
UNIX Communications

XTI V6.0/V5.1
X/Open Transport Interface

Dr. Walther
Siemens Nixdorf Informationssysteme AG
81730 Munich
e-mail: email:manuals@fujitsu-siemens.com
Tel.: 122
Fax: 0 700 / 372 00000
U20225-J-Z145-3-76
Sprachen: En

Edition December 2001

This manual is printed on
paper treated with
chlorine-free bleach.

Comments… Suggestions… Corrections…
The User Documentation Department would like to
know your opinion of this manual. Your feedback helps
us optimize our documentation to suit your individual
needs.

Fax forms for sending us your comments are included in
the back of the manual.

There you will also find the addresses of the relevant
User Documentation Department.

Certified documentation
according DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system
which complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks
Copyright © 2001 Fujitsu Siemens Computers GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

http://www.cognitas.de

Preface

Overview of XTI

Address translation

Supplements to the function library

Supplements to the options

Supplements to event management

Read/write interface

XTI library trace

Reference section and index

U20225-J-Z145-3-76

Contents
1 Preface . 1
1.1 Brief description of the product XTI 1
1.2 Target group . 1
1.3 Summary of contents . 1
1.4 README files . 2
1.5 Changes since the last version of the manual 2

2 Overview of XTI . 3
2.1 XTI components . 3
2.1.1 Function library . 3
2.1.2 Header files . 5
2.1.3 xtil library trace program . 6
2.1.4 Integration of XTI in the communication software 6
2.2 Runtime environment of XTI 7
2.3 Preparing XTI for operation . 7
2.3.1 Installation . 7
2.3.2 Compiling and linking . 7

3 Address translation . 9
3.1 Address management with TNS 9
3.1.1 TNS . 9
3.1.2 TS directory . 10
3.1.3 GLOBAL NAME . 11
3.1.4 Properties . 14
3.1.5 Transport services and LOCAL NAMES 16
3.2 Access functions t_getaddr(), t_getloc(), and t_getname() . . . 19
3.2.1 t_getaddr() - get transport address 20
3.2.2 t_getloc() - get local name 23
3.2.3 t_getname() - get name . 26
3.3 NETDIR access functions . 29
3.3.1 netdir_getbyname() - map a GLOBAL NAME

to a LOCAL NAME or to a TRANSPORT ADDRESS 30
3.3.2 netdir_getbyaddr() - map a TRANSPORT ADDRESS

to a GLOBAL NAME . 32
3.3.3 taddr2uaddr() - map a TRANSPORT ADDRESS

to a universal address . 34
3.3.4 uaddr2taddr() - map a universal address

to a TRANSPORT ADDRESS 35
3.3.5 netdir_options() - interface to transport service options 36
3.3.6 netconfig - network configuration file 37

 U20225-J-Z145-3-76

Contents

3.4 Address management with DIR.X 39
3.4.1 Introduction . 39
3.4.2 The DIR.X Name Service . 39
3.4.3 Requirements on communications applications 42
3.4.4 Parameterization of DIR.X . 44
3.4.4.1 Facilities for the NSCONTROL variable 45
3.4.4.2 Facilities for the MAPRULES variable 49
3.4.5 Mapping to local address formats 49

4 Supplements to the function library 51
4.1 t_accept() - accept a connect request 54
4.2 t_alloc() - allocate a library structure 56
4.3 t_bind() - bind an address to a transport endpoint 57
4.4 t_connect() - establish a connection with another transport user 59
4.5 t_error() - produce error message 61
4.6 t_free() - free a library structure 62
4.7 t_getinfo() - get protocol-specific service information 63
4.8 t_listen() - listen for a connect request 64
4.9 t_look() - look at the current event on a transport endpoint . . . 66
4.10 t_open() - establish a transport endpoint 67
4.11 t_rcv() - receive data or expedited data sent over a connection . 73
4.12 t_rcvconnect() - receive the confirmation

from a connect request . 74
4.13 t_rcvdis() - retrieve information from disconnect 76
4.14 t_rcvrel() - acknowledge receipt of an orderly release indication 80
4.15 t_rcvudata() - receive a data unit 81
4.16 t_rcvuderr() - receive a unit data error indication 82
4.17 t_snd() - send data or expedited data over a connection 83
4.18 t_snddis() - send user-initiated disconnect request 85
4.19 t_sndrel() - initiate an orderly release 86
4.20 t_sndudata() - send a data unit 87
4.21 t_sync() - synchronize transport library 88
4.22 t_sysconf() - get configurable XTI variables 89
4.23 t_unbind() - disable a transport endpoint 90

5 Supplements to the options 91
5.1 t_optmgmt() - manage options for a transport endpoint 91

6 Supplements to event management 95
6.1 poll() - multiplex input and output entities 96
6.2 select() - multiplex file descriptors 97

U20225-J-Z145-3-76

Contents

7 Read/write interface . 99
7.1 read() - read from a file . 99
7.2 write() - write to file . 100

8 XTI library trace . 101
8.1 XTITRACE - control the trace 102
8.2 xtil - edit the trace information 104

Glossary . 107

Abbreviations . 113

Tables . 115

References . 117

Index . 119

U20225-J-Z145-3-76 1

1 Preface

1.1 Brief description of the product XTI

XTI (X/Open Transport Interface) is the X/Open standard for an application
program interface to transport systems. It is described in an X/Open Networking
Services (XNS) [5] that is part of the UNIX specification. This product imple-
ments XTI in your Reliant UNIX / Solaris system.

1.2 Target group

This manual is intended for programmers of communications applications.
Communications applications are C user programs that exchange messages
with other communications applications in the network.

The programmer is expected to have a good knowledge of the C programming
language. A knowledge of the principles and methods of teleprocessing would
also be helpful, in particular of the OSI Reference Model as standardized in
ISO 7498.

1.3 Summary of contents

This manual complements the X/Open Networking Services (XNS) [5] and
should be used in conjunction with it. It deals with those aspects which are not
defined in the X/Open standard and are thus implementation-defined. These
aspects are, for example, the names of the transport providers, addresses,
supported options, and trace facilities.

When creating XTI applications, therefore, you must refer to the “X/Open
Networking Services (XNS)” [5].

2 U20225-J-Z145-3-76

README files Preface

1.4 README files

For functional modifications and supplements to the current product version not
included in this manual, you may have to refer to the product-specific README
files. These are located on your Reliant UNIX system under the directory
/opt/readme/XTI and on your Solaris system under the directory
opt/SMAW/documents/CMX, provided that your system administrator installed the
README supplied with the product. The README files can be read using an
editor, or printed on a standard printer.

1.5 Changes since the last version of the
manual

The system Solaris has been added. The expression UNIX in the manual corre-
sponds to Reliant UNIX and Solaris.

U20225-J-Z145-3-76 3

2 Overview of XTI
The product XTI is the implementation of the X/Open Transport Interface (see
the “X/Open Networking Services (XNS)” [5]), and provides communications
applications with a program interface for uniform access to all transport
services. Communications applications are transport system users as defined
by X/Open. The interface has been implemented as a set of C functions which
are contained in a function library. The name of the function library is specified
in the Release Notice.

This chapter provides an overview of how XTI is integrated in the communi-
cation software of your end system. It describes the environment required for
developing and running XTI applications.

2.1 XTI components

The software product XTI V5.1 comprises a function library, the header files
<xti.h>, <xti_inet.h> and <xti_osi.h> and the library trace program xtil.

2.1.1 Function library

This library contains the general XTI calls and the functions for accessing the
Name Service. General XTI calls are:

XTI call Meaning

t_accept accept a connect request

t_alloc allocate a library structure

t_bind bind an address to a transport endpoint

t_close close a transport endpoint

t_connect establish a connection with another transport user

t_error produce error message

t_free free a library structure

t_getinfo get protocol-specific service information

t_getprotaddr get protocol address

Table 1: General XTI calls

4 U20225-J-Z145-3-76

XTI components Overview of XTI

The general XTI calls are described in the “X/Open Networking Services (XNS)”
[5].

t_getstate get current state

t_listen listen for a connect request

t_look look at the current event on a transport endpoint

t_open establish a transport endpoint

t_optmgmt manage options for a transport endpoint

t_rcv receive data or expedited data sent over a connection

t_rcvconnect receive the confirmation from a connect request

t_rcvdis retrieve information from disconnect

t_rcvrel acknowledge receipt of an orderly release indication

t_rcvreldata receive an orderly release indication and any user data sent
with the release

t_rcvudata receive a data unit

t_rcvuderr receive a unit data error indication

t_rcvvudata receive a data unit in non-contiguous buffers

t_rcvv receive normal or expedited data in non-contiguous buffers

t_snd send data or expedited data over a connection

t_snddis send user-initiated disconnect request

t_sndrel initiate an orderly release

t_sndreldata initiate an orderly release sending user data with the release

t_sndudata send a data unit

t_sndvudata send a data unit from non-contiguous buffers

t_sndv send normal or expedited data from non-contiguous buffers

t_strerror supply error message text

t_sync synchronize transport library

t_sysconf determine the current value of configurable and implemen-
tation-dependent XTI limits.

t_unbind disable a transport endpoint

XTI call Meaning

Table 1: General XTI calls

U20225-J-Z145-3-76 5

Overview of XTI XTI components

Functions for accessing the Name Service:

The functions for accessing the Name Service are described in section “Access
functions t_getaddr(), t_getloc(), and t_getname()” on page 19.

2.1.2 Header files

The header files contain the structures and constants used by XTI. The
following header files are available:

For implications of the header files <xti.h>, <xti_inet.h> and <xti_osi.h> refer to
section “Compiling and linking” on page 7 and also to the “X/Open Networking
Services (XNS)” [5].

Function Meaning

t_getaddr get transport address

t_getloc get local name

t_getname get global name

netdir_getbyname map a GLOBAL NAME to a LOCAL NAME or to a
TRANSPORT ADDRESS

netdir_getbyaddr map a TRANSPORT ADDRESS to a GLOBAL NAME

taddr2uaddr map a TRANSPORT ADDRESS to a universal address

uaddr2taddr map a universal address to a TRANSPORT ADDRESS

netdir_options interface to transport service options

netconfig network configuration file

Table 2: Functions for accessing the Name Service

Header file Content

<xti.h> general definitions

<xti_inet.h> IP-specific definitions

<xti_osi.h> ISO-specific definitions

Table 3: Header files and applications

6 U20225-J-Z145-3-76

XTI components Overview of XTI

2.1.3 xtil library trace program

This processes information from the XTI library trace. See also chapter “XTI
library trace” on page 101.

2.1.4 Integration of XTI in the communication software

The product is embedded in the CMX infrastructure (see figure 1). To access an
ISO, ISO-over-TCP (RFC1006), or NEA transport service, the XTI function
library calls the CMX automaton in the operating system kernel. The CMX
automaton coordinates the communication activities in the system and relays
the messages to the correct transport service provider.

The situation is different for TCP/IP and UDP/IP. The XTI function library directly
accesses these protocols via a STREAMS system interface.

A schematic overview is given in figure 1.

Figure 1: Integration of XTI in the communication software

Communications
application

XTI library

CMX automation

LAN/WAN access

OSI
TP4

OSI
TP0/2

NEA NTP*) LOOP
BACK

RFC
1006

TCP UDP

IP

User level

Transport
system
provider

Network access

*) XTI: The provider NTP is available only for special releases.

U20225-J-Z145-3-76 7

Overview of XTI Runtime environment of XTI

2.2 Runtime environment of XTI

In order to develop communications applications with XTI, all you need to do is
to install XTI V5.1, i.e. you can write, compile, and link source programs using
the XTI function library.

The environment required by an XTI application at runtime depends on the
transport systems used for communication.

This XTI product provides access to the OSI (including RFC1006 over TCP/IP),
NEA, TCP/IP (native), UDP/IP, and loop-back transport services in your system.
These services are not part of this product; they are either supplied with the
UNIX operating system (as TCP/IP or UDP) or can be ordered separately. CMX
is needed if your application programs are meant to work with transport systems
different from UDP/IP and TCP/IP (native).

2.3 Preparing XTI for operation

2.3.1 Installation

The installation of XTI depends on the respective operating system version and
is described in the Release Notice. The installation of XTI is sufficient for devel-
oping XTI applications and to run XTI applications across TCP/IP and UDP/IP.
The product CMX must be installed if communication across RFC1006-over-
TCP is required. To use other transport systems, CMX and the respective
product of the CCP product family must be installed.

In most cases, the communication addresses of the applications are adminis-
tered by the Transport Name Service (TNS), a component on CMX. Details
concerning the administration of communication addresses can be found in the
manual “CMX, Operation and Administration” [1].

2.3.2 Compiling and linking

By including the header file <xti.h> into an application source program, all struc-
tures and constants relevant for XTI usage are made available. All you need to
do is to enter the statement inside the source program xti.prog.c:

inside xtiprog.c enter: #include <xti.h>

8 U20225-J-Z145-3-76

Preparing XTI for operation Overview of XTI

By default <xti.h> encompasses generic XTI symbols as well as definitions that
are specific for OSI transport protocols respectively Internet protocols. If a
communication application does not require (all of) the protocol dependent
symbols, XTI 5.1 offers the following means to reduce the overhead within
<xti.h>:

– By specifying option “-D_XOPEN_SOURCE=500” when compiling the appli-
cation source program the header file <xti.h> will be reduced to contain
generic XTI symbols only, thus omitting all protocol-dependent definitions.
This should suffice for most applications except those that use protocol-
specific features such as option handling. All you need to do is to enter the
following two statements inside the source program xti.prog.c respectively
when compiling the source program:

– If a communications application is specifically designed for a certain
protocol- group (OSI or IP), use option “-D_XOPEN_SOURCE=500” at
compilation time and include one of the protocol-specific header files
<xti_inet.h> respectively <xti_osi.h> to your application program.

In a system with the X/Open UNIX brand, the XTI functions are recognized by
the C compiler if it is called with the operand -lxnet. The operand may be
different in non-branded systems. The release notice describes exactly which
operand should be used depending on the UNIX version.

inside xtiprog.c enter: #include <xti.h>

when compiling xtiprog.c
enter: cc xtiprog.c -D_XOPEN_SOURCE=500 ...

inside xtiprog.c enter: #include <xti.h> and

#include <xti_osi.h> respectively

#include <xti_inet.h>

when compiling xtiprog.c

enter cc xtiprog.c -D_XOPEN_SOURCE=500 ...

U20225-J-Z145-3-76 9

3 Address translation

3.1 Address management with TNS

3.1.1 TNS

The TNS is not necessary (though useful) for communication via TCP/IP and
UDP/IP.

The Transport Name Service TNS provided by CMX can be used to manage the
names and addresses of communications applications. The TNS reads the
address information from a directory known as the TS directory (Transport
System directory). The address information for each communications appli-
cation is stored here under its symbolic name, i.e. the GLOBAL NAME of the
communications application. The TS directory must contain information on all
communications applications residing in the local system and on potential
communication partners in remote systems.

The User Interfaces CMXGUI, CMXCUI and CMX command line interface
support the system administrator when creating and maintaining this directory.
They are described in the manual “CMX, Operation and Administration” [1]. This
section describes the TS directory (directory of names and addresses), the
names and properties of communications applications managed by TNS, and
the function calls used for obtaining names and addresses from TNS.

The X/Open standard XTI does not define how the appropriate addresses are
to be supplied to the structures involved in linking up with an access point to the
transport services and in establishing a transport connection. The communica-
tions application must either pass the transport address of the remote commu-
nications application to XTI or assign (“bind”) a protocol address to a transport
endpoint. For communication via transport service providers that are accessed
via CMX, these addresses are managed in a register of names and addresses,
the TS directory. In case of TCP/IP and UDP/IP, these addresses can either be
managed in the TS directory itself or generated by the communications appli-
cation (see “Features of TCP/IP and UDP/IP” on page 17). The TNS service
(Transport Name Service in UNIX) manages the addresses in the TS directory.
The TNS is described in the manual “CMX, Operation and Administration” [1]).

10 U20225-J-Z145-3-76

TS directory Address translation

Each communications application, whether local or remote, is assigned a logical
name. These names permit the communications applications to be uniquely
identified throughout the network, i.e. different communications applications
have different names. These names are called the GLOBAL NAMES of the
communications applications. The GLOBAL NAME identifies the communica-
tions application concerned in a way suitable for the user. The GLOBAL NAMES
of all communications applications in the local system and all communications
applications in remote systems with which the local communications applica-
tions wish to communicate are registered in the TS directory. The structure of
the GLOBAL NAMES is described in a later section.

In the TS directory, the GLOBAL NAMES are assigned the properties of the
corresponding communications applications. A local communications appli-
cation has the property LOCAL NAME. The LOCAL NAME must be passed to
XTI together with the t_bind() call. A remote communications application has the
property TRANSPORT ADDRESS. The TRANSPORT ADDRESS is passed to
XTI during the connection establishment phase. LOCAL NAME and
TRANSPORT ADDRESS are machine-oriented data, their format and contents
depend on the underlying communication network and its current configuration.
In order to be independent of these, communications applications use the
GLOBAL NAMES only. They issue special function calls to query the LOCAL
NAMES and TRANSPORT ADDRESSES associated with the GLOBAL
NAMES and pass them on to XTI unchecked. A communications application
can likewise obtain the GLOBAL NAME associated with a TRANSPORT
ADDRESS.

3.1.2 TS directory

The TS directory consists of entries each of which contains information about a
communications application in the form of properties. The entries are identified
by the GLOBAL NAME of the communications application and are arranged in
the form of a naming tree.

The TNS supports up to 9 different TS directories with the identifications 1-9.
The TS directories are stored in the file system as directories:

DIR<id>
<id> = identification = 1,...,9

See manual “CMX, Operation and Administration” [1] for the information where
these directories are stored in your system’s file system.

U20225-J-Z145-3-76 11

Address translation GLOBAL NAME

Using one of the User Interfaces, the system administrator defines one of the
TS directories as the standard TS directory.

It is possible to list such a directory with the usual UNIX tools, but the files
contained there are made up primarily of non-printable information. However,
the TS directories can be formatted into printable text (see manual “CMX,
Operation and Administration” [1]). The CMX User Interfaces can also be used
by the system administrator to create and update a TS directory.

I A TS directory cannot be deleted or transported to another computer
using the normal tools provided by the system. The functions of the User
Interfaces (see manual “CMX, Operation and Administration” [1]) must
be used to do this. Only these interfaces ensure that the caches are
synchronized correctly with the files on secondary storage.

3.1.3 GLOBAL NAME

The GLOBAL NAME of a communications application is a hierarchically struc-
tured name. It consists of any subset of up to 5 name parts, name part[1] (NP1)
through name part[5] (NP5). Of these, name part[1] is the highest in the
hierarchy, name part[5] the lowest. Not all levels of the hierarchy need be
present in a GLOBAL NAME. Apart from the hierarchical order, TNS makes no
further specifications regarding the meanings of the name parts within a
GLOBAL NAME. The hierarchical structure permits the GLOBAL NAMES to be
arranged in a naming tree (the “global naming tree”). The figure “Example of a
naming tree of GLOBAL NAMES” on page 12 shows an example of a naming
tree.

The tree consists of three elements:

– the root (ROOT),

– the nodes, also called NonLeafEntities,

– the leaves, also called LeafEntities.

The tree grows top down.

12 U20225-J-Z145-3-76

GLOBAL NAME Address translation

Figure 2: Example of a naming tree of GLOBAL NAMES

This results in a GLOBAL NAME having the following features:

● A GLOBAL NAME corresponds to a path in a naming tree from the root to a
leaf or node, with the name parts corresponding to the path components.

● Following the hierarchy, an additional name part can be attached to the root
or to a node, simultaneously determining whether the resulting path is to
lead to a node or a leaf. A name part thus leads from the root or from a node
to another node or to a leaf.

● All name parts can be path components leading to a leaf. Except for name
part[5], all name parts can be path components leading to a node.

● Properties can be assigned to a leaf only.

In the function calls described in section “Access functions t_getaddr(),
t_getloc(), and t_getname()” on page 19, the GLOBAL NAME must be specified
as a null-terminated character string of the following format

“NP5.NP4.NP3.NP2.NP1”

root (ROOT)

1 D 1 US 4 Hugo

2 SNI-AG 2 HAL 2 BU&B

3 Mch-P 3 Mch-H i name part[i]
of a node

i name part[i]
4 DF1 4 Meier of a leaf

5 G.Meier 5 Hardwired 5 Pencilpusher

U20225-J-Z145-3-76 13

Address translation GLOBAL NAME

The NPi (i=1,2,3,4,5) are the name parts of the GLOBAL NAME, with NP5 being
name part[5], the name part of the lowest hierarchical level. NP1 is name
part[1], i.e. the name part of the highest hierarchical level. The remaining name
parts must be specified in ascending hierarchical order, starting from left to
right.

If any of the name parts of a GLOBAL NAME is not used (e.g. NP4) but followed
by another name part of a higher hierarchical level (e.g. NP3), the separator (.)
belonging to the omitted name part must be specified. A sequence of
separators at the end of a GLOBAL NAME can be omitted.

The GLOBAL NAME would in this case be specified as: “NP5..NP3”.

In figure “Example of a naming tree of GLOBAL NAMES” on page 12, for
instance, the leaf “Hugo” given as name part[4] appears directly under the root.
This GLOBAL NAME is passed as “.Hugo”.

If the character which serves as the separator, i.e. the period (.), is used within
a name part (as in G.Meier) it must be specified as \. (backslash period).

Examples:

The GLOBAL NAMES are assigned by the administration.

1. GLOBAL NAME: name part[1] = D

name part[2] = SNI-AG

name part[3] = MCH-P

name part[4] = DF1

name part[5] = G.MEIER

Specify as: G\.MEIER.DF1.MCH-P.SNI-AG.D”

1. GLOBAL NAME: name part[1]= US

name part[2]= BU&B

name part[5]= PENCILPUSHER

Specify as: PENCILPUSHER...BU&B.US”

14 U20225-J-Z145-3-76

Properties Address translation

3.1.4 Properties

The GLOBAL NAMES representing the communications applications in the TS
directory are assigned the properties shown in figure 3. The TNS also recog-
nizes user-specific properties, which can be entered, if required, in the TS
directory using a CMX User Interface. However, XTI applications cannot read
these properties from the TS directory.

This section only describes the properties relevant for the developer of XTI
applications. A detailed description of all properties is given in the manual
“CMX, Operation and Administration” [1]).

Figure 3: Properties of communications applications

Properties of a local communications application

A local communications application is entered in the TS directory with the
property LOCAL NAME.

The LOCAL NAME property of a communications application is required in
order to bind this communications application to a transport provider. This
property must be passed to XTI when t_bind() is called. It comprises one or
more T-selectors, which are the addresses of a communications application in
the local end system for the various transport service providers. The LOCAL
NAME is a hexadecimal string of non-printable characters. For a more detailed
description see below.

The LOCAL NAME of a communications application can be established from
the GLOBAL NAME by calling t_getloc().

local communications application remote communications application

GLOBAL NAME GLOBAL NAME

TS_LNAME: LOCAL NAME

: hexadecimal string : hexadecimal string

: binary digit

: TS_NEA for NEA transport services
: TS_ISO for OSI WAN transport services
: TS_LAN for OSI LAN transport services

TS_TRANS: TRANSPORT ADDRESS

TS_ROUT: ROUTING INFORMATION

TS_TRSYS: TRANSPORT SYSTEM

U20225-J-Z145-3-76 15

Address translation Properties

Properties of a remote communications application

For a remote communications application, i.e. an application residing in another
system, the properties TRANSPORT ADDRESS, ROUTING INFORMATION
and TRANSPORT SYSTEM are recorded in the TS directory.

The value of the TRANSPORT ADDRESS property is the communication
partner’s address which XTI expects at connection setup. It is read from the TS
directory by calling t_getaddr(). The call t_getname() serves to convert the
TRANSPORT ADDRESS into the communication partner’s GLOBAL NAME.

The TRANSPORT ADDRESS is a hexadecimal string of non-printable
characters. For a more detailed description see below.

The properties LOCAL NAME and TRANSPORT ADDRESS

A transport service access point (abbreviated TSAP) is uniquely assigned to a
communications application when t_bind() is called. The TSAP is identified by
the LOCAL NAME of the communications application. The TSAP can be used
by the communications application to access the transport service provider for
communication purposes. The T-selectors contained in the LOCAL NAME
determine which transport service provider, i.e. which network interface, can be
accessed by the communications application. A T-selector can be valid for more
than one transport service provider.

The communications application can be addressed from the network using the
T-selector. The T-selector is part of the TRANSPORT ADDRESS of the
respective network. The communications application can be uniquely
addressed throughout the network using the TRANSPORT ADDRESS.

In accordance with OSI regulations, the TRANSPORT ADDRESS comprises
the network address of the end system containing the communications appli-
cation and the T-selector unique in this end system:

TRANSPORT ADDRESS = network address of end system + T-selector

The diagram below clarifies the relationship between LOCAL NAME,
TRANSPORT ADDRESS and TSAP.

16 U20225-J-Z145-3-76

Transport services and LOCAL NAMES Address translation

Figure 4: TRANSPORT ADDRESS and LOCAL NAME

The sections ““Transport services and LOCAL NAMES” on page 16” and
““t_open() - establish a transport endpoint” on page 67” describe the required
structure of a LOCAL NAME, i.e. the T-selectors it must contain if it is to match
the transport service specified in the t_open() call. The section on “Transport
services and LOCAL NAMES” also indicates points to be observed when
assigning a LOCAL NAME.

The required composition of the T-selectors for the individual transport providers
is described in the manual “CMX, Operation and Administration” [1]).

3.1.5 Transport services and LOCAL NAMES

As described in section “Properties” on page 14, the LOCAL NAME of a
communications application consists of one or more T-selectors, each of which
refers to a specific group of transport providers (CCPs). In the section “t_open()
- establish a transport endpoint”, table “Association of transport services with
CCP profiles” on page 69 shows which T-selectors are of significance for the
individual transport services. Similar rules apply to the TRANSPORT
ADDRESSES. These contain a type field whose value must match the transport
service.

GLOBAL NAME

communications

bound via bound via
LOCAL NAME LOCAL NAME
T-selectors T-selectors

TSAPs TSAPs

TRANSPORT ADDRESS TRANSPORT ADDRESS
(network address + T-selector) (network address + T-selector)

network

application

GLOBAL NAME

communications
application

U20225-J-Z145-3-76 17

Address translation Transport services and LOCAL NAMES

Communications applications for different transport services using the
same LOCAL NAME

ISO and NEA transport addresses and TCP/IP or UDP/IP transport addresses
cannot be bound to a transport endpoint at the same time. The following
convention therefore applies:

If a LOCAL NAME includes entries for the TCP/IP or UDP/IP type as well as for
the other types, t_getloc() only returns the entries for the TCP/IP and UDP/IP
types.

When defining the LOCAL NAME, it is recommended not to include both entries
for the TCP/IP and UDP/IP types and entries for other types.

In accordance with XTI rules, several communications applications using the
same transport service may be bound to the same LOCAL NAME. Since a
LOCAL NAME may have more than one T-selector (each one referring to a
different transport service), even applications using different transport services
could bind to the same LOCAL NAME. This should be avoided, however, since
interference effects could result. If both applications tried to bind with qlen > 0,
e.g., then one t_bind() call would fail with [TADDRBUSY], although the transport
endpoints belong to different transport services.

Features of TCP/IP and UDP/IP

The LOCAL NAME and TRANSPORT ADDRESS of TCP/IP and UDP/IP have
the structure sockaddr_in (defined in <netinet/in.h>).

 struct in_addr
 {
 u_long s_addr;
 };

 struct sockaddr_in
 {
 short sin_family; /* protocol family */
 u_short sin_port; /* port number */
 struct in_addr sin_addr; /* host address */
 char sin_zero[8];
 };

The LOCAL NAME and TRANSPORT ADDRESS can be managed with the
usual mechanisms (t_getaddr(), t_getloc(), t_getname()) with TNS.

However, the communications application can generate the LOCAL NAME and
TRANSPORT ADDRESS itself, whereby the same rules apply as for socket
interface addresses. It must be ensured here that the correct byte order is
retained.

18 U20225-J-Z145-3-76

Transport services and LOCAL NAMES Address translation

The address fields must be allocated as follows to create a LOCAL NAME:

sin_family:
AF_INET (defined in <sys/socket.h>)

sin_port:
Port number. Port numbers between 0 and 1023 are reserved for
superusers. If 0 is specified, the system assigns any free port number
greater than 1023.

sin_addr.s_addr:
Local host address. The specification INADDR_ANY means “any valid
address”. INADDR_ANY is particularly useful if the system has several
network accesses.

sin_zero[8]:
Assign zeros.

The following must be noted when creating a transport address:

The fields sin_port and sin_addr.s_addr designate the partner application’s port
number and host address respectively. The specification INADDR_ANY is not
permitted. The remaining fields must be filled as for LOCAL NAME.

U20225-J-Z145-3-76 19

Address translation t_getaddr(), t_getloc(), and t_getname()

3.2 Access functions t_getaddr(), t_getloc(),
and t_getname()

TNS, the Transport Name Service in UNIX, can be used to obtain the LOCAL
NAME or the TRANSPORT ADDRESS associated with a particular GLOBAL
NAME, or to ascertain the GLOBAL NAME of a communication partner starting
from the partner’s TRANSPORT ADDRESS. XTI V5.1 offers functions which
make these TNS queries required for XTI possible.

The following calls will be described in this section:

t_getaddr()
supplies the TRANSPORT ADDRESS of the communications appli-
cation whose GLOBAL NAME is specified. The TRANSPORT
ADDRESS is required as a parameter by a number of XTI calls.

t_getloc()
supplies the LOCAL NAME in the local end system of a communications
application whose GLOBAL NAME is specified. The LOCAL NAME is
required as a parameter by a number of XTI calls.

t_getname()
supplies the GLOBAL NAME of a communications application whose
TRANSPORT ADDRESS is specified.

Metasyntax of the three calls

The following symbols are used in the description of the function calls:

-> indicates parameters whose value must be supplied by the caller.

<- indicates parameters whose value is supplied by the function.

<> indicates parameters which require the caller to submit a value that is
subsequently modified by the function.

20 U20225-J-Z145-3-76

t_getaddr() Address translation

3.2.1 t_getaddr() - get transport address

Synopsis

#include <xti.h>
int t_getaddr(globname, addr, opt)
char *globname;
struct netbuf *addr;
struct netbuf *opt;

Description

t_getaddr() obtains the TRANSPORT ADDRESS of a remote communications
application from the TS directory. The GLOBAL NAME of the communications
application must be specified in the globname parameter.

The result returned by t_getaddr(), i.e. the TRANSPORT ADDRESS of the
communications application, is entered in the addr structure in the format
required by the t_connect() call, for example. The TRANSPORT ADDRESS
supplied is passed directly to XTI with t_connect().

The individual parameters have the following meaning:

-> globname
The GLOBAL NAME of the communications application whose
TRANSPORT ADDRESS is to be obtained must be specified in this
parameter. The GLOBAL NAME must be specified as a null-terminated
character string of the following format: “NP5.NP4.NP3.NP2.NP1”

NPi (i=1,2,3,4,5) are the name parts of the GLOBAL NAME. The name
parts must be specified in ascending hierarchical order, starting from left
to right (see section “GLOBAL NAME” on page 11).

If any of the name parts of the GLOBAL NAME is not used the separator
(.) belonging to the omitted name part must be specified. A sequence of
separators at the end of the value of globname can be omitted. At least
one name part NPi must be specified.

If the character which serves as the separator, i.e. the period (.), is used
within a name part it must be specified as \. (backslash period).

U20225-J-Z145-3-76 21

Address translation t_getaddr()

<> addr
points to an element of type struct netbuf. The maximum length of the
buffer specified with buf must be entered in the maxlen member of this
structure when issuing the call. If the maximum length is too small, an
error message is returned. The maximum length of the TRANSPORT
ADDRESS is supplied in info->addr by the calls t_open() and t_getinfo().
The actual length of the TRANSPORT ADDRESS stored in buf is
returned in len.

-> opt
must be the null pointer (reserved for future extensions).

t_getaddr() also provides access to the X.500 Directory Service via DIR.X ≥V3.0.
Instead of a GLOBAL NAME, you can also specify an X.500 Distinguished
Name in globname. Further details and restrictions are given in section “Address
management with DIR.X” on page 39.

Return value

t_getaddr() returns the value 0 if the search was successful and the value -1 in
the event of an error. In the latter case, an error indication is entered in t_errno.

Error

In the event of an error, one of the following values is entered in t_errno:

[TBADNAME]
The GLOBAL NAME specified in globname has the wrong format or
contains illegal values or cannot be found or internal error when
accessing the TS directory.

[TBUFOVFLW]
The length specified in maxlen is insufficient for the TRANSPORT
ADDRESS. The maximum length permissible for the TRANSPORT
ADDRESS can be queried with t_getinfo().

[TNOADDR]
No TRANSPORT ADDRESS associated with the GLOBAL NAME
specified with globname could be found.

[TSYSERR]
A system error occurred when accessing the TS directory. The value of
the error is entered in the variable errno.

22 U20225-J-Z145-3-76

t_getaddr() Address translation

If t_errno contains the value [TBADNAME] and you suspect that an internal error
occurred when accessing the TS directory, you should activate the XTI library
trace for a more detailed diagnosis. This is described in chapter “XTI library
trace” on page 101. The error type, error class, and error value will be logged in
the trace file produced by xtil.
If CMX is installed on your system, you can use the program cmxdec at
command level to request diagnostic information in plain text on the error type,
error class and error value.

See also

t_connect(), t_getinfo(), t_open(); section “GLOBAL NAME” on page 11;
manual “CMX, Programming Applications” [2].

U20225-J-Z145-3-76 23

Address translation t_getloc()

3.2.2 t_getloc() - get local name

Synopsis

#include <xti.h>
int t_getloc(globname, addr, opt)
char *globname;
struct netbuf *addr;
struct netbuf *opt;

Description

t_getloc() obtains the LOCAL NAME of a communications application from the
TS directory. The GLOBAL NAME of the communications application must be
specified in the globname parameter.

The result returned by t_getloc(), i.e. the LOCAL NAME of the communications
application, is entered in the addr structure in the format required by the t_bind()
call, for example. The LOCAL NAME supplied is passed directly to XTI with
t_bind().

The individual parameters have the following meaning:

-> globname
The GLOBAL NAME of the communications application whose LOCAL
NAME is to be obtained must be specified in this parameter. The
GLOBAL NAME must be specified as a null-terminated character string
of the following format: “NP5.NP4.NP3.NP2.NP1”

NPi (i=1,2,3,4,5) are the name parts of the GLOBAL NAME. The name
parts must be specified in ascending hierarchical order, starting from left
to right (see section “GLOBAL NAME” on page 11).

If any of the name parts of the GLOBAL NAME is not used the separator
(.) belonging to the omitted name part must be specified. A sequence of
separators at the end of the value of globname can be omitted. At least
one name part NPi must be specified.

If the character which serves as the separator, i.e. the period(.), is used
within a name part it must be specified as \. (backslash period).

24 U20225-J-Z145-3-76

t_getloc() Address translation

<> addr
points to an element of type struct netbuf. The maximum length of the
buffer specified with buf must be entered in the maxlen member of this
structure when issuing the call. If the maximum length is too small, an
error message is returned. The maximum length of the LOCAL NAME is
supplied in info->addr by the calls t_open() and t_getinfo(). The actual
length of the LOCAL NAME stored in buf is returned in len.

-> opt
must be the null pointer (reserved for future extensions).

t_getloc() also provides access to the X.500 Directory Service via DIR.X ÏV3.0.
Instead of a GLOBAL NAME, you can also specify an X.500 Distinguished
Name in globname. Further details and restrictions are given in section “Address
management with DIR.X” on page 39.

Return value

t_getloc() returns the value 0 if the search was successful and the value -1 in the
event of an error. In the latter case, an error indication is entered in t_errno.

Error

In the event of an error, one of the following values is entered in t_errno:

[TBADNAME]
The GLOBAL NAME specified in globname has the wrong format or
contains illegal values or cannot be found; or internal error when
accessing the TS directory.

[TBUFOVFLW]
The length specified in maxlen is insufficient for the LOCAL NAME. The
maximum length permissible for the LOCAL NAME can be queried with
t_getinfo().

[TNOADDR]
No LOCAL NAME associated with the GLOBAL NAME specified with
globname could be found.

[TSYSERR]
A system error occurred when accessing the TS directory. The value of
the error is entered in the variable errno.

U20225-J-Z145-3-76 25

Address translation t_getloc()

If t_errno contains the value [TBADNAME] and you suspect that an internal error
occurred when accessing the TS directory, you should activate the XTI library
trace for a more detailed diagnosis. This is described in chapter “XTI library
trace” on page 101. The error type, error class, and error value will be logged in
the trace file produced by xtil.

If CMX ≥V4.0 is installed on your system, you can use the program cmxdec at
command level to request diagnostic information in plain text on the error type,
error class and error value.

See also

t_bind(), t_getinfo(), t_open(); section “GLOBAL NAME” on page 11; appendix
in manual “CMX, Programming Applications” [2].

26 U20225-J-Z145-3-76

t_getname() Address translation

3.2.3 t_getname() - get name

Synopsis

#include <xti.h>
char *t_getname(addr, opt)
struct netbuf *addr;
struct netbuf *opt;

Description

t_getname() obtains the GLOBAL NAME of a communications application from
its TRANSPORT ADDRESS. t_getname() writes the GLOBAL NAME to a static
area and supplies the running communications application with the pointer to
that area. The static area is overwritten with each call. It must be copied if it is
to be saved.

Note that the function must be declared since it is not of type “integer”.

The GLOBAL NAME is returned as a null-terminated character string of the
following format:

“Np5.Np4.Np3.Np2.Np1”

NPi (i=1,2,3,4,5) are the name parts of the GLOBAL NAME. The name parts are
specified in ascending order, starting from left to right (see section “GLOBAL
NAME” on page 11).

If any of the name parts of the GLOBAL NAME is not used the separator (.)
belonging to the omitted name part is specified unless the omitted name part is
the final name part. A sequence of separators at the end of the GLOBAL NAME
is omitted.

If the character which serves as the separator, i.e. the period (.), is used within
a name part it is represented as \. (backslash period).

U20225-J-Z145-3-76 27

Address translation t_getname()

The individual parameters have the following meaning:

-> addr
points to an element of type struct netbuf with the following contents:

len contains the length of the TRANSPORT ADDRESS submitted

buf contains the pointer to the buffer containing the TRANSPORT
ADDRESS

maxlen
has no meaning for this function.

-> opt
must be the null pointer (reserved for future extensions).

t_getname() also provides a name search facility in the X.500 Directory Service
via DIR.X ≥V3.0. An X.500 Distinguished Name is then returned instead of a
GLOBAL NAME. For further details and restrictions, see section “Address
management with DIR.X” on page 39.

Return value

t_getname() returns a pointer to the GLOBAL NAME if the search was successful
and the null pointer in the event of an error. In the latter case, an error indication
is entered in t_errno.

Error

In the event of an error, one of the following values is entered in t_errno:

[TBADADDR]
The TRANSPORT ADDRESS specified in addr has the wrong format or
contains illegal values.

[TNOADDR]
The TRANSPORT ADDRESS referred to in addr cannot be found

or

internal error when accessing the TS directory.

[TSYSERR]
A system error occurred when accessing the TS directory. The value of
the error is entered in the variable errno.

28 U20225-J-Z145-3-76

t_getname() Address translation

If t_errno contains the value [TNOADDR] and you suspect that an internal error
occurred when accessing the TS directory, you should activate the XTI library
trace for a more detailed diagnosis. This is described in chapter “XTI library
trace” on page 101. The error type, error class and error value will be logged in
the trace file produced by xtil.

If CMX≥V4.0 is installed on your system, you can use the program cmxdec at
command level to request diagnostic information in plain text on the error type,
error class and error value.

See also

t_getaddr(), t_listen(), t_connect(), t_rcvconnect(); section “GLOBAL NAME” on
page 11; appendix in manual “CMX, Programming Applications” [2].

U20225-J-Z145-3-76 29

Address translation NETDIR access functions

3.3 NETDIR access functions

XTI applications can also use the NETDIR access interface instead of the
functions described in section “Access functions t_getaddr(), t_getloc(), and
t_getname()” on page 19. The NETDIR interface is described in detail in chapter
4 “IP Address Resolution Interfaces” of the “X/Open Networking Services
(XNS)” [5]. Its functions originated in System V Release 4, and have now been
incorporated in the XTI library.

The NETDIR interface offers uniform, flexible access to various Name Service
directories.

This section describes how to use NETDIR to access the TNS. For a general
description of the interface, refer to chapter 4 “IP Address Resolution Interfaces”
of the “X/Open Networking Services (XNS)” [5].

For further description see manual “Reliant UNIX 5.43, Network Programming
Interfaces” [3] and “Solaris 7 Reference Manual collection” [4].

30 U20225-J-Z145-3-76

netdir_getbyname() Address translation

3.3.1 netdir_getbyname() - map a GLOBAL NAME to a
LOCAL NAME or to a TRANSPORT ADDRESS

This function is used to map a GLOBAL NAME to a LOCAL NAME or to a
TRANSPORT ADDRESS.

Synopsis

#include <netdir.h>
int netdir_getbyname(config, service, addrs)
struct netconfig *config;
struct nd_hostserv *service;
struct nd_addrlist **addrs;

Implementation-specific supplements

GLOBAL NAMES managed with the TNS have the following format:

Np5.Np4.Np3.Np2.Np1

Npi are the name parts of the GLOBAL NAME in ascending hierarchical order,
starting from left to right. If a name part is not used, but is followed by at least
one name part that is used, the separator ’.’ must be inserted between two name
parts (a sequence of ’.’ characters at the end of the GLOBAL NAME can be
omitted). If the ’.’ is used within a name part, it must be specified as \. (backslash
period).

The following rules apply for GLOBAL NAMES of communications applications
running in the local end system:

– Entering the GLOBAL NAME:

Np1, Np2 and Np3 are empty.

Np4 identifies the local end system; this is preset to the name of the system
as supplied by uname -n.

Np5 is a (mandatory) arbitrary value and identifies the communications
application within the local end system.

U20225-J-Z145-3-76 31

Address translation netdir_getbyname()

– Calling netdir_getbyname():

service->h_host points to a character string that must contain the constant
HOST_SELF.

service->h_serv points to a character string that contains Np5.

If the netdir_getbyname() function was successful, (*addrs)->n_cnt

has the value 1 and (*addrs)->n_addrs points to a struct netbuf containing the
LOCAL NAME of the communications application.

The following rules apply for GLOBAL NAMES of communications applications
running in a remote end system:

– Entering the GLOBAL NAME:

Np1, Np2, Np3 and Np4 are arbitrary values (at least one name part must
be specified) and identify the remote end system.

Np5 is a (mandatory) arbitrary value and identifies the communications
application within the remote end system.

– Calling netdir_getbyname():

service->h_host points to a character string that contains Np4.Np3.Np2.Np1.

service->h_serv points to a character string that contains Np5.

If the netdir_getbyname() function was successful, (*addrs)->n_cnt has the
value 1 and (*addrs)->n_addrs points to a struct netbuf containing the
TRANSPORT ADDRESS of the communications application.

If the function is used to access an X.500 Name Service via DIR.X, Relative
Distinguished Names are returned in service->h_host and service->h_service.
Further details can be found in section “Requirements on communications
applications” on page 42.

See also

uname(), t_getloc(), t_getaddr(); section “Requirements on communications
applications” on page 42; chapter 6 “Configuration in Expert Mode” in manual
“CMX, Operation and Administration” [1].

32 U20225-J-Z145-3-76

netdir_getbyaddr() Address translation

3.3.2 netdir_getbyaddr() - map a TRANSPORT ADDRESS
to a GLOBAL NAME

This function is used to map a TRANSPORT ADDRESS to a GLOBAL NAME.

Synopsis

#include <netdir.h>
int netdir_getbyaddr(config, service, netaddr)
struct netconfig *config;
struct nd_hostservlist **service;
struct netbuf *netaddr;

Implementation-specific supplements

GLOBAL NAMES managed with the TNS have the following format:

Np5.Np4.Np3.Np2.Np1

Npi are name parts of the GLOBAL NAME in ascending hierarchical order,
starting from left to right. If a name part is not used, but is followed by at least
one name part that is used, the separator ’.’ must be inserted between the two
name parts (a sequence of ’.’ separators at the end of the GLOBAL NAME can
be omitted). If the ’.’ character is used within a name part, it must be specified
as \. (backslash period).

After the netdir_getbyaddr() call, netaddr points to a struct netbuf containing a
TRANSPORT ADDRESS. If the netdir_getbyaddr() function was successful,
(*service)->h_cnt has the value 1.

(*service)->h_hostservs->h_host points to a character string that contains
Np4.Np3.Np2.Np1, and (*service)->h_hostservs->h_serv points to a character
string that contains Np5.

U20225-J-Z145-3-76 33

Address translation netdir_getbyaddr()

If the function is used to search in an X.500 Name Service via DIR.X, Relative
Distinguished Names are returned in (*service)->hostservs. Further details can
be found in section “Requirements on communications applications” on
page 42.

See also

t_getname(); section “Requirements on communications applications” on
page 42; chapter 6 “Configuration in Expert Mode” in manual “CMX, Operation
and Administration” [1].

34 U20225-J-Z145-3-76

taddr2uaddr() Address translation

3.3.3 taddr2uaddr() - map a TRANSPORT ADDRESS to a
universal address

This function is used to map a TRANSPORT ADDRESS to a universal address.

Synopsis

#include <netdir.h>
char *taddr2uaddr(config, addr)
struct netconfig *config;
struct netbuf *addr;

Implementation-specific supplements

taddr2uaddr() maps the TRANSPORT ADDRESS specified in addr to a universal
address in accordance with the following rules:

– An octet whose value corresponds to the ASCII code of a printable character
other than ’\’ is mapped to this character.

– An octet whose value corresponds to the ASCII code of the ’\’ character is
mapped to the character string ’\\’.

– An octet whose value corresponds to the ASCII code of the ’\n’ character is
mapped to the character string ’\n’.

– All other octets are mapped to the character string ’\ddd’, where ddd repre-
sents the octal value of the octet.

– The universal address is terminated with ’\0’.

U20225-J-Z145-3-76 35

Address translation uaddr2taddr()

3.3.4 uaddr2taddr() - map a universal address to a
TRANSPORT ADDRESS

This function is used to map a universal address to a TRANSPORT ADDRESS.

Synopsis

#include <netdir.h>
struct netbuf *uaddr2taddr(config, addr)
struct netconfig *config;
struct netbuf *addr;

Implementation-specific supplements

uaddr2taddr() maps the universal address specified in addr to a TRANSPORT
ADDRESS in struct netbuf in accordance with the following rules:

– All characters apart from ’\’ are mapped to an octet whose value corre-
sponds to the ASCII code of the character.

– The character string ’\\’ is mapped to an octet whose value corresponds to
the ASCII code of the ’\’ character.

– The character string ’\n’ is mapped to the octet whose value corresponds to
the ASCII code of the character ’\n’.

– The character string ’\ddd’ is mapped to the octet with the octal value ddd.

– The end character ’\0’ and all subsequent characters are ignored.

36 U20225-J-Z145-3-76

netdir_options() Address translation

3.3.5 netdir_options() - interface to transport service
options

Synopsis

#include <netdir.h>
int netdir_options(config, option, fd, pointer_to_args)
struct netconfig *config;
int option;
int fd;
char *pointer_to_args;

Implementation-specific supplements

Actions dependent on option:

ND_SET_BROADCAST
Not supported.

ND_SET_RESERVEDPORT
Not supported.

ND_CHECK_RESERVEDPORT
Not supported.

ND_MERGEADDR
If the function was successful,

((struct nd_mergearg*)pointer_to_args)->m_uaddr contains the same
character string as that specified in

((struct nd_mergearg*)pointer_to_args)->s_uaddr before the call.

U20225-J-Z145-3-76 37

Address translation netconfig

3.3.6 netconfig - network configuration file

Synopsis

#include <netconfig.h>

Implementation-specific supplements

As long as the product XTI V5.1 is installed, the network configuration file
/etc/netconfig contains three entries that describe the transport services
provided by CMX≥V4.0 and the CCPs. The fields have the following values:

ISO transport services:

NEA transport service:

Network ID osicots

Semantics tpi_cots

Flag -

Protocol family osi

Protocol name –

Network device file t_osi_cots

Reference libraries /usr/lib/tnsxaddr.so

Table 4: ISO transport services

Network ID nea

Semantics tpi_cots

Flag -

Protocol family nea

Protocol name –

Network device file t_neat

Reference libraries /usr/lib/tnsxaddr.so

Table 5: NEA transport service

38 U20225-J-Z145-3-76

netconfig Address translation

Message-oriented transport services:

See also

t_open()

Network ID msg

Semantics tpi_cots

Flag -

Protocol family msg

Protocol name –

Network device file t_msg

Reference libraries /usr/lib/tnsxaddr.so

Table 6: Message-oriented transport services

U20225-J-Z145-3-76 39

Address translation DIR.X

3.4 Address management with DIR.X

3.4.1 Introduction

TNS address management enables communications applications to map
symbolic names (GLOBAL NAMES) to protocol addresses (LOCAL NAMES
and TRANSPORT ADDRESSES), and vice versa, by means of the function
calls described in the sections “Access functions t_getaddr(), t_getloc(), and
t_getname()” on page 19 and section “NETDIR access functions” on page 29.
communications applications now have the additional option of obtaining this
address information from DIR.X rather than TNS via the same program
interface, provided a number of requirements are met.

DIR.X offers a distributed Directory Service via X.500. The term “distributed”
means that the information sought is generally not located on the local system,
but is stored on a remote system. However, this distribution of data is trans-
parent to the communication application that requires the information. Detailed
information on DIR.X can be found in the DIR.X description.

If you do not use DIR.X, you can skip this entire section. It does not contain any
information on the installation, startup, and general administration of DIR.X, nor
does it provide an introduction to X.500.

The section “The DIR.X Name Service” on page 39 contains a brief introduction
to DIR.X, which should help you to understand the subsequent sections. The
section “Requirements on communications applications” on page 42 describes
the conditions under which a communications application can use DIR.X.
Finally, the section “Parameterization of DIR.X” on page 44 describes how the
system administrator should set the runtime environment of a communications
application, so that the application can access DIR.X.

3.4.2 The DIR.X Name Service

Like TNS, DIR.X enables you to query addresses using symbolic names. Unlike
TNS, however, this information is not stored locally, but on a particular server.
The communications application sends a query to a Directory User Agent
(DUA) via the one of the program interfaces described in the sections “Access
functions t_getaddr(), t_getloc(), and t_getname()” on page 19 and “NETDIR
access functions” on page 29. The DUA then sets up a Layer 7 (OSI)
connection, known as an association, to a Directory Service Agent (DSA), and
forwards the query to the DSA. The DSA searches its database and, if

40 U20225-J-Z145-3-76

DIR.X Address translation

successful, returns the desired information to the DUA, which passes it on to the
communications application. If the DSA cannot provide the information itself, it
reacts in one of three ways. If it has no information, it returns an error. If it knows
of another DSA that may be able to provide the information, it either passes the
name and address of the alternative DSA to the DUA, or requests the infor-
mation from the alternative DSA itself. In first case, the DUA must send a new
query to the second DSA; in the second case, the DUA need not take any
further action.

These operations are transparent to the communications application. In certain
circumstances, however, a DIR.X query may take longer than the corresponding
TNS query. This is because, in extreme cases, several systems may have to be
consulted. If queries are issued over public networks, this may incur a charge.
Therefore, system and network administrators must be able to intervene, in
order to optimize access to the DSA.

For instance, DIR.X provides a local cache in which the results of queries can
be buffered and used again for a new query. The system administrator can
define rules for using and updating the cache, and can thus directly influence
costs. These and other options for controlling the behavior of DIR.X are
described in more detail in section “Parameterization of DIR.X” on page 44.

The symbolic names used by TNS and DIR.X are basically similar, but differ in
their syntax and semantics. In both cases, the complete name is made up of
name parts, not unlike the structure of hierarchical name pools. In TNS, the
complete name is known as a GLOBAL NAME, and consists of 5 name parts.
Its syntax is NP5.NP4.NP3.NP2.NP1, where NPi (i = 1, 2, 3, 4, 5) represent the
name parts. NP5 is the lowest level in the hierarchy, and NP1 is the highest
level.

Example
Meier.Sales.Frankfurt.FSC.De

In DIR.X, the complete name is known as a Distinguished Name (DN). A DN
also comprises a string of name parts, known as Relative Distinguished Names
(RDN). Each DN can have a configurable number of name parts
(max. 12 RDNs) with the following syntax:

RDN1[/RDN2/RDN3/.../RDNx]

The RDNs are separated by a slash (/); []=optional.

An RDN consists of one or more attribute values, each of which comprises a
type and a value. Common attribute types include the name of a country, an
organization, or a person, etc.

U20225-J-Z145-3-76 41

Address translation DIR.X

DIR.X uses the following syntax for an RDN:

Syntax of an RDN:
attribute-value1[,attribute-value2,...,attribute-valuem]

Syntax of an attribute value:
type=value

[] optional

If an attribute value contains equals signs (=), commas (,), or slashes (/), these
characters must be escaped by a preceding backslash (\).

An example of a DN in DIR.X notation is:

 C=De/O=SNI/L=Frankfurt/OU=Sales/CN=Meier

The type identifiers are Common Name (CN), Organizational Unit (OU),
Location (L), Organization (O), and Country (C). The DIR.X description
indicates which type identifiers are predefined by DIR.X, and describes how to
define your own type identifiers.

DNs are often quite long. DIR.X therefore offers the option of defining an alias
name for a DN. The alias name is mapped to the correct DN in the local cache,
which must be configured as appropriate by the DIR.X administrator. An alias
name looks like a DN that contains a single RDN with the attribute ALI only.

Example

 Alias name --> DN
 ALI=Meier --> C=De/O=SNI/L=Frankfurt/OU=Sales/CN=Meier

If the DN of an alias name is not found when accessing the DSA, the alias entry
is removed the next time the cache is updated.

42 U20225-J-Z145-3-76

DIR.X Address translation

3.4.3 Requirements on communications applications

Not all communications applications have been designed to work with DIR.X.
The following rules must be observed when implementing the application:

● The functions t_getloc(), t_getaddr(), and t_getname() (see section “Access
functions t_getaddr(), t_getloc(), and t_getname()” on page 19), and the
functions netdir_getbyname(), and netdir_getbyaddr (see section “NETDIR
access functions” on page 29) can be used.

● When using t_getloc() and t_getaddr(), symbolic names can be specified
either as Distinguished Names or as GLOBAL NAMES. In the latter case,
mapping rules for converting GLOBAL NAMES to Distinguished Names
must be defined in the MAPRULES environment variable (see section “Facil-
ities for the MAPRULES variable” on page 49). Please note, however, that
these mapping rules apply to all applications started from a common UNIX
shell. If different applications require different mapping rules, this leads to
mapping conflicts.

To ensure maximum flexibility, therefore, communications applications
should handle symbolic names as simple character strings, and should not
make any assumptions about their internal structure.

● When using netdir_getbyname(), mapping rules must always be defined in
MAPRULES (see section “Facilities for the MAPRULES variable” on
page 49), in order to map the character strings service->h_host and
service->h_serv to a Distinguished Name.

service->h_host is mapped using the NP4 facility, and service->h_serv using
the NP5 facility. With netdir_getbyname(), therefore, only limited access to
the X.500 name pool is possible.

● The t_getname() function can be used with the following restrictions and
risks:

– t_getname() always returns a complete Distinguished Name. The
mapping rules between GLOBAL NAMES and Distinguished Names
(see section “Facilities for the MAPRULES variable” on page 49) only
apply to t_getloc() and t_getaddr(). Applications that require GLOBAL
NAMES, therefore, cannot use t_getname().

– t_getname() never returns alias names.

– t_getname() initiates an X.500 search operation, which may be very
time-consuming, and may result in high costs (line and usage fees).

U20225-J-Z145-3-76 43

Address translation DIR.X

● The netdir_getbyname() function can be used with the following restrictions
and risks:

– The character string (*service)->h_hostservs->h_host contains the RDN as
defined by the NP4 facility mapping rules;

(*service)->h_hostservs->h_service contains the RDN as defined by the
NP5 facility (see section “Facilities for the MAPRULES variable” on
page 49. All other RDNs of the DN are discarded.

– netdir_getbyaddr() initiates an X.500 search operation, which may be
very time-consuming, and may result in high costs (line and usage fees).

● The addresses returned by DIR.X may be longer than the addresses
managed by TNS. Therefore, communications applications whose storage
space is configured as the maximum length of a TNS address may not be
able to use all addresses requested from DIR.X (see EA facility in section
“Facilities for the NSCONTROL variable” on page 45).

● Queries sent to DIR.X using the functions described in sections “Access
functions t_getaddr(), t_getloc(), and t_getname()” on page 19 and “NETDIR
access functions” on page 29 are always processed as an anonymous user.
This means that only PUBLIC information can be queried.

● Communications applications that use DIR.X must also observe the
following convention:

– all identifiers beginning with dx or dirx are reserved for DIR.X.

● If the BM facility (see section “Facilities for the NSCONTROL variable” on
page 45) is used with the value TIMED:<mm>, the sigaction() function
cannot be called while the specified timer is running. When the timer expires,
any system calls of the communications application are interrupted by the
SIGALRM signal.

44 U20225-J-Z145-3-76

DIR.X Address translation

3.4.4 Parameterization of DIR.X

To allow a communications application to access DIR.X, the system adminis-
trator must first set the correct runtime environment. This section assumes that
DIR.X has already been installed and started; these steps are not described
here.

Access to DIR.X is controlled by parameters; in the context of DIR.X, these are
known as facilities. Each facility can be assigned one or more values with the
following syntax:

<facility id>=<value1>[,<value2>,...,<valueN>]

[] = optional

<facility> represents the name of the facility, and <valuei> (i = 1, ..., N) repre-
sents a value. Each facility has a default value, which applies unless specified
otherwise by the system administrator. If a number of facilities is set, the facility
expressions are separated by semicolons (;):

<facility1>;<facility2>;...;<facilityN>

<facilityi> (i = 1, ..., N) represents an expression with the above syntax.

The facilities can be passed to the runtime environment in two ways:

● Definition of environment variables

Facilities can be passed to the runtime environment using the NSCONTROL
and MAPRULES environment variables.

The general transfer syntax is:

<environment variable>=“<facility1>;...;<facilityN>”;

export_<environment variable>

<environment variable> stands for NSCONTROL or MAPRULES. The exact
assignment of environment variables to facilities is described in the following
sections.

U20225-J-Z145-3-76 45

Address translation DIR.X

● Entry in /opt/lib/cmx/dirx.rc

Facilities can be entered in the /opt/lib/cmx/dirx.rc file. This file must be
created by the system administrator.

The input syntax is:

<configuration variable>=<facility1>;...;<facilityN>

<configuration variable> stands for NSCONTROL or MAPRULES. Note that
the quotes used in the environment variable syntax are omitted here.

The assignment of configuration variables to facilities is described in the
following sections.

If only one facility is defined using the environment variable, the assignments
in dirx.rc are ignored. It is not possible to mix the two transfer methods
(environment variable or dirx.rc).

Example
Definition using an environment variable:
NSCONTROL="SI=DIR.X;RM=CACHE_ONLY;BM=TIMED:1"
MAPRULES="NP1=C;NP3=O;NP4=OU;NP5=CN"
export NSCONTROL,MAPRULES

Entry in /opt/lib/cmx/dirx.rc:
NSCONTROL=SI=DIR.X;RM=CACHE_ONLY;BM=TIMED:1
MAPRULES=NP1=C;NP3=O;NP4=OU;NP5=CN

The facilities are explained in the following sections.

3.4.4.1 Facilities for the NSCONTROL variable

SI Name Service selection facility

SI (Service Identifier) defines whether TNS or DIR.X is to be used as the Name
Service. If SI is not set or SI=TNSX, TNS is accessed. In this case, all other
facilities are ignored, because they control the behavior of DIR.X only.

The following values are possible:

TNSX
TNS provides the Name Service

DIR.X
DIR.X provides the Name Service

46 U20225-J-Z145-3-76

DIR.X Address translation

BM Bind mode facility

BM (Bind Mode) defines how often a Layer 7 connection (association) is set up
to the DSA. To determine the optimum value, you must weigh the cost of using
the public network against the time lost setting up and closing down connections
plus the additional costs involved in connection setup. BM is significant only if
SI=DIR.X.

The following values are possible:

TMP
Temporary association. An association is set up each time the DSA is
accessed, and closed down when access is terminated.

PERM
Permanent association. An association is set up for an application
process the first time the process accesses the DSA. When the process
is terminated, the association is closed down.

TIMED:<mm>
Timed association. An association is set up for accessing the DSA,
provided the association does not already exist. Otherwise, the DSA is
accessed via the existing association. If the DSA is not accessed within
<mm> minutes, the association is closed down.

For program restrictions with TIMED:<mm>, see section “Requirements
on communications applications” on page 42.

RM Request mode facility

RM (Request Mode) enables you to select which databases are searched and
the order in which they are searched following a service query. You can restrict
the request to the local cache, to the adjacent DSA, or you can permit all X.500
databases that can be accessed by your DIR.X installation. The values are
divided into three groups, which can be combined. If a value is not specified for
one of the groups when defining RM, the default value for this group applies. If
RM is not explicitly defined, the default values of all three groups apply.

RM is significant only if SI=DIR.X.

U20225-J-Z145-3-76 47

Address translation DIR.X

The following values are possible:

Group 1: Defining the query range

LOCAL_SCOPE
The query refers only to the local cache and the DSA database to which
the association has been set up (the adjacent DSA).

LOCAL_SCOPE,DSA_ONLY
As for LOCAL_SCOPE, but excluding the local cache.

GLOBAL_SCOPE
The query refers to the local cache and all X.500 databases that can be
accessed by the DIR.X installation.

GLOBAL_SCOPE,DSA_ONLY
As for GLOBAL_SCOPE, but excluding the local cache.

CACHE_ONLY
The query refers to the local cache only.

Group 2: Defining the query order

CACHE_FIRST
The local cache is searched first. This value is the group default,
provided DSA_ONLY is set in group 1.

DSA_FIRST
The DSA databases are searched first. This value is the group default,
provided DSA_ONLY is set in group 1.

Group 3: Storage mode in the local cache

NORMAL_CLASS
Results stored in the local cache can be overwritten by the next query
issued to the DSA.

RESIDENT_CLASS
Results are stored permanently in the local cache. They are not
overwritten by the next DSA query.

DONT_STORE
Results of the DSA query are not stored in the local cache.

48 U20225-J-Z145-3-76

DIR.X Address translation

Example

RM=LOCAL_SCOPE,CACHE_FIRST,RESIDENT_CLASS

The query refers to the local cache and the adjacent DSA. The local cache is
searched first; if the desired information is not found here, a query is issued to
the adjacent DSA. The DSA database is then searched, and the result stored
permanently in the local cache.

The assignment contains two default values, and has the same meaning as
RM=RESIDENT_CLASS. CACHE_ONLY,DSA_FIRST and
DSA_ONLY,CACHE_FIRST cannot be combined.

EA Extended addressing

A communications application must provide storage space for the result of a
Name Service query. The size of this storage space is generally the value

info->addr, which is supplied to the communications application as the result of
a t_open() or t_getinfo() call (see chapter “Supplements to the function library” on
page 51). This value is based on the maximum length of TNS addresses. A
DIR.X query, however, may return a longer address. If a communications appli-
cation is not prepared for this, reliable operation cannot be guaranteed. With EA
(Extended Addressing), however, the system administrator can define whether
addresses that exceed the maximum length are passed to the calling appli-
cation, or suppressed. EA is significant only if SI=DIR.X.

The following values are possible:

NO
The communications application receives an error message if the result
of the query is greater than “sizeof (union t_address)”.

YES
The result of the query is passed to the communications application
without checking the length.

U20225-J-Z145-3-76 49

Address translation DIR.X

3.4.4.2 Facilities for the MAPRULES variable

These facilities enable TNS GLOBAL NAMES or host/service entries of the
NETDIR interface to be mapped to DIR.X Distinguished Names. This mapping
is necessary for migration reasons, if the communications application responds
to Name Service queries by returning GLOBAL NAMES or host/service entries
instead of Distinguished Names.

Mapping is carried our via the NP1, NP2, NP3, NP4, and NP5 facilities. By
assigning a facility, the name part NPi (i = 1, ..., 5) of a GLOBAL NAME can be
mapped to an RDN with a single attribute. The general syntax is NPi=<attribute
type>, e.g. NP1=C (C represents the attribute type Country). <attribute type>
can be empty, and “NPi=” is also permitted. This means that the name part NPi
of a GLOBAL NAME is ignored during mapping.

If no facilities are set using MAPRULES, the following default value applies:
MAPRULES=“NP1=C;NP2=;NP3=O;NP4=OU;NP5=CN”.

The attribute types are Country (C), Organization (O), Organization Unit (OU),
and Common Name (CN). The attribute types recognized by DIR.X are given in
the DIR.X description.

If MAPRULES is passed to the runtime environment with an empty value
(MAPRULES=), no name mapping takes place.

When using the mapping mechanism, you must ensure that all GLOBAL
NAMES used by the applications can be mapped to Distinguished Names.

If the application uses the NETDIR interface (see section “NETDIR access
functions” on page 29), only the host and service entries are available. Host is
mapped to an RDN via NP4, and service is mapped via NP5. Further infor-
mation can be found in section “Requirements on communications applications”
on page 42.

3.4.5 Mapping to local address formats

The addresses received by DIR.X are generally not in a format that can be
understood by the local transport service providers, and must therefore be
converted to local formats. The address information must also be supplemented
by local information, e.g. the communication controller to be used to set up the
connection. Both of these processes are carried out via a Network Directory
Service (NDS) and are transparent to the communications application.

U20225-J-Z145-3-76 51

4 Supplements to the function
library

This chapter supplements the description of the XTI function calls in the
“X/Open Networking Services (XNS)” [5].

Functions implemented in XTI

All XTI functions listed in the “X/Open Networking Services (XNS)” [5] are imple-
mented in XTI V5.1. Please note however that some of the functions are only
supported by certain transport service providers. The functions used to support
datagram communication, for example, require a connectionless transport
service. If a function is not supported by a transport service provider, the
function call fails with the variable t_errno set to [TNOTSUPPORT].

The table below contains all the functions implemented in XTI V5.1.

ISO
NEA

TCP UDP

t_accept X X

t_alloc X X X

t_bind X X X

t_close X X X

t_connect X X

t_error X X X

t_free X X X

t_getinfo X X X

t_getprotaddr X X X

t_getstate X X X

t_listen X X

t_look X X X

t_open X X X

t_optmgmt X X X

t_rcv X X

t_rcvconnect X X

Table 7: Functions implemented in XTI V5.1

52 U20225-J-Z145-3-76

Function calls Supplements

Supplements to the XTI function call descriptions

This section describes supplements to the following function calls:

t_rcvdis X X

t_rcvrel X

t_rcvreldata X

t_rcvudata X

t_rcvv X X

t_rcvuderr X

t_rcvvudata X

t_snd X X

t_snddis X X

t_sndrel X

t_sndreldata X

t_sndudata X

t_sndv X X

t_sndvudata X

t_strerror X X X

t_sync X X X

t_sysconf X X X

t_unbind X X X

t_accept() t_rcvdis()

t_alloc() t_rcvrel()

t_bind() t_rcvudata()

t_connect() t_rcvuderr()

t_error() t_snd()

t_free() t_snddis()

t_getinfo() t_sndrel()

t_listen() t_sndudata()

ISO
NEA

TCP UDP

Table 7: Functions implemented in XTI V5.1

U20225-J-Z145-3-76 53

Supplements Function calls

As far as possible, the supplements follow the structure outlined below:

1. Each description starts with a repetition of the Synopsis of the XTI function
call.

2. Implementation-specific supplements

All peculiarities which should be observed when supplying the parameters
in the application program are described under this heading. Subheadings
indicate the parameter to which the supplement refers.

3. Notes

Additional remarks concerning the X/Open definition of XTI are listed under
this heading.

4. Supplements to error messages

Under this heading those values of the t_errno variable are explained which
may occur in the event of errors ignored by XTI or which are implementation-
specific. The values of errno which may occur if t_errno = TSYSERR and
their meaning are indicated.

t_look() t_sync()

t_open() t_sysconf()

t_rcv() t_unbind()

t_rcvconnect()

54 U20225-J-Z145-3-76

t_accept() Supplements

4.1 t_accept() - accept a connect request

Synopsis

#include <xti.h>
int t_accept(fd, resfd, call)
int fd;
int resfd;
struct t_call *call;

Implementation-specific supplements

call->addr

The TRANSPORT ADDRESS which the communications application submits to
XTI in call->addr.buf is ignored. In order to confirm connection establishment
with t_accept() it is sufficient to specify the connect indication in call->sequence.
call->addr.len and call->addr.buf can therefore be supplied with any values by the
communications application.

Supplements to error messages

In addition to the meanings described in the “X/Open Networking Services
(XNS)” [5], the errors indicated in t_errno may have the following meanings:

[TBADF]
resfd and fd refer to two transport endpoints which are not bound to the
same LOCAL NAME.

In the event of a system error, i.e. t_errno has the value [TSYSERR], the system
variable errno may have any of the following values:

[EINTR]
The call was aborted by a signal.

[ENXIO] or [EIO]
The transport service provider is no longer operable.

U20225-J-Z145-3-76 55

Supplements t_accept()

[EFAULT]
The area specified in call->udata or call->opt is not (or not completely)
located in the user address space.

[EAGAIN] or [ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

See also

t_bind()

56 U20225-J-Z145-3-76

t_alloc() Supplements

4.2 t_alloc() - allocate a library structure

Synopsis

#include <xti.h>
char *t_alloc(fd, struct_type, fields)
int fd;
int struct_type;
int fields;

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have one of the following values:

[ENXIO] or [EIO]
t_alloc() may have to procure the required information before it can
allocate memory for a variable specified in fields. The [EIO] error
message is returned if the transport provider is inoperable at this
moment.

[ENOMEM]
No memory area can be allocated since the system-specific limit value
has already been exceeded.

U20225-J-Z145-3-76 57

Supplements t_bind()

4.3 t_bind() - bind an address to a transport
endpoint

Synopsis

#include <xti.h>
int t_bind(fd, req, ret)
int fd;
struct t_bind *req;
struct t_bind *ret;

Implementation-specific supplements

req->addr
If automatic address generation is used, req->addr must be supplied by
the communications application with a pointer to an area containing the
LOCAL NAME of the communications application. The LOCAL NAME
must agree with the transport service which the communications appli-
cation specified in the name parameter of the t_open() call. Please also
note the information contained in section “Transport services and LOCAL
NAMES” on page 16.

The communications application can retrieve the LOCAL NAME from the
TS directory with t_getloc() or netdir_getbyname() before t_bind() is called.
The GLOBAL NAME of the communications application must be
specified in the t_getloc() or netdir_getbyname() call. The communications
application passes the LOCAL NAME returned by t_getloc() or
netdir_getbyname() to t_bind() unchecked.

All transport service providers support automatic address generation.

Supplements to error messages

In addition to the meanings described in the “X/Open Networking Services
(XNS)” [5], the errors indicated in t_errno may have the following meanings:

[TADDRBUSY]
The LOCAL NAME has already been assigned to a CMX application or
an attempt was made with TCP/IP to bind two transport endpoints to the
same local address.

58 U20225-J-Z145-3-76

t_bind() Supplements

[TBADADDR]
The LOCAL NAME does not agree with the transport service specified
(see also supplement to t_open()) or a T-selector of the LOCAL NAME is
also used in another LOCAL NAME bound to a different transport
endpoint.

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[ENOMEM]
No further LOCAL NAME can be bound to a transport endpoint since the
(system-dependent) limit value has been reached.

[EFAULT]
The area specified in req->addr or ret->addr is not (or not completely)
located in the user address space.

[ENXIO] or [EIO]
The transport provider is no longer operable.

[ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

See also

t_open(), t_accept(), t_getloc(), netdir_getbyname(), chapter “Address trans-
lation” on page 9.

U20225-J-Z145-3-76 59

Supplements t_connect()

4.4 t_connect() - establish a connection with
another transport user

Synopsis

#include <xti.h>
int t_connect(fd, sndcall, rcvcall)
int fd;
struct t_call *sndcall;
struct t_call *rcvcall;

Implementation-specific supplements

sndcall->addr
sndcall->addr must be supplied by the communications application with a
pointer to the TRANSPORT ADDRESS of the communication partner
desired. The communications application can retrieve the TRANSPORT
ADDRESS from the TS directory using t_getaddr() or netdir_getbyname()
before t_connect() is called. The communications application must specify
the GLOBAL NAME of the communication partner in the t_getaddr() or
netdir_getbyname() call. The communications application passes the
TRANSPORT ADDRESS returned by t_getaddr() or netdir_getbyname() to
t_connect() unchecked.

sndcall->opt
The field sndcall->opt.len may be set to 0 if the standard options are to
apply.

rcvcall
The TRANSPORT ADDRESS returned (in synchronous mode) upon
successful completion of the function t_connect() in rcvcall->addr is
always identical with the TRANSPORT ADDRESS which the communi-
cations application submitted to XTI in sndcall->addr.

If the maximum buffer length is set to 0 (rcvcall->addr.maxlen, rcvcall-
>opt.maxlen, rcvcall->udata.maxlen), the corresponding return information
is discarded. Users therefore have the option of selecting specific return
information.

If the function t_connect() runs successfully in synchronous mode when using
TCP/IP, this means that the connection has been established, but the partner
application has not yet necessarily accepted the connection with t_listen() /
t_accept().

60 U20225-J-Z145-3-76

t_connect() Supplements

Supplements to error messages

If the function t_connect aborts due to an error, the transport endpoint concerned
retains the T_IDLE state. However, if a synchronous t_connect is interrupted by
a signal after the connect request is sent and before the acknowledgment is
received, the transport endpoint concerned switches to the T_OUTCON state.
In addition to the meanings described in the “X/Open Networking Services
(XNS)” [5], the errors indicated in t_errno may have the following meanings:

[TBADADDR]
The TRANSPORT ADDRESS supplied does not agree with the transport
service specified with t_open().

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[ENOMEM]
No further connection can be established since the (system-dependent)
limit value has been reached or XTI was temporarily unable to allocate
any buffer area in main memory.

[EFAULT]
The area specified in sndcall->addr, sndcall->udata, sndcall->opt,
rcvcall->addr, rcvcall->udata or rcvcall->opt is not (or not completely)
located in the user address space.

[EINTR]
The call has been interrupted by a signal.

[ENXIO] or [EIO]
The transport provider is not (no longer) operable, or the CC list supplied
with the TRANSPORT ADDRESS is incorrect.

[EAGAIN] or [ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

Other values that explain why the connection could not be established can occur
with TCP/IP. These values are machine-specific and are defined and described
in the file <sys/errno.h>.

t_connect() obtains information from the TNS as to which CC (Communication
Controller) is used for communication. This may cause further systems errors
which are not contained in this list.

See also

chapter “Address translation” on page 9, t_getaddr(), netdir_getbyname()

U20225-J-Z145-3-76 61

Supplements t_error()

4.5 t_error() - produce error message

Synopsis

#include <xti.h>
int t_error(errmsg)
char *errmsg;

Implementation-specific supplements

In the following the format of the message texts output by t_error() is described.
The output format described differs depending on whether t_errno has the value
[TSYSERR] or any value other than [TSYSERR].

t_errno not equal to [TSYSERR]:
First the message text of errmsg is output, provided that errmsg is not a
null pointer and does not point to a null string. The message text is
followed by a colon and a blank. Next a standard message text for the
error indicated in t_errno is output, followed by a new line.

t_errno equal to [TSYSERR]:
Again first the message text, followed by a colon and a blank, and then
the standard message text referring to [TSYSERR] are output. This
output is followed by a colon, a blank and the standard message for the
error indicated in errno. This is followed by a new line.

t_error() makes use of the X/Open Native Language System (NLS) for the
output of the standard messages. The language used for standard message
output is defined by the value of the environment variable LANG.

The standard message texts are currently available in German and English. The
standard English message texts correspond to the error comments given in
<xti.h>. The message texts referring to system errors are identical to those of
the function perror().

See also

<xti.h>, perror(), “X/Open Networking Services (XNS)” [5]

62 U20225-J-Z145-3-76

t_free() Supplements

4.6 t_free() - free a library structure

Synopsis

#include <xti.h>
int t_free(ptr, struct_type)
char *ptr;
int struct_type;

Caveat
The t_free() function should only be used to free memory previously
allocated by t_alloc(). In particular, watch out for the following situation:

A structure has been allocated memory by means of t_alloc(). A member
buf of this structure points to a memory area that was not allocated by
t_alloc(). Freeing the memory using t_free() may then yield undefined
results. This situation can be avoided by setting the buf member to NULL
before freeing the memory with t_free().

See also

t_alloc()

U20225-J-Z145-3-76 63

Supplements t_getinfo()

4.7 t_getinfo() - get protocol-specific service
information

Synopsis

#include <xti.h>
int t_getinfo(fd, info)
int fd;
struct t_info *info;

Implementation-specific supplements

info
The function t_getinfo() uses the info pointer to supply the characteristics
of the transport provider connected with the fd transport endpoint at the
time the call is issued.

If one of the collective services t_msg or t_osi_cots was specified when
opening the transport endpoint fd by t_open(), the info pointer of t_getinfo()
returns the characteristics of the transport provider (or rather of the
underlying transport protocol) which is used for the current transport
connection. This means that the values returned for t_osi_cots can, for
instance, refer to the characteristics of a transport protocol of class 0 or
of a higher-level protocol class. An overview of the values that may be
returned by info is given in the implementation-specific supplements to
t_open().

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EFAULT]
The area specified in info is not (or not completely) located in the user
address space.

[ENXIO] or [EIO]
The transport provider is no longer operable.

[ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

See also

t_open()

64 U20225-J-Z145-3-76

t_listen() Supplements

4.8 t_listen() - listen for a connect request

Synopsis

#include <xti.h>
int t_listen(fd, call)
int fd;
struct t_call *call;

Implementation-specific supplements

call->addr
t_listen() uses the structure call->addr to return the TRANSPORT
ADDRESS of the calling communications application. The TRANSPORT
ADDRESS can be converted into the GLOBAL NAME of the calling
communications application by means of the t_getname() or
netdir_getbyaddr() call. If the maximum buffer length is set to 0

(call->addr.maxlen, call->opt.maxlen, call->udata.maxlen), the corre-
sponding return information is discarded. Users therefore have the
option of selecting specific return information.

If the function t_listen runs successfully when TCP/IP is used, this means that a
complete connection, and not just a connection request, has been accepted.
The connection must nonetheless be confirmed with t_accept() or rejected with
t_snddis().

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EFAULT]
The area specified in call->addr, call->udata or call->opt is not (or not
completely) located in the user address space.

[EINTR]
The call has been interrupted by a signal.

U20225-J-Z145-3-76 65

Supplements t_listen()

[EIO]
The transport provider is no longer operable.

[ENORS]
XTI is temporarily unable to allocate any buffer area in main memory.

See also

netdir_getbyaddr(), t_getname(), t_look, chapter “Address translation” on
page 9.

66 U20225-J-Z145-3-76

t_look() Supplements

4.9 t_look() - look at the current event on a
transport endpoint

Synopsis

#include <xti.h>
int t_look(fd)
int fd;

Implementation-specific supplements

The return values have the following meanings:

T_LISTEN
(For TCP/IP). A connection to this transport endpoint has been estab-
lished, not just requested. The connection must nonetheless be
accepted with t_listen() / t_accept() or rejected with t_listen() / t_snddis().

T_CONNECT
(For TCP/IP). The connection has been established. However, the
partner application has not yet necessarily accepted the connection with
t_listen() and t_accept().

I The data flow is restricted after a non-blocking t_snd() call, if the call is
aborted with [TFLOW] or if the return value of t_snd() does not match the
value passed to t_snd() in nbytes.

U20225-J-Z145-3-76 67

Supplements t_open()

4.10 t_open() - establish a transport endpoint

Synopsis

#include <xti.h>
#include <fcntl.h>
int t_open(name, oflag, info)
char *name;
int oflag;
struct t_info *info;

Implementation-specific supplements

The name parameter can be used to specify one or more transport service
providers.

t_open() checks whether at least one of the corresponding transport providers is
available at the time the call is issued. The transport provider which matches the
TRANSPORT ADDRESS of the communication partner is not selected from the
CCPs corresponding to the transport service specified until the connection is
established.

The permissible values of the name parameter and the characteristics of the
transport services returned by info are listed below.

name
name points to a null-terminated character string identifying a transport
service with specific characteristics. It can therefore be either a symbolic
name of the form t_xxx or a device name. The names used are derived
from the transport protocols providing the service.

XTI recognizes the following names:

t_neat
refers to the NEA transport service.

t_msg
Specifying this value for name enables the communications appli-
cation to access any message-oriented transport service via the
opened transport endpoint. The service t_msg is a collective
service which includes the transport services t_neat and t_osi_cots.
t_open() always establishes a transport endpoint when the service
t_msg is specified, because at least local communication via the
built-in loop-back provider is always possible.

68 U20225-J-Z145-3-76

t_open() Supplements

Which of the transport services included under t_msg will actually
handle the communication depends on the following:

– the CCP profiles activated at the time of connection estab-
lishment,

– the LOCAL NAME specified in the t_bind() call,

– the TRANSPORT ADDRESS of the remote communications
application.

t_osi_cots
Specifying this value for name enables the communications appli-
cation to access any available ISO transport service via the
opened transport endpoint. This includes the communication over
RFC1006 (on top of TCP/IP). Which of the transport services will
actually handle the communication depends on the same criteria
as for t_msg.

t_rfc1006
refers to a transport service on top of TCP/IP in accordance with
ISO8072.

t_sinix
refers to the transport service for local communication within the
UNIX system. This service enables the TS application to establish
a connection and exchange data with another TS application of
the local system. (The TS applications need not be related!)

t_tp2
refers to an ISO transport service based on a transport protocol of
class 2. The transport protocol can be downgraded to class 0.

t_tp4
refers to an ISO transport service based on a transport protocol of
class 4.

/dev/*/tcp
TCP/IP transport service. The full device name is specified in the
Release Notice, since it is system-dependent.

/dev/*/udp
UDP/IP transport service. The full device name is specified in the
Release Notice, since it is system-dependent.

U20225-J-Z145-3-76 69

Supplements t_open()

The association between these names and the CCPs providing the
services is shown in the following table.

Transport service CCP profiles

t_msg WAN-NEA
WAN-NX25
ISDN-CONS
ISDN-NEA
ISDN-NX25
WAN-CONS
ISDN-CONS
ETHN-CLNS
Local communication
RFC1006 on top of TCP/IP

t_neat WAN-NEA
WAN-NX25
ISDN-NEA
ISDN-NX25

t_osi_cots WAN-CONS
ISDN-CONS
ETHN-CLNS
RFC1006 on top of TCP/IP

t_rfc1006 RFC1006 on top of TCP/IP

t_sinix -

t_tp2 WAN-CONS
ISDN-CONS

t_tp4 ETHN-CLNS

/dev/*/tcp TCP/IP (part of the UNIX
operating system)

/dev/*/udp UDP/IP (part of the UNIX
operating system)

Table 8: Association of transport services with CCP profiles

70 U20225-J-Z145-3-76

t_open() Supplements

The transport service t_sinix does not require a CCP because it is a
service for local communication. Local communication is the communi-
cation between two TS applications running on the same system.

The transport services TCP/IP and UDP/IP are provided by the UNIX
operating system.

info
The values entered by XTI V5.1 in the info variable depend on the
transport service specified in name. The table “Values of the members in
info” on page 71 lists the possible values of the members in info. These
values are of limited significance for the communications application.
They merely indicate the maximum quality of service which the transport
service has to offer. It is, however, possible that only a restricted quality
of service is available when the transport connection is actually estab-
lished. This can be illustrated by the following two examples:

1. The transport service t_neat is selected. The contents of the tsdu
member in info indicate that a TSDU may have any length (tsdu =-1).
However, this feature of the transport service cannot be used unless
the transport connection on which it is provided links two UNIX
systems. If, on the other hand, the transport connection exists with a
communication computer under PDN or a host computer under
BS2000/OSD, then the length of a TSDU is limited to 4096 bytes.

2. The collective service t_msg is selected. The highest-quality transport
service available under t_msg is the one for local communication. The
values for this transport service are returned in info. If the communi-
cations application subsequently establishes a transport connection
using the NEA transport service, the values for t_neat apply to this
transport connection. These values are given in the table below in the
line for t_neat. As long as this transport connection exists, t_getinfo()
will only return these values.

These remarks apply analogously to the collective service t_osi_cots.

The following table contains the values valid for the individual transport
services as returned by t_open() via info. The members in info which
appear in the header line are explained in more detail in the section
describing the t_open() function in the “X/Open Networking Services
(XNS)” [5].

U20225-J-Z145-3-76 71

Supplements t_open()

The table lists two alternative sets of characteristics for the t_osi_cots
services. The lower-quality set is returned if the system configuration
existing at the time the call is issued only permits communication via a
class 0 transport protocol.

*) tsdu = see section “t_sndudata() - send a data unit” on page 87

/*/ system-specific part of the name, see Release Notice

-1 no restriction on the size of a TSDU

-2 the exchange of expedited data or sending of user data at
connection establishment/release is not supported.

The values specified merely represent the maximum values.

info ->

name
value

addr options tsdu etsdu con-
nect

dis-
con

servtype

t_msg 136 1024 -1 16 32 64 T_COTS

t_neat 136 1024 -1 12 92 1 T_COTS

t_osi_cots 136
136

1024
1024

-1
-1

 16
 -2

32
32

129
64

T_COTS
T_COTS

/dev/*/tcp 16 1024 (R.U.)
9264 (Sol.)

0 -1 -2 -2 T_COTS_
ORD

/dev/*/udp 16 1024 (R.U.)
9408 (Sol.)

*) -2 -2 -2 T_CLTS

Table 9: Values of the members in info

72 U20225-J-Z145-3-76

t_open() Supplements

Supplements to error messages

In addition to the meanings described in the “X/Open Networking Services
(XNS)” [5], the errors indicated in t_errno may have the following meanings:

[TBADNAME]
Symbolic name of the form t_xxx: No transport provider can be found
which bears the (syntactically correct) name (name): either the name
does not exist in the conversion table used by the access system to
determine the transport provider, or the conversion table was not loaded
at system startup.

Device name: No special file with the specified name exists.

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EFAULT]
The memory reserved with name is not (or not completely) located in the
user address space.

[ENXIO] or [EIO]
There is no matching transport provider or the transport provider is not
operable.

[ENOMEM]
The maximum number of transport endpoints permitted by the system
has already been reached. No more transport endpoints can be estab-
lished at this moment.

[ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

See also

t_bind()

U20225-J-Z145-3-76 73

Supplements t_rcv()

4.11 t_rcv() - receive data or expedited data sent
over a connection

Synopsis

#include <xti.h>
int t_rcv(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int *flags;

Implementation-specific supplements

Maximum performance of the access system is achieved if the buffer pointed to
by buf is sufficiently large to hold an entire TSDU or ETSDU.

An error causing the t_rcv() function to abort may result in data being lost.

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EFAULT]
The memory specified with buf and nbytes is not (or not completely)
located in the user address space. Receive data are lost.

[EINTR]
The call has been interrupted by a signal.

[EIO]
The transport provider is no longer operable (at least for this transport
endpoint).

[ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

74 U20225-J-Z145-3-76

t_rcvconnect() Supplements

4.12 t_rcvconnect() - receive the confirmation
from a connect request

Synopsis

#include <xti.h>
int t_rcvconnect(fd, call)
int fd;
struct t_call *call;

Implementation-specific supplements

call->addr
Upon successful completion, the address returned in call->addr is
identical with the TRANSPORT ADDRESS of the communication partner
previously submitted by the communications application in sndcall->addr
of t_connect(). When required, the communications application can obtain
the GLOBAL NAME of the communication partner with this
TRANSPORT ADDRESS from the TS directory by calling t_getname() or
netdir_getbyaddr(). If the maximum buffer length is set to 0

(call->addr.maxlen, call->opt.maxlen, call->udata.maxlen), the corre-
sponding return information is discarded. Users therefore have the
option of selecting specific return information.

If the function t_rcvconnect() runs successfully when TCP/IP is used, this
means that the connection has been established; however, the partner
application has not yet necessarily accepted the connection with
t_listen() / t_accept().

Supplements to error messages

If an error is indicated which sets t_errno = [TSYSERR] and errno = [EFAULT] or
[EIO], this means that the connect confirmation has not become effective i.e.
that connection establishment could not be completed. The t_rcvconnect() call
cannot be repeated in this case, because it would again be aborted with
t_errno = [TSYSERR] and reason [EIO]. Instead t_close() should be called to
recover the error.

U20225-J-Z145-3-76 75

Supplements t_rcvconnect()

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EFAULT]
The area specified in call->addr or call->udata is not (or not completely)
located in the user address space.

[EINTR]
The call has been interrupted by a signal.

[EIO]
The transport provider is no longer operable (at least for this transport
endpoint).

[ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

See also

t_connect(), t_getname(), netdir_getbyaddr(), chapter “Address translation” on
page 9.

76 U20225-J-Z145-3-76

t_rcvdis() Supplements

4.13 t_rcvdis() - retrieve information from
disconnect

Synopsis

#include <xti.h>
int t_rcvdis(fd, discon)
int fd;
struct t_discon *discon;

Implementation-specific supplements

discon
If the udata.maxlen field is set to 0, any incoming user data will not be
passed to the communications application. Upon successful completion,
the function terminates with a return value of 0, and discon->reason
contains the reason for connection release in decimal representation.

If the communications application is to be portable and protocol-
independent, it should not interpret the values supplied in discon->reason.

When TCP/IP is used, the reason for connection release corresponds to
one of the error numbers defined and described in the machine-specific
file <sys/errno.h>.

The list below gives the possible reasons for connection release with ISO
and NEA transport services as well as the meaning of these reasons.
The reasons marked with an asterisk (*) are defined in ISO 8073. All
other reasons are implementation-specific.

Reasons for connection release

Reasons for connection release originating from the transport providers:

Code Reason

0* Remote disconnect, no reason specified possibly due to user error of
partner

1* Remote disconnect due to TSAP congestion

2* Remote disconnect due to not established TSAP

3* Remote disconnect due to unknown TSAP

Table 10: Reasons for connection release

U20225-J-Z145-3-76 77

Supplements t_rcvdis()

5 Remote disconnect by (network) administration

6 Error in network

128* Normal disconnect by the partner communications application

129* Remote disconnect due to congestion during connection estab-
lishment

130* Remote disconnect due to failure in connection negotiation

131* Remote disconnect due to detection of duplicate source reference for
the same pair of NSAPs

132* Remote disconnect due to mismatched references

133* Remote disconnect due to protocol error

135* Remote disconnect due to reference overflow

136* Remote disconnect due to connection refusal on this network
connection

138* Remote disconnect due to invalid header or parameter length

192 Local disconnect due to congestion

193 Local disconnect, QoS can no longer be provided

195 Local disconnect due to invalid (connection) password

196 Local disconnect due to denial of network access

208 Local disconnect due to protocol error

209 Local disconnect, received too long TIDU

210 Local disconnect due to violation of flow control for normal data

211 Local disconnect due to violation of flow control for expedited data

212 Local disconnect due to invalid TSAP id

213 Local disconnect due to invalid TCEP id

214 Local disconnect due to invalid parameter

224 Connection inhibited by local administration

225 Disconnect by local administration

226 Connection can not be set up locally because no network connection
can be established

227 Local disconnect due to loss of network connection

Code Reason

Table 10: Reasons for connection release

78 U20225-J-Z145-3-76

t_rcvdis() Supplements

Reasons for connection release originating from XTI

Supplements to error messages

If an error is indicated which sets t_errno = [TSYSERR] and errno = [EFAULT] or
[EIO], user data, if any, and the reason for connection release

(discon->reason) are lost. The t_rcvdis() call cannot be repeated in this case,
because it would again be aborted with t_errno = [TSYSERR] and reason [EIO].
Instead t_close() should be called to recover the error.

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EFAULT]
The area specified in discon->udata is not (or not completely) located in
the user address space.

[EINTR]
The call was aborted by a signal.

228 Connection can not be set up because partner does not respond to
CONRQ

229 Local disconnect due to loss of connection (Idle Traffic Inactivity
Timeout)

230 Local disconnect because resynchronization failed (more than 10
retries)

231 Local disconnect because expedited channel is inoperable

Code Reason

258 Local release by XTI due to deactivation of the CCP by adminis-
tration

259 Local release by XTI due to failure of the CCP

Table 11: Reasons for connection release (XTI)

Code Reason

Table 10: Reasons for connection release

U20225-J-Z145-3-76 79

Supplements t_rcvdis()

[EIO]
The transport provider is no longer operable (at least for this transport
endpoint).

[ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

80 U20225-J-Z145-3-76

t_rcvrel() Supplements

4.14 t_rcvrel() - acknowledge receipt of an
orderly release indication

Synopsis

#include <xti.h>
int t_rcvrel(fd)
int fd;

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EINTR]
The call was aborted by a signal.

[ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

U20225-J-Z145-3-76 81

Supplements t_rcvudata()

4.15 t_rcvudata() - receive a data unit

Synopsis

#include <xti.h>
int t_rcvudata(fd, unitdata, flags)
int fd;
struct t_unitdata *unitdata;
int *flags;

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EFAULT]
The area specified in unidata->addr, unitdata->udata or unidata->opt is not
(or not completely) located in the user address space.

[EINTR]
The call was aborted by a signal.

[ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

82 U20225-J-Z145-3-76

t_rcvuderr() Supplements

4.16 t_rcvuderr() - receive a unit data error
indication

Synopsis

#include <xti.h>
int t_rcvuderr(fd, uderr)
int fd;
struct t_uderr *uderr;

Implementation-specific supplements

uderr->error corresponds to one of the error numbers defined and described in
the machine-specific file <sys/errno.h>.

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EFAULT]
The area specified in uderr->addr or uderr->opt is not (or not completely)
located in the user address space.

[EINTR]
The call was aborted by a signal.

[ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

U20225-J-Z145-3-76 83

Supplements t_snd()

4.17 t_snd() - send data or expedited data over a
connection

Synopsis

#include <xti.h>
int t_snd(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int flags;

Implementation-specific supplements

flags
XTI allows the communications application to concatenate expedited
data by means of T_MORE when passing the data to XTI. It is advisable
not to use this feature, since transport providers based on the ISO or
NEA protocol cannot accept and transfer ETSDUs except as single units.
Therefore, if a communications application submits expedited data to
t_snd() with the T_MORE flag set, the expedited data will be locally
buffered by XTI until the last expedited data (with T_MORE no longer set)
has been submitted. It is not until then that XTI passes the expedited data
to the transport system. Normal data flow is not affected by this. If the
T_MORE flag is set when sending expedited data, it may occur that XTI
does not notify the user until the last t_snd() call is issued whether the
amount of data submitted exceeds the maximum permissible or not. If
the limit value is exceeded t_errno is set to [TBADDATA]. The message
is not sent in this case, and all the data comprising the message must be
submitted again.

I In non-blocking mode (O_NONBLOCK set) t_snd() can terminate
successfully without having sent off all nbytes of data. The return value in
this case indicates the number of data items already transferred. If the
return value is smaller than nbytes, the remaining data items can be trans-
ferred by the communications application issuing another t_snd() call.

In the event of an error, t_snd() returns a value of -1. This means that
there is no indication of the number of data items already sent up to this
point!

84 U20225-J-Z145-3-76

t_snd() Supplements

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EFAULT]
The area specified in buf and nbytes is not (or not completely) located in
the user address space. Part of the data may have been sent. If the
T_MORE flag is set this indicates to the receiving partner that the TSDU
is incomplete.

[EINTR]
The call has been interrupted by a signal. Part of the data may have been
sent. If the T_MORE flag is set this indicates to the receiving partner that
the TSDU is incomplete.

[ENXIO] or [EIO]
The transport provider is no longer operable (at least for this transport
endpoint). Part of the data may have been sent. If the T_MORE flag is
set this indicates to the receiving partner that the TSDU is incomplete.

[ENOSR] or [ENOMEM]
XTI was temporarily unable to allocate any buffer area in main memory
to hold the data. No data has been sent.

U20225-J-Z145-3-76 85

Supplements t_snddis()

4.18 t_snddis() - send user-initiated disconnect
request

Synopsis

#include <xti.h>
int t_snddis(fd, call)
int fd;
struct t_call *call;

Implementation-specific supplements

If the function is aborted with [TSYSERR] and the reason [EFAULT], [ENXIO] or
[EIO] specified in errno, the connection is still not considered to be released by
XTI. The disconnect request may nevertheless have been sent.

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EFAULT]
The area specified in call->udata is not (or not completely) located in the
user address space.

[EINTR]
The call is aborted by a signal.

[ENXIO] or [EIO]
The transport provider is no longer operable (at least for this transport
endpoint).

[EAGAIN] or [ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

86 U20225-J-Z145-3-76

t_sndrel() Supplements

4.19 t_sndrel() - initiate an orderly release

Synopsis

#include <xti.h>
int t_sndrel(fd)
int fd;Supplements to error messages

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EINTR]
The call is aborted by a signal.

[ENXIO] or [EIO]
The transport provider is no longer operable (at least for this transport
endpoint).

[EAGAIN] or [ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

U20225-J-Z145-3-76 87

Supplements t_sndudata()

4.20 t_sndudata() - send a data unit

Synopsis

#include <xti.h>
int t_sndudata(fd, unitdata)
int fd;
struct t_unitdata *unitdata;

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[EFAULT]
The area specified in unidata->addr, unitdata->udata or unidata->opt is not
(or not completely) located in the user address space.

[EINTR]
The call is aborted by a signal.

[ENXIO]
The transport provider is no longer operable (at least for this transport
endpoint).

[ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

I As a result of implementation-specific supplements to the TCP/IP
transport service, the maximum size of the TSDU may be less than the
value specified in info->tsdu in certain UNIX versions.

During operation via UDP/IP: t_sndudata() can only transfer a maximum
of one TSDU as large as a STREAMS message. The maximum size of
such a message is a configurable system parameter:
Reliant UNIX: STRMSGSZ in /etc/conf/cf.d/mtune or /etc/conf/cf.d/stune
Solaris: /etc/system

command sysdef shows the actual value

88 U20225-J-Z145-3-76

t_sync() Supplements

4.21 t_sync() - synchronize transport library

Synopsis

#include <xti.h>
int t_sync(fd)
int fd;

I When using the TCP/IP protocol, please note that the current values for
qlen and ocnt are not inherited by the child process when the fork()
system call is executed, as a result of the implementation. If one of the
two processes is to continue to wait for incoming connection requests
after the fork() call, then this must always be the parent process.

U20225-J-Z145-3-76 89

Supplements t_sysconf()

4.22 t_sysconf() - get configurable XTI variables

Synopsis

#include <xti.h>
int t_sysconf(int name);

Implementation-specific supplements

The only variable currently supported is variable -SC_T_IOV-MAX. The variable
specifies the maximum number of non-contiguous buffers used for
scatter/gather transfer (see functions t_sndv(), t_rcvv(), t_sndvudata(),
t_rcvvudata(), t_rcvreldata(), t_sndreldata() and t_sysconf() in the “X/OPEN
Networking Services (XNS)” [5]. The current value of the variable is 16.

90 U20225-J-Z145-3-76

t_unbind() Supplements

4.23 t_unbind() - disable a transport endpoint

Synopsis

#include <xti.h>
int t_unbind(fd)
int fd;

Supplements to error messages

In the event of a system error, i.e. if t_errno has the value [TSYSERR], the
system variable errno may have any of the following values:

[ENXIO]
The transport provider is no longer operable (at least for this transport
endpoint).

[ENOSR]
XTI is temporarily unable to allocate any buffer area in main memory.

U20225-J-Z145-3-76 91

5 Supplements to the options
This section describes the supplements to the t_optmgmt call, which is used to
manage the options of a transport endpoint.

5.1 t_optmgmt() - manage options for a
transport endpoint

Synopsis

#include <xti.h>
int t_optmgmt(fd,req,ret)
int fd;
struct t_optmgmt *req;
struct t_optmgmt *ret;

Implementation-specific supplements

Currently supported options are:

For t_opthdr.level == XTI_GENERIC:

– XTI_DEBUG

For t_opthdr.level == ISO_TP:

– TCO_EXPD

For t_opthdr.level == INET_TCP:

– TCP_KEEPALIVE, TCP_MAXSEG, TCP_NODELAY

For t_opthdr.level == INET_IP:

– IP_BROADCAST, IP_DONTROUTE, IP_OPTIONS, IP_REUSEADDR

All options are available to all users, i.e. there are no privileged users.

The option XTI_DEBUG of the XTI_GENERIC level has a different meaning
depending on the option values attached to it. Option values can be specified
as an array of type long. Basically, there are 3 valid formats of this option:

92 U20225-J-Z145-3-76

t_optmgmt() Options

Format 1:

If there are no option values specified at all, the XTI library trace is disabled.

Format 2:

If XTI_GENERIC is the first member in the option value array, the XTI library
trace is enabled with a default set of trace options. Subsequent option values
are ignored.

Format 3:

If LIB_TRACE is the first member in the option value array, the XTI library trace
is enabled, depending on the subsequent option values in the array. All values
that can be specified for the XTITRACE environment variable are permitted,
apart from the -f option (see chapter “XTI library trace” on page 101 for more
detailed information).

Option header (struct t_opthdr)

len level name status

XTI_GENERIC?? XTI_DEBUG ??

Option header (struct t_opthdr) Option values

len level name status

XTI_GENERIC?? XTI_DEBUG ?? XTI_GENERIC ...
next
options
...

Option header (struct t_opthdr) Option values (long)

len level name status

XTI_GENERIC?? XTI_DEBUG ?? LIB_TRACE Value array

U20225-J-Z145-3-76 93

Options t_optmgmt()

If the trace parameters are to be changed while the trace is active, you must first
explicitly disable the trace, and then restart it with the new parameters.

Use the LIBTR_ASSIGN macro to assign the desired values to the option value
array:

e.g.
LIBTR_ASSIGN(position,’S’,0) corresponds to XTITRACE=-S,
LIBTR_ASSIGN(position,’s’,0) corresponds to XTITRACE=-s, and
LIBTR_ASSIGN(position,’r’,1000) corresponds to XTITRACE=“-r 1000”.

When the options are returned (e.g. T_optmgmt() with req->flags =
T_CURRENT) with the option name = XTI_DEBUG and LIB_TRACE as the first
member in the subsequent option value array, the user can load the option
values set using the LIBTR_READ macro.

I Although the t_optmgmt() call is TEP-specific, the library trace enabled by
the call is specific to a particular process (as when activated by the
XTITRACE variable).

LIBTR_ASSIGN (position, parameter, value)

 Parameter value if set, and
 'r'; otherwise 0
 (Type: short)

 Trace parameter: 's', 'S', 'r', or 'p'
 (Type: char)

 Address of the member within the
 option value array
 (Type: pointer to long)

LIBTR_READ (position, parameter, value)

 Field for returning the param. value
 (Type: pointer to short)

 Field for returning the trace parameter
 (Type: char)

 Address of the member within the
 option value array
 (Type: pointer to long)

94 U20225-J-Z145-3-76

t_optmgmt() Options

Supplements to error messages

[TBADOPT]
reg->flags == T_CHECK must not be combined with the T_ALLOPT
option name.

[TOUTSTATE]
Cannot occur, because t_optmgmt() is permitted in all states except for
T_UNINIT. In this state, however, there are no valid file descriptors, which
means that [TBADF] would be returned.

U20225-J-Z145-3-76 95

6 Supplements to event
management

Event management as defined by X/Open and implemented in XTI V5.1 always
refers to a particular transport endpoint (fd in t_look()). A communications appli-
cation cannot therefore simultaneously wait for different, asynchronous events
at various transport endpoints. The definition of a general interface for event
management has not yet been finalized.

You can however use system-specific interfaces, which allow communications
application processes to expect data on various transport connections, for
example, or to simultaneously monitor transport connections and standard
input. Different system interfaces are available for this purpose in the different
operating systems: poll() and select().

A single poll() call can be used not only to control various transport endpoints,
but also to simultaneously control entities that can be accessed via the poll
mechanism, e.g. keyboard drivers.

A description of the function calls is given in the manual “CMX, Programming
Applications” [2] that describes the C development system for your system. A
list of the event management system calls that can be used on your end system
is given in the Release Notice.

96 U20225-J-Z145-3-76

poll() Event management

6.1 poll() - multiplex input and output entities

Different event bits must be set in events depending on the XTI event expected.

The following table shows the relationships between XTI events and poll() bits:

For portability reasons, the following event bits must be set for applications that
are designed to run on non-UNIX systems also:

If t_look() is then called for this transport endpoint, fd indicates which XTI event
has occurred (e.g. T_DATA or T_EXDATA).

If a bit is set in events for a class 2 event, and if there is no send congestion for
the relevant flow (normal data or expedited data), then poll() immediately
returns successfully.

Event class and XTI event Event bits in „events“

1 T_CONNECT POLLIN or POLLRDNORM

1 T_DISCONNECT POLLIN or POLLRDNORM

1 T_LISTEN POLLIN or POLLRDNORM

1 T_ORDREL POLLIN or POLLRDNORM

1 T_UDERR POLLIN or POLLRDNORM

1 T_DATA POLLIN or POLLRDNORM

1 T_EXDATA POLLIN or POLLRDBAND

2 T_GODATA POLLOUT or POLLWRNORM

2 T_GOEXDATA POLLWRBAND

Table 12: Relationships between XTI events and poll() bits

Event class and XTI event Event bits in „events“

1 POLLIN | POLLRDNORM |
POLLRDBAND | POLLPRI

2 POLLOUT | POLLWRBAND

Table 13: Event bits to be set for applications running also on non-UNIX systems

U20225-J-Z145-3-76 97

Event management select()

6.2 select() - multiplex file descriptors

The table below indicates the areas where a bit must be set in order that the
respective event can be checked for the corresponding transport endpoint.

For portability reasons, bits must be set in the following areas for applications
that are designed to run on non-UNIX systems also:

The flow of expedited data in the send direction cannot be monitored with
select().

Event class and XTI event Bit to be set in

readfds writefds exceptfds

1 T_CONNECT
1 T_DISCONNECT
1 T_LISTEN
1 T_ORDREL
1 T_UDERR
1 T_DATA
1 T_EXDATA

x
x
x
x
x
x

x

2 T_GODATA
2 T_GOEXDATA

x

Table 14: Event class and event bits at select()

Event class andXTI event Bit to be set in

readfds writefds exceptfds

1 x x

2 x

Table 15: Event class and event bits at select() on non-UNIX systems

U20225-J-Z145-3-76 99

7 Read/write interface
An interface is provided for communications applications that access transport
endpoints using the system calls read() and write() as described in chapter 2
“Sockets Interfaces” of the “X/Open Networking Services (XNS)” [5]. This
section provides information on how to use read() and write() when the specified
file descriptor is a transport endpoint. You must be familiar with these functions.

7.1 read() - read from a file

Synopsis

#include <sys/types.h>
#include <unistd.h>
int read(fd, buf, nbyte)
int fd;
void *buf;
unsigned nbyte;

Supplements to error messages

In the event of error, errno is set to one of the following:

[EIO]
The TSP is no longer operable.

[EFAULT]
The area specified in buf and nbyte is not (or not completely) located in
the user address space.

[EAGAIN]
fd is accessed in non-blocking mode, and there is currently no receive
data.

100 U20225-J-Z145-3-76

write() Read/write interface

7.2 write() - write to file

Synopsis

#include <sys/types.h>
#include <unistd.h>
int write(fd, buf, nbyte)
int fd;
void *buf;
unsigned nbyte;

Supplements to error messages

In the event of error, errno is set to one of the following:

[EIO]
The TSP is no longer operable.

[EFAULT]
The area specified in buf and nbyte is not (or not completely) located in
the user address space.

[EAGAIN]
fd is accessed in non-blocking mode and no send data can be accepted
at present.

[ENXIO]
The transport connection was aborted (under normal circumstances by
the partner application).

U20225-J-Z145-3-76 101

8 XTI library trace
The XTI library trace is controlled by means of the environment variable
XTITRACE. This environment variable is used to switch on the trace and
determine the amount of information to be collected. Alternatively, the trace can
be activated at runtime using the t_optmgmt() function (see chapter “Supple-
ments to the options” on page 91).

The trace entries are then collected in a ring buffer and saved in temporary files.
These files are processed separately by the program xtil. The extent of the
evaluation is determined by specifying particular options when calling the
program xtil.

The options available when defining the environment variable XTITRACE, as
well as the options that can be selected when calling xtil, are described in the
following sections.

Notational conventions (XTI library trace)

The following notational conventions are used:

bold
Constants; enter what appears in this manual

normal print
Positional operands for which you can enter selected options or values

[] May be omitted. The brackets must not be entered

Ë Mandatory blank

... Previous expression may be repeated any number of times

102 U20225-J-Z145-3-76

XTITRACE XTI library trace

8.1 XTITRACE - control the trace

The first XTI call issued by a process evaluates the environment variable
XTITRACE and switches on the trace if necessary. After the trace is switched
on, the temporary file XTIF<pid> with the process ID <pid> is opened, if it is not
already open.

When the file XTIF<pid> has been written up to the maximum length, the entries
are written to the file XTIS<pid>. When this second file is full, the first file
XTIF<pid> is reverted to. This file is first cleared and then written. The directory
is specified in the Release Notice.

The access rights rw––––––– (0600) are assigned to the files and can be found
under the user ID of the process. Memory is then dynamically allocated for
buffering the trace entries. The memory and files remain allocated for the
duration of the process.

The options specified in XTITRACE control the trace mechanism. The options s
and S determine the range of information recorded, while the options p, r, and f
control the buffering, cyclical overwriting, and storage of the file respectively.

XTITRACE=“-option1[Ë-pËfac][Ë-rËwrap][Ë-fËdir]”;

exportËXTITRACE

Meaning of the options and parameters:

-option1
option1 determines the type of trace. Only one of the two possible values
for option may be specified. In order to activate the trace, a value must
be specified here.

The following alternatives can be specified for option1:

s The function names, the values of the arguments and the return
values of the functions are logged. If an error occurs, t_errno, errno
and the error position errpos are output in the library.

S The same information is logged as for option s. In the case of
arguments that are pointers, the data structures addressed by the
pointers are also logged. In practice, the S option should be used
in preference to the s option.

U20225-J-Z145-3-76 103

XTI library trace XTITRACE

-pËfac
The decimal number fac determines the buffering factor. The size of the
buffer is fac * BUFSIZ, where BUFSIZ is specified in <stdio.h>.

If fac > 8, the value for fac is automatically reduced to 8.
If fac = 0, each trace entry is written directly to the file (unbuffered).

-pËfac not specified: fac = 1 assumed.

-rËwrap
The decimal number wrap specifies that after wrap * BUFSIZ bytes
(BUFSIZ specified in <stdio.h>), the trace entries are logged in the
second temporary file XTIS<pid>.

This file handles the trace information in exactly the same way as
XTIF< pid>. After every wrap * BUFSIZ bytes, the trace mechanism
switches between XTIF<pid> and XTIS<pid>, whereby the old contents
of the respective file are overwritten.

-rËwrap not specified: wrap = 512 assumed.

-fËdir
The dir entry specifies the directory in which the trace files XTIF<pid>
and XTIS<pid> are to be stored.

-fËdir not specified: The default directory for trace files is used; the name
of this directory is specified in the Release Notice.

104 U20225-J-Z145-3-76

xtil XTI library trace

8.2 xtil - edit the trace information

xtil reads the entries generated by the trace from the temporary file file,
processes them in accordance with the options specified, and outputs the result
to stdout.

If the program runs successfully, the end status is 0, otherwise it is a value not
equal to 0.

The format of xtil output is described in the next section.

xtil[Ë-option2]Ëfile ...

Meaning of the options and parameters:

-option2
The options specified for option2 determine which trace entries from file
are to be edited. More than one of the values described below for option2
can be specified in each xtil call.

-option2 not specified: option2 = cdm assumed.

The following values can be specified for option2:

c The trace entries are edited for XTI calls:

– for attaching/detaching the communications application

– for connection establishment/release

These calls include t_accept(), t_bind(), t_close(), t_connect(),
t_listen(), t_open(), t_rcvconnect(), t_rcvdis(), t_rcvrel(), t_snddis(),
t_sndrel() and t_unbind().

d The trace entries are edited for XTI calls for data exchange. These
calls include t_rcv(), t_rcvudata(), t_rcvuderr(), t_snd() and
t_sndudata().

m The trace entries are edited for the remaining XTI calls not edited
with the options c and d. These calls include t_alloc(), t_error(),
t_free(), t_getaddr(), t_getinfo(), t_getloc(), t_getname(), t_getstate(),
t_look(), t_optmgmt() and t_sync().

U20225-J-Z145-3-76 105

XTI library trace xtil

v The XTI calls, their arguments and options are edited in full. In the
case of arguments passed as pointers, the data structures
addressed are also output. The extent to which the data is edited
depends on the options specified in XTITRACE. If the trace was
enabled with the S option, the v option is recommended for editing.
If only v is specified for option2, this has the same meaning as
option2 = cdmv.

file ...
Name of one or more files with binary trace entries that are to be edited.

Output format of the XTI library trace

The trace information edited by xtil always begins with the following header:

XTI TRACE (Vx.x) Fri Aug 12 15:13:34 1990
OPTIONS 'cdmv' , TRACE FILE 'XTIF00963'

These two lines are output once before the trace data is output and contain the
following information:

– Version of the XTI function library,

– Start date and start time of the trace,

– The selected editing options,

– Name of the edited trace file.

The trace information for the individual XTI calls is output in several lines with
different formats. The extent of the output depends on the options specified for
XTITRACE and xtil.

The first line of output always appears. It contains the following information:

A time stamp appears at the start of the first line in the following form:

<minutes>:<seconds>.<milliseconds> (e.g. 24:16.320).

The accuracy of the milliseconds specification depends on the type of machine.

This is followed by the XTI call logged (t_xxxxx) and, in parentheses, the
arguments and their values in the order required by XTI. The arguments appear
in decimal (%d), hexadecimal (0x%x), or symbolic (%s) form. In hexadecimal
representation, 0x precedes the argument.

106 U20225-J-Z145-3-76

xtil XTI library trace

The following must be noted when interpreting the logged values:

– In the case of arguments that are addresses, the argument is represented in
the form (0x%x).

– In the case of arguments of type integer (*.len, *.maxlen), the corresponding
value is represented in the form 0x%x, %d, or %s. It is separated from the
argument name by a blank.

For functions whose processing depends on the file mode, it is also specified
whether the access is blocking (specification: BLOCK) or non-blocking (specifi-
cation: NBLOCK).

The following lines are only output if the option v was specified for xtil and the
trace has collected appropriate information (option S with XTITRACE).

In the case of arguments that are pointers, these lines also contain the data
structures addressed by these pointers. The values of the structure components
are converted into hexadecimal format and into plain text. The naming conven-
tions used for arguments and structure components correspond to the specifi-
cations in the “X/Open Networking Services (XNS)” [5].

The following applies for identifying structure components:

> The component must be assigned a valid value by the communications
application.

< The component is assigned a valid value by the XTI function if the
function runs without error.

- The value of the components is of no significance for the logged XTI call.

--- If --- is specified instead of the component value, the component is not
assigned a valid value.

The last line of the output for an XTI call contains the return value. If an error
occurs, t_errno, possibly errno, and information on the error position (errpos) are
output in the library.

Example

Below is an example of detailed logging for an XTI call.

24:16.320 t_bind (fd 5, req 0x8054ac8, ret 0x0)
 req: addr.maxlen(-) addr.len(>) addr.buf(>)
 --- 24 0x8054d48
 0 01001800 0e000000 00000004 04003234� 24�
 10 39370000 00000000 �97 �
 qlen (>) 10
 return: 0

U20225-J-Z145-3-76 107

Glossary
active partner

The communication partner that sets up a connection to another TS appli-
cation.

API (application program interface)
APIs are program interfaces that provide the functions of a program
system. As the programmer, you use the APIs when programming appli-
cations. APIs offer functions for connection management, data
exchange, and mapping names to addresses. APIs in the CMX
environment are sockets, ICMX, XTI, and TLI.

application
An application is a system of programs which implements a particular
range of services of a DP system in order to provide a higher-quality
service to the human or electronic user. Communication applications are
applications that use the communication functions of a DP system in
order to provide global services when a network is in operation.

Most applications are qualified by a prefix which identifies the underlying
service range (CMX application, UTM application, DCAM application,
Motif application, Windows application, etc.). Examples of communi-
cation applications are file transfer, terminal emulation, electronic mail,
world wide web browser and server, transaction systems such as UTM,
and in general all applications based on the client-server principle.

CC (communications controller)
A CC is a component for connecting a UNIX system to a network. You
need a CC to physically attach your system to a subnetwork, unless the
interface is integrated on a different module, e.g. the motherboard
(onboard interface).

To obtain a logical connection to the network, CCs are generally
operated with an associated communication control program (CCP). These
CCs are known as loadable CCs. EWAN, CCA, CCS0, LCEII,
PWS0[_U], PWS2[_U] and PWXV[_U] are examples of loadable CCs for
connecting to X.25 and telephone networks, ISDN and Ethernet.
Loadable CCs are generally controlled by a subnetwork profile. The
subnetwork profile is a component of the CCP.

108 U20225-J-Z145-3-76

Glossary

CCP (communication control program)
A CCP is a program system (software product) which, together with one
or more CCs, provides the logical access of a UNIX system to a network.
A CCP implements the four lower layers (transport system) of the OSI
Reference Model for data communication. CCP-WAN, CCP-ISDN, CCP-
ETHN, and CCP-FDDI are examples of CCPs for connecting to X.25 and
telephone networks, ISDN, Ethernet, and FDDI.

A CCP comprises a number of components, the subnetwork profile and
transport service providers.

communication partner
A TS application that maintains a virtual connection to another TS appli-
cation and exchanges data with it.

connection establishment
The phase in connection mode that enables two transport users to create
a transport connection between them.

connection release
The phase in connection mode that terminates a previously established
transport connection between two users.

GLOBAL NAME of an application
Each CMX application identifies itself and its communication partners in
the network by symbolic, hierarchical GLOBAL NAMES. A GLOBAL
NAME consists of up to five name parts (NP[1- 5]), which you can use to
define the application (NP5), the processor (NP4), and (up to three)
administrative domains (NP[3-1]).

Example: The GLOBAL NAME
“YourApplication.D018S065.mch-p.sni.de” means: “YourApplication”
resides on the host “D018S065” in the domain “mch-p.sni.de”.

When you, as administrator, are choosing a GLOBAL NAME, you must
adhere to the regulations and recommendations of the specific appli-
cation.

As the administrator, you can use the graphical user interface CMXGUI
to assign a TRANSPORT ADDRESS or a LOCAL NAME of an application to
the GLOBAL NAME of the application on a 1:1 basis. As the programmer,
you can obtain the TRANSPORT ADDRESS or LOCAL NAME expected
by CMX from the GLOBAL NAME using the function calls of the transport
name service (TNS).

U20225-J-Z145-3-76 109

Glossary

LOCAL NAME of an application
A CMX application uses the LOCAL NAME to attach to CMX in its local
system for communication. The LOCAL NAME comprises one or more
T-selectors, which identify the transport system via which the CMX appli-
cation is to communicate. As the administrator, you can enable or disable
the communication of a CMX application via particular transport systems
and fulfill any requirements of the CMX application for specific T-selector
values, e.g. in file transfer.

Example: An application is to use the T-selector “cmxappl” (in lowercase
letters!) for communication via the TCP/IP- RFC1006 transport system,
and the T-selector “$CMXAPPL” (in uppercase letters!) for communi-
cation via the NEA transport system.

As the administrator in CMX, you can use the graphical user interface
CMXGUI to assign the LOCAL NAME of an application to the GLOBAL
NAME of the application. As the programmer, you can obtain the LOCAL
NAME expected by CMX from the GLOBAL NAME using the function
calls of the transport name service (TNS).

OSI Reference Model
Open Systems Interconnection is the communication architecture
defined by the International Organization for Standardization (ISO) in
ISO standard 7498. This architecture defines reliable data interchange
between applications running on different hardware platforms. To
perform this complex task, the OSI Reference Model distinguishes
between seven interoperating subtasks, each of which is implemented
on a particular layer. The lower four layers represent the transport system,
while the top three layers represent the view of the application, e.g. the
data formats.

partner
see communication partner.

passive partner
The communication partner that does not set up a connection itself but is
addressed by another communication partner.

process
A process is a program during execution. It consists of the executable
program, the program data, and process-specific administration data
required to control the program.

110 U20225-J-Z145-3-76

Glossary

property
Attribute of a TS application in the TS directory, where the application is
registered together with the GLOBAL NAME.

TEP
XTI transport endpoints and TS application processes attached to CMX.

TNS (transport name service)
The TNS is a component of CMX which supports the correct mapping of
the GLOBAL NAMES of CMX applications in the network to TRANSPORT
ADDRESSES and LOCAL NAMES. As the administrator, you configure
your chosen assignment of GLOBAL NAME to TRANSPORT ADDRESS
for remote applications, as well as the assignment of GLOBAL NAME to
LOCAL NAME for local applications. As the applications programmer,
you can use these maps via an API and thereby work solely with the
GLOBAL NAMES of applications without assessing the maps.

The TNS provides network-wide identification of applications by means
of logical GLOBAL NAMES and their mapping to corresponding network
addresses. This means that you can identify applications without having to
know their network addresses. Together with the FSS, the TNS provides
a complete mapping of the logical name to a concrete subnetwork address
and a route through the various subnetworks of the network.

TRANSPORT ADDRESS of an application
A calling CMX application transfers the TRANSPORT ADDRESS of a
called communication partner to CMX when communication is being
established. CMX uses the TRANSPORT ADDRESS to locate the
communication partner in the network and determine a route through the
network. The TRANSPORT ADDRESS generally depends on the logical
and physical structure of the network (and its subnetworks). The
TRANSPORT ADDRESS contains the specifications of your network
operator(s) which are specific to your network. As the administrator, you
can influence the TRANSPORT ADDRESS and hence the communi-
cation paths independently of the application.

The components of a TRANSPORT ADDRESS are: a network address
for uniquely identifying the remote system on which the application
resides, the type of transport system via which the remote application can
be reached, and the T-selector that identifies the remote application in the
remote system.

U20225-J-Z145-3-76 111

Glossary

Examples of network addresses are: the Internet address in dot notation
“192.11.44.1”, the NEA network address in the notation processor/region
number “47/11”, and the X.25 address (DTE address) as a string of digits
“45890010123”.

As the administrator, you can use the graphical user interface CMXGUI
to assign a TRANSPORT ADDRESS of the application to the GLOBAL
NAME of the application on a 1:1 basis. As the programmer, you can
obtain the TRANSPORT ADDRESS expected by CMX from the GLOBAL
NAME using the function calls of the transport name service (TNS).

transport connection
The communication circuit that is established between two transport
users in connection mode.

transport layer
Fourth layer in the OSI Reference Model; described in ISO standard 8072.

transport reference
A number which uniquely identifies a connection within a TS application.

transport system
The transport system is represented by the four lower layers of the OSI
Reference Model. A CCP implements the four layers of the transport
system. The transport system guarantees the secure exchange of data
between systems whose applications communicate with each other,
regardless of the underlying network structures. The transport system
uses protocols for this purpose.

transport service access point (TSAP)
A TSAP is a uniquely identified instance of the transport provider. A
TSAP is used to identify a transport user on a certain end system. In
connection mode, a single TSAP may have more than one connection
established to one or more remote TSAPs; each individual connection
then is identified by a transport endpoint at each end.

TS application
Transport service application:

A TS application is an application that uses the services of the transport
system. It consists of programs that can set up a virtual connection to
another TS application in order to exchange data with it.

112 U20225-J-Z145-3-76

Glossary

TS directory
Database containing information about TS applications. The TS directory
is managed using the Transport Name Service in UNIX.

T-selector
The T-selector identifies a communication application within the system
on which the application is running. Together with the network address of
the system, the T-selector forms the TRANSPORT ADDRESS of an appli-
cation which uniquely identifies this application within the network. The
format and value range of the T-selector depend on the type of network.
In the NEA network, the T-selector corresponds to the station name (e.g.
T’DSS01’).

TSP (transport service provider)
A TSP is a component of a CCP or of CMX which, with the exception of
the NTP (null transport), provides the OSI transport service in the
network using a transport protocol. As the administrator, you can
determine the usage of a particular TSP for the communication of appli-
cations. RFC1006 is the TSP in CMX which, together with TCP/IP,
provides the OSI transport service in the Internet. NTP (null transport)
offers CMX applications direct access to the network services of the X.25
subnetwork. TP0/2, TP4, and NEA are the TSPs for an OSI environment
and the TRANSDATA network.

Together with a subnetwork profile, a TSP forms a transport system. It offers
a set of configurable runtime and tuning parameters, assesses the
TRANSPORT ADDRESS, and finds a suitable route through the network.
To do this, the TSP uses your specifications in the FSS, if necessary.

U20225-J-Z145-3-76 113

Abbreviations
CC

Communication Controller

CCP
Communication Control Program

CMX
Communication Manager in UNIX

ETSDU
Expedited Transport Service Data Unit

IP
Internet Protocol

ISO
International Organization for Standardization

LAN
Local Area Network

NEA
Network architecture in TRANSDATA systems

NLS
X/Open Native Language System

OSI
Open Systems Interconnection

PDN
Program system for teleprocessing and network control

TCP
Transmission Control Protocol

TNS
Transport Name Service in UNIX

114 U20225-J-Z145-3-76

Abbreviations

TS
Transport Service

TSAP
Transport Service Access Point

TSDU
Transport Service Data Unit

UDP
User Datagram Protocol

WAN
Wide Area Network

XTI
X/Open Transport Interface

U20225-J-Z145-3-76 115

Tables
Table 1: General XTI calls . 3

Table 2: Functions for accessing the Name Service 5

Table 3: Header files and applications 5

Table 4: ISO transport services . 37

Table 5: NEA transport service . 37

Table 6: Message-oriented transport services 38

Table 7: Functions implemented in XTI V5.1 51

Table 8: Association of transport services with CCP profiles 69

Table 9: Values of the members in info 71

Table 10: Reasons for connection release 76

Table 11: Reasons for connection release (XTI) 78

Table 12: Relationships between XTI events and poll() bits 96

Table 13: Event bits to be set for applications
running also on non-UNIX systems 96

Table 14: Event class and event bits at select() 97

Table 15: Event class and event bits at select() on non-UNIX systems . 97

U20225-J-Z145-3-76 117

References
[1] CMX V5.1 (Solaris)

Communications Manager UNIX
Operation and Administration
User Guide

Target group
System administrators and users

Contents
The manual describes the function of CMX as mediator between appli-
cations and the transport system. It contains basic information on config-
uration and administration of systems in network environments.

[2] CMX V5.1
Communications Manager UNIX
Programming Applications
Programmers Reference Guide

Target group
Programmers

Contents
The manual describes the program interface of CMX, i.e. all tools that
you can use for developing TS applications.

[3] Reliant UNIX 5.45
Network Programming Interfaces
Programmer’s Guide

Target group
Application programmers

Contents
This manual describes how to write application programs that use the
Reliant UNIX networking facilities such as TLI (Transport Layer
Interface), Sockets and RPC (Remote Procedure Call).

[4] Solaris 7 Reference Manual Collection
man-Pages (3), Library Routines

[5] X/Open Networking Services (XNS), Issue 5.2
ISBN 1-85912-241-8

118 U20225-J-Z145-3-76

References

Ordering manuals

Please apply to your local office for ordering manuals.

U20225-J-Z145-3-76 119

Index
A
address

TS application 9
address management 9
addressing 9

C
CCP

assignment of transport service
69

collective service 69
communication software

architecture 6
concatenate expedited data 83
connection 80
connection establishment 108
connection release 108

D
data unit 81, 87
DIR.X 39

E
environment variable

LANG 61
error messages

format of 61

F
function calls

supplements 51
functions

implemented 51

G
GLOBAL NAME 10

example 13
map 30
structure 11

global name
get 26

H
header file 5

I
implemented functions 51
installation 7

K
kernel components 7

L
LANG

environment variable 61
LeafEntities 11
leaves 11
library trace 102

controlling/activating 101
edit 104
output 105

library trace program 6
LOCAL NAME 14

structure 15
local name

get 23
LOCAL NAMES

transport service 16

M
map transport address 32
message texts

format of 61

N
name

ascertain 19
transport service 67
TS application 9

name part
GLOBAL NAME 11

Name Service 5

120 U20225-J-Z145-3-76

Index

name structure
GLOBAL NAME 11

naming tree
GLOBAL NAME 11

netconfig 37
netdir_getbyaddr() 32
netdir_getbyname() 30
netdir_options() 36
network address 15
network configuration file 37
NLS 61
nodes 11
NonLeafEntities 11
notational conventions 101

P
poll 96
properties 10

TS application 14
property

ascertain 19

R
read from a file 99
read() 99
reasons for connection release

list of 76
receipt 80
release 86
ROOT 11
root 11
ROUTING INFORMATION 15
runtime environment

XTI application 7

S
select 97
service access point 15

T
t_accept 54
t_alloc 56
t_bind 57
t_connect 59

t_error 61
t_free 62
t_getaddr 20
t_getinfo 63
t_getloc 23
t_getname 26
t_listen 64
t_look 66
T_MORE flag 83
t_msg 67
t_neat 67
t_open 67
t_optmgmt 91
t_osi_cots 68
t_rcv 73
t_rcvconnect 74
t_rcvdis 76
t_rcvrel 80
t_rcvudata 81
t_rcvuderr 82
t_rfc1006 68
t_sinix 68
t_snd 83
t_snddis 85
t_sndrel 86
t_sndudata 87
t_sync 88
t_sysconf () 89
t_tp2 68
t_tp4 68
t_unbind 90
taddr2uaddr() 34
TRANSPORT ADDRESS 15

map 34
structure 15

transport address
get 20

transport connection 111
transport service

assignment of CCPs 69
collective service 69
LOCAL NAMES 16
name of 67

transport service access point 15

U20225-J-Z145-3-76 121

Index

transport service provider 6
TRANSPORT SYSTEM 15
TS application

names and addresses 9
properties 14

TS directory 9, 10
TSAP 15
T-selector 15

transport service 16

U
uaddr2taddr() 35
unitdata 81
universal address

map 35

X
X/Open Native Language System 61
XTI

installation 7
XTI application 3
XTI calls

supplements 51
xtil 104

output 105
XTITRACE 101, 102

Comments on XTI V5.1
X/Open Transport Interface

U20225-J-Z145-3-76

Comments
Suggestions
Corrections

✁

Submitted by

Fujitsu Siemens Computers GmbH
User Documentation
81730 Munich
Germany

Fax: (++49) 700 / 372 00000

email: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Comments on XTI V5.1
X/Open Transport Interface

U20225-J-Z145-3-76

Comments
Suggestions
Corrections

✁

Submitted by

Fujitsu Siemens Computers GmbH
User Documentation
81730 Munich
Germany

Fax: (++49) 700 / 372 00000

email: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Contents
	Preface
	Brief description of the product XTI
	Target group
	Summary of contents
	README files
	Changes since the last version of the manual

	Overview of XTI
	XTI components
	Function library
	Header files
	xtil library trace program
	Integration of XTI in the communication software

	Runtime environment of XTI
	Preparing XTI for operation
	Installation
	Compiling and linking

	Address translation
	Address management with TNS
	TNS
	TS directory
	GLOBAL NAME
	Properties
	Transport services and LOCAL NAMES

	Access functions t_getaddr(), t_getloc(), and t_getname()
	t_getaddr() - get transport address
	t_getloc() - get local name
	t_getname() - get name

	NETDIR access functions
	netdir_getbyname() - map a GLOBAL NAME to a LOCAL NAME or to a TRANSPORT ADDRESS
	netdir_getbyaddr() - map a TRANSPORT ADDRESS to a GLOBAL NAME
	taddr2uaddr() - map a TRANSPORT ADDRESS to a universal address
	uaddr2taddr() - map a universal address to a TRANSPORT ADDRESS
	netdir_options() - interface to transport service options
	netconfig - network configuration file

	Address management with DIR.X
	Introduction
	The DIR.X Name Service
	Requirements on communications applications
	Parameterization of DIR.X
	Facilities for the NSCONTROL variable
	Facilities for the MAPRULES variable

	Mapping to local address formats

	Supplements to the function library
	t_accept() - accept a connect request
	t_alloc() - allocate a library structure
	t_bind() - bind an address to a transport endpoint
	t_connect() - establish a connection with another transport user
	t_error() - produce error message
	t_free() - free a library structure
	t_getinfo() - get protocol-specific service information
	t_listen() - listen for a connect request
	t_look() - look at the current event on a transport endpoint
	t_open() - establish a transport endpoint
	t_rcv() - receive data or expedited data sent over a connection
	t_rcvconnect() - receive the confirmation from a connect request
	t_rcvdis() - retrieve information from disconnect
	t_rcvrel() - acknowledge receipt of an orderly release indication
	t_rcvudata() - receive a data unit
	t_rcvuderr() - receive a unit data error indication
	t_snd() - send data or expedited data over a connection
	t_snddis() - send user-initiated disconnect request
	t_sndrel() - initiate an orderly release
	t_sndudata() - send a data unit
	t_sync() - synchronize transport library
	t_sysconf() - get configurable XTI variables
	t_unbind() - disable a transport endpoint

	Supplements to the options
	t_optmgmt() - manage options for a transport endpoint

	Supplements to event management
	poll() - multiplex input and output entities
	select() - multiplex file descriptors

	Read/write interface
	read() - read from a file
	write() - write to file

	XTI library trace
	XTITRACE - control the trace
	xtil - edit the trace information

	Glossary
	Abbreviations
	Tables
	References
	Ordering manuals

	Index

