
Edition November 2006

AID V3.2A
Core Manual

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Fax forms for sending us your comments are included at the
back of the manual.

There you will also find the addresses of the relevant User
Documentation Department.

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks
Copyright © Fujitsu Siemens Computers GmbH 2006.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

http://www.cognitas.de

U2853-J-Z125-5-76

Contents
1 Preface . 7
1.1 Target group . 7
1.2 Structure of the AID documentation . 8
1.3 Readme file . 9
1.4 Changes made since AID V2.1A . 9
1.5 Notational conventions . 9

2 Metasyntax . 11

3 BS2000 environment, basic concepts and command set . 13
3.1 AID in BS2000 . 13
3.1.1 Loading AID . 13
3.1.2 Using AID . 14
3.1.3 AID and the BS2000 command interpreter . 14
3.1.4 AID and SDF . 15
3.1.5 AID link names . 15
3.1.6 Programs on XS computers . 15
3.1.7 Programs on ESA computers . 16
3.1.8 Test privileges . 17
3.2 Basic concepts . 18
3.2.1 Test object . 18
3.2.2 Object structure list and LSD . 18
3.2.3 Symbolic versus machine code) . 19
3.2.4 AID work area . 19
3.2.5 Memory objects and memory references . 20
3.2.6 Naming conventions in AID . 21
3.2.7 Character representation using UTF16 / UTFE . 22
3.3 AID commands . 23
3.3.1 Monitoring . 25
3.3.2 Runtime control . 26
3.3.3 Output and modification of memory contents . 27
3.3.4 Administration functions . 28
3.3.5 Overview of the scope of validity of the commands . 31

Contents

 U2853-J-Z125-5-76

4 Prerequisites for debugging with AID . 33
4.1 Debugging on machine code level . 33
4.2 Symbolic debugging . 34
4.2.1 Compilation . 36
4.2.2 Linkage using BINDER . 36
4.2.3 Linkage and loading via DBL or loading via ELDE . 38
4.2.4 Dynamic loading of LSD records by AID . 40

5 Command input . 43
5.1 Command format . 43
5.2 Individual commands . 45
5.3 Command sequences and subcommands . 45
5.4 Command files . 47

6 Subcommand . 49
6.1 Description . 49
6.2 Name and execution counter . 51
6.3 Conditional execution . 53
6.4 Chaining . 60
6.5 Nesting . 62
6.6 Deletion . 64

7 Addressing in AID . 65
7.1 Qualifications . 66
7.1.1 Base qualification . 66
7.1.2 Area qualifications . 67
7.2 Memory references . 71
7.2.1 Machine code memory references . 72
7.2.2 Symbolic memory references . 74
7.2.2.1 Data names . 74
7.2.2.2 Statement names and source references . 77
7.2.3 Keywords . 79
7.2.4 Complex memory references . 80
7.2.4.1 Byte offset "•" . 81
7.2.4.2 Indirect addressing "->" / "*" . 83
7.2.4.3 Type modification . 86
7.2.4.4 Length modification . 89
7.2.4.5 Arithmetic expression . 91
7.2.4.6 Address, type and length selectors . 93
7.2.4.7 Special features of the interaction of various components . 95

8 Medium-a-quantity operand . 97

Contents

U2853-J-Z125-5-76

9 AID literals . 101
9.1 Alphanumeric literals . 101
9.1.1 Character literal . 101
9.1.1.1 Input formats . 101
9.1.1.2 Character encoding . 102
9.1.1.3 Conversion functions %C() and %UTF16() . 102
9.1.2 Hexadecimal literal . 103
9.1.3 Binary literal . 104
9.2 Numeric literals . 105
9.2.1 Integer . 105
9.2.2 Hexadecimal number . 105
9.2.3 Decimal number . 106
9.2.4 Floating-point number . 107

10 Keywords . 109
10.1 General storage types . 109
10.2 Storage types for interpreting machine instructions . 110
10.3 Program registers and program counter . 111
10.4 AID registers . 112
10.5 Memory classes . 112
10.6 System information . 113
10.7 Execution counter . 115
10.8 Logical values . 115
10.9 Feed control . 115
10.10 Address switchover . 116
10.11 Current call hierarchy . 116
10.12 Criterion for %CONTROLn and %TRACE . 116
10.13 Event for %ON . 117

11 Special applications . 119
11.1 %ON and STXIT . 119
11.2 Programs with an overlay structure . 120

12 Restrictions and interaction . 121
12.1 %ON %WRITE with %INSERT, %CONTROLn and %TRACE 121
12.2 Interaction between execution monitoring and the output or modification of

memory contents 122
12.3 Test points in the common memory pools . 123
12.4 Low level trace and control in conjunction with contingencies 124
12.4.1 %TRACE . 124
12.4.2 %CONTROL . 124

13 Messages . 125

Contents

 U2853-J-Z125-5-76

14 Appendix . 181
14.1 SDF/ISP commands illegal in command sequences and subcommands 181
14.2 Operands described for the last time . 184
14.2.1 Operand "AS output-type" . 184
14.2.2 Operand "control" with %ON . 185
14.2.3 Linkage using TSOSLNK . 186
14.3 Event codes . 188

Glossary . 189

Related publications . 199

Index . 207

U2853-J-Z125-5-76 7

1 Preface
AID (Advanced Interactive Debugger) is a powerful interactive debugging aid which runs
under the operating system BS2000. AID V2.0A can be used as of BS2000 V9.5. Error
diagnosis, debugging and preliminary recovery for all programs created under BS2000 are
much shorter and easier with AID compared to other techniques, such as the insertion of
debugging statements in the program. AID is permanently available and can be easily
adapted to the relevant programming language. A program that has been tested by means
of AID does not always have to be recompiled but can be used immediately in a production
run. The functionality of AID and its test language, the AID commands, are primarily geared
to interactive applications. It is quite possible, however, to employ AID in batch mode as
well. AID offers comprehensive options for monitoring, runtime control, output and modifi-
cation of memory contents. Users are also able to access information on program execution
and on AID operation.

AID permits debugging both on the symbolic level of the appropriate programming
language and on machine code level. During "symbolic debugging" of a program it is
possible to reference data, statement labels and program segments with the names
declared in the source code, and the statements without names can be referenced with the
source reference generated by the compiler.

AID V3.2A can be used as of BS2000/OSD V5.0 or OSD/XC V1.0.

1.1 Target group

AID is intended for all software developers working under BS2000 with one of the
programming languages COBOL, FORTRAN, C, C++, PL/I and ASSEMBH or wishing to
test and/or correct the programs on machine code level.

8 U2853-J-Z125-5-76

Structure of the AID documentation Preface

1.2 Structure of the AID documentation

The AID documentation consists of a core manual and the language-specific manuals for
symbolic debugging plus the manual for debugging on machine code level. For experience
AID users there is an additional reference work, a Ready Reference [7], containing the
syntax of all commands and also the operands, with brief explanations. The Reference
Guide also contains the %SET tables. The manual for the language selected, together with
the core manual, should provide all the information needed for testing. The manual for
debugging on machine code level may be used in place of or in addition to any of the
language-specific manuals.

AID Core Manual

The core manual provides an overview of AID and deals with facts and operands which are
the same in all programming languages. The AID overview describes the BS2000
environment, explains basic concepts and presents the AID command set. The other
chapters discuss preparations for testing; command input; the subcommand; addressing in
AID; the operand medium-a-quantity; AID literals; and keywords. The manual also contains
messages, BS2000 commands invalid in command sequences and operands supported for
the last time in this version.

AID manuals

The manuals contain lists of the commands in alphabetical order. All simple memory refer-
ences are described in the manuals.
AID - Debugging of COBOL Programs [2]
AID - Debugging of FORTRAN Programs [3]
AID - Debugging of PL/I Programs [4]
AID - Debugging of ASSEMBH Programs [5]
AID - Debugging of C/C++ Programs [6]
In the language-specific manuals, the description of the operands is tailored to the
programming language involved. The user is expected to be familiar with the relevant
language elements and operation of the corresponding compiler.

The additional possibilities of machine-oriented debugging are described in
Debugging on Machine Code Level [1].

The manual for debugging on machine code level can be used for programs for which no
LSD records exist or for which the information from symbolic debugging does not suffice for
error diagnosis. Testing on machine code level means that the user can employ the AID
commands regardless of the programming language in which the program was written.

U2853-J-Z125-5-76 9

Preface Readme file

1.3 Readme file

Any functional changes or additions to the current product version as described in this user
guide can be found in the product-specific readme file.
The readme file SYSRME.produkt.version.E. is saved on BS2000 system. Please ask your
system administrator for the user login.
You can view the readme file using the/SHOW-FILE command or open it in an editor. You can
also output it at a standard printer using the following command:

/PRINT-FILE FILE-NAME=dateiname,
/DOCUMENT-FORMAT=*TEXT(LINE-SPACING=*BY-EBCDIC-CONTR)

1.4 Changes made since AID V2.1A

The Readme file for AID V3.1 has been incorporated in the manual:

– Index specification in the event of arrays

– Extensions/changes in the %AID, %CONTROLn, %STOP and %TRACE commands

AID V3.2 supports Unicode. This has led to the following additions:

– Data type %UTF16 for representing strings whose characters have 2-byte UTF16
encoding

– Conversion functions %UTF16() and %C()

– UTFE literal U’..’

1.5 Notational conventions

italics Within the text, operands are shown in italic lowercase.

 This symbol marks points in the text to which particular attention should be paid. i

10 U2853-J-Z125-5-76

Notational conventions Preface

U2853-J-Z125-5-76 11

2 Metasyntax
The following metasyntax is used for representing commands and their operands. The
symbols used are listed below, together with a description of their meaning.

UPPERCASE

Character sequence which must be used in precisely this form when a function is
selected.

lowercase

Character string representing a variable. It must be replaced by one of the permitted
operand values.

{alternative  ...  alternative}

Alternatives between which a choice must be made. Both formats are equivalent.

[optional]

Specifications enclosed between square brackets may be omitted.

In the case of AID command names the part shown between square brackets must be
omitted in full if it is omitted; any other abbreviations result in a syntax error.

[...]

Repeatability of an optional syntactical unit. If a separator, for example a comma, has
to be placed before each repetition, it is shown before the dots representing repetition.

{...}

Repetition of a syntactical unit which must be specified once. If a separator, for example
a comma, has to be placed before each repetition, it is shown before the dots repre-
senting repetition.

 alternativ
 ...

 alternativ

12 U2853-J-Z125-5-76

Metasyntax

Underscore

The underscore identifies the default value that is used by AID if the user does not
specify a value for an operand.

•

The heavy-type period has a number of roles: it separates qualifications, or it stands for
a prequalification (see %QUALIFY), or it is the operator for a byte offset, or it is part of
the execution counter or subcommand name. The period is entered in the normal way
with the period on the keyboard. It is shown here in heavier type merely to improve
readability.

U2853-J-Z125-5-76 13

3 BS2000 environment, basic concepts and
command set

3.1 AID in BS2000

The AID test system consists of two components:

– the user interface AID and
– the system interface AIDSYS.

This splitting makes the AID user interface independent of the BS2000 versions. All
necessary system functions are implemented via AIDSYS. This independence from
BS2000 versions is important if, for example, one of the available system tables is to be
output in edited form from a dump generated on another system with a different BS2000
version. Version-dependent editing is performed via AIDSYS, which recognizes which
BS2000 version was used to generate the dump, edits the required system table accord-
ingly and then passes it to AID for output.

Input of AID commands and output of AID messages are effected via the system files
SYSCMD and SYSOUT in the same way as for BS2000 commands (see Commands,
Volumes 1 - 5 [8]).

3.1.1 Loading AID

AID is not loaded by the non-privileged user but by the system administrator with the
/START-SUBSYSTEM AID command (see System Administrator Commands (SDF Format)
[10]) under the TSOS ID. AID is then available to all users without any additional inter-
vention.

14 U2853-J-Z125-5-76

AID in BS2000 BS2000 environment, basic concepts and command set

3.1.2 Using AID

An AID debugging session may be started in one of two ways:

1. Load and start the program. If the program run is interrupted by an error and symbolic
testing is desired, load the LSD records with the %SYMLIB command for the compi-
lation unit in which the error has occurred. AID commands can then be entered.

 /START-EXECUTABLE-PROGRAM FROM-FILE=...
 ...
 % IDA0N51 PROGRAM INTERRUPT AT LOCATION '000B62 (M0BS), (CDUMP), EC=58'
 % IDA0N45 DUMP DESIRED? REPLY (Y = USER/AREA DUMP; Y,SYSTEM = SYSTEM DUMP;
 N = NO)
 ...
 /%SYMLIB ...
 /%SDUMP %NEST
 ...

2. Load the program. If symbolic testing is desired, specify the parameter which loads the
LSD records together with the program. Enter AID monitoring commands and then start
the program with an AID command.

 /LOAD-EXECUTABLE-PROGRAM FROM-FILE=..., TEST-OPTIONS=AID
 /%INSERT ...
 /%R
 ...

3.1.3 AID and the BS2000 command interpreter

The AID functions are called via AID commands. An AID command starts with a

% character immediately followed by the command name:

%DISPLAY ARRAY1

AID commands can be entered whenever the task is in command mode. The AID
commands are accepted by the BS2000 command interpreter like normal BS2000
commands. The command interpreter identifies the AID commands on the basis of the %
character and passes them to AID for execution.

AID commands may be entered in interactive mode or in procedure files. The CMD macro
permits AID commands to be called from a program (see Executive Macros [11]).
AID commands can coexist with BS2000 commands in command sequences.

U2853-J-Z125-5-76 15

BS2000 environment, basic concepts and command set AID in BS2000

3.1.4 AID and SDF

SDF (System Dialog Facility) is the interactive interface to BS2000. SDF has its own
command language, which replaces the previous command language in ISP (Interactive
String Processor) format. In the AID core manual and the language-specific manuals,
BS2000 commands are always described in the EXPERT form of the SDF format (see Intro-
ductory Guide to the SDF Dialog Interface [16]). In some cases a comparison with the
corresponding ISP commands is contained in the appendix; references to this are included
where appropriate.

SDF notation is not available for AID commands.

3.1.5 AID link names

Dump files can be referenced with AID via link names D0 through D7.

Data output, trace listings and REPs may be written to output files. AID output files have the
format FCBTYPE=SAM, RECFORM=V, OPEN=EXTEND. AID output files are assigned via link
names F0 through F7.

3.1.6 Programs on XS computers

On all of BS2000/OSD versions programs can use the extended address space from over
16 Mbytes to 2 Gbytes. As a consequence, AID can also be used to test programs in the
extended address space.

AID automatically adjusts to the addressing mode of the test object and works with both 24-
bit (lower address space) and 31-bit (extended address space) addresses.

If for instance the program linkage of modules with different addressing modes is to be
tested, AID offers the following functions (see Debugging on Machine Code Level [1]):

– keyword for the AMODE system information (%AMODE)

– displaying the current addressing mode (%DISPLAY)

– switching the addressing mode for the test object (%MOVE)

– switching the address interpretation for indirect addressing (%AINT)

16 U2853-J-Z125-5-76

AID in BS2000 BS2000 environment, basic concepts and command set

3.1.7 Programs on ESA computers

As of BS2000/OSD V1.0, application programs on ESA (Enterprise System Architecture)
computers can use not only the program space, which corresponds to the previous address
space, but also other address spaces for data, the data spaces. Data spaces can only
contain data; program code cannot be executed in a data space. They can be uniquely
addressed via the SPID (space identification) or via one or more ALETs (access list entry
tokens). To allow addressing with ALETs the access registers were introduced as an
additional register record in parallel with the general registers. The ALETs are contained in
the access registers. When AR (access register) mode is activated, the access registers are
also analyzed during address translation in a machine instruction, and in that way data is
addressed in a data space.

Only programs which run on ESA system with a version of BS2000/OSD ≥ 1.0 and which
use ESA instructions are able to store data in a data space of this type (see Executive
Macros [11).

AID provides the following functions for ESA support (see Debugging on Machine Code
Level [1]):

– keyword for the ASC mode system information (%ASC) for interrogating AR mode.

– keywords for the access registers (%nAR, %AR)

– ALET and SPID qualification for the unique referencing of virtual addresses in data
spaces

– keywords for the system information about the active data spaces (%DS[(ALET/SPID-
qua)])

– identification of virtual addresses from data spaces with an asterisk "*" in the event of
output with %DISPLAY and in the %TRACE log.

Data in data spaces can only be referenced via its virtual address. If it is intended to edit
the data symbolically, this can be done with the aid of subsequent type modification.

U2853-J-Z125-5-76 17

BS2000 environment, basic concepts and command set AID in BS2000

3.1.8 Test privileges

AID users must be prevented from accessing and/or modifying arbitrary data sets and
memory areas within the system. Each user entry in the JOIN file therefore contains a "test
privilege" entry to control read/write access rights for testing. This entry is made by the
system administrator (see the System Administrator Commands (SDF Format) [9]).

When a task is started, the lowest privileges (1,1) are assigned. They allow usage of the
complete AID function range as described in the documentation.

If files or libraries have been protected by means of a read or execute password, access
under AID is not possible unless the correct password is entered.
If memory areas are to be accessed which require higher privileges, the /MODIFY-TEST-
OPTIONS command can be used to change privileges, provided this is permitted in the
JOIN file entry. This entry may be viewed via the /SHOW-USER-ATTRIBUTES command
(see the Commands, Volumes 1 - 5 [8]).

AID also offers keywords for access to protected areas such as registers.

18 U2853-J-Z125-5-76

Basic concepts BS2000 environment, basic concepts and command set

3.2 Basic concepts

3.2.1 Test object

The program to be processed by means of AID is known as the test object. It may be loaded
under the relevant user ID or may be present in the form of a memory dump in a dump file.
Within a test session, switchover between these two options is possible, for example to
compare data in the loaded program with data in a dump file or to compare dumps from
different versions of the same object.

The program can always be tested on machine code level. Testing on the symbolic level is
possible if LSD records have been created during compilation. The program to be tested
need not be recompiled or relinked. As the program can be loaded without the symbolic
information, further compiler or linkage editor runs after an error-free test run can be
dispensed with. The program can be immediately employed for productive use.

3.2.2 Object structure list and LSD

AID works with two lists that contain information on the program.

When linking is performed with the linkage editor, the corresponding list is the ESV
(External Symbols Vector)(default case). When linking is performed with TSOSLNK, the
object structure list iscreated from the ESD (External Symbol Dictionary). Among other
things, the object structure list contains information on the CSECTs, DSECTs and
COMMONs of a program. If this list is available, it is possible to use the name of a CSECT
or a COMMON to access the associated address, content and length.

The LSD (List for Symbolic Debugging) is the directory of the data names, statement names
and program segment names defined in the module. It also contains the source references
created by the compiler. LSD records are generated by the compiler, provided the appro-
priate compiler option is specified. If LSD records have been created, the names defined in
the source program can be used to access the address, content, length and type of the
relevant memory objects. The compiler-generated statement names permit access to the
executable part of the program.

The class-5 memory requirements of a program with LSD records may reach a multiple of
the actual program size, depending on the amount of symbolic definitions involved. If the
object modules are stored in a PLAM library, the program may be loaded and started
without LSD records, and the PLAM library that contains the LSD records can be opened
with the %SYMLIB command. AID then loads the LSD records from the assigned library
whenever they are required.

U2853-J-Z125-5-76 19

BS2000 environment, basic concepts and command set Basic concepts

3.2.3 Symbolic versus machine code)

AID knows two debugging levels.

On the symbolic level, the compiler-generated symbolic addresses from the LSD records
are used. Memory locations are referenced via the names assigned in the source program.
AID output comprises program, data and statement names as well as source references.
The keyword %HLLOC (High-Level LOCation), the operand of the %DISPLAY AID
command, displays the symbolic localization information. This information comprises the
context name, the name of the compilation unit, the name of the current main program or
subprogram, and the name of the source reference to which the address is assigned. The
AID commands %JUMP, %SDUMP and %SYMLIB can only be used at the symbolic level,
i.e. if LSD records exist for the referenced program segment. For the %CONTROLn and
%TRACE commands, the keyword for criterion decides whether tracing/monitoring takes
place on the symbolic level. If AID is to calculate an address (complex memory reference),
switchover from the symbolic to the machine code level is possible at any point. Use of
address selection and the pointer operator (%@(name)->) enables the referenced
memory object to be used with all its machine-oriented attributes.

On the machine code level, only the CSECT and COMMON information from the object
structure list is used. AID output comprises virtual addresses and CSECT and COMMON
names. The keyword %LOC (low-level LOCation), the operand of the AID command
%DISPLAY, displays the localization information at the machine code level. This information
comprises the context name, the name of the load unit, the name of the object module, the
name of the CSECT and COMMON, and the CSECT-relative and COMMON-relative
address. For the %CONTROLn and %TRACE commands, the keyword for criterion decides
whether tracing/monitoring takes place on the machine code level. In a complex memory
reference it is possible to link symbolic addresses and elements of addressing on the
machine code level and therefore to continue to use all attributes of symbolic addressing.

3.2.4 AID work area

The AID work area is the address space in which memory objects can be referenced
without a base qualification.
It comprises the non-privileged part of the virtual memory of the relevant task occupied by
the program, including the connected subsystems, or the corresponding area in a memory
dump.
Whether debugging is performed in a loaded program or in a memory dump can be deter-
mined by the %BASE command. If %BASE is not specified, the AID work area is in the
loaded program. This is referred to as the AID default work area.
It is also possible to deviate from the currently set work area within a command by speci-
fying a corresponding base qualification {E=VM | Dn} in an address operand.

20 U2853-J-Z125-5-76

Basic concepts BS2000 environment, basic concepts and command set

If the AID work area is in a dump file, the commands for monitoring and runtime control
cannot be used. Nor is it possible to modify a dump file with AID commands. Data can be
output from a dump file, however, the call hierarchy can be traced back to the time of the
program interrupt, machine code translated back to symbolic assembler notation, and
character strings can be located in a dump file. In addition, data from a dump file can be
used to overwrite the memory contents of a loaded program.

3.2.5 Memory objects and memory references

A set of contiguous bytes extending from a specific address in the memory area of the
program is known as a memory object. This includes the data of a program as well as the
instruction code. The registers outside the program memory and the program counter are
likewise memory objects; they are referenced by AID via keywords.

Constants are not regarded as memory objects. This category includes all the constants
defined in the program as well as the statement names, the source references, the results
of address/length selection and of the length function, and the AID literals. All of these
represent a value that cannot be changed and are lacking an address attribute.

A memory reference addresses a memory object. There are two kinds of memory
reference: simple and complex. Simple memory references are virtual addresses, names
whose address AID can fetch from the LSD records, and keywords.
In a complex memory reference, AID calculates an address on the basis of user specifica-
tions which also include information on the type and length of the memory object identified
by this address. The following operations may occur in a complex memory reference: byte
offset, indirect addressing, type/length modification, address selection.

If a memory reference is not in the currently valid AID work area or is outside the current
main program or subprogram, or if it is not unique in that area, qualifications can be used
to define the path to the desired memory reference.

U2853-J-Z125-5-76 21

BS2000 environment, basic concepts and command set Basic concepts

3.2.6 Naming conventions in AID

All names used in AID commands to address programs or program segments, data or state-
ments or to define subcommands can make use of the following character set, regardless
of the programming language used:
a-z, A-Z, 0-9, $, #, @, underscore "_" or hyphen "-".

The hyphen is not permitted as the first character and also is only allowed as part of the
name if SYMCHARS=STD has been set (%AID command).
If a hyphen is the last character of a name, the name can only be specified with N’...’.

It is generally necessary for all names which contain special characters or which can be
ambigoues for AID to be set in N’...’. Labels with special characters and labels that are the
starting address for a complex memory reference must be written in L’...’.

To ensure that AID differentiates between uppercase and lowercase notation, it is first
necessary to enter the %AID LOW[=ON] command. In the case of BLS names, however, in
other words names that are known to the binderloader-starter such as names of CSECTs,
COMMONs or entries, and in the case of names of compilation units (or in Fortran: program
units), account will only be taken of uppercase and lowercase notation if you enter the %AID
LOW=ALL command.

The permissible length for BLS names and names of compilation units is 32 characters;
names of data and program segments such as functions, procedures or subprograms may
be up to 255 characters long. Names of subcommands may be up to 32 characters long
including the prefixed characters "%•".

Overview

Names Length (max.) %AID LOW=ON
active

%AID LOW=ALL
active

BLS names and names of
compilation units

32 no yes

Date and program names 255 yes yes

Names of labels 255 yes yes

Subcommand names 32 incl. %• no no

22 U2853-J-Z125-5-76

Basic concepts BS2000 environment, basic concepts and command set

3.2.7 Character representation using UTF16 / UTFE

The support of Unicode means that the new data type %UTF16 is provided in AID to
represent strings. With this data type each character has 2-byte encoding. The data type
for representing strings which was supported by AID to date has 1-byte EBCDIC encoding.

AID supports UTFE character encoding for input and output media. This encoding is the
EBCDIC variant of UTF8, which supports multibyte encoding with a variable byte length.

Setting an EBCDIC encoding table via %AID

The %AID command has been extended by the EBCDIC operand. This enables EBCDIC
encoding of a C string to be specified which AID uses when conversion is to be carried out
between a UTFE/%UTF16 string and a 1-byte C string.

AID supports all 1-byte EBCDIC encodings which the XHCS-SYS subsystem offers. You
can use the %SHOW %CCSN command to diaplay the current names of the encoding
tables.

The new functions %C(...) and %UTF16(...) allow you, for example, to convert the literal en-
coding into a different encoding.

U2853-J-Z125-5-76 23

BS2000 environment, basic concepts and command set AID commands

3.3 AID commands

AID features a wide variety of functions, which are invoked via AID commands. This section
provides an overview of the AID functionality. The complete command descriptions can be
found in the language-specific manuals or in the manual for debugging on machine code
level.
The AID command set can be divided into four function groups, whose commands and
operands are shown in the summary below. Commands which can only be used for
debugging on the symbolic level are identified by ’SY’ in the second column.

Monitoring

���
 Command name   Operands 
���
 %C[ONTROL]n   [criterion][,...] [IN control-area] <subcmd> 
   
 %IN[SERT]   test-point [<subcmd>] [control] 
   
 %ON   {write-event | event} [<subcmd>] 
   
 %REM[OVE]   target 
   
	�����������������
��
���

Runtime control and logging

���
 Command name   Operands 
���
 %CONT[INUE]   
   
 %JUMP SY continuation 
   
 %R[ESUME]   
   
 %STOP   
   
 %T[RACE]   [number] [criterion][,...] [IN trace-area] 
   
	�����������������
��
���

24 U2853-J-Z125-5-76

AID commands BS2000 environment, basic concepts and command set

Output and modification of memory contents

���
 Command name   Operands 
���
 %D[IS]A[SSEMBLE]  [number] [FROM start] 
   
 %D[ISPLAY]   {data} {,...} [medium-a-quantity][,...] 
   
 %F[IND]   [[ALL] search-criterion] [IN find-area] [alignment] 
   
 %M[OVE]   sender INTO receiver [REP] 
   
 %SD[UMP] SY [dump-area][,...] [medium-a-quantity][,...] 
   
 %SET   sender INTO receiver 
	�����������������
��
���

Administration

���
 Command name   Operands 
���
 %AID   [CHECK] 
   [REP] 
   [SYMCHARS] 
   [OV] 
   [LOW] 
   [DELIM] 
   [LANG] 
   [EBCDIC] 
   
 %AINT   [aid-mode] [,...] 
   
 %BASE   [base] 
   
 %D[UMP]F[ILE]   [link [= file]] 
   
 %H[ELP]   [info-target] [medium-a-quantity][,...] 
   
 %OUT   [target-command [medium-a-quantity][,...]] 
   
 %OUTFILE   [link [=file]] 
   
 %Q[UALIFY]   [prequalification] 
   
 %SYMLIB SY [qua-a-lib] 
   
 %SHOW   [show-target] 
   
 %TITLE   [page-header] 
	�����������������
��
���

U2853-J-Z125-5-76 25

BS2000 environment, basic concepts and command set AID commands

3.3.1 Monitoring

The commands %CONTROLn, %INSERT and %ON support dynamic monitoring of
program execution. They can be used to define monitoring conditions and subcommands
(see chapter “Subcommand” on page 49). If the monitoring condition is satisfied, the related
subcommand is processed. Each of the three commands specifies a different type of
monitoring condition, which can be canceled with %REMOVE.

%CONTROLn criterion

criterion designates the type of source statements or machine instructions to be monitored.

%INSERT test-point

test-point designates an address in the executable part of the program.

%ON {write-event | event}

write-event activates write monitoring. event designates an event during program execution,
such as an addressing error, a supervisor call (SVC), or dynamic loading of a module.

%REMOVE target

This command enables monitoring conditions to be canceled. target designates the
condition to be canceled.

The user chooses the appropriate command for the desired monitoring job and can selec-
tively control program execution via the associated subcommand. A subcommand specifies
a command or sequence of commands and possibly a condition. Moreover, the
subcommand may be given a name which serves to address its execution counter or to
delete the subcommand. The appropriate AID commands can be used within the
subcommand to define whether the program is to be interrupted or continued. It is thus
possible to prepare an automatic test run. To do this it is essential, however, that all the
necessary information for determining the further course of action upon occurrence of the
monitoring condition is already available before input of the monitoring command. If the
relevant commands are stored in the subcommand, the input of commands at the terminal
during testing (for instance to change current memory or register states) is therefore no
longer required.

26 U2853-J-Z125-5-76

AID commands BS2000 environment, basic concepts and command set

3.3.2 Runtime control

The commands %CONTINUE, %RESUME, %STOP and %TRACE change the status of a
loaded program. %JUMP can be used for FOR1 and COBOL85 programs to specify a
continuation address that deviates from the coded program sequence. A loaded program
can be in any of three defined program states:

1. The program has stopped.

%STOP, actuation of the K2 key or termination of a %TRACE have interrupted the
running program. The task is in command mode. Commands can be entered.

2. The program is running without tracing.

%RESUME has started or continued the program. %CONTINUE has the same
effect; if a %TRACE is still being processed, however, %CONTINUE resumes the
program with tracing.

3. The program is running with tracing.

%TRACE has started or continued the program. Program execution is logged as
specified in %TRACE. %CONTINUE has the same effect if a %TRACE is still active.

If no other continuation address has been declared, program execution is continued at the
interrupt point. By issuing %JUMP (FOR1 and COBOL85 only) or by altering the program
counter (%PC) with %MOVE or %SET a different continuation address can be defined. In
either intervention in the program sequence it is the user’s responsibility to ensure that
memory contents, register states and file statuses/contents are compatible with the
specified continuation address.

%CONTINUE and %RESUME start or resume a loaded program. The difference between
the two commands lies in the fact that %RESUME deletes any active %TRACE, whereas
%CONTINUE does not.

%STOP suspends the program and issues a STOP message which contains information
on the current interrupt point.

%TRACE activates the trace function. The program is running and the selected commands
are logged. The %TRACE terminates when the specified number of commands have been
logged or the program is continued with %RESUME after an interrupt. If the %TRACE is
only interrupted because a subcommand containing a %STOP has been executed or one
of the control operands KEEP or STOP has been executed or the K2 key has been
depressed, the %TRACE can be resumed with %CONTINUE.
The %TRACE command has been extended by a continue operand with which you can
control whether the program should stop (default value) or continue to run without logging,
after %TRACE terminates.

U2853-J-Z125-5-76 27

BS2000 environment, basic concepts and command set AID commands

3.3.3 Output and modification of memory contents

The commands %DISPLAY, %SDUMP and %DISASSEMBLE can be used to output
memory contents and information on the program.
The commands %MOVE and %SET serve to modify memory contents in the loaded
program.

%FIND searches for character strings.

%DISPLAY outputs the current content of memory objects, their addresses/lengths or the
values of constants, statement names and source references. %DISPLAY can also be used
to query system information, control the SYSLST feed or output AID literals, e.g. to annotate
the test run. Output is effected via SYSOUT, SYSLST or to a cataloged file.
If a memory object is referenced with its name, AID outputs it in the data type and length
specified in the source program. A different editing format can be defined via type/length
modification.

%SDUMP outputs a symbolic dump. Output may include either data of the current call
hierarchy, or the call hierarchy itself. The current call hierarchy ranges from the subprogram
level where the program was interrupted to the subprograms invoked by CALL statements
to the main module.
%SDUMP %NEST outputs the names of all program segments of the current call hierarchy
as far as the linkage conventions are known to AID. Data or data areas can then be output
from the program segments of this hierarchy.

%DISASSEMBLE "retranslates" memory contents from the executable part of a program,
i.e. this command causes AID to display these memory contents edited in symbolic
Assembler notation. Any memory contents which cannot be interpreted as a command are
displayed in the form of an output line which contains the memory contents in hexadecimal
notation as well as the note INVALID OPCODE.

%MOVE changes memory contents in the loaded program. %MOVE transfers a sender to
a receiver, left-justified and in the length of the sender, without checking whether the
storage types of sender and receiver are compatible and without matching the respective
types. AID merely checks that the right-hand limit (= end address) of the receiver is not
exceeded. Activation of the update dialog and creation of REP records are supported for
%MOVE.

%SET changes memory contents in the loaded program. %SET transfers a sender to a
receiver and checks, prior to the transfer, whether the storage types of sender and receiver
are compatible. The transfer is effected in the length of the receiver and in accordance with
the appropriate type; truncation, padding or type matching takes place as required. The
rules for transfer with %SET are closely related to the relevant programming language. The
%SET description in the language-specific manuals contains a table listing the permissible
storage type combinations. Activation of the update dialog is supported for %SET.

28 U2853-J-Z125-5-76

AID commands BS2000 environment, basic concepts and command set

%FIND locates a character string in specific data sets or in the entire user address space
of the loaded program or in a dump file and displays the hits on the terminal (SYSOUT).
For a hit, AID outputs the address at which the string was found and, if possible, the name
of the associated CSECT or of the COMMON and the distance to the start address of
CSECT or COMMON. To do that, the memory contents are output from the hit address up
to the end of the search range, but to a length of no more than 12 bytes. In addition, AID
stores the hit address in AID register %0G and the continuation address (hit address +
search string length) in AID register %1G.

3.3.4 Administration functions

The commands %DUMPFILE, %SYMLIB and %OUTFILE support the administration of
AID input and output files. The files can be assigned link names and opened or closed.
%OUT controls AID output, %TITLE specifies a header line for output to SYSLST.
%AID, %AINT, %BASE and %QUALIFY define global presettings.
%HELP displays help texts.
%SHOW calls up information about the currently valid default settings and about the AID
commands which have been entered in the debugging run so far and which are still active.

%DUMPFILE helps administrate dump files, which are assigned via the AID link names D0
through D7. AID may be caused to open or close a dump file. The dump files contain
memory dumps to be used for debugging.

%SYMLIB opens PLAM libraries in which the OMs or LLMs of the program have been
stored with the LSD records.

AID accesses open PLAM libraries when a command references symbolic names that are
contained in a compilation unit (in Fortran: program unit) for which no LSD records have
been loaded. A base qualification can be used to assign a PLAM library to a specific AID
work area.
Upon %SYMLIB declaration, AID merely checks whether the specified library can be
opened; AID does not check whether the library contents match the program being
processed. This makes it possible to declare libraries in advance which may be needed in
the course of the debugging run. If several libraries are declared for a base qualification,
AID searches them in the sequence in which they were specified in the %SYMLIB
command.
AID can manage up to 14 PLAM libraries in parallel.

%OUTFILE administrates AID output files, to which the outputs of the commands %DISAS-
SEMBLE, %DISPLAY, %HELP, %SDUMP and %TRACE or the REPs of the %MOVE
command are written. These files are assigned via the AID link names F0 through F7. If a
file does not yet exist, AID catalogs and opens it. Conversely, open output files can be
closed with this command.

U2853-J-Z125-5-76 29

BS2000 environment, basic concepts and command set AID commands

%OUT defines the output media for the commands %DISASSEMBLE, %DISPLAY, %HELP,
%SDUMP and %TRACE and specifies whether the output of additional information is
desired. Possible output media are the terminal (SYSOUT), SYSLST or an AID output file
that can be assigned previously via %OUTFILE.
The commands %DISPLAY, %HELP and %SDUMP support a separate, local medium-a-
quantity operand which temporarily overrides the definitions made for these commands in
the %OUT command. The commands %DISASSEMBLE and %TRACE do not offer this
operand.

%TITLE permits a specific page header text to be defined for SYSLST output and controls
the page counter. Output to SYSLST is specified via %OUT or with the medium-a-quantity
operand of an output command.

%AID is used to activate the update dialog, to create REPs for memory modifications with
%MOVE, to control interpretation of the hyphen in names, to take account of the overlay
structure of a program, to activate uppercase/lowercase interpretation for user inputs, to
define other delimiters for character-type outputs, to define an EBCDIC character set for
conversions from or to UTF16/UTFE or interpret and display characters, and to switch from
German to English help texts or vice versa.

%AINT switches the interpretation of indirect address specifications in AID commands. This
determines whether an address preceding a pointer operator (->) is to be interpreted by AID
as a 24-bit or 31-bit address. This does not affect the addressing mode of the test object. A
base qualification can be used to specify the area to which the address interpretation
definition is to apply.

%BASE defines the base qualification, which applies to all subsequent commands in which
no explicit base qualification is specified. %BASE specifies whether the AID work area is to
be in the loaded program or in a dump file. A dump file used as a base qualification must
have been assigned via %DUMPFILE.

%QUALIFY identifies qualifications or an address to be referenced in the address operand
of another command by prefixing a period. This abbreviation is expedient when making
multiple references to addresses which require the same qualifications or which are calcu-
lated on the basis of the same start address.

%HELP provides information on AID commands. The following can be output to the
selected medium: either all AID commands or the specified command with its operands.
The HELP information pool comprises information for both symbolic debugging and
debugging on machine code level.

%SHOW provides information on the AID commands of the previous debugging run, about
the currently valid global settings, or about the currently valid operand values of the
commands.
%SHOW without an operand displays the AID command that was entered last.

30 U2853-J-Z125-5-76

AID commands BS2000 environment, basic concepts and command set

With regard to the monitoring commands (%CONTROLn, %INSERT and %ON) %SHOW
outputs a list of the original input strings of all active %CONTROLn or %ON commands or
the list of set test points with the context, virtual address, CSECT or COMMON and distance
from the start of the CSECT or COMMON. The original input string for a certain test point
is obtained with %SHOW %INSERT test-point. If more than one %INSERTs are active at the
test point, the commands are output in reverse order, i.e. the %INSERT that was entered
last is listed first.
%SHOW %TRACE causes AID to output the %TRACE command that was entered last, the
%TRACE steps that have been processed, and the currently valid operand values.
%SHOW %DISASSEMBLE outputs the currently valid operand values, while %SHOW
%FIND outputs the command that was entered last and the last hit.
In relation to the commands that manage AID input or output files, %SHOW outputs all
explicitly or implicitly opened files and various additional information. %SHOW %OUT
displays the current output declarations of the commands whose output is controlled via
%OUT. %SHOW %AID, %SHOW %BASE and %SHOW %QUALIFY each output the decla-
rations that have been made with these commands.

U2853-J-Z125-5-76 31

BS2000 environment, basic concepts and command set AID commands

3.3.5 Overview of the scope of validity of the commands

When working with AID it is important to know which commands, operand values or decla-
rations are valid until the next command of the same type is entered or until the end of the
program or task. This is the purpose of the following overview:

��
Command Operand Scope of validity 
��
%AID all Valid until a new %AID is entered with a 
  corresponding operand or until /EXIT-JOB. 
��
%AINT aid-mode Valid until a new %AINT is entered for the 
  same base qualification or until /EXIT-JOB 
  or until the associated dump file is closed. 
��
%BASE base Valid until a new %BASE is entered or until 
  /EXIT-JOB or until the dump file declared as the
  base is closed. 
��
%CONTROLn criterion/ Can be taken over by the next %CONTROLn, 
 control- otherwise valid until the %CONTROLn is deleted 
 area or until the end of the program. 
 ��
 subcmd Must always be specified. 
��
%DISASSEMBLE number Can be taken over by a new %DISASSEMBLE; 
  this option is available until the end of the 
  program. 
 ��
 start The address following the instruction that was 
  translated back last can be taken over as the 
  start value; this option is available until the 
  end of the program. 
��
%DISPLAY all All operands must always be specified. 
��
%DUMPFILE link=file The file assigned via link remains open until 
  /EXIT-JOB unless it is explicitly closed. 
��
%FIND search-criterion Can be taken over from a previous %FIND until 
  the search through find-area has been completed.
  This option is available until /EXIT-JOB. 
 ��
 find-area/ If no search-criterion is specified, find- 
 alignment area/alignment is taken over from the previous 
  %FIND until the search through find-area has 
  completed. 
��
%INSERT test-point The test-point remains entered until it has been
  deleted with %REMOVE, until all %INSERTs have 
  been deleted, or until the end of the program. 
  For programs that are linked as overlays the 
  test point remains entered in the module in 
  which it was set, even if a different module 
  has been loaded at the same point in the 
  meantime. 
 ��
 subcmd The subcommand remains entered until it is 
  deleted with %REMOVE, until the associated test 
  is deleted or until the end of the program. 
��
%MOVE all All operands must always be specified. 
	�������������
�����������������
���
 continued...

32 U2853-J-Z125-5-76

AID commands BS2000 environment, basic concepts and command set

continued...
��
Command Operand Scope of validity 
��
%ON event/ The event remains entered until it has been 
 write-event deleted with %REMOVE, until all %ONs are 
  deleted or until the end of the program. 
  One exception is %ON %WRITE: a new 
  write-event overwrites one that is already 
  entered. 
 ��
 subcmd The subcommand remains entered until it has been
  deleted with %REMOVE, until the associated 
  event is deleted, until all %ONs are deleted 
  or until the end of the program. 
��
%OUT all Valid until a new %OUT is entered with a 
  corresponding operand or until /EXIT-JOB. 
��
%OUTFILE link=file If file is not explicitly closed, it remains 
  open until /EXIT-JOB. 
��
%QUALIFY prequalification prequalification applies until it is overwritten
  by a new %QUALIFY, until it is canceled by a 
  %QUALIFY without an operand, or until /EXIT-JOB.
��
%REMOVE target target must always be specified. 
��
%SDUMP all Nothing can be taken over from a previous 
  %SDUMP. 
��
%SET all All operands must always be specified. 
��
%SHOW info-target Nothing can be taken over from a previous 
  %SHOW. 
��
%SYMLIB qual-a-lib A library remains open until the next %SYMLIB 
  for the same base qualification, until the 
  next %SYMLIB without an operand, until 
  /EXIT-JOB, or until the associated dump file 
  is closed. 
��
%TITLE page-header Valid until the next %TITLE or until the end 
  of the program. 
��
%TRACE all All operands continue to apply until they are 
  overwritten by corresponding specifications in 
  a new %TRACE or until the end of the program. 
  trace-area will not be taken over if a %TRACE 
  is entered without a trace-area and the 
  interrupt point is not in trace-area. 
	�������������
�����������������
���

U2853-J-Z125-5-76 33

4 Prerequisites for debugging with AID
Testing with AID is subdivided into symbolic debugging (where the names assigned in the
source program are used for addressing) and debugging on machine code level (where
virtual addresses are used). For symbolic debugging to be performed, the compiler must be
caused to generate LSD records during compilation. Inclusion of the LSD records in the
linkage and loading process can be controlled via corresponding operands. If no LSD
records have been included, they can still be dynamically loaded by AID from a PLAM
library.
Debugging on machine code level does not require any preparatory action.

If CSECTs are renamed with the LMS statement MODIFY-ELEMENT (substatement
RENAME-SYMBOLS) or with the TSOSLNK statement RENAME, symbolic debugging is
no longer possible. If an LLM has been generated directly by the compiler and the LLM
contains the LSD records, CSECTs can be renamed with BINDER (MODIFY-MODULE-
ATTRIBUTES statement). The compiler versions for which this possibility is available are
shown in the respective user guide for each compiler.

Debugging on machine code level is not affected by the renaming of CSECTs. The CSECTs
in the program can be referenced with the new names.

4.1 Debugging on machine code level

Debugging on machine code level requires no extra operands during compilation, linkage
or loading. All the functions described in the manual Debugging on Machine Code Level [1]
can be used without preliminary measures.

Within the process of linking by default an object structure list is generated from the external
references (see Dynamic Binder Loader / Starter in BS2000/OSD [15]). When linking with
BINDER it is the ESV (External Symbols Vector) and when linking with TSOSLNK it is the
ESD (External Symbolic Dictionary).

However, no object structure list will be created if the PROGRAM operand SYMBOL-
DICTIONARY=NO is written in the SAVE-LLM statement during linkage with BINDER or if
the operand SYMTEST=NO is specified during program linkage. The following functions
cannot be performed in that case:

34 U2853-J-Z125-5-76

Symbolic debugging Prerequisites for debugging with AID

– Output a list of all CSECTs and COMMONs of the application program
(%D %SORTEDMAP or %D %MAP)

– Output localization information for a memory reference (%D %LOC(memref))
– Specify a CSECT/COMMON qualification in a memory reference
– Trace by means of the %CONTROLn and %TRACE commands, if these are to be

explicitly or implicitly restricted to one CSECT
– Create REPs for corrections

In addition, in this case AID cannot output any CSECT-relative or COMMON-relative
addresses with %TRACE, %DISASSEMBLE, %FIND or in the STOP message.

 Caution is required in the case of LLMs or contexts which contain CSECTs of the
same name: in this case it cannot be foreseen which CSECT will be referenced with
AID.

4.2 Symbolic debugging

Symbolic debugging with AID enables data to be addressed with user-defined names from
the source program and permits statements to be referenced through the input of statement
names or source references. For this purpose AID needs information on the names used in
the source programs of which the program to be tested is made up. This information is in
two parts:

1. LSD (List for Symbolic Debugging): directory of the names and source references
defined in the module.

2. ESD (External Symbol Dictionary): directory of the external references of a module
during linkage with TSOSLNK or
ESV (External Symbols Vector) when linking with BINDER.

The following sections deal with the various processing options for ESD/ESV and LSD
records for each of the following steps in the software engineering cycle:

– source program compilation
– linkage and loading with DBL (DLL up to BS2000 V9.5) or
– linkage with TSOSLNK/BINDER and loading with ELDE

In addition AID offers the %SYMLIB command, which can be used to open PLAM libraries
(see the "LMS (BS2000) [12]) from which AID dynamically loads the missing LSD records
as required.

i

U2853-J-Z125-5-76 35

Prerequisites for debugging with AID Symbolic debugging

The following diagram outlines the options regarding the inclusion or non-inclusion of the
compiler-generated LSD records during linkage and loading.

(1) The program may be tested symbolically without restrictions.

(2) The program may be tested symbolically with restrictions, i.e. names
 of program segments can be referenced and call hierarchies traced.

(3) The program may not be tested symbolically until the PLAM library
 containing the OMs or LLMs has been assigned using the %SYMLIB command.

Generate object module with

LSD

EAM file

Object module in

...

, SYMTEST =

...

, TEST-SUPPORT =

YES NOMAPALL

/LOAD-EXECUTABLE-PROGRAM
/START-EXECUTABLE-PROGRAM

, TEST-OPTION =

NONE AID

, TEST-OPTION=
NONE/AID

Static

linkage?

Object module

in PLAM library?

ELDE

TSOSLNK (OMs) LINKER (LLMs) DLL

1

1
Y

Y

N

Compiler

/LOAD-EXECUTABLE-PROGRAM

/START-EXECUTABLE-PROGRAM

/LOAD-EXECUTABLE-PROGRAM

/START-EXECUTABLE-PROGRAM

, TEST-OPTION =

ELDE

NONEAID

Y

N
23

Object module in

PLAM library

36 U2853-J-Z125-5-76

Symbolic debugging Prerequisites for debugging with AID

There are thus different ways of supplying AID with LSD information. The prerequisite is
always that the LSD records are passed to the generated object module (OM) or link and
load module (LLM) during compilation. If the OM or LLM is stored in a PLAM library, the
LSD records can either be included in linkage and loading or dynamically loaded by AID
when required.

Dynamic loading of LSD records is especially useful for programs which are the result of
multiple compilation runs and for which only certain modules are to be symbolically tested.
The LSD that is to be dynamically loaded must have been created in the same compilation
run as the module.

AID cannot perform dynamic loading from the temporary object module file (*OMF file).

4.2.1 Compilation

A compiler option is used to control generation of LSD records by the compiler. A detailed
description of the relevant operands can be found in the language-specific manuals for AID
(see [2] - [6]). Essentially there are two possibilities:

– Only the ESD/ESV is created, but no LSD records (default value). The program can only
be tested on the machine code level.

– The compiler generates both LSD records and the ESD/ESV. The program can be
tested symbolically under AID.

4.2.2 Linkage using BINDER

When linking using BINDER, LSD records can be incorporated in all linkage processes.
In the BINDER statements which control the creation, modification or storage of an LLM,
the TEST-SUPPORT operand determines whether the LSD records from link and load
modules (LLMs) will be incorporated or not (see Binder in BS2000/OSD [14]). Statements
which require the same operand values are summarized in the table below, shown with the
syntax of the TEST-SUPPORT operand. A description of the operand values follows below
the table of statements and the associated TEST-SUPPORT syntax options.

U2853-J-Z125-5-76 37

Prerequisites for debugging with AID Symbolic debugging

��
Statement Meaning TEST-SUPPORT operand values 
��
START-LLM-CREATION Creation of an LLM  *YES 
  TEST-SUPPORT=  
   *NO  
��
START-LLM-UPDATE Update an LLM  *UNCHANGED 
MODIFY-LLM-ATTRIBUTES Modify the physical TEST-SUPPORT=*YES  
 structure of an LLM  *NO  
��
MODIFY-MODULE-ATTRIBUTES Modify the logical  *UNCHANGED 
 structure of an LLM  *INCLUSION-DEFAULT
  TEST-SUPPORT= 
   *YES 
   �*NO �
��
SAVE-LLM Save an LLM  *LAST-SAVE 
  TEST-SUPPORT=*YES  
   *NO  
��
INCLUDE-MODULES Insertion of modules  *INCLUSION-DEFAULT
REPLACE-MODULES Replacement of modulesTEST-SUPPORT=*YES 
RESOLVE-BY-AUTOLINK Resolution of  *NO 
 external references  
 by Autolink  
��

*YES The LSD records are taken over. The linkage editor does check,
however, whether the object module (OM) or link and load module
(LLM) being processed actually contains LSD records.

*NO The LSD records are not taken over. If SYMBOL-
DICTIONARY=YES has been set in the SAVE-LLM statement,
however, i.e. the ESV has been included, it is possible to track back
through call hierarchies. If LSD records have been created
additionally during compilation and written to a PLAM library with the
OM or LLM, the LSD can be dynamically loaded for symbolic
debugging when required.

*UNCHANGED The LSD records, if there are any in the processed modules, are
transferred to the current LLM.

*INCLUSION-DEFAULT

The values of the INCLUSION-DEFAULT operand from the START-
LLM-CREATION, START-LLM-UPDATE, or MODIFY-LLM-
ATTRIBUTES statements from the same edit run are transferred.

*LAST-SAVE The linkage editor takes over the values from the last SAVE-LLM
statement in the same edit run. If no SAVE-LLM has previously been
specified, the linkage editor inserts YES.

38 U2853-J-Z125-5-76

Symbolic debugging Prerequisites for debugging with AID

 The BINDER allows CSECTs of the same name to be incorporated more than once
in an LLM. During debugging with AID, however, this leads to unforeseeable results.

4.2.3 Linkage and loading via DBL or loading via ELDE

A program to be tested is called by means of the BS2000 command LOAD-EXECUTABLE-
PROGRAM, whereupon AID commands can be entered.
A program to be processed by AID only in the event of an error can be loaded and started
by means of START-EXECUTABLE-PROGRAM. A load unit included with the BIND macro
call can also be tested with AID.

A program in the form of object modules (OMs) or link and load modules (LLMs) is loaded
by the Dynamic Linking Loader DBL, whereas a program that is linked via TSOSLINK (load
unit) is loaded by the loader ELDE (see Dynamic Binder Loader / Starter in BS2000/OSD
[15]).

– Loading or loading and starting with the DBL called by SDF commands:

 -
 /LOAD-EXECUTABLE-PROGRAM   NONE 
  ,TEST-OPTIONS =  
 /START-EXECUTABLE-PROGRAM   AID 
 -

NONE The program is loaded without LSD records. Symbolic testing is possible
only if the PLAM library containing the relevant object modules is made
available to AID for dynamic loading of the LSD records.

AID The program is loaded with the LSD records. If no LSD records exist, the
program is loaded nonetheless. If DBL-PARAMETERS:LOADING
was specified at the same time, it must be ensured that the associated
LOAD-INFORMATION operand, which controls loading of the ESV, is set to
DEFINITIONS (default value) or to REFERENCES.

– Integration of an additional load unit with the DBL via the BIND macro call:

 -
  N[ONE] 
 BIND ,TSTOPT =  
  A[ID] 
 -

NONE Same meaning as above

AID The program is loaded with the LSD records. It will also be loaded even if it
does not contain any LSD records. At the same time the LDINFO operand
must be set to DEF or REF to ensure that the ESV is loaded.

i

U2853-J-Z125-5-76 39

Prerequisites for debugging with AID Symbolic debugging

– Loading or loading and starting via ELDE called by SDF commands:

 -
 /LOAD-EXECUTABLE-PROGRAM   NONE 
  ,TEST-OPTIONS =  
 /START-EXECUTABLE-PROGRAM   AID 
 -

NONE The program is loaded without LSD records. Symbolic debugging is possible
only if the PLAM library containing the relevant OMs is made available to AID
for dynamic loading of the LSD records.

AID The program is loaded with the LSD records. It will also be loaded even if
does not contain any LSD records.

Examples

1. /LOAD-EXECUTABLE-PROGRAM FROM-FILE=*OMF,TEST-OPTIONS=AID

DLL loads an object module with LSD records from the *OMF file.

2. /LOAD-EXECUTABLE-PROGRAM FROM-FILE=IDEAL,TEST-OPTIONS=AID

ELDE loads the linked program IDEAL with the LSD records.

3. /LOAD-EXECUTABLE-PROGRAM FROM-FILE=*LIBRARY-
ELEMENT(LIBRARY=PROGRAMLIB,ELEMENT-OR-SYMBOL=ROOTMOD)

The linked program ROOTMOD is loaded without LSD records from the PLAM
library PROGRAMLIB.

The examples apply analogously for the /START-EXECUTABLE-PROGRAM command.

40 U2853-J-Z125-5-76

Symbolic debugging Prerequisites for debugging with AID

4.2.4 Dynamic loading of LSD records by AID

AID can dynamically load LSD records for a program from a PLAM library if the library
contains the associated OMs or LLMs with the LSD records. The %SYMLIB command
instructs AID to open the specified library. If AID processes a command with symbolic
operands and recognizes that the related LSD records are not available in memory, AID
accesses any libraries assigned and opened via %SYMLIB. AID checks whether the
dynamically loaded LSD records are derived from the same compilation run as the module
for which they are loaded.

If no library has been assigned or the assigned libraries do not contain the desired OM or
LLM, or if they do not contain any LSD records, AID reports the LSD records to be missing.
The required library can be assigned with a new %SYMLIB command. If the AID command
for which the LSD records were missing is then repeated, AID will process it.

In the case of LLMs it is possible to mask CSECTs contained in them with the BINDER

statement MODIFY-SYMBOL-VISIBILITY. AID cannot dynamically load any LSD infor-
mation for such CSECTs. The same applies to CSECTs for which the

RUN-TIME-VISIBILITY operand was set to YES, because this includes masking of the
CSECT. This operand can be specified with the following BINDER statements:

– INCLUDE-MODULES

– MODIFY-MODULE-ATTRIBUTES

– REPLACE-MODULES

– RESOLVE-BY-AUTOLINK

Programs which contain masked CSECTs can only be put through symbolic debugging with
AID if the LSD is loaded together with the program. Dynamic loading is only possible if the
masking has been reset in a separate BINDER run.

 It should be pointed out that AID terminates the LSD search in an LLM when it finds
the first CSECT of the required name, even if the LSD for that CSECT is incon-
sistent, for example because the LSD has not come from the same compilation as
the CSECT. It is therefore of no benefit if there is another CSECT of the same name
with a consistent LSD contained in the same LLM.

i

U2853-J-Z125-5-76 41

Prerequisites for debugging with AID Symbolic debugging

Examples

1. /LOAD-EXECUTABLE-PROGRAM FROM-FILE=*LIBRARY-
ELEMENT(LIBRARY=PROGRAMLIB,ELEMENT-OR-SYMBOL=ROOTMOD)

The linked FORTRAN program ROOTMOD is loaded without LSD records from the
PLAM library PROGRAMLIB.

After input of the following AID command with which the statement with label 10 is refer-
enced:

%INSERT L'10'

the following error message is issued:

AID0378 Symbolic information missing

If the PROGRAMLIB library contains the object module for this program with the
associated LSD information, the command

%SYMLIB PROGRAMLIB

can be used to assign the appropriate PLAM library. The %INSERT command can then
be repeated and will be processed by AID. The object module and the load unit may be
contained in different libraries, but the load unit must have been linked from the object
module version from which the LSD records are dynamically loaded. If this is not the
case, AID displays the following error message:

AID0377 Symbolic information inconsistent for (&00)
&00 = programname

2. %SYMLIB E=D1.OBJMOD.LIB1,E=D1.OBJMOD.LIB2

The PLAM libraries OBJMOD.LIB1 and OBJMOD.LIB2 are available for dynamic
loading of the LSD records for the dump file with link name D1.

3. %QUALIFYE=D2
%SYMLIB E=D3.LIB1,.LIB2,LIB3

The PLAM library LIB1 is defined and opened for the dump file with link name D3.
Library LIB2 is defined and opened for the dump file with link name D2.
The PLAM library LIB3 is defined and opened for the current AID work area.

If no %BASE command has been issued, the current AID work area is the virtual
memory area of the loaded program. Following a %BASE command, the AID work area
is the one specified in %BASE.

42 U2853-J-Z125-5-76

Symbolic debugging Prerequisites for debugging with AID

U2853-J-Z125-5-76 43

5 Command input

5.1 Command format

Every AID command starts with the percent character (%), immediately followed by the
command name.
Operands may follow after at least one blank.
If operands and/or keywords are entered in succession without a predefined delimiter, they
must be separated by at least one blank.
Operands must be entered in the sequence in which they appear in the format descriptions.

Command names

An AID command can be assigned a name like a BS2000 command. Such a name may
comprise up to 255 characters:

– 1st character: A-Z, $, # or @

– all subsequent characters: A-Z, 0-9, $, #, @ or -,
where the hyphen (-) must not be the last character of the name.

Names which are branched to with SKIP-COMMANDS begin with a period; names from S-
procedures to which the process branches with GOTO are concluded with a colon.
The name follows the slash which is output by the system in interactive mode and entered
by the user in procedure files. This name and the % character of the AID command must
be separated by at least one blank.
Example: /.START %AID CHECK=NO

The BS2000 command names serve as branch destinations in procedures; they are not
relevant for testing with AID.

44 U2853-J-Z125-5-76

Command format Command input

Continuation of input lines

If an AID command overflows into the next line, the same continuation mechanism applies
as for BS2000 commands. In interactive mode, an input may extend over several lines.
Alternatively each line may be concluded with a hyphen and sent off separately. The contin-
uation line then starts after the slash displayed by the system.

In procedure files, a continuation line must be announced by a hyphen, which may be
followed only by blanks up to the end of the line.
The continuation line must begin with a slash.

The length of an AID command must not exceed 1000 characters.

As there is only a limited area in memory which can be used for the interpretation of a
command, the number of operands in a command is restricted. The individual command
descriptions contain information on how many operands can be specified in each case.

Use of blanks and comments

Blanks and comments may be used to make AID commands clearer and easier to read.
Just like in the BS2000 command language, comments must be enclosed in double quotes
("). Blanks and comments can be inserted whenever one of the following characters occurs:

- Blank
. Period
, Comma
= Equal sign
'...' Apostrophe
(...) Opening and closing parentheses
<...> Opening and closing angle brackets
[...] Opening and closing square brackets
; Semicolon
+ - * / Arithmetic operators
-> Pointer operator

When using the minus sign or hyphen "-" the presetting of the SYMCHARS operand in the
%AID command must be taken into account.

Example

%CONTROL1 %CALL "SORT CALL" <%DISPLAY 'CALL'; %STOP>

U2853-J-Z125-5-76 45

Command input Individual commands

5.2 Individual commands

AID commands may be entered in BS2000 command mode or called via the CMD macro
interface. AID commands are accepted by BS2000 like BS2000 commands and passed to
AID after they have been identified as AID commands on the basis of the
% character. If the BS2000 command interpreter determines during input that an AID
command is too long, it rejects it with an error message and the user can reenter the
corrected command.

AID checks the command syntax and semantics and determines whether the operand
values can be processed in the current test situation. An error message is issued, for
example, if a symbolic address is referenced which is not stored in the available LSD
records (see section “Basic concepts” on page 18).

If a syntactically invalid command is entered, AID issues an appropriate error message and
marks the location where it detected the error. The corrected command can then be entered
once more.

Once AID has accepted and executed a command, the type of command involved deter-
mines whether the program is started or further commands can be entered.

5.3 Command sequences and subcommands

Command sequences can be formed to combine a number of AID and/or BS2000
commands. Successive commands must be separated by semicolons.
A command sequence must not be longer than 1000 characters (same limit as for a single
AID command).
Command sequences are executed immediately. They are processed from left to right.

All commands in a command sequence which start with % are identified by AID as AID
commands and immediately checked for errors. If AID senses a syntax error, the entire
command sequence is rejected during input. AID interprets commands without a leading %
character as BS2000 commands and accepts them without any further check. Errored or
illegal BS2000 commands are thus not recognized until command execution and lead to
abortion of the command sequence. Processing of the command sequence is also aborted
in the case of serious errors in AID commands, such as address overflow. The system is
then in command mode, i.e. the user may enter further commands.
If an AID command cannot be executed because a specified name is not stored in the LSD
records or no LSD records are loaded, AID issues an appropriate error message for this
command and continues processing of any subsequent commands.
Since the entire command sequence must be reentered after certain errors, lengthy
command sequences should be used in completely tested procedure files only.

46 U2853-J-Z125-5-76

Command sequences and subcommands Command input

Command sequences may include all those BS2000 commands which are permitted in the
CMD macro (see Executive Macros [11]) and nearly all AID commands.

The following commands are illegal in command sequences:

AID commands: %AID, %ALIAS, %BASE, %DUMPFILE, %HELP, %OUT,
%QUALIFY, %?

BS2000 commands: See list in appendix.

SDF-P control flow commands are likewise illegal in command sequences.

Moreover, some BS2000 commands that are permitted in command sequences terminate
a loaded program, i.e. the program can then no longer be processed with AID commands.
This applies to the following BS2000 commands (see the Commands, Volumes 1 - 5 [8]):

A list of the corresponding commands in ISP format is contained in the appendix.

The loaded program is likewise terminated when any of the user-own commands defined
with SDF-A and implemented by command procedures is called (see Executive Macros
[11]).

The commands %TRACE, %RESUME, %CONTINUE and %STOP terminate a command
sequence. After %STOP the system is in command mode, whereas the commands
%TRACE, %RESUME and %CONTINUE start or continue the program. This is why all of
these commands should only occur as the last item in a command sequence.

A subcommand is not a command in its own right but an operand of the monitoring
commands %CONTROLn, %INSERT and %ON.
The subcommand is not processed until the monitoring condition has been satisfied.
The command section of subcommands is subject to the same rules as command
sequences, with the following exceptions:

– The length of monitoring command plus subcommand must not exceed 1000
characters.

Command Function

CALL-PROCEDURE
EXIT-JOB
HELP-SDF
LOAD-PROGRAM
LOAD-EXECUTABLE-PROGRAM
LOGOFF
START-PROGRAM
START-EXECUTABLE-PROGRAM

Call a procedure
Terminate a job
Information on how to call SDF commands
Load a program
Load a program
Terminate a job
Load and start a program
Load and start a program

U2853-J-Z125-5-76 47

Command input Command files

– Like %CONTINUE, %RESUME, %TRACE and %STOP, a %REMOVE for the
subcommand just executed makes sense as the final command only, since any ensuing
commands of the subcommand will not be executed.

– In the subcommand of a %CONTROLn it is not permitted to specify another
%CONTROLn command or an %INSERT, %JUMP (COBOL85, FOR1) or %ON.

Examples

1. %INSERT S'20' <%DISPLAY A,B;%SET A INTO B;SET-FILE-LINK...;%REM %•>

When the running program arrives at statement 20, AID outputs the contents of
variables A and B, assigns the value of A to variable B, and calls the SDF command
SET-FILE-LINK. Since the subcommand also contains a %REMOVE %• it is deleted
following execution.

2. %ON %LPOV <%DISPLAY %LINK>

Whenever a module is dynamically loaded during a program run, AID outputs its
name. The program run is continued.

5.4 Command files

AID commands may also be contained in BS2000 procedure files. If an input record is to
begin with an AID command, the first character must be a slash followed by the % character
of the AID command. Any label for /SKIP-COMMANDS or /GOTO must precede the %
character however.

If a BS2000 procedure contains an AID command requiring an acknowledgment (see
/%AID CHECK=ALL.../%SET...), AID inserts Y as an answer in batch mode.

Example

/LOAD-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM(LIB=TESTLIB,LIB-OR-SYM=TESTLLM),
 TEST-OPT=AID
/BEG: %SET 17 INTO SLF
/%INSERT S'71' <%DISPLAY I,J,K>
.
.
.
/GOTO BEG
/END: EXIT-PROC

48 U2853-J-Z125-5-76

Command files Command input

U2853-J-Z125-5-76 49

6 Subcommand

6.1 Description

A subcommand is an operand of one of the monitoring commands %CONTROLn,
%INSERT and %ON. These commands define a monitoring condition which must be
satisfied for the related subcommand to be processed. This offers the option of effectively
controlling the debugging run and of setting up automated test sequences where, for
instance, current data statuses are written to logging files or contents of data fields or
registers are modified at predefined points in the program.

subcmd-OPERAND -

 AID-command 
<[subcmdname:] [(condition):] [  {;...}]>
 BS2000-command

- -

The subcommand name can be used in the course of the debugging run to reference the
subcommand, for example to interrogate the subcommand execution counter or to delete
the subcommand. Execution of the subcommand may depend on a condition, which must
be situated between the subcommand name and the command section. The command
section may consist of a single command or a command sequence and may contain both
AID and BS2000 commands (see also section “Command sequences and subcommands”
on page 45).

In %INSERT, %CONTROLn and %ON, AID inserts <%STOP> as a subcommand if no
subcommand is specified by the user. If, however, a subcmdname or condition is specified and
just the command section is omitted, AID does not add a %STOP but behaves (at the test
point or on occurrence of the defined event) as if a %CONTINUE were inserted:

– the execution counter is incremented (can be queried via %•subcmdname)

– the program continues

– any %TRACE is resumed.

Address operands in the command section of a subcommand which do not contain a
complete explicit qualification are complemented during input in accordance with the
currently valid definitions for the base qualification (see %BASE) and for prequalification

50 U2853-J-Z125-5-76

Description Subcommand

(see %QUALIFY). Only the syntax of a subcommand is checked during input. Whether the
specified symbolic addresses are contained in the LSD records or whether LSD records for
a program segment that is referenced via a qualification are loaded at all is not checked by
AID until subcommand execution. This means the corresponding LSD records need not yet
be loaded when the subcommand is entered. Likewise, when qualifications are used there
is no check at subcommand input as to whether the program segments identified in that way
exist or have been loaded.

The subcommands of %INSERT or %ON can be chained according to the LIFO principle,
i.e. subcommands may be modified/updated later as a function of the test results. Detailed
information can be found in section “Chaining” on page 60.
In the subcommands for %INSERT and %ON, further %INSERT and %ON commands may
be defined. This is described in section “Nesting” on page 62.
Some commands are not permitted in subcommands and/or abort the subcommand, the
program, or even the task. chapter “Command input” on page 43 contains complete infor-
mation on this topic as well as a description of error handling in subcommands.

Examples

1. %CONTROL1 %STMT IN (S'20':S'27') <%DISPLAY A_ARR>

The contents of all elements of field A_ARR are output before statements 20
through 27 are processed.

2. %INSERT INPUT <%DISPLAY INDAT;%SET KEY INTO I-KEY>

Every time the running program reaches the paragraph with the name INPUT the
input record INDAT is output and the contents of key field KEY are transferred to I-
KEY.

3. %ON %LPOV <%SDUMP %NEST>

The current call hierarchy is displayed every time a new segment has been loaded.

4. %INSERT V'2C' <%SET #2C'INTO%5;%DISPLAY'INS_2C!!!'>'

Prior to execution of the instruction with address V’2C’ AID loads register 5 with the
value #2C’anddisplaysthetext"INS_2C!!!".'

U2853-J-Z125-5-76 51

Subcommand Name and execution counter

5. %ON %SVC <%C1 %INSTR <%R>; %C2 %INSTR <%REM %C>; %T 2 %INSTR>; %R

All SVCs from input of the above %ON command onwards are logged.

Firstly, %ON %SVC specifies that the subsequent subcommand is executed before
execution of an SVC. The subcommand contains two %CONTROL commands and
one %TRACE, each with the %INSTR criterion. The %TRACE executes the next
instruction, which is the SVC, and logs it. Execution of the next instruction triggers
processing of the two subcommands for %CONTROL1 and %CONTROL2:
program execution is continued with %RESUME, until the next SVC is detected; the
second subcommand (%REMOVE %CONTROL) immediately resets the
%CONTROL because otherwise a %RESUME would be executed for each subse-
quent instruction, which would greatly reduce the speed of program execution.

6.2 Name and execution counter

A subcommand name comprises up to 30 characters; the first character may be A-Z, $, @
or underscore "_", the subsequent characters may also include the digits 0-9 and the
hyphen (-). A hyphen at the end of a command line is always interpreted as a continuation
character in interactive mode. The subcommand name is concluded with a colon, which is
not part of the name however.
The name must follow the opening angle bracket and must be unique: identical
subcommand names are rejected by AID with an error message. In the case of nested
subcommands AID checks the name not during input but only at subcommand execution.
In particular, internal subcommands from nesting which are executed more than once can
be given a name only if they are explicitly deleted after every time of their execution.
Up to 256 different subcommand names may be assigned.
If the subcommand contains a %STOP, the subcommand name is included in the STOP
message.
The subcommand name must be preceded by the string %• if it is to be used as a general
AID operand. This results in the AID keyword %•subcmdname which can be used in the
course of the test run to reference the subcommand and its execution counter.
All subcommands, even those which do not have a name, can be referenced within the
subcommand by means of the %• string. Outside the subcommand it is not possible to
reference the execution counter and subcommand with the %• string.

The execution counter is directly connected with the subcommand name, because it can be
referenced via that name. AID also has an execution counter for subcommands which do
not have a name, however; this counter can only be interrogated within the associated
subcommand with the %• string.
The execution counter is a numerical value which is incremented by one each time the
subcommand is processed. The counter is also incremented if the subcommand contains

52 U2853-J-Z125-5-76

Name and execution counter Subcommand

a condition whose result is FALSE (preventing execution of the associated command
section). The user may modify the execution counter via %MOVE or %SET. It is possible for
the execution counter to assume a negative value.
The current status of the execution counter can be queried via %DISPLAY %•subcmdname
(or %DISPLAY %.z for the subcommand about to be executed).

Examples

1. %CONTROL1 %IO <IO: %CONTINUE>

The %•IO execution counter is incremented by 1 on each input/output operation of
the program.

2. %IN L'200' <L200: %DISPLAY %•IO; %STOP>

The program stops at label 200 and AID outputs the status of the execution counter
belonging to the subcommand with the name %•IO from example 1.

3. %CONTROL2 %CALL <PAR: %D %•,PAR1,PAR2,PAR3 P=MAX>

This command monitors the subprogram calls. The execution counter reflects the
number of CALL statements that have already been issued. Parameters PAR1,
PAR2 and PAR3 are additionally logged on SYSLST.
As the subcommand has the name PAR, %DISPLAY %•PAR can be entered at any
point during further testing to determine how many CALL statements have been
executed by the program.

U2853-J-Z125-5-76 53

Subcommand Conditional execution

6.3 Conditional execution

AID offers the possibility of making the execution of a subcommand dependent on a
condition. The condition must be enclosed in parentheses and concluded by a colon; it is
situated immediately before the command section of the subcommand.

AID checks the condition and assigns the value TRUE or FALSE to it. Only in the case of
TRUE is the command section executed; in the event of FALSE it is skipped.

condition OPERAND -

 AND
([NOT] comparison1 [OR  [NOT] comparison2] [...]):
 XOR

- -

Operands can be formed and used for comparisonn in accordance with the following syntax:

comparison OPERAND -

 dataname   dataname 
� �statementname �� � �statementname ��
� �S'...' �� � �S'...' ��
� �compl-memref �� � �compl-memref ��
�[qua] � EQ  NE �[qua] �
� �V'f...f' �� �GE  LE� � �V'f...f' ��
 �C=csect �    �C=csect �
� �COM=common �� �GT  LT� � �COM=common ��
� keyword � NG  NL � keyword �
�%@(...) � �%@(...) �
�%L(...) � �%L(...) �
�%L=(expression) � �%L=(expression) �
AID-literal  AID-literal 

- -

Summary of relational and Boolean operators:

���
 Relational operators  Boolean operators 
���
 EQ  equal  NOT  logical negation 
 NE  not equal  AND  logical AND 
 LE  less or equal  OR  logical OR (inclusive) 
 LT  less than  XOR  logical OR (exclusive) 
 NL  not less than   
 GE  greater or equal   
 GT  greater than   
 NG  not greater   
	������
���������������������������
������
����������������������������

54 U2853-J-Z125-5-76

Conditional execution Subcommand

The relational operators are all of the same precedence and are processed before the
Boolean operators.

The Boolean operators are subject to the following order of precedence:

NOT highest precedence

AND second-highest precedence

OR/XOR lowest precedence

Operators of the same precedence are processed from left to right. Appropriate paren-
theses must be used if the operators are to be processed in an order other than their
predefined precedence.

Examples

(I EQ J AND VAR EQ 'A' OR VAR EQ 'B'):
corresponds to:
(((I EQ J) AND (VAR EQ 'A')) OR (VAR EQ 'B')):

(NOT VAR EQ 'A' OR ADR NE %0G):
corresponds to:
((NOT (VAR EQ 'A')) OR (ADR NE %0G)):

Parentheses must also be used if the relational operators or Boolean operators can be con-
fused with variable names and consequently might be rejected as faulty syntax.

The only unary operator is NOT, i.e. it refers to one operand only. All the other Boolean
operators and all relational operators are binary, i.e. they link two operands with each other.

The relational operators support the comparison of precisely two operands in each case;
chaining is not possible. If, for instance, the condition (A EQ B EQ C): is specified, AID
rejects it during input with the message AID0271 Syntax error. Instead the condition
should be
represented by (A EQ B AND B EQ C):.

Any memory reference permitted for AID (see section “Memory references” on page 71)
can be used as an operand for relational operators. If data items from the user program are
employed, they are assigned one of the following storage types:

– binary string (ï %X)

– character (ï %C)

– numeric (ï %A, %F, %P, %D).

Character-type memory contents of up to 1000 bytes can be compared in a condition.
Logical variables may be compared if a type modification is used to define a different
storage type (e.g. (ALOG%X EQ X'FF'):). Among the keywords the subcommand execution
counters, the AID registers, all program registers and the program counter (%PC) can be
used for comparisons.

U2853-J-Z125-5-76 55

Subcommand Conditional execution

AID literals are likewise permitted as comparison operands. For character literals (C’x...x’)
AID always uses the code of the input mediums, that means the coded character set ot the
terminal or the prozedure file with AID commands. If character-type memory contents are
to be compared in ASCII, the comparison text must be converted into a hexadecimal literal,
e.g. C’Hugo’ has the hexadecimal value X’4875676F’ in ASCII.

When a condition is formulated, the operand types must be compatible. The table on the
next page shows which comparisons are permitted and how the comparison takes place.
The permissibility of a comparison is not checked until the monitoring event has occurred.
In the case of an error, AID issues an appropriate message and sets the comparison result
to FALSE, i.e. the command section of the subcommand is not executed.

AID distinguishes between binary, character and numerical comparisons. AID derives the
type of comparison from the type of the operands involved. AID converts and compares the
operands of a condition according to a specific, language-independent algorithm because
it is quite possible for a user to compare data items from modules that are written in different
programming languages. Therefore the result of an AID comparison will not necessarily
match the result of a similar comparison in a particular programming language:

– In the case of a character comparison the shorter operand is logically blank-filled, and
AID compares two operands of the same length, whereas Fortran for example always
evaluates the result of the comparison as FALSE if the operands involved are of
different lengths.

– In the case of a binary comparison, the operand is padded with X’00’ to the right and
the subsequent procedure is the same as for character comparison.

– In the case of numeric comparisons, different results may arise from the fact that AID
does not work to the same degree of precision as the respective programming language
during the conversion of the operands.

– COBOL assigns the numerically edited variables to the numerical operands; for AID,
these variables belong to the character memory type.

Particular attention must be paid to this situation if it is intended to compare operands from
various different programming languages.

The comparisons that are made using the relational operators serve as operands for the
Boolean operators. Logical variable such as those used in Fortran cannot be used in this
case.
Boolean operators also enable more than two comparisons to be linked with each other: the
upper limit is determined by the complexity of the comparison operands and the size of the
internal AID input buffer.

56 U2853-J-Z125-5-76

Conditional execution Subcommand

The following table shows how the various operand types are compared with each other
and which comparisons are not permitted.

bin: Binary comparison
Comparison takes place bitwise from left to right. The shorter operand is padded
with zeros (B’0’) to the right.

char: Character comparison
Comparison takes place bytewise from left to right. The shorter operand is
padded with blanks (X’40’) to the right.

num: Numerical comparison
The arithmetical values of the two operands are compared.

numchar
The printable numeric string in UTF16 encoding from the integer numeric field is
used for the comparison.

UTF16-chr
Character comparison in UTF16 encoding
Comparison takes place bytewise from left to right. However, UTF16 characters are
used for padding and truncation (blanks in 2-byte encoding).

 Ordering relations which are used in EBCDIC encoding are no longer supported by
AID for the bytewise UTF16 comparison.

 storage
type

1st operand

storage type 2nd operand

%X
X' f...f'
B' b...b'

numeric %C
C' x...x'
U' x...x'

%UTF16/
NATIONAL

numeric
Literal

Pointer

%X
X' f...f'
B' b...b'

bin bin bin bin - bin

numeric bin num num(1) numchar
UTF16-chr

num -

%C
C' x...x'
U' x...x'

bin

num(1) char UTF16-conv
UTF16-chr

num(1) -

%UTF16/
NATIONAL

bin numchar
UTF16-chr

UTF16-conv
UTF16-chr

UTF16-chr numchar
UTF16-chr

-

numeric
Literal

- num num(1) numchar
UTF16-chr

num -

Pointer bin - - - - bin

i

U2853-J-Z125-5-76 57

Subcommand Conditional execution

UTF16-conv
If an operand is of the type %UTF16 and the operand to be compared is of the type
%C or a C/U literal, it is converted to %UTF16 by UTF16-conv. The comparison can
then take place as with UTF16-chr.

num(1) If a character-type operand contains only digits and is no more than 19 characters
in length, it is compared numerically, provided the second operand is of the
numeric type.
All other character-type operands cannot be compared with numeric storage
types or numeric literals.

– Comparison not possible

An attempted comparison is rejected with an error message and the result is set
to FALSE.

Numeric storage types:

%A, %Y (corresponds to %AL2) unsigned integer

%F, %H (corresponds to %FL2) signed integer

%P packed number

%D floating-point number

%PC program counter

all registers

%•[subkdoname] execution counter

and all symbolically addressed numeric-type data items.

 Not all data items treated numerically in the various programming languages have
a numeric storage type in AID; for details see the language-specific AID manuals
(%SET table).

Numeric literals:

[{±}]n integer
#f...f'hexadecimalnumber'
[±]n.m decimal number
[�±�]mantissaE[{±}]exponent floating-point number

Storage types %S and %SX are not very useful for comparisons and are therefore not listed
in the above table. %S is treated like %XL2 and %SX like %XL4.

Further information on storage types and literals can be found in chapter “AID literals” on
page 101 and chapter “Keywords” on page 109.

i

58 U2853-J-Z125-5-76

Conditional execution Subcommand

Examples

1. %IN S'18' <(%• LT 10): %D I,J; %MOVE X'58' INTO V'348'>

When the program reaches statement 18, AID interrupts the program run and
checks the subcommand condition. On the first nine times the command section is
executed, i.e. AID outputs the values for variables I and J on the screen and sets
the content of virtual address V’348’ to X’58’. As the subcommand does not contain
a %STOP the program run is resumed at statement 18.
On each further pass of test point S’18’ the command section of the subcommand
is skipped.

2. %IN S'25' <INS25: (ACHAR EQ 'END'): %D ISUM,JSUM; %STOP>

The subcommand of test point S’25’ is not executed until the field with the symbolic
address ACHAR has the content ’END’. AID then displays the contents of the sum
fields ISUM and JSUM on the screen and the program switches to command mode.

3. %CONTROL1 %IO <OUTPUT: (SLF NE 200): %D %•, OUTDAT, SLF P=MAX>

On testing a program which is supposed to output records with a length of 200 the
record length is found to be incorrect at times. The command %CONTROL1 can be
used to monitor the record length field SLF. Every time a record is output and SLF
does not contain the value 200, AID writes the contents of the execution counter
and of the fields OUTDAT and SLF to SYSLST.

4. %INSERT S'18' <IN1:(I EQ 15): %SET 1 INTO J; %D ARRAY(K),K;%STOP>

A test point is set for statement number 18. A subcommand with the name IN1 is
entered for this test point: whenever index I has the value 15, index J is set to 1 and the
vector element ARRAY(K) is output with the associated index K. The program is then
suspended.

5. %SET 0 INTO %0G

%INSERT S'25' <CN1: (CODGT NE '3'): %SET %L=(1 + %0G) INTO
%0G;-

%D %•, %0G, CNO, OUTDAT P=MAX>

The %SET sets AID register %0G to 0. The %INSERT sets a test point for
statement 25 and defines a subcommand with the name CN1. Whenever the test
point is reached, AID increments the counter %•CN1 by 1. Only if the code digit
CNO at the test point is ’3’ will register %0G be incremented by 1, with AID writing
the counter statuses, the contents of the code digit CNO and the output record
OUTDAT to SYSLST (P=MAX).

U2853-J-Z125-5-76 59

Subcommand Conditional execution

In other words, the content of %•CN1 shows how often the program executes
statement 25, and %0G counts how often the code digit CNO at the test point is not
equal to 3.

6. %IN PROC <(%3 GT 4096 AND %5->%L1 EQ 'A'): %SET %L=(%5 + 2) INTO %5>

Prior to execution of the PROC statement, AID checks whether register %3 contains
a value > 4096 and whether the memory location referenced by register %5
contains an ’A’ at the same time. If so, the content of register %5 is incremented by
2 and program execution continues.

60 U2853-J-Z125-5-76

Chaining Subcommand

6.4 Chaining

On input of several %INSERTs for the same test-point or several %ONs for the same event
AID prefixes the last subcommand to the preceding one (LIFO principle). One exception is
the write-event with %ON. Chaining is not possible in this case; the command that is entered
last overwrites the previous one. AID draws attention to this with warning AID0496.
Commands are also chained if the newer command does not have an explicit subcommand;
in this case the implicitly generated <%STOP> command is prefixed to the subcommand
already entered, i.e. the older subcommand is not executed any more. It is expedient,
however, to first delete the subcommand no longer required, for otherwise AID has to
administrate a "deadwood" entry throughout the remaining debugging sequence.

If a chained subcommand contains a condition, this condition applies for the associated
command section only. The subcommands ensuing in the chain are handled in one of two
ways:

– The conditional command section is concluded with %CONTINUE, %RESUME,
%TRACE or %STOP. Ensuing subcommands are processed only if the condition result
is FALSE.

– The conditional command section does not contain any %CONTINUE, %RESUME,
%TRACE or %STOP. Ensuing subcommands are always processed regardless of
whether the condition result is TRUE or FALSE.

Subcommand chaining for %CONTROLn is not possible. A new %CONTROLn overwrites
all operand values of an earlier %CONTROLn for the same number n with entries from the
new command.

Examples

1. The following commands are entered in the test run:

%ON %LPOV(SUBTOT)

.

.

.

%ON %LPOV(SUBTOT) <%DISPLAY S=B1@.PROC=B1.CHAR_DAT>

On input of the first %ON, AID adds <%STOP> as a subcommand, because no
subcommand has been explicitly specified. Chaining after input of the second %ON
results in the following subcommand for the %LPOV(SUBTOT) event, i.e. after the
SUBTOT module has been loaded:

<%DISPLAY S=B1@.PROC=B1.CHAR_DAT; %STOP>

U2853-J-Z125-5-76 61

Subcommand Chaining

2. The following example shows the effect of LIFO chaining with a <%STOP> command
inserted by default (implicit subcommand).

%INSERT ST4 <%D TEXTDAT>

 .
 .
 .

%INSERT ST4

The second %INSERT contains no subcommand, therefore AID adds a <%STOP>
command. Since the second %INSERT designates the same test point as the previous
one, it is prefixed and leads to the following chained subcommand sequence:
<%STOP;%DISPLAY TEXTDAT>

As the execution of a subcommand is aborted by %STOP, the %DISPLAY TEXTDAT
command will never be executed; but it remains registered as a subcommand for test
point ST4 and cannot be deleted from the chain either, because it has no name. It is
best to assign a name to each subcommand so that there is always the possibility of
deleting a subcommand from the chain via its name in the event of chaining being
incorrect by mistake.
In the above example it would have been better to delete the first %INSERT via

%REMOVE ST4

and then enter

%INSERT ST4

3. The following %INSERTs can be used in a procedure in order to search for a character
literal. In the event of a hit, the located address is stored in AID register %0G and the
length of the desired string is stored in %2G (see %FIND).

 %INSERT V'1648' <(%0G NE -1): %SET %L=(%1G - %0G) INTO %2G>
 %INSERT V'1648' <%FIND C'x...x'>

Chaining is necessary because a condition can only be stated at the beginning of a
subcommand. It is only through LIFO chaining that the required subcommand is
generated for test point V’1648’:

<%FIND C'x...x'; (%0G NE -1): %SET %L=(%1G - %0G) INTO %2G>

62 U2853-J-Z125-5-76

Nesting Subcommand

4. %INSERT S'50' <%D NO,INDAT; %STOP>

%INSERT S'50' <(ISW EQ X'FF'): %SET X'00' INTO ISW; %CONT>

The two %INSERTs for the same source reference, i.e. statement 50, result in the
following conditional subcommand with a THEN and an ELSE branch at test point S’50’
(the various parts of the construct are marked with IF, THEN and ELSE to make it easier
to read):

 (ISWITCH EQ X'FF'): %S X'00' INTO ISWITCH; %CONT; %D NUMBER, INDAT; %STOP#l
 - - -
 IF THEN ELSE

Whenever statement S’50’ is about to be executed, AID interrupts the program
sequence and checks the content of switch ISW. If the switch contains the value X’FF’,
it is reset to X’00’ and the program is resumed. Otherwise AID outputs the contents of
NO and INDAT and halts the program.

6.5 Nesting

The subcommand of an %INSERT or %ON may contain another %INSERT or %ON. This
phenomenon is known as subcommand nesting and is supported by AID over several
subcommand levels. The depth to which subcommands can be nested is dependent on
their complexity and on the size of the internal input buffer for AID.
Nested subcommands take effect step by step. While the monitoring condition of the first
generation (outer level) is immediately entered by AID and can thus cause an interrupt
already in the ensuing program sequence, AID does not enter the test-point (%INSERT) or
write-event or event (%ON) in more recent subcommands until the monitoring condition of
the immediately preceding generation has triggered an interrupt. If another, different
command occurs within %INSERT or %ON nesting for a monitoring condition already
entered, the new subcommand is additionally prefixed to the older one (LIFO principle). In
contrast, a subcommand for a test point or an event of an inner nesting structure will not be
chained if the test point of the next higher level of nesting is passed through several times
because of a program loop or if the event in the outer nesting structure occurs more than
once.

Subcommands for a %CONTROLn cannot be nested, which is why the commands
%CONTROLn, %INSERT and %ON are illegal in the subcommand of a %CONTROLn
(apart from the commands that are never allowed in any subcommand). In addition, it is not
permitted to specify a %JUMP (COBOL85, FOR1) in subcommands of a %CONTROLn.

U2853-J-Z125-5-76 63

Subcommand Nesting

Examples

1. %IN ST3 <%DISPLAY 'INSERT1', TEXTDAT;%IN OUTPUT <%D 'INSERT2', I,J,K,-
NUM-TAB; %ON %SVC(186) <%D 'OPEN DAT1',I,J>>>

The example relates to a COBOL program. %INSERT ST3 defines paragraph ST3 as
a test point; this %INSERT contains another %INSERT nested within it, which in turn
contains a %ON command. The test point OUTPUT and the event %SVC(186)
(ïOPEN) do not yet affect program execution. They are not activated until the test point
of the %INSERT is reached in whose subcommand they are defined. When symbolic
address ST3 is encountered in the program, the related subcmd is executed, i.e. the
literal ’INSERT1’ and the content of output record TEXTDAT are output and the test
point OUTPUT is set. The subcommand for test point OUTPUT is not yet effective. The
test points ST3 and OUTPUT have thus been set so far in the program to be tested.

As the subcommand for test point ST3 does not contain a %STOP command, the
program is resumed. When the address OUTPUT is reached in the program, %DISPLAY
'INSERT2',I,J,K, NUM-TAB is executed. In addition to this command, the
subcommand contains a %ON for the event %SVC(186). If AID subsequently recog-
nizes a SVC for opening a file, it executes the subcommand defined in the %ON: the
literal ’OPEN DAT1’ and the contents of indexes I and J are output.

2. %IN ST4 <%D TEXTDAT>
 %ON %LPOV (SUBTOT) <%REMOVE ST4; %IN ST4 <%D 'SUBTOT LOADED'; %STOP >>
 %RESUME

Whenever test point ST4 is reached, AID outputs the memory contents of data field
TEXTDAT. If the declared event %LPOV (SUBTOT) occurs, i.e. when the SUBTOT
module is loaded, AID executes the subcommand in the %ON command. Test point
ST4 is deleted, but a new subcommand is immediately entered for this test point:

<%DISPLAY 'SUBTOT LOADED'; %STOP>

When ST4 is encountered the next time, AID displays the text ’SUBTOT LOADED’ and
interrupts the program sequence; new commands can then be entered.

64 U2853-J-Z125-5-76

Deletion Subcommand

6.6 Deletion

The %REMOVE command is available for the deletion of subcommands. A subcommand
is implicitly deleted when the associated monitoring command is deleted or, in the case of
%INSERT, the associated test point or, in the case of %ON, the associated event.
A subcommand can be explicitly deleted via its name. This option only applies to subcom-
mands of a %CONTROLn or %INSERT. As it is not possible to chain subcommands for a
%CONTROLn, the effect of a %REMOVE %•subcmdname is the same as %REMOVE
%CONTROLn. With %INSERT, however, it is possible to chain a whole series of subcom-
mands consecutively for a certain test point. In this case %REMOVE %•subcmdname
removes a single subcommand from the chain via its name. If the subcommand does not
have a name, it can only be deleted together with the entire test point. It is therefore always
advisable to assign a name to subcommands.

In the case of nested subcommands it is not possible to remove inner subcommands (not
even via their names) from the nesting structure if they have not yet been entered at the
associated test point. Such subcommands can only be deleted together with the entire
%INSERT (%REMOVE %INSERT) or with the test point (%REMOVE test-point).

The current subcommand can be deleted immediately after it has been executed if
%REMOVE %• is written as the last command in the command section. The %REMOVE
%• is executed immediately; this has the effect that any commands which follow will also be
deleted and therefore can no longer be executed.

U2853-J-Z125-5-76 65

7 Addressing in AID
The commands for execution monitoring, the %JUMP command (specifying a continuation
address) and the commands for the output and modification of memory contents require
operands which identify an address or a specific area in the memory. An address must be
specified in the executable part of the program for %DISASSEMBLE, %INSERT, %JUMP
and %REMOVE. %CONTROLn and %TRACE each require an operand which is a memory
area in the executable part of the program, whereas in the case of the %DISPLAY, %FIND,
%MOVE and %SET commands the specified memory area may also be in the data section
of the program.

In AID, an address is designated by an address constant or by a complex memory
reference. A memory area can be specified by a qualification or a memory reference,
dependent on the command, or an area can be defined by two addresses; the area then
lies between the first and second address. A detailed description of the operands that have
to be specified is given in the descriptions of commands in the language-specific manuals
and in the manual for debugging on machine code level.
The %SDUMP command has a special status; its associated operand dump-area desig-
nates either a name range, which can be specified with a qualification, or a single data item.
The following sections contain descriptions of all terms that can be used to designate an
address in AID, the various qualifications, and the simple and complex memory references.

66 U2853-J-Z125-5-76

Qualifications Addressing in AID

7.1 Qualifications

Qualifications define the path to a memory object which is outside the currently valid AID
work area or which is not within the current main program or subprogram, or which is not
unique there. In some cases addressing may end with a qualification, i.e. the qualification
can reference the memory object itself. There is a distinction between the base qualification
and area qualifications. Qualifications are always specified in the order from the higher-
ranking to the lower-ranking qualification, and only to the extent that is necessary for unique
path identification. Redundant qualifications are ignored by AID.

Successive qualifications are separated by periods. A period must also be placed between
the last qualification and the ensuing address section.

%QUALIFY is used for predefining qualifications. A prefixed period in an address operand
will fetch these predefined qualifications.

7.1.1 Base qualification

The base qualification identifies the environment, i.e. it determines whether an ensuing
address is to be located in virtual memory or in a dump file. The base qualification is equally
applicable for symbolic and machine-oriented debugging.

E=VM Default value; designates the virtual memory area of the loaded program.

E=Dn Designates a memory dump in a dump file with a link name from the range D0
- D7; the dump file must have been assigned via %DUMPFILE.

The base qualification can be globally defined with %BASE or specified in the address
operand for an individual memory reference. The base qualification is permitted as the only
operand in the %BASE, %QUALIFY and %SDUMP commands. In all other address or area
operands a base qualification must be followed by one of the following terms:

– area qualification

– data name

– statement name

– source reference

– virtual address

– keyword

U2853-J-Z125-5-76 67

Addressing in AID Qualifications

7.1.2 Area qualifications

An area qualification designates a certain subarea of a program. The various program
subareas are defined/named during programming, compilation or linkage. Area qualifica-
tions are specified when an address does not reside in the program segment which is being
executed. There are different area qualifications for debugging on machine code level and
for the various programming languages. The area qualifications for symbolic debugging are
determined by the structure of the relevant language; chapter “Prerequisites for debugging
with AID” on page 33 of the language-specific manuals describes which program segments
are referenced by which qualifications.

SPID=X’f...f’ ESA systems, machine code
ALET={X’f...f’|%nAR|%nG} ESA systems, machine code
CTX=context symbolic and machine code
L=loadunit machine code
O=objectmodule machine code
C=csect/segmentname/sharename machine code / COBOL
COM=common symbolic and machine code
S=srcname all programming languages
PROC=name all programming languages
PROG=name Assembler, COBOL, FORTRAN
ONUNIT=’onunitname’ PL/I
BLK=’blkname’ C++/C, PL/I

Area qualifications are specified in the address operand for a memory reference, where
they are used for path description. Only those qualifications which are required for unique
referencing need be specified. However, if the interrupt point is in the routines of the runtime
system, data and statements can only be referenced in their own program via the full quali-
fication.
In commands which require an area operand it is permissible to use any area qualifications
apart from SPID and ALET in order to designate an area. C=csect and COM=common can
also be used as the start address. All area qualifications can be declared as prequalifica-
tions with %QUALIFY.

In a complex memory reference it is essential that the subsequent operations do not exceed
the area limits. Although the length attribute of an area qualification cannot be accessed, a
check is made as to whether the result of a byte offset or a length modification is still within
the area specified in the qualification.

The ALET and SPID qualifications can only be used on ESA systems. They identify a data
space, and can only be used before a virtual address or a complex memory reference which
is formed without symbolic components.

68 U2853-J-Z125-5-76

Qualifications Addressing in AID

The context qualification identifies the context in which the memory areas or addresses
referenced by subsequent qualifications or address data are supposed to lie. It is only
necessary if a CSECT, COMMON or compilation unit is contained in a number of contexts
and the current interrupt point is not located in the CSECT, COMMON or compilation unit
in which the memory object selected by the address operand is contained.

The context qualification is specified by CTX=context. Here, context is the name assigned
explicitly in the BIND macro with the LNKCTX[@] operand, or the implicit name
LOCAL#DEFAULT if LNKCTX[@] has not been specified. Programs loaded dynamically
with the DBL are given the same context name, assigned as the default: LOCAL#DEFAULT.
Programs linked statically with TSOSLNK are assigned the context CTXPHASE. Other
contexts of program may result from connection to a shared code program (for example to
a DSSM subsystem or to a program in a COMMON MEMORY POOL).
The prequalification operand of the %QUALIFY command and the dump-area operand in the
%SDUMP may end with CTX=context. In all other address or area operands a CTX qualifi-
cation must always be followed by one of the following:

– another area qualification

– data name

– statement name

– source reference

The L and O qualifications are specified when it is necessary to describe the path to one
of several CSECTs or COMMONs of the same name. All that need be specified is the L
and/or O qualification that is sufficient to provide unique reference. An L and/
or O qualification must always be followed by a C or COM qualification.

The C and COM qualifications can be used as area specifications in the %CONTROLn
and %TRACE commands. If the C qualification is used to designate a CSECT or the COM
qualification to designate a COMMON, only a machine code criterion may be specified. The
specification C=sharename/segmentname, which can be used when debugging COBOL
programs, may only be combined with a symbolic criterion. However, a C qualification can
never be followed by a symbolic memory reference, not even in COBOL.

In the %DISASSEMBLE, %INSERT and %REMOVE commands the start address of the
CSECT or COMMON is specified with the C or COM qualification respectively. Similarly, in
the %DISPLAY, %FIND, %MOVE, %ON %WRITE(...) and %SET commands the address
operand can end with C=csect/COM=common. The effect of this is to reference the entire
CSECT or COMMON. In these commands the CSECT or COMMON is used as a machine-
code memory reference. The C/COM qualification can also be used as a memory reference
within a complex memory reference (see section “Machine code memory references” on
page 72).

U2853-J-Z125-5-76 69

Addressing in AID Qualifications

The S, PROC, BLK, ONUNIT and PROG qualifications can be used to identify a memory
area in %CONTROLn and %TRACE or the name range in %SDUMP. These qualifications
stand for the entire program segment specified; they cannot be used as memory references
however.

An S qualification can be followed by a:

– PROC, BLK or ONUNIT qualification
– data name
– statement name
– source reference

A PROC, BLK or ONUNIT qualification can be followed by a:

– data name
– statement name
– source reference

The PROG qualification is a combination of S=srcname•PROC=name if srcname and name
are identical. It can be used in Assembler, COBOL and Fortran and can be employed for
the Assembler, COBOL and Fortran languages.

Examples

1. %BASE E=VM
%DUMPFILE D1=M.DUMP
%DISPLAY V'10A', E=D1.V'10A'

%BASE defines the virtual memory area of the loaded program as the base quali-
fication. %DUMPFILE assigns the link name D1 to the file M.DUMP.
As the base qualification E=VM applies, AID outputs four bytes as of address V’10A’
of the loaded program for the first entry in the %DISPLAY command and four bytes
as of address V’10A’ from a dump for the second entry. This dump resides in a file
that was assigned to link name D1 via %DUMPFILE.
Four bytes constitute the implicit length of a V address.

2. %DISPLAY S=COMPUTE@.PROC=COMPUTE.SUM

AID outputs the contents of the variable SUM from the program unit COMPUTE@
of a Fortran program. The S and PROC qualifications are necessary if the program
has been interrupted in different program unit.

3. %QUALIFY E=D1.S=COMPUTE@.PROC=COMPUTE
%DISPLAY .SUM

AID prefixes the defined prequalification to the period preceding SUM. This results
in the command: %DISPLAY E=D1.S=COMPUTE@.PROC=COMPUTE.SUM
AID outputs the data field SUM from program unit COMPUTE@ residing in the
dump file assigned to link name D1.

70 U2853-J-Z125-5-76

Qualifications Addressing in AID

4. %DISPLAY E=D2.S=TEST@.BLK='23'.var

The dump file with the link name D2, which contains the memory dump of a C
program, and within that the compilation unit with the code module name TEST@,
contains the local variable var, in the block starting in line 23. AID outputs the
contents of the variable.

5. %MOVE L=LAD1.C=CS1.(%L(L=LAD1.C=CS1) - 4) INTO %2G

AID transfers the last four bytes of CSECT CS1 from load unit LAD1 to AID register
%2G.
The L qualification is necessary because CS1 is not the current CSECT and the
name CS1 is not unique within the program system.

6. %INSERT S=COMPUTE@.PROC=COMPUTE.S'16' <%DISPLAY %•>

AID sets a test point for statement 16 in program unit COMPUTE@. When this test
point is reached in the program sequence, the execution counter is output and the
program continues.

U2853-J-Z125-5-76 71

Addressing in AID Memory references

7.2 Memory references

A memory reference can be used in an AID command to address a memory object. If the
memory reference defines a string, e.g. of the type %C or %UTF16, the character
conversion function %C() or %UTF16() can be applied to the memory reference.
AID distinguishes between simple and complex memory references.
Example of simple memory references include:

– virtual addresses: V’f...f’
– data names: VAR1, FIELD(I)
– keywords: %14, %2D, %PC, %CLASS6
– C qualifications: C=CS1
– COM qualifications: COM=CB
– statement names: L’20’, COMPUTE1
– source references: S’133’, S’44ADD’

Examples of complex memory references are:

– %@(VAR1)->.(%L=(I+5))%XL20
– C=CS1.#100’%SX->%CL8'

The simple memory references (i.e. the machine code and symbolic memory references
and the keywords), together with their attributes and characteristics, are described in
section “Machine code memory references” on page 72.

A complex memory reference is an instruction to be used by AID for calculating an address
or by the user for modifying the attributes of a memory object. In a complex memory
reference the user may incorporate symbolic and machine code memory references,
keywords, constants and AID literals for byte offset, indirect addressing, type/length modifi-
cation and address selection operations in order to determine the type and length of a
memory reference or to cause AID to compute an address required in a particular test
situation. Information on complex memory references and their associated operations is
given in section “Symbolic memory references” on page 74.

Attributes

Attributes describe the characteristics of a memory object or of a constant.
Memory objects have up to six attributes:

– name (optional)
– address
– content
– length
– storage type
– output type

72 U2853-J-Z125-5-76

Memory references Addressing in AID

Selectors can be used to access the address, length and storage type attributes. Modifi-
cation is used to alter the length or storage type. The length attribute also defines the
relevant area: address to address + (length - 1). The limits of this area are checked in the
case of length modification and byte offset operations. During a transfer with %MOVE, a
check is made to see whether sender fits in the area limits of receiver. An exception is the
virtual address, which is assigned the entire user address space as its area although the
length attribute is only 4 bytes.

The manner in which AID takes account of the attributes in the individual commands and
the checks performed on this occasion are described for the respective commands in the
language-specific manuals and the manual for debugging on machine code level.
The AID mechanism for incorporating these attributes in the calculation of a complex
memory reference is described under the various operations in the present chapter.

Constants do not have an address attribute and can thus be used in special cases only; in
particular they cannot be subjected to address selection.

7.2.1 Machine code memory references

The CSECTs, COMMONs and virtual addresses are machine code memory references.

The CSECTs and COMMONs are specified in the form of a C or COM qualification with
C=csect and COM=common respectively. As the CSECTs/COMMONs are specified in the
same way as qualifications and can also be used in the same way as qualifications in
certain commands, they are also described in section “Area qualifications” on page 67.

As a memory reference, the C/COM qualification has the following attributes:

��
 Name 
 Address 
 Content 
 Length (length of CSECT/COMMON) 
 Storage type (%X) 
 Output type (dump) 
	���������������������������������������

The area limits are defined by the start address and the length of the CSECT/COMMON.

The following operations can be used on a C/COM qualification:

– address selector
– length selector
– byte offset
– type modification
– length modification

U2853-J-Z125-5-76 73

Addressing in AID Memory references

A virtual address is specified in the following format:
V’f...f’, where ’f...f’ is a hexadecimal number of up to 8 digits between ’0’ and ’7FFFFFFF’.
A virtual address directly references a memory location in the loaded program or in a dump
file. On ESA systems it is therefore also possible to reference a memory location in a data
space, for which it is necessary to specify an ALET/SPID qualification before the virtual
address. Otherwise the only meaningful entry before a virtual address is a base qualifi-
cation.

The result of a byte offset or of indirect addressing is also a virtual address, and therefore
also has its attributes.

The attributes of a virtual address are as follows:

��
 Address (f...f) 
 Content 
 Length (4 bytes) 
 Storage type (%X) 
 Output type (dump) 
	���������������������������������������

The area limits extend from V’0’ to V’7FFFFFFF’.
Unlike all other memory objects, for which address and length at the same time define the
area limits, virtual address operations have the entire user address space at their disposal,
the only restriction being that the lowest address V’0’ and the highest possible address
V’7FFFFFFF’ must not be exceeded.

A virtual address may be followed by:
– byte offset (•)
– indirect addressing (->)
– type modification
– length modification

Examples

1. %DISPLAY V'100'->->->%C

The four bytes as of address V’100’ have the content X’00000A1A’. Address V’A1A’
has the content X’0000000F’ (first pointer operator). Address V’F’ has the content
X’0000B001’ (second pointer operator). Address V’B001’ has the content
X’F1F2F3F4’ (third pointer operator). AID interprets this as characters and outputs
’1234’.

74 U2853-J-Z125-5-76

Memory references Addressing in AID

2. %MOVE E=D1.V'206'.(%1)->.(%2-5) INTO %2G

In dump file D1, address V’206’ is the starting point for a byte offset expressed in
terms of the content of register %1 (X’00000004’). The memory contents
(X’0000B111’) there (V’20A’) are used as the address for a pointer operation. From
this new address (V’B111’) an offset expressed by the content of register %2
(X’00000008’) minus 5 is made, and from the address thus obtained (V’B114’) four
bytes are transferred to AID register %2G.

7.2.2 Symbolic memory references

Symbolic memory references are the symbolic addresses which the compiler stores in the
LSD records in the course of compilation. They include the names of data and statements
assigned by the user in the program, in other words labels, entries or function names, and
the source references generated by the compiler, via which every executable statement of
a program can be referenced, regardless of whether the statement has a label or not. If LSD
records have been created and are available, therefore, AID is able to access the
associated addresses and the attributes linked to the addresses via data names or
statement names or via source references.

Statement names and source references are address constants and only become a
memory referenced when they are followed by a pointer operator. Without a pointer
operator they can only be used in those commands which require an address as an
operand. However, if it is intended to reference the instruction code that is at the corre-
sponding address in the memory, the pointer operator must be added.

7.2.2.1 Data names

Data names are names of variables, data structures, fields, matrixes or vectors, depending
on the language tools and terminology of the programming language involved. The items of
tables or structures can be accessed in AID just like in a programming language statement,
i.e. by placing the requisite identifiers, indexes or subscripts after the data name. For any
exceptions see the command descriptions in the language-specific manuals.

Constants defined in the source program are likewise regarded as data names. They are
specified, for instance, via EQU (Assembler), via literal and symbolic character in the
SPECIAL NAMES paragraph (COBOL), or via PARAMETER (FORTRAN). As they do not
occupy memory space, however, they cannot be used in the same way as all the other data.
They have no address attribute; only the value of the constant is available to AID. The
remaining attributes cannot be used.

The attributes of data names are defined in the source program, except for the output type,
which AID determines on the basis of the storage/output type assignment (see section
“General storage types” on page 109).

U2853-J-Z125-5-76 75

Addressing in AID Memory references

Data names have the following attributes:

��
 Name 
 Address 
 Content 
 Length 
 Storage type 
 Output type 
	���������������������������������������

The area limits are defined by the address and the length.

Data names can be used in all commands addressing the data section. Selectors support
access to the address, length and storage type attributes so that results can be output,
transferred or modified or switchover to the machine code level can take place.

A data name may be subjected to or followed by:

– address selector
– length selector
– type selector
– character conversion function
– byte offset (•)
– length modification
– type modification
– indirect addressing (->), provided the data name is of type %A

A type modification serves to alter the storage type or the associated output type.
For the %DISPLAY and %SET commands, the memory contents must match the storage
type defined in the type modification.

A length modification serves to alter the length associated with a data name. The data type
is not retained, AID assumes storage type %X.
Length modification must not lead to a transgression of the area limits, i.e. the modified
length must not exceed the implicit length from the length attribute.

If a deviation from the implicit attributes of a data name is desired, the address selector can
be applied to the data name followed by a pointer operator. %@(dataname)-> then refer-
ences the virtual address of a data name, which means the attributes of a virtual address
take effect.

76 U2853-J-Z125-5-76

Memory references Addressing in AID

Indexes and subscripts

If a data name is the name of a tabular structure, it may be indexed in the same way as in
a programming language statement. COBOL distinguishes between indexing and
subscripting, although subscripting corresponds to indexing in other programming
languages. Special features of how COBOL indexes are handled by AID are described in
the User Guide "Debugging of COBOL Programs".

The index can be specified as follows:

n 
dataname 
arithmetic expression

n

Integer with a value -231 ≤ n ≤ 231-1.

dataname

Index defined for the vector, or numeric variable situated in the same program segment
as the vector; i.e. the qualification of the vector is taken over for the index.

arithmetic expression

The value for index is calculated by AID. Permissible are the arithmetic operators (+, -,
/, *) and the above-mentioned operands n and dataname. For COBOL it is the case that
only the subscript, not the index, can be used in an arithmetic expression.

You can specify a range of indexes:

index1:index2
This designates the range between index1 and index2. Both must lie within the index
limits, and index1 must be less than or equal to index2.

Examples

1. %DISPLAY V'10A'%T(SYMBOL)

The memory contents as of address V’10A’ are interpreted with the storage type of
SYMBOL and are output in the associated output type and length of SYMBOL. AID
checks that the memory contents of V’10A’ and the storage type of SYMBOL are
compatible.

2. %DISPLAY %@(DATARECORD)->.4%T(INPUT)

DATARECORD has no data structure description; however, the structure of INPUT
corresponds to that of DATARECORD with the restriction that a 4-byte number is
situated at the beginning of DATARECORD. The address selector and subsequent
pointer operator reference the virtual address of DATARECORD, i.e. the area limits

U2853-J-Z125-5-76 77

Addressing in AID Memory references

are no longer binding. A byte offset skips the first four bytes of DATARECORD. The
type selector defines the storage type and the length of INPUT, and the memory
contents as of the calculated address are output accordingly.

7.2.2.2 Statement names and source references

Statement names are names assigned in the source program to labels, sections,
paragraphs or label/entry constants/variables, depending on the language tools and termi-
nology of the programming language involved.

Statement names stand for the address of the instruction code generated for the first
statement following the label. They are specified in the following format:

L’number’ Label (Fortran)

L’name’ Label (all programming languages); in %DISAS-
SEMBLE, %INSERT, %REMOVE possible without L’...’
if not followed by address computation.

name Function (C++/C),

program name (COBOL, Fortran, Assembler; can only
be used in the %DISASSEMBLE, %INSERT and
%REMOVE commands for identifying the program
start),

entry constant or variable (PL/I)

Source references are the numbers or names of statements, generated by the compiler,
which are stored in the LSD records and via which the statements can be referenced which
are neither at the start of a main program or subprogram nor have a label. The compiler-
oriented statement designations and compiler listing entries can be found in the language-
specific manuals.
Source references stand for the address of the instruction code generated for a statement.
Source references are specified in the format S’number/name’.

Characteristics

Source references and statement names are address constants. They occupy no memory
space, i.e. they have no address attribute and cannot be changed. Entry and label variables
in PL/I are an exception; memory space is created for these as for all other data, and they
can be overwritten via %SET.

If LSD records have been generated and are available, AID can use statement names and
source references to access the instruction code.

Statement names and source references can be used as simple memory references in the
commands %DISASSEMBLE, %JUMP, %INSERT and %REMOVE. Source references can
also be used to specify a memory area in the %CONTROLn and %TRACE commands. In

78 U2853-J-Z125-5-76

Memory references Addressing in AID

%DISPLAY, %MOVE and %SET the value of the address constant is referenced, but can
only be used as sender. An exception are the section and paragraph names in COBOL.
Here, AID knows not only the address of the first command but also the end of the section
or paragraph. Section and paragraph names can thus also be used as an area specification
in the %CONTROLn and %TRACE commands.

Otherwise statement names and source references to be used for referencing a memory
location must be followed by a pointer operator. Only the address constant is available to
AID; the remaining attributes cannot be used.

A statement name may only be followed by indirect addressing (->).

Examples

1. %DISPLAY L'TOTAL'
%DISPLAY L'TOTAL'->

The first %DISPLAY outputs the address of the instruction code generated for the
first statement following the label TOTAL.
The second %DISPLAY outputs four bytes of memory contents as of this address.

2. %INSERT S'123'
%INSERT S'123'->.(-6)

The first %INSERT sets a test point for the address of the instruction code
generated for statement 123. The source reference S’123’ is used as a simple
memory reference here.
The second %INSERT sets a test point for the address of the instruction code which
is located six bytes before the test point of the first %INSERT. This time, the source
reference S’123’ is used in a complex memory reference and therefore its function
as an address constant must be observed and the pointer operator placed accord-
ingly.

3. %MOVE L'123' INTO %2G
%MOVE X'D2' INTO L'123'->

The address V’A1A’ is stored in the LSD records for label 123 in a Fortran program.
The first %MOVE transfers this address to AID register %2G. The second %MOVE
transfers the hexadecimal literal X’D2’ to the memory location with the address
V’A1A’.

U2853-J-Z125-5-76 79

Addressing in AID Memory references

7.2.3 Keywords

Memory objects outside the program memory which are used by AID or by the program can
be referenced by AID via keywords. This applies to general registers

%0 - %15, floating-point registers %nE, %nD and %nQ, the access register %nAR, the
program counter %PC, AID registers %0G - %15G and %nGD, as well as the execution
counter %•subcmdname. Class 5 and class 6 memories can also be addressed with the
keywords %CLASS5, -ABOVE and -BELOW and %CLASS6, -ABOVE and -BELOW. All
other keywords cannot be used as memory references. Only a base qualification can be
specified before a keyword.
All keywords which can be used in AID are described in chapter “Keywords” on page 109.

Keywords have the following attributes:

��
 Name (%name) 
 Address 
 Content 
 Length 
 Storage type 
 Output type 
	���������������������������������������

The area limits are defined by the start address and the length.

A keyword may be subjected to or followed by:

– address selector (the result is unusable if the address is located outside the user area)

– length selector

– byte offset (•)

– indirect addressing (->)

– length modification

– type modification

In the case of byte offset and length modification, AID checks the area limits. General
registers may be used without type modification before a pointer operator, even though they
are of type %F.

80 U2853-J-Z125-5-76

Memory references Addressing in AID

7.2.4 Complex memory references

A complex memory reference is where an address computation is carried out, on the basis
of a symbolic or machine code memory reference or of a keyword. The result of a complex
memory reference, without a final type and length modification, is a virtual address with
storage type %XL4. The calculated address can, however, be assigned to the required
storage type via a type modification or length modification or both.

compl-memref-OPERAND -

 C=csect 
� �COM=common ��  integer 
� �V'f...f' �� �•  �
� [[(]*{...}]dataname[)] �� � (expression)�
 �statementname � [ ][...] [T/L-mod][...]
� �S'...' �� � %A[L-mod] �
� keyword �� �[%S ]-> �
� �  %SX  
%@(memref)-> 

- -

C=csect C qualification
COM=common Common qualification
V’f...f’ virtual address
dataname Data names
statementname Statement names
S’...’ Source references
keyword Keywords
%@(memref) Address selector
T/L-mod Type and/or length modification
%A, %S, %SX Storage types for address interpretation
• {...} Byte offset
-> Indirect addressing (pointer operator)
* Indirect addressing (content operator, C++/C only)
(expression) Arithmetic expression

Byte offset, indirect addressing, type and length modification, arithmetic expression and the
address selector are described in the following sections. All other terms are explained at the
start of this chapter.

U2853-J-Z125-5-76 81

Addressing in AID Memory references

7.2.4.1 Byte offset "•"

Byte offset enables byte-by-byte positioning forwards or backwards from a particular
address. A byte offset always results in a virtual address. A byte offset must not exceed the
area limits of the memory object involved.

byte-offset -

 number 
memref •  
 (expression)

- -

• Offset operator

memref

May be any memory location referenced in any manner:

virtual address, data name, keyword, C qualification or complex memory reference.

number

Positive integer (decimal or hexadecimal) between 0 and 231-1.

expression

Value between -231 and 231-1 that is calculated by AID.

expression is described in section “Address, type and length selectors” on page 93.
It may comprise numbers, numerical contents of memory references, the result of
address/length selector and length function, and the arithmetic operators (+ - * /).

Byte offset can only be effected within the area limits of the relevant memory object and
results in a virtual address with a length of 4. These four bytes must fit within the area limits
of the memory object. If these limits are violated, AID issues an error message.

Except for virtual addresses, the area limits are determined by the start address and the
length attribute. For a virtual address the entire virtual memory area (V’0’ through
V’7FFFFFFF’) can be used. In the case of data names, the keywords %CLASS6,
-ABOVE, -BELOW and the C qualification, the symbolic level may be left via address
selection followed by a pointer operator: %@(...)-> thus switches to the area limits of a
virtual address.

A byte offset may be followed by:

– byte offset (•)
– indirect addressing (->)
– length modification
– type modification

82 U2853-J-Z125-5-76

Memory references Addressing in AID

Examples

1. %DISPLAY SYMBOL.10
%DISPLAY %@(SYMBOL)->.10

SYMBOL has a length of 10. An offset by 10 bytes cannot be executed by AID since
this would reference the first four bytes after SYMBOL and thus violate the area
limits of SYMBOL. AID issues an error message.

Address selection followed by a pointer operator switches to machine code level,
where the area limits of a virtual address apply. A byte offset positions to the first
byte after SYMBOL, as in the first %DISPLAY. AID can now execute this %DISPLAY
and outputs the first four bytes after SYMBOL.

2. %D %@(VAR)->.(%L(ELEM(1))*5)%T(ELEM(1))

Let it be assumed that a COBOL program contains a vector ELEM with 10 elements
ELEM(1) to ELEM(10). Variable VAR is to be redefined as a vector in the structure
of ELEM, and its 6th element is to be output. The length of element ELEM from a
table called TAB is to apply. From the start address of VAR, AID positions forwards
via a byte offset using the value derived by multiplying the length of ELEM by 5. The
consequence of subsequent type modification is that the contents are output at the
calculated address in the type and length of an element of ELEM.
If ELEM were specified without an index, AID would assume the type and length of
the entire vector ELEM.

3. %D %5->.(%L(INDEX)*%L(ADDRESS))%CL=(%L(ADDRESS)+50)

The content of register 5 (X’00000A00’) is used as an address. As of address
V’A00’ an offset derived by multiplying the length of INDEX (2) by the length of
ADDRESS (7) is effected. The memory contents at address
V’A0E’ (#A00’+(2*7)<String#A0E’)areoutputincharacterformatwitha'length of 57
(7+50).

4. %D S'123COMP'->.8%S->%L10

Address ’1B0’ is stored in the LSD records for the COBOL source reference
S’123COMP’. The pointer operator positions to the memory location with the
address V’1B0’. An offset of 8 bytes is effected. The content X’600F0130’ at the new
location, i.e. at address V’1B8’, is interpreted with %S. Base register 6 (content
X’000B010’) plus displacement #00F’resultintheaddressV’B01F’,whichisrefer-
enced'with the pointer operator. 10 bytes as of this address are output in dump
format.

U2853-J-Z125-5-76 83

Addressing in AID Memory references

5. %D C=CS1.(%L(C=CS1))
%D C=CS1.(%L(C=CS1)-4)

The first %DISPLAY is rejected since a byte offset with the length of CS1 would
reference the first byte after CS1 and thus exceed the area limits of CS1.
The second %DISPLAY reduces the offset by four bytes. The area limits of CS1 are
not violated, and AID outputs the last four bytes of CS1.

6. %D V'4'.(-5).4
%D V'4'.(4-5)
%D V'4'.4.(-5)

The byte offset in the first %DISPLAY is rejected since (-5) would violate the lower
area limit of virtual addresses (V’0’), although the final result would be within the
permissible range due to the second offset.
In the second and third %DISPLAYs, no offset exceeds the area limits and AID
outputs four bytes as of address V’3’.

7. %D V'100' .(%1 + %2)

Address V’100’ is incremented by the sum of the contents of registers 1 and 2.

7.2.4.2 Indirect addressing "->" / "*"

In indirect addressing AID uses an address constant or a memory content as an address
for another memory location. If the pointer operator is used as a unary operator, the result
is a virtual address. The pointer operation therefore causes transition to machine code level.
If indirect addressing is carried out with the pointer operator as a binary operator or if the
content operator is used, the user remains on the symbolic level even after indirect
addressing, and the result is edited in accordance with the corresponding data definition
from the source program.

In any 4-byte address used for indirect addressing, AID takes the current addressing mode
of the test object into account. It can be interrogated with %DISPLAY %AMODE. A different
address interpretation can be declared for the pointer operation with %AINT.

Pointer operator

indirect addressing with pointer operator - - - - - - - - - - - - - - - - -

addressconstant  structurecomponent
  -> [ ]
memoryreference [%A[Ln] | %S | %SX] BASED-variable 

- -

-> Pointer operator

84 U2853-J-Z125-5-76

Memory references Addressing in AID

addressconstant

Address constant (statement name, source reference, or result of an address
selection). Names of labels must be set before "->" in L’...’.

memoryreference

May be any memory location containing an address. Address-type data can be
used without type modification.

[%A[Ln] | %S | %SX]

Type modification enabling a memory location to be interpreted as an address.
%S and %SX simulate addressing as carried out by machine instructions. AID thus
calculates addresses in the same way as the hardware, either from base register
and displacement (%S) or from index register, base register and displacement
(%SX). For details see section “Storage types for interpreting machine instructions”
on page 110.

structurecomponent
�BASED-variable �

In both of these cases the pointer operator is used in order to reconstruct indirect
addressing which forms part of the language elements of the programming
language, i.e. in order to reference a structure component in C++/C via a pointer or
in order to reference a BASED variable via the associated pointer in PL/I The
attributes of the structure components or BASED variables as defined in the source
program apply to the result of the indirect addressing.

The content operator "*"

In C++/C it is also possible to use the content operator for dereferencing instead of the
pointer operator.

The address referenced with the content operator is interpreted in accordance with its data
type, declared in the program. There is no switch to machine code level as happens in the
case of unary dereferencing by the pointer operator.
In contrast with C++/C, where the content operator can also be applied to vectors, the
content operator in AID is only allowed for pointers.

indirect-addressing with content operator - - - - - - - - - - - - - - - - -

[(]* {...} pointer-variable[)]

- -

* Content operator

U2853-J-Z125-5-76 85

Addressing in AID Memory references

pointer-variable

type-specific pointer of a C++/C program

The content operator can be repeated several times. It may be necessary to define the
order of processing by bracketing. The content operator is evaluated at a lower priority after
the pointer operator, byte offset and indexing.

Indirect addressing may be followed by:

– byte offset (•)
– indirect addressing (->)
– length modification
– type modification

Examples

1. %DISPLAY V'10A', V'10A'->

AID output

 ��
  /%DISPLAY V'10A', V'10A'-> 
  V'0000010A' = ABSOLUT + #0000010A''
  0000010A (0000010A) 00000478 
  
  V'00000478' = ABSOLUT + #00000478''
  00000478 (00000478) E3C5E7E3 TEXT 
  

AID outputs four bytes as of address V’10A’ in dump format. For the second
operand, AID uses this memory content (X’00000478’) as the address in a pointer
operation and outputs four bytes as of address V’478’ in dump format.

2. %FIND C'***'

%DISPLAY %1G->

%FIND searches the memory for the string ’***’. If AID locates the string, AID
register %1G holds the continuation address, i.e. the address of the first byte
following the located string. %DISPLAY outputs the memory contents following the
search criterion.

86 U2853-J-Z125-5-76

Memory references Addressing in AID

3. %SET %7 INTO V'14C0'%SX->
Content of general register 4:X'00000100'
Content of general register 6:X'00004000'
Memory contents as of address V'14C0':X'50746B00' ï ST
 R7,X'B00'(R4,R6)

AID simulates transfer using the ’store’ instruction (ST, instruction code X’50’) and
transfers the content of general register 7 as of address V’4C00’. AID calculates the
address from memory content X’50746B00’ as follows:

 X'507' is ignored
 X'4' use content of register 4: '00000100'
 X'6' add content of register 6: '00004000'
 X'B00' add displacement: 'B00'
 ���
 results in the address '4C00'

4. %SET X'C1C2C3C4' INTO V'14C2'%S->

The register and memory contents are the same as in example 3.

This %SET transfers the hexadecimal literal X’C1C2C3C4’ to the memory location
with the address V’4B00’. AID calculates the address from memory content X’6B00’
as follows:

 X'6' use content of register 6: '00004000'
 X'B00' add displacement: 'B00'
 ��
 results in the address '4B00'

7.2.4.3 Type modification

Type modification is used to give a memory content an interpretation other than suggested
by its storage type attribute. This may be necessary in the following cases:

– type matching for %SET
– differing output format for %DISPLAY
– conversion of a literal (only allowed for %DISPLAY)
– interpretation as an address before a pointer operator
– interpretation/editing in a different structure

(redefinition of a memory location)
– interpretation as an integer in an expression

Type modification is only expedient before a pointer operator and at the end of a complex
memory reference in order to interpret the storage content as of the calculated address) or
the literal in the required storage type.

U2853-J-Z125-5-76 87

Addressing in AID Memory references

type-modification -

  %type[L-mod] 
�memref   �
  %T([area-qua•]dataname) 
� �
literal %type 

- -

memref

May designate any memory location referenced in any manner:

virtual address, data name, keyword, C qualification

literal

The AID literals are described in chapter “AID literals” on page 101.

%type[L-mod]

Keyword for storage types with optional length specification:
%X, %C, %P, %D, %F, %A and %UTF16 (see chapter “Keywords” on page 109).
The length can be specified via all length modification options. If no length is
specified, the length attribute of the modified memory object is retained.
The storage types %H, %Y, %S and %SX have a fixed length and cannot therefore
be used with a length specification.
In the case of storage type %UTF16, the length must be a multiple of 2.
Length modification is not permitted for literals.

%T([area-qua•]dataname)

The type selector interprets a memory location with the storage type and length of
other data definitions. This implies that the rules of length modification must be
observed (e.g. no transgression of area limits).
dataname may be qualified, i.e. derived from a different program segment; no base
qualification is permitted however.

During type modification AID checks whether the memory contents match the selected
storage type. If this is not the case, AID issues an error message.

Each storage type is assigned to an output type (see chapter “Keywords” on page 109).
This means the type modification can be used to change the output type.

The storage types %D, %P, %F and %A have only certain permissible lengths (see chapter
“Keywords” on page 109). If they are used without a length specification, the length of the
modified memory object must match one of the lengths permitted for the storage type.
Otherwise AID rejects the type modification and reports a length error.
The storage types %S, %H and %Y have a fixed length of 2 bytes, %SX has a fixed length
of 4 bytes. They effect an implicit length modification, which must be able to take place
within the defined area limits.

88 U2853-J-Z125-5-76

Memory references Addressing in AID

The type modification with storage type %UTF16 is permitted if the (implicit) length of the
memory location is a multiple of 2.
The type modification %UTF16 is permitted for X literals but forbidden for C and U literals.

As the %SET command takes type and length into account during transfer and converts the
storage type of the send field into that of the receive field prior to a numerical transfer if
necessary, the data types of the send and receive fields must be compatible (see the table
in the %SET description of the language-specific manuals
[2] - [6]). If the data types are not compatible, a storage type matching the memory contents
and compatible with the receive field can be specified.
The following restriction applies with regard to the %SET command for programming
languages that allow the definition of structures: structures can only be modified using a
%SET command if the send and receive fields have the same structure. If one of the
addresses was not described as a structure during programming, it can be assigned the
required structure by means of type selection. In that case, however, the current memory
contents must match the definition of the structure.

Examples

1. %DISPLAY V'10A'%F

The memory content as of address V’10A’ is interpreted as a signed binary value
and output as a signed integer. Without type modification, the virtual address would
have a hexadecimal storage type (%X) with a length of four bytes, i.e. output type
DUMP.

2. %INSERT V'4710'%SX->

The memory content of address V’4710’ is evaluated for test point calculation in
accordance with the %SX format.

3. %SET RECORD.10%PL5 INTO AMOUNT

A COBOL program contains a data item, RECORD, with a length of 45 bytes, which
contains a sequence of packed numbers, each 5 bytes long. AMOUNT is a numeric
unpacked data element. The first two numbers are skipped with the byte offset. As
a result of type and length modification, the third packed number is unpacked from
RECORD and transferred right-justified to AMOUNT.

4. %D V'134'.(INDEX * 4)%T(LINE)

The number of bytes from the contents of INDEX multiplied by 4 are added to virtual
address V’134’ by byte offset. The memory content at the calculated address is
edited in accordance with the type and length of the data definition for LINE and
then output.

U2853-J-Z125-5-76 89

Addressing in AID Memory references

5. %DISPLAY %1%F

Without type modification, AID would output the content of register 1 as a
hexadecimal number. Type modification %F causes AID to edit the register content
before output as a signed integer.

6. %DISPLAY X’20AC’%UTF16
As a result of the type modification the output takes place in dump format, i.e. not only
the hexadecimal code 20AC is output but also the interpretation as UTF16 code, in this
case the Euro symbol.

7.2.4.4 Length modification

A length modification permits a deviation from the predefined length of a memory reference.
AID then uses the specified length instead of the length stored in the length attribute. The
value of a length modification must be between 1 and 65535.

If type is not specified, length modification implies a type modification into storage type %X.

A length modification must not violate the area limits of the modified memory object, i.e. the
new length cannot exceed the end address.

length-modification -

 Ln 
memref %[type]L(memref) 
 L=(expression) 

- -

memref

May designate any memory location referenced in any manner:

virtual address, data name, keyword, C qualification or complex memory reference.

type

If type and length modification are to be effected, a storage type keyword must be
entered (%X, %C, %P, %D, %F, %A, %UTF16) followed by L without another %
character.
Example:
VAR1%L5 or VAR1%CL5

%Ln

A length modification beginning with %L implies a type modification into the default
storage type %X.

n is a positive integer or hexadecimal number, where: 0 ≤ n ≤ 65535
in accordance with the permissible value for a length modification.

90 U2853-J-Z125-5-76

Memory references Addressing in AID

%L(memref)

The length selector uses the length attribute of a different memory reference for
length modification. The length selector is applied to data names, C qualifications
and COM qualifications.

%L=(expression)

The length function causes AID to calculate the length. expression is described in
section “Address, type and length selectors” on page 93. It is formed from integers,
contents of memory references with type ’integer’ (%F or %A) and a length ≤ 8, the
result of address selector, length selector and length function, and the arithmetic
operators (+ - * /).
The operands involved and the result must be in the value range of a %FL8 field.
If the expression of a length function contains only a memory reference, AID
assumes the content (instead of the length) as the value for length modification.

The value range -263 ≤ n <+264 is supported. This enables data types %FL8 with
values -263 ≤ n <+263and %AL8 with values 0 ≤ n <+264 to be represented
correctly. If the result does not comply with the value range, error message AID0470
is issued.

If a length selector is used for a vector but no index is specified, the length of the entire
vector is selected. It is only through specification of an index that AID can access the length
of an element of the vector.

Examples

1. %DISPLAY V'10A'%L=(VAR1)

VAR1 is of type ’integer’ and contains the value 23. 23 bytes in dump format are
output as of address V’10A’.

2. %SET CVAR1%CL(CVAR) INTO CVAR

If it is assumed that CVAR1 and CVAR are two character variables in a Fortran
program and that CVAR1 is longer than CVAR, the length modification makes it
possible to transfer CVAR1 left-justified with the same length as CVAR.

3. %SET %L(CVAR) INTO %2G

The length of variable CVAR is transferred to AID register %2G.

4. %DISPLAY V'10A'%AL3->

The contents of three bytes as of address V’10A’ are interpreted as an address, and
AID outputs four bytes in dump format (%XL4) as of the memory location thus refer-
enced.

U2853-J-Z125-5-76 91

Addressing in AID Memory references

5. %D V'10A'%L=(INDEX*12-%L(NAME))

Here, the length is derived from multiplying the content of INDEX by 12 and
subtracting the length of NAME.

6. %D V'4700'%L=(%L(C=CS1)-%L(INDAT))

The length is calculated from the length of CSECT CS1 minus the length of INDAT.

7.2.4.5 Arithmetic expression

In a byte offset, length function or index, an arithmetic expression can be specified for calcu-
lation of the requisite value by AID. An expression may thus be used wherever an integer
value is required.
AID processes the arithmetic operators according to the mathematical rules for the
resolution of an arithmetic expression. The order of processing can be changed by inserting
parentheses. It is advisable to insert a blank before and after a minus sign "-" so that no
misinterpretation can occur in the %AID SYMCHARS[=STD] setting.

The following applies for each processing step of expression:

-263 ≤ intermediate result ≤ 263-1.

The following applies for a byte offset: -231 ≤ end result ≤ 231-1

The following applies for the length function: 0 ≤ end result ≤ 65535

For the index, the limits defined in the source program apply. Moreover, only the operands
number and dataname may be used (see section “Data names” on page 74).

expression -

 number  number 
 �compl-memref � �compl-memref �
 �%L(memref) � + �%L(memref) �
 �%L=(expression) � �-� �%L=(expression) �
(%@(memref)  [  %@(memref) ][...])
 �dataname � �*� �dataname �
 �keyword � / �keyword �
 �statement-name � �statement-name �
 S'...'  S'...' 

- -

number

Integer or hexadecimal number between -263 and 263-1.

92 U2853-J-Z125-5-76

Memory references Addressing in AID

compl-memref

May designate any memory location referenced in any manner. Its content must be
an integer, i.e. of type %F or %A with a length ≤ 8.

The content of a memory reference can thus be used for a byte offset, for length
modification, or as an index/subscript.

%L(memref)

The length selector is used to access the length attribute of a memory reference.
The result is an integer. Length selectors are only applied to data names, C qualifi-
cations and COM qualifications, since the length of other memory references such
as keywords is known anyhow.

%L=(expression)

AID calculates an integer value via the length function.
expression corresponds to the rules described here.

%@(memref)

The address selector is used to access the address attribute of a memory
reference. The result is an address constant (%AL4).

dataname

Must be defined in the source program with type ’integer’ or ’address’ and a length
≤ 8.
The contents of dataname are used for calculating the arithmetic expression.

keyword

The contents of keyword are used for calculating the arithmetic expression. The
following keywords may be specified (see chapter “Keywords” on page 109):

 %n General register, 0 Î n Î 15
 %nG AID general register, 0 Î n Î 15
 %PC Program counter
 %•[subcmdname] Execution counter; the abbreviation %• designates
 the execution counter of the currently active
 subcommand

statement-name

As statement names are address constants, they can be used in expressions.

S’...’

Source references are likewise address constants and can thus be used in expres-
sions.

U2853-J-Z125-5-76 93

Addressing in AID Memory references

Examples

1. %D %L=(%1+5)

The length derived from the content of register %1 plus 5 is output.

2. %D V'0'.(V'100'%AL2 + %L(C=CSECT))

As of address V’0’, a byte offset is effected with the length of the expression
specified in parentheses. First the contents of the two bytes with addresses V’100’
and V’101’ are interpreted as positive integers with a length of 2. The length of
CSECT is then added to than. AID outputs 4 bytes in dump format as of the memory
location thus calculated.

3. %S %L=((V'0'%AL4 + V'4'%AL1) * NUM1) INTO %2G

The value calculated by the length function is transferred to AID register %2G.
V’0’ contains X’00000005’, V’4’ contains X’FFF5003A’ and NUM1 contains the
value. After the type and length modifications, this results in (5 + 255) * 3 = 780. The
value 780 is thus transferred to %2G.

7.2.4.6 Address, type and length selectors

The selectors support access to the attributes of a memory reference.

selectors -

%@(memref)
%T([area-qua•]dataname)
%L(memref)

- -

%@(memref)

The address selector accesses the address attribute of a memory reference. The
result is an address constant (%AL4). An address selector may be employed before
a pointer operator to access a memory location, or as an unsigned binary number
in an expression. %DISPLAY can be used to output the result of an address
selection.
The address selector is applied to data names, C qualifications and COM qualifica-
tions. The addresses of keywords outside the user area can be output via
%DISPLAY but cannot be used as a memory reference with a subsequent pointer
operator.

%T([area-qua•]dataname)

The type selector accesses the type attribute and length attribute of a memory
reference. The selected data type can only be used for type modification. dataname
may be qualified.

94 U2853-J-Z125-5-76

Memory references Addressing in AID

%L(memref)

The length selector accesses the length attribute of a memory reference. The result
is a positive integer. Length selectors may be employed for length modification or in
expressions. %DISPLAY can be used to output the result of a length selection.
The length selector is applied to data names, C qualifications and COM qualifica-
tions only, since the length of other memory references such as keywords and
virtual addresses is known anyhow.

Examples

1. %D %@(VAR)
%D %@(VAR)->.8
%S V'2E'.(%@(VAR))%CL2 INTO X
%D V'A1A'%XL=(2+@(VAR))

Use of the address selector:

The first %DISPLAY outputs an address.

The second %DISPLAY switches to machine code level (address selection and
pointer operator) so that the byte offset operation is not impeded by the area limits
of VAR.
%SET uses the address of VAR as a value for a byte offset.
The last %DISPLAY uses the value of the address of VAR in order to calculate the
length.

2. %D V'100'%T(VAR)
%S V'100'%T(INT) INTO NUM1

Use of the type selector:

%DISPLAY outputs the content of a virtual address with the type and length of VAR
(redefinition). %SET interprets the content of a virtual address with the type and
length of integer variable INT so that its value is retained during transfer to the
numeric variable NUM1.

U2853-J-Z125-5-76 95

Addressing in AID Memory references

3. %D %L(VAR)
%S %L(VAR) INTO NUM1
%D V'A1A'.(2+%L(VAR))
%D V'A1A'%L=(%L(VAR)*5)

Use of the length selector:

The first %DISPLAY outputs the length of VAR.

%SET transfers the value of the length of VAR to the numeric variable NUM1.
The second %DISPLAY uses the length of VAR as a value in a byte offset
expression.
The last %DISPLAY uses the value of the length of VAR in a length modification.

7.2.4.7 Special features of the interaction of various components

If a complex memory reference begins with an address constant (for example

with a source reference or a label), the pointer operator must be written next. Names of
labels must always be set in L’...’.

Without the pointer operator, address constants may be positioned anywhere within the
compl-memref where hexadecimal numbers can be written.

After a byte offset of pointer operation (exceptions apply to C++/C and PL/I, see section
“Byte offset "•"” on page 81 and section “Indirect addressing "->" / "*"” on page 83), the
implicit storage type and implicit length of the start address are lost. If no other storage type
and length are explicitly defined, storage type %X with a length of 4 applies at the calculated
location, unless the complex memory reference is used as the receiver in the %MOVE
command. In this case the area that may be overwritten with %MOVE extends from the start
address of compl-memref to the end of the memory occupied by the program.

The memory area assigned for an operand in a complex memory reference must not be
exceeded by a byte offset or a length modification, otherwise AID issues an error message.
However, if it is intended to use the start address of
a memory object without having to pay attention to the area boundaries, address selection
should be used in conjunction with the pointer operator (%@(...)->). This takes the user
away from the symbolic level, which at the same time means that the type attribute and
length attribute of the referenced object can then only be accessed via the corresponding
selectors.

Some compilers, such as C++/C and PL/I, generate a prologue for each program or
subprogram during compilation. function (C++/C) or entry (PL/I) without a subsequent
pointer operator designate the first executable statement of the corresponding function or
procedure. However, if function or entry is followed by the pointer operator in order to move
to a further position starting from the start of the function or procedure, it must be ensured
that address calculation begins at the start address of the prologue.

96 U2853-J-Z125-5-76

Memory references Addressing in AID

Character encoding of a string

The interpretation of the string encoding can be changed using the conversion functions
%C() and %UTF16(). The memory reference must be of the type “string”, i.e. of the type
%C or %UTF16.

The conversion functions have an effect only when %C() is applied to the type %UTF16 or
%UTF16() to the type %C. The memory locations remain unchanged here. AID continues
to work implicitly with the converted memory location.

The CCSN for type %C from the %AID EBCDIC setting is used. The settings that are cur-
rently applicable can be displayed with the %SHOW %AID command.

Example:

The byte X'BB' is contained at memory location V'00'.

1. %AID EBCDIC=EDF03IRV
The byte X'BB' consequently defines the character '[' in CCSN EDF03IRV.
%UTF16(V'00' %CL1) results in the hexadecimal value X'005B'.

2. %AID EBCDIC=EDF03DRV
The byte X'BB' X'BB' defines the character C'Ä' in CCSN EDF03DRV.
%UTF16(V'00' %CL1) results in the hexadecimal value X'00C4'.

U2853-J-Z125-5-76 97

8 Medium-a-quantity operand
The medium-a-quantity operand defines the output medium to be used by AID and whether
additional information apart from the contents of the specified memory area (data) is to be
output.
This operand may be output more than once, separated by commas; for example,
T=MIN,P=MAX can be used to output minimum information at the terminal and maximum
information at SYSLST.

The medium-a-quantity operand may be specified in the following commands:

%DISPLAY
%HELP
%SDUMP
%OUT

The medium-a-quantity operand of the %OUT command also affects:

%DISASSEMBLE
%TRACE

The %OUT command can be used to predefine medium-a-quantity for %DISASSEMBLE,
%DISPLAY, %HELP, %SDUMP and %TRACE. This presetting applies throughout the
debugging session until a new definition is made or termination is initiated with /EXIT-JOB.

A local medium-a-quantity specification in %DISPLAY, %SDUMP and %HELP applies for the
current command only; afterwards the medium-a-quantity value of the %OUT command or
the default value T=MAX takes effect again. If no medium-a-quantity is specified in
%DISPLAY, %SDUMP or %HELP the medium-a-quantity value of the %OUT command
applies. If %OUT contains no medium-a-quantity declaration either, the default value T=MAX
is assumed.

AID takes the coded character set name (CCSN) asigned into account for all output media
whenever UTF16/UTFE characters are to be output to the output medium. However, AID
only supports UTFE or 1-byte EBCDIC codes.

98 U2853-J-Z125-5-76

Medium-a-quantity operand

medium-a-quantity-OPERAND -

T 
�H � MAX
  =  
�Fn� MIN
P 

- -

T Terminal output via SYSOUT.

H Hardcopy output (includes terminal output and cannot be specified together with T)

Fn File output. Fn designates the link name for the output file.

n is a number with a value 0 ≤ n ≤ 7.

There are three ways of creating the associated file:

1. %OUTFILE command with link name and file name.

2. /FILE command for Fn.

3. For a link name with no file name assignment, AID issues a FILE macro with the
file name AID.OUTFILE.Fn in accordance with the link name Fn. The file is
created with FCBTYPE=SAM, OPEN=EXTEND, RECFORM=V.

When using the link name F6, remember that F6 is the default link name for REP
files.

P Output to SYSLST.

MAX

The data is output with a maximum of additional information.

This includes information on the AID work area and on the interrupt point, but also
information on the data to be output.

For %HELP the {MIN | MAX} specification has no effect, but one of the two entries
is mandatory for syntactical reasons.
If output with the operand value MAX is effected for an output medium for the first
time, or if the line contents have changed as compared with a previous output, up
to three lines appear before the actual output:

– task line: provides information on the current AID work area and contains the
task identifier (TID) and the task sequence number (TSN) or the link name of the
dump file.

– header line: contains information on the interrupt point, i.e. the address at which
the program stopped at the time of output.

U2853-J-Z125-5-76 99

Medium-a-quantity operand

– target line: contains information on the address to be output, i.e. the
CSECT/COMMON containing the address and the displacement to the
beginning of CSECT/COMMON.

The following is output for each data area:

– data name and, in the case of vectors, the index boundary list

– content (plus the associated index in the case of vectors);

in the case of identical lines the text "repeated lines: n" is output.

– virtual address of the first byte of each data line in the case of output on machine
code level

– displacement of the first byte of each data line to the beginning of a CSECT if the
address can be assigned to a CSECT; otherwise the address of the first byte of
each data line relative to the beginning of the data area

MIN

No additional information is output with the data.

Examples

��
 %OUT %DA T=MIN 
 %C1 %IO <%DA FROM %PC->;%STOP> 
 %R 
 00000BB6 L R1,A8(R0,R11) 
 00000BBA L R15,98(R0,R11) 
 00000BBE BALR R14,R15 
 00000BC0 DC X'0001' INVALID OPCODE 
 00000BC2 CLI 396(R12),X'F0' 
 00000BC6 L R13,B4(R0,R2) 
 00000BCA BC B'1100',E0(R0,R13) 
 00000BCE L R15,A4(R0,R11) 
 00000BD2 BAL R14,4(R0,R15) 
 00000BD6 DC X'0000' INVALID OPCODE 
 STOPPED AT SRC_REF: 54OPE, SOURCE: TEST, PROC: TEST 
 

The data retrieved by the %DISASSEMBLE command is output without any additional infor-
mation. The virtual addresses of the respective commands are prefixed in the form of 8-digit
hexadecimal numbers.

100 U2853-J-Z125-5-76

Medium-a-quantity operand

��
 %OUT %DA T=MAX 
 %C1 %IO <%DA FROM %PC->;%STOP> 
 %R 
 TEST+C22 L R1,A8(R0,R11) 58 10 B0A8 
 TEST+C26 L R15,9C(R0,R11) 58 F0 B09C 
 TEST+C2A BALR R14,R15 05 EF 
 TEST+C2C CLI 396(R12),X'F2' 95 F2 C396 
 TEST+C30 L R13,B4(R0,R2) 58 D0 20B4 
 TEST+C34 BC B'1100',14A(R0,R13) 47 C0 D14A 
 TEST+C38 L R15,A4(R0,R11) 58 F0 B0A4 
 TEST+C3C BAL R14,4(R0,R15) 45 E0 F004 
 TEST+C40 DC X'0000' INVALID OPCODE 00 00 
 TEST+C42 CLI 396(R12),X'F0' 95 F0 C396 
 STOPPED AT SRC_REF: 58REA, SOURCE: TEST, PROC: TEST 
 

The data retrieved by the %DISASSEMBLE command is output with additional information.
The command addresses are stated in the form of relative addresses, i.e. as program
names plus displacement to the beginning of the program. The disassembled commands
are followed by the memory contents in hexadecimal format.

��
 %OUT %D T=MIN 
 %D ABC-TAB 
 01 ABC-TAB 
 02 CHARS(1: 26) 
 A B C D E F G H I J K L M 
 N O P Q R S T U V W X Y Z 
 

The table ABC-TAB from a COBOL program is output via %DISPLAY without any additional
information. The level numbers and the contents of the table items are output.

��
 %D ABC-TAB T=MAX 
 *** TID: 000000D1 *** TSN: 8438 *** 
 SRC_REF: 58ADD SOURCE: M0BS PROC: M0BS ****************************** 
 01 ABC-TAB 
 02 CHARS(1: 26) 
 (1) A (2) B (3) C (4) D (5) E (6) F 
 (7) G (8) H (9) I (10) J (11) K (12) L 
 (13) M (14) N (15) O (16) P (17) Q (18) R 
 (19) S (20) T (21) U (22) V (23) W (24) X 
 (25) Y (26) Z 
 

The table ABC-TAB from a COBOL program is output via %DISPLAY with additional infor-
mation. The actual output is preceded by a task line and a header line. The level numbers,
the contents of the table items and the associated indexes are output.

U2853-J-Z125-5-76 101

9 AID literals
An AID literal can be specified as an operand in the AID commands %DISPLAY, %FIND,
%MOVE and %SET.

9.1 Alphanumeric literals

9.1.1 Character literal

9.1.1.1 Input formats

{C’x...x’ | ’x...x’C | ’x...x’| U’x...x’}

Maximum length: 80 characters.
Character set for x: any character which can be entered at the terminal.

If the coded character set for the input medium is not UTFE, a UTFE character string can
be specified with the aid of the U literal.

Lowercase letters can be entered as such only if %AID LOW[=ON] has been specified.
Normally (default setting) lowercase letters are converted into uppercase (see %AID);
lowercase letters can then only be specified in the form of hexadecimal literals.

Apostrophes which are to be included in the literal must be duplicated (’’).

%DISPLAY
The literal is output. It may be converted using a type modification.

%FIND
x may also be the wildcard symbol ’%’, which stands for an arbitrary character and is always
reported as a hit by %FIND.
When %C() and %UTF16() are applied to the search literal, ’%’ is no longer supported as
a wildcard symbol.

%MOVE
The literal is transferred to the receive field left-justified and in the length of the literal. If the
literal is longer than the receive field, the transfer is rejected with an appropriate message.

102 U2853-J-Z125-5-76

Alphanumeric literals AID literals

%SET
If the literal consists of numerals only, has a length ≤ 18 and is to be transferred to a numeric
field, it is converted like a numeric literal and transferred retaining its correct value.

If its content is not purely numeric or its length > 18, the literal can be transferred in alpha-
numeric form to a character field (%C), or in binary form to a field with type modification %X,
where it is stored left-justified. If the receive field is longer than the literal, the literal is
padded on the right, with blanks (C’Ë’ ï X’40’) in the case of alphanumeric transfer or with
X’00’ in the case of binary transfer. If the literal is longer than the receive field, it is truncated
on the right and a warning issued.

9.1.1.2 Character encoding

Following the introduction of Unicode, AID supports the coded character set name (CCSN)
assigned to input and output media.
A CCSN can be assigned to a file using the CODED-CHARACTER-SET operand in the
MODIFY-FILE-ATTRIBUTES command.

In the case of the input medium TERMINAL, AID uses the CCSN which was set using the
BS2000 command MODIFY-TERMINAL-OPTIONS. Here AID knows none of the settings
which were made directly in the terminal emulation but were not made known via the
MODIFY-TERMINAL-OPTIONS command.

If no CCSNs were defined for input and output media, AID uses the CCSN of the user ID’s
Join entry as the default CCSN. This setting can be modified using the %AID EBCDIC= …
command.

For input and output media, AID supports only those CCSNs which are also supported by
XHCS and, except for UTFE, represent a 1-byte EBCDIC code. A prerequisite for this is the
subsystem XHCS-SYS version ÏV02.0.

The AID command %SHOW %CCSN enables the CCSNs currently supported by
XHCS-SYS to be displayed.

9.1.1.3 Conversion functions %C() and %UTF16()

These functions can be used to modify the type of character encoding of a character literal.

%UTF16() converts the literal into a UTF16 string.
%C() converts a UTF16 literal into a 1-byte EBCDIC encoding which was defined by the
%AID EBCDIC command.

If the literal is available in 1-byte EBCDIC encoding, %C() has no effect.

During conversion a character is replaced by the substitute character ’.’ if it is not available
in UTF16 or the 1-byte EBCDIC character set. In this case AID issues a message.

U2853-J-Z125-5-76 103

AID literals Alphanumeric literals

9.1.2 Hexadecimal literal

{X’f...f’ | ’f...f’X}

Maximum length: 80 hexadecimal digits (equals 40 bytes).
A literal with an odd number of digits is complemented with X’0’ on the right.
Character set for f: any character in the range 0-9 and A-F.

The type modification %UTF16 is permissible for a hexadecimal literal. As a result of this
type modification, the literal is treated like a character literal (see section “Character literal”
on page 101).

%DISPLAY
The literal is output. It may be converted using a type modification.

%FIND
f may also be the wildcard symbol ’%’, which stands for an arbitrary character and is always
reported as a hit by %FIND.

%MOVE
The literal is transferred to the receive field left-justified and in the length of the literal. If the
literal is longer than the receive field, the transfer is rejected with an appropriate message.

%SET
The literal is transferred left-justified. If the receive field is longer than the literal, padding
with X’00’ occurs on the right. If the literal is longer than the receive field, it is truncated on
the right.
This literal can be used for transfer to a receive field with any data type definition.

104 U2853-J-Z125-5-76

Alphanumeric literals AID literals

9.1.3 Binary literal

{B’b...b’ | ’b...b’B}

Maximum length: 80 binary digits (equals 10 bytes).

Padding with binary zeros (B’0’) occurs on the right up to byte length (8 binary digits).
Character set for b: characters 0 and 1.

%DISPLAY
The literal is output. It may be converted using a type modification.

%FIND
B’b...b’ cannot be specified.

%MOVE
The literal is transferred to the receive field left-justified and in the length of the literal. If the
literal is longer than the receive field, the transfer is rejected with an appropriate message.

%SET
The literal is transferred left-justified. If the receive field is longer than the literal, padding
with binary zeros occurs on the right. If the literal is longer than the receive field, it is
truncated on the right.
This literal can be transferred to a receive field with any data type definition.

U2853-J-Z125-5-76 105

AID literals Numeric literals

9.2 Numeric literals

9.2.1 Integer

[{±}]n

Maximum length:20 digits
Value range: -1021 ≤ n ≤ +1021

 For the user the internal representation of an integer is undefinded, i.e. if the user
references to the internal representation within a AID command, the result is also
undefined.
Example: %D 12345 %X / %M 123456789 INTO V'xxxx'

For compatibility reasons, the internal representation in the range
231 ≤ n ≤ +231-1 is like %FL4.

%DISPLAY
The literal is output. It may be converted using a type modification.

%FIND
An integer cannot be specified.

%MOVE
The integer is edited as a one-word hexadecimal value (4 bytes) and stored left-justified in
the receive field. If the receive field is too short, the transfer is rejected with an appropriate
message.

%SET
The integer can be transferred to any numeric receive field; it is adapted to the type of the
receive field if necessary and transferred so that its value is retained.

9.2.2 Hexadecimal number

#’x...x’

Maximum length: 16 hexadecimal digits (corresponds to storage type %FL8, signed
integer).

Value range:
With a max. length of 8 hexadecimal digits: -231 ≤ #’x...x’ ≤ +231-1 (%FL4)
With a max. length of at least 9 hexadecimal digits: -263 ≤ #’x...x’ ≤ +263-1 (%FL8)

i

106 U2853-J-Z125-5-76

Numeric literals AID literals

Character set for x:

Negative hexadecimal number:
32-bit numbers:

have precisely 8 hexadecimal digits, the first bit in the leftmost digit defining the sign. In
order to define a negative value, this digit must come from the range X'8' , X'9', ..., X'F'.

64-bit numbers:
have precisely 16 hexadecimal digits; as with a 32-bit hexadecimal number, the leftmost
digit must come from the range X'8' , X'9', ..., X'F'.

Example:
#'FFFFFFFF' defines a 32-bit hexadecimal number with the value -1;
#'0FFFFFFFF' defines a 64-bit hexadecimal number with the value +2**32-1;

Consequently the behavior of older AID versions in the case of 32-bit hexadecimal numbers
is retained.

%DISPLAY
The literal is output. It may be converted using a type modification.

%FIND
A hexadecimal number cannot be specified.

%MOVE
The hexadecimal number is edited in word length (4 bytes) and stored in the receive field
left-justified. If the receive field is too short, the transfer is rejected with an appropriate
message.

%SET
The hexadecimal number can be transferred to any numeric receive field; it is adapted to
the type of the receive field if necessary and transferred so that its value is retained.

9.2.3 Decimal number

[{±}]n.m

Maximum length: 18 digits, decimal point and sign

The leftmost digit may be preceded by a sign. A decimal point may be located at any
position within the digit sequence. If it is to occupy the leftmost position, it must be preceded
by a zero.

%DISPLAY
The literal is output.

U2853-J-Z125-5-76 107

AID literals Numeric literals

%FIND/%MOVE
A decimal number cannot be specified.

%SET
The decimal number can be transferred to any numeric receive field; it is adapted to the type
of the receive field if necessary and transferred so that its value is retained.

9.2.4 Floating-point number

[{±}]mantissaE[{±}]exponent

The floating-point number is set up internally with double precision (8 bytes). If mantissa
and/or exponent are unsigned, they are assumed to be positive. No blanks are allowed within
the floating-point number.

mantissa

Maximum length: 16 significant digits, decimal point and sign.

mantissa must contain a decimal point, which may be located at any position within. If it
is to occupy the leftmost position, it must be preceded by a zero.

exponent

Maximum length: 2 digits and sign.

Value range: -75 ≤ exponent ≤ 76.

%DISPLAY
The literal is output.

%FIND/%MOVE
A floating-point number cannot be specified.

%SET
The floating-point number can be transferred to any numeric receive field; it is adapted to
the type of the receive field if necessary and transferred so that its value is retained.

108 U2853-J-Z125-5-76

Numeric literals AID literals

U2853-J-Z125-5-76 109

10 Keywords
Keywords are predefined declarations for AID and start with the % character. They stand
for storage types, registers, program counter, memory areas, system information, execution
counters, logical values, feed control, address switchover, output of the current call
hierarchy, instruction types, and events.
In a complex memory reference, keywords for memory areas, program registers, program
counter, AID registers and execution counters can be used. The implicit storage types and
lengths are stated below in the respective sections.

10.1 General storage types

The keywords for storage types can be used to change the interpretation of a memory
location or of a literal (see section “Type modification” on page 86). This may be necessary
or expedient, for instance, for the %SET command (when the storage types of sender and
receiver are incompatible) or for %DISPLAY (if a memory location or a literal is to be output
after conversion; each storage type is implicitly assigned an output type which defines how
the memory contents are to be output) or when a memory location is to be included in the
address calculation.

The optional length specification L-mod also permits a length modification (see section
“Length modification” on page 89). This is not permitted in the case of literals. No blank is
allowed between the type and length entries. The length entry may assume any form of
length modification.

%X[L-mod] Hexadecimal, length 1 Î n Î 65535
 The default storage type for a virtual address is %XL4
 Output type: dump (hexadecimal and character)

%C[L-mod] Character, length 1 Î n Î 65535
 Output type: character

%UTF16[L-mod]
 Unicode character, length 2 Î n Î 65 534,
 The length must be a multiple of 2.
 Output type: dump (hexadecimal and character)

%P[L-mod] Packed, length 1 Î n Î 9, can only contain the sign
 (last half-byte) and digits.
 Output type: numeric (signed integer)
 Not permitted for literals.

110 U2853-J-Z125-5-76

Storage types for interpreting machine instructions Keywords

%D[L-mod] Floating-point, length n = 4, 8 or 16 bytes
 Output type: numeric (floating-point)
 Not permitted for literals.

%F[L-mod] Binary, signed integer, length n = 1..8 bytes
%H Corresponds to %FL2
 Output type: numeric (signed integer)
 %H is not permitted for literals.

%A[L-mod] Address, length n = 1..8 bytes
%Y Corresponds to %AL2
 Output type: numeric (unsigned integer)
 Not permitted for literals.

10.2 Storage types for interpreting machine instructions

These storage types are used to calculate an address expressed in the memory operands
of machine instructions in the form of base register and displacement or index register, base
register and displacement. Only a subsequent pointer operator (->) actually initiates
address calculation. Without such a pointer operator, %SX equals %XL4 and %S equals
%XL2. Examples are given in section “Indirect addressing "->" / "*"” on page 83.

%SX SX address, length 4 bytes, index-base-displacement (X-B-D),
 corresponds to a machine instruction in SX format
 The index register number X is only evaluated if it is 0.
 Output type: HEX
 ��
  ignored  X  B  D 
 	��������������
�������
�������
������������������
 Bit 0 11 12 15 16 19 20 31

%S S address, length 2 bytes, base-displacement (B-D)
 The base register number B is only evaluated if it is | 0.
 Output type: HEX
 ���������������������������
  B  D 
 	�������
������������������
 Bit 0 3 4 15

U2853-J-Z125-5-76 111

Keywords Program registers and program counter

10.3 Program registers and program counter

The program registers (general and floating-point registers) and the program counter are
addressed by AID via keywords. Their contents can be output (%DISPLAY), modified
(%MOVE, %SET) or used for addressing. The program registers are located in the privi-
leged area and cannot be referenced by their virtual addresses. The floating-point registers
occupy common memory space:
%0Q overwrites %0D and %2D; %4Q overwrites %4D and %6D.

AID handles the contents of general registers in subcommand conditions and in arithmetic
expressions as signed numeric values in accordance with the type %FL4.
Before a pointer operator, however, AID assumes the type %AL4 and the register contents
can be used as an address without type modification. A register is output with output type
’dump’. If numeric values are to be signed, a type modification with %F must be effected
prior to output.

In ASSEMBH the program registers have the symbolic name _Rn, which can only be used
for the symbolic debugging of Assembler programs however.

%PC Program counter, type %AL4
%n General register 0 Î n Î 15, storage type %FL4, output as hex. number
%nE Floating-point register with single precision n = {0,2,4,6}, type %DL4
%nD Floating-point register with double precision n = {0,2,4,6}, type %DL8
%nQ Floating-point register with quadruple precision n = {0,4}, type %DL16

%MR All 16 general registers edited in tabular form
%FR All 4 floating-point registers with double precision
 edited in tabular form

%nAR Access register 0 Î n Î 15, storage type %FL4, output as
 hexadecimal number (ESA support)
%AR All 16 access registers edited in tabular form (ESA support)

The keyword %PC and the registers may be indexed if required. This is only necessary in
the case of a program which has defined contingency processes or which was interrupted
by AID during STXIT processing: if information other than on the interrupted contingency or
STXIT process is desired (e.g. on the base process) the index of the appropriate process
level must be specified. This index may be queried with %DISPLAY %PCBLST (see
Executive Macros [11]).

The index is specified in the format: keyword(index).

112 U2853-J-Z125-5-76

AID registers Keywords

10.4 AID registers

The AID registers are located in the memory area reserved for AID and can thus be refer-
enced from any AID work area without a new work area declaration. The type and length of
AID registers are the same as for program registers.
There are no keywords for addressing all AID registers collectively.

%nG AID general register 0 Î n Î 15, storage type %FL4, output as hex. no.
%nGD AID floating-point register with double precision n = {0,2,4,6},
 type %DL8

10.5 Memory classes

The keywords listed below are used to reference memory classes. They can be specified
in %CONTROLn, %DISASSEMBLE, %DISPLAY, %FIND and %TRACE. In a complex
memory reference, keywords for memory classes can be used with all attributes, i.e. name,
address, content, length and type.

In class 5 memory the program occupies privileged and non-privileged areas. Both areas
can be accessed with the keyword %CLASS5, but the privileged area can only be accessed
with a higher test privilege.

The keywords %CLASS5 and %CLASS5BELOW designate the same address space on
XS computers or in XS dumps. The same is true of %CLASS6 and %CLASS6BELOW.

%CLASS5 Class 5 memory, type %X
%CLASS6 Class 6 memory, type %X

In addition, there are the following keywords (all of type %X) for debugging a program under
a BS2000 version ≥V9 or for processing a dump generated under such a BS2000
version:

%CLASS5BELOW Class 5 memory below the 16-Mb boundary (ï%CLASS5)
%CLASS5ABOVE Class 5 memory above the 16-Mb boundary
%CLASS6BELOW Class 6 memory below the 16-Mb boundary (ï%CLASS6)
%CLASS6ABOVE Class 6 memory above the 16-Mb boundary

U2853-J-Z125-5-76 113

Keywords System information

10.6 System information

The keywords for system information support the output of information on a particular task
via %DISPLAY. If a given keyword returns more than one value, AID edits the values and
outputs an appropriate table.

%CC Condition code
%PCB Process control block
%PCBLST List of all process control blocks
%LINK Name of the segment last loaded, which was determined
 with %ON %LPOV
%PM Program mask
%AUD1 Hardware audit table, starting with the oldest
 entry (only if created at system generation)
%AMODE System information field for addressing mode
 (can be modified with %MODE24 or %MODE31 only)
%ASC ASC mode on ESA systems
 (with regard to AR mode: X'00' = off; X'01' = on)
%DS[(ALET/SPID-qua)] Information about SPIDs and/or ALETs of the active
 data spaces on ESA systems

%LOC(memref) Machine-oriented localization information for
 an address in the executable part
%HLLOC(memref) Symbolic localization information for an address
 in the executable part

%SORTEDMAP List of all CSECTs and COMMONs of the user program
 (sorted by names and addresses)

  CTX=context [•L=loadunit] 
 � L=loadunit �
%MAP [( USER )]
 � SCOPE =   �
  ALL  

 {CTX=context | L=loadunit}#l
 When a path is specified, all CSECTs/COMMONs of the
 specified context or load unit are listed.

 SCOPE=USER CSECTs/COMMONs of the default contexts CTXPHASE or
 LOCAL#DEFAULT and of the contexts formed by the BIND
 macro with operand LNKCTX[@] are listed.

 SCOPE=ALL In addition to the CSECTs/COMMONs of the user-defined
 contexts, the map of all contexts is output to which
 the program has connected, e.g. DSSM subsystems or
 user pool contexts.

 All BLS names (context, load unit, CSECT and COMMON) are output
 unabbreviated. Within the contexts and load units, the output list
 is sorted according to CSECT name.

114 U2853-J-Z125-5-76

System information Keywords

Examples

1. /%D %HLLOC(PROG=UPRONUM.S'22DIS'->)

AID output

 ��
  V'000083EC' = CONTEXT : LOCAL#DEFAULT 
  SMOD : UPRONUM 
  PROC : UPRONUM 
  PARAGRAPH: UNPCK 
  SRC-REF : 21 
  LABEL : UNPCK 
  

2. /%D %LOC(PROG=UPRONUM.S'22DIS'->)

AID output

 ��
  V'000083EC' = CONTEXT : LOCAL#DEFAULT 
  LMOD : %UNIT 
  SMOD : UPRONUM 
  OMOD : UPRONUM 
  CSECT : UPRONUM (00008018) + 000003D4 
  

3. /%D %MAP

AID output

 ��
  *** TID: 00230056 *** TSN: 0FZB *** 
  CURRENT PC: 00002000 CSECT: LLMTEST2 ** 
  **CSECT-LISTING(MAP) OF CONTEXT : LOCAL#DEFAULT 
  **MAP OF LOAD UNIT : %UNIT 
  CSECT-NAME START SIZE VER/DATE_OF_MOD 
  ASSTEST 00000150 000830 
  ASS2 00000980 000008 
  COMM1 00001000 00012C %COMMON..... 
  LLMTEST1 00000000 000150 
  **CSECT-LISTING(MAP) OF CONTEXT : CTX2 
  **MAP OF LOAD UNIT : LLMTEST2 
  CSECT-NAME START SIZE VER/DATE_OF_MOD 
  ASSTEST 00002078 000650 
  ASS2 000026C8 000008 
  COMM1 FFFFFFFF 000000 %COMMON..... 
  LLMTEST2 00002000 000078 
  

U2853-J-Z125-5-76 115

Keywords Execution counter

10.7 Execution counter

An execution counter is set up for each subcommand. It counts the number of times the
subcommand is executed. The subcommand’s own execution counter may be addressed
with %• within the subcommand. If the subcommand is assigned a name, the execution
counter receives the same name and can then be referenced with %•subcmdname outside
the subcommand. Execution of a subcommand may be made dependent on the status of
the execution counter by querying %•subcmdname in a condition (see chapter
“Subcommand” on page 49).

A numeric value may be assigned to the counter via %SET. The content of an execution
counter can be read via %DISPLAY. The counter is incremented every time the associated
subcommand is encountered in the program sequence. Execution counters can be used
wherever a numeric value is permissible.

%•[subcmdname] Variable of type %FL4
 subcmdname is the name of the associated subcommand.
 The abbreviation %• designates the execution counter of
 the currently active subcommand.

10.8 Logical values

The two keywords listed below can be used to assign values to logical variables from
Fortran programs via %SET.

%TRUE
%FALSE

10.9 Feed control

The two keywords for feed control are only effective for the output medium SYSLST and can
only be specified in %DISPLAY.

%NP Beginning of a new page
%NL[(n)] Output of n blank lines, 1 Î n Î 255
 The default value for n is 1.

116 U2853-J-Z125-5-76

Address switchover Keywords

10.10 Address switchover

XS programming uses 31-bit addresses instead of the customary 24-bit addresses. The two
keywords listed below serve to change the addressing mode for the test object or the
address interpretation in indirect addressing.

%MOVE %MODE31 INTO %AMODE changes the addressing mode

%AINT %MODE24 changes the AID address interpretation in indirect addressing

%MODE24 24-bit addressing
%MODE31 31-bit addressing

10.11 Current call hierarchy

In %SDUMP the keyword %NEST causes the current call hierarchy to be output.

%NEST Output of the current call hierarchy

10.12 Criterion for %CONTROLn and %TRACE

The keywords listed below are used to group programming language commands or state-
ments according to their type. These keywords can be specified as a monitoring criterion
(criterion operand) in the %CONTROLn and %TRACE commands.

In the case of %CONTROLn the associated subcommand is processed when a command
or statement of the group to be monitored is about to be executed.
In the case of %TRACE a log line is output when a command or statement of the group to
be monitored is executed. In symbolic debugging, output occurs before statement
execution; in debugging on machine code level, logging occurs after command execution.

The default value is the symbolic criterion %STMT. The consequence is that, in the case of
a %CONTROLn or %TRACE with an area specification on machine code level, specifi-
cation of a keyword for criterion is mandatory unless a monitoring criterion from a previous
%CONTROLn or %TRACE is still valid.

U2853-J-Z125-5-76 117

Keywords Event for %ON

���
criterion  Command group or statement group 
���������������
���
Debugging on machine code level: 
%INSTR  All machine instructions being executed 
%B  Branch instructions (i.e. the machine instructions 
  BAL, BALR, BAS, BASSM, BASR, BC, BCR, BCT, BCTR, 
  BSM, BXH and BXLE) 
%BAL  Subprogram calls (using the machine instructions 
  BAL, BALR, BAS, BASSM and BASR) 
  
Debugging on the symbolic level: 
%STMT  All statements being executed 
%ASSGN  Assignment statements 
%CALL  Subroutine calls (CALL statements) 
%COND  IF(...) THEN, ELSE IF(...) THEN, ELSE and 
  IF(...) statements 
%DB  Statement for calling a database 
%EXCEPTION  Conditional statement branches 
%GOTO  GOTO statements 
%IO  Input/output statements 
%LAB  Statement after label 
%PROC  STOP, END, RETURN, SUBROUTINE and FUNCTION 
  statements 
%SORT  MERGE and SORT statements 
	��������������
���

10.13 Event for %ON

The keywords listed below stand for write monitoring, program errors, program termination,
supervisor calls and other events during program execution. They can be specified in the
%ON command (event operand). The event operand defines the occurrence upon which the
program is to be interrupted so that the associated subcommand can be executed.
If several %ON commands with differing event declarations are active and satisfied at the
same time, AID executes the related subcommands in the sequence in which the respective
keywords are listed in the table below. If various %TERM events occur, the associated
subcommands are processed according to the FIFO principle.

Write monitoring cannot be active for a number of different areas at the same time. A new
%ON %WRITE(...) command overwrites one entered earlier (see section “%ON %WRITE
with %INSERT, %CONTROLn and %TRACE” on page 121).

Further information on selecting the suitable %TERM can be found in the Executive Macros
[11].

118 U2853-J-Z125-5-76

Event for %ON Keywords

��
 event  Subcommand is processed: 
��
 %WRITE(memref)  after overwriting the memory area identified by 
  memref (as of BS2000/OSD V1.0) 
��
 %ERRFLG(z)  after occurrence of an error with the specified 
  event code and 
  before program abortion 
��
 %INSTCHK  after occurrence of an addressing error, 
  an invalid supervisor call (SVC), 
  a non-decodable operation code, a paging 
  error or a privileged operation and 
  before program abortion 
��
 %ARTHCHK  after occurrence of a data error, 
  a divide error, an exponent overflow 
  or a mantissa equalling zero and 
  before program abortion 
��
 %ABNORM  after occurrence of one of the errors covered 
  by the above events, of a DMS error (as of 
  BS2000 V10) or of a %ILLSTX 
��
 %ERRFLG  after occurrence of an error with any weight 
��
 %SVC(z)  before execution of the supervisor call with 
  the specified number 
 %SVC  before execution of any supervisor call 
��
 %LPOV(name)  after loading of the segment with the specified 
  name 
 %LPOV  after loading of any segment 
��
 %TERM(N[ORMAL])  before program termination with 
  TERM MODE = NORMAL, TERM or TERMD 
 %TERM(A[BNORMAL])  before program termination with 
  TERM MODE = ABNORMAL, TERMJ or TRMJD 
 %TERM(D[UMP])  before program termination with 
  TERM DUMP = Y, TERMD or TRMJD 
 %TERM(ND|NODUMP)  before program termination with 
  TERM DUMP = NO, TERM or TERMJ 
 %TERM(P[RGR])  before program termination with 
  TERM UNIT = PRGR, TERM or TERMD 
 %TERM(S[TEP])  before program termination with 
  TERM UNIT = STEP, TERMJ or TRMJD 
 %TERM  before program termination with 
  TERM, TERMD, TERMJ or TRMJD 
��
 %ANY  before program termination due to a program 
  error or a TERM with any operand values 
  or TERMJ, TERMD or TRMJD, or due to a 
  DMS error (as of BS2000 V10) or a %ILLSTX 
��
 %ILLSTX  before occurrence of a STXIT call during 
  processing of a preceding STXIT call 
  (STXIT in STXIT) 
	�������������������
���

z is an integer where: 1≤ z ≤ 255. z may be specified as an unsigned decimal number
of up to three digits or as a two-digit hexadecimal number (#ff’).'

No check is made as to whether the specified event code or the SVC number is
meaningful or permissible.

U2853-J-Z125-5-76 119

11 Special applications

11.1 %ON and STXIT

There are different possible ways of responding to events which occur during execution of
a program:

– STXIT routines can be assigned in the program to individual events; these routines are
executed in order to process the events when they occur (see Executive Macros [11]).

– Events can be assigned via the %ON command during debugging with AID. When one
of these events occurs, the subcommand specified in the %ON command is processed.

Events for which STXIT routines have been assigned in the program cannot be processed
by AID: AID has no knowledge of the occurrence of such events. Any subcommands
specified in the %ON command for these events will therefore not be executed.

STXIT routines are assigned among other things by the compiler runtime systems, by ILCS,
openUTM and the database systems, for example for the "program error" or "unrecoverable
program error" events. These STXIT events correspond to the %ERRFLG(zzz),
%ERRFLG, %INSTCK, %ARTHCHK and %ABNORM events in the %ON command. These
events can only be processed with AID is assignment of the STXIT routines has been
suppressed.

For FOR1 programs without standard linkage, the assignment of STXIT routines is
suppressed by specifying the option RUNOPT STXIT=NO. This is not possible for
Fortran90 programs, but the handling of EXPONENT-UNDERFLOW and INTEGER-
OVERFLOW can be controlled separated by means of the EXCEPTION runtime option.
The assignment of STXIT events cannot be prevented in the case of COBOL programs and
programs that use standard linkage

(C as of V2.0A, C++ as of V2.1A, COBOL85 as of V1.1A, COBOL2000 V1.0A, FOR1 as of
V2.2A, Fortran90 as of V1.0A and PLI1 as of V4.1A).

However, in the event of errors which do not affect memory such as address errors or illegal
operation code, ILCS offers the following approach: after the STXIT routines have been
processed, ILCS restores the former program counter contents, reproduces the error and
passes control to the system, thus allowing subsequent processing of the error with the

120 U2853-J-Z125-5-76

Programs with an overlay structure Special applications

%ON command. With all other errors ILCS aborts the program.
%ON %ANY or %ON %TERM can be used, however, to stop the program run before it is
unloaded to investigate the cause of the error using AID command.

In the case of openUTM applications the openUTM STXIT routines can be deactivated as
of V3.2A (interactively for UTM-T and UTM-P) by specification of the option STXIT=OFF in
the START parameter. If openUTM is running under ILCS, which is possible as of V3.2A
(operand PROGRAM COMP=ILCS in the KDCDEF statement), the ILCS STXIT routines
still remain effective even after deactivation of UTM-STXIT.

In Assembler and C++/C programs it is possible to write separate routines (in C++/C: signal
handling via signal() library function, in Assembler: STXIT macro) for the purpose of error
handling. In this case, too, AID has no possibility of responding via the %ON command to
an error intercepted by individually programmed routines. It is possible, though, to use
%INSERT to insert a test point in the error handling routines; the associated subcommand
will then be executed when the error occurs.

11.2 Programs with an overlay structure

AID normally assumes that a program is linked without an overlay structure. It uses the LSD
records once they are loaded without checking every time whether the CSECT that is refer-
enced is contained in a segment that has since been dynamically loaded. However, if the
program being debugged is one that was linked statically as an overlay or one that dynam-
ically loads or unloads segments with the BIND/UNBIND macro calls, the operand OV=YES
must be specified in the %AID command in order to ensure that AID checks every time the
LSD is accessed whether dynamic loading has occurred in the meantime.

In programs with an overlay structure, a test point can only be set in a segment that was
loaded at the time the command is entered. Similarly, a test point can only be deleted if the
associated segment is loaded. If the segment is unloaded or overwritten, the test point is
retained unless it has first been explicitly deleted with %REMOVE. If the segment is loaded
again, the test point is also set again.

U2853-J-Z125-5-76 121

12 Restrictions and interaction

12.1 %ON %WRITE with %INSERT, %CONTROLn and %TRACE

Attention must be paid to the following interactions between %ON write-event and the AID
commands %CONTROLn, %INSERT and %TRACE:

– If a %CONTROLn or a %TRACE with a machine-oriented criterion is assigned, an entry
of %ON write-event is rejected with an error message, and vice versa.

– If a machine instruction has been overwritten by a %CONTROLn or %TRACE with a
symbolic criterion by the internal AID label (X’0A81’), AID does not detect the write
access to that instruction.

– If a machine instruction has been overwritten by the test point defined with %INSERT
with the internal AID label, again AID does not detect the write access to that
instruction.

To achieve continuous write monitoring it is advisable to delete all %CONTROLn and
%INSERT commands using %REMOVE and to delete any %TRACE command that may
still be entered by continuing with %RESUME after the %ON command.

122 U2853-J-Z125-5-76

Interaction Restrictions and interaction

12.2 Interaction between execution monitoring and the
output or modification of memory contents

If %INSERT is used to set a test point, AID overwrites the instruction code at the address
of the test point with an SVC X’81’. Similarly, AID labels the first instruction of the executable
statements in control-area and trace-area (with a symbolic criterion) with X’0A81’. These
labels can be viewed if the relevant instruction code is output using %DISPLAY. If, on the
other hand, the code is disassembled using %DISASSEMBLE, AID replaces the entered
SVC with the original instruction, revealing the instruction code as it was generated by the
compiler. AID also falls back on the original code if an address is to be calculated from the
corresponding instruction via the type modification %S or %SX, and that address is to be
referenced via a pointer (->).

The labels set in the instruction code can be searched with the %FIND command by speci-
fying X’0A81’ as the search key.

In the case of the %MOVE and %SET commands, any labels that are entered are not
replaced. This may have the effect when instruction code is transferred that labels
disappear or new ones are set which AID is no longer able to bring into connection with its
internal command management. The user must therefore personally ensure that before
transfer or overwriting takes place no SVCs entered by AID are contained in the relevant
instruction code. Test points and labels associated with the %CONTROLn command can
be deleted with the %REMOVE command. If a %TRACE is still entered, this can be deleted
by starting the program with %RESUME or by entering
%TRACE 1 %INSTR.

U2853-J-Z125-5-76 123

Restrictions and interaction est points in the common memory pools

12.3 Test points in the common memory pools

If a test point is set in a common memory pool, it is known only to the task that set the test
point. All other tasks that are also connected to the common memory pool stop at this test
point.

The only way that other users of the common memory pool can avoid this is to reinsert the
original code by hand. Otherwise the hung task must wait until the test point is explicitly
reset using %REMOVE by the task that set it, or until the task terminates and thereby
implicitly removes the test points that it set.

A further problem arises however when the task that set the test point disconnects from the
common memory pool without first having removed the test point with %REMOVE. If the
task is then ended, implicit resetting of the test point is not performed as there is no longer
a connection between task and common memory pool. The original code can then only be
recovered manually.

In order to avoid the above problems, it is advisable to run the code locally and not in a
common memory pool when debugging. If, however, a test point is required in a common
memory pool, it should be removed using %REMOVE once it is reached, so that other users
are not prevented from using the common memory pool. During debugging, at least discon-
nection of the task from common memory should be suppressed so that the test points can
be removed implicitly when the task terminates.

124 U2853-J-Z125-5-76

Low level trace and control Restrictions and interaction

12.4 Low level trace and control in conjunction with
contingencies

12.4.1 %TRACE

In tasks with event-driven processing, individual machine instructions may be logged incor-
rectly when running %TRACE at machine code level. If, as a result of an asynchronous
event, a contingency routine is called and a low level trace is running at the same time,
errors may occur when entering the contingency routine and when returning to the task
interrupted by the event. Depending on the particular program and debugging constellation,

You can expect the following errors at the interface between the base process and contin-
gency:

– an instruction is incorrectly logged, e.g. with incorrect register contents
– an instruction is lost
– an instruction is displayed twice.

12.4.2 %CONTROL

Similarly, a subcommand may be omitted or executed too many times during instruction
monitoring with %CONTROL.

 STXIT routines started when program errors are detected are not affected by the
error conditions described above. All instructions used in conjunction with %TRACE
and %CONTROL are executed correctly and completely.

i

U2853-J-Z125-5-76 125

13 Messages
AID0250 Internal AID error in module (&00) . Please contact maintenance (CMD: (&01))

Meaning
Error in AID.
(&00) number of the module that detected the error.

Response
Contact the system administrator.

AID0251 No memory available

Meaning
AID has exhausted its memory space.

Response
Terminate the test and contact the system
administrator.

AID0252 AID error in module (&00) : RTC (&01) (CMD: (&02))

Meaning
Error in AID.
(&00) number of the module that detected the error
(&01) internal AID error flag

Response
Contact the system administrator.

AID0253 Function not yet implemented (CMD: (&00))

Meaning
The current version of AID or BS2000 does not
provide the desired function.

126 U2853-J-Z125-5-76

AID0254 Messages

AID0254 System error (&00) (CMD: (&01))

Meaning
System error.
(&00) number of the module that detected the error

Response
Contact the system administrator.

AID0255 System error in module (&00) : RTC (&01) (CMD: (&02))

Meaning
System error.
(&00) number of the module that detected the error
(&01) internal error flag of the system

Response
Contact the system administrator.

AID0256 AID message file not available or inconsistent.

Meaning
The AID text file containing the AID messages is
either not available or inconsistent.

Response
Contact the system administrator.

AID0257 Text for message I (&00) cannot be issued.

Meaning
The AID text file containing the AID messages is
either not available or inconsistent. The text
for message number (&00) cannot be displayed.

Response
Contact the system administrator.

AID0258 Test point already set by another task (CMD: (&00))

Meaning
The test point has already been set by another
task and is therefore rejected for the present
task.

U2853-J-Z125-5-76 127

Messages AID0259

AID0259 Exponent overflow in floating point literal

Meaning
Actual value of exponent exceeds supported range
of -76 <= exp <= +75.

AID0260 File error on (&00) ; DMS error code (&01) (CMD: (&02))

Meaning
Error in file access
(&00)link name or file name
(&01)DMS error code or blank

Response
Remove the error affecting the file with the aid
of the DMS error code (cf. BS2000 messages) and
reenter the command.

AID0261 File contains no recognizable dump (CMD: (&00))

Meaning
The content of the file could not be recognized
as a dump.

AID0262 Insufficient memory to process command (CMD: (&00))

Meaning
Insufficient memory; the amount of data to be
processed is too large.

Response
Split the data into subsets for processing, if
necessary.

AID0263 Symbolic linkage information (ESD/ESV) missing (CMD: (&00))

Meaning
The command could not be executed because no
symbolic linkage information is available.

Response
Repeat linkage of the program to be tested,
specifying SYMTEST=ALL or SYMTEST=MAP or
TEST-SUPPORT=YES.

128 U2853-J-Z125-5-76

AID0264 Messages

AID0264 Name of (&00) qualification not found (CMD: (&01))

Meaning
The name of the specified qualification could not
be found in the valid environment
(&00) type of qualification that could not performed: CTX, T, L, O, C, E, D

Response
Modify the name or the valid environment and
reenter the command.

AID0265 Invalid qualification:(&00)

Meaning
Invalid qualification.

Response
Enter the correct qualification.

AID0266 O qualification not supported by old linkage format (CMD: (&00))

Meaning
Object module qualification is not supported for
programs linked with a TSOSLNK version earlier
than V15.

Response
Link the program with a more recent TSOSLNK
version and reenter the command.

AID0267 Index not allowed for keyword (CMD: (&00))

Meaning
No index is permitted for the specified keyword.

Response
Enter the keyword without the index.

AID0268 No additional parameter allowed for event (CMD: (&00))

Meaning
No additional parameter is permitted for the
specified event.

Response
Enter the event without the additional parameter.

U2853-J-Z125-5-76 129

Messages AID0269

AID0269 AID allows only LSDCHECK=YES

Meaning
LSDCHECK=NO not allowed (opt. REP must be used)

AID0270 Invalid keyword / event (CMD: (&00))

Meaning
Invalid keyword or event.

AID0271 Syntax error (CMD: (&00))

Meaning
? Syntax error / infringement against conventions.
- Syntax is not conforming to the description.
- Syntax is ambiguous.
! Correct the syntax/ to avoid ambiguity you can

use brackets

AID0272 Command too long (CMD: (&00))

Meaning
The command entered is too long.

Response
Divide the command into several subcommands and
reenter it in this form.

AID0273 Address overflow (CMD: (&00))

Meaning
The address lies outside the valid address range.

Response
Enter a valid address.

AID0274 Change desired? Reply (Y=Yes; N=No)

Meaning
Is the old content to be replaced by the new
content ?

AID0275 CSECT qualification required

Meaning
For this command a CSECT qualification is
necessary.

130 U2853-J-Z125-5-76

AID0276 Messages

Response
Add the correct CSECT qualification.

AID0276 %INSERT or %ON too deeply nested (CMD: (&00))

Meaning
The nesting depth of the entered %INSERT or %ON
command is too large.

Response
Change the subcommand string of an internal
%INSERT or %ON command to " %STOP ". AID is
interrupted when this test point or event is
reached, and the user can then enter more nested
%INSERT or %ON commands.

AID0277 No qualification defined (CMD: (&00))

Meaning
Reference was made to a prequalification without
a %QUALIFY command having been issued.

Response
Enter a %QUALIFY command and reenter the original
command.

AID0278 Value outside supported range (CMD: (&00))

Meaning
Value outside supported range.

AID0279 Type not supported (CMD: (&00))

Meaning
The specified type is not supported by AID.

AID0280 Task / file qualification not allowed (CMD: (&00))

Meaning
The T or E=Dn qualification is not permitted in
the command entered.

U2853-J-Z125-5-76 131

Messages AID0281

AID0281 Explicit qualification ignored

Meaning
Warning message: the explicit qualification of
the operand is superfluous and therefore ignored.

AID0282 TSN not in use

Meaning
The specified TSN does not exist.

AID0283 No information given for dump file (CMD: (&00))

Meaning
When dump file qualification is active, there
will be no information given for this command.

AID0284 Address inaccessible

Meaning
The specified address cannot be accessed.

AID0285 Warning: (&00) parameter too long; shortened to "(&01)"

Meaning
The parameter specified in the command to connect
a user interface to AID is too long and will be
shortened.
(&00) parameter type
(&01) shortened parameter

AID0286 Variable type is not a pointer type (CMD: (&00))

Meaning
Indirect addressing is only possible for variable
of the specified type %A.

Response
Specify the variable type to be used for indirect
addressing as a type %A (with type modification).

132 U2853-J-Z125-5-76

AID0287 Messages

AID0287 Address not within code or linkage info (CSECT list) missing (CMD: (&00))

Meaning
Either the address lies outside the code or there
is no CSECT list for the loaded program.

Response
Generate a CSECT list by linking the program again
with the specification SYMTEST=ALL or SYMTEST=MAP
TEST-SUPPORT=YES .

AID0288 No message with this number

Meaning
There is no message corresponding to this message
number

AID0289 No message with this number

Meaning
There is no message corresponding to this message
number

AID0290 Test point does not exist (CMD: (&00))

Meaning
The test point to be deleted is not set or no
longer set.

AID0291 Event does not exist (CMD: (&00))

Meaning
The event to be deleted is not set or no longer set.

AID0292 %INSERT / %ON rejected (CMD: (&00))

Meaning
The test point or event could not be set.

AID0293 Event not allowed in this OS version

Meaning
Event does not yet exist in this OS version.

U2853-J-Z125-5-76 133

Messages AID0294

AID0294 Page(s) from address (&00) to (&01) not dumped

Meaning
The page(s) from address (&00) to address
(&01) is or are not contained in the specified dump file.

AID0295 Page(s) from address (&00) to (&01) not allocated

Meaning
The page(s) from address (&00) to address (&01)
are not assigned to the current task.

AID0296 Invalid memory class (CMD: (&00))

Meaning
The specified class keyword is not permitted.

AID0297 TSN qualification required for dump file (&00) (CMD: (&01))

Meaning
The specified dump file cannot be accessed unless
a T qualification is specified
(&00) link name

Response
Specify a T qualification.

AID0298 Testpoint removed; code not restored because of user modification

Meaning
User replaced code at testpoint (%SET/%MOVE-
command);old code is not restored; testpoint is
removed

AID0299 RECFORM parameter error

Meaning
Recform parameter not of type ’V’.

Response
Change recform type.

AID0300 Error on medium (CMD: (&00))

Meaning
The output medium reports an error.

134 U2853-J-Z125-5-76

AID0301 Messages

Response
Specify another output medium.

AID0301 Segment of task (&00) inaccessible (CMD: (&01))

Meaning
It is not possible to access the specified address
of a foreign task.
(&00)task sequence number

AID0302 System table does not exist or inaccessible (CMD: (&00))

Meaning
The system table doesn’t exist or is inaccessible.
(Possible reasons: program not loaded, list not
within dump file, etc.).

AID0303 Memory allocation error (CMD: (&00))

Meaning
Error during memory allocation.

AID0304 Keyword / event parameter out of range (CMD: (&00))

Meaning
The parameter of the specified keyword / event
lies outside the permissible value range.

AID0305 Illegal keyword / event parameter (CMD: (&00))

Meaning
The parameter of the specified keyword or event
is not permissible.

Response
Correct and reenter the command.

AID0306 Invalid range specification

Meaning
Invalid range specification

Response
Please choose a valid range specification.

U2853-J-Z125-5-76 135

Messages AID0307

AID0307 Output medium (&00) not available

Meaning
Output medium (&00) is not available.

AID0308 Exception handling: testpoint could not be set

Meaning
Coding for exception handling not yet present;
stop program in a C/C++ function and try again

AID0309 PCB index out of range (CMD: (&00))

Meaning
There is no process control block with the
specified index.

AID0310 Terminal request not honored (CMD: (&00))

Meaning
Input/output can only be switched to the operator
console or reset to SYSOUT under the system
administrator ID TSOS.

AID0311 Error during execution of a system command (CMD: (&00))

Meaning
An error occurred during execution of a system
command in a sequence of AID commands.

Response
Correct and reenter the command; then enter the
rest of the command sequence.

AID0312 Variable / literal not convertible

Meaning
The variable or literal cannot be converted.

AID0313 No program loaded (CMD: (&00))

Meaning
The specified command cannot be executed unless a
program has been loaded.

136 U2853-J-Z125-5-76

AID0314 Messages

AID0314 TID not in use

Meaning
This TID is not in use.

AID0315 Dump file not open (CMD: (&00))

Meaning
The dump file has not been opened.

Response
Open the dump file with the %DUMPFILE command
and reenter the original command.

AID0316 %TITLE string too long (CMD: (&00))

Meaning
The string specified in the %TITLE command is too
long; the maximum length is 80.

Response
Shorten the %TITLE string and reenter the command.

AID0317 Program enters STXIT / CONTINGENCY routine (PC: (&00))

Meaning
User enters STXIT or CONTINGENCY routine.
(&00)Content of the program counter

AID0318 Further (&00) byte(s) not displayed

Meaning
A number of further (&00) bytes of the bytes to
be moved will not be displayed.

AID0319 PARTNER/ROUTE/IP address unknown or inactive

Meaning
A connection to the user interface could not be
established because partner/route/IP-address
were unknown or inactive.

U2853-J-Z125-5-76 137

Messages AID0320

AID0320 User interface or version of user interface not supported

Meaning
A user interface or this version of a user inter-
face is not supported.

AID0321 TID / TSN not in use

Meaning
This TID/TSN is not in use.

AID0322 ONLY parameter invalid (CMD: (&00))

Meaning
The ONLY parameter of the %INSERT or %ON command
contains an error.

Response
Correct the ONLY parameter and reenter the
command.

AID0323 No match found for virtual address (CMD: (&00))

Meaning
The program does not contain the virtual address,
i.e. it is not possible to specify the name of a
program, load module, object module or CSECT which
contains this address (e.g. because the linkage
editor did not generate a CSECT list).

Response
If no CSECT list exists, link the program again
with the specification SYMTEST=ALL or SYMTEST=MAP
or TEST-SUPPORT=YES and reenter the command.

AID0324 Privilege too low but can be raised

Meaning
The test privilege for the desired function is
too low, but could be raised by means of the
SDF command /MODIFY-TEST-OPTIONS.

Response
Raise the test privilege by means of the
/MODIFY-TEST-OPTIONS command.

138 U2853-J-Z125-5-76

AID0325 Messages

AID0325 Privilege too low and cannot be raised

Meaning
The test privilege for the desired function is too
low and cannot be raised to a suitable level even
with the aid of the SDF command
/MODIFY-TEST-OPTIONS.

Response
The user cannot use the desired function
under his user ID. Request the
system administrator to raise the test privilege.

AID0326 IEEE floatingpoint value not a number

Meaning
The IEEE floatingpoint value does not represent a
number

AID0327 %LOC parameter invalid (CMD: (&00))

Meaning
The %LOC function contains an incorrect parameter.

Response
Correct the parameter and reenter the command.

AID0328 Invalid test point location (CMD: (&00))

Meaning
The address of the test point is invalid.

Response
Correct the test point address and reenter the
command.

AID0329 Execution of %HELP command impossible (CMD: (&00))

Meaning
The %HELP command cannot be executed. Reason:
the AID text file is missing or inconsistent.

Response
Contact the system administrator.

U2853-J-Z125-5-76 139

Messages AID0330

AID0330 System table empty (CMD: (&00))

Meaning
The accessed system table is empty.

AID0331 Invalid link name (CMD: (&00))

Meaning
The link name is invalid.

Response
Correct the link name and reenter the command.

AID0332 Access to dump file on tape not supported (CMD: (&00))

Meaning
The dump file on tape cannot be accessed.

Response
Transfer the dump file to disk and reenter the
command.

AID0333 Inconsistency detected by AID in module (&00) (CMD: (&01))

Meaning
AID has detected an inconsistency.
(&00)number of the module that detected the error

Response
Inform the system administrator.

AID0334 Invalid length (CMD: (&00))

Meaning
The length is invalid.

Response
Correct the length and reenter the command.

AID0335 No message with this number

Meaning
There is no message corresponding to this message
number

140 U2853-J-Z125-5-76

AID0336 Messages

AID0336 File not open (CMD: (&00))

Meaning
The file is not open.

AID0337 Invalid command name or invalid msg nr. in %HELP command (CMD: (&00))

Meaning
Invalid command name in the %HELP command, or the
specified message number does not exist.

AID0338 %INSERT / %ON not allowed for foreign task or dump file (CMD: (&00))

Meaning
A foreign task or dump file cannot be accessed by
means of the %INSERT or %ON command.

AID0339 Interrupt in connection to user interface. Connection closed

Meaning
There was an interrupt in the connection to the
client. Connection is closed

AID0340 Terminal output terminated by user interrupt

Meaning
Output to SYSOUT was terminated due to an inter-
rupt generated by a user.

AID0341 %MOVE/%SET rejected because of intermediate modification of old content

Meaning
In the case of a %MOVE/%SET command, the old
contents have been modified in the time between
their output and the entering of "Y" in response
to the query "Change ... (Y=Yes; N=No)". For this
reason the modification requested in the %MOVE /
%SET command is rejected.

Response
Reenter the command. If necessary remove the
CHECK parameter from %AID command.

U2853-J-Z125-5-76 141

Messages AID0342

AID0342 Nothing changed

Meaning
No change was performed. The user responded to the
query "Change ... (Y=Yes; N=No)" by entering "N".

AID0343 Change of dump file not supported (CMD: (&00))

Meaning
A modification to a dump file is not supported by
AID.

AID0344 LSD version for SOURCE module (&00) not supported

Meaning
The compiler has generated LSD for the source
module in a version that cannot be processed by
AID.

Response
Either the source module (and maybe others) must
be translated by a compiler which generates LSD
in a version supported by AID or a version of AID
is needed which can process the version of LSD
generated by the compiler.

AID0345 %MOVE/%SET exceeds segment boundaries; only (&00) bytes moved

Meaning
The modification extends beyond the segment
boundaries; only (&00) bytes were modified.

Response
Use a seperate %MOVE command to transfer the
remaining bytes to be modified.

AID0346 Location to be changed not allocated (CMD: (&00))

Meaning
The memory location to be modified has not been
located.

142 U2853-J-Z125-5-76

AID0347 Messages

AID0347 Array (&00) must be subscripted (CMD: (&01))

Meaning
It is necessary to subscript the array (&00)
in this case.

AID0348 Program stopped due to (&00) event (&01)

Meaning
An event (&00), that was watched due to an AID
switch (FORK or EXEC) has happend or a %STOP
command has been entered in another task of the
family. In fork tasks the PID is given in (&01).

AID0349 No message with this number

Meaning
There is no message corresponding to this message
number

AID0350 %FIND without parameters not allowed in this context (CMD: (&00))

Meaning
A %FIND command without parameters is not
permitted in this context.

Response
Reenter the %FIND command with parameters (with
at least a "search-criteria").

AID0351 No match in range

Meaning
No match was found in the %FIND area.

AID0352 No additional match in range

Meaning
No additional match was found in the %FIND area.

AID0353 Length exceeds boundaries; only (&00) bytes moved.

Meaning
The specified length exceeds the
boundaries; only (&00) bytes were transferred.

U2853-J-Z125-5-76 143

Messages AID0354

AID0354 Given length exceeds boundaries; nothing moved (CMD: (&00))

Meaning
The specified length exceeds the boundaries of
a keyword or a variable ; no bytes were trans-
ferred.

AID0355 %MOVE / %SET rejected

Meaning
The %MOVE / %SET command was rejected.

AID0356 Keyword not allowed in command (CMD: (&00))

Meaning
This keyword is not permitted in the command
entered.

AID0357 Modification not allowed for keyword (CMD: (&00))

Meaning
The modification entered is not permitted for
this keyword.

AID0358 No information given for foreign task (CMD: (&00))

Meaning
When foreign task qualification is active, there
will be no information given for this command.

AID0359 (&00) is neither a class nor a namespace specification

Meaning
The name in front of the ’::’-operator is
neither the name of a class nor the name of
a namespace .
(&00) name of the class or the namespace

AID0360 "::" must not succeed a BLK/PROC qualification

Meaning
The global data scope operator ’::’ may not
succeed a block or procedure qualification .

144 U2853-J-Z125-5-76

AID0361 Messages

AID0361 The command is not allowed in dump file environment

Meaning
The command is allowed only with base
qualification on virtual storage.

AID0362 Function is locked (CMD: (&00))

Meaning
The function in question cannot currently be
called.

AID0363 %MOVE exceeds CSECT boundaries; REP(s) suppressed (CMD: (&00))

Meaning
No REP information could be generated because the
receiver in the %MOVE command exceeds the
CSECT boundaries.

Response
Split the %MOVE command into several %MOVE
commands which do not exceed the CSECT boundaries.

AID0364 No match found for target address; REP(s) suppressed (CMD: (&00))

Meaning
Receiver could not be found due to lack
of CSECT information; no REP information was
generated.

Response
If necessary, link the program again with
SYMTEST=ALL or SYMTEST=MAP or TEST-SUPPORT=YES .

AID0365 REP generation error; no REP issued (CMD: (&00))

Meaning
An error occuring during output of REP information
to a file, e.g. syntax error, no medium available,
no file available.

U2853-J-Z125-5-76 145

Messages AID0366

AID0366 File error : (&00) ; no REP issued (CMD: (&01))

Meaning
An error was detected during output of REP
information to file (&00); the REP Information was
not generated.

AID0367 File (&00) cannot be opened; DMS error code (&01); no REP issued (CMD: (&02))

Meaning
DMS reported error (&01) during output of REP
information to file (&00); the REP Information
was not generated.

AID0368 FCB type not supported for file (&00) ; no REP issued (CMD: (&01))

Meaning
An attempt was made to output REP information to
a file generated by the user; assignment takes
place via link name (&00). The FCB type of the
file is not supported by AIDSYS. No REP infor-
mation was generated.

Response
Modify the FCB type and reenter the command.

AID0369 No linkage information available; REP(s) suppressed (CMD: (&00))

Meaning
The program to be tested was linked with a linkage
editor version earlier than V16, or the creation
of CSECT lists was suppressed. Localization on
object modules is not possible. An LMS correction
statement cannot be output and is therefore
suppressed.

Response
Link the program again with TSOSLNK >= V16,
specifying the parameter SYMTEST=ALL or
SYMTEST=MAP or TEST-SUPPORT=YES then reenter the
command.

146 U2853-J-Z125-5-76

AID0370 Messages

AID0370 File error (&00) or SLED without virtual address space (CMD: (&01))

Meaning
Either an error occurred during access to the file
with link name (&00), or the SLED file does not
have a virtual address.

AID0371 Task/file qualification not allowed for event (CMD: (&00))

Meaning
When specifying events it is not permitted to
qualify a foreign task or a dump file.

AID0372 Task/file qualification not allowed for test point (CMD: (&00))

Meaning
When specifying test points it is not permitted to
qualify a foreign task or a dump file.

AID0373 Stop not possible for given (&00). (Reason (&01))

Meaning
The command is not possible if task (&00) is
Reason -10 : own task.

-14 : no fork task or does not exist.
-18 : no member of the task family.

AID0374 Requested information not in dump file

Meaning
Not all the pages required to perform the
requested function are contained in the dump file.

AID0375 (&00) (&01) not found

Meaning
Either source module, procedure/block, symbol or
source reference could not be found in the
currently valid or explicity specified environ-
ment, or source module could not be found in the
loaded program.
(&00)SOURCE_MODUL, PROC/BLK, SYMBOL, SRC_REF_#
(&01)name

U2853-J-Z125-5-76 147

Messages AID0376

AID0376 Ambiguous or incomplete qualification for (&00) (&01)

Meaning
The qualification for procedure or symbol is not
unique or is incomplete when full qualification
is required.
(&00) PROC or SYMBOL
(&01) name of the procedure (PROC) or symbol (SYMBOL)

Response
Select a unique qualification or a complete
qualification if it is required.

AID0377 Symbolic information inconsistent for (&00)

Meaning
The symbolic information was not generated in the
same compilation operation as the loaded object.
(&00)source module

Response
Specify the correct library, or repeat compilation

AID0378 Symbolic information missing

Meaning
A command was entered that requires symbolic
information. This information is incorrect or
missing.

Response
Compile using symbolic information option, link
and load, or specify the library for the symbolic
information or use commands for debugging on
machine code level (e.g. %TRACE %INSTR).

AID0379 S and PROC qualification required or LSD information missing

Meaning
The interrupt point does not lie within a unique
source module and procedure environment or there
is no LSD information (symbolic information)
available.

148 U2853-J-Z125-5-76

AID0380 Messages

Response
Specify a S and PROC qualification or symbolic
information.

AID0380 Invalid explicit basing (&00) (&01) (CMD: (&02))

Meaning
Either the base is not of the type "pointer", or
the variable type was not declared as "based".
(&00)name
(&01)->

AID0381 (&00) (&01) not of type INTEGER (CMD: (&02))

Meaning
Either multiplier is not an integer, or
index is not of the type "integer".
(&00) INDEX or MULTIPLIER
(&01) name of index (INDEX) or multiplier (MULTIPLIER)

AID0382 Invalid dimension of array (&00) (CMD: (&01))

Meaning
Array (&00) has the wrong dimension.

AID0383 No subscript allowed for symbol (&00)

Meaning
Symbol (&00) must not have a subscript.

AID0384 Component list conflicts with structure type/DSECT (&00) (CMD: (&01))

Meaning
The layout for the mode constant does not tally
with base model (&00).

AID0385 (&00) (&01) not within nest (CMD: (&02))

Meaning
Source module or procedure is not
contained in the current call hierarchy.
(&00)SOURCE-MODUL oder PROC
(&01)name of source modul or procedure

U2853-J-Z125-5-76 149

Messages AID0386

AID0386 No message with this number

Meaning
There is no message corresponding to this message
number

AID0387 Too many PROC/BLK qualifications (CMD: (&00))

Meaning
The nesting depth of the PROC or BLK is too deep
(&00)PROC or BLK

Response
Select a shorter qualification that is still unique.

AID0388 Types are not convertible; nothing changed/compared (CMD: (&00))

Meaning
The types are not convertible. The value of the
receiver was not changed (%SET) or the comparison
in a subcommand condition is not practicable and
supplied by FALSE (CONDITION).

AID0389 %SET array INTO array not yet implemented (CMD: (&00))

Meaning
The function is not supported by the AID version.

AID0390 Warning: source truncated

Meaning
Warning message: the converted value does not
conform to the original value.

Response
None unless explicity desired, in which case
reenter the command with the correct input value.

AID0391 Task with (&00) is unknown.

Meaning
Task with given TSN/PID (&00) was not found.

150 U2853-J-Z125-5-76

AID0392 Messages

AID0392 Value(s) of >(&00)< does(do) not match to type declaration

Meaning
The actual content of the current or following
data or data element (&00) does not correspond to
the declared type or contents of one or several
array elements don’t match to type.

AID0393 Symbol too complex or a too deeply nested struct component (CMD: (&00))

Meaning
There are too many components or AID restrictions
do not allow debugging of symbol expression

Response
Continue processing with a series of subcomponents

AID0394 Structure type/DSECT without comp. list/explicit basing not supported

Meaning
Model names can only be used as layout identifiers
by mode constants.

AID0395 Division by zero

Meaning
Division by zero is prohibited.

AID0396 Invalid address for (&00)

Meaning
The memory object (&00) cannot currently be
accessed.

AID0397 (Next component of) (&00) has length <= 0 or is an empty string

Meaning
The length of the component (&00) has a length
<= 0 or is an empty string (C/C++)

U2853-J-Z125-5-76 151

Messages AID0398

AID0398 Symbol (&00) represents no instruction address

Meaning
The symbol (&00) does not represent an instruction
address.

AID0399 Odd or unallocated address

Meaning
The address is either uneven or not occupied.

AID0400 Dimension (&00) of array (&01) out of range or array has no element

Meaning
The dimension (&00) of the array (&01) lies
outside the permissible value.

AID0401 %MOVE / %SET into constant not allowed

Meaning
Constants cannot be overwritten by the %MOVE
or %SET command.

AID0402 Warning: absolute value moved!

Meaning
Warning message: Receiver is an unsigned numeric
value; the absolute value of sender was
transferred.

AID0403 (&00) must not be indexed by (&01)

Meaning
(&00) is a special index data field or a special
index with a base field other than (&01).

AID0404 AID cannot reference statement (&00) due to compiler optimization

Meaning
AID cannot use the statement with source reference
(&00) due to compiler optimization.

152 U2853-J-Z125-5-76

AID0405 Messages

AID0405 Too many libraries

Meaning
More than 15 libraries were signed on by means of
the %SYMLIB command.

Response
Sign off superfluous libraries by means of the
empty %SYMLIB command and then sign less than 15
libraries.

AID0406 AID cannot access library (&00); DMS error code (&01)

Meaning
AID cannot currently access the library (&00);
(&01) DMS error code. Possible reasons are :
protected/locked/password missing.

Response
Possibly solve the problem and then reenter the
%SYMLIB command.

AID0407 File (&00) is not a PLAM library

Meaning
File (&00) is not a PLAM library; the remaining
libraries of the %SYMLIB command are signed on.

AID0408 Member (&00) of library (&01) is LOCKED

Meaning
AID cannot currently access the member (&00) of
the library (&01).

Response
Make the member accessible and reenter the
AID command.

AID0409 Only positive INTEGER values allowed for special index

Meaning
The receiver is of the type "index"; its
contents must always be positive integer values.

U2853-J-Z125-5-76 153

Messages AID0410

AID0410 %TRACE / %CONTROL not supported in foreign task or dump file

Meaning
The %TRACE or %CONTROL command is only permitted
in the user’s own task.

Response
Correct and reenter the command, taking a valid
%BASE command into account.

AID0411 File with specified link (&00) is already open

Meaning
The file with the link name (&00) has already
been opened.

Response
a) Close the dump file with "%DUMPFILE Dn"

and reopen it with "%DUMPFILE Dn=filename"
b) Use a different link name.

AID0412 Symbol (&00) not within nest and not of storage class STATIC/CONSTANT

Meaning
The symbol (&00) cannot currently be referenced.

Response
Reenter the command at a time when the symbol is
within the call nesting.

AID0413 Range exceeds segment / CSECT boundaries

Meaning
The value range exceeds the segment or CSECT
boundaries.

Response
Specify the range again.

AID0414 Range specification incorrect

Meaning
Invalid range specification.

154 U2853-J-Z125-5-76

AID0415 Messages

AID0415 Combination of HIGH LEVEL range and LOW LEVEL mode illegal

Meaning
Operands for symbolic level and operands for
machine code level should not be mixed in this
command.

AID0416 (&00) was not set

Meaning
The %CONTROL command to be deleted (%C1 to %C7)
was not set.

AID0417 Program counter not within code; use expl. qualification (PROG= / S=)

Meaning
The program counter lies outside the user program;
use the S or PROG qualification.

AID0418 Invalid parameter combination in this context (CMD: (&00))

Meaning
There were several -or at least one -invalid
parameters given with this command.

AID0419 Compiler register optimization prohibits modification of variable (&00)

Meaning
The value of the variable (&00) cannot currently
be changed as this could result in
inconsistencies in the further processing of
the program.

Response
Retry the command at another point in the program.

AID0420 AID cannot reference variable (&00) due to compiler optimization

Meaning
The variable (&00) was declared but is not
referenced in the program. AID cannot reference it
because of compiler optimization.

U2853-J-Z125-5-76 155

Messages AID0421

AID0421 Nested %INSERT on label or entry variable not allowed (CMD: (&00))

Meaning
When a test point is encountered or an event
occurs, the subcommand must not be an %INSERT
command for a label or entry variable.

AID0422 Program stack corrupted (invalid back link or stack address)

Meaning
AID cannot interpret a program stack due to
corruption of the stack chaining (e.g. because of
a program error).

Response
Localize the program error with the aid of
machine-oriented AID functions.

AID0423 No (&00) set

Meaning
The entered %REMOVE/%SHOW command had no effect
as no %CONTROLn, %INSERT or %ON was signed on.

AID0424 File (&00) could not be opened; DMS error code (&01)

Meaning
DMS detected error (&01) (cf. the BS2000 system
messages) during output of information to file
(&00).

Response
Correct the error and reenter the command.

AID0425 FCB type not supported for file (&00)

Meaning
An attempt was made to output REP information to a
file generated by the user; assignment takes place
via link name (&00). The FCB type of the file is
not supported by AIDSYS.

Response
Modify the FCB type and reenter the command.

156 U2853-J-Z125-5-76

AID0426 Messages

AID0426 Warning: ambiguity of (&00) (&01) not completely checked (OVERLAY loading)

Meaning
Warning message: The specified procedure or
symbol was identified as unique in the
loaded portion of the program linked by means
of the overlay method, but it was not
possible to check whether it is unique throughout
the source module.
(&00)PROCEDURE or SYMBOL
(&01)name of procedure or symbol

AID0427 (&00) (&01) not found in loaded part of SOURCE module (OVERLAY loading)

Meaning
Name of procedure or symbol could not be
found in the loaded portion of the program linked
by means of the overlay method. The non-loaded
portion could not be checked.
(&00)PROCEDURE or SYMBOL
(&01)name of procedure or symbol

AID0428 Warning: LSD information corrupted; failure possible

Meaning
The LSD information (symbolic information) has
at least one error, AID possibly works erroneous,
symbolic testing is possible

AID0429 No message with this number

Meaning
There is no message corresponding to this message
number

AID0430 Name of dump file too long

Meaning
The specified dump file could not be opened as
AID cannot process file names that are longer than
54 characters.

U2853-J-Z125-5-76 157

Messages AID0431

Response
Rename the dump file by means of the /MODIFY-
FILE-ATTRIBUTES command and modify the AID
command accordingly.

AID0431 Requested information not within dump file

Meaning
The dump file does not contain the requested
information.

AID0432 LSD-extra-information for source-modul (&00) is invalid

Meaning
Extra LSD-Information for testing with a
graphical user interface is invalid or corrupted.

AID0433 LSD information corrupted; symbolic test not possible

Meaning
The LSD information (symbolic information) was
errored or overwritten. Symbolic testing not
possible.

Response
Recompile the program, or send an error message to
system diagnosis.

AID0434 Offset operation only admitted for an operand yielding an address

Meaning
An offset operation is only possible for Operands
that supply an address.

Response
Insert a memory reference with address attribute
before performing the offset operation.

AID0435 Warning: no output given for specified operands (CMD: (&00))

Meaning
Warning message: the specified command does not
generate any output; e.g. name is not found or
ambiguous.

158 U2853-J-Z125-5-76

AID0436 Messages

AID0436 AID cannot reference symbol (&00) due to incomplete LSD information

Meaning
The symbol (&00) was declared but cannot be
referenced by AID as the LSD information (sym-
bolic information) by the compiler is incomplete.

AID0437 CSECT/ENTRY has length 0

Meaning
CSECT/ENTRY cannot be output as its length is 0.

AID0438 String too long

Meaning
The string entered exceeds the permissible length.

Response
Shorten the string.

AID0439 Name too long

Meaning
The name entered exceeds the permissible length.

Response
Enter a proper name.

AID0440 Source info file for %TRACE doesn’t match with loaded object (CMD: (&00))

Meaning
The edited text file for %TRACE information has
not been generated in the same compilation
operation as the loaded object.

Response
If none, all %TRACE output is given according to
LSD-defined format; else compile source again,
link and generate new text file for %TRACE
information.

U2853-J-Z125-5-76 159

Messages AID0441

AID0441 Wrong continuation in %TRACE command

Meaning
The continuation parameter in the %TRACE command
must be ’R’ or ’S’

AID0442 Keyword does not yet exist in this OS version

Meaning
The specified keyword has been introduced in a
more recent version of the operating system; it
is undefined in the OS version of the test
object.

AID0443 Keyword no longer exists in this OS version

Meaning
The specified keyword exists in an earlier version
of the operating system; it is undefined in the
OS version of the actual test object.

AID0444 Outfile could not be opened

Meaning
The specified file could not be opened as an
outfile.

Response
Check whether the file has already been opened.

AID0445 Source modul (&00) has no LSD for source based debugging.

Meaning
Test with graphical user interface based on
source code is impossible because of missing or
incorrect extra LSD.

AID0446 Variable (&00) has neither implicit nor explicit base

Meaning
The variable (&00) has been declared without
any based pointer. A reference to this variable
with AID is only possible when an explicit based
pointer is specified.

160 U2853-J-Z125-5-76

AID0447 Messages

Response
Please specify an explicit based pointer
(e.g. expl_ptr -> variable).

AID0447 No libraries existing to be released

Meaning
At present no library requested by user is allo-
cated to specified link names (%SYMLIB (E/D)=...)
or to all link names (%SYMLIB).

AID0448 Pointer value exceeds BIT pointer boundary

Meaning
Type of sender is pointer, type of receiver is
bit pointer. Furthermore the
high-value byte of sender is not equal to X’00’.

Response
Set receiver explicitly with %SET X’00’ into
... %XL1.

AID0449 OFFSET ptr value exceeds BIT OFFSET ptr boundary; nothing changed

Meaning
Type of sender is offset pointer, type of
receiver is bit offset pointer. Furthermore the
high-value byte of sender is not equal to X’00’.

Response
Set receiver explicitly with %SET X’00’ into
... %XL1.

AID0450 Warning: BIT offset ignored

Meaning
High-value byte of sender is not equal to X’00’.
sender:bit pointer
receiver:pointer
or
sender:bit offset pointer
receiver:offset pointer
and high-value byte (equal to bit offset) of
sender is not equal to X’00’.

U2853-J-Z125-5-76 161

Messages AID0451

AID0451 Length of (&00) could not be determined by AID

Meaning
AID cannot determine the length of the variable
string, because the compiler is not able to give
the appropriate information (for example because
of being dependent on an expression).

AID0452 Boundary of dimension (&00) of array (&01) couldn’t be determined by AID

Meaning
AID cannot determine the boundaries of the
variable array, because the compiler is not able
to give the appropriate information (for example
because of being dependent on an expression)
or the boundaries are dependent on non-initialized
variables.
(&00)dimension
(&01)name of the array

Response
Value assignment to non-initialized variables.

AID0453 Type of symbol (&00) not described in LSD information

Meaning
AID cannot display the symbol (&00) because there
is no LSD information (symbolic information)
about the type of the symbol

AID0454 Range parameter error: upper bound lower than lower bound

Meaning
The area boundaries of the %CONTROL and %TRACE
command has to be specified in ascending order.

Response
Please specify the area in the correct order.

AID0455 Unknown CPU-Type or operating system version

Meaning
AIDSYS yields unknown or wrong information about
hardware type or operating system version.
Therefore the machine code level %TRACE may
record wrong instructions or SVCs.

162 U2853-J-Z125-5-76

AID0456 Messages

Response
Contact the system administrator.

AID0456 No message with this number

Meaning
There is no message corresponding to this message
number

AID0457 Surplus bits of source have been ignored

Meaning
Sender greater than receiver; surplus bits
have been ignored.

AID0458 Test point not set; entry couldn’t be confirmed within LSD Information

Meaning
Before AID is able to set a test point into an
entry name the address of the entry point has to
be verified by means of the LSD information.
Possible reasons for errors:
1) Entry variable contains an invalid address

(non-initialized overwritten)
2) No LSD information exists for the entry point
3) Entry point cannot be verified as an entry in

the LSD information

Response
1) Initialize variable or use variable after

allocation
2) Reload LSD information

AID0459 %SET may only be applied to components of complex number variables

Meaning
Variables of the type complex can only be
changed one component at a time
(real and imaginary part).

Response
Please execute the change one component at a time.

U2853-J-Z125-5-76 163

Messages AID0460

AID0460 Actual value of variable (&00) doesn’t match with predefined TRUE / FALSE

Meaning
Warning message: The logical variable (&00) has
a current value that is not consistent with the
standard values defined for TRUE/FALSE by the
compiler.
According to the compiler TRUE/FALSE value is
always determined.

AID0461 Too many statement types

Meaning
There are more statement types assigned to the
program address of this %TRACE output line than
can be output. As many statement types as
possible will be output.

AID0462 %JUMP to given target (&00) not allowed

Meaning
An invalid address (&00) has been specified as
"continuation" operand in the %JUMP command.

Response
Please choose a valid address.

AID0463 Given target (&00) is not within the actual valid program/procedure

Meaning
The %JUMP command can only be used to branch
within the currently active procedure or program.
(&00)address specified as "continuation" operand

Response
Please choose a valid address.

AID0464 Given target (&00) of %JUMP command doesn’t represent a program label

Meaning
The operand "continuation" of the %JUMP command
has to describe a code address; data addresses
are not permitted.
(&00)address specified as "continuation" operand

164 U2853-J-Z125-5-76

AID0465 Messages

Response
Please choose a valid address.

AID0465 Offset / length exceeds (&00) boundaries

Meaning
The defined offset value or the explicit/implicit
length or the combination of the two exceeds the
area limits of the memory reference (&00).

Response
Either change offset value or length as required
or switchover to machine code level
with the aid of %@(...)->.

AID0466 Back tracking information not found or inconsistent

Meaning
The module AIDIT0, which contains the back
tracking information,
- is not available in linked program,
- is only partially available,
- contains an old inconsistent version or
- is not yet availible just after loading

the programm.
_ has no entry for a language indicator speciefied

in a CSECT of active nesting.

AID0467 Start/end address exceeds CSECT/keyword/symbol boundaries

Meaning
Either the start address or end address
does not lie within the area defined by CSECT/
keyword/symbol.

Response
Reenter the command with correct input values.

AID0468 Label not allowed for range description

Meaning
A statement name cannot describe a %TRACE or
%CONTROL area.

U2853-J-Z125-5-76 165

Messages AID0469

AID0469 Illegal jumping off place

Meaning
Branching by means of the %JUMP command is not
possible here, because either the program has
not been initialized, or the test point lies
within a run timeroutine, or no LSD information
is available for this procedure.

Response
Let the program run to a valid exit point.

AID0470 Arithmetic overflow when (&00) is calculated

Meaning
User error: An arithmetic overflow occurred during
calculation of address, length or subscript.

Response
Reenter the command with correct input values.

AID0471 HIGH LEVEL trace / control not allowed in program (&00)

Meaning
The %TRACE or %CONTROL command with symbolic level
criterion is not supported in this program unit.

Response
Use command with machine code level criterion.

AID0472 LSD information is incomplete or wrong for CSECT "(&00)"

Meaning
The LSD information (symbolic information) is
incomplete/wrong for CSECT (&00).

Response
Link and/or compile the program again.

AID0473 Condition not supported (CMD: (&00))

Meaning
The condition (&00) is not supported by AID.
The logical operands must be a comparison.

166 U2853-J-Z125-5-76

AID0474 Messages

AID0474 No message with this number

Meaning
There is no message corresponding to this message
number

AID0475 Subcommand label already exists

Meaning
The subcommand name entered already exists.

Response
Use a different name for the subcommand.

AID0476 Too many subcommand labels defined

Meaning
Too many subcommand names defined.

Response
Remove subcommands that are no longer required.

AID0477 Subcommand label does not exist: (&00)

Meaning
The subcommand label (&00) has not been defined
or has already been removed.

Response
Enter the correct subcommand label.

AID0478 No message with this number

Meaning
There is no message corresponding to this message
number

AID0479 Labels, source-references, template_instances must not be subscripted

Meaning
Syntax error

Response
Correct syntax

U2853-J-Z125-5-76 167

Messages AID0480

AID0480 Address selection, offset, type modification not allowed for constants

Meaning
Address selector, type modification, offset
operator must not be applied to constants.

AID0481 No LSD information provided for address to be located

Meaning
No LSD (symbolic information) description is
provided for the address which is to be located.
which is to be located.

Response
Load LSD from library or recompile module
containing address to be located.

AID0482 Address cannot be located in LSD information

Meaning
The address cannot be associated with a
source reference (e.g. it is part of the
procedure prolog).

AID0483 Reference to undefined subcommand label

Meaning
Reference to the name of the current subcommand
label by %. is only permissible within the active
subcommand.

Response
Refer to the name of the subcommand by
%.subcmdname.

AID0484 Subcommand label too long

Meaning
The subcommand label must not be longer than 30.

Response
Shorten the subcommand label.

168 U2853-J-Z125-5-76

AID0485 Messages

AID0485 "*" operator is only allowed for type pointers

Meaning
The variable following the ’*’ operator must be a
type pointer.

AID0486 Type modification of symbol (&00) not allowed

Meaning
The address of symbol (&00) is not byte-aligned
or the symbol has bit length.

AID0487 Test point is not a CLASS6 address

Meaning
The address of the test point is not contained in
class 6 memory.

AID0488 OVERLAY not loaded

Meaning
The segment to which a test point is to be set or
from which it is to be removed is not loaded.

Response
Set or remove the test point when the segment is
loaded.

AID0489 Address in %ON %WRITE command invalid

Meaning
The address specified in the %ON %WRITE command
is invalid.

Response
Enter a valid address.

AID0490 %ON %WRITE is not allowed when LOW LEVEL %CONTROL/%TRACE is active

Meaning
It is not permissible to enter %ON %WRITE while a
%TRACE or %CONTROL command with a "criterion" for
debugging on machine code level (%INSTR, %B, %BAL)
is active.

U2853-J-Z125-5-76 169

Messages AID0491

Response
Remove %TRACE by entering %TRACE 1 %INSTR;
remove %CONTROLn by entering %REMOVE %C.

AID0491 LOW LEVEL %CONTROL/%TRACE is not allowed when %ON %WRITE is active

Meaning
%TRACE or %CONTROLn with a "criterion" for
debugging on machine code level (%INSTR, %B, %BAL)
is not permissible when %ON %WRITE is active.

Response
Enter %REMOVE %WRITE.

AID0492 %STOP was sent to fork task ((&00)).

Meaning
A contingency routine was installed for the given
task. It will set the task into debug mode at
next task activating.

AID0493 %ON %WRITE command is only allowed in status TU

Meaning
%ON %WRITE must not be entered in privileged
status.

Response
Transition to non-privileged status.

AID0494 Test point must not be set into CLASS6 memory pools

Meaning
It is not permissible to set test points in
class 6 memory pools.

AID0495 No message with this number

Meaning
There is no message corresponding to this message
number

170 U2853-J-Z125-5-76

AID0496 Messages

AID0496 Warning: previously defined event %WRITE is replaced

Meaning
Warning message: As it is not permissible to
define more than one %WRITE event, any previously
defined %WRITE event is replaced.

AID0497 Length of area in %ON %WRITE command exceeds 65535 bytes

Meaning
It is not permissible to supervise an area longer
than 65535 bytes with an %ON %WRITE command.

Response
Shorten the length.

AID0498 Hardware does not support ALET/SPID qualification

Meaning
ALET/SPID qualification is only permissible when
ESA hardware is available.

Response
Try without ALET/SPID qualification.

AID0499 Value of ALET is unknown

Meaning
The value of ALET is unknown.

Response
Enter a correct value.

AID0500 Number of DATA SPACES changed during execution of command

Meaning
The number of data spaces changed during execution
of the command.

Response
Retry later.

U2853-J-Z125-5-76 171

Messages AID0501

AID0501 CTX qualification not allowed in this OS version

Meaning
AID does not support CTX-Qualification in this
BS2000 Version

AID0502 No DATA SPACES dumped

Meaning
There are no data space dumps to be found in the
dump file.

AID0503 DATA SPACE with specified SPID not found in dump file

Meaning
There is no data space with the specified SPID
in the dump file.

AID0504 DATA SPACE with specified ALET not found in dump file

Meaning
There is no data space with the specified ALET
in the dump file.

AID0505 Hardware does not support ESA

Meaning
This hardware does not support ESA.

AID0506 No DATA SPACES defined

Meaning
There are no data spaces defined at the moment.

AID0507 DATA SPACE not allowed for event

Meaning
Data spaces are not allowed for events.

AID0508 No symbolic library opened

Meaning
There is no symbolic library opened

172 U2853-J-Z125-5-76

AID0509 Messages

AID0509 No qualification defined

Meaning
There is no qualifikation defined

AID0510 No %FIND command entered

Meaning
There was no %FIND command entered

AID0511 No outfile assigned or opened

Meaning
There is no outfile assigned by the command
%OUTFILE or no outfile opened.

AID0512 No AID command entered in this task

Meaning
There was no actual AID command entered yet.

AID0513 No subcommand label defined

Meaning
There was no subcommand label defined yet.

AID0514 Connection name (OWN) already busy.

Meaning
The given name of the own connection access point
is already in use.

AID0515 Connection name (APPL) or route unknown.

Meaning
The given name of the remote connection access
point or the route is unknown.

AID0516 Connection name (APPL) busy or inactive.

Meaning
The given name of the remote connection access
point is busy or inactive.

U2853-J-Z125-5-76 173

Messages AID0517

AID0517 User interface internal error (&00) in module (&01)

Meaning
There was an error in the user interface or in the
communication of the user interface with AID.
(&00) internal AID error flag.
(&01) number of the module that detected the error.

Response
Contact the system administrator.

AID0518 Connection ID wrong.

Meaning
The connection-ID is wrong.

Response
Type in correct connection-ID.

AID0519 Warning: no output given

Meaning
There is no Information for output.

AID0520 User interface not connected.

Meaning
The user interface was not connected to AID
because an error happened.

AID0521 User interface already connected; input ignored.

Meaning
There is only one connection to a user interface
allowed at a time. Another attempt to connect
will be ignored.

AID0522 Check dialog is not allowed, when user interface is connected.

Meaning
A check dialog is not allowed, when a connection
to a user interface is active.

174 U2853-J-Z125-5-76

AID0523 Messages

AID0523 Warning: Check dialog aborted.

Meaning
Connecting a user interface, while a check dialog
is active, will terminate the check dialog auto-
matically.

AID0524 Partial array operand not allowed for function/selector

Meaning
A function or selector (as %@ or %L) may not be
applied to a partial array as operand.

AID0525 Register specification is not allowed on /390 objects.

Meaning
It is not allowed to use this register specifi-
cation on /390 objects.

AID0526 Hardware does not support %(&00).

Meaning
Using the keyword (&00) in the case of this
hardware is not allowed.

AID0527 Program mode RM does not support keyword.

Meaning
Keyword is not supported during program mode RM.

AID0528 Warning: /390-trapcode for absolute-address

Meaning
/390-trap on an absolut-address; if code is Risc-
code testpoint must be removed!

AID0529 Symbol (&00) ambiguous because of using directive .

Meaning
the symbol (&00) is not unique because of
a using directive .

AID0530 Alias name (&00) is undeclared.

Meaning
Alias name has not been declared or was
deleted.

U2853-J-Z125-5-76 175

Messages AID0531

AID0531 Alias name (&00) is ambiguous.

Meaning
The specified alias-name is ambiguous because of
preceding declaration.

AID0532 No message with this number

Meaning
There is no message corresponding to this message
number

AID0533 Too many active alias declarations.

Meaning
Too many active alias declarations. Delete some
unnecessary ones.

AID0534 Pool overflow for alias declarations.

Meaning
Storage pool overflow for alias declarations.
Delete unnecassary ones.

AID0535 Alias declaration contains an alias name (&00) specified previously.

Meaning
Alias declarations may not contain alias names
declared in preceding declarations. Replace the
the formerly declared alias name by its
substitute or take new name

AID0536 Warning! Alias name (&00) is an non-percent aid-keyword.

Meaning
Alias name is an non percent AID-keyword.
Replacement of the alias name in some AID
commands may produce a syntax error.
syntax error

AID0537 Alias name is too long.

Meaning
Maximum size of alias names is 32 bytes.

AID0538 There exist no alias declarations.

Meaning
There is no active alias declaration.

176 U2853-J-Z125-5-76

AID0539 Messages

AID0539 SPL4-Stack-globals not supported.

Meaning
SPL4-Stack-globals are not supported because of
a address path depending on the runtime-system.

AID0540 Constant expressions in template arguments not supported.

Meaning
Currently evaluation of constant expression in
template arguments is not supported. Replace
expression by its value of result.

AID0541 Simple type specification too long

Meaning
Specification of a simple type is too long.
Eliminate redundant tpye specifiers.

AID0542 Alias names not allowed in %QUALIFY command

Meaning
Alias names are not allowed in a %QUALIFY command.
If you want to know which Alias names are
declared, enter %SHOW %ALIAS.

AID0543 A proc-qualification may not contain a structured name.

Meaning
if lsd-version generated for test object is less
or equal 6 a proc qualification may not contain a
structured name

AID0544 No message with this number

Meaning
There is no message corresponding to this message
number

AID0545 Pointer to member value invalid

Meaning
The internal value of the pointer to member may
not be transformed to a membername

AID0546 Right operand is no ’pointer to member’ type

Meaning
Right operand is no ’pointer to member’ type

U2853-J-Z125-5-76 177

Messages AID0547

AID0547 Left operand does not refer to a class object

Meaning
Left operand does not refer to a class object.

AID0548 Operand refers to class types which are not compatible

Meaning
Left and right operand of the ->* or .* operator
refer to class types which are not compatible.

AID0549 Class of pointer to member has ambiguous subobjects

Meaning
Class of pointer to member has ambiguous
subobjects in class of left operand.

AID0550 sizeof-/&-selector may not be applied to HLL/LL-operands.

Meaning
sizeof-/-& selectors have to have pure symbolic
expressions as arguments and not any
HLL/LL-transitions.

AID0551 sizeof-Operator may not be applied to functions.

Meaning
According to C/C++ semantics sizof may not be
applied to functions

AID0552 syntax-error by alias-name/prequalifiction (CMD: (&00))

Meaning
Substitution of alias-name or pre-qualifiction by
values causes syntactically incorrect command.

AID0553 Partial page(s) from address (&00) to (&01) not accessible

Meaning
Accessing a not allocated 4K half of an 8K SPARC
page does not necessarily cause a program inter-
rupt on SPARC HSI

AID0554 Change on register %g0 not allowed.

Meaning
Change of %g0 not allowed.

178 U2853-J-Z125-5-76

AID0555 Messages

AID0555 Specified CCS-name not supported

Meaning
XHCS does not support CCS-name or OSD-Version does
not support UNICODE

AID0556 Specified CCS-name not supported by AID

Meaning
AID supports only single byte EBCDIC-codes

AID0557 No even number for UTF16 typ length specification

Meaning
Type UTF16 requires even number as length
specification.

AID0558 UTFE type HEX value doesn’t end on character boundary

Meaning
Operand with type UTFE has hexadecimal value not
terminating on a character boundary.

AID0559 value is not an UTFE-string

Meaning
XHCS has found illegal UTFE-encodings
Interpretation as HEX-string

AID0560 CCS-name of output media unknown to actual XHCS subsystem

Meaning
No conversion to CCS of output media performed.

AID0561 CCS-name of output media not supported by AID

Meaning
Supported CCSN by AID: one byte EBCDIC or UTFE

AID0562 Subsystem XHCS not available, no unicode support

Meaning
No conversion UNICODE types possible.
Subsystem XHCS not available.

AID0563 Version of subsystem XHCS does not support UNICODE

Meaning
Version of subsystem XHCS in system is too low
for UNICODE support by AID.

U2853-J-Z125-5-76 179

Messages AID0564

AID0564 Version of Subsystem SYSFILE cannot provide CCS-name

Meaning
Actual SYSFILE subsystem version cannot provide
SYSOUT/SYSLST EBCDIC. Default value is accepted.

AID0565 LSD information for UNICODE types requires at least LSD Version 10

Meaning
The LSD information (symbolic information) has
string data types with unicode coding. that
requires at least LSD version 10.

Response
Compiler error, invalid LSD Version

AID0566 Variable boundary of (component of) (&00) is out of valid range.

Meaning
Variable boundary of an array is outside range
specified in program (for example OCCURS
DEPENDING field in COBOL)

Response
AID assumes array of 0 elements.

AID0567 No redefinition of a char literal by a different char type.

Meaning
Output type of a character literal may not be
redefined by a different character type. For
example it makes no sense to redefine the bits of
character literal C’A’ by character type UTF16.

AID0568 Invalid type of argument of string conversion.

Meaning
Type of argument of a string conversion has to be
a character type. otherwise an explicit type
modification with %C or %UTF16 has to be performed

AID0569 Size of argement of string conversion exceeds 80 characters.

Meaning
Size of argument of string conversion is
restricted to 80 characters. Otherwise string
has to be abbreviated via explicit length
modification.

180 U2853-J-Z125-5-76

AID0570 Messages

AID0570 String conversion with substitution by default characters performed.

Meaning
conversion replaces characters of source by a
default character because of no equivalent
representation in target CCS.

AID0571 Search critera in %FIND command too long.

Meaning
Search criteria of %FIND command is restricted
to size of 80 Bytes. X-Literals may not exceed
size of 40 Bytes.

U2853-J-Z125-5-76 181

14 Appendix

14.1 SDF/ISP commands illegal in command sequences and
subcommands

List of BS2000 commands which must not be used in command sequences and subcom-
mands

Command Function Manual

ABORT Abort procedure [17]

ADD-SHARED-PROGRAMM declare object modules as shareable [10]

BEGIN-PROCEDURE define procedure file attributes [8]

BREAK request command mode [17]

CATEGORY control configuration workload [9]

CANCEL-PROCEDURE terminate (execution of) procedure [8]

CHANGE-ACCOUNTING-FILE close current accounting file and create new one [9]

CHANGE-CONSLOG close current logging file and create new one [18]

CHANGE-SERSLOG close current lSERSLOG file and create new one [10],[9]

DELON delete ON command [17]

END close spoolin file [17]

ENDON terminate ON statement sequence [17]

ENDP terminate procedure file [17]

END-PROCEDURE terminate procedure file [8]

EOF mark end of file for SYSDTA [17]

ESCAPE Interrupt procedure run [17]

EXIT-PROCEDURE terminate procedure run and return control to
procedure file last exited

[8]

HOLD-JOB halt job [9],[10]

HOLD-PROCEDURE halt procedure run to allow command input from
display terminal

[8]

182 U2853-J-Z125-5-76

SDF/ISP commands illegal in command sequences and subcommands Appendix

HOLD-RSO place RSO subsystem in wait state [10]

HOLD-SPOOL place SPOOL subsystem in wait state [10]

HOLD-SPOOLOUT halt spoolout job [10]

INTR send INTR event to program [17]

LOAD-EXECUTABLE-PROGRAM load program [8]

LOAD-PROGRAM load program [8]

LOADAID load AID [9]

LOGON initiate job [17]

MARGIN modify line length of display terminal [17]

MODIFY-ACCOUNTING-PARAMETERS specify accounting records and extensions for
accounting file

[9],[10]

MODIFY-CHANNEL-OPTIONS

MODIFY-SYMBOLIC-PARAMETER

MODIFY-TASK-CATEGORIES limit number of active tasks [10]

ON conditionally execute command sequence [17]

PROCEDURE specify procedure file attributes [17]

READ-CHANNEL

RESTART restart program from checkpoint [17]

RESTORE

RESUME-JOB cancel wait state for user job [10]

RESUME-PROCEDURE continue interrupted procedure run [10]

RESUME-RSO cancel wait state for RSO subsystem [10]

RESUME-SPOOL cancel wait state for SPOOL subsystem [10]

RFD assign floppy disk unit for waiting spoolin jobs [9]

RTI return to interrupted procedure [17]

SAVEFILE

SET-JOB-STEP terminate spin-off [8]

SET-SPACE-SATURATION-LEVEL define storage saturation levels a pubset [10]

SHARE declare object modules as shareable [9]

SHOW-ACCOUNTING-STATUS display information on accounting system [9],[10]

SHOW-FILE display file on screen [17]

SHOW-RSO-STATUS display information on RSO status [10]

SHOW-SERSLOG display information on SERSLOG [10]

Command Function Manual

U2853-J-Z125-5-76 183

Appendix SDF/ISP commands illegal in command sequences and subcommands

List of ISP commands terminating a loaded program in AID command sequences and
subcommands

���
Command  Function  Manual
���
CALL  Invoke a CALL procedure  [17]
DO  Invoke a DO procedure  [17]
EXECUTE  Load and start a module  [17]
LOAD  Load a module  [17]
LOGOFF  Terminate a job  [17]
��������������������
���
����������

SHOW-SPOOL-STATUS display information on SPOOL status [10]

SKIP conditional branch (task switch) [17]

SKIPJV conditional branch (job variable) [17]

SKIPUS conditional branch (user switch) [17]

SPMGT manage storage space [9]

START-ACCOUNTING activate accounting system [9],[10]

START-DISKETTE-INPUT assign floppy disk drive for spoolin [10]

START-EXECUTABLE-PROGRAM load and start program [8]

START-PROGRAM load and start program [8]

START-RSO load and start RSO subsystem [9]

START-SERSLOG activate SERSLOG [9],[10]

START-SPOOL load and initialize SPOOL subsystem [18]

STOP-ACCOUNTING deactivate accounting system [9],[10]

STOP-RSO terminate RSO subsystem [10]

STOP-SERSLOG terminate SERSLOG [10]

STOP-SPOOL terminate SPOOL subsystem [10]

WAIT specify conditional waiting time (batch job) [17]

WHEN set conditional halt for batch job (user switch) [17]

WRITE-CHANNEL

Command Function Manual

184 U2853-J-Z125-5-76

Operands described for the last time Appendix

14.2 Operands described for the last time

This AID version is the last in which the operands AS output-type of the %DISPLAY command
(debugging on machine code level only) and control of the %ON command (both machine-
oriented and symbolic debugging) are described.

14.2.1 Operand "AS output-type"

���

%DISPLAY {data [AS output-type]}{,...} [medium-a-quantity][,...]

���

The %DISPLAY command offers the AS output-type option. This operand follows the
associated data operand whose output type is to be modified. Without this operand it is
possible to change the output type with a type modification (see section “Type modification”
on page 86).

���������������
 output-type 
	��������������

AID assigns each address operand a type which determines how a particular (type-
dependent) set of bytes in memory is to be interpreted (storage type) and how its value is
to be output (output type). Each storage type has its corresponding output type (see section
“General storage types” on page 109 and section “Storage types for interpreting machine
instructions” on page 110). Through an explicit output-type specification this assignment can
be modified.

output-type can assume the following values:

HEX hexadecimal
DEC numeric (signed decimal)
CHAR character
BIN binary
DUMP dump (hexadecimal and character)

U2853-J-Z125-5-76 185

Appendix Operands described for the last time

14.2.2 Operand "control" with %ON

���

%ON event [<subcmd>] [control]

���

control is specified as the last operand in %ON, i.e. after event and subcmd.

�����������
 control 
	����������

Defines whether event is to be deleted after the n-th occurrence and whether AID then
expects input of new commands. If the control operand is omitted, AID uses the default
values 65535 (for n) and K (KEEP).

control-OPERAND -

  K 
ONLY n [ S ]
  C 

- -

n Number with a value 1 ≤ n ≤ 65535.

Specifies at which occurrence of event the other declarations of this control operand
are to be executed.

K event is not deleted (KEEP).

Program execution is interrupted and AID expects command input.

S event is deleted (STOP).

Program execution is interrupted and AID expects command input.

C event is deleted (CONTINUE).

Program execution is not interrupted.

186 U2853-J-Z125-5-76

Operands described for the last time Appendix

14.2.3 Linkage using TSOSLNK

During static linkage with TSOSLNK it must always be ensured that the ESD records are
included (LINK-SYMBOLS statement).

The SYMTEST operand in the PROGRAM statement controls the handling of LSD records
from object modules (see TSOSLNK [13]). The overview below covers only those two
operand values which support the use of symbolic names and of statement lines during
debugging.

- -
-
  ALL 
PROGRAM...,SYMTEST =  
  MAP 
- -

ALL The LSD records are transferred from the object module to the load unit, but the
linkage editor does not check whether the object module being processed
actually contains LSD records.

There are thus two options for program loading:

1. The program is loaded with LSD records.

2. The program is loaded without LSD records. If the object module is stored
in a PLAM library, this library can be announced to AID via %SYMLIB and
AID can dynamically load the LSD records as required.

MAP From the ESD, the linkage editor creates an object structure list which is included
in the load unit. This information can be used to trace call hierarchies. LSD
records are not linked in, even if they are available in the object module. AID can,
however, dynamically load LSD records for symbolic debugging if required.

 When linking prelinked modules (TSOSLNK statement MODULE), there is no
possibility of incorporating LSD records in the load unit. Moreover, important
information in the ESD is lost. If the object modules with the LSD records are in
a PLAM library, which is opened with %SYMLIB, AID is able to dynamically load
the LSD records and symbolic debugging is possible, subject to the following
constraint: if the interrupt point is located in a module for which there is no LSD,
not even in the PLAM library, the data and statements from modules with LSD
cannot be referenced symbolically either.

i

U2853-J-Z125-5-76 187

Appendix Operands described for the last time

Example

 /START-PROGRAM FROM-FILE=$TSOSLNK
 PROG EXAMPLE, FILENAM=EXAMPLE.FOR1, SYMTEST=ALL
 INCLUDE *
 RESOLVE, FOR1MODLIB
 END

Program EXAMPLE is linked from the temporary object module file and stored, with the
LSD records, in the file EXAMPLE.FOR1. All unsatisfied external references are to be
satisfied via autolink from the library FOR1MODLIB.

188 U2853-J-Z125-5-76

Event codes Appendix

14.3 Event codes

The assignment of interrupt events and event codes to the STXIT event classes is shown
in the table below:

STXIT event class interrupt event Event code

Program error illegal SVC
illegal operation code
Data error
Exponent overflow
Divide error
Significance error
Exponent underflow
Decimal overflow
Fixed-point overflow

 X' 04'
 X' 58'
 X' 60'
 X' 64'
 X' 68'
 X' 6C'
 X' 70'
 X' 74'
 X' 78'

Interval timer for CPU time "SETIC interval" expired for CPU time X' 20'

Interval timer for CPU time "SETIC interval" expired for real time X' A0'

End program runtime End of program runtime X' 80'

unrecoverable program error Privileged SVC
Access to a non-existent memory page
Privileged operation
Address error
XA error (incorrect addressing mode)
Realtimer (Condition Error)
Alignment error
Validation error
unrecoverable vector processor error

 X' 08'
 X' 48'
 X' 54'
 X' 5C'
 X' 9C'
 X' A4'
 X' AC'
 X' B0'
 X' B4'

communication to the
program

Command X' 44'

ESCPBRK BREAK/ESCAPE (via keys) X' 84'

ABEND System error, performance loss
START-EXECUTABLE-PROGRAM,
LOAD-EXECUTABLE-PROGRAM, ABEND,
LOGOFF, CANCEL-JOB
Address translation error due to hardware fault
Hardware fault (CPU)
forced unloading of a subsystem
(system management)

 X' 88'
 X' 8C'

 X' 94'
 X' A8'
 X' B8'

Program termination TERM
CMD

 X' 90'
 X' 98'

SVC interrupt SVC call of a specified SVCs X' 50'

Hardware fault Input/output error in data-in-virtual technology X' 28'

U2853-J-Z125-5-76 189

Glossary
addressing mode

AID assumes the addressing mode of the test object (either 24-bit or 31-bit
addresses). AID can also be used for testing programs that were linked from
modules with differing addressing modes. The system information field
%AMODE always shows the current addressing mode. The addressing mode
can be changed via %MOVE %MODE{24|31} INTO %AMODE and queried via %DISPLAY
%AMODE.

address operand
This is an operand used to address a memory location or a memory area.
Virtual addresses, data names, statement names, source references,
keywords, complex memory references, C qualifications (debugging on
machine code level) or PROG qualifications (symbolic debugging) may be
specified. The memory location/area is situated either in the loaded program or
in a memory dump in a dump file.
If a name has been assigned more than once in a user program and thus no
unique address reference is possible, area qualifications or an identifier
(COBOL) can be used to assign the name unambiguously to the desired
address.

AID default address interpretation
Indirect addresses, i.e. addresses preceding a pointer operator, are interpreted
according to the currently valid addressing mode by default. %AINT can be
used to deviate from the default address interpretation and to define whether
AID is to use 24-bit or 31-bit addresses in indirect addressing.

AID input files
These are files required by AID for the execution of AID functions, as opposed
to input files used by the program. AID processes disk files only.
AID input files include:

1. dump files containing memory dumps (%DUMPFILE)

2. PLAM libraries containing object modules; if the library has been assigned using
the %SYMLIB command, AID can dynamically load the LSD records.

190 U2853-J-Z125-5-76

Glossary

AID literals
AID provides the user with both alphanumeric and numeric literals (see chapter
“AID literals” on page 101):

AID output files
These are files to which the output of the %DISASSEMBLE, %DISPLAY,
%HELP, %SDUMP and %TRACE commands may be written. The files are
referenced in the output commands via their link names F0 through F7 (see
%OUT and %OUTFILE).
The REP records are written to the file assigned to link name F6 (see %AID
REP=YES and %MOVE).

There are three ways of creating an output file:

1. /%OUTFILE command with link name and file name

2. /FILE command with link name and file name

3. AID issues a FILE macro with the file name AID.OUTFILE.Fn for a link name
to which no file name has been assigned.

An AID output file always has the format FCBTYPE=SAM, RECFORM=V and
OPEN=EXTEND.

AID standard work area
This is the non-privileged area of the virtual memory in a user task, which is
occupied by the program and all its connected subsystems.
In conjunction with symbolic debugging, this is the current program segment of
the program which has been loaded.
If no declaration has been made via %BASE and no base qualification has been
specified, the AID standard work area applies by default.

{C'x...x' | 'x...x'C | 'x...x'| U'x...x'}
{X'f...f' | 'f...f'X}
{B'b...b' | 'b...b'B}
[{±}]n
#'f...f'
[{±}]n.m
[{±}]mantisseE[{±}]exponent

Character literal
Hexadecimal literal
Binary literal
Integer
Hexadecimal number
Decimal number
Floating-point number

U2853-J-Z125-5-76 191

Glossary

AID work area
The AID work area is the address space in which memory references can be
accessed without specification of a base qualification. It comprises the non-
privileged part of virtual memory in the user task, which is occupied by the
program and all its connected subsystems, or the corresponding area in a
memory dump.
Using the %BASE command, you can shift the AID work area from the loaded
program to a memory dump, or vice versa. You may deviate from the AID work
area in a command by specifying a base qualification in the address operand.

area check
For byte offset and length modification operations and for receiver in the
%MOVE command, AID checks whether the area limits of the referenced
memory objects are exceeded, in which case an error message is issued.

area limits
Each memory object is assigned a specific area, which is defined by the
address and length attributes in the case of data names and keywords. For
virtual addresses, the area limits are between V’0’ and the last address of the
virtual memory (V’7FFFFFFF’). In area qualifications, the area limits are derived
from the start and end addresses of the program segment thus identified (see
chapter “Addressing in AID” on page 65).

area qualification
These qualifications are used to identify part of the work area. If an address
operand ends with one of these qualifications, the command is effective only in
the part that is identified by the last qualification. An area qualification delimits
the active area of a command, or makes a data name or statement name unique
within the work area, or allows a name to be reached that would otherwise not
be addressable at the current interrupt point.

attributes
Each memory object has up to six attributes:
address, name (opt), content, length, storage type, output type.
The address, length and storage type can be accessed using selectors. AID
uses the name to locate all the associated attributes in the LSD records so as
to be able to correctly interpret the associated memory object.
Address constants and constants from the source program have only up to five
attributes:
name (opt), value, length, storage type, output type.
They have no address. When a constant is referenced, AID does not access a
memory object but merely inserts the value of the constant.

192 U2853-J-Z125-5-76

Glossary

base qualification
This is the qualification designating either the loaded program or a memory
dump in a dump file. It is specified via E={VM | Dn}.
The base qualification may be globally declared by means of %BASE or
specified in the address operand for a single memory reference.

character conversion functions
AID provides two functions for character conversion, %C() and %UTF16().
The %UTF16() function converts strings from a 1-byte EBCDIC encoding to
UTF16 encoding; the %C function performs conversion in the other direction.

command mode
The term "command mode" in the AID manuals designates the EXPERT mode
of the SDF command language. Users who are working in a different mode
(GUIDANCE={MAXIMUM | MEDIUM | MINIMUM | NO}) should select the
EXPERT mode by issuing the command MODIFY-SDF-OPTIONS
GUIDANCE=EXPERT when they wish to enter AID commands.
AID commands are not supported by SDF syntax, i.e.

– operands cannot be entered via menus and

– AID issues error messages but does not offer a correction dialog.
The system prompt for command input in EXPERT mode is "/".

command sequence
Several commands separated by semicolons (;) form a command sequence,
which is processed from left to right. Like a subcommand, a command
sequence may contain both AID and BS2000 commands. Certain commands
are not permitted in command sequences: this refers to the AID commands
%AID, %BASE, %DUMPFILE, %HELP, %OUT, %QUALIFY and the BS2000
commands listed in the appendix.
If a command sequence contains one of the commands for runtime control, the
command sequence is aborted at that point and the program is started
(%CONTINUE, %RESUME, %TRACE) or halted (%STOP). Any subsequent
commands in the command sequence are not executed.

compilation unit
A compilation unit is part of a program that has been compiled as a unit. The
term program unit is used for this in Fortran. A compilation unit can be refer-
enced with the S qualification.

U2853-J-Z125-5-76 193

Glossary

constant
A constant represents a value which is not accessible via an address in program
memory.
The term "constants" includes the constants defined in the source program, the
results of length selection, length function and address selection, as well as the
statement names and source references.
An address constant represents an address. This subset includes statement
names, source references, and address selection results. An address constant
in a complex memory reference must be followed by a pointer operator (->).

CSECT information
Information contained in the object structure list.

current call hierarchy
The current call hierarchy represents the status of subprogram nesting at the
interrupt point. It ranges from the subprogram level at which the program was
interrupted, to the hierarchically intermediate subprograms exited by means of
CALL statements, to the main program.
The hierarchy is output using the %SDUMP %NEST command.

current CSECT
This is the CSECT in which the program was interrupted. Its name is output in
the STOP message.

current program
The current program is the one which is loaded in the task in which the user
enters AID commands.

current program segment
This is the program segment in which the program was interrupted. Its name is
output in the STOP message.

dataname
This operand stands for all names assigned for data in the source program.
dataname can be used to address variables, constants, structures, tables and
structure/table items in symbolic debugging. Items in structures/tables can be
referenced just like in the relevant programming language by means of an
identifier or an index.

194 U2853-J-Z125-5-76

Glossary

data type
In accordance with the data type declared in the source program, AID assigns
one of the following AID storage types to each data item:

– binary string (ï %X)

– character (ï %C or %UTF16)

– numeric (not all data types treated numerically in the relevant programming
languages correspond to a numeric storage type in AID; see the individual
language-specific AID manuals [2]-[6]).

The allocated storage type determines how a data item is output by %DISPLAY,
transferred/overwritten by %MOVE or %SET, and compared in the condition of
a subcommand.

ESD/ESV
The External Symbol Dictionary (OMs) / External Symbols Vector (LLMs) lists
the external references of a module. It is generated by the compiler and
contains, among other things, information on CSECTs, DSECTs and
COMMONs. The linkage editor accesses the ESD when creating the object
structure list.

global settings
AID offers commands which serve to adapt the behavior of AID to particular
user requirements, save input efforts and facilitate addressing. The global
presettings made via these commands are valid throughout the debugging
session. See %AID, %AINT, %BASE and %QUALIFY.

main program
In this manual main program is used as a collective term for the program
(COBOL), the function (main in C++/C) or the external procedure (PL/I) which is
started by the system when the program starts.

index
An index is part of the address operand. An index defines the position of a
vector element. It may be specified in the same way as in the programming
language or by means of an arithmetic expression from which AID calculates
the value of the index.

input buffer
AID has an internal input buffer. If this buffer cannot accommodate a command
input, the command is rejected with an error message indicating that the
command is too long. The required operation must be divided between two
commands to enable AID to execute it.

U2853-J-Z125-5-76 195

Glossary

interrupt point
The address at which a program is interrupted is known as the interrupt point.
The STOP message reports the address and the program segment where the
interrupt point is located. The program is then continued there. For COBOL85
and FOR1 programs a different continuation address can be specified via
%JUMP.

LIFO
Last In First Out principle. If statements from different inputs concur at a test
point (%INSERT) or upon occurrence of an event (%ON) the statements
entered last are processed first (see section “Chaining” on page 60).

localization information
%DISPLAY %HLLOC(memref) for the symbolic level and %DISPLAY
%LOC(memref) for the machine code level can be used to output the static
program nesting for a specified memory location.
Conversely, %SDUMP %NEST outputs the dynamic program nesting, i.e. the
call hierarchy for the current interrupt point.

LSD
The List for Symbolic Debugging (LSD) stores the data/statement names
defined in the module as well as the compiler-generated source references. The
LSD records are created by the compiler and used by AID to retrieve the infor-
mation required for symbolic addressing.

memory object
A memory object is constituted by a certain number of bytes in memory. At the
program level, this comprises the program data (provided it has been assigned
a memory area) and the program code. All registers, the program counter and
all other areas which can only be referenced via keywords are likewise memory
objects.
Any constants defined in the program, the statement labels, source references,
address selection results, length selection/function and AID literals do not
constitute memory objects, however, because they represent a value which
cannot be changed.

memory reference
A memory reference addresses a memory object. There are two types of
memory reference: simple and complex.
Simple memory references are virtual addresses, names whose address AID
can fetch from the LSD information, and keywords. Statement names and
source references are allowed as memory references in the AID commands
%CONTROLn, %DISASSEMBLE, %INSERT, %JUMP, %REMOVE and
%TRACE although they are merely address constants.

196 U2853-J-Z125-5-76

Glossary

Complex memory references constitute instructions for AID indicating how to
calculate the desired address and which type and length are to apply. The
following operations may occur in a complex memory reference: byte offset,
indirect addressing, type/length modification and address selection.

monitoring
%CONTROLn, %INSERT and %ON are monitoring commands. When a
command or statement of the selected group (%CONTROLn) or the defined
program address (%INSERT) is encountered in the program sequence or if the
selected event occurs (%ON), program execution is interrupted and the
specified subcommand is processed by AID.

name range
Comprises all the data names stored for a program segment in the LSD records.

object structure list
The linkage editor creates the object structure list on the basis of the External
Symbol Dictionary (ESD) if the default setting SYMTEST=MAP applies or
SYMTEST=ALL has been specified.

output type
Attribute of a memory object; defines how the memory contents are to be output
by AID. Each storage type is assigned an output type. In chapter “Keywords” on
page 109 the AID-specific storage types are listed with their respective output
types. A similar assignment applies for the data types in the various
programming languages. A type modification in %DISPLAY and %SDUMP
causes the output type to be changed.

program segment
This is a general term for any program part which can be addressed by means
of an area qualification. In the various programming languages a program
segment is known under different designations, which are described in the
language-specific AID manuals.

program state
AID makes a distinction between three program states which the program being
tested may assume:

U2853-J-Z125-5-76 197

Glossary

program state
AID makes a distinction between three program states which the program being
tested may assume:

1. The program has stopped.
%STOP or actuation of the K2 key interrupts a program which is executing. The
program is also interrupted if a %TRACE has been fully processed. The task is
in command mode, i.e. the user may enter commands.

2. The program is running without tracing.
%RESUME starts or continues a program. %CONTINUE has the same effect;
but if a %TRACE has not yet finished, issuing a %CONTINUE command will
continue not only the program but also tracing.

3. The program is running with tracing.
%TRACE starts or continues a program. The program sequence is logged in
accordance with the declarations in the %TRACE command. %CONTINUE has
the same effect if a %TRACE is still active.

program unit
This is a term used in Fortran for that which is referred to as a compilation unit
in other programming languages. A program unit can be addressed with the S
qualification.

qualification
A qualification addresses a memory reference which is not in the AID work area
or is outside the current main program or subprogram or is not unique therein.
The base qualification specifies whether the memory reference is located in the
loaded program or in a dump.
An area qualification specifies the program segment containing the memory
reference.
If an operand qualification is found to be superfluous or contradictory it is
ignored. This is the case, for example, if an area qualification is specified for a
virtual address.

source reference
A source reference designates an executable statement. It is specified as
S’number/name’.
Knumber/name k is generated by the compiler and stored in the LSD records.

statement name
A statement name is a name, assigned in a source program, via which an
executable statement can be referenced in AID. Such names are labels or
names of main programs or subprograms. An address constant containing the
address of the first statement after the label or in the main program or

198 U2853-J-Z125-5-76

Glossary

subprogram is stored in the LSD records for this purpose. To be more precise it
is the address of the first instruction that was generated for the first executable
statement after a label or in the main program or subprogram.

storage type
This is the data type that was either defined in the source program or selected
via type modification. AID knows the storage types %X, %C, %P, %D, %F, %A.
See %SET and chapter “Addressing in AID” on page 65 and chapter
“Keywords” on page 109.

subcommand
A subcommand is an operand of the monitoring commands %CONTROLn,
%INSERT and %ON. A subcommand consists of a command section which
may optionally be preceded by a name and a condition. The command section
may consist of a single command or a command sequence and may contain
both AID and BS2000 commands. Each subcommand has an execution
counter. See chapter “Subcommand” on page 49 on how an execution condition
is formulated, how a name and an execution counter are assigned and refer-
enced, and which commands are not permitted within subcommands.
The command section of a subcommand is executed if the monitoring condition
(criterion, test-point, event) of the corresponding command is satisfied and any
execution condition defined in the subcommand has been met.

subprogram
In this manual subprogram is used as a collective term for functions (C D++ d/
C, Fortran, COBOL), procedures (PL/I) or programs (COBOL) which are subor-
dinate to the main program in the call hierarchy.

tracing
%TRACE is a tracing command. It defines which and how many commands or
statements are to be logged. In the default case, program execution can be
viewed on the screen.

update dialog
The %AID CHECK=ALL command initiates the update dialog, which takes
effect when a %MOVE or %SET is executed. AID queries during the dialog
whether updating of the memory contents really is to take place. If N is entered
as a response, no modification is carried out; if Y is entered, AID performs the
transfer.

user area
Area in virtual memory which is occupied by the loaded program with all its
connected subsystems. Corresponds to the area represented by the keywords
%CLASS6, %CLASS6ABOVE and %CLASS6BELOW.

U2853-J-Z125-5-76 199

Related publications
The manuals are available as online manuals, see http://manuals.fujitsu-siemens.com, or in
printed form which must be paid and ordered separately at http://FSC-manualshop.com.

[1] AID (BS2000/OSD)
Debugging on Machine Code Level
User Guide

Target group
Programmers and debuggers
Contents
– Description of the AID commands for debugging on machine code level
– Sample application
The %SHOW, %SDUMP and %NEST commands are described, plus context COMMON
qualification and (on ESA systems) the ALET/SPID qualifications for data spaces.
Additional keywords have been included.

[2] AID (BS2000)
Advanced Interactive Debugger
Debugging of COBOL Programs
User Guide

Target group
COBOL programmers
Contents
– Description of the AID commands for symbolic debugging of COBOL programs
– Sample application
Applications
Testing of COBOL programs in interactive or batch mode

http://manuals.fujitsu-siemens.com
http://FSC-manualshop.com

200 U2853-J-Z125-5-76

Related publications

[3] AID (BS2000)
Advanced Interactive Debugger
Debugging of FORTRAN Programs
User Guide

Target group
FORTRAN programmers
Contents
– Description of the AID commands for symbolic debugging of FORTRAN programs
– Sample application
Applications
Testing of FORTRAN programs in interactive or batch mode

[4] AID (BS2000)
Advanced Interactive Debugger
Debugging of PL/I Programs
User Guide

Target group
PL/I programmers
Contents
– Description of all the AID commands available for the symbolic debugging of PL/I

programs
– Sample application

[5] AID (BS2000)
Advanced Interactive Debugger
Debugging of ASSEMBH Programs
User Guide

Target group
Assembly language programmers
Contents
– Description of the AID commands for symbolic debugging of ASSEMBH-XT programs
– Sample application
Applications
Testing of ASSEMBH-XT programs in interactive or batch mode

U2853-J-Z125-5-76 201

Related publications

[6] AID (BS2000/OSD)
Debugging of C/C++ Programs
User Guide

Target group
This manual is intended for C/C++ programmers.
Contents
The manual contains a description of the AID commands and the C/C++-specific address
operands for symbolic debugging of C/C++ programs. It contains information on
debbugging under POSIX and on RISC systems, and comprehensive applications
examples.
Application
Debugging of C/C++ programs in interactive and batch mode

[7] AID (BS2000)
Advanced Interactive Debugger
Ready Reference
Target group
Programmers in BS2000
Contents
– Debugging of programs written in ASSEMBH, C/C++, COBOL, FORTRAN, PL/I and ar

machine code level
– Summary of the AID commands and operands
– %SET tables
Applications
Testing of programs in interactive or batch mode

[8] BS2000/OSD-BC
Commands, Volumes 1 - 5
User Guide

Target group
This manual is addressed to nonprivileged users and systems support staff.
Contents
Volumes 1 through 5 contain the BS2000/OSD commands ADD-... to WRITE-... (basic
configuration and selected products) with the functionality for all privileges. The command
and operand functions are described in detail, supported by examples to aid understanding.
An introductory overview provides information on all the commands described in Volumes
1 through 5.
The Appendix of Volume 1 includes information on command input, conditional job variable
expressions, system files, job switches, and device and volume types.
The Appendix of Volumes 4 and 5 contains an overview of the output columns of the SHOW
commands of the component NDM. The Appendix of Volume 5 contains additionally an
overview of all START commands.
There is a comprehensive index covering all entries for Volumes 1 through 5.

202 U2853-J-Z125-5-76

Related publications

[9] BS2000/OSD-BC
Introductory Guide to Systems Support
User Guide

Target group
This manual is addressed to BS2000/OSD systems support staff and operators.
Contents
The manual covers the following topics relating to the management and monitoring of the
BS2000/OSD basic configuration: system initialization, parameter service, job and task
control, memory/device/system time/user/file/pubset management, assignment of privi-
leges, accounting and operator functions.

[10] BS2000
System Administrator Commands (SDF Format)
Reference Manual

Target group
BS2000 system administrators
Contents
SDF commands for the system administrator
Applications
System administration

[11] BS2000/OSD-BC
Executive Macros
User Guide

Target group
The manual addresses all BS2000/OSD assembly language programmers.
Contents
The manual contains a summary of all Executive macros, detailed descriptions of each
macro with notes and examples, including job variable macros, and a comprehensive
general training section.

[12] LMS (BS2000)
SDF Format
User Guide

Target group
BS2000 users.
Contents
Description of the statements for creating and managing PLAM libraries and the members
these contain.
Frequent applications are illustrated with examples.

U2853-J-Z125-5-76 203

Related publications

[13] BS2000
TSOSLNK
User Guide

Target group
Software developers
Contents
– Statements and macros of the linkage editor TSOSLNK for linking load modules and

prelinked modules
– Commands of the static loader ELDE

[14] BINDER
Binder in BS2000/OSD
User Guide

Target group
Software developers
Contents
The manual describes the BINDER functions, including examples. The reference section
contains a description of the BINDER statements and BINDER macro.

[15] BLSSERV
Dynamic Binder Loader / Starter in BS2000/OSD
User Guide

Target group
This manual is intended for software developers and experienced
BS2000/OSD users
Contents
It describes the functions, subroutine interface and XS support of the dynamic binder loader
DBL as a component of the BLSSERV subsystem, plus the method used for calling it.

[16] SDF (BS2000/OSD)
Introductory Guide to the SDF Dialog Interface
User Guide

Target group
BS2000/OSD users
Contents
This manual describes the interactive input of commands and statements in SDF format. A
Getting Started chapter with easy-to-understand examples and further comprehensive
examples facilitates use of SDF. SDF syntax files are discussed.

204 U2853-J-Z125-5-76

Related publications

[17] BS2000
User Commands (ISP Format)
User Guide

Target group
BS2000 users (nonprivileged)
Contents
– All BS2000 system commands in alphabetical order with detailed explanations and

examples
– The following products are dealt with: BS2000-GA, MSCF, JV, FT, TIAM
Applications
BS2000 interactive/batch mode, procedures

[18] BS2000/OSD-BC V1.0
System Operator’s Guide
User Guide

Target group
This manual addresses operators at installations of the BS2000/OSD operating system.
Contents
It describes the operator’s functions and responsibilities as well as the commands available
for this purpose at the operator terminal. The following items are dealt with:
– System initialization and termination (startup types, shutdown)
– Commands in alphabetical order
– Device management (reconfiguration, resource allocation, volume monitoring, NDM

handling, duplex reconfiguration)
– Tools and methods for facilitating system operation
– Memory dumps (SLED)
– Messages and responses in the event of saturation states

[19] Fortran90 V1.0
BS2000/OSD
Fortran90 Compiler
User Guide

Target group
Fortran90 users in BS2000
Contents
This manual describes all the activities involved in generating an executable Fortran90
program: compiling, linking, loading, debugging. It includes programming notes and further
information on file processing and language linkage.

U2853-J-Z125-5-76 205

Related publications

[20] BS2000
Programmiersystem *
Technische Beschreibung
(Programming System, Technical Description)

Target group
– BS2000 users with an interest in the technical background of their systems (software

engineers, systems analysts, computer center managers, system administrators)
– Computer scientists interested in studying a concrete example of a general-purpose

operating system
Contents
Functions and principles of implementation of
– the linkage editor
– the static loader
– the Dynamic Linking Loader
– the debugging aids
– the program library system
Order number
U3216-J-Z53-1

206 U2853-J-Z125-5-76

Related publications

U2853-J-Z125-5-76 207

Index

%• 64
%• subcommand reference 51
%•#Ksubcmdname#k 52, 64, 79
%•#Ksubcmdname#k, variable 115
%A 110
%AID 21, 29, 101
%AINT 15, 29
%AMODE 15, 113
%AR 16, 111
%ASC 16, 113
%AUD1 113
%BASE 19, 29, 49, 66
%C 109
%CC 113
%CCSN 22, 102
%CLASS5 112
%CLASS5 / %CLASS6 79, 112
%CLASS5ABOVE 112
%CLASS5BELOW 112
%CLASS6 112
%CLASS6ABOVE 113
%CLASS6BELOW 112
%CONTINUE 26
%CONTROL 124
%CONTROLn 19, 25, 49, 51, 60, 65, 69, 77, 112,

116, 121
%D 110
%DISASSEMBLE 27, 29, 65, 77, 97, 112
%DISPLAY 15, 27, 29, 52, 65, 68, 78, 93, 97,

109, 111, 112
%DISPLAY %PCBLST 111
%DS 16, 113
%DUMP 116
%DUMPFILE 28, 29, 66

%F 110
%FALSE 115
%FIND 28, 65, 68, 112, 122
%FR 111
%H 110
%HELP 29, 97
%HLLOC 19, 113
%INSERT 25, 49, 60, 62, 65, 77, 121
%JUMP 26, 77
%LINK 47, 113
%LOC 19, 34, 113
%LPOV 47, 60, 63,
%MAP 34, 113
%MODE24 116
%MODE31 116
%MOVE 15, 27, 52, 65, 68, 72, 78, 95, 111, 122
%MR 111
%n 111
%nAR 16, 67, 79, 111
%nD 111
%nE 111
%NEST 116
%nG 67, 112
%nGD 112
%NL 116
%NP 115
%nQ 111
%ON 25, 49, 60, 62, 117, 120
%ON %LPOV 113
%ON %SVC 51
%ON %WRITE(...) 32, 68, 117, 121
%OUT 29, 97
%OUTFILE 28
%P 109
%PC 26, 111

208 U2853-J-Z125-5-76

Index

%PCB 111, 113
%PCBLST 113
%PM 113
%QUALIFY 29, 49, 66
%REMOVE 25, 64, 77, 120
%RESUME 26, 46
%S 57, 84, 110, 122
%SDUMP 19, 27, 29, 65, 69, 97
%SET 27, 52, 55, 65, 72, 78, 109, 111, 115, 122
%SORTEDMAP 34, 113
%STOP 26, 46
%SVC 51, 63
%SW 57
%SX 84, 110, 122
%SYMLIB 18, 19, 32, 40, 186
%TITLE 29
%TRACE 19, 26, 29, 46, 51, 65, 69, 77, 97, 112,

116, 121, 122, 124
%TRACE, continue 26
%TRUE 115
%UTF16 22, 56, 71, 96, 102, 109
%WRITE 32, 60, 68, 121
%X 109
%Y 110
*OMF file 36

A
access register 16, 79, 111
access to data 74
access to instruction code 77
additional information 98
address constant 65, 77, 83, 84, 85, 92, 93, 95
address constant with pointer operator 78
address interpretation in indirect addressing 116
address operand 19, 65, 66, 67, 68
address selection 72, 80, 82, 84
address selection, result 93
address selector 92, 93
addressing mode 15, 16, 83, 113, 116
administration commands 24
administration functions 28
AID application 14
AID command, length 44
AID commands, overview 23

AID default work area 19
AID literal 55, 86, 87, 101, 110
AID literal, alphanumeric 101
AID literal, character 101
AID literal, decimal number 106
AID literal, floating-point number 107
AID literal, numeric 105
AID loading 13
AID registers 79, 112
AID work area 20, 28, 29, 98
AIDSYS 13
ALET qualification 16, 67, 73, 113
apostrophe 101
AR mode 16, 113
area boundaries 95
area limits 67, 72, 81, 89
area limits, check 81
area limits, CSECT/COMMON 72
area limits, data name 75
area limits, keyword 79
area limits, virtual address 73
area qualification 67
arithmetic expression 80, 91, 111
ASC mode 16, 113
ASCII 55
Assembler 67, 69, 77, 120
Assembler notation, symbolic 27
attributes 71, 74
attributes, C/COM qualification 72
attributes, data names 75
attributes, keywords 79
attributes, memory areas 112
attributes, virtual address 73
automated debugging runs 49

B
base qualification 19, 28, 29, 32, 66, 73, 79
base register and displacement 110
BASED variable 84
binary comparison 55
binary literal 104
BIND macro 38, 120
BINDER 33, 34, 38, 40
bit literal 104

U2853-J-Z125-5-76 209

Index

blank 44, 55, 91
Boolean operators 54
branch destinations in procedures 43
BS2000 commands in command sequence 46
byte offset 12, 67, 72, 73, 81, 91, 95
byte offset, result 81

C
C qualification 72, 80, 87, 90, 93
C#D++#d/C 67, 77, 80, 84, 95, 119
call hierarchy 27
chaining of subcommands 60, 62
character comparison 55
character literal 101
character literal, numeric 102
character string 28
check, AID commands 45
check, area limits 81
check, condition 54
check, LSD records 49
check, memory content / storage type

compatibility 87
check, qualification 49
CLASS6 112
CMD macro 14, 45
COBOL 55, 67, 69, 76, 77, 78, 119
COBOL85 26
COM qualification 72, 80, 90, 93
command format 43
command interpreter 14
command name 43
command sequence 45, 49
command types 116
comment 44
COMMON 18, 19, 21, 28, 34, 68, 72, 99, 113
common memory points 123
comparison, character type 54
comparison, type 55
compilation 33
compiler option 36
compiler, source reference 77
complex memory references 67, 71,95
condition code 113
condition in a subcommand 53

condition, check 54
constants 20, 71, 72, 74
content of a memory reference 92
content operator 80, 83, 84
context 19, 30, 34, 113
context qualification 68
continuation address 26, 28, 65
continuation line in interactive mode 44
continuation line in procedure file 44
CONTINUE 46
continue, %TRACE 26
counter 51, 115
criterion 25, 116, 121
CSECT 18, 19, 21, 28, 34, 68, 72, 99, 113, 120
CSECT, masked 40
CSECT, renaming 33
CSECTs of same name in LLM 34, 38, 40
CTXPHASE 68
current call hierarchy 27, 116
current program segment 67

D
data 18, 20
data name 19, 69, 80, 87, 90, 93
data name, constant 74
data protection 17
data space 16, 67, 73
DBL 68
debugging levels 19
debugging on machine code level 19
debugging on symbolic level 19
decimal number 106
default storage type %X 89
default value for subcommand 49
delete chained subcommands 60, 61, 64
delete nested subcommands 64
delete subcommand 64
differing output format 86
disassembly 27
dump 13
dump file 15, 20, 28, 29, 31, 32, 66, 70, 73, 98
dynamic loading of LSD records 40, 186
dynamically loaded segment 120

210 U2853-J-Z125-5-76

Index

E
EBCDI code 55
edit run 38
editing, system information 113
ELDE 38
entry 21, 95
environment 66
errors 124
errors in subcommands 50
ESA computers 113
ESA systems 67, 73, 111
ESD 18, 33, 34, 186
ESV 33, 34, 37, 38
event 23, 25, 32, 60, 62, 64, 117, 119
event code 118, 188
event table 118
event, delete 185
execution counter 12, 51, 79, 115
execution counter, modify 51
execution counter, output 51
execution counter, value 52
execution monitoring 65, 122
exponent 107
expression 80
External Symbol Dictionary 34

F
feed control 115
FIFO principle 117
file output 98
floating-point number 107
floating-point registers 79, 111
FOR1 26
Fortran 67, 69, 77
function#k 95

G
general registers 79, 111
generating LSD records 36

H
hardcopy output 98
hardware audit table 113
header line 98

hexadecimal literal 103
hexadecimal number 73, 89, 105
hierarchy 27
hit address 28
hyphen 21, 29, 43, 51

I
identically named CSECTs in LLM 34, 38, 40
ILCS 119
INCLUDE-MODULES 40
INCLUSION-DEFAULT 37
index 76, 90, 111
index boundary list 99
index for %PC and %PCB 111
index register, base register and

displacement 110
indirect addressing 73, 80, 83
indirect addressing, symbolic level 84
input files 15
instruction code 20
integer 76, 89, 105, 109, 110
internal AID input buffer 55, 62
interpretation as address 86
interpretation as integer 86
interpretation of indirect address

specifications 29
interrupt point 26
interrupt, program 185
ISP 15

K
keyword, indexed 111
keywords 54, 71, 80, 87, 93, 109
keywords for memory classes 112
keywords, for address interpretation 15
keywords, for address operands 79
keywords, for ESA support 16
keywords, for localization information 19
keywords, for storage types 109
keywords, for task information 113

L
LAST-SAVE 38
leave symbolic level 81

U2853-J-Z125-5-76 211

Index

length function 90, 91, 92
length modification 67, 72, 75, 80, 87, 109
length modification, value 89
length selection, result 94
length selector 90, 92, 94
length selector for vector 90
length, command sequence 45
library 18, 32, 33, 37, 39, 40
LIFO principle 50, 60, 62
link and load module 36, 37, 38
link and load module, LSD records 36
link name 28
llinkage 33, 37, 186
linkage editor 18
List for Symbolic Debugging 34
LLM 28, 33, 34, 38
LLM, LSD records 36
load unit 19, 37, 38,113, 186
loading 33
loading AID 13
loading with LSD records 37, 186
loading without LSD records 37, 186
LOCAL#DEFAULT 68
localization information 19, 34
localization information, machine-oriented 113
localization information, symbolic 113
locate character string 28
logging, of commands 26
logical value 115
logical variable 54, 115
low level trace 124
lowercase letters 101
lowercase notation 21, 29
LSD 18, 34
LSD records 19, 28, 33, 36, 37, 74, 77, 120
LSD records, check 49
LSD records, dynamic loading 37, 40, 186
LSD records, generation 36
LSD records, subcommand 50

M
machine code level, debugging 19, 33
machine code memory references 68, 71, 80
machine-oriented localization information 113

mantissa 107
masked CSECTS 40
matching of storage types, %SET 88
medium-a-quantity 97
medium-a-quantity, default 97
memory class 79, 112
memory content / storage type, compatibility

check 87
memory dump 13
memory location as address 84
memory object 20, 66
memory reference 54
memory references 71
memory references, complex 20, 67, 95
memory references, machine code 68
memory references, simple 20
memory references, symbolic 68, 74
metasyntax 11
modification command 24
modification of memory contents 27
modify output type 87
modify storage type 86
MODIFY-LLM-ATTRIBUTES 37
MODIFY-MODULE-ATTRIBUTES 33, 40
MODIFY-SYMBOL-VISIBILITY 40
monitoring 20, 25, 30
monitoring command 23, 30, 65, 122
monitoring condition 25, 49

N
name range 27, 69
names from the source program 34
names, permissible characters 21
NATIONAL 56
nesting of subcommands 62
numerical comparison 55

O
object module 18, 37, 38, 186
object module, LSD records 36
object structure list 18, 33
OM 28, 37, 38, 39
OM, LSD records 36
openUTM 120

212 U2853-J-Z125-5-76

Index

output command 24
output file 15, 28, 98
output medium 97
output of memory contents 27
output type 71, 109
output via SYSLST 98
overlay 31, 120
overlay structure 29, 120

P
period 66, 81
PL/I 67, 77, 84, 95, 119
PLAM library 18, 28, 33, 36, 37, 39, 40
pointer operator 79, 80, 82, 83, 93, 95, 110
pointer operator, general register 111
prequalification 67
printer output 98
privileges 17
procedure file 44, 47
process control block 113
process level, index 111
processing sequence for operators 54
PROG qualification 69
program counter 26, 79, 111
program error 117
program mask 113
program registers 111
program segment 67, 69
program space 16
program states 26
program termination 117
program, executable part 18
program, memory requirements 18
prologue 95

Q
qualification 12, 16, 20, 34, 66, 67, 69, 72
qualification, check 49
qualification, input 66
quit symbolic level 75

R
redefinition 86
redundant qualifications 66

relational operators 54
renaming CSECTs 33
REP 29
REPLACE-MODULES 40
RESOLVE-BY-AUTOLINK 40
runtime control 20, 26
RUN-TIME-VISIBILITY 40

S
SAVE-LLM 38
SDF 15
SDF-A 46
SDF-P control flow commands 46
search string 28
selectors 72, 93
semantic check, AID commands 45
signal() 120
simple memory references 71
SKIP-COMMANDS 47
source reference 19, 66, 68, 69, 74, 77, 80, 84,

92
SPID qualification 16, 67, 73, 113
standard linkage 119
START-LLM-CREATION 37
START-LLM-UPDATE 37
statement name 19, 69, 74, 77, 92
statementname 80
status, of a loaded program 26
STOP message 26, 51
storage types 54, 57, 71, 87, 109
storage types, changing 86, 109
storage types, for address interpretation 80
storage types, for interpreting machine

instructions 110
storage/output type assignment 74, 109
string 28
structure component 84
STXIT 119
subcommand 25, 46, 49, 115
subcommand condition 111
subcommand name 51
subcommand reference with %• 51
subcommand, chaining 60
subcommand, name 12

U2853-J-Z125-5-76 213

Index

subcommand, nesting 62
subscript 76
supervisor call 117
SVC 63, 122
SVC, logging 51
switch to machine code level 75, 81
symbolic address 19, 63
symbolic debugging 38
symbolic level of debugging 19
symbolic localization information 19, 113
symbolic memory references 68, 71, 74, 74
syntax check, AID commands 45
SYSCMD 13
SYSLST 27, 98, 115
SYSOUT 13, 27
system information 113

T
target line 99
task information, keywords 113
task line 98
terminal output 98
test object 15, 18
test point 120, 121, 122
test point in overlay segment 120
test points in common memory points 123
test privilege 112
test privileges 17
test-point 23, 25, 30, 31, 62, 64
TEST-SUPPORT 36, 37
tracing 26
transfer, %MOVE 27
transfer, %SET 27
TSOSLNK 33, 186
type compatibility 27
type compatibility, condition 55
type matching 86
type modification 75, 80, 84, 86, 89, 93
type selector 87, 93

U
UNBIND macro 120
UNCHANGED 37
uppercase/lowercase 29

uppercase/lowercase notation 21
user area, outside 93
using AID 14

V
Verzeichnis der Externbezüge 33
virtual address 16, 30, 66, 67, 72, 73, 75, 80, 87,

99
virtual memory 19, 66

W
wildcard 101, 103
write monitoring 25, 117
write-event 23, 25, 32, 60, 62, 121

X
XS computers 15, 16, 112, 116

214 U2853-J-Z125-5-76

Index

Comments on AID V3.2A
Core Manual

U2853-J-Z125-5-76

Fujitsu Siemens Computers GmbH
User Documentation
81730 München
Germany

Fax: 0 700 / 372 00001

e-mail: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Comments
Suggestions
Corrections

✁

Submitted by

mailto:manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Target group
	Structure of the AID documentation
	Readme file
	Changes made since AID V2.1A
	Notational conventions

	Metasyntax
	BS2000 environment, basic concepts and command set
	AID in BS2000
	Loading AID
	Using AID
	AID and the BS2000 command interpreter
	AID and SDF
	AID link names
	Programs on XS computers
	Programs on ESA computers
	Test privileges

	Basic concepts
	Test object
	Object structure list and LSD
	Symbolic versus machine code)
	AID work area
	Memory objects and memory references
	Naming conventions in AID
	Character representation using UTF16 / UTFE

	AID commands
	Monitoring
	Runtime control
	Output and modification of memory contents
	Administration functions
	Overview of the scope of validity of the commands

	Prerequisites for debugging with AID
	Debugging on machine code level
	Symbolic debugging
	Compilation
	Linkage using BINDER
	Linkage and loading via DBL or loading via ELDE
	Dynamic loading of LSD records by AID

	Command input
	Command format
	Individual commands
	Command sequences and subcommands
	Command files

	Subcommand
	Description
	Name and execution counter
	Conditional execution
	Chaining
	Nesting
	Deletion

	Addressing in AID
	Qualifications
	Base qualification
	Area qualifications

	Memory references
	Machine code memory references
	Symbolic memory references
	Data names
	Statement names and source references

	Keywords
	Complex memory references
	Byte offset "."
	Indirect addressing "->" / "*"
	Type modification
	Length modification
	Arithmetic expression
	Address, type and length selectors
	Special features of the interaction of various components

	Medium-a-quantity operand
	AID literals
	Alphanumeric literals
	Character literal
	Input formats
	Character encoding
	Conversion functions %C() and %UTF16()

	Hexadecimal literal
	Binary literal

	Numeric literals
	Integer
	Hexadecimal number
	Decimal number
	Floating-point number

	Keywords
	General storage types
	Storage types for interpreting machine instructions
	Program registers and program counter
	AID registers
	Memory classes
	System information
	Execution counter
	Logical values
	Feed control
	Address switchover
	Current call hierarchy
	Criterion for %CONTROLn and %TRACE
	Event for %ON

	Special applications
	%ON and STXIT
	Programs with an overlay structure

	Restrictions and interaction
	%ON %WRITE with %INSERT, %CONTROLn and %TRACE
	Interaction between execution monitoring and the output or modification of memory contents
	Test points in the common memory pools
	Low level trace and control in conjunction with contingencies
	%TRACE
	%CONTROL

	Messages
	Appendix
	SDF/ISP commands illegal in command sequences and subcommands
	Operands described for the last time
	Operand "AS output-type"
	Operand "control" with %ON
	Linkage using TSOSLNK

	Event codes

	Glossary
	Related publications
	Index
	A - B
	C - D
	E - L
	M - O
	P - S
	T - Z

	Comments, Suggestions, Corrections

