
Edition March 2014

©
 S

ie
m

e
ns

 N
ix

do
rf

 I
nf

or
m

at
io

ns
sy

st
em

e
 A

G
 1

99
5

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

C
O

B
O

L\
M

an
ua

l\b
h

b.
e\

co
b2

e.
vo

r

English

COBOL2000 V1.5
COBOL Compiler

BS2000/OSD

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2014.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
ar

ch
 2

01
4

 S
ta

nd
 1

3:
34

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
O

B
O

L\
M

an
u

al
\b

h
b.

e
\c

o
b2

e.
iv

z

Contents

1 Preface . 11

1.1 Objectives and target groups of this manual . 11

1.2 Summary of contents . 11

1.3 Expansion levels of the COBOL2000 system 13

1.4 Changes compared to the predecessor version 14

1.5 Notational conventions . 15

1.6 Definitions of terms used in this manual . 16

2 From compilation unit to executable program 19

2.1 Preparing the compilation unit . 22
2.1.1 Input from cataloged files . 22
2.1.2 Input from PLAM libraries . 23

2.2 Source data input . 25
2.2.1 Assigning the compilation unit with the ASSIGN-SYSDTA command 25
2.2.2 Input of program segments . 26
2.2.3 Assignment to compiler variables to control source text manipulation 32

2.3 I/O for repositories . 35
2.3.1 Principle of a repository . 35
2.3.2 Assigning a repository . 35

2.4 Output from the compiler . 36
2.4.1 Output of modules . 36
2.4.2 Output of listings and messages . 38

2.5 Compiler control options . 39

2.6 Terminating the compiler run . 40

2.7 Compiling a compilation group . 41

Contents

2.8 Parametrized classes and interfaces . 43

3 Controlling the compiler via SDF . 47

3.1 Calling the compiler and entering options . 48
3.1.1 SDF expert mode . 48
3.1.2 SDF menu mode . 49

3.2 SDF syntax description . 52

3.3 SDF options for controlling the compiler run . 56
3.3.1 SOURCE option . 57
3.3.2 SOURCE-PROPERTIES option . 59
3.3.3 ACTIVATE-FLAGGING option . 61
3.3.4 COMPILER-ACTION option . 62
3.3.5 MODULE-OUTPUT option . 65
3.3.6 LISTING option . 68
3.3.7 TEST-SUPPORT option . 76
3.3.8 OPTIMIZATION option . 78
3.3.9 RUNTIME-CHECKS option . 79
3.3.10 COMPILER-TERMINATION option . 81
3.3.11 MONJV option . 82
3.3.12 RUNTIME-OPTIONS option . 83
3.3.13 VERSION option . 85

4 Controlling the compiler with
COMOPT statements . 87

4.1 Source data input under COMOPT control . 89
4.1.1 Assigning the compilation unit with the END statement 89
4.1.2 Assigning the compilation unit with the ADD-FILE-LINK command

and COMOPT SOURCE-ELEMENT . 91

4.2 Table of COMOPT operands . 92

5 Controlling the compiler with compiler directives 109

IMP COMPILER-ACTION . 110
IMP LISTING-OPTIONS . 111
IMP PRINT-DIRECTIVES . 112
IMP RUNTIME-ERRORS . 115

Contents

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
ar

ch
 2

01
4

 S
ta

nd
 1

3:
34

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
O

B
O

L\
M

an
u

al
\b

h
b.

e
\c

o
b2

e.
iv

z

6 Linking, loading, starting . 117

6.1 Functions of the linkage editor . 118

6.2 Static linkage using TSOSLNK . 122

6.3 Linking using BINDER . 127

6.4 Dynamic linking and loading using DBL . 129

6.5 Loading and starting executable programs . 131

6.6 Program termination . 132

6.7 Shareable COBOL programs . 137

7 Debugging aids for program execution . 139

7.1 Advanced Interactive Debugger (AID) . 140
7.1.1 Conditions for symbolic debugging . 141
7.1.2 Symbolic debugging with AID . 143

Predefined information . 145
Notes on symbolic debugging of nested programs 146
Notes on debugging object-oriented COBOL programs 147
Information on testing programs with user-defined types 149

7.2 Debugging lines . 152

8 Interface between COBOL programs and BS2000/OSD 153

8.1 Input/output via system files . 153
8.1.1 COBOL language elements . 153
8.1.2 System files: primary assignments, reassignments, record formats 156

8.2 Job switches and user switches . 159

8.3 Job variables . 165

8.4 Accessing an environment variable . 169

8.5 Compiler and operating system information . 170

Contents

9 Processing of cataloged files . 175

9.1 Basic information on the structure and processing of cataloged files 175
9.1.1 Basic concepts relating to the structure of files 175
9.1.2 Assignment of cataloged files . 178
9.1.3 Definition of file attributes . 183
9.1.4 Disk and file formats . 187

9.2 Sequential file organization . 190
9.2.1 Characteristics of sequential file organization . 190
9.2.2 COBOL language tools for the processing of sequential files 191
9.2.3 Permissible record formats and access modes . 196
9.2.4 Open modes and types of processing (sequential processing) 197
9.2.5 Line-sequential files . 199
9.2.6 Creating print files . 202
9.2.7 Processing files in ASCII or in ISO 7-bit code . 207
9.2.8 Processing magnetic tape files . 208
9.2.9 I-O status . 210

9.3 Relative file organization . 215
9.3.1 Characteristics of relative file organization . 215
9.3.2 COBOL language tools for processing relative files 217
9.3.3 Permissible record formats and access modes . 222
9.3.4 Open modes and types of processing (relative files) 223
9.3.5 Random creation of a relative file . 228
9.3.6 I-O status . 231

9.4 Indexed file organization . 236
9.4.1 Characteristics of indexed file organization . 236
9.4.2 COBOL language tools for the processing of indexed files 238
9.4.3 Permissible record formats and access modes . 243
9.4.4 Open modes and types of processing (indexed files) 245
9.4.5 Positioning with START . 250
9.4.6 I-O status . 252

9.5 Shared updating of files (SHARED-UPDATE) 257
9.5.1 ISAM files . 257
9.5.2 PAM files . 265

Contents

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
ar

ch
 2

01
4

 S
ta

nd
 1

3:
34

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
O

B
O

L\
M

an
u

al
\b

h
b.

e
\c

o
b2

e.
iv

z

10 Processing XML documents . 267

10.1 Making XML documents available . 267

10.2 Using XML language elements in programs . 267

10.3 Linking, loading, starting programs with XML language elements 268

10.4 Encoding identification . 270

10.5 Obtaining the parser . 272

10.6 Extended I-O status for XML statements (CBX code) 273

11 Sorting and merging . 277

11.1 COBOL language elements for sorting and merging files 277

11.2 Files for the sort program . 279

11.3 Checkpointing and restart for sort programs 281

11.4 Sorting tables . 281

11.5 Sorting with extended character sets . 282

12 Checkpointing and restart . 285

12.1 Checkpointing . 286

12.2 Restart . 287

13 Program linkage . 289

13.1 Linking and loading subprograms . 290

13.2 COBOL special register RETURN-CODE . 297

13.3 Passing parameters to programs in other languages 297

13.4 Unloading COBOL subroutines . 298

Contents

14 COBOL2000 and POSIX . 299

14.1 Overview . 300
14.1.1 Compiling . 300
14.1.2 Linking . 301
14.1.3 Debugging . 304

14.2 Reading in the compilation unit . 305

14.3 Controlling the compiler . 307
14.3.1 General options . 308
14.3.2 Option for compiler statements . 309
14.3.3 Option for compiler listing output . 311
14.3.4 Options for the linkage run . 312
14.3.5 Debugger option . 313
14.3.6 Input files . 314
14.3.7 Output files . 314

14.4 Introductory examples . 315

14.5 Comparison with COBOL2000 in BS2000 . 316
14.5.1 Restrictions on the functionality of the language 316
14.5.2 Extensions to the functionality of the language . 318
14.5.3 Differences in the program/operating system interfaces 319

14.6 Processing POSIX files . 321
14.6.1 Program execution in the BS2000 environment . 321
14.6.2 Program execution in the POSIX shell . 324
14.6.3 I-O status . 325

15 Useful software for COBOL users . 331

15.1 Advanced Interactive Debugger (AID) . 331

15.2 Library Maintenance System (LMS) . 334

15.3 Job variables . 336

15.4 Database interface ESQL-COBOL . 338

15.5 Universal Transaction Monitor openUTM . 339

15.6 Net Express® development environment with the BS2000/OSD option 340

Contents

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
ar

ch
 2

01
4

 S
ta

nd
 1

3:
34

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
O

B
O

L\
M

an
u

al
\b

h
b.

e
\c

o
b2

e.
iv

z

16 Messages of the COBOL2000 system . 345

17 Appendix . 349

17.1 Structure of the COBOL2000 system . 349
Structure of the COBOL2000 compiler . 349
The COBOL2000 runtime system . 351

17.2 Database operation (UDS/SQL) . 358

17.3 Description of listings . 361
Header line . 361
Control statement listing . 362
Source listing for a compilation unit . 363
Format control statements TITLE, EJECT, SKIP 369
Diagnostic (error message) listing . 372
Locator map listing . 373

Related publications . 375

Index . 379

Contents

 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

14
 S

ta
nd

 1
0:

24
.1

2
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

1

1 Preface
COBOL2000 is the COBOL compiler for object oriented programming in BS2000/OSD.

1.1 Objectives and target groups of this manual

This User Guide describes how COBOL programs are processed in a BS2000 system
environment.

It is intended for users who are familiar with the programming language COBOL as well as
the BS2000 operating system.

1.2 Summary of contents

This User Guide describes how COBOL programs produced in a BS2000 environment can
be

– prepared for compilation,

– compiled with the COBOL2000 compiler,

– linked into executable programs and loaded into main memory, and

– tested for logical errors in debugging sessions.

In addition, it includes details of how COBOL programs

– utilize BS2000 facilities for information exchange,

– process cataloged files,

– sort and merge files,

– take checkpoints and use them for subsequent restarts, and

– communicate with other programs (program linkage).

From page 267 it also explains how XML documents are processed.

Summary of contents Preface

12

In chapter “COBOL2000 and POSIX” on page 299 the manual also describes how the
COBOL2000 compiler and the programs it generates can be used within the POSIX
subsystem of BS2000/OSD and on how the POSIX file system is accessed.

Familiarity with the COBOL programming language and with simple applications of BS2000
is prerequisite to understanding this manual.
Language elements of the COBOL2000 compiler are discussed in detail in the
“COBOL2000 Reference Manual” [1].

Other publications are referred to in the text by their abbreviated titles or by numbers
enclosed in square brackets. The full titles are listed with their corresponding numbers
under “Related publications”.

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000/OSD

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface Expansion levels of the COBOL2000 system

 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

14
 S

ta
nd

 1
0:

24
.1

2
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

1

1.3 Expansion levels of the COBOL2000 system

The COBOL2000 system V1.5 is supplied in two configurations:

– COBOL2000 (maximum configuration)

– COBOL2000-BC (basic configuration)

The BC version of COBOL2000 does not include the following control and language facil-
ities:

– Symbolic debugging with AID

– Output of a list of all error messages

– COBOL-DML language elements for database links

– Report-Writer language module

– Compiler and program execution in the POSIX subsystem

– Starter phase

This User Guide refers to the full-featured configuration. Descriptions of the functions
that are not supported by the COBOL2000-BC basic configuration are indicated by an
appropriate note.

The COBOL compiler supplied with COBOL2000 Version 1.5 does not include the COBOL
runtime system.
The COBOL runtime system is a component of CRTE, the common runtime environment
for COBOL, C and C++ programs.
All programs compiled with COBOL85 compilers as of Version 1.0A as well as the
COBOL2000 Compiler V1.0A and higher are supported by the COBOL runtime system
included in CRTE.

Changes compared to the predecessor version Preface

14

1.4 Changes compared to the predecessor version

Processing of XML documents

● Provision of XML documents

● Using XML language elements in programs

● Linking, loading and starting programs with XML language elements

● Identification of the encoding which is used for presenting the XML document

● Provision of the XML parser

● Extended I-O status for XML statements

Preface Notational conventions

 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

14
 S

ta
nd

 1
0:

24
.1

2
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

1

1.5 Notational conventions

The following metalinguistic conventions are followed in this user guide:

Note

The usual COBOL conventions apply with regard to the COBOL formats shown in this
manual (see “COBOL2000 Reference Manual” [1]).

COMOPT Uppercase letters denote keywords that must be entered exactly as
shown.

name Lowercase letters denote variables which must be replaced by
current values when being entered.

YES
NO

Underlining indicates a default value that is automatically used
when no value has been specified by the user.

Braces enclose alternatives, i.e. one of the specified values must be
selected. The alternatives are depicted one under the other. If one
of the listed values is a default value, no entry need be specified
when the default value is desired.

Vertical bars within braces enclose optional entries. Here at least
one (a or b) but also more than one entry (a and b) can be selected.
Each alternative should, however, be used no more than once.

{YES/NO} A slash separating two adjacent entries also indicates that the
entries represent alternatives from which one must be selected. No
entry is required if the given default value is desired.

[] Brackets enclose optional entries that may be omitted by the user.

Vertical bars within brackets enclose optional entries. Here the spe-
cification can be omitted, or more than one of the specified values
can be selected. Each alternative should, however, be used no
more than once.

() Parentheses must be entered.

Ë This symbol denotes that at least one blank is required for syntac-
tical reasons.

Special characters Must be entered as given.

YES

NO

a

b

a

b

Definitions of terms Preface

16

1.6 Definitions of terms used in this manual

A number of different terms are frequently used for the same object when describing the
process of generating a program. The result obtained from a compiler run, for instance, is
called an object module, whereas the same object module in LLM format is referred to as
a link-and-load module.

The synonymous use of such terms serves a practical purpose within the context of specific
components, but may occasionally be confusing to the user. To prevent any misunder-
standing, the most important terms that are used synonymously are defined below for
reference.

Object module, prelinked module

The term “object module” refers to object modules as well as “prelinked” modules.

Object modules and prelinked modules have the same structure and are stored in the same
format (object module format). Such modules are stored in PLAM libraries as elements of
type R.

Object modules are generated by the compiler. These modules are created whenever one
or more source compilation units are compiled.

Prelinked modules are generated by the linkage editor TSOSLNK. A prelinked module is a
single module that contains a combination of one or more object modules and/or other
prelinked modules.

Object modules can be processed further by the static linkage editor TSOSLNK, the
dynamic binder loader DBL, and the linkage editor BINDER.

Module, object module, link-and-load module (LLM)

The term “module” is a generic term for the result obtained by compiling a compilation unit
with the COBOL2000 compiler. An “object module” is a module in OM format; a “link-and-
load module” is a module in LLM format.

Executable program, program, load module, object program

Executable programs are programs that are generated by linkage editors and stored in
PLAM libraries as elements of type C. They are often referred to simply as “programs” in
this manual. In contrast to object modules, executable programs cannot be processed
further by the linkage editor TSOSLNK; they are loaded into memory by a (static) loader.

Preface Definitions of terms

 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

14
 S

ta
nd

 1
0:

24
.1

2
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

1

In some documentation, the term “load module” is also used synonymously for an
executable program. Technically speaking, however, a load module is a loadable unit
within a program. A segmented program, for example, may consist of multiple load
modules.

The synonymous use of the term “object program” for a load module could lead to confusion
in COBOL terminology. The COBOL Standard uses the term object program for the object
generated by the COBOL compiler, without taking any implementation-specific need for a
linkage run into account.

Job, task, process

A job is a sequence of commands, statements, etc., that are specified between the
SET-LOGON-PARAMETERS and EXIT-JOB (or LOGOFF) commands. A distinction is
made between batch jobs (ENTER jobs) and interactive jobs (executed in a dialog).

A job is considered a task if system resources are allocated to it (CPU, memory, devices,
etc.). In interactive mode, a job becomes a task as soon as the
SET-LOGON-PARAMETERS command is accepted.

The activities which run within a task, e.g. program runs, are referred to as processes.

In the past the terms “task” and “job” have often been used as synonyms for “process”. In
this User Guide these terms are used as described above. The phrase “at process termi-
nation” thus means: when a program run has terminated. “End of task” refers to the time
after the EXIT-JOB or LOGOFF command. The term “task switch” is used instead of
“process switch”.

Compilation group

A group of compilation units that are compiled together.

Compilation unit

A source unit that cannot be nested in other source units (e.g. a program prototype,
program definition, class definition or interface definition). Compilation units can be grouped
together as elements of a compilation group, but may also be compiled separately.

Source unit

A sequence of statements that begins with an Identification Division and ends with an
associated END entry (can be nested).

Definitions of terms Preface

18

 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

2 From compilation unit to executable program
Three steps are needed to convert a COBOL compilation unit into an executable program:

1. Reading in the compilation unit (see section “Preparing the compilation unit” on
page 22)

2. Compilation: The compilation unit must be converted into machine language. The
compiler generates an object module or a link-and-load module (LLM) and logs the
sequence and results of the compilation in listings.

3. Linkage: One or more modules are linked with so-called runtime modules to create an
executable program (see chapter “Linking, loading, starting” on page 117).

Figure 1: Producing an executable program

Compilation unit

Compiler run

Object module / Link-and-load module

Linkage run

 Executable program /
 Link-and-load module

From compilation unit to executable program

20

Three functions are performed by the compiler during the compilation run:

– Checking of the compilation unit for syntax and semantic errors,

– Conversion of COBOL code into machine language,

– Output of messages, listings, and modules.

The user can make use of control statements to

– select COBOL2000 functions,

– allocate resources for input and output,

– define characteristics of the modules,

– specify the type and scope of listing output.

The control options provided by COBOL2000 and by the operating system are described in
detail in the chapter “Controlling the compiler via SDF” on page 47 and the chapter
“Controlling the compiler with COMOPT statements” on page 87.

A compilation unit is a COBOL source program that can be compiled in one compilation
run. However, it is also possible to compile a series of compilation units, a so-called compi-
lation group, in a single compilation run.

 The information relating to compilation units presented in the following sections also
applies to compilation groups unless stated otherwise.i

From compilation unit to executable program

 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

Possible input sources and output locations for the compiler:

S

Y

S

D

T

A

Terminal

SAM file on
magnetic tape

C

O

B

O

L

2

0

0

0

C

o

m

p

i

l

e

r

LIST OUTPUT

Automatic
output after
end of task

Temporary
system file
SYSLST

Allocation
before compiler
call

Printer

MODULE OUTPUT

EAM file for
current task

SPOOLIN
file

ENTER
file

PLAM

library*)

POSIX

file system

Complete list
in cataloged
file

PLAM library*)

POSIX

file system

Single lists in
cataloged files
or PLAM library

POSIX

file system
PLAM

library*)

*) also repository data

Cataloged
file

S variable

SYSDIR

Preparing the compilation unit From compilation unit to executable program

22

2.1 Preparing the compilation unit

After a COBOL compilation unit has been coded, it must be made available to the compiler
for compilation. This can be achieved in several ways, the most common methods being:

– input from a file and

– input from a PLAM library.

The operating system supports the loading of compilation units into files or PLAM libraries
through various commands and utility routines.

2.1.1 Input from cataloged files

COBOL2000 can process compilation units from SAM or ISAM files. If ISAM files are used,
they must be cataloged with KEYPOS=5 and KEYLEN=8. The method used to enter a
compilation unit into such a file depends on the form in which it is available:

● If the compilation unit is already stored on an external volume (e.g. magnetic tape), it
can be moved to a cataloged file by using suitable

– BS2000 commands (see “Commands” manual [3]); e.g. the COPY-FILE command
(for compilation units on magnetic tape) or

– utility routines, e.g. ARCHIVE for magnetic tapes.

● If a new compilation unit is to be created, the file editor EDT (see the “EDT” manual [19])
can be used. This editor can process both SAM and ISAM files and includes special
functions to support the formatted input and subsequent editing of COBOL compilation
units. Some of these functions are listed below:

– The option of setting tabs enables the programmer to quickly and reliably move to
the starting column of the program text area and thus facilitates compliance with the
reference format for COBOL programs (see “COBOL2000 Reference Manual” [1]).

– Functions to insert, delete, copy, transfer and edit single source lines and ranges of
lines or columns.

– Statements to insert, delete and replace character strings in the file.

From compilation unit to executable program Preparing the compilation unit

 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

2.1.2 Input from PLAM libraries

Apart from SAM or ISAM files, PLAM libraries are another important input source for the
COBOL2000 compiler.

Characteristics of PLAM libraries

PLAM libraries are PAM files that are processed by using the PLAM (Primary Library
Access Method) access method. These libraries can be created and maintained with the
help of the LMS utility routine (see “LMS” manual [11]).

The elements of a PLAM library typically include not only compilation units and program
segments (COPY elements), but also, for example, modules and executable programs. The
individual element types are characterized by different type designations.

Among others, elements of the following types may be stored in a PLAM library:

A PLAM library may also contain elements of the same name, provided they can be differ-
entiated by version or type designation.

The advantages of maintaining data in PLAM libraries are listed below:

– Up to 30% storage space can be saved by combining different types of elements and
by using additional compression techniques.

– Access times are shorter for the various types of elements in the same program library
as opposed to access times for conventional data maintenance.

– The burden on EAM storage space is reduced when link-and-load modules are directly
stored as PLAM library elements.

Type designation Content of the library elements

S compilation units, COPY elements

R Object modules or prelinked modules

C Executable programs

J Procedures

L Link-and-load modules (LLMs)

P Print-edited data (lists)

X REPOSITORY data

Table 1: PLAM element types

Preparing the compilation unit From compilation unit to executable program

24

Input into PLAM libraries

PLAM libraries can accept compilation units
– from files
– from other libraries
– via SYSDTA or SYSIPT, i.e. from a terminal or a temporary spoolin file.

The method used to enter a compilation unit into the PLAM library depends on the form in
which it exists:

– If the compilation unit exists as a cataloged file or as an element of a library, it can be
copied to a PLAM library by using the LMS utility routine (see).
When transferring a compilation unit from an ISAM file with LMS, it should be noted that
the ISAM key is not copied with PAR KEY=YES and SOURCE-ATTRIBUTES=KEEP.
The COBOL2000 compiler cannot process any compilation unit with an ISAM key from
a library.

– If the compilation unit is being entered for the first time, it can also be directly written
into a PLAM library (as an element) by using the EDT file editor.

Example 2-1

Transferring a compilation unit from a cataloged file to a PLAM library

(1) The LMS utility routine is invoked.

(2) PLAM.LIB is defined as the new (STATE=NEW) output library (USAGE=OUT).
By default, it is created as a PLAM library by LMS.

(3) The compilation unit is transferred from the cataloged file SOURCE.MULTABLE
and is included under the name MULTABLE as an S-type element in the PLAM
library.

(4) The LMS run is terminated; all open files are closed.

/START-LMS—— (1)
% LMS0310 LMS VERSION '03.3A30' STARTED
//OPEN-LIBRARY LIB=PLAM.LIB,MODE=UPDATE(STATE=NEW)—————————————————————— (2)
//ADD-ELEM FROM-FILE=SOURCE.EINXEINS,TO-E=LIB-ELEM(ELEM=EINXEINS,TYPE=S) (3)
//END——— (4)
% LMS0311 LMS V03.3A30 TERMINATED NORMALLY

From compilation unit to executable program Source data input

 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

2.2 Source data input

Input to the compiler may consist of the following source data:
– Compilation units (individual compilation units or a compilation group)
– Program segments (COPY elements)
– Compiler control statements (COMOPT statements or SDF options)
– Repository data (interface definitions)

The compiler can process compilation units from cataloged SAM or ISAM files, elements of
PLAM libraries and POSIX files. Input from compilation units is described in the chapter
“From compilation unit to executable program” on page 19 and the chapter “COBOL2000
and POSIX” on page 299.

The control statements for the input are detailed in the chapter “Controlling the compiler via
SDF” on page 47 and the chapter “Controlling the compiler with COMOPT statements” on
page 87. The required assignment of the system file SYSDTA, which is common to both
control modes, is presented below.

2.2.1 Assigning the compilation unit with the ASSIGN-SYSDTA command

By default, the compiler expects source data from the system file SYSDTA. SYSDTA can
be assigned to a cataloged file or library element before the compiler is called. The
command for this is:

Detailed information on the ASSIGN-SYSDTA command can be found in the
“BS2000/OSD-BC Commands” manual [3].

/ASSIGN-SYSDTA [TO =]

filename

*LIB-ELEM(LIB=library,ELEM=element)

Source data input From compilation unit to executable program

26

Example 2-2

Reading a compilation unit from a cataloged file

(1) The cataloged file SOURCE.MULTABLE, which contains the compilation unit to be
compiled, is assigned to the SYSDTA system file.

(2) The compiler is loaded and started. It processes the data that is received from
SYSDTA. This applies only when the compiler is not called via the SDF interface
and when source = ... is not specified here.

(3) The SYSDTA system file is reset to its primary assignment for subsequent tasks.

Example 2-3

Reading a compilation unit from a library

(1) The system file SYSDTA is assigned to the element EXAMP3 in the PLAM library
PLAM.LIB.

(2) The compiler is invoked. It accesses the assigned library element via SYSDTA. See
the example above.

(3) SYSDTA is reset to its primary assignment.

Other methods for the input of source data are related to controlling the compiler with
COMPOPT statements and are described in the chapter “Controlling the compiler with
COMOPT statements” on page 87.

2.2.2 Input of program segments

Program segments (COPY elements) can be stored in libraries as distinct entities
independent of the compilation unit in which they are used. This is especially recommended
when identical program segments are used in different compilation units.
In the compilation unit itself, such program segments are represented by a COPY
statement. COPY statements may be located at any position in the compilation unit (except
for comment lines and non-numeric literals).

/ASSIGN-SYSDTA SOURCE.MULTABLE ——— (1)
Call to compiler—— (2)
/ASSIGN-SYSDTA *PRIMARY ——— (3)

/ASSIGN-SYSDTA *LIBRARY-ELEMENT(LIB=PLAM.LIB,ELEM=EXAMP3) —————————————— (1)
Call to compiler ——— (2)
/ASSIGN-SYSDTA *PRIMARY ——— (3)

From compilation unit to executable program Source data input

 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

When the compiler encounters a COPY statement in the compilation unit being compiled,
it inserts the element specified in the COPY statement from the appropriate library. The
COPY element is then compiled as if it were a part of the compilation unit itself.
The COPY statement format is shown and explained in chapter “Controlling the compiler”
in the “COBOL2000 Reference Manual” [1].

Input of COPY elements from PLAM libraries

Before invoking the compiler, the libraries that contain the COPY elements must be
assigned to the compiler using the ADD-FILE-LINK command and linked to the file link
names specified below.
If a library name is specified in the COPY statement, the link name is formed from the first
8 characters of the library name.
If no library name has been declared in the COPY statement, up to ten libraries can be
linked using the standard link names COBLIB, and COBLIB1 through COBLIB9. The
compiler then searches the assigned libraries in hierarchical order until the required COPY
element is found.

Depending on how the COPY statement is formulated in the compilation unit, the following
assignments are required in the SET-FILE-LINK command:

COPY statement ADD-FILE-LINK command

COPY textname ADD-FILE-LINK [LINK-NAME=]standard-linkname,
 [FILE-NAME=]libname

textname element name (max. 31
characters long)

standard-linkname COBLIB
COBLIB1..COBLIB9

libname Name of the cataloged library in
which the COPY element is stored

COPY textname OF library ADD-FILE-LINK [LINK-NAME=] linkname,
 [FILE-NAME=] libname

library library name (max. 31
characters long)

linkname The first eight characters of the
name of the library specified in the
COPY statement

libname Name of the cataloged library in
which the COPY element is stored

Source data input From compilation unit to executable program

28

Input of COPY elements from the POSIX file system

If the POSIX subsystem is available, you can also pass COPY texts from the POSIX file
system to the compiler. To do this you use an S variable with the default name of SYSIOL-
COBLIB or SYSIOL-libraryname. The formulation of the COPY statement in the compilation
unit influences the S variable as follows (see also “” on page 31); this does not apply to BC
(basic configuration):

COPY statement S variable

COPY textname DECL-VAR SYSIOL-COBLIB,INIT=‘*POSIX(pfad)‘,
 SCOPE=*TASK

textname name of POSIX file
(max. 31 characters long)
containing the COPY text.
textname must not contain
lowercase letters.

pathname Absolute pathname (beginning with /)
of the directory in which a search is
made for the file textname

COPY textname OF library DECL-VAR SYSIOL-libname,INIT=‘*POSIX(pfad)‘,
 SCOPE=*TASK

library

Library name
(max. 31 characters long)
for forming the S variable
with the name SYSIOL-
library.
library must not contain
lowercase letters.

libname

pathname

The first 8 characters of library

Absolute pathname (beginning with /)
of the directory in which a search is
made for the file textname

From compilation unit to executable program Source data input

 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

Example 2-4

Input of two COPY elements

The compilation unit in the file EXAMPLE1 includes the following COPY statements:

(1) XYZ is the name of the element under which the COPY element is stored in the
PLAM library LIB1.

(2) ABC is the name of the element under which the COPY element is stored in the
PLAM library LIB2 with the link name LIBRARY.

(3) SYSDTA is assigned to the file EXAMPLE1. From this file, the compiler receives a
compilation unit in which two COPY statements are written.

(4) The first ADD-FILE-LINK command assigns the PLAM library LIB1 and links it to the
standard link name COBLIB.

(5) The second ADD-FILE-LINK command assigns the PLAM library LIB2 and links it
to the library name LIBRARY specified in the COPY statement.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG.
...
 COPY XYZ. —— (1)
 COPY ABC OF LIBRARY. ——— (2)
...
Assignment and linkage:
/ASSIGN-SYSDTA EXAMPLE1 ——— (3)
/ADD-FILE-LINK COBLIB,LIB1 —— (4)
/ADD-FILE-LINK LIBRARY,LIB2 ——— (5)

Call to compiler

Source data input From compilation unit to executable program

30

Example 2-5

Input of several COPY elements from different libraries

The compilation unit EXAMPLE2 includes the following COPY statements:

(1) A1, B1 and D1 are the names under which the COPY elements have been stored
in the cataloged libraries A, B and D.

(2) SYSDTA is assigned to the cataloged file EXAMPLE.2. From this file, the compiler
receives a compilation unit in which three COPY statements are written.

(3) Libraries A, B and D are assigned and linked to standard link names. Whereas the
standard link name COBLIB must always be assigned, the number and sequence
of links to COBLIB1 through COBLIB9 are freely selectable.

(4) After invocation, the compiler searches COBLIB, COBLIB1, and COBLIB3 in the
given order for the elements specified in the COPY statements.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG1.
...
 COPY A1.
 COPY B1. —— (1)
 COPY D1.
...
Assignment and linkage:
/ASSIGN-SYSDTA EXAMPLE2 ——— (2)

/ADD-FILE-LINK COBLIB,A
/ADD-FILE-LINK COBLIB1,B —— (3)
/ADD-FILE-LINK COBLIB3,D
Call to compiler ——— (4)

From compilation unit to executable program Source data input

 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

Example 2-6

Input of a COPY element from the POSIX file system

(1) The COPY element ATEXT is a file in the POSIX file system.

(2) The SDF-P command DECL-VARIABLE sets the variable to the paths of the POSIX
directories dir1 and dir2 which are to be searched for ATEXT.

(3) Access to the POSIX file system is only possible when the compiler is invoked
under SDF control. By means of the “?” appended to the call command, the user is
placed in SDF menu mode (see section “SDF menu mode” on page 49) in which
further entries on controlling the compiler run can be made.

(4) The compiler accepts COPY elements from the POSIX file system only if their file
names consist only of uppercase letters.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG1.
...
COPY ATEXT. ——— (1)
...
Assigning the POSIX file system by declaring and setting an S variable:
/DECL-VAR SYSIOL-COBLIB,INIT=‘*POSIX(/usr/dir1),*POSIX(/usr/dir2)‘, -
/ SCOPE=*TASK ———————————————————————————— (2)
/START-COBOL2000-COMPILER? —— (3)

Source data input From compilation unit to executable program

32

2.2.3 Assignment to compiler variables to control source text manipulation

Compiler directives allow the COBOL programmer to control the manipulation of the source
text.

The following compiler directives are available:

– DEFINE directive
– EVALUATE directive
– IF directive

The compiler directives are described in detail in the “COBOL2000 Reference Manual” [1].

The DEFINE directive allows the programmer to define compiler variables in the source
program. It is also possible to use S variables to assign values to these compiler variables
prior to compilation. To do this, the programmer must define the variables in the program
with the suffix AS PARAMETER. Compiler variables are assigned to S variables via the
variable name which must be formed as follows:

The S variables must be declared with SCOPE=*TASK.

If values are to be supplied externally to the compiler variables, two different types of S
variable are available and these must be declared with the required TYPE:

– numeric variables with TYPE=*INTEGER
– alphanumeric variables with TYPE=*STRING

The two examples below demonstrate how compiler variables are used in BS2000/OSD.
The use of compiler variables when the compiler is called under POSIX is described on
page 301.

DEFINE directive S variable

>>DEFINE variable AS PARAMETER DECL-VAR SYSDIR-variable ...,SCOPE=*TASK

From compilation unit to executable program Source data input

 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

Example 2-7

Passing a numeric value

(1) The DEFINE directive specifies a compiler variable with a content which the
COBOL compiler expects to find in an S variable.

(2) The SDF-P command DECLARE-VARIABLE declares an S variable: VLADIMIR is
the name of the numeric compiler variable in the source program. The associated
S variable is declared as SYSDIR-VLADIMIR with TYPE=*INTEGER.

(3) The SDF-P command SET-VARIABLE assigns the numeric value 1234 to the
S variable SYSDIR-VLADIMIR.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG1
...

>>DEFINE VLADIMIR AS PARAMETER. ———————————————————————————————————— (1)
...

Assignment and linkage:

/DECLARE-VARIABLE SYSDIR-VLADIMIR(TYPE=*INTEGER),SCOPE=*TASK —————————— (2)
/SET-VARIABLE SYSDIR-VLADIMIR=1234 ————————————————————————————————————— (3)

Call to compiler

Source data input From compilation unit to executable program

34

Example 2-8

Passing an alphanumeric literal

(1) The DEFINE directive specifies a compiler variable with a content which the
COBOL compiler expects to find in an S variable.

(2) The SDF-P command DECLARE-VARIABLE declares an S variable: JERRY is the
name of the alphanumeric compiler variable in the source program. The associated
S variable is declared as SYSDIR-JERRY with TYPE=*STRING.

(3) The SDF-P command SET-VARIABLE assigns the alphanumeric value “This is a
string” to the S variable SYSDIR-JERRY. The surrounding quotes do not form part
of the literal.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG2
...

>>DEFINE JERRY AS PARAMETER.—— (1)
...

Assignment and linkage:

/DECLARE-VARIABLE SYSDIR-JERRY (TYPE=*STRING),SCOPE=*TASK —————————————— (2)
/SET-VARIABLE SYSDIR-JERRY=’This is a string’——————————————————————————— (3)

Call to compiler

From compilation unit to executable program I/O for repositories

 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

2.3 I/O for repositories

2.3.1 Principle of a repository

In order to compile object-oriented COBOL programs, you will need an external library
(which is logically one library) called a “repository”, which contains the required definitions
of the program interfaces, classes and other interfaces. Even for programs that are not
object-oriented, a repository is needed whenever interfaces are to be checked in a CALL
(see Format 3 of the CALL statement in the “COBOL2000 Reference Manual” [1]). These
definitions are read by the COBOL compiler so that additional checks can be run on the
compilation unit itself with the goal of preventing runtime errors.
A repository need not be a single physical library; it could also consist of many libraries in
a hierarchy, as in the case of COPY libraries.
Repository data includes both input and output data.

2.3.2 Assigning a repository

Two repositories can be used during compilation:

– For input: this repository, which could also consist of a hierarchy of libraries, is searched
for the interfaces being used.

– For output: this repository is used to store the interface definition of the source text
being compiled. Only a single library is possible in this case.

Repository data is stored in PLAM libraries as elements of type X (see section “Input from
PLAM libraries” on page 23).

The link names of the the files from which entries of the repository are to be imported can
be specified using ADD-FILE-LINK commands.
These link names are REPLIB, REPLIB1,...,REPLIB9 and must be assigned by the user
before the compiler is called. The files are searched in the specified order until a suitable
interface definition is found.
If no repository entry is found in these libraries or no repository is specified, the library
SYS.PROG.LIB is searched.

The link name for the library in which the output of an interface is to be placed is REPOUT.
This library, which is also specified via a ADD-FILE-LINK command, could also be one of
the input libraries.
If no link name is specified, the library SYS.PROG.LIB is used for the output by default.
This output occurs only if UPDATE-REPOSITORY=YES has been specified.

Output from the compiler From compilation unit to executable program

36

2.4 Output from the compiler

2.4.1 Output of modules

The compiler translates the source data input into machine language and generates one or
more object modules (OM format) or link-and-load modules (LLM format) in the process.
Each such module can be assigned a List for Symbolic Debugging (LSD) containing the
symbolic addresses of the compilation unit.

By default, the compiler places the object modules in the temporary EAM file of the current
task. The object modules are simply added to the library, i.e. stored without defining any
relationship between them.
The EAM file belongs to the task under which the compilation is performed. It is created for
this task during the first compilation run and is automatically deleted at task end (LOGOFF).
If the results of the compilation are to be used later, it is up to the user to store the contents
of the EAM file in a backup file for further processing. The LMS utility routine (see “LMS”
manual [11]) is available to the user for backup of object modules from the EAM file in PLAM
libraries.

If the compiled object modules are no longer needed in the EAM file, e.g. because the
compilation unit still contains errors that need to be corrected, it is advisable to delete the
EAM file - at the latest, before the next compiler run - by using the command:

/DELETE-SYSTEM-FILE [SYSTEM-FILE=] OMF

Link-and-load modules (LLMs) are always written to a PLAM library by the compiler as
elements of type L.

If the POSIX subsystem is available, modules can be written to the POSIX file system. This
option is described in section “MODULE-OUTPUT option” on page 65.

From compilation unit to executable program Output from the compiler

 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

Formation of element names when modules are output to libraries

1) Module generated with
COMPILER-ACTION=MODULE-GENERATION(SHAREABLE-CODE=NO) or
COMOPT GENERATE-SHARED-CODE=NO

2) ID-name is the PROGRAM-ID-name, CLASS-ID-name or INTERFACE-ID-name.
3) The name should be unique in the first 7 characters.
4) A separate element name may be selected instead of the standard name by specifying

MODULE-OUTPUT=*LIBRARY-ELEMENT(LIBRARY=<filename>,
ELEMENT=<composed-name>) or
COMOPT MODULE-ELEMENT=element-name.
It should be noted, however, that this option has no effect on the name of the entry point,
i.e. the name that is specified in the CALL statement.
(not allowed for program sequences).

5) Module generated with
COMPILER-ACTION=MODULE-GENERATION(SHAREABLE-CODE=YES) or
COMOPT GENERATE-SHARED-CODE=YES

Module format OM Module format LLM

Compilation unit Standard name derived from

Code that is not
shareable 1)

not segmented ID-name2) ..83) ID-name2) 1..304)

segmented PROGRAM-ID-name 1..6
+ segment number
(for each segment)

PROGRAM-ID-name 1..304)

(segmentation ignored)

Shareable code 5) ID-name2) 1..7@
(code module)
ID-name2) 1..7
(data module)

ID-name2) 1..303)

Table 2: Formation of element names at module generation and output

Output from the compiler From compilation unit to executable program

38

2.4.2 Output of listings and messages

Output of listings

The compiler can generate the following listings during the compilation run:

The compiler writes each requested listing to a separate cataloged file by default. The
listings stored in cataloged files can then be printed at any time by using the PRINT-FILE
command (see “Commands” manual [3]).

Instead of being written to cataloged files, the requested listings can also be written as
elements in a PLAM library.

If desired, the user can have the requested listings output to the system file SYSLST by
means of an appropriate control statement. The system automatically sends the temporary
file created for this purpose to the printer.

The generation and output of listings can be controlled by the user via

– the SDF option LISTING (see the chapter “Controlling the compiler via SDF” on
page 47) or

– the COMOPT statements LISTFILES, LIBFILES or SYSLIST (see the chapter
“Controlling the compiler with COMOPT statements” on page 87).

If the POSIX subsystem is available, listings (with the exception of the object listing) can be
output to the POSIX file system. This option is described in section “LISTING option” on
page 68.

Output of messages

All compiler messages related to the execution of the compilation run (COB90xx) are output
to the terminal via the system file SYSOUT by default.
The texts of all the COB90xx messages that can be issued by the compiler are listed,
together with comments, in chapter “Messages of the COBOL2000 system” on page 345.

Control statement listing OPTION LISTING

Compilation unit listing SOURCE LISTING

Library listing LIBRARY LISTING

Object listing OBJECT PROGRAM LISTING

Locator map
Cross-reference listing

LOCATOR MAP LISTING

Error message listing DIAGNOSTIC LISTING

From compilation unit to executable program Compiler control options

 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

2.5 Compiler control options

The method used for the input of source data, the attributes of the generated module, the
output of messages and listings, as well as the output of the object module itself can be
controlled by means of statements issued to the COBOL2000 compiler.
The COBOL2000 compiler can be controlled in diefferent ways:

● by means of options in the SDF syntax format

● by means of COMOPT statements

● by means compiler directives

The user chooses one of the two control options through the type of command used to call
the compiler:

SDF control options are described in the chapter “Controlling the compiler via SDF” on
page 47, COMOPT control options in the chapter “Controlling the compiler with COMOPT
statements” on page 87.

Compiler control in the POSIX subsystem is described in the chapter “COBOL2000 and
POSIX” on page 299.

Compiler control via compiler directives is described in chapter “Controlling the compiler
with compiler directives” on page 109 and in the “COBOL2000 Reference Manual” [1].

Compiler invocation command Control mode

/START-COBOL2000-COMPILER options SDF control, expert mode

/? SDF control, menu mode

/START-COBOL2000-COMPILER? SDF control, menu mode

/START-PROGRAM name compiler-phase or
 name starter-phase 1

1 does not apply to COBOL2000-BC

COMOPT control

/START-COBOL2000-COMPILER None; input of compilation unit from SYSDTA

Table 3: Compiler invocation commands and control modes

Terminating the compiler run From compilation unit to executable program

40

2.6 Terminating the compiler run

The termination behavior of the COBOL2000 compiler depends on

– the class of any errors detected in the compilation unit and

– whether the compiler itself executes without error.
This behavior is particularly significant when the COBOL2000 compiler is called from
within a procedure or is monitored by monitoring job variables.
The following table provides an overview of the possible events, their impact on the
further course of the procedure, and the contents of the return code indicator of the
monitoring job variable:

1) When a spin-off is triggered, all subsequent commands are ignored with the exception
of the SET-JOB-STEP, EXIT-JOB, LOGOFF, CANCEL-PROCEDURE,
END-PROCEDURE and EXIT-PROCEDURE commands. The SET-JOB-STEP com-
mand terminates the spin-off, and processing is continued with the next command.

Error Termination Dump Return code indicator
in monitoring
job variable

Trigger
spin-off in
procedures 1)

No error Normal No 0000 No

Error class F Normal No 0001

Error class I Normal No 0001

Error class 0 Normal No 1002

Error class 1 Normal No 1003

Error class 2 Normal No 2004 No

Error class 3 Norma No 2005 Yes

Compiler error Abnormal Yes 3006

Table 4: Termination behavior of the compiler

From compilation unit to executable program Compiling a compilation group

 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

2.7 Compiling a compilation group

The special aspects to be noted when compiling a group of compilation units are discussed
below.

Control statements:
Control statements that are specified before the compiler is called apply to all compilation
units in the group.
No control statements must come between the compilation units in a group.

Output of listings via SYSLST:
Requested listings are output sequentially in a single SPOOL file in program-specific order.

Output of listings to cataloged files:
If standard names are used, the same number of files is created for each compilation unit
in the sequence as the number of requested listings.
If standard link names are used, the creation of files is based on the type of listing: the file
linked with OPTLINK contains a single options listing for all compilation units; the file linked
with SRCLINK contains all compilation units; the file linked with ERRLINK contains all
diagnostic listings, and the file linked with LOCLINK contains all locator map and cross-
reference listings.

Output of listings to a PLAM library:
For each compilation group, the number of elements created is equal to the number of
listings requested (the options listing is only created once).

Values indicated in monitoring job variables:
The return code of the compilation unit containing the error with the highest error weight is
always indicated in the monitoring job variable.

Compiler termination:
If a compilation unit contains an error that aborts compilation of the program, the entire
compiler run is terminated, i.e. none of the following compilation units are compiled.

Module output:
A separate module is generated for each compilation unit in the sequence. These modules
are entered into the EAM file sequentially, or stored as individual elements in a PLAM
library.

Compiling a compilation group From compilation unit to executable program

42

Repository output:
A repository entry is created for each compilation unit (if requested).

 When working with a repository (especially if a hierarchy is involved) and newly
generated repository entries which are to be used in preceding or following
programs, special care must be taken to ensure that the desired contents are
actually accessed.

i

From compilation unit to executable program Parametrized classes and interfaces

 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

2.8 Parametrized classes and interfaces

3 steps must be distinguished when working with parameterized classes/interfaces:

1. Precompilation of a parameterized class/interface

2. Usage of a parameterized class/interface

3. Expansion of a parameterized class/interface

Precompilation of a parameterized class/interface takes place without any knowledge of
the current parameters. One aim here is to detect syntax errors. The other is to store the
interface and the source text of the parameterized class/interface in the repository (see the
section “I/O for repositories” on page 35). The status of the source text, the status of the
COPY elements and the status of the compiler directives (see the section “Source data
input” on page 25) which the compilation unit of the parameterized class/interface
addresses are recorded at the time precompilation takes place and are used for the later
usages and expansions (i.e. subsequent modifications to these statuses have no affect on
the usage and expansion).

The usage of parameterized classes/interfaces takes place in the compilation unit using
EXPANDS clauses in the REPOSITORY paragraph. As a result new, concrete
classes/interfaces are created. These consist of the current parameters specified in the
compilation unit and of the repository data recorded during precompilation. The concrete
classes/interfaces behave like non-parameterized classes/interfaces. Their characteristics
are included in the user’s compilation of the parameterized classes/interfaces.

The expansions are initiated automatically following the user of the parameterized
classes/interfaces or, in the case of compilation groups, after the last compilation unit. Here
all concrete classes/interfaces which result from the usage of parameterized classes/inter-
faces are compiled. Only the data of the parameterized class/interface and the current
parameters (including their repository data) are used for this purpose. No further source
texts, library elements, etc. are required for the expansions. All the compiler options (see
the chapter “Controlling the compiler via SDF” on page 47) which are valid for the compi-
lation unit of the user of parameterized classes/interfaces are, as with compilation groups,
also effective for the subsequent expansions. However, no source listing is created in the
case of expansions. The effect of >>IMP directives is not suppressed. In contrast, compiler
directives which apply for users of parameterized classes/interfaces have no influence on
subsequent expansions.

Further details on parameterized classes/interfaces are provided in the “COBOL2000
Reference Manual” [1].

Parametrized classes and interfaces From compilation unit to executable program

44

Example 2-9

Precompilation of a parameterized class

(1) The name of the parameterized class is pkl, the name of a formal parameter is fp.

(2) The library REPOSITORY is assigned to incorporate the repository data.

(3) Precompilation takes place using the COBOL2000 compiler; the compiler automat-
ically recognizes whether precompilation is to be performed - no additional control
is required for this.

(4) The repository data is stored as an X element with the name PKL$PCL (see the
section “COMPILER-ACTION option” on page 62).

Source code
CLASS-ID. pkl USING fp.——— (1)
...
REPOSITORY.

CLASS fp.
...
01 obj-fp USAGE OBJECT REFERENCE fp.
01 obj-pkl USAGE OBJECT REFERENCE pkl.
...
Assignment and call to compiler

/ADD-FILE-LINK REPOUT,REPOSITORY—— (2)
/START-COBOL2000-COMPILER -——— (3)
/ ... UPDATE-REPOSITORY=*YES ...——————————————————————————————————————— (4)

From compilation unit to executable program Parametrized classes and interfaces

 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

2

Example 2-10

 Usage of a parameterized class

(1) The name of the expansion of the parameterized class is exp, the name of the
current parameter is ap.

(2) The repository data of the precompiled parameterized class pkl and of the (non-
parameterized) class ap is expected in the library REPOSITORY.

(3) Compilation of n is followed automatically by the compilation of the concrete
expansion exp of the parameterized class pkl.

 In the event of dependencies between various expansions (example: the expansion
of a parameterized class is used as the current parameter for another expansion),
the input repository must also be assigned as output library and the UPDATE-
REPOSITORY=*YES option must be set when the user is compiled.

Source code
PROGRAM-ID. n.
...
REPOSITORY.

CLASS pkl
CLASS exp EXPANDS pkl USING ap ————————————————————————————————————— (1)
CLASS ap.

...
01 obj-exp USAGE OBJECT REFERENCE exp.
...
Assignment and call to compiler

/ADD-FILE-LINK REPLIB,REPOSITORY ——————————————————————————————————————— (2)
/START-COBOL2000-COMPILER ... —— (3)

i

Parametrized classes and interfaces From compilation unit to executable program

46

Example 2-11

Expansion of a parameterized class

(1) Generation and compilation take place automatically. The user does not need to
enter any additional commands or statements for this purpose.

(2) The name of the parameterized class is replaced in all places by the name exp of
the concrete expansion.

(3) The name of the formal parameter is replaced in all places by the name ap of the
current parameter.

 The compiler does not have to perform the subsequent expansions in the order in
which they have been written in the program, but in such a way that the data
required for the current parameters is available before the expansion takes place.

Source code temporary created LR (1)
CLASS-ID. exp USING ap. LR (2)(3)
...
REPOSITORY.

CLASS ap. LR (3)
...
01 obj-fp USAGE OBJECT REFERENCE ap. LR (3)
01 obj-pkl USAGE OBJECT REFERENCE exp. LR (2)
...

i

 47

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

3 Controlling the compiler via SDF
The COBOL2000 compiler can be controlled via SDF (System Dialog Facility).

The principal ways of working with SDF are described in the following sections. For a
detailed description of the SDF dialog interface, refer to the manuals “Introductory Guide to
the SDF Dialog Interface” [5] and “Commands” [3].

Calling the compiler and entering options Controlling the compiler via SDF

48

3.1 Calling the compiler and entering options

In interactive mode SDF offers the following ways of entering options:

● input from the display terminal without user guidance, referred to below as “expert
mode”.

● input from the display terminal with three different levels of user guidance, referred to
below as “menu mode”.

3.1.1 SDF expert mode

SDF expert mode is preset as the default mode following the LOGON command. In this
mode the user starts the compilation run as follows:

The compilation is started immediately after input of the command.

If no options are specified, the compiler will read the compilation unit from SYSDTA, so the
file or library element containing the compilation unit (see section “Assigning the compi-
lation unit with the ASSIGN-SYSDTA command” on page 25) must be assigned to SYSDTA
before the compiler is called.

The following general rules apply when entering options in expert mode:

● All options, parameters and operand values must be separated from one another by
commas.

● If there is not enough room to enter all the options in one line
– continuation lines can be generated by entering a hyphen (“-”) after the last

character in a line,
– or all the options can be written continuously (i.e. without regard for the end of the

line).

Options may be specified as keyword operands or as positional operands.

● Keyword operands

The keywords must be specified in the correct format; they can, however, be abbre-
viated as desired provided they remain unique within their respective SDF environment.
Illegal abbreviations and typing errors are reported as syntax errors and can be
corrected immediately.

/START-COBOL2000-COMPILER options

guaranteed abbreviation: START-COBOL2-COMP options

Controlling the compiler via SDF Calling the compiler and entering options

 49

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

 It is generally advisable to avoid using abbreviations (especially in procedures),
since the possible abbreviations could change in future SDF versions.

● Positional operands

The operand keywords (i.e. the keywords to the left of the equal sign in the format) and
the equal sign itself can be omitted provided the predetermined order of the operands,
and their values, are strictly adhered to. All operands that are not specified because
their default value is to be used must be indicated by the comma separator “,”.
If there are further possible options after the last option to be specified explicitly, their
position does not have to be indicated by separators.

Options should not be specified as positional operands in procedures.

3.1.2 SDF menu mode

There are two ways of using the SDF menu mode to control the compiler:

Permanent menu mode

The user switches to the SDF main menu by entering the SDF command:
/MODIFY-SDF-OPTIONS GUIDANCE = MAXIMUM / MEDIUM / MINIMUM
The available commands for calling the compiler are given there under the entry
“PROGRAMMING-SUPPORT”. Specifying the associated number in the input line calls up
the PROGRAMMING-SUPPORT menu. The compiler can then be called from this menu by
entering the command number.

The values of the MODIFY-SDF-OPTIONS commands have the following meanings:

The permanent menu mode remains active until the user explicitly switches back to expert
mode by entering the command:
MODIFY-SDF-OPTION GUIDANCE=EXPERT

MAXIMUM Maximum help level, i.e. all operand values with options, help texts for
commands and operands.

MEDIUM All operand values without options; help texts for commands only.

MINIMUM Minimum help level, i.e. only default values for the operands; no options, no
help texts.

i

Calling the compiler and entering options Controlling the compiler via SDF

50

Temporary menu mode

There are two ways of controlling the compiler in the temporary menu mode:

1. By moving from the SDF menu to the operand form in steps

When the user enters a question mark at the system level, the SDF main menu is
displayed.

2. By directly switching to the operand form

A question mark is appended immediately after START-COBOL2000-COMPILER.

Entering START-COBOL2000-COMPILER? causes control to switch to menu mode,
and the first page of the operand form is opened.
The form may contain the operand values of options that were specified immediately
after START-COBOL2000-COMPILER?.

The user can immediately return to expert mode from any menu by specifying
*CANCEL in the NEXT line or by pressing the K1 key.

After the compilation has terminated, the user is back in expert mode (indicated by /).

/?
 The SDF main menu appears
 User specifies the number of the PROGRAMMING-SUPPORT menu
 The PROGRAMMING-SUPPORT menu appears
 User specifies the number of the command to call the compiler
 The operand form appears

/START-COBOL2000-COMPILER? [options]

 Switch to operand form

Controlling the compiler via SDF Calling the compiler and entering options

 51

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

Notes on processing the operand form

The operand form is largely self-explanatory. During processing the main thing to note is
that only the entry in the input line (“NEXT:...”) determines which operation will be executed.
The permitted inputs are listed below this line.

The most important control characters for processing the operand form are summarized
below.
A detailed description of the best way to use SDF is given in the manual “Introductory Guide
to the SDF Dialog Interface” [5].

Control characters for processing the operand form

? as an operand value provides a help text and indicates the value
range for this operand. If SDF produced the message “CORRECT
INCORRECT OPERANDS” after a previous invalid input, the
question mark supplies additional detailed error messages. The
remainder of the line does not have to be deleted.

! as an operand value reinserts the default value for this operand if
the displayed default value was previously overwritten. The
remainder of the line does not have to be deleted.

<operand>(An open parenthesis after a structure-initiating operand produces
the sub-form for the associated structure. Operands specified after
the open parenthesis are displayed in the sub-form.

– as the last character in an input line causes a continuation line to be
output (up to 9 continuation lines are possible per operand).

Line (LZF) key deletes all characters in the input line from the cursor position.

SDF syntax description Controlling the compiler via SDF

52

3.2 SDF syntax description

The metasyntax used in the option formats is explained in the following tables.

Table 5: Metacharacters

The option formats make use of certain symbols and notational conventions whose
meaning is explained in the following table.

Symbol Meaning Example

UPPERCASE
LETTERS

Uppercase letters indicate
keywords. Some keywords are
prefixed with *

LISTING = STD

SOURCE = *SYSDTA

= The equal sign links an operand
name with its associated operand
values.

LINE-SIZE = 132

< > Angle brackets indicate variables
whose range of values is described
by data types and suffixes (see
table 6 and table 7).

... = <integer 1..100>

underscoring Underscoring is used to indicate the
default value of an operand.

MODULE-LIBRARY = *OMF

/ A slash separates alternative
operand values.

SHAREABLE-CODE = NO / YES

(...) Parentheses indicate operand
values which introduce a structure.

TEST-SUPPORT = AID(...)

indentation Indentation indicates dependence
on a higher-ranking operand.

The vertical bar indicates related
operands belonging to the same
structure. It extends from the start
to the end of the structure. A
structure may contain additional
structures within itself. The number
of vertical bars preceding an
operand corresponds to the
structure depth.

LISTING = PARAMETERS(...)

 PARAMETERS(...)

 SOURCE = YES(...)

 YES(...)

 COPY-EXP...
 .
 .

,
A comma precedes further
operands on the same structure
level.

,SHARABLE-CODE =

,ENABLE-INITIAL-STATE=

Table 5: Metacharacters

Controlling the compiler via SDF SDF syntax description

 53

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

Table 6: Data types

Variable operand values are represented in SDF by data types. Each data type represents
a specific set of values. The number of data types is limited to those described in table 6.

The description of the data types is valid for all options. Therefore only deviations from
table 6 are described in the relevant operand descriptions.

Data type Character set Special rules

alphanum-name A...Z
0...9
$,#,@

composed-name A...Z
0...9
$,#,@
hyphen
period

Alphanumeric string that may be delimited by
periods or commas into several substrings

c-string EBCDIC characters A string of EBCDIC characters in single quotes,
optionally with the letter C prefixed.

filename A...Z
0...9
$,#,@
hyphen
period

Input format:

:cat:$user.

:cat:
optional entry of the catalog identifier; character
set limited to A....Z and 0....9; maximum of 4
characters; must be enclosed in colons; default
value is the catalog identifier assigned to the user
ID, as specified in the JOIN entry.

$user.
optional entry of the user ID; character set
restricted to A...Z and 0...9; maximum of 8
characters; $ and period are mandatory; default
value is the user' s own ID.

$. (special case)
system default ID

Table 6: Data types

file
file(no)
group

group
(*abs)
(+rel)
(-rel)

SDF syntax description Controlling the compiler via SDF

54

filename
(continued)

file
file or job variable name; last character must
not be a hyphen or period; a maximum of 41
characters; must contain at least A...Z.

#file (special case)
@file (special case)

or @ used as the first character identifies
temporary files or job variables, depending on
system generation.

file(no)
tape file name
no: version number;
character set is A...Z, 0...9, $, #, @.
Parentheses must be specified.

group
name of a file generation group
(character set: as for “file”)

group

(*abs)
relative generation number (0-99);
positive or negative signs and parentheses
must be specified.

(+rel)
(-rel)

relative generation number (0-99);
positive or negative signs and parentheses
must be specified.

integer 0...9,+,- + or -, if specified, must be the first character.

Data type Character set Special rules

Table 6: Data types

(*abs)
(+rel)
(-rel)

Controlling the compiler via SDF SDF syntax description

 55

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

Table 7: Suffixes for data types

Data-type suffixes define additional rules for data-type input. They can be used to limit or
extend the set of values. This manual makes use of the following short codes to represent
data-type suffixes:

The description of the data-type suffixes is valid for all options and operands. Therefore only
deviations from table 7 are described in the relevant operand descriptions.

generation gen

cat-id cat

user-id user

version vers

Suffix Meaning

x..y Length specification

x Minimum length for the operand value; x is an integer.

y Maximum length for the operand value; y is an integer.

x=y The length of the operand value must be x exactly.

with-low Lowercase letters accepted

without Restricts the specification options for a data type.

-gen A file generation or file generation group may not be specified.

-vers The version (see file(no)) may not be specified for tap files.

-cat A catalog ID may not be specified.

-user A user ID may not be specified.

Table 7: Suffixes for data types

SDF options for controlling the compiler run Controlling the compiler via SDF

56

3.3 SDF options for controlling the compiler run

* This option is not available in COBOL2000-BC

Name of the option Purpose

SOURCE Defines the input source of the compilation group

SOURCE-PROPERTIES Defines certain properties of the compilation group

ACTIVATE-FLAGGING Flags specific language elements in the error listing with a
message of class F

COMPILER-ACTION Partial execution of the compiler run; determines some attributes
of the generated code and the module format (object module,
LLM)

MODULE-OUTPUT Specifies the name and output destination for object modules or
LLMs

LISTING Specifies the type of listings to be output, the layout of these
listings, and where they are to be written

TEST-SUPPORT* Determines if information for debugging with AID is generated

OPTIMIZATION Activates/deactivates optimization for the compiler

RUNTIME-CHECKS Activates check routines of the runtime system

COMPILER-TERMINATION Defines the number of errors at which the compiler run is to be
terminated

MONJV Initializes a job variable to monitor the compiler run

RUNTIME-OPTIONS Defines some of the runtime characteristics of the program

VERSION Selects the compiler via its version number

Table 8: Overview: Options to control the compiler

Controlling the compiler via SDF SOURCE option

 57

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

3.3.1 SOURCE option

The parameters for this option determine whether the compilation unit will be read from
SYSDTA, from a cataloged BS2000 file, from a PLAM library or from a POSIX file.

Format

SOURCE = *SYSDTA
The compilation group is read from the SYSDTA system file. In interactive mode, this is
assigned to the terminal by default. If SYSDTA was assigned to the compilation unit file with
the ASSIGN-SYSDTA command before starting the compilation run, the SOURCE option
may be omitted.

SOURCE = <filename 1..54>
The <filename> parameter is used to assign a cataloged file. After compilation there is a
TFT entry for the link name SRCFILE, which is linked with the file name <filename>. The
file must be “SYSDTA-compatible”, i.e. an ASSIGN-SYSDTA command for this file must run
error-free.

SOURCE = <c-string 1..1024 with-low>
If the POSIX subsystem is available, this parameter can be used to request a source file
from the POSIX file system. <c-string> defines the name of the POSIX file. If <c-string>
does not include a directory name, the compiler will look for the source file under the
specified file name in the home directory of the current BS2000 user ID. If the file is in any
other directory, <c-string> must include the absolute path name.

This operand is not available in COBOL-BC.

SOURCE = *LIBRARY-ELEMENT(...)
This parameter specifies a PLAM library and an element (member) held in that library.

LIBRARY = <filename 1..54>
Name of the PLAM library in which the compilation group is stored as an element. After
compilation there is a TFT entry for the link name SRCLIB, which is linked with the file
name <filename> of the PLAM library.

SOURCE = *SYSDTA / <filename 1..54> / <c-string 1..1024 with-low> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54>

⏐ ,ELEMENT = <composed-name 1..40>(...)

⏐ <composed-name>(...)

⏐ ⏐ VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT / <composed-name 1..24>

SOURCE option Controlling the compiler via SDF

58

ELEMENT = <composed-name 1..40>(...)
Name of the library element in which the compilation group is stored.

VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24>

Version designation of the library element. If no version or *HIGHEST-EXISTING is
specified, the compiler reads the version of the element with the highest version
designation present in the library. If *UPPER-LIMIT is specified, the compiler reads
the version of the element with the highest possible version number (indicated by
LMS with “@”).

Controlling the compiler via SDF SOURCE-PROPERTIES option

 59

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

3.3.2 SOURCE-PROPERTIES option

This option defines certain properties of the compilation group.

Format

SOURCE-PROPERTIES = *STD
The default value of the following PARAMETERS structure is accepted.

SOURCE-PROPERTIES = *PARAMETERS(...)

RETURN-CODE = *FROM-COBOL-SUBPROGRAMS
The special register RETURN-CODE is used for information exchange between the
COBOL programs in a compilation unit.

RETURN-CODE = *FROM-ALL-SUBPROGRAMS
The special register RETURN-CODE is also for accepting the function value from a
subprogram (register 1).

ENABLE-KEYWORDS = *COBOL85 / *STD
If COBOL85 is specified, the additional keywords reserved by the COBOL2000
compiler (as opposed to those in COBOL85) are not recognized as such and
can therefore be used as file names.

XML-SUPPORT = *YES / *NO
If YES is specified, the keywords of the new language elements are recognized for
XML processing; these language elements are compiled and the special registers
are available.
If NO is specified, the keywords of the new language elements are not reserved for
XML processing, and these language elements are not recognized.

SOURCE-PROPERTIES = *STD / *PARAMETERS(...)

*PARAMETERS(...)

⏐ RETURN-CODE = *FROM-COBOL-SUBPROGRAMS / *FROM-ALL-SUBPROGRAMS

⏐ ,ENABLE-KEYWORDS=*COBOL85 / *STD(...)

⏐ *STD(...)

⏐ ⏐ XML-SUPPORT = *YES / *NO

⏐ ,STANDARD-DEVIATION=*YES / *NO

SOURCE-PROPERTIES option Controlling the compiler via SDF

60

STANDARD-DEVIATION = *YES / *NO
If YES is specified, the compiler accepts certain deviations from the rules set out in the
COBOL standard:

– The address of another section or the contents of a pointer can be assigned to the
data descriptions in the Linkage Section (level number 01 or 77) by means of a SET
statement even without any BASED specification. No check is then performed to
determine whether each used parameter has also been specified in the USING
clause of the Procedure Division.

– Data structures containing pointer data items or universal object references are also
permitted as receiving items.

– The following may also be redefined

– Data structures containing pointer data items or universal object references, or

– Pointer data items or universal object references with level number 01 or 77.

– Data structures containing pointer data items or universal object references may
also be subject to reference modification.

 If YES is specified then the user is entirely responsible for ensuring that data
structures are correctly aligned (at word or double word boundaries).i

Controlling the compiler via SDF ACTIVATE-FLAGGING option

 61

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

3.3.3 ACTIVATE-FLAGGING option

This option causes the compiler to flag certain language elements according to ANS85 or
according to the “Federal Information Processing Standard” (FIPS) with a class F message
in the diagnostic listing.

Format

ACTIVATE-FLAGGING = *NO
No language elements are flagged in the diagnostic listing.

ACTIVATE-FLAGGING = *ANS85
When ANS85 is specified, obsolete language elements and also any non-standard
language extensions are flagged with a class F message (severity code F) in the diagnostic
listing.

The following flags are used in the message texts:

ACTIVATE-FLAGGING = *NO / *ANS85

“obsolete” for obsolete language elements

“nonconforming nonstandard” for all language extensions (additions to ANS85)

COMPILER-ACTION option Controlling the compiler via SDF

62

3.3.4 COMPILER-ACTION option

This option specifies a point in the compilation after which the compiler run is to be termi-
nated. If a module is to be generated, this option can also be used to define its format and
attributes.

Format

COMPILER-ACTION = *PRINT-MESSAGE-LIST
The compiler prints a list of all possible error messages. No compilation takes place.
This operand is not available in COBOL-BC.

COMPILER-ACTION = *SYNTAX-CHECK
The compiler only checks the compilation units for syntax errors.

COMPILER-ACTION = *SEMANTIC-CHECK
The compiler runs a syntax check on the compilation units and also verifies that they comply
with the semantic rules. Since no module is to be generated, only a source listing and
diagnostic listing can be requested.

COMPILER-ACTION = *PRINT-MESSAGE-LIST / *SYNTAX-CHECK / *SEMANTIC-CHECK /

 *MODULE-GENERATION(...)

*MODULE-GENERATION(...)
 ⏐ ,SHAREABLE-CODE = *NO / *YES

⏐ ,ENABLE-INITIAL-STATE = *NO / *YES

⏐ ,MODULE-FORMAT = *OM / *LLM (...)

⏐ LLM (...)

⏐ ⏐ ALIGNMENT = *PAGE / *DOUBLE-WORD

⏐ ,SUPPRESS-GENERATION = *NO / *AT-SEVERE-ERROR

⏐ ,SEGMENTATION = *ELABORATE / *IGNORE

⏐ ,UPDATE-REPOSITORY = *NO / *YES

⏐ ,CALL-CONVENTION = *COBOL / *COMPATIBLE

⏐ ,OPTION-DIRECTIVES = *KEEP / *IGNORE

Controlling the compiler via SDF COMPILER-ACTION option

 63

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

COMPILER-ACTION = *MODULE-GENERATION(...)
A complete compilation run is to be performed and - unless explicitly suppressed - object
modules are to be generated.

SHAREABLE-CODE = *NO / YES
If YES is specified, the compiler writes the code of the PROCEDURE DIVISION
(without DECLARATIVES) into a shareable code module (see section “Shareable
COBOL programs” on page 137).
For the name convention see page 37.
Any segmentation of the PROCEDURE DIVISION is ignored.

ENABLE-INITIAL-STATE = *NO / *YES
If YES is specified, the compiler sets up areas for initialization. If NO is specified,
programs to which a CANCEL statement refers or that contain the INITIAL clause or
INITIALIZE statements with VALUE specification do not run as standard.

MODULE-FORMAT = *OM / *LLM (...)
The following specifications are ignored if the module is written to the POSIX file system
(see MODULE-OUTPUT = <c-string...>).
OM: To enable further processing with BINDER, TSOSLNK, or DBL, the module is to
be generated in OM format (object module format).
Maximum length for external names: 8 characters.
LLM: To enable further processing with BINDER or DBL, the module is to be generated
in LLM format (link-and-load module format).
Maximum length for external names: 30 characters.

 When classes and interfaces are compiled, the *LLM format should always be
selected. Classes or interfaces that inherit from each other must all be available
in the same module format.

ALIGNMENT = *PAGE / *DOUBLE-WORD
If PAGE is specified then the CSECTS have the PAGE attribute in the generated
module and are therefore aligned at the boundary.
If DOUBLE-WORD is specified then the CSECTS are only aligned at double word
boundaries.

SUPPRESS-GENERATION = *NO / *AT-SEVERE-ERROR
AT-SEVERE-ERROR can be specified to suppress the generation of the module and
the expansion of the parameterized classes/interfaces used if an error with a severity
code >= 2 occurs during compilation.
SUPPRESS-GENERATION = *AT-SEVERE-ERROR also results in the operand
SUPPRESS-GENERATION = *AT-SEVERE-ERROR in the LISTING option. This also
prevents the object, address and cross-reference lists from being output.

i

COMPILER-ACTION option Controlling the compiler via SDF

64

SEGMENTATION=*ELABORATE / *IGNORE
ELABORATE: permits segmentation. If the program contains nested programs and
non-fixed segments (segment number greater than or equal to segment limit), the
compilation is aborted and a message is output. Otherwise, only segmentation-related
language elements are rejected with appropriate warnings.
If SEGMENTATION = ELABORATE is specified together with SHAREABLE-CODE = YES or
MODULE-FORMAT = LLM, it is rejected with an error message.
IGNORE: ignores segmentation-related language elements (SEGMENT-LIMIT clause,
segment numbers in section header). When they occur, they are indicated with appro-
priate warnings.

UPDATE-REPOSITORY = *NO / *YES
If YES is specified, the compiler places the external interface of the compilation units in
the external repository assigned with the link name REPOUT. If a corresponding inter-
face already exists in the repository, no check is performed to determine whether any
changes in the interface have occurred, i.e., the existing definition is blindly overwritten
with the new one. If no link with the name REPOUT exists, the library SYS.PROG.LIB
is used.
This output always occurs and cannot be suppressed with SUPRESS-GENERATION.
Repository data is stored as an element of type X. To enable a differentiation, classes
are assigned the suffix $CLS, interfaces the suffix $IFC, parameterized classes the
suffix $PCL, parameterized interfaces the suffix $PIF and programs or program proto-
types the suffix $PRO.

CALL-CONVENTION = *COBOL / *COMPATIBLE
When COBOL is specified, the value COBOL is set for the >>CALL-CONVENTION
directive.
When COMPATIBLE is specified, COMPATIBLE is assumed as the default value for the
>>CALL-CONVENTION directive.

OPTION-DIRECTIVES = *KEEP / *IGNORE
When IGNORE is specified, all >>IMP directives in the source text which relate to
compiler options (LISTING-OPTIONS, COMPILER-ACTION and RUNTIME-ERRORS)
are ignored. The result of this is that the options set externally are effective regardless
of the directives specified in the source text.
In the case of expansion of parameterized classes/interfaces,
OPTION-DIRECTIVES=*KEEP is always assumed.

Controlling the compiler via SDF MODULE-OUTPUT option

 65

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

3.3.5 MODULE-OUTPUT option

This option enables the user to control the library the object module is to be stored in and
the name it is to be stored under.

Format

MODULE-OUTPUT = *STD
An object module is placed in the temporary EAM file of the current task.
A link-and-load module (LLM) is placed in a PLAM library with the standard name
PLIB.COBOL.<prog-id-name>, using the program name as the element name, and
*UPPER-LIMIT (i.e. the highest possible version number) as the version designation.

MODULE-OUTPUT = *OMF
An object module is written to the temporary EAM file. If *OMF is specified for a link-and-
load module (LLM), the compiler issues a class I (information) message, and the module is
placed in the PLAM library PLIB.COBOL.<prog-id-name>.

MODULE-OUTPUT = <c-string 1..1024 with-low>
If the POSIX subsystem is available, you can use this parameter to output a module (LLMs
only) to the POSIX file system as an object file.
If <c-string> does not include a directory name, the object file will be stored under the
specified file name in the home directory of the current BS2000 user ID. If the object file is
to be written to any other directory, <c-string> must include the absolute path name.
When selecting a file name, note that object files cannot be further processed, i.e. linked,
in the POSIX subsystem unless they have a name ending with the extension “.o”. The
compiler does not do any name checking.

This operand is not available in COBOL-BC.

MODULE-OUTPUT = *STD / *OMF / <c-string 1..1024 with-low> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY=<filename 1..54>

⏐ ,ELEMENT = *STD (...) / <composed-name 1..32>(...)

⏐ *STD (...)

⏐ ⏐ VERSION = *UPPER-LIMIT / *INCREMENT / *HIGHEST-EXISTING /

⏐ ⏐ <composed-name 1..24>

⏐ <composed-name>(...)

⏐ ⏐ VERSION = *UPPER-LIMIT / *INCREMENT / *HIGHEST-EXISTING /

⏐ ⏐ <composed-name 1..24>

MODULE-OUTPUT option Controlling the compiler via SDF

66

MODULE-OUTPUT = *LIBRARY-ELEMENT(...)
This parameter specifies the PLAM library (LIBRARY=) the module is to be stored in and
the element name (ELEMENT=) it is to be stored under.

LIBRARY = <filename 1..54>(...)
Name of the PLAM library in which the module is to be placed. If the PLAM library does
not exist, it is created automatically.

ELEMENT = *STD
The element name of the module is derived from the PROGRAM-ID name.
The formation of standard element names is described in section “Output of modules”,
in table 2 on page 37).

VERSION =
Specifies the version designation

VERSION = *UPPER-LIMIT
If no version designation or *UPPER-LIMIT is specified, the element receives the
highest possible version number (indicated by LMS with “@”).

VERSION = *INCREMENT
The element receives the version number of the highest existing version incre-
mented by 1, provided that the highest existing version designation ends with a digit
that can be incremented. Otherwise, the version designation cannot be incre-
mented. In this case, *UPPER-LIMIT is assumed and an appropriate error message
is output.

Example 3-1

VERSION = *HIGHEST-EXISTING
The highest existing version in the library is overwritten.

VERSION = <composed-name 1..24>
The element receives the specified version designation. If the version designation
is to be incrementable, at least the last character must be an incrementable digit
(see).

Highest existing version Version generated by *INCREMENT

ABC1
ABC
ABC9
ABC09
003
none

ABC2
@ and error message
@ and error message
ABC10
004
001

Controlling the compiler via SDF MODULE-OUTPUT option

 67

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

ELEMENT = <composed-name 1..32>
The user may optionally specify a freely-selected name for link-and-load modules
(LLMs).
If a compilation group is being compiled, this operand is ignored, and the element
names of LLMs are derived from the respective PROGRAM-ID name (see section
“Output of modules”, table 2 on page 37)) instead.

VERSION = *UPPER-LIMIT / *INCREMENT / *HIGHEST-EXISTING /
<composed-name 1..24>

Version designation (see the above description of the VERSION operand for object
modules).
When a compilation group is compiled, each element is assigned the same version
designation.

LISTING option Controlling the compiler via SDF

68

3.3.6 LISTING option

The parameters of this option control which listings the compiler is to generate, their layout,
and where they are to be output. Only one options listing is generated per compilation
group. The other listings are created individually for each compilation unit.

Format

LISTING = *NONE
The compiler is to generate no listings.

LISTING = *NONE / *STD / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ OPTIONS = *NO / *YES

⏐ ,SOURCE = *NO / *YES(...)

⏐ *YES(...)

⏐ ⏐ COPY-EXPANSION = *NO / *VISIBLE-COPIES / *ALL-COPIES

⏐ ⏐ ,SUBSCHEMA-EXPANSION = *NO / *YES

⏐ ⏐ ,INSERT-ERROR-MSG = *NO / *YES

⏐ ⏐ ,CROSS-REFERENCE = *NO / *YES

⏐ ⏐ *YES(...)

⏐ ⏐ ⏐ STMT-ADDRESS = *NO / *FIRST

⏐ ,DIAGNOSTICS = *NO / *YES(...)

⏐ *YES(...)

⏐ ⏐ MINIMAL-WEIGHT = *NOTE / *WARNING / *ERROR / *SEVERE-ERROR / *FATAL-ERROR

⏐ ⏐ ,IMPLICIT-SCOPE-END = *STD / *REPORTED

⏐ ⏐ ,MARK-NEW-KEYWORDS = *NO / *YES

⏐ ⏐ ,REPORT-2-DIGIT-YEAR = *ACCEPT-STMT / *NO

⏐ ,NAME-INFORMATION = *NO / *YES(...)

⏐ *YES(...)

⏐ ⏐ SORTING-ORDER = *ALPHABETIC / *BY-DEFINITION

⏐ ⏐ ,CROSS-REFERENCE = *NONE / *REFERENCED / *ALL

⏐ ⏐ ,SUPPRESS-GENERATION = *NO / *AT-SEVERE-ERROR

⏐ ,LAYOUT = *STD / *PARAMETERS(...)

⏐ PARAMETERS(...)

⏐ ⏐ LINES-PER-PAGE = 64 / <integer 20..128>

⏐ ⏐ ,LINE-SIZE = 132 / <integer 119..172>

⏐ ,OUTPUT = *SYSLST / *STD-FILES / *LIBRARY-ELEMENT(...)

⏐ *LIBRARY-ELEMENT(...)

⏐ ⏐ LIBRARY = <filename 1..54>

Controlling the compiler via SDF LISTING option

 69

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

LISTING = *STD
The default values of the following PARAMETERS structure are to be used.

LISTING = *PARAMETERS(...)
The following parameters determine which listings are to be generated, their layout, and the
output destination to which they are to be directed.

OPTIONS = *NO / *YES
By default, the compiler generates a listing specifying the control statements that apply
during compilation, the environment of the compilation process and some information
for maintenance and diagnostic purposes.

SOURCE = *YES(...)
The compiler generates a source listing and a library listing.

COPY-EXPANSION = *NO
The COPY elements copied into the compilation unit will not be printed in the source
listing. This setting is recommended for frequently occurring COPY elements, in
order to save paper.

COPY-EXPANSION = *VISIBLE-COPIES
Only COPY elements containing no SUPPRESS entry will be printed in the source
listing for the compilation unit. Each line of a COPY element is identified by a “C” in
column 1.

COPY-EXPANSION = *ALL-COPIES
All COPY elements will be printed in the source listing for the compilation unit,
including those that contain a SUPPRESS entry. Each line of a COPY element is
identified by a “C” in column 1.

SUBSCHEMA-EXPANSION = *NO / *YES
If YES is specified, the SUB-SCHEMA SECTION will be listed and each line will be
identified by a “D” in column 1.
This operand is not available in COBOL-BC.

INSERT-ERROR-MSG = *NO / *YES
If YES is specified, any (error) messages that occur during compilation are
“merged” with the source listing for the compilation unit. The message line always
appears immediately after the source line in which the construct responsible for
triggering the message begins. Messages that cannot be allocated to a particular
source line by the compiler are output after the last source line.
The operand also works if no error listing has been requested.
For merging to function correctly, the source listing for the compilation unit should
not contain more than 65535 source lines (see for the for the compilation unit
source listing in the section “Source listing for a compilation unit” on page 363).

LISTING option Controlling the compiler via SDF

70

CROSS-REFERENCE = *YES(...)
If YES is specified, the address and length of the definitions contained in the line
follow in the source listing on the right next to the source lines. In the case of defini-
tions, there are cross-references to the users, including the usage type, and in the
case of the users, references back to the definition.

The operand has no effect if the compilation unit comprises more than 65535 lines.

When using this operand, it is advisable to increase the line length (see the
LAYOUT operand) and then to use a corresponding character set or wider paper to
print out the listing (see 3-5 on page 75).

In the case of lines that are not listed in the source listing, the additional specifica-
tions generated by the operand (see COPY-EXPANSION, SUBSCHEMA-
EXPANSION and LISTING directive) are not included. References from listed lines
to suppressed lines are retained.

STMT-ADDRESS = *NO / *FIRST
If FIRST is specified, for the first statement in a line the source listing contains,
on the right next to the source lines from the Procedure Division, the address of
the first machine instruction generated for this.

DIAGNOSTICS = *YES(...)
The compiler is to generate a diagnostic listing.

MINIMAL-WEIGHT = *NOTE / *WARNING / *ERROR / *SEVERE-ERROR /
*FATAL-ERROR

The diagnostic listing will contain no messages with a weighting less than the
specified value. The default value NOTE causes all (error) messages that occurred
during the compilation to be listed.

IMPLICIT-SCOPE-END = STD / *REPORTED
If REPORTED is specified, a remark message is added to the diagnostic listing
each time a structured statement is ended by a period.

MARK-NEW-KEYWORDS = *NO / *YES
If YES is specified, keywords from the future standard will be marked in the diag-
nostic listing with a message with severity code I. A value of YES is only meaningful
if *COBOL85 has been specified for ENABLE-KEYWORDS.

REPORT-2-DIGIT-YEAR = *ACCEPT-STMT / *NO
If *ACCEPT-STMT is specified, the compiler indicates that the year numbers are
processed without century digits for every ACCEPT statement and for every vari-
able accessed in the statement. MINIMAL-WEIGHT should be set to NOTE. If *NO
is specified, these indications are suppressed.

NAME-INFORMATION = *NO / *YES(...)
If YES is specified, the compiler will generate a locator map or a locator map and cross-
reference listing. The listing contains data, section and paragraph names.

Controlling the compiler via SDF LISTING option

 71

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

SORTING-ORDER = *ALPHABETIC
The symbolic names are to be listed in ascending alphabetical order.

SORTING-ORDER = *BY-DEFINITION
The symbolic names are to be listed in the order in which they are defined in the
compilation unit.

CROSS-REFERENCE = *NONE
No cross-reference listing will be generated.

CROSS-REFERENCE = *REFERENCED
Only the data and procedure names that are actually addressed in the program will
be listed in the cross-reference listing.

CROSS-REFERENCE = *ALL
A cross-reference listing containing all data and procedure names will be
generated.

SUPPRESS-GENERATION = *NO / *AT-SEVERE-ERROR
AT-SEVERE-ERROR can be specified to suppress the generation of the module if
an error with a severity code >= 2 occurs during compilation.

LAYOUT = *STD
The layout of the generated listings is to correspond to the default settings of the
PARAMETERS structure.

LAYOUT = *PARAMETERS(...)
The following parameters can be used to modify the layout of the generated listings.

LINES-PER-PAGE = 64 / <integer 20..128>
This parameter can be used to define the maximum number of lines to be printed
per page. A page throw will be performed when this line number is reached.

LINE-SIZE = 132 / <integer 119..172>
This parameter defines the maximum number of characters to be printed per line.

OUTPUT = *SYSLST
This causes the generated listings to be written into the temporary system file SYSLST,
from where they will automatically be output on the printer at end of task (i.e. after
LOGOFF). The first requested listing is preceded by a title page (COMOPT listing) with
details concerning the system environment and a list of all the COMOPT operands in
effect at compilation.

LISTING option Controlling the compiler via SDF

72

OUTPUT = *STD-FILES
This setting causes each requested listing to be placed in a separate cataloged file. The
cataloged files created in this way have the default names given in the right-hand
column of the following table. program-name is derived from the PROGRAM-ID name
and may, if necessary, be abbreviated to 16 characters.

File names and file characteristics for these cataloged files are preset by default.
However, the user can divert the output to other cataloged files. In order to do this, the
desired characteristics must be defined in an ADD-FILE-LINK command before the
compiler is called so that they can be linked with the respective file link name used by
the compiler:

To store the generated listings in the POSIX file system, you must assign them to the
POSIX file system using S variables. The default names of these variables are:

Listing File name

control statement listing OPTLST.COBOL.program-name

source listing or library listing SRCLST.COBOL.program-name

diagnostic listing ERRFIL.COBOL.program-name

locator map listing / cross-reference listing LOCLST.COBOL.program-name

Listing Link name

control statement listing OPTLINK

source listing/library listing SRCLINK

address listing/cross-reference listing LOCLINK

diagnostic listing ERRLINK

Listing Name of S variable

control statement listing SYSIOL-OPTLINK

source listing/library listing SYSIOL-SRCLINK

locator map/cross-reference listing SYSIOL-LOCLINK

diagnostic listing SYSIOL-ERRLINK

Controlling the compiler via SDF LISTING option

 73

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

OUTPUT = LIBRARY-ELEMENT(LIBRARY = <filename 1..54>)
The requested listings are output to the PLAM library specified by <filename>. Each
listing occupies its own type R library element, which has the highest possible version
number. The following standard names are assigned to these elements:

program-name is derived from the PROGRAM-ID name and truncated to 16 characters
is required. If the truncation causes the program name to end in a ’-’ character, the ’-’ is
replaced by a ’#’ character. After the compilation, there is a TFT entry for the link name
LIBLINK, which is linked with the <filename> of the PLAM library.

Example 3-2

Writing listings to cataloged files

The compiler is to generate only a diagnostic (error) listing and save this in the cataloged
file ERRORS.

(1) The ADD-FILE-LINK command assigns the cataloged file ERRORS to the default
link name ERRLINK.

(2) The compiler is called in menu mode.

(3) The default setting (generation of options, source and diagnostic listings) is
changed; the compiler is to generate only a diagnostic listing and output it by default
to the cataloged file ERRORS.

Listing Element name

control statement list OPTLST.COBOL.program-name

source listing/library listing SRCLST.COBOL.program-name

address listing/cross-reference listing LOCLST.COBOL.program-name

diagnostic listing ERRLST.COBOL.program-name

/ADD-FILE-LINK ERRLINK,ERRORS —— (1)
/START-COBOL2000-COMPILER? —— (2)

Entry in operand form:
LISTING=PAR(OPTIONS=NO,SOURCE=NO) ————————————————————————————————————— (3)

LISTING option Controlling the compiler via SDF

74

Example 3-3

Writing listings to a PLAM library

The compiler is to generate all listings and save them as elements in the PLAM library
LISTLIB.

(1) The compiler is called in menu mode.

(2) The default setting (generation of options, source and diagnostic listings) is
changed; the compiler is also to generate a locator map and cross-reference listing
and save all listings in a PLAM library named LISTLIB.

Example 3-4

Writing listings to the POSIX file system

The compiler is to generate a source listing and a diagnostic listing and store them in the
POSIX file system.

(1) The DECL-VARIABLE command assigns the desired name to the variable. Since
the file name does not include a path specification, the file will be stored in the home
directory.

(2) The compiler is called in SDF menu mode.

/START-COBOL2000-COMPILER? ——— (1)

Entry in operand form:
LISTING=PAR(NAME-INFORMATION=YES(CROSS-REFERENCE=ALL),-
OUTPUT=*LIBRARY-ELEMENT(LIBRARY=LISTLIB)) —————————————————————————————— (2)

/DECL-VAR SYSIOL-SRCLINK,INIT=‘*P(xpl.srclst)‘,SCOPE=*TASK—————————————— (1)
/DECL-VAR SYSIOL-ERRLINK,INIT=‘*P(xpl.errlst)‘,SCOPE=*TASK—————————————— (1)
/START-COBOL2000-COMPILER? ——— (2)

Controlling the compiler via SDF LISTING option

 75

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

Example 3-5

Writing a compressed listing for utilizing print pages

A compressed listing is to be generated to utilize the print pages as far as possible.

*) These specifications have been optimized for a page width of 32 cm and a page length of 22 cm.

(1) Options used

(2) Command for printing out the listing file

LISTING=*PAR(SOURCE=*YES(CROSS-REFERENCE=YES),- ——————————————————————— (1)
LAYOUT=*PAR(LINES-PER-PAGE=60,LINE-SIZE=172)) *) —————————— (1)
/PRINT-FILE srclst.cobol.programmname,LOOP=98,CHAR-SET=R01 ————————————— (2)

TEST-SUPPORT option Controlling the compiler via SDF

76

3.3.7 TEST-SUPPORT option

This option controls whether a program execution is to be monitored with the AID debugger.
It can also determine certain characteristics of the AID debugger.

This option is not available in COBOL-BC.

Format

TEST-SUPPORT = *NONE
No debugging aid is requested. The compiler generates only ESD debugger information of
the type compilation unit. This means that the module (or every module in the case of
segmented programs) is assigned a symbolic name consisting of the first 8 characters of
the name in the ID paragraph of the compilation unit. When debugging with AID, this name
can be used to qualify the compilation unit.

TEST-SUPPORT = *AID(...)
This parameter is required if the program is to be monitored symbolically using AID. It
causes the compiler to generate both LSD information and ESD debugger information,
which means that symbolic names from the compilation unit can be used for debugging with
AID (see description in “AID” manual [8]).
In segmented programs it is possible to generate LSD information - and thus create condi-
tions for symbolic debugging with AID - only if the object module is written to a PLAM library.

STMT-REFERENCE = *LINE-NUMBER
The AID source references are formed using the line numbers generated by the
compiler.

STMT-REFERENCE = *COLUMN-1-TO-6
The AID source references are created by means of the user-assigned sequence
numbers in the compilation unit (columns 1 to 6).
Debugging with AID is useful only if the assigned sequence numbers are sorted in
ascending numeric order.

TEST-SUPPORT = *NONE / *AID(...)

*AID(...)
 ⏐ STMT-REFERENCE = *LINE-NUMBER / *COLUMN-1-TO-6

⏐ ,PREPARE-FOR-JUMPS = *NO / *YES

Controlling the compiler via SDF TEST-SUPPORT option

 77

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

PREPARE-FOR-JUMPS = *NO / *YES
YES must be specified if, during the AID debugging session,

– the AID command %JUMP is to be used (see “AID” manual [8] and section
“Advanced Interactive Debugger (AID)” on page 140) or

– test points are to be set selectively on paragraphs or chapters, e.g. when debugging
nested GO TO loops (as generated by the COLUMBUS preprocessor COLCOB) in
which several paragraph headings follow one another in immediate succession or
follow after a section heading.

– the AID command %TRACE is to be used to individually trace each COBOL
statement (see “AID” manual [8].

Use of this function increases the size of the object and lengthens the program run time.

OPTIMIZATION option Controlling the compiler via SDF

78

3.3.8 OPTIMIZATION option

This option can be used to activate and deactivate the optimization actions of the compiler.

Format

OPTIMIZATION = *STD
The default of the PARAMETERS structure applies.

OPTIMIZATION = *PARAMETERS(...)

CALL-IDENTIFIER = *STD / *OPTIMIZE
If *OPTIMIZE is specified, the optimization is activated. Multiple calls of the same sub-
program by means of CALL identifier are processed without calling by system inter-
faces (possible for the first 100 subprograms called).

OPTIMIZATION = *STD / *PARAMETERS(...)

*PARAMETERS(...)

⏐ CALL-IDENTIFIER = *STD / *OPTIMIZE

Controlling the compiler via SDF RUNTIME-CHECKS option

 79

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

3.3.9 RUNTIME-CHECKS option

This option can be used to activate the check routines of the runtime system.

Format

RUNTIME-CHECKS = *NONE
No check routines of the runtime system are requested.

RUNTIME-CHECKS = *ALL
All check routines of the runtime system that are named in the PARAMETERS structure are
to be activated.

RUNTIME-CHECKS = *PARAMETERS(...)

TABLE-SUBSCRIPTS = *NO / *YES
If YES is specified, the runtime system checks that table bounds are kept to (both for
subscripting and for indexing).

Checks are made to determine whether

– index values are greater than zero,

– index values are not greater than the number of elements in the corresponding
dimensions,

– index values are not greater than associated values in DEPENDING ON items,

– values in DEPENDING ON items are within the bounds defined in corresponding
OCCURS clauses.

The runtime system responds with message COB9144 or COB9145 and aborts the
program in the event of an error if ERROR-REACTION = TERMINATION was specified
in the RUNTIME-OPTIONS option.

RUNTIME-CHECKS = *NONE / *ALL / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ TABLE-SUBSCRIPTS = *NO / *YES

⏐ ,FUNCTION-ARGUMENTS = *NO / *YES

⏐ ,PROC-ARGUMENT-NR = *NO / *YES

⏐ ,RECURSIVE-CALLS = *NO / *YES

⏐ ,REF-MODIFICATION = *NO / *YES

RUNTIME-CHECKS option Controlling the compiler via SDF

80

FUNCTION-ARGUMENTS = *NO / *YES
If YES is specified, the value range, number, and length of function arguments are
checked at runtime. If invalid values are detected, one of the messages COB9123,
COB9125, COB9126 or COB9127 is issued; the program will abort if ERROR-
REACTION = TERMINATION was specified in the RUNTIME-OPTIONS option.

PROC-ARGUMENT-NR = *NO / *YES
If YES is specified, a check is made when a COBOL subprogram is called to determine
whether the number of parameters passed matches the number expected. If there is a
discrepancy, message COB9132 is issued, and the program will abort if ERROR-
REACTION = TERMINATION was specified in the RUNTIME-OPTIONS option.
The check is only effective if the called program was compiled with this option and if the
calling program was compiled with a compiler version ≥ 2.0.

RECURSIVE-CALLS = *NO / *YES
If YES is specified, a check will be made on the call hierarchy of a program run unit; that
is, the runtime system uses a table to check whether a subprogram is being called
recursively, i.e. is still active. If there is a recursive call and the CALL statement contains
no ON EXCEPTION phrase, the program run is aborted with the error message
COB9157.
Every program that contains a CALL identifier and/or CANCEL should be compiled
using RECURSIVE-CALLS=YES.
This option is ignored for compilation units that are not programs and is rejected for
programs with a RECURSIVE specification in the PROGRAM-ID (when YES is set).

REF-MODIFICATION = *NO / *YES
Specifying YES causes the runtime system to verify compliance with data-item limits for
identifiers subject to reference modification. If data-item limits are not complied with,
error message COB9140 is issued and the program is continued or aborted depending
on the ERROR-REACTION parameter of the RUNTIME-OPTIONS option.

Controlling the compiler via SDF COMPILER-TERMINATION option

 81

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

3.3.10 COMPILER-TERMINATION option

This option can be used to initiate a termination of the compilation run dependent on the
number of errors that have occurred.

Format

COMPILER-TERMINATION = *STD
The default settings of the PARAMETERS structure are to apply.

COMPILER-TERMINATION = *PARAMETERS(...)

MAX-ERROR-NUMBER = *NONE / <integer 1..100>
An integer can be used to specify the number of errors allowed before the compilation
run is terminated. The count begins from the error severity class specified in the
MINIMAL-WEIGHT parameter of the LISTING option (default value: NOTE, see section
“LISTING option” on page 68).

The specified error number can be exceeded because the compilation is terminated
only after execution of a compiler segment has been completed (see “Appendix” on
page 349).

COMPILER-TERMINATION = *STD / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ MAX-ERROR-NUMBER = *NONE / <integer 1..100>

MONJV option Controlling the compiler via SDF

82

3.3.11 MONJV option

This option can be used to create a job variable which will monitor the compiler run.

Format

MONJV = *NONE / <filename 1..54>
The user uses <filename> to define a monitoring job variable. During the compilation run,
the compiler will then store a code in the return code indicator of the job variable, giving
information about any errors that occurred during the execution of the compiler.

MONJV = *NONE / <filename 1..54 >

Controlling the compiler via SDF RUNTIME-OPTIONS option

 83

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

3.3.12 RUNTIME-OPTIONS option

The parameters of this option control certain characteristics of the executable COBOL
program.

Format

RUNTIME-OPTIONS = *STD
The preset default values of the PARAMETERS structure will be used.

RUNTIME-OPTIONS = *PARAMETERS(...)

ACCEPT-STMT-INPUT = *UNMODIFIED / *UPPERCASE-CONVERTED
If UPPERCASE-CONVERTED is specified, letters entered in lowercase in an ACCEPT
statement will be converted to uppercase if the input is typed in from the terminal.

FUNCTION-ERR-RETURN = *UNDEFINED / *STD-VALUE
If STD-VALUE is specified, the value range, number, and length of function arguments
are checked at runtime. If invalid argument values are detected, the appropriate return
code for the error is assigned to the function in which the error occurs.

SORTING-ORDER = *STD / *BY-DIN
Specifying BY-DIN causes the SORT utility routine to perform the sort according to the
DIN standard for EBCDIC; that is,
– lowercase letters are equated to the corresponding uppercase letters
– the character

“ä” or “Ä” is identified with “AE”,
“ö” or “Ö” is identified with “OE”,
“ü” or “Ü” is identified with “UE” and
“ß” is identified with “SS”.

– digits are sorted before letters.

RUNTIME-OPTIONS = *STD / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ ACCEPT-STMT-INPUT = *UNMODIFIED / *UPPERCASE-CONVERTED

⏐ ,FUNCTION-ERR-RETURN = *UNDEFINED / *STD-VALUE

⏐ ,SORTING-ORDER = *STD / *BY-DIN

⏐ ,ACCEPT-DISPLAY-ASSGN = *SYSIPT-AND-SYSLST / *TERMINAL

⏐ ,ERR-MSG-WITH-LINE-NR = *NO / *YES

⏐ ,ERROR-REACTION = *CONTINUATION / *TERMINATION

⏐ ,ENABLE-UFS-ACCESS = *NO / *YES

⏐ ,EXTRA-ALTERNATE-KEYS = *IGNORE / *STD

⏐ ,XML-LINE-FEED = *INSERTED / *IGNORED

RUNTIME-OPTIONS option Controlling the compiler via SDF

84

ERR-MSG-WITH-LINE-NR = *NO / *YES
If YES is specified, the message COB9102 is output instead of the COB9101 message
and is supplemented by the compilation unit line number assigned by the compiler to
the statement that was being executed when the message was output.

ACCEPT-DISPLAY-ASSGN = *SYSIPT-AND-SYSLST / *TERMINAL
Specifying *TERMINAL causes the system files SYSDTA and SYSOUT to be assigned
instead of system files SYSIPT and SYSLST (defaults) for ACCEPT and DISPLAY
statements without FROM and UPON phrases.

ERROR-REACTION = *CONTINUATION / *TERMINATION
By default (CONTINUATION), the program run will continue after the following
messages are output:
COB9120 to COB9127, COB9131, COB9132, COB9134, COB9140, COB9144,
COB9145 and COB9197.
If TERMINATION is specified, the aforementioned error conditions lead to abnormal
program termination (see also section “Program termination” on page 132).

ENABLE-UFS-ACCESS = *NO / *YES
If YES is specified, the compiler generates an object
– that is capable of accessing the POSIX file system as a program
– that can be further processed (linked) in the POSIX subsystem.

The chapter “COBOL2000 and POSIX” on page 299 describes how to access a file
from the POSIX file system and the conditions to which file processing is subject.

This operand is not available in COBOL-BC.

EXTRA-ALTERNATE-KEYS = *IGNORE / *STD
A prerequisite for processing an indexed file with secondary keys is, by default (STD),
an identical description of the secondary keys in the program and in the file’s catalog
entry. Specifying IGNORE means that an indexed file with secondary keys can be
processed in read mode (OPEN INPUT) even if more keys are described in the file’s
catalog entry than in the program.

XML-LINE-FEED = *INSERTED / *IGNORED
If INSERTED is specified, the record structure of a file containing an XML document
remains visible while the document is processed: record changes are forwarded to the
XML parser in the form of an end-of-line character.
If IGNORED is specified, the end of a file record remains invisible for the parser: the
document appears like a single record in the file.
This parameter has no effect for XML documents which are provided in the working
memory.

 This parameter refers only to the record structure of a file, but not to end-of-line
characters which are contained in a file record.i

Controlling the compiler via SDF VERSION option

 85

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

3
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

3

3.3.13 VERSION option

This option enables you to use the version number to select the compiler with which the
compilation group is to be compiled.

Format

VERSION = *STD
The last COBOL2000 compiler installed in the system by means of IMON is called.

VERSION = <product-version>
Specify the version number to select the compiler required for compilation if multiple
COBOL2000 compilers with different versions are installed in the system simultaneously
using IMON.
product-version must be specified in the following format: mm.n[a[kk]]

mm Main version 1..99
n Revision version 0..9
a Modification status of the interface (user interface) A..Z
kk Correction status (source/object correction) 00..99

 Detailed information about installing a compiler using IMON is provided in the IMON
manual [34] and in the SOLIS delivery letter.

When the compiler is controlled via SDF, the SDF syntax file activated with the last
COBOL2000 compiler installed determines the options that are available. To ensure
that the latest options are available, you should install the COBOL2000 compiler
with the highest version number last.

VERSION = *STD /<product-version>

i

VERSION option Controlling the compiler via SDF

86

 87

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

4

4 Controlling the compiler with
COMOPT statements
The COBOL2000 compiler can also be controlled as usual via COMOPT statements. In this
case it is invoked with the command

/START-PROGRAM [FROM-FILE =] $.COBOL2000

The input of the compilation unit, the output of listings and of the module, and the internal
execution of the compilation run are controlled by means of options that the user specifies
in one or more COMOPT statements. The options are read via SYSDTA after COBOL2000
is invoked.
There are three ways in which the user can enter compiler options:

– The COMOPT statement(s) can be entered directly by calling the compiler without first
reassigning the system file SYSDTA with the ASSIGN-SYSDTA command. In this case,
the compiler explicitly requests the entry of the options by entering an asterisk (*) in
column 1.

– The user can write the COMOPT statement(s) into a file and issue them via the file. This
file could be a compilation unit file (the options are entered before the compilation unit)
or a separate file.
The file used is assigned to the system file SYSDTA with an ASSIGN-SYSDTA
command before the compiler is called.

– COMOPT statement(s) can be entered directly, and the END statement can be used to
reassign SYSDTA to a file that contains further COMOPT statements before the compi-
lation unit.

When no further control statements are encountered, the compiler immediately begins to
read the program text.
The compiler determines the location of the compilation unit via the END statement and
continues reading at that point.

If invalid COMOPT or END statements are entered in a batch process, the compilation is
aborted (with error message CBL9005).

COMOPT control

88

Format of the COMOPT statement

– Input lines for COMOPT statements can be up to 128 characters in length. For ISAM
files, this includes the length of the record key. The standardized reference format for
writing COBOL compilation units has no significance for the input of COMOPT state-
ments.

– An operand consists of a keyword, followed by a sign of equality and one or more
parameters. If several parameters can be specified in a single operand, these must be
enclosed in parentheses.

If errors are detected during the processing of a COMOPT statement, all previously
evaluated options from the same line remain in effect. As indicated in the error message,
the rest of the operand line or the remaining part of the operand is then ignored. Error
messages for operands are only output to SYSOUT. The COMOPT statements only apply
to the compiler run for which they were specified.
If the same COMOPT statement is entered more than once, the last specified value applies.
If conflicting COMOPT statements are entered, the statement specified last is applicable.

Format of the END statement

END filename or libname can be used to reassign SYSDTA to a file or a library element.

END (without any further qualification) indicates to the compiler that the input of COMOPT
statements has ended and that the compilation can therefore be started.

 operand=

END

COMOPT

COBRUN

YES
NO

option
(option[,option]...)

filename

libname(elementname)

COMOPT control Source data input under COMOPT control

 89

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

4

4.1 Source data input under COMOPT control

Input to the compiler may consist of the following source data:

– Individual compilation units
– Program segments (COPY elements)
– COMOPT statements
– Repository data
– Current values for DEFINE directives

The compiler expects the source data from the system input file SYSDTA.

By default, SYSDTA is assigned to the terminal in interactive mode and to the SPOOLIN
file or the ENTER file in batch mode.
If source data is to be entered directly, no input control operations are required. The
compiler is simply called, and the control statements and compilation units are entered
directly.
However, if the source data is to come from a cataloged file or a library, the input file must
be explicitly assigned to SYSDTA. Separate control statements are available to control the
input of COPY elements. The assignments to be made with the ASSIGN-SYSDTA
command and the input of COPY elements are described in section “Source data input” on
page 25. The procedure for supplying values for compiler directives is described in section
“Assignment to compiler variables to control source text manipulation” on page 32.

4.1.1 Assigning the compilation unit with the END statement

The input of compilation units and control statements can also be achieved without using
the ASSIGN-SYSDTA command. After invocation, the compiler expects input from the
terminal via SYSDTA. When the asterisk appears in the first column, the user can enter
source code or compiler options. All entered characters that do not represent a valid
COMOPT control statement are interpreted as source code by the compiler.
The END statement can be used to assign a cataloged file or a library element. If a file or
library element is specified with it, the END statement can also be the first statement to be
issued after the compiler is called. Further COMOPT statements may be included at the
start of the assigned file.

 If the END statement is used to assign a library element, the name of the compi-
lation unit cannot be correctly mapped in the compiler listings and at the AID-FE
interface.

If the END statement is used to assign a file, this file must be “SYSDTA-compatible”
i.e. an ASSIGN-SYSDTA command must run without errors for this file.

i

Source data input under COMOPT control COMOPT control

90

Example 4-1

Assigning a cataloged file after input of COMOPT statements

(1) The compiler is invoked. In interactive mode SYSDTA is assigned to the terminal.

(2) The keyword COMOPT informs the compiler that the following entries are control
statements.

(3) The END statement assigns SYSDTA to the cataloged file SOURCE.MULTABLE,
which contains the compilation unit to be compiled or a sequence of control state-
ments.
At the end of compilation SYSDTA and SYSCMD are linked together.

Example 4-2

Assigning a library without the use of COMOPT statements

(1) Invocation of the compiler; in interactive mode SYSDTA is assigned to the terminal.

(2) The system file SYSDTA is assigned to the element EXAMP3 in the PLAM library
PLAM.LIB. At the end of the compilation SYSDTA and SYSCMD are linked
together.

/START-PROGRAM $COBOL2000——— (1)
COMOPT... ——— (2)
END SOURCE.MULTABLE——— (3)

/START-PROGRAM $COBOL2000——— (1)
END PLAM.LIB(EXAMP3)—— (2)

COMOPT control Source data input under COMOPT control

 91

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

4

4.1.2 Assigning the compilation unit with the ADD-FILE-LINK command
and COMOPT SOURCE-ELEMENT

Input from libraries can also be initiated directly - bypassing SYSDTA - with the ADD-FILE-
LINK command. The standard link name SRCLIB must be used in this case. The general
format of the ADD-FILE-LINK command for the input of compilation units from libraries is
shown below:

/ADD-FILE-LINK [LINK-NAME=]SRCLIB,[FILE-NAME=]libname

Example 4-3

Input from a PLAM library

(1) The SDF command (in positional operand form) assigns the PLAM library
PLAM.LIB and links it with the standard link name SRCLIB.

(2) Invocation of the compiler.

(3) The compilation unit to be compiled is stored under the element name EXAMP3 in
the PLAM library assigned with the ADD-FILE-LINK command.

(4) The PLAM.LIB library contains several versions of the element named EXAMP3.
In this case, the version designated as V001 is referenced.

(5) The input of options is terminated, and the compiler begins the compilation run.

/ADD-FILE-LINK SRCLIB,PLAM.LIB ——— (1)
/START-PROGRAM $COBOL2000 —— (2)
COMOPT SOURCE-ELEMENT=EXAMP3 ——— (3)
COMOPT SOURCE-VERSION=V001 ——— (4)
END ——— (5)

COMOPT operands COMOPT control

92

4.2 Table of COMOPT operands

Almost all the options have a default value. This automatically applies if the user does not
explicitly specify an alternative. If all the default values of the system are to be used as
options, COMOPT entries are superfluous.

The following table summarizes all COMOPT operands that can be used to control the
compiler.
The following points refer to the representation of the statement formats:

– If an operand can be abbreviated, the short form is indicated below its full designation
(e.g. ACC-L-T-U for ACCEPT-LOW-TO-UP). The equal sign must be specified between
the operand and the value in every case.

– The default operand values are either shown underlined in the format or mentioned
explicitly in the summarized description of the function.

In the “Function” column, under the keyword “SDF option”, you will find the short form of the
SDF operand equivalent of the respective COMOPT operand. If there is no equivalent SDF
operand, this is indicated by a dash.

Operand format Function

ACCEPT-LOW-TO-UP={YES/NO}

ACC-L-T-U

specifies whether letters entered in lowercase are to be
converted to uppercase when an ACCEPT statement is
executed. The conversion is performed only if the input is
typed in at the terminal.

SDF option:
RUNTIME-OPTIONS = PARAMETERS(...)

ACCEPT-STMT-INPUT =

COMOPT control COMOPT operands

 93

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

4

ACTIVATE-WARNING-MECHANISM={YES/NO}

ACT-W-MECH

specifies whether the existence of
– obsolete language elements and
– non-standard language extensions
that are detected in the program during compilation should
be identified in the diagnostic listing by means of a message
of severity code F.

Note
The COMOPT operands listed below are ineffective in the
case of compilation runs for which ACTIVATE-WARNING-
MECHANISM=YES has been specified. They would
otherwise produce a deviation from the ANS85 Standard
during compilation.

RESET-PERFORM-EXITS = NO
USE-APOSTROPHE = YES
REPLACE-PSEUDOTEXT = NO

In addition, the operand MINIMAL-SEVERITY=I is set in this
case in order that messages of severity code F can also be
listed.

SDF option:
ACTIVATE-FLAGGING = ANS85

ACTIVATE-XPG4-RETURNCODE={YES/NO} specifies that, after a subprogram is called, its function value
(register 1) is available in the COBOL special register
RETURN-CODE.

SDF option:
SOURCE-PROPERTIES = PARAMETERS(...)

RETURN-CODE =.

ALIGN-LLM-PAGE={YES/NO}

A-L-P

specifies whether CSECTs in the generated module should
be aligned on the page (YES) or double word boundary (NO).

Note
This option only applies to LLMs, not to OMs.

SDF option:
COMPILER-ACTION

MODULE-FORMAT=LLM(...)
ALIGNMENT=PAGE

CHECK-CALLING-HIERARCHY={YES/NO}

CHECK-C-H

specifies whether the calling hierarchy should be checked.
A program in which the statements CALL identifier and/or
CANCEL are used, must be compiled using
CHECK-CALLING-HIERARCHY=YES.

SDF option:
RUNTIME-CHECKS = PARAMETERS(...)

RECURSIVE-CALLS =

Operand format Function

COMOPT operands COMOPT control

94

CHECK-DATE={YES/NO}

CHECK-D

specifies whether or not the compiler outputs a note concern-
ing two-digit year values in the case of
ACCEPT FROM DATE/DAY

SDF option:
LISTING=PARAMETERS(...)
 DIAGNOSTICS=YES
 REPORT-2-DIGIT-YEAR=

CHECK-FUNCTION-ARGUMENTS={YES/NO}

CHECK-FUNC

causes function arguments to be checked for validity and a
message to be issued by the runtime system when errors
occur.

SDF option:
RUNTIME-CHECKS = PARAMETERS(...)

FUNCTION-ARGUMENTS =

CHECK-PARAMETER-COUNT={YES/NO}

CHECK-PAR-C

specifies whether the number of parameters passed should
be compared with the number of parameters expected when
a COBOL subprogram is called. This does not work for
subprograms called via an ENTRY.

SDF option:
RUNTIME-CHECKS = PARAMETERS(...)

PROC-ARGUMENT-NR =

CHECK-REFERENCE-MODIFICATION =
{YES/NO}

CHECK-REF

determines whether the runtime system should verify
compliance with data-item limits for identifiers subject to
reference modification.

SDF option:
RUNTIME-CHECKS = PARAMETERS(...)

REF-MODIFICATION

CHECK-SCOPE-TERMINATORS={YES/NO}

CHECK-S-T

checks the syntax of the statements in the PROCEDURE
DIVISION for correct scope termination.

SDF option:
LISTING = PARAMETERS(...)

DIAGNOSTICS = YES(...)
IMPLICIT-SCOPE-END =

CHECK-SOURCE-SEQUENCE={YES/NO}

CHECK-S-SEQ

determines whether record pairs that are found not to be in
ascending order should be identified in the diagnostic listing
by an error message of severity code 0.
CHECK-SOURCE-SEQUENCE does not apply for free
format.

SDF option: --

Operand format Function

COMOPT control COMOPT operands

 95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

4

CHECK-TABLE-ACCESS={YES/NO}

CHECK-TAB

determines whether the runtime system should verify
compliance with table limits (both for subscripts and for
indexing).

SDF option:
RUNTIME-CHECKS = PARAMETERS(...)

TABLE-SUBSCRIPTS =

CONCATENATE-XML-LINES={YES/NO}

C-X-L

determines whether the line feed caused by the record struc-
ture of a file(which contains an XML document) is to be sup-
plied to the parser as an end-of-line character.

SDF option:
RUNTIME-OPTIONS=PARAMETERS(…)
 XML-LINE-FEED=

CONTINUE-AFTER-MESSAGE={YES/NO}

CON-A-MESS

determines whether the runtime system should be continued
or terminated following specific COB91 messages.

SDF option:
RUNTIME-OPTIONS = PARAMETERS(...)

ERROR-REACTION =

DEFAULT-CALL-CONVENTION=
{COBOL/COMPATIBLE}

DEF-C-C

COMPATIBLE is assumed as the default value for the CALL-
CONVENTION directive.
If COBOL is specified, the value COBOL is assumed for the
CALL-CONVENTION directive.

SDF option:
COMPILER-ACTION=MODULE-GENERATION(...)
CALL-CONVENTION =*COBOL

ELABORATE-SEGMENTATION={YES/NO} If NO is specified, segmentation-related language elements
are ignored (SEGMENT-LIMITclause, segment numbers in
section header). Warnings are output. If YES is specified,
compiler directives are ignored which apply during the
compilation phase and are specified within a compilation
unit. YES supports segmentation. However, the compilation
is aborted with a message if the program contains nested
compilation units and non-fixed segments. If this combination
does not exist, only segmentation-related language elements
are rejected with warnings.
If ELABORATE-SEGMENTATION=YES is specified together
with GENERATE-SHARED-CODE=YES or
GENERATE-LLM=YES, it is also rejected.

SDF option:
COMPILER-ACTION=MODULE-GENERATION(...)

SEGMENTATION=

Operand format Function

COMOPT operands COMOPT control

96

ENABLE-COBOL85-KEYWORDS-ONLY
={YES / NO}

If YES is specified, only the keywords defined for COBOL85
are reserved. The additional keywords reserved by
COBOL2000 can then be used as file names.

SDF option:
SOURCE-PROPERTIES = PARAMETERS(...)

ENABLE-KEYWORDS=

ENABLE-UFS-ACCESS={YES/NO}

Not available in COBOL2000-BC!

specifies whether the compiler is to generate an object which
is also capable of processing files from the POSIX file
system.

SDF option:
RUNTIME-OPTIONS = PARAMETERS(...)

ENABLE-UFS-ACCESS =

ENABLE-XML-PROCESSING={YES/NO} If NO is specified, the new statements for processing XML
documents are not available. The keywords reserved for this
purpose can then be used as data names.

SDF option:
SOURCE-PROPERTIES=PARAMETERS(…)

 ENABLE-KEYWORDS=STD(...)
 XML-SUPPORT=

EXPAND-COPY={YES/NO}

EXP-COPY

controls whether COPY elements inserted in the compilation
unit are printed in the source listing.

SDF option:
LISTING = PARAMETERS(...)

SOURCE = YES(...)
COPY-EXPANSION =

EXPAND-SUBSCHEMA={YES/NO}

EXP-SUB

Not available in COBOL2000-BC!

controls whether the Sub-schema Section of the compilation
unit is logged on the source listing.

SDF option:
LISTING = PARAMETERS(...)

SOURCE = YES(...)
SUBSCHEMA-EXPANSION =

Operand format Function

COMOPT control COMOPT operands

 97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

4

FLAG-NONSTANDARD={YES/NO} In the diagnostic listing, all non-standard language exten-
sions are flagged with F.
Note
The COMOPT operands listed below are ineffective in the
case of compilation runs for which FLAG-
NONSTANDARD=YES has been specified. They would
otherwise produce a deviation from the ANS85 Standard
during compilation.

RESET-PERFORM-EXITS = NO
USE-APOSTROPHE = YES
REPLACE-PSEUDOTEXT = NO

SDF option:
ACTIVATE-FLAGGING = FIPS(...)

NONSTANDARD-LANGUAGE =

FLAG-OBSOLETE={YES/NO} In the diagnostic listing, all obsolete language extensions are
flagged with F.
Note
The COMOPT operands listed below are ineffective in the
case of compilation runs for which FLAG-OBSOLETE=YES
has been specified. They would otherwise produce a
deviation from the ANS85 Standard during compilation.

RESET-PERFORM-EXITS = NO
USE-APOSTROPHE = YES
REPLACE-PSEUDOTEXT = NO

SDF option:
ACTIVATE-FLAGGING = FIPS(...)

OBSOLETE-FEATURES =

GENERATE-INITIAL-STATE={YES/NO}

GEN-INIT-STA

specifies whether the compiler should make arrangements to
return the program to its initial state.
All programs which are affected by a CANCEL statement or
which contain an INITIAL clause or an INITIALIZE statement
with TO VALUE specification must be compiled with
GENERATE-INITIAL-STATE=YES in order to conform to the
standard.

SDF option:
COMPILER-ACTION = MODULE-GENERATION(...)

ENABLE-INITIAL-STATE =

Operand format Function

COMOPT operands COMOPT control

98

GENERATE-LINE-NUMBER={YES/NO}

GEN-L-NUM

determines whether the COB9101 message is output instead
of the COB9102 message. The COB9102 message is
supplemented by the source line number (generated by
COBOL2000) of the statement being executed when the
message was issued.

SDF option:
RUNTIME-OPTIONS = PARAMETERS(...)

ERR-MSG-WITH-LINE-NR =

GENERATE-LLM={YES/NO}

GEN-LLM

defines the module format for the module to be generated. If
YES is specified, a link-and-load module (LLM) is generated;
if NO is specified, an object module (OM) is generated.
These specifications are ignored if
MODUL-OUTPUT=<c-string...> has been specified.

SDF option:
COMPILER-ACTION = MODULE-GENERATION(...)

MODULE-FORMAT = OM / LLM

GENERATE-SHARED-CODE={YES/NO}

GEN-SHARE

specifies whether the Procedure Division code (without
DECLARATIVES) is written to a separate code module. The
name for this module is program name, shortened to
7 characters if necessary, with appended “@”.

SDF option:
COMPILER-ACTION = MODULE-GENERATION(...)

SHAREABLE-CODE =

IGNORE-COPY-SUPPRESS={YES/NO}

IGN-C-SUP

determines whether or not existing COPY elements with the
SUPPRESS option in the compilation unit should be listed in
the source listing .
IGNORE-COPY-SUPPRESS=YES has the additional effect
of the EXPAND-COPY=YES operand.

SDF option:
LISTING = PARAMETERS(...)

SOURCE = YES(...)
COPY-EXPANSION =

IGNORE-EXTRA-ALTERNATE-
KEYS={YES/NO}

IGN-EXT-ALTKEY

determines whether or not secondary keys which are defined
only in the catalog entry but not in the program are to be
ignored for indexed files and no error message output in the
case of OPEN INPUT.

SDF option:
RUNTIME-OPTIONS = PARAMETERS(...)

EXTRA-ALTERNATE-KEYS =

Operand format Function

COMOPT control COMOPT operands

 99

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

4

IGNORE-OPTION-DIRECTIVES={YES/NO}

IGN-O-DIR

determines whether or not >>IMP directives which apply for
the compiler options (LISTING-OPTIONS, COMPILER-
ACTION and RUNTIME-ERRORS) are ignored.

SDF option:
COMPILER-ACTION = MODULE-GENERATION(...)
OPTION-DIRECTIVES =

INHIBIT-BAD-SIGN-PROPAGATION={YES/NO} NO enables faster code to be generated when one data item
is transferred to another, and both items are numerical and
described with USAGE DISPLAY. No code is generated
which would prevent encoded operational signs which do not
match the PICTURE clause from being transferred.

LIBFILES= (list-id[,list-id]...) determines which compilation protocols are to be created
and output to a PLAM library.
list-id will be one of the following specifications

[NO]OPTIONS [NO]DIAG
[NO]SOURCE [NO]OBJECT ALL
[NO]MAP [NO]XREF NO

The requested listings are processed from left to right. The
value set last applies to the listing.
If XREF is specified, MAP is also automatically assumed to
apply.
Each requested listing is generated with a standard name as
an element of type R. The standard names are as follows:
OPTLST.COBOL.program-name (control statement listing)
SRCLST.COBOL.program-name (source listing)
ERRLST.COBOL.program-name (diagnostics listing)
LOCLST.COBOL.program-name (locator map/cross-refer-
ence listing)
OBJLST.COBOL.program-name (object listing)

For details on the possible truncation of names, see section
“LISTING option” on page 73.

The PLAM library must be assigned with the
ADD-FILE-LINK command via the link name LIBLINK. If no
library name is assigned, the compiler stores the requested
listings in the default library PLIB.COBOL.program-name.

SDF option:
LISTING = PARAMETERS(...)

OUTPUT = LIBRARY-ELEMENT(...)
LIBRARY=<filename 1..54>

Operand format Function

COMOPT operands COMOPT control

100

LINE-LENGTH=132 / 119..172

LINE-L

specifies the maximum number of characters that are printed
per line in the compiler listings.

SDF option:
LISTING = PARAMETERS(...)

LAYOUT = PARAMETERS(...)
LINE-SIZE =

LINES-PER-PAGE=64 / 20..128

LINES

specifies the maximum number of lines that are printed in the
compiler listings per page. A page throw is effected as soon
as the specified number of lines is reached.

SDF option:
LISTING = PARAMETERS(...)

LAYOUT = PARAMETERS(...)
LINES-PER-PAGE =

LISTFILES=(list-id[,list-id]...) specifies which compiler listings are to be created and output
to cataloged files.
list-id can be one of the following entries:

[NO]OPTIONS [NO]DIAG
[NO]SOURCE [NO]OBJECT ALL
[NO]MAP [NO]XREF NO

For more information, read the description of COMOPT
LIBFILES, which is similar.

SDF option:
LISTING = PARAMETERS(...)

OUTPUT = STD-FILES

MARK-NEW-KEYWORDS={YES/NO}

M-N-K

marks keywords from the future standard in the diagnostic
listing with a message with severity code I.
The value YES can only be specified if
ENABLE-COBOL85-KEYWORDS-ONLY
is also set to YES.

SDF option:
LISTING=PARAMETERS(...)

DIAGNOSTICS=YES
MARK-NEW-KEYWORDS=

MAXIMUM-ERROR-NUMBER=integer

MAX-ERR

specifies from what error number onwards (depending on the
MINIMAL-SEVERITY phrase) compilation should be
aborted.

SDF option:
COMPILER-TERMINATION = PARAMETERS(...)

MAX-ERROR-NUMBER =

Operand format Function

COMOPT control COMOPT operands

 101

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

4

MERGE-DIAGNOSTICS=YES/NO

M-DIAG

“merges” all error messages that occurred during compilation
with the source listing. For merging to function correctly, the
source listing should not contain more than 65535 source
lines (see section “Source listing for a compilation unit” on
page 363).

SDF option:
LISTING=PARAMETERS(...)

SOURCE=YES(...)
INSERT-ERROR-MSG=

MERGE-REFERENCES={YES/NO}

M-REF

extends the source listing with specifications on the address
and length of definitions and cross-references to references
or definitions.

SDF option:
LISTING=PARAMETERS(...)
 SOURCE=YES(…)
 CROSS-REFERENCE=

MERGE-STATEMENT-ADDRESS={YES/NO}

M-STMT

causes the address of the first machine instruction which was
generated for this purpose to be entered in the source listing
for statements .
(only if the option MERGE-REFERENCES=YES is set)

SDF option:
LISTING=PARAMETERS(...)
 SOURCE=YES(…)
 CROSS-REFERENCE=YES(…)
 STMT-ADDRESS=

MINIMAL-SEVERITY={I/0/1/2/3}

MIN-SEV

suppresses messages in the diagnostic listing if their severity
codes are less than the specified value.

SDF option:
LISTING = PARAMETERS(...)

DIAGNOSTICS = YES(...)
MINIMAL-WEIGHT =

MODULE={*OMF/libname} specifies where the object module that is generated during
compilation is to be output.
*OMF initiates output to the temporary EAM file of the current
task.
libname is the file name of the PLAM library in which the
object module is to be placed. libname must be a valid
BS2000 file name.

SDF option:
MODULE-OUTPUT = *OMF / *LIBRARY-ELEMENT(...)

LIBRARY =

Operand format Function

COMOPT operands COMOPT control

102

MODULE-ELEMENT=element-name

MODULE-ELEM

specifies the name of the element under which an LLM is to
be stored in the PLAM library.
Max. length of element name: 32 chars.

Note
This compiler option is ignored for object modules and
compilation groups (error message severity code I).

SDF option:
MODULE-OUTPUT = *LIBRARY-ELEMENT(...)

 LIBRARY = <filename>
,ELEMENT =

MODULE-VERSION=version

MODULE-VERS

enables the assignment of a version designation to the
element which contains the module generated during compi-
lation.
version can be one of the following entries:
*UPPER-LIMIT / *UPPER
*HIGHEST-EXISTING / *HIGH
*INCREMENT / *INCR
<alphanum-name 1..24>

SDF option:
MODULE-OUTPUT = *LIBRARY-ELEMENT(...)

LIBRARY = <filename>
,ELEMENT = <composed-name>

VERSION =

OPTIMIZE-CALL-IDENTIFIER={YES/NO}

O-C-I

enables repeated calls for the same subprogram to be
processed via CALL identifier without calling system inter-
faces (this is possible for the first 100 subprograms to be
called)

SDF option:
OPTIMIZATION = PARAMETERS(...)

 CALL-IDENTIFIER =

Operand format Function

COMOPT control COMOPT operands

 103

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

4

PERMIT-STANDARD-DEVIATION={YES/NO}

P-S-D

specifies whether

– the data descriptions in the Linkage section (level
number 01 or 77) can be assigned the address of
another section or the contents of a pointer by means of
a SET statement even in the absence of a BASED
specification. (There is then no check to determine
whether each parameter that is used has also been
specified in the USING clause of the Procedure
Division.)

– data structures which contain pointer data items or
universal object references, or pointer data items or
universal object references with level number 01 or 77
are permitted and redefined as receiving items or may
be subject to reference modification.

SDF option:
SOURCE-PROPERTIES=PARAMETERS(...)

STANDARD-DEVIATION=

PRINT-DIAGNOSTIC-MESSAGES={YES/NO}

PRI-DIAG

Not available in COBOL2000-BC!

makes it possible to have all COBOL2000 error messages
listed. Compilation is not carried out in this case.

SDF option:
COMPILER-ACTION = PRINT-MESSAGE-LIST

REDIRECT-ACCEPT-DISPLAY={YES/NO} causes the system files SYSDTA and SYSOUT to be
assigned instead of system files SYSIPT and SYSLST
(defaults) for ACCEPT and DISPLAY statements without
FROM and UPON phrases.

SDF option:
RUNTIME-OPTIONS = PARAMETERS(...)

 ACCEPT-DISPLAY-ASSGN =

REPLACE-PSEUDOTEXT={YES/NO}

REP-PSEUDO

determines how COPY elements are to be divided up into
individually replaceable text words. If NO is specified, the
separators colon, open brackets, close brackets and pseudo-
text delimiter do not act as separators for text words and are
not independent text words. One particular effect of this is
that no replacements are made within
brackets in mask strings. If NO is specified, the REPLACE
statement may not be used. The options in the REPLACING
clause are limited to the replacement of a single text word by
a text word or an identifier. Hexadecimal and national literals
are not recognized as single text words. COPY elements
may not contain COPY statements. REPLACE-
PSEUDOTEXT=NO is not supported for free format.

SDF option: --

Operand format Function

COMOPT operands COMOPT control

104

RESET-PERFORM-EXITS={YES/NO}

RES-PERF

specifies whether the control mechanisms for all
PERFORM statements are
– reset for EXIT PROGRAM according to the ANS85

Standard (default value or YES specification) or
– to remain active on exiting from the subprogram (NO

specification).

SDF option: --

ROUND-FLOAT-RESULTS-
DECIMAL={YES/NO}

ROUND-FLOAT

specifies whether floating-point data items are to be rounded
to 7 (COMP-1) or 15 (COMP-2) decimal places before being
transferred to fixed-point items. The option is only effective if
the receiving item has been defined with fewer than
19 decimal digits.

SDF option: --

SEPARATE-TESTPOINTS={YES/NO}

SEP-TESTP

Not available in COBOL2000-BC!

specifies whether a separate address is to be generated for
all paragraph and section headings in the PROCEDURE
DIVISION for debugging with AID.

SDF option:
TEST-SUPPORT = AID(...)

PREPARE-FOR-JUMPS =

SET-FUNCTION-ERROR-DEFAULT={YES/NO}

S-F-E-D

causes function arguments to be checked for validity and an
appropriate return code to be assigned to any function in
which a corresponding error occurs.

SDF option:
RUNTIME-OPTIONS = PARAMETERS(...)

FUNCTION-ERR-RETURN =

SHORTEN-OBJECT={YES/NO}

SHORT-OBJ

Not available in COBOL2000-BC!

specifies whether only ESD information should be listed in
the requested object listing.

SDF option: --

SHORTEN-XREF={YES/NO}

SHORT-XREF

determines whether the desired cross-reference listing
should be shortened by including only data names and
procedure names addressed in the program.

SDF option:
LISTING = PARAMETERS(...)

NAME-INFORMATION = YES(...)
CROSS-REFERENCE =

Operand format Function

COMOPT control COMOPT operands

 105

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

4

SORT-EBCDIC-DIN={YES/NO}

SORT-E-D

enables selection of the EBCDIC-DIN (ED) format for SORT
(see “Sort” manual [6]); among other things, characters with
an umlaut, such as ä, ö or ü, are treated as AE, OE or UE
during sort operations.

SDF option:
RUNTIME-OPTIONS = PARAMETERS(...)

SORTING-ORDER =

SORT-MAP={YES/NO} enables output of the locator map listing from the compilation
unit, sorted by symbolic names in ascending order. The
locator map listing comprises lists for data, section, and
paragraph names.

SDF option:
LISTING = PARAMETERS(...)

NAME-INFORMATION = YES
SORTING-ORDER =

SOURCE-ELEMENT=element

SOURCE-ELEM

assigns a PLAM library element as the compilation unit to the
compiler. The library must be assigned with an ADD-FILE-
LINK command (using the link name SRCLIB) prior to compi-
lation.
element is the name of the library element. It must be
included in a PLAM library under element type S. “element”
can have a maximum length of 40 characters.

SDF option:
SOURCE = *LIBRARY-ELEMENT(...)

LIBRARY =
ELEMENT =

SOURCE-VERSION=version

SOURCE-VERS

indicates to the compiler which version of the element
assigned with SOURCE-ELEMENT should be compiled.
version is one of the following entries:
*HIGHEST-EXISTING / *HIGH
*UPPER-LIMIT / *UPPER
<alphanum-name 1..24>

SDF option:
SOURCE = *LIBRARY-ELEMENT(...)

LIBRARY = ,ELEMENT =
VERSION =

Operand format Function

COMOPT operands COMOPT control

106

SUPPRESS-LISTINGS={YES/NO}

SUP-LIST

suppresses output of the
– object program
– locator map and
– cross-reference (XREF)
listings when an error with a severity code >= 2 occurs.
In such cases, only the diagnostic listing and source listing
are output (if requested).

SDF option:
LISTING = PARAMETERS(...)

NAME-INFORMATION =
SUPPRESS-GENERATION =

SUPPRESS-MODULE={YES/NO}

SUP-MOD

permits generation of a module and expansion of the param-
eterized classes/interfaces used to be prevented when an
error with a severity code >=2 occurs.
SUPPRESS-MODULE=YES has the additional effect of the
SUPPRESS-LISTINGS=YES operand.

SDF option:
COMPILER-ACTION = MODULE-GENERATION(...)

SUPPRESS-GENERATION =

SYMTEST={ALL/NO}

Not available in COBOL2000-BC!

specifies the information that the compiler provides for the
advanced interactive debugger AID (see “AID” manual [8]).
ALL:
The compiler generates LSD information and ESD debugger
information.
NO:
The compiler generates only ESD debugger information.

SDF option:
TEST-SUPPORT = AID(...)

SYSLIST=(list-id[,list-id]...) defines which compiler listings are to be created and output
to the SYSLST system file.
list-id can be one of the following entries:

[NO]OPTIONS [NO]DIAG
[NO]SOURCE [NO]OBJECT ALL
[NO]MAP [NO]XREF NO

SDF option:
LISTING = PARAMETERS(...)

OUTPUT = SYSLST

TERMINATE-AFTER-SEMANTIC={YES/NO}

TERM-A-SEM

causes the compilation group to only be checked for syntax
and semantic errors, without a module being generated. Only
source and diagnostic listings can be output in this case.

SDF option:
COMPILER-ACTION = SEMANTIC-CHECK

Operand format Function

COMOPT control COMOPT operands

 107

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

4

TERMINATE-AFTER-SYNTAX={YES/NO}

TERM-A-SYN

causes the compilation group to only be checked for syntax
errors, without a module being generated. Only source and
diagnostic listings can be output in this case.

SDF option:
COMPILER-ACTION = SYNTAX-CHECK

TEST-WITH-COLUMN1={YES/NO}

TEST-W-C

Not available in COBOL2000-BC!

defines for SYMTEST=ALL whether the AID source refer-
ences are to be formed with the help of sequence numbers
(columns 1-6) from the compilation group.
TEST-WITH-COLUMN1 is not supported with free format.

SDF option:
TEST-SUPPORT = AID(...)

STMT-REFERENCE =

UPDATE-REPOSITORY={YES/NO}

UPD-R

determines whether or not the interface of the currently
compiled source text is placed in the external repository
assigned with the link name REPOUT.
Repository data is stored in an element of type X. To enable
a differentiation, classes are assigned the suffix $CLS, inter-
faces the suffix $IFC and program prototypes the suffix
$PRO.

SDF option:
COMPILER-ACTION=MODULE-GENERATION

UPDATE-REPOSITORY=

USE-APOSTROPHE={YES/NO}

USE-AP

controls the representation of the figurative “QUOTE”
constants.
If YES is specified, the figurative QUOTE constant has a
single quote as its value. If NO is specified, the value is a
double quote.

Operand format Function

COMOPT operands COMOPT control

108

 109

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
2:

54
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

5

5 Controlling the compiler with compiler
directives
The >>IMP compiler directives enable some compilation options to be specified directly in
source text.

In contrast to options which apply for the entire compilation group, directives can be
specified separately for each compilation unit.

The values specified by SDF control or COMOPT statements define the default values for
the directives described below. The SDF option
COMPILER-ACTION=*MODULE-GENERATION(OPTION-DIRECTIVES=*IGNORE) or
the COMOPT statement IGNORE-OPTION-DIRECTIVES=YES enables the changing of
external control by directives to be prevented.

The notation corresponds to the COBOL notation of the Reference Manual (see the
“COBOL2000 Reference Manual” [1]).

IMP COMPILER-ACTION Compiler directives

110

IMP COMPILER-ACTION

This directive controls actions of the compiler during module generation.

Format

LR

>>IMP COMPILER-ACTION

LR

Syntax rule

1. This directive may only be specified before a compilation unit.

General rules

1. The directive applies in the compilation phase.

2. Each operand specified in the directive relates to the compiler option of the same name
(see “COBOL2000 Reference Manual” [1]).

3. The GENERATE-INITIAL-STATE specification is rejected if the compiler option RESET-
PERFORM-EXITS=NO was specified when the compiler was called.

4. The ON specification causes the value YES to be assumed for the compiler option
specified.

5. The OFF specification causes the value NO to be assumed for the compiler option
specified.

6. The DEFAULT specification causes the value specified when the compiler was called
to be assumed for the compiler option specified.

GENERATE-INITIAL-STATE
UPDATE-REPOSITORY

ON
OFF
DEFAULT

Compiler directives IMP LISTING-OPTIONS

 111

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
2:

54
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

5

IMP LISTING-OPTIONS

This directive enables the values of compiler options which influence the listings generated
by the compiler to be modified.

Format

LR

>>IMP LISTING-OPTIONS

LR

Syntax rule

1. This directive may only be specified before a compilation unit.

General rules

1. The directive applies in the listing generation phase.

2. Each operand specified in the directive relates to the compiler option of the same name
(see “COBOL2000 Reference Manual” [1]).

3. The ON specification causes the value YES to be assumed for the compiler option
specified. However, the directive applies only if the listing which it affects is also to be
generated.

4. The OFF specification causes the value NO to be assumed for the compiler option
specified.

5. The DEFAULT specification causes the value specified when the compiler was called
to be assumed for the compiler option specified.

6. The last value specified for an operand before a compilation unit is also used for listing
generation of the lines specified before a compilation unit (e.g. the last value for
EXPAND-COPY also applies for COPY statements which were specified before this
directive).

EXPAND-COPY
EXPAND-SUBSCHEMA
MERGE-DIAGNOSTICS
MERGE-REFERENCES
MERGE-STATEMENT-ADDRESS
SORT-MAP
SHORTEN-XREF

ON
OFF
DEFAULT

IMP PRINT-DIRECTIVES Compiler directives

112

IMP PRINT-DIRECTIVES

This directive enables the values of directives to be written to the source listing.

Format

LR

>>IMP PRINT-DIRECTIVES

LR

General rules

1. The directive applies in the listing generation phase.

2. The directive may be used anywhere in a compilation unit.

3. The directive enables the values of directives which apply in the compilation phase and
of the >>IMP LISTING-OPTIONS directive to be written to the source listing.

4. The ALL specification causes the values of all directives to be written to the source
listing.

5. The NON-DEFAULT specification causes the values of all directives which deviate from
the default value to be written to the source listing.

6. The output is generated in the listing directly after the directive is issued.

7. If listing generation is disabled for the line in which the directive is specified (>>LISTING
OFF, COPY ... SUPPRESS,...), the directive values are not listed either.

Example 5-1

ALL

NON-DEFAULT

Compiler directives IMP PRINT-DIRECTIVES

 113

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
2:

54
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

5

Source code:
>>IMP PRINT-DIRECTIVES NON-DEFAULT
>>IMP PRINT-DIRECTIVES ALL
>>IMP LISTING-OPTIONS MERGE-DIAGNOSTICS
>>CALL-CONVENTION COBOL
>>TURN EC-OO-CONFORMANCE EC-OO-NULL CHECKING ON
>>IMP LISTING-OPTIONS EXPAND-COPY EXPAND-SUBSCHEMA OFF
>>IMP RUNTIME-ERRORS FUNCTION-DEFAULT-VALUE ON
>>IMP LISTING-OPTIONS SORT-MAP SHORTEN-XREF ON
>>IMP PRINT-DIRECTIVES NON-DEFAULT
>>IMP PRINT-DIRECTIVES ALL
...

Listing:

OPTIONS BY DEFAULT
...
EXPAND-COPY = YES
...
EXPAND-SUBSCHEMA = YES
...
GENERATE-INITIAL-STATE = YES
...

V VV
00001 >>IMP PRINT-DIRECTIVES NON-DEFAULT
ALL DIRECTIVES VALUES ARE SET TO DEFAULT
00002 >>IMP PRINT-DIRECTIVES ALL
>>CALL-CONVENTION COMPATIBLE
>>FLAG-85 ZERO-LENGTH OFF
>>IMP RUNTIME-ERRORS FUNCTION-DEFAULT-VALUE OFF
>>IMP LISTING-OPTIONS EXPAND-COPY ON
>>IMP LISTING-OPTIONS EXPAND-SUBSCHEMA ON
>>IMP LISTING-OPTIONS MERGE-DIAGNOSTICS OFF
>>IMP LISTING-OPTIONS MERGE-REFERENCES OFF
>>IMP LISTING-OPTIONS MERGE-STATEMENT-ADDRESS OFF
>>IMP LISTING-OPTIONS SORT-MAP OFF
>>IMP LISTING-OPTIONS SHORTEN-XREF OFF
>>IMP COMPILER-ACTION GENERATE-INITIAL-STATE ON
>>IMP COMPILER-ACTION UPDATE-REPOSITORY OFF
>>TURN EC-DATA-CONVERSION CHECKING OFF
>>TURN EC-OO-CONFORMANCE CHECKING OFF
>>TURN EC-OO-METHOD CHECKING OFF
>>TURN EC-OO-NULL CHECKING OFF
>>TURN EC-OO-RESOURCE CHECKING OFF

IMP PRINT-DIRECTIVES Compiler directives

114

>>TURN EC-OO-UNIVERSAL CHECKING OFF
>>TURN EC-STORAGE-NOT-ALLOC CHECKING OFF
>>TURN EC-STORAGE-NOT-AVAIL CHECKING OFF
>>TURN EC-XML-CODESET-CONVERSION CHECKING OFF
00003 >>IMP LISTING-OPTIONS MERGE-DIAGNOSTICS

 00004 >>CALL-CONVENTION COBOL
00005 >>TURN EC-OO-CONFORMANCE EC-OO-NULL CHECKING ON
00006 >>IMP LISTING-OPTIONS EXPAND-COPY EXPAND-SUBSCHEMA OFF

 00007 >>IMP RUNTIME-ERRORS FUNCTION-DEFAULT-VALUE ON
 00008 >>IMP LISTING-OPTIONS SORT-MAP SHORTEN-XREF ON
 00009 >>IMP PRINT-DIRECTIVES NON-DEFAULT
>>CALL-CONVENTION COBOL
>>FLAG-85 ZERO-LENGTH OFF
>>IMP RUNTIME-ERRORS FUNCTION-DEFAULT-VALUE ON
>>IMP LISTING-OPTIONS EXPAND-COPY OFF
>>IMP LISTING-OPTIONS EXPAND-SUBSCHEMA OFF
>>IMP LISTING-OPTIONS MERGE-DIAGNOSTICS ON
>>IMP LISTING-OPTIONS SORT-MAP ON
>>IMP LISTING-OPTIONS SHORTEN-XREF ON
>>TURN EC-OO-CONFORMANCE CHECKING ON
>>TURN EC-OO-NULL CHECKING ON
00010 >>IMP PRINT-DIRECTIVES ALL

>>CALL-CONVENTION COBOL
>>IMP RUNTIME-ERRORS FUNCTION-DEFAULT-VALUE ON
>>IMP LISTING-OPTIONS EXPAND-COPY OFF
>>IMP LISTING-OPTIONS EXPAND-SUBSCHEMA OFF
>>IMP LISTING-OPTIONS MERGE-DIAGNOSTICS ON
>>IMP LISTING-OPTIONS MERGE-REFERENCES OFF
>>IMP LISTING-OPTIONS MERGE-STATEMENT-ADDRESS OFF
>>IMP LISTING-OPTIONS SORT-MAP ON
>>IMP LISTING-OPTIONS SHORTEN-XREF ON
>>IMP COMPILER-ACTION GENERATE-INITIAL-STATE ON
>>IMP COMPILER-ACTION UPDATE-REPOSITORY OFF
>>TURN EC-DATA-CONVERSION CHECKING OFF
>>TURN EC-OO-CONFORMANCE CHECKING ON
>>TURN EC-OO-METHOD CHECKING OFF
>>TURN EC-OO-NULL CHECKING ON
>>TURN EC-OO-RESOURCE CHECKING OFF
>>TURN EC-OO-UNIVERSAL CHECKING OFF
>>TURN EC-STORAGE-NOT-ALLOC CHECKING OFF
>>TURN EC-STORAGE-NOT-AVAIL CHECKING OFF
>>TURN EC-XML-CODESET-CONVERSION CHECKING OFF

Compiler directives IMP RUNTIME-ERRORS

 115

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
2:

54
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

5

IMP RUNTIME-ERRORS

This directive controls the checking and handling of runtime errors.

Format

LR

>>IMP RUNTIME-ERRORS FUNCTION-DEFAULT-VALUE

LR

General rules

1. The directive applies in the compilation phase.
If the directive is specified in a statement, it applies only for the next clause or
statement.

 The same RUNTIME-ERRORS specification applies for WHEN specifications
in EVALUATE and SEARCH statements as for the EVALUATE or SEARCH
statement.

2. The directive may be used anywhere in a compilation unit.

3. The directive is rejected if the compiler option CHECK-FUNCTION-
ARGUMENTS=YES was specified when the compiler was called.

4. The ON specification causes the value YES to be assumed for the compiler option
SET-FUNCTION-ERROR-DEFAULT.

5. The OFF specification causes the value NO to be assumed for the compiler option
SET-FUNCTION-ERROR-DEFAULT.

6. The DEFAULT specification causes the value specified when the compiler was called
to be assumed for the compiler option SET-FUNCTION-ERROR-DEFAULT.

ON
OFF
DEFAULT

i

IMP RUNTIME-ERRORS Compiler directives

116

 117

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

6

6 Linking, loading, starting
In the course of compilation, COBOL2000 generates object modules or link-and-load
modules (LLMs), which are then available in a PLAM library or in the temporary EAM file of
the current task.
The program cannot, however, run in this form because its machine code is not yet
complete: each module contains references to external addresses, i.e. to other modules,
which must supplement it when execution takes place. The compiler generates these
external references during compilation for one or more of the following reasons:

● The COBOL program contains statements which

– require complex routines at machine code level (e.g. SEARCH ALL, INSPECT) or

– constitute interfaces to other software products or the operating system (e.g. SORT
or input/output statements such as READ, WRITE).

This applies to all COBOL programs, because the routines for program initialization and
program termination are also in this category. The machine instruction sequences for
these statements are not generated during compilation; they are already available as
finished modules in a library, the runtime system. An external reference to the corre-
sponding module in the runtime system is entered into the module generated by the
compiler for each such COBOL statement.

● The COBOL program calls an external subprogram.

The CALL statements in the “CALL literal” format cause the compiler to generate
external references for the linkage run at the appropriate locations in the generated
module.
CALL statements in the “CALL identifier” format cause the dynamic binder loader to
dynamically load the appropriate modules at runtime (see chapter “COBOL2000 and
POSIX” on page 299).

● The COBOL program has been compiled with
COMOPT GENERATE-SHARED-CODE=YES (in SDF: SHAREABLE-CODE=YES).
The compiler generates a non-shareable data module and a shareable code module
(see section “Shareable COBOL programs” on page 137). The data module contains
an external reference to the associated code module.

● The COBOL program uses language elements for object orientation.
The compiler generates external references for all non-parameterized classes /inter-
faces which are specified in the REPOSITORY paragraph.

Functions of the linkage editor Linking, loading, starting

118

● The COBOL program contains data written with external. The compiler creates
common areas for this purpose.

During linking and loading, the use of some language elements in programs requires addi-
tional modules which are not part of the runtime system(CRTE), but must be available in
the system. These must either be linked statically (see section “Static linkage using
TSOSLNK” on page 122 and section “Linking using BINDER” on page 127) or assigned
using appropriate BLSLIBnn link names during dynamic linkage (see section “Dynamic lin-
king and loading using DBL” on page 129). Specifically, this concerns:

● SORT:

SORT80 module with ILSORT and SORTZM1 entries (among others).
This module is normally contained in the $TASKLIB library.

● Library member as line sequential file:

LMSUP1 module.
This module is normally contained in the $LMSLIB library.

● National data (UTF-16):

GNLADPT module.
Where you can find this module is described in the “XHCS (BS2000/OSD)” manual [33].

● XML:

– GNLADPT module.
See the “XHCS (BS2000/OSD)” manual [33].

– ITCRXFCA module in the ’parser library’, which you must provide.
See chapter “Processing XML documents” on page 267.

6.1 Functions of the linkage editor

The process during which these external references are resolved (i.e. the additionally
required modules are linked with the generated module into an executable unit) is called
linking; the utility routine which performs this task is called a linkage editor.

A linkage editor processes either the result of a compilation (object module or LLM) or a
module already prelinked in a linkage run. A prelinked module may consist of one or more
object modules or a link-and-load module. Object modules and prelinked modules are
referred to collectively using the term “object module”. This term is used in the following
whenever the object to be described can be both an object module and a prelinked module.

To enable the unit generated during linking to run, a loader must be used to bring it into
memory to allow the processor to access and execute the code.

Linking, loading, starting Functions of the linkage editor

 119

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

6

The Binder-Loader-Starter system in BS2000 provides the following functional units for
linking and loading:

● The binder BINDER

links modules (object modules, link-and-load modules) to form a logically and physically
structured loadable unit. This unit is referred to as a link-and-load module (LLM) and is
stored by BINDER as an element of type L in a PLAM library.

● The static linkage editor TSOSLNK (TSOS LINKage editor)

links one or more object modules into an object program (also called a load module)
and saves it in a cataloged file or as an element of type C in a PLAM library;

or

links a number of object modules into a single prelinked module and stores it as an
element of type R in a PLAM library or in a temporary EAM file.

● The dynamic binder loader DBL

combines modules (i.e. object modules and LLMs, possibly generated by an earlier
linkage run with BINDER) into a temporary loadable unit, which it then loads into main
memory and executes immediately. COBOL programs that call at least one external
subprogram with “CALL identifier” can only be executed by this method (see section
“Linking and loading subprograms” on page 290).

Functions of the linkage editor Linking, loading, starting

120

● The static loader ELDE

loads a program that was linked by TSOSLNK and stored in a file or as an element of
type C in a PLAM library.

The COBOL2000 compiler generates object modules or LLMs at compilation. Object
modules are placed in the temporary EAM file of the current task or in a PLAM library as an
element of type R.
LLMs are stored as elements of type L in a PLAM library.

The following table shows which modules are generated and/or processed by the individual
functional units of the Binder-Loader-Starter system.

The linkage run in the POSIX subsystem is explained in the chapter “COBOL2000 and
POSIX” on page 299.

The following diagram shows an overview of the various options that are provided to
generate and call temporary and permanent executable COBOL programs in BS2000.

Module type
System component

BINDER DBL TSOSLNK ELDE

Object module yes yes yes no

Link-and-load module (LLM) yes yes *) no no

Prelinked module yes yes yes no

Object program (load module) no no yes yes
*) Only in ADVANCED run mode

Linking, loading, starting Functions of the linkage editor

 121

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

6

Figure 2: Generating and calling permanent and temporary executable COBOL programs in BS2000

MODULE-OUTPUT=*OMF MODULE-OUTPUT=*LIB-ELEM(lib,elem)

Permanent
modules

Program run

Temporary
object program

permanent
object program

Link and load
module

COBOL2000 Compiler

Temporary
modules

TSOSLINK DBL BINDER

 DBLELDE

Library-
program

LMS

Static linkage using TSOSLNK Linking, loading, starting

122

6.2 Static linkage using TSOSLNK

The static linkage editor TSOSLNK processes one or more object modules or prelinked
modules to generate either

– an executable program, which it outputs to a separate catalog file or to a PLAM library
as a type C library element, or

– a prelinked module, which it stores in the temporary EAM file of the current task, or in
a PLAM library as a type R library element.

The TSOSLNK utility routine is called with the START-PROGRAM command. It subse-
quently expects control statements from SYSDTA that specify

● for output:

– whether the result of the linkage run is to be an executable program or a prelinked
object module, and

– where the result is to be output

● for input:

– which object modules it should link in, and

– which libraries should be used for the resolution of unresolved external address
references.

Control statements for TSOSLNK

The TSOSLNK control statements and their operands are described in detail in the
“TSOSLNK” manual [9]; the following table merely provides an overview of the most
important aspects.

Linking, loading, starting Static linkage using TSOSLNK

 123

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

6

Statement Short description

PROGRAM
PROG

instructs the linkage editor to generate a program from the read object
modules, and specifies its characteristics and output location (PLAM library
or cataloged file). Among the operands which can be specified are the
following:

– SYMTEST=MAP or SYMTEST=ALL allows the user to use symbolic
names from the compilation unit when debugging with the AID debugger.
This is provided that an appropriate control statement was issued to
COBOL2000 during compilation in order to have LSD information
genera-ted.

– SYMTEST=ALL instructs the linkage editor to pass this information on to
the program, whereas SYMTEST=MAP allows LSD information from the
object module to be loaded dynamically during debugging
(see “AID” manual [8] for further information).

– LOADPT=*XS
defines the load address of the program in the address space above
16 Mbytes. This specification is not possible unless only the XS runtime
system and object modules that can be loaded into the upper address
space are being linked.

– ENTRY/START=entry-point
specifies the starting point of the program run. This specification
becomes necessary when the COBOL main program is not the first
program to be linked into an executable program. entry-point is then the
PROGRAM-ID name (abbreviated to 7 positions, if necessary) followed
by the suffix “$”.

The PROGRAM and MODULE statements (see below) are mutually
exclusive.

MODULE
MOD

causes the linkage editor to link the read object modules into a prelinked
object module and defines its output location. The MODULE and PROGRAM
statements (see above) are mutually exclusive.

INCLUDE specifies individual object modules from which the linkage editor is to create
the program or prelinked module.

RESOLVE assigns PLAM libraries to TSOSLNK for the autolink procedure (which is
described on the next page).

EXCLUDE excludes the specified PLAM libraries from the autolink procedure (described
below).

ENTRY see ENTRY or START operand of the PROGRAM statement.

END signals the end of the input of linkage editor statements.

Table 9: Control statements for TSOSLNK

Static linkage using TSOSLNK Linking, loading, starting

124

TSOSLNK autolink procedure

On finding external address references (in a generated module) that cannot be resolved by
modules specified in INCLUDE statements, TSOSLNK proceeds according to the following
autolink procedure:

1. TSOSLNK first checks whether a library containing a corresponding module was
explicitly assigned to the external reference by means of a RESOLVE statement.

2. If TSOSLNK cannot resolve the external reference in the first step, it searches all
libraries specified in RESOLVE statements. Libraries can be excluded from this search
by means of EXCLUDE statements.

3. If TSOSLNK does not succeed in resolving the external reference in the second step,
it searches the library TASKLIB, provided that this has not been prevented by the NCAL
statement or a corresponding EXCLUDE statement.
If there is no file named TASKLIB listed under the user ID of the current task, TSOSLNK
uses the system library $.TASKLIB.

If unresolved external references are present even after the autolink procedure, TSOSLNK
outputs a list of their names to SYSOUT and SYSLST.

Linking, loading, starting Static linkage using TSOSLNK

 125

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

6

Example 6-1

Static link-editing into an executable program

(1) The utility routine TSOSLNK is called.

(2) The PROG statement specifies that TSOSLNK is to generate an executable
program whose program name is COBOLPROG, and store it as library element
COBOLLAD in the PLAM library PLAM.LIB.

(3) The INCLUDE statement informs the linkage editor that it is to link object module
COBOLMOD from the PLAM library PLAM.LIB.

(4) TSOSLNK is to initially resolve external references with modules from the runtime
system, which is cataloged on this system under the name $.SYSLNK.CRTE.

(5) END terminates the input of control statements and starts the linkage process; after
its completion, TSOSLNK provides information on the program that has been
generated.

/START-PROGRAM FROM-FILE = $TSOSLNK ——————————————————————————————————— (1)
 % BLS0500 PROGRAM ’TSOSLNK’, VERSION ’V21.0E02’ OF ’1999-03-15’ LOADED
 % BLS0552 ...
*PROG COBOLPROG,LIB=PLAM.LIB,ELEM=COBOLLAD ———————————————————————————— (2)
*INCLUDE COBOLMOD,PLAM.LIB ——— (3)
*RESOLVE ,$.SYSLNK.CRTE —— (4)
*END ——— (5)
 % LNK0500 PROG BOUND
 % LNK0506 PROGRAM LIBRARY : PLAM.LIB
 % LNK0507 PHASE WRITTEN TO ELEMENT ’COBOLLAD’

Static linkage using TSOSLNK Linking, loading, starting

126

Linking segmented programs with overlay structure

By using appropriate COBOL language elements (see the “COBOL2000 Reference
Manual” [1]), the compiler can be made to output the machine code for a compilation unit
in parts, i.e. in the form of a number of object modules rather than just one. This procedure
is known as segmentation. The program sections created in the process are called
segments.

An overlay structure can be defined during link-editing of a segmented program (see
“TSOSLNK” manual [9]):

With the exception of the root segment, which remains in main memory for the entire
program run, it is possible to have the individual segments overlay-loaded under program
control whenever they are necessary for execution. Segments can overlay one another
under these circumstances, i.e. the segments can occupy a common memory area one
after the other. Which segments can overlay one another is determined by means of control
statements during linkage-editing of the program.
However, since the Executive of BS2000 automatically subdivides the object program into
pages (i.e. 4096-byte sections) and only loads pages into main memory as and when
required during execution of the program, segmentation to relieve the load on main memory
is not necessary in BS2000. It only becomes essential if virtual storage is not large enough
to accept the entire program, including data. For this reason, it is neither practical nor
possible to define a true overlay structure for programs that are intended to run in the upper
address space.

Overlay structures for segmented programs can be defined with the following TSOSLNK
statements.

Statement Short description

OVERLAY determines the overlay structure for the program: The OVERLAY statements
of a linkage-editor run define
– which segments can overlay one another and
– at which locations in the object program they are to mutually overlap.

OVERLAY statements are only permitted during linkage editing of a load
module (PROGRAM statement); in the case of a prelinked object module
(MODULE statement), they are rejected with an error message. In the address
space above 16 Mbytes, (LOADPT=*XS entry in the PROGRAM or OVERLAY
statement) no true overlay structures are possible; although the linkage editor
will accept the OVERLAY statement, it will arrange the segments sequentially
on the basis of their addresses.

TRAITS defines for a program segment that it
– should be aligned on page boundaries during loading,
– can only be read during the program run.

 (READONLY=Y specified)

Linking, loading, starting Linking using BINDER

 127

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

6

6.3 Linking using BINDER

Using BINDER, object modules and LLMs can be linked into a single link-and-load module
(LLM) and stored as a type-L element in a PLAM library. BINDER is described in detail in
the “BINDER” manual [22]).

 Important Note:
LLMs with a linked runtime system must not be stored in libraries
– from which other LLMs that are not prelinked are also to be directly loaded or
– which are used by BINDER to resolve external references by means of

AUTOLINK.

Example 6-2

Generating an LLM from object modules

(1) BINDER is called.

(2) The START-LLM-CREATION statement generates a new LLM in the work area with
the internal name PROG. The generated LLM is subsequently stored as an L-type
element in a PLAM library by means of the SAVE-LLM statement (see “SORT”
manual [6]).

(3) This INCLUDE-MODULES statement specifies the name of the module containing
the main program (MAIN). The module is held in the temporary EAM file (*OMF).

/START-BINDER —— (1)
% BND0500 ...
//START-LLM-CREATION INT-NAME=PROG, COPYRIGHT = *NONE ————————————————— (2)
//INCLUDE-MODULES LIB=*OMF,ELEM=MAIN ————————————————————————————————— (3)
//INCLUDE-MODULES LIB=PLAM.BSP,ELEM=SUB —————————————————————————————— (4)
//RESOLVE-BY-AUTOLINK LIB=$.SYSLNK.CRTE —————————————————————————————— (5)
//SAVE-LLM LIB=PLAM.BSP,ELEM=TESTPROG ———————————————————————————————— (6)
% BND3101 SOME EXTERNAL REFERENCES UNRESOLVED
% BND3102 SOME WEAK EXTERNS UNRESOLVED
% BND1501 LLM FORMAT : '1
//END ——— (7)
% BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS: 'UNRESOLVED
 EXTERNAL'

/START-PROG *MOD(LIB=PLAM.BSP,ELEM=TESTPROG,RUN-MOD=ADVANCED) ———————— (8)
% BLS0523 ELEMENT 'TESTPROG', VERSION '@' FROM LIBRARY 'PLAM.BSP' IN
 PROCESS
% BLS0524 LLM 'TESTPROG', VERSION ' ' OF '2006-10-26:14:51:46' LOADED

i

Linking using BINDER Linking, loading, starting

128

(4) This INCLUDE-MODULES statement specifies the name of the module containing
the subprogram (SUB). The module is held in the PLAM library PLAM.LIB.

(5) The RESOLVE-BY-AUTOLINK statement specifies the name of the runtime library
from which external references are to be resolved.

(6) The SAVE-LLM statement stores the generated LLM under the name TESTPROG
as an L-type element in the PLAM library PLAM.LIB. The BINDER message
“SOME WEAK EXTERNS UNRESOLVED” refers to the ILCS module IT0INITS.
This module contains weak external references to all languages potentially
provided for ILCS. Only the language COBOL2000 is involved in this example and
the other references remain unresolved.

(7) The END statement terminates the BINDER run.

(8) The LLM is loaded and started.

With the INCLUDE-MODULES and RESOLVE-BY-AUTOLINK statements,
LIB=*BLS-LINK may also be specified instead of the library name (LIB=library). In this case
the libraries to be searched must be assigned with the link name BLSLIBnn
(00 ≤ nn ≤ 99). This is done by means of the SET-FILE-LINK command before BINDER
is called, e.g.:

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=$.SYSLNK.CRTE

An LLM generated by means of BINDER can - provided all external references are resolved
- be loaded and started using DBL with no assignment of alternative libraries:

START-PROGRAM *MODULE(LIB=library,ELEM=module,RUN-MODE=ADVANCED)

When the LLM format is generated, a CSECT is created with the name program-name&#
and with the following entries:

program-name for the start of the subprogram

program-name&$ for the start of the main program

program-name&A for the service entry

When shared-code is generated, the code CSECT program-name&@ is also created.

Linking, loading, starting Dynamic linking and loading using DBL

 129

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

6

6.4 Dynamic linking and loading using DBL

The dynamic binder loader DBL links modules temporarily into a loadable unit, which it then
loads into memory and executes immediately. The generated load unit is automatically
deleted at the end of the program run. The mode of operation of DBL is described in detail
in the “Binder-Loader-Starter” manual [10].

DBL is called implicitly by the commands START-PROGRAM and LOAD-PROGRAM. The
following overview summarizes the options of the START-PROGRAM and LOAD-
PROGRAM commands that are most relevant to calling DBL; a detailed description of all
the available operands is provided in the “BS2000/OSD-BC Commands” manual [3].

The START-PROGRAM command instructs DBL to generate an executable program, load
it into memory, and start it. Since the program is run immediately after the command, the
necessary resources (files) must be assigned to DBL before the START-PROGRAM
command is given (see section “Assignment of cataloged files” on page 178).

The LOAD-PROGRAM command instructs DBL to generate an executable program and
load it into memory without starting it. This makes it possible to enter additional commands
prior to program execution, e.g. commands for program monitoring using a debugging aid.
The program can subsequently be started by means of

– a %RESUME command, if tests are to be performed using the advanced interactive
debugger (AID) or

– a RESUME-PROGRAM command in all other cases.

 [FROM-FILE =] *MODULE (LIBRARY=

 [,RUN-MODE =

LOAD-PROGRAM

START-PROGRAM *OMF,ELEMENT=modul
*OMF [,ELEMENT=*ALL]
bibliothek,ELEMENT=element

ADVANCED(ALT-LIB=YES)

STD
])

Dynamic linking and loading using DBL Linking, loading, starting

130

LIBRARY=*OMF
indicates the temporary EAM file of the current task into which the compiler has output the
compiled object module.

ELEMENT=module
is the name of the module that is to be loaded first. The string “module” consists of the
first eight characters of the corresponding ID name in the compilation unit. “module” can
also be the ENTRY name of the program segment that is to be loaded first.

ELEMENT=*ALL
causes DBL to fetch all the modules from the EAM object module file. If this is what is
desired, there is no need to specify it explicitly as this value is preset as the default.

LIBRARY=library
is the name of a PLAM library in which the module is stored as a library element. Using
*LINK(LINK-NAME=linkname) it is also possible to specify a predefined file link name for
the library.

ELEMENT=element
is the name of the module that is stored as a type-R element in the specified PLAM
library. If there is more than one element with the same name in the library, the element
with the (alphabetically) highest version designation is used.

RUN-MODE=STD
In this mode, the runtime system CRTE must be assigned as the TASKLIB by using the
SET-TASKLIB command before DBL is called.
Apart from the TASKLIB and, if applicable, the library containing the modules, no other
libraries can be taken into consideration during link-editing.

RUN-MODE=ADVANCED(ALTERNATE-LIBRARIES=YES)
In this mode, in order to resolve external references DBL searches up to 99 different
libraries assigned by means of the link name BLSLIBnn (00 ≤ nn ≤ 99) prior to invocation
of DBL.

Dynamic loading

If other external subprograms are invoked by COBOL modules via “CALL identifiers”, some
additional conditions for loading and starting must be observed. See chapter “Program
linkage” on page 289 for more details.

Linking, loading, starting Loading and starting executable programs

 131

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

6

6.5 Loading and starting executable programs

Before a statically linked program can execute, it has to be loaded into main memory. In
BS2000 this function is performed by a static loader. This, like the dynamic binder loader,
is called with the START-PROGRAM or LOAD-PROGRAM command (see the
“BS2000/OSD-BC Commands” manual [3]):

● The START-PROGRAM command instructs the static loader to load the program into
main memory and start it. As the program is run immediately after the command is
issued, the necessary resources (files) have to be assigned to the loader first (see
section “Assignment of cataloged files” on page 178).

● The LOAD-PROGRAM command instructs the static loader to load the program into
main memory without starting it. This makes it possible to enter additional commands
prior to program execution, e.g. commands for program monitoring using a debugging
aid. The program can subsequently be started by issuing a RESUME-PROGRAM or
%RESUME command.

The following overview summarizes the options of the START-PROGRAM and LOAD-
PROGRAM commands that are most relevant for calling the static loader; a detailed
description is provided in the “BS2000/OSD-BC Commands” manual [3].

library specifies the name of a PLAM library in which the program generated by
TSOSLNK is stored as a library element.

element is the name of the library element in which the program is stored. It must be
a type C element.

version specifies the element version as a string of 24 characters or less.

filename is the name of the cataloged file which contains the program generated by
TSOSLNK.

 FROM-FILE =
LOAD-PROG

START-PROG *PHASE(LIB=library,ELEM=element,VERS=version)

filename

Program termination Linking, loading, starting

132

6.6 Program termination

The termination action taken by a program is of special importance when it is invoked within
a procedure or is monitored by a job variable.

If error messages to which an internal return code is assigned (see error message
COB9119 in chapter “Messages of the COBOL2000 system” on page 345) are issued
during program execution, this return code is passed to the last two bytes of the return code
indicator of a monitoring job variable (see “Job Variables” manual [7]).

The following table provides an overview of

– the possible contents of the return code indicator in job variables,

– the associated error messages, and

– their impact on the further progress of a procedure.

Linking, loading, starting Program termination

 133

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

6

Return
code
indicator 1)

Error
number 2) Short description of the error

Continuation
controllable
with option 3) Dump

Triggers
spin-off in
procedures
5)

0100 none No error detected by the runtime system --- no no

1120 COB9120 Job variables not available yes yes

1121
1122

COB9121
COB9122

End of file during ACCEPT processing yes
yes

1123
1124
1125
1126
1127

COB9123
COB9124
COB9125
COB9126
COB9127

Invalid argument in a standard function yes
yes
yes
yes
yes

1128 COB9128 User return code is set no

1131 COB9131 Job variables:
ACCEPT set to empty job variable

yes

1132 COB9132 Wrong number of parameters (CALL) yes

1133 COB9133 Program execution in BS2000
Version < 10.0

no

1134 COB9134 Sort error yes

2140 COB9140 Reference modification error yes no /
yes4)

2141 COB9141 Last XML statement not yet processed no

2142 COB9142 GO TO has no ALTER no

2143 COB9143 Purge date for the volume has not yet
expired

no

2144 COB9144 Table:
Subscript/index range violation

yes

2145 COB9145 Table
(with DEPENDING ON element):
Subscript/index range violation

yes

2146 COB9146 COBOL2000 runtime system in CRTE is
incompatible with the object program

no

2148 COB9148 CALL or ADDRESS OF PROGRAM not
executable

no

2149 COB9149 Incompatible data in numeric edited item no

2151 COB9151 Files:
Undetected I/O error (no USE procedure,
no INVALID KEY, no AT END)

no

Table 10: Return code indicators in job variables

Program termination Linking, loading, starting

134

2152 COB9152 Connection to the database could not be
established

no no /yes 4) yes

2153 COB9153 Error while converting EBCDIC to UTF-16 yes

2154 COB9154 REPORT WRITER:
user error

no

2155 COB9155 Error on exit from a USE procedure no

2156 COB9156 DML: SUB-SCHEMA module too small for
processing an extensive DML statement

no

2157 COB9157 CALL not executable no

2158 COB9158 More than 9 recursive calls to
DEPENDING paragraphs

no

2159 COB9159 Error while quitting an XML
PROCESSING procedure

no

2160 COB9160 Runtime unit uses CANCEL, but contains
programs compiled with a COBOL85
compiler < V2.0

no

2162 COB9162 The attributes of an external file are not
consistent within the programs of a
runtime unit

no

2163 COB9163 The storage space for DYNAMIC data
could not be set up

no

2164 COB9164 Program called with CALL is not available no

2165
2166
2167

COB9165
COB9166
COB9167

Invalid call or
invalid exit from USE
procedures

no

2168
2169
2171

COB9168
COB9169
COB9171

REPORT WRITER:
user error

no
no
no

2173 COB9173 SORT run not successful no

2174
2175

COB9174
COB9175

Error handling in the program: user error no
no

2176 COB9176 REPORT WRITER:
user error

no

2178 COB9178 Record to be sorted does not match
SD description

no

2179 COB9179 Sorted record does not match
GIVING file description

no

2180 COB9180 RELEASE/RETURN not under the control
of SORT/MERGE

no

Return
code
indicator 1)

Error
number 2) Short description of the error

Continuation
controllable
with option 3) Dump

Triggers
spin-off in
procedures
5)

Table 10: Return code indicators in job variables

Linking, loading, starting Program termination

 135

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

6

2181 COB9181 DATABASE-HANDLER has not yet
finished processing the last DML
statement

no no /yes 4) yes

2182 COB9182 Invalid inheritance of classes or interfaces no

2184 COB9184 SORT within the SORT controller no

2185 COB9185 Error in connection with OO
language elements

no

2188 COB9188 XML parser not found no

2189 COB9189 PARTIAL-BIND runtime system not found no

3191 COB9191 SUPER class not found no yes

3192 COB9192 The end of the program was reached but
neither STOP RUN nor EXIT PROGRAM
was executed

no

3193 COB9193 DISPLAY error no

3194 COB9194 Error during input from SYSDATA no

3195 COB9195 Error during output to SYSLST no

3196 COB9196 ACCEPT or DISPLAY
statement error at the runtime
system/operating system interface

no

3197 COB9197 Job variables:
access failed

yes

3198 COB9198 Hardware interrupt no

3199 none WROUT error:
No further messages can be output

no

Return
code
indicator 1)

Error
number 2) Short description of the error

Continuation
controllable
with option 3) Dump

Triggers
spin-off in
procedures
5)

Table 10: Return code indicators in job variables

Program termination Linking, loading, starting

136

1) The first digit indicates the weight of the message (0: note, 1: warning, 2: error,
3: fatal error).
The second digit (always 1) identifies the program as a COBOL object.
The final two digits (in bold print) represent the internal return code.

2) For content and meaning of messages see chapter “Messages of the COBOL2000
system” on page 345.

3) Program abortion can be induced with
RUNTIME-OPTIONS=PAR(ERROR-REACTION = TERMINATION) or
COMOPT CONTINUE-AFTER-MESSAGE=NO. After the program has been aborted,
the associated return code is set in the job variable monitoring the program.

4) Batch processing: no
Interactive processing: query yes/no

5) When a spin-off is triggered, all subsequent commands are ignored with the exception
of the SET-JOB-STEP, EXIT-JOB, LOGOFF, CANCEL-PROCEDURE,
END-PROCEDURE and EXIT-PROCEDURE commands. The SET-JOB-STEP com-
mand terminates the spin-off, and processing is continued with the next command.

Linking, loading, starting Shareable COBOL programs

 137

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

6

6.7 Shareable COBOL programs

In large programs it may be advantageous to make individual program segments shareable
if they are to be accessed by several users (tasks).

For this, the following control statement must be specified at compilation time:

COMOPT GENERATE-SHARED-CODE=YES

or

SHAREABLE-CODE=YES
in the MODULE-GENERATION parameter of the COMPILER-ACTION option

The compiler then generates two object modules, one of which contains the nonshareable
section and the other the shareable section of the object. These are referred to in the
following as the “nonshareable” and “shareable” module, respectively. The shareable and
nonshareable modules can themselves be linked into prelinked modules.

The shareable modules must be stored in a PLAM library either directly by the compiler (via
a COMOPT MODULE statement or the SDF option MODULE-LIBRARY) or by means of
the LMS utility routine (see “LMS” manual [11]).

All nonshareable sections of a program are loaded separately for each task and user into
class 6 memory.
Program systems with shareable modules can only be called using DBL. The call always
uses the name of the nonshareable (data) module. This contains external references to its
shareable code module as well as to any other nonshareable modules.

Sample call:

(1) The SET-TASKLIB command is used to assign the library that contains the COBOL
runtime system.

(2) element is the name of the data module or prelinked module which must contain at
least the nonshareable section of the main program. library is the library containing
the user-written modules.

/SET-TASKLIB $.SYSLNK.CRTE —— (1)
/START-PROGRAM *MOD(library,element) —————————————————————————————————— (2)

Shareable COBOL programs Linking, loading, starting

138

The following figure illustrates program runs with and without shared code.

Figure 3: Shared code

Program runs without SHARE command

Task A Task B Task C

Module XY Module XY Module XY

Module Module Module
XY@ XY@ XY@

Class 6 memory Class 6 memory Class 6 memory
for task A for task B for task C

Module XY@ is loaded three times (class 6 memory)

Program runs with SHARE command

Task A Task B Task C

Module XY Module XY Module XY

Class 6 memory Class 6 memory Class 6 memory
for task A for task B for task C

Module
XY@ in class 4 memory

of the operating system
shareable

Module XY@ is loaded only once (class 4 memory)

 139

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

7

7 Debugging aids for program execution
Even a syntactically correct COBOL program may still have logic errors and therefore not
run as intended. A number of different aids are available to the COBOL programmer for
detecting and correcting such errors:

– The programmer can use the Advanced Interactive Debugger (AID) during program
execution. This requires no special programming provisions and permits errors to be
detected and corrective action to be taken while the loaded program is being executed.

– Debugging lines can be inserted in the compilation unit and activated by the
programmer as the need arises. This assumes that potential error conditions were
anticipated and provided for when the compilation unit was written. The diagnosis of an
unexpected error can therefore make it necessary to modify or add debugging lines and
then recompile the entire compilation unit. Debugging lines are described in
“COBOL2000 Reference Manual” [1] and in section “Debugging lines” on page 152.

The debugging aids can be used analogously in the POSIX subsystem (see the chapter
“COBOL2000 and POSIX” on page 299).

Advanced Interactive Debugger (AID) Debugging aids for program execution

140

7.1 Advanced Interactive Debugger (AID)

Not supported in the COBOL2000-BC !

Only a short introduction to AID is given in this User Guide. For a detailed description of this
debugger, refer to “AID” manuals [8], [20] and [21]. Knowledge of the information in the
“AID” manual [8] is required here.

AID has the following features:

1. It makes it possible to test “symbolically”, i.e. to specify symbolic names from the compi-
lation unit in commands rather than absolute addresses. For this purpose, the required
LSD information must be generated at compile time and passed to the loaded program
at a later stage (see section “Symbolic debugging with AID” on page 143).

However, with respect to the program in its entirety, it is not always necessary to load
this information together with the program. Instead, AID allows LSD information to be
dynamically loaded for each compilation unit, provided the associated modules (with
LSD information) reside in a PLAM library. In this way, more efficient use of resources
is achieved:

– Program memory space is saved, as LSD information has to be loaded only when
it is required for debugging (memory space for a program increases by about a
factor of 5 if the information is loaded at the same time as the program).

– A program that runs without errors at debugging time does not have to be recom-
piled (without LSD information) or relinked for the production run.

– When the results of a production run make a test run desirable, the necessary LSD
information is available and can be used without any need for the program to be
recompiled and relinked.

2. It provides functions permitting

– program execution to be traced at symbolic level and logged (TRACE function)

– program execution to be interrupted at specified points or when defined events
occur, in order to initiate AID or BS2000 commands (referred to as “subcommands”)

– a section or a paragraph in the PROCEDURE DIVISION to be specified after a
program interrupt. Debugging is continued with the section or paragraph specified,
irrespective of the coded program logic (%JUMP statement (see “AID” [8])); this is
possible only if the program was compiled with PREPARE-FOR-JUMPS=YES in the
AID parameter of the TEST-SUPPORT option or using COMOPT SEPARATE-
TESTPOINTS=YES (see section “TEST-SUPPORT option” on page 76 and section
“Table of COMOPT operands” on page 92 respectively)

Debugging aids for program execution Advanced Interactive Debugger (AID)

 141

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

7

– the contents of fields to be output in a form that takes account of the data definitions
of the compilation unit

– the contents of fields to be changed, with AID performing the necessary moves
according to the specifications of the COBOL MOVE statement.

3. It supports the analysis of dumps in disk files as well as the diagnosis of loaded
programs.

4. It can be used in batch mode as well as in interactive mode. For program testing,
however, interactive mode is recommended as it does not require the sequence of the
commands to be defined in advance and allows this sequence to be tailored to suit the
current debugging environment.

7.1.1 Conditions for symbolic debugging

For debugging at a symbolic level, AID permits data items, sections, and paragraphs to be
addressed using the names defined in the compilation unit. It also permits statement lines
and individual COBOL verbs in the Procedure Division to be referenced. Consequently, AID
must be provided with the appropriate information on these symbolic names. This infor-
mation can be subdivided into two parts:

– the List for Symbolic Debugging (LSD), in which the symbolic names and statements
defined in the module are cataloged, and

– the External Symbol Dictionary (ESD), which records a module’s external references.

Generation or transfer of this information is initiated or suppressed by means of appropriate
operands in the call command or control statement at each of the following stages:

– compilation with COBOL2000

– linking and loading with the dynamic binder loader (DBL) or

– linking with the static linkage editor (TSOSLNK) and

– loading with the static loader (ELDE)

The ESD information is generated and transferred as standard, whereas the LSD infor-
mation can be made accessible to AID in two ways. After it has been generated at compile
time, this information can be:

– loaded together with the entire program, or

– dynamically loaded for each compilation unit as necessary, provided the associated
object modules are available in a PLAM library.

Advanced Interactive Debugger (AID) Debugging aids for program execution

142

For each of these cases, the following table provides an overview of the operands that need
to be specified in order to generate and transfer the LSD information.

1) This is possible only if the associated modules reside in a PLAM library.
2) If the COMOPT GEN-SHARE=YES or the SDF option SHARE-CODE=YES is

specified, only statements from the code or data module are listed for the trace
when debugging.

Stages in the
development of the
program

Operands to be specified

if the LSD information is to be
loaded jointly with the entire
program

if the LSD information is to be dynam-
ically loaded by AID at a later stage 1)

Compile with
COBOL20002)

TEST-SUPPORT=AID()
 or
COMOPT SYMTEST=ALL

TEST-SUPPORT=AID()
 or
COMOPT SYMTEST=ALL

Link and load with the
dynamic binder loader

LOAD-PROGRAM ...,
 TEST-OPTIONS=AID
or
START-PROGRAM ...,
 TEST-OPTIONS=AID

LOAD-PROGRAM ...,
 [TEST-OPTIONS=NONE]
or
START-PROGRAM ...,
 [TEST-OPTIONS=NONE]

Link with TSOSLNK PROGRAM...,SYMTEST=ALL PROGRAM...[,SYMTEST=MAP]

Load or load and start
with the static loader

LOAD-PROGRAM ...,
 TEST-OPTIONS=AID
or
START-PROGRAM ...,
 TEST-OPTIONS=AID

LOAD-PROGRAM ...,
 [TEST-OPTIONS=NONE]
or
START-PROGRAM ...,
 [TEST-OPTIONS=NONE]

Table 11: Operands for generating LSD information

Debugging aids for program execution Advanced Interactive Debugger (AID)

 143

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

7

7.1.2 Symbolic debugging with AID

Symbolic debugging with AID permits data items, compilation units, sections, and
paragraphs to be addressed using the names defined in the source text.

However, in order to reference a line in the Procedure Division, the programmer must
specify a name in the form

– S’n’ (for a line with a section or paragraph name) or

– S’nverbm’ (for a line with COBOL verbs).

Such an LSD name is created by COBOL2000 for each line in the Procedure Division and
for each COBOL verb in a statement line (see). Its components have the following meaning:

n is the number (5 digits at most) of the line in the Procedure Division. The number,
which is assigned by COBOL2000 at compile time, must be specified without
leading zeros. If the sequence number of the compilation unit (max. 6 positions) is
to be used as the line number, then this must be requested by the user with the SDF
operand STMT-REFERENCE=COLUMN-1-TO-6 in the TEST-SUPPORT option or
with COMOPT TEST-WITH-COLUMN1.

verb is the predefined abbreviation of a COBOL verb in the line concerned. A list of the
abbreviations is given below.

m is a one- or two digit number specifying which of several identical verbs within a line
n is to be indicated.
If k is equal to 1, it is omitted.

Example 7-1

Creation of LSD names

In this statement line

– the first verb has the LSD name S’26IF’,

– the second verb has the LSD name S’26MOV’, and

– the third verb has the LSD name S’26MOV2’.

A detailed example explaining how a COBOL program can be debugged with AID is
provided in the “AID“ [8].

000026 IF A = B MOVE A TO D MOVE B TO E.

Advanced Interactive Debugger (AID) Debugging aids for program execution

144

List of COBOL verbs and their abbreviations:

1) Explicit scope terminator (e.g. END-ADD)

2) The point at which END is to stop comes after the scope terminator; for
ENDPERFORM, in particular, this point comes after the PERFORM has been
completed. A further stopping point exists prior to END-PERFORM, after a single loop.
You can use PER to address this second stopping point.

ACC
ADD
ADDC
ALLO
ALT
CALL
CANC
CLO
COM
CON
CONT
DEL
DIS
DIV
DSC
END
ENTR
ERA
EVAL
EXI
EXI
EXI
EXIT
EXIT
FET
FIN
FND
FRE
GEN
GET
GO
GOT
IF
INIT

ACCEPT
ADD
ADD CORRESPONDING
ALLOCATE
ALTER
CALL
CANCEL
CLOSE
COMPUTE
CONNECT
CONTINUE
DELETE
DISPLAY
DIVIDE
DISCONNECT
END-xxx 1) 2)

ENTRY
ERASE
EVALUATE
EXIT
EXIT PARAGRAPH
EXIT SECTION
EXIT METHOD
EXIT PROGRAM
FETCH
FINISH
FIND
FREE
GENERATE
GET
GOBACK
GO TO
IF
INITIALIZE

INI
INSP
INV
KEE
MOD
MOV
MOVC
MRG
MUL
OPE
PER

PERT
RAIS
REA
REDY
REL
RES
RET
REW
SEA
SET
SOR
STA
STO
STOR
STRG
SUB
SUBC
TER
UNST
WRI
XML

INITIATE
INSPECT
INVOKE
KEEP
MODIFY
MOVE
MOVE CORRESPONDING
MERGE
MULTIPLY
OPEN
PERFORM oder EXIT PERFORM
end of main part of loop 2)

TEST OF PERFORM
RAISE
READ
READY
RELEASE
RESUME
RETURN
REWRITE
SEARCH
SET
SORT
START
STOP
STORE
STRING
SUBTRACT
SUBTRACT CORRESPONDING
TERMINATE
UNSTRING
WRITE
XML

Debugging aids for program execution Advanced Interactive Debugger (AID)

 145

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

7

Predefined information

Information about the object being debugged

You can use the AID command

%D[ISPLAY]

to call up general information on the object being debugged:

Information about the exception condition

You can use the AID command

%D[ISPLAY] _LAST_EXCEPTION

to request general information on the last exception condition.

Format of the output:

01 _LAST-EXCEPTION.
02 _EXCEPTION_NAME PIC X(31).

_EXCEPTION_NAME Name of the exception condition which has led to the exception
condition (blank if no exception condition exists).

_Compiler the compiler that compiled the object

_Compilation_Date the date of compilation

_Compilation_Time the time of compilation

_Program_Name ID name of the object

_EBCDIC_CCSN Name of the EBCDIC variant which is assumed in the case of
conversions between alphanumeric and national data

_COMPILER
_COMPILATION_DATE
_COMPILATION_TIME
_PROGRAM_NAME

Advanced Interactive Debugger (AID) Debugging aids for program execution

146

Notes on symbolic debugging of nested programs

● Setting test points

– Paragraphs and sections of the contained program in which the interrupt point lies
can be referenced without qualification.

– Sections and paragraphs in a different program, which may also lie in a different
compilation unit, are accessed via the S and PROC qualification:

%INSERT [S=program-id.]PROC=program-id-contained.paragraph [IN section]

– The S qualification must be specified whenever the test point is to be set in a
different, separately compiled program.

– A test point at the start of the Procedure Division of the outermost containing
program can be set by means of a PROG qualification:

%INSERT PROG=program-id.program-id

or written out in full:

%INSERT S=program-id.PROC=program-id.program-id

This method is only meaningful if the program-id does not exceed 8 characters or if
an LLM was generated, since otherwise the source name, but not the procedure
name, would be truncated to 8 characters.

– It is not possible to set a test point at the start of a contained program by using a
PROG qualification, since S and PROC are different. This can, however, be
achieved as follows:

%INSERT [S=program-id.]PROC=program-id-contained.program-id-contained

– Names that are unique in the current compilation unit can also be addressed
without any qualification.

● Accessing data

– %D locates the data of the current nested program and also data having the
GLOBAL attribute that is not locally concealed, i.e. it is possible to access the same
data that the program itself can also access at this point.

– %SD can be used to give the data of all the surrounding programs, in accordance
with the current call hierarchy.

– The PROC qualification can be used to specifically access one item of data from a
different program.

%D PROC=program-id-contained.data-item

%SD is also possible here instead of %D provided the item of data lies in a calling
program.

Debugging aids for program execution Advanced Interactive Debugger (AID)

 147

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

7

● Depending on how the program is nested, the PROC qualification can be repeated
more than once when accessing both test points and data.

● The %TRACE command logs all statements of the current CSECT, i.e. including all
statements of the called contained programs, but not including the statements in
separately compiled programs.

● If the statement types are indicated in the trace, additional LABEL specifications are
occasionally reported by AID on account of internally generated paragraphs.

Notes on debugging object-oriented COBOL programs

● Addressing

– Classes are addressed by a source qualification: S=<class>, where <class> is the
name specified in the CLASS-ID paragraph.

– Methods are addressed by a procedure qualification:
PROC={FACTORY | OBJECT}.PROC=<method>, where <method> is the name
specified in the METHOD-ID paragraph.

A source qualification is required whenever the current program location is not in (a
method of) the class.
Procedure qualifications are only needed to the extent required for unique identifi-
cation. Consequently, PROC={FACTORY | OBJECT} can always be dropped for
methods, since the method name must be unique in the class.

● Commands

– Setting test points

Test points can be set in methods by using a source and procedure qualification:

%INSERT [S=<class>.] [PROC=<method>.] srcref

Write monitoring can be set on an object reference with:
%ON %WRITE(objref)
However, an object reference modified by NEW can only be displayed after
returning to the calling point.

Advanced Interactive Debugger (AID) Debugging aids for program execution

148

– Tracing

Classes and methods can be specified as the trace area with %TRACE as follows:

%TRACE <n> IN S=<class>.[PROC={FACTORY | OBJECT}.PROC=<method>]

– Displaying data

%DISPLAY

The data of an object is only visible if the interrupt point lies in a method of that
object. No qualification is specified in such cases.

The data in a method is only visible within that method.

An object reference is displayed as follows:

<level> objref
<level+1> FACTORY | OBJECT | NULL
<level+1> class-name

The first component indicates whether the reference points to the factory object or
a normal object or whether a null reference is involved. The second component
shows the class name of the currently referenced object and is dropped for null
references.

%SD

%SD shows the data in the current dynamic call hierarchy of programs and
methods. In the case of methods, only the local data of the method is displayed, not
the data of the surrounding object.
In addition, the global data for a source module such as the
_COMPILATION_DATE, for example, is output per class.

– Editing data

%SET, %MOVE

High-level assignments to object references are rejected by AID with an error
message (Types are not convertible...). Low-level access to object references is
possible, but entirely at the user’s own risk.

Debugging aids for program execution Advanced Interactive Debugger (AID)

 149

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

7

Information on testing programs with user-defined types

AID V3.1A supports the TYPEDEF clause and type-specific pointers in COBOL2000.

A dereferencing operator and an address operator now supplement the familiar AID
operators (refer to the “AID” manual [8]).

The dereferencing operator is used to access the date addressed by a pointer. It is repre-
sented by an asterisk and can be combined with the COBOL qualification (IN, OF) and the
COBOL subscripting.

The address operator supplies the address of a date for providing a value of a pointer or for
further use in low-level AID. For this purpose AID supports the COBOL syntax ADDRESS
OF.

● Access to data names

The data names of the TYPEDEF clause are not used in the AID command.

– The input of simple, qualified and indexed symbols in AID takes place in the same
way as in COBOL. This means that partial qualifications in particular are permitted
provided they are unambiguous. For performance reasons it is advisable to qualify
an input symbol completely for programs with a very large number of groups (struc-
tures). This expedites the search process and obviates the need for a uniqueness
test. Complete qualification is always required for symbols with a dereferenced
component
(e.g. %D NAME IN *ADDRESS-START). Furthermore, index information must
always be specified exactly.

– The following rules apply for complex data accesses arising from the combination
of qualification, subscripting and dereferencing:

– Processing always takes place from right to left. The operator on the farthest
right is processed first.

– If an operand is grouped with an operator, the operator in parentheses has
priority when processing from right to left.

● Adress selector

Just as in COBOL, the keyword of the address selector is ADDRESS OF. It is reserved
and does not apply in the setting %AID SYMCHARS=NOSTD.

Advanced Interactive Debugger (AID) Debugging aids for program execution

150

● Assignments and comparisons

– Assignments and comparisons of variables with the same TYPEDEF clause without
a STRONG specification can, similarly to groups, only be performed at low level,
i.e. through explicit conversion of the groups to hexadecimal strings.

– In the case of assignments and comparisons of variables with the same TYPEDEF
clause and with a STRONG specification, explicit conversion to hexadecimal
strings in the AID command entry is not required. AID checks whether the source
and target have the same1 TYPEDEF clause with the STRONG specification and
then carries out the assignment or comparison. However, during execution the
string is converted internally to the variable as a whole and not to the individual
components.

– In the case of assignments and comparisons of type-specific pointers, a check is
made to see whether the pointers have the same reference type. If the reference
type is a group (structure) with the TYPEDEF clause, the STRONG specification is
also required in the declaration of the type. If the pointer is assigned an address via
the address selector, or if a pointer is compared with an address selector, the
analogous type check is performed between the reference type of the pointer and
the argument type of the address selector.

1 Please note: AID does not treat equivalent types as “identical” types (see the “COBOL2000 Reference Manual” [1]).

Debugging aids for program execution Advanced Interactive Debugger (AID)

 151

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

7

Example 7-2

01 PT-TYP TYPEDEF USAGE POINTER TO PERSON.

01 PERSON TYPEDEF STRONG.
 02 NAME PIC X(30).
 02 VORNAME PIC X(30).

01 VERWEIS TYPE PT-TYP.

01 PERS1 TYPE PERSON.
01 PERS2 TYPE PERSON.

Possible entry in AID:

%SET ADDRESS OF PERS1 INTO VERWEIS.
%D *VERWEIS
%D NAME IN *VERWEIS (1)
%D ADDRESS OF PERS1 (2)
%SET PERS1 INTO PERS2 (3)

(1) Shows the content of the data item to which VERWEIS refers as a group of the type
PERSON or the element field NAME in this group.

(2) Specifies the address of PERS1 (in hexadecimal format) for further use in low-level
AID.

(3) In COBOL corresponds to: MOVE PERS1 TO PERS2.

Debugging lines Debugging aids for program execution

152

7.2 Debugging lines

At the compilation unit level, COBOL2000 offers debugging lines for the diagnosis of logical
errors. These are specially identified lines in the compilation unit which

– contain only COBOL statements for test purposes and

– at compile time can be treated as statement lines or comment lines, as necessary.

COBOL2000 supports the use of debugging lines with the following language elements
(see “COBOL2000 Reference Manual” [1]):

● The WITH DEBUGGING MODE clause in the SOURCE-COMPUTER paragraph of the
ENVIRONMENT DIVISION:

This clause defines how debugging lines are to be treated by the compiler: If the clause
is specified, debugging lines are compiled as normal statement lines; if it is not
specified, the compiler treats debugging lines as comment lines.

This feature allows debugging lines to be left untouched in the compilation unit after the
test phase. Only the WITH DEBUGGING MODE clause has to be removed before the
program is compiled for productive use.

● The identification of debugging lines by means of a “D” in the indicator area (column 7):

A “D” in column 7 of a line specifies that the line is to be treated either as a statement
line or as a comment line by the compiler, depending on whether or not the
WITH DEBUGGING MODE clause is present.

When defining debugging lines, the following should be noted:

– In the compilation unit, debugging lines are permitted only after the
OBJECT-COMPUTER paragraph.

– The COBOL compilation unit must be syntactically correct, regardless of whether
or not the debugging lines are taken into account.

– Debugging lines are only permitted in fixed format.

 153

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

8

8 Interface between COBOL programs and
BS2000/OSD
The interface between COBOL programs and the POSIX subsystem is described in
the chapter “COBOL2000 and POSIX” on page 299.

8.1 Input/output via system files

System files are standardized input/output areas of the system to which particular terminals
or files can be assigned. They are available to any task and require no prior declaration.
They include

– the logical input files of the operating system SYSDTA and SYSIPT

– the logical output files of the operating system
SYSOUT, SYSLST, SYSLSTnn (nn = 01...99) and SYSOPT

8.1.1 COBOL language elements

COBOL programs can use system files to input or output low-volume data (e.g. control
statements). COBOL2000 supports access to system files and the console with the
following language elements (see “COBOL2000 Reference Manual” [1]):

● Program-internal mnemonic names for system files, declared in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION:
PROCEDURE DIVISION statements can reference the assigned system files via these
mnemonic names (see below). Among other things, mnemonic names can be declared
for the following files:

– input files:

SYSDTA with TERMINAL IS mnemonic-name
SYSIPT with SYSIPT IS mnemonic-name

System files Interface COBOL program - BS2000/OSD

154

– output files:

SYSOUT with TERMINAL IS mnemonic-name
SYSLST with PRINTER IS mnemonic-name
SYSLSTnn with PRINTERnn IS mnemonic-name (nn = 01...99)
SYSOPT with SYSOPT IS mnemonic-name

● The statements ACCEPT, DISPLAY and STOP literal of the PROCEDURE DIVISION:

These access system files or the console according to the following rules:

– ACCEPT...FROM mnemonic-name

reads data from the input file that is associated (in the SPECIAL-NAMES
paragraph) with mnemonic-name

This causes the data to be transferred left-justified to the receiving item specified in
the ACCEPT statement, its length being determined by this item as follows:
If the item is longer than the value to be transferred, it is padded with spaces on the
right; if it is shorter, the value is truncated on the right during the transfer to conform
to the length of the item.

If the input file has record format F (fixed-length records, see section “System files:
primary assignments, reassignments, record formats” on page 156), the following
also applies:
If the length of the receiving item of the ACCEPT statement is greater than the
logical record length of the system file, additional data is automatically requested,
i.e. additional read operations (macro calls) are initiated.

If the program detects the end-of-file condition while reading the system file, it
issues message COB9121 or COB9122.
Depending on the COMOPT operand CONTINUE-AFTER-MESSAGE or ERROR-
REACTION in the RUNTIME-OPTIONS option (SDF), the program run is subse-
quently continued (default) or terminated.

When the program run is continued the string “/*” is stored in the first two positions
of the receiving item (“/” is stored if the receiving item is only one character long)
and processing continues with the statement following ACCEPT.

– ACCEPT (without FROM phrase)

reads data by default from the system input file SYSIPT.

With COMOPT REDIRECT-ACCEPT-DISPLAY=YES or
ACCEPT-DISPLAY-ASSGN= *TERMINAL in the SDF option RUNTIME-OPTIONS,
it is possible to switch the assignment to system file SYSDTA.

Interface COBOL program - BS2000/OSD System files

 155

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

8

– DISPLAY...UPON mnemonic-name

writes data into the output file that is associated (in the SPECIAL-NAMES
paragraph) with mnemonic-name.

The size of the data transfer is determined by the length of the sending items or
literals specified in the DISPLAY statement:
If the total number of characters to be transferred is greater than the maximum
record length for the output file (see table 14), additional records are output until all
characters are transferred. In the case of files with fixed-length records, if the
number of characters is smaller than the record length, the records are space-filled
on the right.

– DISPLAY (without UPON phrase)

writes data by default to the system output file SYSLST.

With COMOPT REDIRECT-ACCEPT-DISPLAY=YES or
ACCEPT-DISPLAY-ASSGN= *TERMINAL in the SDF option RUNTIME-OPTIONS,
it is possible to switch the assignment to system file SYSOUT.

– STOP literal

outputs a literal (with a maximum length of 122 characters) on the console.

Example 8-1

Accessing a system file via a declared mnemonic name

(1) The program-internal mnemonic name SYS-INPUT is declared for the system file
SYSIPT.

(2) ACCEPT reads (via the mnemonic name SYS-INPUT) a value from SYSIPT into
the item CONTROL-FIELD.

IDENTIFICATION DIVISION.
 ...
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
 ...
SPECIAL-NAMES.
 SYSIPT IS SYS-INPUT ——— (1)

 ...
PROCEDURE DIVISION.
 ...
 ACCEPT CONTROL-FIELD FROM SYS-INPUT. ——————————————————————————————— (2)

 ...

System files Interface COBOL program - BS2000/OSD

156

8.1.2 System files: primary assignments, reassignments, record formats

Primary assignments

At the start of a task, the system files in BS2000 are assigned to particular input/output
devices. This is known as the primary assignment of the files and is dependent on the type
of job (interactive mode or batch mode). The various options are summarized in the
following table:

System file
Primary assignment

in interactive mode in batch mode

SYSDTA Terminal Spoolin file or ENTER file

SYSIPT No primary assignment Spoolin file or ENTER file

SYSOUT Terminal Temporary spoolout file (EAM file) which is output
on the printer at task end and then deleted

SYSLST
SYSLSTnn

Temporary spoolout files (EAM files), which are output on the printer at task end
and then deleted

SYSOPT Temporary spoolout file (EAM file), which is output on floppy disk at task end and
then deleted.

Table 12: Primary assignments of the system files

Interface COBOL program - BS2000/OSD System files

 157

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

8

Reassignments

The assignment of the system files can be changed in the course of a task by using the
ASSIGN-system-file command, i.e. they can be redirected to other devices, system files, or
even cataloged files.

A detailed description of the command can be found in the “BS2000/OSD-BC Commands”
manual [3].

System file Reassigned to ... using the command

SYSDTA cataloged disk file
(SAM or ISAM) or
PLAM library

ASSIGN-SYSDTA filename
ASSIGN-SYSDTA *LIBRARY(library, element)

floppy disk ASSIGN-SYSDTA *DISKETTE(...)

SYSIPT cataloged disk file
(SAM or ISAM)

ASSIGN-SYSIPT filename

SYSOUT cataloged disk file
(tape or disk)

ASSIGN-SYSOUT filename
(in batch mode only)

SYSLST
SYSLSTnn

cataloged disk file
(SAM)

ASSIGN-SYSLST filename
ASSIGN-SYSLST *SYSLST-NUMBER(...)

dummy file (*DUMMY) ASSIGN-SYSLST *DUMMY

SYSOPT cataloged disk file
(SAM)

ASSIGN-SYSOPT filename
or
ASSIGN-SYSOPT filename,
 OPEN-MODE = EXTEND

dummy file (*DUMMY) ASSIGN-SYSOPT *DUMMY

Table 13: Reassignments of system files

System files Interface COBOL program - BS2000/OSD

158

Record formats

The system files process fixed-length records (record format F) or variable-length records
(record format V). The following table provides an overview of the record formats and record
lengths permissible in each case.

System file Record format Record length

SYSDTA V When input via terminal or disk file:
max. 32 Kbytes

F When input via card reader: max. 80 bytes

SYSIPT V max. 8 Kbytes

SYSOUT V In batch mode: max. 132 bytes (+ 1 line-feed character)

In interactive mode: max. 32 Kbytes

SYSLST
SYSLSTnn

V Max. 133 bytes: 1 byte control information and 132 bytes data

SYSOPT F Max. 80 bytes: 72 bytes of data; bytes 73-80 contain the first
8 characters of the name from the PROGRAM-ID

Table 14: Record formats and record lengths for system files

Interface COBOL program - BS2000/OSD Job switches and user switches

 159

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

8

8.2 Job switches and user switches

BS2000 makes 32 job switches (numbered from 0 to 31) available to each job (task) and
32 user switches (numbered from 0 to 31) available to each user identification (see
“Commands” manual [3]). Each switch is able to assume an ON or an OFF status. They may
be used to control activities within a task or to coordinate the activities of several tasks.
Thus, for example:

– job switches can be used when two or more (COBOL) programs within one job need to
communicate, e.g. when the execution of one program is dependent on the processing
steps of another program that was invoked earlier;

– user switches can be used when two or more jobs need to communicate. When the
communicating jobs belong to different user IDs, user switches associated with one ID
can be interrogated by the jobs of another ID, but cannot be modified by these jobs.

Job and user switches can be accessed and modified at operating system level (by means
of commands) or at program level (via COBOL statements). COBOL2000 supports access
to job and user switches with the following language elements (see “COBOL2000
Reference Manual” [1]):

● Program-internal mnemonic names for job and user switches and their status, declared
in the SPECIAL-NAMES paragraph of the Environment Division:

These mnemonic names allow Procedure Division statements to reference the
assigned switches and their status (see below). The mnemonic names can be declared
as described below:

– For the job switches via the implementor-names TSW-0, TSW-1,..., TSW-31, where
the additional phrase ON IS... and OFF IS... allow the user to define condition
names for the respective switch status.
It is thus possible, for example, to declare the mnemonic name and status for task
switch 17 with the phrases

 TSW-17 IS mnemonic-name-17
 ON IS switch-status-on-17
 OFF IS switch-status-off-17

– For the user switches via the implementor-names USW-0, USW-1,..., USW-31,
where the additional phrases ON IS... and OFF IS... allow the user to define
condition names for the respective switch status.
It is thus possible, for example, to declare the mnemonic name and status for user
switch 18 with the phrases

 USW-18 IS mnemonic-name-18
 ON IS switch-status-on-18
 OFF IS switch status-off-18

Job switches and user switches Interface COBOL program - BS2000/OSD

160

● Interrogation and modification of switches in the Procedure Division:

– Conditions (e.g. in the IF, PERFORM or EVALUATE statement) can contain the
names (declared in the SPECIAL-NAMES paragraph) of switch status conditions
and in this way evaluate them for the control of program execution.

– SET (format 3; see “COBOL2000 Reference Manual” [1]) can access switches (via
the mnemonic names declared in the SPECIAL-NAMES paragraph) and change
their status.

Interface COBOL program - BS2000/OSD Job switches and user switches

 161

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

8

Example 8-2

Use of job switches

In the following extract from an interactive task, a procedure provides for different
processing paths, depending on the status of job switches 12 and 13. The switches are
evaluated and changed both at operating system level and at program level:
First, job switch 12 can be set at operating system level in order to control processing within
the succeeding procedure, where its status will be evaluated at program level. Job switch
13 is then set, depending on the status of program execution. This switch is subsequently
evaluated at operating system level.

URLU
OU /MODIFY-JOB-SWITCHES ON=12,OFF=13 LR (1) OU
OU ... OU
OU /CALL-PROC PROG.SYSTEM OU
OU URLU OU
OU OU The PROG.SYSTEM file contains LR (2) OU OU
OU OU following commands: OU OU
OU OU OU OU
OU OU /BEGIN-PROC ... OU OU
OU OU ... OU OU
OU OU /START-PROGRAM PROG-1 LR (3) OU OU
OU OU URLU OU OU
OU OU OU Extract from PROG-1: OU OU OU
OU OU OU ... OU OU OU
OU OU OU SPECIAL-NAMES. ⎫ OU OU OU
OU OU OU TSW-12 IS SWITCH-12 � OU OU OU
OU OU OU ON IS ON-12 ⎬ LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR (4) OU OU OU
OU OU OU TSW-13 IS SWITCH-13 � OU OU OU
OU OU OU ON IS ON-13 ⎭ OU OU OU
OU OU OU ... OU OU OU
OU OU OU PROCEDURE DIVISION. OU OU OU
OU OU OU ... OU OU OU
OU OU OU IF ON-12 PERFORM A-PAR. LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR (5) OU OU OU
OU OU OU PERFORM B-PAR. OU OU OU
OU OU OU ... OU OU OU
OU OU OU IF FIELD = 99 SET SWITCH-13 TO ON. LRLRLRLRLRLRLR (6) OU OU OU
OU OU OU STOP RUN. OU OU OU
OU OU OU A-PAR. OU OU OU
OU OU OU ... OU OU OU
OU OU OU B-PAR. OU OU OU
OU OU OU ... OU OU OU
OU OU ORLROL OU OU
OU OU ... OU OU
OU OU /SKIP-COMMANDS TO-LABEL .END,IF=JOB-SWITCHES (OFF=13) LRLRLRLRLR (7) OU OU
OU OU /START-PROGRAM PROG-2 OU OU
OU OU /.END MODIFY-JOB-SWITCHES OFF=(12,13) LR (8) OU OU
OU OU /END-PROC OU OU
OU ORLROL OU
OU /... OU
ORLROL

Job switches and user switches Interface COBOL program - BS2000/OSD

162

(1) Job switch 12 is set to ON, job switch 13 to OFF at the operating system level.

(2) Extract from a procedure.

(3) The COBOL program PROG-1 is called.

(4) The internal names SWITCH-12 and SWITCH-13 are declared in the program for
job switches 12 (TSW-12) and 13 (TSW-13) respectively, and the condition names
ON-12 or ON-13 for their respective ON status.

(5) If job switch 12 is ON (see (1)), the statement PERFORM A-PAR is executed before
PERFORM B-PAR.

(6) If the indicator FIELD contains the value 99 at the end of program execution,
PROG-1 sets the job switch to ON.

(7) The procedure evaluates the status of job switch 13: if it was not set to ON by
PROG-1, the procedure branches to the end. Otherwise, PROG-2 is executed in
addition to PROG-1.

(8) At the operating system level, job switches 12 and 13 are reset.

Interface COBOL program - BS2000/OSD Job switches and user switches

 163

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

8

Example 8-3

Use of user switches

In the following extract, interactive job A generates two batch jobs, B and C. In job B, an
ISAM file is updated. Job C can only execute after this takes place. User switch 21 is used
in three different jobs. It is set at program level, and evaluated and reset at operating system
level.

. . .

/MODIFY-USER-SWITCHES OFF=21

/ENTER-JOB B.BATCH

/ENTER-JOB C.BATCH

Extract from file B.BATCH

/LOGON

/START-PROGRAM COB-ISAM

/LOGOFF

(1)

(2)

Extract from COB-ISAM

. . .

SPECIAL-NAMES.

 . . .

 USW-21 IS B-SWITCH.

 . . .

PROCEDURE DIVISION.

 . . .

OPEN I-O ISAM-FILE.

 . . .

REWRITE . . .

 . . .

CLOSE ISAM-FILE.

 . . .

SET B-SWITCH TO ON.

 . . .

STOP RUN.

Extract from file C.BATCH

/LOGON

 . . .

/WAIT-EVENT UNTIL=USER-SWITCHES (ON=21)

/START-PROGRAM SUCC-PRO

/MODIFY-USER-SWITCHES OFF=21

/LOGOFF

(6)

(7)

(8)

(9)

(4)

(5)

Job B

Job C
(3)

Job A

Job switches and user switches Interface COBOL program - BS2000/OSD

164

(1) User switch 21 is initialized to OFF.

(2) The ENTER procedure B.BATCH is called; it generates batch job B.

(3) Batch job B calls the COBOL program COB-ISAM.

(4) COB-ISAM updates the file ISAM-FILE.

(5) When updating is completed, COB-ISAM sets user switch 21 to ON.

(6) The ENTER procedure C.BATCH is called; it generates batch job C.

(7) Job C waits until the user switch is set to ON in job B.

(8) As soon as user switch 21 is set to ON, job C calls the COBOL program
SUCC-PRO; it can then access the ISAM-FILE updated in job B.

(9) User switch 21 is set to OFF, in order to mark the (normal) end of job C.

Interface COBOL program - BS2000/OSD Job variables

 165

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

8

8.3 Job variables

Job variables are available as a separate software product. Like job and user switches, they
too are useful in information exchange

– between user programs and the operating system, or

– between different user programs.

Compared with switches, however, job variables offer the following additional facilities:

– They can be declared as monitoring job variables when a program is called. As such,
they are automatically supplied with status and return codes, which provide information
on program status and termination action, as well as on potential runtime errors.

– At the operating system or program level, they can be loaded with records of up to
256 bytes in length (128 bytes in the case of monitoring job variables). Because of this,
they are able to communicate more detailed information than job or user switches,
which are only capable of switching between ON and OFF status.

– In contrast to job and user switches, they can also be modified by jobs running under
different user IDs.

Before a COBOL program can access a job variable, the variable must first be assigned to
it via a link name, in a similar way to a file. The SET-JV-LINK command performs this
function for job variables. Its format is described in the “Commands” [3] and “Job Variables”
[7] manuals, and an example of its usage is contained in the following section. The link
name to be specified in the command is apparent from the declarations in the COBOL
program (see below).

COBOL2000 supports access to job variables with the following language elements (see
“COBOL2000 Reference Manual” [1]):

● Link names and program-internal mnemonic names for job variables, declared in the
SPECIAL-NAMES paragraph of the Environment Division:
Job variables can be assigned via link names, and the statements of the PROCEDURE
DIVISON can refer to them via their mnemonic names (see below). Link names and
mnemonic names for job variables can be declared with phrases in the following format:

JV-jvlink IS mnemonic-name

jvlink specifies the link name for the job variable. When the link name is
formed, an “*” is prefixed to jvlink as its first character; the resulting
link name is therefore *jvlink. For this reason, the string jvlink must
not be longer than 7 bytes.

mnemonic-name declares the program-internal mnemonic name for the job variable.

Job variables Interface COBOL program - BS2000/OSD

166

● The ACCEPT and DISPLAY statements of the Procedure Division:

– ACCEPT...FROM mnemonic-name

reads the contents of the job variable that is associated (in the SPECIAL-NAMES
paragraph) with mnemonic-name. The data is transferred left-justified into the
receiving item specified in the ACCEPT statement, according to the length of this
item. If the item is longer than 256 bytes (128 bytes in the case of monitoring job
variables), it is space-filled on the right; if it is shorter, the contents of the job variable
are truncated on the right during the transfer to conform to the length of the item.

– DISPLAY...UPON mnemonic-name

writes data in the job variable that is associated (in the SPECIAL-NAMES
paragraph) with mnemonic-name.
The size of the data transfer is determined by the length of the sending items or
literals of the DISPLAY statement, provided the maximum record length of
256 bytes (128 bytes for monitoring job variables) is not exceeded. If the total
number of characters to be transferred is greater than the maximum record length,
the record is truncated to the maximum length when it is transferred.
When data is written to a monitoring job variable it should be noted that the first
128 bytes of the job variable are protected by the system against write access.
Thus, only that part of the record starting at position 129 is written to the job
variable, beginning at position 129 of the variable.

If a COBOL program which includes statements for job variables is run on a BS2000
installation that does not support job variables, these statements are not executed. After
an ACCEPT statement, the receiving item contains the characters “/*”, starting in
column 1. The first attempt to access a job variable causes message COB9120 to be
output to SYSOUT.

A failed access to a job variable in a BS2000 installation that does support job variables
causes message COB9197 to be output to SYSOUT (see table 10 in section “Program
termination” on page 132).

Interface COBOL program - BS2000/OSD Job variables

 167

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

8

Example 8-4

Communication via a job variable

In the following interactive job, the job variable CONTROL.RUN is used both by a COBOL
program and at command level. Depending on the contents of the job variable, the program
can go through various processing branches, updating the contents of the job variable if
required. A different job - even one under another user identification - can access this job
variable, provided the job variable was cataloged with the command
CREATE-JV ...,USER-ACCESS=ALL-USERS.

URLU
OU /SET-JV-LINK LINK-NAME=UPDATE,JV-NAME=CONTROL.RUN LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR (1) OU
OU /START-PROGRAM PROG.WORK-1 OU
OU OU
OU URLU OU
OU OU Extract from the program: OU OU
OU OU ... OU OU
OU OU ENVIRONMENT DIVISION. OU OU
OU OU CONFIGURATION SECTION. OU OU
OU OU SPECIAL-NAMES. OU OU
OU OU TERMINAL IS T OU OU
OU OU JV-UPDATE IS FIELDJV. LR (2) OU OU
OU OU ... OU OU
OU OU DATA DIVISION. OU OU
OU OU WORKING-STORAGE SECTION. OU OU
OU OU 01 DATE-TODAY PIC X(6). LR (3) OU OU
OU OU 01 CONTENTS-JV. LR (4) OU OU
OU OU 05 DATE-UPDATE PIC X(6). OU OU
OU OU 05 FILLER PIC X(20). OU OU
OU OU 05 NUM-UPDATE PIC 9(4). OU OU
OU OU ... OU OU
OU OU PROCEDURE DIVISION. OU OU
OU OU ACCEPT CONTENTS-JV FROM FELDJV. LR (5) OU OU
OU OU ACCEPT DATE-TODAY FROM DATE. OU OU
OU OU IF DATE-UPDATE NOT EQUAL DATE-TODAY LR (6) OU OU
OU OU PERFORM WORK OU OU
OU OU ELSE PERFORM ALREADY-UPDATED. OU OU
OU OU ... OU OU
OU OU WORK. OU OU
OU OU ... OU OU
OU OU MOVE DATE-TODAY TO AKT-DAT. ⎫ OU OU
OU OU ADD 1 TO NUM-UPDATE. ⎬ LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR (7) OU OU
OU OU DISPLAY CONTENTS-JV UPON FIELDJV. ⎭ OU OU
OU OU ... OU OU
OU OU ALREADY-UPDATED. OU OU
OU OU DISPLAY "END OF UPDATE" OU OU
OU OU UPON T. OU OU
OU OU ... OU OU
OU ORLROL OU
OU OU
OU /SHOW-JV JV-NAME(CONTROL.RUN) LR (8) OU
OU %930629 UPDATE NR. 1679 OU
ORLROL

Job variables Interface COBOL program - BS2000/OSD

168

 (1) The job variable CONTROL.RUN is assigned to the COBOL program called after it
(PROG.WORK-1) via the link name *UPDATE.

(2) The link name *UPDATE and the (program-internal) mnemonic name FIELDJV are
declared for the job variable in the SPECIAL-NAMES paragraph of
PROG.WORK-1.

(3) DATE-TODAY is reserved as the receiving item for the date.

(4) The receiving item for the contents of the job variable is declared. It contains subor-
dinate items for recording the most recent update date (DATE-UPDATE) and an
updating counter (NUM-UPDATE).

(5) ACCEPT transfers the contents of the job variable FIELDJV to CONTENTS-JV.

(6) Depending on whether the update date (DATE-UPDATE) of the job variable corre-
sponds to the current date (DATE-TODAY), different processing procedures are
executed in the program.

(7) At the end of processing, the items DATE-UPDATE and NUM-UPDATE are updated
and written back to the job variable with DISPLAY CONTENTS-JV... .

(8) The job variable is read at operating system level: it contains the date and the
number of the most recent update.

Interface COBOL program - BS2000/OSD Environment variable

 169

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

8

8.4 Accessing an environment variable

You can access an environment variable using the ACCEPT or DISPLAY statements.
The names of environment variables are defined using format 4 in the DISPLAY statement.
Format 5 of the ACCEPT statement is required in order to access the contents of
environment variables.
At system level, the environment variables must be set up using an SDF-P variable.

Example 8-5

Accessing an environment variable

/SET-VAR TSTENV=’AAAA BBB CC D’
/START-PROGRAM ...

Program excerpt:

IDENTIFICATION DIVISION.
...
SPECIAL-NAMES.
 ENVIRONMENT-NAME IS ENV-NAME
 ENVIRONMENT-VALUE IS ENV-VAR
 TERMINAL IS T
...
WORKING-STORAGE SECTION.
01 A PIC X(15).
...
PROCEDURE DIVISION.
...
 DISPLAY "TSTENV" UPON ENV-NAME
 ACCEPT A FROM ENV-VAR
 ON EXCEPTION DISPLAY "ENVIRONMENT ’TSTENV’ IS UNKNOWN!" UPON T
 END-DISPLAY
 NOT ON EXCEPTION DISPLAY "VALUE IS:" A UPON T
 END-DISPLAY
 END-ACCEPT

The exception condition appears with every failed access. Causes of a failed access can
be, for example:

– missing SET-VAR command

– content of the variable is longer than the receiving field

Compiler/system information Interface COBOL program - BS2000/OSD

170

8.5 Compiler and operating system information

COBOL programs can access information held by the compiler and the operating system.
This includes information on

– the compilation of the source

– CPU time used since LOGON

– the task in which the object program is running, and

– the terminal from which the program was called.

COBOL2000 supports access to this information with the following language elements:

● Program-internal mnemonic names for the individual types of information, declared in
the SPECIAL-NAMES paragraph of the Environment Division:
The ACCEPT statement of the Procedure Division can access the relevant information
via these mnemonic names. Mnemonic names can be declared for information on

– the compilation with COMPILER-INFO IS mnemonic-name

– the CPU time used with CPU-TIME IS mnemonic-name

– the task with PROCESS-INFO IS mnemonic-name

– the terminal with TERMINAL-INFO IS mnemonic-name

– the date with DATE-ISO4 IS mnemonic-name (with century)

● The ACCEPT statement in the Procedure Division:

ACCEPT...FROM mnemonic-name

moves the information that is associated (in the SPECIAL-NAMES paragraph) with
mnemonic-name into the specified receiving item.

The size of the data transfer is determined by the length of the receiving item specified
in the ACCEPT statement; the data is aligned on the left in the item, as follows:
If the item is longer than the value to be transferred, it is padded with spaces on the
right; if it is shorter, the value is truncated on the right during transfer to conform to the
length of the item. This does not apply to CPU TIME: here a numerically correct transfer
is always carried out.
The length (and possibly the structure) to be declared for the receiving item is deter-
mined by the type of information that the item is to receive. The formats of the various
types of information are listed in the following section.

Interface COBOL program - BS2000/OSD Compiler/system information

 171

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

8

Contents and structure of the information

The following table explains the structure of the information that is made available to a
COBOL program via the implementor-names COMPILER-INFO, CPU-TIME, PROCESS-
INFO, TERMINAL-INFO and DATE-ISO4.

Character position(s) Information for COMPILER-INFO

1-10 Compiler name (COBOL2000Ë, COBOL2000B, COBOL2000R)

11-20 Compiler version
Format: Vdd.dldddd
d = digit or blank
l = letter or blank
(e.g. “V02.2A ”)

21-30 Date of compilation
Format: YYYY-MM-DD (e.g. “1999-12-31”)

31-38 Time of compilation
Format: HH-MM-SS (e.g. “23-59-59”)

39-68 The first eight characters of the PROGRAM-ID name

Information for CPU-TIME

PIC 9(6)V9(4) CPU time in ten thousandths of a second

Character position(s) Information for PROCESS-INFO

1 Type of job
Contents: B for Batch
 D for Dialog (= interactive)

2-5 Job sequence number

6-13 User identification

14-21 Account number

22 Privilege class of the job
Contents: U for user
 S for system administrator

23-32 Operating system version
Format: Vdd.dldddd (e.g. “V11.2 ”)

33-40 Name of the next processor to which the terminal is connected.

Table 15: structure of compiler and operation system information

Compiler/system information Interface COBOL program - BS2000/OSD

172

Character position(s) Information for PROCESS-INFO

41-120 System administrator privileges; the fields contain 8 blanks if the
privilege is not present

41-48 SECADM

49-56 USERADM

57-64 HSMSADM

65-72 SECOLTP

73-80 TAPEADM

81-88 SATFGMMF

89-96 NETADM

97-104 FTADM

105-112 FTACADM

113-120 TSOS

Character position(s) Information for TERMINAL-INFO

 1-8 Terminal name

 9-13 Number of characters per line

14-18 Number of physical lines that can be output without activating the
information overflow control.

19-23 Number of characters that can be output without activating the
information overflow control.

24-27 Device type

If a device type is not known to the runtime system, these
positions are filled with blanks.

Character position(s) Information for DATE-ISO4

1-14 Current date (including century YYYY and numbered day
NNN of the current year)
Format: YYYY-MM-DDNNNË

Table 15: structure of compiler and operation system information

Interface COBOL program - BS2000/OSD Compiler/system information

 173

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

8

Example 8-6

Data structures for acceptance of compiler and operating system information by
means of the ACCEPT statement

 *
 01 COMPILER-INFORMATION.
 02 COMPILER-NAME PIC X(10).
 02 COMPILER-VERSION PIC X(10).
 02 DATE-OF-COMPILATION PIC X(10).
 02 TIME-OF-COMPILATION PIC X(8).
 02 PROGRAM-NAME PIC X(30).
 *
 01 CPU-TIME-IN-SECONDS PIC 9(6)V9(4).
 *
 01 TASK-INFORMATION.
 02 TASK-TYPE PIC X.
 88 BATCH-TASK VALUE "B".
 88 INTERACTIVE-TASK VALUE "D".
 02 TASK-SEQUENCE-NUMBER PIC X(4).
 02 USER-IDENTIFICATION PIC X(8).
 02 ACCOUNT-NUMBER PIC X(8).
 02 PRIVILEGE-IDENTIFIER PIC X.
 88 SYSTEM-ADMINISTRATOR VALUE "S".
 88 USER VALUE "U".
 02 OPERATING-SYSTEM-VERSION PIC X(10).
 02 PROCESSOR-NAME PIC X(8).
 02 SYSTEM-ADMINISTRATOR-PRIVILEGE PIC X(80).
 *
 01 TERMINAL-INFORMATION.
 02 TERMINAL-NAME PIC X(8).
 02 CHARS-PER-LINE PIC 9(5).
 02 LINES-PER-SCREEN PIC 9(5).
 02 CHARS-PER-SCREEN PIC 9(5).
 02 DEVICE-TYPE PIC X(4).
 *
 01 CURRENT-DATE.
 05 YEAR PIC X(4).
 05 FILLER PIC X.
 05 MONTH PIC X(2).
 05 FILLER PIC X.
 05 DAY-OF-THE-MONTH PIC X(2).
 05 DAY-OF-THE-YEAR PIC X(3).
 05 FILLER PIC X.

Compiler/system information Interface COBOL program - BS2000/OSD

174

 175

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9 Processing of cataloged files
The processing of POSIX files is described in the chapter “COBOL2000 and POSIX” on
page 299.

9.1 Basic information on the structure and processing of
cataloged files

9.1.1 Basic concepts relating to the structure of files

From the viewpoint of a COBOL application program, a file is a named collection of data
records that is provided with a logical structure (file organization), has specific record
formats, and is stored on one or more data storage media, which are referred to as
volumes.

COBOL programs access files by making use of functions provided by the Data
Management System (DMS). The particular DMS access method used for this purpose is
determined by the file organization.
As seen from the perspective of DMS, the accessing of a file always represents a transfer
of data blocks between a peripheral storage device and a part of the main memory, called
the buffer, which is an area set up by the application program for accommodating the data
blocks.

File organization and DMS access methods

The logical structure of a file, and thus the method by which it is accessed, is defined by its
type of organization. The file organization is specified at file creation and cannot be
changed subsequently.
In COBOL, files may be organized as sequential, relative, or indexed files. The features and
characteristics of the various types of file organization are detailed in section “Sequential
file organization” on page 190, section “Relative file organization” on page 215 and section
“Indexed file organization” on page 236. Each of the above organization types corresponds
to an access method of the DMS.

Basic information Processing of cataloged files

176

The relationship is shown in the following table:

Data records and record formats

A (logical) data record represents the unit of a file that can be accessed by a COBOL
program with a single I-O statement. Each read operation makes a record available to the
program, while each write statement creates a record in the file.

The records of a file may be classified according to their record format. Depending on the
type of file organization, the following record formats are permitted in COBOL:

– Fixed-length records (RECFORM=F)

All records of a file are of the same length and contain no information regarding the
record length.

– Variable-length records (RECFORM=V)

The records of a file can have different lengths; each record contains a specification of
its length in the first word, called the record length field.
In a COBOL program, this record length field does not form a part of the record
description entry. This means that its content cannot be explicitly accessed unless a
RECORD clause with the DEPENDING ON phrase is specified for the file (see
“COBOL2000 Reference Manual” [1]).

– Records of undefined length (RECFORM=U)

The records of a file may vary in length but include no record length information.

Data blocks and buffers

A (logical) data block is the unit of a file that is transferred (by the DMS) between peripheral
storage and main memory during a file access operation. In order to such data blocks, the
program reserves a storage area in its address space. This reserved area is called the
buffer.

A logical block may consist of one or more records; however, a record must not be
distributed over more than one logical block.

File organization DMS access method

sequential SAM

relative ISAM/UPAM

indexed ISAM

Table 16: File organization and DMS access methods

Processing of cataloged files Basic information

 177

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

If a logical block contains more than one data record, these records are said to be blocked.
Only records of fixed or variable length can be blocked. Blocking is not possible with records
of undefined length.

In terms of size, a logical block (and thus a buffer) may be defined:

– for disk files, as a standard block, i.e. a physical block (PAM block) of 2048 bytes or
integral multiples thereof (up to 16 PAM blocks) and

– for magnetic tape files, additionally as a non-standard block of any length up to
32767 bytes.

To simply adaptations to future disk formats, only even-numbered multiples of 2048 bytes
should be used as the block size in the ADD-FILE-LINK command or in the program speci-
fications.

During compilation, the compiler calculates a value for the buffer size for each file on the
basis of record and block length specifications given in the compilation unit. This default
value can be modified during the assignment of the file by specifying the BUFFER-LENGTH
operand in the ADD-FILE-LINK command. It must be noted, however, that

– the buffer must be at least as large as the longest data record, and

– there must be space for the management information (PAM key) in the buffer when
processing in non-key format (BLKCTRL = DATA) (see section “Disk and file formats”
on page 187).

Except in the case of newly created files (OPEN OUTPUT), the block size entered in the
catalog always takes priority over block size specifications in the program or
ADD-FILE-LINK command.

Basic information Processing of cataloged files

178

9.1.2 Assignment of cataloged files

A program-internal name is specified in the SELECT clause (see “COBOL2000 Reference
Manual” [1]) for each file to be processed by a COBOL program. The COBOL statements
for a given file reference the file via this name. During program execution, each of the
specified file-names must be assigned an actual file.

This assignment can be defined before the program call by means of a ADD-FILE-LINK or
ASSIGN system-file command. Which of the two commands should be used is determined
by the entry in the ASSIGN clause (see “COBOL2000 Reference Manual” [1]) for the file. If
no file is explicitly assigned, the default values generated during compilation come into
effect.

The individual methods used for the assignment of files are summarized below:

Assignment via the ADD-FILE-LINK command

Assignment via the ADD-FILE-LINK command is therefore possible only if the link name of
the file is specified in the form “literal” or “data-name” in the ASSIGN clause. “literal”
specifies the link name statically for the program. The “data-name” data item can be used
to modify the link name dynamically, i.e. during program execution.

To assign a cataloged file, the user must issue an ADD-FILE-LINK command for this file
before the program call; this ADD-FILE-LINK command must include a LINK-NAME
operand specifying the declared link name. File attributes can also be specified at the same
time using other operands of the ADD-FILE-LINK command.

Any link name must conform to BS2000 requirements in respect of link names (see also
“Introductory Guide to DMS” [4]). More specifically, this means that

– it must be alphanumeric,
– it may consist of a maximum of eight characters, and
– it must not contain any lowercase letters.

Processing of cataloged files Basic information

 179

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

Example 9-1

Assignment of a cataloged file via the ADD-FILE-LINK command

In the case of COBOL programs using SORT (see chapter “Sorting and merging” on
page 277), the following link names are reserved for the SORT utility routine and are thus
not available for other files:

 MERGEnn (nn=01,...99)
 SORTIN
 SORTINnn (nn=01,...99)
 SORTOUT
 SORTWK
 SORTWKn (n=1,...9)
 SORTWKnn (nn=01,...99)
 SORTCKPT

A file assignment remains in effect until it is

– released explicitly by a REMOVE-FILE-LINK command or implicitly at end of task, or
– modified by means of a subsequent ADD-FILE-LINK command.

This should be noted particularly where several different files are to be successively
assigned to one program-internal file-name within the same task.

Information regarding currently assigned cataloged files can be obtained by using the
SHOW-FILE-LINK command (see “Commands” manual [3]).

Entry in the FILE-CONTROL paragraph
of the COBOL program LINKLIT:

Link name generated at compilation:

Assignment of file STORE.INVENTORY
and program call:

SELECT MASTER-FILE ASSIGN TO "MASTLNK".

MASTLNK

/ADD-FILE-LINK LINK-NAME=MASTLNK,
 FILE-NAME=STORE-INVENTORY
/START-PROGRAM LINKLIT

Basic information Processing of cataloged files

180

Example 9-2

Changing file assignments :

The COBOL program UPDPROG specifies the link name INOUTFIL for a input/output file.
This program successively actualizes the cataloged files FILE.UPDATE.1 and FILE-
UPDATE.2.

(1) The file named FILE.UPDATE.1 is assigned via link name INOUTFIL to the program
UPDPROG for subsequent processing.

(2) After processing, a further ADD-FILE-LINK command terminates the previously
valid file assignment for the link name INOUTFIL and assigns the file named
FILE.UPDATE.2 as the new file.

(3) The file assignment for link name INOUTFIL is released by means of the
REMOVE-FILE-LINK command.

/ADD-FILE-LINK INOUTFIL,FILE.UPDATE.1 —————————————————————————————————— (1)
/START-PROGRAM UPDPROG
 ...
/ADD-FILE-LINK INOUTFIL,FILE.UPDATE.2 —————————————————————————————————— (2)
/START-PROGRAM UPDPROG
 ...
/REMOVE-FILE-LINK INOUTFIL ——— (3)

Processing of cataloged files Basic information

 181

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

Assignment via the default settings

If a cataloged file has not been explicitly assigned at program runtime to an internal file
name (with the link name “linkname”), the following defaults come into effect:

– In the case of an output file and ENABLE-UFS-ACCESS = NO, the program attempts
to access a cataloged file with the name from the SELECT clause. If no catalog entry is
found under this name, the program writes to a previously created file with the name
FILE.COBOL.linkname.
In the case of ENABLE-UFS-ACCESS = YES, the program writes directly to the file
FILE.COBOL.linkname.

– For an input file whose SELECT clause contains the OPTIONAL phrase, the first read
access attempt causes an AT END condition and passes control to the procedures
declared in the program for such a case.

– In the case of an input file (without the OPTIONAL phrase in the SELECT clause) and
ENABLE-UFS-ACCESS = NO or of an input-output file, the program attempts to access
a cataloged file with the name from the SELECT clause. If no catalog entry is found
under this name, execution is interrupted with error message COB9117 and may be
continued with the RESUME-PROGRAM command after a correct file assignment is
made.

Basic information Processing of cataloged files

182

Assignment via the ASSIGN-systemfile command

The prerequisite for this is that the name of a system file must not have been specified in
the ASSIGN clause. The system files are designated vendorname-1 (PRINTER) or
vendorname-2 (PRINTER01...PRINTER99, SYSIPT, SYSOPT).

By issuing a ASSIGN-systemfile command for the specified system file,

– a cataloged file or

– another system file

can be assigned before the program is called. The permissible assignments for each
system file are given in the description of the ASSIGN-systemfile command in the
“Commands” manual [3].

Example 9-3

Assigning a cataloged file via the ASSIGN systemfile command

If no file is explicitly assigned at program runtime, the program will execute its I-O opera-
tions on the specified system file.

A file assignment remains in effect until it is

– released at the end of the task, or

– modified by means of a subsequent ASSIGN-systemfile command.

This should be noted particularly where several different files are to be successively
assigned to one program-internal file name within the same task.

Information regarding current file assignments can be obtained by using the
SHOW-SYSTEM-FILE-ASSIGNMENTS command.

Entry in the FILE-CONTROL paragraph of
the COBOL program LISTPROG:

Assignment of the LIST.FILE
and program call:

SELECT PRINT-FILE ASSIGN TO PRINTER.

/ASSIGN-SYSLST LIST.FILE
/START-PROGRAM LISTPROG

Processing of cataloged files Basic information

 183

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.1.3 Definition of file attributes

BS2000 provides the CREATE-FILE command for creating files. A task file table entry with
further file attributes is created by means of the ADD-FILE-LINK command. The complete
format for this command and a detailed description are provided in “Commands” manual [3]
and “Introductory Guide to DMS” [4].

Catalog entry

When file attributes are defined with the CREATE-FILE command it must be ensured that
the primary memory allocation is sufficient.
This is particularly true in the case of files in which the block size exceeds the primary
allocation which the operating system assumes by default. The block size is calculated from
the specification in the COBOL program (see “COBOL2000 Reference Manual” [1]). If the
COBOL program yields a block length of (STD, n), the PRIMARY-ALLOCATION in the
SPACE operand of the CREATE-FILE command should be at least

– 2n for sequential files.

– 2n+2 for indexed and relative files.

Task file table (TFT)

Whenever a ADD-FILE-LINK command with the operand

LINK-NAME=linkname

is issued for a file, the DMS creates an entry for the file under this link name in the task file
table (TFT) and stores all file attributes explicitly defined in the ADD-FILE-LINK command
under this entry.

Each of these entries is retained in the TFT until it is

– removed by a REMOVE-FILE-LINK command for the assigned file link name, or
deleted together with the TFT at the end of the task, or

– overwritten by a new ADD-FILE-LINK command for the same file link name.

Information on the current contents of the TFT can be obtained by using the SHOW-FILE-
LINK command.

When a COBOL program attempts to open a file, the DMS first checks whether the TFT
contains the link name that was defined for the file at compilation (see section “Assignment
of cataloged files” on page 178). If such an entry is found, the program takes over file
attributes from

– the TFT entry under this link name,

– the file attributes that were explicitly or implicitly specified in the program, and

Basic information Processing of cataloged files

184

– the catalog entry of the associated file.

The specifications from the TFT entry (i.e. file attributes explicitly defined in the ADD-FILE-
LINK command) overwrite file specifications from the COBOL program. The catalog entry
is referred to only for file attributes that are defined neither in the program nor in the TFT
entry or those that were specified as null operands in the ADD-FILE-LINK command.

This approach could lead to conflicts during file access, especially when file attributes
specified in the ADD-FILE-LINK command are not compatible with the (explicitly or
implicitly) defined characteristics in the COBOL program or in the catalog entry of the
assigned file. This is especially applicable in the following situations:

– Conflicting entries on the open mode

– Conflicting entries on the organization type of the file

– Conflicting entries on the record format

– Conflicting entries on the record length

– Conflicting entries on the record key

COBOL program ADD-FILE-LINK command

OPEN INPUT...[REVERSED] OPEN-MODE=OUTPUT or OPEN-MODE=EXTEND

OPEN OUTPUT OPEN-MODE=INPUT or OPEN-MODE=REVERSE

OPEN EXTEND OPEN-MODE=INPUT or OPEN-MODE=REVERSE

COBOL program ADD-FILE-LINK command

ASSIGN clause
ORGANIZATION clause

ACCESS-METHOD operand

COBOL program ADD-FILE-LINK command

RECORD clause
RECORDING MODE clause

RECORD-FORMAT operand

COBOL program ADD-FILE-LINK command

RECORD clause
record description entry

RECORD-SIZE operand

COBOL program ADD-FILE-LINK command

RECORD KEY clause
record description entry

KEY-POSITION operand
KEY-LENGTH operand

Processing of cataloged files Basic information

 185

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

– Conflicting entries on the disk format or file format

Example 9-4

Creating and displaying a TFT entry
(shown in BS2000/OSD V5.0)

URLU
OU OU
OU /ADD-FILE-LINK INOUTFIL,ISAM.UPDATE, - ⎫ OU
OU / BUFFER-LENGTH=*BY-CATALOG, ⎬ LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR (1) OU
OU SUPPORT=*DISK(SHARED-UPDATE=*YES) ⎭ OU
OU /SHOW-FILE-LINK INOUTFIL,INFORMATION=*ALL LR (2) OU
OU OU
ORLROL

URLU
OU LINK-NAME LRLRLRLRLRLRLRLRLR FILE-NAME LR OU
OU INOUTFIL :N:$F2190202.ISAM.UPDATE OU
OU LR STATUS LR OU
OU STATE = INACTIVE ORIGIN = FILE OU
OU LR PROTECTION LR OU
OU RET-PER = *BY-PROG PROT-LEV = *BY-PROG OU
OU BYPASS = *BY-PROG DESTROY = *BY-CAT OU
OU LR FILE-CONTROL-BLOCK - GENERAL ATTRIBUTES LRLRLRLRLRLRLRLRLRLRLR OU
OU ACC-METH = *BY-PROG OPEN-MODE = *BY-PROG REC-FORM = *BY-PROG OU
OU REC-SIZE = *BY-PROG BUF-LEN = *BY-CAT BLK-CONTR = *BY-PROG OU
OU F-CL-MSG = STD CLOSE-MODE = *BY-PROG OU
OU LR FILE-CONTROL-BLOCK - DISK FILE ATTRIBUTES LRLRLRLRLRLRLRLRLR OU
OU SHARED-UPD = YES WR-CHECK = *BY-PROG IO(PERF) = *BY-PROG OU
OU IO(USAGE) = *BY-PROG LOCK-ENV = *BY-PROG OU
OU LR FILE-CONTROL-BLOCK - TAPE FILE ATTRIBUTES LRLRLRLRLRLRLRLRLR OU
OU LABEL = *BY-PROG (DIN-R-NUM = *BY-PROG, TAPE-MARK = *BY-PROG) OU
OU CODE = *BY-PROG EBCDIC-TR = *BY-PROG F-SEQ = *BY-PROG OU
OU CP-AT-BLIM = *BY-PROG CP-AT-FEOV = *BY-PROG BLOCK-LIM = *BY-PROG OU
OU REST-USAGE = *BY-PROG BLOCK-OFF = *BY-PROG TAPE-WRITE = *BY-PROG OU
OU STREAM = *BY-PROG OU OU
OU LR FILE-CONTROL-BLOCK - ISAM FILE ATTRIBUTES LRLRLRLRLRLRLRLRLR OU
OU KEY-POS = *BY-PROG KEY-LEN = *BY-PROG POOL-LINK = *BY-PROG OU
OU LOGIC-FLAG = *BY-PROG VAL-FLAG = *BY-PROG PROPA-VAL = *BY-PROG OU
OU DUP-KEY = *BY-PROG PAD-FACT = *BY-PROG READ-I-ADV = *BY-PROG OU
OU WR-IMMED = *BY-PROG OU
OU LR VOLUME LR OU
OU DEV-TYPE = *NONE T-SET-NAME = *NONE OU
OU VSN/DEV = PUBN03/D3480 OU
ORLROL

Catalog entry ADD-FILE-LINK command

BLK-CONTR =
BUF-LEN =

BLOCK-CONTROL-INFO operand
BUFFER-LENGTH operand

Basic information Processing of cataloged files

186

(1) The ADD-FILE-LINK command assigns the link name INOUTFIL to the file
ISAM.UPDATE and defines

– that the value from the catalog entry for ISAM.UPDATE will be assigned for the
BUFFER-LENGTH operand when the file is opened, and

– SHARED-UPDATE=YES, i.e. ISAM.UPDATE can be updated by more than one
user simultaneously (see section “Shared updating of files (SHARED-
UPDATE)” on page 257).

The DMS creates a TFT entry under the name INOUTFIL and stores these specifi-
cations in it.

(2) The SHOW-FILE-LINK command outputs the contents of the TFT entry for
INOUTFIL with the operand values. Note that the values

– BUF-LEN = *CAT and

– SHARUPD = YES

are derived from the specifications in the ADD-FILE-LINK command. The remaining
operands were not explicitly defined and thus have the default values *BY-PROG
or *NONE.

Processing of cataloged files Basic information

 187

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.1.4 Disk and file formats

Disk formats

BS2000 now supports disks with different formats:

– Keyed volumes (or K disks) are used for files in which block control information is stored
in a separate field (“Pamkey”) for each 2K data block. These files have the PAMKEY
block format.

– Non-Key volumes (or NK disks) are used for files in which no separate Pamkey fields
exist, i.e. files that have no block control information (block format NO) or files in which
the block control information is stored in each respective data block (block format
DATA).

NK volumes are differentiated on the basis of the minimum transfer unit. NK2 volumes have
the usual transfer unit of 2K; NK4 volumes have a transfer unit of 4K.

When using NK4 volumes, it is important to ensure that the record lengths correspond to
an even blocking factor.

The block format of a COBOL file can be defined with the BLOCK-CONTROL-INFO
operand of the ADD-FILE-LINK command:

/ADD-FILE-LINK ..., -
/ BLOCK-CONTROL-INFO = BY-PROGRAM / BY-CATALOG / WITHIN-DATA-BLOCK / PAMKEY / NO

Two additional operand values are available for NK-ISAM files:

WITHIN-DATA-2K-BLOCK / WITHIN-DATA-4K-BLOCK

A detailed description of the BLOCK-CONTROL-INFO operand, the various file and volume
formats, and the conversion of K file formats to NK file formats can be found in the “Intro-
ductory Guide to DMS” [4].

If the values specified in the BLOCK-CONTROL-INFO or BUFFER-LENGTH operands of
the ADD-FILE-LINK command are not compatible with
– the block format of the file or
– the volume on which the file is stored or
– the required blocking factor,

file processing is aborted without success, and the runtime system reports the fact with
I-O status (File Status) 95.

If no ADD-FILE-LINK command is used for a COBOL file, the default value to be set by the
system administrator in the BLKCTRL operand of the CLASS2-OPTION applies.

Basic information Processing of cataloged files

188

K-ISAM and NK-ISAM files

ISAM files in K format that use the maximum record length become longer than the usable
area of the data block when converted to NK format. But they can still be handled in NK
format because the DMS extends the data block by creating so-called “overflow blocks”.

The creation of overflow blocks is attended by the following problems:

– The overflow blocks increase space requirements on the disk and thus the number of
input/output operations during file processing.

– The ISAM key must never be located within an overflow block.

Overflow blocks can be avoided by ensuring that the longest record in the file is shorter than
the usable area of a logical block in NK-ISAM files.

The following table shows how to calculate how much space per logical block is available
for data records in ISAM files.

Explanation of the formulae:

With RECORD-FORMAT=FIXED, every record of both K-ISAM and NK-ISAM files contains
a 4-byte record length field, but this is not included in the RECSIZE value. In these cases,
therefore, it is necessary to deduct 4 bytes per record.
In NK-ISAM files, each PAM page of a logical block contains 16 bytes of management infor-
mation. The logical block additionally contains a further 12 bytes of management infor-
mation and a 2-byte record pointer per record.

File format RECORD-FORMAT Maximum usable area

K-ISAM VARIABLE BUF-LEN

FIXED BUF-LEN - (s*4)

where s = number of records per logical block

NK-ISAM VARIABLE BUF-LEN - (n*16) - 12 - (s*2)
(rounded down to next number divisible by 4)

where n = blocking factor
 s = number of records per logical block

FIXED BUF-LEN - (n*16) - 12 - (s*2) - (s*4)
(rounded down to next number divisible by 4)

where n = blocking factor
 s = number of records per logical block

Table 17: Maximum usable block area in ISAM files

Processing of cataloged files Basic information

 189

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

Example 9-5

Maximum record length for an NK-ISAM file (fixed-length records)

K-SAM and NK-SAM files

SAM files do not have overflow blocks. This means that SAM files in K format that use the
maximum record length are not converted to NK-SAM files. COBOL programs that work
with records having the maximum length possible for K-SAM files are not executable with
NK-SAM files.

The following table shows how much space per logical block is available for data records in
SAM files.

The reason for deducting 4 bytes from the block size in K-SAM files with variable-length
records is that the logical blocks of such files contain a 4-byte block length field that is not
counted in the BUF-LEN value.

File declaration:
 /ADD-FILE-LINK ...,RECORD-FORMAT=FIXED,BUFFER-LENGTH=STD(SIZE=2), -
 / BLOCK-CONTROL-INFO=WITHIN-DATA-BLOCK

maximum record length (according to the formula in table 17):
4096 - (2*16) - 12 - 1*2 - 1*4 = 4046,
rounded down to next number divisible by four: 4044 (bytes).

File format RECORD-FORMAT Maximum usable area

K-SAM VARIABLE BUF-LEN - 4

FIXED / UNDEFINED BUF-LEN

NK-SAM VARIABLE / FIXED / UNDEFINED BUF-LEN - 16

Table 18: Maximum usable block area in SAM files

Sequential files Processing of cataloged files

190

9.2 Sequential file organization

Two types of file are organized sequentially: record-sequential and line-sequential files. The
following general description refers to record-sequential files.
Differences to and restrictions for line-sequential files are described in section “Line-
sequential files” on page 199.

9.2.1 Characteristics of sequential file organization

Records of a sequentially organized file are always arranged logically in the order in which
they were written to the file. Consequently,

– every record (except for the last) has a unique successor, and

– every record (except for the first) has a unique predecessor.

This relationship between predecessor and successor cannot be modified during the entire
life of the file.

It is thus not possible to

– insert records,

– delete records, or

– change the position of a record within the specified order

in a sequential file.

However, sequential file organization does permit the

– updating of records already in existence
(provided that their lengths remain the same and that the file is a disk storage file), and

– the appending of new records to the end of the file.

Individual records of a file cannot be directly (randomly) accessed; they can only be
processed in the same order in which they are stored in the file.

To process sequential files, COBOL programs make use of the SAM access method, which
is provided by DMS for this purpose. Further details on this topic are provided in “Intro-
ductory Guide to DMS” [4].

Sequential files can be set up on magnetic tape devices or direct access devices (disk
storage units).

Processing of cataloged files Sequential files

 191

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.2.2 COBOL language tools for the processing of sequential files

The following program skeleton summarizes the most important clauses and statements
provided in COBOL2000 for the processing of sequential files. The most significant phrases
and entries are briefly explained thereafter:

IDENTIFICATION DIVISON.
 .
 .
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT internal-file-name
 ASSIGN TO external-name
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL
 FILE STATUS IS status-items.
 .
 .
DATA DIVISION.
FILE SECTION.
FD internal-file-name
 BLOCK CONTAINS block-length-spec
 RECORD record-length-spec
 RECORDING MODE IS record-format
 ...
01 data-record.
 nn item-1 type&length.
 nn item-2 type&length.
 ...
PROCEDURE DIVISION.
 ...
 OPEN open-mode internal-file-name.
 ...
 WRITE data-record.
 ...
 READ internal-file-name
 ...
 REWRITE data-record.
 ...
 CLOSE internal-file-name.
 ...
 STOP RUN.

Sequential files Processing of cataloged files

192

SELECT internal-file-name

specifies the name by which the file is to be referenced in the compilation unit.

internal-file-name must be a valid user-defined word.

The SELECT clause format also permits use of the OPTIONAL phrase for input files whose
presence is not essential at program runtime.
If a file name declared with SELECT OPTIONAL is not assigned any file during program
execution, then:

– in the case of OPEN INPUT, the program run is interrupted with message COB9117 and
an ADD-FILE-LINK command is requested (in dialog mode), or the AT-END condition
is initiated (in batch mode)

– in the case of OPEN I-O or OPEN EXTEND, a file with the name
FILE.COBOL.link-name is created.

ASSIGN TO external-name

specifies the system file associated with the file and defines the name via which a cataloged
file can be assigned.

external-name must be either

– a permissible literal or

– a permissible data name defined in the DATA DIVISION

– a valid implementor name

from the ASSIGN clause format (see “COBOL2000 Reference Manual” [1]).

ORGANIZATION IS SEQUENTIAL

specifies that the file is sequentially organized.

The ORGANIZATION clause may be omitted in the case of sequential files, since the
compiler assumes sequential file organization by default.

ACCESS MODE IS SEQUENTIAL

specifies that the records of the file can only be accessed sequentially.
The ACCESS MODE clause is optional and only serves for documentation purposes in the
case of sequential files. This is because sequential access is the default value assumed by
the compiler and is the only permitted access mode for sequential files.

Processing of cataloged files Sequential files

 193

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

FILE STATUS IS status-items

specifies the data items in which the runtime system stores status information after each
access operation on a file. This information indicates

– whether the I-O operation was successful and

– the type of any errors that may have occurred.

The status items must be declared in the Working-Storage Section or the Linkage Section.
Their format and the meanings of individual status codes are described in section
“Processing magnetic tape files” on page 208.
The FILE STATUS clause is optional. If it is not specified, the information mentioned above
is not available.

BLOCK CONTAINS block-length-spec

defines the maximum size of a logical block. It determines how many records are to be
transferred together by each I-O operation into/from the buffer of the program.

block-length-spec must be a permissible value from the format of BLOCK CONTAINS
clause.

The blocking of records reduces

– the number of accesses peripheral storage and thus the runtime of the program;

– the number of interblock gaps on the storage medium and thus the physical storage
space required by the file.

During compilation, the compiler calculates a value for the buffer size on the basis of the
record and block length entries given in the compilation unit. In the case of disk files, the
runtime system rounds up this value for the DMS to the next multiple of a PAM block
(2048 bytes). This default value can be modified during the file assignment by specifying
the BUFFER-LENGTH operand in the ADD-FILE-LINK command (see section “Definition
of file attributes” on page 183).

In this case, it must be noted that

– the buffer must be at least as large as the longest data record, and

– there must be space for the management information (PAM key) in the buffer when
processing in non-key format (BLKCTRL = DATA) (see section “Disk and file formats”
on page 187).

Except in the case of newly created files (OPEN OUTPUT), the block size entered in the
catalog always takes priority over block size specifications in the program or ADD-FILE-
LINK command.

The BLOCK CONTAINS clause is optional. If it is omitted, the compiler assumes BLOCK
CONTAINS 1 RECORDS, i.e. unblocked records.

Sequential files Processing of cataloged files

194

RECORD record-length-spec

– specifies whether records of fixed or variable length are to be processed and

– defines, for variable-length records, a range of permissible values for the record length.
If provided for in the format, a data item is additionally specified for the storage of
current record length information.

record-length-spec must conform to one of the three RECORD clause formats provided in
COBOL2000. It must not be in conflict with the record lengths computed by the compiler
from the specifications in the associated record description entry or entries.

The RECORD clause is optional. If it is not specified, the record format is obtained from the
phrase in the RECORDING MODE clause (see below). Should this clause also be omitted,
records of variable length are assumed by the compiler (see section “Permissible record
formats and access modes” on page 196 for the relationship between the RECORD and
RECORDING MODE clauses).

RECORDING MODE IS U

defines the format of the logical records as “undefined”; i.e. the file may contain an optional
combination of fixed or variable records.

The RECORDING MODE clause is optional and is only required when declaring records of
undefined length, since fixed- and variable-length records can also be specified in the
RECORD clause (see section “Permissible record formats and access modes” on
page 196).

01 data-record.
 nn item-1 type&length
 nn item-2 type&length

represents a record description entry for the associated file. It describes the logical format
of data records.

At least one record description entry is required for each file. If more than one record
description entry is specified for a file, the declared record format must satisfy the following
rules:

– for fixed-length records, all record description entries must specify the same record size

– for variable-length records, they must not be in conflict with the record length specified
in the RECORD clause.

The subdivision of data-record into data items (item-1, item-2, ...) is optional. For
type&length, the required length and format declarations (PICTURE and USAGE clauses
etc.) must be entered.

Processing of cataloged files Sequential files

 195

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

OPEN open-mode internal-file-name

opens the file for processing in the specified open mode. The following phrases can be
entered for open-mode:

INPUT opens the file as an input file; it can only be read.

OUTPUT opens the file as an output file; it can only be written.

EXTEND opens the file as an output file; it can be extended.

I-O opens the file as an I-O file; it can be read (one record at a time), updated
and rewritten.

The open-mode entry determines with which I-O statements a file may be accessed (see
section “Open modes and types of processing (sequential processing)” on page 197).

WRITE data-record
READ internal-file-name
REWRITE data-record

are I-O statements for the file that

– write or
– read or
– rewrite

one record at a time.

The open-mode declared in the OPEN statement determines which of these statements is
admissible for the file. The relationship between access mode and open mode is described
in section “Open modes and types of processing (sequential processing)” on page 197.

CLOSE internal-file-name

terminates processing. Depending on the entry in the format, it may apply to

– the file (no further phrase) or
– a disk storage unit (phrase: UNIT) or
– a magnetic tape reel (phrase: REEL).

This clause can optionally be used to prevent

– a tape from being rewound (phrase: WITH NO REWIND) or
– a file from being opened again (phrase: WITH LOCK) in the same program run.

Sequential files Processing of cataloged files

196

9.2.3 Permissible record formats and access modes

Record formats

Sequential files may contain records of fixed length (RECFORM=F), variable length
(RECFORM=V), or undefined length (RECFORM=U). However, blocking is possible only in
the case of fixed- or variable-length records.

In the COBOL compilation unit, the format of records to be processed is defined in the
RECORD or RECORDING MODE clause (see “COBOL2000 Reference Manual” [1]). The
following table lists the phrases associated with each record format:

If neither of the two clauses is specified, the compiler assumes that the records are of
variable length.

Access modes

Records of a sequential file can only be accessed sequentially, i.e. the program can only
process them in the order in which they were written to the file during its creation.

The mode of access is specified in the ACCESS MODE clause in the COBOL compilation
unit. In the case of sequential files, ACCESS MODE IS SEQUENTIAL is the only admissible
entry. Since this is also the default value assumed by the compiler, the ACCESS MODE
clause may be omitted in this case.

Record format

Phrase in the

RECORD clause RECORDING MODE
clause

Fixed-length
records

RECORD CONTAINS...CHARACTERS (format 1)

Variable-length
records

RECORD IS VARYING IN SIZE...
or

RECORD CONTAINS...TO...

(format 2)

(format 3)

Records of
undefined length

Declaration not possible with the
RECORD clause

RECORDING MODE
IS U

Table 19: Specification of record formats in the RECORD or RECORDING MODE clause

Processing of cataloged files Sequential files

 197

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.2.4 Open modes and types of processing (sequential processing)

The various language elements available for use in a COBOL program can be sequential
files to be
– created,
– read,
– extended (by adding new records at the end of the file), and
– updated (by making changes in existing records)

The individual I-O statements that may be used in the program to process a given file are
determined by its open mode, which is specified in the OPEN statement.

OPEN OUTPUT

WRITE is permitted as an I-O statement in the following format:

WRITE... [FROM...] [...]

 [AT END-OF-PAGE...]
 [NOT AT END-OF-PAGE...]
 [END-WRITE]

In this mode, it is possible to create new sequential files (on tape or disk). Each WRITE
statement places one record in the file. See section “Line-sequential files” on page 199 for
notes on the creation of print files.

OPEN INPUT or
OPEN INPUT...REVERSED

READ is permitted as an I-O statement in the following format:

READ...[NEXT]
 [INTO...]
 [AT END...]
 [NOT AT END...]
 [END-READ]

In this mode sequential files can be read (from disk or tape). Each READ statement reads
one record from the file.

The OPEN INPUT...REVERSED phrase causes the records to be read in reversed order,
beginning with the last record in the file.

BEFORE

AFTER

Sequential files Processing of cataloged files

198

OPEN EXTEND

WRITE is permitted as an I-O statement in the following format:

WRITE...[FROM...] []

 [AT END-OF-PAGE...]
 [NOT AT END-OF-PAGE...]
 [END-WRITE]

In this mode, new records can be appended to the end of a sequential file. Already existing
records are not overwritten.

OPEN I-O

READ and REWRITE are permitted as I-O statements in the following formats:

READ [NEXT]
 [INTO...]
 [AT END...]
 [NOT AT END...]
 [END-READ]

REWRITE...[FROM...]
 [END-REWRITE]

In this mode, records of a sequentially organized disk file can be retrieved (READ), updated
by the program and subsequently written back (REWRITE) to disk. It must be noted,
however, that a record can only be written back with REWRITE if

– it was previously retrieved by a successful READ statement, and

– its record length was not changed during the update.

The OPEN I-O phrase is only permitted for disk files.

BEFORE

AFTER

Processing of cataloged files Sequential files

 199

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.2.5 Line-sequential files

The line-sequential organization used in COBOL files is a language element defined by the
X/Open standard. The corresponding language format is as follows:

FILE-CONTROL.
...
[ORGANIZATION IS] LINE SEQUENTIAL
...

In BS2000, a line-sequential file can be stored
– as a cataloged SAM file
– or as an element in a PLAM library.

This provides the option of processing both cataloged files and files in the form of library
elements in a COBOL program.
Restrictions by comparison with record-sequential files:

– Only variable-length records are permissible (RECORD-FORMAT=V).
Does not apply to ENABLE-UFS-ACCESS=YES.

– These files can only be opened with OPEN INPUT and OPEN OUTPUT, without the
specifications REVERSED and NO REWIND.

– The only permissible input/output statements are READ (for OPEN INPUT) and WRITE
(for OPEN OUTPUT).

– The only specification that can be made in the CLOSE statement is WITH LOCK.

As with record-sequential files, a line-sequential file can be linked to a current SAM file
using the ADD-FILE-LINK command (see section “Assignment of cataloged files” on
page 178).
They can be linked to a library element with the SDF-P command SET-VARIABLE, which
must have the following structure:

Sequential files Processing of cataloged files

200

Line-sequential COBOL files can only be processed in library elements if the LMSLIB library
exists under the TSOS ID.
When linking the program that is to process the line-sequential files, the $LMSLIB library
must be specified in addition to CRTE in order to satisfy the requirements of external refer-
ences.

/SET-VAR SYSIOL-name=’*LIBRARY-ELEMENT(library,element[version],type)’

SYSIOL-name S variable. name must be the external name of the file in the ASSIGN
clause.

library Name of the PLAM library

element Name of the element

version Version indicator. Permissible values are:
 <alphanum-name 1..24> / *UPPER[-LIMIT] / *HIGH[EST-EXISTING] /
*INCR[EMENT] (only for write accesses)
If no version is specified, the highest possible version is generated
during write accesses; read operations access the highest available
version.

type Element type. Permissible values: S, M, J, H, P, U, F, X, R, D.

Processing of cataloged files Sequential files

 201

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

Example 9-6

Generating a line-sequential file in a library element

 1. The SET-VARIABLE command can be inserted in a BS2000 procedure if it is a
structured SDF-P procedure. This kind of structured procedure is described in
the “SDF-P” manual [28].

2. The phrases within the quotes in the SET-VARIABLE command must all be
written in uppercase.

Entries in the COBOL compilation unit:
...
FILE-CONTROL.
SELECT AFILE ASSIGN TO "LIBELEM"
 ORGANIZATION IS LINE SEQUENTIAL
...
PROCEDURE DIVISION.
...
 OPEN OUTPUT AFILE.
...

Assignment of library and element before the program is called:

/SET-VAR SYSIOL-LIBELEM=’*LIBRARY-ELEMENT(CUST.LIB,MEYER,S)’

i

Sequential files Processing of cataloged files

202

9.2.6 Creating print files

COBOL language elements for print files

COBOL2000 provides the following language elements for the creation of files that are to
be printed:

– Specification of the symbolic device names in the ASSIGN clause

– The LINAGE clause in the file description entry

– The ADVANCING phrase and the END-OF-PAGE phrase in the WRITE statement.

The use of these language elements is detailed in the "COBOL2000 Reference Manual” [1].
The following table shows the use of the symbolic device names in conjunction with the
WRITE statement and the generation of the associated control characters:

Symbolic
device name

WRITE statement
without
ADVANCING phrase

WRITE statement with
ADVANCING phrase

Comments

PRINTER
literal

Standard spacing when
ADVANCING is omitted
as if AFTER 1 LINE had
been specified; the first
character of the record
is available for user
data.

The first character of the
record is available for
user data.

The place for the carriage control
character is reserved by the compiler and
is not accessible to the user.
This type of printer supports specification
of the LINAGE clause in the file
description entry. Write statements both
with and without the ADVANCING phrase
specified are allowed for a given file.

PRINTER

PRINTER01 -
PRINTER99

As above. As above. The place for the carriage control
character is reserved by the compiler and
is not accessible to the user. The LINAGE
clause is not permitted for this file. Use of
WRITE statements with and without the
ADVANCING phrase for the same file is
not permitted. If this does occur, a WRITE
AFTER ADVANCING is executed
implicitly for the records without the
ADVANCING phrase.

literal Spacing is controlled by
the first character in
each logical record; the
user must therefore
supply the appropriate
control character before
every execution of such
a WRITE statement.

Spacing is controlled by
the first character in each
logical record; the user
must therefore supply the
appropriate control
character before every
execution of such a
WRITE statement.

Mixed use of WRITE statements both with
and without specifications of the
ADVANCING phrase is permitted. In
either case, however, the user information
of the printer record begins only with the
second character of the record.

Table 20: Use of symbolic device names in conjunction with the WRITE statement

Processing of cataloged files Sequential files

 203

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

Line-feed control characters for print files

When a WRITE statement is executed, the control byte of all print files (whose ASSIGN
clauses do not contain the “literal” specification) is automatically supplied with a feed control
character, which causes the page to be advanced as specified in the ADVANCING phrase
(see the two following tables). Should the ADVANCING phrase be omitted, single-line
spacing is assumed. The place for the carriage control character is reserved by the compiler
and is inaccessible to the user.

When “literal” is specified in the ASSIGN clause for a file, a line-feed control character can
be supplied to the control byte in two ways:

– A WRITE statement with the ADVANCING phrase generates a feed control control
character on execution causing the printer to be advanced as specified in the
ADVANCING phrase.

– A WRITE statement without the ADVANCING phrase does not supply a value to the
control byte; the required control character must be explicitly transferred to it prior to the
execution of the statement.

This allows the user not only to use feed control characters but also to define other feed
control characters in the program (e.g. for special printers). Information concerning the
validity of individual characters and how they are interpreted during printing is available
in the relevant printer manuals.

Since carriage control characters are usually not printable, they must be defined in the
program by means of the SYMBOLIC CHARACTERS clause, so as to ensure that they
can be referenced in MOVE statements (see “” on page 205).

Depending on the output destination different feed control characters are generated:

Feed with output to BS2000 Feed with output to
POSIX file system

PRINTER literal BS2000 feed control characters as
per table 21 and table 22

Feed control characters and lines as per
UNIX conventions

PRINTER as above as above

PRINTER01-99 as above not supported

literal as above BS2000 feed control charac
ters as per table 21, table 22

Sequential files Processing of cataloged files

204

The following tables list feed control characters:

Advance by
number of lines

Control characters for line spacing

After printing Before printing

Hex code1

1 Due to hardware characteristics, the values of the second half-byte are 1 less than the desired number of
lines.

Printed form

1 01 40 (space)

2 02 41 non-printable

3 03 42 non-printable

.

.
.
.

.

.
.
.

11 0B 4A c (CENT)

12 0C 4B . (period)

13 0D 4C < (less than)

14 0E 4D ((parenthesis

15 0F 4E + (plus sign)

Table 21: Feed control characters

Skip to punched
 tape channels1

1 Skipping to channel 9 or 12 is not possible as these are reserved for an end-of-form condition.

Printer control character

After printing Before printing

Hex. code Printed form

1 81 C1 A

2 82 C2 B

3 83 C3 C

4 84 C4 D

5 85 C5 E

6 86 C6 F

7 87 C7 G

8 88 C8 H

10 8A CA non-printable

11 8B CB non-printable

Table 22: Feed control characters for feed via punched tape channels

Processing of cataloged files Sequential files

 205

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

The SPECIAL-NAMES paragraph of the Environment Division enables the user to assign
a symbolic name to any hexadecimal value, thus ensuring that all such values (including
non-printable line-feed control characters) can be addressed in the COBOL compilation unit
(see “COBOL2000 Reference Manual” [1]). The example that follows illustrates how line-
feed control characters can be defined in this way.

Example 9-7

Supplying a hexadecimal control character to the control byte

In this example, the hexadecimal value 0A is to be transferred to the control byte of the print
record. This causes the printer to advance 10 lines after printing.

(1) The eleventh character of the EBCDIC character set - corresponding to the
hexadecimal value 0A - is assigned the symbolic name HEX-0A.

(2) The MOVE statement refers to this symbolic name in order to transfer hexadecimal
value 0A to the control byte.

IDENTIFICATION DIVISION.
 ...
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINT-FILE ASSIGN TO "OUTPUT".
CONFIGURATION SECTION.
 ...
SPECIAL-NAMES.
 ...

SYMBOLIC CHARACTERS HEX-0A IS 11 —————————————————————————————————— (1)
 ...
DATA DIVISION.
FILE SECTION.
FD PRINTER-FILE
 ...
01 PRINT-RECORD.
 02 CONTROL-BYTE PIC X.
 02 PRINT-LINE PIC X(132).
 ...
PROCEDURE DIVISION.
 ...

MOVE "CONTENT" TO PRINT-LINE.
MOVE HEX-0A TO CONYTROL-BYTE. ————————————————————————————————————— (2)
WRITE PRINT-RECORD.

 ...

Sequential files Processing of cataloged files

206

Using ASA line-feed control characters

ASA line-feed control characters can only be used in files that are assigned with ASSIGN
TO literal or ASSIGN TO data-name.
In addition, the following ADD-FILE-LINK command is required for the file to be processed:

ADD-FILE-LINK filename, REC-FORM=*VAR(*ASA)

The ASA control characters and the corresponding WRITE statements that can be used
under these conditions are listed in the table below::

ASA line-feed control characters Format of the WRITE statement

+ WRITE ... BEFORE ADVANCING 0

0 WRITE ... AFTER ADVANCING 0 or 1

- WRITE ... AFTER ADVANCING 2

1 WRITE ... AFTER ADVANCING PAGE or C01

2 WRITE ... AFTER ADVANCING C02

3 WRITE ... AFTER ADVANCING C03

4 WRITE ... AFTER ADVANCING C04

5 WRITE ... AFTER ADVANCING C05

6 WRITE ... AFTER ADVANCING C06

7 WRITE ... AFTER ADVANCING C07

8 WRITE ... AFTER ADVANCING C08

A WRITE ... AFTER ADVANCING C10

B WRITE ... AFTER ADVANCING C11

Table 23: ASA line-feed control characters and corresponding WRITE statements

Processing of cataloged files Sequential files

 207

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.2.7 Processing files in ASCII or in ISO 7-bit code

COBOL2000 supports the processing of sequential files in ASCII or ISO 7-bit code by
means of the following clauses (see “COBOL2000 Reference Manual” [1]):

– ALPHABET alphabet-name-1 IS STANDARD-1(for ASCII code) or
ALPHABET alphabet-name-1 IS STANDARD-2 (for ISO 7-bit code)
in the SPECIAL-NAMES paragraph of the Configuration Section and

– CODE-SET IS alphabet-name-1 in the file description entry of the File Section.

ASCII code

The following program skeleton indicates the phrases that must be entered in the COBOL
compilation unit in order to process a file in ASCII code.

(1) The ALPHABET clause links code type STANDARD-1 (i.e. ASCII code) to the name
alphabet-name-1.

(2) The CODE-SET clause specifies the code type connected with alphabet-name-1 as
the character set for the file.

ISO 7-bit code

The declarations to be made in the compilation unit for the processing of a file in ISO 7-bit
code are similar to those specified for the ASCII code above.
The only difference is that the keyword entered in the ALPHABET clause must be
STANDARD-2 instead of STANDARD-1.
For magnetic tape files in ISO 7-bit code there is a further alternative (see also
section “Processing magnetic tape files” on page 208): namely, to specify
SUPPORT=TAPE(CODE=ISO7) for the file assignment in the ADD-FILE-LINK command.

IDENTIFICATION DIVISION.
...
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
...
SPECIAL-NAMES.
...
 ALPHABET alphabetname-1 IS STANDARD-1 —————————————————————————————— (1)
 ...
DATA DIVISION.
FILE SECTION.
FD file
 CODE-SET IS alphabetname-1 ——— (2)
 ...

Sequential files Processing of cataloged files

208

9.2.8 Processing magnetic tape files

COBOL2000 supports the processing of magnetic tape files by means of the following
language elements (see “COBOL2000 Reference Manual” [1]):

– The INPUT...REVERSED and WITH NO REWIND phrases in the OPEN statement:

Each of these phrases prevents the file position indicator being set to the start of the file
when the file is opened.

INPUT...REVERSED causes a file to be positioned at its last record when the file is
opened. Records of the file can then be read in reversed (i.e. descending) order.

WITH NO REWIND can be specified for OPEN INPUT as well as OPEN OUTPUT and
prevents the file from being repositioned when the OPEN statement is executed.

– The REEL, WITH NO REWIND and FOR REMOVAL phrases in the CLOSE statement:

REEL is permitted only for multi-volume files, i.e. files that are distributed over more
than one data volume (magnetic tape reels in this case). Depending on the open mode
of each file, this phrase initiates the execution of different volume-closing operations at
the end of the current reel (see CLOSE statement in “COBOL2000 Reference Manual”
[1]). If the WITH NO REWIND or FOR REMOVAL has also been specified, the actions
associated with these phrases (see below) are also performed at the end of the volume.

The WITH NO REWIND phrase causes the current reel to be left in its current position
(i.e. not repositioned to the start of the reel) when processing of the file or reel is closed.

FOR REMOVAL indicates that the current reel is to be unloaded at the end of the file or
at the end of the magnetic tape reel.

Processing of cataloged files Sequential files

 209

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

Assignment of magnetic tape files

Like disk files, magnetic tape files can also be assigned via the ADD-FILE-LINK command
and supplied with attributes (see section “Assignment of cataloged files” on page 178 and
section “Definition of file attributes” on page 183). A detailed description of the command
format for tape files is provided in “Commands” manual [3] and “Introductory Guide to DMS”
[4].

Example 9-8

Assigning a tape file

(1) For batch operations in particular, it is recommended that the required private
volumes and devices be reserved with SECURE-RESOURCE-ALLOCATION
before processing begins. In the above example, the tape with VSN CA176B is
requested on a tape device with a recording density of 6250 bpi (TYPE=T6250) and
a mounted write-permit ring (ACCESS=WRITE).

(2) The CREATE-FILE command

– catalogs the file STOCK.NEW as a tape file and

– links the volume serial number (VOLUME) and the tape device (DEVICE-TYPE)

(3) The ADD-FILE-LINK command links the file name STOCK.NEW with the link name
OUTFILE.

(4) START-PROGRAM calls the problem program that is stored as a program under
the element name UPDATE in the PLAM library PLAM.LIB.

(5) On completion of processing, the REMOVE-FILE-LINK command

– releases the link between the file STOCK.NEW and the link name OUTFILE and

– causes the tape CA176B to be unloaded; the tape device is released by default.

 /SEC-RESOURCE-ALLOC,TAPE=PAR(VOL=CA176B,TYPE=T6250,ACCESS=WRITE) —————— (1)
 /CREATE-FILE STOCK.NEW,SUPPORT=TAPE(VOLUME=CA176B,DEVICE-TYPE=T6250) ——— (2)
 /ADD-FILE-LINK OUTFILE,STOCK.NEW —————————————————————————————————————— (3)
 /START-PROGRAM *LIB(PLAM.LIB,UPDATE) —————————————————————————————————— (4)
 ...
 /REMOVE-FILE-LINK OUTFILE,UNLOAD-RELEASED-TAPE=YES ————————————————————— (5)

Sequential files Processing of cataloged files

210

9.2.9 I-O status

The status of each access operation performed on a file is stored by the runtime system in
specific data items which can be assigned to every file in the program. These items, which
are specified by using the FILE STATUS clause, provide information on

– whether the I-O operation was successful, and

– the type of any errors that may have occurred.

This data can be evaluated (by USE procedures in the DECLARATIVES, for example) and
used by the program to analyze I-O errors. As an extension to Standard COBOL,
COBOL2000 provides the option of including the keys of the DMS error messages in this
analysis, thus allowing a finer differentiation between different causes of errors.

The FILE STATUS clause is specified in the FILE-CONTROL paragraph of the Environment
Division. Its format is (see “COBOL2000 Reference Manual” [1]):

LR
FILE STATUS IS data-name-1 [data-name-2]
LR

where data-name-1 and data-name-2 (if specified) must be defined in the
WORKING-STORAGE SECTION or the LINKAGE SECTION. The following rules apply
with regard to the format and possible values for these two items:

data-name-1

– must be declared as a two-byte alphanumeric data item, e.g.

 01 data-name-1 PIC X(2).

– contains a two-character numeric status code following each access operation on the
associated file. The table provided at the end of this section lists all such codes together
with their meanings.

Processing of cataloged files Sequential files

 211

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

data-name-2

– must be declared as a 6-byte group item with the following format:

 01 data-name-2.
 02 data-name-2-1 PIC 9(2) COMP.
 02 data-name-2-2 PIC X(4).

– is used for storing the DMS error code for the relevant I-O status. Following each
access operation on the associated file, data-name-2 contains a value that directly
depends on the content of data-name-1. The relationship between the values is shown
in the table below:

The DMS codes and the associated error messages are given in “Introductory Guide to
DMS” [4].

Caution

For line-sequential files, the only I-O status available is the one represented by data-
name 1.

The status values and their meanings generally refer to record-sequential files. When
line-sequential files are being processed, due consideration must be given to the
peculiarities of line-sequential organization with regard to the interpretation of status
values (see section “Line-sequential files” on page 199).

Contents of
data-name-1≠0?

DMS code ≠ 0? Value of
data-name-2-1

Value of
data-name-2-2

no no undefined undefined

yes no 0 undefined

yes yes 64
DMS code of the
associated error

message

Sequential files Processing of cataloged files

212

I-O status Meaning

Execution successful

00 The I-O statement terminated normally. No further information regarding the
I-O operation is available.

04 Record length conflict: A READ statement terminated normally. However, the length
of the record read lies outside the limits defined in the record description entry for
this file.

05 Successful execution of an OPEN INPUT/I-O/EXTEND on a file; however, the refer-
enced file indicated by the OPTIONAL phrase was not present at the time the
OPEN statement was executed.

07 1. Successful OPEN statement with NO REWIND clause on a file that is on a
UNIT-RECORD medium.

2. Successful CLOSE statement with NO REWIND, REEL/UNIT, or
FOR REMOVAL clause on a file that is on a UNIT-RECORD medium.

Execution unsuccessful: AT END condition

10 1. An attempt was made to execute a READ statement. However, no next logical
record existed, because the end-of-file was encountered.

2. A sequential READ statement with the OPTIONAL phrase was attempted for
the first time on a nonexistent file.

Execution unsuccessful: unrecoverable error

30 1. No further information regarding the I-O operation is available (the DMS code
provides further information).

2. During line-sequential processing: access to a PLAM element was unsuc-
cessful

34 An attempt was made to write outside the sequential file boundaries set by the
system.

35 An OPEN statement with the INPUT/I-O phrase was attempted on a nonexistent
file.

37 OPEN statement on a file that cannot be opened in any of the following ways:

1. OPEN OUTPUT/I-O/EXTEND on a write-protected file
 (password, RETENTION-PERIOD, ACCESS=READ in catalog)

2. OPEN I-O on a tape file
3. OPEN INPUT on a read-protected file (password)

38 An attempt was made to execute an OPEN statement for a file previously closed
with the LOCK phrase.

Table 24: I-O status for sequential files

Processing of cataloged files Sequential files

 213

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

39 The OPEN statement was unsuccessful as a result of one of the following condi-
tions:

1. One or more of the operands ACCESS-METHOD, RECORD-FORMAT or
RECORD-SIZE were specified in the ADD-FILE-LINK command with values
deviating from the corresponding explicit or implicit program specifications.

2. Record length errors occurred for input files (catalog check if RECFORM=F).
3. The record size is greater than the BLKSIZE entry in the catalog (in the case of

input files).
4. The catalog entry of one of the FCBTYPE, RECFORM or RECSIZE (if

RECFORM=F) operands for an input file is in conflict with the corresponding
explicit or implicit program specifications or with the specifications in the ADD-
FILE-LINK command.

Execution unsuccessful: logical error

41 An attempt was made to execute an OPEN statement for a file which was already
open.

42 An attempt was made to execute a CLOSE statement for a file which was not open.

43 While accessing a disk file opened with OPEN I-O, the most recent I-O statement
executed prior to a REWRITE statement was not a successfully executed READ
statement.

44 Boundary violation:

1. An attempt was made to execute a WRITE statement. However, the length of
the record is outside the range allowed for this file.

2. An attempt was made to execute a REWRITE statement. However, the record
to be rewritten did not have the same length as the record to be replaced.

46 An attempt was made to execute a READ statement for a file in INPUT or I-O mode.
However, there is no valid next record since:

1. the preceding READ statement was unsuccessful without causing an AT END
condition

2. the preceding READ statement resulted in an AT END condition.

47 An attempt was made to execute a READ statement for a file not in INPUT or
I-O mode.

48 An attempt was made to execute a WRITE statement for a file not in OUTPUT or
EXTEND mode.

49 An attempt was made to execute a REWRITE statement for a file not open in
I-O mode.

I-O status Meaning

Table 24: I-O status for sequential files

Sequential files Processing of cataloged files

214

Other conditions with unsuccessful execution

90 System error; no further information available regarding the cause.

91 System error; a system call terminated abnormally; either an OPEN error or no free
device; the actual cause is evident from the DMS code (see “FILE STATUS clause”)

95 Incompatibility between values specified in the BLOCK-CONTROL-INFO or
BUFFER-LENGTH operand of the ADD-FILE-LINK command and the file format,
block size, or the format of the used volume.

I-O status Meaning

Table 24: I-O status for sequential files

Processing of cataloged files Relative files

 215

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.3 Relative file organization

9.3.1 Characteristics of relative file organization

Each record in a relatively organized file is assigned a number which indicates its position
in the file: the first record is assigned number 1, the second, number 2 etc.

By specifying a relative key data item in the program, the user can access any record of the
file directly (randomly) via its relative record number. In addition to the options provided by
sequential file organization, relatively organized files

– can be randomly created, i.e. records can be placed on the file in any order,
– can be randomly processed, i.e. records can be retrieved and updated in any order,
– permit the insertion of records, provided the desired position (relative record number)

is not yet occupied,
– permit the logical deletion of existing records.

For the processing of relative files, COBOL programs use the DMS access methods ISAM
and UPAM (see “Introductory Guide to DMS” [4]), which permit several users to update the
file simultaneously (see section “Shared updating of files (SHARED-UPDATE)” on
page 257).

Existing files have a defined FCBTYPE. For files to be created, FCBTYPE ISAM is always
set unless FCBTYPE PAM has been defined with the ACCESS-METHOD operand of the
ADD-FILE-LINK command of FCBTYPE *UPAM (SAM is rejected with an error message).

In the following cases, only FCBTYPE ISAM can be specified:

– if a variable record length is explicitly specified in the RECORD clause and/or
– if OPEN EXTEND is specified and/or
– if READ REVERSED is specified

When a relative file is mapped to ISAM, the 8-byte record key (hexadecimal) is inserted
before the start of the record. The relative record key is mapped onto the key of the indexed
file.

Relative files can only be stored on disk.

Relative files Processing of cataloged files

216

File structure

A description of the file structure of an ISAM file is given in section “Characteristics of
indexed file organization” on page 236.

The following considerations apply to PAM files:

In terms of its logical structure, a PAM file may be seen as a sequence of areas of equal
length, each capable of holding one record (only fixed-length records are allowed for PAM
files). Each of these areas can be accessed by means of its relative record number.
If the file is created sequentially, each of these areas - starting with the first - is filled in turn
with a data record; no area can be skipped.

In the case of random creation, each record is written to the area whose relative record
number was supplied in the relative key field of the record prior to the output statement. The
program computes the associated position in the file on the basis of the specified record
number and the record length. Unoccupied areas that are skipped during output are then
created as empty records, i.e. the program reserves storage areas equal to the record
length and supplies the first byte of each such area with the hexadecimal value FF (HIGH-
VALUE), which identifies it as an empty record (see section “Open modes and types of
processing (relative files)” on page 223).
PAM files can only be created on “key disks”, i.e., the BLOCK-CONTROL=PAMKEY entry
is needed in the ADD-FILE-LINK command (see section “Disk and file formats” on
page 187).

Processing of cataloged files Relative files

 217

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.3.2 COBOL language tools for processing relative files

The following program skeleton summarize the most important clauses and statements
provided in COBOL2000 for the processing of relative files. The most significant phrases
and entries are briefly explained thereafter:

IDENTIFICATION DIVISION.
...
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT internal-file-name
 ASSIGN TO external-name
 ORGANIZATION IS RELATIVE
 ACCESS MODE IS mode RELATIVE KEY IS key
 FILE STATUS IS status-items.
 ...
DATA DIVISION.
FILE SECTION.
FD internal-file-name
 BLOCK CONTAINS block-length-spec
 RECORD CONTAINS record-length-spec
 ...
01 data-record.
 nn item-1 type&length.
 nn item-2 type&length.
 ...
WORKING-STORAGE SECTION.
 ...
 nn key type&length
 ...
PROCEDURE DIVISION.
 ...
 OPEN open-mode internal-file-name
 ...
 START internal-file-name
 ...
 READ internal-file-name
 ...
 REWRITE data-record
 ...
 WRITE data-record
 ...
 DELETE internal-file-name
 ...
 CLOSE internal-file-name
 ...
 STOP RUN.

Relative files Processing of cataloged files

218

SELECT internal-file-name

specifies the name by which the file is to be addressed in the compilation unit.

internal-file-name must be a valid user-defined word.
The format of the SELECT clause also permits the OPTIONAL phrase to be specified for
input files that need not necessarily be present during the program run.

If, during program execution, no file has been assigned to a file name declared with
SELECT OPTIONAL, then:

– in the case of OPEN INPUT, program execution is interrupted with message COB9117
and an ADD-FILE-LINK command is requested (in dialog mode), or the AT END
condition is initiated (in batch mode);

– in the case of OPEN I-O or OPEN EXTEND, a file named FILE.COBOL.linkname is
created.

ASSIGN TO external-name

specifies the system file associated with the file and defines the name via which a cataloged
file can be assigned.

external-name must be either
– a permissible literal,
– a permissible data name defined in the DATA division, or
– a valid implementor name

from the ASSIGN clause format (see “COBOL2000 Reference Manual” [1]).

ORGANIZATION IS RELATIVE

specifies that the file is organized as a relative file.

ACCESS MODE IS mode

specifies the mode in which the records in the file can be accessed.

The following may be specified for mode (see also section “Open modes and types of
processing (relative files)” on page 223):

SEQUENTIAL specifies that the records can only be processed sequentially.
RANDOM declares that the records can only be accessed in random mode.
DYNAMIC allows the records to be accessed in either sequential or random mode.

The ACCESS MODE clause is optional. If it is not specified, the compiler assumes the
default value ACCESS MODE IS SEQUENTIAL.

Processing of cataloged files Relative files

 219

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

RELATIVE KEY IS key

specifies the relative key data item for holding the relative record numbers in the case of
random access to the records.

key must be declared as an unsigned integer data item and must not be a part of the
associated record description entry.
In the case of random access, the relative record number of the record to be processed
must be supplied in key before each I-O operation.

The RELATIVE KEY phrase is optional for files for which ACCESS MODE IS SEQUENTIAL
is declared; it is mandatory when ACCESS MODE IS RANDOM or DYNAMIC is specified.

FILE STATUS IS status-items

specifies the data items in which the runtime system will store status information after each
access to a file. This information indicates
– whether the I-O operation was successful and
– the type of any errors that may have occurred.

The status items must be declared in the WORKING-STORAGE SECTION or the
LINKAGE SECTION. Their format and the meaning of the various status codes are
described in section “I-O status” on page 210.

The FILE STATUS clause is optional. If it is not specified, the information mentioned above
is not available

BLOCK CONTAINS block-length-spec

defines the maximum size of a logical block. It determines how many records are to be
transferred together by each I-O operation into/from the buffer of the program.

block-length-spec must be an integer and must not be shorter than the record length of the
file or greater than 32767. It specifies the size of the logical block in bytes.

The blocking of records reduces
– the number of accesses to peripheral storage and thus the runtime of the program;
– the number of interblock gaps on the storage medium and thus the physical storage

space required by the file.

On the other hand, access employing the locking mechanism during shared update
processing (see section “Shared updating of files (SHARED-UPDATE)” on page 257)
cause the entire block containing the current record to be locked. In each case, therefore,
a large blocking factor would lead to a reduction in processing speed.

Relative files Processing of cataloged files

220

During compilation, the compiler calculates a value for the buffer size on the basis of the
record and block length entries given in the compilation unit. The runtime system rounds up
this value for DMS to the next multiple of a PAM block (2048 bytes). This default value can
be modified during the file assignment by specifying the BUFFER-LENGTH operand in the
ADD-FILE-LINK command. It must be noted, however, that the specified buffer needs to be
at least as large as the longest data record.

Except in the case of newly created files (OPEN OUTPUT), the block size entered in the
catalog always takes priority over block size specifications in the program or ADD-FILE-
LINK command.

The BLOCK CONTAINS clause is optional. If it is not specified, the compiler assumes the
record length of the file as the block size.

RECORD record-length-spec

– specifies whether fixed or variable length records are to be processed and
– defines, for variable length records, a range for the valid record sizes and, if specified

in the format, a data item to contain the current record length information.

record-length-spec must match one of the three formats in the RECORD clause supported
by COBOL2000. It must not conflict with the record lengths the compiler computes from the
specifications in the associated record description entry or entries.

The RECORD clause is optional. If it is not specified, the compiler assumes that the records
are of variable length.

01 data-record.
 nn item-1 type&length
 nn item-2 type&length

represents a record description entry for the associated file. It describes the logical format
of data records.

At least one record description entry is required for each file. If more than one record
description entry is specified for a file, the declared record format must be considered:

– For records of fixed length all record description entries must be of the same size,

– for records of variable length they must not conflict with the record length specification
in the RECORD clause.

The subdivision of data-record into data items (item-1, item-2, ...) is optional. For
type&length, the required length and format declarations (PICTURE and USAGE clauses
etc.) must be entered.
The relative key data item declared in the RELATIVE KEY phrase must not be subordinate
to data-record.

Processing of cataloged files Relative files

 221

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

nn key type&length

defines the relative key data item specified in the RELATIVE KEY phrase.

When specifying values for type&length, it should be noted that key must be an unsigned
integer data item.
In the case of random access, the relative record number of the record to be processed
must be supplied in key before each I-O operation.

OPEN open-mode internal-file-name

opens the file for processing in the specified open mode.

The following phrases can be entered for open-mode:

INPUT opens the file as an input file; it can only be read.
OUTPUT opens the file as an output file; it can only be written.
EXTEND opens the file as an output file; it can be extended.
I-O opens the file as an I-O file; it can be read (one record at a time),

updated and rewritten.

The open-mode entry determines with which I-O statements a file may be accessed (see
section “Open modes and types of processing (relative files)” on page 223).

START internal-file-name
READ internal-file-name
REWRITE data-record
WRITE data-record
DELETE internal-file-name

are I-O statements for the file that
– position to a record in the file
– read a record
– rewrite a record
– write a record, and
– delete a record.

The open mode declared in the OPEN statement determines which of these statements is
admissible for the file. The relationship between access mode and open mode is described
in section “Open modes and types of processing (relative files)” on page 223.

CLOSE internal-file-name

terminates processing of the file.

The WITH LOCK phrase can be additionally specified to prevent the file from being opened
again in the same program run.

Relative files Processing of cataloged files

222

9.3.3 Permissible record formats and access modes

Record formats

Relative files may contain fixed-length records (RECFORM=F) or variable-length records
(RECFORM=V). In either case the records may be blocked or unblocked.
COBOL compilation units permit the format of records to be processed to be declared in the
RECORD clause. The phrases that are associated with the record format concerned are
summarized in the following table:

Access modes

Access to records of a relative file may be sequential, random, or dynamic.

In the COBOL compilation unit, the access mode is defined with the ACCESS MODE
clause. The following table lists the possible phrases together with their effect on the access
mode.

Record format Phrase in the RECORD clause

Fixed length records RECORD CONTAINS...CHARACTERS (Format 1)

Variable length records
RECORD IS VARYING IN SIZE...
 or
RECORD CONTAINS...TO...

(Format 2)

(Format 3)

Table 25: Record format and RECORD clause

Phrase in the
ACCESS MODE clause Access mode

SEQUENTIAL Sequential access:

The records can be processed only in the order in which they appear in
the file. This order is determined by the relative record number. In other
words:
When reading records, the next or previous record is made available.
When writing records, each successive record output to the file is
assigned the next relative record number; no empty records are written.

RANDOM Random access:

The records can be accessed in any order via the relative record number.
For this purpose, the relative record number of the record to be processed
must be supplied in the RELATIVE KEY item prior to each I-O operation.

DYNAMIC Dynamic access:

The records can be accessed sequentially as well as randomly. The appli-
cable access mode is selected via the format of the I-O statement in this
case.

Table 26: ACCESS MODE clause and access mode

Processing of cataloged files Relative files

 223

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.3.4 Open modes and types of processing (relative files)

The various language elements available for use in a COBOL program allows relative files
to be
– created,
– read,
– extended (by adding new records), and
– updated (by changing or deleting existing records).

The individual I-O statements that may be used in the program to process a given file are
determined by its open mode, which is specified in the OPEN statement:

OPEN OUTPUT

Regardless of the phrase in the ACCESS MODE clause, WRITE is permitted as an
I-O statement in the following format:

WRITE...[FROM...]
 [INVALID KEY...]
 [NOT INVALID KEY...]
 [END WRITE...]

In this mode, it is only possible to create (load) new relative files. Depending on the
specified access mode, the WRITE statement has the following effect:

– ACCESS MODE IS SEQUENTIAL

allows a relative file to be created sequentially i.e. WRITE writes records to the file
successively with ascending relative record numbers (starting with 1).
The RELATIVE KEY key item - if specified - is not evaluated by WRITE; it is loaded with
the value of the (automatically incremented) relative record number of the last record to
be written.

– ACCESS MODE IS RANDOM or DYNAMIC

(both phrases have the same meaning here) enables the random creation of a file.
WRITE causes each record to be written to the position in the file that is indicated by its
relative record number.
Thus, before each WRITE statement is executed, the RELATIVE KEY item must be
supplied with the relative record number which the record to be written is to receive in
the file. If the number of an already existing record is specified, the INVALID KEY
condition occurs, and WRITE branches to the INVALID KEY statement or to the
declared USE procedure without writing the record. It is thus not possible to overwrite
records in this case.

Relative files Processing of cataloged files

224

OPEN EXTEND

OPEN EXTEND is used to extend an existing file. Access is only possible in sequential
mode.

– ACCESS MODE IS SEQUENTIAL

permits a relative file to be extended sequentially. Starting with the highest key+1,
WRITE writes the records with continuous, ascending record numbers to the file.
The RELATIVE KEY key item, if specified, is not interpreted by WRITE; it contains the
(automatically incremented) relative record number of the last written record.

OPEN INPUT

The phrase specified in the ACCESS MODE clause determines which I-O statements or
statement formats are permitted. The following table lists the options available for OPEN
INPUT:

Statement

Entry in the ACCESS MODE clause

SEQUENTIAL RANDOM DYNAMIC

START START...
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-START]

Statement not permitted START...
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY]
[END-START]

READ READ...[NEXT | PREVIOUS]
[INTO...]
[AT END...]
[NOT AT END...]
[END-READ...]

READ...
[INTO...]
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-READ]

For sequential access:

READ...{NEXT | PREVIOUS}
[INTO...]
[AT END...]
[NOT AT END...]
[END-READ]

For random access:
READ...
[INTO...]
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-READ]

Table 27: Permitted I-O statements for OPEN INPUT

Processing of cataloged files Relative files

 225

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

Relative files can be read in this mode. Depending on the access mode specified, the READ
statement has the following effect:

– ACCESS MODE IS SEQUENTIAL

permits the file to be read sequentially only. READ retrieves records in ascending
(NEXT) or descending (PREVIOUS) order, based on the value of the relative record
numbers.
The RELATIVE KEY key data item - if specified - is not evaluated by READ; it contains
the relative record number of the last record that was read. However, if a RELATIVE
KEY key data item was declared, a START statement can be used to position to any
record of the file before execution of a READ statement: START uses a relation
condition to establish the relative record number of the first record to be read and thus
defines the starting point for sequential read operations that follow.
If the comparison relation condition cannot be satisfied by any relative record number
of the file, an INVALID KEY condition exists, and START transfers control to the imper-
ative statement specified in the INVALID KEY phrase or to the declared USE procedure.

– ACCESS MODE IS RANDOM

enables records of the file to be read randomly. READ retrieves the records in the
specified order; access to each record is effected via its relative record number.
Accordingly, the relative record number of each record to be read must be supplied in
the RELATIVE KEY data item prior to each READ operation. If the number of a
unavailable record (e.g. an empty record) is specified, the INVALID KEY condition
exists, and READ transfers control to the INVALID KEY statement or to the USE
procedure declared for this condition.

– ACCESS MODE IS DYNAMIC

permits random and sequential reading of the file. The applicable access mode is
selected via the format of the READ statement (see table 27).
In this case, a START statement is meaningful for sequential reading only.

Relative files Processing of cataloged files

226

OPEN I-O

The phrase specified in the ACCESS MODE clause determines which I-O statements
or statement formats are permitted. The following table lists the options available for
OPEN I-O:

Statement
Entry in the ACCESS MODE clause

SEQUENTIAL RANDOM DYNAMIC

START START...
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-START]

Statement not permitted START...
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY]
[END-START]

READ READ...[NEXT | PREVIOUS]
[INTO...]
[AT END...]
[NOT AT END...]
[END-READ...]

READ...
[INTO...]
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-READ]

For sequential access:
READ...{NEXT | PREVIOUS}
[INTO...]
[AT END...]
[NOT AT END...]
[END-READ]

For random access:
READ...
[INTO...]
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-READ]

REWRITE REWRITE...
[FROM...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-REWRITE]

REWRITE...
[FROM...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-REWRITE]

REWRITE...
[FROM...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-REWRITE]

WRITE Statement not allowed WRITE...
[FROM...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-WRITE]

WRITE...
[FROM...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-WRITE]

DELETE DELETE...
[END-DELETE]

DELETE...
[INVALID KEY...]
[NOT INVALID KEY...]
[END-DELETE]

DELETE...
[INVALID KEY...]
[NOT INVALID KEY...]
[END-DELETE]

Table 28: Permitted I-O statements for OPEN I-O

Processing of cataloged files Relative files

 227

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

When a file is opened in this mode, records can be
– read,
– added,
– updated by the program, and
– overwritten or
– deleted.

OPEN I-O assumes that the file to be processed already exists. It is therefore not possible
to create a new relative file in this mode.

The specified access mode determines the type of processing that can be performed, as
well as the effect of the individual I-O statements:

– ACCESS MODE IS SEQUENTIAL

As in the case of OPEN INPUT, this access mode permits the sequential reading of a
file with READ and the use of a preceding START to position to any record as the
starting point.

In addition, the record that is read by a successful READ operation can be updated by
the program and then rewritten with REWRITE or logically deleted with DELETE.
However, no other I-O statement should be executed for this file between the READ and
REWRITE or DELETE statements.

– ACCESS MODE IS RANDOM

enables records to be randomly retrieved with READ (as in OPEN INPUT).

In addition, new records can be inserted into the file with WRITE, and existing records
in the file can be rewritten or deleted with REWRITE or DELETE (regardless of whether
they were read earlier).

Prior to each WRITE, REWRITE, or DELETE statement, the RELATIVE KEY data item
must be supplied with the relative number of the record that is to be added, rewritten,
or deleted. If the following cases apply the number of an already existing record is
specified for WRITE, or the number of a unavailable record (e.g. an empty record) is
specified for REWRITE or DELETE, an INVALID KEY condition exists, and WRITE,
REWRITE, or DELETE branches to the INVALID KEY statement or to the USE
procedure declared for this event.

– ACCESS MODE IS DYNAMIC

allows a file to be processed sequentially or randomly. Here, the desired access mode
is selected via the format of the READ statement.

Relative files Processing of cataloged files

228

9.3.5 Random creation of a relative file

The following example illustrates a simple COBOL program with which a relative file can be
randomly created. The records may be written to the file in any order.

Example 9-9

Program for the random creation of a relative file

 IDENTIFICATION DIVISION.
 PROGRAM-ID. RELATIV.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 TERMINAL IS T.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT RELATIVE-FILE
 ASSIGN TO "RELFILE"
 ORGANIZATION IS RELATIVE
 ACCESS MODE IS RANDOM (1)
 RELATIVE KEY IS REL-KEY (2)
 FILE STATUS IS FS-CODE DMS-CODE. (3)
 DATA DIVISION.
 FILE SECTION.
 FD RELATIVE-FILE.
 01 RELATIVE-RECORD PIC X(33).
 WORKING-STORAGE SECTION.
 01 REL-KEY PIC 9(3).
 88 END-OF-INPUT VALUE ZERO.
 01 I-O-STATUS.
 05 FS-CODE PIC 9(2).
 05 DMS-CODE.
 06 DMS-CODE-1 PIC 9(2) COMP.
 88 DMS-CODE-2-DEFINED VALUE 64.
 06 DMS-CODE-2 PIC X(4).
 01 CLOSE-SCWITCH PIC X VALUE "0".
 88 FILE-OPEN VALUE "1".
 88 FILE-CLOSED VALUE "0".
 01 RELATIVE-TEXT.
 05 PIC X(24)
 VALUE „******HERE IS RECORD NO. „.
 05 REC-NO PIC 9(3).
 05 PIC X(6) VALUE "$$$$$$".
 PROCEDURE DIVISION.
 DECLARATIVES.
 OUTPUT-ERROR SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON RELATIVE-FILE.
UNRECOVERABLE-ERROR. (4)

 IF FS-CODE NOT LESS THAN 30

Processing of cataloged files Relative files

 229

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

 DISPLAY „UNRECOVERABLE ERROR ON RELATIVE-FILE“
 UPON T
 DISPLAY „FILE STATUS: „ FS-CODE UPON T
 IF DMS-CODE-2-DEFINED
 DISPLAY „DMS-CODE: „ DMS-CODE-2 UPON T
 END-IF
 IF FILE-OPEN
 CLOSE RELATIVE-FILE
 END-IF
 DISPLAY „PROGRAM TERMINATED ABNORMALLY“ UPON T
 STOP RUN
 END-IF.
 OUTPUT-ERROR-END.
 EXIT.
 END DECLARATIVES.
 INITIALIZATION.
 OPEN OUTPUT RELATIVE-FILE
 SET FILE-OPEN TO TRUE.
 LOAD-FILE.
 PERFORM INPUT-RELATIVE-KEY
 WITH TEST AFTER
 UNTIL REL-KEY IS NUMERIC
 PERFORM WITH TEST BEFORE UNTIL END-OF-INPUT
 WRITE RELATIVE-RECORD FROM RELATIVE-TEXT
 INVALID KEY (5)
 DISPLAY „RECORD NO. „ REL-KEY
 „ALREADY EXISTS IN FILE“ UPON T
 END-WRITE
 PERFORM INPUT-RELATIVE-KEY
 WITH TEST AFTER
 UNTIL REL-KEY IS NUMERIC
 END-PERFORM.
 TRAILER.
 SET FILE-CLOSED TO TRUE
 CLOSE RELATIVE-FILE
 STOP RUN.
 INPUT-RELATIVE-KEY.
 DISPLAY „PLEASE ENTER RELATIVE KEY: THREE-DIGIT WITH L
 - „EADING ZEROES“ UPON T
 DISPLAY „TERMINATE PROGRAM ENTERING ‚000‘“ UPON T
 ACCEPT REL-KEY FROM T
 IF REL-KEY NUMERIC
 THEN MOVE REL-KEY TO REC-NO
 ELSE DISPLAY „INPUT MUST BE NUMERIC“ UPON T
 END-IF.

Relative files Processing of cataloged files

230

(1) The ACCESS MODE clause specifies random access for records of the file named
RELATIVE-FILE. They may thus be written to the file in any order during creation.

(2) The RELATIVE KEY clause defines REL-KEY as the relative key data item for the
relative record number. It is declared in the Working-Storage Section as a three-
digit numeric data item.

(3) The FILE STATUS clause is defined so as to make the DMS code available to the
program in addition to the FILE STATUS code. The data items required for storing
this information are declared in the Working-Storage Section and evaluated in the
DECLARATIVES.

(4) The DECLARATIVES provide only one procedure for unrecoverable I-O errors
(FILE STATUS ≥ 30), since an AT END condition cannot occur for output files and
record key errors can be caught via INVALID KEY.

(5) An INVALID KEY condition occurs in the case of a random WRITE operation when
the record with the associated relative record number is already present in the file.

Processing of cataloged files Relative files

 231

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.3.6 I-O status

The status of each access operation performed on a file is stored by the runtime system in
specific data items, which can be assigned to every file in the program. These items, which
are specified by using the FILE STATUS clause, provide information on

– whether the I-O operation was successful, and

– the type of errors that may have occurred.

This data can be evaluated (by USE procedures in the DECLARATIVES, for example) and
used by the program to analyze I-O errors. As an extension to Standard COBOL,
COBOL2000 provides the option of including the key of the DMS error messages in this
analysis, thus allowing a finer differentiation between different causes of errors. The FILE
STATUS clause is specified in the FILE-CONTROL paragraph of the Environment Division.
Its format is (see “COBOL2000 Reference Manual” [1]):

LR
FILE STATUS IS data-name-1 [data-name-2]
LR

where data-name-1 and data-name-2 (if specified) must be defined in the
WORKING-STORAGE SECTION or the LINKAGE SECTION. The following rules apply
with regard to the format and possible values for these two items:

data-name-1

– must be declared as a two-byte alphanumeric data item, e.g.

 01 data-name-1 PIC X(2).

– contains a two-character numeric status code following each access operation on the
associated file. The table provided at the end of this section lists all such codes together
with their meanings.

Relative files Processing of cataloged files

232

data-name-2

– must be declared as a 6-byte group item with the following format:

 01 data-name-2.
 02 data-name-2-1 PIC 9(2) COMP.
 02 data-name-2-2 PIC X(4).

– is used for storing the DMS error code for the relevant I-O status. Following each
access operation on the associated file, data-name-2 contains a value that directly
depends on the content of data-name-1. The relationship between the values is shown
in the table below:

The DMS codes and the associated error messages are given in “Introductory Guide to
DMS” [4].

Contents of
data-name-1≠0?

DMS code≠0? Value of
data-name-2-1

Value of
data-name-2-2

no no undefined undefined

yes no 0 undefined

yes yes 64
DMS code of

 the associated
error message

Processing of cataloged files Relative files

 233

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

I-O status Meaning

Execution successful

00 The I-O statement terminated normally. No further information regarding the
I-O operation is available.

04 Record length conflict: A READ statement was executed successfully, but the length of
the record which was read does not lie within the limits specified in the record
description for the file.

05 Successful OPEN INPUT/I-O/EXTEND for a file with the OPTIONAL phrase in the
SELECT clause that was not present at the time of execution of the OPEN statement.

Execution unsuccessful: AT END condition

10 An attempt was made to execute a READ statement. However, no next logical record
was available, since the end-of-file was encountered (sequential READ).
A first attempt was made to execute a READ statement for a non-existent file with the
specification OPTIONAL.

A first attempt was made to execute a READ statement for a non-existent file which is
specified as OPTIONAL.

14 An attempt was made to execute a READ statement. However, the data item described
by RELATIVE KEY is too small to accommodate the relative record number. (sequential
READ).

Execution unsuccessful: invalid key condition

22 Duplicate key
An attempt was made to execute a WRITE statement with a key for which there is
already a record in the file.

23 Record not located or zero record key
An attempt was made (using a READ, START, DELETE or REWRITE statement with a
key) to access a record not contained in the file, or the access was effected with a zero
record key.

24 Boundary values exceeded.
An attempt was made to execute a WRITE statement beyond the system-defined
boundaries of a relative file (insufficient secondary allocation in the FILE command), or
a WRITE statement is attempted in sequential access mode with a relative record
number so large that it does not fit in the data item defined with the RELATIVE KEY
phrase.

Table 29: I-O status for relative files

Relative files Processing of cataloged files

234

Execution unsuccessful: permanent error

30 No further information regarding the I-O operation is available.

35 An attempt was made to execute an OPEN INPUT/I-O statement for a nonexistent file.

37 An OPEN statement is attempted on a file that cannot be opened due to the following
conditions:

1. OPEN OUTPUT/I-O/EXTEND on a write-protected file
(password, RETPD in catalog, ACCESS=READ in catalog)

2. OPEN INPUT on a read-protected file (password)

38 An attempt was made to execute an OPEN statement for a file previously closed with
the LOCK phrase.

39 The OPEN statement was unsuccessful as a result of one of the following conditions:

1. One or more of the operands ACCESS-METHOD, RECORD-FORMAT or
RECORD-SIZE were specified in the ADD-FILE-LINK command with values which
conflict with the corresponding explicit or implicit program specifications.

2. The catalog entry of the FCBTYPE operand for an input file does not match the
corresponding explicit or implicit program specification or the specification in the
ADD-FILE-LINK command.

3. Variable record length has been defined for a file that is to be processed using the
UPAM access method of the DMS.

Execution unsuccessful: logical error

41 An attempt was made to execute an OPEN statement for a file which was already open.

42 An attempt was made to execute a CLOSE statement for a file which was not open.

43 For ACCESS MODE IS SEQUENTIAL:
The most recent I-O statement executed prior to a DELETE or REWRITE statement
was not a successfully executed READ statement.

44 Record length limits exceeded:
An attempt was made to execute a WRITE or REWRITE statement, but the length of
the record does not lie within the limits defined for the file.

I-O status Meaning

Table 29: I-O status for relative files

Processing of cataloged files Relative files

 235

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

46 An attempt was made to execute a sequential READ statement for a file in INPUT or
I-O mode. However, there is no valid next record since:

1. the preceding START statement terminated abnormally, or

2. the preceding READ statement terminated abnormally without causing an
AT END condition.

3. the preceding READ statement caused an AT END condition.

47 An attempt was made to execute a READ or START statement for a file not in INPUT
or I-O mode.

48 An attempt was made to execute a WRITE statement for a file that
– on sequential access is not in OUTPUT or EXTEND mode
– on random or dynamic access is not in OUTPUT or I-O mode.

49 An attempt was made to execute a DELETE or REWRITE statement for a file not in
I-O mode.

Other conditions with unsuccessful execution

90 System error; no further information regarding the cause is available.

91 System error; OPEN error

93 For shared update processing only (see section “Shared updating of files (SHARED-
UPDATE)” on page 257):
The I-O statement could not terminate normally because a different task is accessing
the same file, and the access operations are incompatible.

94 For shared update processing only (see section “Shared updating of files (SHARED-
UPDATE)” on page 257):
deviation from call sequence READ - REWRITE/DELETE.

95 Incompatibility between values specified in the BLOCK-CONTROL-INFO or
BUFFER-LENGTH operand of the ADD-FILE-LINK command and the file format, block
size, or the format of the used volume.

96 READ PREVIOUS is not supported for modules that were compiled with
COBRUN ENABLE-UFS-ACCESS=YES or the file should be processed with the DMS
UPAM access mode.

I-O status Meaning

Table 29: I-O status for relative files

Indexed files Processing of cataloged files

236

9.4 Indexed file organization

9.4.1 Characteristics of indexed file organization

Each record in an indexed file is assigned a key, i.e. a sequence of arbitrary (including non-
printable) characters that uniquely identify the record in the file. The starting position
(KEYPOS) and the length (KEYLEN) of the keys are identical for all records of a file.

The position and length of the key in the record are specified by means of a key data item
defined in the program. An index is maintained for this item, enabling any record in the file
to be accessed directly (randomly) via its record key. In addition to the options available for
sequentially organized files, this facility allows the following operations in an indexed file:

– records can be created randomly,

– records can be read and updated randomly,

– records may be inserted at a later stage, and

– existing records can be logically deleted.

COBOL programs use the indexed sequential access method (ISAM) of DMS (see “Intro-
ductory Guide to DMS” [4]) for processed indexed files. This method allows several users
to update a file simultaneously (see section “Shared updating of files (SHARED-UPDATE)”
on page 257).

Indexed files can be created on disk storage only.

File structure

A detailed description of the structure of ISAM files is provided in “Introductory Guide to
DMS” [4]; the following description merely provides a quick review of the most important
facts:

An ISAM file consists of two components, each of which serve different functions:

– index blocks and

– data blocks.

If private volumes are used, index and data blocks may reside on different volumes.

– Data blocks contain the user’s records. These records are logically linked together in
ascending order of their keys; their physical sequence on the volume is arbitrary.

Data blocks can have a length of one PAM block (2048 bytes) or an integer multiple
thereof (up to 16 PAM blocks).

Processing of cataloged files Indexed files

 237

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

– Index blocks serve to locate data records via the record key. They can be classified into
various index levels:

Index blocks of the lowest level contain pointers to data blocks, while index blocks of
higher levels have pointers to the index blocks of the next lower level.

The highest-level index block is always created in the file, even if the file does not hold
any records. In addition to the pointers, this block contains a 36-byte area for ISAM label
information.

Entries in index blocks are always arranged physically in the order of ascending record
keys; they must therefore be reorganized whenever new index or data blocks are
generated in the level below.

Index blocks have a fixed length of one PAM block.

Block splitting

When an ISAM file is extended, each new record is inserted into the data block to which it
belongs, based on the value of its record key.
At times, the space available in this block may prove insufficient for the inclusion of a further
record. In such cases, the old block is split, and the resulting halves are entered into new
(empty) blocks. The old block remains allocated to the file, but is now marked as free (see
the “Introductory Guide to DMS” [4]).

Frequent splitting of blocks slows down processing. However, this can be largely avoided
by reserving space in the data blocks for later extensions when the file is first created. This
is achieved by using the PADDING-FACTOR operand in the ADD-FILE-LINK command
when the output file is assigned. The PADDING-FACTOR operand serves to specify the
percentage of a data block that is to remain free for subsequent extensions when loading
the file.

Example 9-10

Use of the PADDING-FACTOR operand when assigning an ISAM file

When the file ISAM.OUTPUT is created, only about one in four records is to be initially
available, with 75% of each data block being reserved for future extensions. This is accom-
plished by means of the following ADD-FILE-LINK command:

 /ADD-FILE-LINK OUTFILE,ISAM.OUTPUT,ACCESS-METHOD=ISAM,PADDING-FACTOR=75

Indexed files Processing of cataloged files

238

9.4.2 COBOL language tools for the processing of indexed files

The following program skeleton summarizes the most important clauses and statements
provided in COBOL2000 for the processing of indexed files. The most significant phrases
and entries are briefly explained thereafter:

IDENTIFICATION DIVISION.
...
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT internal-file-name
 ASSIGN TO external-name
 ORGANIZATION IS INDEXED
 ACCESS MODE IS mode
 RECORD KEY IS primary-key
 ALTERNATE RECORD KEY IS secondary-key
 FILE STATUS IS status-items.
 ...
DATA DIVISION.
FILE SECTION.
FD internal-file-name.
 BLOCK CONTAINS block-length-spec
 RECORD record-length-spec
 ...
01 data-record.
 nn item-1 type&length
 ...
 nn primary-key-item type&length
 nn secondary-key-item type&length
 ...
PROCEDURE DIVISION.
 ...
 OPEN open-mode internal-file-name
 ...
 START internal-file-name
 ...
 READ internal-file-name
 ...
 REWRITE data-record
 ...
 WRITE data-record
 ...
 DELETE internal-file-name
 ...
 CLOSE internal-file-name
 ...
 STOP RUN.

Processing of cataloged files Indexed files

 239

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

SELECT internal-file-name

specifies the name by which the file is to be addressed in the compilation unit.

internal-file-name must be a valid user-defined word.

The format of the SELECT clause also permits the OPTIONAL phrase to be specified for
input files that need not necessarily be present during the program run.

If, during program execution, no file has been assigned to a file name declared with
SELECT OPTIONAL, then:

– in the case of OPEN INPUT, program execution is interrupted with message COB9117
and an ADD-FILE-LINK command is requested (in dialog mode), or the AT END
condition is initiated (in batch mode);

– in the case of OPEN I-O or OPEN EXTEND, a file named FILE.COBOL.linkname is
created.

ASSIGN TO external-name

specifies the system file associated with the file and defines the name via which a cataloged
file can be assigned.

external-name must be either
– a valid literal
– a valid data-name defined in the Data Division, or
– a valid implementor-name

from the ASSIGN clause format (see “COBOL2000 Reference Manual” [1]).

ORGANIZATION IS INDEXED

specifies that the file is organized as an indexed file.

ACCESS MODE IS mode

specifies the mode in which the records can be accessed.
The following may be specified for mode (see also section “Open modes and types of
processing (indexed files)” on page 245):

SEQUENTIAL specifies that the records can only be processed sequentially.
RANDOM declares that the records can only be accessed in random mode.
DYNAMIC allows the records to be accessed in either sequential or random mode.

The ACCESS MODE clause is optional. If it is not specified, the compiler assumes the
default value ACCESS MODE IS SEQUENTIAL.

Indexed files Processing of cataloged files

240

RECORD KEY IS primary-key

specifies which field in the record holds the primary record key.

primary-key must be declared as a data item in the associated record description entry (see
below).

Except in sequential read operations, the primary record key of the record to be processed
must be entered for primary-key before the execution of each I-O statement.

ALTERNATE RECORD KEY IS secondary-key

COBOL programs can also be used for processing files with records containing one or more
secondary keys (ALTERNATE RECORD KEY) in addition to the mandatory primary record
key (RECORD KEY).
If secondary keys are defined in a file, the user can access the records either via the primary
key or via the secondary key(s).

The secondary key must be declared as a data item within the associated record
description entry (see below).

FILE STATUS IS status-items

specifies the data items in which the runtime system stores status information after each
access to a file. This information indicates
– whether the I-O operation was successful and
– the type of any errors that may have occurred.

The status items must be declared in the Working-Storage Section or the Linkage Section.
Their format and the meaning of the various status codes are described in
section “I-O status” on page 252.

The FILE STATUS clause is optional. If it is not specified, the information mentioned above
is not available to the program.

BLOCK CONTAINS block-length-spec

defines the maximum size of a logical block. It determines how many records are to be
transferred together by each I-O operation into/from the buffer of the program.

block-length-spec must be a permissible specification from the BLOCK CONTAINS clause.

Processing of cataloged files Indexed files

 241

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

The blocking of records reduces

– the number of accesses to peripheral storage and thus the runtime of the program;

– the number of interblock gaps on the storage medium and thus the physical storage
space required by the file.

On the other hand, accesses employing the locking mechanism during shared update
processing (see section “Shared updating of files (SHARED-UPDATE)” on page 257)
cause the entire block containing the current record to be locked. In such a case, therefore
a large blocking factor would lead to a reduction in processing speed.

During compilation, the compiler calculates a value for the buffer size on the basis of the
record and block length entries given in the compilation unit. The runtime system rounds up
this value for DMS to the next multiple of a PAM block (2048 bytes). This default value can
be modified during the file assignment by specifying the BUFFER-LENGTH operand in the
ADD-FILE-LINK command. It must be noted, however, that the specified buffer needs to be
at least as large as the longest data record (see section “Definition of file attributes” on
page 183).

Except in the case of newly created files (OPEN OUTPUT), the block size entered in the
catalog always takes priority over block size specifications in the program or ADD-FILE-
LINK command.

The BLOCK CONTAINS clause is optional. If it is omitted, the compiler assumes the
BLOCK CONTAINS 1 RECORDS, i.e. unblocked records.

RECORD record-length-spec

– specifies whether records of fixed or variable length are to be processed and

– defines, for variable-length records, a range of permissible values for the record length.
If provided for in the format, a data item is additionally specified for the storage of
current record length information.

The record-length-spec must conform to one of the three RECORD clause formats
provided in COBOL2000. It must not be in conflict with the record lengths computed by the
compiler from the specifications in the associated record description entry or entries.

The RECORD clause is optional. If it is not specified, records of variable length are
assumed by the compiler.

Indexed files Processing of cataloged files

242

01 data-record.
 nn item-1 type&length
 ...
 nn primary-key type&length
 ...
 nn secondary-key type&length

represents a record description entry for the associated file. It describes the logical format
of data records.

At least one record description entry is required for each file. If more than one record
description entry is specified for a file, the declared record format must satisfy the following
rules:
– for fixed-length records, all record description entries must specify the same size;
– for variable-length records, the entries must not conflict with the record length specified

in the RECORD clause, and even the record description entry with the shortest record
length must still be capable of containing the entire record key.

At least one of the record description entries must explicitly declare the primary record key
data item as a subordinate item of data-record. For type&length, the required length and
format declarations (PICTURE and USAGE clauses etc.) must be entered (primary-key
may have a maximum length of 255 bytes).

secondary-key is the data-name from the corresponding ALTERNATE RECORD KEY
clause. Each secondary key item can be up to 127 bytes long. Overlaps with the primary
key or other secondary keys are permissible provided two key items do not start at the same
position. The COBOL2000 compiler also allows secondary keys defined as pure numeric
(PIC 9) or alphabetic (PIC A) items.

The subdivision of data-record into subordinate data items (item-1, item-2, ...) is optional for
all other record description entries.

OPEN open-mode internal-file-name

opens the file for processing in the specified open-mode.

The following phrases can be entered for open-mode:
INPUT opens the file as an input file; it can only be read.
OUTPUT opens the file as an output file; it can only be written.
EXTEND opens the file as an output file; it can be extended.
I-O opens the file as an I-O file; it can be read (one record at a time),

updated and rewritten.

The open-mode entry determines with which I-O statements a file may be accessed (see
section “Open modes and types of processing (indexed files)” on page 245).

Processing of cataloged files Indexed files

 243

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

START internal-file-name
READ internal-file-name
REWRITE data-record
WRITE data-record
DELETE internal-file-name

are I-O statements for the file that
– position to a record in the file
– read a record
– rewrite a record
– write a record, and
– delete a record.

The open mode declared in the OPEN statement determines which of these statements is
admissible for the file. The relationship between access mode and open mode is described
in section “Open modes and types of processing (indexed files)” on page 245.

CLOSE internal file-name

terminates processing of the file.

The WITH LOCK phrase can be additionally specified to prevent the file from being opened
again in the same program run.

9.4.3 Permissible record formats and access modes

Record formats

Indexed files may contain records of fixed length (RECFORM=F) or variable length
(RECFORM=V). In both of these formats, the records may be blocked or unblocked.
In the COBOL compilation unit, the format of the records to be processed can be defined
in the RECORD clause. The following table lists the phrases associated with each record
format:

Record format Phrase in the RECORD clause

Fixed-length records RECORD CONTAINS...CHARACTERS (format 1)

Variable-length records
RECORD IS VARYING IN SIZE...
 or
RECORD CONTAINS...TO...

(format 2)

(format 3)

Table 30: Specification of record formats in the RECORD clause

Indexed files Processing of cataloged files

244

Access modes

Access to records of an indexed file may be sequential, random, or dynamic.

In the COBOL compilation unit, the access mode is defined by means of the ACCESS
MODE clause. The following table lists the possible phrases together with their effect on the
access mode.

ACCESS MODE clause Access mode

SEQUENTIAL Sequential access:

The records can be processed only in the order of their record keys. This
means:
– when reading records, the next or previous logical record is made

available (for primary or secondary keys).
– when writing records, the next logical record (with ascending primary

key) is output to the file.

RANDOM Random access:

The records can be accessed in any order via their record keys. For this
purpose, the (primary or secondary) key of the record to be processed
must be supplied in the (ALTERNATE) RECORD KEY item prior to each
I-O statement.

DYNAMIC Dynamic access:

The records can be accessed sequentially and/or randomly.
The applicable access mode is selected via the format of the
I-O statement in this case.

Table 31: Indexed files: ACCESS MODE clause and access mode

Processing of cataloged files Indexed files

 245

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.4.4 Open modes and types of processing (indexed files)

The language elements available for use in a COBOL program allow indexed files to be
– created,
– read,
– extended (by adding new records), and
– updated (by changing or deleting existing records).

The individual I-O statements that may be used in the program to process a given file are
determined by its open mode, which is specified in the OPEN statement:

OPEN OUTPUT

Regardless of the phrase in the ACCESS MODE clause, WRITE is permitted as an
I-O statement in the following format:

WRITE...[FROM...]
 [INVALID KEY...]
 [NOT INVALID KEY...]
 [END-WRITE]

In this mode, it is only possible to create (load) new indexed files.

– ACCESS MODE IS SEQUENTIAL

enables the sequential creation of an indexed file. The records must be sorted in
ascending order of their record keys before they are made available to the WRITE
statement.
Before each WRITE statement, the RECORD KEY data item must therefore be
supplied with the record key of the record to be output. Each new key must be greater
than the preceding one. If this is not the case, an INVALID KEY condition exists, and
WRITE branches to the INVALID KEY statement or to the declared USE procedure
without writing the record. It is thus not possible to overwrite records in this case.

– ACCESS MODE IS DYNAMIC or RANDOM

enables the random creation of an indexed file. Note that file creation based on
ascending record keys is performed more efficiently.

OPEN EXTEND

OPEN EXTEND enables an existing file to be extended. The ACCESS MODE clause is
used in the same way as for OPEN OUTPUT.

Indexed files Processing of cataloged files

246

OPEN INPUT

The phrase specified in the ACCESS MODE clause determines which I-O statements or
statement formats are permitted. The following table lists the options available for OPEN
INPUT:

Indexed files can be read in this mode. Depending on the access mode specified, the READ
statement has the following effect:

– ACCESS MODE IS SEQUENTIAL

permits the file to be read sequentially only. READ retrieves records in ascending
(NEXT) or descending (PREVIOUS) order based on the record keys.
The (ALTERNATE) KEY item is not evaluated by READ. However, a START statement
can be used to position to any record of the file before execution of a READ statement:
START uses a relation condition to determine the record key of the first record to be
read and thus establishes the starting point for subsequent sequential read operations
(see also section “I-O status” on page 252). If the relation condition cannot be satisfied
by any record key of the file, an INVALID KEY condition exists, and START makes a
branch to the INVALID KEY statement or to the declared USE procedure.

Statement
Entry in the ACCESS MODE clause

SEQUENTIAL RANDOM DYNAMIC

START START...
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
 [END-START]

Statement not permitted START...
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY]
[END-START]

READ READ...[NEXT | PREVIOUS]
[INTO...]
[AT END...]
[NOT AT END...]
[END-READ...]

READ...
[INTO...]
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-READ]

For sequential access:

READ...{NEXT | PREVIOUS}
[INTO...]
[AT END...]
[NOT AT END...]
[END-READ]

For random access
READ...
[INTO...]
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-READ]

Table 32: Permitted I-O statements for OPEN INPUT

Processing of cataloged files Indexed files

 247

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

– ACCESS MODE IS RANDOM

enables records of the file to be randomly read. READ retrieves the records in a user-
specified order; access to each record is effected via its record key.
Accordingly, the record key of each record to be read must be supplied in the
(ALTERNATE) KEY data item prior to each READ operation.
If the record key of an unavailable record is specified, an INVALID KEY condition exists,
and READ branches to the INVALID KEY statement or to the USE procedure declared
for this condition.

– ACCESS MODE IS DYNAMIC

permits random and/or sequential reading of the file. The desired access mode is
selected via the format of the READ statement (see table 33).
In this case, a START statement is meaningful for sequential reading only.

OPEN I-O

The phrase specified in the ACCESS MODE clause determines which I-O statements or
statement formats are permitted.

Records in an indexed file opened in OPEN I-O mode can be
– read,
– added,
– updated by the program, and
– overwritten or
– deleted.

Indexed files Processing of cataloged files

248

The following table lists the options available for OPEN I-O

OPEN I-O assumes that the file to be processed already exists. It is therefore not possible
to create a new indexed file in this mode.

Statement
Entry in the ACCESS MODE clause

SEQUENTIAL RANDOM DYNAMIC

START START...
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
 [END-START]

Statement not permitted START...
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY]
[END-START]

READ READ...[NEXT | PREVIOUS]
[INTO...]
[AT END...]
[NOT AT END...]
[END-READ...]

READ...
[INTO...]
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-READ]

For sequential access:

READ...{NEXT | PREVIOUS}
[INTO...]
[AT END...]
[NOT AT END...]
[END-READ]

For random access:
READ...
[INTO...]
[KEY IS...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-READ]

REWRITE REWRITE...
[FROM...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-REWRITE]

REWRITE...
[FROM...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-REWRITE]

REWRITE...
[FROM...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-REWRITE]

WRITE Statement not permitted WRITE...
[FROM...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-WRITE]

WRITE...
[FROM...]
[INVALID KEY...]
[NOT INVALID KEY...]
[END-WRITE]

DELETE DELETE...
[END-DELETE]

DELETE...
[INVALID KEY...]
[NOT INVALID KEY...]
[END-DELETE]

DELETE...
[INVALID KEY...]
[NOT INVALID KEY...]
[END-DELETE]

Table 33: Permitted I/O statements for OPEN I-O

Processing of cataloged files Indexed files

 249

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

The specified access mode determines the type of processing that can be performed, as
well as the effect of the individual I-O statements:

– ACCESS MODE IS SEQUENTIAL

As in the case of OPEN INPUT, this access mode permits the sequential reading of a
file with READ and the use of a preceding START to position to any record as the
starting point.

In addition, the record that is read by a successful READ operation can be

– updated by the program and rewritten with REWRITE, or

– logically deleted with DELETE.

However, it must be noted that

– no further I-O statement must be executed for this file, and

– the RECORD KEY data item must not be changed

between the READ statement and the REWRITE or DELETE statement.

– ACCESS MODE IS RANDOM

enables records to be randomly retrieved with READ (as in OPEN INPUT). In addition,
new records can be inserted into the file with WRITE, and existing records in the file can
be rewritten or deleted with REWRITE or DELETE (regardless of whether they were
read earlier).

Prior to each WRITE, REWRITE, or DELETE statement, the RECORD KEY data item
must be supplied with the key of the record that is to be added, rewritten, or deleted. If
the following conditions apply the number of an already existing record is specified for
WRITE, or the number of an unavailable record is specified for REWRITE or DELETE,
an INVALID KEY condition exists, and WRITE, REWRITE, or DELETE branches to the
INVALID KEY statement or to the USE procedure declared for this event.

– ACCESS MODE IS DYNAMIC

allows a file to be processed sequentially or randomly. Here, the desired access mode
is selected via the format of the READ statement.

Indexed files Processing of cataloged files

250

9.4.5 Positioning with START

Any record in an indexed (or relative) file can be selected as the starting point for subse-
quent sequential read operations by means of START. START sets up a comparison via a
relation condition in order to establish the (primary or secondary) key of the first record to
be read.

The following example illustrates how the language extension (to ANS85) START...KEY
LESS... and READ...PREVIOUS can be used to sequentially process an indexed file in
reverse order, i.e. in the order of descending record keys, beginning with the highest key in
the file. The precise location within a file is identified by means of a conceptual entity called
the file position indicator.

Example 9-11

Processing an indexed file in reverse order

URLU
OU IDENTIFICATION DIVISION. OU
OU PROGRAM-ID. INDREV. OU
OU * INDREV PROCESSES THE RECORDSOF AN INDIVIDUAL FILE OU
OU * IN DESCENDING RECORD KEY ORDER. OU
OU ENVIRONMENT DIVISION. OU
OU CONFIGURATION SECTION. OU
OU SPECIAL-NAMES. OU
OU TERMINAL IS T. OU
OU INPUT-OUTPUT SECTION. OU
OU FILE-CONTROL. OU
OU SELECT IND-FILE OU
OU ASSIGN TO "INDFILE" OU
OU ORGANIZATION IS INDEXED OU
OU ACCESS IS DYNAMIC OU
OU RECORD KEY IS REC-KEY. OU
OU DATA DIVISION. OU
OU FILE SECTION. OU
OU FD IND-FILE. OU
OU 01 IND-REC. OU
OU 05 REC-KEY PIC X(8). OU
OU 05 REC-TEXT PIC X(72). OU
OU WORKING-STORAGE SECTION. OU
OU 01 PROCESSING-SWITCH PIC X. OU
OU 88 END-OF-PROCESSING VALUE "1". OU
OU PROCEDURE DIVISION. OU
OUINITIALIZTION. OU
OU OPEN I-O IND-FILE LR (1) OU
OU MOVE HIGH-VALUE TO REC-KEY LR (2) OU
OU MOVE "0" TO PROCESSING SWITCH. OU
OU PROCESS FILE. OU
OU START IND-FILE KEY LESS OR EQUAL REC-KEY OU
OU INVALID KEY OU
OU DISPLAY "FILE IS EMPTY" UPON T OU
OU SET END-OF-PROCESSING TO TRUE OU
OU NOT INVALID KEY OU
OU READ IND-FILE PREVIOUS LR (3) OU

Processing of cataloged files Indexed files

 251

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

OU AT END OU
OU SET END-OF-PROCESSING TO TRUE OU
OU NOT AT END OU
OU DISPLAY "HIGHEST RECORD NUMBER: " REC-KEY OU
OU UPON T OU
OU PERFORM PROCESS-RECORD OU
OU END-READ OU
OU END-START OU
OU OU
OU PERFORM WITH TEST BEFORE UNTIL END-OF-PROCESSING OU
OU READ IND-FILE PREVIOUS LR (4) OU
OU AT END OU
OU SET END-OF-PROCESSING TO TRUE OU
OU NOT AT END OU
OU DISPLAY "NEXT RECORD KEY: " REC-KEY OU
OU UPON T OU
OU PERFORM PROCESS-RECORD OU
OU END-READ OU
OU END-PERFORM. OU
OU TERMINATION. OU
OU CLOSE IND-FILE OU
OU STOP RUN. OU
OU PROCESS-RECORD. OU
OU * OU
OU * PROCESSING OF CURRENT RECORD LR (5) OU
OU * OU
ORLROL

(1) The file IND-FILE is opened for processing with OPEN I-O.

(2) To obtain the record with the highest key in the file,
– the RECORD KEY is preset to the highest possible value (HIGH-VALUE in the

NATIVE alphabet), and
– START...KEY LESS OR EQUAL sets the file position indicator to it.

(3) READ...PREVIOUS reads the record to which the file position indicator was previ-
ously set by START.

(4) READ...PREVIOUS reads the record preceding the last record to be read.

(5) The read record is processed. If its RECORD KEY is changed during processing,
the original value must be restored before the next START statement.

Indexed files Processing of cataloged files

252

9.4.6 I-O status

The status of each access operation performed on a file is stored by the runtime system in
specific data items, which can be assigned to every file in the program. These items, which
are specified by using the FILE STATUS clause, provide information on

– whether the I-O operation was successful, and

– the type of errors that may have occurred.

This data can be evaluated (by USE procedures in the DECLARATIVES, for example) and
used by the program to analyze I-O errors. As an extension to Standard COBOL,
COBOL2000 provides the option of using DMS codes to include error messages in this
analysis, thus allowing a finer differentiation between different causes of errors.

The FILE STATUS clause is specified in the FILE-CONTROL paragraph of the Environment
Division. Its format is (see “COBOL2000 Reference Manual” [1]):

LR
FILE STATUS IS data-name-1 [data-name-2]
LR

where data-name-1 and data-name-2 (if specified) must be defined in the Working-Storage
Section or the Linkage Section. The following rules apply with regard to the format and
possible values for these two items:

data-name-1

– must be declared as a two-byte alphanumeric data item, e.g.

 01 data-name-1 PIC X(2).

– contains a two-character numeric status code following each access operation on the
associated file. The table provided at the end of this section lists all such codes together
with their meanings.

Processing of cataloged files Indexed files

 253

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

data-name-2

– must be declared as a 6-byte group item with the following format:

 01 data-name-2.
 02 data-name-2-1 PIC 9(2) COMP.
 02 data-name-2-2 PIC X(4).

– is used for storing the DMS error code for the I-O status. Following each access
operation on the associated file, data-name-2 contains a value that directly depends on
the content of data-name-1. The relationship between the values is shown in the table
below.:

The DMS codes and the associated error messages are given in “Introductory Guide to
DMS” [4].

Contents of
data-name-1≠0?

DMS code≠0? Value of
data-name-2-1

Value of
data-name-2-2

no no undefined undefined

yes no 0 undefined

yes yes 64
DMS code of

the associated
error message

I-O status Meaning

Execution successful

00 The I-O statement terminated normally. No further information regarding the
I-O operation is available.

02 A record was read with ALTERNATE KEY and subsequent sequential reading with
the same key has found at least one record with an identical key.

A record was written with ALTERNATE KEY WITH DUPLICATES and there is
already a record with an identical key value for at least one alternate key.

04 Record length conflict: A READ statement terminated normally. However, the length
of the record read lies outside the limits defined in the record description entry for
the given file.

05 An OPEN statement was executed for an OPTIONAL file which does not exist.

Execution unsuccessful: AT END condition

10 An attempt was made to execute a sequential READ operation. However, no next
logical record was available, as the end-of-file was encountered.

Table 34: I-O status values for indexed files

Indexed files Processing of cataloged files

254

Execution unsuccessful: invalid key condition

21 File sequence error in conjunction with ACCESS MODE IS SEQUENTIAL:

1. The record key value was changed between the successful execution of a
READ statement and the execution of the next REWRITE statement for a file, or

2. the ascending sequence of record keys was violated in successive WRITE
statements.

22 Duplicate key
An attempt was made to execute a WRITE statement with a primary key for which
there is already a record in the indexed file.

An attempt was made to create a record with ALTERNATE KEY, but without WITH
DUPLICATES, and there is already an alternate key with the same value in the file.

23 Record not located
An attempt was made (using a READ, START, DELETE or REWRITE statement
with key) to access a record not contained in the file.

24 Boundary values exceeded
An attempt was made to execute a WRITE statement beyond the system-defined
boundaries of an indexed file.

Execution unsuccessful: unrecoverable error

30 No further information regarding the I-O operation is available (the DMS code
provides further information).

35 An OPEN statement with the INPUT, I-O or EXTEND phrase was issued for a non-
optional file which does not exist.

37 OPEN statement on a file that cannot be opened due to the following violations:

1. OPEN OUTPUT/I-O/EXTEND on a write-protected file
(password, RETENTION-PERIOD, ACCESS=READ in catalog)

2. OPEN INPUT on a read-protected file (password)

38 An attempt was made to execute an OPEN statement for a file previously closed
with the LOCK phrase.

I-O status Meaning

Table 34: I-O status values for indexed files

Processing of cataloged files Indexed files

 255

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

39 The OPEN statement was unsuccessful as a result of one of the following condi-
tions:

1. One or more of the operands ACCESS-METHOD, RECORD-FORMAT,
RECORD-SIZE or KEY-LENGTH were specified in the ADD-FILE-LINK
command with values that conflict with the corresponding explicit or implicit
program specifications.

2. Record length error occurred for an input file
(catalog check, if RECFORM=F).

3. The record size is greater than the BLKSIZE entry in the catalog of an input file.

4. The catalog entry of one of the FCBTYPE, RECFORM, RECSIZE (if
RECFORM=F), KEYPOS, or KEYLEN operands for an input file is in conflict
with the corresponding explicit or implicit program specifications or with the
corresponding specifications in the FILE command.

5. An attempt was made to open a file whose alternate key does not match the key
values specified in the ALTERNATE RECORD KEY clause in the program.

Execution unsuccessful: logical error

41 An attempt was made to execute an OPEN statement for a file which was already
open.

42 An attempt was made to execute a CLOSE statement for a file which was not open.

43 For ACCESS MODE IS SEQUENTIAL:
The most recent I-O statement executed prior to a DELETE or REWRITE statement
was not a successfully executed READ statement.

44 Record length limits exceeded:
An attempt was made to execute a WRITE or REWRITE statement. However, the
length of the record is outside the range allowed for this file.

46 An attempt was made to execute a sequential READ statement for a file in INPUT
or I-O mode. However, no valid next record is available since:

1. the preceding START statement was unsuccessful, or

2. the preceding READ statement was unsuccessful without leading to an AT END
condition, or

3. an attempt was made to execute a READ statement after the AT END condition
was encountered.

I-O status Meaning

Table 34: I-O status values for indexed files

Indexed files Processing of cataloged files

256

47 An attempt was made to execute a READ or START statement for a file that is not
open in INPUT or I-O mode.

48 An attempt was made to execute a WRITE statement for a file that
– on sequential access is not in OUTPUT or EXTEND mode
– on random or dynamic access is not in OUTPUT or I-O mode.

49 An attempt was made to execute a DELETE or REWRITE statement for a file that
is not in I-O mode.

Other conditions with unsuccessful execution

90 System error; no further information regarding the cause is available.

91 OPEN error: the actual cause is evident from the DMS code (see “FILE STATUS
clause” specifying data-name-2).

93 For shared update processing only (see section “Shared updating of files (SHARED-
UPDATE)” on page 257):
The I-O statement could not terminate normally because a different task is
accessing the same file, and the access operations are incompatible.

94 1. For shared update processing only (see section “Shared updating of files
(SHARED-UPDATE)” on page 257):
deviation from call sequence READ - REWRITE/DELETE.

2. The record size is greater than the block size.

95 Incompatibility between values specified in the BLOCK-CONTROL-INFO or
BUFFER-LENGTH operand of the ADD-FILE-LINK command and the file format,
block size, or the format of the used volume.

96 READ PREVIOUS is not supported for modules which were compiled with
COBRUN ENABLE-UFS-ACCESS=YES.

I-O status Meaning

Table 34: I-O status values for indexed files

Processing of cataloged files Shared updating

 257

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.5 Shared updating of files (SHARED-UPDATE)

9.5.1 ISAM files

ISAM files with indexed or relative file organization can be shared by several users simul-
taneously by means of the SHARED-UPDATE operand in the SUPPORT parameter of the
ADD-FILE-LINK command:

/ADD-FILE-LINK linkname,filename,SUPPORT=DISK(SHARED-UPDATE=YES)

The following table shows which OPEN statements are available to user B after the file has
already been opened by user A.

X = permitted combinations of OPEN statement and SHARED-UPDATE value

It is clear from the table that the SHARED-UPDATE=YES option is superfluous for INPUT
files if all users use OPEN INPUT. If SHARED-UPDATE=YES must nevertheless be
specified for input files because at least one user uses OPEN I-O, the locks described
below will not be set or released.

The SHARED-UPDATE=YES option makes sense, and is also necessary, only for the
simultaneous updating of one or more ISAM files (OPEN I-O) by two or more interactive
users.

Updates in batch processing mode must be executed successively in order to avoid both
logic errors and excessive runtimes (unnecessary specification of SHARED-UPDATE=YES
increases both runtime and CPU time).

Options permitted for user B

SHARED-UPDATE =YES SHARED-UPDATE=NO

Options selected
by user A

OPEN
statement

INPUT I-O OUPUT/
EXTEND

INPUT I-O OUTPUT/
EXTEND

SHARED-UPDATE=YES
INPUT X X X

I-O X X

OUTPUT /
EXTEND

SHARED-UPDATE=NO

INPUT X X

I-O

OUTPUT /
EXTEND

Table 35: OPEN statements permitted for shared updating

Shared updating Processing of cataloged files

258

If SHARED-UPDATE=YES is specified, WRITE-CHECK=YES will automatically be set
also, i.e. the ISAM buffers will be rewritten immediately after each change. This is
necessary for reasons of data security and consistency, but causes a considerable increase
in the number of I-O operations.

In order to ensure data consistency during simultaneous updating of an ISAM file by several
users, the COBOL2000 runtime system utilizes the locking and unlocking mechanism of the
DMS access method ISAM. This mechanism locks or unlocks the data blocks that contain
the data records referenced by the COBOL statements READ, WRITE, REWRITE or
DELETE.

A data block is the multiple of a PAM page (2048 bytes) defined implicitly or explicitly by the
BUFFER-LENGTH parameter in the ADD-FILE-LINK command when the file was created
(see section “Basic concepts relating to the structure of files” on page 175).

In the following, a record lock is to be understood as the lockout of the entire block that
contains the record.

To permit shared updating of ISAM files, a format extension to the READ or START
statement is provided. However, this extension is effective only if SHARED-UPDATE=YES
is specified in the ADD-FILE-LINK command and the file was opened with OPEN I-O.

Format extension (for all READ/START formats):

LR
READ file-name [WITH NO LOCK]...
START file-name [WITH NO LOCK]...
LR

Processing of cataloged files Shared updating

 259

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

Rules for shared updating

1. READ or START statement with the WITH NO LOCK phrase:

If user A specifies the WITH NO LOCK phrase and the appropriate record is present,
this record is read or selected irrespective of any lock set by any other user. The record
is not locked. A REWRITE or DELETE statement cannot be performed on a record thus
read.

Simultaneously, a user B may read or update the same record.

2. READ or START statement without the WITH NO LOCK phrase:

If user A does not specify the WITH NO LOCK phrase and the appropriate record is
present, a READ or START statement can only be executed successfully if that record
is not already locked by user B. If execution of the statement is successful, the record
will be locked. Before the lock is released, user B can only read or select the same or
another record in the same block by specifying WITH NO LOCK, but will not be able to
update any record in this block. (If user B opened the file using OPEN INPUT, he will
still be able to read records in the locked block.)

3. Updating of records:

If a record is to be updated using a REWRITE or a DELETE statement, the appropriate
record must be read immediately before this by a READ statement (without the WITH
NO LOCK phrase). Between this READ statement and the REWRITE or DELETE
statement, no further I-O statement may be executed for the same ISAM file. Between
these two statements, only READ or START statements with the WITH NO LOCK
phrase can be executed for other ISAM files whose ADD-FILE-LINK command contains
SHARED-UPDATE=YES and which are open at the same time in the OPEN I-O mode.
Statements for other ISAM files (without SHARED-UPDATE=YES and OPEN I-O) can
be executed.
Any violation of these rules will lead to an unsuccessful REWRITE or
DELETE statement with FILE STATUS 94.

4. Waiting times in the event of a lock:

If user A has locked a data record following a successful READ or START statement,
and user B attempts to perform a READ or START statement without the WITH NO
LOCK phrase on the same data record or any other in the same data block, user B will
not immediately be unsuccessful. User B must wait in a queue until the lock is released
by user A. Only if the maximum waiting time elapses without the lock being released will
the statement be considered unsuccessful and FILE STATUS 93 be set. If the lock is
released before the waiting time has elapsed, user B can continue with the successful
call.

Shared updating Processing of cataloged files

260

5. Releasing a locked record:

A user maintains a record lock until he executes one of the following statements:

– Successful REWRITE or DELETE statement for the locked data record

– WRITE statement for an ISAM file whose ADD-FILE-LINK command contains
SHARED-UPDATE=YES and which is open as OPEN I-O (i.e., for the same file that
contains the locked record, or for another ISAM file; unlocking is also effected if the
INVALID KEY condition occurs)

– READ or START statement with the WITH NO LOCK phrase for the same file
(unlocking is also effected if the AT END or INVALID KEY condition occurs)

– READ or START statement without the WITH NO LOCK phrase for a record in
another data block of the same file (unlocking is also effected if the AT END or
INVALID KEY condition occurs)

– READ or START statement without the WITH NO LOCK phrase for another ISAM
file whose ADD-FILE-LINK command contains SHARED-UPDATE=YES and which
is open in OPEN I-O mode (unlocking is also effected if the AT END or INVALID
KEY condition occurs)

– CLOSE statement for the same file

Thus, a statement for an ISAM file can release the record lock on another ISAM file.

Processing of cataloged files Shared updating

 261

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

Notes

1. If an ISAM file (with SHARED-UPDATE=YES and OPEN I-O) is to be processed in a
program, a USE AFTER STANDARD ERROR procedure should be provided for this
file. In this procedure, the file status values relating to shared update processing, i.e.
93 (record has been locked by a simultaneous user) and 94 (REWRITE or DELETE
statement without preceding READ statement), can be interrogated and then
processed accordingly.

2. It should be noted that when a record is locked using the ISAM block lockout
mechanism, all records in the same block are locked to all concurrent users.

3. A user cannot lock more than one block at a time, i.e. can protect only one block against
updating by other users. This is also true if the user has opened several ISAM files (all
SHARED-UPDATE=YES) in OPEN I-O mode.

4. A deadlock (mutual locking of data blocks by different users) is excluded, because only
one block of all ISAM files (all SHARED-UPDATE=YES) can be locked for each user.
This does not, however, apply if a PAM file is accessed simultaneously with SHARED-
UPDATE=YES in I-O mode.

5. If a READ statement for a record is not immediately followed by a REWRITE or
DELETE statement but by an attempt to access some other data block (of the same or
any other ISAM file) instead, the record will need to be read again before the REWRITE
or DELETE statement is executed. Since the affected data block was unlocked to other
users in the period between the READ and REWRITE or DELETE statements, the
contents of the original record may have been changed (see (a)).

If an access attempt is made to another block or another file without the locking
mechanism, the data made available might meanwhile have been changed by
concurrent users before the REWRITE or DELETE statement is executed
(see (b)).

6. In order to prevent a user from working with data that is no longer up-to-date, the WITH
NO LOCK phrase should only be used when absolutely necessary.

7. A locked record (block) will give rise to waiting times when concurrent users try to
access the same record or another in the same block. To keep waiting times as short
as possible, the lock should be released as soon as possible. If a lock is not released
in due time, the waiting time will have elapsed, and the program branches to the appro-
priate USE procedure, if available (see), or is aborted (message COB9151, FILE
STATUS 93 and DMS error code DAAA).

Shared updating Processing of cataloged files

262

Example 9-12

Reading and rewriting in file ISAM1 when data from file ISAM2 is required before
rewriting:

(a) Without the WITH NO LOCK phrase: Two READ statements for the same file are
necessary, but the locking times are shorter:

(1) Reads a record from ISAM1 and buffers it in WORK1; relevant block in ISAM1
locked

(2) Reads a record from ISAM2, releases lock in ISAM1, locks relevant block in ISAM2

(3) Rereads record from ISAM1, releases lock in ISAM2, locks relevant block in ISAM1

(4) Rewrites record into ISAM1, releases lock in ISAM1

 ...
 READ ISAM1 INTO WORK1 ——— (1)

 INVALID KEY...

 ...
 READ ISAM2 —— (2)

 INVALID KEY...

 ...

 Processing of WORK1 taking into account ISAM2REC:

 ...
 READ ISAM1 —— (3)

 INVALID KEY...

 Check for changes to ISAM1REC in meantime; repeat processing if necessary:

 ...
 REWRITE ISAM1SATZ FROM WORK1——— (4)
 INVALID KEY...

Processing of cataloged files Shared updating

 263

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

(b) With the WITH NO LOCK phrase: Only one READ statement is required for this file,
but the locking times are consequently longer:

(1) Reads a record from ISAM1; relevant block locked

(2) Reads a record from ISAM2; relevant block not locked

(3) Rewrites record into ISAM1; lock is released.

 ...
 READ ISAM1 ——— (1)

 INVALID KEY...

 ...
 READ ISAM2 WITH NO LOCK ——— (2)

 INVALID KEY...

 ...

Processing of ISAM1REC taking into account ISAMREC:

 ...
 REWRITE ISAM1SATZ FROM WORK1 —— (3)
 INVALID KEY...

Shared updating Processing of cataloged files

264

Example 9-13

Branch to USE AFTER STANDARD ERROR procedure

(1) Control is transferred to the statement following the statement that caused the error.
Suitable error recovery measures depend on the application involved.

 ...

 FILE-CONTROL.

 SELECT ISAM1
 ...
 FILE STATUS IS FILESTAT1.
 WORKING-STORAGE SECTION.
 77 FILESTAT1 PIC 99.
 ...
 PROCEDURE DIVISION.
 DECLARATIVES.
 ISAM1ERR SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON ISAM1.
 LOCK-PAR.
 IF FILESTAT1 = 93
 THEN DISPLAY "RECORD CURRENTLY LOCKED" UPON T
 ELSE DISPLAY "DMS-ERROR ISAM1, FILE-STATUS="
 FILESTAT1 UPON T.
 ISAM1ERR-EX.
 EXIT. (1)

 END DECLARATIVES.
 CNTRL SECTION.
 ...

Processing of cataloged files Shared updating

 265

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
0

9

9.5.2 PAM files

Like ISAM files, files with relative organization and FCBTYPE=PAM can also be updated
simultaneously by several users if the ADD-FILE-LINK command contains SHARED-
UPDATE=YES and the file was opened with OPEN I-O.

To ensure data consistency during shared updating, the COBOL2000 runtime system uses
the locking and unlocking mechanism of the DMS access method UPAM. Unlike ISAM,
access coordination in this case is file-specific. Accordingly, statements for a specific file
have no impact on any other file.

As with ISAM, the lock affects not just one specific record in a block, but the entire block in
which that record is contained (see section “Indexed file organization” on page 236).

For PAM files, as with ISAM files, the format extension WITH NO LOCK may also be used
in all formats of the READ or START statement provided SHARED-UPDATE=YES and
OPEN I-O were specified for these files.

Rules for shared updating

1. Reading and positioning with or without the WITH NO LOCK phrase is effected in the
same manner as for ISAM files.

2. Updating of records

If a record is to be updated by a REWRITE or DELETE statement, the record must be
read (as with ISAM files) immediately before this statement by means of a READ
statement (without the WITH NO LOCK phrase). No other statement for this file must
be executed between these statements. Unlike the conventions for ISAM files, state-
ments for other PAM files are allowed (on account of the file-oriented access coordi-
nation).

3. Waiting times in the event of a lock

The maximum waiting time for the release of a locked block is 999 seconds. After this
time has elapsed, control is transferred to the USE AFTER STANDARD ERROR
procedure, if present, or the program is terminated with error message COB9151
(FILE STATUS 93 and DMS error code D9B0 or D9B1).

4. Releasing a locked record

The release of a locked block can be accomplished with the same statements as for
ISAM files, but all statements must refer to the same file.

In contrast to ISAM files, a statement for a PAM file does not release blocks of another
PAM file.

Shared updating Processing of cataloged files

266

Notes

1. If a PAM file (with SHARED-UPDATE=YES, OPEN I-O) is to be processed in a
program, a USE AFTER STANDARD ERROR procedure should be defined for this file
(see “Indexed files”).

2. Unlike ISAM files (with SHARED-UPDATE=YES, OPEN I-O), the simultaneous
processing of two or more files (all with SHARED-UPDATE=YES, OPEN I-O), of which
at least one is a PAM file, allows one record per user to be locked simultaneously in any
number of files (but only one record in one file). This may result in a deadlock situation
(see).

3. As with ISAM files, any locks on records (blocks!) in PAM files should be released as
soon as possible in order to minimize waiting times for other users.

Example 9-14

Deadlock

Both users are waiting for the particular block to be released (deadlock).

The maximum waiting time for the release of a locked block is 999 seconds. After this time
has elapsed, the USE AFTER STANDARD ERROR procedure, if present, is activated or
the program is terminated with error message COB9151 (FILE STATUS 93 and DMS error
code D9B0 or D9B1).

User A:

READ file1 (record n)
 .
 .
READ file2 (record m)

(Block in file1 not unlocked)

User B:

READ file2 (record m)
 .
 .
READ file1 (record n)

(Block in file2 not unlocked)

 267

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2d
e

fü
r

F
ra

m
e

M
ak

er
 V

7
.x

vo
m

 2
8.

03
.2

00
7

©
 c

o
gn

ita
s

G
m

b
H

 2
0

01
-2

0
07

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

0

10 Processing XML documents

10.1 Making XML documents available

Depending on the type of processing, a COBOL program can process an XML document
which is made available in working memory or in a file:

If the XML document is made available in a file, the file’s BS2000/OSD access method is
irrelevant. The breakdown of the XML document into records is visible to the processing
program: each record change in he XML document is replaced by an end-of-line character,
i.e. the equivalent of the ASCII character X'0A' in the encoding in which the program
received data from the XML document. However, the insertion of additional end-of-line
characters can also be suppressed if the relevant control mechanism
XML-LINE-FEED=IGNORED is set during compilation, see section “RUNTIME-OPTIONS
option” on page 83.

10.2 Using XML language elements in programs

A prerequisite for compiling programs which use language elements to process XML
documents is that the new keywords connected to the language elements are recognized.
For this purpose the relevant control mechanism XML-SUPPORT=YES must be set when
compilation takes place, see section “SOURCE-PROPERTIES option” on page 59.

When such programs run, a separate open source program package - the parser -
analyzes and parses the XML documents. This program package is not a component part
of the COBOL compiler or CRTE, but can be downloaded from the Internet.

Processing type XML document

in memory in file

Structure-oriented X X

Event-oriented X –

Linking, loading, starting Processing XML documents

268

 As it is open source software, the use of this program package is subject to its own
license conditions and regulations which you must accept when you download it
from the Internet.

At execution time this program package must be available as a module library in BS2000/
OSD. How you obtain this module library if it is not already provided in BS2000/OSD is
described in detail in section “Obtaining the parser” on page 272.

10.3 Linking, loading, starting programs with XML language
elements

Programs which use language elements to process XML documents are in principle linked,
loaded and started as described in chapter “Linking, loading, starting” on page 117.

Processing XML documents also always requires encodings to be converted. Connection
module GNLAPDT must consequently be linked for corresponding XHCS functions:

When TSOSLNK is used for linking, see section “Static linkage using TSOSLNK” on
page 122, the following additional statement is required in the linkage run:

(1) XHCS connection module: it is implied that the library which contains the module is
available in the system with the name SYSOML.XHCS-SYS.020.

When BINDER is used for linking, see section “Linking using BINDER” on page 127, the
following additional statement is required in the linkage run:

(1) XHCS connection module: it is implied that the library which contains the module is
available in the system with the name SYSOML.XHCS-SYS.020.

*RESOLVE ,$.SYSOML.XHCS-SYS.020 —— (1)

//RESOLVE-BY-AUTOLINK LIB=$.SYSOML.XHCS-SYS.020 ———————————————————————— (1)

i

Processing XML documents Linking, loading, starting

 269

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2d
e

fü
r

F
ra

m
e

M
ak

er
 V

7
.x

vo
m

 2
8.

03
.2

00
7

©
 c

o
gn

ita
s

G
m

b
H

 2
0

01
-2

0
07

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

0

When dynamic linking and loading takes place with DBL, see section “Dynamic linking and
loading using DBL” on page 129, the following additional command is required before the
START PROGRAM or LOAD-PROGRAM command:

(1) XHCS connection module: it is implied that the library which contains the module is
available in the system with the name SYSOML.XHCS-SYS.020

When a COBOL Program with XML statement executes, the executing program must be
able to access the module library which contains the parser program package so that it can
load modules from it dynamically. To permit this, use the link name COBPRSXM to assign
the library with the parser modules before the COBOL program executes. In the case of
dynamic linking and loading or when loading linked programs, the following additional
commands are required before the START PROGRAM or LOAD-PROGRAM command:

(1) XML parser: it is implied that the library which contains the relevant modules is
available on the XYZ ID with the name SYSLIB.UTM-XML.030.RT.

(2) The parser’s modules require the C runtime system. You must therefore also assign
CRTE.

/ADD-FILE-LINK BLSLIB02,$.SYSOML.XHCS-SYS.020 ————————————————————————— (1)

/ADD-FILE-LINK COBPRSXM,$XYZ.SYSLIB.UTM-XML.030.RT ————————————————— (1)
/ADD-FILE-LINK BLSLIB01,$.SYSLNK.CRTE ———————————————————————— (2)

Encoding identification Processing XML documents

270

10.4 Encoding identification

To ensure an XML document is processed correctly, it is essential that the encoding which
is used to present the document is identified. XML permits this encoding to be specified in
an encoding declaration within the document. When data is transferred between different
data processing systems, the encodings used are generally also converted, but no changes
are made to the contents. This can result in the specification of the encoding in the XML
document no longer matching the encoding which is actually used for the presentation.

In order to identify the encoding declaration in the XML document, an assumption must
have been made beforehand regarding the encoding used to permit the document to be
read. This is roughly possible because a well-formed XML document must always begin
with the string <?xml. The encoding currently used for the XML document can be derived
by comparing the start of the document with the presentation of this characteristic string in
the various encodings supported by the parser.

Furthermore, BS2000/OSD enables a file attribute to be assigned for files; this names an
encoding (CODED-CHARACTER-SET), but does not force the file content to be presented
in this encoding. When XML documents are made available in working memory (which is
also possible in COBOL), the specifications in the program also allow an encoding to be
derived which is used to present the document, see the “COBOL 2000 Compiler”
manual [1], “ASSIGN clause” section.

Three sources consequently exist from which the same encoding which is used to present
the document can be derived:

Z1 from examining the start of the document; closed, assumed encoding

Z2 external specification of the encoding as a file attribute or specifications in the
program

Z3 encoding declaration in the XML document

In order to as far as possible prevent manual intervention from being required before an
XML document is processed, the COBOL system also to some extent accepts missing or
contradictory specifications regarding encodings from these three sources.

Processing XML documents Encoding identification

 271

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2d
e

fü
r

F
ra

m
e

M
ak

er
 V

7
.x

vo
m

 2
8.

03
.2

00
7

©
 c

o
gn

ita
s

G
m

b
H

 2
0

01
-2

0
07

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

0

The decision on the encoding which is ultimately assumed for processing purposes or the
decision on the I-O status in the case of contradictions which cannot be resolved is taken
in accordance with the table below. A dash (–) means that the existence or compatibility
plays no part in this decision.

* Only UTF-16, EBCDIC or UTF can be identified as encoding Z1. Here EBCDIC stands
for a(n) (imprecise) superset for all special variants (such as EDF03IRV, EDF041, etc.)
and UTF as a(n) (imprecise) superset for UTF-8 and all ISO variants supported by
XHCS.

** Only UTF-8, UTF-16, EBCDIC, ISO646 and the special EBCSIC variants and ISO
variants under the term 'exists', i.e. all those which also know XHCS, are understood as
Z2 for documents in files and as Z3. All other encodings as regarded as 'unknown'. Only
EBCDIC (for alphanumeric data items) and UTF-16 (for national data items) are
possible as Z2 for documents in memory.

*** ’Encoding Zx compatible with encoding Zy' means that Zx and Zy designate the same
encoding, or that Zx is a more precisely named encoding from the (imprecise) superset
Zy.

Existing situation Decision taken

Z1
identified *

Z2 exists ** Z3 exists ** Z2
compatible
with Z1 ***

Z3
compatible
with Z1 ***

Z3
compatible
with Z2 ***

Encoding
used

I-O status

yes yes yes yes – yes Z3

yes yes yes yes – no Z2

yes yes yes no yes – 3D

yes yes yes no no – 3D

yes yes no yes – – Z2

yes yes no no – – 3D

yes no yes – yes – Z3

yes no yes – no – Z1

yes no no – – – Z1

no yes – – – – Document in
file: Z2

Document in
memory: 3D

no no – – – – 3D

– Unknown
encoding

– – – – 3D

– – Unknown
encoding

– – – 3D

Obtaining the parser Processing XML documents

272

If the encoding ultimately selected only designates the imprecise superset EBCDIC, the
special variant available at the time the program is compiled is used.

If the encoding ultimately selected only designates the imprecise superset UTF, UTF-8 is
used.

This encoding identification takes place in every OPEN DOCUMENT statement (without an
AT phrase), and during an XML PARSE statement both for the primary XML document and
for the external entities or DTDs in this document which are addressed.

10.5 Obtaining the parser

Proceed as follows to download the XML parser from the Internet and to make it available
as a module library (see also the “XML for openUTM” manual [27]).

The software required is provided on the Internet under 'openUTM'. However, it does not
require that COBOL programs which you want to use must run under openUTM.

1. Go to http://ts.fujitsu.com/openUTM on the Internet.

2. Follow the instructions for downloading, accept the license conditions if required and
download the latest version of the BS2000 library to your PC.

3. Unpack the SYSLIB.UTM-XML.nnn.RT member (nnn: version identifier, at least 030)
from the archive and transfer it to the BS2000/OSD system. There are two ways of do-
ing this:

a) Unpack the member from the ftp subdirectory and transfer it in binary format using
ftp.

b) Unpack the member from the openft subdirectory and transfer it using openFT (bi-
nary file type, transparent transfer mode).

A PLAM library is now available in BS2000/OSD: this is the module library which is required
for executing the COBOL programs.

http://ts.fujitsu.com/openUTM

Processing XML documents Extended I-O status for XML statements

 273

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2d
e

fü
r

F
ra

m
e

M
ak

er
 V

7
.x

vo
m

 2
8.

03
.2

00
7

©
 c

o
gn

ita
s

G
m

b
H

 2
0

01
-2

0
07

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

0

10.6 Extended I-O status for XML statements (CBX code)

The simple I-O statuses for XML files are described in the “COBOL2000 Reference
Manual” [1].

The errors which are indicated by italics in the table below occur only when DTDs are
parsed.

I-O status Meaning

0003 Same name used more than once for attributes

0004 Less than sign ('<') in the attribute value

0005 Opening and closing tags do not match

0010 Double hyphen in comment

0011 Processing instruction not terminated

0012 Name of the processing instruction begins with the reserved string 'xml' (not
case-sensitive)

0013 Invalid hexadecimal character specification in numeric character entity

0014 Invalid decimal character specification in numeric character entity

0016 Numeric character entity is not a valid UTF-8 character

0017 Invalid character in entity reference name

0102 Empty document

0110 Value of an attribute not terminated correctly

0119 CDATA section not terminated correctly

0127 Equals sign ('=') missing in attribute

0128 Value for attribute missing

0138 Target name for processing instruction invalid

0139 Invalid character in processing instruction

0142 Version identifier missing in the XML declaration

0148 Equals sign ('=') missing after keyword 'encoding'

0149 Encoding name missing

0150 Encoding name not terminated correctly

0151 Invalid character after the encoding declaration

0155 Value for standalone declaration neither 'yes' nor 'no'

0160 The end of the document is followed by something illegal

0315 'UTF-16LE' encoding is not supported

0317 Encoding cannot be identified

Table 36: Extended I-O statuses for XML statements

Extended I-O status for XML statements Processing XML documents

274

0320 EBCDIC character in a national data item

0321 ASCII/UTF-8 character in a national data item

1001 Parameter entity reference at the end of the document

1002 Parameter entity reference in the prologue

1003 Parameter entity reference in the epilogue

1004 Parameter entity reference in the markup declaration in internal DTD

1005 Entity not declared

1006 Reference to unparsed entity

1007 Reference to external entity in attribute value

1008 Invalid reference to a parameter entity

1009 Expected string begins with quotes

1010 Name space declaration false

1012 Value in an entity declaration is incorrect

1013 Expected literal not found

1014 Blank missing

1015 Expected name missing

1016 Expected greater than sign ('>') missing

1017 Expected equals sign ('=') missing

1018 Entity is not balanced (Something was begun which has not been terminated or
something was terminated which had not been begun.)

1019 Illegal character ('&' or '%') in the value of the entity declaration

1020 Parameter entity reference in value or entity

1021 Invalid URI in value or entity

1022 URI begins with hash character ('#')

1023 Encoding declaration missing in XML declaration of an external entity

1024 External DTD required although excluded by standalone declaration

1025 External entity could not be loaded

1098 Contradiction between external encoding identification and encoding declaration

1099 Contradiction between internal encoding and encoding declaration

2001 String not terminated correctly

2003 Literal not terminated correctly

2004 Comment not terminated correctly

2005 Name missing in notation declaration

I-O status Meaning

Table 36: Extended I-O statuses for XML statements

Processing XML documents Extended I-O status for XML statements

 275

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2d
e

fü
r

F
ra

m
e

M
ak

er
 V

7
.x

vo
m

 2
8.

03
.2

00
7

©
 c

o
gn

ita
s

G
m

b
H

 2
0

01
-2

0
07

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

0

2006 Notation declaration not terminated correctly

2007 Error in attribute list

2008 Attribute list not terminated correctly

2009 Error in element declaration for mixed content

2010 Element declaration for mixed content not terminated correctly

2011 Error in element declaration

2012 Element declaration not terminated correctly

2013 XML declaration incorrect or missing

2014 XML declaration not terminated correctly

2015 Error in conditional section

2016 Conditional section not terminated correctly

2017 Invalid content in external DTD

2018 Document type definition not terminated correctly

2019 String ’]]>’ not permitted in a value for end CDATA section

2020 Separator missing

2021 nmtoken missing in attribute list

2022 String '#PCDATA' missing in element declaration for mixed content

2023 URI missing

2024 Public identifier missing

2026 Conditional section incorrect

2027 Value missing in entity declaration

2028 There is something behind a balanced entity

2029 Nesting depth of entity references is greater than 40

2030 Keyword 'INCLUDE' or 'IGNORE' missing in a conditional section

2031 Invalid character in content

2096 UTF-16 character in alphanumeric data item

2097 ASCII/UTF-8 character in alphanumeric data item

2098 Contradiction between external and internal encoding identification

2099 Encoding from encoding declaration is not supported

2994 ILCS error

2995 Unexpected EOF

2996 Error while reading

I-O status Meaning

Table 36: Extended I-O statuses for XML statements

Extended I-O status for XML statements Processing XML documents

276

2997 Preview buffer too small

2998 Memory error

2999 Internal error / System error

3000 Unused parser codes - please notify system administrator

I-O status Meaning

Table 36: Extended I-O statuses for XML statements

 277

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

1

11 Sorting and merging

11.1 COBOL language elements for sorting and merging files

COBOL2000 supports sorting and merging with the following language elements (see
“COBOL2000 Reference Manual” [1]):

– Specification of the literal “SORTWK” in the ASSIGN clause:

This explicitly declares the link name SORTWK for the sort file.

The format of the ASSIGN clause for sort files also permits other specifications, but
these are treated as comment entries by the compiler. The link name for the sort file is
always SORTWK.

– The sort file description entry (SD) in the Data Division

This corresponds to the file description entry (FD) for other files and defines the physical
structure, the format and the size of the records.

– The SORT and MERGE statements in the Procedure Division:

input procedure. The sorted records are written to a file or transferred SORT sorts
records by one or more data items (up to 64), specified as sort keys.
These data records can be made available to SORT from a file or via an to an output
procedure.
For sorting, COBOL2000 uses the sorting function of the BS2000 utility SORT for
sorting (see “Sort” manual [6]).

MERGE merges records from two or more sorted input files in a sort file on the basis of
a number of data items (up to 64) that have been specified as sort keys.
The merged records are written to a file or transferred to an output procedure.

COBOL language elements Sorting and merging

278

– Declaration of input and output procedures

An input procedure (INPUT PROCEDURE phase) can be declared for any SORT
statement. The procedure allows the records which are to be sorted to be generated or
processed before they are passed to the sort file via a RELEASE statement.

An output procedure (OUTPUT PROCEDURE phase) can be declared for any SORT
or MERGE statement. The procedure allows the sorted or merged records to be
processed further, after they have been made available to it with a RETURN statement.

 If desired, text can be sorted according to the DIN standard for EBCDIC. To this
end, sort format ED of the SORT utility routine is selected for all SORT state-
ments in a program by compiling the program with the SDF option
RUNTIME-OPTIONS=PAR(SORTING-ORDER=BY-DIN) or, alternatively, with
COMOPT SORT-EBCDIC-DIN=YES (see “Sort” manual [6]).
This means that

– lowercase letters are equated with the corresponding uppercase letters and

– the character
“ä” / “Ä” is identified with “AE”
“ö” / “Ö” is identified with “OE”
“ü” / “Ü” is identified with “UE”
“ß” is identified with “SS”

– digits are sorted before letters

i

Sorting and merging Files for the sort program

 279

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

1

11.2 Files for the sort program

The following files are required for a sort operation:

Sort file

Data records are sorted in this file (work area). Its name is declared, for example, via the
clause

SELECT sort-file ASSIGN TO "SORTWK"

In addition, the file must be described in the sort file description entry (SD) of the Data
Division. The file is accessed with the statement

SORT sort-file ...

Without the user having to issue a SET-FILE-LINK command, this file will be cataloged
under the name SORTWORK.tsn.yymmdd.hhmmss (where tsn = task sequence number,
yy = year, mm = month, dd = day, hhmmss = time in six digits). The link name is SORTWK.
After a normal termination of the sort operation the file is deleted.

By default, the size of the sort file when created without the SET-FILE-LINK command is
24 * 16 = 384 PAM pages (this value can be modified by supplying values to special
registers for SORT). Accordingly, the primary allocation is 384 PAM pages; the secondary
allocation is 1/4 of this, i.e. 96 PAM pages.

Using the command

/MODIFY-FILE-ATTRIBUTES filename,-
/ SUPPORT=PUBLIC-DISK(SPACE=RELATIVE(PRIMARY-ALLOCATION=.., -
/ SECONDARY-ALLOCATION=..))

the user can define the sort file size independently (see “Sort” manual [6]). This is recom-
mended for large files. After normal termination of the sort operation this file will be closed,
but not deleted.

Special registers for SORT (see “COBOL2000 Reference Manual” [1]):

The programmer can load the following special registers for SORT before the sort
operation:

– SORT-FILE-SIZE: This register is loaded with the total number of records.

– SORT-MODE-SIZE: This register is loaded with the average record size.

The SORT utility routine uses these two registers to calculate the file size. This implies that
the programmer can indirectly affect the SPACE operand.

Files for the sort program Sorting and merging

280

– SORT-CORE-SIZE: This register is loaded with the desired size of the internal work
areas, expressed in bytes.

These entries can be used to influence program execution.

If they are omitted, 24 * 4096 bytes (i.e. 24 4-Kb pages) is assumed by default.
For further information see “Sort” manual [6] on sort run optimization.

After SORT, RELEASE and before RETURN statements, the programmer may interrogate
the SORT special register SORT-RETURN:

“0” indicates that sorting was successful,

“1” that sorting was errored.

This interrogation is recommended because the program is not terminated in the event of
an errored sort operation.

If an invalid value is loaded into a SORT special register, error message COB9134 is issued
(see chapter “Messages of the COBOL2000 system” on page 345).

Input file(s)

If no input procedure has been defined, COBOL2000 generates an OPEN INPUT and a
READ...AT END for the specified file. Each input file must be defined in the COBOL
program.

The link names SORTIN and SORTINnn (01 ≤ nn ≤ 99) must not be used within a sort
program.

Output file

If no output procedure has been defined, COBOL2000 generates an OPEN OUTPUT and
a WRITE for the specified file. The output file must be defined in the COBOL program.

The link name SORTOUT must not be used within a sort program.

SORT parameter files

SORT permits predefined values to be specified and modified for some parameters (see
MODIFY-SORT-DEFAULTS statement in the “Sort” manual [6]).

Most of these values have no effect on SORT statements in COBOL programs. Conse-
quently such parameter files are analyzed only in the first SORT statement in a COBOL run-
time unit. Subsequent changes have no effect for the rest of the program run. This speeds
up COBOL programs, which dynamically execute a large number of SORT statements with
few records that need to be sorted.

Sorting and merging Checkpointing and restart for sort programs

 281

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

1

11.3 Checkpointing and restart for sort programs

Specifying the RERUN clause (format 2) causes special checkpoints to be issued for sort
files. Checkpoint records contain information concerning the status of the sort operation.
They are necessary in order to enable a program which has been interrupted by the user
or because of a computer malfunction to be restarted without having to repeat the entire
program run up to that point. The taking of sort checkpoints is especially recommended
when dealing with large quantities of sort data, because a successful presort will then not
be lost in the event of an abnormal program termination.

Format 2 of the RERUN clause:

LR
RERUN ON implementor-name EVERY SORT OF sort-file-name
LR

implementor-name: SYSnnn (000 ≤ nnn ≤ 200)

Checkpoint records are written to a checkpoint file (see chapter “Program linkage” on
page 289) which is created by the sort program using the default file name
SORTCKPT.Dyyddd.Tnnnn (where yy = year, ddd = current day of the year, nnnn = task
sequence number of the current task) and the standard link name SORTCKPT (see “Sort”
manual [6]). Using the SPACE operand in the SUPPORT parameter of the MODIFY-FILE-
ATTRIBUTES command, the user can independently determine the size of this file. Check-
point output is logged on SYSOUT (message E301; see chapter “Program linkage” on
page 289). The timing of the checkpoint output cannot be determined by the user indepen-
dently.

When the sort operation terminates normally, the checkpoint file is closed, released and
deleted, i.e. the user has no access to it.

If a sort program is terminated abnormally, program execution can be resumed from the last
checkpoint taken. To do this, the user issues a RESTART-PROGRAM command which
makes use of the information logged on SYSOUT. See chapter “Checkpointing and restart”
on page 285 and “Commands” manual [3].

11.4 Sorting tables

The BS2000 sort function SORT can also be used for sorting tables. The equivalent
COBOL language feature is the SORT statement (see “COBOL2000 Reference Manual”
[1]).

Sorting with extended character sets Sorting and merging

282

11.5 Sorting with extended character sets

In sorting with extended character sets, the TRANSLATE-CHARACTER format of SORT
(see “Sort” manual [6]) is used in BS2000/OSD.

The special register SORT-CCSN (see the “COBOL2000 Reference Manual” [1]) is
available with the SORT statement (file and table sorting) as a language element for sorting
with extended character sets1.

The contents of the special register SORT-CCSN are transferred to SORT as the name of
a module from the table module library (SYSLNK.SORT.nnn.TAB2).

This library currently contains the modules EDF03DRV, EDF03IRV and EDF041. In order
to define additional tables, you need authorization to modify this library.

For the purpose of defining separate modules, SORT provides the source code element
MUSTER in the table module library (see also the notes on creating
TRANSLATE-CHARACTER tables in “Sort” manual [6]).

Example 11-1

Creating files with the extended character set EDF041

To create a file in the extended character set using an editor in BS2000, the following steps
are necessary:

● Emulation settings: Configuration … display terminal
DSS mode: 8 bit
Character set: Lat. alphabet Nr. 9 ISO8859-15
Display terminal type: DSS9763

● Modify the logical properties of the terminal (see [3])

● Set the code in EDT for a new file (see [23]):

1 The CODED-CHARACTER-SET attribute of SORT input or output files is not evaluated by COBOL-SORT
2 nnn stands for the current SORT version

/MODIFY-TERMINAL-OPTIONS CODED-CHARACTER-SET=EDF041

@CODENAM EDF041

Sorting and merging Sorting with extended character sets

 283

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

36
.1

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

1

Example 11-2

Assigning an output file with an extended character set:

(1) Instructs the DMS to create the file SORT-AUSGABE with the CODED-
CHARACTER-SET EDF041.

(2) Establishes the relationship with the program.

/CREATE-FILE SORT-AUSGABE,CODED-CHARACTER-SET=EDF041 —————————————————— (1)
/ADD-FILE-LINK LINK-NAME=AUSGABE,FILE-NAME=SORT-AUSGABE ———————————————— (2)

Sorting with extended character sets Sorting and merging

284

 285

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

2

12 Checkpointing and restart
Checkpoint records are output by COBOL2000 objects to an external checkpoint file (or two
checkpoint files if necessary: see below). A checkpoint record comprises identification infor-
mation, program status, associated system status and virtual memory contents. All this is
required for any subsequent restart which might be effected.

By writing such checkpoint records, it is possible for a program to be continued at any time
at the point where the last checkpoint record was written before the program was inter-
rupted (whether intentionally or because of system malfunction). Checkpointing is
especially recommended for programs with a fairly long execution time. However, it is only
meaningful if the original data can be restored for a possible restart.

This functionality is not available in the POSIX subsystem (see the chapter “COBOL2000
and POSIX” on page 299).

Checkpointing Checkpointing and restart

286

12.1 Checkpointing

The writing of checkpoint records is initiated by the user with the aid of the RERUN clause.
The user can determine the point in time when the checkpoint records are to be written; for
a given file, checkpointing is possible at each reel swapping, or after the processing of a
specific number of records of that file.

Format 1 of the RERUN clause (extract; for a complete description, see “COBOL2000
Reference Manual” [1]):

implementor-name

Specified as SYSnnn (0 ≤ nnn ≤ 244)
COBOL2000 generates either one or two checkpoint files:

a) One checkpoint file if nnn ≤ 200.
COBOL2000 forms the standard name progid.RERUN.SYSnnn as well as the link
name SYSnnn.
Checkpoint records are written to this file continuously. At end of file, additional
storage space is requested internally.

b) Two checkpoint files, if nnn > 200.
COBOL2000 forms the standard names progid.RERUN.SYS.nnnA,
progid.RERUN.SYS.nnnB and the link names SYSnnnA and SYSnnnB.
Checkpoint records are written to each of the two files alternately; any previously
written checkpoint record will be overwritten.

Format 2 of the RERUN clause is permitted for sort files only; it is therefore described in
section “Checkpointing and restart for sort programs” on page 281.
After each successful output of a checkpoint record, information necessary for a possible
restart will be displayed on SYSOUT.

RERUN [ON implementor-name] EVERY OF file-name

END OF

integer-1 RECORDS

REEL

UNIT

Checkpointing and restart Restart

 287

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

2

Message format:

E301 CHECKPOINT#aa, HALF PAGE#=bb, DATE=cc, TIME=dd:ee

12.2 Restart

The RESTART-PROGRAM command enables the user to restart an executable program at
a point at which a checkpoint was taken.

Format of the RESTART-PROGRAM command (see “Commands” manual [3]):

LR
/RESTART-PROGRAM filename,REST-OPT=START-PROG(CHECKPOINT=NUMBER(...)
LR

filename Name of the checkpoint file (COBOL standard name; see section
“Checkpointing” on page 286)

NUMBER(...) Number of the PAM page in which the checkpoint records begin

 1. Before restart the user must assign all resources that are required by the
program to be restarted, because data concerning the required resources is not
saved when a checkpoint is taken.

2. The status of user data is not automatically restored at restart. Therefore, the
user has to provide the data in an appropriate form as at the time the checkpoint
was taken.

aa
bb
cc
dd
ee

checkpoint number
PAM page number
mm/dd/yy:month/day/year
hour
minute

i

Restart Checkpointing and restart

288

 289

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

3

13 Program linkage
A program system consists of a main program (the program that is called at system level)
and one or more external subprograms, which may be written in the same language as the
main program or in other programming languages.

Consequently, a means of linking the various programs is required; this function is
performed by the Inter-Language Communication Services (ILCS). ILCS is a component of
the Common Runtime Environment (CRTE) and is described in the “CRTE User Guide” [2].

Linking and loading subprograms Program linkage

290

13.1 Linking and loading subprograms

The name of a subprogram can be specified in the CALL statement either as a literal or as
the identifier of a data item that contains the subprogram name or subprogram address.
Depending on the kind of subprogram call, a program system is linked and loaded in
different ways.

Subprogram call “CALL literal” or program address identifier “ADDRESS OF
PROGRAM literal”

The name of the subprogram is already defined at compilation time. The compiler sets up
external references to these subprograms; these are resolved by the relevant linkage editor
in subsequent linkage runs. If a program system contains only calls in the form “CALL
literal” or “ADDRESS OF PROGRAM literal”, it may be linked into a permanent or temporary
executable run unit and loaded subsequently, as described in chapter “Linking, loading,
starting” on page 117.

Subprogram call “CALL identifier” or program address identifier “ADDRESS OF
PROGRAM identifier”

The name of the subprogram need not be known before runtime (e.g. upon input at the
terminal). For subprograms called as required by means of “CALL identifier” and program
address identifier “PROGRAM ADDRESS identifier” there are no external references; they
are therefore loaded dynamically by DBL during program execution. Program systems with
subprograms of this kind can only be run in one of the following ways:

1. Use DBL to dynamically link the modules generated during the compilation, and dynam-
ically load the subprograms without external references (in the main program).

2. Use TSOSLNK to create a prelinked module which contains the main program as well
as the subprograms with external references. Call the prelinked module with DBL and
dynamically load the subprograms without external references (in the main program).

3. Use BINDER to (pre-)link one or more link-and-load modules (LLMs). Then use DBL to
call the (prelinked) LLM or the LLM containing the main program, and dynamically load
the subprograms without external references (in the main program).

Generally, before calling DBL, the following assignment should be made:

/ADD-FILE-LINK BLSLIBnn,runtime-library

for the Common Run-Time Environment (CRTE), which includes the COBOL runtime
system (the library SYSLNK.CRTE.PARTIAL-BIND may not be used for this purpose; see
the “CRTE User Guide” [2]).

Program linkage Linking and loading subprograms

 291

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

3

In addition, the the following assignment must be made:

/ADD-FILE-LINK COBOBJCT,library

for a library which contains the subprograms to be dynamically loaded.

Note that the link name BLSLIBnn is only effective if

RUN-MODE=ADVANCED(ALTERNATE-LIBRARIES=YES)

is specified in the invocation command for DBL (see section “Dynamic linking and loading
using DBL” on page 129).

If a load unit contains unresolved weak external references WXTRNSs (which is the case,
for example, when the subprogram contains files with a different file organization than those
in the main program), then the operands UNRESOLVED-EXTERNS=DELAY and
LOAD-INFORMATION=REFERENCES must be specified:

RUN-MODE=ADVANCED (ALTERNATE-LIBRARIES=YES, UNRES-EXT=DELAY, LOAD-INF=REF

 Names of link-and-load modules (LLMs) can be specified in CALL, CANCEL and
ADDRESS OF PROGRAM as identifiers with a length of up to 30 characters. For
object modules the program names must not exceed eight characters in length. In
the case of CANCEL identifier statements for programs in object module format, the
first seven characters of these names must be unique in the run unit, and the eighth
character must not be a hyphen ‘-‘.

i

Linking and loading subprograms Program linkage

292

Example 13-1

Linking and loading techniques for program systems containing dynamically
loadable subprograms

SUBPR1 is called only in the form “CALL literal”.
SUBPR2 is called only in the form “CALL identifier”.
SUBPR3 is called in either way.

This means that external references are set up for SUBPR1 and SUBPR3; SUBPR2 is
loaded dynamically.

The ways of initiating the program run for this program constellation are shown below.

The individual programs are stored as object modules under the element names
MAINPROG, SUBPR1, SUBPR2 and SUBPR3 in the library USER-PROGRAMS.

Program constellation and types of calls

MAINPROG

SUBPR2 SUBPR1

SUBPR3

MAINPROG:
...
CALL "SUBPR1" USING ...
MOVE "SUBPR2" TO identifier-1
MOVE "SUBPR3" TO identifier-2
CALL identifier-1 USING identifier-2
...

SUBPR2:
...
PROCEDURE DIVISION USING identifier-2
CALL identifier-2

...
CALL "SUBPR3"
...

Program linkage Linking and loading subprograms

 293

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

3

1. Using DBL (dynamic linking)

(1) Assigns the runtime library.

(2) Assigns the library from which subprogram SUBPR2 will be dynamically loaded.

(3) Calls the object module containing the main program MAINPROG. DBL searches
the library specified here (USER-PROGRAMS) to resolve the external references
to SUBPR1 and SUBPR3.

2. Using TSOSLNK (linking prelinked modules)

(1) The prelinked module PRLNKMOD is stored in the MODUL.LIB library.

(2) Links in the MAINPROG module from the USER-PROGRAMS library.

(3) Links in the USER-PROGRAMS library to resolve external references to SUBPR1
and SUBPR3.

(4) Symbols for the entry points and the program segments for subsequent execution
under DBL are kept visible by means of this statement.

(5) Assigns the runtime library.

(6) Assigns the library from which subprogram SUBPR2 will be dynamically loaded.

(7) Calls the prelinked module PRLNKMOD.

/ADD-FILE-LINK BLSLIB00,$.SYSLNK.CRTE ———————————————————————————————— (1)
/ADD-FILE-LINK COBOBJCT,USER-PROGRAMS ————————————————————————————————— (2)
/START-PROGRAM *MODULE(LIB=USER-PROGRAMS,ELEM=MAINPROG,- ———————————— (3)

/RUN-MODE=ADVANCED(ALT-LIB=YES,UNRES-EXT=DELAY,-
/LOAD-INF=REFERENCES))

/START-PROGRAM $TSOSLNK
MODULE PRLNKMOD,LET=Y,UNSAT=N, LIB=MODUL.LIB —————————————————————————— (1)
INCLUDE MAINPROG,USER-PROGRAMS —— (2)
RESOLVE,USER-PROGRAMS ——— (3)
LINK-SYMBOLS *KEEP —— (4)

END

/ADD-FILE-LINK BLSLIB00,$.SYSLNK.CRTE ————————————————————————————————— (5)
/ADD-FILE-LINK COBOBJCT,USER-PROGRAMS ————————————————————————————————— (6)
/START-PROGRAM *MODULE(LIB=MODUL.LIB,ELEM=PRLNKMOD,- ———————————————— (7)
/RUN-MODE=ADVANCED(ALT-LIB=YES,UNRES-EXT=DELAY,-
/LOAD-INFO=REFERENCE))

Linking and loading subprograms Program linkage

294

3. Using BINDER (linking LLMs)

Unlike TSOSLNK, BINDER keeps all external references and entry points visible by default;
this is essential for the succeeding DBL run.

Moreover, using BINDER enables external references to remain unresolved. This means
that the runtime system does not have to be linked in. This is an advantage if a shareable
runtime system is to be used for program execution.

a) Generating a single link-and-load module

(1) Creates a link-and-load module named PRLNKMOD.

(2) Explicitly links in the main program module MAINPROG from the USER-
PROGRAMS library.

(3) Explicitly links in the module SUBPR2 from the USER-PROGRAMS library in order
to avoid dynamic loading. This makes it unnecessary to assign the USER-
PROGRAMS library with the link name COBOBJCT in the ensuing link-and-load
operation.

(4) Links in all other modules required (SUBPR1, SUBPR3) from the USER-
PROGRAMS library.

(5) Stores the generated link-and-load module as a type L element in the program
library MODUL.LIB.

(6) Assigns the runtime library.

(7) Calls the link-and-load module PRLNKMOD.

/START-PROGRAM $BINDER
//START-LLM-CREA PRLNKMOD——— (1)
//INCLUDE-MODULES LIB=USER-PROGRAMS,ELEM=MAINPROG——————————————————————— (2)
//INCLUDE-MODULES LIB=USER-PROGRAMS,ELEM=SUBPR2————————————————————————— (3)
//RESOLVE-BY-AUTOLINK LIB=USER-PROGRAMS————————————————————————————————— (4)
//SAVE-LLM LIB=MODUL.LIB—— (5)
//END

/ADD-FILE-LINK BLSLIB00,$.SYSLNK.CRTE —————————————————————————————————— (6)
/START-PROGRAM *MODULE(LIB=MODUL.LIB,ELEM=PRLNKMOD,- ————————————————— (7)
/RUN-MODE=ADVANCED(ALT-LIB=YES,UNRES-EXT=DELAY,-
/LOAD-INFO=REFERENCE))

Program linkage Linking and loading subprograms

 295

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

3

b) Converting object modules into single link-and-load modules

(1) Creates an LLM named MAINPROG; the name of the LLM is freely selectable.
Links in the object module MAINPROG from the USER-PROGRAMS library. As the
element name is omitted from the SAVE-LLM command, the name specified in the
START-LLM-CREATION command is used; that is, MAINPROG.

(2) Creates an LLM named SUBPR1. Links in the object module SUBPR1 from the
USER-PROGRAMS library. ENTRY-POINT=SUBPR1 defines this LLM as a
subprogram.

(3) Creates an LLM named SPROG2. Links in the object module SUBPR2 from the
USER-PROGRAMS library. ENTRY-POINT=SUBPR2 defines this LLM as a
subprogram.

(4) Creates an LLM named SUBPR3. Links in the object module SUBPR3 from the
USER-PROGRAMS library. As no ENTRY-POINT is specified in the SAVE-LLM
command, SUBPR3 can be used both as a subprogram and as a main program.

(5) Assigns the runtime library.

/START-PROGRAM $BINDER

 ...
//START-LLM-CREATION INTERNAL-NAME=MAINPROG
//INCLUDE-MODULES LIB=USER-PROGRAMS,ELEM=MAINPROG ———————— (1)
//SAVE-LLM LIB=MODULE.LLM
 ...
//START-LLM-CREATION INTERNAL-NAME=SUBPR1
//INCLUDE-MODULES LIB=USER-PROGRAMS,ELEM=SUBPR1 ————————— (2)
//SAVE-LLM LIB=MODULE.LLM,ENTRY-POINT=SUBPR1
 ...
//START-LLM-CREATION INTERNAL-NAME=SUBPR2
//INCLUDE-MODULES LIB=USER-PROGRAMS,ELEM=SUBPR2 ————————— (3)
//SAVE-LLM LIB=MODULE.LLM,ENTRY-POINT=SUBPR2
 ...
//START-LLM-CREATION INTERNAL-NAME=SUBPR3
//INCLUDE-MODULES LIB=USER-PROGRAMS,ELEM=SUBPR3 ————————— (4)
//SAVE-LLM LIB=MODULE.LLM
//END
 ...
/ADD-FILE-LINK BLSLIB00,$.SYSLNK.CRTE ————————————————————————————————— (5)
/ADD-FILE-LINK COBOBJCT,MODULE.LLM ———————————————————————————————————— (6)
/START-PROGRAM *MODULE(LIB=MODULE.LLM,ELEM=MAINPROG,- ———————————————— (7)
/RUN-MODE=ADVANCED(ALT-LIB=YES,UNRES-EXT=DELAY,-
/LOAD-INFO=REFERENCE))

Linking and loading subprograms Program linkage

296

(6) Assigns the library containing the LLMs by means of the link name COBOBJCT so
that the unresolved external references of the previously created LLMs can be
resolved.

(7) Calls the LLM containing the main program MAINPROG.

Program linkage Special register RETURN-CODE

 297

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

3

13.2 COBOL special register RETURN-CODE

The COBOL special register RETURN-CODE can be used for communication purposes
between separately compiled COBOL programs of a run unit. The special register exists
only once in the program system and is defined internally as a four-digit binary data item
(PIC S9(9) COMP-5 SYNC).
RETURN-CODE can be interrogated or modified as required at run time by the separately
compiled programs. On termination of the program run, the runtime system checks whether
RETURN-CODE is zero. If this is not the case, the error message COB9119 (if the COBOL
return code > 0) or COB9128 (if the user return code > 0) is output. If the program was
called within a procedure, the program branches to the next SET-JOB-STEP, EXIT-JOB,
LOGOFF, CANCEL-PROCEDURE, END-PROCEDURE or EXIT-PROCEDURE command.

When a COBOL subprogram is exited, the value of the special register RETURN-CODE is
also loaded in registers 0 and 1. This makes the value available to the calling program in
the form of a function value, in accordance with the ILCS conventions.

In order to use a function value from a C program, the calling COBOL program must be
compiled with the control statement RETURN-CODE=FROM-ALL-SUBPROGRAMS for
the RUNTIME-OPTIONS option, or with the COMOPT operand
ACTIVATE-XPG4-RETURNCODE=YES (Attention: the function value cannot be obtained
with the “RETURNING” specification in the CALL statement).

To avoid the abnormal termination of the program, the user must ensure that
RETURN-CODE contains the value 0 before the STOP RUN statement is reached.

13.3 Passing parameters to programs in other languages

Thanks to the use of COBOL prototypes, it is also possible to write programs in other
languages. In such cases, all the possibilities of the extended CALL Format 3 are available
when these programs are called (see the “COBOL2000 Reference Manual” [1]). Otherwise
only the restricted possibilities of Format 1 and Format 2 can be used.

More details on parameter passing can be found in the “CRTE User Guide” [2].

Passing parameters to programs in other languages Program linkage

298

13.4 Unloading COBOL subroutines

COBOL offers no language resources for unloading subroutines. Users must provide as-
sembler programs themselves to do this (see section "UNBIND macro" in the “Binder-Load-
er-Starter” manual [10]).

In the event of such unloading processes, dependencies between the modules and on the
COBOL runtime system in the context of CRTE must be taken into account:

● While other COBOL modules are still loaded, the COBOL runtime system may not be
unloaded, e.g. if the module to be unloaded is linked as an LLM or prelinked module
and contains all or part of the runtime system.

● When external files of COBOL programs are addressed, the COBOL runtime system
must remain loaded even if all COBOL programs have been unloaded but COBOL
subroutines are to be loaded dynamically again to permit further processing of the ex-
ternal files.

● If the COBOL module to be unloaded is a class of interface definition, all modules which
use or inherit from these class or interface definitions must be unloaded.

● If the module to be unloaded was loaded dynamically using the "CALL identifier" from
a COBOL module which was compiled with the OPTIMIZE-CALL-IDENTIFIER=YES
option, the unloaded module may not be called again with the "CALL identifier".

In the case of program exchange of modules under openUTM, the requirements must also
be taken into account.

The COBOL compiler does not check whether the rules have been observed.

 299

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

14 COBOL2000 and POSIX
Not supported in COBOL2000-BC !

The COBOL compiler can be invoked and passed control options in the POSIX
environment (POSIX shell).

In addition, COBOL programs compiled in the POSIX environment or in BS2000 can be run
in the POSIX environment.

Finally, if the POSIX subsystem is available, it is possible to access the POSIX file system
even when running the compiler or a program in BS2000.

For further information on POSIX you can refer to the following publications:

– "POSIX Basics" manual [30]

– "POSIX Commands" manual [29]

Overview COBOL2000 and POSIX

300

14.1 Overview

The following three subsections summarize how the compiler is used in the POSIX
subsystem.

14.1.1 Compiling

COBOL compilation units can be compiled by using the POSIX command cobol. This
command is described in detail in section “Controlling the compiler” on page 307.

Generating an LLM object file (“.o” file)

For each source file it compiles, the compiler generates an LLM and stores it as a POSIX
object file with the default name basename.o.
basename is the name of the source file without its directory components and without the
.cob or .cbl extension.

When compiling compilation groups, the compiler generates an LLM for each compilation
unit and stores each LLM in a POSIX object file. In this case basename is the associated
ID-name for the second to the last compilation unit. Lowercase letters are converted to
uppercase if required.
Unless otherwise specified, a linkage run is started once the compilation run is completed.
You can use the -c option (see section “General options” on page 308) to suppress the
linking phase.

Generating a compiler listing

You can use the -P option (see section “Option for compiler listing output” on page 311) to
request various compiler listings (source listing, diagnostic listing, cross-reference listing
and so forth). The compiler writes the listings you request to a listing file with the default
name basename.lst and stores it in the current directory. basename is the name of the source
file without the directory components and without the suffix .cob or .cbl. In these cases, the
name of the source file can also be specified with the option -k file-name.

To print listing files you can use the POSIX lp command (see the “POSIX Commands”
manual [29]).

Example of printing a compiler listing

lp -o control-mode=*physical cobbsp.lst

COBOL2000 and POSIX Overview

 301

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

Output locations and output code

The compiler stores the output files in the current directory, i.e. in the directory from which
the compiler run was started.
Character and character string constants in the program (object file) are always stored in
EBCDIC.

If you store the POSIX file system on a mounted UNIX file system or edit the POSIX files in
ASCII code with UNIX system tools, you must store error files (ERRFIL or piped screen
output) outside the POSIX file system in BS2000, since code conversion is available only
in limited form for these files.

Using compiler variables under POSIX

When the compiler is called under POSIX in BS2000/OSD the values of the compiler
variables can be taken over from environment variables. In this case, there is no need to
prefix the “SYSDIR-” name part (see also section “Assignment to compiler variables to
control source text manipulation” on page 32).

In POSIX, environment variables are untyped and their content is interpreted as a string in
the program during conditional compilation.

14.1.2 Linking

In the POSIX shell you use the cobol command to link a COBOL program into an
executable file.

A linkage run is automatically started, provided the -c option is not specified (see section
“General options” on page 308), and no serious errors occurred in a preceding compilation,
if any.
Once linked, the program is written to an executable POSIX file in the form of an LLM. The
name of this file and the directory it is stored in are defined by the -o option. If this option
is not specified, the executable POSIX file is stored in the current directory under the default
name a.out.

When performing linking in the POSIX shell it is not possible to generate linkage editor
listings. If errors occur, error messages are written to stderr.

Overview COBOL2000 and POSIX

302

Linking user modules

User-written modules can be linked in statically and dynamically (i.e. at runtime). Programs
containing unresolved external references to user modules cannot be started in the POSIX
shell.

The possible input sources for the linkage editor are:

– object files generated by the compiler (“.o” files)

– archives created with the ar utility (“.a” files)

– LLMs copied from PLAM libraries to POSIX object files using the POSIX bs2cp
command. These may be LLMs directly generated by a compiler in a BS2000
environment or object modules written to an LLM using the BINDER linkage editor.

– LLMs and object modules stored in BS2000 PLAM libraries. This entails assigning the
PLAM libraries using the BLSLIBnn environment variables (see the operand -l BLSLIB
on section “Options for the linkage run” on page 313).

The modules can be modules generated by any ILCS-capable BS2000 compiler (such as
COBOL85, COBOL2000, C, C++, ASSEMBH or Fortran90).

If modules generated in a BS2000 environment by the COBOL2000 compiler are to be
linked, they must have been compiled using the ENABLE-UFS-ACCESS option.

During the linkage run, INCLUDE-MODULES statements are issued internally for POSIX
object files, while RESOLVE-BY-AUTOLINK statements are issued for ar archives and
PLAM libraries. The modules are linked in the order described below.

When linking you must use the -M option to specify the name of the COBOL main program
(PROGRAM-ID name). If you fail to do so, the linkage editor will assume the main program
is a C program.

Linking CRTE runtime libraries

The linkage editor resolves open external references to the COBOL2000 runtime system
automatically from the CRTE library $.SYSLNK.CRTE.PARTIAL-BIND.

COBOL2000 and POSIX Overview

 303

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

Linking order

1. All compiler-generated object files with INCLUDE-MODULES statements

2. All explicitly specified object files (“.o“ files) with INCLUDE-MODULES statements
and, where appropriate, all explicitly specified ar libraries (“.a“ files). A separate
RESOLVE-BY-AUTOLINK statement is issued for each ar library.

3. All ar libraries specified with the options -l and -L, and PLAM libraries assigned with
-l BLSLIB. A separate RESOLVE-BY-AUTOLINK statement is issued for each ar
library. The PLAM libraries assigned with -l BLSLIB are passed to the BINDER linkage
editor in list form in a single RESOLVE-BY-AUTOLINK.

4. The CRTE libraries ($.SYSLNK.CRTE.PARTIAL-BIND) and, if appropriate, the SORT
library ($.SORTLIB)

The object files and libraries processed in steps 1 to 3 are linked in the order in which they
appear in the command line. In the case of object files generated by the compiler (see
“COBOL2000 Reference Manual” [1]), the order of linking depends on the order of the
associated source files.

Example 14-1

export BLSLIB99=‘$MYTEST.LIB2‘
export BLSLIB01=‘$MYTEST.LIB1‘
cobol -M COBBSP -o cobbsp cobupro1.cob cobupro2.cob cobbsp.o cobupro3-5.a \
 -L /usr/private -l xyz -l BLSLIB

Linking order:

1. cobupro1.o

2. cobupro2.o

3. cobbsp.o

4. cobupro3-5.a

5. /usr/private/libxyz.a

6. $MYTEST.LIB1

7. $MYTEST.LIB2

8. Runtime libraries

Overview COBOL2000 and POSIX

304

14.1.3 Debugging

Linked programs can be debugged with the AID Advanced Interactive Debugger.
This is conditional on the availability of debugging information (LSD) generated by the
compiler when invoked with the -g option (see section “Debugger option” on page 313).

To activate the AID debugger, you use the POSIX command debug program-name
[arguments] at a BS2000 terminal.
After you enter this command, the BS2000 environment will be your current environment,
as indicated by the %DEBUG/ prompt. In this mode you can enter debugging commands
as described in the “AID” manual [8] . When you terminate the program, your current
environment will again be the POSIX shell.

The debug command is described in the “POSIX Commands” manual [29].

COBOL2000 and POSIX Reading in the compilation unit

 305

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

14.2 Reading in the compilation unit

The COBOL2000 compiler identifies COBOL source files by the presence of one of the
following standard file name extensions:

.cob or .cbl

COBOL source files with file names not ending in a standard extension can still be
compiled, as long as the file names are specified with the -k option (see section “General
options” on page 308).

Compilation units stored in BS2000 files or PLAM libraries cannot be processed by the
compiler in the POSIX subsystem.

To transfer BS2000 files and PLAM library elements to the POSIX file system and back you
can use the POSIX bs2cp command.

The POSIX edt command allows you to edit POSIX files at a BS2000 terminal.
If the POSIX shell was accessed with rlogin, the POSIX command vi is available for editing
purposes. Refer to the “POSIX Commands” manual [29].

Input of program segments (COPY elements)

The format of the COPY statement for extracting COPY texts from POSIX files is as follows:

COPY text-name [IN/OF library-name]

text-name is the name of the POSIX file (without the directory components) containing the
COPY text. The name may not contain lowercase letters.

library-name is the name of an environment variable containing one or more absolute path
names of directories to search. The name may not contain lowercase letters.

If the IN/OF library-name argument is not included in the COPY statement, the compiler
evaluates the contents of an environment variable named COBLIB.

Before the compiler is invoked, the environment variables must have been assigned the
path names of the directories to search and exported with the POSIX export command.

Reading in the compilation unit COBOL2000 and POSIX

306

Example 14-2

COPY statements in the compilation unit:

...
COPY TEXT1 IN COPYLNK
COPY TEXT2 IN COPYLNK
...

Defining and exporting the environment variable in the POSIX shell:

export COPYLNK=/USERIDXY/copy1:/USERIDXY/copy2

The colon causes the COPYLNK environment variable to be initialized with the names of
two directories to be searched for the POSIX files containing the COPY texts (TEXT1,
TEXT2). The directory /USERIDXY/copy1 is first searched and then the directory
/USERIDXY/copy2.

COBOL2000 and POSIX Controlling the compiler

 307

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

14.3 Controlling the compiler

In the POSIX shell you can use the cobol command to invoke the COBOL2000 compiler
and pass it control options.

Command-line syntax

cobolËoptionË ... input-fileË ...

Input rules

1. Options and input files may be specified in any order.

2. Options without arguments (e.g. -c, -v, -g) may be grouped together (e.g. -cvg).

3. An option (such as -C) and its arguments must not be grouped in this way. There must
always be a blank (Ë) between the option and the argument
(e.g. -C EXPAND-COPY=YES).

4. The following options may appear more than once in the command line:

-C, -k, -L, -P, -l

All other options are only allowed once. If one of these options is specified more than
once, the last instance in the command line will apply.

5. Options that are unknown to the compiler, i.e. which begin with an unknown character
after the hyphen (“-”), are passed through to the linkage editor cobld. If a blank appears
between the unknown option and an argument, the option is interpreted as one without
an argument and passed accordingly.

By default, i.e. if the -c option is not used to terminate the compiler run after compilation
and if the program compiled without serious errors, a linkage run with the linkage editor
cobld automatically follows compilation.

The options for controlling the compilation and linkage run are described below.

Controlling the compiler COBOL2000 and POSIX

308

14.3.1 General options

–c

This option terminates the compiler run once an LLM has been generated and stored in an
object file named basename.o for each source file compiled. basename is the name of the
source file without its directory components and without the .cob or .cbl extension.
The object file is written to the current directory.

If a compilation unit is compiled without this option, a linkage run is started once compilation
is complete.

–k filename

This option allows you to specify a COBOL source file which does not have the extension
.cbl or .cob.

If the source file name specified with -k does however end with the suffix .cbl or .cob,
this suffix is overwritten with the suffix .o or .lst when the basename for the object and
listing files is formed.

–v

This option causes the following information to be displayed on the screen:

– Copyright and version strings of the driver for the COBOL2000 compiler and the cobol
command

– Messages of the COBOL2000 compiler relating to accepted control statements
– All the information and error messages of the compilation run
– CPU time consumed
– the full command line for the call to the linkage editor

This option affects only the output of the COBOL2000 compiler.

–W err-level

This option is mapped internally to COMOPT MINIMAL-SEVERITY = err-level. The
COMOPT MINIMAL-SEVERITY should not therefore be passed with -C.
As a result of this option, the diagnostic listing excludes any messages with an error level
lower than the specified value. The possible values for err-level are:

I
0
1
2
3

information (default)
warning
error
unrecoverable error
system error

COBOL2000 and POSIX Controlling the compiler

 309

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

14.3.2 Option for compiler statements

–C comopt

comopt can be replaced by all the COMOPT statements listed below, either in full or
abbreviated form. The functions of the various COMOPTs are described in chapter
“Controlling the compiler with COMOPT statements” on page 87.

Example 14-3

-C SET-FUNCTION-ERROR-DEFAULT=YES or -C S-F-E-D=YES

Overview: COMOPTs that can be passed with the –C option

COMOPT Possible abbreviation

ACCEPT-LOW-TO-UP={YES/NO} ACC-L-T-U

ACTIVATE-WARNING-MECHANISM={YES/NO} ACT-W-MECH

ACTIVATE-XPG4-RETURNCODE={YES/NO}

ALIGN-LLM-PAGE={YES/NO} A-L-P

CHECK-CALLING-HIERARCHY={YES/NO} CHECK-C-H

CHECK-DATE={YES/NO} CHECK-D

CHECK-FUNCTION-ARGUMENTS={YES/NO} CHECK-FUNC

CHECK-PARAMETER-COUNT={YES/NO} CHECK-PAR-C

CHECK-REFERENCE-MODIFICATION={YES/NO} CHECK-REF

CHECK-SCOPE-TERMINATORS={YES/NO} CHECK-S-T

CHECK-SOURCE-SEQUENCE={YES/NO} CHECK-S-SEQ

CHECK-TABLE-ACCESS={YES/NO} CHECK-TAB

CONTINUE-AFTER-MESSAGE={YES/NO} CON-A-MESS

DEFAULT-CALL-CONVENTION=
{COBOL/COMPATIBLE}

DEF-C-C

ENABLE-COBOL85-KEYWORDS-ONLY={YES/NO}

EXPAND-COPY={YES/NO} EXP-COPY

FLAG-ABOVE-INTERMEDIATE={YES/NO}

FLAG-ABOVE-MINIMUM={YES/NO}

FLAG-ALL-SEGMENTATION={YES/NO}

FLAG-INTRINSIC-FUNCTIONS={YES/NO}

FLAG-NONSTANDARD={YES/NO}

FLAG-OBSOLETE={YES/NO}

Controlling the compiler COBOL2000 and POSIX

310

FLAG-REPORT-WRITER={YES/NO}

FLAG-SEGMENTATION-ABOVE1={YES/NO}

GENERATE-INITIAL-STATE={YES/NO} GEN-INIT-STA

GENERATE-LINE-NUMBER={YES/NO} GEN-L-NUM

GENERATE-SHARED-CODE={YES/NO} GEN-SHARE

IGNORE-COPY-SUPPRESS={YES/NO} IGN-C-SUP

IGNORE-OPTION-DIRECTIVES={YES/NO} IGN-O-DIR

INHIBIT-BAD-SIGN-PROPAGATION={YES/NO}

LINE-LENGTH=132 / 119..172 LINE-L

LINES-PER-PAGE=64 / 20..128 LINES

MARK-NEW-KEYWORDS={YES/NO} M-N-K

MAXIMUM-ERROR-NUMBER=1..100 MAX-ERR

MERGE-DIAGNOSTICS={YES/NO} M-DIAG

MERGE-REFERENCES={YES/NO} M-REF

PERMIT-STANDARD-DEVIATION={YES/NO} P-S-D

RESET-PERFORM-EXITS={YES/NO} RES-PERF

ROUND-FLOAT-RESULTS-DECIMAL={YES/NO} ROUND-FLOAT

SEPARATE-TESTPOINTS={YES/NO} SEP-TESTP

SET-FUNCTION-ERROR-DEFAULT={YES/NO} S-F-E-D

SHORTEN-OBJECT={YES/NO} SHORT-OBJ

SHORTEN-XREF={YES/NO} SHORT-XREF

SORT-EBCDIC-DIN={YES/NO} SORT-E-D

SORT-MAP={YES/NO}

SUPPRESS-LISTINGS={YES/NO} SUP-LIST

SUPPRESS-MODULE={YES/NO} SUP-MOD

TERMINATE-AFTER-SEMANTIC={YES/NO} TERM-A-SEM

TERMINATE-AFTER-SYNTAX={YES/NO} TERM-A-SYN

TEST-WITH-COLUMN1={YES/NO} TEST-W-C

UPDATE-REPOSITORY={YES/NO} UPD-R

USE-APOSTROPHE={YES/NO} USE-AP

COMOPT Possible abbreviation

COBOL2000 and POSIX Controlling the compiler

 311

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

14.3.3 Option for compiler listing output

–P “(listing, ...)”

This option controls which listings are generated by the compiler.
This option is mapped internally to COMOPT SYSLIST=(listing,...). The COMOPT
SYSLIST should not therefore be passed with -C.
The listing argument takes the form of a list of any of the following values (as with COMOPT
SYSLIST in BS2000):

OPTIONS
NOOPTIONS
SOURCE
NOSOURCE
MAP
NOMAP
OBJECT
NOOBJECT
DIAG
NODIAG
XREF
NOXREF
ALL
NO

By default (NO), no compiler listings are generated.

The compiler writes listings requested with the -P option to a listing file named basename.lst,
where basename is the name of the source file without its directory components and without
the .cob or .cbl extension. The listing file is stored in the current directory.

Example 14-4

-P "(ALL,NOXREF)"

Controlling the compiler COBOL2000 and POSIX

312

14.3.4 Options for the linkage run

The following linkage editor options have no effect if the -c option is used to terminate the
compiler run once compilation is complete. The cobol command issues a warning for any
such unused option.
General information on linking and the linking order is provided in section “Linking” on
page 301ff.

–L directory

You use this option to specify path names of directories that the linkage editor is to search
for libraries named libname.a. These libraries must be specified with the -l name option.
By default, only /usr/lib and /usr/ccs/lib are searched for libraries.
The order of the -L options is significant. The directories specified with -L are always
searched with higher priority, i.e. before the default directories.
The -L options must be specified before the -l options to which they apply.

–M name

name must be the PROGRAM-ID name of the COBOL main program in uppercase letters.
This option must always be specified if the main program is a COBOL program.

–o output-file

The executable file generated by the linkage editor is written to output-file.
If output-file does not include any directory components, the file will be stored in the current
directory; otherwise it will be stored in the directory specified as part of output-file.
By default, the executable is stored in the current directory under the name a.out. The
following must be noted here: both write and read access rights are required for the output
file.

–l name

This option causes the linkage editor to search the library named libname.a when resolving
external references using the AUTOLINK mechanism.
If no other directory is specified with the linkage editor’s -L option, the linkage editor looks
for the specified library in /usr/lib and /usr/ccs/lib.
The sort library libsort.a (for example) is not in the default directories, but is installed as a
PLAM library in BS2000. This also applies to the runtime system library libc.a.
The linkage editor searches the libraries in the order in which they appear in the command
line.

COBOL2000 and POSIX Controlling the compiler

 313

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

–l BLSLIB

This option causes the linkage editor to scan PLAM libraries that have been assigned using
the shell environment variables named BLSLIBnn (00 Ï nn Î 99). The environment variables
must have been assigned the library names and exported with the POSIX export
command before the compiler is invoked. The libraries are scanned in ascending order
of nn.
All the libraries assigned with the BLSLIBnn environment variables are internally passed to
the BINDER in list form in a single RESOLVE statement.

Example 14-5

export BLSLIB00=‘$RZ99.SYSLNK.COB.999‘
export BLSLIB01=‘$MYTEST.LIB‘
cobol mytest.o -l BLSLIB -M MYTEST

14.3.5 Debugger option

–g

The compiler generates additional information (LSD) for the AID debugger. By default no
debugging information is generated.
This option is mapped internally to COMOPT SYMTEST=ALL.
The COMOPT SYMTEST should not therefore be passed with -C.

Controlling the compiler COBOL2000 and POSIX

314

14.3.6 Input files

The compiler deduces the contents of a file from its file name extension and performs the
appropriate compilation actions. Hence the file name must have the extension which is
appropriate to the file’s contents in accordance with POSIX conventions. The choices are:

Files with a .cob or .cbl extension are the input sources for the COBOL2000 compiler. The
COBOL2000 compiler also recognizes COBOL source files with names which do not have
one of these standard extensions, but in this case the names of the source files must be
specified with the -k filename option (see section “General options” on page 308), and not
as operands.

Files with a .o or .a extension are the input sources for the linkage editor.

File names with other extensions are passed through to the linkage editor cobld.

14.3.7 Output files

The following files are generated with default names and stored in the current directory. You
can select a different file name and a different directory for the linkage editor output file
(a.out) by using the –o option (see section “Options for the linkage run” on page 312).
basename is the name of the source file without its default extension and without its directory
components.

When compilation groups are compiled, the names of the LLM object files for the second
through to the last compilation unit are formed from the ID name and the .o extension (see
also section “Compiling” on page 300).

Extension Meaning

.cob/.cbl COBOL source file

.o Object file generated in an earlier compilation

.a Object file archive generated by the ar utility

basename.lst file containing all the compiler listings

basename.o LLM object file generated by the compiler, suitable for further processing
by the linkage editor

a.out executable file generated by the linkage editor

COBOL2000 and POSIX Introductory examples

 315

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

14.4 Introductory examples

Compiling and linking with the cobol command

cobol -M BSPPROG hugo.cob

compiles hugo.cob and generates an executable named a.out.
The program with the PROGRAM-ID name BSPPROG becomes the main program

cobol -o hugo -M BSPPROG hugo.cob

compiles hugo.cob and generates an executable named hugo.
The program with the PROGRAM-ID name BSPPROG becomes the main program

cobol -c -P "(SOURCE,DIAG)" hugo.cob upro.cob

compiles hugo.cob and upro.cob and generates the object files hugo.o and upro.o and
a source and diagnostic listing for each compilation unit. The listings are stored in the listing
files hugo.lst and upro.lst respectively.

cobol -M BSPPROG -o hugo hugo.o upro.o

links the main program hugo.o and the module upro.o into an executable named hugo.
The program with the PROGRAM-ID name BSPPROG becomes the main program

Comparison with COBOL2000 in BS2000 COBOL2000 and POSIX

316

14.5 Comparison with COBOL2000 in BS2000

Due to the system-specific differences between POSIX and BS2000, when developing
programs to run under POSIX you need to allow for a number of special features related to
the scope of the language and its runtime behavior, as discussed in the following subsec-
tions.

14.5.1 Restrictions on the functionality of the language

The following language tools of the COBOL2000 compiler are not supported when the
program is run in the POSIX subsystem.

Dynamic subprogram call

Subprogram calls with the COBOL statement CALL identifier are illegal in POSIX and could
abort the program run.

Program address identifier

Like “CALL identifier ...”, “ADDRESS OF PROGRAM identifier” requires dynamic loading at
run time and is therefore not possible in POSIX.

ENTRY statement

The ENTRY statement is not allowed when the program is run under POSIX because it can
only be used to define entry points to object modules, and under POSIX the compiler
always generates link-and-load modules (LLMs).

Segmentation

As the compiler under POSIX always generates link-and-load modules (LLMs), COBOL
program segmentation is not possible in POSIX.

File processing

– Label handling when processing magnetic tapes is not possible in POSIX.

– Checkpointing for restart of magnetic tapes is not possible in POSIX.

– Shared updating of files is not possible in POSIX.

– The usual LOCKING mechanism of UNIX is implemented in POSIX, so multiple
instances of the same file could, for example, be opened concurrently for output.

COBOL2000 and POSIX Comparison with COBOL2000 in BS2000

 317

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

– The STANDARD-2 character set (International Reference Version of the ISO 7-Bit
Code) specified in the ALPHABET clause is not supported in the CODE-SET clause.
Any OPEN of this type will be currently rejected with FILE STATUS 30.

– The messages COB9151 and COB9175 for errors on accessing POSIX files do not
contain the DMS codes, but the corresponding SIS message numbers. This also
applies to the “extended” file status returned to the COBOL object. Even the returned
file status could deviate from the usually expected value (see section “I-O status” on
page 325).

– READ PREVIOUS is not supported and is rejected with file status 96.

XML documents

The new language elements for reading XML documents need to be locaded dynamically
at the program’s execution time and are therefore not possible in POSIX.

Comparison with COBOL2000 in BS2000 COBOL2000 and POSIX

318

14.5.2 Extensions to the functionality of the language

Access to the command line

Under POSIX it is possible to access the command line from within a program by means of
ACCEPT/DISPLAY statements in conjunction with the special names ARGUMENT-
NUMBER and ARGUMENT-VALUE (see “COBOL2000 Reference Manual” [1]).

Example 14-6

IDENTIFICATION DIVISION.
...
SPECIAL-NAMES.

ARGUMENT-NUMBER IS NO-OF-CMD-ARGUMENTS
ARGUMENT-VALUE IS CMD-ARGUMENT

...
WORKING-STORAGE SECTION.
01 I PIC 99 VALUE 0.
01 J PIC 99 VALUE 0.
01 A PIC X(5) VALUE ALL "x".
...
PROCEDURE DIVISION.
...
ACCEPT I FROM NO-OF-CMD-ARGUMENTS
DISPLAY "no. of command arguments=" I
PERFORM VARYING J FROM 1 BY 1 UNTIL J > I
ACCEPT A FROM CMD-ARGUMENT
DISPLAY "cmd argument-" J " <" A ">"

END-PERFORM
...
DISPLAY 2 UPON NO-OF-CMD-ARGUMENTS
ACCEPT A FROM CMD-ARGUMENT
DISPLAY "argument-2" " :" A ":"

...

Calling the program

/a.out AAAA BBB CC D

Runtime log

no. of command arguments=4
cmd argument-1 <AAAA >
cmd argument-2 <BBB >
cmd argument-3 <CC >
cmd argument-4 <D >
argument-2 :BBB :

COBOL2000 and POSIX Comparison with COBOL2000 in BS2000

 319

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

14.5.3 Differences in the program/operating system interfaces

COBOL programs running in POSIX behave differently in some respects to when running
in BS2000:

Low-volume data I/O

In POSIX, the COBOL2000 implementor names in ACCEPT/DISPLAY statements for low-
volume data I/O are assigned the following standard input and output streams:

Sorting and merging

The sort file is automatically stored in the BS2000 file system, and the POSIX user has no
access to it.

Job variable

The use of BS2000 job variables is not possible for programs run under POSIX.

Job switches and user switches

The use of BS2000 job switches and user switches is not meaningful for programs run
under POSIX.

COBOL2000 BS2000 POSIX

TERMINAL SYSDTA stdin

SYSIPT SYSIPT undefined

TERMINAL SYSOUT stdout

PRINTER SYSLST stdout

PRINTER01..99 SYSLST01..99 undefined

SYSOPT SYSOPT undefined

CONSOLE CONSOLE undefined

Comparison with COBOL2000 in BS2000 COBOL2000 and POSIX

320

File processing

– The link between the external file name in the ASSIGN clause and the file name in the
POSIX file system is established using an environment variable whose name is
identical to the external file name in the ASSIGN clause. The name of the environment
variable must always be in uppercase letters. Detailed information is provided in section
“Program execution in the POSIX shell” on page 324ff.

– Program execution is not interrupted after an unsuccessful OPEN INPUT on a file for
which OPTIONAL has not been specified.

– Some I/O status values are different in POSIX:

– In the extended I/O status that can be requested with filename-2 in the FILE STATUS
clause, the (POSIX) SIS code is output instead of the (BS2000) DMS code.

– The file attributes are finally defined when the file is opened for the first time and cannot
be modified later.

– Relative files which use the BS2000 access method UPAM cannot be processed.

– COB90xx messages are written in POSIX to stderr.

Repository usage

It is not possible to assign one or more repositories for input and one repository for output.
Only the default repository SYS.PROG.LIB in BS2000 is available for this purpose (no
assignment is required).

BS2000 POSIX

37 30

93, 94, 95 90

COBOL2000 and POSIX Processing POSIX files

 321

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

14.6 Processing POSIX files

14.6.1 Program execution in the BS2000 environment

A COBOL program developed and executed in BS2000 can, in certain circumstances,
access files from the POSIX file system as well as cataloged (BS2000) files.

Requirements

– When compiling, the compiler option ENABLE-UFS-ACCESS=YES or the SDF option
RUNTIME-OPTIONS=PAR(ENABLE-UFS-ACCESS=YES) must be specified.

– When linking, the POSIX link option module contained in the CRTE library
SYSLNK.CRTE.POSIX must be linked with higher priority ahead of the modules in
the library SYSLNK.CRTE or SYSLNK.CRTE.PARTIAL-BIND.
When linking using TSOSLNK or BINDER, this library should be linked using an
INCLUDE or INCLUDE-MODULES statement (without specifying the module name).
When linking dynamically using the DBL, the library must be assigned a BLSLIBnn with
a lower nn than the CRTE libraries to be linked with lower priority.
When developing programs in the POSIX shell using the cobol command, the CRTE
library is automatically linked.

Restrictions

The processing of a POSIX file is subject to the following restrictions:

– no label processing

– no checkpointing for restart

– no shared updating

– no support of pseudo files (see ADD-FILE-LINK in BS2000/OSD “Commands”
manual [3].

– The file attributes are finally defined when the file is opened for the first time and cannot
be modified later.

– Relative files which use the BS2000 access method UPAM cannot be processed.

– The STANDARD-2 character set (International Reference Version of the ISO 7-Bit
Code) specified in the ALPHABET clause is not supported in the CODE-SET clause.
Any OPEN of this type will be currently rejected with FILE STATUS 30.

Processing POSIX files COBOL2000 and POSIX

322

– The messages COB9151 and COB9175 for errors on accessing POSIX files do not
contain the DMS codes, but the corresponding SIS message numbers. This also
applies to the “extended” file status returned to the COBOL object. Even the returned
file status could deviate from the usually expected value (see section “I-O status” on
page 325).

– The use of dummy files is not supported.

– Files larger than 32 Gbytes can be processed without the need to activate this in the
/ADD-FILE-LINK command.

Assigning a POSIX file

A POSIX file is assigned using an S variable named SYSIOL-external-name, where SYSIOL
is a fixed component of the name and external-name must contain the link name from the
program’s ASSIGN clause.

The S variable is set up with the command DECLARE-VARIABLE, which has the following
format:

/[SET-VAR] SYSIOL-external-name=)

filename identifies the requested file if it resides in the home directory of the POSIX file
system.

relative-pathname is the file name with the directory components as of the home
directory.

absolute-pathname is the file name with all directory components including the root
directory (beginning with /).

’*POSIX(filename)‘
’*POSIX(relative-pathname)’
’*POSIX(absolute-pathname)’

COBOL2000 and POSIX Processing POSIX files

 323

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

Example 14-7

mixed file processing

COBOL compilation unit:

...
FILE-CONTROL.
 SELECT POSFILE ASSIGN TO "CUST1"
 SELECT BS2FILE ASSIGN TO "CUST2"
...

Linkage with the POSIX file before calling the program:

/SET-VAR SYSIOL-CUST1=‘*POSIX(/USERIDXY/customers/cust1)’

Linkage with the BS2000 file before calling the program:

/ADD-FILE-LINK CUST2,CUST.FILE

Processing POSIX files COBOL2000 and POSIX

324

14.6.2 Program execution in the POSIX shell

A COBOL program developed and executed in the POSIX shell or in BS2000 can process
POSIX files without any preparatory steps when compiling and linking (cf. program
execution in BS2000).
It is not possible to process BS2000 files from the POSIX shell.

When processing POSIX files, the same functionality restrictions apply as for file
processing in BS2000 (see section “Program execution in the BS2000 environment” on
page 321).

Assigning a POSIX file

A POSIX file is assigned using a shell environment variable named external-name.
external-name is a file name from the program’s ASSIGN clause.
The environment variable must be initialized with the name of the POSIX file and exported
using the POSIX export command.

The environment variable is initialized as follows:

external-name=

filename identifies the requested POSIX file if it is in the current directory.

relative-pathname is the file name with the directory components as of the current
directory.

absolute-pathname is the file name with all directory components including the root
directory (beginning with /).

Example 14-8

COBOL compilation unit:
...
FILE-CONTROL.
SELECT AFILE ASSIGN TO "CUST1"
...

Linkage with the POSIX file cust1 before calling the program:

export CUST1=/USERIDXY/customers/cust1

filename
relative-pathname
absolute-pathname

COBOL2000 and POSIX Processing POSIX files

 325

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

14.6.3 I-O status

The status of each access operation performed on a file is stored by the runtime system in
specific data items which can be assigned to every file in the program. These items, which
are specified by using the FILE STATUS clause, provide information on

– whether the I/O operation was successful, and

– the type of any errors that may have occurred.

This data can be evaluated (by USE procedures in the DECLARATIVES, for example) and
used by the program to analyze I-O errors. As an extension to Standard COBOL,
COBOL2000 provides the option of including the keys of the POSIX error messages in this
analysis, thus allowing a finer differentiation between different causes of errors. The FILE
STATUS clause is specified in the FILE-CONTROL paragraph of the Environment Division.
Its format is described in section “I-O status” on page 210ff.

The functions of the two data items definable in the FILE STATUS clause are as follows:

data-name-1

contains a two-character numeric status code following each access operation on the
associated file.

data-name-2

is broken down into data-name-2-1 and data-name-2-2 and is used for storing the (POSIX)
SIS codes for the relevant I-O status. Following each access operation on the associated
file, it contains a value that directly depends on the content of data-name-1. The value can
be derived from the table below:

For program execution in BS2000, the meaning text of each SIS code can be output using
the command HELP-MSG-INFORMATION SIS<data-name-2-2>.

The base and extended I-O status values are described in the two tables that follow.

Content of
data-name-1 ≠ 0?

SIS code
≠ 0?

Value of
data-name-2-1

Value of
data-name-2-2

no not relevant undefined undefined

yes no 0 undefined

yes yes 96 SIS code of the associated
error message

Processing POSIX files COBOL2000 and POSIX

326

Base I-O status

Value Org*) Meaning

0x Execution successful

00
02
04
05
07

SRI
 I

SRI
SRI
S

No further information
Successful READ, allowable duplicate key
Successful READ, but record length error
Successful OPEN on nonexistent OPTIONAL file
- Successful OPEN with NO REWIND
- Successful CLOSE with NO REWIND, REEL/UNIT or FOR REMOVAL

1x Execution unsuccessful: AT END condition

10
14

SRI
 R

Unsuccessful READ - end of file reached
Unsuccessful READ - key item length error

2x Execution unsuccessful, key error

21
22
23
24

 I
RI
RI
RI

Incorrect key sequence on sequential access
WRITE for existing record
READ for nonexistent record
Key item length error

3x Execution unsuccessful, unrecoverable error

30
34

35
38
39

SRI
S

SRI
SRI
SRI

No further information (check SIS code)
Insufficient secondary allocation in CREATE-FILE or MODIFY-FILE-
ATTRIBUTES command
OPEN INPUT/I-O on nonexistent file
OPEN for file closed using CLOSE WITH LOCK
OPEN error due to incorrect file attributes

4x Execution unsuccessful, logical error

41
42
43

44
46

47

48
49

SRI
SRI
S
RI

SRI
S
RI
S

 RI
SRI
S
RI

OPEN for a file which is already open
CLOSE for a file which is not open
REWRITE not preceded by successful READ
DELETE/REWRITE not preceded by successful READ
WRITE/REWRITE with invalid record length
Repeated READ after unsuccessful READ or after detection of AT END
Sequential READ after unsuccessful READ/START or after detection of AT END
READ for file not opened for reading
READ/START for file not opened for reading
WRITE for file not opened for writing
REWRITE for file not opened in I-O mode
DELETE/REWRITE for file not opened in I-O mode

9x Other conditions with unsuccessful execution

90
91
96

SRI
SRI
R1

System error, no further information
OPEN error or no free device
READ PREVIOUS is not supported

*) S = sequential organization, R = relative organization, I = indexed-sequential organization

COBOL2000 and POSIX Processing POSIX files

 327

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

Extended I-O status - (SIS code)

I/O status Meaning

0601 End-of-file detected

0602 Specified record does not exist

0603 Specified record exists

0604 Start-of-file detected

0605 Specified link does not exist

0606 File name longer than P_MAXFILENAME

0607 Path string longer than P_MAXPATHSTRG

0608 Path name longer than P_MAXPATHNAME

0609 Link name longer than P_MAXLINKNAME

0610 Out of memory

0611 Number of path elements exceeds P_MAXHIERARCHY

0612 Function not supported

0613 File name missing or syntactically incorrect

0614 Number of secondary keys exceeds P_MAXKEYS

0615 Too many files open at once

0616 Specified file does not exist

0617 Write access not allowed

0618 No file name specified

0619 File is locked

0620 Invalid combination of file attributes

0621 Invalid file handling specified

0622 Current record shorter than MINSIZE

0623 Current record longer than MAXSIZE

0625 No sequential READ before sequential REWRITE

0626 Invalid record format

0627 MINSIZE larger than MAXSIZE

0628 Invalid file organization

0629 File exists though declared as nonexistent

0630 Specified access function not allowed

0631 Specified key

0632 Key duplication not allowed

0633 Current record is locked

Processing POSIX files COBOL2000 and POSIX

328

0634 Current key out of sequence

0635 Specified path undefined

0636 System-specific error occurred

0637 End-of-line reached

0638 Record truncated

0640 No space available to extend file

0643 Invalid file open mode

0644 Length of link exceeds P_MAXLINKSTRG

0645 Invalid version string specified

0646 Specified file lifespan invalid

0647 Syntax error in file, link or path string

0649 File close mode invalid

0650 Access denied

0651 Parameter error

0652 Invalid pointer to I/O area

0653 Invalid record length detected

0654 Storage limits reached on device

0655 Specified feed control invalid

0656 Specified code invalid

0657 Invalid combination of open mode and file lifespan

0658 I/O aborted

0659 Length of key identifier exceeds P_MAXKEYWORD

0660 Key identifier ambiguous

0661 Number of exits exceeds P_MAXEXITS

0662 New line detected

0663 New page detected

0664 Not all paths closed

0665 Next indexed record has same secondary key

0666 Secondary key of written record already exists

0667 Current record number exceeds MAX_REC_NR

0668 Path name already exists

0669 Link name already exists

0670 Specified value for positioning condition invalid

I/O status Meaning

COBOL2000 and POSIX Processing POSIX files

 329

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

4

0671 Unknown control character detected

0672 A unique file name could not be generated

0673 Last record incomplete; function not executed

0674 Specified value for positioning invalid

0675 Unidentifiable record format

0676 Unidentifiable MAXSIZE

0677 Internal PROSOS-D error

0678 Specified file is a file container

0679 Specified file cannot be reached on given path

0680 Version not incrementable

0681 Defective reopen after implicit close

0682 Defective PROSOS-D initialization

0683 Number of link indirections exceeds P_MAXLINKNESTING

I/O status Meaning

Processing POSIX files COBOL2000 and POSIX

330

 331

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

5

15 Useful software for COBOL users

15.1 Advanced Interactive Debugger (AID)

Product characteristics

AID is an efficient and powerful debugging system which allows users to diagnose errors,
test programs, and provisionally correct programming errors under the BS2000 operating
system.

AID supports symbolic debugging of programs written in COBOL, C, C++, Assembler,
FORTRAN, and PL/1 as well as non-symbolic debugging at machine-code level of
programs written in any BS2000 programming language.

Symbolic debugging of a COBOL program means that symbolic names from a COBOL
compilation unit can be used for addressing. Non-symbolic debugging at machine-code
level is generally required whenever symbolic testing proves insufficient or impossible as a
result of lacking diagnostic information.

Some of the basic functions that can be called using special AID commands are listed
below:

● execution monitoring
– specific types of source statements in the compilation unit
– selected events in the program run
– declared program addresses

● access to data items and modification of item contents

● management of AID output files and libraries

● detection of global declarations

● control of
– output data sets
– AID output volumes

There is also an additional HELP function

– for all AID commands and operands

– for the meaning of AID messages and possible actions to be taken.

Advanced Interactive Debugger (AID) Useful software for COBOL users

332

The user can control program execution by instructing AID to interrupt a program run and
execute certain subcommands at defined addresses, during the execution of selected types
of statements, or when specific events take place. A subcommand is an individual
command or a sequence of AID and BS2000 commands. It is defined as an operand of an
AID command. Starting with version V2.0, the execution of subcommands can be made
dependent on conditions. This enables dynamic monitoring of program states and the
values of variables.

AID also provides facilities for the modification of data items and the output of elementary
data items, group items, or entire Data Divisions of COBOL programs.

An AID command can be used to display the level of the call hierarchy at which the program
was interrupted and the modules which are contained in the CALL or INVOKE nesting.

AID can be used to process a running program as well as to analyze a memory dump in a
disk file. It is possible to switch between these two options within a single debugging
session, e.g. in order to compare data in an executing program with the data obtained from
a memory dump.

Description of functions

AID is a diagnostic and debugging tool for testing application programs at source language
level (high level language debugger).

The debugging and diagnostic functions available for the testing of COBOL compilation
units compiled with COBOL2000 are:

– Output and setting of user-defined data:

Data defined in the user program can be addressed interactively, subject to the COBOL
rules pertaining to qualification, uniqueness, indexing, and scope.
The data itself is converted and edited in accordance with the attributes specified in the
user program.

– Symbolic dump:

All or selected data from dynamically nested programs can be edited and output
according to the current program nesting.

– Setting of test points:

Test points at which specific actions are to be executed can be set or reset via source
references or markers in the program (paragraphs, sections, etc.). Markers are refer-
enced according to the qualification rules applicable in COBOL.

Useful software for COBOL users Advanced Interactive Debugger (AID)

 333

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

5

– Tracing of the program at statement level:

Dynamic tracing of the program is controllable via statement classification (e.g.
procedure trace, control flow trace, assignment trace...). AID outputs the source
reference of executing statements that correspond to the statement classification.

Documentation

“AID - Core Manual” [20]

“AID - Debugging of COBOL Programs” [8]

“AID - Debugging on Machine Code Level” [21].

Library Maintenance System (LMS) Useful software for COBOL users

334

15.2 Library Maintenance System (LMS)

Product characteristics

The library maintenance system LMS can be used to create and maintain program libraries
and to process the elements contained in them.

Program libraries are BS2000 PAM files that are processed with the program library access
method PLAM (and hence also referred to as PLAM libraries).

The main advantages of LMS are as follows:

● All element types in a library can be processed by means of uniform statements.

● Elements may have identical names and be differentiated by type or version.

● Versions are incremented automatically.

● The library can be accessed simultaneously by many users and also be written to
concurrently.

● Different access rights can be assigned for each element.

● Access to elements can be monitored.

● LMS provides uniform data management and common access functions for most of the
data elements involved in the development of software.

● Utility routines and compilers can access the data repository and also process
individual elements directly.

LMS thus provides vital support in the creation, maintenance, and documentation of
programs.

Structure of libraries

A program library is a file with a substructure. It contains elements as well as a directory of
the elements stored in it.

An element is a logically related data set, e.g. a file, a procedure, an object module, or a
compilation unit. Each element in the library can be addressed independently.

Each library has an entry in the system catalog. The user can define the library name and
other file attributes such as retention periods and shareability.

The collective storage of several files in a library reduces the load on the system catalog,
since only the library is entered there and not each element. It also saves storage space,
since library elements are stored in compressed form.

Useful software for COBOL users Library Maintenance System (LMS)

 335

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

5

Support for multiple versions

If the delta technique is used for multiple versions of an element, only the differences
(deltas) with respect to the previous version are stored. This also helps to save storage
space.

When such delta versions are read, LMS inserts the required deltas at the appropriate
positions and thus provides the user with a complete element.

LMS supports symbolic version identifiers and automatically increases the version ID in
accordance with the selected version format.

Embedding in the program environment

Utility routines of the programming environment such as EDT, compilers, etc., can directly
access program libraries.

Documentation

“LMS” user guide [11]

Job variables Useful software for COBOL users

336

15.3 Job variables

Product characteristics

Job variables are data objects that are used for the exchange of information between
individual users, and between the operating system and users

Job variables can be created and modified by the user. The user can also instruct the
operating system to set specific job variables to predefined values when certain events
occur.

Job variables represent a flexible tool for job control under user supervision. They offer the
option of defining the interrelationships in a complex production run in simple terms and
form the basis for event-driven job processing.

Description of functions

Job variables are objects that are managed by the operating system. They can be
addressed via names and can each hold up to 256 bytes of data. They are used for the
exchange of information between individual users, as well as between the operating system
and users. Job variables can be accessed via the command and macro interfaces. When
the SDF component of BS2000-BC is used, job variables can serve as global parameters
on the command level.

In conditional statements, job variables can be linked via Boolean operations. In this way,
actions can be made dependent on the truth value of the condition. In addition, user job
variables and monitoring job variables (see below) offer the option of synchronous or
asynchronous event control at command and program level.

Different job variables are available for different functions:

● User job variables

In their most general form, job variables are available as user job variables. The name,
life, and data to be stored in such a variable is determined exclusively by the user.
These job variables can be supplied with protection attributes such as passwords, write-
protection, and retention period. Access to a user job variable can be restricted to a
particular user ID or be universally granted.

User job variables are particularly suitable for the exchange of information. However,
they can also be used for job control.

Useful software for COBOL users Job variables

 337

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

5

● Monitoring job variables

The monitoring job variable is a special form of the user job variable. It is assigned to a
job or a program. The name, lifespan, and protection attributes are defined by the user.
However, in contrast to the user job variable, these variables are supplied with prede-
termined values by the operating system and reflect the status of the assigned job or
program.

Monitoring job variables are particularly suitable for job control, such as is required, for
example, for managing interdependencies in production runs.

Documentation

“Job Variables” manual [7]

Database interface ESQL-COBOL Useful software for COBOL users

338

15.4 Database interface ESQL-COBOL

Product characteristics

ESQL-COBOL (BS2000/OSD) V3.0 implements the “embedded SQL” application program
interface to the SESAM/SQL Server V5.0 database management system for COBOL appli-
cations in BS2000/OSD.

ESQL-COBOL (BS2000/OSD) V3.0 allows unrestricted use of the extended SQL function-
ality of SESAM/SQL Server V5.0

ESQL-COBOL (BS2000/OSD) V3.0 is required purely as an SQL precompiler for program
development. The SQL runtime system is a component of SESAM/SQL Server.

The SQL runtime system is always required in order to use ESQL-COBOL (BS2000/OSD)
V3.0. SESAM/SQL Server V5.0 is consequently required to precompile embedded SQL-
COBOL programs even if precompilation takes place with no check against the database
schemata.

Scope of SQL functions

– searches for data records (SELECT statement) including higher functions such as join,
arithmetic, aggregate functions (e.g. averaging)

– adding, modifying, deleting records.

SESAM/SQL enables data to be manipulated and functions for administering databases to
be executed (see the SESAM/SQL-Server (BS2000/OSD) manual [17].

Technical notes

The SQL statements of an ESQL-COBOL program are embedded in the COBOL code and
are replaced with COBOL source code by a precompiler. The output from the precompiler
is regular COBOL source code that has to be compiled with the COBOL2000 compiler. In
addition, the precompiler extracts the SQL statements and transforms them into “SQL
objects”.

The compiled COBOL program is linked with the SQL objects, the COBOL and DBMS
runtime modules, and with a runtime system for the SQL objects; the result is an executable
program.

Documentation

SQL/ESQL manuals [16] - [18]

Useful software for COBOL users Universal Transaction Monitor openUTM

 339

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

5

15.5 Universal Transaction Monitor openUTM

openUTM simplifies the task of developing and running transaction applications.

A standardized programming interface (KDCS, DIN 66265) that is supported by most
programming languages is available for program creation.

Format-driven input/output is supported for terminals in conjunction with the FHS formatting
system.

openUTM guarantees that a transaction is executed either in its entirety, with all data
updates, or not at all. It also ensures consistency of user data in combination with
UDS/SQL, SESAM/SQL, LEASY and PRISMA.

openUTM offers restart functions in the event of application abortion, power
failure/disruption or screen malfunctions. openUTM supports both interactive (dialog) and
asynchronous processing, with the option of determining the start time of the programs.

Control facilities for distributing resources (tasks) are also offered.

Secure print processing is offered by virtue of built-in control functions for print outputs to
remote printers.

Inquiry-and-transaction processing means that a large number of terminals can work with
openUTM applications.

Accounting requirements are catered for by an accounting procedure specially tailored to
inquiry-and-transaction processing.

openUTM offers comprehensive data protection mechanisms for access to applications
and for selection of subfunctions of an application.

openUTM serves as a basis for a number of other software products.

Documentation

openUTM manuals [23] - [29]

Development environment with BS2000/OSD option Usable software for COBOL users

340

15.6 Net Express® development environment with the
BS2000/OSD option

Micro Focus, a long-standing partner, offers Net Express with the BS2000/OSD option. This
is a development environment that runs on Windows systems and allows you to develop
BS2000 COBOL applications.

With its BS200/OSD option, the Net Express development environment offers all the
functions required to develop BS2000 applications rapidly and efficiently. In addition to pure
batch and openUTM applications with access to the LEASY, SESAM/SQL and UDS/SQL
data storage systems, it is also possible to develop client/server applications and test them
on a PC.

Batch and interactive applications that use the openUTM transaction monitor can be
developed and tested on the Windows workstation using Net Express before being put into
productive operation on a BS2000 platform. Transferring development activities to the PC
in this way results in decisive improvements in terms of productivity and the quality of the
software.

Client/server applications that use a BS2000/OSD server can be developed and tested
under Net Express using the BS2000/OSD option. Net Express provides a uniform devel-
opment environment for both the client and server components of the application as well as
a runtime environment for productive deployment on the client and permits the client and
server to be tested on a single platform with the help of the BS2000/OSD option.

Integrated development environment

Net Express offers a highly efficient development environment, and together with its
BS2000/OSD option it represents a complete suite of tools and wizards for application
development. A wizard guides the user right from the outset when creating a project, thus
allowing BS2000-specific options to be generated automatically.

By using project management functions, it is possible to maintain even very large applica-
tions with ease. The various generation steps are defined once and can then be started with
a simple mouse click using the Rebuild function. Designed for COBOL programmers, the
editor also makes it easier to edit source code. The control functions for managing the
source files permit people to work together in teams without one programmer overwriting
the changes made by another.

Usable software for COBOL users Development environment with BS2000/OSD option

 341

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

5

Modern COBOL compiler

Net Express contains a modern compiler based on the proven strenths of COBOL and
offers the following key features for the development of BS2000 applications:

● compatibility with BS2000’s COBOL2000 compiler can be set by means of a directive.
All constructs that do not meet requirements are marked as incompatible.

● full support of the BS2000 EBCDIC code with the BS2000/OSD option

● support for object-oriented COBOL development and debugging

● functions for simulating the BS2000 system environment:

For development purposes on the PC the Net Express BS2000/OSD option simulates
specific functions of the BS2000 runtime environment. These include user and task
switches, whose settings can be stored in files so that they are available to the applica-
tions at runtime. A tool sets job variables in the Net Express development environment
and makes them available for the application.

openUTM simulation

The openUTM simulation of the BS2000/OSD options is based on the definitions for the
KDCDEF utility in BS2000. In this way, an openUTM application is described with all its
parameters such as transactions and subprograms. The KDCCECK tool allows KDCDEF
files designed or edited on the PC to be checked for syntax. The BS2000 offloading wizard
sets all the parameters required for the compilation and the linkage run of an openUTM
application and automatically ensures the application starts correctly in testing. The KDCS
interface is supported for communication between the application programs and openUTM.
Its parameters can be displayed and modified interactively at runtime of the application by
means of the TRACE function.

In this way, the application logic and the associated transaction limits, the links of the
various subprograms via openUTM and the control of mask output are visualized and rapid
error localization enabled. The FHS formatting system is simulated to support formatted
dialogs. IFG format libraries can be unloaded on the host and transferred to the PC.

There they can be edited using a special mask editor (SMSEDX) and then transferred to
the host. The mask library is accessed at runtime of the application on the PC. The corre-
sponding mask is formatted in accordance with the rules of the BS2000 formatting system,
and color settings can be configured.

The keyboard inputs and screen outputs of formatted openUTM dialogs can be logged with
the dialog test recorder. These recordings can be used for the automatic repetition of a
logged test run. A special viewer (DTRVIEW) allows the logged test results to be compared
and permits rapid error analysis if there are differences.

Development environment with BS2000/OSD option Usable software for COBOL users

342

Simulation of the openUTM client

For the purpose of developing client/server applications with an openUTM application as
the server, the Net Express BS2000/OSD option contains a simulation of the openUTM
client. The client can thus also be developed and tested with Net Express. During testing,
the client application can communicate with a server application running under the
openUTM simulation of the BS2000/OSD option. In this way, the interaction between the
two parts of the application can be tested on a single platform. Both parts of the application
can be animated simultaneously, and the server can be monitored with the openUTM
TRACE. For communication with a “real” openUTM application, the corresponding software
is required.

Simulation of the LEASY, SESAM/SQL and UDS/SQL data storage systems

The Net Express BS2000/OSD option permits simulation modules to be selected for the
BS2000 data storage systems LEASY, SESAM/SQL and UDS/SQL at installation. All DB
simulations contain different utilities that are added to the integrated development
environment of Net Express at installation. They enable structural information and test data
to be taken from the host’s databases. The DB simulation modules allow BS2000 aplica-
tions that use these database systems to be fully maintained and further developed or
implemented anew, regardless of whether they are batch or interactive applications. When
a project like this is created, the BS2000 offloading wizard generates the corresponding
database-specific settings for the compiler and the linkage editor.

The database simulation modules perform the database accesses on the PC and behave
at the interface to the COBOL program completely analogously to the original database on
the BS2000. This applies, in particular, to the returned parameters, such as the database
status, thus allowing error situations to be tested in the simulation as well. In openUTM
applications, the transactions of the databases are also coordinated with openUTM trans-
actions in the simulation. Consequently, this interaction can be tested with the
BS2000/OSD option as well.

Usable software for COBOL users Development environment with BS2000/OSD option

 343

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

15
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

5

TRACE function for database accesses

All database simulations are equipped with a convenient TRACE function with a graphical
user interface. At the interface between the COBOL program and the database, all the
parameters that are passed can be displayed and modified interactively. They can be
displayed both before and after the call, thus allowing the effects of each action to be
analyzed immediately. Help functions explain the possible causes of database or access
errors.

The TRACES allow you to switch between different forms of representation for the
database accesses. Whereas the current parameter contents of the CALL interface can be
displayed for individual accesses to the database, the current history of database accesses
can be followed in a table at any time. This type of representation is also possible for
UDS/SQL applications that use the COBOL DML.

In addition, the TRACE function for UDS/SQL, which displays all currency tables, provides
a detailed impression of the internal connections within the UDS/SQL database, which are
of decisive importance for programming and error analysis.

Development environment with BS2000/OSD option Usable software for COBOL users

344

 345

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

6

16 Messages of the COBOL2000 system
The COBOL2000 compiler and the COBOL2000 runtime system comprehensively log all
errors that occur during compilation and execution of a COBOL program. The messages
which are output when errors are encountered can be divided into two groups:

1. Messages which refer to errors in the COBOL compilation unit: These are output in a
diagnostic listing and/or an error file by the compiler at the end of compilation and have
the following structure:

where:

Message texts can be output in English or German; the language can be selected via
the SDF command MODIFY-MSG-ATTRIBUTES TASK-LANGUAGE=E/D.

A current list of all error messages of the COBOL2000 compiler can be requested with
COMOPT PRINT-DIAGNOSTIC-MESSAGES=YES or with the SDF option
COMPILER-ACTION=PRINT-MESSAGE-LIST (see section “Table of COMOPT
operands” on page 92 and section “COMPILER-ACTION option” on page 62).

Msg-Index Source Seq. No Severity Code Error Text

Msg-Index designates a 5-digit (hexadecimal) error message number (the first
two characters indicate the compiler module which detected the
error)

Source Seq. No is the sequence number of the source line (in the compilation unit)
containing the error

Severity Code is the error class of the error, and

Error Text is the text of the error message, which contains a more detailed
description of the error and possibly a recovery measure.

Messages of the COBOL2000 system

346

Attention

Errors for which the message text begins with SE-1 or S.E. must always to reported to the
system administrator/supervisor.

.

Severity code Meaning

F Information The compiler has identified language elements in the
compilation unit which

– represent an extension to the COBOL standard
ANS85,

– will not be supported by future COBOL standards,
– as per FIPS (Federal Information Processing

Standard), must be assigned to a particular
language set.

COBOL2000 issues severity code F messages only if
they are explicitly requested with COMOPT
ACTIVATE-WARNING-MECHANISM=YES or
ACTIVATE-FLAGGING=ALL-FEATURES (SDF).

I Information The compiler has identified control statements or
COBOL language elements that should be brought to
the user' s attention but do not justify issuing a
warning or diagnostic message.

0 Warning There may be an error in the compilation unit, but the
program can still be executed.

1 Diagnostic The compiler has detected an error; it will normally
assume a corrective option. The program may be
executed for test purposes.

2 Unrecoverable
error

Normally the compiler will not assume a corrective
option; the erroneous statement will not be generated.

3 System error The error is so severe that the compiler is incapable
of continuing the compilation.

Table 37: Severity codes and their meaning

Messages of the COBOL2000 system

 347

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

6

2. The following messages:

– Messages generated by the compiler on the execution and termination of the
compilation run (CBL90nn)

– Messages generated by the COBOL2000 runtime system on the execution and
termination of the user program (COB91nn)

– Messages of the POSIX driver for COBOL (CBL92nn)

– Messages generated when writing object-oriented programs (COB93nn)

These messages are output to SYSOUT during compilation or program execution and
have the following structure:

where:

The program name specified in “COMPILATION UNIT IS program-name” in the
messages COB9101 and COB9102 always identifies a separately compiled program.
This may be an individual program or the outermost containing program of a nested
program.

 Text

CBL90nn
COB91nn
CBL92nn
COB93nn

is the message identification number

Text is the text of the message. It contains

– a note on the execution of the compiler or user program run or

– a more detailed description of the error that has occurred and

– in some cases, the request for user input which would make the
error recoverable.

Error messages can be output either in English or in German; the
language can be selected via the SDF command
MODIFY-MSG-ATTRIBUTES TASK-LANGUAGE=E/D.

CBL90nn
COB91nn
CBL92nn
COB93nn

Messages of the COBOL2000 system

348

Specifying the COMOPT operand GENERATE-LINE-NUMBER=YES or
ERR-MSG-WITH-LINE-NR=YES in the SDF option RUNTIME-OPTIONS causes
message COB9102 to be output with each program message instead of COB9101. The
COB9102 message also contains the number of the source line being executed when
the message was issued.

Messages CBL9004, CBL9017, CBL9095, CBL9097 and CBL9099 (which are output
during compilation) are suppressed if job switch 4 is set before the compiler is invoked.

 The HELP-MSG-INFORMATION command enables you to display the complete
message text for a message.
In particular it contains the following information:
– Type (of message)
– Meaning (of variables in the message)
– Action (of the program)
– If required, response (of the user)

i

 349

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

17 Appendix

17.1 Structure of the COBOL2000 system

The COBOL2000 system consists of compiler modules and runtime modules. The structure
of the compiler and the names of the modules are described below in detail. The runtime
modules for COBOL2000 are included in the Common Runtime Environment (CRTE). Their
names and individual functions are described in the “CRTE User Guide” [2].

Structure of the COBOL2000 compiler

The COBOL2000 compiler consists of a number of modules that are linked in linear
sequence.

The individual modules constitute functional units that have been formed by a COBOL
compilation run and by the structuring of the COBOL program into different Divisions.

The compilation process is divided into the following functional units:

1. Initialization

2. Source data input

3. Lexical analysis

4. Syntactic analysis

5. Semantic analysis

6. Code generation

7. Assembly run

8. Module generation

9. Report generation

The structure of the compiler and the arrangement of the individual function units in working
storage are presented in the following diagram.

Structure of the COBOL2000 system Appendix

350

Structure of the compiler

BS2000

Initialization

Lexical analysis

Syntactic analysis

Datastructure analysis

Reference resolution

Semantic analysis and

Code generation

Object table

Termination

statement passing

generation

Generation of
debugger information

Formatting and output
of the modul

Listings

Source data input

compiler unit

compiler unit
COPY members

in libraries

Symbol table
definitions

file

Debugger

External
repository

BS2000
(MONJV)

Complete
compiler unit

Coded
compiler unit
Syntactically

correct
compiler unit

High-Level inter-
mediate language

Low level inter-
mediate language.

machine-oriented
intermediate

language.

Storage
image of

Module in
*EAM/PLAM

the object

Compilerunit list
Options list

Object listing
Locator map list.

XREF listing
Diagnostic list.

 from SYSDTA

information

COMOPTS

SUBSCHEMA

library

Appendix Structure of the COBOL2000 system

 351

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

The COBOL2000 runtime system

The COBOL2000 runtime system is a component of the Common RunTime Environment
(CRTE) for COBOL2000 and C/C++ programs.

CRTE is described in a separate “CRTE User Guide” [2].

The COBOL2000 runtime routines are subprograms that are known to the COBOL2000
compiler. They can basically be divided into three groups:

1. Subprograms for complex COBOL statements

Examples of complex COBOL statements are given in “COBOL2000 Reference Manual” [1]
(e.g. SEARCH ALL...). However, even seemingly simple functions (e.g. COMPUTE A = B
** C), for which no corresponding machine instructions exist, are broken down by forming
subprograms which are then stored externally in precompiled modules.

2. Subprograms for connecting the generated module to operating system
functions

The main purpose of these subprograms is to ensure that the code generation of the
compiler is totally independent of the operating system. The resulting loss in efficiency is
largely offset by greater operating system independence. If interfaces to the operating
system are changed, it is generally sufficient to relink the existing modules with the new
runtime system.

Essential functions in this context are:

– Connection of COBOL programs to the input-output system

– Connection of COBOL programs to SORT

– Connection of COBOL programs to UDS/SQL

– Connection of COBOL programs to Executive functions

The following table contains a list of the names and functions of the COBOL2000 runtime
modules. The table does not include those runtime modules that must be present in the
COBOL2000 runtime system for compatibility reasons only, nor those modules that are
used for access to the POSIX file system.

Structure of the COBOL2000 system Appendix

352

Name Function

ITCMADPT *) Adapter module for the partial bind technique

ITCMAID1 *) AID connection module (Data Division)

ITCMECE1 *) ENTRY, CANCEL, EXIT work area

ITCMECE2 *) Table for COMOPT OPTIMIZE-CALL-IDENTIFIER and SDF
CALL-IDENTIFIER =OPTIMIZE

ITCMERF1 *) Error analysis routine for input/output

ITCMINIT *) ILCS initialization

ITCMMAT1 *) Data for math (IML...-) functions

ITCMMDP0 *) OCCURS DEPENDING (recursive)

ITCMMEM1 ALLOCATE and FREE work area

ITCMOBAS *) OO: BASE CLASS

ITCMOWK0 *) OO: work area for OO runtime routines

ITCMPOVH *) COBOL2000 program manager

ITCMSMG0 *) SORT/MERGE statement

ITCMSTBO *) Table sort

ITCMTOM0 *) TOM adapter routine

ITCMXCAB*) XML: callback adapter for basic functions

ITCMXCAS*) XML: callback adapter for XML PARSE statement

ITCMXDT1 *) Data module for exception handling

ITCMXHC2 *) XHCS conversion work area

ITCMXMD1*) XML: data area for XML PARSE special registers

ITCMXWK0*) XML: data area for XML runtime routines

ITCRACA0 ACCEPT statement

ITCRACX0 ACCEPT statement for environment variable/command line

ITCRAID2 AID connection module (Procedure Division)

ITCRBCT0 Binary constant table

ITCRBEG0 Program system initialization routine

ITCRCCL1 CLOSE for INITIAL / CANCEL

ITCRCHP0 RERUN clause with integer RECORDS phrase

ITCRCHP2 RERUN clause for SORT files and END OF REEL

*) Module not shareable

Appendix Structure of the COBOL2000 system

 353

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

ITCRCLA0 Compare ALL literal

ITCRCLI0 CLOSE statement for indexed files

ITCRCLL0 CLOSE statement for line-sequential files

ITCRCLR0 CLOSE statement for relative files

ITCRCLS0 CLOSE statement for sequential files

ITCRCLX0 CLOSE statement for XML files

ITCRCMD0 Execution of a BS2000 command

ITCRCNA0 Comparison national figurative constant

ITCRCVB0 Conversion of packed decimal to binary (10 to 18 digits)

ITCRCVD0 Conversion of binary to packed decimal (10 to 18 digits)

ITCRCVF0 Conversion to and from floating point

ITCRCVL0 Conversion of packed + decimal to/from binary (>18 digits)

ITCRDFE0 Division external floating point

ITCRDPL0 Division of decimal numbers > 15 positions

ITCRDSA0 DISPLAY statement

ITCRDSI1 Storage assignment DYNAMIC data

ITCRDSX0 DISPLAY statement for environment variable

ITCRDYF1 Reservation of storage space for the functions REVERSE, UPPER-
CASE, and LOWER-CASE

ITCRECE0 ENTRY, CANCEL, EXIT for separately compiled programs

ITCREND0 Program termination routine (normal and abnormal)

ITCREPL2 Output line with line-feed control character

ITCREV0 Event handling (return from subroutine of another language)

ITCREV1 Event handling (“recoverable interrupts”)

ITCREV2 Event handling (“unrecoverable interrupts”)

ITCREV3 Event handling (remaining events)

ITCRFAT0 Table for FACTORIAL function

ITCRFCH0 Message output for function argument check

ITCRFCT1 Floating point constants

ITCRFDT0 Date conversion functions

ITCRFMD0 MEDIAN function

Name Function

Structure of the COBOL2000 system Appendix

354

ITCRFMX0 Functions: MAX, MIN, ORD-MAX, ORD-MIN, RANGE, MIDRANGE

ITCRFNM0 Functions: NUMVAL, NUMVAL-C

ITCRFPV0 PRESENT-VALUE function

ITCRFRN0 RANDOM function

ITCRFST0 Functions: REVERSE, UPPER-CASE, LOWER-CASE, DISPLAY-OF,
NATIONAL-OF

ITCRFVR0 VARIANCE function

ITCRHSW0 Set and check job/user switches

ITCRIFA0 FCB initialization; control routine

ITCRIFC1 RERUN clause FCB generation

ITCRIFI1 ISAM FCB generation for indexed files

ITCRIFL1 SAM FCB generation for line-sequential files

ITCRIFR1 ISAM FCB generation for relative files

ITCRIFS1 SAM FCB generation for sequential files

ITCRIFX1 FCB generation for XML files

ITCRINI0 INITIALIZE statement

ITCRINS0 INSPECT statement

ITCRLHS2 User label handling for sequential files

ITCRLNL1 LINKAGE clause with WRITE for line-sequential files

ITCRLNS1 LINKAGE clause with WRITE for record-sequential files

ITCRMAT0 Connection module for math (IML...-) functions

ITCRMEM0 ALLOCATE and FREE statement

ITCRMEV2 Interrupt message for event handling routine

ITCRMPL0 Multiplication of decimal numbers > 15 positions

ITCRMSG0 Output of error messages, level 0

ITCRMSG3 Output of error messages

ITCRMVE0 MOVE for numeric-edited items

ITCRNED0 De-editing MOVE

ITCRNSP0 CALL, CANCEL, ENTRY, EXIT in nested program

ITCROCA0 Check match between current / formal methods parameters

ITCROFP2 OO:Formal parameter description

Name Function

Appendix Structure of the COBOL2000 system

 355

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

ITCROIF1 OO: Initialization routine for files in objects

ITCROIS0 OO: Initialization routine for classes / interfaces

ITCROMD0 OO: Check routine for object view

ITCROMS1 OO: Output of OO error messages

ITCRONW1 OO: Create and initialize new object

ITCROOI0 Control routine for object-oriented initialization and termination

ITCROPI0 OPEN statement for indexed files

ITCROPL0 OPEN statement for line-sequential files

ITCROPR0 OPEN statement for relative files

ITCROPS0 OPEN statement for sequential files

ITCROPX0 OPEN statement for XML files

ITCROSM0 OO: Select method

ITCROTC2 OO: Conformance test

ITCROVC1 OO: Check interface conformance

ITCROVI2 OO: Check class inheritance

ITCRPAM1 Physical read/write routine for relative files (PAM)

ITCRPBND Partial-bind large module

ITCRPCA0 Comparisons under PROGRAM COLLATING SEQUENCE

ITCRPCS0 Comparisons under PROGRAM COLLATING SEQUENCE

ITCRRCH0 Check table limits

ITCRRDI0 READ/START statement for indexed files

ITCRRDL0 READ/START statement for line-sequential files

ITCRRDR0 READ/START statement for relative files

ITCRRDS0 READ statement for sequential files

ITCRRDX0 READ/START statement for XML files

ITCRRPW0 REPORT-WRITER control module

ITCRSCH0 SEARCH ALL statement

ITCRSEG0 Activation of segmented COBOL programs

ITCRST11 CODE SET table for ASCII

ITCRST21 CODE SET table for ISO-7

ITCRSTG0 STRING statement

Name Function

Structure of the COBOL2000 system Appendix

356

ITCRSTP0 STOP literal statement

ITCRTCA1 Class test table for ALPHABETIC test

ITCRTCD1 Class test table for NUMERIC (COMP-3 with sign) test

ITCRTCE1 Class test table for NUMERIC (COMP-3 without sign) test

ITCRTCL1 Class test table for ALPHABETIC-LOWER test

ITCRTCN0 Class test for national operands

ITCRTCP1 Class test table for ALPHABETIC-UPPER test

ITCRTCS1 Class test table for NUMERIC test (with sign)

ITCRTCU1 Class test table for NUMERIC test

ITCRTCV0 Class test for data items > 256 bytes or variables

ITCRTOD3 Time of day / Date (SVC-free)

ITCRUDS0 DML link to database handler

ITCRUPC0 Processing declaratives

ITCRUPC1 Processing declaratives

ITCRUPC2 Processing declaratives

ITCRUST0 UNSTRING statement

ITCRVCL0 Comparison for items of variable length/address or > 256 bytes

ITCRVCN0 Comparison for national items of variable length/address or > 256 bytes

ITCRVMA0 MOVE ALL literal

ITCRVMN0 MOVE for national items of variable length/address or > 256 bytes

ITCRVMP0 Padding for items > 256 bytes in case of MOVE

ITCRVMV0 MOVE for items of variable length/address or > 256 bytes

ITCRWRI0 WRITE/REWRITE statement for indexed files

ITCRWRL0 WRITE/REWRITE statement for line sequential files

ITCRWRR0 WRITE/REWRITE statement for relative files

ITCRWRS0 WRITE statement for sequential files

ITCRXBND XML: parser dynamic loading routing

ITCRXCFB XML: callback functions for basic functionality

ITCRXCFS XML: callback functions for XML PARSE statement

ITCRXDP1 XML: document tree processing

ITCRXFS0 Extended file status

Name Function

Appendix Structure of the COBOL2000 system

 357

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

ITCRXHC0 XHCS conversions

ITCRXIT0 FILE STATUS and error handling routine

ITCRXLC0 Exception handling

ITCRXPA0 XML PARSE statement

ITCRXPC1 XML: document file processing

ITCRXPF0 Exponentiation (floating point)

ITCRXPI0 Exponentiation (integer)

Name Function

Database operation (UDS/SQL) Appendix

358

17.2 Database operation (UDS/SQL)

Not supported in COBOL2000-BC !

A description of the universal database management system UDS/SQL is given in the
UDS/SQL manuals: “Design and Definition” [13], “Creation and Restructuring” [14], and
“Application Programming” [15].

UDS/SQL databases are processed by user programs via

– COBOL-DML language elements (DML is an integral component of COBOL) and

– CALL DML (database handling via subprogram call).

The following text concentrates on COBOL-DML. Furthermore, it is assumed that schema
and subschema have already been generated. The individual steps towards generating a
UDS/SQL user program are briefly explained.

The Database Handler (DBH), the main component of the UDS/SQL database system, is
responsible for communication between the user program and the database (via the
subschema). A distinction is made between:

– Linked-in DBH: It is linked into the user program and is therefore suitable for cases
where only one user program is to work with the database.

– Independent DBH: This is not linked into the user program and is therefore capable of
controlling more than one user program (independent task).

Structure of a COBOL-DML program

DATA DIVISION.
 .
 .
 .
SUB-SCHEMA SECTION.
 DB subschema-name WITHIN schema-name.
PROCEDURE DIVISION.
 .
 .
 Sequence of COBOL-DML statements

The formats of the COBOL-DML statements are described in “Application Programming”
manual [15].

schema-name/subschema-name are defined at schema/subschema generation time.

Appendix Database operation (UDS/SQL)

 359

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

Compiling a COBOL-DML program

The COBOL2000 compiler generates a program module and a subschema module from a
COBOL-DML program. When the user program is compiled, the COBOL compiler must
read the COSSD file of the database concerned.
The following options are available here:

1. The COSSD file is assigned explicitly to the COBOL compiler using the command

/ADD-FILE-LINK LINK-NAME=UDSCOSSD, -
/ FILE-NAME=[:catid:][$userid.]dbname.COSSD

Here :catid: and $userid are the catalog ID and the user ID under which the
COSSD file is cataloged. If the :catid: or $userid specification is missing, the file
name is complemented in accordance with the standard BS2000 rules.

The COSSD file must be cataloged under the name specified in the command since in
the event of an error no search is made for a COSSD file at a different location. This
procedure is mandatory when multiple COSSD files with the corresponding database
name exist in all catalogs which can be accessed locally from the user ID.

Example of a command sequence:

2. The COBOL compiler is notified of the database name using the following command.

/SET-FILE-LINK LINK-NAME=DATABASE, -
/ FILE-NAME=[:catid:][$userid.]dbname

Any :catid: specified in the SET-FILE-LINK command is ignored. The COBOL com-
piler then searches for a COSSD file with the name dbname.COSSD in all catalogs which
can be accessed locally from the user ID which was specified explicitly in the SET-FILE-
LINK command or was complemented by BS2000. This procedure can be used only
when just one COSSD file with the corresponding database name exists in the specified
catalog environment.

Example of a command sequence:

/ADD-FILE-LINK UDSCOSSD,dbname.COSSD
/START-PROGRAM $COBOL2000
COMOPT MODULE=module-library
END compilation-unit-file

/SET-FILE-LINK DATABASE,dbname
/START-PROGRAM $COBOL2000
COMOPT MODULE=module-library
END compilation-unit-file

Database operation (UDS/SQL) Appendix

360

If ADD-FILE-LINK or SET-FILE-LINK commands exist for both LINK=DATABASE and for
LINK=UDSCOSSD, only the procedure for LINK=UDSCOSSD is used.

Linking a COBOL-DML program

The link-editing of COBOL programs is described at length in the chapter “Generating and
calling executable programs”.

Note that for COBOL-DML programs a suitable UDS/SQL connection module must be
linked in, depending on the DBH version used (linked-in/independent. For further infor-
mation see “Application Programming” manual [15].)

Example of a linkage editor run:

Execution of a UDS/SQL user program

When the independent DBH is used, execution of a UDS/SQL user program is possible only
within a UDS/SQL session. The connection to this session or to the database is provided
by the SET-FILE-LINK command (see the UDS/SQL (BS2000/OSD) manual [15].

Execution with linked-in DBH:

Execution with independent DBH:

/START-BINDER
//START-LLM-CREATION INT-NAME=programmname
//INCLUDE-MODULES LIB=module-library, ELEM=cobol-dml-programm
//INCLUDE-MODULES LIB=uds-module-library, ELEM=uds-connection-modul
//RESOLVE-BY-AUTOLINK LIB=$.SYSLNK.CRTE
//SAVE-LLM LIB=module-library, ELEM=uds-test-prog
//END

/SET-FILE-LINK DATABASE,dbname
/START-PROGRAM filename
[DBH parameters]
PP END
[user-program-parameters]

/SET-FILE-LINK DATABASE,dbname
/START-PROGRAM filename
[user-program-parameters]

Appendix Description of listings

 361

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

17.3 Description of listings

In this section, the formats of the following listings output by COBOL2000 during compi-
lation are explained briefly, using a programming example as the basis for the description:

– Control statement listing

– Source listing

– Locator map/ cross-reference listing

– Diagnostic listing

To save space, the blanks after the last printed character are removed from the individual
data records of a list.

Header line

Each page of a listing starts with a header line (see below), which, regardless of the type of
listing, contains the following information:

(1) Name and version of the compiler

(2) PROGRAM-ID name

(3) Type of listing

(4) Time of compilation

(5) Date of compilation

(6) Page number

 (1) (2) (3) (4) (5) (6)

COBOL2000 V01.4A02 COPYING LIBRARY LISTING 09:58:34 2006-08-04 PAGE 0003

Control statement listing Appendix

362

Control statement listing

In this listing, COBOL2000 logs

(1) the environment of the compilation run,

(2) the selected compiler options (OPTIONS IN EFFECT; COMOPTs),

(3) the compiler options (COMOPTs) set by default (OPTIONS BY DEFAULT) at compi-
lation time, and

(4) information for maintenance and diagnostic purposes.

 COBOL2000 V01.5A00 COPYING COMOPT LISTING 09:58:34 2009-02-12 PAGE 0001

ENVIRONMENT (1)

 PROCESSOR : 7.500- S170-30

 OPERATING SYSTEM : BS2000 V16.0
 COMPILER : COBOL2000 V01.5A00
 TASK-SEQUENCE NUMBER : 1k59
 USER-ID : CAC21
 Copyright (C) Fujitsu Technology Solutions 2009

 All Rights Reserved

OPTIONS IN EFFECT (2)

 MODULE = COB

 SYSLIST = (OPTIONS,DIAG,MAP,SOURCE,XREF)
 GENERATE-LLM = YES
 SOURCE-ELEMENT = KOPIEREN.COB
 MERGE-REFERENCES = YES
 MERGE-DIAGNOSTICS = YES
 ENABLE-XML-PROCESSING = NO

OPTIONS BY DEFAULT (3)

 CHECK-DATE = YES

 EXPAND-COPY = YES
 LINE-LENGTH = 132

 ALIGN-LLM-PAGE = YES
 LINES-PER-PAGE = 064
 MODULE-ELEMENT = *STD
 MODULE-VERSION = *UPPER-LIMIT
 SOURCE-VERSION = *HIGHEST-EXISTING
 EXPAND-SUBSCHEMA = YES
 MINIMAL-SEVERITY = I
 REPLACE-PSEUDOTEXT = YES
 RESET-PERFORM-EXITS = YES
 CONTINUE-AFTER-MESSAGE = YES
 GENERATE-INITIAL-STATE = YES
 DEFAULT-CALL-CONVENTION = COMPATIBLE
 INHIBIT-BAD-SIGN-PROPAGATION = YES

FOR CUSTOMER SERVICE (4)

REV# = A

 REV# = B

Appendix Source listing for a compilation unit

 363

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

Source listing for a compilation unit

Each line of a source listing is subdivided into the following areas:

(1) Indicator field

Column 1 gives information about errors in the user-defined numbering of the input
records (S flag) and about any violations of the maximum line length of
80 characters in fixed format resp. 248 characters in free format (T flag).
Furthermore, it identifies records copied from a COPY library (C flag), declared by
a REPLACING or REPLACE (R flag) or associated with the Sub-schema Section
(D flag). Column 3 shows the nesting depth for expanded COPY elements.

A minus sign (-) in column 1 identifies lines that have been ignored because of
compiler directives.

(2) Sequence number field

Contains a number (max. 5 digits) assigned by COBOL2000 to identify the input
compiler unit record. This number uniquely identifies the source code lines. It
appears in all the listings generated by COBOL2000 as a cross-reference number.
It is also used for reference in any error messages. Its maximum value is 65535. If
a compilation unit exceeds this number, consecutive numbering starts again from 0.

(3) At the beginning of each new page of a source listing, a line containing column
markers (V) is generated after the heading. These markers conform to the COBOL
reference format and make it easier for the user to recognize any violations of the
column format required by COBOL.

(4) Area that can be used by programmers to mark source lines

(5) Compilation unit area

Contains the record entered by the user. Note that only printable characters are
shown.

The following exist only in a “compressed” list (see the parameter SOURCE=YES(CROSS-
REFERENCE=YES) in the section “LISTING option” on page 68).

(6) If a line contains more than one definition, or if there are implicit definitions in a
compilation unit, these are shown in the compressed listing in additional lines
containing only the right-aligned name of this definition instead of the source text.

(7) REL LOC

Contains the position of a data definition or of a chapter or paragraph name relative
to the start of the module.

Source listing for a compilation unit Appendix

364

(8) LENGTH

Contains the (decimal) length of the area in the module which has been assigned
to a data definition.

(9) REF/DEF

Contains the sequence numbers of the lines that refer to a definition, together with
the type of the reference (see section “Locator map listing” on page 373 for an
explanation of this reference type). In the case of the referring line, it is the
sequence number of the definition line. If there are more cross-references than fit
into a line, continuation lines are formed (see the LINE-SIZE parameter in the
section “LISTING option” on page 68).

The compilation messages are “merged” in the sample listing (see the
INSERT-ERROR-MSG parameter in the section “LISTING option” on page 68).

Appendix Source listing for a compilation unit

 365

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

C
O
B
O
L
2
0
0
0

V
0
1
.
5
A
0
0

C
O
P
Y
I
N
G

S
O
U
R
C
E

L
I
S
T
I
N
G

0
9
:
5
8
:
3
4

2
0
0
9
-
0
2
-
1
2

P
A
G
E

0
0
0
2

 (
1)

(2
)

(3

)(
4)

(5

)
(6

)
(7

)
(8

)
(9

)

V

V
V

V

R
E
L

L
O
C

L
E
N
G
T
H

R
E
F
/
D
E
F

0
0
0
0
1

I
D
E
N
T
I
F
I
C
A
T
I
O
N

D
I
V
I
S
I
O
N
.

T
A
L
L
Y

0
0
0
0
0
0
6
8

4

R
E
T
U
R
N
-
C
O
D
E

4

0
0
0
0
2

P
R
O
G
R
A
M
-
I
D
.

C
O
P
Y
I
N
G
.

0
0
0
0
3

E
N
V
I
R
O
N
M
E
N
T

D
I
V
I
S
I
O
N
.

0
0
0
0
4

I
N
P
U
T
-
O
U
T
P
U
T

S
E
C
T
I
O
N
.

0
0
0
0
5

F
I
L
E
-
C
O
N
T
R
O
L
.

0
0
0
0
6

S
E
L
E
C
T

S
A
M
-
F
I
L
E

A
S
S
I
G
N

T
O

"
I
N
P
U
T
"

0
0
0
1
5

0
0
0
0
7

S
E
L
E
C
T

I
S
A
M
-
F
I
L
E

A
S
S
I
G
N

T
O

"
O
U
T
P
U
T
"

0
0
0
2
1

0
0
0
0
8

O
R
G
A
N
I
Z
A
T
I
O
N

I
S

I
N
D
E
X
E
D

0
0
0
0
9

R
E
C
O
R
D

K
E
Y

I
S
A
M
-
K
E
Y

0
0
0
2
4

0
0
0
1
0

F
I
L
E

S
T
A
T
U
S

I
S

S
A
M
-
F
I
L
E
-
S
T
A
T
U
S
.

0
0
0
3
0

0
0
0
1
1

D
A
T
A

D
I
V
I
S
I
O
N
.

0
0
0
1
2

F
I
L
E

S
E
C
T
I
O
N
.

0
0
0
1
3

C
O
P
Y

S
A
M
-
F
I
L
E

R
E
P
L
A
C
I
N
G

=
=
S
$
L
G
=
=

B
Y

=
=
S
A
M
-
R
E
C
-
L
E
N
G
T
H
=
=

0
0
0
1
4

=
=
S
$
I
N
H
=
=

B
Y

=
=
L
E
N
G
T
H
=
=
.

C

1

0
0
0
1
5

F
D

S
A
M
-
D
A
T
E
I

R
E
C
O
R
D

I
S

V
A
R
Y
I
N
G

I
N

S
I
Z
E

F
R
O
M

1

T
O

2
5
5

0
0
0
0
0
B
B
8

2
5
5

R
0
0
0
0
6

R
0
0
0
3
6

R
0
0
0
4
7

R
0
0
0
5
1

R

1

0
0
0
1
6

D
E
P
E
N
D
I
N
G

O
N

S
A
M
-
R
E
C
-
L
E
N
G
T
H
.

0
0
0
3
3

C

1

0
0
0
1
7

0
1

S
A
M
-
R
E
C
.

0
0
0
0
0
B
B
8

2
5
5

R

1

0
0
0
1
8

0
5

C
H
A
R
S

P
I
C

X

O
C
C
U
R
S

1

T
O

2
5
5

D
E
P
E
N
D
I
N
G

O
N

L
E
N
G
T
H

0
0
0
0
0
B
B
8

1

0
0
0
3
1

0
0
0
1
9

C
O
P
Y

I
S
A
M
-
F
I
L
E

R
E
P
L
A
C
I
N
G

=
=
I
$
L
G
=
=

B
Y

=
=
I
S
A
M
-
R
E
C
-
L
E
N
G
T
H
=
=

0
0
0
2
0

=
=
I
$
I
N
H
=
=

B
Y

=
=
L
E
N
G
T
H
=
=
.

C

1

0
0
0
2
1

F
D

I
S
A
M
-
F
I
L
E

R
E
C
O
R
D

I
S

V
A
R
Y
I
N
G

I
N

S
I
Z
E

F
R
O
M

9

T
O

2
6
3

0
0
0
0
0
C
C
0

2
6
3

R
0
0
0
0
7

M
0
0
0
3
6

R
0
0
0
4
7

R

1

0
0
0
2
2

D
E
P
E
N
D
I
N
G

O
N

I
S
A
M
-
R
E
C
-
L
E
N
G
T
H
.

0
0
0
3
2

C

1

0
0
0
2
3

0
1

I
S
A
M
-
R
E
C
.

0
0
0
0
0
C
C
0

2
6
3

R
0
0
0
4
2

C

1

0
0
0
2
4

0
5

I
S
A
M
-
K
E
Y

P
I
C

9
(
8
)
.

0
0
0
0
0
C
C
0

8

R
0
0
0
0
9

M
0
0
0
3
8

R
0
0
0
4
1

C

1

0
0
0
2
5

0
5

R
E
C
-
C
O
N
T
E
N
T
.

0
0
0
0
0
C
C
8

2
5
5

M
0
0
0
5
1

R

1

0
0
0
2
6

1
0

P
I
C

X

O
C
C
U
R
S

1

T
O

2
5
5

D
E
P
E
N
D
I
N
G

O
N

L
E
N
G
T
H
.

0
0
0
0
0
C
C
8

1

0
0
0
3
1

0
0
0
2
7

W
O
R
K
I
N
G
-
S
T
O
R
A
G
E

S
E
C
T
I
O
N
.

0
0
0
2
8

0
1

P
I
C

X

V
A
L
U
E

"
N
"
.

0
0
0
0
0
D
C
8

1

r
0
0
0
3
9

m
0
0
0
5
2

0
0
0
2
9

8
8

F
I
L
E
-
E
N
D

V
A
L
U
E

"
E
"
.

R
0
0
0
3
9

R
0
0
0
5
2

0
0
0
3
0

0
1

I
S
A
M
-
F
I
L
E
-
S
T
A
T
U
S

P
I
C

X
X

E
X
T
E
R
N
A
L
.

E
X
T
E
R
N
A
L

2

A
0
0
0
1
0

0
0
0
3
1

0
1

L
E
N
G
T
H

P
I
C

9
(
3
)

B
I
N
A
R
Y
.

0
0
0
0
0
D
D
0

2

R
0
0
0
1
8

R
0
0
0
2
6

M
0
0
0
5
0

0
0
0
3
2

0
1

I
S
A
M
-
R
E
C
-
L
E
N
G
T
H

P
I
C

9
(
3
)

B
I
N
A
R
Y
.

0
0
0
0
0
D
D
8

2

A
0
0
0
2
2

M
0
0
0
4
0

0
0
0
3
3

0
1

S
A
M
-
R
E
C
-
L
E
N
G
T
H

P
I
C

9
(
3
)

B
I
N
A
R
Y
.

0
0
0
0
0
D
E
0

2

A
0
0
0
1
6

R
0
0
0
4
0

0
0
0
3
4

P
R
O
C
E
D
U
R
E

D
I
V
I
S
I
O
N
.

0
0
0
3
5

E
X
E
C
U
T
I
O
N
.

0
0
0
0
1
0
3
8

0
0
0
3
6

O
P
E
N

I
N
P
U
T

S
A
M
-
F
I
L
E
,

O
U
T
P
U
T

I
S
A
M
-
F
I
L
E

0
0
0
1
5

0
0
0
2
1

0
0
0
3
7

P
E
R
F
O
R
M

R
E
A
D

S
A
M

0
0
0
4
9

0
0
0
3
8

P
E
R
F
O
R
M

V
A
R
Y
I
N
G

I
S
A
M
-
K
E
Y

F
R
O
M

1
0
0

B
Y

1
0
0

0
0
0
2
4

0
0
0
3
9

U
N
T
I
L

F
I
L
E
-
E
N
D

0
0
0
2
9

0
0
0
4
0

C
O
M
P
U
T
E

I
S
A
M
-
F
I
L
E
-
L
E
N
G
T
H

=

S
A
M
-
R
E
C
-
L
E
N
G
T
H

0
0
0
3
2

0
0
0
3
3

0
0
0
4
1

+

L
E
N
G
T
H

O
F

I
S
A
M
-
K
E
Y

0
0
0
2
4

0
0
0
4
2

W
R
I
T
E

I
S
A
M
-
R
E
C

0
0
0
2
3

0
0
0
4
3

I
N
V
A
L
I
D

K
E
Y

C
A
L
L

"
I
O
E
R
R
O
R
"

0
0
0
4
4

E
N
D
-
W
R
I
T
E

0
0
0
4
5

P
E
R
F
O
R
M

R
E
A
D
-
S
A
M

0
0
0
4
9

0
0
0
4
6

E
N
D
-
P
E
R
F
O
R
M

0
0
0
4
7

C
L
O
S
E

S
A
M
-
F
I
L
E
,

I
S
A
M
-
F
I
L
E
.

0
0
0
1
5

0
0
0
2
1

0
0
0
4
8

S
T
O
P

R
U
N

>
>
>
>
>

7
1
1
6
8

>
>
>
>
>

1

P
E
R
I
O
D

M
I
S
S
I
N
G

B
E
F
O
R
E

P
A
R
A
G
R
A
P
H
,

S
E
C
T
I
O
N

O
R

E
N
D

O
F

P
R
O
G
R
A
M
.

P
E
R
I
O
D

A
S
S
U
M
E
D
.

0
0
0
4
9

R
E
A
D
-
S
A
M
.

0
0
0
0
1
2
7
8

R
0
0
0
3
7

R
0
0
0
4
5

0
0
0
5
0

M
O
V
E

2
5
5

T
O

L
E
N
G
T
H

0
0
0
3
1

0
0
0
5
1

R
E
A
D

S
A
M
-
F
I
L
E

I
N
T
O

R
E
C
-
C
O
N
T
E
N
T

0
0
0
1
5

0
0
0
2
5

0
0
0
5
2

A
T

E
N
D

S
E
T

F
I
L
E
-
E
N
D

T
O

T
R
U
E

0
0
0
2
9

0
0
0
5
3

E
N
D
-
R
E
A
D
.

Source listing for a compilation unit Appendix

366

A library listing is output as the second part of the source listing. The sources from which
the COBOL program processed in this compilation run was created can be found in this
library listing. A line is created for each COPY statement, containing the following infor-
mation:

(10) Sequence number of the program line containing the COPY statement

(11) Link name from the COPY statement

(12) Library type

(13) Element (member) name

(14) Date

(15) Version number under which the library element is entered in the library. The date
and version number are not always present.

(16) File name under which the library is entered in the file system

 COBOL2000 V01.5A00 COPYING LIBRARY LISTING 09:58:34 2009-02-12 PAGE 0003

(10) (11) (12) (13) (14) (15) (16)

 SOURCE LIBRARY- (LIB-) ELEMENT-NAME USER VERSION FILE-NAME
 SEQ-NO NAME ORG DATE

 SOURCE PLAM COPYING.COB 2004-07-29 ~ :2OSC:$CAC21.Manualexample
 00013 COBLIB PLAM SAM-FILE 2004-07-29 ~ :2OSC:$CAC21.Manualexample
 00019 COBLIB PLAM ISAM-FILE 2004-07-29 ~ :2OSC:$CAC21.Manualexample

Appendix Source listing for a compilation unit

 367

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

Special features of the source listing for free format

Significant differences between fixed and free format which are visible for the user affect
the listing.

In the listing the free format line is broken to form partial lines, each of which is up to
80 characters long. This partial line length is derived from the old line length (sequence area
+ indicator area + program text area + comment area). Free format means that program
text is involved over the entire partial line length.

Lines which are not longer than 80 characters a listed as previously, making full use of the
available space. A line which is 81 to 160 characters long is divided into a partial line with
80 characters and a smaller partial line containing 1 to 80 characters. The latter partial line
is not assigned a preceding line number for identification purposes, but only a single
“+” character.

By the same token, lines containing 161 to 240 characters are divided into three lines. Lines
which are 241 characters long or more are divided into four partial lines. In this case the
fourth partial line is at most 8 characters long as the maximum line length is limited to
248 characters.

In this form of the listing the partial lines are directly beneath each other.

...

...
 00079 *> ! ! ! ! ! ! ! !
 00080
 00081 add 1 to a. add 1 to b. add 1 to c. add 1 to d. add 1 to e. add 1 to f.
 + add 1 to g. add 1 to h. add 1 to i. add 1 to j. add 1 to k. add 1 to l. add 1 t
 + o m. add 1 to n. add 1 to o. add 1 to p. add 1 to q. add 1 to r. add 1 to s. add
 + 1 to t.
 00082
 00083 *> ! ! ! ! ! ! ! !
 00084
 00085
 +
 + add 1 to u. add 1 to v. add 1 to w. add 1 to x. add 1 to y. add
 + 1 to z.
 00086
 00087 *> ! ! ! ! ! ! ! !
 00088
 ...
...

Source listing for a compilation unit Appendix

368

If the compressed listing (see the section “LISTING option” on page 68) is activated, the
same listing extract looks as follows:

As the XREF outputs occasionally force the insertion of additional empty lines, it can only
be seen from the “+” character at the beginning of the line whether such an inserted line
has been generated owing to XREF entries or whether a genuine partial line is involved
which by chance only contains blanks (see example line 00085).

The assignment of the XREF entries to the corresponding partial lines always relates to the
first character of a file name.

 The line break of a free format COBOL line does not always result in a listing which
is easy to read. It thus makes sense to achieve a more straightforward listing
through a suitable grouping of the program text elements, for example by aligning
the program text elements to specified tabulator positions (20, 40 or 80 characters).
In many cases it is advisable to restrict the line length to 80 characters.

...

...
 00079 *> ! ! ! ! ! ! ! !
 00080
 00081 add 1 to a. add 1 to b. add 1 to c. add 1 to d. add 1 to e. add 1 to f. 00014 00015 00016
 00017 00018 00019
 + add 1 to g. add 1 to h. add 1 to i. add 1 to j. add 1 to k. add 1 to l. add 1 t 00020 00021 00022
 00023 00024 00025
 + o m. add 1 to n. add 1 to o. add 1 to p. add 1 to q. add 1 to r. add 1 to s. add 00026 00027 00028
 00029 00030 00031
 00032
 + 1 to t. 00033
 00082
 00083 *> ! ! ! ! ! ! ! !
 00084
 00085
 +
 + add 1 to u. add 1 to v. add 1 to w. add 1 to x. add 1 to y. add 00034 00035 00036
 00037 00038
 + 1 to z. 00039
 00086
 00087 *> ! ! ! ! ! ! ! !
 00088
 ...
...

i

Appendix Format control statements TITLE, EJECT, SKIP

 369

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

Format control statements TITLE, EJECT, SKIP

The COBOL2000 compiler supports the format control statements TITLE, EJECT and SKIP.
These statements can be used in the compiler unit to control the format of the source listing.

Format control statements are governed by the following rules:

– They must not be concluded with a period.

– They must be contained exclusive in a line from column 12.

– They themselves do not appear in the source listing.

TITLE statement

Function

This statement is used to print the specified title instead of the standard title (SOURCE
LISTING) in the header lines of the source listing that follow. In addition, a page feed is
performed unless a new page was to be started anyway.

Format

Rule

literal must be a non-numeric literal of up to 53 characters.

TITLE literal

Format control statements TITLE, EJECT, SKIP Appendix

370

EJECT statement

Function

This statement causes the following text of the source listing to begin at the top of the next
page. This statement has no effect if a new page was to be started anyway.

Format

SKIP statement

Function

The SKIP statement is used to shift the following text by up to three lines. The statement
has no effect if blank lines would be the first to appear at the top of the next page.

Format

EJECT

{SKIP1}
{SKIP2}
{SKIP3}

Appendix Format control statements TITLE, EJECT, SKIP

 371

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

Example 17-1

Format control statements

URLU
OU IDENTIFICATION DIVISION. OU
OU PROGRAM-ID. EXAMPLE. OU
OU DATA DIVISION. OU
OU TITLE "WORKING-STORAGE SECTION" LR (1) OU
OU WORKING-STORAGE SECTION. OU
OU 01 ALPHA1 PIC 99 VALUE 1. OU
OU 01 BETA1 PIC 99 VALUE 2. OU
OU 01 GAMMA1 PIC 99. OU
OU TITLE "PROCEDURE DIVISION" LR (2) OU
OU PROCEDURE DIVISION. OU
OU EJECT LR (3) OU
OU BEGIN SECTION. OU
OU MULT. OU
OU MULTIPLY ALPHA1 BY BETA1 GIVING GAMMA1. OU
OU MULTIPLY BETA1 BY GAMMA1 GIVING ALPHA1. OU
OU MULTIPLY GAMMA1 BY ALPHA1 GIVING BETA1. OU
OU SKIP3 LR (4) OU
OU END SECTION. OU
OU STOPP. OU
OU STOP RUN. OU
ORLROL

Effect:

(1) The header line of the next page of the source listing will read:
“WORKING-STORAGE SECTION”

(2) The header line of the next page(s) of the source listing will read:
“PROCEDURE DIVISION”.

(3) The following text to be printed (BEGIN SECTION...) will begin on a new page.

(4) The following text to be printed (END SECTION) will be preceded by three blank
lines.

Diagnostic (error message) listing Appendix

372

Diagnostic (error message) listing

The diagnostic listing generated by COBOL2000 provides information about all syntactical
and semantic errors detected during the compilation.

The header line is followed by a subheading line which divides the listed diagnostic
message lines into the following fields:

The diagnostic listing is concluded by summary information on the total number of all
detected errors and the total number of errors in the various severity classes.

(1) SOURCE SEQ NO indicates the sequence number of the source line in which
the error occurred.

(2) MSG INDEX indicates the message identifier.

(3) SEVERITY CODE indicates the error class (see table 37 on page 346).

(4) ERROR MESSAGE contains an explanatory text and, if applicable, the
corrective action taken by COBOL2000 or a default value
assumed by COBOL2000.

ACOBOL2000 V01.5A00 COPYING DIAGNOSTIC LISTING 09:58:34 2009-02-12 PAGE 0007

(1) (2) (3) (4)

 SOURCE MSG SEVERITY
 SEQ-NO INDEX CODE ERROR MESSAGE

 00048 71168 1 PERIOD MISSING BEFORE PARAGRAPH, SECTION OR END OF PROGRAM. PERIOD ASSUMED.
 TOTAL 00001 STATEMENTS IN THIS DIAGNOSTIC LISTING.
 00001 IN SEVERITY CODE 1

Appendix Locator map listing

 373

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

17
.

M
är

z
20

14
 S

ta
nd

 1
3:

25
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

O
B

O
L\

M
an

u
al

\b
hb

.e
\c

ob
2e

.k
1

7

Locator map listing

(1) Specification of program division, section and program name

(2) File name, file sequence number and address of file control block of all files used in
the program.

(3) SOURCE SEQ NO
indicates the sequence number of the source line containing the definition.

(4) MODULE REL ADDR
indicates the relative starting address of a data definition within the module.

(5) GROUP REL ADDR
identifies the relative starting address of a data definition within a 01-level entry (hexa-
decimal).

(6) POSITION IN GROUP DEC
is the number of the first byte of a data definition within a 01-level entry (decimal,
counting from 1).

(7) LEV NO
contains the level number of the definition. A “G” preceding the level number identifies
an item of data as “global”.

(8) contains the data-name defined by the user.

(9) LENGTH IN BYTES
indicates, in decimal (DEC) and hexadecimal (HEX) notation, the length of the area
to which the data name is assigned.

(10) FORMAT
indicates the symbolic name of the data class.

(11) REFERENCED BY STATEMENTS
lists all the source line numbers, in ascending order, in which there are statements
that reference this data definition. If there are more cross-references than fit on a line,
continuation lines are generated (see the LINE-SIZE parameter in the
section “LISTING option” on page 68).

The type of reference appears in front of the line number:

M modify
R read
A address

The corresponding lowercase letters indicate implicit accesses (this affects corre-
sponding subordinate fields with MOVE CORRESPONDING, for example, or the data
item referred to by a condition name).

Locator map listing Appendix

374

(12) LVL
indicates the nesting level of the program, starting at 000 for the outside program.

(13) SOURCE UNIT NAME / SECTION NAME / PARAGRAPH NAME
indicates the program name and the section and paragraph names occurring in this
program.

COBOL2000 V01.5A00 COPYING LOCATOR MAP LISTING 09:58:34 2009-02-12 PAGE 0004

 DATA DIVISION COPYING (1)
 FILE SECTION

 FILE NAME SAM-FILE (2)
 FILE SERIAL NO. 001
 ADDR LHE FCB 000003A8

(3) (4) (5) (6) (7) (8) (9) (10) (11)

 MODULE GROUP POSITION
 SOURCE REL REL IN GROUP LEV LENGTH IN BYTES REFERENCED
 SEQ-NO ADDR ADDR DEC NO DEC HEX FORMAT BY STATEMENTS

 00015 FD SAM-FILE R00006 R00036 R00047 R00051
 00017 00000BB8 000000 00000001 01 SAM-REC 0000000255 000000FF
 00018 00000BB8 000000 00000001 05 CHARS 0000000001 00000001 DISPLAY

 FILE NAME ISAM-FILE
 FILE SERIAL NO. 002
 ADDR LHE FCB 00000790
 MODULE GROUP POSITION
 SOURCE REL REL IN GROUP LEV LENGTH IN BYTES REFERENCED
 SEQ-NO ADDR ADDR DEC NO DEC HEX FORMAT BY STATEMENTS

 00021 FD ISAM-FILE R00007 M00036 R00047
 00023 00000CC0 000000 00000001 01 ISAM-REC 0000000263 00000107 R00042
 00024 00000CC0 000000 00000001 05 ISAM-KEY 0000000008 00000008 ZONED DEC R00009 M00038 R00041
 00025 00000CC8 000008 00000009 05 SATZ-CONTENT 0000000255 000000FF M00051
 00026 00000CC8 000008 00000009 10 FILLER 0000000001 00000001 DISPLAY

COBOL2000 V01.5A00 COPYING LOCATOR MAP LISTING 09:58:34 2009-02-12 PAGE 0005

 DATA DIVISION COPYING
 WORKING-STORAGE SECTION
 MODULE GROUP POSITION
 SOURCE REL REL IN GROUP LEV LENGTH IN BYTES REFERENCED
 SEQ-NO ADDR ADDR DEC NO DEC HEX FORMAT BY STATEMENTS

 00001 00000068 G77 TALLY 0000000004 00000004 COMP
 00001 G77 RETURN-CODE 0000000004 00000004 COMP-5
 00028 00000DC8 000000 00000001 01 FILLER 0000000001 00000001 DISPLAY r00039 m00052
 00029 88 FILE-END R00039 R00052
 00030 EXTERNAL 000000 00000001 01 ISAM-FILE-STATUS 0000000002 00000002 DISPLAY A00010
 00031 00000DD0 000000 00000001 01 LENGTH 0000000002 00000002 BINARY R00018 R00026 M00050
 00032 00000DD8 000000 00000001 01 ISAM-REC-LENGTH 0000000002 00000002 BINARY A00022 M00040
 00033 00000DE0 000000 00000001 01 SAM-REC-LENGTH 0000000002 00000002 BINARY A00016 R00040

COBOL2000 V01.5A00 COPYING LOCATOR MAP LISTING 09:58:34 2009-02-12 PAGE 0006

 PROCEDURE DIVISION

(12) (13) (11)

 LVL SOURCE UNIT NAME
 SOURCE REL SECTION NAME REFERENCED
 SEQ-NO ADDR PARAGRAPH NAME BY STATEMENTS

 000 COPYING
 00035 00001040 PROCESS
 00049 00001280 READ-SAM R00037 R00045

 375

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
är

z
20

14

S
ta

nd
 1

3:
36

.1
4

P
fa

d
: P

:\
F

T
S

-B
S

\C
om

p
ile

r\
C

O
B

O
L

\M
an

ua
l\b

hb
.e

\c
ob

2e
.li

t

Related publications
The manuals are available as online manuals, see http://manuals.ts.fujitsu.com, or in printed
form which must be paid and ordered separately at http://manualshop.ts.fujitsu.com.

[1] COBOL2000 (BS2000/OSD)
COBOL Compiler
Reference Manual

[2] CRTE (BS2000/OSD)
Common Runtime Environment
User Guide

[3] BS2000/OSD-BC
Commands
User Guide

[4] BS2000/OSD-BC
Introductory Guide to DMS
User Guide

[5] SDF (BS2000/OSD)
SDF Dialog Interface
User Guide

[6] SORT (BS2000/OSD)
User Guide

[7] JV (BS2000/OSD)
Job Variables
User Guide

[8] AID (BS2000)
Advanced Interactive Debugger
Debugging of COBOL Programs
User Guide

http://manuals.ts.fujitsu.com
http://manualshop.ts.fujitsu.com

Related publications

376

[9] BS2000
TSOSLNK
User Guide

[10] BLSSERV
Dynamic Binder Loader / Starter in BS2000/OSD
User Guide

[11] LMS (BS2000)
SDF Format
User Guide

[12] BS2000/OSD-BC
System Installation
User Guide

[13] UDS/SQL (BS2000/OSD)
Design and Definition
User Guide

[14] UDS/SQL (BS2000/OSD)
Creation and Restructuring
User Guide

[15] UDS/SQL (BS2000/OSD)
Application Programming
User Guide

[16] ESQL-COBOL (BS2000/OSD)
ESQL-COBOL for SESAM/SQL-Server
User Guide

[17] SESAM/SQL-Server (BS2000/OSD)
SQL Reference Manual Part 1: SQL Statements
User Guide

[18] SQL for UDS/SQL
Language Reference Manual

[19] EDT (BS2000/OSD)
Statements
User Guide

Related publications

 377

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
är

z
20

14

S
ta

nd
 1

3:
36

.1
4

P
fa

d
: P

:\
F

T
S

-B
S

\C
om

p
ile

r\
C

O
B

O
L

\M
an

ua
l\b

hb
.e

\c
ob

2e
.li

t

[20] AID (BS2000)
Advanced Interactive Debugger
Core Manual
User Guide

[21] AID (BS2000/OSD)
Debugging on Machine Code Level
User Guide

[22] BINDER
Binder in BS2000/OSD
User Guide

[23] openUTM (TRANSDATA, BS2000)
Planning and Design
User Guide

[24] openUTM (BS2000/OSD, UNIX, Windows)
Programming Applications with KDCS for COBOL, C and C++
User Guide

[25] openUTM (BS2000/OSD)
Generating and Handling Applications
User Guide

[26] openUTM (BS2000/OSD, UNIX, Windows)
Administering Applications
User Guide

[27] XML for openUTM
Datamarshalling with XML

[28] SDF-P (BS2000/OSD)
Programming in the Command Language
User Guide

[29] POSIX (BS2000/OSD)
Commands
User Guide

[30] POSIX (BS2000/OSD)
POSIX Basics for Users and System Administrators
User Guide

Related publications

378

[31] C/C++ (BS2000/OSD)
POSIX Commands of the C/C++ Compiler
User Guide

[32] BS2000/OSD
Softbooks English
CD-ROM

[33] XHCS
(BS2000/OSD)
8-Bit Code and Unicode support in BS2000/OSD
User Guide

[34] IMON (BS2000/OSD)
Installation Monitor
User Guide

 379

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
ar

ch
 2

01
4

 S
ta

nd
 1

3:
32

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
O

B
O

L\
M

an
u

al
\b

h
b.

e
\c

o
b2

e.
si

x

Index

$.SYSLNK.CRTE.PARTIAL-BIND 302

A
ACCEPT statement

accessing job variables 166
input from system files 154
reading compiler and operating system

information 170
ACCEPT-DISPLAY-ASSGN, SDF operand 84
ACCEPT-LOW-TO-UP, Comopt 92
ACCEPT-STMT-INPUT, SDF operand 83
ACCESS MODE clause

indexed files 239, 244
relative files 218, 222
sequential files 192

ACTIVATE-FLAGGING option 61
ACTIVATE-WARNING-MECHANISM,

Comopt 93
ACTIVATE-XPG4-RETURNCODE, Comopt 93
ADD-FILE-LINK command

SHARED-UPDATE operand 257
Advanced Interactive Debugger (AID) 331
AID 140

abbreviations of COBOL verbs 144
conditions for debugging 141
interactive debugger 304
LSD names 143
product characteristics 331
SDF operand 76

ALIGN-LLM-PAGE, Comopt 93
ALIGNMENT, SDF operand 63
ALPHABET clause 207
alphanum-name (data type) 53
ALTERNATE RECORD KEY clause 240

ar command 302
ASA line-feed control characters 206
ASCII code, processing of files in 207
ASSIGN clause

indexed files 239
relative files 218
sequential files 192

ASSIGN command
assignment of files 182
assignment of system files 157

assigning a repository 35
assignment to compiler variables 32
ASSIGN-SYSDTA command, assigning the compi-

lation unit 25
autolink procedure, TSOSLNK 124

B
BINDER, linkage editor 119, 127, 294
block

logical 176
non-standard 177
physical 177
standard 177

BLOCK CONTAINS clause
indexed files 240
relative files 219
sequential files 193

block splitting, indexed files 237
bs2cp command 302, 305
buffers 176

C
CALL identifier, subprogram call 290
CALL literal, subprogram call 290
CALL-CONVENTION, SDF operand 64

Index

380

calling
a permanent executable program 131
a temporary executable program 129
the COBOL2000 compiler 39

CANCEL identifier, statement 291
check calling hierarchy 93
check data item limits 94
check table limits 79, 95
CHECK-CALLING-HIERARCHY, Comopt 93
CHECK-DATE, Comopt 94
CHECK-FUNCTION-ARGUMENTS, Comopt 94
CHECK-PARAMETER-COUNT, Comopt 94
checkpointing 286

for sort programs 281
CHECK-REFERENCE-MODIFICATION,

Comopt 94
CHECK-SCOPE-TERMINATORS, Comopt 94
CHECK-SOURCE-SEQUENCE, Comopt 94
CHECK-TABLE-ACCESS, Comopt 95
class (object-oriented) 147
class 6 memory 137
CLOSE statement

indexed files 243
relative files 221
sequential files 195

COBLIB, COBLIB1...COBLIB9, link names 27
COBOBJCT, link name 291
cobol command 307
COBOL compiler

controlling via COMOPT statements 39
controlling via compiler directives 39
controlling via SDF 39, 47

COBOL language elements
access to compiler information 170
access to job switch 159
access to job variables 165
access to operating system information 170
access to system files 153
access to user switch 159
creation of print files 202
processing of indexed files 238
processing of magnetic tape files 208
processing of relative files 217
processing of sequential files 191

COBOL language elements (cont.)
sort-merge 277
source listing format 369
use of debugging lines 152

COBOL statements
accessing environment variables 169
input from system files 154
output to system files 155
reading compiler and operating system

information 170
reading job variables 166

COBOL verbs, abbreviations for AID 144
COBOL2000 compiler

functions 20
input sources 21
invocation 39
output locations 21
structure 349
termination behavior 40

COBOL2000 runtime system, structure 351
COBOL2000 system

expansion levels 13
structure 349
structure of messages 345

COBOL2000-BC (basic configuration) 13
COBOL-DML program 358

compiling 359
execution 360
linking 360
structure 358

CODE-SET clause 207
Common Run-Time Environment (CRTE) 290
COMOPT operands, table 92
COMOPT statement, format 88
COMOPT statements 39, 87

CONCATENATE-XML-LINES 95
ENABLE-XML-PROCESSING 96

compilation
of a COBOL-DML program 359
of a compilation group 41

compilation group 17
compilation 41

Index

 381

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
ar

ch
 2

01
4

 S
ta

nd
 1

3:
32

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
O

B
O

L\
M

an
u

al
\b

h
b.

e
\c

o
b2

e.
si

x

compilation unit 17
assignment via END statement 89
assignment via SET-FILE-LINK command 91
input 22

compilation unit segments 26
compiler control

via COMOPT statements 39, 87
via compiler directives 39
via SDF 39, 47

compiler directives 39, 109
IMP Compiler-Action 110
IMP Listing-Option 111
IMP Print-Directives 112
IMP Runtime Errors 113

compiler information 170
example of a data structure 173
language elements for accessing 170
structure 171

compiler listing 300
compiler listings, description 361
compiler options

table of COMOPT operands 92
compiler output 36
compiler termination 40
compiler variables

use in BS2000/OSD 32
use in POSIX 301

COMPILER-ACTION option 62
COMPILER-INFO 171
COMPILER-TERMINATION option 81
composed-name (data type) 53
CONCATENATE-XML-LINES, Comopt 95
CONTINUE-AFTER-MESSAGE, Comopt 95
control characters, for line-feed 203
control statement listing

description 362
requesting 72

controlling source text manipulation 32
COPY elements 305

input 26
link names for libraries 27

COPY statement 29
COPY-EXPANSION, SDF operand 69
COSSD file 359

CPU time information 170
CPU-TIME 171
cross-reference listing (XREF), requesting 72
cross-reference listing, description 373
CROSS-REFERENCE, SDF operand 70, 71
CRTE (Common Run-Time Environment) 290,

351
c-string (data type) 53

D
data block 176

indexed files 236
logical 176

data records 176
data types, SDF 53
Database Handler (DBH) 358
database operation (UDS/SQL) 358
date information, declaring mnemonic

names 170
DATE-ISO4 170, 172
DBH (Database Handler) 358
DBL (Dynamic Binder Loader) 119, 129, 293
deadlock, shared updating 266
debug command 304
debugging

conditions for symbolic debugging with
AID 141

object-oriented COBOL programs 147
of nested programs 146
symbolic, with AID 143
with debugging lines 152

debugging lines 152
DEFAULT-CALL-CONVENTION, Comopt 95
DEFINE directive 32
definitions of terms 16
diagnostic (error) listing

description 372
requesting 72, 100

DIAGNOSTICS, SDF operand 70
directives 109
DISPLAY statement

output to system files 155
writing to job variables 166

DMS access methods 175

Index

382

DMS code 211, 232, 253, 325
DMS error code 325
dynamic access

indexed files 244
relative files 222

dynamic binder loader DBL 119
dynamic linking with DBL 129
dynamic loading 130

E
edt command 305
EJECT format control statement 370
ELABORATE-SEGMENTATION, Comopt 95
ELDE (static loader) 120
ELEMENT, SDF operand 58, 66
ENABLE-COBOL85-KEYWORDS-ONLY,

Comopt 96
ENABLE-INITIAL-STATE, SDF operand 63
ENABLE-KEYWORDS, SDF operand 59
ENABLE-UFS-ACCESS, Comopt 96
ENABLE-UFS-ACCESS, SDF operand 84
ENABLE-XML-PROCESSING, Comopt 96
encoding identification

XML document 270
END statement

input of compiler options 88
source data input 89

environment variable 169
ERRLINK, link name 72
ERR-MSG-WITH-LINE-NR, SDF operand 84
error (diagnostic) listing

description 372
requesting 72

error classes, severity codes 346
ERROR-REACTION, SDF operand 84
ESD (External Symbol Dictionary) 141
ESQL-COBOL, product characteristics 338
executable program 129

definition 16
generation 117
loading 131
temporary 119

EXPAND-COPY, Comopt 96
EXPAND-SUBSCHEMA, Comopt 96

expansion 43, 46
expansion levels of the COBOL2000 system 13
expert mode (SDF) 48
external references 117

resolution by TSOSLNK 124
External Symbol Dictionary (ESD) 141
EXTRA-ALTERNATE-KEYS, SDF operand 84

F
file attributes 183

indexed files 236
relative files 215
sequential files 190

file link names 178
file organization

indexed 236
relative 215
sequential 190

file processing 175
FILE STATUS clause

indexed files 240, 252
relative files 219, 231
sequential files 193, 210

FILE STATUS values
indexed files 253
sequential files 212

filename (data type) 53
files

assignment 178
assignment with the ADD-FILE-LINK

command 178
assignment with the ASSIGN command 182
basic concepts 175
blocked records 177
buffers 176
changing file assignment 180
data blocks 176
defining file attributes 183
DMS access methods 175
link names for the assignment of 178
organization forms 175
processing 175
record formats 176
records 176

Index

 383

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
ar

ch
 2

01
4

 S
ta

nd
 1

3:
32

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
O

B
O

L\
M

an
u

al
\b

h
b.

e
\c

o
b2

e.
si

x

files (cont.)
records fixed-length 176
records of undefined-length 176
relative file organization 215
sequential file organization 190
shared updating 257
sort-merge 277
specification of file attributes 183
variable-length records 176

fixed format 367
FLAG-NONSTANDARD, Comopt 97
FLAG-OBSOLETE, Comopt 97
FOR REMOVAL phrase 208
format control statements (TITLE, EJECT,

SKIP) 369
formation of element names for module output 37
free format 367
FUNCTION-ARGUMENTS, SDF operand 80
FUNCTION-ERR-RETURN, SDF operand 83

G
GENERATE-INITIAL-STATE, Comopt 97
GENERATE-LINE-NUMBER, Comopt 98, 348
GENERATE-LLM, Comopt 98
GENERATE-SHARED-CODE, Comopt 98, 137

I
I/O status, relative files 325
IGNORE-COPY-SUPPRESS, Comopt 98
IGNORE-EXTRA-ALTERNATE-KEYS,

Comopt 98
IGNORE-OPTION-DIRECTIVES, Comopt 99
ILCS (Inter-Language Communication

Services) 289
IMP Compiler-Action 110
IMP Listing-Option 111
IMP Print-Directives 112
IMP Runtime-Errors 113
implementor names

COMPILER-INFO 170
CPU-TIME 170
DATE-ISO4 170
JV-jvlink 165
PROCESS-INFO 170

implementor names (cont.)
TERMINAL 153
TERMINAL-INFO 170
TSW-0,...,TSW-31 159
USW-0,...,USW-31 159

IMPLICIT-SCOPE-END, SDF operand 70
index blocks, indexed files 237
indexed files

ACCESS MODE clause 239, 244
access modes 244
ASSIGN clause 239
attributes 236
BLOCK CONTAINS clause 240
block splitting 237
CLOSE statement 243
data blocks 236
dynamic access 244
FILE STATUS clause 240, 252
FILE STATUS values 253
file structure 236
index blocks 237
I-O statements 243
I-O status 252
key item declaration 242
language elements 238
open modes 245
OPEN statement 242
ORGANIZATION clause 239
PADDING-FACTOR operand 237
processing 236
processing modes 245
program skeleton for processing 238
random access 244
RECORD clause 241, 243
record description entry 242
RECORD KEY clause 240
SELECT clause 239
sequential access 244
shared updating of ISAM files 257
specification of record formats 243
START...KEY LESS 250
WRITE statement 245

INHIBIT 99
INHIBIT-BAD-SIGN-PROPAGATION 99

Index

384

input file, sort-merge 280
input procedure, sort-merge 278
input sources for the compiler 21
input to the compiler

of the compilation unit segments 26
via ASSIGN-SYSDTA command 25
via END statement 89
via SET-FILE-LINK command 91

INPUT...REVERSED phrase 208
input-output statements

indexed files 243
relative files 221
sequential files 195

input-output via system files 153
INSERT-ERROR-MSG, SDF operand 69
integer (data type) 54
interactive debugger, AID 304
Inter-Language Communication Services

(ILCS) 289
INVOKE 144
I-O status

for XML statements 273
indexed files 252
relative files 231
sequential files 210

ISAM file
indexed file organization 236
READ...[WITH NO LOCK] 258
relative file organization 215
shared updating 257
START...[WITH NO LOCK] 258
usable area 188

ISO 7-bit code, processing of files in 207

J
job switch

condition names for switch status 159
declare mnemonic names 159
example 161
interrogation in COBOL programs 160
language elements for accessing 159
setting in COBOL programs 160

job variables
declaring link names 165
declaring mnemonic names 165
example 167
language elements for accessing 165
monitoring 165
product characteristics 336
return codes upon compiler termination 40

job, definition 17
JV-jvlink, implementor name 165

K
K format, disks 187
K volumes 187
key item declaration

indexed files 242
relative files 221

keyword operands, SDF 48
K-ISAM file 188
K-SAM file 189

L
LAYOUT, SDF operand 71
LIBFILES, Comopt 99
LIBLINK, link name 73, 99
library elements, processing in a program 199
library listing

description 366
requesting 72

LIBRARY, SDF operand 57
line-sequential files 199
LINE-SIZE, SDF operand 71
LINES-PER-PAGE, Comopt 100
LINES-PER-PAGE, SDF operand 71
link names

COBLIB, COBLIB1 through COBLIB9 27
COBOBJCT 291
ERRLINK 72
for job variables 165
LIBLINK 99
LOCLINK 72
MERGEnn 179
OPTLINK 72
SORTCKPT 181, 281

Index

 385

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
ar

ch
 2

01
4

 S
ta

nd
 1

3:
32

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
O

B
O

L\
M

an
u

al
\b

h
b.

e
\c

o
b2

e.
si

x

link names (cont.)
SORTIN 179
SORTINnn 179
SORTOUT 179
SORTWK 179, 279
SORTWKn 179
SORTWKnn 179
SRCLIB 91
SRCLINK 72

linkage editor, functions 117
link-and-load module 63, 119

definition 16
linking 117

a COBOL-DML program 360
of a permanent executable program 122
of a prelinked module 122
of a program with segmentation 126
of a temporary executable program 129
program linkage 290
program with XML language elements 268
using BINDER 127, 294
using DBL 129
using TSOSLNK 122

List for Symbolic Debugging (LSD) 141
LISTFILES, Comopt 100
LISTING option 68
listing output 38

standard element names 73
standard file names 72
to a PLAM library 73
to cataloged files 72

listings, description 361
LLM (link-and-load module) 119

creation using BINDER 127, 294
format 63
object file 300

LMS, product characteristics 334
load module, definition 16
loading

a permanent executable program 131
a temporary executable program 129
dynamic 129
program linkage 290
program with XML language elements 268

loading (cont.)
static 131

LOAD-PROGRAM command 129
locator map listing

description 373
requesting 72

LOCLINK, link name 72
logical block 176
lp command 300
LSD (List for Symbolic Debugging) 141
LSD names

abbreviations of COBOL verbs 144
format for AID 143

M
magnetic tape files 208

assignment of 209
FOR REMOVAL phrase 208
INPUT...REVERSED phrase 208
language elements for processing 208
REEL phrase 208
WITH NO REWIND phrase 208

MARK-NEW-KEYWORDS, Comopt 100
MARK-NEW-KEYWORDS, SDF operand 70
MAX-ERROR-NUMBER, SDF operand 81
MAXIMUM-ERROR-NUMBER, Comopt 100
menu mode (SDF) 48
MERGE statement, sort-merge 277
MERGE-DIAGNOSTICS, Comopt 101
MERGEnn, link name 179
MERGE-REFERENCES, Comopt 101
MERGE-STATEMENT-ADDRESS, Comopt 101
messages of the COBOL2000 system 345
metacharacters SDF 52
methods (object-oriented) 147
MINIMAL-SEVERITY, Comopt 101
MINIMAL-WEIGHT, SDF operand 70
MODIFY-SDF-OPTIONS, SDF command 49
module generation

suppressing under COMOPT control 106
suppressing under SDF control 63

module output, element name formation 37
MODULE, Comopt 101
module, definition 16

Index

386

MODULE-ELEMENT, Comopt 102
MODULE-FORMAT, SDF operand 63
MODULE-GENERATION, SDF operand 63
MODULE-OUTPUT option 65
modules

of the COBOL2000 runtime system 351
MODULE-VERSION, Comopt 102
MONJV option of the compiler 82

N
NAME-INFORMATION, SDF operand 70
NK format, disks 187
NK volumes 187
NK-ISAM file 188
NK-SAM file 189
notational conventions of the manual 15

O
object module

definition 16
output to the EAM file 36
processing by the linkage editor 117

object program, definition 16
object-oriented COBOL programs

debugging 147
OM format 63
OPEN EXTEND

indexed files 245
relative files 224
sequential files 198

OPEN INPUT
indexed files 246
relative files 224
sequential files 197

OPEN I-O
indexed files 248
relative files 226
sequential files 198

open modes
indexed files 245
relative files 223

OPEN OUTPUT
indexed files 245
relative files 223
sequential files 197

OPEN statement
indexed files 242
relative files 221
sequential files 195

openUTM, brief description 339
operand form (SDF) 51
operating system information 170

example of a data structure 173
language elements for accessing 170
structure 171

OPTIMIZATION option 78
OPTIMIZE-CALL-IDENTIFIER, Comopt 102
OPTION-DIRECTIVES, SDF operand 64
options

input in expert mode 48
input in menu mode 49

options (SDF), overview 56
OPTIONS, SDF operand 69
OPTLINK, link name 72
ORGANIZATION clause

indexed files 239
relative files 218
sequential files 192

output file, sort-merge 280
output locations for the compiler 21
output procedure, sort-merge 278
OUTPUT, SDF operand 71
overflow block 188
overlay structure 126

P
PAM block 177
PAM file, structure 215
Pamkey 187
parametrized classes 43

expansion 43, 46
precompilation 43, 44
usage 43, 45

parametrized interfaces see parametrized classes
PERMIT-STANDARD-DEVIATION 103

Index

 387

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
ar

ch
 2

01
4

 S
ta

nd
 1

3:
32

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
O

B
O

L\
M

an
u

al
\b

h
b.

e
\c

o
b2

e.
si

x

physical block 177
PLAM library

characteristics 23
entering a compilation unit 24
types of elements 23

positional operands, SDF 49
POSIX file system 28, 57, 65, 74
POSIX files

compiler listing 300
LLM object file 300
processing 321

POSIX object file 300
POSIX subsystem 299
precompilation 43, 44
prelinked module

definition 16
link-editing with TSOSLNK 122

prelinking modules 293
prepare compilation unit

in cataloged file 22
PREPARE-FOR-JUMPS, SDF operand 77
primary assignments of the system files 156
print files 202

control characters for line spacing 204
control characters for skipping to punched tape

channels 204
language elements for the creation of 202
line-feed control characters 203
SYMBOLIC CHARACTERS clause 203

PRINT-DIAGNOSTIC-MESSAGES,
Comopt 103, 345

PRINT-MESSAGE-LIST, SDF operand 62
PROC-ARGUMENT-NR, SDF operand 80
procedures

behavior upon compiler termination 40
input procedure for sort-merge 278
output procedure for sort-merge 278

process, definition 17
PROCESS-INFO 171
processing

XML documents 267
processing modes

indexed files 245
relative files 223

program linkage 289
CALL identifier 290
CALL literal 290
linking and loading 290
notes on linking and loading 290

program termination 132
program, definition 16
P-S-D 103

R
random access

indexed files 244
relative files 222

READ statement, sequential files 197, 198
READ...[WITH NO LOCK] 258
Readme file 12
RECORD clause

indexed files 241, 243
relative files 220
sequential files 194, 196

record description entry
indexed files 242
relative files 220
sequential files 194

record formats
declaration for indexed files 243
declaration for relative files 222
declaration for sequential files 196

RECORD KEY clause, indexed files 240
record lock, shared updating 258, 259, 265
RECORDING MODE clause, sequential

files 194, 196
RECURSIVE-CALLS, SDF operand 80
REDIRECT-ACCEPT-DISPLAY, Comopt 103
REEL phrase 208
REF-MODIFICATION, SDF operand 80
relative file organization 215
relative files

ACCESS MODE clause 218, 222
access modes 222
ASSIGN clause 218
attributes 215
BLOCK CONTAINS clause 219
CLOSE statement 221

Index

388

relative files (cont.)
dynamic access 222
FILE STATUS clause 219, 231
I/O status 325
input-output statements 221
I-O status 231
key item declaration 221
language elements 217
open modes 223
OPEN statement 221
ORGANIZATION clause 218
processing 215
program skeleton for processing 217
random access 222
random creation (example) 228
RECORD clause 220
record description entry 220
record formats 222
RELATIVE KEY clause 219
SELECT clause 218
sequential access 222
shared updating of ISAM files 257
shared updating of PAM files 265
types of processing 223
WRITE statement 223

RELATIVE KEY clause, relative files 219
REPLACE-PSEUDOTEXT, Comopt 103
REPORT-2-DIGIT-YEAR, SDF operand 70
repository 35
repository data 23, 35
repository output 42
RERUN clause 286

for sort files 281
RESET-PERFORM-EXITS, Comopt 104
restarting 287

of sort programs 281
RESTART-PROGRAM command 287
return codes in job variables

at compiler termination 40
at program termination 132

RETURN-CODE
SDF operand 59
special register 93

REWRITE statement, sequential files 198

ROUND-FLOAT-RESULTS-DECIMAL,
Comopt 104

runtime system 117
RUNTIME-CHECKS option 79
RUNTIME-OPTIONS option 83

S
S variables 32, 72
SAM file 190

usable area 189
SDF control of the compiler 47
SDF expert mode 48
SDF menu mode 48

temporarily switching to 50
SDF operands

OPTION-DIRECTIVES 64
SDF options of the compiler

ACTIVATE-FLAGGING 61
COMPILER-ACTION 62
COMPILER-TERMINATION 81
LISTING 68
MODULE-OUTPUT 65
MONJV 82
RUNTIME-CHECKS 79
RUNTIME-OPTIONS 83
SOURCE 57
SOURCE-PROPERTIES 59
TEST-SUPPORT 76
VERSION 85

SDF, STANDARD-DEVIATION 60
SDF-P variable 169, 199
secondary key 84, 98, 240
segmentation 126
SEGMENTATION, SDF operand 64
SELECT clause

indexed files 239
relative files 218
sequential files 192

SEMANTIC-CHECK, SDF operand 62
SEPARATE-TESTPOINTS, Comopt 104
sequential access

indexed files 244
relative files 222
sequential files 196

Index

 389

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
ar

ch
 2

01
4

 S
ta

nd
 1

3:
32

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
O

B
O

L\
M

an
u

al
\b

h
b.

e
\c

o
b2

e.
si

x

sequential files 190
access mode 196
ACCESS MODE clause 192
ASSIGN clause 192
assignment of magnetic tape files 209
BLOCK CONTAINS clause 193
characteristics 190
CLOSE statement 195
COBOL language elements 191
creation of print files 202
declaration of record formats 196
FILE STATUS clause 193, 210
FILE STATUS values 212
I-O statements 195
I-O status 210
magnetic tape files in ISO 7-bit code 207
OPEN statement 195
ORGANIZATION clause 192
processing 190
processing in ASCII code 207
processing in ISO 7-bit code 207
processing of magnetic tape files 208
program skeleton for processing 191
READ statement 197, 198
RECORD clause 194, 196
record description entry 194
RECORDING MODE clause 194, 196
REWRITE statement 198
SELECT clause 192
WRITE statement 197, 198

SET-FILE-LINK command
assignment of dynamically loadable

subprograms 291
assignment of files 178
control over source data input 91
input of COPY elements 29
listings output to files 72

SET-FUNCTION-ERROR-DEFAULT,
Comopt 104

SET-VARIABLE command, SDF-P variable 169,
199

severity codes (error classes) 346
SHAREABLE-CODE, SDF operand 63, 137

shared updating 257
deadlock (PAM) 266
examples (ISAM) 262
ISAM files 257
PAM files 265
record lock (ISAM) 258, 259
record lock (PAM) 265
releasing a locked record (ISAM) 260
releasing a locked record (PAM) 265
updating of records (ISAM) 259
updating of records (PAM) 265

SHARED-UPDATE, simultaneous
processing 257

SHORTEN-OBJECT, Comopt 104
SHORTEN-XREF, Comopt 104
SIS code 325, 327
SKIP format control statement 370
sort file 279
sort file description entry 277
SORT parameter files 280
SORT statement 279
SORT-CCSN 282
SORTCKPT, link name 181, 281
SORT-CORE-SIZE, SORT special register 280
SORT-EBCDIC-DIN, Comopt 105, 278
SORT-FILE-SIZE, SORT special register 279
SORTIN, link name 179
sorting tables 281
SORTING-ORDER, SDF operand 71, 83, 278
SORTINnn, link name 179
SORT-MAP, Comopt 105
sort-merge 277

checkpointing and restart 281
input file(s) 280
input procedure 278
language elements 277
MERGE statement 277
output file 280
output procedure 278
RERUN clause 281
sort file 279
sort file description entry 277
SORT special register 279
SORT statement 277, 279

Index

390

SORT-MODE-SIZE, SORT special register 279
SORTOUT, link name 179
SORT-RETURN, SORT special register 280
SORTWK, link name 179, 279
SORTWKn, link name 179
SORTWKnn, link name 179
source data input 25

control via ASSIGN-SYSDTA command 25
control via SET-FILE-LINK command 91
controlled by the END statement 89
under COMOPT control 89
under SDF control 57

source format
fixed 367
free 367

source listing
description 363
requesting 72

SOURCE option of the compiler 57
source unit 17
SOURCE, SDF operand 69
SOURCE-ELEMENT, Comopt 105
SOURCE-PROPERTIES option 59
SOURCE-VERSION, Comopt 105
special register 279

SORT-CORE-SIZE 280
SORT-FILE-SIZE 279
SORT-MODE-SIZE 279
SORT-RETURN 280

SRCFILE, link name 57
SRCLIB, link name 57, 91
SRCLINK, link name 72
START...[WITH NO LOCK] 258
START...KEY LESS 250
START-COBOL2000-COMPILER, compiler call

command 48
starting

program with XML language elements 268
START-PROGRAM command 129

format for executable programs 131
static linkage editor (TSOSLNK) 119
static loader 131
static loader ELDE 120
STMT_ADDRESS, SDF operand 70

STMT-REFERENCE, SDF operand 76
structure

of a COBOL-DML program 358
of the COBOL2000 compiler 349
of the COBOL2000 runtime system 351

subprogram call
CALL identifier 290
CALL literal 290

SUBSCHEMA-EXPANSION, SDF operand 69
suffixes for data types, SDF 55
SUPPRESS-GENERATION, SDF operand 63,

71
SUPPRESS-LISTINGS, Comopt 106
SUPPRESS-MODULE, Comopt 106
SYMBOLIC CHARACTERS clause 203
SYMTEST

Comopt 106
TSOSLNK operand 123

syntax description (SDF) 52
SYNTAX-CHECK, SDF operand 62
SYSDTA

assignment of the compilation unit via 25, 89
reassignment 157

SYSLIST, Comopt 106
system files 153

assignments 156
input-output via 153
language elements for accessing 153
reassignments 157

T
TABLE-SUBSCRIPTS, SDF operand 79
task file table (TFT) 183

creating (example) 185
task information 170
task, definition 17
terminal information 170
TERMINAL, implementor name 153
TERMINAL-INFO 170, 172
TERMINATE-AFTER-SEMANTIC, Comopt 106
TERMINATE-AFTER-SYNTAX, Comopt 107
termination behavior

of COBOL programs 132
of the COBOL2000 compiler 40

Index

 391

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.3

2u
s

fü
r

F
ra

m
e

M
ak

e
r

V
7.

x
vo

m
 2

8
.0

3.
20

07
©

 c
og

n
ita

s
G

m
bH

 2
00

1
-2

00
7

1
7.

 M
ar

ch
 2

01
4

 S
ta

nd
 1

3:
32

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
O

B
O

L\
M

an
u

al
\b

h
b.

e
\c

o
b2

e.
si

x

terminology 16
testing programs

user-defined types 149
TEST-SUPPORT option 76
TEST-WITH-COLUMN1, Comopt 107
TFT (task file table) 183
TITLE format control statement 369
TSOSLNK 119

autolink procedure 124
control statements (table) 123
linking a segmented program 126
static linkage using 122

TSW-0,...,TSW-31, implementor names 159

U
UDS/SQL, database operation 358
UPDATE-REPOSITORY, Comopt 107
UPDATE-REPOSITORY, SDF operand 64
usage 43, 45
USE-APOSTROPHE, Comopt 107
user switch

declare mnemonic names 159
define condition names for switch status 159
example 163
interrogation in COBOL programs 160
language elements for accessing 159
setting in COBOL programs 160

user-defined types 149
USW-0,...,USW-31, implementor names 159

V
VERSION option 85
VERSION, SDF operand 58, 66
version, specification of 66, 102

W
WITH DEBUGGING MODE clause 152
WITH NO REWIND phrase 208
WRITE statement

indexed files 245
relative files 223
sequential files 197, 198

X
XML document

encoding identification 270
XML documents

processing 267
XML parser

obtaining 272
XML statements

extended I-O status 273
XML-SUPPORT 267

Index

392

	Contents
	Preface
	Objectives and target groups of this manual
	Summary of contents
	Expansion levels of the COBOL2000 system
	Changes compared to the predecessor version
	Notational conventions
	Definitions of terms used in this manual

	From compilation unit to executable program
	Preparing the compilation unit
	Input from cataloged files
	Input from PLAM libraries

	Source data input
	Assigning the compilation unit with the ASSIGN-SYSDTA command
	Input of program segments
	Assignment to compiler variables to control source text manipulation

	I/O for repositories
	Principle of a repository
	Assigning a repository

	Output from the compiler
	Output of modules
	Output of listings and messages

	Compiler control options
	Terminating the compiler run
	Compiling a compilation group
	Parametrized classes and interfaces

	Controlling the compiler via SDF
	Calling the compiler and entering options
	SDF expert mode
	SDF menu mode

	SDF syntax description
	SDF options for controlling the compiler run
	SOURCE option
	SOURCE-PROPERTIES option
	ACTIVATE-FLAGGING option
	COMPILER-ACTION option
	MODULE-OUTPUT option
	LISTING option
	TEST-SUPPORT option
	OPTIMIZATION option
	RUNTIME-CHECKS option
	COMPILER-TERMINATION option
	MONJV option
	RUNTIME-OPTIONS option
	VERSION option

	Controlling the compiler with COMOPT statements
	Source data input under COMOPT control
	Assigning the compilation unit with the END statement
	Assigning the compilation unit with the ADD-FILE-LINK command and COMOPT SOURCE-ELEMENT

	Table of COMOPT operands

	Controlling the compiler with compiler directives
	IMP COMPILER-ACTION
	IMP LISTING-OPTIONS
	IMP PRINT-DIRECTIVES
	IMP RUNTIME-ERRORS

	Linking, loading, starting
	Functions of the linkage editor
	Static linkage using TSOSLNK
	Linking using BINDER
	Dynamic linking and loading using DBL
	Loading and starting executable programs
	Program termination
	Shareable COBOL programs

	Debugging aids for program execution
	Advanced Interactive Debugger (AID)
	Conditions for symbolic debugging
	Symbolic debugging with AID
	Predefined information
	Notes on symbolic debugging of nested programs
	Notes on debugging object-oriented COBOL programs
	Information on testing programs with user-defined types

	Debugging lines

	Interface between COBOL programs and BS2000/OSD
	Input/output via system files
	COBOL language elements
	System files: primary assignments, reassignments, record formats

	Job switches and user switches
	Job variables
	Accessing an environment variable
	Compiler and operating system information

	Processing of cataloged files
	Basic information on the structure and processing of cataloged files
	Basic concepts relating to the structure of files
	Assignment of cataloged files
	Definition of file attributes
	Disk and file formats

	Sequential file organization
	Characteristics of sequential file organization
	COBOL language tools for the processing of sequential files
	Permissible record formats and access modes
	Open modes and types of processing (sequential processing)
	Line-sequential files
	Creating print files
	Processing files in ASCII or in ISO 7-bit code
	Processing magnetic tape files
	I-O status

	Relative file organization
	Characteristics of relative file organization
	COBOL language tools for processing relative files
	Permissible record formats and access modes
	Open modes and types of processing (relative files)
	Random creation of a relative file
	I-O status

	Indexed file organization
	Characteristics of indexed file organization
	COBOL language tools for the processing of indexed files
	Permissible record formats and access modes
	Open modes and types of processing (indexed files)
	Positioning with START
	I-O status

	Shared updating of files (SHARED-UPDATE)
	ISAM files
	PAM files

	Processing XML documents
	Making XML documents available
	Using XML language elements in programs
	Linking, loading, starting programs with XML language elements
	Encoding identification
	Obtaining the parser
	Extended I-O status for XML statements (CBX code)

	Sorting and merging
	COBOL language elements for sorting and merging files
	Files for the sort program
	Checkpointing and restart for sort programs
	Sorting tables
	Sorting with extended character sets

	Checkpointing and restart
	Checkpointing
	Restart

	Program linkage
	Linking and loading subprograms
	COBOL special register RETURN-CODE
	Passing parameters to programs in other languages
	Unloading COBOL subroutines

	COBOL2000 and POSIX
	Overview
	Compiling
	Linking
	Debugging

	Reading in the compilation unit
	Controlling the compiler
	General options
	Option for compiler statements
	Option for compiler listing output
	Options for the linkage run
	Debugger option
	Input files
	Output files

	Introductory examples
	Comparison with COBOL2000 in BS2000
	Restrictions on the functionality of the language
	Extensions to the functionality of the language
	Differences in the program/operating system interfaces

	Processing POSIX files
	Program execution in the BS2000 environment
	Program execution in the POSIX shell
	I-O status

	Useful software for COBOL users
	Advanced Interactive Debugger (AID)
	Library Maintenance System (LMS)
	Job variables
	Database interface ESQL-COBOL
	Universal Transaction Monitor openUTM
	Net Express® development environment with the BS2000/OSD option

	Messages of the COBOL2000 system
	Appendix
	Structure of the COBOL2000 system
	Structure of the COBOL2000 compiler
	The COBOL2000 runtime system

	Database operation (UDS/SQL)
	Description of listings
	Header line
	Control statement listing
	Source listing for a compilation unit
	Format control statements TITLE, EJECT, SKIP
	Diagnostic (error message) listing
	Locator map listing

	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

