00bbbb 40bbbb 01bbbb

0 2 lines 42
00cccc 41cccc 02cccc

1 1 page
(1st line C1
on next page 00dddd C1dddd 81dddd

{aaaa bbbb cccc dddd} Data

Table 6-2: Conversion of FORTRAN control characters

Form feed control with RUNOPT OVERPRINT=LASER

[*] RUNOPT OVERPRINT=LASER causes the physical output of a record to be delayed
until the next record is available. This record starts the output of the next buffered
record, using the control character X’0n’ for form feed after printing. The value for n is
calculated from the control character of the successor record, whose output in turn is
delayed.
When buffering the first record, a dummy record is output using X’C1’ (single-page
form feed) or X’4n’, where n is calculated using the control character of the first record.

Buffer output

The user can output a record buffered because of OVERPRINT=LASER by calling the
FOR1 RTS routine I$PRINT.

FORTRAN statement: CALL I$PRINT

Appropriate use of this statement prevents any shift of the print format, which may
occur as a result of the use of non-FORTRAN program units.

224 U577-J-Z125-7-7600

Program execution Runtime options

Example 1

COBOL-MP FOR1-SP

print C1

print F1

print C2

print F2

print C3

The following shift will occur (only the form feeds of FORTRAN records are shown):

Anticipated print format: Generated print format (0=LASER):

C1 C1
(form feed of F1) (form feed of F1)

F1 C2
C2 F1

(form feed of F2) (form feed of F2)
F2 C3
C3

The form feed character for F1 is output as a dummy record. Record F1, on the other
hand, is buffered until record F2 is available and is then output with the form feed cha-
racter of F2. Record F2 remains in the buffer because no FORTRAN record follows it.

Remedy: The correct output of FORTRAN records must be controlled through the state-
ment for buffer output (see above).

Example 2

FOR1 - MP COBOL - SP

print F1

print C1

print F2

print C2

print F3

U577-J-Z125-7-7600 225

Runtime options Program execution

The print format is as follows:

Anticipated print format: Generated print format (0=LASER)

(form feed of F1) (form feed of F2)
F1 C1
C1 F1

(form feed of F2) (form feed of F2)
F2 C2
C2 F2

(form feed of F3) (form feed of F3)
F3 F3

Because of the print delay of the FORTRAN records due to buffering, the correct se-
quence has not been observed.

Remedy: Either the user changes the default RUNOPT OVERPRINT = LASER or the
correct output of FORTRAN records is controlled through the statement for
buffer output (see above).

6.3.4 Suppressing the STXIT error handling routine: RUNOPT STXIT

[*]RUNOPT STXIT = {YES|NO}

STXIT=YES
By default, an STXIT error handling routine is requested when FOR1 is initiali-
zed (see appendix A.8.1).

STXIT=NO
The request for an STXIT error handling routine is suppressed. Thus in the
case of language interfaces which do not execute in a standard linkage envi-
ronment it is possible to prevent mutual overwriting of STXIT requests. In
ILCS environments, STXIT=NO has no effect since STXITs are requested not
by FOR1 itself but by the ILCS initialization.

226 U577-J-Z125-7-7600

Program execution Runtime options

6.3.5 Setting the machine address mode: RUNOPT START

The address mode determined by the loader can be changed by means of a runtime
option while the program is being started:

[*]RUNOPT START=XS

START=XS
Sets machine address mode 31.

When machine address mode 24 has been set or determined by the loader, it can only
be changed by RUNOPT START=XS if the program concerned is an XS program. (As
of FOR1 Version 2.2A, XS modules are always generated. For FOR1 Versions < 2.2A,
compilation would need to be effected with EXTENDED-SYSTEM=YES in order to gene-
rate XS modules.)

Even when RUNOPT START = XS is specified, a program will run in the lower address
space; however, dynamic arrays can still be generated in the upper address space.

Notes

If a non-XS program or a mixed program consisting of non-XS and XS program
units which can be executed in machine address mode 24 exists, no error message
will be issued after RUNOPT START = XS is entered. In such a case errors which
are extremely hard to diagnose may occur during the program run.

In the case of non-XS systems, the START=XS runtime option is simply ignored (alt-
hough a WARNING is output).

U577-J-Z125-7-7600 227

Runtime options Program execution

6.3.6 Setting the exponent underflow handling: RUNOPT EXPONENT-UNDERFLOW

Using the EXPONENT-UNDERFLOW runtime option, the setting of the program interrupt
due to an exponent underflow (bit 2 in the program mask) can be updated at runtime.
Handling of exponent underflow is defined by means of the EXPUNDERFLOW compiler
option (default: NOEXPUNDERFLOW).

[*]RUNOPT EXPONENT-UNDERFLOW={YES NO}

NO The program is not interrupted when an exponent underflow occurs. The data
item with which an exponent underflow has occurred is set to the value 0.

YES The program is interrupted when an exponent underflow occurs and an error
message is issued.

228 U577-J-Z125-7-7600

Program execution Program initialization/program termination

6.4 Internal procedures for initializing and terminating
programs

6.4.1 Program initialization

A series of initialization measures must be taken internally at the beginning of program
execution. This happens in a separate initialization routine.

The initialization routine causes output of a start message, among other things. The
start message is output via SYSOUT and has the following format:

BS2000 F O R 1 : FORTRAN PROGRAM "name" STARTED ON date AT time

name Name of main program

date Current date in the form yyyy-mm-dd,
for example: 1991-08-30

time Time of loading in the form hh:mm:ss

The start message can be suppressed by setting job switch 4 (/MODIFY-JOB-
SWITCHES ON=4).

6.4.2 Program termination

The program termination routine is called by the object program at the end of execu-
tion, i.e. when a STOP or END statement occurs or when the EXIT subprogram is cal-
led.

Calling the prefabricated EXIT subprogram for program termination can be written in
the FORTRAN source program. It has the same effect as a STOP statement. In addi-
tion, the program termination routine is called by Error Handling if an error is encounte-
red which makes it impossible to continue execution.

The program termination routine performs the following functions:

1. It closes the input/output operations if the call was issued in an invalid in-
put/output statement.

If the routine was activated by Error Handling, the first step is to check for any
improperly closed input/output operation. Such an operation is then closed by the
input/output termination routine. Before that, it may be necessary to output the
contents of the input/output buffer.

U577-J-Z125-7-7600 229

Program initialization/program termination Program execution

On the other hand, if program termination was caused by an input/output error,
the input/output operation cannot be properly closed, but the corresponding file is
closed.

2. It cancels internally generated TFT entries.

3. It calls any termination procedures from other language program sections which
may be active.

4. It closes those files which may still be open.

The program termination routine closes any files still open by calling the CLOSE
routine.
This routine is called with the parameter value KEEP so that the files remain availa-
ble after the CLOSE routine is executed. Only the temporary work files are closed
with the parameter value DELETE and are subsequently no longer available.
If a file cannot be closed, the following message is output to SYSOUT:

FILE name COULD NOT BE PROPERLY CLOSED

name Name of file

5. An end message is output.

At the end of the routine, an end message is issued via SYSOUT.

PROPERLY
BS2000 FOR1:FORTRAN PROGRAM "name" ENDED AT time

BADLY

CPU-TIME USED: nn.nnn SECONDS

ELAPSED TIME: nn.nnn SECONDS

name Name of main program
time Time of program termination
nn.nnn CPU time used / elapsed time of the object program

Output of the end message is suppressed if job switch 4 is set to on (/MODIFY-
JOB-SWITCHES ON=4).

230 U577-J-Z125-7-7600

Program execution Runtime errors

6.5 Error handling at runtime

6.5.1 Structure of the error messages

When a runtime error occurs, an error message is output through SYSOUT.

The error message generally has the following basic form:

type ERROR DETECTED IN MODULE "module" AT hh:mm:ss
WHILE EXECUTING STMT statementno/SEG segno IN PROGRAM UNIT "unit"

xxnn: error message text

type designates the type of error. Depending on their severity and/or location of their
occurrence, the FOR1 runtime errors are subdivided into the following five types:

FATAL (see 6.5.4)
I/O (see 6.5.5)
LIBRARY (see 6.5.6)
PROGRAM (see 6.5.7)
EXECUTION (see 6.5.8)

xx designates the error condition code, nn the hexadecimal error number. The following
error condition codes are differentiated:

• Input/output errors

IC Initial call errors
OP Open errors
CL Close errors
IQ Inquire errors
PO Positioning erros
IO Record I/O errors
CO Conversion errors
FC Formatted control errors
UC Unformatted control errors
VS Value separator errors
NC Namelist control errors
PA Pause errors

• Library program errors

SH "Short" functions (e.g. ABS, IMAG)
PO Exponentiations
NU Numeric functions
CH Character functions
VS XS-related messages

U577-J-Z125-7-7600 231

Runtime errors Program execution

• Program errors

PR Program monitoring
UR Unrepairable error
AR ARITHMOS error

6.5.2 Program continuation on runtime errors

Errors occurring at runtime (i.e. during execution of the program) do not necessarily
lead to abortion of that program. In some cases it is desirable to continue the program,
e.g. in order to resume with corrected values or to detect any further errors in a pro-
gram run. Program continuation is precarious, e.g. if an unrecovered error provokes
unrecoverable consequential errors, or if it makes diagnosis difficult in a loop and gre-
atly increases the computer time requirement. Thus, it is up to the users themselves to
make a decision on a case by case basis.

An error message is output in the basic form described above for errors which lead to
abortion of the program. Afterwards an end message is output by the program termina-
tion routine.

In the case of runtime errors which permit continuation of the program, an error mes-
sage is first output in the basic form. Subsequent messages and possible ways of reco-
vering errors depend on the following conditions:

Interactive or batch mode
Type of error
ERR and IOSTAT parameters in the case of input/output statements
PARAM DEBUG command
Debug subprograms OVERFL, DVCHK, FIXOV

If the program is executed in interactive mode, the user can decide whether or not to
continue the program in interactive mode at the terminal. The FOR1 runtime system
asks the user whether

program execution is to be continued
the hierarchy of calls is to be output
a program interrupt (BREAKPOINT) is to be set.

Users wishing to continue a program may do so - depending on the type of error - by
making further entries pertaining to the type of program continuation. In the following
sections, the flowchart for the Error Handling Facility and the interaction between FOR1
and the user is displayed for each type of error.

If the program is executed in batch mode, the user cannot make a decision about pro-
gram continuation once an error has occurred. In batch mode, the user can however
activate error recovery in the event of an error by issuing the command /PARAM
DEBUG=YES or by means of the SDF operand OBJECT-CONTINUATION=YES before
the program starts. If possible, the runtime system then continues execution of the pro-

232 U577-J-Z125-7-7600

Program execution Runtime errors

gram, using internally predefined values ("default values"). If /PARAM DEBUG=NO or
the SDF operand OBJECT-CONTINUATION=NO is specified, runtime errors will result
in program termination.

In interactive mode, the error message in its basic form is additionally output via
SYSLST. In batch mode, the error message appears in the log of the ENTER job, the
log being output via SYSOUT. In addition, the error messages and information for diag-
nosing the error are output via SYSLST. The information for error diagnosis corre-
sponds to the information which can be called from the terminal in interactive mode
(output of parameters, hierarchy of calls, registers).

The ERR, END or IOSTAT parameter in input/output statements causes a branch to the
user’s own Error Handling Facility in the event of an error. In the case of input/output
errors, the program is continued at the statement label specified in the ERR or END
parameter.

6.5.3 Monitoring program execution with job variables

The execution of a FORTRAN program can be monitored with the aid of the software
product JV (job variables, see "Job Variables" manual [24]). A previously defined job
variable is specified as an operand in a LOGON, ENTER-JOB or START-PROGRAM
command. Information on the current status of the program ("status indicator") and fur-
ther information on the execution of the program ("return code indicator") are entered in
this job variable. The user can interrogate this information and control further jobs and
programs as a function of this information. The meaning of the indicators of job varia-
bles is described in section 4.9.

The status indicator in the first 3 bytes of the job variable can contain the following
information:

$T Program terminated normally.

$A Program terminated abnormally. This indicator is likewise set by the system
when the program is aborted.

$R Once a program is started, the status indicator is set to "$R".

The termination code in the 4th byte of the job variable can contain the following infor-
mation after a FORTRAN program run:

0 The object program run was free of error.

2 The object program has been terminated in a controlled manner due to the
occurrence of errors.

The program information in bytes 5 through 7 of the job variable contains 3 blanks after
the FORTRAN program run.

U577-J-Z125-7-7600 233

Runtime errors Program execution

6.5.4 Fatal errors

These errors make abnormal termination of the program unavoidable, since meaningful
results cannot be expected and the program cannot be continued when they are en-
countered.

Fatal errors occur, for example, in the following instances:

Memory exhausted (NO DYNAMIC STORAGE AVAILABLE)
Endless loop in a program (PROGRAM LOOP DETECTED)
Errored call of the ALLOC subprogram ALLOC (WRONG LIMITS IN ALLOCATION
CALL)

If a fatal error occurs, the program is terminated in a controlled manner (end handling).

6.5.5 Input/output errors

These errors appear in connection with input/output statements.

Input/output errors occur, for example, in the following instances:

Device errors
Format errors
Data errors (types)
DMS errors
Illegal operations
Sequence errors.

The user can program his own error recovery by specifying the ERR parameter in
input/output statements. When an error occurs, the program then continues at the state-
ment label specified in the ERR parameter.

If end of file is reached during execution of a READ statement or positioning statement,
the user can prevent the program from being interrupted by specifying the END parame-
ter. When the end of the file is reached, the program is continued at the statement
label specified in the END parameter.

If no ERR or END parameter is specified, but an IOSTAT parameter is, the program is
continued in the event of an error or when the end of file is reached, starting with the
next executable statement.
If neither an ERR nor an IOSTAT parameter is specified, an error message is output
when an error occurs and the user is queried as to whether or not the program is to
be continued. If neither an END nor an IOSTAT parameter is specified, the message
"EOF^x80ON^x80UNIT dsetno (pathname)" is output when the end of file is reached,
and the program is aborted.

234 U577-J-Z125-7-7600

Program execution Runtime errors

The various possibilities are summarized in the following table.

Condition
Specified
parameters Error End-of-file

- Error message; query: EOF message
Continue program? Abort program

ERR ERR statement label EOF message
Abort program

END Error message; query: END statement label
Continue program?

IOSTAT Next executable Next executable
statement statement

ERR ERR statement label END statement label
END

ERR ERR statement label Next executable
IOSTAT statement

END Next executable END statement label
IOSTAT statement

END/ERR ERR statement label END statement label
IOSTAT

Table 6-3: Program continuation as a function of ERR, END, and IOSTAT parameters

The error message begins with an error number, in hexadecimal form, corresponding to
the IOSTAT error number. For example, the hexadecimal error number 15 in the mes-
sage

OP15: FILE COULD NOT BE OPENED

corresponds to IOSTAT error number 21.

The program can resume with the executable statement immediately following the
input/output statement which caused the error. However this requires that the preset-
ting COMOPT TESTOPT=(STNR) set by default applies, so that the compiler will gene-
rate a statement table in the object which the FOR1 runtime system can execute.

Program continuation is possible both in interactive and batch mode, as the following
flowchart illustrates. The second diagram shows the prompting sequence in interactive
mode.

U577-J-Z125-7-7600 235

Runtime errors Program execution

STMT table in the object
Y N

Batch mode
Y N

PARAM DEBUG Continuation
= YES requested

Y N Y N Program termination

Continu- Continu-
ation ation
address address
following following
I/O I/O
address Program address Program

termi- termi-
Program nation Program nation
continu- continu-
ation ation

Fig. 6-1: Flowchart for input/output errors

Interaction for input/output errors:

FOR1 display User FOR1 reaction
response

OBJECT CONTINUATION? Y/N Y Program run continues after
illegal input/output
statement.

N Dialog is continued.

DO YOU WANT PARAMETERS
DISPLAYED? Y/N Y Parameters are displayed.

DO YOU WISH CALLING SEQUENCE
DISPLAYED? Y/N Y Call hierarchy is output.

DO YOU WISH A BREAKPOINT? Y/N Y Program is interrupted.

236 U577-J-Z125-7-7600

Program execution Runtime errors

6.5.6 Errors in mathematical library programs

These errors occur if FOR1 intrinsic functions are invoked and actual arguments are
incorrectly supplied.

Such errors may occur in the following instances, for example:

Argument too large or too small
Argument illegally negative
Invalid argument type
Division by zero
Base is zero.

Resumption may be advisable if the user is simulating results which the function cau-
sing the error should have produced. There is a difference between interactive and
batch mode.

In interactive mode, users see the invoked function and the expected type of result so
that they can specify the appropriate result with which they wish to resume.
In batch mode, such values can be assumed where the danger of consequential errors
is minimal (e.g. 1 or 1.0).

The flowchart and the sequence of prompts that may appear in interactive mode are
shown below.

U577-J-Z125-7-7600 237

Runtime errors Program execution

Batch mode
N Y

Continue PARAM DEBUG=
Y N Y YES N

User’s response:
D for default With default Program
I for INTERRUPT values, termination

Program return to
User response termination object

D I following
call of the

Set Recovery library
default of program
in program
corres- contents
ponding for
registers program

continu-
ation

BKPT
Return
to Return
object to
after object
calling after
the calling
library the
program library

program

Fig. 6-2: Flowchart for library errors

238 U577-J-Z125-7-7600

Program execution Runtime errors

Interaction for library errors:

FOR1 display User FOR1 reaction
response

OBJECT CONTINUATION? Y/N N Continue dialog for (1).

Y Prompt user for type of
continuation.

DEFAULT VALUE (D) or D Default values are loaded
INTERRUPT (I) into corresponding registers.

Execution continues after
CALL.

I Branch (BKPT) to system
mode so that the user can
set the desired value in
corresponding registers by
means of AID.

BKPT AID cmds.; Execution continues after
/RESUME CALL.
-PROGRAM

(1)
DO YOU WISH CALLING SEQUENCE Y Call hierarchy is output.
DISPLAYED? Y/N

DO YOU WISH A BREAKPOINT? Y/N Y Program is interrupted.

Example:

The following program contains an invalid argument: negative radicand. A library error
is reported when the program is executed.

/SET-TASKLIB LIB=$FOR1MODLIBS (01)
/DEL-SYS-FILE OMF
/START-PROG $FOR1
% BLS0500 PROGRAM ’FOR1’, VERSION ’2.2A00’ OF ’91-06-05’ LOADED.
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1991 ...
FOR1: V2.2A00 READY, GIVE COMPILER OPTION
*COMOPT LISTFILE=LIST(OBJECT),END
* PROGRAM SQ (02)
* R=-16
* X=SQRT(R)
* WRITE *,X
* END
/ (03)
FOR1: NO ERRORS DURING COMPILATION OF P.U. SQ
END OF F O R 1 COMPILATION; CPU TIME USED: 0.191 SEC.

U577-J-Z125-7-7600 239

Runtime errors Program execution

Excerpt from the OBJECT listing:

**** STATEMENT 3 (ASSIGNMENT) ********
X = SQRT(R)
LA 1,264(0,13)
USING SQ@@@@@@+264,1
L 15,136(0,12)
LA 0,1(0,0)
BALR 14,15 IF@Q (04)
STE 0,256(0,13) X (05)

/START-PROG FROM-FILE=*MODULE(*OMF) (06)
% BLS0001 ### DBL VERSION 070 RUNNING
% BLS0517 MODULE ’SQ’ LOADED
BS2000 F O R 1 : FORTRAN PROGRAM "SQ"
STARTED ON 1991-08-30 AT 13:57:38
LIBRARY ERROR DETECTED IN MODULE "IF@Q " AT 13:57:38 (07)
WHILE EXECUTING STMT 3/SEG 1 IN PROGRAM UNIT "SQ "
NU1A: ARGUMENT X < 0
OBJECT CONTINUATION ? Y/N
Y
DEFAULT VALUE "D" OR INTERRUPT "I" ? D/I
I
% IDA0199 PROGRAM BREAK AT 02C956, AMODE = 24
/%AID CHECK=ALL
/%SET 4 INTO %0E (08)
OLD CONTENT:
-.1600000 E+002
NEW CONTENT:
+.4000000 E+001
% IDA0129 CHANGE? (Y=YES; N=NO)
Y
/%R
0.40000000E+01
BS2000 F O R 1 : FORTRAN PROGRAM "SQ " ENDED PROPERLY AT 13:58:04
CPU - TIME USED : 0.0491 SECONDS
ELAPSED TIME : 26.2960 SECONDS

Explanation of example:

(01) Runtime system assignment.
(02) Program input directly at the terminal.
(03) End of input.
(04) The BALR instruction calls root function IF@Q.
(05) The result is moved from floating point register 0 to the result field using the STE

instruction.
(06) Program execution.
(07) Error message.
(08) Modification of memory contents (floating point register 0; single precision).

240 U577-J-Z125-7-7600

Program execution Runtime errors

6.5.7 Program errors

These errors, recognized during the execution of machine instructions, are supplied via
STXIT routines to the FOR1 runtime system for further handling. The errors are the
results of interruptions in the STXIT event classes "Program check" and "Unrecoverable
program error" (see "Executive Macros" manual [26]).

The following are examples of program errors:

Address translation error
Illegal SVC or illegal operation code
Addressing error
Data error
Exponent overflow/underflow
Divide error
Decimal overflow
Fixed point overflow.

The type of error determines the point where the program run resumes. A distinction is
made between arithmetic errors and other errors.

Arithmetic errors:

These are characterized by hardware-produced interrupt weights of X’64’ -X’78’ (see
"Assembler" manual [8]). The user, in the result register of the interrupted machine
command instruction, may simulate a result which is suitable for continuing the compu-
tation. For some errors, the appropriate debug subprograms (OVERFL, FIXOV or
DVCHK) can be linked into the program to prevent abnormal termination and supply
defaults. If they are not linked in, the simulated result of computation may be

entered by the user (in response to prompts) in interactive mode, or
specified by the runtime system in batch mode.

Program execution continues after the interrupted machine instruction.

Other errors:

These are characterized by interrupt weights of X’48’ - X’60’. No results need be sup-
plied here. There is only one difference: whether the interrupt is caused by the runtime
system or by the FOR1 object:

interrupt in the runtime system: execution is resumed after the call of the routine
concerned.
interrupt in the object: the interrupting FORTRAN statement is skipped and proces-
sing resumes with the next statement.

U577-J-Z125-7-7600 241

Runtime errors Program execution

When program errors occur, an error message in the basic form is issued. Afterwards
the absolute address, the address relative to the beginning of the module and the
machine instruction for which the error occurred are output:

PROGRAM COUNT AT INTERRUPT OCCURENCE: absolute address CC=n

PROGRAM COUNT RELATIVE TO ENTRYPOINT: relative address

STATEMENT CODE: machine instruction

Subsequent to this the contents of the general-purpose and floating point registers are
output. In interactive mode, the user can then decide about continuing the program.

The flowchart is shown below. The interactive prompts are the same as those for library
errors, except that the program run continues after the illegal machine instruction. The
simulated result of the illegal operation is loaded into the result register, whose number
is obtained from the instruction code.

Nested error handling is possible, so that errors which occur in the error routine can be
handled.

Batch mode
N Y

Wish to continue? Arithmetic error?
Y N Y N

Arithmetic PARAM DEBUG=YES
error? Y N

Y N
Program Load default Program

BKPT termi- into target termi-
nation register Program nation

Restart termi-
Simulate with Restart nation
result illegal after illegal

opera- operation
tion
(retry)

Fig. 6-3: Flowchart for program errors

242 U577-J-Z125-7-7600

Program execution Runtime errors

Result simulation:

The user is prompted for the type of program continuation.
Reply D: Default value is inserted.
Reply I: A value is inserted with the aid of AID.

User response
I D

Reload all registers
Load default into target register

BKPT AID correction

Restart after illegal operation

Fig. 6-4: Result simulation for program errors

6.5.8 Errors in debug options, debug statements, irregular flow of control

In the error message, these errors are designated "EXECUTION ERROR". There are
three different types of errors.

Errors as a consequence of TESTOPT

As these errors are only reported if the debug options were activated at compile time,
the user can, of course, treat the error messages like warnings and, following the dis-
play of these messages, continue executing the program in interactive mode in a totally
normal fashion. The object ensures that a usable return address is provided in register
14. Usually
the system soon reports another error as the result of the first error.
In batch mode, this leads to abortion of the program.

Errors in the %COUNT evaluation

As the %COUNT statement is evaluated at the very end of program execution - when
the production run is over - the user can simply cancel the evaluation and report gene-
ration process and let the object continue with the rest of the program termination routi-
nes (file close, closedown procedure calls, runtime calculation).

Errors due to irregularities in the flow of control

These include the following cases:

illegal value in a DO loop
illegal reference in assigned GOTO

U577-J-Z125-7-7600 243

Runtime errors Program execution

recursive subprogram call
invalid END or ERR entry
invalid format specification
format group to be repeated does not contain conversion format
zero step width in DO loop
DO control variable overwritten outside loop

For any of these errors, users must decide individually where they wish to continue pro-
gram execution. There is a difference between interactive mode and batch mode: In
interactive mode, the user decides whether and from which address, label or FORTRAN
statement he wishes to continue execution. In batch mode, the program is aborted.

Shown below are the flowchart and the prompting system.

Cause of error
%COUNT

Irregular
Abort TESTOPT control flow
%COUNT-
computa- Batch mode Batch mode
tion N Y N Y

Wish to Wish to continue?
continue? Y N

Pro-
Resume Y N Program Prompt user for gram
in termi- address or termi-
program Pro- Pro- nation statement number Program nation
termi- gram gram termi-
nation con- ter- nation
routine tinu- min- User

ation ation entry
State-

Address ment
number

Resume Compute
at address
address of

state-
ment

Resume
at
address

Fig. 6-5: Flowchart for errors in debug options, debug statements, irregular flow of control

244 U577-J-Z125-7-7600

Program execution Runtime errors

Interaction for irregular flow of control:

FOR1 display User FOR1 reaction
response

OBJECT CONTINUATION? Y/N N Continue dialog for (1).

Y Prompt user for address
or statement number.

GIVE STORAGE ADDRESS (NNNNNN) NNNNNN Continue program run at
OR STMT-NR (%NNN) WHERE TO specified address.
CONTINUE

%NNN Compute address of specified
statement by means of
statement table and
continue execution there.

(1)
DO YOU WISH CALLING Y Call hierarchy is displayed.
SEQUENCE DISPLAYED? Y/N

DO YOU WISH A BREAKPOINT? Y/N Y Program is interrupted.

U577-J-Z125-7-7600 245

7 Debugging aids
A FORTRAN program which has been compiled without error can possibly still be erro-
red, and this is not noticeable until the program is executed. The following debugging
aids are available to the user for locating runtime errors:

debug options in the form of compiler options,
debug statements in the form of compile time statements,
debug subprograms in the form of ready-made subprograms,
the debugging aid AID (as of AID Version 1.0C).

7.1 Controlling the debugging aids: SDF operand
TEST-SUPPORT

START-FOR1-COMPILER

,TEST-SUPPORT = STD / NO / PARAMETER(...)

PARAMETER(...)

STATEMENT-TABLE = YES / NO

,TOOL-SUPPORT = NO / AID

,CHECK-CODE = NO / ALL / YES(...)

YES(...)
PROCEDURE-ARGUMENTS = NO / YES

,ARRAY-BOUNDS = NO / YES
,ARRAY-SUBSCRIPTS = NO / YES
,SUBSTRING-BOUNDS = NO / YES
,BRANCH-STMTS = NO / YES
,VARIABLE-ASSIGNMENT = NO / YES
,USER-DEBUG-STMTS = NO / YES

The SDF operands and corresponding compiler options are shown in table 2-10.

U577-J-Z125-7-7600 247

SDF operand TEST-SUPPORT Debugging aids

7.2 Summary: SDF operand TEST-SUPPORT and
corresponding compiler options

In the following summary, the compiler option is given in the first line with the corre-
sponding SDF operand in the second line, followed by the meaning.

TESTOPT=(ALL)
CHECK-CODE=ALL

All tests listed in the following are activated.

TESTOPT=(STNR)
STATEMENT-TABLE=YES

For all error messages the appropriate source program statement number is output.
The standard default TESTOPT=(STNR) is always valid, unless it has been deactivated
by means of NOTESTOPT [=(ALL)] (see examples at the end of this section).

TESTOPT=(ARG)
CHECK-CODE=YES(PROCEDURE-ARGUMENTS=YES)

On entry into a subprogram the arguments passed are checked for number, type and
length.
If an ILCS program in a different language calls a FOR1-ILCS object, only the number
of parameters is compared.

TESTOPT=(BOUNDS)
CHECK-CODE=YES(ARRAY-BOUNDS=YES)

With array elements a check is made as to whether each subscript is within its declared
bounds (see section 9.3.4, "Subscript computation").

TESTOPT=(SUBSCR)
CHECK-CODE=YES(ARRAY-SUBSCRIPTS=YES)

With array elements a check is made as to whether the element address calculated in
accordance with the usual formula is within the array. This check is less rigid than the
previous one.

TESTOPT=(STRING)
CHECK-CODE=YES(SUBSTRING-BOUNDS=YES)

With substring accesses a check is made as to whether the reference substring is ent-
irely within the associated variables.

248 U577-J-Z125-7-7600

Debugging aids SDF operand TEST-SUPPORT

TESTOPT=(CNTRL)
CHECK-CODE=YES(BRANCH-STMTS=YES)

All set GOTOs and all GOTOs into loops are checked for correctness. The compiler
checks whether the value of the loop variable has been changed.

TESTOPT=(UNDEF)
CHECK-CODE=YES(VARIABLE-ASSIGNMENT=YES)

When using the values of variables a check is made as to whether they have defined
values at all.

TESTOPT=(DEBUG)
CHECK-CODE=YES(USER-DEBUG-STMTS=YES)

The debug statements (see section 7.4) are also compiled by FOR1.

Complementary quantities can be specified by using the prefix NO (see section 2.3.1).

U577-J-Z125-7-7600 249

Debug options Debugging aids

7.3 Controlling the debugging aids with the TESTOPT compiler
option

The user uses the TESTOPT compiler option to generate tests to locate runtime errors
in the object program. On the basis of these tests, errors which could result in incor-
rect results, inexplicable behavior or abnormal program termination are detected and
reported at compile time or runtime. Such errors are referred to as "EXECUTION
ERROR" in the message output. The semantics of the program are not affected by
debug options.

Debug options also control the output of statement numbers (STMT) in the event of
runtime errors and the efficacy of the debugging statements (see section 7.4).

Debug options are specified in the TESTOPT option.

[*]COMOPT [NO] TESTOPT [=([testparameter][,...])]

testparameter:={ALL STNR ARG BOUNDS
SUBSCR STRING CNTRL UNDEF
DEBUG}

ALL All actions described in this section are carried out.

STNR For runtime errors, error message output also includes the statement number
(STMT) of the statement that caused the error (default). Execution is not bur-
dened by additional code.

ARG For function and subprogram calls, the number, type and length of the actual
and dummy arguments are checked for consistency.

The check is not possible with subprograms that are called by programs in
other languages (except in the case of Assembler, if the corresponding mac-
ros have been used, and in the case of PLI1).
If an ILCS program in a different language calls a FOR1-ILCS object, only the
number of parameters is compared.

For program linkage of OLD, non-XS and XS object programs (see section
A.7), the following checks are performed and corresponding messages output
(if required) at runtime:

For the linkage of OLD with non-XS programs, no dynamic array can be
passed as the argument;
a dynamic array as the actual parameter must, when used as a dummy
argument, likewise correspond to a dynamic array with the same dimen-
sion number;
calls of OLD and non-XS subprograms can only take place in machine

250 U577-J-Z125-7-7600

Debugging aids Debug options

address mode 24;
in the XSTONXS call, no XS program can be used as the subprogram;
no OLD parameter list must be passed to an XS subprogram;
no XS parameter list must be passed to an OLD subprogram.

BOUNDS Each array element name is checked as to whether the subscript values are
within the subscript bounds of that array. If BOUNDS is specified, errors will
be reported for the examples described under SUBSCR.
This check is only possible with optimization deactivated. If BOUNDS is speci-
fied in conjunction with OPTIMIZE>0, FOR1 switches on SUBSCR and issues
a message.

SUBSCR Each array element name is checked as to whether the calculated position of
the array element (subscript list value) is within the bounds of the array (see
formula in section 9.3.4).

Example:

DIMENSION A(5,3)
I=6
J=2
A(I,J)= ...

This element is within the bounds of the array; no error is reported.

A(1,1) A(5,1) A(1,2) A(1,3)

Calculated position: A(6,2)
(subscript list value=11)

DIMENSION A(5,3)
I=4
J=4
A(I,J)= ...

In this case, the array element is outside the bounds of the array; an error
message is therefore issued.

A(1,1) A(5,1) A(1,2) A(1,3)

Calculated position: A(4,4)
(subscript list value=19)

U577-J-Z125-7-7600 251

Debug options Debugging aids

STRING When using CHARACTER substrings, a check is made as to whether the spe-
cified values for the bounds of the substring are within the associated
CHARACTER variable. An error message also appears if the value of the
lower bound of the substring is greater than the value of the upper bound.

Example:

CHARACTER*20 B
I=20
J=22
B(I:J) = ...

An error is reported because the end of the substring is outside the variable.

CNTRL Transfers of control within a program unit are checked for validity.

For transfers of control into the range of DO loops, the compiler generates
the test code only if a simultaneous branch from the loop range is intended
(extended range for relocating parts of the loop range). At runtime, a check is
made as to whether the iteration counter of these loops and any existing com-
prehensive loops shows a value greater than zero and whether the running
variable of these loops has changed.

The compiler checks whether the value of the loop variable within the loop
range has changed. If an assignment, multiple assignment, ASSIGN, READ or
DECODE statement exists, a warning message (SA 168) is issued.

For assigned GOTOs, a check is made as to whether the corresponding varia-
ble was assigned a valid branch label by an ASSIGN statement. The same
checks are also performed for assigned labels in the ERR and END parame-
ters of input/output statements and for assigned format.

UNDEF Whenever the value of an item is to be used, a check is made as to whether
it has already been assigned any value. To enable these checks to be carried
out, the first step is to initialize to hexadecimal ’80’ the data sections of all
program unit sections which have not been initialized by user entries. For
items whose value shows this bit pattern (X’80’) during the execution of a
program, it is assumed that they have not yet been assigned a value; there-
fore an error message appears if their value is accessed. In the case of
INTEGER*1 items, initialization with X’80’ is performed, however the check is
not, since there are only 256 possible values and X’80’ represents the value
-128. This check is also not performed for a CHARACTER item with variable
length, since the length 0 is in this case permissible (see "FOR1" manual
[21]). Likewise dynamic arrays are not checked for X’80’.

If an UNDEF test pattern is detected, the user is informed by an error mes-
sage (at program runtime). It is up to the user whether or not the program
run is continued (see section 6.5.8).
Variables which, at compile time, are known to have a defined value (e.g.

252 U577-J-Z125-7-7600

Debugging aids Debug options

through initialization in a DATA statement) are not checked at runtime. If at
least one array element is defined in a field, the entire array is regarded as
being defined at compile time. Non-defined array elements are rejected at
runtime.

DEBUG Instruction sequences are generated for the debug statements specified in the
source program (see section 7.4). If this parameter is omitted, the debug sta-
tements are ignored.

Restrictions:

The TESTOPT and OPTIMIZE=3,4 compiler options are mutually exclusive. The
most recently specified compiler option is applicable.

If TESTOPT is specified in conjunction with PROCEDURE-OPTIMIZATION=YES or
PROCEDURE-OPTIMIZATION=SPECIAL, PROCEDURE-OPTIMIZATION is then reset
to NO.

Examples:

Option specified: Effect:

[*]COMOPT TESTOPT=(ALL) All checks are carried out.

[*]COMOPT NOTESTOPT=(STRING) All checks are carried out except those descri-
bed for STRING.

[*]COMOPT NOTESTOPT No checks whatsoever are carried out. State-
ment number output for runtime errors is also
suppressed.

[*]COMOPT NOTESTOPT=(STNR) Since the default TESTOPT=(STNR) is still valid,
provided it has not been deactivated by means
of NOTESTOPT[=(ALL)], all checks including
STNR are performed.

U577-J-Z125-7-7600 253

Debug statements Debugging aids

7.4 Debug statements (controlling the debugging aids through
statements in the source program)

Debug statements are written in the FORTRAN source program and provide assistance
in troubleshooting programs. At compile time, the debug statements are translated into
instruction sequences that issue information about the structure and execution of the
program as well as the dynamic values of the data in that program.

Unlike the debug options (see section 7.4), which apply to the entire process of compi-
lation, debug statements may be written at specific points in the source program. They
are valid only in the program unit in which they were defined and they are valid for an
area determined by the user.

Debug statements begin with a percentage sign.
Debug statements must not be preceded by statement labels.

The compiler option COMOPT TESTOPT = (DEBUG) is a prerequisite for compiling the
debug statements. If this compiler option is omitted, the debug statements are simply
ignored.

7.4.1 Overview: Debug statements

Format Meaning

%DISPLAY [(unit)] name [,name]... Output of values of variables and
arrays.

ON Output of new values of variables
%CHECK [(unit)][name[,name]...] and array elements with assignments

OFF between ...ON and ...OFF.

ON Output of call information, calling
%CALLTRACE [(unit)] or called program unit, statement

OFF number of call point, entry point,
parameter addresses and values for
each call between ...ON and ...OFF.

ON Logging of GOTO’s performed to
%JUMPTRACE [(unit)] statement labels between ...ON and

OFF ...OFF.

ON Logging of the numbers of
%FULLTRACE [(unit)] statements executed as well as

OFF output of new values of variables
and array elements for assignments
between ...ON and ...OFF.

ON Count of statement execution
%COUNT frequency and timing between

OFF ...ON and ...OFF.

unit Variable or constant
name Name of an item

254 U577-J-Z125-7-7600

Debugging aids Debug statements

The parameter value unit may be used to specify the file number of the file to which
output is to be made. Standard output is to SYSLST.

If a debug statement contains a file number, it remains in effect for all further occurren-
ces of the same debug statement until a further occurrence of the same debug state-
ment specifies another file number.

The debug statement is activated by the parameter ON and deactivated by the parame-
ter OFF.

If no statement for deactivating the debug function is given, the debug function is deac-
tivated at the end of the program unit.

If the OFF parameter is specified in a debug statement along with a file number that
matches the file number currently in effect for that debug statement, the statement deac-
tivates the debug function and resets output for these debug statements to SYSLST.

If no FILE command was given for the specified file number, a file with the following
standard name is generated:

DBG.FOR1.stmt.prog.unit[.tsn[.time]]

where

stmt Name of the debug statement in the form #DISPL, #CHECK, #FULL, #CALL
or #JUMP

prog Name of the program unit
unit File number
tsn Task sequence number, 4-digit
time File creation time in the form hhmmss

The qualifications tsn and time are only performed if the entry would otherwise be ambi-
guous.

U577-J-Z125-7-7600 255

Debug statements Debugging aids

7.4.2 %DISPLAY statement

The %DISPLAY statement may be used to output the names and current values of
items.

%DISPLAY [(unit)] name [,name]...

unit Variable or constant.
name Name of an item, i.e. of a variable or an array.

Form of output for variable and array:

%DISPLAY/prog/ddddd:
name = value,

%DISPLAY/prog/dddddd:
name = value1, value2, value3, ...

prog Name of the program unit.
ddddd Statement number of the %DISPLAY statement.
name Name of an item which was specified in the %DISPLAY statement.

The items are displayed in the order in which they were supplied in the associated
%DISPLAY statement. The values of each item are shown in the standard format for the
type concerned. The standard formats are described in the "FOR1" manual [21]. If an
array name is specified, then all elements of the array are shown.

7.4.3 %CHECK statement

The %CHECK statement may be used to trace changes to values of variables.

ON
%CHECK [(unit)] [name [,name]...]

OFF

unit Variable or constant.
name Name of a an item, i.e. of a variable or an array.

%CHECK ON (unit) name,name,...name
activates the debug function for the items specified.

%CHECK OFF (unit) name,...name
deactivates the debug functions for the items specified.

256 U577-J-Z125-7-7600

Debugging aids Debug statements

%CHECK OFF (unit)
While this statement without specification of items deactivates the check, a subsequent
%CHECK ON statement activates the check again for the newly specified items and the
old items.

The %CHECK ON (unit) statement without specification of items as the first %CHECK
statement is meaningless.

If the value of a specified item changes, the current value of the item is displayed at
the end of the corresponding statement.

Position where values may change Data concerned

Left side of assignment statement, All data occurring
input/output list in input statement,
storage input/output unit in output
statements

ENTRY statement All dummy arguments of the entry and
COMMON data of the program unit

Function call and CALL statement Actual arguments which occur,
if variable or array name,
and all COMMON data of the
(calling) program unit.

Form of output for the variable or array:

%CHECK/prog/aaaaa :
name = value ,

%CHECK/prog/bbbbb :
name = value1 , value2 , value3 , ...

Form of output for the LABEL variable:

%CHECK/prog/aaaaa:
name = ’ZZZZ (LABEL)’,

prog Name of program unit
aaaaa,bbbbb Numbers of those statements where the value change has taken pla-

ce.
name Name of an item specified in the %CHECK statement.
ZZZZ Statement label

The values of items are displayed in the standard format for the type concerned. The
standard formats are described in the "FOR1" reference manual [21].

U577-J-Z125-7-7600 257

Debug statements Debugging aids

7.4.4 %CALLTRACE statement

The %CALLTRACE statement provides information on the subprogram and function
calls within a program unit.

ON
%CALLTRACE [(unit)]

OFF

The name of the entry point, the name of the associated program unit, and the transmit-
ted argument values are shown for each call issued within the range between
%CALLTRACE ON and %CALLTRACE OFF.

If further calls are made in a called program unit, no information will be displayed about
these calls unless a %CALLTRACE statement was also specified for the called program
unit.

Form of output:

%CALLTRACE/prog/cccc: CALLED ENTRY : <entry subprogram"
SUBMITTED PARAMETERS :
ARG. ABSOLUTE PROGRAM ARGUMENT DATA HEXADECIMAL VALUE VALUE
NO. LOCATION ADDRESS OFFSET TYPE

.

.

.

.

prog Name of the calling program unit
ccccc Statement number of each statement where the call is made
entry Name of the entry point
subprogram Name of the called program unit

258 U577-J-Z125-7-7600

Debugging aids Debug statements

7.4.5 %JUMPTRACE statement

The %JUMPTRACE statement provides information on transfers of control within a pro-
gram unit.

ON
%JUMPTRACE [(unit)]

OFF

For each transfer of control within a program unit, the segment and statement number
of the exit and entry point are shown, provided that the branch point is within the range
between %JUMPTRACE ON and %JUMPTRACE OFF.

This applies to explicit branches caused by a GOTO statement as well as implicit bran-
ches such as those caused by DO statements or IF statements.

Form of output:

%JUMPTRACE/prog/jjjjj:SEG-NR=SSSSS;STMT-NR=sssss

prog Name of the program unit
jjjjj Statement number of the %JUMPTRACE statement
SSSSS Segment number of the destination point
sssss Statement number of the destination point

U577-J-Z125-7-7600 259

Debug statements Debugging aids

7.4.6 %FULLTRACE statement

The %FULLTRACE statement provides information on the execution sequence of state-
ments and value changes of all variables in the respective statements.

ON
%FULLTRACE [(unit)]

OFF

For each statement executed and any value change of the variables within the range
between %FULLTRACE ON and %FULLTRACE OFF the statement number, segment
number and the current value of the item are shown at the end of the statement concer-
ned.

Form of output:

%FULLTRACE/prog/fffff:SEG-NR=SSSSS;STMT-NR=sssss

prog Name of the program unit
fffff Statement number of the associated %FULLTRACE ON statement
SSSSS Segment number
sssss Statement number

When %FULLTRACE is specified, a %CHECK listing is output for all value changes. The
%FULLTRACE statement should only be used for smaller ranges since it considerably
increases compile time, the size of the object program generated, the execution time,
and the amount of data output. The results that may be achieved with the two following
statements are usually sufficient for tracing the execution of the program.

260 U577-J-Z125-7-7600

Debugging aids Debug statements

7.4.7 %COUNT statement

The %COUNT statement provides information on the frequency with which the various
program parts are executed as well as the time each part takes.

ON
%COUNT

OFF

For each segment whose beginning is in the range between %COUNT ON and
%COUNT OFF, the number of passes through the segment is traced for the whole
object program execution.

In addition, the approximate time needed for each statement in the specified area is
also determined approximately. At the end of program execution, two statistics are
issued for each program unit in which these counts were taken. Output is not to a ran-
dom file number as in the case of the other debug statements, but to SYSLST. Output
to another unit can be defined by means of the runtime options (see section 6.3).

If such statistics are output for two or more program units of a program system, an
overall statistics list is produced at the end, covering all these program units.

Form of output:

Statistic 1

DYNAMIC COUNT PROFILE OF PROGRAM UNIT prog

SEG-NR STMT-NR COUNT PROFILE
SSSSS sssss n ******

. . . .

. . . .

. . . .

prog Name of the program unit
SSSSS Segment number
sssss Statement number of the first statement in the segment concerned
n Number of passes through that segment
****** Histogram illustrating the relationship of the passes between the indivi-

dual segments for which the count was performed

U577-J-Z125-7-7600 261

Debug statements Debugging aids

Statistic 2

DYNAMIC TIME PROFILE OF PROGRAM UNIT prog

SEG-NR STMT-NR TIME PROFILE
SSSSS sssss n ******

. . . .

. . . .

. . . .

prog Name of program unit
SSSSS Segment number
sssss Statement number
n Relative ratio between the time required for all executions of the

respective statements and the total time requirements of all state-
ments recognized in that program unit

****** Histogram illustrating the relative ratio

Statistic 3

DYNAMIC TIME PROFILE ON ALL COUNTED PROGRAM UNITS
PROGRAM UNIT TIME PROFILE
prog n ******
. . .
. . .
. . .

prog Name of the program unit.
n Relative ratio between the time requirements of that program unit and

the total time requirements of all statements for which the correspon-
ding %COUNT statements were given.

****** Histogram illustating the relative ratio

The number of passes registered by %COUNT and the generation of the listings are
evaluated only at the end of the program run. At this time all program units concerned
must be in main memory and must not be overlaid by other program units.

Full use of the information about the proportionate times of program units can be made
only if all statements of each program unit involved are in the counting range. If a pro-
gram unit calls other program units, the time requirements of such called program units
are not allowed for in the time requirements shown for the calling program unit. If the
called program units include %COUNT statements of their own, these time requirements
may be inferred from the appropriate lines of Statistic 3.

262 U577-J-Z125-7-7600

Debugging aids Debug statements

7.4.8 Example: Using debug statements

The program INV is contained in the file QUELL.MAT and is compiled using the follo-
wing statements:

/START-PROG $FOR1
% BLS0500 PROGRAM ’FOR1’, VERSION ’2.2A00’ OF ’91-06-05’LOADED.
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG. 1991 ...
FOR1: V2.2A00 READY, GIVE COMPILER OPTION

*COMOPT TESTOPT=(DEBUG),SOURCE=QUELL.MAT,END (9)

SOURCE LISTING for the source program:

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-26 TIME = 12:36:48 PAGE 1
PROGRAM UNIT: INV

DO/IF SEG STMT I/H LINE SOURCE-TEXT COL73-80 RECORD-ID.

1/1 1 1 PROGRAM INV
1 2 2 COMMON IR
1 3 3 %COUNT ON (1)
1 4 4 %CALLTRACE ON (2) (2)
1 5 5 1 WRITE (2,10)
1 6 6 %CHECK ON (2) IR (3)
1 7 7 READ (1,11) IR
1 8 8 %CHECK OFF (2)
1 9 9 IF (IR.GT.3) THEN

1 2 10 10 GO TO 1
1 2 11 11 ELSE IF (IR.EQ.0) THEN
1 3 12 12 GO TO 100
1 3 13 13 ELSE
1 4 14 14 CALL DETS ()
1 4 15 15 END IF

4 16 16 %CALLTRACE OFF
4 17 17 %COUNT OFF
4 18 18 10 FORMAT (’ ENTER RANK OF MATRIX’)
4 19 19 11 FORMAT (I1)
5 20 20 100 END

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-26 TIME = 12:36:48 PAGE 1
PROGRAM UNIT: DETS

DO/IF SEG STMT I/H LINE SOURCE-TEXT COL73-80 RECORD-ID.

1/1 1 1 SUBROUTINE DETS ()
1 2 2 COMMON IR
1 3 3 REAL A(:,:)
1 4 4 DIMENSION B(3,3)
1 5 5 DIMENSION DET(3,3)
1 6 6 CALL ALLOC(A,1,IR,1,IR,’ANY’)
1 7 7 %COUNT ON (1)
1 8 8 WRITE (2,10)
6 9 9 READ (1,*) ((A(IA,IB),IB=1,IR),IA=1,IR)
6 10 10 %JUMPTRACE ON (2) (4)
6 11 11 IF (IR.EQ.2) THEN

1 7 12 12 SDET=A(1,1)*A(2,2)-A(2,1)*A(1,2)
1 7 13 13 %DISPLAY (2) SDET (5)
1 7 14 14 %CHECK ON (2) B (6)
1 7 15 15 B(1,1)=A(2,2)/SDET
1 7 16 16 B(2,2)=A(1,1)/SDET
1 7 17 17 B(1,2)=(-A(1,2))/SDET
1 7 18 18 B(2,1)=(-A(2,1))/SDET
1 7 19 19 %CHECK OFF (2)
1 7 20 20 ELSE
1 8 21 21 DET(1,1)=A(2,2)*A(3,3)-A(3,2)*A(2,3)

U577-J-Z125-7-7600 263

Debug statements Debugging aids

1 8 22 22 DET(1,2)=A(2,1)*A(3,3)-A(3,1)*A(2,3)
1 8 23 23 DET(1,3)=A(2,1)*A(3,2)-A(3,1)*A(2,2)
1 8 24 24 DET(2,1)=A(1,2)*A(3,3)-A(3,2)*A(1,3)
1 8 25 25 DET(2,2)=A(1,1)*A(3,3)-A(3,1)*A(1,3)
1 8 26 26 DET(2,3)=A(1,1)*A(3,2)-A(3,1)*A(1,2)
1 8 27 27 DET(3,1)=A(1,2)*A(2,3)-A(2,2)*A(1,3)
1 8 28 28 DET(3,2)=A(1,1)*A(2,3)-A(2,1)*A(1,3)
1 8 29 29 DET(3,3)=A(1,1)*A(2,2)-A(2,1)*A(1,2)
1 8 30 30 SDET=-A(1,1)*DET(1,1)+A(1,2)*DET(1,2)-A(1,3)*DET(1,3)
1 8 31 31 %CHECK ON (2) B (7)
1 8 32 32 DO 6 I=1,IR
2 11 33 33 DO 6 J=1,IR
3 12 34 34 6 B(I,J)=(-1)**(I+J+1)*DET(J,I)/SDET
1 12 35 35 %CHECK OFF (2)
1 13 36 36 END IF

13 37 37 %FULLTRACE ON (2) (8)
14 38 38 CALL DVCHK (IS)
14 39 39 IF (IS.NE.1) THEN

1 15 40 40 WRITE (2,11)
1 15 41 41 %FULLTRACE OFF
1 15 42 42 %JUMPTRACE OFF
1 15 43 43 DO 9 K=1,IR
2 19 44 44 9 WRITE (2,*) (B(K,J),J=1,IR)
1 19 45 45 10 FORMAT (’ ENTER MATRIX LINE BY LINE’)
1 19 46 46 11 FORMAT (’ INVERSE MATRIX:’)
1 19 47 47 12 FORMAT (’ INVERSE DOES NOT EXIST’)
1 20 48 48 RETURN
1 20 49 49 END IF

21 50 50 WRITE (2,12)
21 51 51 %COUNT OFF (1)
21 52 52 CALL DEALLOC(A)
21 53 53 RETURN
21 54 54 END

Explanation of example:

(1) The number of executions and computation time required for all statements bet-
ween %COUNT ON and %COUNT OFF are output to SYSLST.

(2) For the DETS subprogram called, the called program unit, the statement number
of the calling location, the entry point and parameters are output on the terminal.

(3) The value change of variable IR is logged at the terminal.

(4) All transfers of control to statements between here and %JUMPTRACE OFF are
logged at the terminal.

(5) The value of the variable SDET is output at the terminal.

(6) The value change of B is logged at the terminal.

(7) The value change of B is logged at the terminal.

(8) Up to statement %FULLTRACE OFF, all executed statements are logged at the
terminal.

(9) The TESTOPT=(DEBUG) option causes the debug statements in the source pro-
gram to be compiled.

264 U577-J-Z125-7-7600

Debugging aids Debug statements

The following data is output at the terminal during program execution, for example:

/START-PROG FROM-FILE=*MODULE(*OMF)
% BLS0001 ### DBL VERSION 070 RUNNING
% BLS0517 MODULE ’INV’ LOADED
BS2000 F O R 1 : FORTRAN PROGRAM "INV"
STARTED ON 1991-08-26 AT 15:33:02
ENTER RANK OF MATRIX
2

%CHECK/INV/7 :
IR = 2 ,
%CALLTRACE/INV/14 : CALLED ENTRY : <DETS DETS"

NO PARAMETERS SUBMITTED
ENTER MATRIX LINE BY LINE
1 2
2 1

%DISPLAY/DETS/13 :
SDET = -0.30000000E+01 ,
%CHECK/DETS/15 :

B = -0.33333331E+00 , 8*0.00000000E+00 ,
%CHECK/DETS/16 :

B = -0.33333331E+00 , 3*0.00000000E+00 , -0.33333331E+00 , 4*0.00000000E+00 ,
%CHECK/DETS/17 :
%CHECK/DETS/17 :

B = -0.33333331E+00 , 2*0.00000000E+00 , 0.66666663E+00 , -0.33333331E+00 , 4*0.00000000E+00 ,
%CHECK/DETS/18 :

B = -0.33333331E+00 , 0.66666663E+00 , 0.00000000E+00 , 0.66666663E+00 , -0.33333331E+00 , 4*0.00000000E+00 ,
%JUMPTRACE/DETS/10 : SEG-NR = 13 ; STMT-NR = 36
%FULLTRACE/DETS/37 : SEG-NR = 14 ; STMT-NR = 38
%CHECK/DETS/38 :

IS = 2 ,
%FULLTRACE/DETS/37 : SEG-NR = 14 ; STMT-NR = 39
%FULLTRACE/DETS/37 : SEG-NR = 15 ; STMT-NR = 40

INVERSE MATRIX:
-0.33333331E+00 , 0.66666663E+00
0.66666663E+00 , -0.33333331E+00
BS2000 F O R 1 : FORTRAN PROGRAM "INV " ENDED PROPERLY AT 15:33:17
CPU - TIME USED : 0.0318 SECONDS
ELAPSED TIME : 15.2920 SECONDS

The DYNAMIC COUNT PROFILE of the program units INV and DETS is output to
SYSLST.

U577-J-Z125-7-7600 265

Debug statements Debugging aids

DYNAMIC COUNT PROFILE OF PROGRAM UNIT DETS
==

SEG-NR STMT-NR COUNT PROFILE

1 1 1 *************************
1 8 1 *************************
2 9 2 **
3 9 2 **
4 9 4 **
5 9 2 **
6 9 1 *************************
7 11 1 *************************
8 21 0
9 33 0
10 34 0
11 34 0
12 34 0
13 36 0
14 37 1 *************************
15 39 1 *************************
16 41 2 **
17 44 2 **
18 44 4 **
19 44 2 **
20 48 1 *************************
21 49 0

DYNAMIC TIME PROFILE OF PROGRAM UNIT DETS
==

SEG-NR STMT-NR TIME PROFILE

1 1 83 ***
1 8 9 *********
1 9 24 ************************
2 9 30 ******************************
2 9 20 ********************
3 9 14 **************
4 9 100 **
5 9 26 **************************
6 9 8 ********
6 10 5 *****
7 11 48 **
7 12 16 ****************
7 15 27 ***************************
7 16 26 **************************
7 17 28 ****************************
7 18 27 ***************************
7 19 1 *
7 20 15 ***************
8 21 0
8 22 0
8 23 0
8 24 0
8 25 0
8 26 0
8 27 0
8 28 0
8 29 0
8 30 0
8 32 0
9 33 0
9 34 0
10 34 0
11 34 0
11 34 0
12 34 0
13 36 0
14 37 31 *******************************
14 38 19 *******************
15 39 30 ******************************
15 40 11 ***********
16 41 44 **
16 44 16 ****************

266 U577-J-Z125-7-7600

Debugging aids Debug statements

17 44 12 ************
18 44 88 **
19 44 16 ****************
19 44 16 ****************
20 48 8 ********
21 49 0

DYNAMIC COUNT PROFILE OF PROGRAM UNIT INV
===

SEG-NR STMT-NR COUNT PROFILE

1 1 1 **
2 10 0
3 12 0
4 13 1 **

DYNAMIC TIME PROFILE OF PROGRAM UNIT INV
===

SEG-NR STMT-NR TIME PROFILE

1 1 35 **
1 4 9 **************************
1 7 21 **
1 9 5 **************
2 10 0
2 11 0
3 12 0
4 13 21 **

DYNAMIC TIME PROFILE OF ALL COUNTED PROGRAM UNITS
==

PROGRAM UNIT TIME PROFILE

DETS 798 **
INV 91 ***********

U577-J-Z125-7-7600 267

Debug subprograms Debugging aids

7.5 Debug subprograms

In the FORTRAN source program, debug subprograms are called as follows:

CALL name (parameter)

Debug subprograms are an integral part of the runtime system, requiring merely the
call, and no FORTRAN programming.

Debug subprograms are used for

communication between program units (subprograms SLITE and SLITET),
program continuation in the event of underflow, overflow, divide errors (subprograms
OVERFLOW, FIXOV, DVCHK),
output of information on the program status (DEBUG subprogram).

268 U577-J-Z125-7-7600

Debugging aids Debug subprograms

7.5.1 Overview: Debug subprograms

Subprogram Function

SLITE and SLITET Enable the setting, resetting, interrogation of
4 symbolic indicators

CALL SLITE(i)
i: INTEGER expression, 0 < i < 4

CALL SLITET(i,j)
i: INTEGER expression, 1 < i < 4
j: INTEGER variable

OVERFL Recognizes the internally set overflow and underflow
indicators following arithmetic operations involving
floating-point numbers

CALL OVERFL(j)
j: INTEGER variable

DVCHK Recognizes the overflow in a division involving
fixed-point and floating-point numbers (division
by zero)

CALL DVCHK (j)
j: INTEGER variable

FIXOV Recognizes the fixed-point overflow in arithmetic
operations

CALL FIXOV(j)
j: INTEGER variable

DEBUG Provides information about the program status (current
statement number, call hierarchy, parameter lists),
terminates the program run.

CALL DEBUG [(v)]
v: CHARACTER item

Note

For a PDUMP printout, see also the "DUMP" utility in the "Utilities" manual [17].

U577-J-Z125-7-7600 269

Debug subprograms Debugging aids

7.5.2 Subprograms SLITE and SLITET

The subprogram SLITE can be used to set and reset switches.
The subprogram SLITET can be used to interrogate and reset switches.

SLITE and SLITET permit communication between program units within an object run.
For this purpose one byte is reserved in the runtime communication area, superseding
the usual communication via COMMON areas or by transfer of parameters.

Subprogram calls

CALL SLITE(i)

i INTEGER expression; value: 0 i 4

If i=0, all switches are reset. If i=1,2,3 or 4 then the appropriate switch is set.

CALL SLITET(i,j)

i INTEGER expression; value: 1 i 4
j INTEGER variable

The switch i (equal to 1,2,3 or 4) is tested and, if appropriate, reset.
Variable j is set equal to 1 if i was set, or equal to 2 if i was not set.

270 U577-J-Z125-7-7600

Debugging aids Debug subprograms

7.5.3 Subprogram OVERFL

The subprogram OVERFLOW
recognizes the internally set overflow and underflow indicators following arithmetic
operations involving floating-point numbers,
prevents program abortion when an exponent overflow occurs.

If the OVERFL subprogram is not used, an exponent overflow or underflow will cause
the program run to be abnormally terminated. Information about the error and the loca-
tion of the error will be displayed.

On the other hand, if the OVERFL subprogram was linked into the code module (based
on a call made in the FORTRAN source program), no abnormal program termination
occurs. The result of the operation concerned is assigned the maximum or minimum
value, taking into account the sign.

Call:

CALL OVERFL (j)

j INTEGER variable

An overflow indicator is internally set if an exponent overflow occurs, i.e. if the result of
an arithmetic operation involving floating-point numbers is greater than 16**(+63) (man-
tissa 0).
The underflow indicator is set if an exponent underflow occurs, i.e. if the result of an
arithmetic operation involving floating-point numbers is less than 16**(-64) (mantis-
sa 0).

When the subprogram is called, the parameter j is set as follows, depending on the indi-
cators set internally:

j Overflow indicator Underflow indicator Reset indicator

0 Set Not set Overflow indicator reset
1 Set Set Overflow indicator reset
2 Not set Not set
3 Not set Set Overflow indicator reset

After the variable j is set, the OVERFL subprogram resets the internal indicators. If both
the overflow and underflow indicator are set, the OVERFL will reset only the internal
overflow indicators, so that a subsequent call of OVERFL may examine the underflow
indicator.

U577-J-Z125-7-7600 271

Debug subprograms Debugging aids

In the case of REAL and COMPLEX data types with all lengths as well as in the case of
INTEGER*8 data type, the OVERFL subprogram recognizes overflows and/or under-
flows resulting from any arithmetic operations.

In the case of INTEGER*1 and INTEGER*2 data types, the OVERFL subprogram will
not recognize any overflow and/or underflow resulting from an arithmetic operation.

In the case of the INTEGER*4 data type, leading places are truncated when a multiplica-
tion produces an overflow. The integer variable j has the value 2 after an overflow,
since neither the internal overflow nor underflow indicator has been set. In the case of
an overflow due to an addition or subtraction, abnormal program termination occurs in
the case of the INTEGER*4 data type, and an error message is issued (FIXED POINT
OVERFLOW).

Overflow or underflow caused by an arithmetic operation can be monitored by interroga-
ting variable j. If the value of variable j is interrogated in the FORTRAN program, the
call CALL OVERFLOW (j) should be immediately behind the FORTRAN statement for
which overflow or underflow monitoring is to take place.

Example:

.

.

.
A = 0.72370E+76
B = 1.E-50
C = 1.E+30
J = 5

C
D = A+0.1E+76
CALL OVERFL (J)
IF (J.EQ.0) GO TO 200

C
E = B/C
CALL OVERFL (J)
IF(J.EQ.3) GO TO 300

.

.

.
200 WRITE (20,’(’’OVERFLOW : D = ’’,E20.5,’’ J=’’,I4)’)D,J

300 WRITE (20,’(’’UNDERFLOW : E = ’’,E20.5,’’ J=’’,I4)’)E,J

Display in the event of overflow:

OVERFLOW: D = 0.72370E+76 J=0

Display in the event of underflow:

UNDERFLOW: E = 0.00000E+00 J=3

272 U577-J-Z125-7-7600

Debugging aids Debug subprograms

7.5.4 Subprogram DVCHK

The subprogram DVCHK recognizes overflow in a division involving fixed-point and flo-
ating-point numbers. Division overflow occurs if the second operand (divisor) has a
value of 0.

If the DVCHK subprogram is not used, division overflow causes the program run to be
terminated, and messages about the error and the location of the error are output.

However, if the DVCHK subprogram was linked into the load module (owing to its use
in the FORTRAN source program), no program abortion takes place. The result of the
operation concerned is set to the maximum possible value, except when the first ope-
rand is equal to 0. In this case, the result is also equal to zero.

Call:

CALL DVCHK (j)

j INTEGER variable of length 4

When subprogram DVCHK is called parameter j is set as follows, depending on the divi-
sion overflow indicator:

j Division overflow indicator

1 Set
2 Not set

After the variable j is set, the division overflow indicator is reset.

Overflow caused by division can be monitored by interrogating variable j. If the value of
j is interrogated in the FORTRAN program, the call CALL DVCHK (j) should immediately
follow the division for which overflow is to be monitored.

U577-J-Z125-7-7600 273

Debug subprograms Debugging aids

7.5.5 Subprogram FIXOV

The FIXOV subprogram recognizes the fixed-point overflow in arithmetic operations,
with the exception of multiplications (see note below). Fixed-point overflow will occur if
a carry from the highest-ranking bit position occurs with arithmetic fixed-point com-
mands or if valid bits are lost during arithmetic shift-left commands.

If the FIXOV subprogram is not used, the program run is abnormally terminated when a
fixed-point overflow occurs. Messages indicating the error and its location are output.

If the FIXOV subprogram was linked into the load module (e.g. by using the FORTRAN
source program), the program run is not terminated. The result of the corresponding
operation is set to the highest value possible. The operation following the one which
caused the fixed-point overflow is processed next.

Call:

CALL FIXOV (j)

j INTEGER variable of length 4

When calling the FIXOV subprogram the parameter is set as follows, depending on the
overflow indicator for fixed-point overflow:

j Fixed-point overflow indicator

1 Set
2 Not set

After the variable j has been set, the internal indicator for fixed-point overflow is reset.

Fixed-point overflow caused by an arithmetic operation can be monitored by interroga-
ting variable j. If the value of j is interrogated in the FORTRAN program, the call CALL
FIXOV (j) should immediately follow the FORTRAN statement for which fixed-point over-
flow is to be monitored.

Note

The FIXOV subprogram can recognize a fixed-point overflow only if interrupt weight
X’78’ has been set by the processor. This happens when a fixed-point overflow
occurs during the execution of the instructions A, AR, LCR, LPR, S, SR, SH, SLA or
SLDA.
Therefore, a fixed-point overflow as a result of multiplication (M, MR and MH instruc-
tions) cannot be recognized.

274 U577-J-Z125-7-7600

Debugging aids Debug subprograms

7.5.6 Subprogram DEBUG

The DEBUG subprogram provides information on the program status.

Call:

CALL DEBUG[(v)]

v CHARACTER item

When this statement is executed, the program run terminates. SYSLST output includes
the first 133 characters of "v" as well as information about the program status, in parti-
cular the current statement number, call hierarchy and the parameter lists of all cur-
rently active (i.e. called and not yet terminated) program units.

This information is also output via the standard error routine in the event of a runtime
error.

7.5.7 Example: Use of the debugging subprograms

PROGRAM INV
COMMON IR

1 WRITE (2,10)
READ (1,11) IR
IF (IR.GT.3) THEN

GO TO 1
ELSE IF (IR.EQ.0) THEN

GO TO 100
ELSE

CALL DETS ()
END IF
CALL SLITET (1,IV) (1)
IF (IV.NE.1) GO TO 100

10 FORMAT (’ ENTER RANK OF MATRIX’)
11 FORMAT (I1)

CALL DEBUG (2)
100 END

SUBROUTINE DETS ()
COMMON IR
REAL A(3,3)
DIMENSION B(3,3)
DIMENSION DET(3,3)
WRITE (2,10)
READ (1,*) ((A(IA,IB),IB=1,IR),IA=1,IR)
IF (IR.EQ.2) THEN

SDET=A(1,1)*A(2,2)-A(2,1)*A(1,2)
B(1,1)=A(2,2)/SDET
B(2,2)=A(1,1)/SDET
B(1,2)=(-A(1,2))/SDET

U577-J-Z125-7-7600 275

Debug subprograms Debugging aids

B(2,1)=(-A(2,1))/SDET
ELSE

DET(1,1)=A(2,2)*A(3,3)-A(3,2)*A(2,3)
DET(1,2)=A(2,1)*A(3,3)-A(3,1)*A(2,3)
DET(1,3)=A(2,1)*A(3,2)-A(3,1)*A(2,2)
DET(2,1)=A(1,2)*A(3,3)-A(3,2)*A(1,3)
DET(2,2)=A(1,1)*A(3,3)-A(3,1)*A(1,3)
DET(2,3)=A(1,1)*A(3,2)-A(3,1)*A(1,2)
DET(3,1)=A(1,2)*A(2,3)-A(2,2)*A(1,3)
DET(3,2)=A(1,1)*A(2,3)-A(2,1)*A(1,3)
DET(3,3)=A(1,1)*A(2,2)-A(2,1)*A(1,2)
SDET=-A(1,1)*DET(1,1)+A(1,2)*DET(1,2)-A(1,3)*DET(1,3)
DO 6 I=1,IR
DO 6 J=1,IR

6 B(I,J)=(-1)**(I+J+1)*DET(J,I)/SDET
END IF
CALL DVCHK (IS) (3)
IF (IS.NE.1) THEN

CALL OVERFL (IT) (4)
IF (IT.NE.2) GO TO 30
WRITE (2,11)

DO 9 K=1,IR
9 WRITE (2,*) (B(K,J),J=1,IR)

10 FORMAT (’ ENTER MATRIX LINE BY LINE’)
11 FORMAT (’ INVERSE MATRIX:’)
12 FORMAT (’ INVERSE DOES NOT EXIST’)
13 FORMAT (’ OVERFLOW’)

RETURN
END IF

20 WRITE (2,12)
RETURN

30 WRITE (2,13)
CALL SLITE (1) (5)
RETURN
END

Explanation of example:

(1) Switch 1 is tested. If it is not set, the program transfers control to the statement
with the branch label 100, otherwise it resumes with the next statement.

(2) The DEBUG subprogram provides information about the program status and ter-
minates the program.

(3) If a division by zero has occurred in the execution of the program, IS receives
the value 1 and the statement with the branch label 20 is executed.

(4) If the overflow or underflow indicator is set, the program transfers control to the
statement with the branch label 30.

(5) Switch 1 is set.

276 U577-J-Z125-7-7600

Debugging aids SYMTEST option (AID)

7.6 Advanced Interactive Debugger (AID)

FOR1 programs can be tested with the Advanced Interactive Debugger AID (as of AID
Version 1.0C) (see the manual "AID Debugging of FORTRAN Programs" [3]). Using
AID, F0R1 programs executing in the 31-bit address space can also be tested.

7.6.1 Prerequisite for debugging using AID: SYMTEST option

A prerequisite for symbolic debugging with AID is the generation of LSD information
(LSD=List for Symbolic Debugging) by means of the compiler. Generation of this infor-
mation is controlled by the FOR1 user and by means of the SYMTEST option:

NO
[*]COMOPT SYMTEST = MAP

ALL

NO No LSD information is generated. AID cannot be used for symbolic debug-
ging of FOR1 programs; only machine-oriented debugging is possible.

MAP SYMTEST=MAP only permits a restricted range of symbolic debugging func-
tions:
Program names can be addressed and call hierarchies traced.

ALL With SYMTEST=ALL, the compiler generates LSD information. FOR1 pro-
grams can be symbolically debugged with AID.

It is advisable to work with COMOPT OPTIMIZE=NO (see chapter 9).
Although it is possible to combine the SYMTEST=ALL specification with with all optimi-
zation levels, it is then no longer possible to use the source listing of an optimized pro-
gram as a clear-cut basis for debugging with AID. Optimization can, for example,
change the order of the statements; a statement can be split up into several statements
or can be omitted entirely. If a program is to be debugged even with the optimization
function activated, a decompiler listing (see 4.7.9) can be of assistance; this can be
requested when OPT=3 or 4 is activated. The decompiler listing provides a detailed
description of the object code, which is intended to facilitate tracing and setting of test
points with AID.

For debugging purposes the user can load the LSD information in the following ways.
He can

load it together with the program (TEST-OPTIONS operand for calling the DBL or
TSOSLNK and the ELDE)

loaded as required, provided that the associated object modules are in a PLAM
library (AID command %SYMLIB).

U577-J-Z125-7-7600 277

SYMTEST option (AID) Debugging aids

7.6.2 Functional scope of AID

AID is a high-performance debugging system for testing, diagnosing errors and tempora-
rily correcting programming errors in BS2000.

AID supports not only the symbolic debugging of FORTRAN (FOR1) programs but also
the symbolic debugging of PL/1 (PLI1) programs, COBOL programs, Assembler pro-
grams and C programs, and also the testing on machine code level for all program-
ming languages under BS2000.

When symbolic debugging is carried out on a FORTRAN program, the symbolic names
from a FORTRAN source program are used for addressing purposes. Testing on ma-
chine code level is available in instances where this is not possible.

In AID commands, the following can be symbolically addressed:

executable FORTRAN statements identified by the statement number
executable FORTRAN statements identified by the statement label
symbolic constants, variables, arrays and array elements
dynamic arrays
initiation of procedures.

Symbolic constants, variables, arrays and array elements are addressed using the name
defined in the source program. FORTRAN statements are addressed using S’nnnnn’,
statement labels are addressed as L’nnnnn’ (where nnnnn is the statement number or
statement label, represented by a maximum of 5 digits).

The following AID commands are available:

• Commands for execution monitoring

specific types of statements in the source program (%CONTROLn)
selected events in the execution of the program (%ON)
declared program addresses (%INSERT)

The user can define that AID is to interrupt program execution at specific addresses
or upon execution of selected statement types or when defined events occur, and
then execute subcommands. A subcommand is an individual command or string of
AID and BS2000 commands. It is defined as the operand of an AID command.

278 U577-J-Z125-7-7600

Debugging aids SYMTEST option (AID)

• Commands for tracing and logging (%TRACE) and for skipping statements (%JUMP)

%TRACE can be used to select the program area for tracing as well as the number
of type of statements which are logged.

%JUMP can be used within a program unit to define a statement to which a GOTO
is made after completion of the command. Using %JUMP, the execution sequence
can be changed, for example by replacing illegal statements with an AID command
string and then defining resumption of the program at a specific statement, using
%JUMP. By means of %RESUME or %TRACE, execution of the program is conti-
nued starting with the specified statement. The %JUMP command is supported only
when OPTIMIZE=NO is specified.

• Commands for output and updating of memory contents

output of the values of symbolic constants, variables, array elements and arrays
(%DISPLAY),
updating of the values of variables, array elements and arrays (%SET),
output of call hierarchies (%SDUMP %NEST),
to decompile the memory contents in Assembler (%DISASSEMBLE).

With the %NEST operand of the %SDUMP command, the user can display the level
at which the call hierarchy of the program was interrupted and which modules are
CALL nested. In the call hierarchy, the names of FORTRAN subprograms and the
name of the main program are output.

• Commands for management of AID input files (%DUMPFILE, %SYMLIB) and AID
output media (%OUTFILE)

AID can be used to edit a running program or diagnose a memory dump in a disk
file. Within a debug session the user can alternate between these two options, e.g.
in order to compare data inventories between the current program and a memory
dump.

• Commands for definition of output data sets (%OUT) and global declarations
(%BASE, %AID).

• The use of AID is supported by means of the %HELP function

in conjunction with all AID commands and operands
to explain the AID messages and possible responses to AID messages.

U577-J-Z125-7-7600 279

SYMTEST option (AID) Debugging aids

7.6.3 Example: Use of Advanced Interactive Debugger AID

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = ...
PROGRAM UNIT: INV

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1/1 1 1 PROGRAM INV
1 2 2 COMMON IR
1 3 3 1 WRITE (2,10)
1 4 4 READ (1,11) IR
1 5 5 IF (IR.GT.3) THEN

1 2 6 6 GO TO 1
1 2 7 7 ELSE IF (IR.EQ.0) THEN
1 3 8 8 GO TO 100
1 3 9 9 ELSE
1 4 10 10 CALL DETS ()
1 4 11 11 END IF

4 12 12 10 FORMAT (’ ENTER RANK OF MATRIX’)
4 13 13 11 FORMAT (I1)
5 14 14 100 END

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = ...
PROGRAM UNIT: DETS

DO/IF SEG STMT I/H LINE SOURCE-TEXT

1/1 1 1 SUBROUTINE DETS ()
1 2 2 COMMON IR
1 3 3 REAL A (3,3)
1 4 4 DIMENSION B(3,3)
1 5 5 DIMENSION DET(3,3)
1 6 6 WRITE (2,10)
5 7 7 READ (1,*) ((A(IA,IB),IB=1,IR),IA=1,IR)
5 8 8 IF (IR.EQ.2) THEN

1 6 9 9 SDET=A(1,1)*A(2,2)-A(2,1)*A(1,2)
1 6 10 10 B(1,1)=A(2,2)/SDET
1 6 11 11 B(2,2)=A(1,1)/SDET
1 6 12 12 B(1,2)=(-A(1,2))/SDET
1 6 13 13 B(2,1)=(-A(2,1))/SDET
1 6 14 14 ELSE
1 7 15 15 DET(1,1)=A(2,2)*A(3,3)-A(3,2)*A(2,3)
1 7 16 16 DET(1,2)=A(2,1)*A(3,3)-A(3,1)*A(2,3)
1 7 17 17 DET(1,3)=A(2,1)*A(3,2)-A(3,1)*A(2,2)
1 7 18 18 DET(2,1)=A(1,2)*A(3,3)-A(3,2)*A(1,3)
1 7 19 19 DET(2,2)=A(1,1)*A(3,3)-A(3,1)*A(1,3)
1 7 20 20 DET(2,3)=A(1,1)*A(3,2)-A(3,1)*A(1,2)
1 7 21 21 DET(3,1)=A(1,2)*A(2,3)-A(2,2)*A(1,3)
1 7 22 22 DET(3,2)=A(1,1)*A(2,3)-A(2,1)*A(1,3)
1 7 23 23 DET(3,3)=A(1,1)*A(2,2)-A(2,1)*A(1,2)
1 7 24 24 SDET=-A(1,1)*DET(1,1)+A(1,2)*DET(1,2)-A(1,3)*DET(1,3)
1 8 25 25 DO 6 I=1,IR
2 8 26 26 DO 6 J=1,IR
3 10 27 27 6 B(I,J)=(-1)**(I+J+1)*DET(J,I)/SDET
1 10 28 28 END IF
1 10 29

11 29 30 CALL DVCHK (IS)
11 30 31 IF (IS.NE.2) THEN

1 12 31 32 WRITE (2,11)
1 13 32 33 DO 9 K=1,IR
2 16 33 34 9 WRITE (2,*) (B(K,J),J=1,IR)
1 16 34 35 10 FORMAT (’ ENTER MATRIX LINE BY LINE’)
1 16 35 36 11 FORMAT (’ INVERSE MATRIX:’)
1 16 36 37 12 FORMAT (’ INVERSE DOES NOT EXIST’)
1 17 37 38 RETURN
1 17 38 39 END IF

* 18 39 40 20 WRITE (2,12)
***** WARNING 1) (SA047) *******

18 40 41 RETURN
18 41 42 END

1) Except for a WARNING message (UNREFERENCED LABEL), no compilation errors
are reported when the INV program is compiled.

280 U577-J-Z125-7-7600

Debugging aids SYMTEST option (AID)

/START-PROG FROM-FILE=*MODULE(LIBRARY=PLAM.LIB,ELEMENT=INV) (2)
% BLS0001 ### DBL VERSION 070 RUNNING
% BLS0517 MODULE ’INV’ LOADED
BS2000 F O R 1 : FORTRAN PROGRAM "INV"
STARTED ON 1991-08-25 AT 10:59:06
ENTER RANK OF MATRIX

*2
ENTER MATRIX LINE BY LINE

*1 2
*2 1
INVERSE DOES NOT EXIST
BS2000 F O R 1 : FORTRAN PROGRAM "INV " ENDED PROPERLY AT 10:59:22
CPU - TIME USED : 0.0480 SECONDS
ELAPSED TIME : 17.2550 SECONDS

(2) The program executes without an execution error being reported. The result
("INVERSE DOES NOT EXIST"), however, is not correct, which suggests that a
logical error may have occurred.

/START-PROG $FOR1 (3)
*COMOPT SOURCE=SRC.INV,MODULE-LIBRARY=PLAM.LIB
*COMOPT SYMTEST=ALL
*END

(3) INV is recompiled using the "SYMTEST=ALL" and "MODULE-LIBRARY=PLAM.LIB"
options, thus writing the object module, together with the LSD information, to a
PLAM library.

/LOAD-PROG FROM-FILE=*MODULE(LIBRARY=PLAM.LIB,ELEMENT=INV) (4)
% BLS0001 ### DBL VERSION 070 RUNNING
% BLS0517 MODULE ’INV’ LOADED
/%INSERT PROG=DETS.S’13’ <%SDUMP;%STOP> (5)
I378 SYMBOLIC INFORMATION MISSING (6)
/%SYMLIB PLAM.LIB (7)

(4) The program is loaded with the dynamic binder loader.

(5) After loading with the AID command %INSERT, a test point is defined for the state-
ment with the number 13 in the program unit DETS. Prior to execution of this
command, subcommand string "<%SDUMP;%STOP>" is to be executed.
"%SDUMP" causes the values of all data items in the current call hierarchy to be
output according to their declared data type. "%STOP" halts the program after
"%SDUMP" is executed so that further AID commands can be entered, for exam-
ple.

U577-J-Z125-7-7600 281

SYMTEST option (AID) Debugging aids

(6) AID rejects the command given in (5) and issues an error message. When the
DBL was called, "SYMTEST=ALL" was not specified so that no LSD information
was loaded.

(7) The PLAM library in which the LSD information is contained is is by the AID com-
mand %SYMLIB. AID reloads this information once a symbolic name is addressed,
one for which no LSD information has been loaded.

/%INSERT PROG=DETS.S’13’ <%SDUMP;%STOP> (8)
/%TRACE (9)
BS2000 F O R 1 : FORTRAN PROGRAM "INV"
STARTED ON 1991-08-24 AT 12:03:29

3 1 START , I-O-ACCESS
ENTER RANK OF MATRIX

4 I-O-ACCESS
*2

5 IF
7 THEN/ELSE

10 THEN/ELSE, CALL
ENTER MATRIX LINE BY LINE
*1 2
*2 1
** ITN: #’00000041’ *** TSN: 3113 *** (10)
SRC REF: 13 SOURCE: DETS PROC: DETS *********************************
IR = 2

A(1: 3, 1: 3)
(1, 1) +.1000000 E+01 (2, 1) +.2000000 E+01 (3, 1) +.0000000 E+00
(1, 2) +.2000000 E+01 (2, 2) +.1000000 E+01 (3, 2) +.0000000 E+00
(1, 3) +.0000000 E+00 (2, 3) +.0000000 E+00 (3, 3) +.0000000 E+00

B(1: 3, 1: 3)
(1, 1) -.3333333 E+00 (2, 1) +.0000000 E+00 (3, 1) +.0000000 E+00
(1, 2) +.6666666 E+00 (2, 2) -.3333333 E+00 (3, 2) +.0000000 E+00
(1, 3) +.0000000 E+00 (2, 3) +.0000000 E+00 (3, 3) +.0000000 E+00

DET(1: 3, 1: 3)
(1, 1) +.0000000 E+00 (2, 1) +.0000000 E+00 (3, 1) +.0000000 E+00
(1, 2) +.0000000 E+00 (2, 2) +.0000000 E+00 (3, 2) +.0000000 E+00
(1, 3) +.0000000 E+00 (2, 3) +.0000000 E+00 (3, 3) +.0000000 E+00

IA = 3

IB = 3

SDET = -.3000000 E+01

I = 0

J = 0

IS = 0

K = 0

STOPPED AT SRC REF: 13 , SOURCE: DETS , PROC: DETS (11)

282 U577-J-Z125-7-7600

Debugging aids SYMTEST option (AID)

(8) The %INSERT command is accepted.

(9) %TRACE starts the program and causes execution, with output of all the
FORTRAN statements which have been executed during the program run. Output
includes statement numbers, any existing statement label and type of statement.
As the default, 10 executable statements at a time are handled and logged.

(10) Prior to execution of the statement with the number 13, the subcommand
%SDUMP of the AID command given under (8) is executed; the values of all data
items at this point in the program are output according to their data type. B(2,1)
still has the value 0, since statement 13 has not yet been executed.

(11) As the result of the %STOP subcommand in (8), the program is in the STOP sta-
te. After the STOP message is displayed, new commands can be entered.

/%INSERT S’28’ <%DISPLAY B(2,1);%STOP> (12)
/%TRACE (13)
SRC REF: 29 SOURCE: DETS PROC: DETS **********************************
B(2, 1) = +.6666666 E+00 (14)

STOPPED AT SRC REF: 29 , SOURCE: DETS , PROC: DETS

(12) Prior to execution of statement 28, the value of the array element B(2,1) is output.
The qualification "PROG=DETS." in the %INSERT command (8) is now no longer
necessary, since DETS is the current program unit.

(13) %TRACE causes the program run to continue, tracing the execution.

(14) The value of array element B(2,1) has likewise been computed correctly.

/%TRACE
29 CALL
30 IF (15)
39 20 I-O-ACCESS, LABEL (16)

INVERSE EXISTIERT NICHT
40 END

BS2000 F O R 1 : FORTRAN PROGRAM "INV " ENDED PROPERLY AT 16:56:51
CPU - TIME USED : 0.7277 SECONDS
ELAPSED TIME : 141.7410 SECONDS

(15) %TRACE continues execution of the program from the interrupt point.

(16) Following IF statement 30 an erroneous branch is made to statement 39 and the
message "INVERSE DOES NOT EXIST" displayed. The correct IF statement should
be "IF (IS.NE.1)", since the debugging subprogram has the value 1 in the event of
division overflow,

U577-J-Z125-7-7600 283

SYMTEST option (AID) Debugging aids

/LOAD-PROG FROM-FILE=*MODULE(LIBRARY=PLAM.LIB,ELEMENT=INV) (17)
% BLS0001 ### DBL VERSION 070 RUNNING
% BLS0517 MODULE ’INV’ LOADED
/%INSERT PROG=DETS.S’30’ <%SDUMP %NEST;%DISPLAY IS;%STOP> (18)
/%RESUME (19)
BS2000 F O R 1 : FORTRAN PROGRAM "INV"
STARTED ON 1991-08-24 AT 16:00:22
ENTER RANK OF MATRIX
*2
ENTER MATRIX LINE BY LINE
*1 2
*2 1
** ITN: #’000000C7’ *** TSN: 3704 ***
SRC REF: 30 SOURCE: DETS PROC: DETS *********************************
SRC REF: 30 SOURCE: INV PROC: INV **********************************
IS = 2 (20)

STOPPED AT SRC REF: 30 , SOURCE: DETS , PROC: DETS
/%AID CHECK=ALL (21)
/%SET 1 INTO IS;%RESUME (22)
OLD CONTENT: (23)

2
NEW CONTENT:

1
% IDA0129 CHANGE? (Y=YES;N=NO)?
Y
INVERSE MATRIX: (24)
-0.33333331E+00 , 0.66666663E+00
0.66666663E+00 , -0.33333331E+00
BS2000 F O R 1 : FORTRAN PROGRAM "INV " ENDED PROPERLY AT 16:15:04
CPU - TIME USED : 0.3266 SECONDS
ELAPSED TIME : 862.3140 SECONDS

(17) INV is loaded again.

(18) A STOP point is set for statement 30. The subcommand %SDUMP %NEST causes
output of the current call hierarchy.

(19) %RESUME starts the program.

(20) Execution of the %DISPLAY command.

(21) The %SET command is used to change the memory contents of the data item. If
the %AID CHECK=ALL was specified beforehand, AID conducts an updating dia-
log prior to execution of a %SET command.

(22) The %SET command is used to change the value of data item IS to 1. After this,
execution of the program continues with %RESUME.

(23) AID conducts an updating dialog before the %SET command is executed.

(24) After the value of IS is changed, the program executes correctly.

284 U577-J-Z125-7-7600

8 File processing
Using the input/output language elements defined in FORTRAN, data may be output to
external files and read from them. To do so, the FORTRAN input/output concepts must
be related to those of the Data Management System (DMS).

The I/O statements are discussed in the "FOR1" reference manual [21]. The various
DMS functions and the commands required for file processing are described in the
manuals "DMS Introductory Guide and Command Interface" [18] , "DMS Assembler Inter-
face" [19] and "User Commands (SDF Format)" [12].

Sections 8.1 and 8.2 deal with certain important attributes and processing options of
BS2000 files.
Section 8.3 describes how BS2000 files are linked with FOR1 programs. Section 8.4
finally explains the relationships between FORTRAN data records and DMS data re-
cords.

8.1 BS2000 system files

BS2000 employs logical system files for input of commands and data or for output of
data or operating system messages (see "User Commands (SDF Format)" manual [12]).

A distinction is made between the logical input files of the operating system which use
the standard file names

SYSCMD, SYSDTA, SYSIPT

and the logical output files with the standard file names

SYSOUT, SYSLST, SYSOPT.

System files are set up automatically for each task and need not be defined separately
by the user.

System files usually already include an assignment to specific input or output devices,
or files, namely the primary assignment. The user can change this assignment by is-
suing commands, in particular assigning cataloged files to the system files (by means
of the commands ASSIGN-SYSDTA, ASSIGN-SYSIPT, ASSIGN-SYSOUT, ASSIGN-
SYSLST, ASSIGN-SYSOPT).

U577-J-Z125-7-7600 285

Files in BS2000 File processing

The following table illustrates the predefined system file assignments:

System file Primary assignments

Interactive mode Batch mode

SYSCMD Terminal SPOOLIN or ENTER file

SYSDTA

SYSIPT No primary assignment

SYSOUT Terminal SPOOLOUT file (EAM file), which
is to be output to printer at the
end of the task and then deleted.

SYSLST SPOOLOUT file (EAM file) which is to be output to printer
SYSLSTnn at the end of the task and then deleted.

SYSOPT SPOOLOUT file (EAM) file which is to be output to floppy
disk or card punch at the end of the task and then
deleted.

Table 8-1: Primary assignments of system files

By default, FOR1 reads source programs, change lines and compiler options via system
file SYSDTA and outputs the listings which have been created to system file SYSLST.

In FORTRAN, certain input/output units are assigned to system files SYSDTA, SYSOUT,
SYSLST, SYSIPT and SYSOPT through presetting (see section 8.3.3.1).

286 U577-J-Z125-7-7600

File processing Files in BS2000

8.2 BS2000 user files

In contrast to system files, which are created for each task without the need for any
previous declaration, the user can himself define the characteristics of user files. The
following file attributes can be defined:

file name (see for example "DMS Introductory Guide and Command Interface" [18])
file link name (8.3.1)
access method (8.2.1)
record format (8.2.2)
record length (8.2.2)

Commands for defining the file attributes

The attributes of a file can be defined using the CREATE-FILE, MODIFY-FILE-
ATTRIBUTES and SET-FILE-LINK commands.

The CREATE-FILE command creates an entry in the user catalog and assigns storage
space to the file. The file attributes given in the CREATE-FILE command are incorpora-
ted into the catalog. The other attributes, e.g. access method or record length, are not
entered in the catalog until the file is closed following its initial opening.

The MODIFY-FILE-ATTRIBUTES command can be used to modify the catalog attributes
of files already contained in the catalog. Information about the catalog attributes of files
can be requested by means of the SHOW-FILE-ATTRIBUTES command.

The SET-FILE-LINK command is used to define a file link name; the file attributes speci-
fied in the command are entered in the TFT (Task File Table) (see section 8.3.1). The
SET-FILE-LINK command will only generate a new catalog entry if no catalog entry for
the file name specified in the FILE-NAME operand yet exists.

Permanent and temporary files

User files can be either permanent or temporary files.
Permanent files are files created by the user using the SAM, ISAM, UPAM or BTAM
access method and which are retained even after the task in which they were created
and cataloged is terminated.

Temporary files are files created by the user using the SAM, ISAM, UPAM or BTAM
access method and which are tied to the task creating them. They are automatically
deleted as part of LOGOFF. Temporary files use a different nomenclature than perma-
nent files (through the prefix "#" or "@"). The term "temporary file" refers only to files
which satisfy the above definition and not to other task-related file types such as
system files or EAM files. In contrast to temporary files, EAM files and system files are
not kept in the user catalog and are not subject to pubspace checks.

U577-J-Z125-7-7600 287

Files in BS2000 File processing

8.2.1 Access methods of the DMS

For a detailed description of the access methods see the manuals "DMS Introductory
Guide and Command Interface" [18] and "DMS Assembler Interface" [19]. Only a brief
overview is given below.

To access files, FOR1 programs make use of the logical access methods of DMS. The
DMS logical access method transfers data between a file and the address space of an
active program. The file organization and the type of access to records is defined by
the access method.

The FOR1 runtime system supports the following access methods:

the common access methods ISAM, SAM and BTAM
special access method EAM for job-oriented files.

The access method can be defined by the ACCESS-METHOD operand of the SET-FILE-
LINK command (see section 8.3.1). ACCESS-METHOD=BY-PROGRAM is the default. A
FOR1 program opens files using the ISAM access method as standard.

ISAM (Indexed Sequential Access Method)
The Indexed Sequential Access method makes it possible to process records
sequentially and non-sequentially. Here records can be inserted on the basis
of their logical sequence in the file. In the case of non-sequential processing of
records, each record has a key. This key is in the same position for each
record of a file. As standard, the key has a length of 8 bytes and precedes the
data portion of the record.

SAM (Sequential Access Method)
The sequential access method makes it possible to process records sequen-
tially starting at a defined point. Updating and rewriting of records to a SAM
file is not supported by FOR1.

BTAM (Basic Tape Access Method)
The Basic Tape Access method makes it possible to store the records of a
sequentially organized tape file and retrieve blocks of a sequentially organized
tape file.

288 U577-J-Z125-7-7600

File processing Files in BS2000

EAM (Evanescent Access Method)
With the Evanescent Access Method, work files which are only available for the
duration of the program run can be accessed. FOR1 creates EAM files if the
STATUS=’SCRATCH’ operand has been specified in the OPEN statement.

For all access methods, the file attributes are defined when a file is generated, i.e. ope-
ned as an output file. The file attributes are transferred to the catalog entry and apply
for all subsequent declarations.

8.2.2 Record format and record length

DMS distinguishes between three types of record formats:

record format FIXED, fixed length
record format VARIABLE, variable length
record format UNDEFINED, undefined length.

A file can only consist of records with the same record format. With record format
FIXED, all records of a file have identical lengths. With record formats VARIABLE and
UNDEFINED, the records may have different lengths.

Table 8-2 shows the permissible record formats and device types for the various access
methods.

Access Record formats Device types Files which use other access
method F V U methods also permissible for

input

SAM X X X Disk, tape

ISAM X X Disk

BTAM X X 1) X Tape SAM

EAM X Disk

1) Treated like record format U

Table 8-2: Access methods, record formats and device types

Defining the record format

The record format is defined in the SET-FILE-LINK command with the RECORD-
FORMAT operand. BY-PROGRAM is set by default. As standard, FOR1 programs create
files with variable record format.

U577-J-Z125-7-7600 289

Files in BS2000 File processing

Defining the record length

The length of a record (RECSIZE) can be defined with the RECORD-SIZE operand in
the SET-FILE-LINK command. The specification in the RECORD-SIZE operand refers to
the length of the FORTRAN data record plus any existing administrative information
(see section 8.4).

Record length field

In the case of record format VARIABLE the information on the length of the individual
record is indicated by means of an additional information field at the beginning of the
record, namely the record length field (RLF). The record length field has a length of 4
bytes and the length of the record is given in the higher-value bytes (including the
record length field). The two remaining bytes contain a pointer to the next record. In
the case of record format UNDEFINED, the specification of the length is made via a
register.

8.2.3 Data block and buffer

The access methods of DMS transfer data between the file and the address space of
the job.
Transfer of data is not record by record. DMS combines records to form data blocks
and transfers these blocks of data between peripheral storage and main memory. A
data block or logical block is understood to be the unit which DMS transfers between
peripheral storage and main memory when a file is accessed. The portion of main
memory which accepts a data block or whose contents are transferred to peripheral
storage is known as a buffer. The buffer is part of the address space of the program
which initiated the I/O operation.

The size of a logical block is described in terms of PAM pages. One PAM page (also
known as a standard block, halfpage or, as opposed to the logical block, physical
block) is a unit of storage encompassing 2048 bytes and which may contain a PAM
key (depending on the file format).

The size of the logical block and thus that of the buffer is defined by the BUFFER-
LENGTH operand of the SET-FILE-LINK command. A logical block can have the follo-
wing sizes:

in the case of files on disk, the standard block size (2048 bytes) or an integral multi-
ple of a standard block size (up to 16 PAM pages)

in the case of files on tape, the nonstandard block size with a length of up to 32767
bytes.

290 U577-J-Z125-7-7600

File processing Files in BS2000

ISAM and EAM work with standard blocks. SAM and BTAM can process both standard
and nonstandard blocks (in the case of magnetic tape files). In the case of disk files,
SAM works with standard blocks.

The usable data area of a logical block is the result of the size of the logical block (defi-
ned by the BUFFER-LENGTH operand) minus any existing administrative information.
The size of the administrative information varies, depending on the access type and the
file format (cf. table 8-3 and table 8-4).
When defining the logical block the FOR1 user must note that the usable area for data
in a data block

must be at least as long as the longest record of the file

must wherever possible be an integral multiple of the record length, in order to
achieve optimal utilization of the data area.

Example: Optimum block size (file format NK-SAM, variable record length)

File definition:
/SET-FILE-LINK LINK-NAME=DSET12, FILE-NAME=DAT, ACCESS-METHOD=SAM,
RECORD-FORMAT=FIXED(RECORD-SIZE=1500)

This combination of BUFFER-LENGTH and RECORD-SIZE would be inadvisable:
The default block length is 2048 bytes, of which 2044 bytes are usable for DMS records
(cf. table 8-4). Each block can accommodate only one record; 544 bytes are lost in
each case.
A better block size would be three PAM pages: BUFFER-LENGTH=STD(SIZE=3). With
this block size (6144 bytes, 6140 usable), each block can accommodate 4 records; only
140 bytes are lost.

U577-J-Z125-7-7600 291

Files in BS2000 File processing

8.2.4 Keyed and no-key file formats

As of BS2000 Version 10, the no-key disk periphery is supported. As of this version a
distinction is made between two file formats:

the previous keyed format (also called K format in the following)
the newly introduced no-key format (also called NK format in the following).

The no-key file format for ISAM files is already supported by operating system V9.5.

On keyed disks it is possible to work both with files in K format and with files in NK
format.
On no-key disks, however, it is possible to work only with files in NK format.

The file format is controlled by the BLOCK-CONTROL-INFO operand of the SET-FILE-
LINK command:

BLOCK-CONTROL-INFO=PAMKEY (file processing in keyed format) BLOCK-CONTROL-
INFO=WITHIN-DATA-BLOCK (file processing in no-key format)

The administrative information contained in a separate PAM key for the K format is relo-
cated to the data area in the case of the NK format. Relocation of PAM key information
to the data area reduces the area available for the records, which results in modifi-
cation of the optimum and maximum record lengths for the no-key format, a conside-
ration which the FOR1 user must take into account.

Keyed and no-key ISAM files

If ISAM files in K format which utilize the maximum record length are to be converted
to NK format with the same block size, DMS will create overflow blocks.

The formation of overflow blocks is accompanied by the following problems:

the overflow blocks increase the disk space required and thus increase the number
of I/O operations required for file processing

the ISAM key may in no case be located within an overflow block.

Overflow blocks can be avoided if care is taken to ensure that the longest record in the
file does not exceed the length of the usable area of a logical block in the case of NK-
ISAM files.

292 U577-J-Z125-7-7600

File processing Files in BS2000

The following table illustrates how it is possible in the case of ISAM files to calculate
how much space is available per logical block for DMS records.

File format Record format Usable area

K-ISAM VARIABLE Block size

FIXED Block size - (r*4)

r = Number of records per logical block

NK-ISAM VARIABLE Block size - (n*16) - 12 - (r*2)
(rounded down to next number divisible by 4)

n = Blocking factor
r = Number of records per logical block

FIXED Block size - (n*16) - 12 - (r*2) - (r*4)
(rounded down to next number divisible by 4)

n = Blocking factor
r = Number of records per logical block

Table 8-3: Usable block area with ISAM files

Explanation of formulae:
With RECORD-FORMAT=FIXED, although a 4-byte record length field is present for
each record in the case of both K-ISAM and NK-ISAM files, it is not included in the
block size. In these cases therefore 4 bytes must be deducted per record. With NK-
ISAM files, each PAM page of a logical block contains 16 bytes of administrative infor-
mation. The logical block additionally contains a further 12 bytes of administrative infor-
mation and a 2-byte record pointer for each record.

Example: Maximum record length of a NK-ISAM file (fixed-length records)

File definition:
/SET-FILE-LINK LINK-NAME=DSETnn, FILE-NAME=file, RECORD-FORMAT=FIXED,
BUFFER-LENGTH=STD(SIZE=2), BLOCK-CONTROL-INFO=WITHIN-DATA-BLOCK

Maximum record length (as per formula in table 8-3):
4096 - (2*16) - 12 - 1*2 - 1*4 = 4046, rounded down to the next number divisible by
four: 4044 (bytes).

U577-J-Z125-7-7600 293

Files in BS2000 File processing

Keyed and no-key SAM files

With SAM files there are no overflow blocks. Therefore SAM files in K format which uti-
lize the maximum record length cannot be converted into NK-SAM files. FOR1 pro-
grams which work with such maximum record lengths for K-SAM files are no longer
executable with NK-SAM files.

The following table illustrates how much space is available per logical block with SAM
files for DMS records.

File format Record format Usable area

K-SAM VARIABLE Block size - 4

FIXED / UNDEFINED Block size

NK-SAM VARIABLE / FIXED Block size - 16
UNDEFINED

Table 8-4: Usable area with SAM files

The deduction of 4 bytes for K-SAM files with variable-length records results from the
fact that the logical blocks of such files contain a block length field having this length
that is not included in BLKSIZE.

294 U577-J-Z125-7-7600

File processing Linkage of programs and files

8.3 Linkage of BS2000 files and FOR1 programs

If a FOR1 program is to process files, then a link must be established between files and
program. The FORTRAN input/output units form the basis for this. The link can be est-
ablished in different ways:

• directly, without file link names
FOR1 programs can access BS2000 files directly via the FORTRAN input/output
units without the need to define file link names. By specifying the file name in the
FILE operand of the FORTRAN statement OPEN it is possible to define the relevant
user file which is to be accessed.

Example:

: File: A.DAT
OPEN (12,FILE = ’A.DAT’)
WRITE (12,*) ’Hello’ Hello
:

However, since the OPEN statement has no parameters for determining file format,
record format, record length, block size and OPEN mode, these file attributes can-
not be explicitly defined in the case of direct linkage. It is therefore advisable to
always reference input/output files via file link names (see below).

BS2000 system files are already defaulted to certain input/output units. System files
are always addressed directly, i.e. it is not possible to use file link names here. The
OPEN and CLOSE statements are not required.

• through file link names
The file link names DSET00, DSET01,..., DSET99 are available, corresponding to the
FORTRAN file numbers. File link names are defined by means of the BS2000 SET-
FILE-LINK command (see following section).

U577-J-Z125-7-7600 295

Linkage of programs and files File processing

8.3.1 Defining file link names: BS2000 command SET-FILE-LINK

By using the SET-FILE-LINK command it is possible to link BS2000 user files with FOR1
programs via a file link name. This "indirect" link has the advantage of being variable:
Without changing the source code, it is possible to define for each program run which
files are to be assigned to the program. The SET-FILE-LINK command can also be
used to define the attributes for the files to be linked. A detailed description of the SET-
FILE-LINK command may be found in the "User Commands (SDF Format)" manual
[12].

FOR1-specific file link names

File link names which link files to FOR1 programs each relate to a particular in-
put/output unit. They are formed as follows:

LINK-NAME = DSETnn

where nn is the number of an input/output unit. The file link names DSET00, DSET01,
DSET02, ..., DSET99 are therefore available for linking files to FOR1 programs.

Example:

/SET-FILE-LINK LINK-NAME=DSET12, FILE-NAME=B.DAT, ACCESS-METHOD=SAM

TFT entry

DMS creates an entry in the Task File Table (TFT) under the file link name specified in
the LINK-NAME operand of the SET-FILE-LINK command. The TFT is a temporary table
which is set up automatically for each task. All the file attributes specified in the SET-
FILE-LINK command are included in the TFT entry. If an entry already exists in the TFT
for the specified file link name, this will be overwritten. The SHOW-FILE-LINK command
can be used to obtain information about the contents of the TFT. TFT entries can be
deleted using the REMOVE-FILE-LINK command, or modified using the CHANGE-FILE-
LINK command.

Access to files via the TFT entry

If a FOR1 program attempts to open a file via a particular input/output unit, DMS
checks whether an entry exists in the TFT under the corresponding file link name. If
such an entry is found, all subsequent input/output statements which address this unit
are related to the linked file - as long as the corresponding TFT entry exists.

296 U577-J-Z125-7-7600

File processing Linkage of programs and files

Assignment through file link names takes precedence over direct assignment, i.e. if a
corresponding TFT entry exists, the assignment will then also be made through the file
link name if the name of a different file is specified in the FILE operand of the OPEN
statement.

Example:

: TFT:
: LINK=DSET12 File B.DAT
OPEN (12, FILE=’A.DAT’) FILE=B.DAT
WRITE (12,*) ’Hello’ Hello

Updating the TFT during program execution

A TFT entry can be modified, deleted or overwritten during program execution (using
the CHANGE-FILE-LINK, REMOVE-FILE-LINK or SET-FILE-LINK commands). The rele-
vant file must be closed during command input.

There are two ways of updating the TFT during program execution:

Interrupting execution with the FORTRAN statement PAUSE,
issuing the desired command on the operating system level and
continuing program execution with the R[ESUME] command.

Example:

CLOSE (UNIT=unit1,...)
PAUSE [expression]
/SET-FILE-LINK LINK-NAME=DSETunit2, FILE-NAME=file,...
/R
OPEN (UNIT=unit2,...)

Issuing the desired command with interrupting the program by means of the FPOOL
function FCMD (see section 12.2.5).

Example:

COMOPT FPOOL = FOR1.FPOOL
.
.

COMMAND=’/SET-FILE-LINK LINK-NAME=DSETunit2, FILE-NAME=file, ...’
CLOSE (UNIT=unit1,...)
CALL FCMD(RETCODE, COMMAND, RESPONSE, ’Y’, SCRATCH)
OPEN (UNIT=unit2,...)

U577-J-Z125-7-7600 297

Linkage of programs and files File processing

8.3.2 Definition of file attributes by DMS

On opening a file, DMS obtains information about file attributes from three different
sources:

the catalog entry (if present)
the TFT entry (if present)
explicit and implicit declarations in the program

With regard to the above, values from the TFT entry, i.e. specifications made by a SET-
FILE-LINK command, take priority over declarations in the program. Only file attributes
that are defined neither by the program nor by the TFT entry or that were specified with
BY-CATALOG in the SET-FILE-LINK command are taken from the catalog entry

If the different sources contain contradictory information, this may give rise to incompati-
bility:

An execution error will occur for example when the information concerning the form of
file organization (FCBTYPE) differs in the catalog and in the TFT, or if it is not consi-
stent with the declarations made in the program. Should say the ACCESS operand of
the OPEN statement be specified as ’DIRECT’ in the program, then neither the catalog
entry nor the TFT entry may contain an FCBTYPE other than ISAM. (The FCBTYPE con-
tained in the TFT entry is defined by the ACCESS-METHOD operand of the SET-FILE-
LINK command.)

8.3.3 FORTRAN input/output units

FORTRAN input/output statements make reference to files through logical input/output
units.

The logical input/output units for external files are the file numbers 0 - 99. File numbers
can be assigned in different ways:

by default (for BS2000 system files)
by the OPEN statement (for user files)
by implicit OPEN (if there is neither a default nor an OPEN statement for the corre-
sponding file number)

In addition to the external files, there are also internal files in FORTRAN (see "FOR1"
reference manual [21]). Internal files are FORTRAN data items of the type CHARACTER.
Input/output units for internal files are not file numbers but the names of the data
items. Internal files do not need to be spearately assigned; accordingly there is no
OPEN statement for them.

298 U577-J-Z125-7-7600

File processing Linkage of programs and files

8.3.3.1 Standard assignment of BS2000 system files

The system files SYSDTA, SYSOUT, SYSLST, SYSOPT and SYSIPT are linked to speci-
fic input/output units by means of default values. In the FORTRAN program, merely the
relevant file number need be specified in the input/output statements.

Table 8-5 shows the assignment of system files to input/output inputs:

File File Macro Record Length Length
number name used format of the of the

data DMS
portion record

1 SYSDTA RDATA V 2024 2028
2 SYSOUT WROUT V 2024 2028
5 SYSDTA RDATA V 2024 2028
6 SYSLST WRLST V 133 137
7 SYSOPT WRTOT F 80 80
8 SYSIPT RDCRD F 80 80

97 SYSDTA RDATA V 2024 2028
98 SYSOPT WRTOT F 80 80
99 SYSLST WRLST V 133 137

Table 8-5: Standard assignment of BS2000 system files

Read-only access is allowed for input/output units 1, 5, 8 and 97, write-only access is
allowed for input/output units 2, 6, 7, 98 and 99.

The default assignments can be changed by the user with the aid of the SUBSTITUTE,
ADD and DELETE runtime options (see 6.3.2).

U577-J-Z125-7-7600 299

Linkage of programs and files File processing

8.3.3.2 OPEN statement

The FORTRAN statement OPEN can be used to

link a cataloged file to an input/output unit

catalog a file which does not yet exist and link it to an input/output unit

define or update the FORTRAN access type and further attributes.

The FORTRAN statement DEFINE FILE has the same effect as a restricted OPEN state-
ment for files with direct access.

The OPEN statement is described in detail in the "FOR1" reference manual [21]. The
following sections describe the format of the OPEN statement and explain the RECL,
STATUS and FILE operands.

([ACCESS=caccess] [,ASSOVAR={iassovar|cassovar}] [,BLANK=cblank]
OPEN [,ERR=ierr] [,FILE=cfile] [,FORM=cform] [,IOSTAT=iostat]

[,MAXREC={imaxrec cmaxrec}] [,RECL=irecl] [,STATUS=cstatus]
[,UNIT=] iunit)

The first letter of the individual operands indicates the type.

i INTEGER
c CHARACTER

RECL

The RECL operand defines the length of a FORTRAN record in bytes. The RECL=irecl
operand is only interpreted when ACCESS=’DIRECT,...’ is specified. Input/output of a
longer record results in an error.

If the RECL operand is omitted, the following applies:

if an OPEN or an implicit OPEN was performed on this file during the course of the
program run, RECL retains the value defined therein;

in all other cases RECL is provided with the value entered for RECORD-SIZE or the
default value minus the length of the corresponding administrative information (see
tables 8-6 and 8-7 in section 8.4.2).

Note

In ISAM file records, the key at the beginning of the record is not part of the data
portion. However if the key is not at the beginning of the record, it is part of the
data portion of that record and must be included in the count (see section 8.4.2).

300 U577-J-Z125-7-7600

File processing Linkage of programs and files

STATUS

The STATUS operand specifies the existence of a file or its use as a job-related work
file (FCBTYPE=EAM). The criterion for entry in the STATUS operand is not the physical
existence of the file, but whether or not it has a corresponding entry in the system cata-
log. For example, a catalog entry may be generated by the CREATE-FILE command,
although the file does not physically exist until an OPEN or CLOSE is executed.

The following values may be specified for the STATUS operand:

’OLD’
’NEW’

STATUS = ’UNKNOWN’
’SCRATCH’
cstatus

’OLD’ A catalog entry for the referenced file already exists.

If ’OLD’ is specified but there is no entry in the system catalog, abnor-
mal termination takes place.

’NEW’ No entry exists in the system catalog, an ISAM file is created which
has the specified file name. If ’NEW’ is specified and an entry already
exists in the system catalog under the specified name, an execution
error will occur.

’SCRATCH’ Creates a task-related work file (EAM file), which is deleted when the
program ends. SET-FILE-LINK commands specified for this file are not
interpreted.

’UNKNOWN’ If the FILE operand has been specified and the file specified therein
already exists, or a SET-FILE-LINK command is in force for the speci-
fied input/output unit, the STATUS operand has the value ’OLD’.
If no FILE operand is specified and if no SET-FILE-LINK

command is in force for the specified input/output unit, the STATUS
operand has the value ’NEW’ and a file with a standard file name (see
FILE operand) is created. After the OPEN statement is executed, the
STATUS operand is set to ’OLD’.

cstatus CHARACTER expression, which must have the value ’OLD’, ’NEW’,
’SCRATCH’ or ’UNKNOWN’ at OPEN time.

If STATUS=’OLD’ or ’NEW’ is specified, the FILE operand must also be specified.

U577-J-Z125-7-7600 301

Linkage of programs and files File processing

FILE

The FILE operand is used to specify the name of the file. If no file with the specified file
name exists, a file with this name is created, provided that STATUS=’OLD’ has not
been specified. If no name has been specified for a file (FILE operand omitted, FILE=’’
or FILE=’ ’), and neither a SET-FILE-LINK command nor a
preceding OPEN statement with FILE=’name’ has been given for the specified in-
put/output unit, a file with the following standard file name is created:

UNIT.FOR1.prog.unit [.tsn[.time]]

prog Name of the program unit
unit File number
tsn Task sequence number, four-digit number
time Current time the file was created, in the form hhmmss.

The two latter qualifications are omitted unless they are need for the uniqueness of the
system catalog entry.

If neither an OPEN nor DEFINE FILE statement is used for a given file, that file will be
opened implicitly when the first input/output statement is used. The values of the impli-
cit OPEN depend on the operand values of the first input/output statement (see "FOR1"
reference manual [21]).

302 U577-J-Z125-7-7600

File processing FORTRAN records and DMS records

8.4 Mapping of FORTRAN Records to DMS

8.4.1 FORTRAN record and DMS record

A FORTRAN record is understood to include a record defined by FORTRAN language
elements. A FORTRAN record corresponds to the data portion of one or more DMS
records. The length of a FORTRAN record can be specified, if ACCESS=’DIRECT’, in
the RECL operand of the OPEN statement or in the DEFINE FILE statement (as positio-
nal specification).

A DMS record is a record which DMS uses for its operations. In addition to the
FORTRAN record, this DMS record can also contain administrative information, such as:

the record length field in the case of variable format records
the record key in the case of ISAM files
the Green Control Word (GCW) in the case of unformatted input/output.

The length of a DMS record, or, for variable-length records the maximum record length,
is specified by the RECORD-SIZE operand of the SET-FILE-LINK command.

The relationship between the FORTRAN record and the DMS record is important for the
FOR1 user

in order to control the RECORD-SIZE operand of the SET-FILE-LINK command,
based on the length of the FORTRAN record

in order to select the most favorable size of the logical block, based on the length
of the DMS record.

Record length field

In the case of record format VARIABLE, the record length field with a length of 4 bytes
is at the beginning of the record (see 8.2.2).

U577-J-Z125-7-7600 303

FORTRAN records and DMS records File processing

Record key

As a standard procedure, the key precedes the data portion of the record and has a
length of 8 bytes.

If the key is at the beginning of the record, FORTRAN does not count it as part of the
data portion of the record and it is not transferred during the I/O operation. However if
the key does not start at the beginning of a record, it counts as the data portion of a
record and is transferred during the input/output operation. The specification in the
RECL operand in this case includes the key length. A record key contained within the
data must be taken into account during the input/output: either a dummy variable must
be provided in the input/output list for the record key, or it is skipped by using the
tabulator format key X in the format specification. If a record key contained within the
data is not taken into account, then output data will be overwritten by the key during
the output, for example.

In the case of sequential output to an ISAM file, the first record is given key value 1
and the consecutive key value is incremented by 1 each time a record is written.

Green Control Word

An unformatted record can be of any length. DMS can only process records with a
maximum length of 32 Kbytes. To permit mapping of FORTRAN records of any length
to DMS, a Green Control Word is required. The Green Control Word (GCW) contains
administrative information on the structure of the data records for unformatted in-
put/output. The GCW has a length of 4 bytes and immediately precedes the data por-
tion of a subrecord.

If a FORTRAN record is distributed over more than one DMS record in the case of
unformatted input/output, these records are combined to form packages. A package
may comprise up to 255 DMS records. Since the length of an unformatted FORTRAN
record is unlimited, any number of packages can be formed per FORTRAN record.

304 U577-J-Z125-7-7600

File processing FORTRAN records and DMS records

Format of the Green Control Word:

Indica- Indica- Number of
tor for tor for data bytes FORTRAN data
record package in the subrecord

-byte 0 -byte 1- -byte 2 -byte 3-

Byte 0

0 Subrecord is not last record in package

Number of subrecords Subrecord is last record in package.
in the package

Byte 1

0 Subrecord is not last record in package (byte 0 = 0) or
the FORTRAN record consists of only one package

1 Subrecord is last record in first package

2 Subrecord is last record in last package

3 Subrecord is last record and package is not first and not
last package

Byte 2, byte 3

Bytes 2 and 3 contain the number of bytes in the subrecord.

U577-J-Z125-7-7600 305

FORTRAN records and DMS records File processing

Example:

ISAM file with RECORD-SIZE=120. A FORTRAN record with 700 subrecords is written.

ISAM key G C W FORTRAN data

1st subrecord,
00000068 1st package

2nd subrecord,
00000068 1st package

.

.

.

Last (255th) subrecord,
FF010068 1st package

1st subrecord,
00000068 2nd package

.

.

.

Last (255th) subrecord,
FF030068 2nd package

1st subrecord,
00000068 3rd package

.

.

.

Last (190th) subrecord,
BE020068 3rd package

306 U577-J-Z125-7-7600

File processing FORTRAN records and DMS records

8.4.2 Summary: Relationship between DMS and FORTRAN records

Tables 8-6 and 8-7 show how the length of a DMS record is derived from the length of
the FORTRAN data plus any existing administrative information, depending on access
type, record format and input/output format. The administrative information can consist
of the following components:

KEY ISAM key, default 8 bytes
RLF Record length field, 4 bytes
GCW Green Control Word, 4 bytes

DAT Designates the length of the FORTRAN data record. When
ACCESS=’DIRECT’ is specified in the OPEN statement, DAT corre-
sponds to the entry in the RECL operand.

For access type ISAM, the representation of the record format only applies for KEY-
POSITION=1 with RECORD-FORMAT=FIXED or KEY-POSITION=5 with RECORD-
FORMAT=VARIABLE.

DMS records for formatted input/output

ACCESS RECORD FORMAT
TYPE FIXED VARIABLE UNDEFINED

S A M DAT RLF + DAT DAT

I S A M KEY + DAT RLF + KEY + DAT -

B T A M DAT RLF + DAT DAT

2048 bytes
E A M DAT - -

DAT 2048 bytes

SYSTEM FOR IPT AND LST: FOR DTA,OUT AND LST:
FILES DAT RLF DAT -

Table 8-6: Format and length of the DMS record for formatted input/output

U577-J-Z125-7-7600 307

FORTRAN records and DMS records File processing

DMS records for unformatted input/output

ACCESS RECORD FORMAT
TYPE FIXED VARIABLE UNDEFINED

S A M GCW + DAT RLF + GCW + DAT GCW + DAT

I S A M KEY + GCW + DAT RLF + KEY + GCW + DAT -

B T A M GCW + DAT RLF + GCW + DAT GCW + DAT

2048 bytes
E A M GCW + DAT - -

GCW+DAT 2048 bytes

SYSTEM FOR IPT AND LST: FOR DTA,OUT AND LST:
FILES GCW + DAT RLF + GCW + DAT -

Table 8-7: Format and length of the DMS record for unformatted input/output

308 U577-J-Z125-7-7600

File processing FORTRAN records and DMS records

8.4.3 Examples: FORTRAN/DMS record

Example 1: FORTRAN/DMS record for SAM file

/CREATE-FILE FILE-NAME=DAT, SUPPORT=PUBLIC-DISC(SPACE=RELATIVE(PRIMARY-
ALLOCATION=4))

/SET-FILE-LINK LINK-NAME=DSET17, FILE-NAME=DAT, ACCESS-METHOD=SAM,
RECORD-FORMAT=FIXED(RECORD-SIZE=804), BUFFER-LENGTH=STD(SIZE=2)

Input/output statement for this file:

.

.

.
INTEGER*8 FELD(100)
OPEN(UNIT=17,FORM=’UNFORMATTED’)
WRITE(17)FELD

A record in this file has the following format:

GCW DATA PORTION

4 bytes 800 bytes
RECL

804 bytes
RECORD-SIZE

RECORD-SIZE=804 is specified in the SET-FILE-LINK command, since the record
length for unformatted input/output comprises the data portion of 800 bytes and the 4
bytes of the Green Control Word.

Example 2: FORTRAN/DMS record for ISAM file

/SET-FILE-LINK LINK-NAME=DSET20, FILE-NAME=DAT1, ACCESS-METHOD=ISAM,
RECORD-FORMAT=VARIABLE(RECORD-SIZE=60)

Input/output statements for this file may have the following format:

Sequential access Direct access

OPEN(UNIT=20,ACCESS=’SEQUENTIAL’, OPEN(UNIT=20,ACCESS=’DIRECT’,
* STATUS=’OLD’,FILE=’DAT1’) * RECL=48,STATUS=’OLD’,

* FILE=’DAT1’)
WRITE(20,100)I,J,K,L READ (20,REC=16,FMT=100)I,J,K,L

100 FORMAT (4I12) 100 FORMAT (4I12)
. .
. .
. .

U577-J-Z125-7-7600 309

FORTRAN records and DMS records File processing

Since RECORD-FORMAT=VARIABLE, each record has a record length field in addition
to the data portion and key. In this example a record has the following format:

Record length Key Data portion
field

4 bytes 8 bytes 48 bytes
RECL

60 bytes
RECORD-SIZE

Example 3: FORTRAN/DMS record for ISAM file with key in data portion

/SET-FILE-LINK LINK-NAME=DSET21, ACCESS-METHOD=ISAM(KEY-LENGTH=4,
KEY-POSITION=21), RECORD-FORMAT=VARIABLE(RECORD-SIZE=30)

Input/output statements for this file may have the following format:

Sequential access Direct access

OPEN (UNIT=21,ACCESS=’SEQUENTIAL’, OPEN (UNIT=21,RECL=26,ACCESS=
* STATUS=’OLD’, * ’DIRECT’,STATUS=’OLD’,
* FILE=’DAT2’) * FILE=’DAT2’)
READ(21,100)IA,IB,IC WRITE(21,REC=18,FMT=100)IA,IB,IC

100 FORMAT(I16,A4,I6) 100 FORMAT(I16,I4,I6)

After execution of the The value specified by IB is
READ statement overwritten by the binary
variable IB contains representation of key
the value of the key. value 18.

A record has the following format:

Record length IA Key IC
field

4 bytes 16 bytes 4 bytes 6 bytes

30 bytes
RECORD-SIZE

26 bytes
RECL

310 U577-J-Z125-7-7600

File processing FORTRAN records and DMS records

Example 4: FORTRAN/DMS record for BTAM file

/CREATE-FILE FILE-NAME=DAT2, SUPPORT=TAPE(VOLUME=volume, DEVICE-TYPE=
device-type)

/SET-FILE-LINK LINK-NAME=DSET50, FILE-NAME=DAT, ACCESS-METHOD=BTAM,
RECORD-FORMAT=UNDEFINED, BUFFER-LENGTH=400

Input/output statements for this file may have the following format:

INTEGER*8 A(50)
OPEN (UNIT = 50)
WRITE (50,100)A

100 FORMAT (50 I8)

A record in this file has the following format:

Data portion

400 bytes

U577-J-Z125-7-7600 311

9 Optimization
The optimization of the FOR1 compiler system is tailored to speeding up the execution
of object programs. The term "optimization" as it is used below covers all measures
that, by means of additional analyzes and additional transformations, are instrumental in
effecting shorter object program execution.

The FOR1 programmer basically has two optimization options at his disposal:

manual optimization, i.e. shortening the runtime thanks to a more efficient style of
programming (section 9.1);

steps taken by FOR1 which are controlled by means of the SDF operand
OPTIMIZATION in the START-FOR1-COMPILER command (see section 9.2.1) or the
OPTIMIZE compiler option (see section 9.2.2).

Optimization primarily affects program segments which are to be executed frequently
(loops) and slow program sections (input/output).

The following optimization measures are frequently undertaken by the FOR1 compiler:

computation of constant arithmetical expressions at compile time
optimization of logical expressions
reuse of common subexpressions
optimization of subscript computation
loop optimization
elimination of superfluous code
register optimization.

Optimization can also be carried out for calling subprograms and functions controlled
using the PROCEDURE-OPTIMIZATION compiler option (see section 9.2.3).

The user can select one of the optimization levels 0 through 4 or NO. The program
area via which optimization takes place is different, depending on which level was selec-
ted. In the case of optimization levels 1 and 2, optimization is via basic blocks and DO
loops. A basic block is a string of commands with as few branches as possible and
having exactly one entry point and one exit point. In the case of optimization levels 3
and 4, however, optimization is by means of complete loops of any type.

The optimization levels of FOR1 are described in detail in section 9.2.

U577-J-Z125-7-7600 313

Manual optimization Optimization

9.1 Manual optimization

Manual optimization of programs is an efficient means of running a program in less
time, irrespective of compilation. Some of the optimization measures which the FOR1
optimization performs may also be included by the user when writing the program,
such as the reuse of previously calculated (sub)expressions or the extraction of loop-
invariant parts from the range of a loop. These optimization functions are not described
at this point. The optimization measures described below supplement the FOR1 optimi-
zation.

Branches

For logical IF statements and BLOCK-IF statements, the optimum object code is genera-
ted if the test expression is a LOGICAL*1 variable. For arithmetic IF statements, an
INTEGER*2 variable will be the most efficient choice.

Subprograms

If efficiency is the sole objective, FUNCTION or SUBROUTINE subprograms may be
unsuitable for frequently executed but small tasks if the effort of call and return is relati-
vely high with respect to the actual task. There are two alternatives to this:

Code implemented as an %INCLUDE item; that is, in-line programming of the re-
spective statements rather than calling a subprogram.

Use of a statement function (if possible).

Transfer of parameters via COMMON blocks is more efficient than through parameter
lists; however it cannot be covered by the debug option ARG.

Arithmetic expressions

For small integer exponents, A*A*A . . . is preferable to A**I since iterative multiplica-
tion is much faster than exponentiation. For a similar reason, A+A+A . . . is faster than
A*N for small N’s. By continuing the computation with intermediate results, execution
may be speeded up even further.

For example, the exponentiation X=A**8 can be split up into the following statements:

X1=A*A
X2=X1*X1
X =X2*X2

Converting to multiplication is also performed by FOR1 optimization.

314 U577-J-Z125-7-7600

Optimization Manual optimization

Since multiplication takes less time to execute than division, division should be replaced
by multiplication whenever possible.

Example:

A/(B*C*D) instead of (((A/B)/C)/D)
SQRT(X) is more efficient than X**.5

Conversions

Conversions between different types of data may take more time than the actual opera-
tion and therefore should be avoided as far as possible. This may be achieved by reor-
dering operands in arithmetic expressions.

Example:

Statement sequence: better:

INTEGER I1,I2,I3
REAL R1,R2,R3
A=I1+R1+I2-R2-I3+R3 A=(I1+I2-I3)+(R1-R2+R3)

DO loops

Successive DO loops with the same structure should be combined.

Example:

DO 1 I=1,10
1 A(I)=B(I)+C(I)

DO 2 I=1,10
2 AA(I)=F(I)

This statement sequence can be transformed as follows:

DO 1 I=1,10
A(I)=B(I)+C(I)

1 AA(I)=F(I)

This loop is faster than the original two loops since the loop control effort is required
only once.

U577-J-Z125-7-7600 315

Manual optimization Optimization

Multi-dimensional arrays

When using multi-dimensional arrays, overlaying with one-dimensional arrays may be
used in certain cases to speed up execution.

Example:

REAL A (10,50,50)

DO 1 I=1,50
.
.
.

DO 1 J=1,50
DO 1 K=1,10,2

1 A(K,J,I)=A(K,J,I)+B
X=A(L,M,N)

This statement sequence can be transformed as follows:

REAL A(10,50,50),AA(25000)
EQUIVALENCE(A,AA)

.

.

.
DO 1 I=1,25000,2

1 AA(I)=AA(I)+B
X=A(L,M,N)

Input/output

Unformatted input/output is the fastest kind of input/output. Intermediate results which
will be reread only by the same program should therefore always be output unformat-
ted. In addition, unformatted data usually takes less space on external storage.

The number of executions of input/output statements should be kept as low as possi-
ble.

The following program part, for example, is inefficient since the WRITE statement is exe-
cuted ten times:

REAL A(10),B(10)
DO 1 I=1,10

1 WRITE(21) A(I),B(I)

The following statement sequence is better since here the WRITE statement is executed
only once:

REAL A(10),B(10)
WRITE(21) (A(I),B(I),I=1,10)

316 U577-J-Z125-7-7600

Optimization Manual optimization

Better still are the following statement sequences since here the elements of A and B
are processed contiguously rather than individually:

REAL A(10),B(10)
WRITE(21) (A(I),I=1,10),(B(I),I=1,10)

or

REAL A(10),B(10)
WRITE(21) A,B

or

REAL A(10),B(10)
WRITE(21) A(1)...A(10),B(1)...B(10)

U577-J-Z125-7-7600 317

Manual optimization Optimization

Programming for virtual memory

Virtual memory with its large address space provides, in many cases, a capability for
holding relatively large files in memory instead of in external files. This may save a large
number of executions of input/output statements and simplifies programming, for ac-
cess to data is either direct or associative (variable names) rather than via input/output
statements, and no program parts are required for file management or error handling.

There are, however, further aspects to the virtual memory concept which are important
to program execution time and system throughput. In the BS2000 operating system,
each task has its own address space of a few megabytes (varying with system genera-
tion). This address space is divided into "pages" of 4096 bytes each. The system ensu-
res that the pages being accessed by the current task are indeed available in real
memory of the mainframe, whereas those pages that are not being used are, as far as
possible, kept away from real memory or stored externally on a paging device. The fol-
lowing schematic diagram illustrates the concept:

This figure is not any longer available for the online pdf.

Fig. 9-1: Schematic diagram of virtual storage

318 U577-J-Z125-7-7600

Optimization Manual optimization

Pages A1, A3 or B3 are stored externally.

If a task now wants to access a page in its address space that does not exist in real
memory, the task is interrupted and the system must read in the page from the paging
device into real memory. If there is no space available in real memory, some other
page must be removed from real memory. Thus, access to a page not currently pre-
sent in real memory involves interrupts and, albeit preferential and relatively fast, in-
put/output operations.

In order to save run time, the program should be designed in such a way that the requi-
red pages are kept in real memory to the greatest possible extent. The basic rules are:

Avoid any unnecessary reference to other pages by keeping, as far as possible, to
the memory areas currently in use.
Statements that follow one another in execution, or data which is successively acces-
sed should be arranged in adjacent object program locations.

There are various ways of allowing for that in the FORTRAN program:

With algorithms, "long-distance" jumps over large areas should be avoided wherever
possible.

Parts of algorithms which are executed only seldom, e.g. error handling routines,
should be taken out of the ordinary context of processing and placed separately.

Parts of algorithms which are executed regularly should be written "in-line" rather than
by subprogram calls.

In subprograms, access to global data items (transfer in COMMON blocks or by addres-
ses) may result in paging so that it is advisable to use a transfer of values.

When processing large volumes of data, the physical arrangement of the data in me-
mory should be taken into consideration.

The following program part, for example, is inefficient since FOR1 arrays are stored in
columnar fashion:

REAL*4 A (1000,100)
.
.
.

DO 1 I = 1,1000
DO 1 J = 1,100

1 A(I,J) = A(I,J) + I*J

With a page size of 4096 bytes, the element referenced by statement 1 will be in a diffe-
rent page for almost every iteration of the inner DO loop, in all probability creating a
very high paging frequency. In the worst case, almost 100000 paging operations take
place.

U577-J-Z125-7-7600 319

Manual optimization Optimization

The following arrangement of DO loops is more efficient:

DO 1 J = 1,100
DO 1 I = 1,1000

1 A(I,J) = A(I,J) + I*J

The elements of A are referenced in the order in which they are arranged in the virtual
address space, creating a paging frequency of about 100 in the worst case, an improve-
ment which may be in the order of many minutes.

For nested DO loops it is generally better to keep the memory area referenced by the
inner loops very small, since frequent execution of the inner loops would imply a high
paging frequency.

At link-edit time, explicit entries of the INCLUDE control statement may be used to
arrange those program units which follow one another in execution in adjacent loca-
tions. In doing this it is generally advisable to sort the most frequently used program
units towards the "middle" rather than at the beginning.

Compile time improvements

The order of the specification statements in the FORTRAN program can influence the
time a program needs for compiling. If there are is a large number of specification state-
ments, significant savings can be achieved.

It is advantageous to arrange all specification statements of the same type in adjacent
locations. The following statement types should each be grouped together:

IMPLICIT statements
INTEGER, REAL, LOGICAL statements
DIMENSION, CHARACTER statements
PARAMETER statements
COMMON statements
EQUIVALENCE statements
DATA statements

The order of the individual groups does not affect the time needed for compilation.

PARAMETER statements that refer to other symbolic constants should follow the
PARAMETER statements for these symbolic constants.

The following is inefficient: Better would be:

PARAMETER(A=B+5) PARAMETER(B=7)
PARAMETER(B=7) PARAMETER(A=B+5)

DATA statements which use an implicit DO loop should be placed at the end of the
DATA statement group.

320 U577-J-Z125-7-7600

Optimization Optimization levels of FOR1

9.2 Controlling optimization

FOR1 provides suitable optimization levels for each of the various phases of program
development.

The main purpose in the debugging phase is to locate errors in a program rapidly and
easily. Optimization level NO is appropriate in this case. At this optimization level, the
program is converted into machine code directly statement by statement. The compiler
thus requires only a small amount of time for the compilation. In addition, the resulting
object can be optimally examined using the symbolic debugging aid AID.

When the program has been fully tested and is to be used, it should run as quickly as
possible and also occupy a minimum of storage space. It is therefore the purpose of
high-level optimization, which can be activated with optimization level 3, to generate an
object code that could not be produced significantly more efficiently even by an Assem-
bler programmer. To do so, extensive analysis must be performed on the program; this
then becomes apparent through a noticeable increase in compilation time.

A compromise between optimization levels NO and 3 is offered by the default optimiza-
tion level 1. Here only limited analysis is performed and, accordingly, fewer optimization
measures are carried out. A slightly increased compilation time provides some enhance-
ment in object runtime.

With the aforementioned optimization levels NO, 1 and 3, the only transformations per-
formed on the program are those which do not alter its external behavior. The objects
generated with these optimization levels always yield exactly the same results as non-
optimized objects.

The object runtime may possibly be reduced still further than with optimization level 3
through the use of level 4 and the optimization parameters REORDER, PARAMETER-
SIDEEFFECT and FUNCTION-SIDEEFFECT. However, since a degradation in object run-
time or differing results may occur here in rare instances, the user should employ these
more extensive optimization measures only if he knows their effect and is in a position
to judge whether they are suitable for his program. (The same applies to optimization
level 2.) The FOR1 optimization measures are thus described in detail in section 9.3.

U577-J-Z125-7-7600 321

SDF operand OPTIMIZATION Optimization

9.2.1 SDF operand OPTIMIZATION

START-FOR1-COMPILER

,OPTIMIZATION = NO / LOW / MEDIUM(...) / HIGH(...)

MEDIUM(...)

CONDITIONAL-LOOPS = IGNORED / RISK-OPTIMIZED

,OPTIMIZE-PROCEDURES = NO / YES / SPECIAL

HIGH(...)

CONDITIONAL-LOOPS = IGNORED / RISK-OPTIMIZED

,OPTIMIZE-PROCEDURES = NO / YES / SPECIAL

,OPTIMIZATION-HINTS = STD / PARAMETER(...)

PARAMETER(...)
REORDER-EXPRESSIONS = YES / NO

,FUNCTION-SIDEEFFECTS = YES / NO
,ARGUMENT-SIDEEFFECTS = NO / YES

The SDF operands and corresponding compiler options are shown in table 2-11.

322 U577-J-Z125-7-7600

Optimization control OPTIMIZE compiler option

9.2.2 OPTIMIZE compiler option

The COMOPT OPTIMIZE compiler option controls optimization. Optimization level NO,
1, 2, 3 or 4 may be selected. The default value is optimization level 1.

The optimization level selected with OPTIMIZE influences the defaults for the SAVE-
CONSTANT (see section 4.1.2.7) and PROCEDURE-OPTIMIZATION (see section 9.2.3)
compiler options:

with OPTIMIZE=NO, 0, 1, 2:
SAVE-CONSTANT=YES is the default
with PROCEDURE-OPTIMIZATION, the default
PROCEDURE-OPTIMIZATION=STD is interpreted as PROCEDURE-
OPTIMIZATION=NO

with OPTIMIZE=3, 4:
SAVE-CONSTANT=NO is the default
with PROCEDURE-OPTIMIZATION, the default
PROCEDURE-OPTIMIZATION=STD is interpreted as PROCEDURE-
OPTIMIZATION=YES (unless LINKAGE=STD is specified explicitly)

PROCEDURE-OPTIMIZATION=YES is incompatible with LINKAGE=STD (see 4.2.2.6).
Therefore when OPTIMIZE=3,4 is entered, the default LINKAGE=STD is converted to
LINKGAGE=FOR1-SPECIFIC and the following warning is issued:
MA43 LINKAGE=FOR1-SPECIFIC EXPECTED

There are nevertheless two ways of generating ILCS modules, in spite of
OPTIMIZE=3,4:

LINKAGE=STD is specified explicitly. PROCEDURE-OPTIMIZATION=STD will then
be interpreted as PROCEDURE-OPTIMIZATION=NO in spite of OPTIMIZE=3,4, a
fact to which the following warning draws attention:
MA42 PROC-OPT=NO BECAUSE LINK=STD

Specifying PROCEDURE-OPTIMIZATION=NO before entering OPTIMIZE=3,4

Optimization causes changes to and rearrangement of the code. Values of variables
may under certain circumstances no longer be locatable with reference to the source
program, or statement execution may no longer be traceable when a program is debug-
ged using the interactive debugging aid AID. It is therefore advisable to deactivate opti-
mization by means of OPTIMIZE=NO during the program debugging phase.

If a program is to be debugged using an interactive debugging aid, although it has
been optimized and can therefore no longer be debugged under defined conditions, a
decompiler listing (see section 4.7.9) can be of assistance. A decompiler listing can be
requested if optimization level 3 or 4 has been used. The decompiler listing shows the
changes optimization has caused, as compared to the original source program. As a
result, tracing and the setting of test points on a source program level are facilitated.

U577-J-Z125-7-7600 323

OPTIMIZE compiler option Optimization control

[*]COMOPT OPT[IMIZE]=NO

deactivates all optimization measures. OPTIMIZE=NO is advisable when debugging with
AID, in order to prevent the code from being altered. Where OPT=NO, there are no
variables in the register at the statement bounds. As a result, variables can be updated
by means of AID and still remain unique. The AID statement $JUMP (skip statements) is
only supported when OPT=NO is specified.

[*]COMOPT OPT[IMIZE]=0

deactivates most optimization measures. The following are optimized
logical expressions,
arithmetic expressions containing operands which are all constant,
register usage.

The range for these optimizations encompasses the entire program unit. The compila-
tion phase "global optimization" (see appendix 2) is not activated when OPTIMIZE=0 is
specified.

[*]COMOPT OPT[IMIZE]=1

All optimizations activated by means of OPTIMIZE=0 are performed.
In addition, the following are optimized:

the parts of arithmetic expressions consisting of constant operands
common arithmetic expressions
subscript computations
basic blocks of explicit DO loops, which are executed exactly once per loop cycle.
Loop-invariant computations are relocated to precede the loop. Multiplications of an
INTEGER loop variable with a pseudo-constant quantity (see section 9.3.5) are repla-
ced by additions.
exponentiations with a power of 2 or 3 are replaced by multiplications.

[*]COMOPT OPT[IMIZE]=2

All optimizations activated by OPTIMIZE=1 are also additionally performed for conditio-
nally-executed sections of loops.

324 U577-J-Z125-7-7600

Optimization control OPTIMIZE compiler option

3
[*]COMOPT OPT[IMIZE]=

(3,parameter[,...])

YES
FUNC[TION-SIDEEFFECT]=

NO

YES
parameter:= PARAM[ETER-SIDEEFFECT]=

NO

YES
REORDER =

NO

All optimizations activated by OPTIMIZE=1 are performed, yet a wider area is covered.
If parameter is not specified, the defaults FUNCTION-SIDEEFFECT=YES, PARAMETER-
SIDEEFFECT=NO and REORDER=NO are applicable. The compile time can be signifi-
cantly reduced by changing these defaults.

When OPTIMIZE=3 is set, the following optimizations are additionally performed:

In addition to explicit DO loops, implicit loops are optimized like loops formed by
means of IF statements, GOTO statements or ERR and END parameters in in-
put/output statements. Only loops which have no more than one entry point are
optimized, and only those parts of the loops which are executed exactly once each
time the loop is executed.

"Superfluous" code, i.e. statements whose results are no longer required, is elimina-
ted. Superfluous code is usually a consequence of optimization measures. As a
result of loop optimization, for example, incrementation of a loop variable may be
unnecessary. The loop variable is set to its final value or eliminated entirely.

Exponentiations with constant integer exponents are resolved into a string of multipli-
cations. Up to an exponent of 120, this breakdown is more expedient than calling a
runtime routine. With large exponents, rounding discrepancies may occur as a result
of this optimization.

In the case of unformatted input/output statements, access to adjacent array ele-
ments is superseded by access to array areas. To make this type of optimization
possible, access to the array elements must follow the same order the elements
have in memory (see "FOR1" reference manual [21]).

Example:

READ(X) ((A(I,J),I=1,100),J=1,100) is converted to
READ(X) A(1,1): A(100,100)

U577-J-Z125-7-7600 325

OPTIMIZE compiler option Optimization control

If the array elements are not arranged adjacently and in ascending order, a warning
is issued: UNFAVOURABLE INCREMENTATION PREVENTS ARRAY OPTIMIZATION.

If the order of the array elements is rearranged, access optimization can then be
performed.

Isolated constant operands in arithmetic expressions are converted to the resulting
data type at compile time. Special cases, e.g. multiplying by 1 or 0, or addi-
tion/subtraction of 0, are recognized and appropriately simplified. If a division by
zero is detected when interpreting constant expressions, the following warning is
issued:
DIVISION BY ZERO IGNORED

Division is not performed until runtime.

Intrinsic and standard functions are computed before the loop if their arguments are
pseudoconstant (see section 9.3.5).

FUNC[TION-SIDEEFFECT]=NO
All functions are assumed to be standard (normal) functions.

In the case of standard functions, optimization measures are performed via
function calls. The following attributes are assumed of a function defined as a
standard function:

The function changes none of its arguments, it merely returns the compu-
ted function value to the calling program unit. The function may not use
or change any COMMON data.

For each call with the same argument values the function will provide the
same function value.

The function performs no input/output and calls neither SUBROUTINE sub-
programs nor abnormal functions.

The compiler does not check whether a function declared as "standard" really
has the specified characteristics. Declaration of a function as "standard",
despite the fact that it does not have the characteristics of a standard func-
tion, may result in optimization errors.

Entry of FUNCTION-SIDEEFFECT=NO has the same effect as the FORTRAN
statement ABNORMAL without parameters (see "FOR1" reference manual
[21]).
If individual functions have been declared "abnormal" by means of an
ABNORMAL statement, then FUNCTION-SIDEEFFECT=NO cancels the effect
of the ABNORMAL statement.

FUNC[TION-SIDEEFFECT]=YES
All functions are assumed to be abnormal.

326 U577-J-Z125-7-7600

Optimization control OPTIMIZE compiler option

PARAM[ETER-SIDEEFFECT]=NO
It is assumed that the dummy arguments of a subprogram are not associated
with other dummy arguments or COMMON variables.

PARAM[ETER-SIDEEFFECT]=YES
It is assumed that the dummy arguments of a subprogram are associated
with other dummy arguments or COMMON variables. When a dummy argu-
ment or COMMON variable is modified, it is assumed that all dummy argu-
ments and COMMON variables are modified, so many operations are not per-
formed.

REORDER=NO
Identically-ranked commutative operations are performed from left to right, as
prescribed by the ANS FORTRAN 77 standard vom Standard ANS FORTRAN
77 vorgeschrieben ist (see "FOR1" reference manual [21]).

REORDER=YES
Identically-ranked commutative operations can be reordered as a result of
optimization. This reordering may affect the overflow of intermediate results.
Rounding differences may occur when computing REAL and COMPLEX quan-
tities.

Example:

In the expression A = 3. + B + 4. the constants 3 and 4 are first added as a
result of reordering, producing: A = 7.+ B

4
[*]COMOPT OPT[IMIZE]=

(4,parameter[,...]

All optimizations activated by OPTIMIZE=3 are additionally performed for loop sections
executed on the basis of conditions. The specifications FUNCTION-SIDEEFFECT,
PARAMETER-SIDEEFFECT and REORDER have the same meaning as with
OPTIMIZE=3.

U577-J-Z125-7-7600 327

PROCEDURE-OPTIMIZATION compiler option Optimization

9.2.3 PROCEDURE-OPTIMIZATION compiler option

The PROCEDURE-OPTIMIZATION compiler option controls optimizations when calling
procedures, i.e. subprograms and functions. These optimizations result in an improve-
ment of runtime thanks to gradual shortening of the ENTRY/EXIT code when procedu-
res are called. The runtime improvement is particularly important for programs which
use a large number of short procedures.

The effect of the PROCEDURE option is subject to several restrictions, the number of
which increases as a function of the degree of optimization.

Procedure optimization limits the options available for error diagnosis, depending on the
particular degree of optimization. In particular, the call hierarchy in the event of pro-
gram abortion often cannot be traced when procedure optimization is activated.

To establish priorities for pinpointing errors, procedure optimization is only performed if
no debugging options except the default value TESTOPT=(STNR) are specified. If any
other debugging option besides the default value is set, procedure optimization is deac-
tived.

If ILCS modules are to be generated during the compilation, it is necessary to work
with PROCEDURE-OPTIMIZATION=NO (see section 4.2.2.6, LINKAGE option).

STD
NO

[*]COMOPT PROCEDURE[-OPTIMIZATION] =
YES
SPECIAL[-ATTEMPTS]

STD Default. Procedure optimization is defined by means of the optimization level
specified in the OPTIMIZE option:

For OPT=NO,0,1,2 PROCEDURE-OPTIMIZATION=NO
For OPT=3,4 PROCEDURE-OPTIMIZATION=YES

If the user explicitly sets LINKAGE=STD, PROCEDURE-OPTIMIZATION=STD
is interpreted as PROCEDURE-OPTIMIZATION=NO for all optimization levels.
The following message is output:
MA42 PROC-OPT=NO BECAUSE LINK=STD

NO No shortening of the ENTRY/EXIT code takes place. If any debugging option
other than TESTOPT=(STNR) is activated, PROCEDURE=NO is set and a
warning issued.

If ILCS modules are to be generated during the compilation, it is necessary to
work with PROCEDURE-OPTIMIZATION=NO (see section 4.2.2.6, LINKAGE
option).

328 U577-J-Z125-7-7600

Optimization PROCEDURE-OPTIMIZATION compiler option

YES Procedure calls are optimized depending on the current conditions of the
ENTRY environment. This results in savings in machine instructions for each
subprogram call in the case of ENTRY and RETURN. These savings are achie-
ved by gradually dispensing with

chaining of the save areas
recursivity check
copying of arguments
skipping over address constants
allocate separate registers for addressing constants and data
recopying arguments
recovering old base addresses for constants and data
recursion marking
marking of BGFOR-compatible reentry points

When ENTRY or RETURN expression statements are used, they reduce the
amount of code shortening which can be achieved.

When PROCEDURE=YES is specified, the most important intrinsic functions
are calculated by calling optimized runtime system functions. The ENTRY
names of the optimized runtime system functions are formed from the ENTRY
names of the non-optimized functions and a $ symbol as the last character.

Intrinsic function ENTRY name ENTRY name of the
optimized function

SIN IF@S IF@S$
COS IF@C IF@C$
ATAN IF@AT IF@AT$
SQRT IF@Q IF@Q$
EXP IF@E IF@E$
ALOG IF@AL IF@AL$
DSIN IF@DS IF@DS$
DCOS IF@DC IF@DC$
DATAN IF@DAT IF@DAT$
DSQRT IF@DQ IF@DQ$
DEXP IF@DE IF@DE$
DLOG IF@DL IF@DL$

Table 9-1: ENTRY names of optimized functions

The optimized runtime system functions can only be called if no functions
with the names of the intrinsic functions are being used.

The optimized runtime functions for the intrinsic functions DSIN, DCOS,
DATAN, DSQRT, DEXP and DLOG are referenced only by objects generated
by a FOR1 Version 2.1. Objects generated as of FOR1 Version 2.2 use the
high-precision mathematical routines.

U577-J-Z125-7-7600 329

PROCEDURE-OPTIMIZATION compiler option Optimization

SPECIAL-[ATTEMPTS]
More extensive shortening of the ENTRY/EXIT code as compared with
PROCEDURE=YES. This leads to an improvement in runtime, particularly in
the case of many short procedures.

An improvement as compared with optimization when PROCEDURE=YES is
specified only occurs when procedures are limited as follows:

The total length of the procedure object code may not exceed 4096 bytes.
The compiler estimates the expected length of the object code, in which
case 12 bytes are assumed for each use of a variable. Starting at an esti-
mated length of approximately 4000 bytes, optimization with
PROCEDURE=SPECIAL is no longer performed. If the actual length of the
object code exceeds 4096 bytes contrary to the estimate, compilation is
aborted and an error message issued.

The procedure may not have any side entry points, i.e. no ENTRY state-
ments with different parameters. All entries must include the same type of
calculated functional value no matter what the function.

The procedure must not call any other procedure.

No mathematical function may be called in a subprogram, no exponentia-
tions, calculations with complex numbers, relational operations, quadruple
precision floating point divisions or compile time statements may be execu-
ted.

No input/output operations may be performed in the procedure.

If a procedure does not satisfy these conditions, a change is made from
PROCEDURE=SPECIAL to PROCEDURE=YES, without any message being
issued.

If shortening an ENTRY/EXIT in the case of PROCEDURE=SPECIAL results
in an error although the program without procedure optimization is free of
errors, the error is reported in the diagnostic listing. The program can then be
recompiled with PROCEDURE=YES instead of PROCEDURE=SPECIAL and
optimized without error.

330 U577-J-Z125-7-7600

Optimization FOR1 measures

9.3 FOR1 optimization measures

9.3.1 Computation of constant expressions at compile time

Expressions whose operands have values that are known are computed at compile
time. This causes the execution of instructions to be shifted from the object run to the
time of compilation and reduces the runtime of the program.

Compile time computations cover all arithmetic, logical and relational operations.

Evaluation takes place not only of expressions whose constants are specified explicitly,
but also of those expressions which contain variables whose values are known at com-
pile time.

Example:

Original Effect of optimization

I = 17/2 I = 8
J = I + 1 J = 9

Expressions with exclusively explicitly specified constants are also evaluated at compile
time even when optimization level 0 is specified. Consequently, the first statement from
the above example is transformed in any case, while the second statement is transfor-
med only if optimization is activated.

Should an error be encountered during evaluation of an expression containing varia-
bles, evaluation is not carried out and a warning message is issued. In the case of an
invalid expression with only explicit constants, computation continues with 1.

For "hidden" value assignments to variables (READ statement, subprogram call parame-
ters), it is always assumed that the variable concerned will change its value.

Value tracing of COMMON variables at optimization levels 1 through 4 ceases once a
subprogram is called. For OPT=3/4, information on COMMON variables is collected
again until the subprogram is recalled.
Expressions in which equivalent variables (made equal by the EQUIVALENCE state-
ment) occur are not interpreted when OPT=1/2.

Intrinsic functions with constant arguments are never computed at compile time no mat-
ter what the optimization level.

U577-J-Z125-7-7600 331

FOR1 measures Optimization

9.3.2 Optimization of logical expressions

Logical expressions in the logical IF statement are resolved into a string of conditional
GOTOs. Once the logical value of the entire expression is ascertained, a transfer of con-
trol takes place and the remainder of the expression remains unprocessed.

Example:

Original Effect of optimization

IF(A.LT.B.OR.C.GT.F(0).OR.X.EQ.Y) IF(A.LT.B) GOTO 10
GOTO 10 IF(C.GT.F(0))GOTO 10

IF(X.EQ.Y)GOTO 10

IF(A.EQ.B.AND.C.GT.D)X=Y IF(A.NE.B)GOTO 10
IF(C.LE.D)GOTO 10
X = Y

10 CONTINUE

The user may employ the order of individual operands to influence the time required for
evaluation of an expression. If A is true more often than B, it is more efficient to write
an expression in the form of A.OR.B than B.OR.A. By analogy, B.AND.A would be more
efficient than A.AND.B. If the evaluation of a logical expression does not cover all of the
operands, FUNCTION subprogram calls contained therein may remain unexecuted. In
the first example, F(O) is not executed if .TRUE. is already provided by A.LT.B.

Logical expressions are optimized even when optimization level 0 is activated.

332 U577-J-Z125-7-7600

Optimization FOR1 measures

9.3.3 Recognition of common subexpressions

The instruction sequences generated during compilation are enhanced by computing
frequently used common (sub)expressions only once and resorting to the existing value
as required.

Example:

Original Effect of optimization

X=(A+B)*C %T1=A+B
Y=(A+B)*D X=%T1*C

Y=%T1*D

The optimization of common subexpressions covers the arithmetic operators +,-,*,/,
when OPT=3/4 they also cover the arithmetic operation ** as well as intrinsic func-
tions. According to the Standard Language the distributive law does not apply.

At each optimization level, common subexpressions are only recognized as being com-
mon when their internal representation is identical. The internal representation is based
on the order in which the expressions are evaluated. In FORTRAN, this order is defined
by means of parentheses and by means of the priorities set for operators.

Example:

X=A+B*C*D
Y=E+B*C

In the first statement the subexpression "B*C*D" and in the second statement the sub-
expression "B*C" are internally represented as a unit. Since the internal representation
of the two subexpressions does not match, no optimization takes place.
If "B*C" is explicitly parenthesized, the same subexpression B*C is represented inter-
nally in both statements:

Original Effect of optimization

X=A+(B*C)*D %T1=B*C
X=A+%T1*D

Y=E+B *C Y=E+%T1

Common subexpressions relate to values rather than to variable names. If a variable
changes its value before the repeated occurrence of the same expression, the compu-
ted value can no longer be used.

U577-J-Z125-7-7600 333

FOR1 measures Optimization

For example, the following instruction sequence is not optimized because the value of
A has changed:
X=A+B
A=A/3
Y=A+B

Tracing of a variable is governed by the following rules:

For "hidden" value assignments to variables (READ statement, subprogram call para-
meters) the assumption is always that the variable concerned changes its value.

COMMON variables are taken into account when OPT=1/2 only to the extent that
no SUBROUTINE subprogram call or ABNORMAL FUNCTION subprogram occurs.
For OPT=3/4, COMMON variables in the area between the two subprogram calls
are taken into account.

The area of tracing covers a basic block when OPT=1/2, and a loop when
OPT=3/4.

Equivalenced quantities

If an expression contains equivalenced quantities (EQUIVALENCE statement), this ex-
pression is not optimized when OPT = 1/2. When OPT = 3/4, this expression is optimi-
zed only if none of the equivalenced quantities has changed its value in the meantime.

Example:

EQUIVALENCE (A,C)
X = A+B (1)

.

.

.
Y = A+B (2)

For OPT = 1/2, the common subexpression A+B is not recognized, since A is equiva-
lenced with C and equivalenced quantities are not interpreted at these optimization
levels.
For OPT =3/4, the common subexpression A+B is optimized if neither A nor B nor the
quantity C equivalenced with A changes its value between (1) and (2).

334 U577-J-Z125-7-7600

Optimization FOR1 measures

Overlaid variables

Partly overlaid variables are not taken into account in the recognition of common sub-
expressions.

Completely overlaid variables may be covered, but a change to the value of one varia-
ble causes the value of the overlaid variable also to be changed.

In the following example, however, optimization does take place:

Example:

Original Effect of optimization

X = (A+B)*D %T1 = A+B
C = A X = %T1*D
Y = C+B C = A

Y = %T1

9.3.4 Subscript computation

In order that the compiler may reference an array element, it must determine the ad-
dress of the array element from the specified subscript values. To do this, the compiler
expands the subscript list into a sequence of arithmetic operations.

This arithmetic generated during subscript expansion is optimized as follows:

when OPTIMIZE=0, no optimization takes place.

when OPTIMIZE=1/2, optimization takes place, e.g. by the use of common subex-
pressions, by employment of the distributive law, by reduction of multiplication to
additions, and by shifting instruction code (see section 9.3.5).

when OPTIMIZE=3/4, all optimization measures activated by OPTIMIZE=1/2 are
performed. In addition, an attempt is made to break down the address computation
into three parts:

a constant part computed at compile time,
a loop-invariant part shifted to precede the loop,
a variable part which stays in the loop.

The address As of an array element A(s1, ..., sn) of an array A (p1:q1,p2:q2, ..., pn:qn)
denotes the first byte of A (s1,...,sn). This address is calculated as follows:

U577-J-Z125-7-7600 335

FOR1 measures Optimization

Assuming that

dk = qk - pk + 1 (k=1,...,n)

are the sizes of the individual dimensions and

m0 = 1, m1 = d1 ,..., mi = d1 * d2 *...* di (i=1,...,n)

are the sizes of the i-dimensional subarrays.

Then the subscript value Is of A (s1,...,sn) is obtained from

Is = (sn-pn) mn-1 + ... + (s2-p2) m1 + (s1-p1) m0 + 1,

and the following applies:

As = A + l(Is-1),

where A is the address of the array
l the length of the element.

Thus

As = A + l(sn-pn) mn-1 + ... + l(s2-p2) m1 + l(s1-p1) m0

= A - l(p1m0 + ... + pnmn-1) + l(s1m0 + ... + snmn-1)

The following applies in particular:

A0 = A(0, ...,0) = A-l(p1m0 + ... + pnmn-1)

and consequently

As = A0 + l(s1m0 + ... + snmn-1)

This formula offers the best chances in respect of the occurrence of common subex-
pressions and therefore for optimization. That is why it is used for subscript expansions
in FOR1.

The address A0 and the multipliers mi are computed at compile time if the subscript
boundaries are constant; otherwise at the beginning of the program unit.

336 U577-J-Z125-7-7600

Optimization FOR1 measures

Example:

Array m0 = 1
INTEGER*8 A(3,7,5) m1 = 3

m2 = 21

Original Effect of subscript expansion

DO 1 I = M1,M2 DO 1 I = M1,M2
DO 1 J = N1,N2 DO 1 J = N1,N2
DO 1 K = L1,L2 DO 1 K = L1,L2

. %T1 = S1(I)

. %T2 = S2(J)*3

. %T3 = %T1+%T2
1 A(S1(I),S2(J),S3(K))= %T4 = S3(K)*21

F(I,J,K) %T5 = %T3+%T4
%T6 = %T5*8

1 A (%T6) = F(I,J,K)

%T6 is the displacement to the address calculated for A(0,0,0).

U577-J-Z125-7-7600 337

FOR1 measures Optimization

9.3.5 Loop optimization

The range of a loop is usually executed repeatedly; an optimization of such program
parts is therefore particularly effective.

Optimization levels 1 and 3 perform optimization measures throughout the entire loop
range only for "ideal" loops. "Ideal" loops are loops whose ranges are without transfers
of control, i.e.:

no GO TO statement,
no END, ERR parameters in input/output statements,
no IF statements,
no branch label parameters in subprogram calls.

Non-ideal loops have transfers of control inside their loop range. The loop range con-
sists of several basic blocks. In the case of optimization levels 1 and 3, loop optimiza-
tion is limited to those basic blocks for which it is possible to recognize at compile time
that they are executed exactly once for each loop cycle. In the case of optimization
level 2, the optimization measures of level 1 are also executed in conditionally executa-
ble loop sections; in the case of level 4, also the optimization measures of level 3. Opti-
mizations in loop sections which can be conditionally executed in most cases include a
further gain in runtime; however in some cases these can lead to runtime loss or un-
wanted interrupts.

Example 1:

LOGICAL BREAK
DO 10 I = 1,100
IF(BREAK) GOTO 10
A(K,I)=A(K,I)+B(L,I)

10 CONTINUE

With OPTIMIZE = 2/4, linear subscript incrementation becomes effective in the A(K,I)...
statement:

If the logical variable BREAK has the value .FALSE., the result is a significant impro-
vement in runtime.
If, however, the variable BREAK has the value .TRUE., unnecessary auxiliary calcula-
tions are performed for a subscript increment which would be omitted with
OPTIMIZE = 0/1 or OPTIMIZE = 3, and result in an increase in runtime.

Example 2:

DO 10 I = 1,100
10 IF(A.GT.O)B = SQRT(A)

At optimization levels 3 or 4, intrinsic functions are calculated before the loop for loop-
invariant arguments. With OPTIMIZE=4, loop opimization is also executed in the condi-
tionally executed loop section: SQRT(A) is calculated outside the loop. In the case of a
negative argument A, an error interrupt occurs.

338 U577-J-Z125-7-7600

Optimization FOR1 measures

Loop-invariance

An explanation of the term "loop-invariance" requires that the term "pseudo-constant" be
explained first. A data item is pseudo-constant within a loop when the following condi-
tions are satisfied:

the value of the data item is not changed in the loop after a first assignment, or no
assignment is made.

the initial assignment, if any, is made before the value is used for the first time and
a pseudo-constant entity or an expression that contains only pseudo-constant ent-
ities is assigned. This assignment may only be made in a part which is executed
exactly once per loop cycle.

Constants are therefore also pseudo-constant.

Data that is not pseudo-constant in a given loop range is also not pseudo-constant in
any encompassing loop.

Example:

DO 1 I = 1,10
IF(I.GT.3)M = 3 J is pseudo-constant since the value of
%T1 = J J is not changed in the loop
%T2 = K K is not pseudo-constant since the value
K = 5 is assigned after it is used
L = 5 L is pseudo-constant, the value is assigned
%T3 = L before it is used
%T4 = M M is not pseudo-constant, since the value
N = F(I) assignment takes place in a conditionally
%T5 = N executed part

1 CONTINUE N is not pseudo-constant since a value is
assigned that is not pseudo-constant

An operation in a loop range is loop-invariant if the following conditions are true:

For an arithmetic operation: All operands are pseudo-constant

For a function: No abnormal FUNCTION, all arguments are
pseudo-constant

For a value assignment: The assigned entity is pseudoconstant; the
variable assigned a value was not previously
used

Operations which satisfy these conditions are moved out of the range of the loop to the
outside.

Note

Since all functions are generally abnormal except instrinsic functions, use should be
made of the ABNORMAL statement (see "FOR1" reference manual [21]).

U577-J-Z125-7-7600 339

FOR1 measures Optimization

Instruction code shifting

Loop-invariant parts are extracted from the loop range in order to reduce the number of
cycles for these parts.

Example:

STMT Original Effect of optimization

6 DO 1 I = 1,9,2 %T1 = F(K)
7 1 A(I) = F(K)+I**2 DO 1 I = 1,9,2

1 A(I) = %T1+I**2

The effect of optimization is shown as follows in the decompiler listing (see section
4.7.9):

***** STATEMENT 6 (DO) *****************
6 I=1

***** STATEMENT 7 (MOVED STMT) *********
7 %T00010154=F(K)

***** STATEMENT 7 (MOVED STMT) *********
7 %T00010330=4
7 %I1=5

***** STATEMENT 7 (ASSIGNMENT) *********
7 L3 CONTINUE
7 1 %T00010198=I*I
7 A(%T00010330/4)=%T00010154+%T00010198

***** STATEMENT 7 (INCR STMT) **********
7 %T00010330=%T00010330+8

***** STATEMENT 7 (DOEND) **************
7 I=I+2
7 %I1 = %I1- 1
7 IF (%I1 .NE. 0) GOTO L3

F must not be an abnormal function, i.e. the compiler option COMOPT
OPT=(3,FUNCTION-SIDEEFFECT=NO) or the FORTRAN statement ABNORMAL without
parameters must be specified.

The extracted parts are executed before the loop is processed. If it is not yet known at
compile time whether this loop will be executed at least once, the shifted parts may
only be executed in dependence on the iteration counter.

The iteration counter controls correct processing of the loop. Fig. 9-2 shows the execu-
tion of a DO loop (see the "FOR1" reference manual [21]).

If several loops are nested, optimization begins with the innermost loop. If the extracted
parts are to be executed unconditionally, they may be included in the optimization for
the outer loops. In this way loop-invariant parts may be shifted more and more to the
outside through several nested loops.

340 U577-J-Z125-7-7600

Optimization FOR1 measures

This figure is not any longer available for the online pdf.

Fig. 9-2: Execution of a DO loop with instruction code shifting

U577-J-Z125-7-7600 341

FOR1 measures Optimization

Reduction to less complex operations

In loop ranges, optimization replaces complex operations with less complex operations.
Exponentiations are reduced to multiplications, and multiplications to additions.

With OPT=1, multiplications in which the product is formed from a loop variable and a
pseudo-constant quantity are replaced by additions. With OPT=3, multiplications in
which programmed iteration variables occur as factors are also replaced by additions
(see section 9.4.2).

Iteration variables

Iteration variables are variables whose values are changed by a pseudo-constant value
for each cycle of the range of a loop.

The control variable of a loop is therefore always an iteration variable. Reduction to
addition is performed by splitting up the operation into an initialization part and an incre-
mentation part.

The initialization part is loop-invariant and precedes the loop (see above, Instruction
code shifting); the incrementation part is placed in a separate incrementation block. Fig.
9-3 shows the execution of a DO loop in reducing multiplications to additions (see
"FOR1" reference manual [21]).

342 U577-J-Z125-7-7600

Optimization FOR1 measures

This figure is not any longer available for the online pdf.

Fig. 9-3: Execution of a DO loop reducing multiplications to additions

U577-J-Z125-7-7600 343

FOR1 measures Optimization

Example:

PROGRAM OPT
ABNORMAL
INTEGER I,A,B,X,F
READ (*,*)B
DO 1 I = 1,9,2
A=B*I

1 X=F(A)
WRITE (*,*) X,I
END

F is defined as a normal function by means of the ABNORMAL statement without para-
meters. If F were an abnormal function, the multiplication of B*I for OPT=1/2 would
not be reduced to an addition. This would only be the case when OPT=3/4. Loop initia-
lization I=1 in the example is only eliminated in conjunction with optimization levels 3
and 4.

In the decompiler listing, the effect of optimization on the loop is evident (with OPT=3):

***** STATEMENT 5 (DO) *****************
5 L5 I=1

***** STATEMENT 6 (MOVED STMT) *********
6 %T00010220=B
6 %T00010264=2*B
6 I=11
6 %I1=5

***** STATEMENT 6 (ASSIGNMENT) *********
6 L3 A=%T00010220

***** STATEMENT 7 (ASSIGNMENT) *********
7 1 X=F(A)

***** STATEMENT 6 (INCR STMT) **********
6 %T00010220=%T00010220+%T00010264

***** STATEMENT 7 (DOEND) **************
7 %I1 = %I1- 1
7 IF (%I1 .NE. 0) GOTO L3

344 U577-J-Z125-7-7600

Optimization FOR1 measures

This figure is not any longer available for the online pdf.

Fig. 9-4: Execution of a DO loop before and after optimization (OPT=1)

U577-J-Z125-7-7600 345

FOR1 measures Optimization

Elimination of "unnecessary" incrementations of iteration variables

If an iteration variable no longer occurs within the range of a loop except in the itera-
tion statement, its continuous incrementation is unnecessary. Continuous incrementation
of the iteration variables can be eliminated by assigning to the iteration variable its final
value before processing the loop and if the iteration variable is no longer used after the
loop. The "final value" of the iteration variable is the value it would have reached by sin-
gle incrementation after a loop is processed.

For loops that include a transfer out of their range, such a "final value" cannot be assig-
ned, and single incrementation can only be eliminated if the iteration variable is no lon-
ger used after the loop.

"Unnecessary" incrementations are often the result of reducing multiplications to addi-
tions.

Example:

In the example shown in Fig. 9-4, the statement I = I+2 is removed and replaced by
the "final value" assignment I = 11.

9.3.6 Global register allocation

The basic concept in global optimization is to save memory accesses. Variables that
are used frequently and compiler-generated temporary auxiliary entities should be left in
registers.

When optimization is activated, the various entities are examined as to the number of
accesses. Furthermore an analysis is performed in respect of the time that will be
saved if a particular entity is contained in a register. This information is then evaluated
as part of register allocation.

346 U577-J-Z125-7-7600

Optimization Example of a program loop

9.4 Examples of optimization

9.4.1 Effect of optimization on a program loop

DO SEG STMT I LINE SOURCE-TEXT

1/1 1 1 PROGRAM OPT
2 2 2 DO 1 I=1,5

1 2 3 3 L=7
1 2 4 4 M=M+N*L
1 2 5 5 K=I*3+L*4
1 3 6 6 1 N=N*7+K

3 7 7 END

The excerpts from the object listings in Fig. 9-5 show the effect of OPTIMIZE=0 and
OPTIMIZE=1 on the above program loop:

(1) Shifting of constant assignment from the iteration range to (9).

(2) Replacing the variable L with the constant 7 (13).

(3) Reducing the multiplication to an addition (12).

(4) Computing the constant expression (L*4) at compile time

(5) Computing the start value of K at compile time (10).

(6) Reuse of the common subexpression N*7 from statement 4.

(7) Eliminating the incrementation of the iteration variable. Assigning the final
value outside the loop (8).

(11) Register load points outside the loop.

(13),(14) Use of machine instructions of type RR.

(15) Register storage points outside the loop.

U577-J-Z125-7-7600 347

Example of a program loop Optimization

This figure is not any longer available for the online pdf.

Fig. 9-5: Effect of optimization on a program loop

348 U577-J-Z125-7-7600

Optimization Example for OPT=1/3

9.4.2 Differences between optimization levels 1 and 3

Original Before optimization After OPTIMIZE=1 After OPTIMIZE=3

SUBROUTINE OPTIM (A,
1END,INCR)

INTEGER A(100),END,
1INCR,IV

IV=1 IV=1 IV=1
%V1=END %V1=END (3)
J=2 (1) J=2 J=2
%I1=%V1-1 %I1=END-1 %I1=END-1
IF %I1 0 GOTO L13 IF %I1 0 GOTO L13 IF %I1 0 GOTO L13

%T4=4
%T5=INCR*4 (6)

DO 10 J=2,END L3 %T3=IV L3 %T3=IV
%T1=%T3*4 %T1=IV*4 (4)

A (IV)=J A(%T1)=J A(%T1)=J L3 A(%T4)=J
IV=IV+INCR IV=IV+INCR IV=IV+INCR (5) %T4=%T4+%T5 (7)

J=J+1 J=J+1 J=J+1
10 CONTINUE %I1=%I1-1 (2) %I1=%I1-1 %I1=%I1-1

IF(%I1.NE.0) IF(%I1.NE.0) IF(%I1.NE.0)
.GOTO L3 .GOTO L3 .GOTO L3

END L13 END L13 END L13 END

Table 9-2: Differences between OPTIMIZE=1 and OPTIMIZE=3

Using subprogram OPTIM as an example, various differences in the effect of optimiza-
tion levels 1 and 3 become apparent. Quantities with a % symbol as the first character
refer to internal representation. In the initialization section (01) of the loop, the loop
parameters are evaluated and iteration counter %I1 tested. In (2) the iteration counter is
decremented by one and a branch is made to L3 if %I1>0.

Replacing complex operations with less complex operations

Optimization levels 1 and 3 differ in their treatment of iteration variables. Iteration varia-
bles are integer variables which change their value in a loop in a linear manner. In the
example, the DO variable J and the programmed iteration variable IV are the iteration
variables.

With OPT=1, only DO variables are recognized as iteration variables. For this reason
only those multiplications containing a DO variable as a factor are simplified. As a result
of subscript expansion (cf. section 9.3.4) multiplication (4) with the programmed itera-
tion variable IV takes place. This multiplication is not simplified when OPT=1.

U577-J-Z125-7-7600 349

Example for OPT=1/3 Optimization

With OPT=3 on the other hand, the multiplication (4) with programmed iteration varia-
ble IV is also simplified. The loop-invariant operations (6) are placed ahead of the loop;
the multiplication (4) is reduced to an addition (7). As a result of this simplification, the
term (5) becomes superfluous and is removed by means of "dead code elimination".

Calculation of constant expressions at compile time

Following loop optimization, the program section before the loop consists of the first
basic block (1) and the second basic block.

%T4=IV*4
%T5=INCR*4

This program section before the loop is further optimized when OPT=3. In the first and
second basic block, IV has a value of 1. With OPT=1, optimization is only performed
within each basic block. Thus, when the second basic block is optimized, it is not taken
into account that IV has a value of 1, and no optimization takes place.

With OPT=3, on the other hand, the values are traced throughout the entire loop, as a
result of which %T4=IV*4 can be reduced to %T4=4.

Elimination of superfluous code

At the two optimization levels 1 and 3, value tracing can be used in the expression

%I1=%V1-1

to replace %V1 by means of END:

%I1=END-1

The statement (3) %V1=END becomes superfluous as a result. This superfluous state-
ment is, however, only eliminated by optimization techniques using "dead code elimina-
tion" when OPT=3 is specified.

350 U577-J-Z125-7-7600

10 Programming considerations

10.1 Considerations for individual FOR1 language elements

See also "FOR1" reference manual [21].

WAIT statement
The WAIT statement is implemented in such a way that only the specified parameters
are provided with the appropriate values. The WAIT statement does not, however,
cause the task to be suspended since waiting for the end of data transfer is already
included in the asynchronous READ and WRITE statements.

SAVE statement
The SAVE statement, although accepted, has no additional effect. With FOR1, all data
items of a FUNCTION or SUBROUTINE subprogram generally retain their values after
exiting from the subprogram.

FIND statement
The FIND statement is supported to the extent that the specified parameters are sup-
plied with the appropriate values and the specified checks are carried out. However
actual positioning of the referenced file is always a function of the READ or WRITE sta-
tement.

ENCODE, DECODE statements
The statements are retained for reasons of compatibility. It is recommended, however,
to apply the FOR1-supplied language elements of input/output to internal files for data
transfer within memory.

U577-J-Z125-7-7600 351

Programming considerations

"Dangerous" language elements
The following describes certain language elements and constructions that should not be
used unless there are good reasons for doing so. These elements make the program
logic less transparent and, since they are known to be frequent sources of hidden pro-
gramming errors, they reduce the reliability of a program. In addition, they impair or
reduce the optimization of parts of the program (see chapter 9).

Extended range of DO loops
The extended range may be replaced by execution of a subprogram or by in-line
programming of the relevant statements in the loop range. If this involves copying
the extended range, it is best converted into an %INCLUDE item.

Duplicate use of ASSIGN variables
ASSIGN variables should be used only for their original function as carriers of state-
ment numbers, and not in arithmetic operations. Any errors resulting from such
mixed use are usually difficult to pinpoint.

Overlaying data items of differing length.

352 U577-J-Z125-7-7600

Programming considerations

10.2 FOR1 extensions no longer supported by the
Fortran90 compiler

Almost all FOR1 extensions are also supported by the Fortran90 compiler. There are
however a few exceptions. The user has the capability by specifying the FORTRAN90-
CHECK = YES compiler option (see section 4.1.2.8) to check whether a source pro-
gram contains FOR1 extensions that are no longer supported by the Fortran90 compi-
ler.

The following section contains a summary of these language elements that are incompa-
tible with the Fortran90 compiler. Also given in each case is the message used to mark
the occurrence of such language elements during the Fortran90 check.

Cyclical range specification in the IMPLICIT statement

Within the scope of FOR1 it is permissible to define a range of letters cyclically in an
IMPLICIT statement. The following is possible, for example:

IMPLICIT INTEGER*2 (Y-D)

This will no longer be supported by the Fortran90 compiler. In the Fortran90 check, the
compiler marks IMPLICIT statements containing cyclical range specifications with the
message:

FA300 FORTRAN90 DEVIATION: CYCLIC RANGE-SPECIFICATION

Complex expressions as lower bound, upper bound or step size in loops:

Within the scope of FOR1, expressions of data type COMPLEX are permissible as lower
bound, upper bound and step size in DO loops and implicit DO loops.
The Fortran90 compiler will no longer support this. If complex expressions are used for
such purposes, the compiler marks the corresponding positions during the Fortran90
check with one of the following warnings:

SA250 FORTRAN90 DEVIATION: LOWER BOUND OF TYPE COMPLEX
SA251 FORTRAN90 DEVIATION: UPPER BOUND OF TYPE COMPLEX
SA252 FORTRAN90 DEVIATION: STEP SIZE OF TYPE COMPLEX

U577-J-Z125-7-7600 353

Programming considerations

Nesting of logical IF statements

Nested logical IF statements are permissible within the scope of FOR1, i.e. one logical
IF statement can in turn contain a further logical IF statement.
This will no longer be supported by the Fortran90 compiler. Any construction of this
type will be marked with the following message during the Fortran90 check:

FA301 FORTRAN90 DEVIATION: NESTED BOOLEAN IF-STATEMENTS

Free statement sequence

The FOR1 compiler permits a completely free sequence of declarations and executable
statements. This holds true only to a limited extent for the Fortran90 compiler: declara-
tions must precede the first instance of use. Since it would be extremely complicated
for the FOR1 compiler to check this in each case, a warning will be issued during the
Fortran90 check as soon as executable statements are found to precede a declaration
statement:

FA302 FORTRAN90 DEVIATION: POSSIBLE USE BEFORE DECLARATION

Temporary updating of source programs

The temporary updating of source programs using the UPD compiler option will no lon-
ger be supported by the Fortran90 compiler. Use of the UPD option will be marked
with the following warning during the Fortran90 check:

MA34 FORTRAN90 DEVIATION: UPD

*DELETE statements occurring in the program will not be marked, however.

Missing END statement

Within the FOR1 language scope it is permissible to omit the END statement at the end
of a program unit. The Fortran90 compiler will tolerate this only at the end of the entire
source program file. If an END statement is missing, the compiler issues the following
message during the Fortran90 check.

FA304 FORTRAN90 DEVIATION: END-STATEMENT MISSING

354 U577-J-Z125-7-7600

Programming considerations

RETURN statements in main program

FOR1 replaces RETURN statements in a main program with STOP statements. The For-
tran90 compiler will no longer support this. If a RETURN statement occurs in a main
program, the following message will be issued during the Fortran90 check.

FA305 FORTRAN90 DEVIATION: RETURN-STATEMENT IN MAIN-PROGRAM

End mark for LINE-END comments

The Fortran90 compiler will also support LINE-END comments. However, it should be
borne in mind that the Fortran90 character set includes four characters more than the
FOR1 character set. These characters are as follows:

quotation marks (")
semicolon (;)
greater than (>)
less than(<)

If one of these characters has been specified as the end mark, the following message
will be output during the Fortran90 check:

MA36 FORTRAN90 DEVIATION: FORTRAN90 CHARACTER AS LINEEND

FPOOL

The Fortran90 compiler will no longer support FPOOL since language elements are avai-
lable directly in Fortran90 for checking call interfaces. Although the %FPOOL state-
ments will be accepted syntactically, their semantics will be ignored. If %FPOOL state-
ments occur in a source program, they will be marked with one of the following messa-
ges during the Fortran90 check:

FA308 FORTRAN90 DEVIATION: %FPOOL COMPILER DIRECTED STATEMENT
WILL BE IGNORED

FA309 FORTRAN90 DEVIATION: %NOFPOOL COMPILER DIRECTED STATEMENT
WILL BE IGNORED

When the FPOOL compiler option is used, the following warning is issued:

MA35 FORTRAN90 DEVIATION: FPOOL

The functions of the central FPOOL can still also be utilized by the Fortran90 compiler,
but without interface checking by FPOOL.

U577-J-Z125-7-7600 355

Programming considerations

Debugging statements

Within the FOR1 language scope there are debugging statements that are specified in
the source program.
The symbolic debugging aid AID is available in BS2000. AID encompasses all the essen-
tial functions of the debugging statements and thus makes these dispensable. The For-
tran90 compiler will ignore debugging statements. If debugging statements are used in
a source program, then the compiler will issue one of the following messages during
the Fortran90 check:

FA310 FORTRAN90 DEVIATION: %CALLTRACE COMPILER DIRECTED STATEMENT
WILL BE IGNORED

FA311 FORTRAN90 DEVIATION: %CHECK COMPILER DIRECTED STATEMENT
WILL BE IGNORED

FA312 FORTRAN90 DEVIATION: %COUNT COMPILER DIRECTED STATEMENT
WILL BE IGNORED

FA313 FORTRAN90 DEVIATION: %DISPLAY COMPILER DIRECTED STATEMENT
WILL BE IGNORED

FA314 FORTRAN90 DEVIATION: %FULLTRACE COMPILER DIRECTED STATEMENT
WILL BE IGNORED

FA315 FORTRAN90 DEVIATION: %JMPTRACE COMPILER DIRECTED STATEMENT
WILL BE IGNORED

Parameters for the ENCODE and DECODE statements

ENCODE and DECODE statements have the following format within the FOR1 language
scope:

ENCODE (intreclength, format, charname [,intname]) or
DECODE (intreclength, format, charname [,intname])

The parameter intname is present only for reasons of compatibility and is ignored by
the FOR1 compiler. The Fortran90 compiler will also no longer accept this parameter
syntactically. If the parameter occurs in a source program, the following message will
be output during the Fortran90 check:

SA253 FORTRAN90 DEVIATION: FORTH PARAMETER OF ENCODE/DECODE

356 U577-J-Z125-7-7600

Programming considerations

Overlapping in the CHARACTER assignment

Whilst it is impermissible according to ANS FORTRAN 77 for left and right side to over-
lap in a CHARACTER assignment, this is possible both according to the Fortran90 stan-
dard and with the FOR1 compiler. However, the assignment is effected differently in
each case.

Example:

CHARACTER*5 CHAR
CHAR = ’ABCDE’
CHAR(2:5) = CHAR(1:4)

According to the Fortran90 standard, CHAR must contain the value ’AABCD’ after the
assignment. With FOR1 however, it has the value ’AAAAA’.

If overlapping of the two operands is possible in a CHARACTER assignment, the follo-
wing message is issued during the Fortran90 check.

SA254 FORTRAN90 DEVIATION: DIFFERENT SEMANTICS BY OVERLAPPING FROM
SOURCE AND TARGET

U577-J-Z125-7-7600 357

Programming considerations

10.3 High-precision mathematical intrinsic functions

Enhanced routines for the following intrinsic functions of the DOUBLE PRECISION (or
REAL*8) type are provided as of FOR1 Version 2.2A:

DSIN DCOS
DLOG DEXP
DSQRT DATAN
DTAN DCOTAN
DASIN DACOS
DLOG2 DLOG10

The enhanced routines are naturally also used if the generic names of the above func-
tions are applied with arguments of the DOUBLE PRECISION (or REAL*8) data type.

The new routines are high-precision, i.e.:

a) no representable double-precision floating-point number exists between the calcula-
ted result of the function and the exact result. (However, there can be a double-
precision floating-point number which is close to the exact result.)

b) exactly representable function values are calculated exactly.

In spite of this considerably increased accuracy, the new routines offer a level of perfor-
mance that is at least equally as good as the corresponding old FOR1 routines.

The new routines are accessed via the same interface as the old ones.

However, the new routines have internal names different to those of the corresponding
old routines. In the case of program systems containing both new FOR1 V2.2A pro-
grams and FOR1 programs compiled with a FOR1 Version < 2.2A, it may happen that
one subprogram computes using the old routine and another computes using the new
routine.

Since the new routines supply different function values to the old FOR1 routines, incom-
patibilities may occur - for example in the case of test packages whose correctness is
checked on the basis of function results. Therefore, if the program contains calls for the
new routines, the following message is issued when the program starts:

IMPROVED MATHEMATICAL ACCURACY

When supplying values for job variables which monitor execution, this message is not
taken into consideration.

358 U577-J-Z125-7-7600

Programming considerations

10.4 Floating-point arithmetic and fixed-point arithmetic

Floating-point arithmetic

An interrogation for equality of values involving REAL and COMPLEX type data might
not have the desired effect, since the propagation of rounding errors in different compu-
tations may lead to different approximations of the same arithmetic result, so that bit
equality is no longer ensured. It is advisable to define a nonstandard relational operator
EQ by means of a statement function, such as

LOGICAL*1 EQ
PARAMETER(EPSILON = 0.000001)
EQ(A,B)=ABS(A-B).LE.EPSILON

Fixed-point arithmetic

An overflow is only recognized after additions or subtractions with data items of type
INTEGER*4 (error message: FIXED POINT OVERFLOW). Overflows following multiplica-
tions with INTEGER*4 data items, overflows or underflows after arithmetic operations
with INTEGER*1 and INTEGER*2 data items are not recognized. The higher-order pla-
ces are lost, and computation continues with wrong values. The sign bit of an overflo-
wing data item is overwritten. The branch of an arithmetic IF statement examining the
value of that data item is no longer indicative of the value of the data item.

U577-J-Z125-7-7600 359

Programming considerations

10.5 Alignment of data items

In FOR1, data items are aligned on byte, halfword, word or doubleword boundaries,
according to their type. Table 10-1 shows the rules for alignment of each data type.

Data type Aligned on

INTEGER*1 byte
INTEGER*2 halfword
INTEGER*4 word
INTEGER*8 doubleword
REAL*4 word
REAL*8 doubleword
REAL*16 doubleword
COMPLEX*8 word
COMPLEX*16 doubleword
COMPLEX*32 doubleword
CHARACTER*N byte
LOGICAL*1 byte
LOGICAL*4 word

Table 10-1: Alignment of data items

For data items of type COMPLEX, alignment relates separately to the real portion and
the imaginary portion.

In arrays, the first element of the array is aligned according to the rules.

For COMMON blocks and areas formed by overlaying with the EQUIVALENCE state-
ment, the user must allow for this alignment of data items. The beginning of a
COMMON block or of an overlaid area is always aligned on a doubleword boundary.
Alignment of the individual data items of the COMMON block may create gaps.

The occurrence of gaps in COMMON blocks may be prevented by arranging the data
items according to descending length specification (cf. example 1). Since CHARACTER
data items are aligned on a byte boundary, it is advisable to place this at the end of
the COMMON block.

When overlaying storage areas (EQUIVALENCE statement), alignment errors may occur
(cf. example 2).

360 U577-J-Z125-7-7600

Programming considerations

Example 1:

a) COMMON block with gap:
REAL*8 A,C
INTEGER*2 B,D
COMMON/LIST/A, B, C, D

Arrangement in COMMON block (DW = doubleword boundary):

DW DW DW DW

////////
A B //////// C D

////////

8 2 6 8 2

b) COMMON block with enhanced arrangement:

REAL*8 A,C
INTEGER*2 B,D
COMMON/LIST/A, C, B, D

Arrangement in the COMMON block (DW = doubleword boundary):

DW DW DW

A C B D

8 8 2 2

Example 2:

REAL*4 A(6)
REAL*8 B,C
EQUIVALENCE (A(1),B),(A(4),C)

This statement sequence will result in an alignment error because C cannot be aligned
on a doubleword boundary (DW):

DW DW DW

A(1)- A(2)- A(3)- A(4)- A(5)- A(6)-
B C

The following error message is issued:
ERROR (SA124) ENTITY C MISALIGNED DUE TO EQUIVALENCE

U577-J-Z125-7-7600 361

Programming considerations

10.6 Creating dynamic memory for arrays

As of FOR1 Version 2.0A, the user can employ the extended address space of exten-
ded systems (XS systems), permitting processing of large amounts of data by means of
FORTRAN programs.

Dynamic arrays can be used on these systems. With dynamic arrays, memory alloca-
tion is not performed until program runtime. The user must request the memory requi-
red for a certain array by invoking the subprogram ALLOC. The memory provided is
released explicitly by calling the subprogram DEALLOC, or automatically on program
termination.

ALLOC and DEALLOC are ready-made subprograms within the runtime system; they
are invoked by CALL.

The dynamic storage management subprograms DYNARA and DYNAST which were
available up until now are no longer supported by the compiler as of FOR1 Version
2.0A. Programs containing DYNARA or DYNAST calls can still be executed using a run-
time system 2.0A.

In order to be able to utilize the extended address space above 16 Mbytes, a program
must be executed on a system with XS capabilities. Dynamic allocation of memory by
means of the ALLOC and DEALLOC subprograms is, however, also advisable for users
of systems without XS capabilities. Arrays which are not dynamically created are cre-
ated when the load module is loaded and not deallocated until it is unloaded. However,
memory for a dynamically stored array is only required in the times between when
ALLOC and DEALLOC (or program end) are invoked, i.e. by means of these subpro-
grams the user of a system without XS capabilities can also relieve the burden on the
address space.

A prerequisite for the use of the extended address space above 16 Mbytes is that the
object module concerned is an XS module. (As of FOR1 Version 2.2A, XS modules are
always generated. With FOR1 Versions < 2.2A, compilation would need to be perfor-
med with EXTENDED-SYSTEM=YES in order to generate XS modules.)

The program attributes are evaluated by the linking and loading system or they can still
be modified by the linking and loading system as well as by using the runtime option
START=XS. Appendix A.7 describes the interaction of the possible specifications in
accordance with which an XS program above 16 Mbytes, or an XS or non-XS program
below 16 Mbytes is executed.

362 U577-J-Z125-7-7600

Programming considerations

The following language elements are available for the creation of dynamic memory:

the format (:[,:] [,...])
for the dimension bound list of a dynamically created array;

the ALLOC subprogram, to request memory for a dynamically created array;

the DEALLOC subprogram, to release this memory;

the GETSHAPE subprogram, to interrogate the dimension bounds of a dynamically
created array.

10.6.1 Declaring dynamic arrays

Dynamically created arrays must be declared in the FORTRAN program similar to the
way static arrays are. The upper and lower bounds of a dimension which are still open
when this declaration is made need only be specified in the form of a colon in the
dimension bound list. A dynamically created array is thus declared using a type,
DIMENSION or COMMON statement with the format:

arrayname (:[,:] [,...])

The number of colons in the dimension bound list is equal to the number of dimensions
of the array. A maximum of 7 dimensions is permissible.

10.6.2 Allocating memory (CALL ALLOC)

Prior to the first reference to a dynamically created array (or to an array item), the requi-
red memory must be allocated by invoking the ALLOC subprogram:

’NXS’
CALL ALLOC (arrayname,l1,u1[,l2,u2][,...][,ln,un][,])

’ANY’

arrayname
Name of the array dynamically specified in the type, DIMENSION or
COMMON statement.

U577-J-Z125-7-7600 363

Programming considerations

li,ui Arithmetic expressions of type INTEGER*4. li is the smallest, ui the largest
subscript of the i-th dimension (1 i 7) of the dynamic array arrayname. The
number of dimensions n (1 n 7) must be equal to the number of dimen-
sions in the associated type, DIMENSION or COMMON statement.

’NXS’ The memory for the array arrayname is created below 16 Mbytes.

’ANY’ The memory for the array arrayname is created dependent on the current
machine addressing mode (see appendix A.7):

If 24 is the current machine addressing mode, the memory for the dynami-
cally created array is stored below 16 Mbytes.

If 31 is the current machine addressing mode, an attempt is made to
place the memory for the dynamically created array above 16 Mbytes. If
this is not successful, the memory is created below 16 Mbytes.

Response in the event of an error

The number and type of parameters in the ALLOC call are checked at compile time for
conformance with the dynamic array declaration.

If a call of the ALLOC subprogram is followed by a second call with the same actual
arguments, then this second invocation is ignored. In all other error cases a runtime
error (fatal error) will be the result.

If a dynamically declared array is addressed but no memory has been assigned to this
array by means of CALL ALLOC, undefined execution is the result. Such arrays can
only be detected if TESTOPT=(BOUNDS) has been defined as the debug option.

10.6.3 Releasing memory (CALL DEALLOC)

The memory for a dynamically created array arrayname is released by calling the
DEALLOC subprogram:

CALL DEALLOC (arrayname)

arrayname
Name of the array defined dynamically in the type, DIMENSION or COMMON
statement.

364 U577-J-Z125-7-7600

Programming considerations

Response in the event of an error

If, in a program unit, an array created dynamically by calling ALLOC is not released by
the DEALLOC call, memory is not deallocated until the program is terminated. If the
memory of a dynamically created array has not yet been allocated or has already been
released by the DEALLOC call, the DEALLOC call is ignored and a LIBRARY WARNING
message is issued. In all other cases a runtime error (fatal error) will occur.

10.6.4 Interrogating the dimension bounds (CALL GETSHAPE)

Subprogram GETSHAPE is provided for interrogating the dimension bounds of a dyna-
mically declared array. Interrogation of the current dimension bounds is advisable for
example in subprograms with dynamically created arrays used as dummy arguments.

CALL GETSHAPE (arrayname,l1,u1[,l2,u2][,...][,ln,un])

arrayname
Name of the array dynamically specified in the type, DIMENSION or
COMMON statement.

li,ui INTEGER*4-Variable. li contains as its value the smallest subscript, ui the lar-
gest subscript of the i-th dimension (1 i 7) of the dynamic array arrayname.
The number n (1 n 7) of the must be equal to the number defined for the
dynamic array in the same program unit.

Response in the event of an error

Runtime error messages (LIBRARY ERRORs) are output in the following cases:

when arrayname is not defined as a dynamically created array in the current pro-
gram unit;

when no memory was yet assigned to the dynamic array arrayname by means of
the ALLOC subprogram;

when the number n of the interrogated lower bounds li or upper bounds ui does not
match the number of dimensions defined in the program unit.

U577-J-Z125-7-7600 365

Programming considerations

10.6.5 Restrictions on programming using dynamically created arrays

Initialization
A dynamically created array cannot be initialized by means of a type statement or a
DATA statement. Initialization must take place by means of value assignments or input
assignments after the ALLOC subprogram is called.

Overlaying (EQUIVALENCE statement)
A dynamically created array cannot be overlaid by means of the EQUIVALENCE state-
ment using another data item of the same program unit. When a dynamically created
array is overlaid with the aid of the EQUIVALENCE statement an error message is out-
put at compile time.

Overlaying (COMMON statement)
In the case of dynamically created arrays in non-initialized COMMON areas, only me-
mory for an array descriptor is reserved. The memory space for the dynamically cre-
ated array is not reserved until the ALLOC subprogram is called.

In the case of dynamically created arrays in COMMON areas the user must take the
following restriction into account:

A dynamic array in a COMMON area can be defined in other program units only by
using a dimension bound list with the format (:[,:][,...]). Dimension number and type of
the dynamic array must match in all program units in which the array is referenced.

Array elements in the form of actual arguments
If an actual argument is an array element to which an array corresponds as the dummy
argument, this array cannot be a dynamic array.

Debugging aids
Dynamic arrays can be referenced with the debugging aid AID (as of V1.0C).

Dynamic arrays as dummy arguments
Only a dynamic array of the same data type with the same number of dimensions and
used as the actual argument may be assigned to a dynamic array as the dummy argu-
ment.

366 U577-J-Z125-7-7600

11 Program interfacing
A program system consists of a main program (the program that is called at system
level) and one or more subprograms, which can be written either in the language of the
main program or in other languages.

As of FOR1 version 2.2A there are two different ways of providing the requisite program
interfacing:

in accordance with the previous conventions
in accordance with the program communication interface ILCS (= Inter Language
Communication Services).

The LINKAGE={STD|FOR1-SPECIFIC} option allows the user to define the manner in
which the linkage is to be effected (see section 4.2.2.6). If compilation is performed
using the default value STD, interfacing is in accordance with ILCS.

Contents of this chapter

Section 11.1 describes the new program communication interface ILCS.

Section 11.2 provides information on compatibility when interfacing programs which
were generated using different FOR1 versions, and on compatibility when interfacing
programs written in different languages.

Section 11.3 describes the execution of and conventions associated with program inter-
facing.

Section 11.4 explains what the user must take into consideration when link-editing pro-
gram systems which contain FOR1 subprograms but no FOR1 main program.

Sections 11.5 - 11.7 describe the interfacing of FOR1 programs with COBOL programs
(11.5), PLI1 programs (11.6) and C programs (11.7). These sections list the parameter
types which are possible in addition to those generally guaranteed by ILCS in each
case.

U577-J-Z125-7-7600 367

Overview Program interface

FOR1 programs can also be linked with RPG3 programs and Pascal-XT programs (as
of Pascal-XT V2.2A) via ILCS. These language interfaces are not however described
separately in the present manual.

FOR1 provides interfacing macros for linking FOR1 and assembly language programs.
However, since when using the macros only a restricted ILCS interfacing is possible,
they are described in the appendix (A.9) rather than in this chapter. Unrestricted ILCS
interfacing of FOR1 and assembly language programs is possible through the linkage
macros offered by ASSEMBH as of version 1.1A. These are described in the
"ASSEMBH" Reference Manual [10].

368 U577-J-Z125-7-7600

Program interfacing ILCS

11.1 The program communication interface ILCS

ILCS standardizes and simplifies the main functions of communication between the pro-
grams of a runtime unit and between runtime unit and operating system in a language-
independent fashion.

ILCS is a combination of software and interface convention:
On the one hand it contains runtime routines which are combined in a PLAM library,
whilst on the other ILCS also guarantees the communication interface corresponding to
the "Standard Linkage Conventions in BS2000"; i.e. each object module generated by a
compiler with the ILCS capability is prepared in accordance with the standard linkage
conventions for interfacing with programs written in the same language and in different
languages.

The library for the ILCS runtime routines is supplied with every compiler having the
ILCS capability - as an additional runtime system so to speak.

ILCS offers the following individual functions:

multilateral convention for interfacing of programs in different languages
uniform guidelines for event handling
storage management (stack and heap storages)
handling of the program mask
processing of non-local branches

U577-J-Z125-7-7600 369

ILCS Program interfacing

11.1.1 Initialization of the program system

The initialization of a program system takes place in two stages:

• First the main program initiates calling of the ILCS initialization routine. With FOR1
program systems, as long as the main program itself is not an ILCS object, the pre-
sence of FOR1 ILCS subprograms also causes the ILCS initialization routine to be
called (see examples, program system C).

Examples:

Program system A:

FOR1 ILCS main program ILCS called
COBOL ILCS subprogram

Program system B:

COBOL main program (non-ILCS) ILCS not called
FOR1 ILCS subprogram

Program system C:

FOR1 main program (non-ILCS) ILCS called
FOR1 ILCS subprogram

• The ILCS initialization routine called then in turn calls all the requisite language-spe-
cific initializations so that the language environments required for the entire program
system are set up prior to execution of the first program statement.

11.1.2 ILCS environment

Program systems in which the ILCS initialization routine is called, thereby activating
ILCS, execute in the ILCS environment.

In ILCS environments, the event handling is performed in accordance with the ILCS con-
vention.

Program systems containing no ILCS module execute according to the previous conven-
tions.

370 U577-J-Z125-7-7600

Program interfacing ILCS

11.1.3 Prosys common data area (PCD)

For internal control of program interfacing in ILCS environments, a common data area
PCD which is available to programs in any programming language is provided in addi-
tion to the save areas for the individual programs. The size of the PCD is 4096 bytes.
The first part of the PCD contains the data areas used by ILCS, including the "program
mask" field (in byte 148), which is preset to the value X’0C’. The second part of the
PCD contains the programming language areas, each 128 bytes long, which are availa-
ble to the runtime systems of the different languages.

11.1.4 Program mask handling by ILCS

The program mask for program execution is set to the value of the PCD field "program
mask" (preset to X’0C’) during the course of initialization. If it is changed during pro-
gram execution, it must be reset prior to the next program call or transfer of control to
the value of the PCD field "program mask".

11.1.5 Parameter transfer in ILCS program systems

The semantics of the data types exhibit significant differences for the programming lang-
uages that can be interfaced by ILCS. Illustrated below are those data types which
have the same form of data representation in the individual programming languages
and can therefore be transferred as parameters without problems. When using other
data types as parameters, a precise knowledge of the relevant form of data storage is
essential in order to ensure correct program execution.

U577-J-Z125-7-7600 371

ILCS Program interfacing

D a t a t y p e s
C o m -
p i l e r Binary Floating-point Floating-point String

Word Word Doubleword

FOR1 INTEGER*4 REAL*4 REAL*8 CHARACTER*i
(fixed length)

COBOL85 PIC S9(i) COMP COMP-1 COMP-2 USAGE DISPLAY
SYNCHRONIZED
5<=i<=9

Pascal-XT long_integer short_real long_real packed array
[<range>]of char

PLI1 BIN FIXED(31) BIN FLOAT(21) BIN FLOAT(53) CHAR(i)
ALIGNED DEC FLOAT(6) DEC FLOAT(16) NONVARYING

C long float double char <var>
[<size>]

Columbus- F E D C
Assembler

RPG3 Binary array Alphanum. array
with 0 decimal (fixed length)
places

Table 11-1: Data types which can be exchanged without problems between ILCS programs in different

languages

The data must always be stored aligned; i.e. 32-bit integers in binary representation are
aligned on a word boundary, floating-point numbers on a word or doubleword bounda-
ry, strings on a byte boundary. The lengths of strings are constant and known to the
called program.

It is always the addresses of the data that are transferred and not the values themsel-
ves. Since addresses are also transferred internally during FOR1 value transfer ("call by
value"), nothing changes in the case of this transfer mode either.

The calling program creates a list of the transferred addresses. The number of parame-
ters is transferred in register 0, the address of the list in register 1 (see section 11.3.3
"Register conventions").

372 U577-J-Z125-7-7600

Program interfacing ILCS

FOR1 parameter types not generally guaranteed by ILCS

The following FOR1 parameter types are not generally guaranteed in the case of interfa-
cing of ILCS programs in different languages:

Parameters with FOR1 data types not contained in table 11-1:
INTEGER *1 COMPLEX*16
INTEGER *2 COMPLEX*32
INTEGER *8 LOGICAL*1
REAL*16 LOGICAL*4
COMPLEX*8 CHARACTER*(n,V)

NAMELIST lists, statement labels, EXTERNAL subprograms, multi-dimensional arrays

Since, however, parameter transfer by FOR1 remains unchanged, the parameter types
not generally guaranteed by ILCS can be transferred to programs written in other lang-
uages. The previous restrictions are applicable.

Arrays as parameters for the interfacing of ILCS programs in different languages

When interfacing programs written in different languages, it is possible to transfer arrays
with fixed bounds since with such arrays only the start address is transferred and no
array descriptor is required.

The transfer of one-dimensional arrays with fixed bounds is generally guaranteed by
ILCS if the arrays have an ILCS-compatible data type (cf. table 11-1).

Multi-dimensional arrays can also be used as parameters as previously in the interfacing
of programs in different languages. However, since multi-dimensional arrays are not of
uniform structure in the different languages and the maximum permissible number of
dimensions is different, the transfer of multi-dimensional arrays is not guaranteed by
ILCS.

U577-J-Z125-7-7600 373

ILCS Program interfacing

11.1.6 Notes concerning linking of ILCS program systems

In addition to the language-specific runtime libraries, the library SYSLNK.ILCS contai-
ning the ILCS runtime routines is required.

Static linking

During static linking it is sufficient as previously to assign the FOR1 runtime library by
means of the RESOLVE statement of TSOSLNK. This contains the ILCS initialization rou-
tine IT0INITS.

However, since the language-specific runtime libraries can each contain different ver-
sions of the ILCS initialization routine, it is advisable to use the ILCS initialization routine
from the ILCS library SYSLNK.ILCS for language interfacing. This always has the latest
version.

Access to the initialization routine is effected from the SYSLNK.ILCS library when:

(a) this routine is linked in explicitly by means of an INCLUDE statement
(INCLUDE IT0INITS, $TSOS.SYSLNK.ILCS), or

(b) the SYSLNK.ILCS library is assigned with the last RESOLVE statement (RESOLVE
,$TSOS.SYSLNK.ILCS).

Dynamic linking

If the program system exclusively contains programs written in the same language, it is
sufficient during dynamic linking to assign the FOR1 runtime library by means of SET-
TASKLIB, as previously.

Program systems containing programs in different languages can be linked dynamically
using DBL (as of BS2000 version 10.0) since with DBL in RUN-MODE=ADVANCED
more than one library can be assigned (via the LINK name BLSLIBnn, 00 nn 99).

In order to ensure that the very latest ILCS initialization routine is used, the ILCS library
SYSLNK.ILCS should also be assigned in addition to the language-specific runtime
systems. The LINK name of the ILCS library must receive a lower number here than the
LINK names of the language-specific libraries since DBL searches the assigned libraries
on ascending numbers.

374 U577-J-Z125-7-7600

Program interfacing Compatibility

11.2 Compatibility

11.2.1 Explanation of terms

OLD programs
Programs generated with a FOR1 version 1.6A.

NXS programs
Programs generated with a FOR1 compiler of version 2.0A/2.1A with the
EXTENDED-SYSTEM=NO option.

XS program
Programs generated with a FOR1 compiler as of version 2.2A (as of V2.2A,
only XS modules are generated)
or
FOR1 programs compiled using a FOR1 compiler of version 2.0A/2.1A with
the EXTENDED-SYSTEM=YES option.

ILCS programs
FOR1 programs compiled using a FOR1 compiler as of version 2.2A with the
LINKAGE=STD option. Since only XS modules are generated as of version
2.2A, ILCS programs are always XS programs.

11.2.2 Compatibility when interfacing FOR1 programs

NXS programs, XS (non-ILCS) programs and ILCS programs can be interfaced without
problems.

OLD programs can, however, only be interfaced with NXS programs (and with other
OLD programs): Direct interfacing with XS programs - and thus with ILCS programs - is
not possible.

U577-J-Z125-7-7600 375

Compatibility Program interfacing

11.2.3 Compatibility when interfacing programs in different languages

In ILCS environments, all programs participating in language interfacing should be ILCS
programs. Only in this way is it possible to guarantee correct error handling and para-
meter transfer.

In non-ILCS environments, FOR1 ILCS programs and non-ILCS programs in other lang-
uages can be combined using the old interface for the other language - but with the
following restrictions:

• C programs generated using older C compiler versions (<V2.0) assume that register
R1 is retained when INTEGER functions without parameters are called. ILCS
INTEGER functions, however, return the function value both in R0 and also in R1.

• In the case of assembly language programs which simulate the FOR1 interface with
the aid of FOR1 macros, the parameter values FIRST=1 and LAST=12 should be
selected for the IFART (or IFARTO) macro.

11.3 Subprogram interface: Execution and conventions

Once a subprogram is invoked, a series of measures is taken which are executed by
the calling program and the called program.

In the case of language interfacing of ILCS programs in an ILCS environment and also
a FORTRAN - FORTRAN call, these measures are executed correctly without user inter-
vention

When interfacing FORTRAN programs with non-ILCS programs in other languages, the
user must ensure that the interfacing is performed correctly by calling ready-made mac-
ros or routines.

376 U577-J-Z125-7-7600

Program interfacing Conventions

11.3.1 Program interfacing sequence

After a subprogram is invoked the following actions are taken:

Timing Actions taken by calling program Actions taken by called program

Before - Provision of a data area in which the
entry parameter addresses and information

on the parameters are transferred
(parameter address list)

- Provision of a save area used for
storing the contents of registers

- Provision of the entry address and
the return address

- Branch to subprogram

After - Storage of the contents of registers
entry in the save area provided by the

program

- Chaining of the save areas to trace
the call hierarchy

- Only with ILCS:
Storage of the address of the save area
of the called program in the PCD
(Prosys Common Data Area); saving of
the old PCD contents

- Setting of an indicator which shows
whether the subprogram is currently
active

Before - Only with ILCS:
return Resetting of address of the save area

in the PCD

- Setting of the DO loops to inactive,
if applicable

- Provision of the function value,
if applicable

- Storage of the return code

- Resetting of the old register contents
with the exception of R0 and R1
(intended for function values)

- Return

After - On computed return:
the Evaluation of the return code
return

Table 11-2: Actions taken by calling and called programs

U577-J-Z125-7-7600 377

Save area Program interfacing

11.3.2 Structure of the save area

The save area is a buffer area in which the contents of registers are stored when the
subprogram is called. The save area is located at the beginning of the data section of a
program unit. Before branching to the subprogram, the calling program supplies regi-
ster 13 with the address of the save area. Register 13 is saved in the save area of the
program which has been called.

The format of a save area is as follows:

Byte Contents

1-4 Byte 1:
Bit 1: activity bit (1: program active, 0: program inactive)
Bits 2-7: reserved
Bit 8 = normally 0

Byte 2 (only with ILCS):
Version = X’01’

Bytes 3 and 4 (only with ILCS):
X’FEFF’

5-8 Start address of the save area of the calling program.
In the first calling program, this field contains -1.

9-12 Start address of the next (chained) save area,
if applicable.

13-16 Contents of register 14

17-20 Contents of register 15

21-24 Contents of register 0

25-28 Contents of register 1

29-32 Contents of register 2
.
.

69-72 Contents of register 12

73-76 Address of the Runtime Communication Area (RTCA)

77-80 With ILCS:
Address of the PCD;
otherwise reserved

81-84 With ILCS:
Address of the EHL (Event Handler List): If no EHL is defined,
the field contains the value -1;
otherwise reserved

85-88 Reserved

Table 11-3: Structure of the save area

378 U577-J-Z125-7-7600

Program interfacing Save area

The first bit of the save area is an indicator bit with a value of 1, if the program unit is
currently active, and 0 if the program unit is inactive. Active program units are those
units which have been called but are not yet finished.

Chaining of save areas

By forward and backward chaining of the save areas of the active program units, the
call hierarchy can be output in the event of runtime errors. In ILCS environments, the
call hierarchy is reproduced only up to a language limit.

Save area of the calling Save area of the called
program unit: program unit:

0

4 •
Backward chaining

8 •
Forward chaining

. .

. .

. .

Fig. 11-1: Chaining of the save areas

Forward chaining: Word 2 of the save area of the calling program unit contains the
start address of the save area of the called program.

Backward chaining: Word 1 of the save area of the called program unit contains the
start address of the save area of the calling program. In the first calling program this
word contains 0.

U577-J-Z125-7-7600 379

Register conventions Program interfacing

11.3.3 Register conventions

Register loading on program call

The following table gives an overview of the register loading performed by the calling
program before the called program is entered.

Register Contents
number

0 Number of parameters

1 Start address of the parameter address list

2 - 12 Program data

13 Start address of the save area of the
calling program

14 Address of the return point to the calling
program

15 Address of the entry point in the called
program

PM Program mask: Value from PCD field "program
mask" (with ILCS)

Table 11-4: Register loading on a subprogram call

The calling program loads these registers before branching to the called program. The
register contents of the general registers are stored in the save area provided by the
calling program - except for the contents of R13 which are stored in the save area of
the called program (backward chaining).

Return code with statement label parameters

Statement label parameters in the form "{&|*}statement-label" are not transferred in the
parameter address list, rather a return code is stored in register 1 as follows:

in the case of a simple return (RETURN statement), 0 is stored
in the case of a computed return (RETURN expression), the value of "expression" is
stored.

380 U577-J-Z125-7-7600

Program interfacing Register conventions

Register loading on returning to calling program

The following table gives an overview of the register loading performed by the called
program on returning to the calling program. Floating-point registers are not restored.

Register Contents
number

0 - 1 Return values of functions
or undefined

2 - 14 As under loading on call

15 Undefined

PM Program mask: Value from PCD field "program
mask" (with ILCS)

Table 11-5: Register loading on return to calling program

Transfer of a function value

On returning from a FUNCTION subprogram, the function value is stored in the follo-
wing registers:

Function value type Register

LOGICAL*1 R0
LOGICAL*4 R0
INTEGER*1 R0
INTEGER*2 R0
INTEGER*4 R0
INTEGER*8 F0
REAL*4 F0
REAL*8 F0
REAL*16 F0,F2
COMPLEX*8 F0,F2
COMPLEX*16 F0,F2
COMPLEX*32 F0,F2,F4,F6
CHARACTER*{n (n,v)} R1

Table 11-6: Register conventions for various types of functions

ILCS functions of data type INTEGER*{1|2|4} store the function value not only in R0,
but also in R1.

U577-J-Z125-7-7600 381

Register conventions Program interfacing

In R1 the address of the descriptor for a data item of type CHARACTER is stored. In
the case of data items of the type LOGICAL*1, INTEGER*1 and INTEGER*2, the value
is stored right-justified in register R0. If, in an assembly language subprogram, such
function values calculated by FOR1 are to be taken from register R0, the corresponding
instruction "STC R0, <address>" or "STH R0, <address>" must be issued.

11.3.4 Parameter address lists

When a FUNCTION or SUBROUTINE subprogram is called, information can be supplied
to the subprogram via a parameter list. The parameter address list corresponds inter-
nally to this parameter list.

The parameter address list contains:
the addresses of the data items to be transferred
the addresses of descriptors of the data items to be transferred
information on the type and length of the data items (type indicators) as well as fur-
ther attributes such as constant, variable, field, etc. (attribute indicators).

The number of parameters transferred is stored in register 0, the address of the parame-
ter address list is stored in register 1. All this information is added to the save area by
the calling program.

The addresses of the parameters and information on the type and attributes are genera-
ted for all parameters. If a subprogram does not contain any parameters, no parameter
address list is generated.

382 U577-J-Z125-7-7600

Program interfacing Register conventions

Structure of parameter address list

Fig. 11-2 shows the structure of the parameter address list for an odd number of para-
meters.

Address of
parameter address list
in register 1

Byte

0 A1 Address of first parameter

4 A2 Address of second parameter

. .

. .

. .

4N An Address of n-th parameter

D1 Address of descriptor for first parameter

. .

. .

. .

Dn Address of descriptor for n-th parameter

8N End mark ID T0
X’FF’ Reserved

T1 T2
Attr.indicator Type indicator Attr.indicator Type indicator

. .

. .

. .

Tn
Attr.indicator Type indicator

Fig. 11-2: Structure of parameter address list

U577-J-Z125-7-7600 383

Register conventions Program interfacing

The term "reserved" in this chapter implies that the contents of such a field must not be
altered (e.g. by assembly language programs). If a non-FOR1 program generates a
parameter address list for transfer to a FOR1 program, reserved fields must be deleted
in advance by overwriting with binary zeros.

Ai Address of the i-th parameter. The most significant bit has the value 0. In the
case of parameters of the type INTEGER and LOGICAL with a length less
than 4 bytes, a modified address is transferred. When INTEGER*1 and
LOGICAL*1 are specified, this is "address -3"; when INTEGER*2, this is "ad-
dress -2".

Di Address of the descriptor of the i-th parameter. The most significant bit has
the value 0. If the parameter does not require a descriptor, the associated
word is reserved.

ID
Bits 0-5 Bits 0-5 5 of this byte contain a version identifier for the para-

meter address list. The identifier for FOR1 versions V2.0A is
B’000000’.

Bit 6 0: No descriptors exist
1: Descriptors exist

Bit 7 0: No attribute and type information exists
1: Attribute and type information exists

T0 The first byte of this halfword is reserved, the second byte contains:
(when a FUNCTION subprogram is called) the type of the returned func-
tion value
(when a SUBROUTINE subprogram is called) the type entry NIL (bit pat-
tern 10000)

Ti (1 i n)
The high-order byte of this halfword is the attribute indicator; the low-order
byte is the type indicator of the corresponding parameter.

384 U577-J-Z125-7-7600

Program interfacing Register conventions

Attribute indicator values of a parameter address list:

Bit pattern Value Meaning of the attribute indicator

0000 0 Temporary auxiliary variable for actual argument
expressions

0001 1 Constant
0010 2 Variable
0011 3 Subprogram specified in an EXTERNAL statement
0100 4 Array
0101 5 Array element (descriptor of an array element or array)
0110 6 Substring
0111 7 FOR1-specific intrinsic function
1000 8 Reserved
1001 9 NAMELIST name
1010 10 Reserved
1011 11 Dynamic array
1100 12 Direct value

Table 11-6: Attribute indicator values

Type indicator values of a parameter address list

Bit pattern Value Meaning of the type indicator

00000 0 LOGICAL*1
00001 1 LOGICAL*4
00010 2 INTEGER*1
00011 3 INTEGER*2
00100 4 INTEGER*4
00101 5 INTEGER*8
00110 6 REAL*4
00111 7 REAL*8
01000 8 REAL*16
01001 9 COMPLEX*8
01010 10 COMPLEX*16
01011 11 COMPLEX*32
01100 12 CHARACTER fixed length, Hollerith
01101 13 CHARACTER variable length
01110 14 Subprogram specified in an EXTERNAL statement
01111 15 NAMELIST name
10000 16 NIL (set only in field T0 for a SUBROUTINE

subprogam, not for a FUNCTION subprogram

Table 11-7: Type indicator values of a parameter address list

Hollerith data items are transferred as the CHARACTER field, whose number of items is
equal to the length of the Hollerith data item and whose item length is equal to 1.

U577-J-Z125-7-7600 385

Descriptors Program interfacing

11.3.5 Descriptors

If at least one descriptor is required for invoking a routine, memory is created for each
of the n parameters. No descriptors are required for a simple variable. Descriptors are,
however, required for arrays, array elements and strings as the actual arguments in the
following cases:

for arrays employing an array as a dummy argument, with open subscript upper
bound (*) in the uppermost dimension;

for array elements employing an array as a dummy argument, with open subscript
upper bound (*) in the uppermost dimension;

for CHARACTER variables of fixed length as the dummy argument;

for CHARACTER variables with length (*) as the dummy argument (the length is
taken from the actual argument);

for arrays of the CHARACTER type employing as the dummy argument an array of
CHARACTER variables with length (*).

Depending on the type of actual argument, different descriptors are generated:

for arrays and array elements an array descriptor (ADS)

for array element parameters:
in addition to the array descriptor (ADS), an array element descriptor (EDS) is gene-
rated if the array element parameter is a CHARACTER substring.

for character strings a string descriptor (SDS)

If a dynamic array is supplied to a subprogram, the entire descriptor is copied into the
input code of the subprogram.

386 U577-J-Z125-7-7600

Program interfacing Descriptors

Structure of descriptors

String descriptor (SDS)

Byte

0 Reserved

4 Reserved

8 Reserved

12 Maximum length Actual length

Array descriptor (ADS)

Byte

0 Reserved

4 Address of first byte following end of array

8 Reserved

12 Reserved Length of an array element

Descriptor for an array element of type CHARACTER substring (EDS)

Byte

0 Reserved

4 Address of first byte following end of array

8 Reserved

12 Reserved Actual length of
an array element

U577-J-Z125-7-7600 387

IF@@MPI Language interfacing

11.4 Linking program systems without a FOR1 main program

When linking program systems which contain FOR1 subprograms but no FOR1 main
program, the following should be noted:

In each generated END statement of a FOR1 subprogram there is an external pointer to
the start address of the associated FOR1 main program with the entry IF@@MPI (Main
Program Initializer).

If FOR1 subprograms are to be linked without a FOR1 main program, the linkage editor
will accordingly report an unsatisfied FOR1 external reference IF@@MPI.

Linking without a FOR1 main program can be achieved by

the statements BIND or CONTINUE of TSOSLNK. These statements initiate imme-
diate linkage, even if not all of the external references can be satisfied.

the LET statement of TSOSLNK or the LET=Y operand in the PROGRAM statement
which likewise initiate linking, even if not all external references can be satisfied.

entering a dummy module IF@@MPI in the user library. This dummy module can be
generated, for example, by assembling the following statements:

IF@@MPI CSECT
IF@@MPI AMODE ANY
IF@@MPI RMODE ANY

END

If a dummy module has been entered in the user library, a FOR1 main program must
be linked explicitly with INCLUDE, since the linkage editor might otherwise also link the
dummy module in the course of an automatic search.

388 U577-J-Z125-7-7600

Language interfacing FOR1/COBOL85

11.5 Interfacing of FOR1 with COBOL programs

In the following sections a COBOL program is understood to mean a COBOL program
compiled with the aid of the COBOL85 compiler (see "COBOL85 User Guide" [15]).

Additional permissible parameter types

In addition to the parameter types generally guaranteed by ILCS (cf. table 11-1), para-
meters of the following data type are also permissible for FOR1/COBOL interfacing:

COBOL FOR1

COMP-2 SYNC INTEGER*8

Table 11-8: COBOL/FOR1 interface: Additional permissible parameter type

Restrictions

The FOR1 program cannot contain any debugging options.

It is not possible to work with COB1 and FOR1 components interleaved on the
same file since the runtime systems do not exchange information.

11.5.1 FOR1 program calls COBOL subprogram

No precautions are required when calling COBOL subprograms from FOR1 programs.

Call: CALL subprog (par1,...,parn)

11.5.2 COBOL program calls FOR1 subprogram

No precautions are required in ILCS environments when calling a FOR1 subprogram
from a COBOL program.

Example of calling a FOR1 subprogram:

CALL "FOR1SUB" USING AP1,AP2,AP3

U577-J-Z125-7-7600 389

FOR1/COBOL85 Language interfacing

Example: COBOL program calls FOR1 subprogram

COBOL program:

ID DIVISION
PROGRAM-ID. COBFOR.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION
01 TABLE-1.

02 INTEGER1-4
02 INTEGER1-8 COMP-2 SYNC.
02 REAL1-4 COMP-1 SYNC.
02 REAL1-8 COMP-2 SYNC.
02 LOGICAL1-4 PIC S9(5) COMP SYNC.
02 LOGICAL1-RED REDEFINES LOGICAL1-4.

03 LOG1 PIC X.
03 FILLER PIC X(3).

02 CHARACTER1 PIC X(15).
*
01 TABLE-2.

02 INTEGER2-8 COMP-2 SYNC.
02 INTEGER2-4 PIC S9(5) COMP SYNC.
02 REAL2-8 COMP-2 SYNC.
02 REAL2-4 COMP-1 SYNC.
02 LOGICAL2-4 PIC S9(5) COMP SYNC.
02 LOGICAL2-RED REDEFINES LOGICAL2-4.

03 LOG2 PIC X.
03 FILLER PIC X(3).

02 CHARACTER2 PIC X(15).
*
*
77 LOGICAL1 PIC X(5).
77 LOGICAL2 PIC X(5).
*
*
01 OUTPUT-1 PIC X(25) VALUE IS

" COBOL: INTEGER*4:".
01 OUTPUT-2 PIC X(25) VALUE IS

" COBOL: INTEGER*8:".
01 OUTPUT-3 PIC X(25) VALUE IS

" COBOL: REAL*4:".
01 OUTPUT-4 PIC X(25) VALUE IS

" COBOL: REAL*8:".
01 OUTPUT-5 PIC X(25) VALUE IS

" COBOL: LOGICAL*4:".
01 OUTPUT-6 PIC X(25) VALUE IS

" COBOL: CHARACTER*15:".
*
*
*
PROCEDURE DIVISION.
BEG.

MOVE 314 TO INTEGER1-4 INTEGER2-4.
MOVE 3141592654535 TO INTEGER1-8 INTEGER2-8.
MOVE 3.141592654 TO REAL1-4 REAL2-4.
MOVE 3141592654.533 TO REAL1-8 REAL2-8.
MOVE LOW-VALUES TO LOG1 LOG2.

390 U577-J-Z125-7-7600

Language interfacing FOR1/COBOL85

MOVE "ABCDEFGHIJKL" TO CHARACTER1 CHARACTER2.
PERFORM OUTP.

*
FORTRAN.

CALL "UFOR" USING TABLE-1 TABLE-2.
CALL "UFOR" USING

INTEGER1-4 INTEGER1-8 REAL1-4 REAL1-8 LOGICAL1-4
CHARACTER1
INTEGER2-8 INTEGER2-4 REAL2-8 REAL2-4 LOGICAL2-4
CHARACTER2.

OUTP.
IF LOG1 EQUAL LOW-VALUES THEN

MOVE "FALSE" TO LOGICAL1
ELSE

MOVE "TRUE " TO LOGICAL1.
IF LOG2 EQUAL LOW-VALUES THEN

MOVE "FALSE" TO LOGICAL2
ELSE

MOVE "TRUE " TO LOGICAL2.
*

DISPLAY OUTPUT-1-1 INTEGER1-4 " ; " INTEGER2-4 UPON TERMINAL.
DISPLAY OUTPUT-2-2 INTEGER1-8 " ; " INTEGER2-8 UPON TERMINAL.
DISPLAY OUTPUT-3-3 REAL1-4 " ; " REAL2-4 UPON TERMINAL.
DISPLAY OUTPUT-4-4 REAL1-8 " ; " REAL2-8 UPON TERMINAL.
DISPLAY OUTPUT-5-5 LOGICAL1 " ; " LOGICAL2 UPON TERMINAL.
DISPLAY OUTPUT-6-6 CHARACTER1 " ; "

CHARACTER2 UPON TERMINAL.
END1.

STOP RUN.

FOR1 subprogram:

SUBROUTINE UFOR (I4,I8,R4,R8,L4,C1,K8,K4,S8,S4,M4,C2)
C

INTEGER*4 I4,K4
INTEGER*8 I8,K8
REAL*4 R4,S4
REAL*8 R8,S8
LOGICAL*4 L4,M4
CHARACTER*15 C1,C2

C
WRITE(2,10) I4,K4
WRITE(2,20) I8,K8
WRITE(2,30) R4,S4
WRITE(2,40) R8,S8
WRITE(2,50) L4,M4
WRITE(2,60) C1,C2

C
I4 = I4 * 2
K4 = K4 * 2
I8 = I8 * 2
K8 = K8 * 2
R4 = R4 * 2.
S4 = S4 * 2.
R8 = R8 * 2.
S8 = S8 * 2.
L4 = .NOT. L4

U577-J-Z125-7-7600 391

FOR1/COBOL85 Language interfacing

M4 = .NOT. M4
C1=’MNOPQRSTUVWX’
C2=’YZ!"@$%&/()>’

C
WRITE(2,10) I4,K4
WRITE(2,20) I8,K8
WRITE(2,30) R4,S4
WRITE(2,40) R8,S8
WRITE(2,50) L4,M4
WRITE(2,60) C1,C2

C
10 FORMAT (1X,’FORTRAN: INTEGER*4: ’,I18,’ ; ’,I18)
20 FORMAT (1X,’FORTRAN: INTEGER*8: ’,I18,’ ; ’,I18)
30 FORMAT (1X,’FORTRAN: REAL*4 : ’,G18.8,’ ; ’,G18.8)
40 FORMAT (1X,’FORTRAN: REAL*8 : ’,G18.8,’ ; ’,G18.8)
50 FORMAT (1X,’FORTRAN: LOGICAL*4: ’,L18,’ ; ’,L18)
60 FORMAT (1X,’FORTRAN: CHARACTER*15: ’,A,’ ; ’,A)

C
RETURN
END

The following data is output when the COBFOR program is executed (the program
COBFOR is contained in a file of the same name):

/START-PROG COBFOR
% BLS0500 PROGRAM ’COBFOR’ VERSION ’’ OF ’91-07-30’ LOADED
COBOL: INTEGER*4: 00314 ; 00314
COBOL: INTEGER*8: +.314159265453500E+13 ; +.314159265453500E+13
COBOL: REAL*4: +.314159E+01 ; +.314159E+01
COBOL: REAL*8: +.314159265453300E+10 ; +.314159265453300E+10
COBOL: LOGICAL*4: FALSE ; FALSE
COBOL: CHARACTER*15: ABCDEFGHIJKL ; ABCDEFGHIJKL
FORTRAN: INTEGER*4: 314 ; 314
FORTRAN: INTEGER*8: 3141592654535 ; 3141592654535
FORTRAN: REAL*4 : 3.1415930 ; 3.1415930
FORTRAN: REAL*8 : 0.31415927D+10 ; 0.31415927D+10
FORTRAN: LOGICAL*4: F ; F
FORTRAN: CHARACTER*15: ABCDEFGHIJKL ; ABCDEFGHIJKL
FORTRAN: INTEGER*4: 628 ; 628
FORTRAN: INTEGER*8: 6283185309070 ; 6283185309070
FORTRAN: REAL*4 : 6.2831860 ; 6.2831860
FORTRAN: REAL*8 : 0.62831853D+10 ; 0.62831853D+10
FORTRAN: LOGICAL*4: T ; T
FORTRAN: CHARACTER*15: MNOPQRSTUVWX ; YZ!"@$%&/()>
COBOL: INTEGER*4: 00628 ; 00628
COBOL: INTEGER*8: +.628318530907000E+13 ; +.628318530907000E+13
COBOL: REAL*4: +.628319E+01 ; +.628319E+01
COBOL: REAL*8: +.628318530906600E+10 ; +.628318530906600E+10
COBOL: LOGICAL*4: TRUE ; TRUE
COBOL: CHARACTER*15: MNOPQRSTUVWX ; YZ!"@$%&/()>

392 U577-J-Z125-7-7600

Language interfacing FOR1/PLI1

11.6 Interfacing of FOR1 with PLI1 programs

Language interfacing of FOR1 with PLI1 programs is accomplished with the aid of para-
meters and external data (see "PLI1" User Guide [37]). Up to 255 parameters can be
transferred.

Additional permissible parameter types

In addition to the parameter types generally guaranteed by ILCS (cf. table 11-1), para-
meters of the following data type are also permissible for FOR1/PL1 interfacing:

FOR1 PLI1 (only ALIGNED data)

REAL * 16 FLOAT BINARY (p) with 53 < p 109
FLOAT DECIMAL (p) with 16 < p 33

COMPLEX * 8 COMPLEX FLOAT BIN (p) with p 21
COMPLEX FLOAT DEC (p) with p 6

COMPLEX * 16 COMPLEX FLOAT BIN (p) with 21 < p 53
COMPLEX FLOAT DEC (p) with 6 < p 16

COMPLEX * 32 COMPLEX FLOAT BIN (p) with 53 < p 109
COMPLEX FLOAT DEC (p) with 16 < p 33

LOGICAL * 1 BIT (8)

LOGICAL * 4 BIT (32)

CHARACTER n CHARACTER (n) VARYING
variable
length

Table 11-10: PLI1/FOR1 interfacing: Additional permissible parameter types

Special considerations

1. If a procedure is EXTERNAL, it must also be a procedure in the PLI1 program.

2. PLI1 fields (DIMENSION) can be passed to FOR1 fields as long as they share me-
mory. If the items are strings of characters, they must have the attribute
NONVARYING. Fields cannot be passed as functional values.

Multi-dimensional arrays in FOR1 are stored by line, as opposed to the fields in
PLI1, which are stored by column. Index overlaying of an array in PLI1, e.g. using B
(i, j, k) results in the same item being accessed in FOR1 when A (i, j, k) was used.

U577-J-Z125-7-7600 393

FOR1/PLI1 Language interfacing

3. Declarations which use * are also permissible in certain places for the transfer of
parameters to FOR1. Entry of current values in the data descriptions to be passed is
then taken care of.

4. A COMMON block in FOR1 and a PLI1 variable with the attribute STATIC
EXTERNAL are stored in static memory. If the two of them have the same names,
they are arranged one above the other and have the same effect as two STATIC
EXTERNAL variables in PLI1: Allocation of a value to one of the variables therefore
means that the same value is also assigned to the other variable.

11.6.1 FOR1 program calls PLI1 subprogram

No precautions are required in ILCS environments when calling a PLI1 program from a
FOR1 program.

Statement in FOR1:

CALL name (par1,...,parn)

Statement in PLI1:

PROCEDURE
name: (par1,...,parn) OPTIONS (ILCS);

ENTRY

Example: FOR1 program calls PLI1 subprogram

A PLI1 subprogram UPROG called from a FOR1 program could have the following
structure:

UPROG: PROC (A) OPTIONS (ILCS);

DCL A DIMENSION (4,5,6) PARAMETER...;
DCL B DIM (6,5,4) DEF A (3SUB,2SUB,1SUB)...;

/* B IS USED IN PLI */

END;

In the calling FOR1 program the field to be transferred is declared with
DIMENSION A (6,5,4)

DEFINED variables with iSUB entry cannot be used together with GET DATA and
PUT DATA.

394 U577-J-Z125-7-7600

Language interfacing FOR1/PLI1

11.6.2 PLI1 program calls FOR1 subprogram

No precautions are required in ILCS environments when calling a FOR1 subprogram
from a PLI1 main program.

Statements in PLI1:

DCL forspro ENTRY OPTIONS (ILCS);
CALL forspro (par1,...parn);

forspro Name of the FOR1 subprogram

Statements in FOR1:

SUBROUTINE forspro (par1,...parn)

FUNCTION forspro (par1,...parn)

Example: PLI1 main program calls FOR1 subprogram

A PLI1 program that calls a FOR1 subprogram could have the following structure:

PLIROUT: PROC OPTIONS(MAIN);

DCL FORSP ENTRY (DIM(4,5,6)...) OPTIONS(ILCS);
DCL A DIMENSION (4,5,6)...;
DCL B DIMENSION (6,5,4)DEF A (3SUB,2SUB,1SUB)...;

/* B IS USED IN PLI */
CALL FORSP (A);

END;

In the called FOR1 program the field to be transferred is declared with
DIMENSION A (6,5,4)

DEFINED variables with iSUB entry cannot be used together with GET DATA and PUT
DATA.

U577-J-Z125-7-7600 395

FOR1/C Language interfacing

11.7 Interfacing of FOR1 with C programs

Language interfacing of FOR1 and C programs relates to FOR1 programs compiled
with a FOR1 compiler version as of V2.0A.

Additional permissible parameter types

In addition to the parameter types generally guaranteed by ILCS (cf. table 11-1), para-
meters with the following data types are also permissible for FOR1/C program interfa-
cing:

FOR1 C

INTEGER*8 double

LOGICAL*1 char

LOGICAL*4 int

COMPLEX*8 struct {float;
float;}

COMPLEX*16 struct {double;
double;}

Array 1) Array

1) C arrays are arranged by lines, FORTRAN arrays, however, are arranged in co-
lumns. This different internal organization must be taken into account when multi-
dimensional arrays are used; for example, if an array in a C program was declared
using "type array [2] [3]", a dimension must be specified by "ARRAY (3,2)" (see
also example in section 11.7.1).

Table 11-11: FOR1/C interfacing: Additional permissible parameter types

Notes on linkage

When linking a C main program to FOR1 subprograms, the PROG statement with para-
meter LET=Y or the BIND statement should be used.

When mathematical functions are used, the following must be noted: Mathematical func-
tions (ATAN, ASIN etc.) are provided in both the C and FOR1 runtime systems. The
parameter supply and the data types are different. The entry point not being used at
the time must be excluded with an EXCLUDE statement. However if the same input
name is to be used in both the C and also the FOR1 section, the C or FOR1 section in
question must be linked into a prelinked module using the associated runtime function.

396 U577-J-Z125-7-7600

Language interfacing C calls FOR1

11.7.1 C program calls FOR1 subprogram

This section describes the connection of external FOR1 subprograms to C programs.
The FOR1 subprogram called by the C program can be a FUNCTION or a
SUBROUTINE subprogram.

Parameter transfer

In FOR1, the addresses of the parameters are always transferred to the parameter list,
even though value transfer is explicitly requested. The distinction between the transfer
modes "call by reference" and "call by value" does not go into effect until the FOR1 sub-
program is called, and depends on the type of dummy arguments defined therein.

In C, the values of the parameters are always entered in the parameter list, with the
exception of arrays (vectors) and pointers.
Therefore, when a FOR1 subprogram is called, the addresses of the data items to be
transferred must be specified as the actual arguments in C (e.g. using the address ope-
rator &: &par). From a technical standpoint, the address of the required parameter is
transferred as the value.
Array names can be directly specified as parameters, since the value of an array is, by
definition, its address.

For the mode of transfer "call by value" in FOR1, the current values of the parameters
are returned to the actual arguments at the end of the FOR1 subprogram (see "FOR1"
Reference Manual [21]). The result is that the actual arguments can be modified in this
transfer mode as well, after returning from the FOR1 subprogram.

When interfacing C with FOR1, the FOR1 language element for computed returns
(RETURN expression) may not generally be used.

Restrictions on the transfer of parameters

In addition to the different transfer modes, there are further differences pertaining to the
format of the parameter lists in C and FOR1.

In the case of character strings, arrays and array elements, in certain cases FOR1 trans-
fers and expects the addresses of descriptors in addition to the addresses of the actual
data items (see section 11.3.5). Attribute and type indicators are also transferred.

U577-J-Z125-7-7600 397

C calls FOR1 Language interfacing

As a result of these differences, the following restrictions result for the FOR1 subpro-
gram:

no DEBUG output (CALL DEBUG or error situation),

no arrays as dummy arguments, whose dimension bound is supplied by the calling
program (* character as the upper dimension bound),

no dummy arguments in conjunction with the TESTOPT operands ARG, BOUNDS
and SUBSCR,

no CHARACTER substrings as dummy arguments.

If the FOR1 subprogram fulfills the above-mentioned conditions, it can be called without
problems, as FOR1 then does not require any type indicators or aggregate descriptors.

398 U577-J-Z125-7-7600

Language interfacing C calls FOR1/Example

Example: C program calls FOR1 subprogram

C program CMAIN

#include <stdio.h>

main()
{
char carray [2] [3];
int lc,lc1,lc2; /* loop counter */
for (lc = 0;lc <= 2;++lc) {

carray [0] [lc] = ’A’;
carray [1] [lc] = ’B’;

}for (lc1 = 0; lc1 <= 1; ++lc1) /* output carray */
for (lc2 = 0; lc2 <= 2; ++lc2)

printf("C: carray(%d,%d) = %c\n", lc1, lc2, carray [lc1] [lc2]);
forsub(carray); /* Call FOR1 subprogram forsub */
for (lc1 = 0; lc1 <= 1; ++lc1) /* output carray */

for (lc2 = 0; lc2 <= 2; ++lc2)
printf("C: carray(%d,%d) = %c\n", lc1, lc2, cfeld [lc1] [lc2]);

}

FOR1 program FORUP

C FORTRAN SUBPROGRAM

SUBROUTINE FORSUB(CARRAY)
CHARACTER*1 CARRAY(3,2)
INTEGER*4 I,J

* OUTPUT CARRAY
DO 1 I=1,2
DO 1 J=1,3

1 WRITE (2,10) J, I, CARRAY(J,I)
* SUPPLY CARRAY WITH NEW VALUES

DO 2 I=1,3
CARRAY(I,1) = ’C’

2 CARRAY(I,2) = ’D’
* OUTPUT CARRAY

DO 3 I=1,2
DO 3 J=1,3

3 WRITE (2,10) J, I, CARRAY(J,I)
10 FORMAT (’ FOR1: CARRAY(’,I1,’,’,I1,’) = ’,A)

RETURN
END

Tracer log for compiling, linking and program execution

(IN) START-PROG $FOR1
(OUT) % BLS0500 PROGRAM ’FOR1’, VERSION ’2.2A00’ OF ’91-06-05’ LOADED
(OUT) % BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG ...
(OUT) FOR1: V2.2A00 READY, GIVE COMPILER OPTION
(IN) COMOPT SRC=FORUP,MODULE-LIBRARY=PLAM.MODFOR1,END
(OUT) FOR1: COMPILER NOT PRELOADED (BAD LOAD PERFORMANCE)
(OUT) FOR1: NO ERRORS DURING COMPILATION OF P.U. FORSUB
(OUT) END OF F O R 1 COMPILATION; CPU TIME USED: 0.611 SEC.

(IN) START-PROG $C
(OUT) % BLS0500 PROGRAM ’C’, VERSION ’2.0A’ OF ’91-05-27’ LOADED
(OUT) % CCM9992 BEGIN C V2.0A00

U577-J-Z125-7-7600 399

C calls FOR1/Example Language interfacing

(OUT) % CCM9993 Copyright (C) Siemens Nixdorf Informationssysteme AG 1991.
(OUT) % CCM9994 All rights reserved.
(IN) COMPILE SOU=CMAIN,MODULE-LIBRARY=PLAM.MODC
(IN) END
(OUT) % CCM9995 NOTES: 0 WARNINGS: 0 ERRORS: 0
(OUT) % CCM9997 MODULES GENERATED
(OUT) % CCM9998 END C TIME USED = 4.1822

(IN) START-PROG $TSOSLNK
(OUT) % BLS0500 PROGRAM ’TSOSLNK’, VERSION ’21.0D17’ OF ’91-04-25’ LOADED
(IN) PROG CFOR1,FILENAM=C.FORUP,LOADPT=*XS,LET=Y
(IN) INCLUDE (CMAIN#,CMAIN@),PLAM.MODC
(IN) RESOLVE ,PLAM.MODFOR1
(IN) RESOLVE ,$CLIB
(IN) RESOLVE ,$FOR1MODLIBS
(IN) RESOLVE ,$TSOS.SYSLNK.ILCS
(IN) BIND
(OUT) UNRESOLVED EXTRNS:
(OUT) IF@@MPI
(OUT) % LNK0055 PROGRAM BOUND IN SPITE OF UNRESOLVED EXTERN’S
(OUT) % LNK0062 THE PHASE CAN BE LOADED ON XS SYSTEM ONLY
(OUT) % LNK0503 PROGRAM FILE ’C.FORUP’ WRITTEN
(OUT) % LNK0504 18 PAM PAGES USED. TSOSLNK RUN FINISHED

(IN) SET-TASKLIB $FOR1MODLIBS

(IN) START-PROG C.FORUP
(OUT) % BLS0500 PROGRAM ’CFOR1’, VERSION ’ ’ OF ’91-07-30’ LOADED
(OUT) C: carray(0,0) = A
(OUT) C: carray(0,1) = A
(OUT) C: carray(0,2) = A
(OUT) C: carray(1,0) = B
(OUT) C: carray(1,1) = B
(OUT) C: carray(1,2) = B
(OUT) FOR1: CARRAY(1,1) = A
(OUT) FOR1: CARRAY(2,1) = A
(OUT) FOR1: CARRAY(3,1) = A
(OUT) FOR1: CARRAY(1,2) = B
(OUT) FOR1: CARRAY(2,2) = B
(OUT) FOR1: CARRAY(3,2) = B
(OUT) FOR1: CARRAY(1,1) = C
(OUT) FOR1: CARRAY(2,1) = C
(OUT) FOR1: CARRAY(3,1) = C
(OUT) FOR1: CARRAY(1,2) = D
(OUT) FOR1: CARRAY(2,2) = D
(OUT) FOR1: CARRAY(3,2) = D
(OUT) C: carray(0,0) = C
(OUT) C: carray(0,1) = C
(OUT) C: carray(0,2) = C
(OUT) C: carray(1,0) = D
(OUT) C: carray(1,1) = D
(OUT) C: carray(1,2) = D
(OUT) % CCM0998 used CPU-time 0.0280 seconds

The message concerning the unresolved external reference IF@@MPI is the result of
linkage without the FOR1 main program and can be ignored in this case.

400 U577-J-Z125-7-7600

Language interfacing FOR1 calls C

11.7.2 FOR1 program calls C function

This section describes the connection of C functions to FOR1 programs.

C functions which provide a function value in accordance with their data type can be
called in FOR1 both within expressions and also by using the CALL statement.

C functions of the type "void" should only be called with the CALL statement.

Calling a main function

It is possible to call a main function by using MAIN as the entry address.
If more than one main function exists, the selection of the required main function can
be ensured by explicit linking-in of the corresponding object module.

Redirection of the standard input/output files and parameter transfers to the main func-
tion are not possible.

Parameter transfer

In FOR1, the addresses of the parameters are always entered in the parameter list. The
dummy arguments of the C function are therefore to be defined as pointers to the data
items to be transferred (<type> *par); array names can be directly specified since the
value of an array is, by definition, its address.

When interfacing C with FOR1, the FOR1 language element for computed returns
(RETURN expression) may not generally be used.

U577-J-Z125-7-7600 401

FOR1 calls C/Example Language interfacing

Example: FOR1 program calls C function

FOR1 program FORMAIN

C FORTRAN-MAINPROGRAM

PROGRAM MAIN
INTEGER*4 X, Y, Z
INTEGER*4 ADR
X = 5
Y = 4
WRITE(2,100) X, Y, Z

100 FORMAT(’ X = ’, I4, ’ Y = ’, I4, ’ Z = ’, I4)
CALL CSUB(X, Y, Z)
WRITE(2,200) Z

200 FORMAT(’ SUM = ’, I4)
STOP
END

C program CUP

void
csub(a, b, c)
int *a, *b, *c;
{

printf("c-program: a = %d, b = %d, c = %d\n", *a, *b, *c);
*c = *a + *b;
printf("c-program: sum = %d\n", *c);

}

Tracer log for compiling, linking and program execution

(IN) START-PROG $FOR1
(OUT) % BLS0500 PROGRAM ’FOR1’, VERSION ’2.2A00’ OF ’91-06-05’ LOADED
(OUT) % BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG ...
(OUT) FOR1: V2.2A00 READY, GIVE COMPILER OPTION
(IN) COMOPT SRC=FORMAIN,MODULE-LIBRARY=PLAM.MODFOR1,END
(OUT) FOR1: COMPILER NOT PRELOADED (BAD LOAD PERFORMANCE)
(OUT) FOR1: NO ERRORS DURING COMPILATION OF P.U. MAIN
(OUT) END OF F O R 1 COMPILATION; CPU TIME USED: 0.598 SEC.

(IN) START-PROG $C
(OUT) % BLS0500 PROGRAM ’C’, VERSION ’2.0A’ OF ’91-05-27’ LOADED
(OUT) % CCM9992 BEGIN C V2.0A00
(OUT) % CCM9993 Copyright (C) Siemens Nixdorf Informationssysteme AG 1991.
(OUT) % CCM9994 All rights reserved.
(IN) COMPILE SOU=CUP,MOD-LIB=PLAM.MODC
(IN) END
(OUT) % CCM9995 NOTES: 0 WARNINGS: 0 ERRORS: 0
(OUT) % CCM9997 MODULES GENERATED
(OUT) % CCM9998 END C TIME USED = 3.8963

402 U577-J-Z125-7-7600

Language interfacing FOR1 calls C/Example

(IN) START-PROG $TSOSLNK
(OUT) % BLS0500 PROGRAM ’TSOSLNK’, VERSION ’21.0D17’ OF ’91-04-25’ LOADED
(IN) PROG PROG,FILENAM=C.FORMAIN
(IN) INCLUDE MAIN,PLAM.MODFOR1
(IN) INCLUDE (CUP#,CUP@),PLAM.MODC
(IN) RESOLVE, $CLIB
(IN) RESOLVE ,$FOR1MODLIBS
(IN) RESOLVE ,$TSOS.SYSLNK.ILCS
(IN) BIND
(OUT) % LNK0500 PROGRAM BOUND
(OUT) % LNK0503 PROGRAM FILE ’C.FORMAIN’ WRITTEN
(OUT) % LNK0504 17 PAM PAGES USED. TSOSLNK RUN FINISHED

(IN) SET-TASKLIB $FOR1MODLIBS

(IN) START-PROG C.FORMAIN
(OUT) % BLS0500 PROGRAM ’PROG’, VERSION ’ ’ OF ’91-07-30’ LOADED
(OUT) BS2000 F O R 1 : FORTRAN PROGRAM "MAIN"
(OUT) STARTED ON 1991-07-30 AT 13:47:15
(OUT) X = 5 Y = 4 Z = 0
(OUT) c-program: a = 5, b = 4, c = 0
(OUT) c-program: sum = 9
(OUT) SUM = 9
(OUT) STOP AT STMT 11 IN MAIN
(OUT) BS2000 F O R 1 : FORTRAN PROGRAM "MAIN " ENDED PROPERLY AT 13:47:16
(OUT) CPU - TIME USED : 0.0091 SECONDS
(OUT) ELAPSED TIME : 0.0150 SECONDS

U577-J-Z125-7-7600 403

FOR1/C Language interfacing

11.7.3 Common file processing

Standard input/output files

The standard input/output files can be addressed both in the C section and in the
FOR1 section of the program.

Non-standard files

Files processed together must be opened in both the C section and the FOR1 section.
Their processing is accomplished internally with the aid of different FCBs.

Since processing of a shared file takes place via separate FCBs, interleaved reading to
the C and FOR1 sections is not possible. All characters of the file are supplied to the C
section and the FOR1 section.

404 U577-J-Z125-7-7600

12 Function pool FPOOL
The FPOOL concept makes it possible to extend the call interface check, which was
previously performed on call interfaces for intrinsic functions only. If, for example, a
source program contains the statements

CHARACTER *5 X
Y = SIN(X)

FOR1 will issue an error message, because an argument of the type CHARACTER is
not allowed in the SIN function call. Furthermore arguments in user-own subprogram
calls (CALL...) have not yet been checked by the compiler.

By accessing FPOOL files containing information on call interfaces, the compiler is now
able to include subprogram interfaces (SUBROUTINEs and FUNCTIONs) in its error ana-
lysis. In the case of FUNCTIONs, only the parameters are checked and not the type
and length of the FUNCTION.

The FPOOL file is compiler independent, unlike the intrinsic table, which can be chek-
ked on the basis of the intrinsic function calls. Thus the FPOOL concept makes it possi-
ble to create a central FPOOL with properties similar to intrinsic type properties, but
which need not be implemented in the FOR1 compiler or FOR1 runtime system.

More specifically, the user may create private FPOOLs, thus enabling call interfaces of
user-own subprograms to be checked by the compiler (see also section 12.3).

A function pool is implemented in two files: an object module library from which
FPOOL routines are linked into the load module, and the FPOOL file proper which con-
tains descriptions of the call interfaces for these routines.

A call interface is defined by number, sequence, type, length, alignment, dimension,
transfer and return type of parameters.

The interface description in an FPOOL file may also contain information about language
inhibitions. With regard to language interfacing, such inhibitions may be useful if two
languages are incompatible, e.g. in their call and return mechanisms.

U577-J-Z125-7-7600 405

FPOOL

The Fortran90 compiler will no longer support interface checking by FPOOL since lang-
uage elements are available in Fortran90 itself for this purpose. The functions of the
central FPOOL can, however, still also be utilized by the Fortran90 compiler, but wi-
thout interface checking by FPOOL.

Example:

In the subprogram DIALOG, the arguments X and Y must be used, where X must be of
the type INTEGER * 1, and Y of the type CHARACTER * 10. During compilation of a
source program containing the statements

REAL * 4 X (1)
CHARACTER * 10 Y
CALL DIALOG (X,Y) (2)

the FOR1 compiler, without FPOOL processing, will not issue an error message. The
FPOOL connection, however, makes it possible to check in statement (2) whether
DIALOG belongs to a user-defined FPOOL. If so, the interfaces will be checked on the
basis of the FPOOL file.
If it is specified in this FPOOL file that the first argument must be of the INTEGER * 1
type, FOR1 will issue an error message (SEVERE) on account of statement (1).

406 U577-J-Z125-7-7600

FPOOL Controlling FPOOL processing

12.1 Controlling FPOOL processing

The inclusion of FPOOL files for checking subprogram call interfaces is controlled by
way of the SDF operand FPOOL-LIBRARY or via the FPOOL compiler option.

12.1.1 SDF operand FPOOL-LIBRARY

START-FOR1-COMPILER

,FPOOL-LIBRARY = *NONE / list-poss: <full-filename 1..54>

The SDF operands and corresponding compiler options are shown in table 2-4.

12.1.2 FPOOL compiler option

fpoolname
*COMOPT FPOOL [=]

([fpoolname[,fpoolname]...])

fpoolname Name of an FPOOL file

Only if this option is specified will the compiler carry out an FPOOL operation.

When the COMOPT FPOOL contains a list of FPOOL files, their sequence from left to
right represents a search hierarchy; FOR1 searches for the subprogram call name in
the FPOOL file which is specified as the first name in the option. If it is not found, the
search is continued in the FPOOL file which appears next in the list, etc.

If, in the COMOPT FPOOL, no list or only an empty list of FPOOL files is specified,
FOR1 anticipates specification of the FPOOL files to be considered by way of a
%FPOOL statement in the source program.

The FPOOL option is valid for one compiler run and, consequently, for all program
units involved. It may, however, be changed by the %FPOOL and %NOFPOOL state-
ments.

U577-J-Z125-7-7600 407

Controlling FPOOL processing FPOOL

12.1.3 %FPOOL statements in source program

%FPOOL statement

Only if the FPOOL option is specified will the following source program statements be
processed by the FOR1 compiler.

%FPOOL fpoolname [(sproname[,sproname]...)],...

fpoolname Name of an FPOOL file

sproname Call name of a subprogram whose interfaces are defined in the FPOOL
file fpoolname.

A %FPOOL statement is only valid in the program unit concerned.

Any search hierarchy set up by the FPOOL option is changed by the %FPOOL state-
ment:
If a list of call names is specified in conjunction with fpoolname, the interface descrip-
tions associated with the call names will be sought only in the file fpoolname. If a sub-
program name sproname specified in the %FPOOL statement is not found in the
FPOOL file fpoolname, a warning is given. In this case no further files are searched
and no interface check is performed. If a subprogram name sproname is found in two
or more %FPOOL statements, first the file containing the first %FPOOL statement is
searched and then the file containing second %FPOOL statement etc.

If fpoolname is specified without a list of call names, this FPOOL file takes precedence
over the search hierarchy defined by the FPOOL option.

The following summary serves to clarify the search hierarchy of the FOR1 compiler:

Assume that a program unit contains the call

CALL function (A,B).

If COMOPT FPOOL has been set, FOR1 will search for the interface description associa-
ted with function in the following way:

1) FOR1 checks whether function is included in a list of call names in a %FPOOL
statement of this program unit.
If so, a search is only performed in the appropriate FPOOL file fpoolname.

2) If function is not associated with any listing of call names, FOR1 will search the
FPOOL files specified without a listing of call names in the %FPOOL statements of
this program unit.

408 U577-J-Z125-7-7600

FPOOL Controlling FPOOL processing

3) If function is not found in any of these FPOOL files, the FPOOL files mentioned in
the FPOOL option will be searched.

Only the names of the FPOOL files specified explicitly in the FPOOL option (and not
those specified in the %FPOOL statement) are listed in the options list.

%NOFPOOL statement

%NOFPOOL (sproname[,sproname]...)

sproname Subprogram call name

A %NOFPOOL statement is only valid in the program unit concerned.

The call names specified in the %NOFPOOL statement are excluded from FPOOL pro-
cessing.
If call names occurring in one of the specified FPOOL files are specified for other sub-
programs, then the corresponding call must be excluded from FPOOL processing,
since the compiler will otherwise use the corresponding FPOOL entries for checking the
call interface.

If subprograms not associated with any of the specified FPOOL files are used, the
%NOFPOOL statement may be used to avoid unsuccessful search operations on all
specified FPOOL files.

The following diagram illustrates FPOOL processing by the FOR1 compiler:

U577-J-Z125-7-7600 409

FPOOL implementation FPOOL

This figure is not any longer available for the online pdf.

Fig. 12-1: FPOOL implementation in connection with the compilation and linkage of a FOR1 program

410 U577-J-Z125-7-7600

FPOOL Central FPOOL

12.2 The central FPOOL

The central FPOOL consists of the object module library FOR1.FPOOLLIB and the asso-
ciated file of interface descriptions FOR1.FPOOL.

All functions available in FOR1.FPOOLLIB are described in alphabetical order.
Each description is subdivided into the following sections:

Call name (in the title)
Generic name
Connect name
Interface description
Implementation
Example of call

All functions are invoked with a CALL statement.

If the COMOPT FPOOL option was specified at compile time, an FPOOL function can
be invoked using either the call name or the generic name. The call name is the one
used to store the function in FPOOL and perform the interface check.

When a generic name is used, FOR1 will identify the correct call name by the parame-
ters passed (for formats of generic and call names see the summary in section 12.2.18,
table 12-1).

FOR1 converts the call name in connection code into the connect name defined in the
FPOOL file. This connect name and the entry name of the corresponding object mo-
dule are identical.

The macro calls used for the implementation are described in the "Executive Macros"
manual [26].

Note

If FPOOL functions are used which have parameters of data type INTEGER*1,
COMOPT FPOOL must be specified for the compilation since such parameters are
transferred differently in the case of FPOOL functions than with FOR1 programs.

U577-J-Z125-7-7600 411

Central FPOOL FPOOL

12.2.1 FPOOL function ACCOUNTNO

ACCOUNTNO

Function: Requests the task’s account number
Generic: TMODE
Connect: TMODACC

Interface
Number of parameters: 2

1st parameter
Type: CHARACTER*8
Usage: OUT
Meaning: After invocation, contains the account number left-justified, pad-

ded with blanks if applicable.

2nd parameter
Type: CHARACTER*45
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

Implementation

System macro used: TMODE
Shareable

Example:

Parameters:
CHARACTER*8 ACCOUNTNO
CHARACTER*45 SCRATCH

Specific call:
CALL ACCOUNTNO (ACCOUNTNO,SCRATCH)

Generic call:
CALL TMODE (ACCOUNTNO,SCRATCH)

412 U577-J-Z125-7-7600

FPOOL Central FPOOL

12.2.2 FPOOL Function DIALOG

When using this function, compilation must take place with COMOPT=FPOOL since
parameters of data type INTEGER*1 are transferred differently with FPOOL functions
than with FOR1 programs.

DIALOG

Function: Requests the task type
Generic: TMODE
Connect: DIALOG

Interface
Number of parameters: 2

1st parameter
Type: INTEGER*1
Usage: OUT
Meaning: After invocation, contains the task type in numeric representa-

tion. The individual values have the following meanings:

0 Batch job
2 Terminal 8103
4 Video terminal 8150

17 TRANSDATA 8418,8415
21 Video terminal 8151
22 Video terminal 8152
23 Printer terminal 8110
24 Data terminal 8161/54
25 Data terminal 8161/64
26 Data terminal 8161/80
44 Data terminal 8162
45 Data terminal 8160/80
53 Data terminal 9750

2nd parameter
Type: CHARACTER*10
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

Implementation

System macro used: TMODE
Shareable

U577-J-Z125-7-7600 413

Central FPOOL FPOOL

Example:

Parameters:
INTEGER*1 TASKTYP
CHARACTER*10 SCRATCH

Specific call:
CALL DIALOG (TASKTYP,SCRATCH)

Generic call:
CALL TMODE (TASKTYP,SCRATCH)

12.2.3 FPOOL function ELIMCHR

ELIMCHR

Function: Eliminates a record by specifying the CHARACTER key
Generic: IDELETE
Connect: ELIMCHR

Interface
Number of parameters: 3

1st parameter
Type: INTEGER 1)

Usage: IN
Meaning: Number of the input/output unit with which the file must be lin-

ked.

2nd parameter
Type: CHARACTER*n 2)

Usage: IN
Meaning: CHARACTER-ISAM key of the record to be eliminated

3rd parameter
Type: INTEGER*4
Usage: OUT
Meaning: IOSTAT return code via which information about the result of

the DELETE call is provided

1) Length arbitrary, however when called via the connect name without specifying
COMOPT FPOOL=FOR1.FPOOL, the first parameter must be of type
INTEGER*4.

2) Length of the second parameter (see "FOR1" Reference Manual [21]),
CHARACTER-ISAM key.

414 U577-J-Z125-7-7600

FPOOL Central FPOOL

Implementation

System macro used: ELIM
Shareable

When the second parameter is used, note that the file must be opened in accordance
with the ISAM key, and using ACCESS= ’DIRECT, CHARACTER’

Example:

INTEGER*4 UNIT/20/
CHARACTER*8 CKEY
INTEGER*4 RETCODE

OPEN (UNIT, ACCESS=’DIRECT,C’,FILE=’FILE’)
CKEY=’AAAAAAAA’

Specific call:
CALL ELIMCHR (UNIT,CKEY,RETCODE)

Generic call:
CALL IDELETE (20,’AAAAAAAA’,RETCODE)

U577-J-Z125-7-7600 415

Central FPOOL FPOOL

12.2.4 FPOOL function ELIMINT

ELIMINT

Function: Eliminates a record by specifying the INTEGER key
Generic: IDELETE
Connect: ELIMINT

Interface
Number of parameters: 3

1st parameter
Type: INTEGER 1)

Usage: IN
Meaning: Number of the input/output unit, with which the file must be lin-

ked

2nd parameter
Type: INTEGER 1)

Usage: IN
Meaning: INTEGER-ISAM key of the record to be eliminated

3rd parameter
Type: INTEGER*4
Usage: OUT
Meaning: IOSTAT return code which provides information about the result

of the DELETE call

1) INTEGER of any length, however when calling via the connect name without
specifying COMOPT FPOOL=FOR1.FPOOL, data type INTEGER*4 must be
used.

Implementation

System macro used: ELIM
Shareable

When the second parameter is used, note that the file must be opened in accordance
with the ISAM key and using ACCESS= ’DIRECT,[,I]’

416 U577-J-Z125-7-7600

FPOOL Central FPOOL

Example:

INTEGER*4 UNIT/20/
INTEGER*4 IKEY
INTEGER*4 RETCODE

OPEN (UNIT, ACCESS=’DIRECT’,FILE=’COLLECTION’)
IKEY=5

Specific call:
CALL ELIMINT (20,10*5+3, RETCODE)

Generic call:
CALL IDELETE (UNIT,10*IKEY+3, RETCODE)

12.2.5 FPOOL function FCMD

FCMD

Function: Issues BS2000 commands
Generic: -
Connect: FP@CMD

Interface
Number of parameters: 5

1st parameter
Type: CHARACTER*1
Usage: OUT
Meaning: After invocation, contains the error code (of SVC 88). The indivi-

dual values have the following meanings:

0 BS2000 command successfully completed
1 Insufficient storage space
2 Memory addresses invalid
3 System message truncated
4 Error on execution of the BS2000 command (e.g. BS2000

command with invalid format)
5 BS2000 command does not correspond to BS2000 syntax

U577-J-Z125-7-7600 417

Central FPOOL FPOOL

2nd parameter
Type: CHARACTER*512
Usage: IN
Meaning: BS2000 command (maximum length 512) (e.g. /SET-FILE-LINK

LINK-NAME=DSET20, FILE-NAME=FILE.20, ACCESS-
METHOD=SAM)

3rd parameter
Type: CHARACTER*1024
Usage: OUT
Meaning: After invocation, contains the system message.

Structure:

1 - 2 Length of the 3rd parameter
3 - 4 Empty
5 - 1024 System message

4th parameter
Type: CHARACTER*1
Usage: IN
Meaning: Control of system message output.

Possible entries: Y/N

Y System messages are output to SYSOUT and in the output
field (3rd parameter).

N System messages are output in the output field only.

This parameter is only effective for BS2000 versions 8.0; with
earlier versions, Y is assumed even if N is entered.

5th parameter
Type: CHARACTER*1552
Usage: SCRATCH
Meaning: Work area of the function; contents before and after call not sub-

ject to any regulation

Implementation

System macro used: CMD
Shareable

418 U577-J-Z125-7-7600

FPOOL Central FPOOL

Example:

Parameters:

CHARACTER CPAR1 * 1 /’0’/
CHARACTER CPAR2 * 512 1)

CHARACTER CPAR3 * 1024
INTEGER CPAR31 * 2
CHARACTER CPAR32 * 2
CHARACTER CPAR33 * 1020
EQUIVALENCE (CPAR3,CPAR31),(CPAR3(3:4),CPAR32),(CPAR3(5:),CPAR33)
CHARACTER CPAR4 * 1
CHARACTER CPAR5 * 1552

1) NOTE: (512,V) not permitted !

Specific call:

CPAR2=’/SET-FILE-LINK LINK-NAME=DSET20,FILE-NAME=FILE.20,
* ACCESS-METHOD=SAM’
CPAR4=’Y’ 2)

[%FPOOL FOR1.FPOOL(FCMD)]
CALL FCMD (CPAR1,CPAR2,CPAR3,CPAR4,CPAR5)

2) System message on SYSOUT desired

Generic call:

12.2.6 FPOOL function GDATECHAR

GDATECHAR

Function: Requests the current data in alpha form
Generic: GDATE
Connect: GDATCHR

Interface
Number of parameters: 5

1st parameter
Type: CHARACTER*2
Usage: OUT
Meaning: After invocation, contains the current month in alpha form, e.g.

’09’ is supplied for the date 20.9.81.

U577-J-Z125-7-7600 419

Central FPOOL FPOOL

2nd parameter
Type: CHARACTER*2
Usage: OUT
Meaning: After invocation, contains the current day in alpha form, e.g. ’20’

is supplied for the date 20.9.81.

3rd parameter
Type: CHARACTER*2
Usage: OUT
Meaning: After invocation, contains the current year in alpha form, e.g.

’81’ is supplied for the date 20.9.81.

4th parameter
Type: CHARACTER*3
Usage: OUT
Meaning: After invocation, contains the current day of the year in alpha

form, e.g. ’263’ is supplied for the date 20.9.81.

5th parameter
Type: CHARACTER*12
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

Implementation

System macro used: GDATE
Shareable

Example:

Parameters:
CHARACTER*2 DAY,MONTH,YEAR
CHARACTER*3 DAYOFYEAR
CHARACTER*12 SCRATCH

Specific call:
CALL GDATECHAR (MONTH,DAY,YEAR,DAYOFYEAR,SCRATCH)

Generic call:
CALL GDATE (MONTH,DAY,YEAR,DAYOFYEAR,SCRATCH)

420 U577-J-Z125-7-7600

FPOOL Central FPOOL

12.2.7 FPOOL function GDATEINT

GDATEINT

Function: Requests the current date in number form
Generic: GDATE
Connect: GDATINT

Interface
Number of parameters: 5

1st parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, contains the current month in

number form, e.g. the numeral 9 is supplied for the date
20.9.81.

2nd parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, contains the current day in number

form, e.g., the numeral 20 is supplied for the date 20.9.81.

3rd parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, contains the current year in number

form, e.g. the numeral 81 is supplied for the date 20.9.81.

4th parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, contains the current day of the year in number

form, e.g. the numeral 263 is supplied for the date 20.9.81.

5th parameter
Type: CHARACTER*31
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

Implementation

System macro used: GDATE
Shareable

U577-J-Z125-7-7600 421

Central FPOOL FPOOL

Example:

Parameters:
INTEGER*4 DAY,MONTH,YEAR
INTEGER*4 DAYOFYEAR
CHARACTER*31 SCRATCH

Specific call:
CALL GDATEINT (MONTH,DAY,YEAR,DAYOFYEAR,SCRATCH)

Generic call:
CALL GDATE (MONTH,DAY,YEAR,DAYOFYEAR,SCRATCH)

12.2.8 FPOOL function GEPRTCHAR

GEPRTCHAR

Function: Requests the task’s elapsed CPU time in alpha form
Generic: GEPRT
Connect: GPRTCHR

Interface
Number of parameters: 5

1st parameter
Type: CHARACTER*2
Usage: OUT
Meaning: After invocation, contains the hour portion of the elapsed CPU

time in alpha form.

2nd parameter
Type: CHARACTER*2
Usage: OUT
Meaning: After invocation, contains the minutes portion of the elapsed

CPU time in alpha form.

3rd parameter
Type: CHARACTER*2
Usage: OUT
Meaning: After invocation, contains the seconds portion of the elapsed

CPU time in alpha form.

422 U577-J-Z125-7-7600

FPOOL Central FPOOL

4th parameter
Type: CHARACTER*4
Usage: OUT
Meaning: After invocation, contains the seconds fraction of the elapsed

CPU time in alpha form; unit of measurement: one ten-thou-
sandth of one second.

5th parameter
Type: CHARACTER*49
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

Implementation

System macro used: TMODE
Shareable

Example:

Parameters:
CHARACTER*2 HRS,MIN,SEC
CHARACTER*4 TTHSND
CHARACTER*49 SCRATCH

Specific call:
CALL GEPRTCHAR (HRS,MIN,SEC,TTHSND,SCRATCH)

Generic call:
CALL GEPRT (HRS,MIN,SEC,TTHSND,SCRATCH)

U577-J-Z125-7-7600 423

Central FPOOL FPOOL

12.2.9 FPOOL function GEPRTINT

GEPRTINT

Function: Requests task’s elapsed CPU time in number form
Generic: GEPRT
Connect: GPRTINT

Interface
Number of parameters: 5

1st parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, contains the hours portion of the elapsed CPU

time in number form.

2nd parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, contains the minutes portion of the elapsed

CPU time in number form.

3rd parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, requests the seconds portion of the elapsed

CPU time in number form.

4th parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, requests the seconds fraction of the elapsed

CPU time in number form; unit of measurement: one ten-thou-
sandth of one second.

5th parameter
Type: CHARACTER*45
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

Implementation

System macro used: TMODE
Shareable

424 U577-J-Z125-7-7600

FPOOL Central FPOOL

Example:

Parameters:
INTEGER*4 HRS,MIN,SEC,TTHSND
CHARACTER*45 SCRATCH

Specific call:
CALL GEPRTINT (HRS,MIN,SEC,TTHSND,SCRATCH)

Generic call:
CALL GEPRT (HRS,MIN,SEC,TTHSND,SCRATCH)

12.2.10 FPOOL function GETDATE

GETDATE

Function: Requests the current data in alpha form in ISO4 format
Generic: -
Connect: FP@GTDAT

Interface
Number of parameters: 2

1st parameter
Type: CHARACTER*10
Usage: OUT
Meaning: After invocation, contains the current date in alpha form in ISO4

format: YYYY-MM-DD.

2nd parameter
Type: CHARACTER*3
Usage: OUT
Meaning: After invocation, contains the current day of the year.

Implementation

System macro used: GDATE
Shareable

Example:

Parameters:
CHARACTER*10 DATE
CHARACTER*3 DAY

Specific call:
CALL GETDATE (DATE,DAY)

Generic call:

U577-J-Z125-7-7600 425

Central FPOOL FPOOL

12.2.11 FPOOL function GETMEMMAPLONG

GETMEMMAPLONG

Function: Requests the memory map which shows which pages of class 5 and
class 6 memories are unallocated or reserved for the task; a user ad-
dress space of up to 8 Mbytes is taken into consideration.

Generic: GETMEMORYMAP
Connect: GTMAPL

Interface
Number of parameters: 5

1st parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, contains the number of the last page of class 6

memory.

2nd parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, contains the number of the last page of class 5

memory.

3rd parameter
Type: LOGICAL*1, DIMENSION 2048
Usage: OUT
Meaning: After invocation, contains a memory page allocation table. The

index of a table element corresponds to the number of a me-
mory page. A table element has the value .TRUE. if the memory
page involved is reserved for the task; otherwise the value is
.FALSE.

4th parameter
Type: CHARACTER*1
Usage: OUT
Meaning: Error code in accordance with the return information

of the GTMAP macro: X’00’ o.k., X’04’,X’08’ error

5th parameter
Type: CHARACTER*260
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

426 U577-J-Z125-7-7600

FPOOL Central FPOOL

Implementation

System macro used: GTMAP
Shareable

Example:

Parameters:
INTEGER*4 MAXPAGECL6,MAXPAGECL5
LOGICAL*1 MEMTABLE
DIMENSION MEMTABLE(2048)
CHARACTER*1 ERRCODE
CHARACTER*260 SCRATCH

Specific call:
CALL GETMEMMAPLONG (MAXPAGECL6,MAXPAGECL5,MEMTABLE,ERRCODE,SCRATCH)

Generic call:
CALL GETMEMORYMAP (MAXPAGECL6,MAXPAGECL5,MEMTABLE,ERRCODE,SCRATCH)

12.2.12 FPOOL function GETMEMMAPSHORT

GETMEMMAPSHORT

Function: Requests the memory map which shows which pages of class 6 memory
are unallocated or reserved for the task; a user address space of up to 1
Mbyte is taken into consideration.

Generic: GETMEMORYMAP
Connect: GTMAPS

Interface
Number of parameters: 4

1st parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, contains the number of the last page of class 6

memory.

2nd parameter
Type: LOGICAL*1, DIMENSION 256
Usage: OUT
Meaning: After invocation, contains a memory page allocation table. The

index of a table element corresponds to the number of a me-
mory page. A table element has the value .TRUE. if the memory
page involved is reserved for the task; otherwise the value is
.FALSE.

U577-J-Z125-7-7600 427

Central FPOOL FPOOL

3rd parameter
Type: CHARACTER*1
Usage: OUT
Meaning: Error code in accordance with the return information

of the GTMAP macro: X’00’ o.k., X’04’,X’08’ error

4th parameter
Type: CHARACTER*34
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

Implementation

System macro used: GTMAP
Shareable

Example:

Parameters:
INTEGER*4 MAXPAGECL6
LOGICAL*1 MEMTABLE
DIMENSION MEMTABLE(256)
CHARACTER*1 ERRCODE
CHARACTER*34 SCRATCH

Specific call:
CALL GETMEMMAPSHORT (MAXPAGECL6,MEMTABLE,ERRCODE,SCRATCH)

Generic call:
CALL GETMEMORYMAP (MAXPAGECL6,MEMTABLE,ERRCODE,SCRATCH)

12.2.13 FPOOL function GETODCHAR

GETODCHAR

Function: Requests the time of day in alpha form
Generic: GETOD
Connect: GTODCHR

Interface
Number of parameters: 4

1st parameter
Type: CHARACTER*2
Usage: OUT
Meaning: After invocation, contains the hours portion of the time of day in

alpha form.

428 U577-J-Z125-7-7600

FPOOL Central FPOOL

2nd parameter
Type: CHARACTER*2
Usage: OUT
Meaning: After invocation, contains the minutes portion of the time of day

in alpha form.

3rd parameter
Type: CHARACTER*2
Usage: OUT
Meaning: After invocation, contains the seconds portion of the time of day

in alpha form.

4th parameter
Type: CHARACTER*6
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

Implementation

System macro used: GDATE
Shareable

Example:

Parameters:
CHARACTER*2 HRS,MIN,SEC
CHARACTER*6 SCRATCH

Specific call:
CALL GETODCHAR (HRS,MIN,SEC,SCRATCH)

Generic call:
CALL GETOD (HRS,MIN,SEC,SCRATCH)

12.2.14 FPOOL function GETODINT

GETODINT

Function: Requests the time of day in number form
Generic: GETOD
Connect: GTODINT

U577-J-Z125-7-7600 429

Central FPOOL FPOOL

Interface
Number of parameters: 4

1st parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, contains the hours portion of the time of day in

number form.

2nd parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, requests the minutes portion of the time of day

in number form.

3rd parameter
Type: INTEGER*4
Usage: OUT
Meaning: After invocation, requests the seconds portion of the time of day

in number form.

4 . Parameter
Type: CHARACTER*23
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

Implementation

System macro used: GDATE
Shareable

Example:

Parameters:
INTEGER*4 HRS,MIN,SEC
CHARACTER*23 SCRATCH

Specific call:
CALL GETODINT (HRS,MIN,SEC,SCRATCH)

Generic call:
CALL GETOD (HRS,MIN,SEC,SCRATCH)

430 U577-J-Z125-7-7600

FPOOL Central FPOOL

12.2.15 FPOOL function TASKANDUSERID

TASKANDUSERID

Function: Requests the task sequence number (TSN) and the user ID of the
LOGON command in alpha form

Generic: TMODE
Connect: TMODTSN

Interface
Number of parameters: 3

1st parameter
Type: CHARACTER*4
Usage: OUT
Meaning: After invocation, contains the 4-digit task sequence number in

alpha form, with leading zeros if applicable.

2nd parameter
Type: CHARACTER*8
Usage: OUT
Meaning: After invocation, contains the user ID from the LOGON com-

mand in alpha form.

3rd parameter
Type: CHARACTER*45
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

Implementation

System macro used: TMODE
Shareable

Example:

Parameters:
CHARACTER*4 TASKNO
CHARACTER*8 USERID
CHARACTER*45 SCRATCH

Specific call:
CALL TASKANDUSERID (TASKNO,USERID,SCRATCH)

Generic call:
CALL TMODE (TASKNO,USERID,SCRATCH)

U577-J-Z125-7-7600 431

Central FPOOL FPOOL

12.2.16 FPOOL function TMODEALL

When using this function, compilation must take place with COMOPT=FPOOL since
parameters of data type INTEGER*1 are transferred differently with FPOOL functions
than with FOR1 programs.

TMODEALL

Function: Requests the task type, the task sequence number (TSN), the user ID
from the LOGON command and the task account number

Generic: TMODE
Connect: TMODALL

Interface
Number of parameters: 5

1st parameter
Type: INTEGER*1
Usage: OUT
Meaning: After invocation, contains the task type in number form. The indi-

vidual values have the following meanings:
0 Batch job
2 Terminal 8103
4 Video terminal 8150

17 TRANSDATA 8418,8415
21 Video terminal 8151
22 Video terminal 8152
23 Printer terminal 8110
24 Data terminal 8161/54
25 Data terminal 8161/64
26 Data terminal 8161/80
44 Data terminal 8162
45 Data terminal 8160/80
53 Data terminal 9750

2nd parameter
Type: CHARACTER*4
Usage: OUT
Meaning: After invocation, contains the 4-digit task sequence number in

alpha form, with leading zeros if applicable.

432 U577-J-Z125-7-7600

FPOOL Central FPOOL

3rd parameter
Type: CHARACTER*8
Usage: OUT
Meaning: After invocation, contains the user ID from the LOGON com-

mand in alpha form.

4th parameter
Type: CHARACTER*8
Usage: OUT
Meaning: After invocation, contains the account number left-justified, pad-

ded with blanks if applicable.

5th parameter
Type: CHARACTER*45
Usage: SCRATCH
Meaning: Work area of the function; contents before and after invocation

not subject to any regulation

Implementation

System macro used: TMODE
Shareable

Example:

Parameters:
INTEGER*1 TASKTYPE
CHARACTER*4 TASKNO
CHARACTER*8 USERID,ACCOUNTNO
CHARACTER*45 SCRATCH

Specific call:
CALL TMODEALL (TASKTYPE,TASKNO,USERID,ACCOUNTNO,SCRATCH)

Generic call:
CALL TMODE (TASKTYPE,TASKNO,USERID,ACCOUNTNO,SCRATCH)

U577-J-Z125-7-7600 433

Central FPOOL FPOOL

12.2.17 FPOOL function MEMOMAP

MEMOMAP

Function: Requests information on the size and occupancy of class 6 memory or
of the memory pool in class 6 memory. This information can be reque-
sted by issuing a call in 31-bit address mode or, in the case of a class 6
memory with more than 8 Mbytes of storage, only by means of
MEMOMAP (as of BS2000 V9.0).

Generic: -
Connect: FP@MINF

Interface
Number of parameters: 6

1st parameter
Type: INTEGER*4
Usage: IN
Meaning: 1 Information on the class 6 memory requested

2 Information on the memory pool requested

2nd parameter
Type: INTEGER*4
Usage: IN
Meaning: 1 The virtual page number of the first page of memory and

the number of memory pages of class 6 memory or of the
memory pool.

2 Outputs a table on the occupancy of the memory pages.

3rd parameter
Type: Array of type INTEGER*4
Dimension: 4
Usage: IN/OUT
Meaning: The meaning of the third parameter (hereafter referred to as the

TAB) depends on the values of the first and second parameters:

434 U577-J-Z125-7-7600

FPOOL Central FPOOL

(a) 1st parameter=1, 2nd parameter=1 (class 6 memory occupan-
cy)

In this case the third parameter is merely an output parameter.

TAB(1) Contains the virtual page number of the first page
of memory below 16 Mbytes.

TAB(2) Contains the number of memory pages below 16
Mbytes.

TAB(3) 0 No class 6 memory exists above 16 Mbytes.
>0 Virtual page number of the first page of me-

mory above 16 Mbytes.
TAB(4) 0 No class 6 memory exists above 16 Mbytes.

>0 Number of memory pages above 16 Mbytes.

(b) 1st parameter=2, 2nd parameter=1 (memory pool occupancy)

Input Output

TAB(1) Virtual page number of Virtual page number of the
any page of the requested first page of the memory pool
memory pool. This entry
identifies the memory pool.

TAB(2) Not used Number of pages of the memory pool
TAB(3) Not used Unchanged
TAB(4) Not used Unchanged

(c) 1st parameter=1, 2nd parameter=2 (occupancy table of the
class 6 memory)

Input Output

TAB(1) Virtual page number of the Unchanged
1st page of the area for
which an occupancy table
is requested. The specified
page number must be a
multiple of 16.

TAB(2) Number of memory pages Number of memory pages,
for which an occupancy for which the occupancy table
table is requested. is actually defined.

TAB(3) Not used Unchanged
TAB(4) Not used Unchanged

U577-J-Z125-7-7600 435

Central FPOOL FPOOL

(d) 1st parameter=2, 2nd parameter=2 (occupancy table of the
memory pool)

Input Output

TAB(1) Virtual page number of Unchanged
the first page of the area
for which an occupancy table
is requested. The specified
page number must be within
the requested memory pool and
must be a multiple of 16.

TAB(2) Number of memory pages Number of memory pages
for which an occupancy for which the occupancy
table is requested. table is actually defined.

TAB(3) Not used Unchanged
TAB(4) Not used Unchanged

If the 1st parameter=1 is selected, all memory pages of a me-
mory pool are identified as being occupied. If the first parameter
selected is parameter=2, only those pages requested with
REQMP are identified as being occupied.

4th parameter
Type: INTEGER*4
Usage: IN
Meaning: The fourth parameter specifies the size of the requested me-

mory page occupancy table (see fifth parameter).

Permissible values: 1 fourth parameter 256 The parameter
is also abbreviated to PTSIZE.

5th parameter
Type: Array of type LOGICAL*1
Dimension (PTSIZE*2048)
Usage: OUT
Meaning: After invocation, the fifth parameter contains a memory occu-

pancy table. The dimension of the fifth
parameter should be 2048 times that of the fourth parameter.
The subscript of a table element corresponds to the number of
a memory page (number of the page specified in TAB(1) minus
1). A table element has the value .TRUE. if the corresponding
memory page is reserved by the task, otherwise it has the value
.FALSE..

436 U577-J-Z125-7-7600

FPOOL Central FPOOL

6th parameter
Type: INTEGER*4
Usage: OUT
Meaning: The sixth parameter contains the return code of

the MINF macro:
X’00’ Function executed
X’01’ Invalid entry for the first parameter
X’02’ Invalid entry for the second parameter
X’04’ Operand error
X’08’ Invalid virtual page number
X’0C’ Address error

Implementation

System macro used: MINF
Shareable

Example:

Parameters:
INTEGER*4 INFORM1, INFORM2, PAGETAB(4),
* PTSIZE, ERRCODE
LOGICAL*1 MEMTABLE
PARAMETER (PTSIZE=10)
INFORM1 = 1
INFORM2 = 1
DIMENSION MEMTABLE(PTSIZE*2048)

Specific call:
CALL MEMOMAP (INFORM1,INFORM2,PAGETAB,PTSIZE,MEMTABLE,ERRCODE)

Generic call:

U577-J-Z125-7-7600 437

Summary: central FPOOL FPOOL

12.2.18 Summary: Generic, call and connect names

The section on the central FPOOL referred to the use of generic names for FPOOL sub-
programs. Depending on the number, type and position of parameters, the following
summary shows the linkage between generic names and the specific subprogram
names, as well as the connect names.

Generic Parameter Specific Connect Module
name Total No: Type subprogram name name

(call name)

- 5 1: CHARACTER*1 FCMD FP@CMD FP@CMD
2: CHARACTER*512
3: CHARACTER*1024
4: CHARACTER*1
5: CHARACTER*1552

GDATE 5 1: CHARACTER*2 GDATECHAR GDATCHR FP@GDCHR
2: CHARACTER*2
3: CHARACTER*2
4: CHARACTER*3
5: CHARACTER*12

5 1: INTEGER*4 GDATEINT GDATINT FP@GDINT
2: INTEGER*4
3: INTEGER*4
4: INTEGER*4
5: CHARACTER*31

GEPRT 5 1: CHARACTER*2 GEPRTCHAR GPRTCHR FP@GPCHR
2: CHARACTER*2
3: CHARACTER*2
4: CHARACTER*4
5: CHARACTER*49

5 1: INTEGER*4 GEPRTINT GPRTINT FP@GPINT
2: INTEGER*4
3: INTEGER*4
4: INTEGER*4
5: CHARACTER*45

- 2 1: CHARACTER*10 GETDATE FP@GTDAT FP@GTDAT
2: CHARACTER*3

GETMEMORYMAP 5 1: INTEGER*4 GETMEMMAPLONG GTMAPL FP@GTAPL
2: INTEGER*4
3: LOGICAL*1(2048)
4: CHARACTER*1
5: CHARACTER*260

4 1: INTEGER*4 GETMEMMAPSHORT GTMAPS FP@GTAPS
2: LOGICAL*1(256)
3: CHARACTER*1
4: CHARACTER*34

GETOD 4 1: CHARACTER*2 GETODCHAR GTODCHR FP@GTCHR
2: CHARACTER*2
3: CHARACTER*2
4: CHARACTER*6

4 1: INTEGER*4 GETODINT GTODINT FP@GTINT
2: INTEGER*4
3: INTEGER*4
4: CHARACTER*23

continued

438 U577-J-Z125-7-7600

FPOOL Summary: central FPOOL

continued

Generic Parameter Specific Connect Module
name Total No: Type subprogram name name

(call name)

IDELETE 3 1: INTEGER ELIMCHR ELIMCHR FP@ELM
2: CHARACTER*n
3: INTEGER*4

3 1: INTEGER ELIMINT ELIMINT FP@ELM
2: INTEGER
3: INTEGER*4

- 6 1: INTEGER*4 MEMOMAP FP@MINF FP@MINF
2: INTEGER*4
3: INTEGER*4
4: INTEGER*4
5: LOGICAL*1
6: INTEGER*4

TMODE 2 1: CHARACTER*8 ACCOUNTNR TMODEACC FP@TMACC
2: CHARACTER*45

2 1: INTEGER*1 DIALOG DIALOG FP@DLOG
2: CHARACTER*10

3 1: CHARACTER*4 TASKANDUSERID TMODTSN FP@TMTSN
2: CHARACTER*8
3: CHARACTER*45

5 1: INTEGER*1 TMODEALL TMODALL FP@TMALL
2: CHARACTER*4
3: CHARACTER*8
4: CHARACTER*8
5: CHARACTER*45

Table 12-1: Generic names, connect names and specific names of FPOOL subprograms

U577-J-Z125-7-7600 439

Private FPOOLs FPOOL

12.3 Setting up private FPOOLs (FPOOLITY utility routine)

The utility routine FPOOLITY enables users to prepare and process their own FPOOL
files for their subprograms (cf. "FPOOLITY" manual [22]).
An interface description is entered in a new or in an expanded FPOOL file with the aid
of the FPOOLITY function GENERATE and its Function Description Language (FDL).

FPOOL processing by the FOR1 compiler does not yet cover all FDL entries described
in the "FPOOLITY" manual [22]. The following summary shows the section of the FDL
interface that is interpreted by FOR1:

CALL NAME : name1 ;
GENERIC : son1,son2,...,son20 ;
CONNECT NAME : name2 ;
CONNECT MODE : STANDARD ;
IMPL-LANGUAGE : FORTRAN ;
ENVIRONMENT : FORTRAN ;
FOR : FORTRAN ;
RETURNS : typename2 ;
P#n KEYWORD : parametername ;
[P#n] DIRECTION : IN OUT INOUT SCRATCH ;
[P#n] MODE : REFERENCE ;
[P#n] TYPE : typename1 ;
FDLEND ;

name1 Call name of the subprogram, up to 15 characters long.

sonx Call name of an FPOOL entry.

name2 In object code, FOR1 replaces the call name name1 with the connect
name name2. The connect name must be identical with the entry
name of the object module. The connect name may be up to 8 cha-
racters in length.

P#n n-th parameter of the transfer list in the CALL statement. Up to 30
parameters may be specified.

parametername Name of the n-th parameter.

typename1 Data type (see table 12-2)

typename2 Data type of the RETURN value (see table 12-3)

440 U577-J-Z125-7-7600

FPOOL Private FPOOLs

The relationship between FDL type names and FORTRAN data types or FORTRAN
RETURN values is shown in the following table:

FDL FORTRAN data type
(TYPE:) typename1

CHAR[ACTER] CHARACTER
CHAR-STRING * n CHARACTER * n (0 n 32000)
COMPLEX [*x a8 16 32x a] COMPLEX *x a8 16 32x a
INTEGER [*x a1 2 4 8x a] INTEGER *x a1 2 4 8x a
LOGICAL LOGICAL * 1
REAL [*{4 8 16}] REAL *{4 8 16}
SIGNED-INTEGER [*{1|2|4|8}] INTEGER *{1|2|4|8}

FOR1 treats all other FDL entries as comments.

Table 12-2: FDL type names and FORTRAN data types

FDL Data type of the RETURN value
(RETURNS:) typename2

CHAR[ACTER] CHARACTER
CHAR-STRING * n CHARACTER * n (0 n 4)
INTEGER [*{1 2 4}] INTEGER *{1 2 4}
LOGICAL LOGICAL * 1
REAL [*4] REAL *4
SIGNED-INTEGER [*{1|2|4}] INTEGER *{1|2|4}

Table 12-3: FDL and FORTRAN RETURN values

Restrictions

Checking of the interfaces with FORTRAN subprograms is subject to a number of
restrictions:

In the case of functions, only the parameters are checked, not the type and length
of the function.

Functions of the data type REAL*{8|16}, INTEGER*8, CHARACTER*n (n>5) and
COMPLEX*{8|16|32} cannot be checked.

Names of SUBROUTINEs, FUNCTIONs and LABELs in the form of parameters are
not checked.

Arrays are not checked.

Data items and functions of the type LOGICAL*4 cannot be checked.

U577-J-Z125-7-7600 441

Private FPOOLs FPOOL

In the case of CHARACTER data items, only one error (SEVERE ERROR) is output if
the length of the actual argument is less than that of the dummy argument.

Conversions are performed,

if it is possible to do so (e.g. actual arguments of the type REAL, dummy argu-
ments of the type INTEGER), and

if "DIRECTION IN" is entered in the FPOOL (i.e. if they are purely input parame-
ters and if only those are errored).

In the above case a WARNING (SA151) is output. In all other cases no conversion
takes place and a SEVERE ERROR is output.

Example: FDL entry

For a subprogram with the following statements

SUBROUTINE DEVIATE (N,A,VALU)
REAL A (2:101)
REAL*8 VALU

the FDL entry has the following format:

CALL NAME: DEVIATE ;
CONNECT NAME: DEVIATE ;
CONNECT MODE: STANDARD ;
IMPL-LANGUAGE: FORTRAN ;
ENVIRONMENT: FORTRAN ;
FOR: FORTRAN ;
P# 1 KEYWORD: N ;

DIRECTION: INOUT ;
MODE: REFERENCE ;
TYPE: INTEGER *4 ;

P# 2 KEYWORD: A ;
DIRECTION: INOUT ;
MODE: REFERENCE ;
TYPE: REAL *4

ARRAY(100) ;
P# 3 KEYWORD: WERT ;

DIRECTION: INOUT ;
MODE: REFERENCE ;
TYPE: REAL *8 ;

FDLEND ;

442 U577-J-Z125-7-7600

FPOOL Example

12.4 Example: Application of FOR1.FPOOLLIB interfaces

The application of FOR1.FPOOLLIB interfaces is illustrated in the following. The printout
includes:

source program
commands/control statements for compilation, link-editing, execution
result listing

1. Source program

PROGRAM EXAMP
IMPLICIT CHARACTER *2 (C-D)
IMPLICIT INTEGER *4 (I,J)
INTEGER *1 I1,I2,I3
INTEGER *1 UT /2 /
LOGICAL *1 L1(2048),L2(256)
LOGICAL *1 Q /.TRUE./
CHARACTER *260 SCR260
CHARACTER *49 SCRATCH
CHARACTER *8 C81,C82,C83,C84,D8(2:4)
CHARACTER *4 C41,C42,C43,D4(2:3)
CHARACTER *3 C31,D31
CHARACTER *1 C1,C2
CHARACTER *26 T(0:53)
DIMENSION I4(4)
DIMENSION D2(3)
DATA T(0) /’BATCH TASK’/,
. T(2) /’INTERACTIVE TERMINAL 8103’/,
. T(4) /’DATA DISPLAY TERMINAL 8150’/,
. T(17) /’TRANSDATA 8418,8415’/,
. T(21) /’DATA DISPLAY TERMINAL 8151’/,
. T(22) /’DATA DISPLAY TERMINAL 8152’/,
. T(23) /’PRINTER TERMINAL 8110’/,
. T(24) /’TERMINAL 8161/54’/,
. T(25) /’TERMINAL 8161/64’/,
. T(26) /’TERMINAL 8161/80’/,
. T(44) /’TERMINAL 8162’/,
. T(45) /’TERMINAL 8160/80’/,
. T(53) /’TERMINAL 9750’/
DATA (T(I),I=5,16),
. (T(I),I=18,20),
. (T(I),I=27,43),
. (T(I),I=46,52),
. T(1),T(3) /41* ’DEVICE UNDEFINED’/

*
CALL DIALOG(I1,SCRATCH(1:10))

IF (I1 .EQ. 0) UT = 6
WRITE (UT,1) I1,T(I1)

1 FORMAT (’ DIALOG: ’,I2,’, D.H. ’,A)
*

CALL ACCOUNTNO(C81,SCRATCH(:45))
WRITE (UT,2) C81

2 FORMAT (’ ACCOUNT NUMBER: ’,A)
*

CALL GDATECHAR(C21,C22,C23,C31,SCRATCH(:12))

U577-J-Z125-7-7600 443

Example FPOOL

WRITE (UT,3) C21,C22,C23,C31

3 FORMAT (’ DATE (CHAR): ’,4(A,:’, ’))
*

CALL GDATEINT(I41,I42,I43,I44,SCRATCH(:31))
WRITE (UT,4) I41,I42,I43,I44

4 FORMAT (’ DATE (INT): ’,3(I2,’, ’),I3)
*

CALL GEPRTCHAR(C24,C25,C26,C41,SCRATCH(:12))
WRITE (UT,5) C24,C25,C26,C41

5 FORMAT (’ CPU TIME (CHAR): ’,4(A,:’, ’))
*

CALL GEPRTINT(I45,I46,I47,I48,SCRATCH(:45))
WRITE (UT,6) I45,I46,I47,I48

6 FORMAT (’ CPU TIME (INT): ’,3(I2,’, ’),I4)
*

CALL GETODCHAR(C27,C28,C29,SCRATCH(:6))
WRITE (UT,7) C27,C28,C29

7 FORMAT (’ TIME OF DAY (CHAR): ’,3(A,:’, ’))
*

CALL GETODINT(I49,I4A,I4B,SCRATCH(:23))
WRITE (UT,8) I49,I4A,I4B

8 FORMAT (’ TIME OF DAY (INT): ’,3(I2,:’, ’))
*

CALL GETMEMMAPLONG(J1,J2,L1,C1,SCR260)
DO 9 I = 2047,1,-1

9 IF (L1(I).NEQV.L1(2048)) GOTO 10
10 WRITE (UT,11) J1,J2,:L1(I)
11 FORMAT (’ MEMORYMAPLONG: ’,2(I9,’, ’),32(:/,10X,64L1))

WRITE (UT,12) L1(I+1),C1
12 FORMAT (10X,’REMAINDER ’,L1,’, ’,Z2)

*
CALL GETMEMMAPSHORT(J3,L2,C2,SCRATCH(:34))
WRITE (UT,13) J3,L2,C2

13 FORMAT (’ MEMORYMAPSHORT: ’,I9,’, ’,4(/,10X,64L1),
. ’, ’,/,10X,Z2)

*
CALL TASKANDUSERID(C42,C82,SCRATCH(2:46))
WRITE (UT,14) C42,C82

14 FORMAT (’ TASKANDUSERID: ’,2(A,:’, ’))
*

CALL TMODEALL(I2,C43,C83,C84,SCRATCH(3:47))
WRITE (UT,15) I2,C43,C83,C84

15 FORMAT (’ TMODEALL: ’,I3,’, ’,3(A,:’, ’))
IF (I1.NE.I2.OR.
. C42.NE.C43.OR.
. C82.NE.C83.OR.
. C81.NE.C84) THEN

Q = .FALSE.
WRITE (UT,16)

16 FORMAT (’ ERROR AFTER TMODEALL’)
END IF

*

CALL TMODE(D8(1),SCRATCH(:45))
IF (C81.NE.D8(1)) THEN

Q = .FALSE.
WRITE (UT,17)

 17 FORMAT (’ ERROR IN ACCOUNT NUMBER = TMODE’)

444 U577-J-Z125-7-7600

FPOOL Example

END IF
*

CALL TMODE(I3,SCRATCH(1:10))
IF (I1.NE.I3) THEN

Q = .FALSE.
WRITE (UT,18)

18 FORMAT (’ ERROR IN DIALOG = TMODE’)
END IF

*
CALL GDATE(D2(1),D2(2),D2(3),D31,SCRATCH(:12))
IF (C21.NE.D2(1).OR.
. C22.NE.D2(2).OR.
. C23.NE.D2(3).OR.
. C31.NE.D31) THEN

Q = .FALSE.
WRITE (UT,19)

19 FORMAT (’ ERROR IN GDATECHAR = GDATE’)
END IF

*
CALL GDATE(I4(1),I4(2),I4(3),I4(4),SCRATCH(:31))
IF (I41.NE.I4(1).OR.
. I42.NE.I4(2).OR.
. I43.NE.I4(3).OR.
. I44.NE.I4(4)) THEN

Q = .FALSE.
WRITE (UT,20)

20 FORMAT (’ ERROR IN GDATEINT = GDATE’)
END IF

*
CALL TMODE(D4(2),D8(2),SCRATCH(2:46))
IF (D4(2) .NE.C42.OR.
. D8(2).NE.C82) THEN

Q = .FALSE.
WRITE (UT,21)

21 FORMAT (’ ERROR IN TASKANDUSERID = TMODE’)
END IF

*
CALL TMODE(I2,D4(3),D8(3),D8(4),SCRATCH(3:47))
IF (I1.NE.I2.OR.
. C42.NE.D4(3).OR.
. C82.NE.D8(3).OR.
. C81.NE.D8(4)) THEN

Q = .FALSE.
WRITE (UT,22)

22 FORMAT (’ ERROR IN TMODEALL = TMODE’)
END IF

*
IF (Q) THEN

WRITE (2,31)
WRITE (6,31)

ELSE
WRITE (2,32)
WRITE (6,32)
END IF

31 FORMAT (’ FPOOLEXAMP SUCCESSFUL’)
32 FORMAT (’ FPOOLEXAMP FAILURE ’)

STOP
END

U577-J-Z125-7-7600 445

Example FPOOL

2. Compilation

/DEL-SYS-FILE OMF
/START-PROG $FOR1
*COMOPT SRC=SRC.FPOOL,FPOOL=$TSOS.FOR1.FPOOL,END

where:
SRC.FPOOL Source program file
$TSOS.FOR1.FPOOL FPOOL file

3. Linkage

/START-PROG $TSOSLNK
PROG FPOOL,FILENAM=L.FPOOL
INCLUDE *
RESOLVE ,$TSOS.FOR1MODLIBS
RESOLVE ,$TSOS.FOR1.FPOOLLIB
END

where:
L.FPOOL File name of the executable program
$TSOS.FOR1MODLIBS FOR1 module library
$TSOS.FOR1.FPOOLLIB FPOOL object module library

4. Execution

/SET-TASKLIB $TSOS.FOR1MODLIBS
/START-PROG L.FPOOL

The following listing is output to the terminal:

% BLS0500 PROGRAM ’FPOOL’, VERSION ’ ’ OF ’91-08-20’ LOADED
BS2000 F O R 1 : FORTRAN PROGRAM "EXAMP"
STARTED ON 1991-08-20 AT 16:55:49
DIALOG: 53, D.H. TERMINAL 9750
ACCOUNT NUMBER: ACCNT03
DATE (CHAR): 08, 20, 91, 232
DATE (INT): 8, 20, 91, 232
CPU TIME (CHAR): 00, 00, 20, 7920
CPU TIME (INT): 0, 0, 20, 7946
TIME OF DAY (CHAR):16, 55, 49
TIME OF DAY (INT): 16, 55, 49
MEMORYMAPLONG: 2047, 3583,

TT
TTTTTTTTTTTTTTTTTTTTTT
REMAINDER F, 00

MEMORYMAPSHORT: 239,
TT
TTTTTTTTTTTTTTTTTTTTTTTFFF
FF
FF,
00

TASKANDUSERID: 9FIK, K3790052
TMODEALL: 53, 9FIK, K3790052, ACCNT03
FPOOLEXAMP SUCCESSFUL
STOP AT STMT 112 IN EXAMP

FPOOLEXAMP SUCCESSFUL
BS2000 F O R 1 : FORTRAN PROGRAM "EXAMP " ENDED PROPERLY AT 16:55:55
CPU - TIME USED : 0.0514 SECONDS
ELAPSED TIME : 5.9670 SECONDS

446 U577-J-Z125-7-7600

A Appendix

A.1 Abbreviations for FOR1 compiler options and option values

There are two ways of abbreviating the names of compiler options or option values:

1. Starting from the right, any number of letters may be dropped as long as the name
is still unique.

Example:

instead of LIST LIS or LI
instead of LISTFILE LISTFIL or LISTFI or LISTF

2. Special forms are considered declared:

abbreviations for composite names, e.g. instead of LISTFILE: LF
assignment of actually ambiguous abbreviations, e.g. instead of LIST: L

The following tables show abbreviations resulting from right truncation or from declara-
tion.

Abbreviations of the compiler options:

CCOM CC
CODE CO
COLLECT CL
COMPATIBLE COMPAT, COM
DIALOG D
NODIALOG ND
DIALOG-SAVE DIALOG-
EJECT EJ
ERRKILL EK
EXPAND EX
EXPUNDERFLOW EU

FORTRAN90-CHECK F90
FPOOL F
GEN G
IMPLICIT IM
INCLUDE-LIBRARY INC
LANGUAGE LA
LINECNT LC

U577-J-Z125-7-7600 447

Abbreviations for compiler options Appendix1

LINEEND LE
LINKAGE LNK
LIST L
LISTFILE LF
LIST-OUTPUT LIST-
MAXERR ME
MODULE-LIBRARY MOD
MSGLEVEL MSG
OBJECT OBJ, O
OPTIMIZE OPT
OPTIONS OPTIO
OUTPUT OU
PAD P
PROCEDURE- PR
OPTIMIZATION
REAL R
SAVE-CONSTANT SAV
SHARE-LIBRARY SH
SOURCE SRC
SOURCE-FORMAT SF
STANDARD-CHECK STD
SUPPLIEDBOUND SUP, SB
SYMTEST SYM
TESTOPT TO
TEXT-SEPARATOR TEX
TRUNCONST TC
UNIT U
UPDATE UPD

Abbreviations of the TESTOPT option values:

ALL A
ARG AR
BOUNDS B
CNTRL C
DEBUG D
STNR STN
STRING STR
SUBSCR SU
UNDEF U

Abbreviations of the LIST option values:

ALL A
ATR AT
CHANGE CH
DIAG D
DECOMP DE
ESD E
LIST L
MAP M
MIN MI
NONE N
OBJECT O
OPTIONS OP
SOURCE SRC

448 U577-J-Z125-7-7600

Appendix1 Abbreviations for compiler options

SUMMARY S
XREF X

Abbreviations of the OBJECT option values:

SHARE S

Abbreviations of the UNIT option values:

PUNCH PU
PRINT PR
READ R
WRITE W

Abbreviations of the MSGLEVEL option values:

DIAG D
ERROR E
NOTE N
SOURCE S, SRC
WARNING W

Abbreviations of the COMPATIBLE option values:

BGFOR BGF
BS3FOR BS3

The rules for abbreviating SDF operands are given in section 2.2.1.

U577-J-Z125-7-7600 449

Compiler phases Appendix 2

A.2 Compiler phases

Compilation is divided into several phases, which are executed once for each program
unit and loaded separately into virtual memory.
Information is exchanged between phases via virtual work files; in the event of an over-
flow, information is exchanged via external temporary work files. Interaction between
individual phases is controlled by the Compiler Management Facility (see Fig. A.2-1).

The compiler phases perform the following functions:

Compiler initialization
Reading in the options, opening files, etc.

Formal analysis 1
Reading in the source program; classification of statements; lexicographical and syntac-
tical analysis of specification statements;
configuration of constant and symbol tables.

Formal analysis 2
Identifying statement function definitions; lexicographical and syntactical analysis of exe-
cutable statements; further configuration of constant and symbol tables.

Semantic analysis 1
Semantic checking and detailing of specification statements.

Semantic analysis 2
Semantic checking and detailing of executable statements.

Global optimization
Taking the necessary actions for optimization.

Code generation
Assigning addresses to all variables, constants and temporary auxiliary entities; assig-
ning registers to operands; generating instruction sequences; assigning addresses to all
branch labels.

Compiler output
Assigning displacements and addresses to forward branches; generating LSD, TXT, RLD
and ESD records (see "System Conventions" manual [39]); generating standard and
additional listings; output of the summary messages concerning the compilation pro-
cess.

The initialization process serves to restart the compilation process for each program
unit.

450 U577-J-Z125-7-7600

Appendix 2 Compiler phases

This figure is not any longer available for the online pdf.

Fig. A.2-1: FOR1 compiler phases

U577-J-Z125-7-7600 451

Naming convention for library modules Appendix 3

A.3 Naming convention for library modules

The names and ENTRY names of the mathematical library modules and of the FPOOL
modules always begin with IF@ and FP@ respectively. The name or ENTRY name of a
mathematical library module or of an FPOOL routine is thus not identical with the name
of the function defined in FORTRAN. So, for example, the library module referenced by
the intrinsic name ABS has the name IF@ABS, and the library module referenced by
the intrinsic name DSIN has the name IF@DS.

Since the character "@" does not belong to the FORTRAN character set, accidental
name identity with self-defined subprograms is thereby excluded. This is particularly imp-
ortant because some mathematical library modules themselves in turn call other library
modules. This basic distinction ensures that with such "internal" function calls it is the
required library functions that are accessed and not any identically named user routines
that may be present.

However, care should be exercised when using names beginning with "ITS" or "IT0"
since some runtime system modules begin with these character combinations. Acciden-
tal name identity is not excluded here, unlike mathematical library functions and FPOOL
functions.

452 U577-J-Z125-7-7600

Appendix 4 PARAMETER command

A.4 PARAMETER operands and corresponding compiler options

For reasons of compatibility, the PARAMETER command is also effective for the FOR1
compiler. It may be used to submit compilation operands and operands controlling pro-
gram execution. However, the user should preferably insert compilation operands in
COMOPT statements or specify them as SDF operands, which offer considerably more
options.

In two cases there are no RUNOPT options corresponding to functions of PARAMETER
operands, only corresponding SDF operands:

CARD=YES for the input of runtime options (RUNOPTs, see section 6.3.1).
Corresponding SDF operand: RUNTIME-OPTIONS=YES().

DEBUG=YES for program continuation in the case of runtime errors in batch mode
(see section 6.5.2).
Corresponding SDF operand: OBJECT-CONTINUATION=YES.

A PARAMETER command is read from SYSCMD and, if it is needed, must be issued
before calling the compiler. The command remains valid until the next LOGOFF or SET-
JOB-STEP command is given (in procedures) or until the next change resulting from
another PARAMETER command.

For FOR1, the PARAMETER command entries have the same effect as if corresponding
compiler options preceded the actual compiler options. Thus the PARAMETER com-
mand entries will be effective only if they are not changed or overridden by the existing
compiler options.

Example:

The command

/PARAMETER ERRFIL=YES,MAP=YES,SAVLST=SOURCE,OBJLST=YES,LIST=YES

corresponds to the compiler options

*COMOPT LISTFILE=(SOURCE,DIAG,ESD,XREF,SUMMARY,OPTIONS)
*COMOPT LIST=(MAP,SOURCE,OPTIONS,DIAG,SUMMARY,OBJECT).

U577-J-Z125-7-7600 453

PARAMETER command Appendix 4

The following table compares the PARAMETER operands relevant to FOR1 with the
compiler options having the same meaning.

PARAM operand * COMOPT...

CODE = 1 CODE = EBCDIC
CODE = 2 CODE = ISO
CODE = 3 CODE = BCD
DEBUG = YES TESTOPT = (ALL)
DEBUG = NO TESTOPT = (STNR)
DIAG = YES LIST = (DIAG)
DIAG = NO NOLIST = (DIAG)
DISC = YES OBJECT = (*)
DISC = NO NOOBJECT = (*)
ERRFIL = YES LISTFILE = (DIAG)
ERRFIL = NO LISTFILE = (NODIAG)
LIST = YES LIST
LIST = NO NOLIST
MAP = YES LIST = (MAP)
MAP = NO LIST = (NOMAP)
OBJLST = YES LIST = (OBJECT)
OBJLST = NO LIST = (NOOBJECT)
SAVLST = SOURCE LISTFILE = (SOURCE, DIAG, ESD, XREF,

SUMMARY, OPTIONS)
SAVLST = LOCMAP LISTFILE = (MAP)
SAVLST = OBJECT LISTFILE = (OBJECT)
SAVLST = ALL LISTFILE = (ALL)
SAVLST = NO NOLISTFILE
XREF = YES LIST = (XREF)
XREF = NO LIST = (NOXREF)

Table A.4-1: PARAM operands and corresponding compiler options

For list output to SYSLST controlled by PARAM commands, the specification of
LIST=YES is always mandatory.

454 U577-J-Z125-7-7600

Appendix 5 IOSTAT error messages

A.5 IOSTAT messages

IOSTAT messages consist of

the IOSTAT code
and the message text.

Both are accessible to the user by program, which requires:

the IOSTAT parameter in the OPEN, READ or WRITE statement (see "FOR1" Refe-
rence Manual [21]).

the INCLUDE item IFNIOS from the FOR1 macro library
(FOR1MACLIB).

Use

Specify one of the following statements depending on the message text required:

a) for German messages:

%INCLUDE $FOR1MACLIB(IFNIOS),’*D’=’ ’

b) for English messages:

%INCLUDE $FOR1MACLIB(IFNIOS),’*E’=’ ’

c) for German and English messages at the same time:

%INCLUDE $FOR1MACLIB(IFNIOS),’*D’=’ ’,’*E’=’ ’

To suppress output of messages of the INCLUDE item IFNIOS in the source program
listing, EXPAND mode must be deactivated by means of COMOPT
NOEXPAND.

Example:

Access to the text of an IOSTAT message by program: Because of the invalid ACCESS-
METHOD specification in the SET-FILE-LINK command, the program issues IOSTAT 19
with its associated message text.

The following are displayed:

source program
commands for compilation and execution
IOSTAT message

U577-J-Z125-7-7600 455

IOSTAT error messages Appendix 5

1. Program (in file IO.SRC):

PROGRAM IOSEXAM
OPEN (UNIT=10,ACCESS=’DIRECT’,ERR=20,IOSTAT=IOS)
.
.
.
STOP

20 WRITE (6,’(A)’) IOSTATDEUTXT(IOS)
STOP
%INCLUDE LIBNAME(IFNIOS),’*D’=’ ’
END

2. Compilation:

/SET-FILE-LINK LINK-NAME=LIBNAME, FILE-NAME=$TSOS.FOR1MACLIB
/START-PROG $FOR1
*COMOPT INCLUDE-LIBRARY=LIBNAME, SOURCE=IO.SRC, NOEXPAND, END

3. Execution of the program linked by TSOSLNK:

/SET-TASKLIB LIB=$TSOS.FOR1MODLIBS
/SET-FILE-LINK LINK-NAME=DSET10, FILE-NAME=filename, ACCESS-METHOD=SAM
/START-PROG L.IOSEXAMP

4. Output via SYSLST:

IOSTAT=19: OPEN PARAMS DO NOT MATCH FILE/DEVICE ATTRIBUTES

456 U577-J-Z125-7-7600

Appendix 5 IOSTAT error messages

List of IOSTAT messages

The file IFNIOS contains all IOSTAT messages. All lines marked "*D" are German messa-
ges; all lines marked "*E" are English messages.

The English IOSTAT messages from IFNIOS are listed in the following:

*E CHARACTER IOSTATENGTXT*104 (-1:200)
*E DATA IOSTATENGTXT/
*E F ’IOSTAT= -1: END-OF-FILE CONDITION’
*E F,’IOSTAT= 0: OPERATION ENDED PROPERLY’
*E F,’IOSTAT= 1: PREVIOUS I/O OPERATION NOT PROPERLY TERMINATED’
*E F,’IOSTAT= 2: UNIT NUMBER OUT OF RANGE’
*E F,’IOSTAT= 3: NO FILE CONNECTED TO REQUESTED UNIT’
*E F,’IOSTAT= 4: OPERATION NOT PERMITTED ON REQUESTED UNIT’
*E F,’IOSTAT= 5: OPERATION NOT PERMITTED ON REQUESTED FILE’
*E F,’IOSTAT= 6: SEQUENCE OF OPERATIONS NOT PERMITTED’
*E F,’IOSTAT= 7: INITIAL CALL PARAMS INCONSISTENT’
*E F,’IOSTAT= 8: ILLEGAL PARAM IN INITIAL CALL’
*E F,’IOSTAT= 14: PAM FILE NOT OPENED’
*E F,’IOSTAT= 15: OUTPUT OPERATION ON READ-ONLY FILE’
*E F,’IOSTAT= 16: OPEN PARAMS INCONSISTENT’
*E F,’IOSTAT= 17: ILLEGAL FILENAME IN OPEN STATEMENT’
*E F,’IOSTAT= 18: ILLEGAL PARAM IN OPEN STATEMENT’
*E F,’IOSTAT= 19: OPEN PARAMS DO NOT MATCH FILE/DEVICE ATTRIBUTES’
*E F,’IOSTAT= 20: "OLD" FILE NOT IN CATALOGUE OR EMPTY’
*E F,’IOSTAT= 21: FILE COULD NOT BE OPENED’
*E F,’IOSTAT= 22: NO DEVICE AVAILABLE FOR PRIVATE VOLUME’
*E F,’IOSTAT= 23: "NEW" FILE ALREADY IN CATALOGUE AND NOT EMPTY’
*E F,’IOSTAT= 24: PHYSICAL RECSIZE LESS THAN FORTRAN RECLENGTH. TRUNCA
*E FTION MAY APPEAR’
*E F,’IOSTAT= 25: ILLEGAL OR MISSING PASSWORD FOR PROTECTED FILE’
*E F,’IOSTAT= 26: OPEN ON A LOCKED FILE’
*E F,’IOSTAT= 27: PRIVATE VOLUME HAS NO STD LABELS’
*E F,’IOSTAT= 28: ILLEGAL PARAMS IN CLOSE’
*E F,’IOSTAT= 29: CLOSE PARAMS DON’’T MATCH FILE/DEVICE ATTRIBUTES’
*E F,’IOSTAT= 30: CLOSE STATUS NEITHER KEEP NOR DELETE, KEEP ASSUMED’
*E F,’IOSTAT= 31: UNIT TO BE CLOSED IS NOT CONNECTED. CLOSE IGNORED’
*E F,’IOSTAT= 32: IRRECOVERABLE ERROR WHILE EXECUTING CLOSE’
*E F,’IOSTAT= 33: ILLEGAL CLOSE STATUS, KEEP ASSUMED’
*E F,’IOSTAT= 34: ILLEGAL FILENAME IN INQUIRE’
*E F,’IOSTAT= 35: FILENAME MISSING IN INQUIRE BY FILE’

*E F,’IOSTAT= 36: ILLEGAL PARAMS IN INQUIRE’
*E F,’IOSTAT= 37: WRPASS MISSING, OPEN-MODE - INPUT, FURTHER OUTPUT
*E FPERATIONS WILL BE REJECTED’
*E F,’IOSTAT= 38: FILE LOCKED, OPEN-MODE - INPUT, FURTHER OUTPUT OPER
*E FATIONS WILL BE REJECTED’
*E F,’IOSTAT= 39: OPEN ON STANDARD-FORTRAN-FILE. REDIRECTION ONLY WIT
*E FH RUNOPT’
*E F,’IOSTAT= 40: ILLEGAL COUNT IN POSITIONING STATEMENT’
*E F,’IOSTAT= 41: BACKFILE/SKIPFILE ONLY ON TAPE FILES’
*E F,’IOSTAT= 42: BACKSPACE/SKIPREC/REWIND ONLY ON SEQ. FILES’
*E F,’IOSTAT= 43: FIND ONLY ON D.A. FILES’
*E F,’IOSTAT= 44: RECORD FORMAT TYPE UNKNOWN’
*E F,’IOSTAT= 48: RECORD NUMBER EXCEEDS MAXREC ATTRIBUTE OR : END OF S
*E FTORAGE FILE’

U577-J-Z125-7-7600 457

IOSTAT error messages Appendix 5

*E F,’IOSTAT= 49: RECORD SIZE EXCEEDS BUFFER SIZE.RECORD TRUNCATED’
*E F,’IOSTAT= 50: IRRECOV. ERROR WHILE PROCESSING A SYSTEM FILE’
*E F,’IOSTAT= 51: IRRECOV. ERROR WHILE PROCESSING AN EAM FILE’
*E F,’IOSTAT= 52: IRRECOV. ERROR WHILE PROCESSING A USER FILE’
*E F,’IOSTAT= 53: ILLEGAL USE OF D M S’
*E F,’IOSTAT= 54: SPECIFIED RECORD NOT FOUND’
*E F,’IOSTAT= 55: MULTIPLE KEY DETECTED ON ISAM FILE’
*E F,’IOSTAT= 56: HARDWARE ERROR’
*E F,’IOSTAT= 57: SPECIFIED ISAM RECORD LOCKED’
*E F,’IOSTAT= 58: RECORD POINTER OUTSIDE I/O BUFFER’
*E F,’IOSTAT= 59: RECORD NUMBER NOT GREATER 0’
*E F,’IOSTAT= 60: NON-NUMERIC KEY OR KEY TOO LARGE’
*E F,’IOSTAT= 61: NON-CHARACTER KEY’
*E F,’IOSTAT= 62: STRING LENGTH EXCEEDS RECORD LENGTH’
*E F,’IOSTAT= 64: B-FORMAT NOT ALLOWED FOR INTEGER DATUM’
*E F,’IOSTAT= 65: B-FORMAT NOT ALLOWED FOR REAL DATUM’
*E F,’IOSTAT= 66: D (E,F,Q) FORMAT NOT ALLOWED FOR CHARACTER DATUM’
*E F,’IOSTAT= 67: D (E,F,Q) FORMAT NOT ALLOWED FOR BIT DATUM’
*E F,’IOSTAT= 68: D (E,F,Q) FORMAT NOT ALLOWED FOR LOGICAL DATUM’
*E F,’IOSTAT= 69: I FORMAT NOT ALLOWED FOR CHARACTER DATUM’
*E F,’IOSTAT= 70: I FORMAT NOT ALLOWED FOR BIT DATUM’
*E F,’IOSTAT= 71: I FORMAT NOT ALLOWED FOR LOGICAL DATUM’
*E F,’IOSTAT= 72: L FORMAT NOT ALLOWED FOR INTEGER DATUM’
*E F,’IOSTAT= 73: L FORMAT NOT ALLOWED FOR REAL DATUM’
*E F,’IOSTAT= 74: L FORMAT NOT ALLOWED FOR CHARACTER DATUM’
*E F,’IOSTAT= 75: BIT DATA NOT YET IMPLEMENTED’
*E F,’IOSTAT= 76: REAL CONVERSION WITH I FORMAT NOT IMPLEMENTED’
*E F,’IOSTAT= 77: INT. CONVERSION WITH D,E,Q FORMAT NOT IMPL.’
*E F,’IOSTAT= 78: INCONSISTENT FORMAT’
*E F,’IOSTAT= 80: INTEGER VALUE TOO LARGE’
*E F,’IOSTAT= 81: ILLEGAL INTEGER VALUE’
*E F,’IOSTAT= 82: ILLEGAL REAL VALUE’
*E F,’IOSTAT= 83: ILLEGAL BIT VALUE’
*E F,’IOSTAT= 84: ILLEGAL CHARACTER VALUE’
*E F,’IOSTAT= 85: ILLEGAL HEX. CHARACTER’
*E F,’IOSTAT= 86: ILLEGAL LOGICAL VALUE’
*E F,’IOSTAT= 96: FORMAT SYNTAX ERROR: MISSING LEFT PARENTHESIS ’
*E F,’IOSTAT= 97: FORMAT SYNTAX ERROR: FORMAT EMPTY’
*E F,’IOSTAT= 98: FORMAT SYNTAX ERROR: ILLEGAL FORMAT ELEMENT’
*E F,’IOSTAT= 99: FORMAT SYNTAX ERROR: ILLEGAL FACTOR ZERO’
*E F,’IOSTAT=100: FORMAT SYNTAX ERROR: EMPTY FORMAT GROUP’
*E F,’IOSTAT=101: FORMAT SYNTAX ERROR: MISSING RIGHT PARENTHESIS’
*E F,’IOSTAT=102: FORMAT SYNTAX ERROR: REPETITION FACTOR WITHOUT FORMA
*E FT ELEMENT’
*E F,’IOSTAT=103: FORMAT SYNTAX ERROR: ILLEGAL POSITION OF SIGN ’
*E F,’IOSTAT=104: FORMAT SYNTAX ERROR: REPETITION FACTOR NOT ALLOWED’
*E F,’IOSTAT=105: FORMAT SYNTAX ERROR: MISSING END QUOTE OF LITERAL’
*E F,’IOSTAT=106: FORMAT SYNTAX ERROR: LITERAL OF LENGTH 0’
*E F,’IOSTAT=107: FORMAT SYNTAX ERROR: REPETITION FACTOR TOO LARGE’
*E F,’IOSTAT=108: FORMAT SYNTAX ERROR: DELIMITER MISSING’
*E F,’IOSTAT=109: FORMAT SYNTAX ERROR: FIELD WIDTH MISSING’
*E F,’IOSTAT=110: FORMAT SYNTAX ERROR: FRACTIONAL PART MISSING’
*E F,’IOSTAT=111: FORMAT SYNTAX ERROR: EXPONENT DESIGNATOR ONLY WITH E
*E F/G FORMAT’
*E F,’IOSTAT=112: FORMAT SYNTAX ERROR: MISSING EXPONENT LENGTH’
*E F,’IOSTAT=113: OBJECT FORMAT SYNTAX ERROR: FRACTIONAL PART NOT ALLO
*E FWED’
*E F,’IOSTAT=114: OBJECT FORMAT SYNTAX ERROR: MISSING NUMERIC COUNT’
*E F,’IOSTAT=115: OBJECT FORMAT SYNTAX ERROR: FED SEQUENCE ERROR’
*E F,’IOSTAT=116: OBJECT FORMAT SYNTAX ERROR: NUMERIC PART TOO LARGE’
*E F,’IOSTAT=117: OBJECT FORMAT SYNTAX ERROR: FIELD WIDTH TOO LARGE’
*E F,’IOSTAT=118: OBJECT FORMAT SYNTAX ERROR: FIELD WIDTH W=0’
*E F,’IOSTAT=119: NO DATA FORMAT IN REVERSION PART.REVERSION REJECTED’
*E F,’IOSTAT=120: UNFORMATTED I/O READS ONLY 1 RECORD!’
*D F’

458 U577-J-Z125-7-7600

Appendix 5 IOSTAT error messages

*E F,’IOSTAT=121: ILLEGAL IDENTIFIER IN ASYNCHR. WAIT’
*E F,’IOSTAT=122: GCW: TOO MANY SUBRECORDS’
*E F,’IOSTAT=123: UNFORMATTED WRITE: RECORD SPLIT OCCURRED’
*E F,’IOSTAT=128: ILLEGAL CHARACTER IN RECORD’
*E F,’IOSTAT=129: ILLEGAL VALUE SEQUENCE’
*E F,’IOSTAT=130: ILLEGAL COMPLEX VALUE’
*E F,’IOSTAT=131: ILLEGAL LEFT PARENTHESIS’
*E F,’IOSTAT=132: STRING WITHOUT QUOTES’
*E F,’IOSTAT=144: ILLEGAL NAME IN NAMELIST RECORD’
*E F,’IOSTAT=145: VARIABLE NOT IN NAMELIST’
*E F,’IOSTAT=146: SIMPLE VARIABLE WITH INDICES’
*E F,’IOSTAT=147: ILLEGAL NUMBER OF INDICES’
*E F,’IOSTAT=148: NAMELIST NAME MISSING IN FIRST RECORD’
*E F,’IOSTAT=149: NULL VALUE IN NAMELIST RECORD’
*E F,’IOSTAT=150: TOO MANY VALUES FOLLOWING NAME OR NAME MISSING’
*E F,’IOSTAT=151: END MISSING’
*E F,’IOSTAT=152: ILLEGAL INDEX’
*E F,’IOSTAT=153: REPETITION FACTOR TOO HIGH: (REPFAC * DATA LENGTH >
*E F32 KBYTE)’
*E F,’IOSTAT=156: IRRECOVERABLE ERROR DURING PAUSE/STOP’
*E F,’IOSTAT=157: ILLEGAL DATA TYPE IN PAUSE/STOP’
*E F,’IOSTAT=158: WARNING:PAUSE MESSAGE TRUNCATED’
*E F,’IOSTAT=159: WARNING:PAUSE ANSWER TRUNCATED’
*D F/

U577-J-Z125-7-7600 459

Compiler listings Appendix 6

A.6 Examples of compiler listings

A.6.1 Source listing with diagnostic listing

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 16:35:28 PAGE 1
PROGRAM UNIT: INV

D DO/IF SEG STMT I/H LINE SOURCE-TEXT COL73-80 RECORD-ID.

1/1 1 1 PROGRAM INV 07000000
1 2 2 COMMON IR 15000000

* 1 3 3 1 WRITE (2,10) 23000000 *
***** WARNING (SA047) ******* *UNREFERENCED LABEL************

1 4 4 READ (1,11) IR 30000000
1 5 5 IF (IR.GT.3) THEN 38000000

* 1 2 6 6 GO TO 2 46000000 *
***** SEVERE (FA185) ******* *LABEL 2 NOT DECLARED**********

1 2 7 7 ELSE IF (IR.EQ.0) THEN 53000000
1 3 8 8 CALL DETS (A) 61000000
1 3 9 9 END IF 69000000

3 10 10 10 FORMAT(’ ENTER RANK OF MATRIX’) 76000000
3 11 11 11 FORMAT (I1) 84000000
4 12 12 END 92000000

*** DIAGNOSTIC LISTING *** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 16:35:28 PAGE 2
PROGRAM UNIT: INV

D DO/IF SEG STMT I/H LINE SOURCE-TEXT COL73-80 RECORD-ID.

* 1 3 3 1 WRITE (2,10) 23000000 *
WARNING (SA047) UNREFERENCED LABEL #1

* 1 2 6 6 GO TO 2 46000000 *
SEVERE (FA185) LABEL 2 NOT DECLARED

Note Statement 6 should read "GOTO 1".

A.6.2 Source listings (main program and subprogram)

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 1
PROGRAM UNIT: DIALOG

DO/IF SEG STMT I/H LINE SOURCE-TEXT COL73-80 RECORD-ID.

1/1 1 1 PROGRAM DIALOG 02000000
1 2 2 REAL A(10),B 03000000
1 3 3 DIMENSION B(5) 04000000

4 **** 05000000
2 4 5 DO 10 I=1,5 06000000

1 3 5 6 B(I)=A(I)+I 07000000
1 4 6 7 10 A(I)=I 08000000

4 7 8 WRITE (2,11) A 09000000
4 8 9 11 FORMAT (’***’,5F5.2) 10000000
4 9 10 CALL SUBA(A(1)) 11000000
4 10 11 END 12000000

**** SOURCE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:33 PAGE 2
PROGRAM UNIT: SUBA

DO/IF SEG STMT I/H LINE SOURCE-TEXT COL73-80 RECORD-ID.

1/1 1 1 SUBROUTINE SUBA(X) 18000000
1 2 2 Y=X*X 19000000
1 3 3 END 20000000

460 U577-J-Z125-7-7600

Appendix 6 Compiler listings

A.6.3 Change listing

**** CHANGE LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 1
PROGRAM UNIT: DIALOG

(OLD) @ 3.0000: REEL A(10),B
(NEW) @ 3.0000: REAL A(10),B
(IN) @P
(IN) @ 5.0000: DO 10 I=1,5
(OLD) @ 5.0000: DO 10 I=1.5
(NEW) @ 5.0000: DO 10 I=1,5
(IN) @CON
(OUT) FOR1: RECOMPILATION OF ACTUAL P.U. INITIATED
(IN) @I3.5
(IN) @IN3.5
(NEW) @ 3.5000: DIMENSION B(5)
(IN) @R
(IN) @P1-2
(IN) @D2
(OUT) FOR1: 1 LINE(S) DELETED
(IN) @CON
(OUT) FOR1: RECOMPILATION OF ACTUAL P.U. INITIATED

A.6.4 ESD listing

**** E S D LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 1
PROGRAM UNIT: DIALOG

IDENTIFIER ESID TYPE DISPL. LENGTH IDENTIFIER ESID TYPE DISPL. LENGTH IDENTIFIER ESID TYPE DISPL. LENGTH

DIALOG 0001 SD 000000 000250 IF@FCTL 000C VC 000168 IF@XINI 0009 VC 00001C
DIALOG@@ 0002 SD 000250 000278 IF@FEDC 000D VC 00016C IF@XPRO 000A VC 000160
I@@@RTCA 0003 CM 000000 001000 IF@RETN 000F VC 000000 IF@XTCA 0005 VC 0001E4
IF@@MPI 0002 LD 000000 IF@SINI 000E VC 000170 IT0PCD 0004 VC 000000
IF@CTER 0010 VC 000000 IF@XFCO 0006 VC 0001E0 SUBA 0008 VC 0001D8
IF@ERROR 000B VC 000164 IF@XICA 0007 VC 0001DC
**** E S D LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:33 PAGE 2

PROGRAM UNIT: SUBA
IDENTIFIER ESID TYPE DISPL. LENGTH IDENTIFIER ESID TYPE DISPL. LENGTH IDENTIFIER ESID TYPE DISPL. LENGTH

I@@@RTCA 0003 CM 000000 001000 IF@ERROR 0006 VC 000154 IT0PCD 0004 VC 000000
IF@@MPI 0005 ER 000000 IF@RETN 0008 VC 000000 SUBA 0001 SD 000000 0001E8
IF@CTER 0009 VC 000000 IF@SINI 0007 VC 000158 SUBA@@@@ 0002 SD 0001E8 000138

U577-J-Z125-7-7600 461

Compiler listings Appendix 6

A.6.5 Map listing

**** M A P LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 1
CODE + CONSTANTS SECTION: DIALOG ESID=0001 PROGRAM UNIT: DIALOG SORTED BY ADDRESS
SYMBOL TYPE ADR SYMBOL TYPE ADR SYMBOL TYPE ADR

10 STMNT_LABEL 00000080 11 FORMT_LABEL
**** M A P LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 2

CODE + CONSTANTS SECTION: DIALOG ESID=0001 PROGRAM UNIT: DIALOG SORTED BY SYMBOL
SYMBOL TYPE ADR SYMBOL TYPE ADR SYMBOL TYPE ADR

10 STMNT_LABEL 00000080 11 FORMT_LABEL
**** M A P LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 3

L O C A L DATA SECTION: DIALOG@@ ESID=0002 PROGRAM UNIT: DIALOG SORTED BY ADDRESS
SYMBOL TYPE ADR SYMBOL TYPE ADR SYMBOL TYPE ADR

SUBA.A EXT_SUBR 000001D8 IF@XTCA.A EXT_SUBR 000001E4 I I4 00000424
IF@XICA.A EXT_SUBR 000001DC A R4(1) 000003E8 B.D R4(1) 00000484
IF@XFCO.A EXT_SUBR 000001E0 B R4(1) 00000410 A.D R4(1) 00000494
**** M A P LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 4

L O C A L DATA SECTION: DIALOG@@ ESID=0002 PROGRAM UNIT: DIALOG SORTED BY SYMBOL
SYMBOL TYPE ADR SYMBOL TYPE ADR SYMBOL TYPE ADR

A R4(1) 000003E8 B.D R4(1) 00000484 IF@XICA.A EXT_SUBR 000001DC
A.D R4(1) 00000494 I I4 00000424 IF@XTCA.A EXT_SUBR 000001E4
B R4(1) 00000410 IF@XFCO.A EXT_SUBR 000001E0 SUBA.A EXT_SUBR 000001D8
**** M A P LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:33 PAGE 5

L O C A L DATA SECTION: SUBA@@@@ ESID=0002 PROGRAM UNIT: SUBA SORTED BY ADDRESS
SYMBOL TYPE ADR SYMBOL TYPE ADR SYMBOL TYPE ADR

X R4 00000304 Y R4 00000308
**** M A P LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:33 PAGE 6

L O C A L DATA SECTION: SUBA@@@@ ESID=0002 PROGRAM UNIT: SUBA SORTED BY SYMBOL
SYMBOL TYPE ADR SYMBOL TYPE ADR SYMBOL TYPE ADR

X R4 00000304 Y R4 00000308

A.6.6 Cross-reference listing

**** X R E F LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 1
PROGRAM UNIT: DIALOG

IDENTIFIER DISPL DESCR SPEC ATTRIBUTES AND REFERENCES (/ : SPECIFICATION; = : ASSIGNMENT)

A 0003E8 000494 2 ARRAY, REAL*4(1) /2 5 =6 7 =9
B 000410 000484 2 ARRAY, REAL*4(1) /2 /3 =5
DIALOG * PROGRAM NAME 1
I 000424 * VARIABLE, INTEGER*4 =4 5 5 5 6 6
SUBA 0001D8 * EXTERNAL SUBROUTINE 9
10 000080 6 STATEMENT LABEL 4 /6
11 8 FORMAT LABEL 7 8 /8
**** X R E F LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:33 PAGE 2

PROGRAM UNIT: SUBA
IDENTIFIER DISPL DESCR SPEC ATTRIBUTES AND REFERENCES (/ : SPECIFICATION; = : ASSIGNMENT)

SUBA * SUBROUTINE NAME(1) 1
X 000304 * VARIABLE, REAL*4, DUMMY ARGUMENT 1 2 2
Y 000308 * VARIABLE, REAL*4 =2

462 U577-J-Z125-7-7600

Appendix 6 Compiler listings

A.6.7 Object listing

**** OBJECT LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 1
PROGRAM UNIT: DIALOG

FLG DISPL OPERATION ADDR1 ADDR2 STMNT ASSEMBLY CODE SYMB.ADDR1, SYMB.ADDR2

1 ***************************************
2 ** C O D E A R E A **
3 ***************************************
4 *

000000 5 DIALOG EQU *
000000 6 *

7 ***** STATEMENT 1 (ENTRY) *************
8 * PROGRAM DIALOG
9 * **** SEGMENT 1 ****

000000 17 EE 10 XR 14,14
000002 05 B0 11 BALR 11,0

12 * CODE SLICE BEGIN * (SLICE 1)
000004 13 USING *,11
000004 98 CD B010 000014 14 LM 12,13,16(11)
000008 47 F0 B024 000028 15 BC 15,36(0,11)
00000C 05 16 DC AL1(05)
00000D C4C9C1D3D6C740 17 DC CL7’DIALOG ’
000014 000000D8 18 DC A(DIALOG##)
000018 00000250 19 DC A(DIALOG@@)
00001C 00000000 20 DC V(IF@XINI)
000020 00000024 21 DC A(*+4)
000024 22 DC X’0000000C’
0000D8 23 USING DIALOG##,12
000250 24 USING DIALOG@@,13
000028 58 F0 B018 00001C 25 L 15,24(0,11)
00002C D5 03 B018 C0A0 00001C 000178 26 CLC 24(4,11),160(12)
000032 47 80 0001 000001 27 BC 8,1(0,0)
000036 50 E0 D004 000254 28 ST 14,4(0,13)
00003A 41 10 B01C 000020 29 LA 1,28(0,11)
00003E 05 EF 30 BALR 14,15
000040 58 90 D04C 00029C 31 L 9,76(0,13)
000044 50 D0 900C 00000C 32 ST 13,12(0,9)

33 ***** STATEMENT 4 (DO) ****************
34 * DO 10 I=1,5

000048 41 F0 0001 000001 35 LA 15,1(0,0) 1
00004C 50 F0 D1D4 000424 36 ST 15,468(0,13) I
000050 41 A0 0005 000005 37 LA 10,5(0,0) 5

38 ***** STATEMENT 5 (MOVED STMT) ********
000054 41 10 0004 000004 39 LA 1,4(0,0) 4
000058 41 30 0004 000004 40 LA 3,4(0,0) 4
00005C 58 50 D1D4 000424 41 L 5,468(0,13) I
000060 47 F0 B062 000066 42 BC 15,98(0,11) %L5

43 ***** STATEMENT 5 (INCR STMT) ********* **** SEGMENT 2 ****
000064 1A 13 44 %L3 AR 1,3 %V1, %V2

45 ***** STATEMENT 5 (ASSIGNMENT) ********
46 * B(I)=A(I)+I
47 * **** SEGMENT 3 ****

000066 78 01 D194 0003E4 48 %L5 LE 0,404(1,13) A
00006A 68 20 C0E0 0001B8 49 LD 2,224(0,12)
00006E 50 50 D0A4 0002F4 50 ST 5,164(0,13) I
000072 97 80 D0A4 0002F4 51 XI 164(13),128
000076 6B 20 D0A0 0002F0 52 SD 2,160(0,13)
00007A 3A 02 53 AER 0,2 I
00007C 70 01 D1BC 00040C 54 STE 0,444(1,13) B

55 ***** STATEMENT 6 (ASSIGNMENT) ********
56 * 10 A(I)=I

000080 68 00 C0E0 0001B8 57 #10 LD 0,224(0,12)

U577-J-Z125-7-7600 463

Compiler listings Appendix 6

**** OBJECT LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 2
PROGRAM UNIT: DIALOG

FLG DISPL OPERATION ADDR1 ADDR2 STMNT ASSEMBLY CODE SYMB.ADDR1, SYMB.ADDR2

000084 50 50 D0A4 0002F4 58 ST 5,164(0,13) I
000088 97 80 D0A4 0002F4 59 XI 164(13),128
00008C 6B 00 D0A0 0002F0 60 SD 0,160(0,13)
000090 70 01 D194 0003E4 61 STE 0,404(1,13) A

62 ***** STATEMENT 6 (DOEND) *************
63 * 10 A(I)=I

000094 1A 5F 64 AR 5,15 I, 1
000096 46 A0 B060 000064 65 BCT 10,96(0,11) %L3

66 * **** SEGMENT 4 ****
00009A 50 50 D1D4 000424 67 ST 5,468(0,13) I

68 ***** STATEMENT 7 (WRITE) *************
69 * WRITE (2,11) A

00009E 41 10 D1F0 000440 70 LA 1,496(0,13)
0000A2 58 F0 C104 0001DC 71 L 15,260(0,12)
0000A6 41 00 0003 000003 72 LA 0,3(0,0)
0000AA 05 EF 73 BALR 14,15 IF@XICA
0000AC 58 F0 C108 0001E0 74 L 15,264(0,12)
0000B0 41 10 D214 000464 75 LA 1,532(0,13)
000464 76 USING DIALOG@@+532,1
0000B4 41 00 0001 000001 77 LA 0,1(0,0)
0000B8 05 EF 78 BALR 14,15 IF@XFCO
0000BA 58 F0 C10C 0001E4 79 L 15,268(0,12)
0000BE 17 00 80 XR 0,0
0000C0 05 EF 81 BALR 14,15 IF@XTCA

82 ***** STATEMENT 9 (CALL) **************
83 * CALL SUBA(A(1))

0000C2 58 F0 C100 0001D8 84 L 15,256(0,12)
0000C6 41 10 D1E0 000430 85 LA 1,480(0,13)
000430 86 USING DIALOG@@+480,1
0000CA 41 00 0001 000001 87 LA 0,1(0,0)
0000CE 05 EF 88 BALR 14,15 SUBA

89 ***** STATEMENT 10 (END) **************
90 * END

0000D0 58 F0 C088 000160 91 L 15,136(0,12) IF@XPRO
0000D4 05 EF 92 BALR 14,15

93 ***************************************
94 ** C O N S T A N T A R E A **
95 ***************************************
96 *

0000D6 97 ORG
0000D8 98 DIALOG## DS 0D
0000D8 99 USING *,12

100 * RUNTIME COMMUNICATION AREA
0000D8 F3F0C1E4C7F9F1 101 DC ’30AUG91’
0000DF 5B081E0F29019135 102 DC X’5B081E0F’
0000E7 40C6D6D9F140E74040E5F24BF2C1F0 103 DC ’ FOR1 X V2.2A00’
0000F7 A0 104 DC X’A0’
0000F8 00000004 105 DC A(DIALOG)
0000FC FFFFFFFF 106 DC F’-1’
000100 41000411 107 DC X’41000411’
000104 58F0C08C 108 DC X’58F0C08C’
000108 07FF 109 DC X’07FF’
00010C 110 ORG DIALOG##+52
00010C 00000004 111 DC A(DIALOG+4) CODE SLICE ADDRESS (SLICE 1)
0001E4 112 ORG DIALOG##+268
0001E4 00000000 113 DC V(IF@XTCA) EXTERNAL REFERENCE

464 U577-J-Z125-7-7600

Appendix 6 Compiler listings

**** OBJECT LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 3
PROGRAM UNIT: DIALOG

FLG DISPL OPERATION ADDR1 ADDR2 STMNT ASSEMBLY CODE SYMB.ADDR1, SYMB.ADDR2

0001E0 114 ORG DIALOG##+264
0001E0 00000000 115 DC V(IF@XFCO)
0001DC 116 ORG DIALOG##+260
0001DC 00000000 117 DC V(IF@XICA)
0001D8 118 ORG DIALOG##+256
0001D8 00000000 119 DC V(SUBA)
000160 120 ORG DIALOG##+136
000160 00000000 121 DC V(IF@XPRO)
000164 00000000 122 DC V(IF@ERROR)
000168 00000000 123 DC V(IF@FCTL)
00016C 00000000 124 DC V(IF@FEDC)
000170 00000000 125 DC V(IF@SINI)
000178 126 ORG DIALOG##+160
000178 00000000 127 DC X’00000000’ 0.0000000000000000000000000000000000+00
00017C 00000000 128 DC X’00000000’
000180 00000000 129 DC X’00000000’
000184 00000000 130 DC X’00000000’
000198 131 ORG DIALOG##+192
000198 00000001 132 DC X’00000001’ 1
00019C 00000002 133 DC X’00000002’ 2
0001A8 134 ORG DIALOG##+208
0001A8 4E000000 135 DC X’4E000000’ 0.000000000000000000E+00
0001AC 00000000 136 DC X’00000000’
0001B0 4E000001 137 DC X’4E000001’ 0.429496729600000000E+10
0001B4 00000000 138 DC X’00000000’
0001B8 CE000000 139 DC X’CE000000’ -0.214748364800000000E+10
0001BC 80000000 140 DC X’80000000’
0001C0 40 141 DC ’ ’
0001CC 142 ORG DIALOG##+244
0001CC 00000005 143 DC X’00000005’ 5
0001D0 00000004 144 DC X’00000004’ 4
0001D4 01018600 145 DC X’01018600’ 16877056
0001EA 146 ORG DIALOG##+274
0001EA 4DF3C85C5C5C6BF5C6F54BF25D4040 147 DC ’(3H***,5F5.2) ’

148 * EVENTHANDLER LIST
0001FC 149 ORG DIALOG##+292
0001FC 01E70000 150 DC X’01E70000’
000200 00000214 151 DC X’00000214’ ADDR OF PU_NAME
000204 00000000 152 DC V(IF@RETN) TERMINATION ROUTINE
000208 00000000 153 DC V(IF@CTER) PROCHK ROUTINE
00020C 00000000 154 DC V(IF@CTER) ERROR ROUTINE
000210 FFFFFFFF 155 DC X’FFFFFFFF’ OTHER EVENTS ROUTINE
000214 06 156 DC X’06’
000215 C4C9C1D3D6C7 157 DC ’DIALOG’
00014C 158 ORG DIALOG##+116
00014C 0000021C 159 DC A(DIALOG##+324) ADDRESS OF STATEMENT TABLE
00021C 160 ORG DIALOG##+324
00021C 0000003000FC0000 161 DC X’0000003000FC0000’
000224 000124FC00000004 162 DC X’000124FC00000004’
00022C 0608FC00000005FF 163 DC X’0608FC00000005FF’
000234 01FC00000005FF0D 164 DC X’01FC00000005FF0D’
00023C 0AFC00000006FF05 165 DC X’0AFC00000006FF05’
000244 12FC000000090703 166 DC X’12FC000000090703’

U577-J-Z125-7-7600 465

Compiler listings Appendix 6

**** OBJECT LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 4
PROGRAM UNIT: DIALOG

FLG DISPL OPERATION ADDR1 ADDR2 STMNT ASSEMBLY CODE SYMB.ADDR1, SYMB.ADDR2

167 ***************************************
168 ** D A T A A R E A **
169 ***************************************
170 *

00024D 171 ORG
000250 172 DS 0D
000250 173 DIALOG@@ CSECT
000250 174 USING *,13
000250 175 DS 632C
000250 176 ORG DIALOG@@+0
000250 0001FEFF 177 DC X’0001FEFF’ SAVE AREA
000298 178 ORG DIALOG@@+72
000298 00000000 179 DC A(I@@@RTCA) RUNTIME COMMUNICATION AREA
00029C 00000000 180 DC V(IT0PCD)
0002A0 000001FC 181 DC X’000001FC’ A(IT0EHL)
0002A0 182 ORG DIALOG@@+80
0002A0 0000021C00000000 183 DC X’0000021C00000000’ STMT TABLE AND COUNT TABLE ADDR
0002F0 184 ORG DIALOG@@+160
0002F0 CE00000000000000 185 DC X’CE00000000000000’
0002FC 186 ORG DIALOG@@+172
0002FC 05 187 DC X’05’
0002FD C4C9C1D3D6C740 188 DC ’DIALOG ’
0003DC 189 ORG DIALOG@@+396
0003DC 820004A4 190 DC A(DIALOG##+596) ADDRESS OF FORMAT LABEL TABLE
0003E0 000004C8 191 DC A(DIALOG@@+632) DATA SLICE ADDRESS (ITA)
000430 192 ORG DIALOG@@+480
000430 000003E8 193 DC X’000003E8’ A() ARGUMENT LIST
000434 00000494 194 DC X’00000494’
000438 FF030010 195 DC X’FF030010’
00043C 05060000 196 DC X’05060000’
000440 000001D4 197 DC X’000001D4’ 16877056 ARGUMENT LIST
000444 0000019C 198 DC X’0000019C’ 2
000448 000004B4 199 DC X’000004B4’ ’(3H***,5F5.2)
00044C 00000000 200 DC X’00000000’
000450 00000000 201 DC X’00000000’
000454 00000000 202 DC X’00000000’
000458 FF030010 203 DC X’FF030010’
00045C 01040104 204 DC X’01040104’
000460 010C0000 205 DC X’010C0000’
000464 000003E8 206 DC X’000003E8’ A ARGUMENT LIST
000468 00000494 207 DC X’00000494’
00046C FF030010 208 DC X’FF030010’
000470 04060000 209 DC X’04060000’
000484 210 ORG DIALOG@@+564
000484 00000410 211 DC X’00000410’ ARRAY DESCRIPTOR
000488 00000424 212 DC X’00000424’
00048C 0000040C 213 DC X’0000040C’
000490 00010004 214 DC X’00010004’
000494 000003E8 215 DC X’000003E8’ ARRAY DESCRIPTOR
000498 00000410 216 DC X’00000410’
00049C 000003E4 217 DC X’000003E4’
0004A0 00010004 218 DC X’00010004’
0004B4 219 ORG DIALOG@@+612
0004B4 00000000 220 DC X’00000000’ OBJECT FORMAT DESCRIPTOR
0004B8 00000000 221 DC X’00000000’
0004BC 00000010 222 DC X’00000010’
0004C0 000001EA 223 DC X’000001EA’

**** OBJECT LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 5
PROGRAM UNIT: DIALOG

FLG DISPL OPERATION ADDR1 ADDR2 STMNT ASSEMBLY CODE SYMB.ADDR1, SYMB.ADDR2

0004C8 224 END DIALOG

466 U577-J-Z125-7-7600

Appendix 6 Compiler listings

**** OBJECT LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:33 PAGE 6
PROGRAM UNIT: SUBA

FLG DISPL OPERATION ADDR1 ADDR2 STMNT ASSEMBLY CODE SYMB.ADDR1, SYMB.ADDR2

1 ***************************************
2 ** C O D E A R E A **
3 ***************************************
4 *

000000 5 SUBA EQU *
000000 6 *

7 ***** STATEMENT 1 (ENTRY) *************
8 * SUBROUTINE SUBA(X)
9 * **** SEGMENT 1 ****

10 * CODE SLICE BEGIN * (SLICE 1)
000000 11 USING *,15
000000 12 USING *,11
000000 90 EC D00C 00000C 13 STM 14,12,12(13)
000004 45 E0 F018 000018 14 BAL 14,24(0,15)
000008 03 15 DC AL1(03)
000009 E2E4C2C1404040 16 DC CL7’SUBA ’
000010 000000C8 17 DC A(SUBA####)
000014 000001E8 18 DC A(SUBA@@@@)
0000C8 19 USING SUBA####,12
0001E8 20 USING SUBA@@@@,13
000018 18 BF 21 LR 11,15
00001A 18 9D 22 LR 9,13
00001C 58 D0 B014 000014 23 L 13,20(0,11)
000020 58 C0 B010 000010 24 L 12,16(0,11)
000024 50 D0 9008 000008 25 ST 13,8(0,9)
000028 17 77 26 XR 7,7
00002A 58 70 D04C 000234 27 L 7,76(0,13)
00002E D2 03 D110 700C 0002F8 00000C 28 MVC 272(4,13),12(7)
000034 50 D0 700C 00000C 29 ST 13,12(0,7)
000038 92 EC 9000 000000 30 MVI 0(9),236
00003C 95 00 D000 0001E8 31 CLI 0(13),0
000040 47 80 B068 000068 32 BC 8,104(0,11)
000044 90 C0 9068 000068 33 STM 12,0,104(9)
000048 41 00 0403 000403 34 LA 0,1027(0,0)
00004C 18 D9 35 LR 13,9
00004E 58 E0 900C 00000C 36 L 14,12(0,9)
000052 58 C0 9044 000044 37 L 12,68(0,9)
000056 D2 02 D001 B061 0001E9 000061 38 MVC 1(3,13),97(11)
00005C 47 F0 C02C 0000F4 39 BC 15,44(0,12)
000060 00000064 40 DC AL4(*+4)
000064 98 C0 9068 000068 41 LM 12,0,104(9)
000068 50 90 D004 0001EC 42 ST 9,4(0,13)
00006C 58 A0 1000 000000 43 L 10,0(0,1)
000070 D2 03 D11C A000 000304 000000 44 MVC 284(4,13),0(10) X
000076 45 90 B0AE 0000AE 45 BAL 9,174(0,11) %L3

46 *** END OF PROLOG
00007A 47 USING *,15
00007A 58 20 D004 0001EC 48 L 2,4(0,13)
00007E 58 20 2018 000018 49 L 2,24(0,2)
000082 58 40 2000 000000 50 L 4,0(0,2)
000086 D2 03 4000 D11C 000000 000304 51 MVC 0(4,4),284(13) X
00008C 58 E0 D04C 000234 52 L 14,76(0,13)
000090 58 F0 D110 0002F8 53 L 15,272(0,13)
000094 58 D0 D004 0001EC 54 L 13,4(0,13)
000098 50 F0 E00C 00000C 55 ST 15,12(0,14)
00009C 92 00 D000 0001E8 56 MVI 0(13),0
0000A0 58 E0 D00C 0001F4 57 L 14,12(0,13)

U577-J-Z125-7-7600 467

Compiler listings Appendix 6

**** OBJECT LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:33 PAGE 7
PROGRAM UNIT: SUBA

FLG DISPL OPERATION ADDR1 ADDR2 STMNT ASSEMBLY CODE SYMB.ADDR1, SYMB.ADDR2

0000A4 58 F0 D010 0001F8 58 L 15,16(0,13)
0000A8 98 2C D01C 000204 59 LM 2,12,28(13)
0000AC 07 FE 60 BCR 15,14

61 DROP 15
62 *** END OF EPILOG
63 *** BEGIN OF TRAILER

0000AE 50 90 D0B4 00029C 64 %L3 ST 9,180(0,13)
65 ***** STATEMENT 2 (ASSIGNMENT) ********
66 * Y=X*X

0000B2 78 00 D11C 000304 67 %L4 LE 0,284(0,13) X
0000B6 7C 00 D11C 000304 68 ME 0,284(0,13) X

69 ***** STATEMENT 3 (END) ***************
70 * END

0000BA 70 00 D120 000308 71 STE 0,288(0,13) Y
0000BE 58 F0 D0B4 00029C 72 L 15,180(0,13)
0000C2 17 11 73 XR 1,1
0000C4 05 EF 74 BALR 14,15

75 ***************************************
76 ** C O N S T A N T A R E A **
77 ***************************************
78 *

0000C6 79 ORG
0000C8 80 SUBA#### DS 0D
0000C8 81 USING *,12

82 * RUNTIME COMMUNICATION AREA
0000C8 F3F0C1E4C7F9F1 83 DC ’30AUG91’
0000CF 5B081E0F2B219135 84 DC X’5B081E0F’
0000D7 40C6D6D9F140E74040E5F24BF2C1F0 85 DC ’ FOR1 X V2.2A00’
0000E7 A0 86 DC X’A0’
0000E8 00000000 87 DC A(SUBA)
0000EC FFFFFFFF 88 DC F’-1’
0000F0 41000411 89 DC X’41000411’
0000F4 58F0C08C 90 DC X’58F0C08C’
0000F8 07FF 91 DC X’07FF’
0000FC 92 ORG SUBA####+52
0000FC 00000000 93 DC A(SUBA+0) CODE SLICE ADDRESS (SLICE 1)
000154 94 ORG SUBA####+140
000154 00000000 95 DC V(IF@ERROR)
000158 00000000 96 DC V(IF@SINI)
000160 97 ORG SUBA####+152
000160 00000000 98 DC X’00000000’ 0.0000000000000000000000000000000000+00
000164 00000000 99 DC X’00000000’
000168 00000000 100 DC X’00000000’
00016C 00000000 101 DC X’00000000’
000180 102 ORG SUBA####+184
000180 00000001 103 DC X’00000001’ 1
000190 104 ORG SUBA####+200
000190 4E000000 105 DC X’4E000000’ 0.000000000000000000E+00
000194 00000000 106 DC X’00000000’
000198 4E000001 107 DC X’4E000001’ 0.429496729600000000E+10
00019C 00000000 108 DC X’00000000’
0001A0 CE000000 109 DC X’CE000000’ -0.214748364800000000E+10
0001A4 80000000 110 DC X’80000000’
0001A8 40 111 DC ’ ’

112 * EVENTHANDLER LIST

468 U577-J-Z125-7-7600

Appendix 6 Compiler listings

**** OBJECT LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:33 PAGE 8
PROGRAM UNIT: SUBA

FLG DISPL OPERATION ADDR1 ADDR2 STMNT ASSEMBLY CODE SYMB.ADDR1, SYMB.ADDR2

0001B8 113 ORG SUBA####+240
0001B8 01E70000 114 DC X’01E70000’
0001BC 000001D0 115 DC X’000001D0’ ADDR OF PU_NAME
0001C0 00000000 116 DC V(IF@RETN) TERMINATION ROUTINE
0001C4 00000000 117 DC V(IF@CTER) PROCHK ROUTINE
0001C8 00000000 118 DC V(IF@CTER) ERROR ROUTINE
0001CC FFFFFFFF 119 DC X’FFFFFFFF’ OTHER EVENTS ROUTINE
0001D0 04 120 DC X’04’
0001D1 E2E4C2C1 121 DC ’SUBA’
00013C 122 ORG SUBA####+116
00013C 000001D8 123 DC A(SUBA####+272) ADDRESS OF STATEMENT TABLE
0001D8 124 ORG SUBA####+272

0001D8 0000000D00FC0000 125 DC X’0000000D00FC0000’
0001E0 0001590406 126 DC X’0001590406’

127 ***************************************
128 ** D A T A A R E A **
129 ***************************************
130 *

0001E6 131 ORG
0001E8 132 DS 0D
0001E8 133 SUBA@@@@ CSECT
0001E8 134 USING *,13
0001E8 135 DS 312C
0001E8 136 ORG SUBA@@@@+0
0001E8 0001FEFF 137 DC X’0001FEFF’ SAVE AREA
000230 138 ORG SUBA@@@@+72
000230 00000000 139 DC A(I@@@RTCA) RUNTIME COMMUNICATION AREA
000234 00000000 140 DC V(IT0PCD)
000238 000001B8 141 DC X’000001B8’ A(IT0EHL)
000238 142 ORG SUBA@@@@+80
000238 000001D800000000 143 DC X’000001D800000000’ STMT TABLE AND COUNT TABLE ADDR
000288 144 ORG SUBA@@@@+160
000288 CE00000000000000 145 DC X’CE00000000000000’
000294 146 ORG SUBA@@@@+172
000294 03 147 DC X’03’
000295 E2E4C2C1404040 148 DC ’SUBA ’
0002FC 149 ORG SUBA@@@@+276
0002FC 82000310 150 DC A(SUBA####+296) ADDRESS OF FORMAT LABEL TABLE
000300 00000320 151 DC A(SUBA@@@@+312) DATA SLICE ADDRESS (ITA)
000320 152 END

U577-J-Z125-7-7600 469

Compiler listings Appendix 6

A.6.8 Summary listings for main program and subprogram

**** SUMMARY LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:41:01 PAGE 1
PROGRAM UNIT: DIALOG

OBJECT MODULES GENERATED

(NAME LENGTH TYPE)
DIALOG 0004C8 (1224) CODE & DATA MODULE OF MAIN PROGRAM

COMPILATION STATISTICS

OPTIMIZATION : 2 COMMON SUBEXPRESSIONS
2 CONSTANT EVALUATIONS
1 STRENGTH REDUCTIONS

DIAGNOSTICS : 0 NOTES MEMORY USAGE : 582 VIRTUAL MEMORY PAGES
1 WARNINGS 0 WORK FILE PAGES
0 ERRORS
0 SEVERE ERRORS
0 FAILURES

COMPILE TIME : 152 SECONDS ELAPSED TIME
SOURCE PROGRAM : 11 SOURCE LINES 1167 LINES / MINUTE CPU TIME

1 COMMENT LINES .565 SECONDS CPU TIME
(COMPILER NOT PRELOADED)

**** SUMMARY LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:33 PAGE 2
PROGRAM UNIT: SUBA

OBJECT MODULES GENERATED

(NAME LENGTH TYPE)
SUBA 000320 (800) CODE & DATA MODULE OF SUBROUTINE

COMPILATION STATISTICS

OPTIMIZATION : ACTIVE
DIAGNOSTICS : 0 NOTES MEMORY USAGE : 582 VIRTUAL MEMORY PAGES

0 WARNINGS 0 WORK FILE PAGES
0 ERRORS
0 SEVERE ERRORS
0 FAILURES

COMPILE TIME : 6 SECONDS ELAPSED TIME
SOURCE PROGRAM : 3 SOURCE LINES 420 LINES / MINUTE CPU TIME

0 COMMENT LINES .429 SECONDS CPU TIME
(COMPILER NOT PRELOADED)

A.6.9 General summary listing

**** SUMMARY LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:39 PAGE 3
OBJECT MODULES GENERATED

(NAME LENGTH TYPE)
DIALOG 0004C8 (1224) CODE & DATA MODULE OF MAIN PROGRAM
SUBA 000320 (800) CODE & DATA MODULE OF SUBROUTINE

COMPILATION STATISTICS

OPTIMIZATION : 2 COMMON SUBEXPRESSIONS
2 CONSTANT EVALUATIONS
1 STRENGTH REDUCTIONS

DIAGNOSTICS : 0 NOTES MEMORY USAGE : 582 VIRTUAL MEMORY PAGES
1 WARNINGS 0 WORK FILE PAGES
0 ERRORS
0 SEVERE ERRORS
0 FAILURES

COMPILE TIME : 158 SECONDS ELAPSED TIME
SOURCE PROGRAM : 14 SOURCE LINES 836 LINES / MINUTE CPU TIME

1 COMMENT LINES 1.005 SECONDS CPU TIME
(COMPILER NOT PRELOADED)

470 U577-J-Z125-7-7600

Appendix 6 Compiler listings

A.6.10 Options listing

**** OPTIONS LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:39 PAGE 1
ENVIRONMENT

PROCESSOR : UNDEFINED
OPERATING SYSTEM : BS2000 V10.0
COMPILER : F O R 1 V2.2A00
USER-ID. : F3390052
TSN : 91TE
CALLER : UNDEFINED
PREPROCESSOR : UNDEFINED

OPTIONS FILE

COMOPT SOURCE=S.DIALOG
COMOPT LISTFILE=L.DIALOG(SOURCE,OPTIONS,MAP,ESD,CHANGE,XREF,OBJECT,SUMMA

RY)
COMOPT COLLECT=(LF)
END

OPTIONS IN EFFECT

(D = DEFAULT)
(P = PARAM COMMAND)

SOURCE = S.DIALOG
D CODE = EBCDIC

UPD = SRCFCB
D UPD CODE = EBCDIC
D INCLUDE-LIBRARY = *NO
D CCOM = ’’
D LINEEND = ’’
D IMPLICIT
D STANDARD-CHECK = NO
D EXTENDED-SYSTEM = YES
D SYMTEST = MAP
D LANGUAGE = ENGLISH
D NODIALOG

LIST = (SOURCE, ESD, MAP, XREF, OBJECT, SUMMARY, OPTIONS)
LIST-OUTPUT = L.DIALOG

D LINECNT = 64
COLLECT = (LISTFILE)

D EJECT
D EXPAND
D TEXT-SEPARATOR =
D OBJECT = (*)
D MODULE-LIBRARY = *OMF
D NOFPOOL

PROCEDURE = NO
D ALIGN
D NOSUPPLIEDBOUND
D TRUNCONST
D NOPAD
D NOCOMPATIBLE
D GEN
D OPTIMIZE = 1

**** OPTIONS LISTING **** SIEMENS-NIXDORF FORTRAN COMPILER FOR1 V2.2A00 DATE = 1991-08-30 TIME = 15:43:39 PAGE 2
D SAVE-CONSTANT = YES
D REAL = 4
D UNIT
D TESTOPT = (STNR)
D NOEXPUNDERFLOW
D ERRKILL = FAILURE
D MAXERR = 100
D SOURCE-FORMAT = FIXED
D MSGLEVEL = WARNING
D FORTRAN90-CHECK = YES
D LINKAGE = STD

U577-J-Z125-7-7600 471

OLD, NXS, XS programs Appendix 7

A.7 Coexistence of OLD, NXS, XS programs

As of version 2.2A the FOR1 compiler always generates XS object modules. With FOR1
versions 2.0A and 2.1A, the EXTENDED-SYSTEM={YES|NO} option enabled the user
to control whether the compiled program units were to be generated as XS or NXS
modules (default was NO).

With NXS programs, the parameter address list has a format which is compatible both
with the format of the parameter address list of OLD programs (= programs compiled
with a FOR1 version 1.6A) and with the format of the parameter address list of XS
programs. NXS subprograms therefore, in addition to processing NXS parameter ad-
dress lists, also process OLD and XS parameter address lists, assuming that only 24
bits of the 31-bit addresses are relevant in the case of the latter.

A.7.1 31-bit address mode and 24-bit address mode

An XS object module has the attributes AMODE=ANY and RMODE=ANY, an XS object
module has the attributes AMODE=24 and RMODE=24. These attributes are interpreted
by the linkage/loading system or can be modified by means of the linkage/loading
system. Furthermore the address mode determined by the loader can also be changed
by means of the runtime option START=XS (see section 6.3.5).

Therefore the load address and the machine address mode in which a program execu-
tes are not specified until the program is started. A program can be executed in either
the 24-bit or 31-bit address space.

Using the 24-bit mode, a loaded program (i.e. code as well as static and dynamic data)
is run if it is within the 24-bit address space and processed in the 24-bit addressing
mode by the hardware.

Using the 31 bit mode, a loaded program is run if it is within the 31-bit address space
and processed in the 31-bit addressing mode by the hardware.

Figs. A.7-1 and A.7-2 show the different options according to which either an NXS pro-
gram, an XS program in the address space below 16 Mbytes, or an XS program in the
address space above 16 Mbytes is executed.

472 U577-J-Z125-7-7600

Appendix 7 Load address TSOSLNK

XS object module NXS object module

AMODE=ANY, RMODE=ANY AMODE=24, RMODE=24

Linkage editor TSOSLNK Linkage editor TSOSLNK

PROGRAM program, PROGRAM program,

LOADPT=*XS LOADPT=0 LOADPT=0 LOADPT=*XS
or or or or
LOADPT= LOADPT= LOADPT= LOADPT=
’address>16MB’ ’address<16MB’ ’adresse<16MB’ ’address>16MB’

XS program is to XS program is to NXS program is to NXS program is to
be loaded above be loaded below be loaded below be loaded above
16 MB 16 MB 16 MB 16 MB

(LOADPT=0 is set,
because
RMODE ANY)

Loader ELDE: {LOAD-PROGRAM/START-PROGRAM} programname

XS program XS program NXS program can only execute below
executes above executes below 16 MB, machine address mode 24
16 MB, 16 MB,
machine address machine address
mode 31 mode 24

(1) (2) (3)

x

x

Changing of the Changing of machine address mode 24
machine address by means of RUNOPT START=XS not
mode 24 using possible (no error message,
RUNOPT START=XS uncontrolled response).
possible

(4)

Fig. A.7-1: Load address and machine address mode for linking with TSOSLNK and loading with

ELDE

Re (1),(4): Dynamic storage space is set up above 16 Mbytes with CALL
ALLOC(...,’ANY’). If this is not possible, an error message is issued.
With CALL ALLOC(...,’NXS’), dynamic storage space is set up below 16
Mbytes.

Re (2),(3): Dynamic storage space is set up below 16 Mbytes with CALL ALLOC(...).

U577-J-Z125-7-7600 473

Load address DBL Appendix 7

XS object module NXS object module

AMODE=ANY, RMODE=ANY AMODE=24, RMODE=24

Binder loader DBL: Binder loader DBL:
START-PROG *MODULE... or START-PROG *MODULE... or
LOAD-PROG *MODULE... LOAD-PROG *MODULE...

PROG-MOD PROG-MOD PROG-MOD PROG-MOD
=ANY =24 =ANY =24

XS program is XS program is NXS program is loaded to the area
loaded to the loaded to the < 16 MB, machine address mode 24
area > 16 MB, area < 16 MB, is set
machine address machine address
mode 31 is set mode 24 is set

(1) (2) (3)

x

x

Changing of Changing of machine address mode 24
machine address by means of RUNOPT START=XS is not
mode 24 using possible (no error message,
RUNOPT START=XS uncontrolled response).
possible

(4)

Fig. A.7-2: Load address and machine address mode for linking and loading with DBL

Re (1),(4): Dynamic storage space is set up above 16 Mbytes with CALL
ALLOC(...,’ANY’). If this is not possible, an error message is issued.
With CALL ALLOC(...,’NXS’), dynamic storage space is set up below 16
Mbytes.

Re (2),(3): Dynamic storage space is set up below 16 Mbytes with CALL ALLOC(...).

474 U577-J-Z125-7-7600

Appendix 7 Program interfacing XS and OLD programs

A.7.2 XS, OLD and glue programs

OLD programs, i.e. programs compiled with a predecessor version of FOR1 V2.0A, can
be generated as XS programs by recompiling them with a version as of FOR1 V2.0A.
When recompiling with FOR1 version 2.0A or 2.1A, EXTENDED-SYSTEM=YES must be
specified for the compilation. As of version 2.2A, FOR1 always generates XS modules
without them having to be requested by means of an option.

In many cases, however, program interfacing between XS programs and OLD programs
will still be necessary, e.g. if the source programs are no longer available. When interfa-
cing OLD and XS programs, the user must ensure that the address mode set is correct
and that the parameters are transferred using the expected format. This is accomplis-
hed by means of "glue" programs which the user must create himself. A glue program
is understood to mean a program which must be inserted between two programs, bet-
ween which no direct subprogram call is possible. When interfacing XS programs and
OLD programs, the glue program handles the switching of the address mode and con-
version of the parameter formats. The exact format of the glue programs required for
execution in the same address space is described in section A.7.3, and for execution in
different address spaces in section A.7.4.

PROGRAM XS PROGRAM ALT
No direct call with

with data in CALL OLD(...) Execution only
the 31-bit possible possible in
address space the 24-bit

address space

Call Call Call Call
CALL GLUENXS(...) CALL XS(...) CALL GLUENXS(...) CALL ALT (...)

PROGRAM GLUENXS

- Switching of the
addressing mode
24 31

- Provision of the
parameter address
list using the
expected format

- Switching of the
addressing mode
31 24

Fig. A.7-3: Use of an NXS glue program for interfacing XS and OLD programs

U577-J-Z125-7-7600 475

Program interfacing for same address space Appendix 7

A.7.3 Program interfacing for execution in same address space

Program interfacing in the 31-bit space

Program interfacing is possible only as follows:
XS program calls XS program.

Program interfacing in the 24-bit space without intermediate connection of a glue
program

The following diagram shows permissible direct program interfacing in in the 24-bit spa-
ce:

- - - - - - - 16-Mbyte-boundary -

XS NXS OLD

CALL

XS NXS OLD

Fig. A.7-4: Permissible direct program interfacing in the 24-bit space

Since all programs execute in the 24-bit space, i.e. in the range below 16 MBytes, and
are processed using the 24-bit addressing mode of the hardware, any program interfa-
cing is permissible provided that the parameter address lists are compatible.

NXS subprograms also process OLD parameter address lists in addition to XS and NXS
lists. XS subprograms only process XS and NXS parameter address lists. OLD subpro-
grams only process OLD and NXS parameter address lists.

476 U577-J-Z125-7-7600

Appendix 7 Program interfacing for same address space

Program interfacing in the 24-bit space with intermediate connection of a glue pro-
gram

An NXS program must always be connected between XS and OLD programs to inter-
face them.

XS program called by an OLD program

An OLD program calls an XS program to be executed in 24-bit space. The user must
write an NXS program using the name of the subprogram called in the OLD program.
This NXS glue program is merely necessary for passing the parameters supplied by the
OLD program in a further call to the XS program.

PROGRAM OLD SUBROUTINE SUB(A,B,C) SUBROUTINE SUBXS(A,B,C)
.
.
. The NXS glue program SUBXS is the original

CALL SUB(A,B,C) is given the name SUB subprogram SUB re-
. and passes the para- compiled as an XS
. meters to SUBXS program
.

CALL SUBXS(A,B,C) .
.
.

RETURN RETURN
END END END

The XS program in this configuration is always in the space below 16 MBytes and
always runs in the 24-bit address mode (cf. Figs. A.7-1 and A.7-2), provided that the
user has not incorrectly started the address mode by specifying RUNOPT START=XS
in address mode 31.

OLD program called by an XS program

An XS program executing in the 24-bit space calls an OLD program. The user must
write an NXS program whose only purpose is to forward to the OLD program the para-
meters passed from the XS program.

PROGRAM XS24 SUBROUTINE GLUENXS(A,B,C) SUBROUTINE OLD(A,B,C)
.
.
. . .

. .
CALL OLD (A,B,C) . .
is replaced by

CALL GLUENXS(A,B,C) CALL OLD (A,B,C)
.
.
. RETURN RETURN

END END END

U577-J-Z125-7-7600 477

GETMODE/XSTONXS/NXSTOXS Appendix 7

A.7.4 Program interfacing for execution in different address spaces

If programs in the 31-bit address space are to be interfaced with programs in the 24-bit
address space, the user must always produce an NXS glue program.

Subprograms for controlling machine address mode

For controlling machine address mode the ready-made subprograms GETMODE,
NXSTOXS and XSTONXS are provided for use in NXS glue programs.

CALL GETMODE (mode)

The subprogram GETMODE (mode) returns the current machine address mode set in
the INTEGER*4 variable or the INTEGER*4 array element at call time.

Possible output values for mode: 24 or 31

GETMODE returns the value 24 on NXS systems.

CALL XSTONXS (progname,par1,...,parn)

The subprogram XSTONXS converts the parameter address list of the parameters
par1,...,parn from XS to NXS format and calls the NXS program progname.

progname Name of an NXS subprogram declared as EXTERNAL in the cal-
ling XS program.

pari i-th parameter to be supplied to the NXS subprogram; 0 i n,
0 n 408

Subprogram XSTONXS copies the parameter address list supplied to it, removes the
EXTERNAL name and converts the XS parameter address list to a corresponding NXS
parameter address list. The machine address mode is changed from 31 to 24. Using
the address of the parameter address list in register 1 and the parameter number in
register 0, a branch is made to the NXS program.

After returning from the NXS program, the original machine address mode (31) is resto-
red and control is again returned to the program which called the XSTONXS subpro-
gram.

478 U577-J-Z125-7-7600

Appendix 7 GETMODE/XSTONXS/NXSTOXS

The parameters par1...parn must be located in the 24-bit address space. If they are in
the 31-bit address space an error message will be issued. The user must convert the
parameters in the 31-bit address space to corresponding parameters in the 24-bit ad-
dress space by copying them before calling XSTONXS. If required, the parameters must
be copied back to the parameters in the 31-bit address space after returning from
XSTONXS (see Fig. A.7-5 and the relevant example).

CALL NXSTOXS (progname,par1,...,parn)

Subprogram NXSTOXS converts the parameter address list of parameters par1,...,parn
from NXS to XS format and invokes the XS subprogram progname.

progname Name of an XS subprogram declared as EXTERNAL in the calling
NXS program

pari i-th parameter to be supplied to the XS subprogram; 0 i n,
0 n 408

Subprogram NXSTOXS copies the parameter address list supplied to it, removes the
EXTERNAL name and converts the XS parameter address list to a corresponding NXS
parameter address list. The machine address mode is changed from 24 to 31. With the
address of the parameter address list in register 1 and the number of parameters in
register 0, a branch is made to the XS program.

After returning from the XS program, the original machine address mode (24) is resto-
red and control is returned again to the program which called the NXSTOXS subpro-
gram (see Fig. A.7-6 and relevant example).

NXSTOXS must be called in machine address mode 24. If NXSTOXS is invoked in
machine address mode 31, a library program error will occur.

U577-J-Z125-7-7600 479

XS calls OLD program Appendix 7

Case 1: XS program with dynamically created data above 16 Mbytes calls the OLD
subprogram

An XS program with dynamically created data above 16 Mbytes calls an OLD subpro-
gram which contains read and write accesses to this data.

With the exception of the dynamically created data, the entire load module is below 16
Mbytes, since the XS program is used to link an OLD program.

Prerequisite:

RUNOPT START=XS

Data created
dynamically using
CALL ALLOC(...,’ANY’)

- - - - - - - 16-Mbyte-boundary -

XS program XSTONXS OLD program

PROGRAM XS - generates NXS SUBROUTINE OLD
EXTERNAL OLD parameter *(NXSARRAY,...)
DIMENSION XSARRAY address list
*(:,:) - switches AMODE
DIMENSION to 24 .
*NXSARRAY (:,:) - invokes OLD .
CALL ALLOC - switches AMODE .
*(XSARRAY,..., to 31
*’ANY’) - Return to
CALL ALLOC XS program
*(NXSARRAY,...,
*’NXS’)

Copy:
NXSARRAY=XSARRAY

CALL XSTONXS(OLD,
*NXSARRAY,...)

Copy:
XSARRAY=NXSARRAY RETURN

. END

.

.

Fig. A.7-5: XS program with data above 16 Mbytes calls OLD subprogram

480 U577-J-Z125-7-7600

Appendix 7 XS calls OLD program

Example for case 1: XS program with dynamically created data above 16
Mbytes calls OLD subprogram

PROGRAM XS SUBROUTINE OLD (NXSARRAY,L1,U1,
EXTERNAL OLD L2,U2)

INTEGER L1,L2,U1,U2
INTEGER L1,L2,U1,U2

DIMENSION NXSARRAY (L1:U1,L2:U2)
DIMENSION XSARRAY (:,:) (1) .
DIMENSION NXSARRAY (:,:) .

.
READ (*,*) L1,U1,L2,U2 (2) READ(5,*)((NXSARRAY(I,J),

* I=L1,U1), J=L2,U2) (6)

CALL ALLOC (XSARRAY,L1,U1,L2,U2,
* ’ANY’) (3)
CALL ALLOC (NXSARRAY,L1,U1,L2,U2
* ,’NXS’)

. .

. .

. .

CALL OLD (XSARRAY,
L1,U1,L2,U2)
is replaced by

DO 10 J=L2,U2 RETURN
DO 10 I=L1,U1 (4) END

10 NXSARRAY(I,J)=
*XSARRAY(I,J)

CALL XSTONXS (OLD, NXSARRAY, (5)
*L1,U1,L2,U2)

DO 20 J=L2,U2
DO 20 I=L1,U1 (7)

20 XSARRAY(I,J)=
*NXSARRAY(I,J)

CALL DEALLOC (NXSARRAY) (8)
.
.
.

END

(1) The arrays XSARRAY and NXSARRAY are created as two-dimensional arrays with
variable subscript bounds.

(2) The subscript bounds are not entered until runtime.

(3) Using CALL ALLOC, XSARRAY is created as a dynamic array with the subscript
bounds (L1:U1,L2:U2). By specifying ANY, the array is stored above 16 Mbytes, if
the current machine address mode is 31, and stored below 16 Mbytes if the cur-
rent machine address mode is 24. The current machine address mode is defined

U577-J-Z125-7-7600 481

XS calls OLD program Appendix 7

by specifying values at compile, linking and loading time and with the aid of the
runtime option RUNOPT START (see Figs. A.7-1 and A.7-2). To ensure that the
dynamic array XSARRAY is stored above 16 Mbytes, the runtime option RUNOPT
START=XS must be specified.

(4) The array XSARRAY above 16 Mbytes is copied to NXSARRAY which is below 16
Mbytes. Copying causes the 31-bit addresses to be converted to 24-bit addresses.

(5) Runtime routine XSTONXS is called. XSTONXS has the name of the OLD program
to be called as its first parameter (declared in the EXTERNAL statement in the XS
program).
XSTONXS switches the machine address mode from 31 to 24 and calls the OLD
program. After returning from the OLD program, the machine address mode is
reset to 31 and a branch is made to the XS program.

(6) In the OLD subprogram, there is a read access to the dynamically created array
NXSARRAY.

(7) After returning from XSTONXS, 31-bit addresses are generated again by copying.

(8) Using CALL DEALLOC, dynamically created memory is released again.

482 U577-J-Z125-7-7600

Appendix 7 OLD calls XS program

Case 2: OLD program calls XS subprogram with data created dynamically above
16 Mbytes

An OLD program calls an XS subprogram which has dynamically created data above
16 Mbytes. With the exception of the dynamically created data, the entire load module
is below 16 Mbytes, since the XS program is used to link an OLD program. This con-
stellation probably occurs quite rarely, e.g. whenever the source of the main program is
no longer available, whereas the programs in a subprogram library can be recompiled
as XS programs.

Data created
dynamically using
CALL ALLOC
(...,’ANY’)

- - - - - - - 16-Mbyte-boundary -

OLD program NXS glue NXSTOXS XS program
program

PROGRAM OLD - generates SUBROUTINE XS
SUBROUTINE XS parame- *(...)

. *SUB ter address

. EXTERNAL XS list

. - switches
CALL SUB(...) - CALL NXSTOXS - AMODE

- *(XS,...) - to 31 .
. - calls XS - .
. - switches - .
. AMODE

to 24
- Return

RETURN to NXS RETURN
END END program END

Fig. A.7-6: OLD program calls XS program with dynamically created data above 16 Mbytes

U577-J-Z125-7-7600 483

OLD calls XS program Appendix 7

Example for case 2: OLD program calls XS program with dynamically created
data above 16 Mbytes

PROGRAM OLD SUBROUTINE SUB (2) SUBROUTINE SUBXS31 (4)
*(L1,L2,U1,U2,SUM) *(L1,L2,U1,U2,SUM)

INTEGER L1,L2,U1,U2 INTEGER L1,L2,U1,U2 INTEGER L1,L2,U1,U2
REAL SUM (100) REAL SUM (L2:U2) DIMENSION SUM (L2:U2)
READ*, L1,L2,U1,U2 DIMENSION XSARRAY (:,:) (5)

EXTERNAL SUBXS31
. CALL ALLOC (XSARRAY, (6)
. . *L1,U1,L2,U2,’ANY’)
. .

.
CALL NXSTOXS (SUBXS31, (3)

*L1,L2,U1,U2,SUM)
. READ(40,*)((XSARRAY(I,J),
. *I=L1,U1),J=L2,U2)
.

CALL SUB (1) DO 10 J=L2,U2
*(L1,L2,U1,U2,SUM) - DO 10 I=L1,U2

.

.

.
.
. 10 SUM(J)=SUM(J)+XSARRAY
. RETURN (8) *(I,J)

.

.

.
END END

CALL DEALLOC (XSARRAY) (7)

RETURN
END

(1) The OLD program transfers its parameters to an NXS glue program which the
user must generate and which contains the name of the original subprogram.

(2) In this glue program the name of the XS program to be called is declared as
EXTERNAL.

(3) Runtime routine NXSTOXS is called in the glue program. In the call of the
NXSTOXS routine the name of the XS subprogram to be called is specified as the
first parameter; further entries specify the parameters of the XS program.

(4) NXSTOXS calls the XS program with the corresponding XS parameter address list.

(5) The original subprogram has been modified and compiled as an XS program. In
the XS subprogram the array XSARRAY is declared as an array with variable
subscript bounds.

484 U577-J-Z125-7-7600

Appendix 7 OLD calls XS program

(6) Using CALL ALLOC, XSARRAY is created as a dynamic array with the subscript
bounds (L1:U2,L2:U2), which are supplied to the XS subprogram as the parame-
ters. By specifying ANY the array is created above 16 Mbytes if the current ma-
chine address mode is 31, and below 16 Mbytes if the current machine address
mode is 24. The current machine address mode is defined by specifying values at
compile, linking and loading time and specifying the runtime option RUNOPT
START (see Figs. A.7-1 and A.7-2).

(7) Using CALL DEALLOC, the dynamically created memory is released again.

(8) After returning from the NXSTOXS routine to the glue program, the control returns
to the OLD program which made the original call.

U577-J-Z125-7-7600 485

Language interfacing (non-ILCS) Appendix 8

A.8 Language interfacing in non-ILCS environments

A.8.1 Routines for language interfacing in non-ILCS environments

Calls for runtime system initialization routines (such as INITFOR1), runtime system termi-
nation routines (such as IF@PROT) and STXIT activation routines (such as IF@STXT)
are required only for language interfacing in non-ILCS environments.

In ILCS environments, all measures required for language interfacing are taken automati-
cally, so calls for these routines are not necessary. Programs containing calls for these
routines can nevertheless also execute in ILCS environments since the calls (at least
insofar as they affect the FOR1 runtime system) are ignored in ILCS environments.

Program termination routine IF@PROT

The program termination routine is required in non-ILCS environments for language
interfacing (FOR1 with Assembler, PLI1) and for data base systems.

The program termination routine is invoked (in non-ILCS environments):
implicitly at termination of the FOR1 main program;
explicitly by the STOP or CALL EXIT statement in the source program.

In ILCS environments the IF@PROT call is ignored.

Sequence of functions

1) Outputs the dynamic program structure if the debug statement %COUNT (see sec-
tion 7.4.7) is specified.

2) Calls the submitted termination procedures in the order of descending weight (15,
14, ..., 0) if these do not terminate normally.

3) Closes all opened FOR1 files in order of ascending file numbers (0, 1, ..., 99).

4) Resets (REMOVE-FILE-LINK) all SET-FILE-LINK commands implicitly initiated by the
source program (if a new file was created). Sequence based on ascending file num-
bers (0, 1, ..., 99).

5) Releases (RELM) memory requested by REQM.

6) End message with output of the CPU time used and elapsed time.

486 U577-J-Z125-7-7600

Appendix 8 Language interfacing (non-ILCS)

7) On successful termination:
TERM UNIT=PRGR,MODE=NORMAL

On abnormal termination:
TERMJ UNIT=STEP,MODE=ABNORMAL,DUMP=N

If the module is activated through the entry IF@PTERM or I$PTERM (from non-
FORTRAN programs only) functions 2 through 5 will be performed. Subsequently, con-
trol is returned to the calling procedure.

If the calling program is to execute with AMODE=31, the preconnection routine
IF@XPTR must be called instead of IF@PTERM or I$PTERM.

IF@VAP routine for requesting termination procedures

For requesting PLI1 termination procedures in non-ILCS environments, a runtime routine
with the name IF@VAP or I$VAP (same meaning) is provided. In ILCS environments,
the call is ignored.

PLI1 termination procedures cannot be submitted directly from a FORTRAN program by
invoking IF@VAP. IF@VAP can only be called by assembly language or PLI1 programs
which the user must write himself. Requested PLI1 termination procedures are invoked
by the FOR1 program termination routine IF@PROT. PLI1 termination procedures do
not interface with FOR1 SUBROUTINEs or FUNCTIONs.

Parameters for calling the assembly language or PLI1 program

Three parameters containing information on the termination procedure to be called
must be supplied to the IF@VAP routine:

param1 INTEGER*4 variable or INTEGER constant. Weighting of the termina-
tion procedures. The values 0 through 15 are permissible. The termina-
tion procedures are called in order of descending weight (15,14,...,0)
by program termination routine IF@PROT.

param2 param2 can be:

name of the termination procedure.

zero pointer X’FFFEFFFF’ (equivalent to F’-65537’). If the zero poin-
ter is specified, the termination procedure is cancelled using the
weight specified by param1.

U577-J-Z125-7-7600 487

Language interfacing (non-ILCS) Appendix 8

param3 Protection code with the following possible values:

0 The address of the termination procedure with the weight speci-
fied by param1 can be modified or deleted;

1 The address of the termination procedure with the weight speci-
fied by param1 can neither be modified nor cancelled.

The FOR1 runtime routine IF@VAP (I$VAP) requires that the supplied parameters be
contained in certain registers:

the value of param1 (weight) must be loaded in register 1;
the value of param2 (address of the termination procedure) must be loaded in regi-
ster 2;
the value of param3 (protection code) must be loaded in register 3.

These registers must be supplied in the assembly language or PLI1 program.

Return messages of the routine IF@VAP(I$VAP)

Possible return messages in register 1:

0 Submission of the termination procedure has been accepted.

1 An impermissible weighting was specified for param1.

2 An impermissible protection code was transferred for param3.

3 A protected address was to be changed.

Possible return messages in register 2:

Undefined If a value not equal to 0 was returned in register 1.

Zero pointer If no termination procedure has yet been submitted for
X’FFFEFFFF’ the param1 weighting (X’FFFEFFFF’ corresponds to F’-65537’).

Old address Old address previously submitted under the param1 weighting.

488 U577-J-Z125-7-7600

Appendix 8 Language interfacing (non-ILCS)

The following diagram outlines requesting of termination procedures in non-ILCS envi-
ronments by means of IF@VAP.

FOR1 program, e.g.
PROGRAM FORPROG

z.B.
CALL ASS1

.

.

.
STOP Call or program

termination
routine
IF@PROT

END

ASS1 START
.
.
.

- Supply registers R1,
R2, R3 with param1,
param2, param3

- Branch to IF@VAP

- Evaluation of the
return messages

IF@VAP Program termination routine
IF@PROT

- Storage of the registers
- Check of the weight and - queries information on
protection code termination procedures

- Saving of the old address - also calls submitted
- Entry of the new address, termination procedures
if permissible in the order of decreasing

- Insertion of the return weight
messages

- Return

Termination procedures

Termination procedure
Weighting 15

Termination procedure
Weighting 14

.

.

.

Fig. A.8-1: Requesting of termination procedures by IF@VAP

U577-J-Z125-7-7600 489

Language interfacing (non-ILCS) Appendix 8

FOR1 STXIT routine

In non-ILCS environments the FOR1 program mask and the FOR1 STXIST routine are
normally defined at the start of the FOR1 object module. As of FOR1 version V1.5,
STXIT (contingency) is effective. The request for a FOR1 STXIT routine can be suppres-
sed by specifying the runtime option RUNOPT STXIT=NO.

If, in a non-FORTRAN subprogram which has been called, user-own STXIT routines are
requested or another program mask is set, the FOR1 STXIT routine may be deactivated
as a result.

If, in the opposite case, a FORTRAN subprogram is called by a program in a different
language, it may be necessary to activate the FOR1 STXIT routine in the FORTRAN sub-
program.

In ILCS environments it is not necessary to call the FOR1 STXIT routine and such calls
are ignored. If a program containing calls for the FOR1 STXIT routine is compiled with
LINKAGE=STD and TESTOPT=(ARG), the compiler issues the following warning:

SA 249 ILCS-DEVIATION: USELESS FUNCTION CALL

Specifying the runtime option RUNOPT=NO also has no effect in ILCS environments.

Example: Calling the FOR1 STXIT routine (non-ILCS environment)

FOR1 MAIN PROGRAM
Program start (01)

.

.

.
CALL UPROG SUBPROGRAM (02)

IN ANOTHER LANGUAGE
[request for own
STXIT routine]
[modification of the
program mask]

CALL I$STXIT (03)

Explanation of example:

(1) The entries IF@STXIT and I$STXIT of the STXIT routine are contained in the
module IF@INIT, which is linked to each FOR1 object module as a standard
procedure. At program start, the STXIT routine is activated by the module
IF@INIT. This results in invocation of the FOR1 error handling routines.

490 U577-J-Z125-7-7600

Appendix 8 Language interfacing (non-ILCS)

Actions of the IF@STXIT or I$STXIT entry:

registers are stored in memory
the program mask is set to X’0C’ if COMOPT NOEXPUNDERFLOW was
used for compilation (default), or
setting of program mask to X’0E’ if COMOPT EXPUNDERFLOW was used
for compilation.
execution of the STXIT macro with cancellation of all exits which are not
interpreted by FOR1
registers are reloaded
return

(2) In the non-FORTRAN subprogram, a user-own STXIT routine can be invoked
and the program mask modified.

(3) In this case the FOR1 STXIT routine must be reactivated by means of CALL
I$STXIT in the FORTRAN main program. No parameters are required for this
call.

COBOL, for example, sets the program mask to hexadecimal ’00’; an STXIT routine is
not requested:

COBOL PROGRAM
CALL UPROG(...) FORTRAN SUBPROGRAM

SUBROUTINE UPROG(...)
CALL I$STXIT

.

.

Calling the FOR1 STXIT routine is not necessary if the FOR1 STXIT routine in the cal-
ling program has been implicitly invoked by CALL "INITFOR1".

U577-J-Z125-7-7600 491

FOR1/COBOL (non-ILCS) Appendix 8

A.8.2 FOR1/COBOL interfacing in non-ILCS environments

FOR1 program calls COBOL program

No special precuations are required for calling COBOL subprograms from FOR1 pro-
grams.

Call: CALL subprog (par1,... ,parn)

COBOL program calls FOR1 subprogram

In non-ILCS environments the initialization routine INITFOR1 must be called before cal-
ling the FOR1 subprogram in order to create a uniform FOR1 environment:

CALL "INITFOR1"
CALL "subprog" USING par1,... ,parn

INITFOR1 may be called only once in a program system. In ILCS environments, a call
for INITFOR1 is ignored.

492 U577-J-Z125-7-7600

Appendix 8 FOR1/PLI1 (non-ILCS)

A.8.3 FOR1/PLI1 interfacing in non-ILCS environments

FOR1 program calls PLI1 subprogram

In non-ILCS environments the OPTIONS (FORTRAN) attribute must be specified in the
PROCEDURE or ENTRY statement of the PLI1 program.

Statement in FOR1:

CALL name (par1,...,parn)

Statement in PLI1:

PROCEDURE
name: (par1,...,parn) OPTIONS (FORTRAN);

ENTRY

PLI1 program calls FOR1 subprogram

In non-ILCS environments a language attribute must be declared in the DEL statement
in the PLI1 program :

Statements in PLI1:

DCL forspro ENTRY OPTIONS (FORTRAN[INTER]);
CALL forspro (par1,...parn);

forspro Name of FOR1 subprogram

FORTRAN A FOR1 subprogram is called; STXIT is not activated in FOR1.

FORTRAN INTER

A FOR1 subprogram is called; STXIT is activated. Program inter-
rupts occuring while the FOR1 subprogram is executing are pro-
cessed by the FOR1 error handling routine.
The PLI1 error handling facility is deactivated. In the event of
abortion due to error in the FOR1 subprogram, however, the PLI1
end handling is performed in any case. Upon return to the PLI1
program, the PLI1 interrupt handling facility (STXIT) is reactivated.

Statements in FOR1:

SUBROUTINE forspro (par1,...,parn)
FUNCTION forspro (par1,...,parn)

U577-J-Z125-7-7600 493

FOR1/C (non-ILCS) Appendix 8

A.8.4 FOR1/C interfacing in non-ILCS environments

C program calls FOR1 program

In non-ILCS environments the FOR1 subprogram must be declared in the C source pro-
gram. If the FOR1 subprogram requires the FOR1 runtime environment, this must be
initialized before the subprogram is called. These steps are described in the following
two sections.

The called FOR1 subprogram must not be compiled with TESTOPT=(ARG).

Declaration of FOR1 subprogram in C source program

Before a FOR1 subprogram can be called in a non-ILCS environment, it must be given
the language attribute for1. This is done using the preprocessor statement #pragma,
e.g.

#pragma for1
void forsub(); /* SUBROUTINE subprogram */

#pragma for1
<typ> forsub(); /* FUNCTION subprogram with data type <type> */

forsub is the entry name specified in a SUBROUTINE, FUNCTION or ENTRY statement.

The language attribute can also be specified blockwise for a number of subprograms,
e.g.

#pragma for1 {
forsub1();
char forsub2();

forsub3();
#pragma } [for1]

The #pragma statement and language attribute for1 must be in a separate line (starting
at column 1).
In the case of block specifications, the language attribute for1 can be optionally speci-
fied after the closing bracket (}) in the second #pragma statement, e.g. for purposes of
documentation.

In ILCS environments the C program may not contain any #pragma statements for
FOR1 subprograms.

494 U577-J-Z125-7-7600

Appendix 8 FOR1/C (non-ILCS)

Initialization of FOR1 runtime environment

If in non-ILCS environments the called FOR1 subprogram requires the FOR1 runtime
environment, this must be initialized in the C source program using the external FOR1
routine initfor1. This routine is provided in the FOR1 runtime library.

A FOR1 subprogram requires the FOR1 runtime system if the subprogram

provides I/O operations, including PAUSE, STOP,
calls intrinsic functions,
executes exponentiations, complex arithmetic and comparison operations, floating
point divisions and comparisons with four-fold precision,
provides character chaining or handles character strings of varying length,
uses debugging aids (debug options, debug statements, debugging subprograms)
or
terminates the program.

initfor1 must be declared with the language attribute for1 using a #pragma statement.

initfor1 must be called before the first call for a FOR1 subprogram. initfor1 may only be
called once per program system. Even with multi-level language interfacing (C FOR1

 C FOR1 etc.) this single call suffices.

In ILCS environments, a call for initfor1 is ignored.

Example:

#pragma for1
initfor1();
#pragma for1
forsub1();
#pragma for1
float forsub2();

.

.
main()
{

float x;

initfor1();
forsub1();
x = forsub2();

}

U577-J-Z125-7-7600 495

FOR1/C (non-ILCS) Appendix 8

FOR1 program calls C program

In non-ILCS environments special measures are required for calling a C program from a
FOR1 program, which are described in the following two sections.

Definition of external C function in C source program

In non-ILCS environments C functions called by FOR1 programs must be provided with
the environment attribute for1 when defined. This is done with the preprocessor state-
ment #pragma:

#pragma for1
<type> functname (dummy argument list)
<type> param-1;
<type> param-2;
...
<type> param-n;
{
.
.

}

The #pragma statement and the environment attribute for1 must be in a separate line
(starting in column 1) and directly preceding the definition of the function.

In ILCS environments the called C function may not contain any #pragma statement
defining the environment attribute.

Initialization of C runtime environment

In non-ILCS environments the FOR1 program must initialize the C runtime environment
before calling the first C function. This is done by calling the C library functions cinit1
or cinit2.
As the output parameter, cinit1 provides the address of the C runtime stack. In addition,
the size of the first segment of the C runtime stack can be determined using cinit2.
cinit1 or cinit2 may only be called once per program system:

INTEGER*4 ADR
.
.

CALL CINIT1(ADR)

Even with multi-level language interfacing (FOR1 C FOR1 C etc.) this single
call suffices.

In ILCS environments, the FOR1 program may not contain any calls for cinit1 or cinit2.

496 U577-J-Z125-7-7600

Appendix 9 Language interfacing assembly language/FOR1

A.9 Interfacing FOR1 and assembly language programs

FOR1 provides macros in the FOR1MACLIB which permit interfacing of FOR1 and
assembly language programs.

Using these macros, assembly language programs can be generated which behave like
non-ILCS objects generated with FOR1 in the event of language interfacing. These mac-
ros do not, however, permit the generation of ILCS assembly language programs. There-
fore, although assembly language programs which use these macros can be called by
FOR1 programs in ILCS environments or can themselves call FOR1 programs, it is not
however possible to use these macros to generate assembly language main programs
which are executable in ILCS environments.

However, for ILCS FOR1/assembly language interfacing, ASSEMBH (as of version 1.1A)
provides suitable macros (see "ASSEMBH" Reference Manual" [10]).

Interfacing macros provided by FOR1

Assembly language program calls FOR1 program calls
FOR1 subprogram assembly language subprogram

IFEPL generates the parameter IFAEN generates the entry
address list routine for the assembly

language program
IFECL calls the FOR1

program IFART generates the reentry
routine for branching to

IFESDS generates descriptor for the FOR1 program
CHARACTER data item

IFEADS generates descriptor for
an array

IFEEDS generates descriptor for
an array element

IFESAV generates a save area

Table A.9-1: Macros for interfacing FOR1/assembly language

Interfacing of assembly language subprograms with FOR1 ILCS programs can be achie-
ved without problems if the parameter values FIRST=1 and LAST=12 are selected in
the IFART (or IFARTO) macro.

U577-J-Z125-7-7600 497

Assembly language calls FOR1 Appendix 9

A.9.1 Assembly language program calls FOR1 subprogram

IFEPL macro (parameter address list macro)

This macro generates the parameter address list to be supplied to the subprogram or
generates the required address table when FORTRAN language element "RETURN i" is
used.

Call:

label IFEPL operandlist

OLD
[,PARMOD=]

NEW[(PL=XS NXS)]

label Symbolic address of the parameter address list.

operandlist
symbadr [,symbadr]...

(param) [,(param)]...

symbadr Symbolic return address

E[,spadr]...
CH

[,chadr,sdsadr]...
param CHV

type [,adr]...
(type1) [,arradr,adsadr]...
<type1> [,eladr,edsadr]...

E Indicates that the parameters to follow denote subprogram addresses.

CH Indicates that the parameters to follow denote fixed-length
CHARACTER items.

CHV Indicates that the parameters to follow denote variable-length
CHARACTER items.

type {L1|L4|I1|I2|I4|I8|R4|R8|R16|C8|C16|C32|H}

Indicates the type of parameters to follow.

L LOGICAL*
I INTEGER*
R REAL*
C COMPLEX*
H Hollerith data item

type 1 {type | CH}

498 U577-J-Z125-7-7600

Appendix 9 Assembly language calls FOR1

spadr Symbolic address of a subprogram.

chadr Symbolic address of a CHARACTER item.

sdsadr Symbolic address of the descriptor of this data item.

adr Symbolic address of a simple variable of type other than
CHARACTER.

arradr Symbolic address of an array.

adsadr Symbolic address of the descriptor of this array.

eladr Symbolic address of an array element.

edsadr Symbolic address of the descriptor of this array element.

PARMOD
=OLD Generates the same parameter address list as for FOR1 versions <

V2.0A.

=NEW [(PL={XS|NXS})]
Generates the same parameter address lists as for FOR1 versions
V2.0A. If (PL=XS) is specified, a parameter address list in XS format
is generated; when (PL=NXS) is specified, a parameter in NXS format
is generated.

For CHARACTER items, arrays and array elements, not only the address of the first
byte of the item is transferred, but also a descriptor of that item. Descriptors for items
of the CHARACTER type, for arrays and for array elements may be generated by the
macros IFESDS (string descriptor), IFEADS (array descriptor) and IFEEDS (array ele-
ment descriptor) (see below).

For CHARACTER arrays and CHARACTER array elements, the array or array element
descriptor is transferred, rather than a string descriptor.

The number of parameters is limited to 255.

For INTEGER items less than 4 bytes in length, a modified address is generated; for
length 1 <address-3>, for length 2 <address-2>. This modification is handled by the
macro and need not be specified by the user.

Example of a valid macro call:

BETA IFEPL (R8,ALPHA,SUM),
((I2),ARRAY,ADESCR),
(<L1>,BOOL3,BOOL7,DBOOL7),
(CH,CHAR,CHDESCR)

U577-J-Z125-7-7600 499

Assembly language calls FOR1 Appendix 9

IFECL macro (call macro)

This macro is the interface with the FOR1 subprogram. The generated code performs
the functions of saving and restoring the register contents, initializing the FOR1 "Run-
time Communication Area", setting and restoring the program mask, activating the
FOR1 program and returning from it. IFECL generates a code which has XS capabilities
and can be executed as of runtime system version V2.0A.

Call:

YES NO
[label] IFECL PROG=name [,INIT =] [,PARLIST = name]

NO (reg)

YES NO
[,RESTORE =] [,RETURNI = name]

NO (reg)

YES YES
[,MAINSAV = name] [,FTERM =]

(reg) NO

NO NO
[,USREQM =] [,USRELM =]

name name

label Symbolic address of the macro call.

PROG=name Name of the FOR1 subprogram to be called. If omitted, no activation
takes place (BALR 14,0).
This may be advisable in certain instances, e.g. if only initialization is
requested.

INIT
=YES FOR1 initialization is performed.

=NO Initialization is not performed.

PARLIST
=NO No parameters are transferred to the FOR1 subprogram.

=name Symbolic address of the parameter address list that may be genera-
ted by the IFEPL macro.

=(reg) Specifies the register which contains the address of the parameter
address list.

500 U577-J-Z125-7-7600

Appendix 9 Assembly language calls FOR1

RESTORE
=YES The code generated by the IFECL macro destroys the contents of the

registers and the program mask. When RESTORE=YES is specified,
the contents are saved and, following the return, restored.

=NO No saving and restoration.

RETURNI
=NO The called FOR1 subprogram does not use the "RETURN i" language

element.

=name Symbolic address of an address list or implementation of the
"RETURN i" language element. This address list may be generated by
the IFEPL macro.

=(reg) Specifies the register which contains the address of an address list.

MAINSAV
=YES A save area is implicitly generated by the IFECL macro.

=name Symbolic address of a save area where the FOR1 subprogram saves
the registers. This save area may also be generated by the IFESAV
macro.

=(reg) Specifies the register containing the address of the save area.

FTERM
=YES Last call of a FOR1 subprogram. All FOR1 files are closed, storage is

returned to the system and the RTCA deleted before a return is ma-
de.

=NO Not the last call for a FOR1 subprogram.

USREQM
=NO No memory acquisition by user-own routines is desired, i.e. the entire

address space which is not occupied is available to the runtime
system.

=name Symbolic address of a user-own routine for requesting memory.

USRELM
=NO No memory release by user-own routines is desired. i.e. the entire

address space which is not occupied is available to the runtime
system.

=name Symbolic address of a user-own routine for releasing the requested
memory. FOR1 initialization must be performed using INIT=YES.

U577-J-Z125-7-7600 501

Assembly language calls FOR1 Appendix 9

The FOR1 Runtime Communication Area (RTCA) must be initialized when performing
exponentiations, input/output operations or divisions with R*16 data items in the FOR1
subprogram or when using mathematical functions or complex arithmetic. If the genera-
ted code is executed more than once, initialization takes place only the first time. Howe-
ver initialization must be deactivated when using this macro in an assembly langauge
program which in turn is called by a FOR1 program.

IFESDS macro (string descriptor macro)

This macro generates a descriptor for a CHARACTER type data item. The address of
the descriptor must be supplied in the parameter list to the called FOR1 subprogram.

Call:

[label] IFESDS adr, ALLOCL = a [,CURRL = c]

OLD
[,PARMOD =]

NEW[(PL={XS NXS})]

label Symbolic address of the macro call. This name appears as an ope-
rand in the IFEPL macro.

adr Symbolic address of the data item to be supplied.

ALLOCL=a Length of the occupied storage space of the data item.

CURRL=c Currently used length of the data item.
If omitted, the allocated length is assumed.

PARMOD
=OLD Generates the same descriptor as for FOR1 versions < V2.0A.

=NEW {(PL={XS|NXS})]
Generates the same descriptor as for FOR1 versions V2.0A. When
(PL=XS) is specified, a descriptor is generated in XS format; when
(PL=NXS) is specified, a descriptor is generated in NXS format.

502 U577-J-Z125-7-7600

Appendix 9 Assembly language calls FOR1

IFEADS macro (array descriptor macro)

This macro generates a descriptor for an array. The address of the descriptor must be
supplied in the parameter list to the called FOR1 subprogram.

Call:

[label] IFEADS name,ELEN = n, BOUNDS = (l:u[,l:u][,...])

label Symbolic address of the macro call. This name appears as an ope-
rand in the IFEPL macro.

name Symbolic address of the array to be supplied.

ELEN=n Length of an array element in bytes.

BOUNDS
=(l:u[,l:u] [,...])

Subscript bounds of the individual dimensions,
l lower bound,
u upper bound

IFEEDS macro (array element descriptor macro)

This macro generates a descriptor for an array element. The address of the descriptor
must be supplied in the parameter list to the called FOR1 subprogram.

Call:

[label] IFEEDS iname, aend, ELEN = n

[,PARMOD = {OLD NEW}]

label Symbolic address of the macro call. This name appears as an ope-
rand in the IFEPL macro.

iname Symbolic address of the data item to be supplied.

aend Symbolic address of the end of the array (last byte+1).

ELEN=n Length of an array element in bytes.

PARMOD
=OLD

Generates the same descriptor as for FOR1 versions < V2.0A.

=NEW Generates the same descriptor as for FOR1 versions V2.0A.

U577-J-Z125-7-7600 503

Assembly language calls FOR1 Appendix 9

IFESAV macro (save area macro)

This macro generates a save area to which the called FOR1 subprogram saves the regi-
sters.

Call:

[label] IFESAV

label Symbolic address of the macro call.

If this macro is called for the first time within an assembly language program, a DSECT
is additionally generated. It defines the structure of the save area.

504 U577-J-Z125-7-7600

Appendix 9 Assembly language calls FOR1/Example

Example: Assembly language program calls FOR1 subprogram

Assembly language program ASSFOR1 calls FOR1 subprogram AFOR.

Assembly language program ASSFOR1:

ASSFOR1 START
PRINT NOGEN

ANF BALR 3,0
USING *,3
B BEG

ITAB DC 20F’0’
IERG DC F’0’
K DC F’0’
IERG1 DS D
PARAL IFEPL ((I4),ITAB,IND),(I4,IERG),(I4,K) (1)
IND IFEADS ITAB,ELEN=4,BOUNDS=(1:20) (2)
DRU DS 0CL133
SATZL DC X’00854040C1’

DS CL128
MASKE DC X’4020202020202120’

DS 0F
BEG MVI DRU+5,X’40’
LOESCH MVC DRU+6(127),DRU+5

MVC DRU+6(27),=’BRANCH TO FORTRAN PROGRAM’
WRLST DRU,FEHL
MVI DRU+4,X’40’
MVI DRU+5,X’40’
EX 0,LOESCH
IFECL PROG=AFOR,PARLIST=PARAL (3)

RUECK MVI DRU+4,X’40’ (5)
MVC DRU+6(35),=’RETURNED TO ASSEMBLY LANGUAGE MAIN PROGRAM’
WRLST DRU,FEHL
MVI DRU+5,X’40’
EX 0,LOESCH
MVC DRU+6(41),=’TRANSFER RESULT FROM FORTRAN PROGRAM:’
L 5,IERG
CVD 5,IERG1
MVC DRU+60(8),MASKE
ED DRU+60(8),IERG1+4
WRLST DRU,FEHL
MVI DRU+5,X’40’
EX 0,LOESCH
MVC IERG1,=XL8’0’
L 7,K
XR 4,4
LA 5,ITAB

SCHLEIFE A 4,0(5)
LA 5,4(5)
BCT 7,SCHLEIFE
CVD 4,IERG1
MVC DRU+60(8),MASKE
ED DRU+60(8),IERG1+4
MVC DRU+6(37),=’RESULT IN ASSEMBLY LANGUAGE MAIN PROGRAM:’
WRLST DRU,FEHL
TERM

U577-J-Z125-7-7600 505

Assembly language calls FOR1/Example Appendix 9

FEHL TERMD
END ANF

FOR1 subprogram AFOR

SUBROUTINE AFOR(ITAB1,IERG1,K1)
DIMENSION ITAB1(20)
WRITE(99,1)

1 FORMAT(’ ’,35X,’IN FORTRAN SUBPROGRAM’)
IERG1=0
DO 10 I=1,20
READ(1,2,END=100)ITAB1(I) (4)

2 FORMAT(I8)
10 IERG1=IERG1+ITAB1(I)
100 WRITE(99,3)

3 FORMAT(’ ’,35X,’FIXED-POINT NUMBERS READ INTO TABLE’)
K1=I-1
WRITE(99,7)K1

7 FORMAT(’ ’,35X,’NUMBER OF RECORDS FROM READ OPERATION:’,I8)
WRITE(99,4)

4 FORMAT(’ ’,35X,’CALCULATION IN FORTRAN SUBPROGRAM’)
WRITE(99,5)IERG1

5 FORMAT(’ ’,35X,’RESULT IN FORTRAN SUBPROGRAM:’,I8)
WRITE(99,6)

6 FORMAT(’ ’,35X,’RETURN TO ASSEMBLY LANGUAGE PROGRAM’/’ ’)
RETURN
END

(1) Call of parameter address list macro IFEPL:

PARAL IFEPL ((I4),ITAB,IND),(I4,IERG),(I4,K)

Macro IFEPL generates the parameter address list to be supplied to the FOR1
subprogram. The first parameter to be supplied is data area ITAB, to which the
array ITAB1 in the FOR1 subprogram corresponds. In the first operand
((I4),ITAB,IND) of the IFEPL macro, the type of array (I4), the symbolic address of
the array (ITAB) and the symbolic address of the descriptor of this array (IND) are
specified. Symbolic address IND must be specified as the symbolic address of
array descriptor macro IFEADS.

(2) Call of array descriptor macro IFEADS:

IND IFEADS ITAB,ELEN=4,BOUNDS=(1:20)

Macro IFEADS generates a descriptor for an array. The address of this descriptor
must be supplied to the called FOR1 subprogram in the parameter address list.
The name of the array (ITAB) appears as the first operand. ELEN=4 denotes
length 4 of an array element in bytes, BOUNDS=(1:20) denotes the upper and
lower subscript bounds of the dimension.

506 U577-J-Z125-7-7600

Appendix 9 Assembly language calls FOR1/Example

(3) Call of macro IFECL:

IFECL PROG=AFOR,PARLIST=PARAL (3)

In the call of macro IFECL, PROG=AFOR is used to specify the name of the cal-
led FOR1 program AFOR. PARLIST=PARAL is used to specify the symbolic ad-
dress PARAL of the parameter address list generated by macro IFEPL. The follo-
wing default values apply for the remaining IFECL operands not mentioned in the
above:

INIT=YES FOR1 runtime system initialization

RESTORE=YES Saving and restoring all registers and the program mask

MAINSAV=YES A save area is generated by the IFECL macro.

RETURNI=NO FOR1 subprogram contains no RETURN i statement.

FTERM=NO Not the last call of a FOR1 subprogram

USREQM=NO, No memory management by user-own
USRELM=NO routines.

(4) In the FORTRAN program, 20 INTEGER*4 integers are read in and the total
IERG1 is calculated.

(5) Result IERG1 calculated in the FOR1 program is supplied to the assembly lang-
uage program, from where it is output. The total number of array elements formed
is likewise calculated in the assembly language program and then output.

In the example, the numbers 1 through 20 are read in. Output from the program
to SYSLST shows the messages of the assembly language program left-justified
and the messages of the FOR1 program right-justified.

BRANCH TO FORTRAN PROGRAM

IN FORTRAN SUBPROGRAM
FIXED-POINT NUMBERS READ INTO TABLE
NUMBER OF RECORDS FROM READ OPERATION: 20
CALCULATION IN FORTRAN SUBPROGRAM
RESULT IN FORTRAN SUBPROGRAM: 210
RETURN TO ASSEMBLY LANGUAGE PROGRAM

RETURNED TO ASSEMBLY LANGUAGE MAIN PROGRAM
TRANSFER RESULT FROM FORTRAN PROGRAM: 210
RESULT IN ASSEMBLY LANGUAGE MAIN PROGRAM: 210

U577-J-Z125-7-7600 507

FOR1 calls assembly language Appendix 9

A.9.2 FOR1 program calls assembly language program

Two macros are available: IFAEN, IFART

IFAEN macro (entry macro)
IFAENO macro

This macro generates the entry routine for the assembly language program.

Macro IFAENO has the same operands as the IFAEN macro, plus the operand
SB=address. IFAENO calculates the address of the last parameter, sets the end bit as
required, and stores the address of the end bit in the array with the address
SB=address.

Call:

ENTRY
[label] IFAEN [LABEL =] [,FIRST = reg][,LAST = reg]

CSECT

NO STANDARD
[,MAINSAV = YES] [,PMASK =]

name YES(PMSAV=name)

ENTRY
[label] IFAENO [LABEL =] , ..., [SB = address]

CSECT

label Symbolic address of the macro call.
This name is used for the call by the FOR1 program. If omitted, the
name is defaulted to the form IFdddd, where dddd is a 4-digit num-
ber.

LABEL
=ENTRY The entry point is an entry name.

=CSECT The entry point is a CSECT name.

FIRST=reg Specifies the first register to be saved (default = 14).

LAST =reg Specifies the last register to be saved (default = 12).

MAINSAV
=NO The assembly language program called needs no save area since it

provides no further subprogram calls.

=YES A save area for the assembly language program has already been
generated by the IFECL macro.

508 U577-J-Z125-7-7600

Appendix 9 FOR1 calls assembly language

=name Symbolic address of a save area, e.g. generated by the IFESAV mac-
ro.

PMASK
=YES If AMODE=31 applies, the program mask cannot be saved in register

14. When PMASK=YES (PMSAV= name) is
specified, the program mask is stored in an array with a length of 1
byte using the symbolic name "name".

=STANDARD The program mask is not saved.

SB=address Address of a 4-byte array in which the address of the end bit of the
parameter address list is stored (most significant bit in the n-th word
of the parameter address list where n is the number of parameters).

Notes

When MAINSAV=NO is specified (default) and a runtime error occurs in the assem-
bly language program, the call hierarchy is output only up to the calling FOR1 pro-
gram unit. The names of assembly language programs in the call hierarchy are inclu-
ded in the output provided that MAINSAV=YES or MAINSAV=name has been speci-
fied in the IFAEN macro call.

If the called assembly language program modifies the program mask, this may
under certain circumstances violate the ILCS conventions. In such a case the pro-
gram mask of the calling program should therefore be saved by specifying
PMASK=YES(PMSAV=name), and reset when a return is effected through the
PMASK parameter of the IFART (or IFARTO) macro,.

U577-J-Z125-7-7600 509

FOR1 calls assembly language Appendix 9

IFART macro (return macro)
IFARTO macro

This macro generates the routine for returning from the assembly language program to
the FOR1 program.l

Macro IFARTO has the same operands as the IFART macro, plus the operand
SB=address. If required, IFARTO removes the end bit whose address is stored in the
array with the address SB=address.

Call:

NO
[label] IFART [FIRST = reg] [,LAST = reg] [,MAINSAV= YES]

name

STANDARD
[,PMASK = YES(PMSAV=name)] [,RETURN = i]

NO

YES YES
[,STXIT =] [,CHARFUN = NO]

NO name

[label] IFARTO [FIRST = reg] ,..., [SB = address]

label Symbolic address of the macro call.

FIRST=reg First register to be restored (default = 14).

LAST=reg Last register to be restored (default = 12).

MAINSAV
=NO No save area was needed.

=YES A save area was generated by the IFECL macro.

=name Symbolic address of a save area. This operand must be the same as
the corresponding operand in the IFAEN macro.

PMASK
=STANDARD If AMODE=24 applies, the program mask of the calling program is

reset. If AMODE=31 applies, the program mask of the calling pro-
gram is not reset.

=YES The program mask of the calling program which was saved by speci-
fying PMASK=YES(PMSAV=name) in the IFAEN macro is reset. name
in the PMASK parameter of IFART must denote the same array as in
the PMASK parameter of the IFAEN macro.

=NO The program mask is not reset. There is no saving of the program
mask.

510 U577-J-Z125-7-7600

Appendix 9 FOR1 calls assembly language

RETURN=i Return code. The program returns to the i-th statement label in the
parameter list of the calling FOR1 program
(default = 0).

STXIT
=YES The FOR1 STXIT routines are reactivated. Entries are only permissible

if MAINSAV=YES or MAINSAV=NO is specified.

=NO No reactivation of the FOR1 STXIT routine.

CHARFUN
=YES R1 contains the address of the string descriptor (simulation of a

CHARACTER-FUNCTION).

=NO R1 contains the return code.

=name Symbolic address of a string descriptor, such as one generated by
the IFESDS macro.

SB=address Address of a 4-byte array in which the address of the end bit of the
parameter address list is stored (most significant bit in the n-th word
of the parameter address list where n is the number of parameters).

Note

For FUNCTION subprograms of the INTEGER type, the function value is returned in
register 0. In this case FIRST=1 and LAST=12 must be specified for the registers to
be recovered when the IFART macro is called. If the default values are assumed, the
function value in register 0 is overwritten. In addition, registers 14 and 15 in the
assembly language program must also be saved.

U577-J-Z125-7-7600 511

FOR1 calls assembly language/Example Appendix 9

Example: FOR1 program calls assembly language program

The FOR1 program FORASS calls the assembly language program FAAS.

FOR1 program FORASS:

PROGRAM FORASS
INTEGER ITAB(20)
WRITE(99,1)

1 FORMAT(’1’/’ ’,’BRANCH TO ASSEMBLY LANGUAGE PROGRAM’)
WRITE(99,2)

2 FORMAT(’ ’)
CALL EINSPR(ITAB,IERG,K) (1)

C
WRITE(99,3)

3 FORMAT(’ ’,’RETURNED TO FORTRAN PROGRAM’)
WRITE(99,4) IERG

4 FORMAT(’ ’,’TRANSFER RESULT FROM ASSEMBLY LANGUAGE PROGRAM:’,I8)
WRITE(99,5) K

5 FORMAT(’ ’,I4,’ TRANSFERRED VALUES ARE SUMMED’)
IERG1=0
DO 10 I=1,K

10 IERG1=IERG1+ITAB(I)
WRITE(99,6) IERG1

6 FORMAT(’0’/’ ’,’RESULT IN FORTRAN PROGRAM:’,I8/’1’)
STOP
END

Assembly language program FAAS:

FAAS START
PRINT NOGEN

EINSPR IFAEN LABEL=ENTRY (2)
LM 6,8,0(1) (3)
BALR 3,0
USING *,3
XR 5,5
MVI DRU+5,X’40’

LOESCH MVC DRU+6(127),DRU+5
MVC DRU+35(20),=’IN ASSEMBLY LANGUAGE PROGRAM’
MVI DRU+5,X’40’
WRLST DRU,FEHL
MVI DRU+4,X’02’
XR 9,9

LESEN RDATA EINB,LEKA,84 (4)
VER PACK DOWO,EINB+4(8)

CVB 4,DOWO
ST 4,0(6)
AR 5,4
LA 6,4(6)
A 9,=F’1’
B LESEN

LEKA STC 15,RETCO
CLI RETCO,X’10’
BE LEKA1

512 U577-J-Z125-7-7600

Appendix 9 FOR1 calls assembly language/Example

CLI RETCO,X’0C’
B VER

LEKA1 MVC DRU+6(127),DRU+5 (5)
MVC DRU+35(L’TEXT),TEXT
WRLST DRU,FEHL
MVI DRU+5,X’40’
EX 0,LOESCH
MVC DRU+35(L’TEXTA),TEXTA
CVD 9,ERG
MVC DRU+76(8),MASKE
ED DRU+76(8),ERG+4
WRLST DRU,FEHL
MVI DRU+5,X’40’
EX 0,LOESCH
MVC DRU+35(L’TEXT1),TEXT1
WRLST DRU,FEHL
ST 5,0(7)
ST 9,0(8)
CVD 5,ERG
MVI DRU+5,X’40’
EX 0,LOESCH
MVC DRU+66(8),MASKE
ED DRU+66(8),ERG+4
MVC DRU+35(L’TEXT2),TEXT2
WRLST DRU,FEHL
MVI DRU+5,X’40’
EX 0,LOESCH
MVC DRU+35(L’TEXT3),TEXT3
WRLST DRU,FEHL
MVI DRU+5,X’40’
EX 0,LOESCH
IFART (6)
TERM

FEHL TERMD
EINB DS CL84
DOWO DS D
DRU DS 0CL133
SATZL DC X’0085404001’

DS CL128
RETCO DS C
TEXT DC ’FIXED-POINT NUMBERS READ INTO TABLE’
TEXT1 DC ’CALCULATION IN ASSEMBLY LANGUAGE PROGRAM’
TEXT2 DC ’RESULT IN ASSEMBLY LANGUAGE PROGRAM’
TEXT3 DC ’RETURN TO FORTRAN PROGRAM’
TEXTA DC ’NUMBER OF RECORDS FROM READ OPERATION’
ERG DS D
MASKE DC X’4020202020202120’

END

(1) Call of the assembly language program with the entry name EINSPR.

(2) Call of the entry macro IFAEN:

EINSPR IFAEN LABEL=ENTRY

EINSPR is the symbolic address of the macro call used in the FOR1 program in
its CALL statement. LABEL=ENTRY defines that the entry point is an entry name.

U577-J-Z125-7-7600 513

FOR1 calls assembly language/Example Appendix 9

(3) With the LOAD MULTIPLE instruction, the address of parameter ITAB is stored in
register 6, the address of parameter IERG in register 7 and the address of parame-
ter K in register 8.

(4) The assembly language program reads fixed-point numbers, stores them in area
ITAB and then calculates the total from the numbers which have been read in.

(5) The number of records read and the result are output.

(6) Call of return macro IFART:

The following defaults apply for the IFART macro:

FIRST=14 Register 14 is the first register to be restored.

LAST=12 Register 12 is the last register to be restored.

MAINSAV=NO No save area was needed.

PMASK=STANDARD
The program mask of the calling program is reset if
AMODE=24 applies, or not reset if AMODE=31 applies.

RETURN=0 The parameter list contains no statement label.

STXIT=NO No reactivation of the FOR1 STXIT routine.

CHARFUN=NO Register 1 contains the return code.

(7) SYSDTA is assigned to a file containing the numbers 1 through 20. Output of the
program to SYSLST shows the messages of the FORTRAN program (left-justified)
and the messages of the assembly language program (right-justified):

(7)
BRANCH TO ASSEMBLY LANGUAGE PROGRAM

IN ASSEMBLY LANGUAGE PROGRAM
FIXED-POINT NUMBERS READ INTO TABLE
NUMBER OF RECORDS FROM READ OPERATION 20
CALCULATION IN ASSEMBLY LANGUAGE PROGRAM
RESULT IN ASSEMBLY LANGUAGE PROGRAM 210
RETURN TO FORTRAN PROGRAM

RETURNED TO FORTRAN PROGRAM
TRANSFER RESULT FROM ASSEMBLY LANGUAGE PROGRAM 210

20 TRANSFERRED VALUES ARE ADDED UP

RESULT IN FORTRAN PROGRAM: 210

514 U577-J-Z125-7-7600

Appendix 9 FOR1 XS calls assembly language

FOR1 XS program calls assembly language subprogram

If a FOR1 XS program calls an assembly language subprogram which determines the
(variable) number of parameters by locating the so-called end bit, the user must adapt
the XS parameter address list. Whereas in the case of OLD and NXS parameter ad-
dress lists with n parameters the most significant bit in the n-th word of the address list
is set equal to 1, this end bit is no longer set in the case of XS parameter address lists.

When adapting the XS parameter address list, the 3 following cases may be distinguis-
hed:

1. The assembly language subprogram is not to be changed.

Solution:

In the FORTRAN source program the user replaces the call of the assembly lang-
uage subprogram "progname"

CALL progname (par1,...,parn)

with the call of the subprogram

CALL OLDASS (progname,par1,...,parn)

progname Name of the assembly language subprogram which must be decla-
red in the FORTRAN program as EXTERNAL.

pari i-th parameter to be supplied to the assembly language subpro-
gram; 0 i n, 0 n 408

The subprogram OLDASS copies the XS parameter address list supplied, removes
the EXTERNAL name progname and sets the most significant bit in the n-th word of
the parameter address list. Using the address of this adapted parameter address list
in register 1 and the number of parameters in register 0, a branch is made to the
assembly language program. After returning from the assembly language subpro-
gram the end bit is deleted and control is returned to the calling FORTRAN pro-
gram.

2. The FOR1 XS program is not to be changed.

Solution:

The user adds the call of macro IFAENO with the operand SB=address to the
assembly language subprogram; the macro specifies the address of an array with a
length of 4 bytes. IFAENO calculates the address of the last parameter, sets the end
bit if required, and stores the address of the end bit in the array with the address
SB=address. Before returning to the FOR1 XS program, macro IFARTO with the
operand SB=address is called, removing the end bit. Macros IFAENO and IFARTO
are stored in macro library FOR1MACLIB.

U577-J-Z125-7-7600 515

FOR1 XS calls assembly language Appendix 9

3. Neither the FOR1 XS program nor the assembly language subprogram is to be chan-
ged.

Solution:

The user renames the NXS assembly language program and generates a glue pro-
gram under the old name of the assembly language program. This assembly lang-
uage glue program

uses the IFEANO macro to set the end bit to the address "SB=address";

calls the NXS assembly language program;

uses the IFARTO macro to remove the end bit before returning to the FOR1 XS
program.

Assembly language programs to be capable of being called both by FOR1 XS pro-
grams and by COBOL programs

COBOL always notifies the number of parameters by setting an end bit in the parame-
ter address list. An assembly language subprogram called by COBOL determines the
number of parameters by locating this end bit.

If a FOR1 XS program calls an assembly language program, the FOR1 program provi-
des the number of parameters in register 0. The end bit is not set.

An assembly language program which determines the number of parameters by loca-
ting the end bit can be called both by COBOL and FOR1 XS programs by making the
following change:

The IFAEN and IFART macro calls are changed into the corresponding IFAENO and
IFARTO macro calls, which contain the address of the end bit in the additional
SB=address operand.

516 U577-J-Z125-7-7600

Appendix 10 Software products

A.10 Software products for the FOR1 user

A.10.1 Utility routine FPOOLITY

Product characteristics

With the aid of the FPOOLITY utility routine, FOR1 users can subject their own subpro-
gram interfaces to error analysis. Format errors in subprogram calls can thus be detec-
ted during compilation. Section 12.3 describes how private FPOOL files are set up
using the FPOOLITY utility.

Documentation:

"FPOOLITY" Reference Manual [22]

A.10.2 Subprogram library for high-precision arithmetic ARITHMOS

Product characteristics

ARITHMOS is a subprogram library for solving the rounding error problem in scientific
calculations with floating-point numbers. ARITHMOS is based on the mathematical
theory of computer arithmetic by Professor Dr. Kulisch, University of Karlsruhe.

The functions of ARITHMOS can be invoked in FORTRAN programs via the CALL inter-
face, and in PLI1 programs via the call interface to subroutines in other languages (in
this case FORTRAN).

ARITHMOS provides operations for vector and matrix calculations of maximum preci-
sion. Here maximum precision means that no further floating-point number representa-
ble in FORTRAN REAL*4 or REAL*8 is located between the exact result and the result
supplied by ARITHMOS. This is achieved by exact computation of the scalar product of
two vectors of arbitrary length.

Additional functions support the solution of standard problems of Linear Algebra (e.g.
systems of linear equations, matrix inversion, eigenvalues) with the utmost precision,
providing mathematically guaranteed error bounds. Many of the functions in ARITHMOS
permit interval data to be input, which serves to determine, for example, the influence
of uncertain input data on the result of the computation.

The variants ARITHMOS-PC and ARITHMOS-DL, with the same range of functions as
ARITHMOS, are provided for the Siemens PC-2000 in conjunction with the operating
system BS2000-PC.

U577-J-Z125-7-7600 517

Software products Appendix 10

Documentation:

"ARITHMOS" Description [6]
"ARITHMOS" User’s Guide [5]
"ARITHMOS" Tables [7]

A.10.3 Methods base library of standardized subprograms
for economics and science MEB

Product characteristics

MEB is a package of program modules for the solution of econometric, administrative,
statistical and scientific/technological problems.

The entire MEB library comprises 420 methods, which are grouped into 13 classes on
the basis of their respective theoretical machineries:

Class 0 Input/output program and auxiliary routines
Class 1 Matrix calculation
Class 2 Differential calculus
Class 3 Integral calculus
Class 4 Equations and polynomials
Class 5 Approximation and interpolation
Class 6 Statistics
Class 7 Optimization
Class 8 Simulation
Class 9 Reporting and planning
Class A Special functions
Class B Time series analysis and forecasting
Class C Finance and insurance

With respect to the major application areas the above classes are assigned to six
methods packages which may be used in any combination:

MEB-MATH Applied mathematics; classes 2, 3, 4, 5, A
MEB-OPT Optimization; class 7
MEB-PLAN Reporting and planning; class 9
MEB-PROG Forecasting; classes B, 6 (part E)
MEB-STAT Statistics; classes 6, 8
MEB-FINANZ Finance and insurance; class C

In addition there is a base package that is required by all other methods packages:

MEB-BASIS Basic routines; classes 0, 1

The various methods packages are tailored to practical needs and bear the name of a
certain application area without being limited to it.

518 U577-J-Z125-7-7600

Appendix 10 Software products

Application options

The MEB library is open-ended, i.e. the user may add own program modules for special
applications.

In addition to the methods, the MEB library contains an extensive information module,
which has a strict hierarchical, three-tiered structure and offers

an overview of the entire library and overviews of the individual packages
directories of all MEB classes
uniformly arranged descriptions of the MEB methods.

This enables the user to define, on the basis of his problem-related knowledge, the pro-
gram names required for a DP solution.

The method descriptions contained in the MEB information module have the following
standard format and sequence:

a description of the underlying theory
a description of the associated DP procedure
an example.

The MEB programs can be used in two different ways:

• via the software product MEMO (Methods Monitor) as a query language for the
MEB packages or

• by linking the MEB methods into user-own main programs in FORTRAN, COBOL,
ALGOL, PASCAL, PLI1 and assembly language.

In order to ensure wide applicability of the methods, all fields have variable dimensions;
the field boundaries satisfying the FORTRAN conventions are passed in the parameter
list.

Documentation, presently available in German only:

"MEB-BASIS" [28]
"MEB-MATH" [30]
"MEB-STAT" [34]
"MEB-PLAN" [32]
"MEB-OPT" [31]
"MEB-PROG" [33]
"MEB-FINANZ [29]
"MEB-Anwendungsbeschreibung und Bedienungsanleitung" (BS2000) [27]
(= Reference manual and operating instructions)

U577-J-Z125-7-7600 519

Software products Appendix 10

A.10.4 Library Maintenance System LMS

Product characteristics

LMS is the standard library system for libraries in BS2000.

Programs and sections of programs (Source, Macro, Copy, Include), object modules,
link and load modules, and procedures (JCL) as well as the associated documentation
can be stored, processed and managed in PLAM libraries with the aid of LMS.

PLAM libraries can be accessed by the compilers, utilities (linkage editor/loader) and
the management of the system files. Procedures can be started directly from the PLAM
library.

LMS provides the user with a library system directly incorporated into the BS2000
system environment. No conversion of libraries is required for replacing old utility routi-
nes, as the latter are a subset of LMS (MLU/LMR). COBLUR and FMS libraries can be
read directly by LMS.

LMS supports program libraries, i.e. PAM files processed using the Program Library
Access Method (PLAM).

The variants LMS-PC and LMS-DL are provided for the Siemens PC-2000 in conjunction
with the operating system BS2000-PC. PLAM libraries are not yet supported in these
variants.

Description of functions

LMS can be used to store, manage and update all forms of program elements.

LMS manages, stores and updates source, macro, object module, link and load modu-
le, procedure and text elements in libraries.

Source/macro, module and new program libraries can be generated and processed.

In addition, already existing MLU, LMR, COBLUR and FMS libraries can also be proces-
sed by LMS. Conversion of the previously used methods to LMS is thus considerably
facilitated and simplified.

LMS and the PLAM access method permit the following:

• setting up and copying of LMS libraries and the creation of library tapes (archiving
and transport function)

• reading and processing of COBLUR and FMS libraries and their elements

520 U577-J-Z125-7-7600

Appendix 10 Software products

• common storage in one library
of all types of program elements, especially source programs, object modules,
load modules and link and load modules, as well as listings and procedures
of elements with the same name but whose type designations or version designa-
tions differ

• management and maintenance of all types of library elements, including
addition, correction and deletion of library elements
renaming, transferring, numbering and identification of elements;
creation and management of version numbers and the respective archiving date
for elements;
fully or partially qualified access to library elements, also taking into account the
version number and date of archiving with and without the use of inclusi-
ve/exclusive strings;
a RUN/TEST mode for event-independent monitoring of function sequences or
automatic switchover in the event of errored commands, with the purpose of
avoiding consequential errors;
call of the editor EDT within the LMS system, for direct processing of elements
at the terminal.

• access
by compilers, linkage editor/loader and management of system files;
simultaneous use of a common library by more than one user (also write ac-
cess).

• space-saving storage technique through compression of elements.

Program description

Use of the BS2000 library system LMS considerably reduces the workload on the
BS2000 catalog. Through compressed storage of all elements, there is an extensive
reduction in the original storage space required for these elements.

System performance is enhanced through the access facilities for the compilers, utility
routines and management of the system files. The processing method employed by
LMS guarantees a high degree of reliability, since the status of the libraries is always
kept consistent with the aid of internal mechanisms.

Documentation

"LMS" Reference Manual [25]

U577-J-Z125-7-7600 521

Software products Appendix 10

A.10.5 Job variables

Product characteristics

Job variables are data objects for exchanging information between users on the one
hand and the operating system and users on the other hand.

The user can create and update job variables. He can instruct the operating system to
set certain job variables to specified values when specific events occur.

Job variables provide a flexible tool for job monitoring under user control. They make it
possible to define interdependencies between complex production sequences and they
form the basis for event-driven job processing.

Description of functions

Job variables are objects which are managed by the operating system and addressed
via their names; data up to a length of 256 bytes can be stored in them. They are used
to exchange information between users on the one hand and between the operating
system and users on the other. They can be accessed via the commmand and macro
interface.
In conditional statements, job variables can be linked via Boolean operations, thus
making the execution of individual actions dependent on the state of the condition.
User job variables and monitoring job variables (see below) additionally provide the faci-
lity for synchronous and asynchronous event control on command and program level.

Various job variables are available for the various application sectors:

User job variables

User job variables are the most common form of job variables offered. Their name, life-
span and the data to be stored are determined exclusively by the user. They can be
given protection attributes such as passwords, write protection and expiration date.
Access to them can be restricted to one user ID or generally authorized.

User job variables are especially well-suited for the exchange of information. They can,
however, also be used for job control purposes.

522 U577-J-Z125-7-7600

Appendix 10 Software products

Monitoring job variables

A monitoring job variable is a special form of user job variable. It is assigned to either a
job or a program. Name, lifespan and protection attributes are defined by the user. In
contrast to user job variables, however, it is supplied with fixed values specified by the
operating system to reflect the status of the assigned job or program.

Monitoring job variables are especially well-suited for controlling jobs as is required, for
example, within interdependent production sequences.

Documentation

"Job Variables" User Guide [24]

A.10.6 Graphical kernel system GKS-GA

Product characteristics

GKS-GA (BS2000) implements the standardized BS2000 graphical kernel system GKS
(ISO 7942, DIN 66252). GKS provides the basic functions for computer-based genera-
tion and handling of two-dimensional graphics. It permits the storage and dynamic
modification of graphics as well as their output to suitable output devices.

The GKS-GA functions are independent of the graphics device type, the application,
and the programming language. Consequently, the application programs using GKS are
independent of the device type used.

GKS-GA offers a standard interface with the application program via several program-
ming languages as well as a uniform internal interface to the device-dependent drivers.

Description of functions

GKS-GA, via a standard application program interface, lays down a set of functions for
the generation of any desired two-dimensional graphics by an application program.

U577-J-Z125-7-7600 523

Software products Appendix 10

All GKS functions are application independent. They are divided into the following func-
tional areas:

Display elements (polygon, polymarker, fill area, cell matrix, generalized display ele-
ment, text).

Display attributes (color, line thickness, line type, text alignment, etc.).

Graphics workstation (generalization of real graphics devices for device-independent
programming).

Transformation (coordination of user (or world) coordinate system / standardized /
device coordinate system; magnification, reduction.

Picture segmentation (definition and manipulation of segments).

Picture file (metafile: long-term storage of pictures, transfer, reentry).

Error handling (controlled by GKS or application program).

GKS is available for applications under the transaction monitor UTM, for VTX applica-
tions and for applications in timesharing mode (TIAM).

User programming languages: COBOL, FORTRAN, assembly language.

Documentation

Graphical Kernel System [23]

524 U577-J-Z125-7-7600

References
[1] AID (BS2000)

Advanced Interactive Debugger
Core Manual
User Guide

Target group
Programmers in BS2000
Contents

Overview of the AID system
Description of facts and operands which are the same for all programming
languages
Messages
Comparison between AID and IDA

Applications
Testing of programs in interactive or batch mode

[2] AID (BS2000)
Advanced Interactive Debugger
Debugging on Machine Code Level
User Guide

Target group
Programmers in BS2000
Contents

Description of the AID commmands for debugging on machine code level
Sample application

Applications
Testing of programs in interactive or batch mode

U577-J-Z125-7-7600 525

References

[3] AID (BS2000)
Advanced Interactive Debugger
Debugging of FORTRAN Programs
User Guide

Target group
FORTRAN programmers
Contents

Description of the AID commands for symbolic debugging of FORTRAN
programs
Sample application

Applications
Testing of FORTRAN programs in interactive or batch mode

[4] ARCHIVE (BS2000)
User Guide

Target group
BS2000 system administrators
Operators
End users

Contents
Description of the statements for saving and reconstructing files with
ARCHIVE

[5] ARITHMOS
User’s Guide

Target group
FORTRAN and Assembler programmers
Contents
Problems of conventional floating-point arithmetic, ARITHMOS concept, pro-
blem-solving routines, basic operations, elementary statements, error hand-
ling, and basic instructions of ARITHMOS.

[6] ARITHMOS
Outlinde Description

Target group
FORTRAN and Assembler programmers
Contents
Problems of conventional floating-point arithmetic, ARITHMOS concept, over-
view of ARITHMOS functions, practical applications, hardware and software
prerequisites.

526 U577-J-Z125-7-7600

References

[7] ARITHMOS
Tables

Target group
FORTRAN and Assembler programmers
Contents
Summary overview of ARITHMOS functions, list of ARITHMOS function calls,
basic instructions of ARITHMOS.

[8] Assembler Instructions (BS2000)
Reference Manual

Target group
BS2000 assembly-language programmers
Contents
This manual describes in alphabetical order all (nonprivileged) assembler
instructions of the CPUs supported by BS2000. For each instruction the follo-
wing is described:

its function
its assembler format, i.e. how to write it in assembly language
its machine format, i.e. how it is represented in the CPU
its execution sequence in detail
any condition codes values which it sets
possible program interrupts when it is executed
programming notes
one or more examples

Applications
BS2000 assembly-language application programmers

[9] ASSEMBH (BS2000)
User Guide

Target group
Assembly language users under BS2000
Contents

Calling and controlling ASSEMBH
Assembling, linking, loading, and starting programs
Input sources and output of ASSEMBH
Runtime system, structured programming
Language interfacing
Assembler Diagnostic Program ASSDIAG
Advanced Interactive Debugger AID
ASSEMBH messages
Machine instruction formats

U577-J-Z125-7-7600 527

References

[10] ASSEMBH (BS2000)
Reference Manual

Target group
Assembly language users under BS2000
Contents

Language scope of the assembler ASSEMBH
Assembly language structure, assembler instructions
Structure, elements and instructions of the macro language
Structured programming with ASSEMBH-XT, predefined macros for structu-
red programming

[11] BS2000
User Commands (ISP Format)
User Guide

Target group
BS2000 users (non-privileged)
Contents

All BS2000 system commands in alphabetical order with detailed explana-
tions and examples
The following products are dealt with:
BS2000-GA, MSCF, JV, FT, TIAM

Applications
BS2000 interactive/batch mode, procedures

[12] BS2000
User Commands (SDF Format)
User Guide

Target group
BS2000 users
Contents
BS2000 user commands in the syntax of the dialog interface SDF (System
Dialog Facility)
Applications
BS2000 interactive/batch mode with SDF

528 U577-J-Z125-7-7600

References

[13] BS2000
Binder-Loader-Starter (BLS)
User Guide

Target group
Software developers
Contents
The binder-loader-starter (BLS) system consists of the following functional
units:

Linkage editor BINDER
Dynamic binder loader DBL
Static loader ELDE

The various sections contain functional descriptions and examples, plus a refe-
rence section with statements, commands and, where applicable, macros.

[14] C (BS2000)
C Compiler
User Guide

Target group
C users in a BS2000 environment
Contents

Description of all activities concerned with the creation of an executable C
program: compilation, linking, loading, debugging
Programming notes and additional information on: program runtime con-
trol, file processing, event handling, locale concept, language interfacing,
language features of the C compiler, messages

[15] COBOL85 (BS2000)
COBOL Compiler
User’s Guide

Target group
COBOL users of BS2000
Contents

Generation of the COBOL85 compiler and the software required for the
linking, loading and debugging of COBOL programs
File processing with COBOL programs
Inter-program communication
Structure of the COBOL85 system
Compiler messages and runtime system messages

U577-J-Z125-7-7600 529

References

[16] BS2000
Introductory Guide to the SDF Dialog Interface
User Guide

Target group
BS2000 users
Contents

The various input options offered with SDF in system operation
Operating instructions and examples relating to optional user guidance via
menus

Applications
General

[17] BS2000
Utility Routines
User Guide

Target group
BS2000 users (non-privileged)
Contents
Utility routines for non-privileged BS2000 users
Applications
BS2000 timesharing mode

[18] BS2000
DMS Introductory Guide and Command Interface
User Guide

Target group
Non-privileged BS2000 users
Contents

Functions of DMS in BS2000
Processing of disk and tape file
Access methods UPAM, SAM, BTAM, EAM, ISAM
DMS commands

530 U577-J-Z125-7-7600

References

[19] BS2000
DMS Assembler Interface
User Guide

Target group
Non-privileged BS2000 users/assembly-language programmers
Contents

Functions of DMS in BS2000 (at macro level)
Processing of disk and tape files (at macro level)
Access methods UPAM, SAM, BTAM, EAM, ISAM (including action mac-
ros)
File processing macros

[20] EDT (BS2000)
Statements
User Guide

Target group
EDT newcomers
End users

Contents
Processing of SAM and ISAM files and elements from program libraries
Introduction to the basic principles of EDT and description of the opera-
ting modes
Creation of EDT procedures
Descriptions of all the EDT statements. Frequent applications are illustra-
ted with the aid of numerous examples.

Applications
File editing

[21] FOR1 (BS2000)
FORTRAN Compiler
Reference Manual

Target group
FORTRAN users in BS2000
Contents
Description of the language range of the FOR1 compiler: basic elements of
FORTRAN, control statements, input/output statements, specification state-
ments and data initialization statements, assignment statements and formats;
structure and construction of a FORTRAN program.

U577-J-Z125-7-7600 531

References

[22] FPOOLITY (BS2000)
Reference Manual

Target group
BS2000 programmers
Contents

The FPOOL concept enables compilers to check the compatibility of inter-
faces to called functions
Description of the FPOOL concept
Operation of FPOOLITY for the generation of interface descriptions
FPOOL handling

[23] Graphical Kernel System (BS2000) *
User Guide

Target group
FORTRAN, COBOL and Assembler programmers
Contents
Description of the application of the Graphical Kernel System (GKS)

[24] BS2000
Job Variables
User Guide

Target group
BS2000 users
Contents

Applications for job variables in controlling and monitoring jobs and pro-
gram runs
Conditional job control
All the necessary commands and macros
Application examples

Applications
BS2000 timesharing mode

532 U577-J-Z125-7-7600

References

[25] LMS (BS2000)
ISP Format
Reference Manual

Target group
BS2000 users
Contents
Description of the LMS statements in ISP format for creating and managing
PLAM libraries and the members these contain.
Frequent applications are illustrated by means of examples.

[26] BS2000
Executive Macros
User Guide

Target group
BS2000 assembly language programmers (non-privileged)
System administrators

Contents
All Executive macros in alphabetical order with detailed explanations and
examples; selected macros for DMS and TIAM
Macro overview according to application areas
Comprehensive training section dealing with eventing, serialization, inter-
task communication, contingencies

Applications
BS2000 application programs

[27] MEB *
Reference Manual and Operating Guide

Target group
FORTRAN, COBOL, ALGOL, PASCAL, PLI1 and Assembler programmers
Contents
Reference manual for the MEB methods base library of standardized subpro-
grams for commercial and scientific applications

U577-J-Z125-7-7600 533

References

[28] MEB-BASIS
Basic Routines *
Program Description

Target group
FORTRAN, COBOL, ALGOL, PASCAL, PLI1 and Assembler programmers
Contents
Description of program modules (input/output and other utility routines,
matrix calculation) required by the MEB methods packages.

[29] MEB-FINANZ
Financial and Insurance Mathematics *
Program Description

Target group
FORTRAN, COBOL, ALGOL, PASCAL, PLI1 and Assembler programmers
Contents
Description of program modules for finance and insurance

[30] MEB-MATH
Applied Mathematics *
Program Description

Target group
FORTRAN, COBOL, ALGOL, PASCAL, PLI1 and Assembler programmers
Contents
Description of program modules for applied mathematics (differential and inte-
gral calculus, equations and polynomials, approximation and interpolation,
special functions)

[31] MEB-OPT
Optimization *
Program Description

Target group
FORTRAN, COBOL, ALGOL, PASCAL, PLI1 and Assembler programmers
Contents
Description of program modules for optimization

534 U577-J-Z125-7-7600

References

[32] MEB-PLAN
Planning and Reporting *
Program Description

Target group
FORTRAN, COBOL, ALGOL, PASCAL, PLI1 and Assembler programmers
Contents
Description of program modules for planning and reporting

[33] MEB-PROG
Time Series Analysis and Forecasting *
Program Description

Target group
FORTRAN, COBOL, ALGOL, PASCAL, PLI1 and Assembler programmers
Contents
Description of program modules for forecasting (time series analysis and fore-
casting, statistics)

[34] MEB-STAT
Statistics *
Program Description

Target group
FORTRAN, COBOL, ALGOL, PASCAL, PLI1 and Assembler programmers
Contents
Description of program modules for statistics (statistics and optimization)

[35] Pascal-XT (BS2000)
User’s Guide

Target group
Pascal-XT users in BS2000
Contents

Operation of the programming system and of the compiler
Description of the BS2000-specific attributes of the compiler
Linking and executing programs
Language interfaces
Runtime error messages
Description of predefined packages
Comparison with Pascal Version 3

U577-J-Z125-7-7600 535

References

[36] PERCON (BS2000)
Reference Manual

Target group
BS2000 users
Contents
Description of the PERCON statements in ISP format for transferring and con-
verting files with PERCON
Applications
BS2000 interactive/batch mode

[37] PLI1 (BS2000)
PL/I Compiler
User’s Guide

Target group
PL/I users in BS2000
Contents

Invocation and control of the PLI1 compiler
Input and compilation of source programs
Creation and management of object and load modules
Generation of shareable programs
Control of program execution
File access
Debugging aids
Optimization
Internal representation of data
Procedure interfaces
Service procedures
PL/I/assembly macro interface

[38] System Installation (BS2000)
User Guide

Target group
BS2000 system administrators
Contents

New installation
Version changeover
Generation of a new public volume set
Generation of a subsystem catalog
Statements for SIR and UGEN

Applications
System administration
Computer center

536 U577-J-Z125-7-7600

References

[39] Systems Standards (BS1000, BS2000, TRANSDATA, PDN)
Reference Manual

Target group
Users of Siemens mainframes
Contents

Operating system standards for BS1000, BS2000 and TRANSDATA PDN
Standards for data volumes
Codes for character representation

[40] BS2000
System Administrator’s Guide
User Guide

Target group
BS2000 system administration
Contents
Description of the options and responsibilities of the system administration for
the control and management of the operating system.
The manual contains the following chapters:

System administration (user and file administration, accounting, system
diagnostics, corrections to the system, parameter service)
System control and optimization (job, task and memory management,
DSSM, MPVS)
Data security (SRPM, FACS, SAT)
Data protection (protection strategies, software products for data protec-
tion, file reconstruction)
Automation of system operation
Commands in SDF format

Applications
System administration
Computer center

U577-J-Z125-7-7600 537

References

[41] BS2000
TSOSLNK
User Guide

Target group
Software developers
Contents

Statements and macros of the linkage editor TSOSLNK for linking load
modules and prelinked modules
Commands of the static loader ELDE

* available in German only

Ordering manuals

The manuals listed above and the corresponding order numbers are to be found in the
List of Publications issued by Siemens Nixdorf Informationssysteme AG, which also
tells you how to order manuals. New publications are listed in the Druckschriften-Neu-
erscheinungen (New Publications).

You can arrange to have both of these sent to you regularly by having your name pla-
ced on the appropriate mailing list. Your local office will help you.

538 U577-J-Z125-7-7600

Index

"ideal" loops 338
$TSOS.SYSSSD.FOR1.022.CL4, subsystem input file 20
$TSOS.SYSSSD.FOR1.022.CL5, subsystem input file 20
$TSOS.SYSSSD.FOR1.022.CL6, subsystem input file 20
%CALLTRACE debug statement 258
%CHECK debug statement 256
%COUNT debug statement 261

interpretation in source listing 152
%DISPLAY debug statement 256
%EJECT statement 149
%EXPAND statement 148
%FPOOL, compile time statement 408
%FULLTRACE debug statement 260
%HELP command

AID 279
Interactive Analysis 105

%INCLUDE statement 81
comment line 91, 92

%JUMP command, AID 278
%JUMPTRACE debug statement 259
%NOFPOOL, compile time statement 409
%SPACE statement 149
%SYMLIB command, AID 277
%TITLE statement 150
%TRACE command, AID 278
*ALL, START-FOR1-PROGRAM 185
*MODULE, START-FOR1-PROGRAM 185
*OMF

START-FOR1-COMPILER 131
START-FOR1-PROGRAM 185

*PHASE, START-FOR1-PROGRAM 185
*STD, START-FOR1-PROGRAM 185
*STD-NAME, START-FOR1-COMPILER 86
*SYSLST, START-FOR1-COMPILER 137

U577-J-Z125-7-7600 539

Index

16-Mbyte boundary 364
24-bit addressing mode, program execution 198
24-bit program interfacing 477
24-bit space 472

program interfacing 476
31-bit address space, interactive debugging aid 277
31-bit addressing mode 189
31-bit space 472

program interfacing 476

A
abbreviated forms, Interactive Analysis 101
abbreviation, of compiler options 46
abbreviation of compiler options 42
abbreviation of dialog commands 101
abbreviation of SDF operands 30
abbreviation rules, SDF 29
abbreviations

compiler options 447
option values 447

abnormal function 340, 326, 344
ABNORMAL statement 326, 340
ACCEPTED, START-FOR1-COMPILER 137
access methods 288
ACCOUNTNO, FPOOL function 412
ACOS, DOUBLE PRECISION 358
action by FOR1, diagnostic listing 154
activation, FOR1 runtime subsystem 20
active program unit 377, 379
ADD, RUNOPT 221
addition, overflow 359
address space, extended 362
ADDRn column, object listing 160
administrative information, of a DMS record 303, 307
ADR column, map listing 157
ADS, array descriptor 386
Advanced Interactive Debugger 277
AFTER-ANY-PROG-UNIT, START-FOR1-COMPILER 86
AID, interactive debugging aid 277
alignment of data items 360
ALL, debug option 250
ALL operand

DIALOG option 87
listing generation 140, 145

540 U577-J-Z125-7-7600

Index

ALLOC 363
alphanum-name, SDF 8
AMODE, addressing mode 472
Analysis, Interactive 85
analysis of an update 99
ANS FORTRAN 77, deviations 117
anticipatory update, Interactive Analysis 97
ARG, debug option 250
ARGUMENT-SIDEEFFECTS, START-FOR1-COMPILER 39, 322
arithmetic expressions, manual optimization 314
ARITHMOS

error 232
subprogram library 517

arrangement of data, manual optimization 319
array descriptor 387

ADS 386
array element

addressing, decompiler listing 162
descriptor, EDS 386
in form of actual arguments, dynamic arrays 366
subscript computation 335

array multipliers, decompiler listing 162
ARRAY-BOUNDS, START-FOR1-COMPILER 38, 247
ARRAY-SUBSCRIPTS, START-FOR1-COMPILER 38, 247
arrays

DO loops 319
dynamic 362
manual optimization 316

AS-NEEDED, START-FOR1-COMPILER 122
ASIN, DOUBLE PRECISION 358
ASSEMBLER-CODE, START-FOR1-COMPILER 137
assembly code, object listing 160
ASSEMBLY column, object listing 160
assembly language/FOR1 interfacing

IFAEN 508
IFAENO 508
IFART 510
IFARTO 510

assembly listing, object listing 159
ASSIGN statement 352
ASSIGN-SYSDTA command 60, 70
ATAN, DOUBLE PRECISION 358
ATR operand, listing generation 140, 145
attribute indicator, parameter address list 385

U577-J-Z125-7-7600 541

Index

ATTRIBUTE LISTING 159
attribute listing 159
ATTRIBUTES column, cross-reference listing 158
Autolink procedure, TSOSLNK 189

B
backward chaining 378, 379
basic block 313, 338, 350
Basic Tape Access Method 288
BATCH command, Interactive Analysis 103
batch mode

continuation in 103
Interactive Analysis 85

BCD code 82, 121
BGFOR, COMPATIBLE option 129
BINDER, binder 203
binder, BINDER 203
binder loader DBL 196
BLANK COMMON block, program structure 201
blank lines, insertion in source listing 149
blanks

dialog command 101
filling input record 130

block, physical 290
BLOCK DATA program unit, decompiler listing 162
BLOCK DATA subprograms, linking 192
BLOCKDATA program unit 159
BOUNDS, debug option 251
branch 314
BRANCH-STMTS, START-FOR1-COMPILER 38, 247
BS3, COMPATIBLE option 129
BTAM, access method 288
buffer 290
buffer output, I$PRINT 224
BY-LIST-TYPE, START-FOR1-COMPILER 137
BY-PROG-UNIT, START-FOR1-COMPILER 137

C
C runtime environment, initialization (non-ILCS) 496
c-string 8
C/FOR1, language interfacing 397
call, SYSPRC.FOR1.022.SHARE 209

542 U577-J-Z125-7-7600

Index

call hierarchy 377, 379
AID 279
DEBUG 275
during optimization 328
FOR1/assembly language interface 509

called program, actions taken 377
calling

FOR1 24
procedures 328

calling program, actions taken 377
calling subprograms, %CALLTRACE statement 258
CANCEL-CONDITION, START-FOR1-COMPILER 35, 122
CARD operand, PARAMETER command 220, 453
CCOM option 116
central FPOOL 411
chaining, save area 379
chaining of statements, Interactive Analysis 97
change lines 77

FUPDLINK 77
update file 75

CHANGE LISTING 172
change listing 172

example 461
Interactive Analysis 89

CHANGE operand, listing generation 140, 145
changes since last version 11
changing

file numbers 221
name of a shareable module 210
source program 75
temporary 75

changing the command prefix 100
changing the machine address mode 227
changing the source program (Interactive Analysis) 94
CHARACTER assignment, overlapping 357
CHARACTER substring descriptor 387
CHECK-CODE, START-FOR1-COMPILER 38, 247
CINIT1/CINIT2, FOR1/C interfacing (non-ILCS) 496
class-4 memory 19
class-5 memory 19
class-6 memory 19
CLOSE routine 230
CNTRL, debug option 252
code, when OBJECT=(SHARE) 206

U577-J-Z125-7-7600 543

Index

code and constant section 134
assembly listing 159

code and constants sections, map listing 156
CODE column, object listing 160
code generation, FOR1 450
CODE option 121
code section, shareable 204
codes, compiler options 46
COLLECT option 142
columns, of source listing 152
command entry

Interactive Analysis 100
NEXT line 27

command mode, Interactive Analysis 100
command prefix, Interactive Analysis 87, 100
commands

dialog 101
Interactive Analysis 101

comment lines, object listing 160
COMMON block

ESD listing 155
initializing 192
program structure 201

common memory pools 16
COMMON section 134

map listing 156
COMMON variables, optimization 334
COMOPT statement

format 42
terminating 42

compatibility, FOR1 and other compilers 129
COMPATIBLE option 129
COMPATIBLE option values, abbreviations 449
compilation, requirements 12
compilation error, categories 138
compilation operands 23

compiler options 46
entering 23

compilation run
simple, with compiler options 44
simple, with SDF operands 29

compile time, manual optimization 320
compile time statements 52

summary 52

544 U577-J-Z125-7-7600

Index

COMPILEABLE-COMMENTS, START-FOR1-COMPILER 34, 115
COMPILER, START-FOR1-COMPILER 181
compiler initialization, FOR1 450
compiler listings 136

examples 460
compiler messages, language 25
compiler options

abbreviation 42, 46
abbreviations 447
comparison with PARAMETER operands 454
entering 41
input location 70
input via OPTIONS compiler option 70
input via SYSDTA 70
input/output of PLAM library elements 15
reading via SYSDTA 60
summary 46
validity 23
without corresponding SDF operands 31

compiler options/SDF operands, references 46
compiler output, FOR1 450
compiler phases, of FOR1 450
compiler variable

decompiler listing 161
object listing 160

COMPILER-ACTION, START-FOR1-COMPILER 35, 122
COMPILER-TERMINATION, START-FOR1-COMPILER 40, 173
CONDITIONAL-LOOPS, START-FOR1-COMPILER 39, 322
connect names, FPOOL functions 438
constant, transfer 120
constant expressions, optimization 331
CONSTANT-PRECISION, START-FOR1-COMPILER 35, 122
CONTINUE command, Interactive Analysis 103
control sections 133
control statements

DBL 196
loader ELDE 193
TSOSLNK 187

controlling
form feed character generation 223
output to SYSLST 223
source listing 52, 148

U577-J-Z125-7-7600 545

Index

conventions
function value type 381
program interfacing 376

conversion buffers 201
conversions

manual optimization 315
optimization 326

COPY command, Interactive Analysis 104
copying a range of lines 104
corrections, Interactive Analysis 97
COS, DOUBLE PRECISION 358
COTAN, DOUBLE PRECISION 358
CPU time, used 25
CPU-LIMIT, START-FOR1-COMPILER 40, 173
CREATE-FILE command 287
creating a source program file 56
creating the source program 56
creation of a program, Interactive Analysis 112
CROSS-REFERENCE, START-FOR1-COMPILER 137
cross-reference listing 158

example 462
CSECTs 133

ESD listing 155
current line number, Interactive Analysis 95
current program unit, Interactive Analysis 111
current step, Interactive Analysis 108, 110
cyclical IMPLICIT statement 353

D
DACOS 358
DASIN 358
data block 290
data items, alignment 360
data portion, DMS record 303
data section 134

map listing 156
nonshareable 204

DATA statement, decompiler listing 162
data types 8

suffixes 10
DATA-ALLOCATION-MAP, START-FOR1-COMPILER 136
DATAN 358
DBG.FOR1.stmt.prog.unit, standard file name 255

546 U577-J-Z125-7-7600

Index

DBL
dynamic binder loader 196
run mode 196

DCOS 358
DCOTAN 358
deactivation, FOR1 runtime subsystem 20
DEALLOC 364
DEBUG

debug option 253
debug subprogram 275

DEBUG operand, PARAMETER command 453
debug options 247, 250

errors 243
debug statements 254

errors 243
summary table 254

debug subprogram
DVCHK 232
FIXOV 232
OVERFL 232

debug subprograms 268
summary table 269

debugging
an optimized program 277
of an optimized program 161

debugging aids 247
during optimization 323
dynamic arrays 364, 366

debugging statements, incompatibility 356
DECODE statement 351

incompatibility 356
DECOMP operand, listing generation 140, 145
DECOMPILER LISTING 161
decompiler listing 161, 323

addressing an array element 162
examples 163

default
OPTIONS option 70
SOURCE option 65
UPD option 77

default PAD, SDF and COMOPT operand 130
default values, options 152
defaults, SDF operands 31
DEFINE FILE statement 300

U577-J-Z125-7-7600 547

Index

DELETE, RUNOPT 222
DELETE command, Interactive Analysis 104
DELETE statement 75
DELETE-OLD-CONTENTS, START-FOR1-COMPILER 36, 131
deletion of a range of lines 104
descriptors 386

address 384
cross-reference listing 158
format 202

DESCRS column, cross-reference listing 158
DEUTSCH, START-FOR1-COMPILER 180
deviations from FORTRAN standard, STANDARD-CHECK option 117
DEXP 358
DIAG operand, listing generation 140, 145
DIAGNOSTIC LISTING 154
diagnostic listing 154

example 460
diagnostic messages, source listing 153
diagnostic messages and error degree 138
DIAGNOSTIC-LISTING, deviations from ANS77 118
DIAGNOSTICS, START-FOR1-COMPILER 136
DIALOG

FPOOL function 413
START-FOR1-COMPILER 33, 86

dialog commands 100, 101
abbreviated form 101
brief description 105
entry 89
table 101

dialog mode (SDF), set 28
DIALOG operand (SDF), Interactive Analysis 86
DIALOG option, Interactive Analysis 87
DIALOG-INTERRUPT, START-FOR1-COMPILER 33, 86
DIALOG-SAVE option 90
dimension bound list, open 363
dimension bounds, interrogating, dynamic arays 365
dimensional entry, of a one-dimensional array 130
direct input of source program 59
DISPL column

cross-reference listing 158
object listing 159

division overflow
DVCHK 273
preventing program abortion 273

548 U577-J-Z125-7-7600

Index

DLOG 358
DLOG10 358
DLOG2 358
DMS record

administrative information 303
determining the length 307

DMSA record, data portion 303
DO column, source listing 152
DO loop, representation in decompiler listing 168
DO loops

arrays 319
COMPATIBLE option 129
execution 340
extended range 352
manual optimization 315, 319
optimization 343, 344

DSIN 358
DSQRT 358
DSSM, loading the runtime system 19
DTAN 358
DVCHK, debug subprogram 232, 273
dynamic arrays 362

allocating memory 363
array elements in the form of actual arguments 366
deallocating memory 364
debugging aids 364, 366
declaring 363
decompiler listing 162
initialization 366
interrogating dimension bounds 365
language elements 362
overlaying 366
program interfacing 480
restrictions 366
symbolic addressing 278
with RUNOPT-START 227

DYNAMIC COUNT PROFILE 265
dynamic link loading 196
dynamic memory area 201
dynamic memory creation 362
DYNARA 362
DYNAST 362

U577-J-Z125-7-7600 549

Index

E
EAM, access method 289
EAM area, object module 133
EAM file 287, 289

MODULE-LIBRARY option 132
EBCDI code 82, 121
EDIT operand, DIALOG option 87
editor mode 87
EDOSLINK, original file 91
EDS, array element descriptor 386
EDWSLINK, work file 91
efficiency, subprograms 314
EJECT option 146
ELDE, static loader 193
ELEMENT

START-FOR1-COMPILER 64, 86, 137
START-FOR1-PROGRAM 185, 186

element name, PLAM library of type R 132
ELIMCHR, FPOOL function 414
ELIMINT, FPOOL function 416
ENCODE statement 351

incompatibility 356
end marked, LINE END comments 355
end message 230

for FOR1 25
suppression 230

END operand, error recovery 234
END option 42
END record, object module 133
END statement, missing 354
end-of-line symbol, Interactive Analysis 88
ending the update state 94
ENGLISH, START-FOR1-COMPILER 180
English message text, Interactive Analysis 87
entering, SDF commands 26
entering compiler options 41
entry points, ESD listing 155
equality of values, interrogation 359
EQUIVALENCE statement

decompiler listing 162
optimization 334

equivalenced quantities, optimization 334
ER operand, SHARE procedure 210
ERR operand, error recovery 234

550 U577-J-Z125-7-7600

Index

ERRKILL option 174
ERROR

compilation error 138
START-FOR1-COMPILER 122, 136, 173

error
compilation error 138
compile time 138
diagnostic listing 154

error condition code, runtime 231
error count, MAXERR option 174
error degree

compilation error 138
MSGLEVEL option 138

error diagnosis, AID 278
error display, Interactive Analysis 93
error exit for I/O operations, address 201
error handling

compile time 138
runtime 232

error handling routine, STXIT 226
error indication

compile time 153
source listing 153

error message
diagnostic listing 154
dialog commands 100
form 231
input/output errors 235
program errors 242
runtime 231
STANDARD-CHECK option 117

error messages
compilation error 138, 153
input/output errors 457
IOSTAT 457
runtime 231

error options 174
error type, runtime 231
errors

debug option 243
debug statement 243
fatal 234
input/output 234, 455
irregular flow of control 243

U577-J-Z125-7-7600 551

Index

library programs 237
program errors 241

ERRORS ONLY, START-FOR1-COMPILER 86
ESD listing 154

example 461
ESD operand, listing generation 140, 145
ESD records

ESD listing 154
object module 133

ESD-LISTING 154
ESID column, ESD listing 155
Evanescent Access Method 289
exclamation mark, chaining of paging commands 107
exclamation marks, in compiler listings 147
executable FOR1 program, requirements 12
execution, changing with runtime options 220
EXECUTION ERROR 243
execution error, after RUNOPT START 227
execution monitoring, AID 278
execution of system commands, Interactive Analysis 111
execution tracing, AID 278
EXIT, subprogram 229
EXP, DOUBLE PRECISION 358
EXPAND mode 146, 148
EXPAND operand, OUTPUT option 91
EXPAND option 146
expansion, INCLUDE items 109
EXPERT mode, unguided dialog 28
exponent overflow

OVERFLOW 271
preventing program abortion 271

exponent underflow
interrupt 228
OVERFLOW 271

EXPONENT-UNDERFLOW
runtime option 228
START-FOR1-COMPILER 34, 115
START-FOR1-PROGRAM 217, 219

exponentiation, resolution into multiplications 325
EXPUNDERFLOW option 119
extended range, DO loops 352
extension of a program, Interactive Analysis 112
external names, ESD listing 154
external symbol dictionary, object module 133

552 U577-J-Z125-7-7600

Index

EXTERNAL-DATA, START-FOR1-COMPILER 35, 122
EXTERNAL-DICTIONARY, START-FOR1-COMPILER 137

F
FAILURE, compilation error 139
failure, compilation error 139
FATAL ERROR 234
fatal errors 234
FCB 202
FCMD, FPOOL function 417
FDL entry, FPOOLITY 440
file

permanent 287
system file 285
task-related 287
temporary 287

file attributes, definition 298
file control block 202
file descriptors 202

file 202
hash table 201

file link name 296
file link names 295
file linkage

direct 295
through file link names 295

file linkname
SAVLINK 143
work file 91

file name, OPEN statement 302
file number 298

changing 221
debug statement 255

file numbers, assigning, UNIT option 129
FILE operand, OPEN statement 302
file processing 285
FIND statement 351
fixed length, record format 289
fixed-point arithmetic 359
fixed-point overflow

FIXOV 274
preventing program abortion 274

FIXOV, debug subprogram 232, 274
FLG column, object listing 159

U577-J-Z125-7-7600 553

Index

floating-point arithmetic 359
floating-point entries, precision 124
flow of control, irregular 243
FOR1

code generation 450
compiler initialization 450
compiler output 450
compiler phases 450
formal analysis 450
global optimization 450
semantic analysis 450

FOR1 compilation, monitoring 175
FOR1 messages, language 180
FOR1 XS/assembly language, language interfacing 515
FOR1 XS/assembly language/COBOL, language interfacing 516
FOR1-COUNT-UNIT, START-FOR1-PROGRAM 217, 219
FOR1/assembly language, language interfacing 497, 508
FOR1/assembly language interface, call hierarchy 509
FOR1/assembly language interfacing

IFEADS 503
IFECL 500
IFEEDS 503
IFEPL 498
IFESAV 504
IFESDS 502

FOR1/C, language interfacing 396
FOR1/COBOL85, language interface 389
FOR1/PLI1, language interfacing 393
FOR1LZS subsystem name 21
FOR1MACLIB 455
FOR1MODLIBS 18
FOR1RUN, LINK-Name 220
form feed, source listing 146, 149, 150
form feed characters, RUNOPT OVERPRINT 224
form feed control, RUNOPT OVERPRINT 224
formal analysis, FOR1 450
format

columnar 119
COMOPT statement 42
DELETE statement 75
SOURCE-FORMAT=FIXED 119
SOURCE-FORMAT=FREE 119

format descriptors, variable format 202
FORTRAN control characters, conversion 224

554 U577-J-Z125-7-7600

Index

FORTRAN standard, deviations 117
FORTRAN statements, addressing 278
Fortran90 compiler, incompatibilities 353
FORTRAN90-CHECK, START-FOR1-COMPILER 115
FORTRAN90-CHECK option 121
forward chaining 378, 379
FPOOL

central 411
example 443
function pool 405
generic names 438
incompatibility 355
private 440

FPOOL function
ACCOUNTNO 412
call names 438
DIALOG 413
ELIMCHR 414
ELIMINT 416
FCMD 417
GDATECHAR 419
GDATEINT 421
GEPRTCHAR 422
GEPRTINT 424
GETDATE 425
GETMEMMAPLONG 426
GETMEMMAPSHORT 427
GETODCHAR 428
GETODINT 429
MEMOMAP 434
TASKANDUSERID 431
TMODEALL 432

FPOOL functions, summary table 438
FPOOL option 407
FPOOL-LIBRARY, START-FOR1-COMPILER 32, 407
FPOOLITY, utility routine 440, 517
FROM-FILE, START-FOR1-PROGRAM 186
full-filename 8
function

abnormal 326, 340, 344
normal 326, 344
optimizaiton 328

Function Description Language, FPOOLITY 440
function pool, FPOOL 405

U577-J-Z125-7-7600 555

Index

function value
register conventions 381
transfer 381

FUNCTION-SIDEEFFECT operand, optimization 325
FUNCTION-SIDEEFFECTS, START-FOR1-COMPILER 39, 322
FUPDLINK, change lines 77

G
GAM file 56, 67

example 68
INCLUDE item 81

GDATECHAR, FPOOL function 419
GDATEINT, FPOOL function 421
GEN option 127
generating, load module 183
generation

of object module (GEN option) 127
of the subsystem catalog 19

generic names, FPOOL 438
GEPRTCHAR, FPOOL function 422
GEPRTINT, FPOOL function 424
German message text, Interactive Analysis 87
GETDATE, FPOOL function 425
GETMEMMAPLONG, FPOOL function 426
GETMEMMAPSHORT, FPOOL function 427
GETMODE, subprogram 478
GETODCHAR, FPOOL function 428
GETODINT, FPOOL function 429
GETSHAPE, subprogram 365
GKS-GA, software options 523
global optimization, FOR1 450
global register allocation, optimization 346
glue program 475
GOTO label, object listing 160
Green Control Word 304
group file 56, 67

example 68
INCLUDE item 81

guidance level, guided dialog 28
GUIDANCE operand, MODIFY-SDF-OPTIONS 28
guided dialog

guidance level 28
SDF 27

556 U577-J-Z125-7-7600

Index

H
halfpage 290
hash table, RTCA 201
header line

listings 151
source listing 150

HELP function, AID 279
help information, RUNOPTs 221
HELP operand, SHARE procedure 209
HELP-SDF, SDF command 26
hierarchical level, source listing 153
HIGH, START-FOR1-COMPILER 322
histogram, %COUNT statement 261, 265
holder task 16

I
I$PRINT, buffer output 224
I$PTERM, program termination (non-ILCS) 487
I/H column (SOURCE listing) 153
identification, for source program and change lines 75
IDENTIFIER column, ESD listing 155
IF column, source listing 152
IF statement, manual optimization 314
IF@PROT, program termination (non-ILCS) 486
IF@PTERM, program termination (non-ILCS) 487
IF@RTS1, main module 18
IF@VAP, requesting termination procedures (non-ILCS) 487
IF@XPTR, program termination (non-ILCS) 487
IFAEN, assembly language/FOR1 interfacing 508
IFAENO, assembly language/FOR1 interfacing 508
IFART, assembly language/FOR1 interfacing 510
IFARTO, assembly language/FOR1 interfacing 510
IFEADS, FOR1/assembly language interfacing 503
IFECL, FOR1/assembly language interfacing 500
IFEEDS, FOR1/assembly language interfacing 503
IFEPL, FOR1/assembly language interfacing 498
IFESAV, FOR1/assembly language interfacing 504
IFESDS, FOR1/assembly language interfacing 502
IGNORED, START-FOR1-COMPILER 137, 322
ILCS 127
ILCS program 375
implicit OPEN 302
IMPLICIT option 119
IMPLICIT statement, cyclical 353

U577-J-Z125-7-7600 557

Index

IMPLICIT-DECLARATION, START-FOR1-COMPILER 34, 115
INCLUDE item, updating 82
INCLUDE items 81

expanded output 91, 92
expansion 99, 107, 109
Interactive Analysis 99
line numbering 95
nesting depth 153
output 146

INCLUDE statement, TSOSLNK 189
INCLUDE-EXPANSION, START-FOR1-COMPILER 33, 86
INCLUDE-LIBRARY

compiler option 84
START-FOR1-COMPILER 32, 84

incompatibilities, Fortran90 compiler 353
increment, Interactive Analysis 95, 96
increment for line identifier, Interactive Analysis 104, 105, 106, 110
Indexed Sequential Access Method 288
INITFOR1, COBOL/FOR1 interfacing (non-ILCS) 492
initfor1, C/FOR1 interfacing (non-ILCS) 495
initialization, dynamic arrays 366
initialization routine 229
initializing, COMMON block 192
input

of compiler options via SYSDTA 70
source program 55

input location
compiler options 70
source program 60

input record, filling with blanks 130
input/output

manual optimization 316
unformatted 304

input/output buffer areas 201
input/output error, user-own error recovery 234
input/output errors 234, 455

error condition code 231
error messages 457

input/output of PLAM library elements, table 15
input/output routine, address 201
input/output statements

assigning file numbers 129
decompiler listing 162

558 U577-J-Z125-7-7600

Index

input/output units 298
table 201

INSERT command, Interactive Analysis 105
INSERT-ERROR-WEIGHT, START-FOR1-COMPILER 136
inserting, source program lines 81
instruction code, shifting 340
integer 9
Interactive Analysis 85, 86

abbreviated forms 101
advantages 59
anticipatory update 97
BATCH command 103
chaining of statements 97
change listing 89
changing the source program 94
command entry 100
command mode 100
command prefix 87, 100
commands 101
CONTINUE command 103
COPY command 104
corrections 97
creation of a program 112
current line number 95
current program unit 111
DELETE command 104
DIALOG operand (SDF) 86
DIALOG option 87
end-of-line symbol 88
English message text 87
error display 93
example 112
execution 89
execution of system commands 111
extension of a program 112
German message text 87
HELP command 105
INCLUDE item 99
increment 95, 96
increment for line identifier 104, 105, 106, 110
INSERT command 105
line break 98
line identifier 88, 99, 106, 110
line length 97

U577-J-Z125-7-7600 559

Index

line number , 95
line numbering 95
line range 96
lower case 105
LOWER command 105
MOVE command 106
paging 107
paging commands 100
paging mode 100
positioning to column 7 97
PRINT command 107
RENUMBER command 108
renumbering 108
restart 108
RESTART command 108
retrograde update 97
SAVE command 109
SET command 110
STOP command 111
SYSTEM command 111
termination of compiler run 111
update state 94
upper case 105
work file 90, 91, 94, 109
WRITE command 109

interactive debugging aid
AID 277
debugging of an optimized program 161

interactive mode, Interactive Analysis 85
internal statement label

decompiler listing 161
object listing 160

intrinsic functions
high-precision 358
optimization 329, 338

IOSTAT code 455
IOSTAT messages, English 457
IOSTAT operand 455

error recovery 234
example 455
OPEN statement 455

irregular flow of control, errors 243
ISAM, access method 288

560 U577-J-Z125-7-7600

Index

ISAM file
keyed format 292
no-key format 292
usable area 293

ISAM key
listing type identification 142
source listing 153

ISO code 82, 121
ISP format, BS2000 commands 26
iteration counter

decompiler listing 161
object listing 160

iteration variable 342, 346, 349

J
job variables

FOR1 compilation 175
FORTRAN program execution 233
meaning of indicators 175
monitoring 175, 194, 199, 523
software options 522
user 522

K
K format 292
K-ISAM file 292
K-SAM file 294
keyed format 292
keyword operands, SDF 28

L
langauge interfacing, FOR1/C (non-ILCS) 494
LANGUAGE, START-FOR1-COMPILER 40, 180
language

FOR1 messages 25, 180
SDF help texts 26
SDF messages 26

language elements
dangerous 352
for dynamic arrays 362

language interface
FOR1-COBOL 389
FOR1-COBOL85 389

U577-J-Z125-7-7600 561

Index

language interfacing
FOR1 calls C 401
FOR1 XS/assembly language 515
FOR1 XS/assembly language/COBOL 516
FOR1-PLI1 393
FOR1/assembly language 497
FOR1/C 396
FOR1/COBOL (non-ILCS) 492
FOR1/PLI1 (non-ILCS) 493

LANGUAGE option 180
LANGUAGE-STANDARD, START-FOR1-COMPILER 34, 115
LASER, START-FOR1-PROGRAM 217
LAYOUT, START-FOR1-COMPILER 137
leading zeros, line number 95
length

DMS record 303
FORTRAN record 303

LIBRARY
START-FOR1-COMPILER 64, 86, 137
START-FOR1-PROGRAM 185, 186

library
compiler listings 14
INCLUDE items 14, 81
link and load modules (LLMs) 14
load modules 14
macros 14
object modules 14, 135
OPTIONS option 71
PLAM 14
search hierarchy 84
SOURCE option 65
source programs 14, 65
UPD option 77

LIBRARY ERROR 237
library modules

naming convention 452
program structure 201

library program errors, error condition code 231
library programs, errors 237
LIBRARY-ELEMENT, START-FOR1-COMPILER 64, 86, 137
line, modification in Interactive Analysis 110
line break, Interactive Analysis 98
LINE column, source listing 153
line count, source listing 146

562 U577-J-Z125-7-7600

Index

LINE END comments 355
line identifier

increment 104, 105, 106
Interactive Analysis 88, 99, 106, 110

line length, Interactive Analysis 97
line number

for INCLUDE items 153
Interactive Analysis 88, 95
leading zeros 95
source listing 153

line numbering
INCLUDE items 95
Interactive Analysis 95

line range
copying 104
deletion 104
insertion 105
Interactive Analysis 96
moving 106
output 107
positioning 107

LINE-END-COMMENTS, START-FOR1-COMPILER 34, 115
LINE-OVERPRINT, START-FOR1-PROGRAM 217, 218
LINECNT option 146
LINEEND option 116
LINES-PER-PAGE, START-FOR1-COMPILER 137
LINK name (syn) file link name 295
LINKAGE, START-FOR1-COMPILER 122
linkage, object program 183
linkage editor TSOSLNK 187
LINKAGE option 127
linking

binder BINDER 203
BLOCK DATA subprograms 192
requirements 12
without FOR1 main program 388

list for symbolic debugging, object module 133
LIST option 140, 142
LIST option values, abbreviations 448
LIST-OUTPUT option 143
LISTFILE option 142, 145
LISTING, START-FOR1-COMPILER 36, 136

U577-J-Z125-7-7600 563

Index

listings
attribute listing 159
change listing 172
contents 151
cross-reference listing 158
description 151
diagnostic listing 154
ESD listing 154
file 145
header line (source program) 150
headings 151
listing of external names 154
map listing 156
object listing 159
options listing 151
output location 143
output to cataloged file 145
overall summary listing 172
print image 151
representation of vertical lines 147
selection 140
sorting 142
source listing 152
summary listings 172

LMS 135
software options 520

load address 472, 473, 474
linkage editor TSOSLNK 189

load module
generating 183
structure 200

LOAD-PROGRAM command
DBL 196
ELDE 193
MONJV operand 194, 199

loader ELDE 193
loading, LSD information 277
LOADPT operand, TSOSLNK 189
LOG, DOUBLE PRECISION 358
LOG-CHANGED-LINES, START-FOR1-COMPILER 86
LOG10, DOUBLE PRECISION 358
LOG2, DOUBLE PRECISION 358
logical block 290

optimum length 291

564 U577-J-Z125-7-7600

Index

logical expression
manual optimization 314
optimization 332

logical IF statement, nesting 354
loop control, COMPLEX expressions 353
loop optimization 325

representation in decompiler listing 170
loop-invariance 339
loops

"ideal" 338
conditionally executed sections 327
extended range 352
optimization 338

LOW, START-FOR1-COMPILER 322
lower case, Interactive Analysis 105
LOWER command, Interactive Analysis 105
LSD information 277

DBL 198
load module 194
loader ELDE 194

LSD records, object module 133

M
machine address mode 472, 473, 474

changing 227
control 478

machine addressing mode, ALLOC 364
machine instructions, savings during optimization 329
machine-oriented debugging 277
MACLIB operand, SHARE procedure 210
main memory requirement, FOR1MODLIBS 19
manual, optimization 314
MAP LISTING 156
map listing 156

example 462
MAP operand, listing generation 140, 145
mathematical library modules, same names in C 396
MAX-ERROR-NUMBER, START-FOR1-COMPILER 40, 173
MAX-ERROR-WEIGHT, START-FOR1-COMPILER 40, 173
MAXERR option 174
maximum length, DMS record 303
MEB, methods base library 518
MEDIUM, START-FOR1-COMPILER 322
MEMOMAP, FPOOL function 434

U577-J-Z125-7-7600 565

Index

memory
allocating, dynamic arrays 363
deallocating, dynamic arrays 364

memory allocation, started program 200
memory area, dynamic 201
memory concept, virtual 318
memory creation, dynamic 362
memory dump, processing, AID 279
message, on successful compilation 25
message level

ERRKILL option 174
source listing 153

MESSAGE-PROCESSING, SDF command 26
messages

by message levels 154
diagnostic listing 154
FOR1 180
invalid options 151
language 25
STANDARD-CHECK option 117

metasyntax
compiler and runtime options 5
SDF 6

methods base library MEB 518
MIN operand, listing generation 140, 145
MINIMAL WEIGHT, START-FOR1-COMPILER 136
MINIMAL-PRECISION, START-FOR1-COMPILER 35, 122
modification of a line 110
MODIFY-FILE-ATTRIBUTES command 287
MODIFY-SDF-OPTIONS, SDF command 28
modifying a source program file 58
MODULE, START-FOR1-PROGRAM 186
module names, FPOOL functions 438
MODULE statement, linkage editor TSOSLNK 187
MODULE-GENERATION, START-FOR1-COMPILER 122
MODULE-LIBRARY, START-FOR1-COMPILER 36, 122, 131
MODULE-LIBRARY option 132
monitoring

division overflow 273
overflow 272
underflow 272

monitoring job variables
FOR1 compilation 175
FORTRAN program execution 233

566 U577-J-Z125-7-7600

Index

MONJV, START-FOR1-COMPILER 40, 175
MONJV operand

LOAD-PROGRAM commando 194, 199
START-PROGRAM commando 194, 199

MOVE command, Interactive Analysis 106
MOVED STMT, object listing 160
moving a range of lines 106
MSGLEVEL option 138
MSGLEVEL option values, abbreviations 449
multiplication

overflows 359
reduction to addition 343

N
Name, object listing 160
name 9

attributes 158
changing, shareable module 210
code and constant section 134
COMMON block 155
data section 134
external 155
library element 132
object module 132
references to statement numbers 158
symbolic 158, 278

naming convention, library modules 452
nesting depth

DO loops 152
INCLUDE item 83, 153

NEXT line, SDF 27
NK format 292
NK-ISAM file 292
NK-SAM file 294
NO

RUNOPT 222
START-FOR1-COMPILER 322

NO mode, unguided dialog 28
NO prefix 43

GEN option 127
no-key format 292
NONE operand, listing generation 140, 145
normal function 326, 344

U577-J-Z125-7-7600 567

Index

NOTE
compilation error 138
START-FOR1-COMPILER 136

note, compilation error 138
number passes, %COUNT debug statement 261
NXS program 375, 475
NXSTOXS, subprogram 479

O
OBJECT LISTING 159
object listing 159

example 463
object module

END record 133
external symbol dictionary 133
generating (GEN option) 127
list for symbolic debugging 133
output location 131, 132
relocation dictionary 133
shareable 123, 124

object modules
library 135
nomenclature 133
PLAM library 132
structure 133

OBJECT operand, listing generation 140, 145
OBJECT option 123
OBJECT option values, abbreviations 449
object program, linkage 183
OBJECT-CONTINUATION, START-FOR1-PROGRAM 217, 453
OLD program 375, 475
OLD/XS, program interfacing 477, 483
OLDASS, subprogram 515
OPEN statement 300
operands

for compilation 23
PARAMETER command 453
START-FOR1-COMPILER (guide) 4
START-FOR1-PROGRAM (guide) 4

OPERATION column, object listing 159
operation sequence, optimization 327
OPTIMIZATION, START-FOR1-COMPILER 39, 322

568 U577-J-Z125-7-7600

Index

optimization
common subexpression 333
compile time 320
constant as an actual argument 120
constant expressions 331
DO loop 343, 344
effect on source listing 152
equivalenced quantities 334
examples 347
global register allocation 346
indication of shifted statements 160
logical expressions 332
loops 338
manual 314
procedures 328
program loop 347
subscript computation 335

optimization levels 323
loop optimization 338

OPTIMIZATION-HINTS, START-FOR1-COMPILER 39, 322
OPTIMIZE option 323
OPTIMIZE-PROCEDURES, START-FOR1-COMPILER 39, 322
optimized program, debugging 277
optimized program,debugging 161
OPTIMIZED-SOURCE, START-FOR1-COMPILER 137
optimum length, logical block 291
option values, abbreviations 447
option values (COMOPTs), explicit request 43
OPTIONS

compiler option 70
START-FOR1-COMPILER 136

options
codes 46
default values 152
effective 151
error messages 154
summary 46

OPTIONS LISTING 151
options listing 151

example 471
OPTIONS operand, listing generation 140, 145
original file, Interactive Analysis 85
original file, Interactive Analysis 85
OUTPUT, START-FOR1-COMPILER 137

U577-J-Z125-7-7600 569

Index

output, line range 107
output location

listings 143
object module 131, 132

output of INCLUDE items, source listing 146, 148
output of names, %DISPLAY statement 256
output of values, %DISPLAY statement 256
OUTPUT option 91
OUTPUT-LIBRARY, START-FOR1-COMPILER 35, 122
OVERFL, debug subprogram 232, 271
overflow

DVCHK 273
INTEGER data type 272, 359

overflow block 292
overlaid quantities, optimization 335
overlay 16
overlaying, dynamic arrays 366
OVERPRINT, runtime option 223
overprinting, data records 223

P
PAD option 130
PAGE-EJECT-STMT, START-FOR1-COMPILER 137
paging 318

Interactive Analysis 107
paging commands, Interactive Analysis 100, 107
paging mode, Interactive Analysis 100, 107
PAM key 292
PAM page 290
PAR, START-FOR1-COMPILER 136
PARAMETER, START-FOR1-COMPILER 136, 247, 322
parameter address list 383

attribute indicator 385
structure 383
type indicator 385

PARAMETER command 453
activated options 152
CARD operand 220
comparison with COMOPTs 454
DEBUG operand 232
interaction with compiler options 453
validity 23

parameter list 382

570 U577-J-Z125-7-7600

Index

parameter transfer
C/FOR1 language interfacing 397
FOR1/C language interfacing 401

PARAMETER-SIDEEFFECT operand, optimization 325
partial qualification, element name 144
permanent file 287
PHASE, START-FOR1-PROGRAM 186
PLAM library

*MODULE-LIBRARY option 124
advantages 14
compilation operands 15
compiler options 71
element type C 188
FOR1 support 15
INCLUDE item 81, 84
LIST-OUTPUT option 144
listings 144
MODULE-LIBRARY option 132
object modules 132
shareable object modules 124, 212
source program 66
storing source programs 58
summary 14
TSOSLNK 189

PLAM library elements, DIALOG-SAVE option 90
PLAM library memebrs, types 14
positional operands, SDF 28
positioning, to column 7 88
positioning to column 7 97
precision, floating-point entries 124
preload jobs 16
preloading compiler, example 17
preloading the compiler 16, 24

message in summary listing 172
presetting DIALOG, SDF and COMOPT operand 87
primary assignment, system files 285
PRINT command, Interactive Analysis 107
print image, listings 151
printing, of listings 145
private FPOOLs 440
procedure optimization 328
PROCEDURE-ARGUMENTS, START-FOR1-COMPILER 38, 247
PROCEDURE-OPTIMIZATION option 328
PROG-MOD operand, DBL 198

U577-J-Z125-7-7600 571

Index

program
started, memory allocation 200
started, structure 200

program abortion 232
preventing, division overflow 273
preventing, exponent overflow 271
preventing, fixed-point overflow 274

program continuation 232
batch mode 232
input/output errors 235
interactive mode 232
library program errors 237
other runtime errors 244
program errors 242

PROGRAM ERROR 241
program errors 241

error condition code 231
program information, job variables 176
program initialization 229
program interface, conventions 376
program interfacing 367

24-bit space 476, 477
31-bit space 476
conventions 376
dynamic arrays 480
execution 376
OLD/XS 477, 483
XS/OLD 475, 477, 480

program mask, EXPUNDERFLOW option 119
program run

requirements 12
simple, with compiler options 44
simple, with SDF command 29

PROGRAM statement, TSOSLNK 188
program status, information on 275
program termination 229

I$PTERM (non-ILCS) 487
IF@PROT (non-ILCS) 486
IF@PTERM (non-ILCS) 487
IF@XPTR (non-ILCS) 487

program termination routine, EXIT 229
PROGRAM-MODE, START-FOR1-PROGRAM 185, 186
programm interrupt, exponent underflow 228
programming considerations 351

572 U577-J-Z125-7-7600

Index

programming for virtual memory, manual optimization 318
pseudo-constant data item 339

Q
question mark

in response to FOR1 prompt 74
information for RUNOPTs 221
switch to guided dialog (SDF) 27

R
reading

compiler options, via SYSDTA 60
source program, via SYSDTA 60

REAL option 124
parenthesized 125
unparenthesized 124

REAL-16, START-FOR1-COMPILER 122
REAL-4, START-FOR1-COMPILER 122
REAL-8, START-FOR1-COMPILER 122
RECL operand, OPEN statement 300
record format 289
record key 304
record length 303
record length field 290
RECORD-ID column, source listing 153
references

compilation operands for PLAM library elements of 15
compiler options - SDF operands 46
SDF compiler options 31

REFERENCES column, cross-reference listing 158
register allocation

decompiler listing 162
global 346

register conventions 380
function value 381

relative time requirement, %COUNT 262
relocation dictionary, object module 133
RENUMBER command, Interactive Analysis 108
REORDER operand, optimization 325
REORDER-EXPRESSIONS, START-FOR1-COMPILER 39, 322
requesting termination procedures, IF@VAP (non-ILCS) 487
requirements, executable FOR1 program 12
RESOLVE statement, TSOSLNK 189
RESTART command, Interactive Analysis 108
result simulation, program errors 243

U577-J-Z125-7-7600 573

Index

retrograde update, Interactive Analysis 97
return 377
return address 378
return code 377
return code indicator, job variables 176
RETURN statement, in main program 355
RISK-OPTIMIZED, START-FOR1-COMPILER 322
RLD records, object module 133
RMODE, addressing mode 472
rounding error problem, ARITHMOS 517
RTCA, program structure 201
run mode, DBL 196
run time communication area, program structure 201
RUNOPT

ADD 221
DELETE 222
EXPONENT-UNDERFLOW 228
NO 222
OVERPRINT 223
START 227
STXIT 226
SUBSTITUTE 221

runtime
error handling 232
error messages 231

runtime option
ADD 221
DELETE 222
EXPONENT-UNDERFLOW 228
NO 222
OVERPRINT 223
START 227
STXIT 226
SUBSTITUTE 221

runtime system
functions 495
input/output section 18
loading via DSSM 19
tasks 18

runtime system functions, optimized 329
RUNTIME-OPTIONS, START-FOR1-PROGRAM 217, 218, 453

574 U577-J-Z125-7-7600

Index

S
SAM, access method 288
SAM file

keyed format 294
no-key format 294
usable area 294

save area 377
chaining 379
structure 378

SAVE command, Interactive Analysis 109
SAVE statement 351
SAVE-CONSTANT, START-FOR1-COMPILER 34, 115
SAVE-CONSTANT option 120
SAVE-FILE, START-FOR1-COMPILER 33, 86
saving the work file 109
SAVLINK, listing output 143
SAVLST.FOR1.prog.tsn.time, standard file name 143, 145
SCRATCH file 301
SDF

abbreviation rules 29
command langauge 26
command START-FOR1-COMPILER 26, 31
command START-FOR1-PROGRAM 26, 185, 186
COMPILER operand 181
COMPILER-ACTION operand 35, 122
COMPILER-TERMINATION operand 40, 173
CPU-LIMIT operand 173
DIALOG operand 33, 86
FPOOL-LIBRARY operand 32, 407
FROM-FILE operand 185, 186
guided dialog 27
INCLUDE-LIBRARY operand 32, 84
keyword operands 28
LANGUAGE operand 40, 180
LISTING operand 36, 136
metasyntax 7
MODULE-LIBRARY operand 36, 131
MONJV operand 40, 175
NEXT line 27
OBJECT-CONTINUATION operand 217
OPTIMIZATION operand 322
positional operands 28
RUNTIME-OPTIONS operand 217, 218
set dialog mode 28

U577-J-Z125-7-7600 575

Index

SOURCE operand 32, 64
SOURCE-PROPERTIES operand 34, 115
temporary guided dialog 27
TEST-SUPPORT operand 38, 39, 247
TESTOPT operand 217
unguided dialog 27

SDF commands, entry 26
SDF compiler options, references 31
SDF correction dialog, example 30
SDF help texts, language 26
SDF messages, language 26
SDF metasyntax 7
SDF operands

abbreviation 30
defaults 31
summary tables 31
validity 23

SDF syntax description 6
SDS, string descriptor 386
search hierarchy, libraries 84, 153
SEG column, source listing 152
segment 152
segment numbers, source listing 152
semantic analysis, FOR1 450
semicolon, positioning to column 7 88
Sequential Access Method 288
SET command, Interactive Analysis 110
SET-FILE-LINK command 287, 296

examples 309
updating during program execution 297

SEVERE, compilation error 138
severe error, compilation error 138
SEVERE-ERROR, START-FOR1-COMPILER 122, 173
SHARE command 19
SHARE operand, OBJECT option 123
SHARE procedure

parameters 209
shareable programs 207

SHARE-LIBRARY option 124
shareability

FOR1MODLIBS 19
object modules 123, 124
programs 204

shareable module, name changing 210

576 U577-J-Z125-7-7600

Index

shareable object modules 123
PLAM library 212

shareable programs
generating* 205
generation 214
SHARE procedure 207
usingmit SYSPRC.FOR1.022.SHARE 207
without SHARE procedure 214
without SYSPRC.FOR1.022.SHARE 214

SHAREABLE-CODE, START-FOR1-COMPILER 35, 122
shifting instruction code 340
shifting of instruction code, object listing 160
SHOW-FILE-ATTRIBUTES command 287
SIN, DOUBLE PRECISION 358
skipping, lines in source program 75
SLITE, debug subprogram 270
SLITET, debug subprogram 270
software options

ARITHMOS 517
GKS-GA 523
job variables 522
LMS 520
MEB 518

SORTING, START-FOR1-COMPILER 137
sorting, map listing 156
SOURCE

compiler option 65
START-FOR1-COMPILER 32, 64, 136

SOURCE LISTING 152
source listing 152

controlling with compile time statements 148
error message 153
example 460
form feed 146, 149, 150
header line 150
INCLUDE column 83
inserting blank lines 149
line count 146
meaning of columnsBedeutung der Spalten 152
output of INCLUDE items 146, 148

SOURCE operand, listing generation 140, 145

U577-J-Z125-7-7600 577

Index

source program
assignment via SDF operand SOURCE 64
assignment via SOURCE compiler option 65
changing 75
creating 56
defining the input location 60
direct input 59
input 55
possible input forms 56
reading via SYSDTA 60
storing in PLAM library 58

source program file
creating 56
modifying 58

source program input, Interactive Analysis 88
SOURCE-FORMAT, START-FOR1-COMPILER 34, 115
SOURCE-FORMAT option 119
SOURCE-LISTING, deviations from ANS77 118
SOURCE-PROPERTIES, START-FOR1-COMPILER 34, 115
SPEC column, cross-reference listing 158
SPECIAL, START-FOR1-COMPILER 322
SPECIAL-ATTEMPTS operand, PROCEDURE-OPTIMIZATION 330
SQRT, DOUBLE PRECISION 358
standard assignment, system files 299
standard block 290
standard file name

debug statement 255
LIST-OUTPUT option 143
LISTFILE option 145
OPEN statement 302
system file 285

standard linkage 127
standard listings 140
STANDARD-CHECK option 117
START

runtime option 227
START-FOR1-PROGRAM 217, 219

start message 229
suppression 229

START-FOR1-COMPILER 31
COMPILER operand 181
COMPILER-ACTION operand 35, 122
COMPILER-TERMINATION operand 40, 173
DIALOG operand 33, 86

578 U577-J-Z125-7-7600

Index

einfacher Ablauf 29
FPOOL-LIBRARY operand 32, 407
INCLUDE-LIBRARY operand 32, 84
LANGUAGE operand 40, 180
LISTING operand 36, 38, 136
MODULE-LIBRARY operand 36, 131
MONJV operand 40, 175
OPTIMIZATION operand 39, 322
SDF command 26
SOURCE operand 32, 64
SOURCE-PROPERTIES operand 34, 115
TEST-SUPPORT operand 247

START-FOR1-PROGRAM 186
FROM-FILE operand 185, 186
MONJV operand 217
OBJECT-CONTINUATION operand 217
RUNTIME-OPTIONS operand 217, 218
SDF command 26
simple run 29
TESTOPT operand 217

START-PROGRAM command
DBL 196
ELDE 193
MONJV operand 194, 199

starting, FOR1 24
statement label

addressing 278
cross-reference listing 158
internal 161
object listing 160

statement number
cross-reference listing 158
source listing 152

statement sequence, incompatibility 354
STATEMENT-TABLE, START-FOR1-COMPILER 38, 247
static linkage editor 187
static loader 193
statistics, %COUNT statement 261
status indicator, job variables 176, 233
STATUS operand, OPEN statement 301
STD, START-FOR1-COMPILER 136
step, current 108, 110
STMNT column, object listing 160
STMT column, source listing 152

U577-J-Z125-7-7600 579

Index

STNR, debug option 250
STOP command, Interactive Analysis 111
STRING, debug option 252
string descriptor 387

SDS 386
structure

parameter address list 383
save area 378
started program 200

STXIT, runtime option 226
STXIT routine 490

suppressing the request 226
subexpression, common 333
subprogram interfacing, execution 376
subprogram library, ARITHMOS 517
subprograms

efficiency 314
optimizaiton 328

SUBSCR, debug option 251
subscript computation, optimization 335
subscript expansion

optimization 335
representation in decompiler listing 164

SUBSTITUTE, RUNOPT 221
SUBSTRING-BOUNDS, START-FOR1-COMPILER 38, 247
subsystem catalog, generation 19
subsystemname, shareable runtime system 21
subystem input file 20
suffixes for data types 10
SUMMARY, START-FOR1-COMPILER 136
SUMMARY LISTING 172
summary listing 172

example 470
summary of contents, user guide 3
SUMMARY operand 140

listing generation 145
summary table

comparison of compiler options with PARAMETER operands 454
debug statements 254
debug subprograms 269
FPOOL functions 438
PARAMETER operands 454
SDF operands 31

superfluous code, optimization 325, 350

580 U577-J-Z125-7-7600

Index

SUPPLIEDBOUND option 130
suppression

end message 230
start message 229

switch, to guided dialog (SDF) 27
switches, setting, SLITE/SLITET 270
SYMB. ADDRn column, object listing 160
SYMBOL column, map listing 157
symbolic debugging

AID 277, 278
linkage editor TSOSLNK 188

symbolic indicators, SLITE/SLITET 270
symbolic name, cross-reference listing 158
symbolic names, AID 278
SYMTEST operand, linkage editor TSOSLNK 188
SYMTEST option 277
syntax error dialog, SDF 28
SYNTAX-CHECK, START-FOR1-COMPILER 122
SYSDTA

default assignment 299
START-FOR1-COMPILER 64

SYSDTA-UNIT, START-FOR1-PROGRAM 217, 218
SYSENT.FOR1.022.LOAD1, preload procedure 16, 17
SYSENT.FOR1.022.LOAD2, preload procedure 16
SYSIPT, default assignment 299
SYSIPT-UNIT, START-FOR1-PROGRAM 217, 218
SYSLST

controlling output 223
default assignment 299

SYSLST-UNIT, START-FOR1-PROGRAM 217, 218
SYSOPT, default assignment 299
SYSOPT-UNIT, START-FOR1-PROGRAM 217, 218
SYSOUT, default assignment 299
SYSOUT-UNIT, START-FOR1-PROGRAM 217, 218
SYSPRC.FOR1.022.SHARE

parameters 209
shareable programs 207

SYSPRC.FOR1.022.SYSLOD, preload procedure 16
SYSTEM command, Interactive Analysis 111
System Dialog Facility 26
system environment of FOR1 13
system files 285

standard assignment 299

U577-J-Z125-7-7600 581

Index

T
table

compile time statements 52
compiler options 46
dialog commands 101
indicators for job variables 177
input/output of PLAM library elements 15

tables, guide 3
TAN, DOUBLE PRECISION 358
target group, user guide 2
Task File Table 296
task-related file 287
task-related work file 301
TASKANDUSERID, FPOOL function 431
temporarily modified source programs, source listing 153
temporary auxiliary variable

decompiler listing 161
object listing 160

temporary changing 75
temporary file 287
temporary guided dialog, SDF 27
temporary program correction, AID 278
temporary updating, incompatibility 354
terminating the COMOPT input 42
termination code, job variables 176, 233
termination of compilation

according to error count 174
according to message level 174

termination of compiler run in Interactive Analysis 111
TEST-SUPPORT, START-FOR1-COMPILER 38, 247
TESTOPT, START-FOR1-PROGRAM 217
TESTOPT option 250

procedure optimization 328
TESTOPT option values, abbreviations 448
TEXT-SEPARATOR, START-FOR1-COMPILER 137
TEXT-SEPARATOR option 147
TFT 296
time used, %COUNT debug statement 261
TMODEALL, FPOOL function 432
TOOL-SUPPORT, START-FOR1-COMPILER 38, 247
tracer listing, AID 278
tracing transfers of control, %JUMPTRACE 259

582 U577-J-Z125-7-7600

Index

transfer
of a constant 120
of a function value 381

TRUNCONST option 126
TSOSLNK

Autolink procedure 189
static linkage editor 187

TXT records, object module 133
TYPE, START-FOR1-COMPILER 136
TYPE column

ESD listing 155
map listing 157

type indicator, parameter address list 385

U
UGEN utility routine 19
UNCHANGED, START-FOR1-PROGRAM 217
UNDEF, debug option 252
undefined length, record format 289
underflow

EXPUNDERFLOW option 119
INTEGER data type 272, 359

unformatted input/output 304
manual optimization 316
optimization 325

unguided dialog
EXPERT mode 28
NO mode 28
SDF 27

UNIT option 129
UNIT option values, abbreviations 449
UPD, compiler option 77
UPD option, incompatibility 354
update, analysis 99
update state, Interactive Analysis 94
updating

an INCLUDE item 82
of memory contents 279

upper case, Interactive Analysis 105
usable area, of a logical block 291
user modules, program structure 201
USER-DEBUG-STMTS, START-FOR1-COMPILER 38, 247

U577-J-Z125-7-7600 583

Index

V
V constants, ESD listing 155
validity, of compilation operands 23
value changes

tracing, %CHECK statement 256
tracning, %FULLTRACE statement 260

variable length, record format 289
VARIABLE-ASSIGNMENT, START-FOR1-COMPILER 38, 247
VERSION

START-FOR1-COMPILER 64, 86
START-FOR1-PROGRAM 185

version identifier, FOR1 384
version number, FOR1 24
virtual memory, manual optimization 318

W
WAIT statement 351
WARNING

compilation error 138
START-FOR1-COMPILER 136

warning, compilation error 138
work file

Interactive Analysis 85, 90, 91, 94, 109
saving 109
task-related 301

WRITE command, Interactive Analysis 109

X
XREF listing 158
XREF operand, listing generation 140, 145
XS operand, SHARE procedure 210
XS program 375, 475

required macro library version 210
XS systems 362
XS/OLD, program interfacing 475, 477, 480
XSTONXS, subprogram 478

584 U577-J-Z125-7-7600

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

