
Edition May 2009

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

a
tio

ns
sy

st
e

m
e

A
G

 1
9

95

P
fa

d:
 G

:\f
sc

\B
LS

S
E

R
V

\e
n\

bl
ss

er
v_

e.
vo

r

BLSSERV V2.7
Dynamic Binder Loader/Starter in BS2000/OSD

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2009.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

http://www.cognitas.de
mailto:manuals@ts.fujitsu.com

U5137-J-Z125-7-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

un
e

20
09

S

ta
nd

 1
4:

03
.5

6
P

fa
d

: G
:\f

sc
\B

LS
S

E
R

V
\e

n
\b

ls
se

rv
_e

.iv
z

Contents

1 Preface . 7

1.1 Brief description of the Binder Loader System . 7

1.2 Target group . 12

1.3 Summary of contents . 12

1.4 Changes since the last edition . 13

1.5 Metasyntax . 14
1.5.1 Notational conventions . 14

2 The dynamic binder loader DBL . 15

2.1 Linking and loading . 15
2.1.1 Input to DBL . 17

Link and load modules . 17
Object modules . 18
Primary and secondary input . 18

2.1.2 Linkage process . 19
Searching the primary input . 19
Resolving external references . 24
Handling COMMON sections . 29
Address relocation . 30
Support of EEN names (extended external names) 32
Handling name conflicts . 32
Indirect linkage . 35
Management of list name units . 37
Loading LLMs from files (PAM-LLMs) . 40

2.1.3 Output from DBL . 41
Load unit . 41
DBL map . 44

Contents

 U5137-J-Z125-7-76

2.1.4 Shareable programs (shared code) . 48
System shared code . 50
User shared code . 50
LLMs with PUBLIC slices . 51

2.2 Context concept . 52
2.2.1 Context as a set of objects . 53
2.2.2 Context as a linking and loading environment . 55
2.2.3 Context as an unloading and unlinking environment 56
2.2.4 Properties of a context . 56
2.2.5 Example of the use of contexts . 57

2.3 Additional functions . 59
2.3.1 Unloading and unlinking objects . 59
2.3.2 Outputting link and load information . 60
2.3.3 Creating a separate symbol table . 61
2.3.4 Processing REP files . 62

2.4 Execution of the dynamic binder loader . 65
2.4.1 Calling DBL . 65
2.4.2 Message handling . 67

2.5 Commands . 69

2.6 Macros . 70

3 XS support for DBL . 71

3.1 Determining the addresses passed by the user 71

3.2 Pseudo-RMODE of an object module . 71

3.3 Pseudo-RMODE of an LLM or PAM-LLM . 72

3.4 Determining the load address . 73
3.4.1 LOAD- and START-EXECUTABLE-PROGRAM (or LOAD- and START-PROGRAM)

commands . 73
3.4.2 BIND macro . 76
3.4.3 Handling COMMON sections . 79

3.5 Resolving external references above 16 Mb . 80

Contents

U5137-J-Z125-7-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

un
e

20
09

S

ta
nd

 1
4:

03
.5

6
P

fa
d

: G
:\f

sc
\B

LS
S

E
R

V
\e

n
\b

ls
se

rv
_e

.iv
z

4 The loader ELDE . 81

4.1 ELDE functions . 81

4.2 Calling ELDE . 81

5 Migration . 83

5.1 Existing concepts and new concepts . 83
5.1.1 Existing concepts . 83
5.1.2 New concepts . 85

5.2 Features of the new Binder-Loader-Starter system 86
5.2.1 Link and load module (LLM) and BINDER . 86
5.2.2 Dynamic binder loader DBL . 87
5.2.3 DBL and BINDER . 88

5.3 Migration from the dynamic linking loader DLL to DBL 89
5.3.1 Operating modes RUN-MODE=*STD and RUN-MODE=*ADVANCED 89
5.3.2 Incompatibilities in RUN-MODE=*ADVANCED . 90
5.3.3 Loading LLMs in RUN-MODE=*STD . 91
5.3.4 Loading an LLM with user-defined slices . 91
5.3.5 Migration from the old to the new macros . 92

5.4 Migrating from the static loader ELDE to the DBL 93

5.5 Migration of programs to PAM-LLMs . 94

Contents

 U5137-J-Z125-7-76

6 High-performance loading of programs and products 95

6.1 General notes on improving loading speed . 95

6.2 Structural measures for reducing resource requirements 97

6.3 Improving the load speed for C programs . 99

6.4 Use of DAB . 100

Glossary . 101

Related publications . 109

Index . 111

U5137-J-Z125-7-76 7

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

34
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

1

1 Preface
A source program processed by a compiler (Assembler, C, COBOL, FORTRAN, PL1 etc.)
may exist in either object module format or link and load module format. Object modules
(OMs) and link and load modules (LLMs) are the input objects for the Binder Loader
System, which generates executable programs from these objects.

The binder links the translated source program to other object modules or link and load
modules to produce a loadable unit. To do this it locates the object modules and link and
load modules required for the program run and links them. It also resolves cross-references
between the modules, i.e. adjusts the addresses which reference fields in other modules
(external references) and therefore could not be entered by the compiler at compilation
time. This procedure is known as link editing (or binding).

A loader is needed to bring the unit generated by link editing into computer memory. Only
then can the program be run.

1.1 Brief description of the Binder Loader System

The Binder Loader System (BLS) provides the user with the following functional units:

– the linkage editor BINDER

– the old linkage editor TSOSLNK

– the subsystem BLSSERV with the functionality of the dynamic binder loader DBL and
the static loader ELDE
BLSSERV V2.7A runs on BS2000/OSD-BC V6.0 or higher.

– the security component BLSSEC (which may be optionally activated).

Brief product description Preface

8 U5137-J-Z125-7-76

The linkage editor BINDER

BINDER is a linkage editor which links modules into a loadable unit with a logical and
physical structure. This unit is referred to as a link and load module (LLM). BINDER stores
the LLM as a type L library element in a program library or in a PAM file.

Modules linked by BINDER into an LLM may be:

– object modules (OMs) generated by compilers and stored in an object module library
(OML), a program library (type R) or the temporary EAM object module file

– prelinked LLMs, or LLMs generated by compilers, from a program library (type L)

– prelinked LLMs from a PAM file (PAM-LLM)

– prelinked object modules linked by the TSOSLNK linkage editor and stored in an object
module library (OML), in a program library (type R) or in the temporary EAM object
module file.

The linkage editor TSOSLNK

The TSOSLNK linkage editor links:

– one or more object modules (OMs) into an executable program (load module) and
stores this in a cataloged program file or as a type C library element in a program library

– multiple object modules (OMs) into a single prelinked module and stores this as a type
R library element in a program library or in the EAM object module file.

Instead of the linkage editor TSOSLNK, the user should use BINDER, since TSOSLNK will
not be developed further and will be replaced by BINDER.

Preface Brief product description

U5137-J-Z125-7-76 9

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

34
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

1

BLSSERV with the dynamic binder loader DBL and the static loader ELDE

The dynamic binder loader (DBL) links modules into a load unit and loads this into
memory. The DBL functionality is part of the BLSSERV subsystem.

Modules linked by DBL into a load unit may be:

– link and load modules (LLMs) linked by BINDER or generated by compilers and stored
in a program library (type L),

– link and load modules (LLMs) linked by BINDER and stored in a PAM file (PAM-LLMs,
as of BLSSERV V2.5),

– object modules (OMs) generated by compilers and stored in an object module library
(OML), in a program library (type R) or in the temporary EAM object module file,

– prelinked object modules linked by the TSOSLNK linkage editor and stored in an object
module library (OML), in a program library (type R) or in the temporary EAM object
module file.

The static loader ELDE loads an executable program that has been linked by TSOSLNK
and stored in a program file or as a type C library element in a program library. The ELDE
functionality is part of the BLSSERV subsystem.

The security component BLSSEC

If a “secure system” is required, the security component BLSSEC can be optionally loaded
as a subsystem. This causes the Binder Loader Starter system to run a security check
before each object is loaded by DBL or ELDE and thus ensures that the object is loaded
only if no problems have occurred. Activating the BLSSEC subsystem does, however,
reduce the loading efficiency for all load calls to BLS, so this subsystem should normally be
unloaded after a successful security check.

Brief product description Preface

10 U5137-J-Z125-7-76

The following table shows which modules are processed by the individual functional units.
The figure 1 shows the interaction between these functional units.

The linkage editors BINDER and TSOSLNK are utility routines. The dynamic binder loader
DBL and the static loader ELDE, in contrast, belong to the subsystem BLSSERV which is
a component of the BS2000 Control System. They offer their functions via BS2000
commands and via program interfaces. Execution of a loaded program is initiated by a
starter program which is a component of the BLSSERV subsystem and is not visible to the
user.

System module

Type of module BINDER DBL TSOSLNK ELDE BLSSEC

Link and load module (LLM) yes yes no no yes

Link and load module in
PAM file (PAM-LLM)

yes yes no no yes

Object module (OM) yes yes yes no yes

Prelinked module yes yes yes no yes

Program (load module) no no yes yes yes

Preface Brief product description

U5137-J-Z125-7-76 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

34
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

1

Figure 1: Interaction of the functional units for linking and loading

Source program Compiler

Binder
BINDER

OMs

Library mainte-
nance routine

LMS

Programs

Compilation

Linkage

Loading

LLMs (type L)
OMs (type R) OMs (type R)

LLMs (type L)
Prelinked modules
(type R)
Programs (type C)

Prelinked
modules

EAM object
module file

Program file

Program
library
PLAM

Object
module

library OML

LLMs (type L)
OMs (type R)

Binder
TSOSLNK

Dynamic binder
loader (DBL)

Static loader
ELDE

Load unit in
memory

Program in
memory

Storage

Programs (type C)
LLMs (type L)
OMs and Prelinked
modules (type R)

OMsOMs

OMsOMs
OMsOMs

Subsystem
BLSSEC

BLSSERV

PAM-LLM

LLMs

LLMs

Target group Preface

12 U5137-J-Z125-7-76

1.2 Target group

The “Dynamic Binder Loader / Starter” manual is addressed to the software developer. The
manual provides a description of the facilities and use of the dynamic binder loader DBL
and of the static loader ELDE as components of BLSSERV, and is also intended to serve
as a reference work for their commands and macros.

1.3 Summary of contents

The description of the entire Binder-Loader-Starter (BLS) system is divided into three
manuals.

The present manual describes the dynamic binder loader DBL and the static loader ELDE.

The User Guide “BINDER” [1] contains the description of the linkage editor BINDER.
A separate Ready Reference is also available for BINDER, containing the formats of the
BINDER statements.

This manual is organized as follows:

● The first chapter provides an overview of the functional units of the Binder-Loader-
Starter (BLS) system and their interaction.

● The second chapter contains a description of the dynamic binder loader with its inputs
and outputs, the restrictions for shareable programs, an explanation of the context
concept, additional functions of DBL, execution of DBL, and an overview of the
commands and macros used for calling DBL.

● The third chapter describes the XS support for the dynamic binder loader.

● The fourth chapter contains a short description of the static loader ELDE.

● The chapter “Migration” lists the main differences between the old linkage editor/loader
concept (used up to BS2000 V9.5) and the actual Binder-Loader-Starter system
introduced with BS2000 V10.0 and is intended to help the user make the transition.

● The chapter “High-performance loading of programs and products” contains notes on
improving loading speed and describes measures for reducing resource requirements.

README file

Information on functional changes and additions to the current product version described in
this manual can be found in the product-specific README file. You will find the README
file on your BS2000 computer under the file name SYSRME.BLSSERV.version.language.

Preface Changes since the last version

U5137-J-Z125-7-76 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

34
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

1

The user ID under which the README file is cataloged can be obtained from your systems
support staff. You can view the README file using the /SHOW-FILE command or an editor,
and print it out on a standard printer using the following command:

/PRINT-DOCUMENT filename, LINE-SPACING=*BY-EBCDIC-CONTROL

1.4 Changes since the last edition

The current version of the “Binder Loader/Starter” manual incorporates the following
changes compared to the previous version (“BLSSERV V2.5, Binder Loader/Starter”):

● BLSSERV V2.7 supports X86 code.

● Additional information is contained in the DBL list:

– for LLMs and object modules (OMs): library name, element name and element ver-
sion

– for PAM LLMs: complete file name

● With BIND macro the external references from earlier load operations which remained
unresolved can be output to a user-defined data area as well as those from the current
load operation.

● With the ASHARE and ILEMGT macros the maximum number of parallel memory pools
for shared code has been increased to 16.

● The redundant command and macro descriptions have been removed from this manu-
al. The commands are described in detail in the "Commands" manual [5], and the ma-
cros in the "Executive Macros" manual [7].

Metasyntax Preface

14 U5137-J-Z125-7-76

1.5 Metasyntax

1.5.1 Notational conventions

The following notational conventions are used in this manual:

 for notes

boldprint for important concepts in descriptive text

Runtime examples are shown in typewriter script. Inputs expected from the user are
highlighted in bold.

In the text, references to other publications are given as abbreviated titles with numbers
enclosed in square brackets []. The complete title of each publication to which reference is
made is listed under “Related publications” at the back of the manual.

i

U5137-J-Z125-7-76 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

2 The dynamic binder loader DBL
The dynamic binder loader (DBL) is part of the BLSSERV subsystem. BLSSERV is loaded
immediately after startup. The functionality of DBL is thus available via the program
interface and a number of BS2000 commands. For this reason, DBL cannot be called like
a utility routine.
The main function of DBL is to link modules into a load unit and load this into main memory.
For this purpose, it is necessary to create for the module to be loaded an environment which
permits all external references in this module to be resolved. This is done with the aid of the
context concept of DBL. DBL also supports the shared use of modules by providing
functions for loading and unloading shareable programs (shared code).

In addition to linking and loading, DBL performs the following functions:

– unloading and unlinking objects

– output of link and load information.

2.1 Linking and loading

Linking and loading is performed in the following steps (see figure 2):

– input to DBL

– linkage

– output from DBL

Linking and loading DBL

16 U5137-J-Z125-7-76

Figure 2: Linking and loading

Secondary inputPrimary input

Output

Object mod-
ule library

(OML)

Program
library

(type R)

Program
library

(type L)

EAM object
module file

(OMF)

Object mod-
ule library

(OML)

Program
library

(type R)

Program
library

(type L)

OMs LLMsLLMs

Autolink

OMs OMs OMs OMs

INCLUDE

Object mod-
ule library

(OML)

Program
library

(type R)

OMs OMs

Dynamic binder loader (DBL)
– Resolve external references
– Handle COMMON sections
– Relocate addresses

Linkage process

Load unit

SYSOUT

SYSLST

DBL map

START-EXECUTABLE-PROGRAM
LOAD-EXECUTABLE-PROGRAM
START-PROGRAM
LOAD-PROGRAM
ASHARE
BIND
LDSLICE

LLM from a
PAM file

PAM-LLM

DBL Inputs

U5137-J-Z125-7-76 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

2.1.1 Input to DBL

Input to DBL may consist of the following modules:

– link and load modules (LLMs) linked by BINDER or generated by compilers

– object modules (OMs) and prelinked object modules.

Link and load modules

Link and load modules (LLMs) are generated by the linkage editor BINDER and are stored
as type L elements in program libraries or in PAM files. LLMs in PAM files are designated
as PAM-LLMs. Compilers (such as C compilers) can also generate LLMs and then store
them in program libraries (see the manuals for the compilers for details).

The logical structure of an LLM is implemented in the form of a tree. The root of this tree is
located in the internal name of the LLM with which BINDER identifies the LLM. Nodes are
sub-LLMs which are arranged hierarchically in levels. Object modules form the lowest level
(leaves) of the logical structure of an LLM. The element name and element version of the
LLM stored as a library element (type L) are used for external identification of the LLM. In
the case of PAM-LLMs, the name of the PAM file is used for external identification.

In addition to its logical structure, an LLM also has a physical structure. The object modules
of an LLM consist of control sections, the CSECTs, which can be loaded separately into
main memory. The CSECTs of one or more OMs are combined into a slice. A slice is thus
a loadable unit for DBL.

There are three types of physical structures for an LLM:

1. An LLM with a single slice (the entire LLM is loaded into memory in one load operation).

2. An LLM with slices by attributes:
CSECTs which have the same attributes (READ-ONLY, RESIDENT, PUBLIC, RMODE)
are combined into one slice (not permitted with PAM-LLMs).

3. An LLM with user-defined slices:
The user specifies the positions of the slices. This permits the user to generate overlay
structures (with PAM-LLMs up to 16 slices).

A detailed description of LLMs, their identification and their logical and physical structure
can be found in the manual “BINDER” [1].

Inputs DBL

18 U5137-J-Z125-7-76

Object modules

Object modules (OM) are generated by compilers. Prelinked object modules that are
generated by the TSOSLNK linkage editor have the same format as OMs and are therefore
also treated as OMs in the following.

Input sources for modules may be:

– program libraries (PLAM, element type R)

– object module libraries (OML)

– the EAM object module file (OMF).

Primary and secondary input

A distinction is made between primary and secondary input, depending on the time the
input takes place.

The primary input is specified in the command or macro with which DBL is called. The user
specifies the module and, optionally, the input source in the command or macro. The
module may be an object module or an LLM.

The secondary input is performed in the following cases:

– if DBL needs to include additional modules from an input source because of unresolved
external references and V-type constants (autolink function, see page 24ff)

– if object modules contain INCLUDE statements that request additional object modules
from an input source. This applies only to object modules. LLMs do not contain
INCLUDE statements.

DBL Linkage process

U5137-J-Z125-7-76 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

2.1.2 Linkage process

DBL links the modules of a load unit in the following steps:

– Primary input
DBL searches for the module specified in the load call.

– Resolution of external references
DBL tries to find matching names of control sections (CSECTs) and entry points
(ENTRYs) for all external references in this module. For this, DBL searches for the
appropriate modules in the secondary input and links these into the load unit. If the
modules added in this manner result in further unresolved external references, this step
is repeated iteratively until all external references have been resolved or until a
previously declared status for unresolved external references is achieved.

– COMMON section processing
DBL checks all modules for COMMON section definitions and reserves memory space
for these.

– Address relocation
All addresses contained in the modules are converted so that they refer to the same
reference address.

These steps in the linkage process are described in detail below. Special features regarding
the loading of list name units and PAM-LLMs are described in the section “Management of
list name units” on page 37 and in the section “Loading LLMs from files (PAM-LLMs)” on
page 40.

Searching the primary input

DBL searches for the module specified in the START/LOAD-EXECUTABLE-PROGRAM or
START/LOAD-PROGRAM command or the BIND macro in various “repositories”. The
specified module name may be:

– the name of a CSECT or an ENTRY, which must not be masked

– the external name of an object module or an LLM

– the name of a program in the shared code in class 3/4/5 memory (loaded as a
nonprivileged subsystem)

– the name of a program in the user shared code.

Linkage process DBL

20 U5137-J-Z125-7-76

The search is performed in the following stages:

1. Searching in the link context specified by the user (see page 54). If nonmasked
CSECTs or ENTRYs are found that match the specified symbol name in the load call,
DBL passes the start address to the user task and the loading operation is terminated.

– Searching in the link context is performed only for the BIND macro.

2. Searching in the user shared code which was loaded into the common memory pool
with the DBL macro ASHARE. A start address is passed and the loading operation is
terminated if DBL finds a shareable program (defined with the parameter PROGRAM in
the ASHARE macro) or a nonmasked CSECT or an ENTRY with this name.

– Searching in the user shared code is executed only in RUN-MODE=*ADVANCED.

– Searching in the user shared code is not executed if NAME-SCOPE=*ELEMENT
is specified in the START/LOAD-EXECUTABLE-PROGRAM command.

– The common memory pools are searched only if the user specified SHARE-
SCOPE= *MEMORY-POOL(...)/*ALL, since the default is SHARE-SCOPE=
*SYSTEM-MEMORY. The search can be restricted to common memory pools with
a defined scope or can be suppressed entirely (SHARE-SCOPE=*NONE).

3. Searching in the system shared code, which consists of the nonprivileged subsystems
in class 3/4/5 memory (see the manual “Subsystem Management” [10]). If nonmasked
CSECTs or ENTRYs are found that match the specified symbol name in the load call,
DBL passes the load address to the user task and the loading operation is terminated.
DBL thus establishes a connection between the user task and the subsystem.
In RUN-MODE=*ADVANCED, the user can suppress searching in a nonprivileged
subsystem by means of an operand in the load call (SHARE[-SCOPE]=*NONE).

– Searching in the user shared code is not executed if NAME-SCOPE=*ELEMENT
is specified in the START/LOAD-EXECUTABLE-PROGRAM command.

4. Searching in the library specified by the user in the load call (LIBRARY or
LIBNAM@/LIBNAM/LIBLINK operand). If, in RUN-MODE=*ADVANCED, no such
library was specified but a library was assigned to the link name BLSLIB, then DBL uses
this default library with the link name BLSLIB. If the specified library is faulty or does not
exist, processing is aborted with an error message.

DBL Linkage process

U5137-J-Z125-7-76 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

5. Searching in alternate libraries.

There are two groups of alternate libraries:

a) Alternate libraries that are declared using file link names.

In this case, it is necessary to distinguish between:

– alternate user libraries with the file link names BLSLIBnn
and

– alternate system libraries with the file link names $BLSLBnn
Alternate system libraries are required for components of the runtime system
supplied by Fujitsu. They are assigned independently by the respective runtime
component by means of the file link name $BLSLBnn (00ÎnnÎ99) and cannot
be influenced by the user. The file link names of alternate system libraries are
managed by the Software Development of the Fujitsu Technology Solutions
GmbH and are exclusively reserved for their software products.

b) System and user Tasklibs

These are libraries with the name TASKLIB or a library that is assigned using the
SET-TASKLIB command.

Alternate libraries declared by means of the file link name are searched in the
following order:

1. Alternate system libraries with the file link name $BLSLB00 .. 49

2. Alternate libraries that were assigned by the user via the file link name BLSLIBnn
(00ÎnnÎ99).

3. Alternate system libraries with the file link name $BLSLB50 .. 99 .

In a group of libraries these are searched in ascending numerical order (by “nn”).

System and user tasklibs are searched in the following sequence:

1. the library assigned by the user with the SET-TASKLIB command.

2. the “$userid.TASKLIB” library
or, if this is not present,
the “$defluid.TASKLIB” library
Here, “defluid” is the name of the system default ID (value of the class 2 system
parameter DEFLUID, see the “Introductory Guide to Systems Support” [9]).

Linkage process DBL

22 U5137-J-Z125-7-76

Which of the alternate libraries is searched depends on the way in which the load
operation is performed:

– Loading performed with START/LOAD-EXECUTABLE-PROGRAM
or with the BIND macro (with INTVERS=SRVxxx, where xxx Ï 002)

Users can define which of the specified libraries are to be searched and in what
order in the ALTERNATE-LIBRARIES or ALTLIB operand.

– Loading performed with START/LOAD-PROGRAM and RUN-MODE=*ADVANCED
or with the BIND macro (INTVERS=BLSP2/SRV001)

Only the alternate libraries declared with the file link name BLSLIBnn or $BLSLBnn
are searched if ALTERNATE-LIBRARIES=*YES has been specified.

– Loading performed with START/LOAD-PROGRAM and RUN-MODE=*STD

Only the system and user Tasklibs are searched.

DBL Linkage process

U5137-J-Z125-7-76 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

Selecting and assigning a program version

Starting with BS2000/OSD-BC V3.0, it is possible to select a program version to be used
by DBL when searching for primary input and when resolving external references. As far as
DBL is concerned, a program is basically a load unit with a specific version. All program
definitions (CSECT, ENTRY, COMMON, ...) contained in the load unit inherit that version.

There are two ways of selecting a program version:

1. Selecting a version before loading and starting:

The SELECT-PROGRAM-VERSION command or the SELPRGV macro is used to
select a version of the load unit to be used by DBL in subsequent load calls. The load
unit must not be already loaded on selecting the version, but multiple versions of that
load unit may exist on the system.

2. Selecting a version in the load call:

The LOAD-EXECUTABLE-PROGRAM and START-EXECUTABLE-PROGRAM (or
LOAD-PROGRAM and START-PROGRAM) commands or the BIND and ASHARE
macros can be used to specify a version (with the operand PROGRAM-VERSION or
PGMVERS, respectively) in the load call. DBL then searches among the already loaded
objects for a load unit with the given name and exactly the same version. DSSM
subsystems are also included in the search. DBL treats the subsystem version as a
program version and takes all “connectable entries“ (see page 50) of the subsystem into
account.

Note that a version selection in the load call will always override any previously made
version selection.

If the selected version (see points 1 and 2 above) cannot be found among the loaded
objects, DBL assigns a version to the load unit that is to be loaded.

The selected version for a program can be queried by means of the GETPRGV macro.

The program version can also be selected for unloading and unlinking and for the output of
link and load information.

Resolving external references DBL

24 U5137-J-Z125-7-76

Resolving external references

DBL tries to resolve all unresolved external references in the modules of a load unit, For
this, it first searches the modules which are already linked for CSECTs or ENTRYs with the
same name. If no matching symbols can be found, it searches for further modules
containing such CSECTs or ENTRYs and includes these modules in the load unit. This
loading operation is referred to as the autolink function of DBL. The autolink function
handles only CSECTs and ENTRYs that are not masked (see the manual “BINDER” [1]).

Search strategy

DBL searches for the modules that resolve the external references in various “repositories”.
If a module containing matching CSECTs or ENTRYs is found in one of the repositories, it
is included in the load unit and the search operation is terminated.
By default, searching involves the following steps, and the sequence in which steps 1 to 4
take place can be changed by the user (see the note entitled “User defined searching order”
on page 27):

1. Searching in the link context (see page 55).

2. Searching in the user shared code which was loaded with the ASHARE macro.

– Searching in the user shared code is executed only in RUN-MODE=*ADVANCED.

– The common memory pools are searched only if the user specified SHARE-
SCOPE= *MEMORY-POOL(...)/*ALL, since the default is SHARE-
SCOPE=*SYSTEM-MEMORY. The search can be restricted to common memory
pools with a defined scope or can be suppressed entirely (SHARE-
SCOPE=*NONE).

3. Searching in the system shared code, which consists of the nonprivileged subsystems
in class 3/4/5 memory (see the manual “Subsystem Management” [10]). If an external
reference is resolved by a symbol of the subsystem, DBL establishes a connection to
this subsystem. The user can prevent searches in a nonprivileged subsystem by
specifying the appropriate operand in the load call (SHARE[-SCOPE]=*NONE).

4. Searching in reference contexts (see page 55) which the user has defined. If several
reference contexts exist, these are searched in their existing order. If no reference
contexts exist, this step is skipped. This step is also possible only for the BIND macro.

5. Searching in libraries specified by the user in the load call (LIBRARY or
LIBNAM@/LIBNAM/LIBLINK operand). If no such library was specified by the user (in
RUN-MODE=*ADVANCED), but a library was assigned the link name BLSLIB, then this
default library with the link name BLSLIB will be used by DBL. If the specified library is
corrupt or does not exist, processing is aborted with an error message.

DBL Resolving external references

U5137-J-Z125-7-76 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

6. Searching in alternate libraries.

There are two groups of alternate libraries:

a) Alternate libraries that are declared using file link names.

In this case, it is necessary to distinguish between:

– alternate user libraries with the file link names BLSLIBnn
and

– alternate system libraries with the file link names $BLSLBnn
Alternate system libraries are required for components of the runtime system
supplied by Fujitsu. They are assigned independently by the respective runtime
component by means of the file link name $BLSLBnn (00ÎnnÎ99) and cannot
be influenced by the user. The file link names of alternate system libraries are
managed by the Software Development of the Fujitsu Technology Solutions
GmbH and are exclusively reserved for their software products.

b) System and user Tasklibs

These are libraries with the name TASKLIB or a library that is assigned using the
SET-TASKLIB command.

Alternate libraries declared by means of the file link name are searched in the
following order:

1. Alternate system libraries with the file link name $BLSLB00 .. 49

2. Alternate libraries that were assigned by the user via the file link name BLSLIBnn
(00ÎnnÎ99).

3. Alternate system libraries with the file link name $BLSLB50 .. 99 .

In a group of libraries these are searched in ascending numerical order (by “nn”).

System and user tasklibs are searched in the following sequence:

1. the library assigned by the user with the SET-TASKLIB command.

2. the “$userid.TASKLIB” library
or, if this is not present,
the “$defluid.TASKLIB” library
Here, “defluid” is the name of the system default ID (value of the class 2 system
parameter DEFLUID, see the “Introductory Guide to Systems Support” [9]).

Resolving external references DBL

26 U5137-J-Z125-7-76

Which of the alternate libraries is searched depends on the way in which the load
operation is performed:

– Loading performed with START/LOAD-EXECUTABLE-PROGRAM
or with the BIND macro (with INTVERS=SRVxxx, where xxx Ï 002)

Users can define which of the specified libraries are to be searched and in what
order in the ALTERNATE-LIBRARIES or ALTLIB operand.

– Loading performed with START/LOAD-PROGRAM and RUN-MODE=*ADVANCED
or with the BIND macro (INTVERS=BLSP2/SRV001)

Only the alternate libraries declared with the file link name BLSLIBnn or $BLSLBnn
are searched if ALTERNATE-LIBRARIES=*YES has been specified.

– Loading performed with START/LOAD-PROGRAM and RUN-MODE=*STD

Only the system and user Tasklibs are searched.

Steps 5 and 6 above can be suppressed in the load call with START/LOAD-EXECUTABLE-
PROGRAM or the BIND macro by specifying the operand AUTOLINK=*NO. If this is done,
DBL will search only the already loaded private and shared code. This eliminates the
possibility of runtime modules being inadvertently loaded. Unresolved external references,
if any, are handled by DBL as described on page 28.

If name conflicts are detected, DBL handles them as described on page 32ff.

The autolink function does not refer to the temporary EAM object module file. If modules are
to be loaded from the EAM object module file (*OMF operand in the load call), the user must
make sure that the first module in the file contains the start address of the load unit. In the
load call, the user must specify that all modules are to be fetched from the EAM object
module file (operand FROM-FILE=*MODULE(LIBRARY=*OMF,ELEMENT=*ALL,...)).

No overlay loading is initiated as a result of weak external references (WXTRNs). These are
resolved only:

– in a nonprivileged subsystem or in the shared code

– by modules fetched, for example, using the INCLUDE statement

– by the autolink function called by other EXTRNs or V-type constants.

A COMMON section is not linked by the autolink function. This means that if an external
reference refers to a COMMON section, the module containing this COMMON section
cannot be loaded automatically. The external references are not resolved.

DBL Resolving external references

U5137-J-Z125-7-76 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

User defined searching order

Users can change the search sequence of steps 1 to 4 to suit their requirements. The
following operands are available for this:

– For the MODIFY-DBL-DEFAULTS command:

RESOL-TYPE=*USER(ORDER=...) and
PUBLIC-RESOL-TYPE=*USER(ORDER=...)

– For the BIND macro:

RESORD (with RESTYP=USER) and PURESOR (with PURESTY=USER)

Resolving external references DBL

28 U5137-J-Z125-7-76

Handling unresolved external references

The user can control how external references not resolved by searching the alternate
libraries (see step 6 on page 25) are to be handled by including the UNRESOLVED-
EXTRNS operand in the load call.

The following options are available:

– unresolved external references are not allowed
(operand UNRESOLVED-EXTRNS=*ABORT)
This causes loading of the current load unit to be aborted.

– unresolved external references are assigned a user-defined address
(operand UNRESOLVED-EXTRNS=*STD)
The address is specified by the user in the ERROR-EXIT operand in the load call. The
default value for the address is X’FFFFFFFF’.

– unresolved external references are resolved at a later time
(operand UNRESOLVED-EXTRNS=*DELAY)
DBL stores the unresolved external references in the link context (see page 55). If a new
load unit is loaded in the context, DBL tries to resolve the stored external references at
the end of the loading operation using CSECTs and ENTRYs of the new load unit. This
process is repeated when further load units are loaded, for as long as the context
remains in existence. This option does not apply to external dummy sections
(XDSEC-Rs). When stored in the context, external references that are to be resolved at
a later time are given a temporary address, specified by the user in the load call by
means of the ERROR-EXIT operand. The default value is *NONE, which internally
corresponds to the address X’FFFFFFFF’.

– the specification UNRES=DELAYWARN in the BIND macro basicaly has the same
effect as UNRES=DELAY. The two specifications differ only in the return code. If
external references exist which must be resolved later, a corresponding return code is
issued with DELAYWARN, while the return code with DELAY is null. In addition, the
specification UNRES=DELAYWARN is a prerequisite for outputting external references
from earlier load operations which remained unresolved to the user-defined data area.

When RUN-MODE=*STD is set, processing is performed according to the operand
UNRESOLVED-EXTRNS=*STD, and all unresolved external references are given the
address X’FFFFFFFF’.

DBL logs all unresolved external references in the SYSOUT system file. In interactive
mode, with UNRESOLVED-EXTERNS=*STD set, the user can then decide whether
processing is to continue or terminate when unresolved external references are detected.
In batch mode, processing is always continued.

Unresolved dummy sections (XDSEC-Rs) are listed separately from the other external
references. XDSEC-Rs are only resolved with XDSEC-Ds in the same context.

DBL COMMON sections

U5137-J-Z125-7-76 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

The USNUNR@ operand of the BIND macro (only in conjunction with INTVER=SRVxxx,
where xxx Ï 005) enables the output of a list of unresolved external references to a user-
defined data area. This operand and the UNRES operand are totally independent of each
other. Details are provided in the desription of the BIND macros in the „Executive Macros“
manual [7]. When INTVERS=SRVxxx (xxx Ï 006) and UNRES=DELAYWARN are specified
in the BIND macro, the list of external references from earlier load operations which
remained unresolved can be output to the user-defined data area either as an alternative
or in addition.

Handling COMMON sections

COMMONs are sections that at the time of linking do not as yet contain any data or
instructions but simply reserve space for that purpose. These areas can be used after
loading of the load unit as data communication areas between different modules or as
reserved space for CSECTs.

COMMONs with the same name that are defined in different modules of the load unit are
assigned a single shared memory area by DBL. DBL selects this area sufficiently large so
that the longest COMMON section of this name can be accommodated. It is not possible to
enlarge this memory area by a BIND macro call during the program run. If there is no control
section (CSECT) with the same name as the COMMON section, DBL delays processing
until all modules have been loaded. If a CSECT has the same name as a COMMON
section, DBL assigns this CSECT the address of the COMMON section, i.e. the COMMON
section is initialized with this CSECT when the load unit is loaded. Also, the attributes and
contents of the COMMON section are matched to those of the CSECT during initialization.

If a CSECT has the same name as a COMMON section, DBL takes the COMMON
statement into account earlier, namely when processing the relevant CSECT.

– If the COMMON section appears in the input ahead of the identically named CSECT,
DBL assigns the greater of the two lengths to the COMMON.

– If the CSECT appears in the input ahead of the identically named COMMON section,
DBL makes the COMMON the same length as the CSECT, regardless of the length
specified in the COMMON definition.

The autolink function has no effect for COMMON sections. A module with a COMMON
section referred to by an EXTRN or VCON is thus not automatically loaded.

If name conflicts occur, they are handled as described on page 32ff.

Address relocation DBL

30 U5137-J-Z125-7-76

Address relocation

The most important function of DBL is to form an executable unit from the object modules
(OMs) and LLMs of the input. It therefore has to adjust the addresses in the individual
control sections to match the overall program (relocation) and also search for the matching
entry addresses for any still unresolved external references and V-type constants.

An OM and an LLM contain relocation records which define how the program addresses
relate to one another. This information is used by DBL to assign the definitive addresses for
the overall program.

Address relocation for object modules (OMs)

The start address for CSECTs depends on the two attributes READ-ONLY and PAGE,
entered by the compiler:

READ-ONLY means that the CSECT is to be read-only during the program run, i.e. it may
not be overwritten. DBL must therefore load the CSECT into a new page if the current page
does not also have the READ-ONLY attribute.

PAGE declares that the CSECT is to be loaded at the start of a new page, i.e. at an address
that is a multiple of 4096 bytes (X’1000’).

Examples of how control sections are processed by DBL

1. X CSECT PAGE,READ
.....................
Y CSECT READ
.....................

Control section X is to be aligned on a page boundary and be read-only. The next
control section, Y, does not need to be page-aligned and is likewise read-only. DBL
therefore loads Y into the same page as X, at the next doubleword boundary.

2. ABC CSECT READ
..................
XYZ CSECT
..................

DBL automatically aligns control section ABC on a page boundary if it is the first CSECT
of the object module. It loads ABC into a read-only page. Control section XYZ is aligned
on the page boundary of a new page by DBL because read and write access are
allowed for the CSECT.

DBL Address relocation

U5137-J-Z125-7-76 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

Address relocation for LLMs

The start address is dependent on the following properties of the LLM:

1. LLM with CSECT attributes PAGE and READ-ONLY

If the PAGE and READ-ONLY attributes have been passed by BINDER, the following
applies:

– PAGE specifies that the CSECT is to be loaded at the start of a new page, i.e. at an
address that is a multiple of 4096 bytes (X’1000’).

– READ-ONLY means that the CSECT may only be read during the program run, i.e.
it must not be overwritten. DBL must therefore load the CSECT into a new page if
the current page does not also possess the READ-ONLY attribute.
This applies to LLMs with the following physical structure (see the “BINDER”
manual [1]):
– single slices
– user-defined slices
– slices by attributes, where the READ-ONLY attribute has not been used for

creating the slices.

2. LLM without relocation information (LRLD)

If the LLM has been stored without relocation information (see the BINDER statement
SAVE-LLM, operand RELOCATION-DATA=*NO [1]), DBL determines the start address
specified with the LOAD-ADDRESS operand in the SAVE-LLM statement. If this is not
possible, the loading operation is aborted.

3. LLM with relocation information (LRLD)

If the LLM has been stored with relocation information (see the BINDER statement
SAVE-LLM, operand RELOCATION-DATA=*YES [1], DBL determines the start address
as follows:

– First, it tries to assign the address specified with the LOAD-ADDRESS operand in
the BINDER statement SAVE-LLM as the start address. If this is possible, relocation
is limited to the unresolved external references and to the references to COMMON
sections. (Address relocation within the LLM was already done during the BINDER
run.)

– If the address defined with the LOAD-ADDRESS operand cannot be assigned as
the start address, DBL selects an arbitrary address and performs a complete
relocation.

Name conflicts DBL

32 U5137-J-Z125-7-76

Support of EEN names (extended external names)

BLSSERV supports LLMs with extended external names (EEN).

Compilers of object oriented programming languages generate symbol names that do not
comply with the conventions for external names (ENs). Names of this kind are called EEN-
Names (Extended external names).

Symbols with EENs can only be contained in LLMs with format 4 (or higher).

– These LLMs can be created by BINDER as of V2.0

– They can be loaded with BLSSERV as of V2.0 in the user address space.

– With BLSSERV as of V2.1 they can also be loaded as shared code or as a subsystem.

– Input of EEN names via user interface for binding and loading (START/LOAD-
EXECUTABLE-PROGRAM, START/LOAD-PROGRAM, BIND, ASHARE) is not
possible. The modules must be specified by the name of the library element which
contains them.

– Information about EENs can be output via the VSVI1 interface. In all other BLS output
no EENs will be displayed. They are replaced by internal names.

Handling name conflicts

Name conflicts can arise when symbols with identical names occur in the external symbol
dictionary of a load unit. Symbols are CSECTs, ENTRYs, COMMONs and XDSEC-Ds.
Note that identical names are not necessarily always conflicting names.

DBL handles name conflicts differently, depending on whether the operating mode is RUN-
MODE=*STD or RUN-MODE=*ADVANCED (see page 89).

Handling name conflicts in RUN-MODE=*STD

In the case of RUN-MODE=*STD, name conflicts are detected regardless of whether or not
the symbols in a module are masked. The user has no means of controlling how name
conflicts are handled.

DBL Name conflicts

U5137-J-Z125-7-76 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

The following table shows how name conflicts are handled by DBL. “Entry 1” stands for a
symbol in a loaded module or for a COMMON that is already known in the current load unit.
Any uninitialized COMMON at the end of the load unit is flagged in the symbol table and
treated as a CSECT in subsequent load calls. A name conflict occurs if an “Entry 2” symbol
of the same name is found in the module to be loaded.

Explanation

(1) A name conflict has been detected.
Loading of the module containing the CSECT with the same name is aborted.
The autolink function is terminated. If loading of the module was initiated by an
INCLUDE statement in an object module (see appendix), the module is ignored and
processing continues.

(2) The COMMON section is initialized with the CSECT.

(3) A name conflict has been detected.
Loading is aborted.

(4) The name conflict is not detected.

(5) The second COMMON section is ignored.

(6) Recoverable error.
The second XDSEC-D is skipped.

(-) Not a name conflict (only an identical name).

Handling name conflicts in RUN-MODE=*ADVANCED

In RUN-MODE=*ADVANCED, name conflicts are detected only if the symbols in a module
are not masked. The user is notified with a message of any name conflict which could lead
to errors. By including the NAME-COLLISION operand in the load call, the user can control
how name conflicts are handled. The following options are available:

– operand NAME-COLLISION=*STD
Name conflicts between nonmasked symbols are indicated by warning messages. The
module containing the symbol with the same name is loaded. The new occurrence of
the symbol is masked, i.e. it is not used to resolve external references.

Entry 1

Entry 2 CSECT ENTRY COMMON XDSEC-D

CSECT (1) --- (2) --

ENTRY --- (3) --

COMMON (3) (4) (5) --

XDSEC-D -- -- -- (6)

Name conflicts DBL

34 U5137-J-Z125-7-76

– operand NAME-COLLISION=*ABORT
Loading of the current load unit is aborted as soon as a name conflict between
nonmasked symbols is detected.

The following table shows how DBL handles name conflicts when the user has specified
NAME-COLLISION=*STD. “Entry 1” stands for a nonmasked symbol in a loaded module or
for a COMMON that is already known in the current load unit. Any uninitialized COMMON
at the end of the load unit is flagged in the symbol table and treated as a CSECT in
subsequent load calls. A name conflict occurs if a nonmasked “Entry 2” symbol of the same
name is found in the module to be loaded.

Explanation

(1) A name conflict has been detected.
The symbol “Entry 1” is not masked and can be used to resolve external references.
The symbol “Entry 2” is masked and cannot be used for resolving external
references. A warning is issued.

(2) The COMMON section is initialized with the CSECT (as for RUN-MODE=*STD).

(3) The second COMMON section is ignored (as for RUN-MODE=*STD).

(4) Recoverable error.
The second XDSEC-D is skipped. The name conflict is handled in the same way as
for RUN-MODE=*STD.

(-) Not a name conflict (only an identical name).

Entry 2

Entry 1 CSECT ENTRY COMMON XDSEC-D

CSECT (1) (1) (2) --

ENTRY (1) (1) (2) --

COMMON (1) (1) (3) --

XDSEC-D -- -- -- (4)

DBL Indirect linkage

U5137-J-Z125-7-76 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

Indirect linkage

Starting with BS2000/OSD-BC V3.0, a new mechanism, which is referred to as “indirect
linkage” below, was introduced in DBL. The term “indirect linkage” means that an external
reference is not resolved directly with a program definition in the usual manner, but by an
intermediate indirect linkage routine. This IL routine includes a call to a server module
containing the required program definition.

Indirect linkage has the following advantages:

– When a server module is swapped, only the link between the IL routine and the server
needs to be removed. A new server module can then be used for the same program
definition simply by resolving the external reference between the IL routine and the
server module. This eliminates the additional overhead for measures to ensure
consistency between the server and its possible callers.

– The resolution of external references occurs only once and does not change so long as
the caller is loaded. This eliminates unlinking across multiple contexts or tasks as well
as the need to resolve external references repeatedly whenever the server is called.

Symbols of type ILE

A new symbol type ILE (Indirect Linkage Entry) with the attributes below was added for
indirect linkage:

– Name:
corresponds to the name of the ILE server

– Address of the IL routine

– Address of the ILE server:
a field containing the ILE server address

– Offset of the server address in the IL routine:
locates the field with the ILE server address within the IL routine

– Status of the server (active or inactive):
indicates whether the ILE server can be currently called.
The status can be used both by the calling program and by any user-defined IL routine.

– Control (by the system or the user)

The declaration of ILEs and the maintenance of ILE lists are performed by means of the
ILEMIT and ILEMGT macros. Information on ILEs can be obtained by calling the VSVI1
macro.

Indirect linkage DBL

36 U5137-J-Z125-7-76

The figure 3 illustrates how external references are resolved when the ILE server is loaded.

Figure 3: Indirect linkage

(1) The call to S1 branches to the IL routine for S1.

(2) If the server module S1 has not been loaded, a return to the calling program X is
effected directly from the IL routine.

(3) If the server module S1 is loaded, the IL routine branches to the server module S1.

(4) After the server module S1 has been processed, control is returned to the calling
program X.

(5) The caller can then check the return code to obtain information on the processing of the
server module.

(6) The symbol table of the context xyz contains an entry for an ILE symbol named S1, in
which the addresses of the IL routine (L) and the server module (S) are stored.

Program X
 .
 .
 .
Call S1
(5)

S1 (Server)
 .
 .
 .
RETURN

. . .

. . .

Context xyz
(2)

(3)

(4)

IL routine for S1

L
S

L
S

S1 (ILE)
 (6)

S2 (ILE)

(1)

DBL Management of list name units

U5137-J-Z125-7-76 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

Management of list name units

As of BLSSERV V2.4A, several or all objects of a library can be loaded with a single call of
the BIND macro. The result is a so-called list name unit, and multiple DBL calls when
loading a symbol list of the same load unit are prevented.

For loading into a list name unit the specifications INTVERS=SRVxxx (xxx Ï 004) and
SYMBOL=*ALL or SYMBOL=name are required, the last character of name being the wildcard
symbol “*”. For details, see the BIND macro in the „Executive Macros“ manual [7].

Loading into a list name unit proceeds as follows:

● Depending on the SYMBOL operand, a list of the objects to be loaded from the main
library is created:

– With SYMBOL=*ALL, first the highest versions of all elements of type L are entered in
this list. Then the highest versions of all elements of type R are entered in the list,
but only if an element of type L with the same name is not already contained in the
list.

– If the SYMBOL operand is specified with a partially qualified name, the list is
generated in the same way. However, only those elements are taken into account
which match the partially qualified name.

– The name list contains only names of PLAM library elements (i.e.
SYMTYP=MODULE). No CSECTs or ENTRYs with the same name are searched
for in the library.

The following requirements apply here:

– The main library must be a PLAM library.

– Alternative libraries are only used for the autolink process, not for generating the
name list.

– LLMs with user-defined slices cannot be loaded into a list name unit. The load
operation is aborted with RC=X'0C400430'.

– The VERS and VERS@ operands are ignored when loading into a list name unit.

– No names in the code already loaded are searched for before loading as these
names are element names and not symbol names. However, only symbol names
are stored in the loaded code.

● All objects in the list are loaded in the same unit (list name unit) and in the context
defined by UNIT or UNIT@ and LNKCTX or LNKCTX@. If no name is specified for the
load unit, the name of the first object in the list is assumed as the name for the load unit.

Management of list name units DBL

38 U5137-J-Z125-7-76

● The version of a list name unit is determined by the PGMVERS/PGMVERS@ operand.
In the event of PGMVERS=*STD the PLAM version of the first object loaded is used as the
version of the load unit.

● In the DBL map, EXPLICIT is specified as the linkage method for each object contained
in the list.

● Both the returned start addess (SYMBLAD operand with BIND) and the returned
AMODE correspond to those of the first object loaded into the list name unit. When
BRANCH=YES is specified, control is also transferred to the start address of the first object
loaded in the list name unit.

● When loading into a list name unit, external references are only resolved when all
objects of the list name unit have been loaded. The autonlink function is also only
executed at this point. This enhances performance when resolving external references:
A symbol which is referenced in multiple modules of the list need only be searched for
once and not after each individual object has been loaded.

Example

Three objects of a list are to be loaded:
– Module M1 with external references E1 and E2
– Module M2 with external references E2 and E3
– Module M3 with ENTRY E1 and external reference E2

a) Load operation when loading without list name unit:
– Load M1
– Resolve external references E1 and E2 and autolink (E1 found in M3)
– Load M3 (because of autolink)
– Resolve external reference E2 and autolink (no effect)
– Load M2
– Resolve external references E2 and E3 and autolink (no effect)
The process of address resolution is executed three times for external
reference E2.

DBL Management of list name units

U5137-J-Z125-7-76 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

b) Load operation when loading into list name unit:
– Load M1
– Load M2
– Load M3
– External references E1, E2 and E3 and autolink (no effect)

The process of address resolution is executed only once for external reference
E2.

Loading into a list name unit is thus more efficient, but can influence the load
sequence (without a list name unit module M3 is loaded before M2).

When loading from PUBLIC/PRIVATE LLMs into list name units, the public part is
loaded only after all objects of the list name unit have been loaded.

The following restrictions apply for unloading list name units:

● A list name unit can only be unloaded in full. It is not possible to unload part or just a
single module from a list name unit.

● If errors occur for one of the objects in the list, all modules of the list which have already
been loaded (= current status of the list name unit) are unloaded. This corresponds to
the current behavior when loading a unit.

Characteristics of a list name unit

The characteristics of a list name unit are summarized below:

● The input objects are only searched for in the main library (alternative libraries are only
used for autolink).

● Input objects are always loaded (no search in the memory prior to loading).

● External references are resolved and the autolink function executed only when all
objects of the list name unit have been loaded.

● A module of a list name unit cannot be unloaded independently of the list name unit.

Loading LLMs from files (PAM-LLMs) DBL

40 U5137-J-Z125-7-76

Loading LLMs from files (PAM-LLMs)

To facilitate conversion of applications with load modules to those with LLMs for the user,
BLSSERV enables LLMs to be loaded which were stored in a PAM file with BINDER. In
contrast to the LLMs stored in program libraries, these LLMs are called PAM-LLMs.

PAM-LLMs differ from the conventional LLMs in the following ways:

● PAM-LLMs can only be loaded with commands, but not with program interfaces such as
the BIND macro. (Exception: Slices of a PAM-LLM with user-defined slices can be
loaded with the LDSLICE macro.)

● The file link name for PAM-LLMs is the same as for program files: ECERDLOD.

● As a PAM-LLM runs in ADVANCED execution mode, it is by default loaded in the
LOCAL#DEFAULT context, not in the CTXPHASE context, which is reserved for load
modules.

● The name in the load call is always interpreted as a file name and not as a symbol
name. Consequently no search for symbols already loaded takes place in the memory
during loading.

● During loading no external references are resolved and no autolink function is executed.

● PUBLIC/PRIVATE-PAM-LLMs cannot be loaded.

DBL Load units

U5137-J-Z125-7-76 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

2.1.3 Output from DBL

Output produced by DBL may be:

– a load unit that is contained within a context and can be started

– a DBL map containing information about the logical structure and contents of the loaded
load unit.

Load unit

When DBL is called with a START/LOAD-EXECUTABLE-PROGRAM or START/LOAD-
PROGRAM command or by means of a BIND or ASHARE macro, it generates a load unit
which it loads into main memory. The structure of a load unit is shown in figure 4.

A load unit contains all the modules loaded with one load call. This means all the modules
specified in the load call (primary input), plus any modules inserted by the autolink function
or as a result of INCLUDE statements (secondary input).

The modules may be object modules (OMs) or LLMs. They contain the program definitions
(CSECTs and ENTRYs). Each load unit is contained within a context that is defined by the
user (see page 52ff). If the user does not specify a context, the default context with the
name “LOCAL#DEFAULT” is used.

Load units DBL

42 U5137-J-Z125-7-76

Figure 4: Structure of a load unit

Load unit

Module 1
(OM or LLM)

Module m
(OM or LLM)

CSECT1

ENTRY1

ENTRY2

ENTRYj

CSECTn

. . .

. .
 .

. .
 .

DBL Load units

U5137-J-Z125-7-76 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

Load information for a load unit

The user can define the load information for a load unit independently in the load call (using
the LOAD-INFORMATION and TEST-OPTIONS operands). These enable the user to select
whether or not the load unit is to contain an external symbol dictionary.
For LLMs, this information can be loaded only if it was created by BINDER (BINDER
statement SAVE-LLM, operand SYMBOL-DICTIONARY=*YES).
For object modules (OMs), the load information can always be loaded.
For prelinked OMs, the load information may be reduced using the TSOSLNK linkage
editor.
If the load unit is to include an external symbol dictionary, the following information can be
selected for the load unit:

● External symbol dictionary containing program definitions
(operand LOAD-INFORMATION=*DEFINITIONS)
An external symbol dictionary containing the program definitions of all modules in the
load unit is loaded. Program definitions are control sections (CSECTs), entry points
(ENTRYs), COMMON sections, dummy sections (DSECTs), external dummy sections
(XDSEC-Ds) and module names. DBL needs this information in order to

– resolve external references between modules loaded as a result of the current load
call, and modules loaded by a later load call

– output link and start information to the user
– support debugging and diagnostic aids (AID commands).

● External symbol dictionary containing references
(operand LOAD-INFORMATION=*REFERENCES)
An external symbol dictionary containing the resolved references of all modules in the
load unit is loaded. References are external references (EXTRNs), V-type constants,
weak external references (WXTRNs) and external dummy sections (XDSEC-Rs).
DBL needs this information to unlink load units after loading and to perform delayed
processing of external references.

● External symbol dictionary for constructing the DBL map
(operand LOAD-INFORMATION=*MAP)
Only an external symbol dictionary required for constructing the DBL map is temporarily
loaded. The ESD is unloaded as soon as the DBL map is complete.

● LSD information (operand TEST-OPTIONS=*AID)
LSD (list for symbolic debugging) information is loaded. This information is required by
the debugging and diagnostic aids (AID commands). LSD information is useful only
when the load unit contains program definitions. The LSD information cannot be loaded
if the value specified for the LOAD-INFORMATION operand is *NONE or *MAP.

Maps DBL

44 U5137-J-Z125-7-76

DBL map

A DBL map containing information about the structure and contents of the loaded load unit
is output when the PROGRAM-MAP operand is included in the load call with a command
or the MAP operand in the BIND macro. Output of a DBL map is possible only in the
ADVANCED operating mode (see page 89ff). The SYSOUT or SYSLST system file, or both,
may be selected as the output destination. The BIND macro also offers the option of output
to a user-defined data area.

The following table provides an overview of the information output for a load unit and the
loaded modules.

Footnotes

1) The following load information is output:
– Value of the LOAD-INFORMATION operand
– Program version of the load unit. If no program version was specified in the load call,

DBL shows the PLAM version of the loaded library member (~ stands for the highest
PLAM version)

– Load time

Information

Object

L
o

ad
u

n
it

L
L

M

PA
M

-L
L

M

O
M

 in
L

L
M

O
M

C
S

E
C

T

E
N

T
R

Y

C
O

M
M

O
N

X
D

S
E

C
-D

Object name X X X X X X X X X

Name of the
link context

X

Load information 1) X

Type of LLM /
PAM-LLM

2) X X

Type of OM 3) X X

Object address X X X

Object size X X X

Linkage method 4) X X X

File link name 5) X X X

Library/ file
name

6) X X X

Element name X

Element version X

DBL Maps

U5137-J-Z125-7-76 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

– Value of the TEST-OPTIONS operand
– Start address of the load unit (load unit starting point)
– Addressing mode (AMODE):

24, 31 or 32
– as the code type for HSI=:

2) The type of LLM/PAM-LLM (see the manual “BINDER” [1]) is output as follows:

3) The type of OM is output as:

4) The bind (linkage) method is output as:

5) The file link name of the library in which the LLM/OM was found is output. If a user or
system Tasklib is concerned, USERTSKL or SYSTTSKL is output. ECERDLOD is
output for PAM-LLMs.

6) The library name is output only to SYSLST, not to SYSOUT.

/7500 The symbol from the load call indicates /390 code

/4000 The symbol from the load call indicates RISC(MIPS) code

/SP04 The symbol from the load call indicates SPARC code

/X86 The symbol from the load call indicates X86 code

STANDARD The LLM consists of a single slice.

BY-USER The LLM consists of user-defined slices.

BY-ATTR The LLM consists of slices formed by attributes.

STANDARD The OM was generated by a compiler.

PRELINK The OM was generated as a prelinked module in a TSOSLNK linkage
run.

EXPLICIT The module was loaded as primary input through an explicit
specification in the load call.

AUTOLINK The module was loaded as secondary input by means of the autolink
function in order to resolve external references.

INCLUDE The module was loaded as secondary input as a result of INCLUDE
statements inserted in already loaded modules. This is only possible
for object modules (OMs).

PUBLIC An LLM consists of slices formed according to the PUBLIC attribute
(see the “BINDER” manual [1]). When the LLM was loaded, the slices
were loaded with the PUBLIC attribute into class 6 memory.

Maps DBL

46 U5137-J-Z125-7-76

Example of a DBL map (extract)
 ############################### A D B L M A P ###############################
 # #
 # LOAD UNIT: %UNIT. LOAD INFO =DEF #
 # VERSION : V02.7A40 LOAD TIME =2009-01-30 09:37:27 #
 # CONTEXT : LOCAL#DEFAULT. TEST OPTION=NONE #
 # #
 # LLM : BLSSYS STANDARD / EXPLICIT BLSLIB #
 # ELE-LIB : :2OSH:$TSOS.SYSLNK.BLSSERV.027 #
 # ELE-NAME: BLSSYS #
 # ELE-VERS: V02.7A40 #
 # OM : PBSMAIN. STANDARD #
 # CSECT : PBSMAIN. @= 0 L= 8C0 #
 # ENTRY: NLKRES28 @= 18 #
 # ENTRY: NLKRES45 @= 28 #
 # ENTRY: PBSINI @= 38 #
 # ENTRY: PBSGOV @= 48 #
 # CSECT : PBSMAIN@ @= 8C0 L= E00 #
 # CSECT : PBSSSID. @= 16C0 L= 80 #
 # CSECT : PBSINIV. @= 1740 L= 40 #
 # CSECT : PBSOSDV. @= 1780 L= 40 #
 # CSECT : PBSSXTP. @= 17C0 L= 40 #
 # CSECT : PBSHWPS. @= 1800 L= 40 #
 # OM : PBSDM. STANDARD #
 # CSECT : PBSDM. @= 1840 L= 940 #
 # ENTRY: PBDMUCD. @= 1858 #
 # CSECT : PBSDM@@@ @= 2180 L= 280 #
 # OM : PBSSYSA. STANDARD #
 # CSECT : PBSSYSA. @= 2400 L= 940 #
 # ENTRY: PBSANCH. @= 2418 #
 # ENTRY: PBSTIME. @= 2428 #
 # ENTRY: PBSTERM. @= 2438 #
 # ENTRY: PBSMEMO. @= 2448 #
 # ENTRY: PBSWA. @= 2458 #
 # ENTRY: PBSSINF. @= 2468 #
 # ENTRY: PBSTINF. @= 2478 #
 # ENTRY: PBSMSG @= 2488 #
 # ENTRY: PBSBLSP. @= 2498 #
 # CSECT : PBSSYSA@ @= 2D40 L= 2FC0 #
 # OM : PBSBUFD. STANDARD #
 # CSECT : PBSBUFD. @= 5D00 L= 2500 #
 # ENTRY: PBSBDSP. @= 5DE0 #
 # ENTRY: PBSBINI. @= 5D00 #
 # OM : PBSBUF STANDARD #
 # CSECT : PBSBUF @= 8200 L= 2040 #
 # ENTRY: SVPTBUF. @= 8208 #
 # ENTRY: SVSVC183 @= 8250 #
 # ENTRY: SVSVC117 @= 8340 #
 # ENTRY: SVSVC111 @= 8588 #
 # ENTRY: SVSVC110 @= 83E8 #
 # ENTRY: SVSVC109 @= 8500 #
 # ENTRY: SVSVC106 @= 8478 #
 # ENTRY: $SVBDAS. @= 8A50 #
 # ENTRY: $SVBDSP. @= 8B20 #
 # ENTRY: $SVUNAS. @= 8A50 #
 # ENTRY: $SVUNSP. @= 8B20 #
 # ENTRY: $SVVIAS. @= 8A50 #
 # ENTRY: $SVVISP. @= 8B20 #
 .
 .
 .
 # LOAD UNIT STARTING POINT. @= 0 AMODE=24 HSI=/7500 #
 # MMODE=TU-4K #
 # #
 ######################## E N D O F A D B L M A P ########################

DBL Maps

U5137-J-Z125-7-76 47

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

Layout of the DBL map in a user-defined data area

BIND ...,USRMAPI=...,USRMAP@=...,USRMAPL=... (where USRMAPIîNONE) enables a DBL
map to be output to a user-defined data area. This map is structured in a similar way to the
list output to SYSOUT/SYSLST. It has the following layout:

● Map header for identifying the area
This contains the return code X’08010129’ if the length of the data area is not sufficient
to contain the required information.
The layout of the list header depends on the INTVERS specification in the BIND macro:
INTVERS=SRV005 generates a list header version 1, INTVERS=SRV006 generates a
list header version 2. This shows whether the library name, element name and element
version are contained in the information output.

● Total length of the information output, including map header

● Data records with the following layout:

– Record ID

– Length of the information contained in the record

– The information itself

In the case of INTVERS=SRV005 the user-defined data area must be at least 248 bytes
long, and in the case of INTVERS=SRV006 at least 336 bytes long to accommodate the
minimum information.

If the length of the data area is not sufficient to contain the required information, output is
aborted.

If the length of the data area is sufficient, the output is terminated by an end record.

The layout of the data area can be generated with
BIND MF=D,XPAND=USRMAP,INTVERS=SRVxxx (xxx Ï 005).

Shared code DBL

48 U5137-J-Z125-7-76

2.1.4 Shareable programs (shared code)

Each module executed by a user is loaded into either the task-local class 6 memory or the
memory for shareable programs (shared code). The modules in the task-local class 6
memory can be executed only by the task which caused them to be loaded there. These
modules form the so-called private part of the program.

The memory for shared code is a memory area in which one and the same copy of the
module to be executed can be executed simultaneously by several tasks. These shareable
modules form the public part of a program and must be programmed as reentrant code.
Such a program must dynamically request the data areas in which variable user-owned
data is to be stored, and must create these areas in the class 6 memory of the related user.
The user can either directly execute the shared code (with START-EXECUTABLE-
PROGRAM or START-PROGRAM) or access it via a private program. The external
references in private programs can be resolved automatically by program definitions
(CSECTs, ENTRYs) in the shared code.

Advantages of shareable programs

● Since a module is loaded only once, i.e. when it is first referenced, the loading time is
saved for all subsequent calls to the module during the same session.

● Demands on main memory and paging memory are reduced because all tasks can
access a single copy of the object module in the shared code memory, i.e. there is no
need for each task to have a separate copy in its own class 6 memory (see figure 5 on
page 49 for an example of system shared code).

● The paging rate is reduced because only one copy resides in the paging area. Also,
read-only pages do not have to be written out to paging memory when they are no
longer needed in main memory, i.e. no updating of paging memory is necessary for
them.

Program shareability is therefore worthwhile for larger programs which are to reside in
memory for some time (in interactive and transaction processing mode) and possibly be
used concurrently by a number of users.

DBL Shared code

U5137-J-Z125-7-76 49

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

Figure 5: Effects of program shareability

Data for
task A

Data for
task C

Program XClass 6
memory
of
task C

Class 6
memory
of
task B

Class 6
memory
of
task A

Program X

Data for
task B

Program X

Data for
task CClass 6

memory
of
task C

Class 6
memory
of
task B

Class 6
memory
of
task A

Data for
task A

Program X

Data for
task B

Address space
of BS2000
Control System

Class 4
memory of
system

Memory allocation without shareable program

Memory allocation with shareable program

Shared code DBL

50 U5137-J-Z125-7-76

DBL offers various facilities for loading and managing shared code, which are described in
the following sections.

System shared code

The system shared code is loaded into the system address space (class 3/4 memory or
privileged class 5 memory), and all tasks or users can access it. DBL ensures that this
shared code is always write-protected, regardless of the value of the READ-ONLY attribute.

This memory area is controlled by the subsystem management (DSSM), since the shared
code was loaded as nonprivileged subsystems (see the “Subsystem Management” manual
[10]). For each subsystem, a list of visible symbols (which are to be known outside the
subsystem) must be defined in the DSSM. Only these symbols, which are called
“connectable entries”, may be specified in a START/LOAD-EXECUTABLE-PROGRAM or
START/LOAD-PROGRAM command or in the BIND macro and are available for the
resolution of external references.

User shared code

Shared code which is to be managed by a user without special privileges is stored in
common memory pools, which are created in class 6 memory. The modules loaded there
can be shared by all tasks which are connected to the memory pool.

The shared code can be loaded into the common memory pool with the ASHARE macro.
This function is available as of BS2000/OSD-BC V1.0. Each task which is connected to the
common memory pool can:

– load a shareable program (consisting of a set of modules) into the memory pool

– unload a shareable program

– request information about the loaded modules.

The name of the program and all visible symbols in the user shared code may be specified
in the operand SYMBOL of the START/LOAD-EXECUTABLE-PROGRAM or START/LOAD-
PROGRAM commands and in the BIND macro, and may also be used for resolution of
external references. If a task which is not yet connected to the common memory pool refers
to program definitions in the shared code in this memory pool,
DBL automatically executes the ENAMP macro (ENAble Memory Pool, see the “Executive
Macros” manual [7]).

DBL Shared code

U5137-J-Z125-7-76 51

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

The BIND macro (MPID parameter) can also be used to load a program into the common
memory pool. However, programs loaded in this manner can be accessed only by the task
which initiated loading into the memory pool. This means that this task is responsible for
management of the memory pool. Information about a program loaded in this manner (e.g.
the output from the VSVI1 macro) is also available only to the task which loaded the
program.

In the following text, it is assumed that the shared code was loaded into the common
memory pool with the ASHARE macro.

 A program can be loaded into one and the same memory pool only once with the
BIND macro or with the ASHARE macro.

LLMs with PUBLIC slices

When an LLM is generated by BINDER, the user can specify whether slices are to be
formed on the basis of the attribute PUBLIC. If so, the LLM is split into two parts (slices),
each of which has the form of a simple LLM. The slice containing the CSECTs with the
attribute PUBLIC=YES can be loaded as shared code; the other slice, which contains all
CSECTs with the attribute PUBLIC=NO, can be loaded only in the task-local user memory
and forms the private part of the LLM.

DBL loads only the PUBLIC part of the LLM if the LLM is loaded with the DSSM as a
nonprivileged subsystem or with the ASHARE macro.

If the LLM is loaded with the START/LOAD-EXECUTABLE-PROGRAM or START/LOAD-
PROGRAM command or with the BIND macro, the private part of the LLM is loaded first. If
this private part contains external references to the PUBLIC part, two possible situations
exist:

1. The PUBLIC part of the LLM has already been loaded into the shared code memory. In
this case, the external references in the private part are resolved by the shared code.

2. The PUBLIC part is not yet in the shared code memory. In this case, the PUBLIC part
is loaded as private code into the task-local user memory. The same thing happens if
the user specified SHARE[-SCOPE]=NONE in the load call because the PUBLIC part
is not to be used as shared code.

When loading the private part of an LLM which contains external references to the PUBLIC
part, DBL checks whether both parts actually belong to the same LLM. If this is not the case,
the PUBLIC part of the LLM is loaded into the task-local user memory as private code.

If the PUBLIC part of the LLM is to be loaded via DSSM, the user must specify the list of
SUBSYSTEM-ENTRIES which are to be visible outside the PUBLIC part of the LLM. This
list must be specified in the statement START-LLM-CREATION or MODIFY-LLM-
ATTRIBUTES during the BINDER run. This facility is available as of BINDER V1.1A.

i

Context concept DBL

52 U5137-J-Z125-7-76

2.2 Context concept

The term context, as used below, has three different meanings.

A context may be:

– a set of objects with a logical structure

– an environment for linking and loading

– an environment for unloading and unlinking.

The use of contexts by DBL has the following advantages:

– Multiple copies of the same program can be loaded into different contexts.

– Parts of a comprehensive application can be loaded into different contexts. In each
individual context external references are resolved separately. Each sub-application in
a context can therefore be loaded and run as an autonomous entity. In this way it is
possible, for example, to load and start the individual modules of a runtime system in
separate contexts.

– Parts of an application that belong to a context can be unloaded with a single call.

– Identically named symbols in different contexts do not provoke name conflicts because
each context maintains its own symbol table.

The various context concepts are explained in more detail below.

DBL Context concept

U5137-J-Z125-7-76 53

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

2.2.1 Context as a set of objects

A context as a set of objects has a logical structure. It is structured hierarchically as follows
(see figure 6):

1. Objects at the lowest level are program definitions. They include the following objects:

– control sections (CSECTs)

– entry points (ENTRYs)

– COMMON sections

– dummy sections (DSECTs)

– external dummy sections (XDSEC-Ds)

2. Objects at the next higher level are modules. They contain the program definitions.
Modules can be object modules (OMs) or link and load modules (LLMs).

3. Objects at the next higher level are referred to as load units. A load unit contains all the
modules that are linked and loaded with one load call.

4. The context itself consists of one or more load units. It is the highest-level object.

Context concept DBL

54 U5137-J-Z125-7-76

Figure 6: Logical structure of a context as a set of objects

Load unit 1

Module 1
(OM or LLM)

Module m
(OM or LLM)

CSECT1

ENTRY1

ENTRY2

ENTRYj

CSECTn

Load unit k

. . .

Context

. . .

. .
 .

. .
 .

DBL Context concept

U5137-J-Z125-7-76 55

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

2.2.2 Context as a linking and loading environment

This context is a main memory area into which the modules of a load unit are loaded. The
area is set up dynamically by DBL. In other words it is not possible for the user to reserve
a fixed space for it. The area can be completely contained within a memory pool or spread
over several pools. In the latter case, however, it may only be located within a single memory
class. For the modules loaded in this main memory area, there is a symbol table in which
an address is assigned to each symbol.

The context for linking and loading can be used as a link context or reference context:

Link context

The modules of a load unit are loaded into the link context. All symbols of a module which
is loaded into this context are entered in the context symbol table. The link context is used
by the autolink function of DBL for resolving external references in the loaded modules (see
page 24).

It is also used to buffer unresolved external references if this is specified in the load call
(operand UNRESOLVED-EXTRNS=*DELAY). If a new load unit is loaded into the link
context, DBL tries to resolve the buffered external references with CSECTs and ENTRYs of
the new load unit at the end of the loading operation. This process is repeated each time
another load unit is loaded, for as long as the context exists.

The user defines the name of the link context in the BIND macro (LNKCTX@ or LNKCTX
operand). If no name is specified, DBL selects LOCAL#DEFAULT as the default name.
When DBL is invoked with a LOAD- or START-EXECUTABLE-PROGRAM (or LOAD- or
START-PROGRAM) command, it defines LOCAL#DEFAULT as the default name.

Reference context

The reference context is used to resolve external references that are not found in the link
context. A reference context originates as a link context in another loading operation.
Multiple reference contexts (up to 200) may be present simultaneously. The user defines
the names and number of possible reference contexts in the BIND macro (REFCTX@ and
REFCTX# operands).

Context concept DBL

56 U5137-J-Z125-7-76

2.2.3 Context as an unloading and unlinking environment

A context is the largest entity that can be unloaded (see page 59). Lower-level objects that
can be unloaded are load units and modules (LLMs or OMs).

2.2.4 Properties of a context

Every context has two properties: a scope and an access privilege.

The scope of the context determines the class of memory in which the context is to be
physically located. A distinction is made between the following scopes:

– USER scope
The context is located in the user address space (class 6 memory). The context name
begins with a letter. The number of USER contexts is limited to not more than 201.
For shared code in common memory pools, the scope is also USER. The name of this
context begins with “#”. The number of USER pool contexts in a memory pool is limited
to not more than 15.

– SYSTEM scope
The context is located in the system address space (class 4 or class 3 memory). The
context name begins with a dollar sign ($).

– SSLOCAL scope
The context is part of a local subsystem and is located in nonprivileged class 5 memory.
The context name begins with an asterisk (*).

The link context and the reference context for nonprivileged users must always be in the
USER scope.

The access privilege determines which users are authorized to access the contents of the
context. Contexts may be privileged or nonprivileged:

– Privileged context
Only privileged users (such as the system administration) may access the contents of
the context.

– Nonprivileged context
Any user may access the contents of the context. Access to the context of a memory
pool is permitted only for the users connected to this memory pool.

DBL Context concept

U5137-J-Z125-7-76 57

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

2.2.5 Example of the use of contexts

The following example shows how contexts can be used for avoiding name conflicts and for
controlled resolution of external references.

1. A program stored as an element with the name PROG in a program library is called.
DBL generates the default link concept LOCAL#DEFAULT for resolution of external
references.

/START-EXECUTABLE-PROGRAM FROM-FILE=(LIBRARY=...,ELEMENT-OR-SYMBOL=PROG)

Result

2. During program execution, PROG calls the BIND macro in order to activate a PASCAL
subroutine.

BIND SYMBOL=PASSUB,LIBNAM=...

Result

A is an ENTRY in PROG

LOCAL#DEFAULT

A

PROG

V(A) in PASSUB is resolved by the entry A
in PROG.

x and y are program definitions in some
runtime routines used by PASSUB.

LOCAL#DEFAULT

A

PROG

x V(A)
y

PASSUB

Context concept DBL

58 U5137-J-Z125-7-76

3. Subsequently, PROG calls the subroutine CSUB, which is written in a different
programming language (in C) than that used for PASSUB but also uses runtime routines
called x and y. In order to avoid name conflicts, the BIND macro must be called as
follows:

BIND SYMBOL=CSUB,LIBNAM=...,...,LNCTX=CSUBCTX

Result

4. A further subroutine, which is also written in C and which, among other things, contains
an external reference to ENTRY A in the main program PROG is called. External
reference V(A) is to be resolved with ENTRY A in PROG, while other external
references are to be resolved by the runtime routines written in C. For this reason,
PROG must call the subroutine CSUB2 as follows:

BIND SYMBOL=CSUB2,LIBNAM=...,...,LNKCTX=CSUBCTX,REFCTX=LOCAL#DEFAULT

Result

LOCAL#DEFAULT

A

PROG

x V(A)
y

PASSUB

CSUBCTX

x
y

CSUB

LOCAL#DEFAULT

A

PROG

x V(A)
y

PASSUB

CSUBCTX

x
y

CSUB

V(A)
V(x)

CSUB2

V(A) is resolved by A in PROG.
V(x) is resolved by x in CSUB.

DBL Unloading and unlinking

U5137-J-Z125-7-76 59

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

2.3 Additional functions

In addition to linking and loading, DBL performs the following functions:

– unloading and unlinking of objects

– output of link and load information

– creating a separate symbol table

– processing REP files

2.3.1 Unloading and unlinking objects

When a program is terminated with the TERM macro or the CANCEL-PROGRAM or
EXIT-JOB (LOGOFF) command, all of the user memory space previously occupied by DBL
or the static loader ELDE is released.

The UNBIND macro can be used during the program run to release the memory space
occupied by objects that are no longer required. The object may be a context, a load unit,
an LLM or an object module (OM). Object modules and LLMs can be unloaded only as
entities. The objects can also be specified via a path, for example:

– a module in a specific context

– a module in a specific load unit with a defined version

– a module in a specific load unit with a defined version in a specific context

– a load unit with a defined version in a specific context.

Modules which are part of a list name unit (see the section “Management of list name units”
on page 37) cannot be unloaded individually, but only with the entire list name unit.

In each case, only the first object matching the path which is found is unloaded. Occupied
memory space is always released in page-sized units (1 page = 4 Kbytes). The memory
space is returned to memory management only if no other modules require space on the
same page. Otherwise DBL notes the free areas and uses them at the next opportunity.

In addition to unloading objects, it is also possible to unlink external references to control
sections (CSECTs) and entry points (ENTRYs) in these objects (parameter UNLINK=YES).

Unlinking means that resolved external references to CSECTs and ENTRYs in the
unloaded objects are released. Resolved XDSECs are an exception. The external
references in the objects are then equivalent to unresolved external references at the time
of linking and loading. They are given the value specified for unresolved external references
in the load call (ERROR-EXIT operand) and, if this is specified in the load call, are treated
as external references which are to be resolved at a later time.

Outputting link and load information DBL

60 U5137-J-Z125-7-76

Unlinking is performed only within the context in which the module is being unloaded.
eferences in other contexts to the object being unloaded are not unlinked. Unlinking is
performed only if the external references belong to a load unit for which an external symbol
dictionary with references was loaded in the load call (operand LOAD-INFORMATION=
*REFERENCES).

2.3.2 Outputting link and load information

The user can request link and load information about the linked load units and their contexts
using the VSVI1 macro. This information can be requested for one or more specified
contexts or for all contexts. Users without special privileges may access only nonprivileged
contexts. Information about shared code in common memory pools is available only to
users who have connected themselves to the common memory pool before calling the
VSVI1 macro.

The following information can be requested:

– a list of context names (SELECT=CTXLIST)

– the scope of the code loaded in a context, and the scope of the associated link and load
information (SELECT=CTXSIZE)

– a list containing names, load addresses, lengths, types, attributes and contexts of all
CSECTs, ENTRYs and COMMONs (SELECT=ALLLIST)

– a list containing names, load addresses, lengths, types, attributes and contexts of all
CSECTs and COMMONs (SELECT=MODLIST)

– a record containing name, load address, length, type, attributes and context of a single
control section (CSECT), ENTRY or COMMON (SELECT=BYNAME)

– a record containing name, load address, length, type, attributes and context of a control
section (CSECT) or COMMON specified by means of its address (SELECT=BYADDR).

The various items of information (name, load address, length, attribute, type and context)
can be selected independently of one another. It is also possible to request merely the
length of the desired output information.

The PINF macro returns global information about programs which have been loaded with
the LOAD- or START-EXECUTABLE-PROGRAM (or LOAD- and START-PROGRAM)
command.

DBL Creating a separate symbol table

U5137-J-Z125-7-76 61

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

The following information can be requested:

– the internal program name (SELECT=INTNAME)

– the internal program version (SELECT=INTVERS)

– the creation date of the program (SELECT=INTDATE)

– the copyright name of the program (SELECT=COPRIGHT)

– the name of the library in which the program was stored (SELECT=FILENAME)

– the element name of the program in the library (SELECT=ELEMNAME)

– the element version (SELECT=ELEMVERS)

– the element type (SELECT=ELEMTYPE)

– the name specified in the load call (in LOAD- or START-EXECUTABLE-PROGRAM or
LOAD- and START-PROGRAM) (SELECT=SPECNAME)

– an indicator which shows whether the program was loaded by the static loader ELDE
or whether it was the first module of a load unit and was loaded by DBL
(SELECT=LOADTYPE).

2.3.3 Creating a separate symbol table

Starting with BS2000/OSD-BC V3.0, the ETABLE and ETABIT macros can be used to
create a separate context-specific symbol table for program definitions in the loaded
program. This table serves as a means of passing symbolic information to DBL and thus
enables the exchange of information between different program sections.

 The ETABLE macro has replaced the earlier TABLE macro.
Note, however, that the handling of name conflicts for BIND and ETABLE is no
longer the same as for the old BIND and TABLE macros. The handling of name
conflicts for ETABLE is described in the „Executive Macros“ manual [7].

i

Processing REP files DBL

62 U5137-J-Z125-7-76

2.3.4 Processing REP files

REP files may be specified in all load calls with the LOAD- or START-EXECUTABLE-
PROGRAM (or LOAD- and START-PROGRAM) commands and with the ASHARE and
BIND macros.

A REP file is always associated with a load unit. The REP records contained in it can be
used for bytewise corrections to the individual modules of a load unit by the same method
as when loading the BS2000 Control System (see the “Introductory Guide to Systems
Support“ [9].
The REP records may be applied to all modules in the link context or be restricted to just
the modules of the load unit (REPSCOP=CONTEXT or UNIT). Masked symbols may also
be included for REP processing in the link context.

When the load operation has been completed, DBL opens the REP file associated with the
load unit, reads in the REP records, and then applies them to the modules of the load unit
or to all modules in the link context, taking the NOREF file, if any, into account. A NOREF
file contains a list of symbols (CSECTs and ENTRYs) that are not relevant for REP
processing (see page 63).

Corrections that affect code in a system context are controlled by the BLS Lock Manager.
The system context involved is protected against any other write access during the entire
link/load process (including REP processing).

Format of REP records and REP files

REP records must be supplied in the same format that is used for REPs of the BS2000
Control System. This also applies to relocatable REPs. A detailed description of the format
of REP records and REP files can be found in the “Introductory Guide to Systems Support”
[9].

Every REP record is checked for the correct format before it is processed. This includes,
among other things, the data contained in it, the parity byte, the module version, and the
module name. The class identifier (column 70) has no significance for load units and is
therefore not taken into account.

Any invalid or unrecognized REP records are logged on SYSOUT, and processing
continues with the next REP record.

If the REP file specified in the load call does not exist, REP processing is aborted with error
message BLS0977/BLP0977, and the load unit is loaded without REP corrections. In the
case of other DMS errors on accessing the REP file, DBL displays message BLS0998/
BLP0998 and offers a second access attempt. If this attempt also fails, the load unit is
loaded without REP corrections.

DBL Processing REP files

U5137-J-Z125-7-76 63

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

REP files for subsystems

A REP file that is associated with a subsystem must comply with the following naming
convention:

SYSREP.<subsystem-name>.<subsystem-version>

The REP file should be shareable, especially if the subsystem has not been preloaded, but
is loaded instead at the first call.

Return information and error flags

The following BLS messages are output when processing REP files:

NOREF files

A NOREF file is associated with a REP file and contains a list of CSECTs and ENTRYs that
need not be taken into account during REP processing. In other words, if DBL cannot find
a CSECT or an ENTRY for which there is a REP record, DBL will search for it in the NOREF
file. If the symbol in question is listed in the NOREF file, DBL will skip that REP record
without an error message.

This enables a REP file to be applied to:

– software products consisting of multiple subsystems or load units

– subsystems or programs consisting of multiple load units.

 The character “S” (for selectable unit) in column 69 of a REP record has the same
effect as a the corresponding entry in the NOREF file.

Format of NOREF files

A NOREF file is a SAM file of variable length. It consists of 8-byte records (one record per
symbol name), which are delimited by blanks. The first record of the NOREF file contains
the number of subsequent records in the first four bytes in hexadecimal notation.

BLS0990/BLP0990 on successfully opening the REP file

BLS0980/BLP0980 for each comment in the REP file

BLS0989/BLP0989,
BLS0991/BLP0991,
BLS0992/BLP0992,
BLS0993/BLP0993,
BLS0998/BLP0998

 if errors occur during REP processing

i

Processing REP files DBL

64 U5137-J-Z125-7-76

Naming convention for NOREF files

DBL can process any NOREF file that complies with the naming conventions for BS2000
REP files:

– If the REP file name specified in the load call includes the name component “SYSREP”,
DBL replaces that name component with “SYSNRF” and searches for a NOREF file
under that name.

– Otherwise, DBL searches for a NOREF file with the same name as the main library, but
with the additional suffix “.NOREF”.

DBL does not issue any message if no NOREF file is found.

On opening the NOREF file successfully, DBL displays message BLS0995/BLP0995.
Message BLS0996/BLP0996 or BLS0997/BLP0997 is output if an error occurs during
NOREF processing.

DBL Calling DBL

U5137-J-Z125-7-76 65

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

2.4 Execution of the dynamic binder loader

2.4.1 Calling DBL

The user activates DBL by means of commands or macros, and controls its execution with
the operands of these commands or macros.

The following commands invoke DBL:

– The commands START-EXECUTABLE-PROGRAM or LOAD-EXECUTABLE-
PROGRAM if no load modules (load module file or type C library element) are loaded.
The START-EXECUTABLE-PROGRAM command binds modules to form a load unit,
loads this into main memory and then starts it. If users want to load the load unit without
starting it then they can use the LOAD-EXECUTABLE-PROGRAM command.

– The START-PROGRAM or LOAD-PROGRAM command if the *MODULE operand was
specified.
These commands are now only supported for reasons of compatibility.
The START-PROGRAM command links modules together into a load unit, loads this
into main memory and starts it. If the user merely wishes to load the load unit without
starting it, the LOAD-PROGRAM command can be used instead.

– The CANCEL-PROGRAM command
This command terminates the program run and releases all of the user memory space
occupied by DBL and the static loader ELDE.

– The MODIFY-DBL-DEFAULTS, RESET-DBL-DEFAULTS and SHOW-DBL-DEFAULTS
commands set and display default values for the DBL run.

– The SELECT-PROGRAM-VERSION command
This command defines which version of a program is used in cases where DBL can
access multiple program versions.

Calling DBL DBL

66 U5137-J-Z125-7-76

The following macros invoke DBL:

– The BIND macro
This links a further load unit into the executing program.

– The UNBIND macro
UNBIND is used during the program run to release memory space occupied by objects
that are no longer required. The object may be a context, a load unit, an LLM or an
object module.

– The ASHARE macro
ASHARE links and loads shared code which the user wishes to place as shareable
code in the common memory pool.

– The DSHARE macro
DSHARE unloads from common memory pools any code loaded with the ASHARE
macro.

– The LDSLICE macro
LDSLICE loads a slice defined by the user in an LLM into main memory.

– The VSVI1 macro
VSVI1 provides the user with link and load information concerning the linked load units
and their contexts.

– The PINF macro
PINF returns global information on loaded programs to the user.

– The ILEMGT and ILEMIT macros
ILEMGT and ILEMIT are used to create and manage ILE lists.

– The ETABLE and ETABIT macros
ETABLE and ETABIT are used to create a user-defined symbol table in the context.

– The GETPRGV macro
GETPRGV returns the currently selected program version to the user.

– The SELPRGV macro
SELPRGV can be used to select a specific program version.

DBL Message handling

U5137-J-Z125-7-76 67

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

2.4.2 Message handling

For message handling by DBL, the messages are arranged into certain message classes,
as follows:

INFORMATION Informational message

WARNING Warning message

ERROR Error message

Each message class has a particular weighting. The INFORMATION message class has
the lowest weighting, and the ERROR message class the highest.

By including the MESSAGE-CONTROL operand in the load call it is possible to define
which classes of messages are to be output. This operand determines the lowest message
class, i.e. messages at and above this level will be output. The table below shows how the
MESSAGE-CONTROL operand controls message output.

Some of the information messages are suppressed if job switch 4 is set. The HELP-MSG-
INFORMATION command provides you with an explanation of the meaning of the
messages output by DBL.

Depending on the value of the system parameter EACTETYP (see the “Introductory Guide
to Systems Support“ manual [4]), some BLS messages are output to SYSOUT and/or the
operator console.

MESSAGE-CONTROL

Message class *INFORMATION *WARNING *ERROR *NONE

INFORMATION yes no no no

WARNING yes yes no no

ERROR yes yes yes no

Message handling DBL

68 U5137-J-Z125-7-76

Message codes

As with all BS2000 messages, the message codes of the BLS messages are seven
characters long, the first three letters standing for the BS2000 message class and the last
four characters specifying the message number. The BS2000 message class for BLS mes-
sages depends on whether or not the BLSSERV subsystem is already loaded. From the
start of a session to the point when the BLSSERV subsystem is loaded, only a subset of
the BLS functionality is available, and the BS2000 message class of the messages is
“BLP”. Subsequently the complete BLS functionality is available, and the BS2000 message
class of the messages is “BLS”. For example, each time a REP file is assigned, message
BLP0990 or BLS0990 is issued depending on whether the assignment took place before or
after the BLSSERV subsystem was loaded. The meaning of the BLSxxxx and BLPxxxx
messages with the same number is as a rule identical. However, some inserts or explana-
tions may differ.

DBL Commands

U5137-J-Z125-7-76 69

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
0.

42
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

2

2.5 Commands

The following overview contains all commands which call DBL. The detailed description of
the commands can be found in the „Commands“ manual [5].

Command Function

CANCEL-PROGRAM Unload program

LOAD-EXECUTABLE-PROGRAM Load program

LOAD-PROGRAM Load program

MODIFY-DBL-DEFAULTS Set defaults for DBL calls

RESET-DBL-DEFAULTS Reset defaults for DBL calls

SELECT-PROGRAM-VERSION Select program version

SHOW-DBL-DEFAULTS Show defaults for DBL calls

START-EXECUTABLE-PROGRAM Load and start program

START-PROGRAM Load and start program

Macros DBL

70 U5137-J-Z125-7-76

2.6 Macros

The following overview contains all DBL macros. DBL macros for earlier versions of BS2000
(up to BS2000 V9.5), except for the TABLE macro, are now supported at the object level
only. The TABLE macro is described in the appendix. The macros are descibed in detail in
the „Executive Macros“ manual [7].

Macro Function

ASHARE Load shared code into a common memory pool

BIND Link and load load unit

DSHARE Unload shared code from common memory pools

ETABIT *) Create load information table

ETABLE *) Pass load information (extended TABLE)

GETPRGV *) Get program version

ILEMGT *) Manage ILEs (Indirect Linkage Entries)

ILEMIT *) Create ILE table entry

LDSLICE Load slice

PINF Output global information on a loaded program

SELPRGV *) Select program version

UNBIND Unload and unlink

VSVI1 Output link and load information

*) As of BS2000/OSD-BC V3.0. These macros need ASSEMBH.

U5137-J-Z125-7-76 71

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

12
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

3

3 XS support for DBL
This chapter is intended for users wishing to use the address space above 16 Mb. It is
assumed that readers are familiar with the basics of XS programming.

3.1 Determining the addresses passed by the user

The addresses passed by the user in the ASHARE, BIND, DSHARE, LDSLICE, PINF,
UNBIND and VSVI1 macros are determined by DBL as follows:

– For the INADDR operand of the VSVI1 macro, the address is always specified as a
31-bit address.

– For the other operands in the macros, the address is determined by the addressing
mode of the calling program. If AMODE 31 is set, a 31-bit address is specified; if
AMODE 24 is set, a 24-bit address.

3.2 Pseudo-RMODE of an object module

In order that the dynamic binder loader DBL can load an object module as a unit it is
necessary to specify the general location of the module in the address space (above or
below 16 Mb). To this end, a pseudo-RMODE is defined for the module at linkage time. This
is determined from the RMODE attributes of the individual CSECTs, as follows:

– The object module is assigned the attribute (pseudo-)RMODE ANY only if all CSECTs
contained in it have the RMODE ANY attribute.

– If at least one CSECT has the attribute RMODE 24, the module also is assigned the
restricted attribute (pseudo-)RMODE 24.

The AMODE attribute is determined by the control section (CSECT) which contains the
entry point of the object module.

Pseudo-RMODE of an LLM or PAM-LLM XS support for DBL

72 U5137-J-Z125-7-76

3.3 Pseudo-RMODE of an LLM or PAM-LLM

The following details apply for PAM-LLMs and also for the earlier LLMs.

In order that the dynamic binder loader DBL can load an LLM as a unit it is necessary to
specify the general location of the LLM in the address space (above or below 16 Mb). To
this end, a pseudo-RMODE is defined for the LLM at linkage time. This is determined in one
of the following two ways:

1. For an LLM consisting of a single slice (SINGLE) or of user-defined slices (BY-USER),
BINDER determines the pseudo-RMODE from the RMODE attributes of the individual
CSECTS and possibly also from the attributes of the COMMONs, as follows:

– The LLM is assigned the attribute (pseudo-)RMODE ANY only if all CSECTs
contained in it have the RMODE ANY attribute.

– If at least one CSECT has the attribute RMODE 24, the LLM also is assigned the
restricted attribute (pseudo-)RMODE 24.

This type of LLM can only be loaded in its entirety either above or below 16 Mb.

2. For an LLM consisting of slices which were formed from attributes (BY-ATTRIBUTES),
BINDER determines a separate pseudo-RMODE for each slice, even if the RMODE
attribute was not used to form the slices. The pseudo-RMODE for each slice is
determined from the RMODE attributes of the individual CSECTS, as described under
point 1.

This type of LLM can be loaded partially above and partially below 16 Mb.

XS support for DBL Determining the load address

U5137-J-Z125-7-76 73

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

12
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

3

3.4 Determining the load address

The load address and addressing mode of a load unit above 16 Mb are defined by the
operand PROGRAM-MODE=24/ANY in the START/LOAD-EXECUTABLE-PROGRAM or
START/LOAD-PROGRAM command or the BIND macro.

DBL determines the load address and the addressing mode of the load unit

– from the PROGRAM-MODE operand and

– from the AMODE and RMODE attributes of the CSECTs in the load unit.

– If AMODE-CHECK=*ADVANCED is specified, the AMODE attribute of the load unit is
also used to determine the load address and addressing mode of the load unit.

3.4.1 LOAD- and START-EXECUTABLE-PROGRAM (or LOAD- and
START-PROGRAM) commands

PROGRAM-MODE=24 (default)

DBL evaluates these operands as follows:

– The load unit is loaded below 16 Mb.

– External references are resolved only with CSECTs or ENTRYs located below 16 Mb.

– 24-bit addressing mode is set.

– Loading of the load unit is aborted with an error message if it contains a CSECT with
the AMODE 31 attribute.

Determining the load address XS support for DBL

74 U5137-J-Z125-7-76

PROGRAM-MODE=ANY

Each module of the load unit can be loaded above or below 16 Mb. The load address is
dependent on the RMODE attributes of the CSECTs contained in the module.

If the module contains a number of CSECTs, DBL defines a (pseudo-)RMODE that is
derived from the RMODE attributes of the individual CSECTs as follows:

– The module is assigned the attribute pseudo-RMODE ANY only if all CSECTs
contained in it have the RMODE ANY attribute.

– If at least one CSECT has the attribute RMODE 24, the module also is assigned the
attribute pseudo-RMODE 24.

– If AMODE-CHECK=*ADVANCED is specified, the AMODE attribute of the load unit is
also used to determine the (pseudo-)RMODE and load address of the load unit.

When AMODE-CHECK=*STD the load address is determined by the (pseudo-)RMODE as
follows:

When AMODE ANY is set, the addressing mode is determined by the location of the entry
point. If this is below 16 Mb, 24-bit addressing mode is set; if it is above 16 Mb, 31-bit
addressing mode is set.

(Pseudo-)RMODE

24 All load unit modules are loaded below the 16 MB boundary

ANY All load unit modules are loaded above the 16 MB boundary

XS support for DBL Determining the load address

U5137-J-Z125-7-76 75

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

12
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

3

Figure 7: Addressing mode on START-/LOAD-EXECUTABLE-PROGRAM

With AMODE-CHECK=*ADVANCED, the following applies:

If after the first module of the load unit has been loaded 24 was determined as AMODE
attribute, all other modules of the load unit are loaded below 16 Mb.

RMODE ANY

AMODE ANY/31

RMODE 24

AMODE 24/ANY

RMODE 24

AMODE 31

Module

Module
16-Mb boundary

31-bit addressing mode

31-bit addressing mode

24-bit addressing mode

Determining the load address XS support for DBL

76 U5137-J-Z125-7-76

3.4.2 BIND macro

With the BIND macro, DBL determines the load address and the addressing mode from the
operands PROGMOD=ANY|24 and BRANCH=NO|YES.

PROGMOD=ANY (default)

Each module of the load unit can be loaded above or below 16 Mb. The load address is
dependent on the RMODE attributes of the CSECTs contained in the module and on the
program addressing mode at the time of the BIND call.

If AMODE-CHECK=*ADVANCED is specified, the AMODE attribute of the load unit is also
used to determine the load address of the load unit’s modules.

If the module contains a number of CSECTs, DBL defines a (pseudo-)RMODE based on
the RMODE attributes of the individual CSECTs, as follows:

– The object module is given the attribute pseudo-RMODE ANY only if all the CSECTs
contained in it have the RMODE ANY attribute.

– If at least one CSECT has the RMODE 24 attribute, the module also is assigned the
attribute pseudo-RMODE 24.

When AMODE-CHECK=*STD the load address is determined as follows:

– If the program addressing mode on the BIND call is not 31 then all the load unit modules
are loaded below the 16 MB boundary.

– Otherwise the modules are loaded above or below the 16 MB boundary depending on
their (pseudo) RMODE.

The DBL thus only loads any module above the 16 MB boundary if the module possesses
the attribute RMODE ANY and the 31-bit addressing mode was set in the BIND call.

In all other cases the module is loaded below 16 Mb.

XS support for DBL Determining the load address

U5137-J-Z125-7-76 77

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

12
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

3

Figure 8: Addressing mode on the BIND macro call

With AMODE-CHECK=*ADVANCED, the following applies:

If after the first module of the load unit has been loaded 24 was determined as AMODE
attribute, all other modules of the load unit are loaded below 16 Mb.

PROGMOD=24

DBL evaluates the operand PROGMOD=24 as follows:

– All modules of the load unit will be loaded below 16 Mb.

– External references will be resolved only if they designate an address below 16 Mb.

– If the operand BRANCH=YES is also specified, 24-bit addressing mode will be set.

– Loading of the load unit will be aborted with an error message if the load unit contains
a module with the AMODE 31 attribute.

AMODE 31

AMODE ANY

BIND . . . ,

PROGMOD=
 ANY

16-Mb
boundary

31-bit
addressing
mode

24-bit
addressing
mode

RMODE ANY

AMODE ANY/24

RMODE 24/ANY

Determining the load address XS support for DBL

78 U5137-J-Z125-7-76

BRANCH=NO (default)

Once the module has been loaded control is returned to the calling program. The current
addressing mode is not changed. Following the BIND macro, the high-order bit of the field
that was defined with the SYMBLAD operand indicates which addressing mode has to be
set when the module is executed.

This information is determined using the following criteria:

BRANCH=YES

The loaded module is processed first (starting at its entry point). The addressing mode is
determined by the value specified for the PROGMOD operand in conjunction with the
AMODE attribute of the first control section (CSECT) in the module and taking into account
the entry point and the addressing mode set at the time of issuing the BIND macro. The
addressing mode is set internally according to the following criteria:

Location
of entry

point

AMODE (CSECT)

24 31 ANY

Î 16 Mb 24-bit mode 31-bit mode dependent on AMODE set in BIND macro

> 16 Mb 31-bit mode 31-bit mode 31-bit mode

PROGMOD
AMODE (CSECT)

24 31 ANY

24 24-bit mode illegal 24-bit mode

ANY 24-bit mode 31-bit mode 31-bit mode if
entry point Ï 16 Mb.

As in BIND macro if
entry point < 16 Mb.

A. .

SYMBLAD field

A = 1: 31-bit addressing mode
A = 0: 24-bit addressing mode

XS support for DBL Determining the load address

U5137-J-Z125-7-76 79

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

12
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

3

3.4.3 Handling COMMON sections

The following points should be noted with regard to the processing of COMMON sections:

– If at least one module of the load unit is loaded below 16 Mb, then all COMMON
sections in this load unit will be loaded below 16 Mb.

– The load address of the COMMON section is dependent on the PROG-MOD operand
and the RMODE attributes of the COMMON definitions of the same name in the load
unit. The load address may possibly also depend on the RMODE attributes of the
control section (CSECT) of the same name.

DBL determines the load address of the COMMON in accordance with the PROG-MOD
operand as follows:

PROG-MOD Load address of COMMON

24 < 16 Mb

31 Ï16 Mb if all the attributes are RMODE ANY
< 16 Mb if at least one attribute is RMODE 24

Resolving external references above 16 Mb XS support for DBL

80 U5137-J-Z125-7-76

3.5 Resolving external references above 16 Mb

In BLSSERV up to and including V2.4A the following rules apply for resolving external
references:

1. PROGRAM-MODE=24 in the load command or
PROGMOD=24 in the BIND macro:

External references are exclusively resolved with symbols which are loaded below
16 Mb.

2. PROGRAM-MODE=*ANY in the load command or
PROGMOD=ANY in the BIND macro:

External references are resolved with symbols which are loaded below or above 16 Mb.

If a load unit is loaded with PROGRAM-MODE=*ANY (or PROGMOD=ANY), external
references can also be resolved in accordance with these rules with symbols which are
loaded above 16 Mb. However, if this load unit has to run in AMODE 24 (for example
because of the caller’s AMODE attribut), this results in errors.

To prevent such inconsistencies, additional AMODE checks can be performed when loading
with BLSSERV V2.5A or higher. The AMODE-CHECK operand in the START-/LOAD-
EXECUTABLE-PROGRAM command (or AMODCHK in the BIND macro) is used to control
whether these additional checks are made.

When AMODE-CHECK=*STD (default value), the behavior when loading and resolving
external references is compatible with the earlier versions of BLSSERV. BLSSERV decides
whether or not external references with modules above 16 Mb can be resolved on the basis
of the PROGRAM-MODE operand, the pseudo-RMODE of the loaded objects and the
AMODE attribute of the calling program.
This can result in errors occurring like those described above.

When AMODE-CHECK=*ADVANCED, the AMODE attribute of the load unit is also taken
into account to decide whether external references can also be resolved with modules
above 16 Mb. Thus if a load unit receives an AMODE attribute of 24 after its first module
has been loaded, the rest of the load unit must be loaded below 16 Mb and external
references of this load unit are only satisfied with symbols which can be loaded below
16 Mb.

U5137-J-Z125-7-76 81

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

35
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

4

4 The loader ELDE

4.1 ELDE functions

The static loader ELDE also is part of the BLSSERV subsystem. Its function is to load a
program (load module) which has been linked by the linkage editor TSOSLNK and stored
in a program file or in a program library as a (type C) library element. ELDE also has to
evaluate relocation linkage dictionary (RLD) information if the load module does not yet
have a core image format (see COREIM=N in the PROGRAM statement of the TSOSLNK
linkage editor).

4.2 Calling ELDE

ELDE can be invoked by the user with the following commands and macros:

– The START-EXECUTABLE-PROGRAM or LOAD-EXECUTABLE-PROGRAM
command if the FROM-FILE operand has been specified with a file name or if the
module to be loaded is a load module.

– The START-PROGRAM or LOAD-PROGRAM command if the FROM-FILE operand
has been specified with a file name or with *PHASE.
The START-PROGRAM and LOAD-PROGRAM will only be supported for compatibility
reasons. For new applications the START-EXECUTABLE-PROGRAM or LOAD-
EXECUTABLE-PROGRAM should be used.

– The LPOV macro, which dynamically loads overlay segments. The CALL and SEGLD
macros implicitly cause the execution of the LPOV macro.

The detailed description of the commands can be found in the „Commands“ manual [5].

Calling ELDE The loader ELDE

82 U5137-J-Z125-7-76

U5137-J-Z125-7-76 83

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

35
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

5

5 Migration
This chapter highlights the differences between the old linkage editor/loader system (up to
BS2000 V9.5) and the actual Binder-Loader-Starter (BLS) system (as of BS2000 V10.0)
and is intended to help the user make the transition.

5.1 Existing concepts and new concepts

First, it is useful to compare and contrast concepts from the old linkage editor/loader system
and the actual Binder-Loader-Starter system (see also “Glossary” on page 101).

5.1.1 Existing concepts

object module (OM)
Loadable unit which is generated by compiling a source program by means of
a compiler.

prelinked object module
Loadable unit which is produced by the TSOSLNK linkage editor by linking
together individual object modules (OMs). It is identical in format to an object
module.

object module library (OML)
PAM file which contains object modules in the form of library elements. As of
LMS V2.0A (SDF format), object module libraries are no longer supported.
They should be replaced by program libraries.

EAM object module file (OMF)
Temporary system object module library in which object modules (OMs) or
prelinked modules are stored by a compiler or by the TSOSLNK linkage editor,
respectively.

Existing concepts and new concepts Migration

84 U5137-J-Z125-7-76

load module (phase)
Executable unit which is produced from object modules (OMs) by the TSOSLNK
linkage editor and stored in a cataloged program file or in a program library as
a type C library element.

program library
PAM file which is processed using the PLAM library access method. It contains
library elements which are uniquely identifiable by the element type and
element identifier.

segment
Section of a program that can be loaded separately and executed
independently of other program segments.

TSOSLNK
Linkage editor of the previous linkage editor/loader system. TSOSLNK links:

– either one or more object modules (OMs) to produce an executable program
(load module) or

– multiple object modules (OMs) to produce a single prelinked object module.

DLL
Dynamic linking loader of the previous linkage editor/loader system. It links
object modules (OMs) into an executable program and loads this into computer
memory.

ELDE
Static loader of the previous linkage editor/loader system. It loads a program
(load module) that has been linked by the TSOSLNK linkage editor.

Migration Existing concepts and new concepts

U5137-J-Z125-7-76 85

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

35
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

5

5.1.2 New concepts

link and load module (LLM)
Loadable unit that possesses a logical and a physical structure. It is generated
by the linkage editor BINDER and stored in a program library as a type L library
element.

module
Generic term for an object module (OM) and a link and load module (LLM).

load unit
Contains all modules that are loaded with a single load call. Each load unit is
located in a context.

context
A context can be:
– a set of load units
– a linking and loading environment
– an unloading and unlinking environment.

A context has a scope and an access privilege.

slice
Loadable unit comprising all the control sections (CSECTs) that are loaded
contiguously. Slices form the physical structure of a link and load module (LLM).

Binder-Loader-Starter (BLS)
Designation of the new linker/loader system.

BINDER
Linker (linkage editor) of the new Binder-Loader-Starter system. It links
modules into a link and load module (LLM).

DBL
Dynamic binder loader of the new Binder-Loader-Starter system. It links
modules into a load unit and loads this into computer memory.

New features Migration

86 U5137-J-Z125-7-76

5.2 Features of the new Binder-Loader-Starter system

The Binder-Loader-Starter (BLS) system, which is available as of BS2000 Version 10, is a
significant departure from the concept underlying the old linkage editor/loader system. The
key features of the new concept are summarized below.

5.2.1 Link and load module (LLM) and BINDER

– The format of the link and load module (LLM) permits optimization of loading compared
with the object modules (OMs) and prelinked modules of the previous system.

– The logical structure of an LLM enables the user to structure his or her application. The
user can remove or replace a node when creating or modifying an LLM, or include the
node of an LLM in another LLM.

– An LLM that is saved in a program library can be modified. Modules can be replaced or
additional modules included in the LLM.

– The user can specify that all CSECTs that have the same attributes or combination of
attributes are to be combined into slices by BINDER. This significantly reduces the
loading time and main memory requirements when the LLM is loaded.

– Symbols can be selected using wildcards, e.g. when modifying the visibility
(masking/nonmasking) of symbols (MODIFY-SYMBOL-VISIBILITY).

– List for symbolic debugging (LSD) information can be included in an LLM for testing and
diagnostic purposes. The user can select individual object modules (OMs) or sub-LLMs
in which the LSD information is to be inserted.

– BINDER uses an SDF interface. The statements can be entered in dialog (interactive)
mode or in batch mode. Each statement is processed immediately after input.

– At any time when creating an LLM the user can request lists to be output (using SHOW-
MAP) containing information about the status of the current LLM. The user can then
decide whether further modules are to be included in the current LLM or whether
modules are to be removed. The lists are output to SYSLST or SYSOUT. BINDER
implicitly uses the SDF command SHOW-FILE for this.
In addition to this list output, further easy-to-use information functions are available to
the user during a BINDER run.

Migration New features

U5137-J-Z125-7-76 87

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

35
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

5

5.2.2 Dynamic binder loader DBL

● The user can make use of contexts. This has the following advantages:

– Multiple copies of the same program can be loaded into different contexts.

– Parts of a comprehensive application can be loaded into different contexts. External
references are resolved separately in each individual context. Each partial
application in a context can therefore be loaded and started as an independent
“sub-application”. In this way it is possible to load and start the individual modules
of, for example, a runtime system in separate contexts.

– Parts of an application belonging to a context can be unloaded with one call.

– No name conflicts are caused by having identically named symbols in different
contexts because each context has its own symbol table.

● When DBL is invoked, a list of information concerning the logical structure and contents
of the loaded load unit can be requested.

● Up to 100 alternate libraries can be specified for the autolink function.

● The user can define according to individual requirements how name conflicts and
unresolved external references are to be handled.

● When loading a load unit with the BIND macro, the user can specify that:

– REP records from a REP file are to be applied to the modules of the load unit

– libraries used by DBL are to remain open when processing of the DBL call has been
completed. This can speed up processing when DBL is called repeatedly with the
same library.

New features Migration

88 U5137-J-Z125-7-76

5.2.3 DBL and BINDER

● One of the main features of the actual Binder-Loader-Starter (BLS) system is the large
degree of harmonization between BINDER and DBL. This means:

– Pseudo-calls, such as the TABLE macro previously used as a link between the
static loader ELDE and the dynamic linking loader DLL, are superseded as a result
of using LLMs. All LLM information that has been specified by BINDER when
creating the LLM can be evaluated immediately by the new DBL.

– External references are resolved by BINDER and DBL according to the same rules.

● Functions which the DLL could apply only to dynamically loaded object modules (e.g.
modify options, information output, unloading) can be applied to the entire load unit by
DBL.

● Both DBL and BINDER can process symbol names up to 32 characters long. These
symbol names can be generated by BINDER by renaming the original symbol names
in an LLM (RENAME-SYMBOLS).

● BINDER can generate LLMs with slices formed according to the PUBLIC or PRIVATE
attribute of the CSECTs. DBL loads the PRIVATE slice into the user’s class 6 memory.
The user declares the PUBLIC slice as shareable by loading it into a common memory
pool with the aid of the DBL macro ASHARE.

Migration From DLL to DBL

U5137-J-Z125-7-76 89

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

35
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

5

5.3 Migration from the dynamic linking loader DLL to DBL

5.3.1 Operating modes RUN-MODE=*STD and RUN-MODE=*ADVANCED

The dynamic binder loader (DBL) runs in two different operating modes. The user selects
the mode in which DBL is to execute by means of the RUN-MODE operand in the START-
PROGRAM and LOAD-PROGRAM commands.

When the commands START/LOAD-EXECUTABLE-PROGRAM are used, DBL always
runs in RUN-MODE=*ADVANCED.

RUN-MODE=*STD operating mode
In this mode DBL is fully compatible with the DLL of the old linkage editor/loader system.
The new functions in DBL cannot be used in this operating mode. RUN-MODE=*STD is the
default setting.

RUN-MODE=*ADVANCED operating mode
In this mode DBL supports the functions introduced as of BS2000 V10. These functions can
lead to problems of incompatibility with the DLL of the previous linkage editor/loader
system.

From DLL to DBL Migration

90 U5137-J-Z125-7-76

5.3.2 Incompatibilities in RUN-MODE=*ADVANCED

Searching for modules in libraries

When program libraries are searched for modules, the RUN-MODE operand controls the
selection of the modules as follows:

– When RUN-MODE=*STD is set, the search is limited to object modules (OMs). LLMs
are ignored.

– When RUN-MODE=*ADVANCED is set, LLMs and object modules (OMs) are
compared. In this comparison the element name of an LLM (element type L) or a
symbol name in an LLM takes precedence over the element name of an object module
(OM) (element type R) or a symbol name in an OM.

– In the commands START/LOAD-EXECUTABLE-PROGRAM it is possible to control the
search order by means of the TYPE operand. The order L,C,R is set by default.

This search strategy favors the migration from object module (OM) to link and load module
(LLM). Compatibility exists when no LLM is found with the same element name as an OM.

Searching in alternate libraries

By default, the Tasklib is ignored if RUN-MODE=*ADVANCED is set. The optional inclusion
of the Tasklib is only possible in connection with the commands START/LOAD-
EXECUTABLE-PROGRAM.

Handling name conflicts

How name conflicts are handled is dependent on the selected operating mode (RUN-
MODE=*STD or RUN-MODE=*ADVANCED) as follows (see also page 32ff):

– When RUN-MODE=*STD is set, name conflicts between CSECTs are always detected,
regardless of whether the symbols in a module are masked or not. Name conflicts
between masked or nonmasked ENTRYs are always accepted. Only the first ENTRY is
used for resolving external references. The user has no means of controlling how name
conflicts are handled.

– When RUN-MODE=*ADVANCED is set, name conflicts are detected only if the symbols
in a module are not masked. The user is informed by means of a message each time
there is a name conflict which could cause errors to occur. The NAME-COLLISION
operand in the load call gives the user a means of controlling how name conflicts are
handled.

Migration From DLL to DBL

U5137-J-Z125-7-76 91

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

35
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

5

5.3.3 Loading LLMs in RUN-MODE=*STD

Many applications, which are no longer being developed, use the LINK macro to
dynamically load external runtime components. The migration of such runtime components
from the object module to the LLM would therefore have been impossible without sacrificing
compatibility, since the LINK macro runs only in the standard RUN-MODE, in which LLMs
could not be processed earlier.

To enable migration without losing compatibility, the standard RUN-MODE of DBL was
therefore extended as of BS2000/OSD-BC V3.0 so that LLMs can also be processed under
certain conditions. In principle, such LLMs must have the attributes of an object module, i.e.:

– it must not include any user-defined slices

– the names of all included OMs must not exceed a length of 8 characters

– no symbol name may be longer than 8 characters

– there must not be any unresolved external reference to a symbol with a name exceeding
8 characters in length

– there must not be any reference from the private LLM section to a PUBLIC symbol with
a name that is longer than 8 characters

– the LLM must include information on the logical structure

LLMs which have been processed with the BINDER statement MERGE-MODULES can
also be loaded with the LINK macro. Merging enables symbols that are not required to be
made invisible externally. The merged LLM or sub-LLM now contains only a prelinked
module with one single CSECT.

Due to the differences between the standard and advanced RUN-MODEs, the number of
modules that are loaded dynamically with LINK or BIND may differ considerably.
Consequently, the loading behavior of both the BIND macro and the LINK macro should be
observed very carefully when migrating the runtime components.

5.3.4 Loading an LLM with user-defined slices

The following points should be noted when loading an LLM constructed from user-defined
slices:

– the library and the element remain open

– if the LINK-NAME operand is not specified in the load call for the library, the library
remains locked for all further load calls.

From DLL to DBL Migration

92 U5137-J-Z125-7-76

5.3.5 Migration from the old to the new macros

This section describes the macros which have replaced the macros which were available
up to BS2000 V10.0.

LINK macro

The functions of the LINK macro are implemented by the equivalent DBL macro BIND. They
are a subset of the functions of the BIND macro.
Note that PROGMOD=ANY is the default value for the BIND macro.
To facilitate migration, the LINK macro has been extended as of BS2000/OSD-BC V3.0 so
that LLMs can also be loaded with it under certain conditions (see page 91).

LPOV macro

The LPOV macro is not supported for LLMs. When an LLM with user-defined slices is
generated by BINDER, no LPOV macro may be contained in any of the included object
modules (OMs). Object modules that contain the LPOV macro can only be linked to a
program (load module) by the TSOSLNK linkage editor.

PBUNLD and UNLOD macros

The functions of the PBUNLD and UNLOD macros are implemented by the equivalent DBL
macro UNBIND. The UNBIND macro is fully compatible with the PBUNLD and UNLOD
macros when the operand UNLINK=NO is specified in the UNBIND macro (UNLINK=NO is
the default value). In this case CSECTs and ENTRYS are not unlinked in the unloaded
object, i.e. resolved external references to these symbols remain resolved. When the
operand UNLINK=YES is specified in the UNBIND macro, resolved external references are
unlinked, i.e. they are treated as unresolved external references. This function is not built
into the PBUNLD and UNLOD macros.

VSVI macro

The functions of the VSVI macro are implemented by the equivalent DBL macro VSVI1. The
information output is dependent on the selected operating mode (RUNMOD operand).

In the RUNMOD=STD operating mode, the information output by the VSVI1 macro is fully
compatible with that produced by the VSVI macro. In this mode the VSVI1 macro processes
symbol names and context names up to a maximum length of 8 characters and
16 characters, respectively. Names longer than this are truncated to 8 or 16 characters.
The reference size for an item of output information is an entry in the DBL tables with a fixed
length of 36 bytes.

Migration From ELDE to DBL

U5137-J-Z125-7-76 93

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

35
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

5

In the RUNMOD=ADV operating mode, the VSVI1 macro processes names up to
32 characters in length.
The reference size for an item of output information is an entry in the DBL tables with a
variable length. The length is dependent on the length of the names and the type of
information desired.

ITABL macro

The functions of the ITABL macro are a subset of the functions of the VSVI macro and can
therefore be replaced by the functions of the VSVI1 macro.

TABLE macro

The functions of the TABLE macro are implemented in extended form in the ETABLE and
ETABIT macros, which are available as of BS2000/OSD-BC V3.0. Note that the handling of
name conflicts for ETABLE is no longer the same as for the TABLE macro.

5.4 Migrating from the static loader ELDE to the DBL

When calling the loader ELDE you should only use the new commands
START/LOAD-EXECUTABLE-PROGRAM. If the load module is present as a C element in
a library then these commands should be called without any explicit type specification:

START-EXE FROM-FILE=*LIB-ELEM(LIB=library,ELEM=element)
or

LOAD-EXE FROM-FILE=*LIB-ELEM(LIB=library,ELEM=element)

The default setting TYPE=(L,C,R) facilitates a possible subsequent migration to the link
load module (LLM). If no explicit DBL parameter declaration is required then it is not
necessary to modify the call command on migration. It is enough to enter a corresponding
L element in the library.

Programs to PAM-LLMs Migration

94 U5137-J-Z125-7-76

5.5 Migration of programs to PAM-LLMs

PAM-LLMs differ from (conventional) LLMs because of the “container” in which they are
stored:

– a PAM-LLM is stored in a PAM file

– an LLM is stored in a program library as a type L element.

In their internal layout LLMs and PAM-LLMs are identical. Consequently the information in
this chapter on migrating programs to LLMs also applies for migrating to PAM-LLMs.

The benefit of migrating programs to PAM-LLMs instead of LLMs is that the commands for
the call do not need to be changed: The command
/EXEC HUGO, /START-PROGRAM HUGO or /START-EXECUTABLE-PROGRAM HUGO starts the object
located in the HUGO file, regardless of whether a program or a PAM-LLM is involved.

U5137-J-Z125-7-76 95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

12
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

6

6 High-performance loading of programs and
products
This chapter provides a description of the measures which should be considered by users
in order to optimize the load time for a program/product.

It is generally assumed that the programs or modules are stored in PLAM libraries. This
means that the programs/modules are linked with BINDER and loaded with the START-
EXECUTABLE-PROGRAM command. The information provided here relates only to
working with LLMs.

6.1 General notes on improving loading speed

● All the PLAM libraries involved should be organized as efficiently as possible, i.e.

– they should contain no redundant LLMs
– they should be completely reorganized, so that the LLMs they contain are not split

into an unnecessary number of extents
– the library itself should comprise as few extents as possible
– the library should possibly be created using (STD,2).

All these measures reduce the number of I/Os and improve runtime behavior. The
effectiveness of these measures is, of course, dependent on the original structure. A
library created with (STD,2) will be larger than the original library by about 1 KB per
member. The reduction in I/O operations will be greater, the more members the library
has, provided that these members are not too small. Runtime improvements can then
amount to over 10%.

● If modules have the READ-ONLY attribute, one slice should be generated for read-only
modules and one slice for read/write modules. This speeds up the loading process by
reducing both CPU requirements and I/O operations.

General notes on improving loading speed High-performance loading

96 U5137-J-Z125-7-76

● The number of library accesses is reduced if all symbols not required for subsequent
BINDER runs are set to “invisible” with the BINDER statement

//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=...,SYMBOL-TYPE=...,
 SCOPE=...,VISIBLE=*NO,...

● If PUBLIC/PRIVATE slices are to be used, format 2 should be used in order to reduce
the CPU requirements of BLS and DSSM (see the BINDER statement
//SAVE-LLM ... FROM-BS2000-VERSIONS=*FROM-V11).

The operand SUBSYSTEM-ENTRIES in the BINDER statement //START-LLM-
CREATION allows you to specify a symbolic name for the links between the private and
public slice. This name must also be defined in the DSSM catalog. (DSSM is called for
every link with the old format.)

● You should ensure that the LOGGING parameter in the DSSM parameter file is not set
to ON (default: OFF). ON would cause DSSM data to be logged when subsystems are
loaded.

High-performance loading Structural measures for reducing resource requirements

U5137-J-Z125-7-76 97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

12
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

6

6.2 Structural measures for reducing resource requirements

Unfortunately, it is rarely possible to quantify precisely the effect of each of the measures
described below. The effects depend to a large degree on the structure of the load objects,
the subsystems and the libraries. One can, however, generally assume that a gain of at
least 10% can be achieved with each of the measures.

Reduce the number of libraries or optimize their contents

● Merge alternative libraries

If alternative libraries are merged to form a single library (this could even be the
specified load library), this results in a considerable reduction in search operations in
BLS/PLAM, which in turn leads to a saving in I/O operations and CPU time which is
sometimes considerable greater than 10%.

Merging is generally only recommended if no entries or CSECTs exist with the same
name.

● Link in modules from libraries permanently

If the contents of the alternative libraries and the specified library never or only rarely
change, it may be advisable to link the modules into the load object permanently. This
reduces the CPU requirements on loading. On the other hand, static linking means that
the load object will increase in size, thus generally causing more I/O operations, which
in turn increases the runtime.
This measure makes sense, therefore, if only small modules are involved and if the
alternative libraries contain a particularly large number of entries.

If you adopt this strategy for improving performance, you must, of course ensure that
the link procedure is repeated each time the alternative library is modified.

● Mixed strategy

If, for instance, the contents of only one of the alternative libraries is modified regularly,
it may be advisable to adopt a mixed strategy using both of the methods described
above.

Structural measures for reducing resource requirements High-performance loading

98 U5137-J-Z125-7-76

Restricting dynamic loading of shared code

● Do not dynamically load/link shared code

Many programs do not need to dynamically load/link from a subsystem/shared
programs or user shared memory. These programs should be started as follows:
/START-EXECUTABLE-PROGRAM ...,RESOLUTION=(SHARE-SCOPE=*NONE),...
This prevents BLS from searching the subsystems for the appropriate entry, resulting in
an often considerable reduction in CPU time.

● Only dynamically load from system memory

This is the default. It is not possible to restrict the search for the entry performed by
DSSM to specific subsystems or to shared programs only.

● Only dynamically load from user shared memory

When you issue the START-EXECUTABLE-PROGRAM command, you can issue the
parameter
RESOLUTION(...,SHARE-SCOPE=*MEMORY-POOL(...)...)
to restrict loading to user shared memory. It is also possible to further restrict the
operation to specified memory pools.

● Preload user shared memory

As far as possible, all shareable sections of the applications in use should be preloaded
(e.g. FOR1-RTS). This means that they are loaded only once and only need to be linked
(with little overhead) for each further load operation. This strategy generally results in a
saving of considerably more than 10% in I/O operations and CPU requirements.

Eliminating ESD information

● Complete elimination

This measure only applies for standalone programs. These are LLMs which are not
called by other programs and which are completely prelinked. For programs of this type,
the load operation can be accelerated if the ESD and other BLS information tables are
eliminated using the appropriate BINDER call. Call BINDER as follows:

/START-BINDER
//START-LLM-UPDATE LIB=<orig-lib>,ELEMENT=<elem-name>
//SAVE-LLM LIB=<new-load-lib>,TEST-SUPPORT=*NO,MAP=*NO,
 SYMBOL-DICTIONARY=*NO,LOGICAL-STRUCTURE=*NO,
 RELOCATION-DATA=*NO
//END

High-performance loading Improving the load speed for C programs

U5137-J-Z125-7-76 99

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

u
ni

 2
00

9
 S

ta
nd

 1
4

:0
3.

12
P

fa
d

: G
:\

fs
c\

B
L

S
S

E
R

V
\e

n
\b

ls
se

rv
_e

.k
0

6

This parameter specification means that only those BLS structures are created which
are required for loading a simple program, thus reducing the size of the object. This
saves CPU time and I/O operations when the program is loaded. All the information
required for other processing is then no longer available. This means that

– these parameters cannot be used for load objects which are split into a number of
slices

– no LLM updates can be carried out on an object of this type.
– relocatable objects (e.g. as part of a runtime system) cannot be created.

The (supplementary) parameter setting REQUIRED-COMPRESSION=*YES should
not be selected, since, although up to 10% of I/O operations can be saved, approx 40%
more CPU time is required.

● Partial elimination

When merging LLMs or sub-LLMs to form a prelinked module with a single CSECT, you
should specify what ESD information is to remain in the external address book with the
BINDER statement MERGE-MODULES. This can result in a considerable reduction in
BLS overhead during loading.

6.3 Improving the load speed for C programs

You can improve the load speed of C programs by linking the few modules which cannot be
preloaded from the C runtime system to the compiled program. Use the following
supplementary BINDER statement:

//RESOLVE-BY-AUTOLINK LIB=<Partial-Bind-Lib>

The <Partial-Bind-Lib> is installed under the name SYSLNK.CRTE.PARTIAL-BIND. It is
also necessary to make external names invisible in order to suppress duplicate symbols:

//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=*ALL,VISIBLE=*NO

These two statements result in a considerable reduction in CPU time and particularly in
runtime when loading C programs. The load object is only a few pages (approx. 18) longer
than the compiled program.

Note

The CRTEC and CRTECOM subsystems must be loaded to allow CRTE to be loaded
in the shared code area.

Use of DAB High-performance loading

100 U5137-J-Z125-7-76

6.4 Use of DAB

If the linked object and/or the libraries used are very large, with the result that a large
number of I/O operations are required during loading, you should check whether it is
possible or necessary to use DAB (Disk Access Buffer).

DAB permits such a considerable reduction in I/O operations on frequently accessed files
that in extreme cases the runtime depends only on the CPU requirements.

A cache area must be selected for the load object which is the same size as the load object
itself. This is particularly simple if the object is the only member of the library. You can then
issue the command

/START-DAB-CACHING AREA=*FILE(FILE-AREA=<library>),CACHE-SIZE=*BY-FILE

to reserve a main memory area with the same size as the library. This is filled the first time
the object is loaded, with the result that no time-intensive I/O operations are required for any
subsequent load operations.

The cache areas for the libraries can generally be created smaller than the total size of the
libraries, since it is generally the case that not all of the modules contained in the libraries
will be dynamically loaded. In this case, the cache size must be specified explicitly (in KB
or MB) when the /START-DAB-CACHING command is issued. It is possible to monitor the
cache hit rate for each cache area using SM2 or the /SHOW-DAB-CACHING command.
The hit rate should be at least 80%. If this is not the case, the size of the cache area must
be increased.

U5137-J-Z125-7-76 101

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

un
i 2

00
9

 S
ta

n
d

14
:0

3.
12

P
fa

d:
 G

:\f
sc

\B
LS

S
E

R
V

\e
n\

bl
ss

e
rv

_e
.m

ix

Glossary
This glossary contains definitions of key terms used in the description of the Binder-Loader-
Starter (BLS) system. Cross-references are indicated by italic typeface of the associated
term.

access privilege for a context
Defines which users may access a context. The context can be privileged or
nonprivileged.

addressing mode (AMODE)
Attribute of a control section (CSECT). Hardware addressing mode which a
program or load unit expects at runtime. It can be set to:

– 24-bit addressing (AMODE=24)
– 31-bit addressing (AMODE=31)
– 32-bit addressing (AMODE=32)
– 24-, 31- or 32 bit addressing (AMODE=ANY).

attribute
Property which can be assigned to a control section (CSECT) at assembly or
compilation time. A CSECT can have the following attributes:

– read access (READ-ONLY)
– memory-resident (RESIDENT)
– shareable (PUBLIC)
– residence mode (RMODE)
– alignment (ALIGNMENT)
– addressing mode (AMODE).

autolink
Automatic search and insert mechanism for including modules.

BINDER run
Sequence of BINDER statements which begins after the load call for BINDER
and ends with the END statement.

Glossary

102 U5137-J-Z125-7-76

common memory pool
A memory area in class 6 memory (user memory) which may be shared and
accessed by several users.

COMMON section
Data area which can be shared by a number of control sections (CSECTs) for
communication purposes.

context
A context can be:
– a set of objects with a logical structure
– an environment for linking and loading
– an environment for unloading and unlinking.
A context has a scope and an access privilege.

control section (CSECT)
Program section which can be loaded independently of other program sections.
A control section can have certain attributes.

CSECT
Control section

current LLM
Newly created or modified link and load module (LLM) which is constructed in the
BINDER work area.

current slice
Slice into which modules are inserted or in which modules are replaced if nothing
is defined concerning their position in the physical structure of the LLM. This
applies to user-defined slices only.

EAM object module file (OMF)
Temporary system object module library in which object modules (OMs) produced
by a compiler or prelinked modules produced by the linkage editor TSOSLNK are
stored.

edit run
Comprises a sequence of BINDER statements which begins with the START-
LLM-CREATION or START-LLM-UPDATE statement and ends with the next
START-LLM-CREATION or START-LLM-UPDATE statement or with the END
statement.

Glossary

U5137-J-Z125-7-76 103

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

un
i 2

00
9

 S
ta

n
d

14
:0

3.
12

P
fa

d:
 G

:\f
sc

\B
LS

S
E

R
V

\e
n\

bl
ss

e
rv

_e
.m

ix

element identifier
Designates a library element in a program library; it is composed of the element
name and element version.

element name
Name of a library element in a program library or object module library. It is
referred to by the BINDER statements and the DBL commands.

element type
Type of a library element in a program library.
The following element types apply to program libraries: .

element version
Version designation of a library element in a program library. It is referred to by
the BINDER statements and the DBL commands.

entry point (ENTRY)
Symbolic link address which is defined in one module but can also be used by
another module.

external dummy section (XDSEC)
Program section for which there is no image in the text information of a module.
An external dummy section can be a reference (XDSEC-R) or a program definition
(XDSEC-D).

external reference (EXTRN)
Symbolic link address which is used in one module but defined in another; it is
resolved unconditionally either explicitly or by autolink.

external symbol dictionary (ESD)
external symbols vector (ESV)

external symbols vector (ESV)
Contains all the program definitions and references in a module and is required for
resolving references.
ESV records are contained in link and load modules (LLMs), whereas object
modules (OMs) contain ESD (external symbol dictionary) records.

type C program (load module)

type L link and load module (LLM)

type R object module (OM)

Glossary

104 U5137-J-Z125-7-76

ILE (indirect linkage entry)
Entry point (ENTRY) which the caller forwards to an ILE server by means of an
IL routine. An ILE has the following attributes:
– name
– address of the IL routine
– address of the ILE server
– displacement of the ILE server address in the IL routine
– status of the ILE server (active or not active)
– control indicator(system-driven or user-driven)

ILE server
Module containing program code in the same way as a subprogram but which
can be branched to via an ILE and an IL routine.

IL routine (indirect linkage routine)
Routine which calls an ILE server. Users can also define their own IL routine if
they do not want to use the one provided by the system.

indirect linkage
Linkage mechanism in which an external reference is resolved by means of an
ILE and an intermediate IL routine, rather than directly by means of a program
definition.

internal name
Defined when a link and load module (LLM) is created and identifies the root in
the logical structure of the LLM.

link and load module (LLM)
Loadable unit with a logical structure and a physical structure. LLMs are
generated by BINDER and stored in a program library as type L library elements
(element type) or it is stored in a PAM file (PAM LLM).

list for symbolic debugging (LSD)
Test and diagnostic information which is held in a module and which is required
by the debugging and diagnostic tools for debugging at source program level.

list name unit
If several or all objects of a library are loaded with a single call of the BIND
macro, a list name unit is created. This prevents the need for multiple DBL calls
when loading a symbol list of the same load unit.

load module
Synonym for program

Glossary

U5137-J-Z125-7-76 105

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

un
i 2

00
9

 S
ta

n
d

14
:0

3.
12

P
fa

d:
 G

:\f
sc

\B
LS

S
E

R
V

\e
n\

bl
ss

e
rv

_e
.m

ix

load unit
Contains all modules that are loaded with a single load call. Each load unit is
situated in a context.

local relocation dictionary (LRLD)
Information in a module which determines how addresses are to be adjusted
relative to a common base address during linking and loading.
LRLD records are contained in link and load modules (LLMs), whereas object
modules contain RLD (relocation linkage dictionary) records.

logical structure information
Information in a link and load module (LLM) which determines the logical structure
of the LLM.

logical structure of a context
Hierarchical structure of a context as a set of objects. Objects are control sections
(CSECTs), modules and load units.

logical structure information
Information in a link and load module (LLM) which defines the logical structure of
the LLM.

logical structure of an LLM
Defines the tree structure of a link and load module (LLM). The root is formed by
the internal name, the nodes are formed by sub-LLMs, and the leaves are formed
by object modules (OMs) and empty sub-LLMs.

LSD
List for symbolic debugging.

module
Generic term for object module (OM) and link and load module (LLM).

object module (OM)
Loadable unit generated by translating a source program by means of a
compiler.

object module library (OML)
PAM file which contains object modules as library elements.

PAM-LLM
LLM which has been saved by BINDER in a PAM file.

Glossary

106 U5137-J-Z125-7-76

path name
Name by which sub-LLMs are addressed in the logical structure of an LLM. It
consists of a sequence of individual names separated from one another by a
period.

physical structure information
Information in a link and load module (LLM) which defines the physical structure of
the LLM.

physical structure of an LLM
Defines the slices from which a link and load module (LLM) is constructed. These
may be:

– single slices
– slices by attributes
– user-defined slices.

prelinked object module
Loadable unit which is linked by the TSOSLNK linkage editor from individual
object modules (OM); it has the same format as an object module (OM).

program
Executable entity which is linked by the TSOSLNK linkage editor from object
modules (OMs) and stored in a cataloged program file or as a type C library
element (cf. element type) in a program library.

program definition
Generic term for

– control section (CSECT)
– entry point (ENTRY)
– indirect linkage entry (ILE)
– COMMON section
– external dummy section (XDSEC-D)

program library
PAM file which is processed using the library access method PLAM. A program
library contains library elements which are uniquely identifiable by element type
and element identifier.

pseudo-register
Main memory area which is used for intercommunication by different program
sections.

Glossary

U5137-J-Z125-7-76 107

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

un
i 2

00
9

 S
ta

n
d

14
:0

3.
12

P
fa

d:
 G

:\f
sc

\B
LS

S
E

R
V

\e
n\

bl
ss

e
rv

_e
.m

ix

pseudo-RMODE
Residence mode (RMODE) of a module. It is defined by BINDER or DBL on the
basis of the residence mode of all the CSECTs in the module.

reentrant program
A program whose code is not modified during execution. This is a prerequisite
for use of the program as shared code.

reference
Generic term for

– external reference (EXTRN)
– V-type constant
– weak external reference (WXTRN)
– external dummy section (XDSEC-R)

relocation linkage dictionary (RLD)
Information in a module which determines how addresses are to be adjusted
relative to a common base address during linking and loading.
RLD records are contained in object modules, whereas link and load modules
(LLMs) contain LRLD (local relocation dictionary) records.

residence mode (RMODE)
Attribute of a control section (CSECT); it defines whether the CSECT will be
loaded above and below 16 Mb (RMODE=ANY) or only below 16 Mb
(RMODE=24).

scope of a context
Defines the memory class in which a context is situated. The context can be in
the user address space (USER) or system address space (SYSTEM).

server module
ILE server.

shared (SHARE) program
Module which has been declared shareable by the system administrator by
means of the ADD-SHARED-PROGRAM command; it is loaded into class 4
memory.

single slice
Physical structure of a link and load module (LLM) in which the LLM consists of a
single slice.

Glossary

108 U5137-J-Z125-7-76

shared code
Code which may be used simultaneously by several tasks. It may be stored in
class 4 memory or in a common memory pool of class 6 memory. In order to be
used as shared code, the program must have been written as a reentrant
program.

slice
Loadable unit which combines all the control sections (CSECTs) that are to be
loaded together. Slices form the physical structure of a link and load module (LLM).

slices by attributes
Physical structure of a link and load module (LLM) in which the slices are formed
according to attributes of control sections (CSECTs)

sub-LLM
Substructure in the logical structure of an LLM; it consists of object modules (OMs)
or other sub-LLMs and is addressed by means of the path name.

symbol
Generic term for program definition and reference; it is identified by a symbol
name.

text information
Information in a module which consists of the code and the data.

user-defined slices
Physical structure of a link and load module (LLM) in which the slices are defined
by the user by means of SET-USER-SLICE-POSITION statements. Overlay
structures can be formed at the same time.

V-type constant
Address constant which is defined in one module but whose address is used in
another module; it is resolved unconditionally, either explicitly or by autolink.

weak external reference (WXTRN)
Has the same characteristics as an external reference (EXTRN), but is only
resolved conditionally. Autolink cannot be applied to WXTRNs.

U5137-J-Z125-7-76 109

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

un
i 2

00
9

 S
ta

n
d

14
:0

3.
13

P
fa

d:
 G

:\
fs

c\
B

L
S

S
E

R
V

\e
n\

bl
ss

e
rv

_e
.li

t

Related publications
The manuals are available as online manuals, see http://manuals.ts.fujitsu.com, or in printed
form which must be paid and ordered separately at http://manualshop.ts.fujitsu.com.

[1] BINDER
Binder in BS2000/OSD
User Guide

[2] ASSEMBH (BS2000)
Reference Manual

[3] LMS (BS2000)
SDF Format
User Guide

[4] BS2000/OSD-BC
System Installation
User Guide

[5] BS2000/OSD-BC
Commands
User Guide

[6] JV (BS2000/OSD)
Job Variables
User Guide

[7] BS2000/OSD-BC
Executive Macros
User Guide

[8] AID (BS2000)
Advanced Interactive Debugger
Core Manual
User Guide

http://manuals.ts.fujitsu.com
http://manualshop.ts.fujitsu.com

Related publications

110 U5137-J-Z125-7-76

[9] BS2000/OSD-BC
Introductory Guide to Systems Support
User Guide

[10] DSSM/SSCM
Subsystem Management in BS2000/OSD
User Guide

[11] BS2000/OSD-BC
Utility Routines
User Guide

[12] BS2000/OSD-BC
Introductory Guide to DMS
User Guide

[13] SDF (BS2000/OSD)
Introductory Guide to the SDF Dialog Interface
User Guide

[14] SDF-P (BS2000/OSD)
Programming in the Command Language
User Guide

[15] SDF-A (BS2000/OSD)
User Guide

[16] LMS (BS2000)
ISP-Format
User Guide

[17] XHCS
(BS2000/OSD)
8-Bit Code Processing in BS2000/OSD
User Guide

[18] POSIX (BS2000/OSD)
POSIX Basics for Users and System Administrators
User Guide

U5137-J-Z125-7-76 111

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

un
e

20
09

S

ta
nd

 1
4:

03
.3

4
P

fa
d

: G
:\f

sc
\B

LS
S

E
R

V
\e

n
\b

ls
se

rv
_e

.s
ix

Index

$BLSLBnn 21, 25
/4000 (code type) 45
/7500 (code type) 45
/SP04 (code type) 45

A
access privilege 56
address relocation 30
addressing mode 76

above 16 Mb 73
alternate library 21, 25
alternate system library 21, 25
ALTERNATE-LIBRARIES 21, 25
ALTLIB 21, 25
AMODE 76

above 16 Mb 73
ASHARE macro 66
assign

program version 23
attribute

PAGE 30
READ 30

autolink function
of DBL 24, 29
suppress 26

B
BIND 19, 55, 66, 76

primary input 19
bind 7
BLS messages 67
BLSLIB 20, 24
BLSLIBnn

for DBL 21, 25

BLSSEC 9
BRANCH 78

C
cache area 100
calling

DBL 65
ELDE 81

CANCEL-PROGRAM 59, 65
class 5 memory 50
code type (HSI) 45
command

MODIFY-DBL-PARAMETERS 65
RESET-DBL-PARAMETERS 65
SHOW-DBL-PARAMETERS 65

COMMON section 26, 29, 79
handling 28

compilers 7
conflicting names 32
context 24, 52, 60

access privilege 56
example 57
logical structure 55
nonprivileged 56
privileged 56
properties 56
scope 56

context names
list of 60

control section 29
CSECT 29

D
DAB (Disk Access Buffer) 100
DBL (dynamic binder loader) 9, 15

Index

112 U5137-J-Z125-7-76

autolink function 24
call 65
primary input 19
resolve external references 24
secondary input 18
XS support 71

DBL map 44
linkage method 45
load information 44, 45
type of LLM 45
type of OM 45

DEFLUID 21, 25
DSHARE macro 66
DSSM parameter file 96
dummy section (XDSEC-R) 28
dynamic binder loader (DBL) 15

E
EACTETYP 67
EAM object module file 8

for DBL, input source 18
EEN name 32
ELDE 9, 81
element type C 8
element type L 8

for DBL 17
element type R 8

for DBL, input source 18
ERROR 67
ERROR-EXIT 28, 59
ESD (external symbol dictionary) 43, 103
ESV (external symbols vector) 103
ETABIT macro 61, 66
ETABLE macro 61, 66
external references

resolve 24
resolve, search strategy 24
unlink 59
unresolved 28
weak (WXTRN) 26

external symbol dictionary
for load unit 43

F
format

NOREF file 63
REP files 62
REP records 62

G
GETPRGV macro 66

H
high-performance loading of programs/

products 95
improve loading speed 95
improve the load speed for C programs 99
reduce resource requirements 97
use of DAB 100

HSI information 45

I
IL routine 35
ILE (indirect linkage entry) 35
ILE server 35
ILEMGT macro 35, 66
ILEMIT macro 35, 66
INCLUDE statement 18
indirect linkage 35
indirect linkage entry (ILE) 35
indirect linkage routine 35
INFORMATION 67
input

to DBL 17

J
job switch 4 67

L
LDSLICE 66
LIBLINK 20, 24
LIBNAM 20, 24
LIBNAM@ 20, 24
LIBRARY 20, 24
link and load information

output 60
link and load module (LLM) 7, 17

Index

U5137-J-Z125-7-76 113

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

26
. J

un
e

20
09

S

ta
nd

 1
4:

03
.3

4
P

fa
d

: G
:\f

sc
\B

LS
S

E
R

V
\e

n
\b

ls
se

rv
_e

.s
ix

definition 8
link context 20, 24, 55
link editing 7
linkage 7
linkage editor

BINDER 8
TSOSLNK 8

list for symbolic debugging (LSD)
load unit 43

list name units 37
LLM (link and load module) 7, 17

definition 8
logical structure 17
physical structure 17
private part 51
PUBLIC slice 51

load address 76
above 16 Mb 73

load information 43
load unit 41, 53

external symbol dictionary 43
structure 41, 43

loader 7
LOAD-INFORMATION 43
loading 7
LOAD-PROGRAM 73

DBL 65
DBL, primary input 19
ELDE 81

LOCAL#DEFAULT 41, 55
logical structure of a context 55
LPOV 81
LRLD 31
LSD (list for symbolic debugging) 43

M
macro

ETABIT 66
ETABL 66
GETPRGV 66
ILEMGT 66
ILEMIT 66
SELPRGV 66

message class 67

message handling by DBL 67
migration

from DLL to DBL 89
from the old macros 92

MODIFY-DBL-PARAMETERS command 65
module 17, 53

N
name conflict 32

RUN-MODE=*ADVANCED 33
RUN-MODE=*STD 32

nonprivileged context 56
nonprivileged subsystem 20, 24, 50
NOREF file 62, 63

format 63
naming conventions 64

notational conventions 14

O
object module (OM) 7, 8, 17

prelinked 9
object module library (OML) 8

for DBL, input source 18
OM (object module) 7
OML (object module library) 8

for DBL, input source 18
optimize application software 95
output

DBL 41
link and load information 60

P
PAM-LLM

loading 40
migration of programs 94

PINF 66
PLAM libraries 95
prelinked object module 9
primary input to DBL 18, 19
PRIVATE slice 96
privileged context 56
PROGMOD 76
program definition 53
program file 8

Index

114 U5137-J-Z125-7-76

program library 8
for DBL, input source 18

program version 23
pseudo-RMODE 74, 76

LLM 72
object module 71

PUBLIC slice 96

R
read-only module 95
REFCTX# 55
reference context 24, 55
relocation linkage dictionary (RLD) 81
relocation records 30
REP files

process 62
subsystems 63

REP records 62
format 62

REPSCOP operand 62
RESET-DBL-PARAMETERS command 65
resolution of external references

DBL 24
RLD 81

S
scope

SSLOCAL 56
SYSTEM 56
USER 56

secondary input to DBL 18
security component BLSSEC 9
select program version 23
SELPRGV macro 66
server module 35
SHARE program 48
shareable programs 48
shared code 48

advantages 48
load 50
system 50
system (in class 3/4/5 memory) 20
user 20, 24, 50

SHARE-SCOPE operand 20, 24

SHOW-DBL-PARAMETERS command 65
starter 10
START-PROGRAM 65, 73, 81

DBL, primary input 19
static loader ELDE 9, 81
subsystem

local 56
nonprivileged 20, 24, 50
REP files 63

suppress autolink function 26
symbol

nonmasked 20, 24, 33
unmasked 24

symbol table 61
system parameter

DEFLUID 21, 25
EACTETYP 67

T
TABLE macro 61, 93
TEST-OPTIONS 43
TSOSLNK 8

U
UNBIND 59, 66
unload and unlink 59
UNRESOLVED-EXTERNS 28

V
version of a load unit

assign 23
select 23

VSVI1 macro 35, 60, 66

W
WARNING 67
weak external reference (WXTRN) 26
WXTRN 26

X
XS support, DBL 71

	Contents
	Preface
	Brief description of the Binder Loader System
	Target group
	Summary of contents
	Changes since the last edition
	Metasyntax
	Notational conventions

	The dynamic binder loader DBL
	Linking and loading
	Input to DBL
	Link and load modules
	Object modules
	Primary and secondary input
	Linkage process
	Searching the primary input
	Resolving external references
	Handling COMMON sections
	Address relocation
	Support of EEN names (extended external names)
	Handling name conflicts
	Indirect linkage
	Management of list name units
	Loading LLMs from files (PAM-LLMs)
	Output from DBL
	Load unit
	DBL map
	Shareable programs (shared code)
	System shared code
	User shared code
	LLMs with PUBLIC slices

	Context concept
	Context as a set of objects
	Context as a linking and loading environment
	Context as an unloading and unlinking environment
	Properties of a context
	Example of the use of contexts

	Additional functions
	Unloading and unlinking objects
	Outputting link and load information
	Creating a separate symbol table
	Processing REP files

	Execution of the dynamic binder loader
	Calling DBL
	Message handling

	Commands
	Macros

	XS support for DBL
	Determining the addresses passed by the user
	Pseudo-RMODE of an object module
	Pseudo-RMODE of an LLM or PAM-LLM
	Determining the load address
	LOAD- and START-EXECUTABLE-PROGRAM (or LOAD- and START-PROGRAM) commands
	BIND macro
	Handling COMMON sections

	Resolving external references above 16 Mb

	The loader ELDE
	ELDE functions
	Calling ELDE

	Migration
	Existing concepts and new concepts
	Existing concepts
	New concepts

	Features of the new Binder-Loader-Starter system
	Link and load module (LLM) and BINDER
	Dynamic binder loader DBL
	DBL and BINDER

	Migration from the dynamic linking loader DLL to DBL
	Operating modes RUN-MODE=*STD and RUN-MODE=*ADVANCED
	Incompatibilities in RUN-MODE=*ADVANCED
	Loading LLMs in RUN-MODE=*STD
	Loading an LLM with user-defined slices
	Migration from the old to the new macros

	Migrating from the static loader ELDE to the DBL
	Migration of programs to PAM-LLMs

	High-performance loading of programs and products
	General notes on improving loading speed
	Structural measures for reducing resource requirements
	Improving the load speed for C programs
	Use of DAB

	Glossary
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

