
U26110-J-Z125-3-76 1

1 Preface
SOCKETS/XTI(POSIX) is the name for the socket and XTI functions within the POSIX
interface for BS2000/OSD. These functions provide the development environment for
BS2000/OSD users who want to write socket or XTI application programs under POSIX.

1.1 Brief description of the product

POSIX offers the socket and XTI functions according to the X/Open Group specification for
UNIX95 branding. The socket and XTI programming provides a number of options for devel-
oping communication applications.

● The socket interface (SOCKETS) is an interface for network programming within the
POSIX subsystem. It can be used to develop communication applications based on the
TCP/IP protocols.

● The X/Open Transport Interface (XTI) is the standard defined by X/Open for a number
of programming interfaces which make it possible for an application to access the net-
work levels.

● RFC 2553 for socket applications.

1.2 Target group

This manual is aimed at programmers who wish to use the SOCKETS or XTI interface
functions to develop communication applications based on the POSIX interface.
Familiarity with C programming and the POSIX functions is required and assumed.

2 U26110-J-Z125-3-76

Summary of contents Preface

1.3 Summary of contents

In this manual, the various options available for socket and XTI programming are described
and illustrated using simple examples. The example programs show how the SOCKETS or
XTI functions are used for connection mode communication applications using the TCP
protocol and for connectionless communication applications using the UDP protocol.

The manual is laid out as follows:

● Chapters 2 to 5 provide an introduction to developing SOCKETS(POSIX) communica-
tion applications. Example programs are used to illustrate basic topics such as address
structures, connection setup, data transfer and client/server communications.

● Chapter 6 contains an alphabetic reference section with the user functions of the
SOCKETS(POSIX) interface.

● Chapters 7 to 9 provide an introduction to developing XTI(POSIX) communication ap-
plications. Example programs are used to illustrate basic topics such as connection set-
up, data transfer and client/server communications.

● Chapter 10 deals with the XTI trace.

● Chapter 11 contains an alphabetic reference section with the library functions of the
XTI(POSIX) interface.

● Chapter 12 uses two example procedures to illustrate how you can compile and link the
program you created.

● Chapter 13 describes the Internet inetd daemon and the configuration files for Internet
communications. The dependencies of SOCKET(POSIX) and XTI(POSIX) applications
on the BS2000/OSD BCAM transport system are also shown.

● Chapter 14 describes the compatibility restrictions of the SOCKETS(POSIX) and
XTI(POSIX) interfaces over the following interfaces:

– socket/XTI interface under UNIX systems
– socket interface in BS2000/OSD

U26110-J-Z125-3-76 3

Preface Changes compared with the previous edition of the manual

1.4 Changes compared with the previous edition of the manual

This section provides you with an overview of the changes made to the March 2005 edition
of the “SOCKETS/XTI for POSIX” manual compared with the February 2001 edition.

● Enhancement of the ioctl() function by new control functions:

SIOCGLIFNUM
SIOCGLIFCONF
SIOCGLIFADDR
SIOCGLIFINDEX
SIOCGLIFBRDADDR
SIOCGLIFNETMASK
SIOCGLIFFLAGS
SIOCGIFNUM
SIOCGIFINDEX
SIOCGIFNETMASK

● Furthermore, the functions of SOCKETS(POSIX) now support the ability of the
C compiler to generate programs containing ASCII literals.

4 U26110-J-Z125-3-76

Notational conventions Preface

1.5 Notational conventions

The following notational conventions are used in this manual:

For informative texts

The notational conventions for describing the user functions are explained at the beginning
of each chapter concerned.

References within this manual include the page concerned in the manual and the section
or chapter as necessary. References to topics in other manuals include the brief title of the
manual concerned. You will find the full title in the list of related publications at the end of
this manual.

Syntax definitions are delimited above and below with
horizontal lines. Continuation lines within syntax definitions
are indented.

typewritten font Program text in examples, syntax illustrations.

italic font Names of programs, functions, function parameters, files,
structures and structure components in descriptive text,
syntax variables (e.g. filename)

<angled brackets> Identify header files in descriptive text.

[] Optional entries.
The square brackets are metacharacters which may not be
input within statements.

... Ellipses in syntax definitions mean that the preceding text
may be repeated as often as required. In examples, they
mean that the remaining parts are not meaningful for
understanding the example.
The ellipses are metacharacters which may not be input
within statements.

i

U26110-J-Z125-3-76 5

Preface README file

1.6 README file

Please refer to the product-specific README file for any functional changes and revisions
to the current product version not contained in this manual. You will find the README file
on your BS2000/OSD computer under the name SYSRME.product.version.language. Please
consult your system service staff for the user ID under which the README file is stored.
You can view the README file with the /SHOW-FILE command or an editor and print it on
a standard printer with the following command:

/PRINT-DOCUMENT filename, LINE-SPACING=*BY-EBCDIC-CONTROL

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U26110-J-Z125-3-76 7

2 SOCKETS(POSIX) basics
This chapter explains the basic terms and functions of socket programming. Program
examples for the topics handled in this chapter are summarized in chapter “Client/server
model with SOCKETS(POSIX)” on page 57. The separate functions of the SOCKETS
interface are described in detail in chapter “SOCKETS(POSIX) user functions” on page 69.

2.1 POSIX network connection via the SOCKETS interface

The SOCKETS interface is one of the interfaces for network programming within the POSIX
subsystem. It can be used to develop communication applications based on the TCP/IP
protocols. NEA and OSI protocols are not supported.

The SOCKETS interface is defined in a separate library. If this library is linked into a POSIX
application, the SOCKETS interfaces set up the connection to the network over the POSIX
subsystem and BCAM transport system.

8 U26110-J-Z125-3-76

POSIX network connection via SOCKETS SOCKETS(POSIX) basics

Figure 1: SOCKETS in BS2000/OSD and POSIX

The POSIX network connection libraries represent the link between the POSIX objects,
such as e.g. file descriptors, and the BS2000 mechanisms. There are a few restrictions
when using the functions because of the differences between the POSIX concepts and
BS2000. These restrictions are described in detail in chapter “Compatibility restrictions” on
page 305.

The functions for opening a network connection return a socket file descriptor. This can be
used in all relevant POSIX functions which work with file descriptors.

POSIX application with linked-in
SOCKETS library

POSIX subsystem

BCAM

SOCKETS XTI.

BS2000/OSD

Network

U26110-J-Z125-3-76 9

SOCKETS(POSIX) basics Header files

2.2 Header files

When SOCKETS(POSIX) is installed, X/Open-compliant header files are copied into the
/usr/include directory. In chapter “SOCKETS(POSIX) user functions” on page 69 and
chapter “XTI(POSIX) library functions” on page 223, the description of the socket or XTI
function also specifies which header file(s) the application must link in to execute the
function concerned.
SOCKETS/XTI(POSIX) provides the following header files:

arpa/inet.h
– defines utility functions and macros for manipulating Internet addresses
– defines the data types in in_port_t and in_addr_t as defined in <netinet/in.h>
– defines the in_addr structure as defined in <netinet/in.h>

sys/sockio.h
– defines the socket control functions called by soc_ioctl()

net/if.h
– structures for the packet the packet switching interface

netdb.h
– structures and function declarations for address conversion utilities
– defines the flags for controlling the address conversion utilities
– defines the error messages for the address conversion utilities

netinet/in.h
– defines the address structure for the Internet domains (AF_INET, AF_INET6)
– symbolic constants for protocol types
– test macros for the AF_INET6 domain

sys/socket.h
– defines the socket address structure and other structures for socket system

functions
– declares the socket system calls
– symbolic constants for socket options and socket types

sys.time.h
– timval structure for select() and subfunction linger

sys/byteorder.h
� macros for converting the byte sequence

sys/un.h
– address structure for UNIX system domain (AF_UNIX)

sys/xti_inet.h
– Internet-specific structures and options of the transport provider

10 U26110-J-Z125-3-76

Header files SOCKETS(POSIX) basics

xti.h
– declares the XTI functions
– structures and constants of the transport provider
– symbolic constants for XTI error codes
– states and options of the transport endpoint

U26110-J-Z125-3-76 11

SOCKETS(POSIX) basics Socket types

2.3 Socket types

A socket is a basic component for developing communications applications by forming a
communications endpoint. It can be assigned a name via which the socket can then be
accessed and addressed.

Each socket belongs to a specific type and has at least one affiliated process. Several
related processes can use the same socket and a process can also have connections to
several sockets.

A socket belongs to a specific communications domain. Address and protocol families are
collected together into a communications domain. An address family comprises addresses
with the same address structure. A protocol family defines a set of protocols which
implement the socket types in the domain. Communications domains are used to group
together the common characteristics of processes which communicate over sockets.
The socket interface in BS2000/OSD supports the Internet communications domains
AF_INET and AF_INET6, and in the local host communications domain AF_UNIX.

There are various socket types with different communications characteristics. Two different
socket types are currently supported:

– stream sockets
– datagram sockets

2.3.1 Stream sockets (connection-oriented)

Stream sockets support connection-oriented communications in the Internet communica-
tions domains AF_INET and AF_INET6, and in the local host communications domain
AF_UNIX. A Stream socket provides bidirectional, secured and sequential data flow, thus
ensuring that the data is only transferred once and in the correct order. The data record
limits are lost when connection-oriented communications are used with stream sockets.

Stream sockets are used to develop connection-oriented communications applications
based on the TCP protocol.

12 U26110-J-Z125-3-76

Socket types SOCKETS(POSIX) basics

2.3.2 Datagram sockets (connectionless)

Datagram sockets support connectionless communications in the Internet communications
domains AF_INET and AF_INET6, and in the local host communications domain AF_UNIX.
A datagram socket provides bidirectional data flow. However, datagram sockets do not
ensure either secure or sequential data transfer. It is also possible that the data is trans-
ferred more than once. A process which receives messages on a datagram socket may
therefore possibly receive the messages more than once and/or in a different order from
that transmitted. The application therefore has the responsibility of checking and saving the
received data. One important characteristic of datagram sockets is that the record limits of
the transferred data are retained.

Datagram sockets are used to develop connectionless communications applications based
on the UDP protocol.

U26110-J-Z125-3-76 13

SOCKETS(POSIX) basics Socket addressing

2.4 Socket addressing

A socket is created initially without a name or address. You then have to use the bind()
function to assign the socket a name (address) according to its address family (see section
“Assigning a name to a socket” on page 18) so that processes can address it. You can then
receive messages over the socket.

2.4.1 Using socket addresses

When the bind(), connect(), getpeername(), getsockname(), recvfrom(), recvmsg(), sendto() and
sendmsg() functions are called, a pointer to a name (address) is passed as the current
parameter. Prior to this, the program has to make the name available to the address family
used, according to the address structure. This address structure is different for each
address family used (see section “sockaddr_in address structure of the AF_INET address
family” on page 14, section “sockaddr_in6 address structure of the AF_INET6 address
family” on page 14 and section “sockaddr_un address structure of the AF_UNIX address
family” on page 15).

Before passing the parameter, the pointer which passes the address must be converted
with the cast operator from type “pointer to the structure of the used address family” to type
“pointer to struct sockaddr“. The sockaddr structure is the general address structure used in
the socket functions and is independent of domains.

The address structures for the AF_INET, AF_INET6 and AF_UNIX address families are
described in the following sections. The structures for the host, protocol and service names
are described in chapter “Address conversion with SOCKETS(POSIX)” on page 41.

2.4.2 Addressing with an Internet addresses

SOCKETS(POSIX) supports both IPv4 and IPv6 addresses. IPv4 and IPv6 addresses have
different lengths and are therefore identified by different address families:

– AF_INET supports the 4-byte IPv4 Internet address.

– AF_INET6 supports the 16-byte IPv6 Internet address.

The structure of these addresses and the form they take are described in the manual
“openNet Server V3.0 (BS2000/OSD)“. You will find a detailed explanation of IPv6 function-
ality in the "IPv6 Introduction and Conversion Guide, Stage 1".

14 U26110-J-Z125-3-76

Socket addressing SOCKETS(POSIX) basics

2.4.2.1 sockaddr_in address structure of the AF_INET address family

With the AF_INET address family, a name comprises an Internet address and a port
number. You use the sockaddr_in address structure for the AF_INET address family.
The sockaddr_in structure is declared as follows in the <netinet/in.h> header file:

struct sockaddr_in {
sa_family_t sin_family; /* address family */
in_port_t sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit Internet address */;
unsigned char sin_zero[8];
};

struct in_addr {
in_addr_t s_addr;
};

You can supply a variable server of type struct sockaddr_in with a name, using the following
statements:

struct sockaddr_in server;
...
server.sin_family = AF_INET;
server.sin_port = htons(8888);
server.sin_addr.s_addr = htonl(INADDR_ANY);

A pointer to the variable server can now be passed as the current parameter, e.g. with a
bind() call, to bind the name to a socket:

bind (..., (struct sockaddr *)&server, ...) /* bind() call with
type conversion */

2.4.2.2 sockaddr_in6 address structure of the AF_INET6 address family

With the AF_INET6 address family, a name comprises a 16-byte Internet address and a
port number. You use the sockaddr_in6 address structure for the AF_INET6 address family.

The sockaddr_in6 structure is declared in the <netinet.in.h> header as follows:

struct sockaddr_in6 {
sa_family_t sin6_family; /* AF_INET6 address family */
in_port_t sin6_port; /* 16-bit port number */
uint32_t sin6_flowinfo
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id;
};

U26110-J-Z125-3-76 15

SOCKETS(POSIX) basics Socket addressing

You can supply a variable server of type struct sockaddr_in6 with a name by using the follow-
ing statements:

struct sockaddr_in6 server;
struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
...
server.sin6_family = AF_INET6;
server.sin6_port = htons(8888);
memcpy(server.sin6_addr.s6_addr, in6addr_any.s6_addr, 16);

A pointer to the variable server can now be passed as the current parameter, e.g. with a
bind() call, to bind the name to a socket:

bind(..., &server, ...) /* bind() call with type conversion */

2.4.2.3 sockaddr_un address structure of the AF_UNIX address family

With the AF_UNIX address family, a name (address) comprises a path name. You use the
sockaddr_un address structure for the AF_UNIX address family.

The sockaddr_un structure is declared as follows in the <sys/un.h> header file:

struct sockaddr_un {
sa_family_t sun_family; /* address family */
char sun_path[108]; /* path name */
};

You can supply a variable server of type struct sockaddr_un with a name, e.g. using the
following statements:

struct sockaddr_un server;
...
server.sun_family = AF_UNIX;
strcpy(server.sun_path, “/tmp/unix_socket“);

A pointer to the variable server can now be passed as the current parameter, e.g. with a
bind() call, to bind the name to a socket:

bind(..., (struct sockaddr *)&server, ...) /* bind() call with
type conversion */

16 U26110-J-Z125-3-76

Creating a socket SOCKETS(POSIX) basics

2.5 Creating a socket

A socket is created with the socket() function:

int s;
...
s = socket(domain, type, protocol);

The socket() call creates a socket of type type in the domain domain and returns a descriptor
(integer value). The new socket can be identified in all further socket function calls via this
descriptor.

The domains are defined as fixed constants in the <sys/socket.h> header file. The following
domains are supported:

– Internet communications domain AF_INET

– Internet communications domain AF_INET6

– local host communications domain AF_UNIX

You must therefore specify AF_INET, AF_INET6 or AF_UNIX as the domain.

The socket types type are also defined in the <sys/socket.h> file:

– Specify SOCK_STREAM for type, if you want to set up connection-oriented communi-
cations via a stream socket.

– Specify SOCK_DGRAM for type, if you want to set up connectionless communications
via a datagram socket.

If you set protocol to 0, you specify the standard protocol:

– TCP for socket type SOCK_STREAM

– UDP for socket type SOCK_DGRAM

U26110-J-Z125-3-76 17

SOCKETS(POSIX) basics Creating a socket

2.5.1 Creating a socket in the AF_INET domain

The following call creates a stream socket in the Internet domain AF_INET:

s = socket(AF_INET, SOCK_STREAM, 0);

In this case, the underlying communications support is provided by the TCP protocol.

The following call creates a datagram socket in the Internet domain:

s = socket(AF_INET, SOCK_DGRAM, 0);

The UDP protocol used in this case transfers the datagrams without any further communi-
cations support to the underlying network services.

2.5.2 Creating a socket in the AF_INET6 domain

The following call creates a stream socket in the IPv6 Internet domain AF_INET6:

s = socket(AF_INET6, SOCK_STREAM, 0);

In this case, the underlying communications support is provided by the TCP protocol.

The following call creates a datagram socket in the IPv6 Internet domain AF_INET6:

s = socket(AF_INET6, SOCK_DGRAM, 0);

The UDP protocol used in this case transfers the datagrams without any further
communications support to the underlying network services.

18 U26110-J-Z125-3-76

Assigning socket names SOCKETS(POSIX) basics

2.6 Assigning a name to a socket

A socket created with s=socket() initially has no name. The socket must therefore be
assigned a name, i.e. a local address, according to its address family. Processes can only
address the socket and receive messages over it after this is done. You bind a name to the
socket. i.e. you assign the socket a local address, with the bind() function.

You call bind() as follows:

bind(s, name, namelen);

The structure of the name name, which is assigned to socket s, differs according to the ad-
dress family (AF_INET, AF_INET6 or AF_UNIX).

– In the communications domain AF_INET, name comprises a 4-byte IPv4 address and a
port number. name is passed in a variable of the type struct sockaddr_in (see page 14).

– In the communications domain AF_INET6, name comprises a 16-byte IPv6 address and
a port number. name is passed in a variable of the type struct sockaddr_in6 (see page 14).

 namelen contains the length of the data structure that describes the name.

2.6.1 bind() call with AF_INET

With AF_INET, name comprises an IPv4 address and a port number. name is passed in a
variable of type struct sockaddr_in (see page 14).

The following program extract illustrates how a name is assigned to a socket.

#include <sys/types.h>
#include <netinet/in.h>
...
struct sockaddr_in sin;
...
/* The statements which supply sin with an Internet

address and a port number must be inserted here.*/
...
bind(s, (struct sockaddr *)&sin, sizeof sin);

U26110-J-Z125-3-76 19

SOCKETS(POSIX) basics Assigning socket names

2.6.2 bind() call with AF_INET6

With AF_INET6, name comprises an IPv6 address and a port number. name is passed in a
variable of type struct sockaddr_in6 (see page 14).

The following program extract illustrates how a name is assigned to a socket.

#include <sys/types.h>
#include <netinet/in.h>
...
struct sockaddr_in6 sin6;
...
/* The statements which supply sin6 with an Internet

address and a port number must be inserted here.*/
...
bind(s, (struct sockaddr *)&sin6, sizeof sin6);

2.6.3 Dependencies on port numbers

You must note the following when selecting the port number:

– Port numbers lower than IPPORT_RESERVED (1024) are reserved for privileged
users.

– Port numbers in the range from 1024 to PRIVPORT# must differ from port numbers with
fixed assignments for privileged applications (see section “Dependencies of the
BS2000/OSD BCAM transport system” on page 302).

– Certain port numbers are reserved for some standard applications. These worldwide
applicable assignments are stored in the /etc/inet/services file. This file can be extended
for local networks to record assigned port numbers.

20 U26110-J-Z125-3-76

Assigning socket names SOCKETS(POSIX) basics

2.6.4 bind() call with AF_UNIX

With AF_UNIX, name only comprises a path name which is passed in a variable of type
struct sockaddr_un (see page 15).

The following program extract illustrates how a name is assigned to a socket.

#include <sys/types.h>
#include <sys/un.h>
...
struct sockaddr_un sun;
...
/* The statements which supply sun with the path name

 must be inserted here.*/
...
bind(s, (struct sockaddr *)&sun, sizeof sun);

The path name, which must be specified in the sun.sun_path component, is created as a file
in the file system using bind(). The process that calls bind() must therefore have write rights
to the directory in which the file is to be written. The system does not delete the file. It should
therefore be deleted by the process when it is no longer required.

2.6.5 Assigning addresses with wildcards (AF_INET, AF_INET6)

Wildcard addresses simplify local address assignment in the Internet domains AF_INET
and AF_INET6.

Assigning an Internet address with a wildcard

You use the bind() function to assign a local name (address) to a socket (see page 18).
Instead of a concrete Internet address, you can also specify INADDR_ANY (for AF_INET)
or IN6ADDR_ANY (for AF_INET6) as the Internet address. INADDR_ANY and
IN6ADDR_ANY are defined as fixed constants in <netinet/in.h>.

U26110-J-Z125-3-76 21

SOCKETS(POSIX) basics Assigning socket names

When you use bind() to assign a socket s a name whose Internet address is specified as
INADDR_ANY or IN6ADDR_ANY, this means:

● Receiving messages:

– The socket s bound to INADDR_ANY can receive messages over all the IPv4 net-
work interfaces of its host. This allows socket s to receive all messages addressed
to the port number of s and any valid IPv4 address of the host on which socket s lies.
For example, if the host has IPv4 addresses 128.32.0.4 and 10.0.0.78, a process to
which socket s is assigned can accept connection requests which are addressed to
128.32.0.4 and 10.0.0.78.

– The socket s bound to IN6ADDR_ANY can receive messages over all the IPv4 and
IPv6 network interfaces of its host. This allows socket s to receive all messages ad-
dressed to the port number of s and any valid IPv4 or IPV6 address of the host on
which socket s lies. For example, if the host has IPv4 or IPv6 address 128.32.0.4 or
3FFE:0:0:0:A00:6FF:FE08:9A6B, a task to which socket s is assigned can accept
connection requests which are addressed to 128.32.0.4 and
3FFE:0:0:0:A00:6FF:FE08:9A6B.

● Sending messages:

– The socket s bound to INADRR_ANY can send messages over any IPv4 network
interface on its host.

– The socket s bound to IN6ADDR_ANY can send messages over any network inter-
faces on its host.

This allows the socket s bound to INADDR_ANY to address any other socket that can
be reached via an IPv4 network interface of the host on which socket s lies.
The socket s bound to IN6ADDR_ANY, on the other hand, can address any other socket
that can be reached via any network interface of the host on which socket s lies.

22 U26110-J-Z125-3-76

Assigning socket names SOCKETS(POSIX) basics

The following examples show how a process can bind a local name to a socket without an
Internet address being specified. The process only has to specify the port number:

For AF_INET:

#include <sys/types.h>
#include <netinet/in.h>
#define MYPORT 2222
 ...
struct sockaddr_in sin;
int s;
 ...
s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, &sin, sizeof sin);

For AF_INET6:

#include <sys.types.h>
#include <netinet.in.h>
#define MYPORT 2222
 ...
struct in6_addr inaddr_any = IN6ADDR_ANY_INIT;
struct sockaddr_in6 sin6;
int s;
 ...
s = socket(AF_INET6, SOCK_STREAM, 0);
memset(&sin6, 0 , sizeof sin6);
sin6.sin6_family = AF_INET6;
memcpy(sin6.sin6_addr.s6_addr,sin6addr_any.s6_addr, 16);
sin6.sin6_port = htons(MYPORT);
bind(s, &sin6, sizeof sin6);

U26110-J-Z125-3-76 23

SOCKETS(POSIX) basics Assigning socket names

Assigning a port number with a wildcard

A local port can remain unspecified (0 specified). In this case, the system selects a suitable
port number for it. The following examples show how a process assigns a socket a local
address without specifying the local port number:

For AF_INET:

struct sockaddr_in sin;
...
s = socket(AF_INET; SOCK_STREAM, 0);
sin.sin_family=AF_INET;
sin.sin_addr.s_addr=htonl(INADDR_ANY);
sin.sin_port = htons(0);
bind(s, &sin, sizeof sin);

For AF_INET6:

struct sockaddr_in6 sin6;
struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
 ...
s = socket(AF_INET6, SOCK_STREAM, 0);
memset(&sin6, 0 , sizeof sin6);
sin6.sin6_family = AF_INET6;
memcpy(sin6.sin6_addr.s6_addr,in6addr_any.s6_addr, 16);
sin6.sin6_port = htons(0);
bind(s, &sin6, sizeof sin6);

2.6.6 Automatic address assignment by the system

You can still call a function for a socket which actually requires a bound socket (e.g.
connect(), sendto(), etc.), even if the socket has no address assigned to it. In this case, the
system executes an implicit bind() call with wildcards for the Internet address and port
number, i.e. the socket is bound with INADDR_ANY to all IPv4 addresses and with
IN6ADDR_ANY to all IPv6 addresses and IPv4 addresses of the host and receives a free
port number from the range of non-privileged port numbers.

24 U26110-J-Z125-3-76

Connection-oriented communications SOCKETS(POSIX) basics

2.7 Connection-oriented communications

Sockets which communicate with each other are connected via an assignment. An
assignment in the Internet domain consists of a locale address and port number and a
remote address and port number.

<local address, local port, remote address, remote port>

When setting up a socket, you must initially specify both address-pairs.The bind() call
specifies the local half of the assignment:

<local address, local port>

The calls of the connect() and accept() functions described below, complete the socket
assignment during connection setup.
The connection setup between two processes is generally asymmetric, with one process
assuming the role of the client and the other the role of the server.

2.7.1 Connection request by the client

The client requests services from the server by sending a connection request to the socket
of the server with the connect() function. On the client side, the connect() call causes a
connection to be set up.

In the Internet domain AF_INET, a connection request progresses as follows:

struct sockaddr_in server;
 ...
connect(s, (struct sockaddr *)&server, sizeof server);

In the Internet domain AF_INET6, a connection request progresses as follows:

struct sockaddr_in6 server;
 ...

connect(s, (struct sockaddr *)&server, sizeof server);

The server parameter passes the IPv4 or IPv6 address and the port number of the server
with which the client wishes to communicate.
If the socket of the client process has no address assigned at the time of the connect() call,
the system selects a name automatically and assigns it to the socket.

If connection setup is unsuccessful, an error code is returned. This can occur, e.g. if the
server is not ready to accept a connection (see the next section). However, all names
assigned automatically by the system are retained even if the connection setup fails.

U26110-J-Z125-3-76 25

SOCKETS(POSIX) basics Connection-oriented communications

2.7.2 Connection acceptance by the server

If the server is ready to provide its special services, it assigns one of its sockets the name
(address) defined for the service concerned. In order to be able to accept the connection
request of a client, the server must also execute the following two steps:

1. The server uses the listen() function to mark the socket for incoming connection
requests as “listening”. The server then monitors the socket, i.e. it waits passively for a
connection request for this socket. It is now possible for any process to take up contact
with the server.

listen() also causes the POSIX subsystem to place connection requests to the socket
concerned in a queue. This normally prevents any connection requests being lost while
the server processes another one.

2. The server uses accept() to accept the connection for the socket marked as “listening”.

After the connection is accepted with accept(), the connection is set up between the client
and server and data can be transferred.

The following program extract illustrates connection acceptance by the server in the Internet
domain AF_INET:

struct sockaddr_in from;
 ...
listen(s, 5);
fromlen = sizeof (from);
newsock = accept(s, (struct sockaddr *)&from, &fromlen);

The following program extract illustrates connection acceptance by the server in the Internet
domain AF_INET6:

struct sockaddr_in6 from;
int s, fromlen, newsock;
 ...
listen(s, 5);
fromlen = sizeof(from);
newsock = accept(s, (struct sockaddr_in6 *)&from, &fromlen);

The first parameter passed when listen() is called is the descriptor s of the socket over which
the connection is to be set up. The second parameter defines the maximum number of
connection requests which may be placed in the queue for acceptance by the server
process. The transport system currently supports a maximum of 50 pending connection
requests.

26 U26110-J-Z125-3-76

Connection-oriented communications SOCKETS(POSIX) basics

The first parameter passed when accept() is called is the descriptor s of the socket over
which the connection is to be set up. After accept() is executed, the from parameter contains
the address of the partner application and fromlen contains the length of this address. When
a connection is accepted with accept(), a descriptor is created for a new socket. This
descriptor returns accept() as its result. Data can now be exchanged over the new socket.
The server can accept additional connections over socket s.

An accept() call normally blocks because the accept() function does not return until a
connection is accepted. When accept() is called, the server process also has no way of
indicating that it only wants to accept connection requests from one or more specific
partners. The server process must therefore note where the connection comes from and
terminate it if it does not want to communicate with the client process concerned.

The following is described in detail in chapter “Extended SOCKETS(POSIX) functions” on
page 49:

● how a server process can accept connections on more than one socket

● how a server process can prevent the accept() call from blocking

2.7.3 Data transfer with connection-oriented communications

Data can be transferred as soon as a connection is set up. If the communications endpoints
of both partners are hard-bound with each other via the addressing-pair, a user process can
send and receive messages without having to specify the addressing-pair each time.

There are several functions for sending and receiving data. You can elect to use either the
functions read() and write() or readv() and writev() :

write(s, buf, sizeof buf);
read(s, buf, sizeof buf);
writev(s, iovec, iovcnt);
readv(s, iovec, iovcnt);

These functions are part of the basic scope of the POSIX interface. They are described in
the manual „C Library Functions (BS2000/OSD) for POSIX Applications“. Socket-specific
features of these functions are described in section “Using standard POSIX functions for
sockets” on page 128.

You can alternatively use the following socket-specific functions:

send(s, buf, sizeof buf, flags);
sendmsg(s, msg, flags);
recv(s, buf, sizeof buf, flags);
recvmsg(s, msg, flags);

The socket-specific functions are described in detail in section “Functions” on page 76.

U26110-J-Z125-3-76 27

SOCKETS(POSIX) basics Connection-oriented communications (examples)

2.7.4 Examples of connection-oriented client/server communications

The two following program examples illustrate how a streams connection in the Internet
domain is initialized by the client and accepted by the server:

The example programs are only valid for the communications domain AF_INET. If they are
modified according to the information in the sections “Socket addressing” on page 13 and
“Creating a socket” on page 16, they are also valid for the AF_INET6 domain.

Example 1: Initialization of a streams connection by the client

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define DATA "Half a league, half a league . . ."

/*
 * This program creates a socket and initializes a connection with the
 * socket passed in the command line.
 * A message is sent over the connection.
 * The socket is then closed and the connection shut down.
* The program is called as follows:
* program_name host_name port_number
 */

main(argc, argv)
 int argc;
 char *argv[];
{
 int sock;
 struct sockaddr_in server;
 struct hostent *hp;
 /* Create socket. */
 sock = socket(AF_INET, SOCK_STREAM, 0);
 if (sock < 0) {
 perror("opening stream socket");
 exit(1);
 }
 /* Connection setup using the name specified in the command line,
 */
 server.sin_family = AF_INET;
 hp = gethostbyname(argv[1]);
 if (hp == 0) {
 fprintf(stderr, "%s: unknown host\n", argv[1]);
 exit(2);
 }

28 U26110-J-Z125-3-76

Connection-oriented communications (examples) SOCKETS(POSIX) basics

 memcpy((char *)&server.sin_addr, (char *)hp->h_addr,
 hp->h_length);
 server.sin_port = htons(atoi(argv[2]));

if (connect(sock,
 (struct sockaddr *)&server, sizeof server) < 0) {
 perror("connecting stream socket");
 exit(1);
 }
 if (send(sock, DATA, sizeof DATA, 0) < 0)
 perror("writing on stream socket");
 close(sock);
 exit(0);
}

Example 2: Acceptance of the streams connection by the server

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1
#define TESTPORT 2222

/*
 * This program creates a socket and then goes into an endless loop.
 * With each loop run, it accepts a connection and sends messages.
 * If the connection is interrupted or a termination message is passed,
 * the program accepts a new connection.
 */

main()
{
 int sock, length;
 struct sockaddr_in server, client;
 int msgsock;
 char buf[1024];
 int rval;
 /* Create socket. */
 sock = socket(AF_INET, SOCK_STREAM, 0);
 if (sock < 0) {
 perror("opening stream socket");
 exit(1);
 }

U26110-J-Z125-3-76 29

SOCKETS(POSIX) basics Connection-oriented communications (examples)

/* The socket is assigned a name using wildcards. */
 server.sin_family = AF_INET;
 server.sin_addr.s_addr = htonl(INADDR_ANY);
 server.sin_port = htons(TESTPORT);
 if (bind(sock, (struct sockaddr *)&server, sizeof server) < 0) {
 perror("binding stream socket");
 exit(1);
 }

 /* Find and output the appropriate port number. */
 length = sizeof server;
 if (getsockname(sock, (struct sockaddr *)&server,
 &length) < 0) {
 perror("getting socket name");
 exit(1);
 }
 printf("Socket port #%d\n", ntohs(server.sin_port));

 /* Start acceptance of connection requests. */
 listen(sock, 5);
 do {
 length = sizeof client;
 msgsock = accept(sock, (struct sockaddr *)&client,&length);
 if (msgsock == -1)
 perror("accept");
 else do {
 memset(buf, 0, sizeof buf);
 if ((rval = recv(msgsock, buf, 1024, 0)) < 0)
 perror("reading stream message");
 if (rval == 0)
 printf("Ending connection\n");
 else
 printf("-->%s\n", buf); }
 while (rval > 0);
 close(msgsock);
 } while (TRUE);

 /*
 * As this program runs in an endless loop, the socket “sock” is
 * never explicitly closed.
 * However, all sockets are closed automatically if a process is
 * terminated or reaches its normal conclusion.
 */

 exit(0);
}

30 U26110-J-Z125-3-76

Connectionless communications SOCKETS(POSIX) basics

2.8 Connectionless communications in AF_INET and AF_INET6

In addition to the connection-oriented communications described in the previous section,
connectionless communication via the UDP protocol is also supported in the AF_INET and
AF_INET6 domains.

Connectionless communications are carried out via datagram sockets (SOCK_DGRAM). A
datagram socket provides a symmetric interface for data exchange via datagrams. In
contrast to connection-oriented communication, where the client and server communicate
with each other over a fixed connection, no connection is set up for datagram transfers.
Each message contains the destination address instead.

In section “Creating a socket” on page 16 there is a description of how datagram sockets
are created. If a specific local address is required, the bind() function must be called before
the first data transfer (see page 18). Otherwise, the system assigns the local Internet
address and/or port number the first time data is sent (see page 23).

2.8.1 Data transfer with connectionless communications

You use the sendto() function to send data from one socket to another socket:

sendto(s, buf, buflen, flags, (struct sockaddr *)&to, tolen);

You use the s, buf, buflen and flags parameters in exactly the same way as with connection-
oriented sockets. You pass the destination address with to and the length of the address
with tolen. The sender is not informed of any errors when a datagram socket is used. If the
system has the information locally that a message cannot be transferred (e.g. if a network
cannot be reached), the sendto() call returns “-1” and the global errno variable contains the
appropriate error code.

You use the recvfrom() function to receive a message over a datagram socket:

recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from, &fromlen);

The fromlen parameter initially contains the size of the from buffer. On return from the
recvfrom() function, fromlen specifies the size of the address of the socket from which the
datagram was received.

U26110-J-Z125-3-76 31

SOCKETS(POSIX) basics Connectionless communications (examples)

If you wish, you can define a specific destination address for a datagram socket before a
sendto() or recvfrom() call with connect(). In this case, calling sendto() or recvfrom() results in
the following behavior:

– Data which the process sends with sendto() without explicitly specifying a destination
address is sent automatically to the partner with the destination address specified in the
connect() call.

– A user process only receives data with recvfrom() from the partner with the address
specified in the connect() call.

For a datagram socket, only one target address can be specified with connect() at any one
time. However, you can define a different destination address for the socket with an
additional connect() call.

A connect() call for a datagram socket returns immediately and the system only stores the
address of the communications partner.

2.8.2 Examples of connectionless communications

The two following program examples illustrate how datagrams are received and sent with
connectionless communications:

The example programs are only valid for the communications domain AF_INET. If they are
modified according to the information in the sections “Socket addressing” on page 13 and
“Creating a socket” on page 16, they are also valid for the AF_INET6 domain.

Example 1: receiving datagrams

#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#define TESTPORT 2222

/*
 * The <netinet/in.h> header file declares sockaddr_in as follows:
*
 * struct sockaddr_in {
 * short sin_family;
 * u_short sin_port;
 * struct in_addr sin_addr;
 * char sin_zero[8];
 * };
 *
 * This program creates a socket, assigns it a name and then reads from
 * the socket.
 */

32 U26110-J-Z125-3-76

Connectionless communications (examples) SOCKETS(POSIX) basics

main()
{
 int sock, length, peerlen;
 struct sockaddr_in name, peer;
 char buf[1024];

/* Create the socket to be read from. */
 sock = socket(AF_INET, SOCK_DGRAM, 0);
 if (sock < 0) {
 perror("opening datagram socket");
 exit(1);
 }
 /* Assign the socket a name using wildcards */
 name.sin_family = AF_INET;
 name.sin_addr.s_addr = INADDR_ANY;
 name.sin_port = htons(TESTPORT);
 if (bind(sock, (struct sockaddr *)&name,
 sizeof name) < 0) {
 perror("binding datagram socket");
 exit(1);
 }

 /* Find and output the corresponding port number. */
 length = sizeof(name);
 if (getsockname(sock, (struct sockaddr *)&name,
 &length) < 0) {
 perror("getting socket name");
 exit(1);
 }
 printf("Socket port #%d\n", ntohs(name.sin_port));
 /* Read from the socket. */
 peerlen=sizeof peer;
 if (recvfrom(sock, buf, 1024, (struct sockaddr *)&peer, &peerlen) < 0)
 perror("receiving datagram packet");
 printf("-->%s\n", buf);
 close(sock);
 exit(0);
}

Example 2: sending datagrams

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define DATA "The sea is calm, the tide is full . . ."

U26110-J-Z125-3-76 33

SOCKETS(POSIX) basics Connectionless communications (examples)

/*
 * This program sends a datagram to a receiver whose name is passed via
 * the arguments in the command line. The command format is as follows:
 * program_name host_name port_number
 */

main(argc, argv)
 int argc;
 char *argv[];
{
 int sock;
 struct sockaddr_in name;
 struct hostent *hp;
 /* Create socket over which data is to be sent */
 sock = socket(AF_INET, SOCK_DGRAM, 0);
 if (sock < 0) {
 perror("opening datagram socket");
 exit(1);
 }

 /*
 * Construct the name of the socket over which data is to be sent
 * without using wildcards. gethostbyname returns a structure
 * containing the Internet address of the specified host. The
 * port number is taken over from the command line.
 */
 hp = gethostbyname(argv[1]);
 if (hp == 0) {
 fprintf(stderr, "%s: unknown host\n", argv[1]);
 exit(2);
 }
 memcpy((char *)&name.sin_addr, (char *)hp->h_addr,
 hp->h_length);
 name.sin_family = AF_INET;
 name.sin_port = htons(atoi(argv[2]));
 /* Send message. */
 if (sendto(sock, DATA, sizeof DATA , 0,
 (struct sockaddr *)&name, sizeof name) < 0)
 perror("sending datagram message");
 close(sock);
 exit(0);
}

34 U26110-J-Z125-3-76

Closing a socket SOCKETS(POSIX) basics

2.9 Closing a socket

If you no longer need a socket, you can close its descriptor with the close() function:

close(s);

This function is also part of the basic scope of the POSIX interface (see page 129 and the
manual “C Library Functions (BS2000/OSD) for POSIX Applications”).

U26110-J-Z125-3-76 35

SOCKETS(POSIX) basics Multiplexing input/output

2.10 Multiplexing input/output

It is often meaningful to distribute inputs and outputs over several sockets. You use the
select() or the poll() function for this type of input/output multiplexing. A program can monitor
several connections simultaneously using these functions.

The following program extract illustrates using select().

#include <sys/time.h>
#include <sys/types.h>
#include <sys/select.h>
 ...
fd_set readmask, writemask, exceptmask;
struct timeval timeout;
 ...
select(nfds, &readmask, &writemask, &exceptmask, &timeout);

The parameters required by select() are three pointers to one bit mask each which represent
a set of socket descriptors:

– select() uses the bit mask passed with readmask to test which sockets data can be read
from.

– select() uses the bit mask passed with writemask to test which sockets data can be
written to.

– select() uses the bit mask passed with exceptmask to test which sockets have an
exception pending.

The nfds parameter specifies how many bits or descriptors are to be tested: select() tests bits
0 to nfds-1 in each bit mask.
If you are not interested in one of the pieces of information (read, write or pending excep-
tions), you should pass the null pointer with the select() call for the parameter concerned.

The bit masks which represent the descriptor sets are stored as bit fields in integer strings.
The size of the bit fields is defined via the FD_SETSIZE constant. FD_SETSIZE is defined
in <sys/select.h> with a default value that is at least as large as the maximum number of
descriptors supported by the system.

You can modify the bit masks with macros. You should, in particular, set the bit masks to 0
before modifying them. The bit mask manipulation macros are described on page 143 in
the functional description of select().

You can use the timeout parameter to define a timeout value, if the selection process is to
be limited to a predefined time. If you pass the null pointer with timeout, the execution of
select() blocks for an unspecified time.
You can set polling by passing timeout a pointer to a timeval variable whose components are
all set to 0.

36 U26110-J-Z125-3-76

Multiplexing input/output SOCKETS(POSIX) basics

After successful execution, the value returned by select() specifies the number of selected
descriptors. The bit masks then indicate:

– which descriptors are ready for reading
– which descriptors are ready for writing
– which descriptors have exceptions pending

If select() terminates with a timeout, it returns the value 0. However, the bit masks have
already been updated.
If select() terminates with an error, it returns the value -1 and the appropriate error code in
errno. The bit masks are then unchanged.

After executing select(), you can use the FD_ISSET(fd, &mask) macro call to test the status
of a descriptor fd. The macro returns a value not equal to 0 if fd is a member of bit mask
mask, otherwise the value 0.

You can determine whether connection requests to a socket fd are waiting for acceptance
by accept() by testing the read readiness of socket fd.
To do this, you call select() and then the FD_ISSET (fd, &mask) macro. If FD_ISSET returns
a value not equal to 0, this indicates read readiness of socket fd: i.e. a connection request
is pending on socket fd.

U26110-J-Z125-3-76 37

SOCKETS(POSIX) basics Multiplexing input/output

Example: using select() to test for pending connection requests

Any process can use the following program code to read data from two sockets. The timeout
value is set to five seconds.
The example program is only valid for the communications domain AF_INET. If it is modified
according to the information in the sections “Socket addressing” on page 13 and “Creating
a socket” on page 16, it is also valid for the AF_INET6 domain.

#include <sys/select.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1
#define TESTPORT 2222

/*
 * This program uses select to test whether someone is trying to set up
 * a connection and then calls accept.
 */

main()
{
 int sock, length;
 struct sockaddr_in server;
 int msgsock;
 char buf[1024];
 int rval;
 fd_set ready;
 struct timeval to;
 /* Create socket. */
 sock = socket(AF_INET, SOCK_STREAM, 0);
 if (sock < 0) {
 perror("opening stream socket");
 exit(1);
 }

/* Assign the socket a name using wildcards */
 server.sin_family = AF_INET;
 server.sin_addr.s_addr = htonl(INADDR_ANY);
 server.sin_port = htons(TESTPORT);
 if (bind(sock, (struct sockaddr *)&server,
 sizeof server) < 0) {
 perror("binding stream socket");
 exit(1);
 }

38 U26110-J-Z125-3-76

Multiplexing input/output SOCKETS(POSIX) basics

/* Find and output corresponding port number */
 length = sizeof server;
 if (getsockname(sock, (struct sockaddr *)&server,
 &length) < 0) {
 perror("getting socket name");

exit(1);
}

printf("Socket port #%d\n", ntohs(server.sin_port));

 /* Start acceptance of connections. */
 listen(sock, 5);
 do {
 FD_ZERO(&ready);
 FD_SET(sock, &ready);
 to.tv_sec = 5;
 to.tv_usec=0;
 if (select(sock + 1, &ready, (fd_set *)0,
 (fd_set *)0, &to) < 0) {
 perror("select");
 continue;
 }
 if (FD_ISSET(sock, &ready)) {
 msgsock = accept(sock, (struct sockaddr *)0,
 (int *)0);
 if (msgsock == -1)
 perror("accept");
 else do {
 memset(buf, 0, sizeof buf);
 if ((rval = read(msgsock, buf, 1024)) < 0)
 perror("reading stream message");
 else if (rval == 0)
 printf("Ending connection\n");
 else
 printf("-->%s\n", buf);
 } while (rval > 0);
 close(msgsock);
 } else
 printf("Do something else\n");
 } while (TRUE);
 exit(0);
}

U26110-J-Z125-3-76 39

SOCKETS(POSIX) basics Interaction of the socket functions

2.11 Interaction of the SOCKETS interface functions

The two following figures illustrate the interaction between the functions of the
SOCKETS(POSIX) interface. The separate functions are described in detail in section
“Functions” on page 76.

Figure 2 illustrates the interaction of the SOCKETS(POSIX) interface functions with stream
sockets (SOCK_STREAM) in the Internet domains AF_INET and AF_INET6.

Figure 2: Interaction of the SOCKETS(POSIX) interface functions with stream sockets.

Protocol: TCP
connection-oriented

CLIENT SERVER

socket() (SOCK_STREAM)

[bind()]

send(),sendmsg(),write()

recv(),recvmsg(),read()

[shutdown()]

close()

connect()

socket() (SOCK_STREAM)

bind()

listen()

send(),sendmsg(),write()

recv(),recvmsg(),read()

[shutdown()]

close()

accept()

40 U26110-J-Z125-3-76

Interaction of the socket functions SOCKETS(POSIX) basics

Figure 3 illustrates the interaction of the SOCKETS(POSIX) interface functions with
datagram sockets (SOCK_DGRAM) in the Internet domains AF_INET and AF_INET6.

Figure 3: Interaction of the SOCKETS(POSIX) interface functions with datagram sockets.

Protocol: UDP

connectionless quasi-connection-oriented

socket() (SOCK_DGRAM)

bind()

sendto(),sendmsg()

recvfrom(),recvmsg()

close()

socket() (SOCK_DGRAM)

bind()

send(),write(),sendmsg()

recv(),read(),recvmsg()

close()

connect()

U26110-J-Z125-3-76 41

3 Address conversion with SOCKETS(POSIX)
Network addresses have to be determined and created to enable processes to commu-
nicate with each other over sockets. The SOCKETS library provides various utility functions
and macros for this purpose and these are described in this chapter.
All utility functions are described in detail in chapter “SOCKETS(POSIX) user functions” on
page 69.

Before a client and server can communicate with each other, the client has to determine the
service on the remote host. The following address conversion stages are required to
determine the service concerned:

1. A service and a host are each assigned names for better legibility at the user program
level, e.g. the service login on host Monet.

2. The system converts a service name into a service number (port number) and a host
name into a network address (IPv4 or IPv6 address).

3. Using the port number and IPv4 or IPv6 address, the system determines the route to
the host on which the service is provided.

It is not meaningful to use the host name to get the location, i.e. physical address of a host.
Lower level network services should locate a host at the time that another host wishes to
communicate with it. This method makes it possible to change the physical location of a
host without affecting addressing by the communicating partner.

The following conversion functions are available:

– host names to network addresses and vice versa
– network names to network numbers
– protocol names to protocol numbers
– service names to port numbers and the relevant protocol for communicating with the

server

If you wish to use one of these functions, you have to include the <netdb.h> file.
Program examples which use the conversion functions described below can be found in
chapter “Client/server model with SOCKETS(POSIX)” on page 57.

42 U26110-J-Z125-3-76

Host names / network addresses Converting

3.1 Converting host names into network addresses and vice
versa

There are special socket functions for converting host names to network addresses and
vice versa in the AF_INET and AF_INET6 address families.

Socket functions for converting addresses in the AF_INET and AF_INET6 address
families

The getipnodebyname() function converts a host name to an IPv4 or IPv6 address. A host
name is passed when getipnodebyname() is called.

The getipnodebyaddr() function converts an IPv4 or IPv6 address to a host name. An IPv4
or IPv6 address is passed when getipnodebyaddr() is called.

The inet_ntop() function converts an Internet host name to a character string. This character
string is returned as follows:

– in hexadecimal colon notation for AF_INET6
– in decimal dotted notation for AF_INET

The inet_pton() function converts an Internet host address in printable representation

– from a character string in decimal dotted notation to a binary IPv4 address (AF_INET).

– from a character string in hexadecimal colon notation to a binary IPv6 address
(AF_INET6).

Abbreviated notation using two consecutive colons “::” is not supported for AF_INET6.

U26110-J-Z125-3-76 43

Converting Host names / network addresses

Socket functions address conversion which are only supported in AF_INET

The gethostbyname() function converts a host name to an IPv4 address. A host name is
passed when gethostbyname() is called.

The gethostbyaddr() function converts an IPv4 address to a host name. An IPv4 address is
passed when gethostbyaddr() is called.

gethostbyname() and gethostbyaddr() return a pointer to an object of data type struct hostent as
their result.

The hostent structure is declared in <netdb.h> as follows:

struct hostent {
 char *h_name; /* official host name */
 char **h_aliases; /* alias list */
 int h_addrtype; /* address type */
 int h_length; /* length of the address (in bytes) */
 char **h_addr_list; /* list of addresses for the host, */

/* terminated with the null pointer*/
};
#define h_addr h_addr_list[0] /* first address, network byte order */

The hostent object returned by gethostbyname() and gethostbyaddr() always contains the
following information:

– the official name of the host
– a list of the host aliases
– address type (domain)
– a list of addresses of variable length, terminated with the null pointer

The address list is required because a host normally has several addresses which are all
assigned to the same host name. h_addr ensures backward compatibility and is defined as
the first address in the address list of the hostent structure.

The inet_ntoa() function converts an IPv4 host address to a character string in accordance
with the normal Internet dotted notation.

44 U26110-J-Z125-3-76

Protocol names Converting

3.2 Converting protocol names into protocol numbers

The getprotobyname() function converts a protocol name into a protocol number. The
protocol name is passed when getprotobyname() is called.

getprotobyname() returns a pointer to an object of data type struct protoent as its result.
The protoent structure is declared as follows:

struct protoent {
 char *p_name; /* Official protocol name */
 char **p_aliases; /* Alias list */
 int p_proto; /* Protocol number */
};

U26110-J-Z125-3-76 45

Converting Service names / port numbers

3.3 Converting service names into port numbers and vice versa

A service is expected to be on a specific port and use just one communications protocol.
This view is consistent within the Internet domain but does not apply in some other
networks. A service may also be available on several ports, in which case higher level
library functions have to be forwarded or extended.

The getservbyname() function converts a service name into a port number. The service name
and, optionally, the name of a qualifying protocol are passed when getservbyname() is called.
The getservbyport() function converts a port number into a service name. The port number
and, optionally, the name of a qualifying protocol are passed when getservbyport() is called.

getservbyname() and getservbyport() return a pointer to an object of data type struct servent as
their result.
The servent structure is declared as follows:

struct servent {
 char *s_name; /* Official name of the service */
 char **s_aliases; /* Alias list */
 int s_port; /* Number of the port on which the service lies*/
 char *s_proto; /* Protocol used */
};

Example

The following program code returns the port number of the telnet service which uses the
TCP protocol:

struct servent *sp;
...

sp = getservbyname("telnet", "tcp");

46 U26110-J-Z125-3-76

Byte order Converting

3.4 Converting the byte order

If you use the address conversion functions described above, you will seldom have to
directly handle addresses in an Internet user program. You can then develop services that
are independent of networks to a large degree. However, some network dependency still
remains as the IPv4 or IPv6 address has to be specified in a user program if a name is
assigned to a service or socket.

In addition to the library functions for converting names to addresses, there are also macros
which simplify handling names and addresses.

The host byte order and network byte order differ in some architectures. Because of this,
programs sometimes have to change the byte order. The macros summarized in table 1
convert bytes and integers from host byte order to network byte order and vice versa.

The byte order conversion macros are needed because the operating system expects the
IPv4 addresses in network byte order. The library functions which return network addresses
supply them in network byte order, allowing them to be simply copied into the structures
available to the system. You should therefore only encounter byte order problems when
interpreting network addresses.

For IPv6 addresses, there is no definition of a difference between host byte order and
network byte order, and there is therefore no corresponding conversion function.

The host and network byte orders are identical in BS2000/OSD. The macros listed in table 1
are therefore defined as null macros (macros without contents). However, it is strongly
recommended that you use the macros for creating portable programs.

Call Meaning

htonl(val)
htons(val)
ntohl(val)
ntohs(val)

Convert 32-bit fields from host byte order to network byte order
Convert 16-bit fields from host to network byte order
Convert 32-bit fields from network to host byte order
Convert 16-bit fields from network to host byte order

Table 1: Library macros for converting byte orders

U26110-J-Z125-3-76 47

Converting Addresses (example)

3.5 Example of address conversion

The client program code of the remote login shown below demonstrates address conversion.

#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(argc, argv)
 int argc;
 char *argv[];
{
 struct sockaddr_in server;
 struct servent *sp;
 struct hostent *hp;
 int s;

 sp = getservbyname("login", "tcp");
 if (sp == NULL) {
 fprintf(stderr, "rlogin: tcp/login: unknown service\n");
 exit(1);
 }
 hp = gethostbyname(argv[1]);
 if (hp == NULL) {
 fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);
 exit(2);
 }
 memset((char *)&server, 0, sizeof server);
 memcpy((char *)&server.sin_addr, hp->h_addr, hp->h_length);
 server.sin_family = hp->h_addrtype;
 server.sin_port = sp->s_port;
 s = socket(AF_INET, SOCK_STREAM, 0);
 if (s < 0) {
 perror("rlogin: socket");
 exit(3);
 }

 /* Connect does the bind for us */
 if (connect(s, (struct sockaddr *)&server, sizeof server) < 0) {
 perror("rlogin: connect");
 exit(5);
 }

 exit(0);
}

48 U26110-J-Z125-3-76

Addresses (example) Converting

The example program is only valid for the communications domain AF_INET.
It is also valid for the AF_INET6 domain if you make the following changes:

– server is of the type struct sockaddr_in6

– struct sockaddr_in6 is supplied with a value from the getipnodebyname socket function (not
from gethostbyname as for AF_INET)

You will find a more detailed description in the sections “Socket addressing” on page 13 and
“Creating a socket” on page 16.

U26110-J-Z125-3-76 49

4 Extended SOCKETS(POSIX) functions
The procedures described in the preceding chapters will suffice in most cases for devel-
oping distributed applications. However, it may sometimes be necessary to make additional
use of the following SOCKETS(POSIX) features:

● non-blocking sockets

● broadcast messages

● socket options

● multicast messages

● interrupt-controlled socket input/output

50 U26110-J-Z125-3-76

Non-blocking sockets Extended SOCKETS(POSIX) functions

4.1 Non-blocking sockets

With non-blocking sockets, the accept(), connect() and all input/output functions are termi-
nated if they cannot be executed immediately. The function concerned then returns an error
code. This means that, in contrast to normal sockets, non-blocking sockets prevent a
process from being interrupted because it has to wait for termination of accept(), connect() or
input/output functions. You can mark a socket created with s=socket() as non-blocking with
the fcntl() function as follows:

#include <fcntl.h>
...
int s;
 ...
s = socket(AF_INET, SOCK_STREAM, 0);
 ...
if (fcntl(s, F_SETFL, O_NONBLOCK) < 0) {
 perror("fcntl(s, F_SETFL, O_NONBLOCK) <0");
 exit(1);
}
 ...

The fcntl() function is part of the basic scope of the POSIX interface. fcntl() is described on
page 130 and in the manual “C Library Functions (BS2000/OSD) for POSIX Applications”.

You should particularly watch out for the EWOULDBLOCK error when executing the
accept(), connect() or input/output functions on non-blocking sockets. EWOULDBLOCK is
stored in the global errno variable and occurs if a function which normally blocks is executed
on a non-blocking socket.

The accept() and connect() functions as well as all read and write operations can return the
EWOULDBLOCK error code. Processes should therefore be prepared to handle such
return values: for example, even if the send() function is not executed completely, it may still
be meaningful with stream sockets to execute at least part of the write operations. In this
case, send() only considers the data that can be sent immediately. The return value
indicates the amount of data already sent.

U26110-J-Z125-3-76 51

Extended SOCKETS(POSIX) functions Broadcast messages

4.2 Broadcast messages

When using a datagram socket, it is possible to send broadcast packets to many of the
networks that are connected to the system. The network itself must support broadcasts as
the system does not support software broadcast simulation. Broadcast messages can load
the network heavily as they force all hosts in the network to service them.

Broadcasting is only provided in the AF_INET address family since there is no broadcast
mechanism in IPv6.

Broadcasting generally used for one of the two following reasons:

– A resource whose address is initially unknown, is to be found in a local network.

– Important functions, such as the routing function, want to send information to all reach-
able hosts.

To send a broadcast message, a datagram socket must first be created:

s = socket(AF_INET, SOCK_DGRAM, 0);

Then the socket is marked as being allowed to send broadcasts:

int on = 1;
setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof on);

Finally, the socket is assigned a port number:

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, (struct sockaddr *)&sin, sizeof sin);

The destination address to which the broadcast message is to be sent depends on the
network(s) to which the message is to be sent. The Internet domain supports a short name
for broadcasts in the local network, the address INADDR_BROADCAST (defined in
<netinet/in.h>).

Familiarity with the topology of the networks to which the host is connected is required to
make up a list of all hosts which can be reached by a broadcast.

As this information should be stored host-independent and may possibly not be available,
BS2000/OSD supports a method of obtaining the information from the system data struc-
tures.

52 U26110-J-Z125-3-76

Broadcast messages Extended SOCKETS(POSIX) functions

For ipv4, The ioctl() SIOCGIFCONF call returns the network configuration of a host as a
simple structure ifconf. This structure contains a data area comprising a list of ifreq struc-
tures. The list contains an ifreq structure for each address domain supported by each
network interface via which the host is connected.

The ifreq structure is declared in <net/if.h> as follows:

struct ifreq {
#define IFNAMSIZ 16
 char ifr_name[IFNAMSIZ]; /* if name, e.g., "en0" */
 union {
 struct sockaddr ifru_addr;
 struct sockaddr ifru_dstaddr;
 char ifru_oname[IFNAMSIZ]; /* other if name */
 struct sockaddr ifru_broadaddr;
 short ifru_flags;
 int ifru_metric;
 char ifru_data[1]; /* interface-dependent data */
 char ifru_enaddr[6];
 } ifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr /* address */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */
#define ifr_oname ifr_ifru.ifru_oname /* other if name */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
#define ifr_flags ifr_ifru.ifru_flags /* flags */
#define ifr_metric ifr_ifru.ifru_metric /* metric */
#define ifr_data ifr_ifru.ifru_data /* for use by interface */
#define ifr_enaddr ifr_ifru.ifru_enaddr /* ethernet address */
};

The following program code returns the ipv4 interface configuration:

struct ifconf ifc;
int ifn;
char *buf;

if (ioctl(s, SIOCGIFNUM, (char *)&ifn) < 0) {
 ...
}
ifc.ifc_len = ifn * sizeof (struct ifreq);
if ((buf = malloc(ifc.ifc_len)) == NULL) {
 ...
}
ifc.ifc_buf = buf;
if (ioctl(s, SIOCGIFCONF, (char *)&ifc) < 0) {
 ...
}

U26110-J-Z125-3-76 53

Extended SOCKETS(POSIX) functions Broadcast messages

After calling ioctl(), buf contains a list of ifreq structures: one ifreq structure for each network
to which the host is connected. These ifreq structures can initially be sorted according to
interface names and then to supported address families. The ifc.ifc_len component
specifies the size of the memory area (in bytes) required by the ifreq structures.

Each ifreq structure contains a record of interface flags. These interface flags indicate
whether the network belonging to the interface concerned is active or not, or whether it is a
broadcast network, etc.

The SIOCGIFFLAGS control function specified in the ioctl() call searches through these
flags for an interface that is specified via an ifreq structure as follows:

struct ifreq *ifr;

ifr = ifc.ifc_req;

for (n=ifc.ifc_len/sizeof (struct ifreq);
 --n >= 0; ifr++) {
 /*
 * It must be ensured that no interface is used that belongs to
 * an address domain other than the desired one.
 */
 if (ifr->ifr_addr.sa_family != AF_INET)
 continue;
 if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {
 ...
 }
 /*
 * Trivial cases are skipped.
 */
 if ((ifr->ifr_flags & IFF_UP) == 0 ||
 (ifr->ifr_flags & IFF_LOOPBACK) ||
 (ifr->ifr_flags &
 (IFF_BROADCAST) == 0)
 continue;
}

As soon as the flags have been found, the Broadcast address has to be determined. In
broadcast networks, you use SIOCGIFBRDADDR in an ioctl() call for this.

struct sockaddr dst;
if (ifr->ifr_flags & IFF_BROADCAST) {
 if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {
 ...
 }
 memcpy((char *) &dst, (char *) &ifr->ifr_broadaddr,
 sizeof ifr->ifr_broadaddr);
}

54 U26110-J-Z125-3-76

Broadcast messages Extended SOCKETS(POSIX) functions

After obtaining the broadcast or destination address (now in dst) with the ioctl() call, you can
call the sendto() function as follows:

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof dst);

In the above loop, sendto() is run for each interface connected to the host that supports
broadcast or point-to-point addressing. Similar program code can be used if a process only
wishes to send broadcast messages to a specific network. However, the correct destination
address must be found in the loop.

Because the sending datagram socket must have a name assigned to it, received broadcast
messages always contain the address and port number of the sender.

 The BCAM BCOPTION command can be used to control whether a host may
receive

broadcast messages (see the “openNet Server V3.0 (BS2000/OSD)” manual).
However, this setting can neither be influenced nor determined with the setsockopt()
and getsockopt() socket functions. It must therefore be ensured when using broad-
casting that this option is set on the hosts concerned.

i

U26110-J-Z125-3-76 55

Extended SOCKETS(POSIX) functions Socket options

4.3 Socket options

You can use the setsockopt() and getsockopt() functions to set various options for sockets or
get the current value.

For example, you can set options for the following purposes:

– to identify a socket for sending broadcast messages

– to direct a socket to stop connection shutdown until all data is transferred

The general form of the calls are as follows:

setsockopt(s, level, optname, optval, optlen);

getsockopt(s, level, optname, optval, optlenp);

s designates the socket for which the option is to be set or queried.
level defines the protocol level to which the option belongs. This is normally the socket level,
indicated by the symbolic constant SOL_SOCKET. SOL_SOCKET is defined in
<sys/socket.h>.

The socket option is specified in optname and is also a symbolic constant defined in
<sys/socket.h>.

optval is a pointer to the option value. You use optval with setsockopt() to enable/disable the
optname option for socket s. With getsockopt(), optval informs you as to whether the optname
option is enabled or disabled for socket s.

optlen defines the length of the option value, as with setsockopt().
optlenp is a pointer which defines the size of the memory area to which optval points when
getsockopt() is called. After returning from getsockopt(), optlenp specifies the current length of
the option value returned in *optval.

4.4 Multicast messages (AF_INET)

Multicast messages can be sent and received if you use datagram sockets.

In the AF_INET address family, the transfer of multicast messages is supported by the
following socket options:

● IP_ADD_MEMBERSHIP: log on to a multicast group

● IP_DROP_MEMBERSHIP: log off from a multicast group

● IP_MULTICAST_TTL: display or define the multicast hop limit

56 U26110-J-Z125-3-76

Interrupt-controlled socket I/O Extended SOCKETS(POSIX) functions

4.5 Interrupt-controlled socket input/output

The SIGIO signal informs a process as soon as a socket (or generally a file descriptor) has
data that can be read.

You have to include the following in the basic program code to enable a process to react to
the SIGIO signal:

1. Define a signal handling function using the sigaction() function (see the manual
“C Library Functions (BS2000/OSD) for POSIX Applications”).

2. Set either the process number or the process group number to allow your process or
group process number to be informed of pending inputs. Set the process or process
group number with the fcntl() function. The default process group of a socket is group 0.

3. You must enable asynchronous reporting of pending input/output requests with an
additional fcntl() call.

The following program code illustrates how a process is prepared for receiving SIGIO
signals. The process is informed asynchronously when data can be read or written by
calling a user-defined signal() function for handling SIGIO.

#include <fcntl.h>
#include <sys/file.h>
 ...
int io_handler();
 ...
signal(SIGIO, io_handler);

/* Sets the process for receiving the SIGIO signals. */

if (fcntl(s, F_SETOWN, getpid()) < 0) {
perror("fcntl F_SETOWN");
exit(1);
}

/* Allows reception of asynchronous I/O signals */

if (fcntl(s, F_SETFL, FASYNC) < 0) {
perror("fcntl F_SETFL, FASYNC");
exit(1);
}

U26110-J-Z125-3-76 57

5 Client/server model with SOCKETS(POSIX)
The client/server model is the most commonly used model for developing distributed appli-
cations. In the client/server model, client applications request services from a server
process. This implies the asymmetry when setting up connections between a client and
server as described in chapter “SOCKETS(POSIX) basics” on page 7. The present chapter
uses examples to describe the interaction between the client and server in more detail and
also illustrates some problems which may occur when developing client/server applications,
together with their solutions.

Before a service can be granted and accepted, the communication between client and
server needs a set of agreements known to both ends. These agreements are defined in a
protocol that must be implemented on both ends of a connection. The protocol can be
symmetric or asymmetric, depending on the conditions. In a symmetric protocol, both ends
can take on the role of either client or server. With an asymmetric protocol, one end is fixed
as the server and the other end as the client.

Regardless of whether a symmetric or asymmetric protocol is used for a service, when a
service is accessed there is a client and a server.

The following are described in the sections below:

● Connection-oriented server

● Connection-oriented client

● Connectionless server

● Connectionless client

58 U26110-J-Z125-3-76

Connection-oriented server Client/server model with SOCKETS(POSIX)

5.1 Connection-oriented server

The server normally waits on a known address for service requests. The server remains
inactive until a client sends a connection request to the address of the server. The server
then “awakes” and serves the client by executing the relevant actions for the client request.
The server is accessed via the known Internet address.

Programming of the main program loop is shown in the following example.
The server uses the following socket or POSIX interface functions in the example program:

– socket(): create socket
– bind(): assign a socket a name
– listen(): “listen” to a socket for connection requests
– accept(): accept a connection on a socket
– recv(): read data from a socket
– close(): close socket

Example: connection-oriented server

#include <stdio.h>

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

main(argc, argv)
 int argc;
 char *argv[];
{
#define TESTPORT 2222

 int sock, length;
 struct sockaddr_in server;
 int msgsock;
 char buf[1024];
 int rval;

 /* Create socket */
 sock = socket(AF_INET, SOCK_STREAM, 0);
 if (sock < 0)
 { perror("Create stream socket");
 exit(1);
 }

U26110-J-Z125-3-76 59

Client/server model with SOCKETS(POSIX) Connection-oriented server

 /* Assign the socket a name */
 server.sin_family = AF_INET;
 server.sin_addr.s_addr = htonl(INADDR_ANY);
 server.sin_port = htons(TESTPORT);

 if (bind(sock, (struct sockaddr *)&server, sizeof (server)) < 0)
 { perror("Bind stream socket");
 exit(1);
 }

 /* Start acceptance of connection requests */
 listen(sock, 5);

 msgsock = accept(sock, (struct sockaddr *)0, (int *)0);
 if (msgsock == -1)
 { perror("Accept connection");
 exit(1);
 }
 else do {
 memset(buf, 0, sizeof buf);
 if ((rval = recv(msgsock, buf, 1024, 0)) < 0)
 { perror("Reading stream message");
 exit(1);
 }
 if (rval == 0)
 fprintf(stderr, "Ending connection\n");
 else
 fprintf(stdout, "->%s\n",buf);
 } while (rval != 0);

 close(msgsock);
 close(sock);
}

The server uses the socket() function to create a communications endpoint (socket) and the
corresponding descriptor. The server socket is assigned a defined port number with the
bind() function. It can then be addressed in the network via this port number.

The server uses the listen() function to determine whether connection requests are pending
and it can then accept them with accept(). The value returned by accept() is tested to ensure
that the connection was successfully set up. As soon as the connection is set up, data is
read from the socket with the recv() function. The server closes the socket with the close()
function.

The example program is only valid for the communications domain AF_INET.
If it is modified according to the information in the sections “Socket addressing” on page 13
and “Creating a socket” on page 16, it is also valid for the AF_INET6 domain.

60 U26110-J-Z125-3-76

Connection-oriented client Client/server model with SOCKETS(POSIX)

5.2 Connection-oriented client

The client side was shown in the example on page 58. You can clearly see the separate,
asymmetric roles of the client and server in the program code. The server waits as a passive
instance for connection requests from the client while the client initiates a connection as the
active instance.

The steps executed by the remote login client process are looked at more closely in the
following sections. As in the server process, the service definition for a remote login must first
be determined.

In the example program, the client uses the following socket or POSIX interface functions:

– socket(): create socket
– setsockopt(): set options for the socket
– gethostbyname(): get the host name entry
– connect(): request a connection on the socket
– send(): write data to the socket
– close(): close socket

Example: connection-oriented client

#include <stdio.h>

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/uio.h>

main(argc, argv)
 int argc;
 char *argv[];
{
#define TESTPORT 2222
#define DATA "Here's the message ..."

 int sock, length;
 struct sockaddr_in server;
 struct hostent *hp, *gethostbyname();
 char buf[1024];
 struct linger ling;

 ling.l_onoff = 1;
 ling.l_linger = 60;

U26110-J-Z125-3-76 61

Client/server model with SOCKETS(POSIX) Connection-oriented client

 /* Create socket */
 sock = socket(AF_INET, SOCK_STREAM, 0);
 if (sock < 0)
 { perror("Create stream socket");
 exit(1);
 }

 /* Fill in the address structure */
 server.sin_family = AF_INET;
 server.sin_port = htons(TESTPORT);
 hp = gethostbyname(argv[1]);
 if (hp == 0)
 { fprintf(stderr,"%s: unknown host\n", argv[1]);
 exit(1);
 }
 memcpy((char *) &server.sin_addr, (char *)hp->h_addr,
 hp->h_length);

 /* Start the connection */
 if (connect(sock, (struct sockaddr *)&server,
 sizeof(server)) < 0)
 { perror("Connect stream socket");
 exit(1);
 }

 /* Write to the socket */
 if (send(sock, DATA, sizeof DATA, 0) < 0)
 { perror("Write on stream socket");
 exit(1);
 }

 close(sock);
}

The client creates a communications endpoint (socket) and the corresponding descriptor
with the socket() function.
The client gets the address of the host (the host name is passed as a parameter) with
gethostbyname(). A connection must then be set up to the server for the desired host. The
client initializes the address structure for this and the connection is set up with connect().
After connection setup, data is written to the socket with the send() function.
The created socket is closed with the close() function.

The example program is only valid for the communications domain AF_INET.
If it is modified according to the information in the sections “Socket addressing” on page 13
and “Creating a socket” on page 16, it is also valid for the AF_INET6 domain.
Please also make sure that you use the getipnodebyname() function (instead of
gethostbyname() as for AF_INET).

62 U26110-J-Z125-3-76

Connectionless server Client/server model with SOCKETS(POSIX)

5.3 Connectionless server

Most services work connection-oriented, but some are based on using datagram sockets
and work connectionless.

The server uses the following socket or POSIX interface functions in the example program:

– socket(): create socket
– bind(): assign a socket a name
– recvfrom(): read a message from a socket
– close(): close socket

The program is shown in two variants:

– In the first variant (example1), the program is terminated when a message arrives
(read()).

– In the second variant (example 2), the program waits in an endless loop for further
messages after a message has been read.

Example 1: connectionless server without a program loop

#include <stdio.h>

#include <sys/socket.h>
#include <ioctl.h>
#include <signal.h>
#include <netinet/in.h>
#include <netdb.h>

#define TESTPORT 2222

/*
 * This program creates a datagram socket, assigns it a defined
 * port and then reads data from the socket.
 */

main()
{
 int sock;
 int length;
 struct sockaddr_in server;
 char buf[1024];

U26110-J-Z125-3-76 63

Client/server model with SOCKETS(POSIX) Connectionless server

 /* Create the socket to be read from. */
 sock = socket(AF_INET, SOCK_DGRAM, 0);

 if (sock < 0)
 { perror("Socket datagram");
 exit(1);
 }

 /* Assign the server "server" a name, using wildcards */
 server.sin_family = AF_INET;
 server.sin_addr.s_addr = htonl(INADDR_ANY);
 server.sin_port = htons(TESTPORT);

 if (bind(sock, (struct sockaddr *)&server, sizeof server) < 0)
 { perror("Bind datagram socket");
 exit(1);
 }

 /* Start reading from the server */
 length = sizeof(server);
 memset(buf,0,sizeof(buf));
 if (recvfrom(sock, buf, 1024,0,
 (struct sockaddr *)&server, &length) < 0)
 { perror("Recvfrom");
 exit(1);
 }
 else
 printf("->%s\n",buf);

 close(sock);
}

64 U26110-J-Z125-3-76

Connectionless server Client/server model with SOCKETS(POSIX)

Example 2: connectionless server with a program loop

#include <sys/socket.h>
#include <ioctl.h>
#include <signal.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TESTPORT 2222

/* This program creates a datagram socket, assigns it a defined
 * port and then reads data from the socket. */

main()
{
 int sock;
 int length;
 struct sockaddr_in server;
 char buf[1024];

 /* Create the socket to be read from. */
 sock = socket(AF_INET, SOCK_DGRAM, 0);
 if (sock < 0)
 { perror("Socket datagram");
 exit(1);
 }

 /* Assign the server "server" a name using wildcards */
 server.sin_family = AF_INET;
 server.sin_addr.s_addr = htonl(INADDR_ANY);
 server.sin_port = htons(TESTPORT);

 if (bind(sock, (struct sockaddr *)&server, sizeof server) < 0)
 { perror("Bind datagram socket");
 exit(1);
 }

 /* Start reading from the server */
 length = sizeof(server);
 for (;;)
 {

 memset(buf,0,sizeof(buf));
 if (recvfrom(sock, buf, sizeof(buf),0,
 (struct sockaddr *)&server, &length) < 0)

U26110-J-Z125-3-76 65

Client/server model with SOCKETS(POSIX) Connectionless server

 { perror("Recvfrom");
 exit(1);
 }

 else
 printf("->%s\n",buf);
 }

 /* Since this program runs in an endless loop, the socket
 * “sock” is never explicitly closed. However, all sockets
 * are closed automatically if the process is terminated or
 * reaches its normal end.
 */
}

The following steps are executed in the program example:

– The server creates a communications endpoint (socket) and corresponding descriptor
with the socket() function.

– The server socket is assigned a defined port number with the bind() function so that it
can be addressed from the network via this port number.

– The recvfrom() function can be used to read from a socket of type SOCK_DGRAM. The
length of the read message is returned as the result.

– If no message is available, the process is blocked until a message arrives.

The example programs are only valid for the communications domain AF_INET.
If they are modified according to the information in the sections “Socket addressing” on
page 13 and “Creating a socket” on page 16, they are also valid for the AF_INET6 domain.

66 U26110-J-Z125-3-76

Connectionless client Client/server model with SOCKETS(POSIX)

5.4 Connectionless client

The client uses the following socket or POSIX interface functions in this program example:

– socket(): create socket
– gethostbyname(): get the host name entry
– sendto(): send a message to a socket
– close(): close socket

Example: connectionless client

#include <stdio.h>

#include <sys/socket.h>
#include <ioctl.h>
#include <signal.h>
#include <netinet/in.h>
#include <netdb.h>

#define DATA " The sea is calm, the tide is full ..."
#define TESTPORT 2222

/*
 * This program sends a datagram to a receiver whose name is passed
 * as an argument in the command line. The command format is:
 * progname hostname
 */

main(argc,argv)
 int argc;
 char *argv[];

{
 int sock;
 struct sockaddr_in to;
 struct hostent *hp, *gethostbyname();

 /* Create the socket to be sent on. */
 sock = socket(AF_INET, SOCK_DGRAM, 0);
 if (sock < 0)
 { perror("Socket datagram");
 exit(1);
 }

U26110-J-Z125-3-76 67

Client/server model with SOCKETS(POSIX) Connectionless client

 /* Construct the name of the socket to be sent on, without using
 * wildcards. gethostbyname returns a structure which contains the
 * network address of the specified host.
 * The port number is taken from the TESTPORT constant.

*/

 hp =gethostbyname(argv[1]);
 if (hp == 0) {
 fprintf(stderr, "%s:unknown host\n", argv[1]);
 exit(1);
 }
 memcpy((char *)&to.sin_addr, (char *)hp->h_addr,hp->h_length);
 to.sin_family = AF_INET;
 to.sin_port = htons(TESTPORT);

 /* Send message. */
 if (sendto(sock, DATA, sizeof DATA, 0,
 (struct sockaddr *)&to, sizeof to) < 0) {
 perror("Sending datagram message");
 exit(1);
 }
 close(sock);
}

The following steps are executed in the program example:

– The client creates a communications endpoint (socket) and corresponding descriptor
with socket().

– The client gets the address of the host with gethostbyname() and the host name is passed
as a parameter.

– Then the address structure is initialized.

– The client sends a datagram with sendto() which returns the number of transferred char-
acters.

– The client closes the socket with close().

The example program is only valid for the communications domain AF_INET.
If it is modified according to the information in the sections “Socket addressing” on page 13
and “Creating a socket” on page 16, it is also valid for the AF_INET6 domain.

Please also make sure that you use the getipnodebyname() function (instead of
gethostbyname() as for AF_INET).

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U26110-J-Z125-3-76 69

6 SOCKETS(POSIX) user functions
This chapter describes the SOCKETS(POSIX) interface functions for BS2000/OSD.

The first thing described is the format in which the separate functions are described. The
subsequent overview collects functions together into task-oriented groups. Finally, all
SOCKETS interface functions are described in alphabetic order.

The functions for handling file descriptors are provided by the POSIX interface. The
functions concerned are read(), readv(), write(), writev(), ioctl(), fcntl() and close() as well as
poll() and select(). These functions are described in the manual “C Library Functions
(BS2000/OSD) for POSIX Applications”. Special points on using these functions with
sockets are described at the end of this chapter on page 128ff.

70 U26110-J-Z125-3-76

Description format SOCKETS(POSIX) user functions

6.1 Description format

The SOCKETS(POSIX) user functions are described in a uniform format. The function
descriptions have the following format:

Function name - brief description of the functionality

#include < ... >
#include < ... >

...

Function syntax

Description

Detailed description of the functionality and parameters.

Return value

List and description of all possible function return values.
Some functions have no return value. The “Return value” section is omitted in such cases
and in the descriptions of external variables.

Errors

Listing and description of the error codes in the external variable errno that can occur with
a faulty call or function. This section may be missing.

Note

Description of terms or information on interaction with other functions, or tips for use. This
section may be missing.

See also

Cross references to function descriptions, files, other manual sections or other manuals.
Reference is made to the manual “C Library Functions (BS2000/OSD) for POSIX Applica-
tions” [1]. This section may be missing.

U26110-J-Z125-3-76 71

SOCKETS(POSIX) user functions Overview of functions

6.2 Overview of functions

The following overview of the SOCKETS interface functions collects several functions
together into task-oriented groups. “[1]” is used in the following overview to refer to the
manual “C Library Functions (BS2000/OSD) for POSIX Applications”.

The columns INET and INET6 indicate the address family (AF_INET and/or AF_INET6) in
which the function involved is supported.

Setting up and shutting down connections over sockets

Function Description See INET INET6

socket() Create socket page 124 x x

bind() Assign a name to a socket page 79 x x

connect() Initiate communication over a socket
(e.g. by a client)

page 82 x x

listen() Test socket for pending connections
(e.g. by a server)

page 114 x x

accept() Accept connection over a socket
(e.g. by a server)

page 77 x x

close() Close socket [1] and
page 129

x x

shutdown() Shut full duplex connection down page 123 x x

socketpair() Create a pair of connected sockets page 126 x

72 U26110-J-Z125-3-76

Overview of functions SOCKETS(POSIX) user functions

Transferring data between two sockets

Receiving information about sockets

Function Description See INET INET6

read(), readv() Receive a message from a socket with a
connection already set up

[1] and
page 141

x x

recv() Receive a message from a socket with a
connection already set up

page 116 x x

recvfrom() Receive a message from a socket page 116 x x

recvmsg() Receive a message from a socket page 116 x x

send() Send a message from socket to socket
over a connection

page 119 x x

sendto() Send a message from socket to socket page 119 x x

sendmsg() Send a message from socket to socket page 119 x x

write(), writev() Send a message from socket to socket
over a connection

[1] and
page 146

x x

poll() Multiplex input/output page 138 x x

select() Multiplex input/output page 143 x x

Function Description See INET INET6

getsockopt() Get socket options page 106 x x

setsockopt() Set socket options page 106 x x

getpeername() Get name of communications partner page 100 x x

getsockname() Get name of socket page 105 x x

U26110-J-Z125-3-76 73

SOCKETS(POSIX) user functions Overview of functions

Test configuration values

Function Description See INET INET6

gai_strerror() Get description of a getaddrinfo()
error code

page 87 x x

getaddrinfo() Get information about host name, host
address and services

page 88 x x

gethostbyaddr() Get names of reachable hosts page 91 x

gethostbyname() Get addresses of reachable hosts page 91 x

gethostname() Get name of current host page 93 x x

getipnodebyaddr() Get host name belonging to an IPv4 or
IPv6 address

page 94 x x

getipnodebyname() Get IPv4 or IPv6 address belonging to a
host name

page 94 x x

getnameinfo() Get host and service name corre-
sponding to IP address and port number

page 96 x x

getnetbyaddr() Get name of a net page 98 x x

getnetbyname() Get net address page 98 x x

getprotobyname() Get number of a protocol page 101 x x

getprotobynumber() Get name of a protocol page 101 x x

getservbyname() Get port number of a service page 103 x x

getservbyport() Get name of a service page 103 x x

sethostent() Open host database page 91 x x

gethostent() Read entry from host database page 91 x x

endhostent() Close host database page 91 x x

setnetent() Open network database page 98 x x

getnetent() Read entry from network database page 98 x x

endnetent() Close network database page 98 x x

setprotoent() Open protocol database page 101 x x

getprotoent() Read entry from protocol database page 101 x x

endprotoent() Close protocol database page 101 x x

setservent() Open services database page 103 x x

getservent() Read entry from services database page 103 x xx

endservent() Close services database page 103 x x

74 U26110-J-Z125-3-76

Overview of functions SOCKETS(POSIX) user functions

Manipulate Internet address

Function Description See INET INET6

inet_addr() Convert character string from dotted
notation to integer value (Internet
address)

page 109 x

inet_network() Convert character string from dotted
notation to integer value (subnetwork
section)

page 109 x

inet_makeaddr() Create Internet address from subnetwork
section and subnetwork local address
section

page 109 x

inet_lnaof() Extract local network address in byte
order of host from Internet host address

page 109 x

inet_netof() Extract network number in byte order of
host from Internet host address

page 109 x

inet_ntoa() Convert Internet host address into a
string conforming to normal Internet
dotted notation

page 109 x

inet_pton() Converts an IP address in dotted or colon
notation to the corresponding binary
address.

page 112 x x

inet_ntop() Converts a binary IP address to dotted or
colon notation.

page 112 x x

U26110-J-Z125-3-76 75

SOCKETS(POSIX) user functions Overview of functions

Utility functions

Control functions

Test macros for AF_INET6

The following test macros for the AF_INET6 address family are defined in <netinet/in.h>.
The parameter p is an in6_addr structure.

Function Description See INET INET6

freeaddrinfo() Release memory area for an addrinfo
structure

page 85 x x

freehostent() Release memory area for a hostent
structure

page 86 x x

htonl() Convert 32-bit fields from host to network
byte order

page 81 x

htons() Convert 16-bit fields from host to network
byte order

page 81 x x

ntohl() Convert 32-bit fields from network to host
byte order

page 81 x

ntohs() Convert 16-bit fields from network to host
byte order

page 81 x x

Function Description See INET INET6

fcntl() Control sockets [1] and
page 130

x x

ioctl() Control sockets [1] and
page 132

x x

Function Description

IN6_IS_ADDR_UNSPECIFIED (p) IPv6 address = 0 ?

IN6_IS_ADDR_LOOPBACK (p) IPv6 address = loopback ?

IN6_IS_ADDR_LINKLOCAL (p) IPv6 address = linklocal ?

IN6_IS_ADDR_SITELOCAL (p) IPv6 address = sitelocal ?

IN6_IS_ADDR_V4MAPPED (p) IPv6 address = IPv4-mapped ?

IN6_IS_ADDR_V4COMPAT (p) IPv6 address = IPv4-compatible ?

IN6_ARE_ADDR_EQUAL address1 = address2 ?

76 U26110-J-Z125-3-76

Functions SOCKETS(POSIX) user functions

6.3 Functions

This section describes all user functions of the SOCKETS interface in alphabetic order.

U26110-J-Z125-3-76 77

SOCKETS(POSIX) user functions accept()

accept() - accept a connection over a socket

#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, size_t *addrlen);

Description

The server process accepts a connection, which was requested by the client with the
connect() function, over a socket with the accept() function. accept() can only be used with the
connection-oriented socket type SOCK_STREAM.

The s parameter designates the socket which waits for a connection request after listen() is
called.
After returning from accept(), addr points to the address of the partner application as it is
known on the communications level. The exact format of *addr (i.e. the address) is deter-
mined by the domain in which communication takes place.
The section “Socket addressing” on page 13 describes how you assign an address to the
socket.
addrlen points to a size_t object that holds the size of the memory area referenced by addr
at the time of the accept() call. When the accept() function returns, the size_t object (i.e.
*addrlen) contains the length of the returned address in bytes.

When the queue set up by the listen() function contains at least one connection request,
accept() proceeds as follows:

1. accept() selects the first connection from the connection requests in the queue.

2. accept() creates a new socket with the same properties as socket s.

3. accept() returns the descriptor of the new socket as its result. If socket s is non-blocking,
neither is the new socket (see the fcntl() function on page 130).

Two cases must be considered if there are no connection requests in the queue:

– If the socket is not marked as non-blocking, accept() blocks the calling process until a
connection is possible.

– If the socket is marked as non-blocking, accept() returns the error message
 EWOULDBLOCK.

The user can initially call select() or poll() before calling accept() to test the read readiness of
the socket concerned and make sure that the accept() call will not block.

78 U26110-J-Z125-3-76

accept() SOCKETS(POSIX) user functions

Once accept() has accepted a connection for socket s, data can be exchanged between the
new socket created by accept() and the socket that requested the connection. Additional
connections cannot be set up over the new socket. The original socket s remains open to
accept further connections.

Return value

≥ 0:
If successful. The value is the descriptor for the accepted socket.

-1:
If errors occur. errno is set to indicate the error.

Errors

EBADF
s is not a valid descriptor.

EFAULT
addr does not point to the writable part of the user address range.

EINTR
The accept() function was interrupted by a signal that was received before a connection
request was received.

EINVAL
The socket does not accept any connection requests.

EMFILE
OPEN_MAX file descriptors are currently open in the calling process.

ENETDOWN
The connection to the network is down.

ENOBUFS
No buffer space is available.

ENOTSOCK
The descriptor does not refer to a socket.

EOPNOTSUPP
The referenced socket is not of type SOCK_STREAM.

EPROTO
A protocol error occurred.

EWOULDBLOCK
The socket is not marked as non-blocking and no free connections are available.

See also

bind(), connect(), listen(), socket(); select() [1]

U26110-J-Z125-3-76 79

SOCKETS(POSIX) user functions bind()

bind() - assign a socket a name

#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, size_t namelen);

Description

The bind() function assigns a name to a socket created with the socket() function that is
initially nameless. After a socket has been created with the socket() function, the socket
exists within a name area (address family) but it has no name.

The s parameter designates the socket to which a name is to be assigned with bind().
name points to the name (address) assigned to the socket. namelen specifies the length of
the data structure which describes the name.

Return value

0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

Errors

EACCES
The specified name is protected and the calling user has no rights to access it.

EADDRINUSE
The specified name is already in use.

EADDRNOTAVAIL
The specified name cannot be bound to the socket by the local system (see also the
section “Dependencies of the BS2000/OSD BCAM transport system” on page 302 for
more information).

EAFNOSUPPORT
The specified address family does not match that of the socket.

EBADF
s is not a valid descriptor.

80 U26110-J-Z125-3-76

bind() SOCKETS(POSIX) user functions

EFAULT
name does not point to the writable part of the user address range.

EINVAL
The socket already has a name assigned to it or namelen does not have the size of a
valid address for the specified address family.

ENETDOWN
The connection to the network is down.

ENOBUFS
Not enough resources to execute bind().

ENOTSOCK
The descriptor references a file and not a socket.

If the address family of the socket is AF_UNIX, executing bind() can also lead to an error for the
following reasons:

EACCES
The specified name is protected or the calling user has no write rights for the specified
name.

EDESTADDRREQ
The name parameter is the null pointer.

ENAMETOOLONG
A path name component exceeds NAME_MAX characters or the complete path name
is longer than PATH_MAX characters.

ENOENT
A path name component refers to a non-existent file or the path name is blank.

ENOTDIR
A path name component is not a directory.

See also

connect(), getsockname(), listen(), socket();
unlink() [1]

U26110-J-Z125-3-76 81

SOCKETS(POSIX) user functions Byte order macros

Byte order macros - convert byte order

#include <arpa/inet.h>

in_addr_t htonl(in_addr_t hostlong);

in_port_t htons(in_port_t hostshort);

in_addr_t ntohl(in_addr_t netlong);

in_port_t ntohs(in_port_t netshort);

Description

The htonl(), htons(), ntohl() and ntohs() macros convert shorts and integers from host byte
order to network byte order and viceversa.
The data type definitions in in_addr_t and in_port_t in <arpa/inet.h> correspond to the defini-
tions in <netinet/in.h>.

These macros are mainly used in conjunction with IPv4 addresses and port numbers, e.g.
as returned by the gethostbyname() and getservent() functions (see pages 91 and 103). The
macros are only needed on systems on which the host and network byte orders are different
and are provided in the <arpa/inet.h> header file as null macros (macros without functions):

● htonl() converts 32 bit fields from host to network byte order.

● htons() converts 16 bit fields from host to network byte order.

● ntohl() converts 32 bit fields from network to host byte order.

● ntohs() converts 16 bit fields from network to host byte order.

Return value

htonl() and htons() return the input parameter after conversion into network byte order.

ntohl() and ntohs() return the input parameter after conversion into host byte order.

See also

gethostbyaddr(), gethostbyname(), gethostent(), getservent()

82 U26110-J-Z125-3-76

connect() SOCKETS(POSIX) user functions

connect() - initiate a connection over a socket

#include <sys/socket.h>

int connect(int s, const struct sockaddr *name, size_t namelen);

Description

A process uses connect() to initiate communications with another process over a socket.

The s parameter designates the socket over which the process initiates communications
with another process.
name is a pointer to the address of the communications partner. *name is an address in the
address range of the socket to which the connection is to be initiated. Each address range
interprets the name parameter in its own way.
namelen contains the length of the address of the communications partner in bytes.

The manner in which connect() proceeds differs according to whether the socket type is
SOCK_STREAM or SOCK_DGRAM.

– With a socket of type SOCK_STREAM (stream socket), connect() sends a connection
request to a partner and tries in this way to set up a connection to this partner. The
partner is specified with the name parameter. For example, a client process uses
connect() to initiate a connection to a server over a stream socket.
Stream sockets can generally only set up a connection with connect() once.

– With a socket of type SOCK_DGRAM (datagram socket), a process uses connect() to
define the name of the communications partner with which data is to be exchanged. The
process then sends the datagrams to this communications partner. This communica-
tions partner is also the only socket from which the process can receive datagrams.
With datagram sockets, an existing assignment to a partner can be terminated by
calling connect() with the null pointer as the current parameter for name.
connect() can be used several times with datagram sockets to change the communica-
tions partner. The assignment to a specific partner can be terminated by entering a null
pointer for the name parameter.

Return value

0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

U26110-J-Z125-3-76 83

SOCKETS(POSIX) user functions connect()

Errors

EADDRINUSE
The specified address is already in use.

EADDRNOTAVAIL
The specified address is invalid.

EAFNOSUPPORT
Addresses in the specified address family cannot be used with this socket.

EALREADY
This is a non-blocking socket and a previously received connection request has not
been concluded yet.

EBADF
s is not a valid descriptor.

ECONNREFUSED
The connection attempt has been successfully rejected. The calling program must close
the socket descriptor with close() and request a new descriptor by recalling socket(). It
can then use connect() to repeat the connection attempt.

EFAULT
The name parameter points to an area outside the process address range.

EINTR
The connection setup attempt was interrupted by a signal.

EINVAL
The namelen parameter does not have the size of a valid address for the specified
address family.

EISCONN
The socket already has a connection.

ENETUNREACH
The network is not reachable from this host.

ENETDOWN
The connection to the network is down.

ENOBUFS
Not enough resources to execute connect().

ENOTSOCK
Descriptor references a file and not a socket.

ETIMEDOUT
The connection could not be set up within a specific time.

84 U26110-J-Z125-3-76

connect() SOCKETS(POSIX) user functions

If the socket address family is AF_UNIX, executing connect() can also lead to an error for the
following reasons:

EACCES
Access rights for a path name component were refused or write rights to the specified
socket has been refused.

EDESTADDRREQ
The name parameter is the null pointer.

ENAMETOOLONG
A path name component exceeds NAME_MAX characters or the complete path name
is longer than PATH_MAX characters.

ENOENT
A path name component refers to a non-existent file or the path name is blank.

ENOTDIR
A component in the path name is not a directory.

See also

accept(), getsockname(), socket();
close(), select() [1]

U26110-J-Z125-3-76 85

SOCKETS(POSIX) user functions freeaddrinfo()

freeaddrinfo() - release memory for addrinfo structure

#include <netdb.h>

void freeaddrinfo(struct addrinfo *ai)

Description

The freeaddrinfo() function release memory area for a concatenated list of struct addrinfo
objects which was requested beforehand with the getaddrinfo() function.

The ai parameter is a pointer to the first addrinfo object in a list of several concatenated
addrinfo objects.

The addrinfo structure is declared as follows:

struct addrinfo {
int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
int ai_family; /* PF_INET, PF_INET6 */
int ai_socktype; /* SOCK_STREAM, SOCK_DGRAM */
int ai_protocol; /* 0 or IPPROTO_xxx for IP */
size_t ai_addrlen; /* length of ai_addr */
char *ai_canonname; /* canon name */
struct sockaddr *ai_addr; /* socket address structure */
struct addrinfo *ai_next; /* next structure in list */

};

86 U26110-J-Z125-3-76

freehostent() SOCKETS(POSIX) user functions

freehostent() - release memory for hostent structure

#include <netdb.h>

void freehostent(struct hostent *ptr)

Description

The freehostent() function releases memory for an object of the type struct hostent which was
requested beforehand with the getipnodebyname() or getipnodebyaddr() function.

The ptr parameter points to an object of the type struct hostent.

You will find the declaration of the hostent structure in section “Converting host names into
network addresses and vice versa” on page 42.

U26110-J-Z125-3-76 87

SOCKETS(POSIX) user functions gai_strerror()

gai_strerror() - output text for the error code of getaddrinfo()

#include <netdb.h>

char *gai_strerror(int ecode)

Description

The gai_strerror() function outputs an explanatory text string for an error code defined in
<netdb.h>. The ecode parameter specifies an error code defined in <netdb.h>.

Return value

gai_strerror() returns a pointer to the string containing the explanatory text. If the value for
ecode does not match any of the error codes for getaddrinfo() defined in <netdb.h>, the return
value is a pointer to a string indicating an unknown error.

88 U26110-J-Z125-3-76

getaddrinfo() SOCKETS(POSIX) user functions

getaddrinfo() - get information about host names, host
addresses and services regardless of protocol

#include <netdb.h>

int getaddrinfo(char *nodename, char *servname, struct addrinfo *hints,
 struct addrinfo **res);

Description

The getaddrinfo() function return protocol-independent host information for the AF_INET
and AF_INET6 address families. The values are determined using either the Domain Name
Service (DNS) or system-specific tables.

nodename and servname parameters

When getaddrinfo() is called, at least one of the parameters nodename or servname must be
not be the null pointer. nodename and servname are either a null pointer or a string terminated
with the null byte. The nodename parameter can be a name or an IPv4 address in decimal
dotted notation or an IPv6 address in hexadecimal colon notation. The servname parameter
can be either a service name or a decimal port number.

hints parameter

The hints parameter can be used to pass an addrinfo structure if desired. If not, the hints
parameter must be the null pointer.

The addrinfo structure is declared as follows:

struct addrinfo {
int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
int ai_family; /* AF_INET, AF_INET6 */
int ai_socktype; /* SOCK_STREAM, SOCK_DGRAM */
int ai_protocol; /* 0 or IPPROTO_xxx for IP */
size_t ai_addrlen; /* length of ai_addr */
char*ai_canonname; /* canon name */
struct sockaddr *ai_addr; /* socket address structure */
struct addrinfo *ai_next; /* next structure in list */

};

All the elements in the object of the type struct addrinfo passed with hints except ai_flags,
ai_family, ai_socktype must have the value 0 or must be the null pointer.

U26110-J-Z125-3-76 89

SOCKETS(POSIX) user functions getaddrinfo()

A selection is made with the values for the addrinfo components ai_flags, ai_family and
ai_socktype:

● ai_family = PF_UNSPEC means that any protocol family is desired.

● ai_socktype = 0 means that any socket type is accepted.

● ai_flags = AI_PASSIVE means that the returned socket address structure is to be used
for a bind() call. If nodename = NULL (see above), the IP address element is set to
INADDR_ANY for an IPv4 address and to IN6ADDR_ANY for an IPv6 address.

● If the AI_PASSIVE bit is not set, the returned socket address structure is used

– for a connect() call if ai_socktype = SOCK_STREAM
– for a connect()-, sendto()-, sendmsg() call if ai_socktype = SOCK_DGRAM

If, in these cases, nodename is the null pointer, the IP address of sockaddr is supplied with
the value of the loopback address.

● If the AI_CANONNAME bit is set in the ai_flags of the hints structure and getaddrinfo() is
executed successfully, the first returned addrinfo structure in the element ai_canonname
contains the socket host name terminated with the null byte of the selected host.

● If the AI_NUMERICHOST is set in the ai_flags of the hints structure, a nodename which
is not the null pointer must be an IPv4 address string in decimal dotted notation or an
IPv6 address string in hexadecimal colon notation. Otherwise, the return value is
EAI_NONAME. The flag prevents a call that would resolve the name via a DNS service
or internal host table.

hints = NULL has the same effect as an addrinfo structure initialized with 0 and
ai_family = PF_UNSPEC.

res parameter

If getaddrinfo() is executed successfully, a pointer to one or more concatenated addrinfo
structures is passed in res, where the element ai_next = NULL indicates the last element in
the chain. Each of the returned addrinfo structures contains a value corresponding to the
socket() call in the elements ai_family and ai_socktype. ai_addr always points to a socket
address structure whose length is specified in ai_addrlen.

Return value

0:
If successful.

>0:
If errors occur. Return value is an error code EAI_xxx defined in <netdb.h>.

-1:
If errors occur. errno is set to indicate the error.

90 U26110-J-Z125-3-76

getaddrinfo() SOCKETS(POSIX) user functions

Errors

EAFNOSUPPORT
The function is not supported on this system. See also the section “Dependencies of
the BS2000/OSD BCAM transport system” on page 302 for more information.

Error codes defined in <netdb.h>:

EAI_ADDRFAMILY
The address family is not supported for the specified host.

EAI_AGAIN
Temporary error while accessing the host name information (e.g. DNS error).
The function should be called again.

EAI_BADFLAGS
Invalid value for the ai_flags parameter.

EAI_FAIL
Error while accessing the host name information

EAI_FAMILY
The protocol family is not supported.

EAI_MEMORY
Error when requesting memory.

EAI_NODATA
No address corresponding to the host name was found.

EAI_NONAME
Host or service name is not supported or is unknown.

EAI_SERVICE
Service is not supported for this socket type.

EAI_SOCKTYPE
The socket type is not supported.

EAI_SYSTEM
System error; is specified in more detail in errno.

Note

Memory for the addrinfo structures returned by the getaddrinfo() function is requested
dynamically and must be released again with the freeaddrinfo() function.

U26110-J-Z125-3-76 91

SOCKETS(POSIX) user functions gethostent(), ...

gethostent(), gethostbyname(), gethostbyaddr(),
sethostent(), endhostent() -
get information about host names and addresses

#include <sys/socket.h>
#include <netdb.h>

struct hostent *gethostent(void);

struct hostent *gethostbyname(const char *name);

struct hostent *gethostbyaddr(const void *addr, size_t len, int type);

void sethostent(int stayopen);

void endhostent(void);

Description

The gethostbyname() and gethostbyaddr() functions return current information about the host
reachable in the network by calling a BCAM information interface. The DNS concept
(Domain Name Service) is supported if the DNS Resolver from the product interNet
Services (formerly TCP-IP-SV) is installed in POSIX or the subsystem SOCKETS (BS2000)
has been started.
In contrast to this, the gethostent() function accesses the UFS /etc/inet/hosts file which
normally only contains an entry for the local host.

The gethostbyname(), gethostbyaddr() and gethostent() functions return a pointer to an object
with the hostent structure described below.

The hostent structure corresponds to the fields in a line of the host database and is declared
as follows:

struct hostent {
char *h_name; /* Official host name */
char **h_aliases; /* Alias list */
int h_addrtype; /* Address type */
int h_length; /* Length of the address in bytes */
char **h_addr_list; /* List of addresses for the host, */

/* terminated by the null pointer */
};

92 U26110-J-Z125-3-76

gethostent(), ... SOCKETS(POSIX) user functions

hostent components:

h_name
Name of the host

h_aliases
A list of alternative (alias) names for the host, terminated with null.
Alias names are currently not supported.

h_addrtype
Type of the returned address (always AF_INET)

length
Length of the address in bytes

**h_addr_list
A pointer to a list of network addresses for the host. The addresses are returned in
network byte order.

In the case of gethostbyaddr(), addr is a pointer to the address in binary format with the length
len (not a character string).

gethostent() reads the next line of the file. If necessary, gethostent() opens the file first.

sethostent() opens the file and resets it to the start. If the stayopen flag is not equal to zero,
the database is not closed after any gethostent() call (neither directly nor indirectly via one
of the other gethost...() calls).

Return value

The null pointer is returned if errors occur or the end of the file is reached.

Note

All information is in a static area and therefore has to be copied if it is to be saved.
Only the Internet address format is supported.

U26110-J-Z125-3-76 93

SOCKETS(POSIX) user functions gethostname()

gethostname() - get the name of the current host

#include <unistd.h>

int gethostname(char *name, size_t namelen);

Description

The gethostname() function returns the socket host name for the current host in the name
parameter. The length of the name string variable must be specified in the namelen
parameter when gethostname() is called.

If the length of the name string variable specified by namelen suffices for storing the host
name, the host name is terminated with a null byte. Otherwise, the excess socket host name
characters are truncated and it is then undefined whether the host name returned in this
way is terminated by a null byte.

Return value

0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

94 U26110-J-Z125-3-76

getipnodebyaddr(), getipnodebyname() SOCKETS(POSIX) user functions

getipnodebyaddr(), getipnodebyname() - get information
about host names and addresses

#include <sys/socket.h>
#include <netdb.h>

struct hostent *getipnodebyaddr(char *addr,size_t len,int af,int *err);
struct hostent *getipnodebyname(char *name,int af,int flags,int *err);

Description

getipnodebyaddr() and getipnodebyname() are extensions of the functions gethostbyaddr() and
gethostbyname() for IPv6 support.

The getipnodebyaddr() and getipnodebyname() functions return current information on all
known hosts on the network by obtaining the required information (host name and host
address) from a DNS server via the DNS Resolver integrated in SOCKETS(BS2000) V2.0.
If this is not successful, the information is taken from the BCAM processor table (see the
“openNet Server V3.0 (BS2000/OSD)” manual).

For getipnodebyaddr(), addr is a pointer to the host address. This host address must be
available in binary format with the length len.

For getipnodebyname(), the host name (socket host name) must be specified for name. You
can specify the name as a fully-qualified DNS name, i.e. including host name and domain
part (e.g. hostname.fujitsu-siemens.com) as a partially-qualified DNS name (e.g.
hostname) or only as a host name (e.g. hostname). You can also specify an IPv4 address
in decimal dotted notation or an IPv6 address in hexadecimal colon notation.

The af parameter in the call is used to specify the address family (AF_INET or AF_INET6).
AF_UNSPEC can also be specified for getipnodebyname if an IP address is specified as
name in dotted or colon notation.

The flags parameter can be used to control the output of the desired address family. If flags
has the value 0, an address appropriate to the address family specified in ai is returned.

AI_V4MAPPED
The caller accepts IPv4-mapped addresses if no IPv6 address is available.

AI_ALL
Only if AI_V4MAPPED is also set: IPv6 addresses and IPv4-mapped addresses are
returned if available. af must have the value AF_INET6.

U26110-J-Z125-3-76 95

SOCKETS(POSIX) user functions getipnodebyaddr(), getipnodebyname()

AI_ADDRCONFIG
Depending on the value of af, only an IPv6 or IPv4 address is returned if the host on
which the function is called has an interface address of the same type.

AI_DEFAULT
is the same as AI_ADDRCONFIG || AI_V4MAPPED. If af = AF_INET6 is set and the
host on which the function is called has an IPv6 address, an IPv6 address is returned
for the specified host name. If the host on which the function is called has only an IPv4
interface address, an IPv4-mapped IPv6 address is returned.

The getipnodebyaddr() and getipnodebyname() functions return a pointer to an object of the
type struct hostent. Memory for this object is requested dynamically and must be released
again by the caller with the freehostent() function.

The hostent structure is described in section “Converting host names into network
addresses and vice versa” on page 42.

Return value

Pointer to an object of the type struct hostent. If an error occurs, the null pointer is returned
and the variable errnum is supplied with one of the following values:

HOST_NOT_FOUND
Host unknown.

NO_ADDRESS
No host address is available for the specified name.

NO_RECOVERY
An unrecoverable server error has occurred.

TRY_AGAIN
Access must be repeated.

-1:
[as an alternative value for the variable err]
If errors occur. errno is set to indicate the error.

Errors

EAFNOSUPPORT
The function is not supported on this system. See also the section “Dependencies of
the BS2000/OSD BCAM transport system” on page 302 for more information.

96 U26110-J-Z125-3-76

getnameinfo() SOCKETS(POSIX) user functions

getnameinfo() - get name of the communications partner

#include <sys/socket.h>
#include <netdb.h>

int getnameinfo (struct sockaddr *sa,size_t salen,char *host,
 size_t hostlen,char *serv,size_t servlen,int flags);

Description

The getnameinfo() function returns the name assigned to the IP address and port number
specified in the call as a text string. The values are determined either from a DNS server
via the DNS Resolver integrated in SOCKETS(BS2000) V2.0 or using system-specific
tables.

The sa parameter is a pointer to a sockaddr_in structure which contains the IP address and
port number. The actual format of the sockaddr structure depends on the address family
involved and is described in section “Socket addressing” on page 13. The exact format of
*sa is determined by the domain in which communications takes place. salen indicates the
length of the structure.

If getnameinfo() is executed successfully, host and serv are pointers to two areas containing
the corresponding null-byte-terminated socket host name and service name respectively.
The lengths of the areas are specified in hostlen and servlen respectively. These areas must
be large enough to accommodate the socket host name or service name (including the null
byte). If the value 0 is specified for hostlen or servlen when getnameinfo() is called, this
indicates that no socket host name or service name is to be returned.

The maximum lengths of the socket host name and service name are defined in <netdb.h>:

#define NI_MAXHOST 1025

#define NI_MAXSERV 32

U26110-J-Z125-3-76 97

SOCKETS(POSIX) user functions getnameinfo()

The flags parameter changes how getnameinfo() is executed. Normally, the fully-qualified
domain name of the host is determined from the DNS and returned. Depending on the value
of flags, a distinction is made between the following cases:

NI_NOFQDN
Only the host name part of the full DNS name (socket host name) is returned.

NI_NUMERICHOST
The numeric host name is returned in printable format after address conversion. The
same is true if it is impossible to determine the host name in the DNS or using local in-
formation and NI_NAMEREQD is not set.

NI_NAMEREQD
An error is reported if the host name cannot be determined in the DNS.

NI_NUMERICSERV
 The port number is returned in printable format instead of the service name.

Return value

0:
If successful

<> 0:
If errors occur

Errors

EAFNOSUPPORT
The function is not supported on this system. See also the section “Dependencies of
the BS2000/OSD BCAM transport system” on page 302 for more information.

EINVAL
Invalid address family specified in the sa parameter, or the lengths of the output areas
host and/or serv are too small.

98 U26110-J-Z125-3-76

getnetent(), ... SOCKETS(POSIX) user functions

getnetent(), getnetbyname(), getnetbyaddr(), setnetent(),
endnetent() - get information about network names

#include <netdb.h>

struct netent *getnetent(void);

struct netent *getnetbyname(const char *name);

struct netent *getnetbyaddr(in_addr_t net, int type);

void setnetent(int stayopen);

void endnetent(void);

Description

The getnetbyname(), getnetbyaddr() and getnetent() functions return information about the
names and addresses of the reachable networks. The information about local network
names is not available in BCAM. Assignment is by way of a UFS /etc/inet/networks file as
normal in UNIX systems. The file contents are coded in EBCDIC.

The getnetbyname(), getnetbyaddr() and getnetent() functions return a pointer to an object with
the netent structure described below.

The netent structure corresponds to the fields of a line in the network database and is
declared as follows:

struct netent {
char *n_name; /* Official name of the network */
char **n_aliases; /* Alias list */
int n_addrtype; /* Address type */
in_addr_t n_net; /* Network address */

};

netent components:

n_name
Official name of the network

n_aliases
A list of alternative (alias) names for the host, terminated with null

U26110-J-Z125-3-76 99

SOCKETS(POSIX) user functions getnetent(), ...

n_addrtype
Type of the returned address (always AF_INET)

n_net
Address of the network, which is returned in host byte order.

getnetent() reads the next line of the file. If necessary, getnetent() opens the file first.

setnetent() opens the file and resets it to the start. If the stayopen flag is not equal to zero, the
database is not closed after any getnetent() call (neither directly nor indirectly via one of the
other getnet...() calls).

endnetent() closes the file.

getnetbyname() and getnetbyaddr() search sequentially through the file from the start until

– a matching name is found or
– the matching network address is found or
– the end of the file reached.

Return value

The null pointer is returned if the search reaches the end of the file.

Note

All information is in a static area and therefore has to be copied if it is to be saved.
Only the Internet protocols are supported.

See also

/etc/inet/networks

100 U26110-J-Z125-3-76

getpeername() SOCKETS(POSIX) user functions

getpeername() - get the name of the communications partner

#include <sys/socket.h>
#include <netinet/in.h>

int getpeername(int s, struct sockaddr *name, size_t *namelen);

Description

The getpeername() returns the name of the communications partner connected to socket s.

name points to a memory area. After getpeername() has been executed successfully, *name
contains the address of the communications partner.

The size_t variable, to which the namelen parameter points, initially indicates the size of the
memory area referenced by name. After the function returns, *namelen contains the current
size of the returned name in bytes.

Return value

0:
If successful

-1:
If errors occur. errno is set to indicate the error.

Errors

EBADF
The s parameter is not a valid descriptor.

EFAULT
The name parameter points to an area outside the process address range.

ENOTCONN
The socket has no connection.

ENOTSOCK
Descriptor s references a file and not a socket.

See also

accept(), bind(), getsockname(), socket()

U26110-J-Z125-3-76 101

SOCKETS(POSIX) user functions getprotoent(), ...

getprotoent(), getprotobynumber(), getprotobyname(),
setprotoent(), endprotoent() -
get information about protocols

#include <netdb.h>

struct protoent *getprotoent(void);

struct protoent *getprotobyname(const char *name);

struct protoent *getprotobynumber(int proto);

void setprotoent(int stayopen);

void endprotoent(void);

Description

The getprotobyname(), getprotobynumber() and getprotoent() functions return information
about the available services. These functions access the UFS /etc/inet/protocols file. The
interface is provided for compatibility reasons. The contents of the file are coded in EBCDIC.

The getprotobyname(), getprotobynumber() and getprotoent() functions return a pointer to an
object with the protoent structure described below.

The protoent structure corresponds to the fields of a line in the protocol /etc/inet/protocols
database and is declared as follows:

struct protoent {
char *p_name; /* Official name of the protocol*/
char **p_aliases; /* Alias list */
int p_proto; /* Protocol number */

};

protoent components:

p_name
Name of the protocol

p_aliases
A list of alternative (alias) names for the protocol, terminated with null

p_proto
Number of the protocol

102 U26110-J-Z125-3-76

getprotoent(), ... SOCKETS(POSIX) user functions

getprotoent() reads the next line from the file. If necessary, getprotoent() opens the file first.

getprotoent() opens the file and resets it to the start. If the stayopen flag is not equal to zero,
the database is not closed after any getprotoent() call (neither directly nor indirectly via one
of the other getproto...() calls).

endprotoent() closes the file.

getprotobyname() and getprotobynumber() search sequentially through the file from the start
until

– a matching protocol name is found or
– the matching protocol number is found or
– the end of the file is reached.

Return value

The null pointer is returned if the search reaches the end of the file.

Note

All information is in a static area and therefore has to be copied if it is to be saved.

See also

/etc/inet/protocols

U26110-J-Z125-3-76 103

SOCKETS(POSIX) user functions getservent(), ...

getservent(), getservbyport(), getservbyname(),
setservent(), endservent() -
get information about services

#include <netdb.h>

struct servent *getservent(void);

struct servent *getservbyname(const char *name, const char *proto);

struct servent *getservbyport(int port, const char *proto);

void setservent(int stayopen);

void endservent(void);

Description

The getservbyport(), getservbyname() and getservent() functions return information about the
available services. Each of these functions returns a pointer to an object with the servent
structure described below.

The servent structure corresponds to the fields of a line in the service /etc/inet/services
database and is defined as follows:

struct servent {
char *s_name; /* Name of the service */
char **s_aliases; /* Alias list */
int s_port; /* Number of the port on which the service lies*/
char *s_proto; /* Protocol used */

};

servent components:

s_name
Name of the service

s_aliases
A list of alternative (alias) names for the service, terminated with null

s_port
Port number assigned to the service. Port numbers are returned in network byte order.

104 U26110-J-Z125-3-76

getservent(), ... SOCKETS(POSIX) user functions

s_proto
Name of the protocol that must be used to access the service.

getservent() reads the next line in the file. If necessary, getservent() opens the file first.

getservent() opens the file and resets it to the start. If the stayopen flag is not equal to zero,
the database is not closed after any getservent() call (neither directly nor indirectly via one
of the other getserv...() calls).

endservent() closes the file.

getservbyname() and getservbyport() search sequentially through the file from the start until

– a matching service name is found or
– the matching port number is found or
– The end of the file is reached.

As long as a protocol name (not NULL) is specified, getservbyname() and getservbyport()
search for the service that uses the matching protocol.

Return value

The null pointer is returned if the search reaches the end of the file.

Note

The information about services and their port numbers is not available in BCAM as they are
components of OSI layer 7. Since the assignment of port numbers to services is static, the
implementation can be solved by entering the services in a UFS /etc/inet/services file (as is
normal in UNIX systems).

All information is in a static area and therefore has to be copied if it is to be saved.

See also

getprotoent(), /etc/inet/services

U26110-J-Z125-3-76 105

SOCKETS(POSIX) user functions getsockname()

getsockname() - get the name of a socket

#include <sys/socket.h>
#include <netinet/in.h>

int getsockname(int s, struct sockaddr *name, size_t *namelen);

Description

The getsockname() function returns the current name for socket s.

name points to a memory area. After successful execution of getsockname(), *name contains
the name (address) of socket s. The actual format of the sockaddr structure depends on the
address family involved and is described in the section “Socket addressing” on page 13.

The size_t variable to which the namelen parameter points initially indicates the size of the
memory area referenced by name. When the function returns, *name contains the current
size of the returned name in bytes.

Return value

0:
If successful.

-1:
If errors occur. errno is set to indicate the error

Errors

EBADF
The s parameter is not a valid descriptor.

EFAULT
The name parameter points to an area outside the process address range.

ENOTSOCK
Descriptor s references a file and not a socket.

See also

bind(), getpeername(), socket()

106 U26110-J-Z125-3-76

getsockopt(), setsockopt() SOCKETS(POSIX) user functions

getsockopt(), setsockopt() - get and set socket options

#include <sys/socket.h>
#include <netinet/in.h>

int getsockopt(int s, int level, int optname, void *optval, size_t *optlen);

int setsockopt(int s, int level, int optname, const void *optval,
size_t optlen);

Description

The getsockopt() and setsockopt() functions access options which are defined for a socket.
Options can exist on various protocol levels but they always exist on the highest protocol
level.

The name optname of the option and the protocol level level on which the protocol is inter-
preted must always be specified for accessing a socket option. The user must specify
SOL_SOCKET or IPPROTO_IPV6, as appropriate, for level to access options on the socket
level.

With the setsockopt() function, the user can access option values via the optval and optlen
parameters. With the getsockopt() function, optval and optlen identify a buffer in which the
values of the desired option(s) are returned. With getsockopt(), *optlen initially contains the
size of the buffer to which optval points. When the getsockopt() function returns, *optlen
contains the current size of the returned buffer. *optval contains the value 0 if the option has
no value that can be returned.

optname and all specified options are passed without conversion to the relevant protocol
module for interpretation. The <sys/socket.h> header file contains definitions for the socket
level options. The options are described on page 107.

optval is a pointer to a parameter of type integer for most of the socket level options. The
optval parameter may not be set to the null pointer if a boolean value is to be allowed for
setsockopt(). If a boolean operation is not to be allowed, the optval parameter must be set to
the null pointer. The SO_LINGER option uses a parameter of data type struct linger, which
is defined in the <sys/socket.h> header file. This parameter specifies the desired option
status and the delay interval (see page 107).

The options described below are known on the socket level. You can get and set each
option with getsockopt() and setsockopt() respectively unless something different is stated in
the option description.

U26110-J-Z125-3-76 107

SOCKETS(POSIX) user functions getsockopt(), setsockopt()

Socket options

SO_KEEPALIVE
Specifies whether connections are to be kept open or not.
SO_KEEPALIVE causes regular transfer of control messages over a connected socket.
If the connected partner end system cannot answer the message, the connection is
taken to be broken. A process which is waiting to write to the socket receives a SIGPIPE
signal and the write operation returns an error. By default, a process terminates when
it receives a SIGPIPE signal. A read operation to the socket returns an error but does
not generate a SIGPIPE signal. If the process waits for a select() call with an interrupted
connection, select() returns the value true for all read or write events that are selected
for the socket.

SO_LINGER
Defines whether socket closing after a close() call is delayed if data is still pending to be
transferred on the socket. SO_LINGER controls the action that is triggered when non-
transferred messages are waiting in the socket queue and the close() function is called.
If the socket ensures secured data transfer and SO_LINGER is set, the system blocks
the process that is trying to close the socket. The timeout interval is defined when
setsockopt() is called if SO_LINGER is enabled. If SO_LINGER is disabled when the
close() function is called, the system executes close() immediately and the process can
be continued as quickly as possible.

SO_BROADCAST
Defines whether broadcast messages may be transferred or not.
Since broadcast messages may always be sent in BS2000, this option has no functional
significance.
However, it must be noted that the reception of broadcast messages can be disallowed
(see the BCAM BCOPTION command in the “openNet Server V3.0 (BS2000/OSD)”
manual).

SO_REUSEADDR
Specifies that the rules for the validity check on the addresses specified for bind() should
permit the reuse of local addresses provided this is supported by the protocol. An
integral value (int) is required for this option.

SO_TYPE
Gets the socket type.
SO_TYPE is only used by getsockopt(). SO_TYPE returns the type of the socket, i.e.
either SOCK_STREAM or SOCK_DGRAM. This can be useful for servers that inherit
sockets when they are started.

SO_ACCEPTCONN
Indicates whether the socket is ready to receive connection requests.
SO_ACCEPTCONN can only be used with getsockopt().

108 U26110-J-Z125-3-76

getsockopt(), setsockopt() SOCKETS(POSIX) user functions

Return value

0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

Errors

EBADF
The s parameter is not a valid descriptor.

EFAULT
optval does not point to a valid part of the process address range in the length optlen.

EINVAL
One of the parameters level , optval or optlen has an illegal value.

ENOPROTOOPT
The option is not known to the designated level.

ENOTSOCK
Descriptor s does not reference a socket.

EOPNOTSUPP
The option is not supported.

See also

socket(), getprotoent()

U26110-J-Z125-3-76 109

SOCKETS(POSIX) user functions inet_...

inet_addr(), inet_network(), inet_makeaddr(), inet_lnaof(),
inet_netof(), inet_ntoa() - manipulate IPv4 Internet address

#include <arpa/inet.h>

in_addr_t inet_addr(const char *cp);

in_addr_t inet_lnaof(struct in_addr in);

struct in_addr inet_makeaddr(in_addr_t net, in_addr_t lna);

in_addr_t inet_netof(struct in_addr in);

in_addr_t inet_network(const char *cp);

char *inet_ntoa(struct in_addr in);

Description

Use of the inet_addr(), inet_lnaof(), inet_makeaddr(), inet_netof() inet_network() and inet_ntoa()
functions only makes sense in the AF_INET address family.

The inet_addr() function converts the character string, to which the cp parameter points,
from the normal Internet period notation into an integer value which can then be used as
the Internet address.

The inet_lnaof() function extracts the local network address in the byte order of the host,
from the Internet host address passed in the in parameter.

The inet_makeaddr() function creates an Internet address from the following

– the subnetwork section of the Internet address specified in the net parameter and
– the subnetwork local address section specified in the lna parameter.

The subnetwork section of the Internet address and subnetwork local address section are
both passed in the byte order of the host.

The inet_netof() function extracts the network number in the byte order of the host, from the
Internet host address passed in the in parameter.

The inet_network() function converts the character string to which pointer cp points, from the
normal Internet period notation into an integer value which can then be used as the
subnetwork section of the Internet address.

The inet_ntoa() function converts the Internet host address passed in the in parameter into
a character string in the normal Internet period notation.

110 U26110-J-Z125-3-76

inet_... SOCKETS(POSIX) user functions

All Internet addresses are returned in network byte order in which the bytes are arranged
from left to right.

Values can be specified in the following period notation formats:

– a.b.c.d
If a four-part address is specified, each part is interpreted as one data byte and
assigned from left to right to the four bytes of an Internet address.

– a.b.c
If a three-part address is specified, the last part is interpreted as a 16-bit sequence and
transferred to the two right bytes of the Internet address. This allows three-part address
formats to be used without problems for specifying class B addresses
(e.g. 128.net.host).

– a.b
If a two-part address is specified, the last part is interpreted as a 24-bit sequence and
transferred to the right three bytes of an Internet address. This allows three-part
address formats to be used without problems for specifying class A addresses
(e.g. net.host).

– a
If a single-part address is specified, the value is transferred without changing the byte
order directly to the network address.

The numbers specified as address parts in period notation may be either decimal, octal or
hexadecimal numbers:

– Numbers not prefixed with either 0, 0x or 0X are interpreted as decimal numbers.

– Numbers prefixed with 0 are interpreted as octal numbers.

– Numbers prefixed with 0x or 0X are interpreted as hexadecimal numbers.

Return value

After successful execution, inet_addr() returns the Internet address.
Otherwise, (in_addr_t)-1 is returned.

After successful execution, inet_network() returns the converted Internet number.
Otherwise, (in_addr_t)-1 is returned.

The inet_makeaddr() function returns the created Internet address.

The inet_lnaof() returns the local network address.

The inet_netof() function returns the network number.

The inet_ntoa() returns a pointer to the network address in the normal Internet period
notation.

U26110-J-Z125-3-76 111

SOCKETS(POSIX) user functions inet_...

Errors

No errors are defined.

Note

The return value of inet_ntoa() may point to static data which can be overwritten by
subsequent inet_ntoa() calls.

See also

gethostent(), getnetent()

112 U26110-J-Z125-3-76

inet_ntop(), inet_pton() SOCKETS(POSIX) user functions

inet_ntop(), inet_pton() - manipulate Internet addresses

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

char *inet_ntop(int af,void *addr,char *dst,size_t size);

int inet_pton(int af,char *addr,void *dst);

Description

The inet_ntop() function converts the binary IP address to which the addr parameter is
pointing to printable notation. The value passed in the af parameter indicates whether the
address involved is an IPv4 address or an IPv6 address:

– AF_INET: a binary IPv4 address is converted.
– AF_INET6: a binary IPv6 address is converted.

inet_ntop() returns the printable address in the buffer of the length size to which the pointer
dst is pointing. You can ensure that the buffer is big enough by using the integer constant
INET_ADDRSTRLEN (for IPv4 addresses) or INET6_ADDRSTRLEN (for IPv6 addresses).
Both constants are defined in <netinet/in.h>.

The inet_pton() function converts an IPv4 address in decimal dotted notation or an IPv6
address in hexadecimal colon notation to a binary address. The value passed in the af
parameter indicates whether the address involved is an IPv4 address or an IPv6 address:

– AF_INET: an IPv4 address is converted.
– AF_INET6: an IPv6 address is converted.

inet_pton() returns the binary address to the buffer to which the pointer dst is pointing. The
buffer must be sufficiently large: 4 bytes for AF_INET and 16 bytes for AF_INET6.

Note

If the output of inet_pton() is to be used as the input for a new function, make sure that the
starting address of the destination area dst has doubleword alignment.

U26110-J-Z125-3-76 113

SOCKETS(POSIX) user functions inet_ntop(), inet_pton()

Return value

If the inet_ntop() function is executed successfully, it returns a pointer to the buffer in which
the text string is stored. The null pointer is returned if an error occurs.

inet_pton() returns the following values:

1:
If conversion is successful.

0:
If the input is an invalid address string.

-1:
If a parameter is invalid.

Errors indicated by errno

EAFNOSUPPORT
Invalid af parameter specified, or the function is not supported on this system. See also
the section “Dependencies of the BS2000/OSD BCAM transport system” on page 302
for more information.

ENOSPC
The result buffer is too small.

114 U26110-J-Z125-3-76

listen() SOCKETS(POSIX) user functions

listen() - test a socket for pending connections

#include <sys/socket.h>

int listen(int s, int backlog);

Description

The listen() function authorizes socket s for accepting connection requests and then tests
the socket for pending connection requests. To do this, listen() sets up a queue for incoming
connection requests for socket s. The user defines the maximum number of connection
requests that the queue can hold with the backlog parameter. The value of backlog is limited
to a maximum of 50.
The listen() function can only be called for type SOCK_STREAM sockets.

The following steps are required to enable a process to communicate over a socket with the
partner who sends connection requests:

1. Create a socket (socket()) and bind it (bind())

2. Specify an incoming connection request queue for the socket with listen().

3. Accept the connection requests with accept().

If a connection request arrives and the queue is full, the socket that sent the connection
request receives the error message ECONNREFUSED or ETIMEDOUT.

Return value

0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

U26110-J-Z125-3-76 115

SOCKETS(POSIX) user functions listen()

Errors

EBADF
The s parameter is not a valid descriptor.

ENOTSOCK
Descriptor s references a file and not a socket.

EOPNOTSUPP
The socket type is not supported by listen().

See also

accept(), connect(), socket()

116 U26110-J-Z125-3-76

recv(), recvfrom(), recvmsg() SOCKETS(POSIX) user functions

recv(), recvfrom(), recvmsg() -
receive a message from a socket

#include <sys/socket.h>
#include <netinet/in.h>

ssize_t recv(int s, void *buf, size_t len, int flags);

ssize_t recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *from, size_t *fromlen);

ssize_t recvmsg(int s, struct msghdr *msg, int flags);

Description

The recv(), recvfrom() and recvmsg() functions receive messages from a socket.
recv() can only receive messages from a socket over which a connection is set up (see the
connect() function on page 82).
recvfrom() and recvmsg() can receive messages from a socket with or without a connection.

The s parameter designates the socket from which the message is received.
If the from parameter is not the null pointer, the address of the message sender is stored in
the address area referenced by from.
fromlen is a result parameter. The size_t variable, to which fromlen points, initially holds the
size of the buffer referenced by from. After the function returns, *fromlen contains the current
length of the address stored in *from. The function returns the length of the message.

The complete message must be read in a single operation for a datagram socket. If the
specified message buffer is too small and MSG_PEEK is not set in the flags parameter, data
extending beyond the buffer size is deleted.
Message limits are ignored with a stream socket. A soon as data is available it is returned
to the caller and no data is deleted.

If no messages are available on the socket, the receive call waits for an incoming message,
unless the socket is non-blocking (see ioctl() on page 132). In this case, -1 is returned and
the errno variable is set to the value EWOULDBLOCK.

The poll() or select() functions can be used to determine when further data arrives.

If the process which calls recv(), recvfrom() or recvmsg() receives a signal before any data is
available, the function concerned is recalled in a standard case. However, the function is
not recalled if the calling process uses sigaction() to signal interruption of this call (see also
the manual “C Library Functions (BS2000/OSD) for POSIX Applications”).

U26110-J-Z125-3-76 117

SOCKETS(POSIX) user functions recv(), recvfrom(), recvmsg()

The flags parameter indicates the type of message reception.

MSG_PEEK
Receives an incoming message. However, the data is handled as unread and the next
receive function also returns this data.

MSG_WAITALL
The function blocks until the entire data that was requested can be returned.
A smaller amount of data can be returned in the following cases:

– A signal arrives.
– The connection is closed.
– An error condition occurs.

The recvmsg() function uses the msghdr structure to reduce the number of directly supplied
parameters. The msghdr structure is declared as follows in the <sys/socket.h> header file:

struct msghdr {
void *msg_name; /* Optional address */
size_t msg_namelen; /* Length of address */
struct iovec *msg_iov; /* Scatter/gather fields */
int msg_iovlen; /* Number of members in msg-iov */
caddr_t msg_accrights; /* Send/receive access rights */
int msg_accrightslen;
void *msg_control; /* Auxiliary data */
size_t msg_controllen; /* Length of auxiliary data buffer */
int msg_flags; /* Flag for received message */

};

The members msg_name and msg_namelen contain the sending address and the address
length of the partner if the socket has no connection set up. The partner address is a
sockaddr structure. The actual format of the sockaddr structure depends on the address
family involved and is described in the section “Socket addressing” on page 13. If the socket
has a connection set up, msg_name can be passed as a null pointer.

The members msg->msg_iov and msg->msg_iovlen describe the scatter and gather fields.
Sending and receiving access rights is not supported.

Return value

>0:
If successful. The value indicates the number of received bytes.

=0:
If successful. No more data can be received. The partner has closed his connection
correctly (only with type SOCK_STREAM sockets).

118 U26110-J-Z125-3-76

recv(), recvfrom(), recvmsg() SOCKETS(POSIX) user functions

-1:
If errors occur. errno is set to indicate the error.

Errors

EBADF
The s parameter is not a valid descriptor.

ECONNRESET
The connection to the partner was interrupted (only with type SOCK_STREAM
sockets).

EFAULT
The data is to be received in a non-existent or protected part of the process address
range.

EINTR
The calling process has received a signal before any data could be received. The signal
to interrupt the function call is set.

EINVAL
More than MSG_MAXIOVLEN scatter/gather fields were specified.

EIO
User data has been lost.

ENETDOWN
The connection to the network is down.

ENOTCONN
No connection exists for the socket.

ENOTSOCK
Descriptor s references a file and not a socket.

EOPNOTSUPP
The flags parameter contains an illegal value or msg->msg_accrights was specified.

EWOULDBLOCK
The socket is marked as non-blocking and the requested operation would block.

See also

connect(), getsockopt(), send(), socket();
fcntl(), ioctl(), read(), select() [1]

U26110-J-Z125-3-76 119

SOCKETS(POSIX) user functions send(), sendto(), sendmsg()

send(), sendto(), sendmsg() -
send a message from socket to socket

#include <sys/socket.h>
#include <netinet/in.h>

ssize_t send(int s, const void *msg, size_t len, int flags);

ssize_t sendto(int s, const void *msg, size_t len, int flags,
const struct sockaddr *to, size_t tolen);

ssize_t sendmsg(int s, const struct msghdr *msg, int flags);

Description

The send(), sendto() and sendmsg() functions send messages from one socket to another.
send() can only be used with a socket over which a connection is set up (see the connect()
function on page 82). sendto() and sendmsg() can always be used.

The s parameter designates the socket from which a message is sent. The destination
address is passed with to, where tolen specifies the length of the destination address.
The length of the message is specified with len. If the message is too long to be transported
completely by the underlying protocol level, error EMSGSIZE is returned and the message
is not transferred.

The flags parameter is currently not supported. A value not equal to 0 leads to an error and
the errno variable is set to the value EOPNOTSUPP.

If the process which calls send(), sendmsg() or sendto() receives a signal before any send data
is buffered, the function concerned is normally called again. However, the function is not
recalled if the calling process has used sigaction() to set the signal to interrupt this call (see
also the manual “C Library Functions (BS2000/OSD) for POSIX Applications”).

The sendmsg() function uses the msghdr structure to reduce the number of directly supplied
parameters.

120 U26110-J-Z125-3-76

send(), sendto(), sendmsg() SOCKETS(POSIX) user functions

The msghdr structure is defined in the <sys/socket.h> header file as follows:

struct msghdr {
void *msg_name; /* Optional address */
size_t msg_namelen; /* Length of the address */
struct iovec *msg_iov; /* Scatter/gather fields */
int msg_iovlen; /* Number of members in msg-iov */
caddr_t msg_accrights /* Send/receive access rights */
int msg_accrightslen;
void *msg_control; /* Auxiliary data */
size_t msg_controllen; /* Length of auxiliary data buffer */
int msg_flags; /* Flag for received message */

};

msg->msg_name and msg->msg_namelen specify the destination address if the socket has no
connection set up. msg->msg_name can be passed as a null pointer if no names are desired
or requested. You will find a description of how to assign the socket an address in the
section “Socket addressing” on page 13.
msg->msg_iov and msg->msg_iovlen describe the scatter and gather fields. Sending and
receiving access rights is not supported.

Return value

≥0:
If successful. The value indicates the number of sent bytes.

-1:
If errors occur. errno is set to indicate the error. The descriptor sets are then not
changed.

Errors

EBADF
The s parameter is not a valid descriptor.

ECONNRESET
The connection to the partner was interrupted (only with type SOCK_STREAM
sockets).

EDESTADDRREQ
The socket is not connection-oriented, a permanent partner was not defined and no
partner was specified in the call.

EFAULT
The data is to be stored in a non-existent or protected part of the process address
range.

U26110-J-Z125-3-76 121

SOCKETS(POSIX) user functions send(), sendto(), sendmsg()

EHOSTUNREACH
The destination host cannot be reached.

EINTR
The calling process received a signal before any data could be buffered for sending and
the signal to interrupt the function call is set.

EINVAL
A parameter specified an illegal value.

EMSGSIZE
The message is too long to be sent in one piece.

ENETDOWN
The connection to the network is down.

ENOBUFS
The output queue for a network interface is full. This generally leads to the interface
stopping sending, but can also be due to a temporary jam.

ENOTCONN
No connection exists for the socket.

ENOTSOCK
The descriptor s does not reference a socket.

EOPNOTSUPP
The flags or msg->msg_accrights parameter was specified, and this is not supported.

EPIPE
The socket is not enabled for writing or the socket is connection-oriented and the
partner has shut the connection down.
If the socket is of type SOCK_STREAM, the SIGPIPE signal is generated for the calling
process.

EWOULDBLOCK
The socket is marked as non-blocking and the requested operation would block.

EAFNOSUPPORT
Addresses of the address family specified for sendto() or sendmsg() cannot be used with
this socket.

122 U26110-J-Z125-3-76

send(), sendto(), sendmsg() SOCKETS(POSIX) user functions

If the socket address family is AF_UNIX, execution of send(), sendto() and sendmsg() can also lead
to an error for the following reasons:

EACCES
Access rights are refused for a path name component or write rights to the specified
socket are refused.

ENAMETOOLONG
A path name component exceeds NAME_MAX characters or the complete path name
is longer than PATH_MAX characters.

ENOENT
A path name component refers to a non-existent file or the path name is blank.

ENOTDIR
A path name component is not a directory.

See also

connect(), getsockopt(), recv(), socket();
fcntl(), select(), write() [1]

U26110-J-Z125-3-76 123

SOCKETS(POSIX) user functions shutdown()

shutdown() - close full duplex connection

#include <sys/socket.h>

int shutdown(int s, int how);

Description

The shutdown() function causes either one or both ends of a full duplex connection over a
socket to be shut down. The s parameter designates the socket concerned.
shutdown() has the following effects, depending on the value of the how parameter:

– If the how parameter has the value SHUT_RD, shutdown() prevents further messages
from being received..

– If the how parameter has the value SHUT_WR, shutdown() prevents messages being
sent.

– If the how parameter has the value SHUT_RDWR, shutdown() prevents messages being
either sent or received.

Return value

0:
If successful

-1:
If errors occur. errno is set to indicate the error.

Errors

EBADF
The s parameter is not a valid descriptor.

ENOTSOCK
Descriptor s references a file and not a socket.

ENOTCONN
The socket has no connection.

See also

connect(), socket()

124 U26110-J-Z125-3-76

socket() SOCKETS(POSIX) user functions

socket() - create socket

#include <netinet/in.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Description

The socket() function creates a communications endpoint and returns a descriptor.

The domain parameter defines the communications domain in which communications are to
take place. This also defines the protocol family to be used. The protocol family generally
corresponds to the family of the addresses used for later operations on the socket. These
families are defined in the <sys/socket.h> header file. The AF_INET, AF_INET6 and
AF_UNIX protocol families are supported.

The type parameter defines the type of the socket and the semantics of the communications.
The two following socket types are currently defined:

– SOCK_STREAM
– SOCK_DGRAM

The type SOCK_STREAM socket provides a sequential, secured, bidirectional connection.
A socket of type SOCK_DGRAM supports the transfer of datagrams, which are connec-
tionless, unsecured messages with a fixed maximum length.

The protocol parameter defines a specific protocol that is to be used for the socket. Since
this implementation only supports the TCP/IP protocol family, only the values 0 (standard
protocol), IPPROTO_IP, IPPROTO_IPV6, IPPROTO_TCP and IPPROTO_UDP are valid
here.

Sockets of type SOCK_STREAM are full duplex data streams, similar to pipes. A stream
socket must be in a connected state before any data can be sent or received over it. A
connection to another socket is set up with the connect() function. Once two sockets are
connected together, data can be transferred with read() and write() calls or similar calls such
as send() and recv(). The user should call the close() function when a session is finished.

The communications protocols used for implementing a type SOCK_STREAM socket
ensure that data is not lost or duplicated.

Type SOCK_DGRAM sockets allow the connectionless sending and receiving of datagrams
with sendto() and recvfrom() or sendmsg() and recvmsg(). When these functions are called, the
address of the communications partner is passed as a parameter.

U26110-J-Z125-3-76 125

SOCKETS(POSIX) user functions socket()

The user can specify a process group with the fcntl() function to receive a SIGIO signal
when input/output operations or connection setup requests arrive.

Socket operations are controlled by socket level options and defined in the <sys/socket.h>
header file. The user can get and set these options with the getsockopt() and setsockopt()
functions respectively.

Return value

≥0:
Designates a non-negative descriptor if successful.

-1:
If errors occur. errno is set to indicate the error.

Errors

EACCES
No allowance is granted for creating a socket of the specified type or protocol.

EMFILE
The table of descriptors per process is full.

ENFILE
The system file table is full.

ENOBUFS
Not enough space in the buffer. The socket cannot be created until enough storage
resources are freed.

EPROTONOSUPPORT
The protocol type or the specified protocol is not supported in this domain.

EPROTOTYPE
Wrong protocol type for the socket.

EAFNOSUPPORT
The address family specified in the domain parameter is not supported on this system.
See also section “Dependencies of the BS2000/OSD BCAM transport system” on
page 302 for more information.

See also

accept(), bind(), connect(), getsockname(), getsockopt(), listen(), recv(), send(),
shutdown(), socketpair();
close(), fcntl(), ioctl(), read(), select(), write() [1]

126 U26110-J-Z125-3-76

socketpair() SOCKETS(POSIX) user functions

socketpair() - create a pair of connected sockets

#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sv[2]);

Description

The socketpair() function creates a pair of sockets that are connected with each other but
have no names.

socketpair() creates the socket-pair in the address family specified with the domain
parameter (AF_INET or AF_UNIX), of type type (SOCK_STREAM or SOCK_DGRAM) and
using the optionally specified protocol protocol. The protocol parameter defines a specific
protocol that is to be used for the socket. Since this implementation only supports the
TCP/IP protocol family, only the values 0 (standard protocol), IPPROTO_IP, IPPROTO_TCP
and IPPROTO_UDP are valid here.

The descriptors of the new socket are returned in the sv[0] and sv[1] parameters. The two
sockets cannot be distinguished between.

Return value

0:
If successful

-1:
If errors occur. errno is set to indicate the error.

Errors

EAFNOSUPPORT
The specified address family is not supported on this system.

EFAULT
The address sv does not specify a valid part of the process address range.

EMFILE
The table of descriptors per process is full.

ENFILE
The system file table is full.

U26110-J-Z125-3-76 127

SOCKETS(POSIX) user functions socketpair()

EOPNOTSUPP
The specified protocol does not support creating socket-pairs.

EPROTONOSUPPORT
The protocol type or the specified protocol is not supported in this domain.

ENOMEM
An internal resource bottleneck has occurred.

See also

pipe(), read(), write() [1]

128 U26110-J-Z125-3-76

Standard POSIX functions for sockets SOCKETS(POSIX) user functions

6.4 Using standard POSIX functions for sockets

The functions described in this section are standard POSIX library functions. The functions
concerned are

● close()

● fcntl()

● ioctl()

● poll()

● read()

● readv()

● select()

● write()

● writev()

Only the particulars for using them with sockets are described in this section.

U26110-J-Z125-3-76 129

Standard POSIX functions for sockets close()

close() - close socket

int close(int s);

Description

close() closes socket s, depending on the SO_LINGER option (see the setsockopt() function
on page 106).

Return value

0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

Errors

EBADF
The s parameter is not a valid descriptor.

130 U26110-J-Z125-3-76

fcntl() Standard POSIX functions for sockets

fcntl() - control sockets

#include <fnctl.h>

int fcntl(int s, int cmd, int arg);

Description

The fcntl() function also executes control functions for sockets.
s designates the socket descriptor and cmd selects the control function to be executed.

The following control functions are supported for sockets:

F_DUPFD
Duplicates a socket descriptor.

F_GETFD
Gets the “close with exec” bit that belongs to the descriptor s. If the least significant bit
is 0, the socket remains open when exec() is called, otherwise, the socket is closed when
exec() is called.

F_SETFD
Sets the “close with exec” bit belonging to s to the least significant bit of the integer value
passed as the third parameter (0 or 1 as above).

F_GETFL
Gets the file status bit for s.

F_SETFL
Sets the file status bit for s to the integer value passed as the third parameter. Only
specific bits can be set (e.g. O_NONBLOCK for non-blocking sockets).

F_SETOWN
The process ID can be set for the specified socket, causing a SIGIO signal to be
supplied when a message arrives from the process.

F_GETOWN
Returns the process ID set for the socket.

U26110-J-Z125-3-76 131

Standard POSIX functions for sockets fcntl()

Return value

0:
If successful

-1:
If errors occur. errno is set to indicate the error.

Errors

EBADF
The s parameter is not a valid descriptor.

EINVAL
cmd or arg are not valid for this device.

EIO
A physical input/output error has occurred.

EMFILE
cmd is F_DUPFD and the number of open file descriptors in the calling process equals
the maximum value of open files for each user specified in the configuration.

132 U26110-J-Z125-3-76

ioctl() Standard POSIX functions for sockets

ioctl() - control sockets

#include <sys/sockio.h>
#include <net/if.h>
#include <sys/filio.h>

int ioctl(int s, unsigned long request, char *arg);

Description

The ioctl() function also executes control functions for sockets.
s designates the socket descriptor. The data type of the object passed as the current
parameter for arg depends on the control function concerned and is a pointer to either an
integer variable (int) or a special data structure.Type conversion to “pointer to char” is
therefore required when calling ioctl().

The following control functions are supported for sockets:

Request *arg Function

FIONBIO int Enable/disable blocking mode

FIONREAD int Get message length

FIOSETOWN int Set process ID

FIOGETOWN int Get process ID

SIOCSPGRP as FIOSETOWN

SIOCGPGRP as FIOGETOWN

SIOCGLIFNUM struct lifnum Get number of interfaces

SIOCGLIFCONF struct lifconf Get interface configuration

SIOCGLIFADDR struct lifreq Get Internet address of the interface

SIOCGLIFINDEX struct lifreq Get index of the interface

SIOCGLIFBRDADDR struct lifreq Get broadcast address of the interface

SIOCGLIFNETMASK struct lifreq Get subnetwork mask of the interface

SIOCGLIFFLAGS struct lifreq Get flags of the interface

SIOCGIFNUM Int Get interface number (only IPv4)

SIOCGIFCONF struct ifconf Get interface configuration (only IPv4)

SIOCGIFADDR struct ifreq Get interface Internet address (only IPv4)

SIOCGIFINDEX struct ifreq Get index of the interface (only IPv4)

U26110-J-Z125-3-76 133

Standard POSIX functions for sockets ioctl()

FIONBIO
This option affects the execution behavior of socket functions when data flow control is
triggered.

– *arg == 0:
Socket functions block until the function can be executed.

– *arg != 0:
Socket functions return with the errno code EWOULDBLOCK if the function cannot
be executed immediately due to data flow control.

FIONREAD
Returns the length of the message currently in the input buffer.

FIOSETOWN
The process ID can be set for the specified socket, causing a SIGIO signal to be
supplied when a message arrives from the process.

SIOCSPGRP
as FIOSETOWN

FIOGETOWN
Returns the process ID set for the socket.

SIOCGPGRP
as FIOGETOWN

SIOCGLIFNUM
The number of interfaces is returned in the lifn_count member. Only the intefaces which
belong to the adress family (AF_UNSPEC, AF_INET or AF_INET6) specified in the
lifn_family member are counted.

SIOCGLIFCONF
A list of the network configuration is returned. For each interface belonging to the
address family specified in the lifc_family member and for which the flags specified in
the lifc_flags member are set, an entry of the type struct lifreq is written to the area which
is addressed by the lifc_buf member. If the length of this area (lifc_len) is not sufficient,
the EINVAL error is reported.
The lifconf and lifreq structures are defined in the include file <net/if.h>.

SIOCGIFBRDADDR struct ifreq Get interface broadcast address (only IPv4)

SIOCGIFNETMASK struct ifreq Get subnetwork mask of the interface (only IPv4)

SIOCGIFFLAGS struct ifreq Get interface flags

Request *arg Function

134 U26110-J-Z125-3-76

ioctl() Standard POSIX functions for sockets

SIOCGLIFADDR
The Interface address is returned in the lifr_addr member for the interface specified with
the lifr_name member.

SIOCGLIFINDEX
The index (the interface number) is returned in the lifr_index member for the interface
specified with the lifr_name member.

SIOCGLIFBRDADDR
The broadcast address is returned in the lifr_broadaddr member for the interface
specified with the lifr_name member. For IPv4 interfaces without broadcast capability
and for IPv6 interfaces, the EADDRNOTAVAIL error is reported.

SICGLIFNETMASK
The subnetwork mask is returned in the lifr_addr member for the interface specified with
the lifr_name member. For IPv6 interfaces the EADDRNOTAVAIL error is reported.

SIOCGLIFFLAGS
The interface flags are returned in the lifr_flags member for the interface specified with
the lifr_name member. The possible flags are IFF_UP, IFF_LOOPBACK and
IFF_BROADCAST.

The folllowing options are supported for reasons of compatibility. However, they only return
information on IPv4 interfaces:

SIOCGIFNUM
The number of IPv4 interfaces is returned in the argument.

SIOCGIFCONF
A list of the IPv4 network configuration is returned. For each IPv4 interface an entry of
the type struct ifreq is written into the area which is addressed by the ifc_buf member. If
the length of this area (ifc_len) is not sufficient, the EINVAL error is reported. The ifconf
and ifreq structures are defined in the include file <net/if.h>.

SIOCGIFADDR
The Internet address is returned in the ifr_addr member for the interface specified with
the ifr_name member.

SIOCGIFINDEX
The index (the interface number) is returned in the ifr_index member for the interface
specified with the ifr_name member.

SIOCGIFBRDADDR
The broadcast address is returned in the ifr_broadaddr member for the interface
specified with the ifr_name member. If the interface does not have broadcast capability,
the EADDRNOTAVAIL error is reported.

U26110-J-Z125-3-76 135

Standard POSIX functions for sockets ioctl()

SIOCGLIFNETMASK
The subnet mask is returned in the if_addr element for the interface specified with the
ifr_name element. For IPv6 interfaces the EADDRNOTAVAIL error is reported.

SIOCGIFFLAGS
The interface flags are returned in the ifr_flags member for the interface specified with
the ifr_name member. The possible flags are IFF_UP, IFF_LOOPBACK and
IFF_BROADCAST.

Return value

0:
If successful

-1:
If errors occur. errno is set to indicate the error.

Errors

EFAULT
request requests data transfer to or from the buffer to which arg points. However, part of
the buffer lies outside the address range assigned to the process.

EINVAL
request or arg are not valid.
The interface name specified (in lifr_name or ifr_name) is not valid.
The address family specified (in lifn_family or lifc_family) is not valid.
The length of the output area (lifc_len or ifc_len) specified in SIOCGLIFCONF or
SIOCGIFCONF is not large enough.

EIO
A physical input/output error occurred.

EOPNOTSUPP
request is not supported.

EADDRNOTAVAIL
request is not possible for this interface.

Example

Get all interface names and addresses with SIOCGLIFCONF.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/sockio.h>

136 U26110-J-Z125-3-76

ioctl() Standard POSIX functions for sockets

#include <net/if.h>
#include <netdb.h>
#define err_exit(a) {perror((a)); exit(1);}

int main(int argc, char **argv)
{
 int soc, cnt, af;
 struct lifconf lifc;
 struct lifreq *plifr;
 struct lifnum lifn;
 char addr_str[INET6_ADDRSTRLEN + 1];
 char af_str[64];

 soc = socket(AF_INET, SOCK_DGRAM, 0);

 lifn.lifn_family = AF_UNSPEC;
 lifn.lifn_flags = 0;
 if (ioctl(soc, SIOCGLIFNUM, &lifn) < 0) {
 err_exit("ioctl(SIOCGLIFNUM)");
 }
 lifc.lifc_len = lifn.lifn_count * sizeof(struct lifreq);
 lifc.lifc_buf = malloc(lifn.lifn_count * sizeof(struct lifreq));
 if (lifc.lifc_buf == NULL) {
 err_exit("malloc");
 }
 lifc.lifc_family = AF_UNSPEC;
 lifc.lifc_flags = 0;
 if (ioctl(soc, SIOCGLIFCONF, &lifc) < 0) {
 err_exit("ioctl(SIOCGLIFCONF)");
 }
 plifr = lifc.lifc_req;
 cnt = lifc.lifc_len / sizeof (struct lifreq);
 for (; cnt>0; cnt--, plifr++) {
 af = plifr->lifr_addr.ss_family;
 switch (af) {
 case AF_INET:
 sprintf(af_str, "AF_INET");
 inet_ntop(af, &((struct sockaddr_in *)&plifr->lifr_addr)->sin_addr,
 addr_str, INET6_ADDRSTRLEN);
 break;
 case AF_INET6:
 sprintf(af_str, "AF_INET6");
 inet_ntop(af, &((struct sockaddr_in6 *)&plifr->lifr_addr)->sin6_addr,
 addr_str, INET6_ADDRSTRLEN);
 break;
 default:
 sprintf(af_str, "af=%d", af);
 strcpy(addr_str, "???");

U26110-J-Z125-3-76 137

Standard POSIX functions for sockets ioctl()

 }
 printf ("%-15s %-8s %s\n", plifr->lifr_name, af_str, addr_str);
 }
 free(lifc.lifc_buf);
 return 0;
}

The data structures lifconf, lifreq and lifnum are defined as follows in net/if.h:

struct lifconf {
 sa_family_t lifc_family;
 int lifc_flags;
 int lifc_len;
 union {
 caddr_t lifcu_buf;
 struct lifreq *lifcu_req;
 } lifc_lifcu;
#define lifc_buf lifc_lifcu.lifcu_buf
#define lifc_req lifc_lifcu.lifcu_req
};

struct lifreq {
#define LIFNAMSIZ 32
 char lifr_name[LIFNAMSIZ];
 union {
 int lifru_addrlen;
 ...
 } lifr_lifru1;
#define lifr_addrlen lifr_lifru1.lifru_addrlen
...
 unsigned int lifr_movetoindex;
 union {
 struct sockaddr_storage lifru_addr;
 ...
 } lifr_lifru;
#define lifr_addr lifr_lifru.lifru_addr
....
};

struct lifnum {
 sa_family_t lifn_family;
 int lifn_flags;
 int lifn_count;
};

138 U26110-J-Z125-3-76

poll() Standard POSIX functions for sockets

poll() - multiplex input/output

#include <poll.h>

int poll(struct pollfd fds[], unsigned long nfds, int timeout);

Description

The poll() function provides the user with a mechanism for multiplexing the input/output via
a set of file descriptors which refer to open files.
poll() identifies the descriptors on which

– the user can receive messages,
– the user can send messages or
– specific events have occurred.

The fds parameter defines the descriptors to be tested and the events which are of interest
for each descriptor. fds is a pointer to a vector with one member for each open descriptor.

The pollfd structure is declared as follows:

struct pollfd {
int fd; /* file ID */
short events; /* requested events */
short revents; /* reported events */

};

The file descriptor fd designates a socket. The members events (events to be queried for the
socket) and revents (events returned for the socket) are bit masks which can be built up from
ORed combinations of the event indicators described below.

POLLIN
Data cannot be read non-blocking if a connection request was received.

POLLOUT
Data cannot be written non-blocking.

POLLRDNORM
as POLLIN

POLLWRNORM
as POLLOUT

POLLERR
An error was reported for the socket. The option is only valid in the revents bit mask and
is not used in an events field.

U26110-J-Z125-3-76 139

Standard POSIX functions for sockets poll()

POLLHUP
A hangup has occurred in the connection. POLLHUP and POLLOUT are mutually
exclusive. If a hangup has occurred, a socket can never be written to. However,
POLLHUP and POLLIN are not mutually exclusive. This option is only valid in the revents
bit mask and is not used in an events field.

POLLNVAL
The specified fds->fd value does not belong to an open file. This option is only valid in
fds->revents and is not used in fds->events.

For each member of the vector to which fds points, poll() tests the specified file descriptor
for the event(s) specified in fds->events. The number of file descriptors to be tested is
specified by fds.

If fds->fd is less than zero, fds->events is ignored and fds->revents is reset to zero in this entry
when poll() returns.

The results of the poll() call are stored in fds->revents. Bits are set in the fds->revents bit mask
to indicate which of the requested events are true. If no events are true, none of the bits in
fds->revents are set when the poll() call returns. The event indicators POLLHUP, POLLERR
and POLLNVAL are always set in fds->revents if the conditions indicated by them are true.
This is also the case if these options were not in fds ->events.

If none of the defined events occurs with any of the selected file descriptors, poll() waits at
least timeout milliseconds for the occurrence of an event with one of the selected file
descriptors. On a host which cannot measure to millisecond accuracy, timeout is rounded
up to the next permissible value available in the system.

poll() returns immediately if the value of timeout is 0. If the value of timeout is INFTIM (or -1),
poll() blocks until a requested event occurs or the call is interrupted. poll() is not affected by
the O_NDELAY and O_NONBLOCK switches.

Return value

0:
Indicates that the time for the call has expired and no file descriptors were selected.

>0:
A positive number indicates the total number of currently selected file descriptors (i.e.
file descriptors for which fds->revents is not equal to zero).

-1:
If errors occur. errno is set to indicate the error.

140 U26110-J-Z125-3-76

poll() Standard POSIX functions for sockets

Errors

EAGAIN
The assignment of the internal data structures failed, but the request should be retried.

EFAULT
A parameter refers to an address outside the assigned address range.

EINTR
A signal was trapped during the poll() call.

EINVAL
The nfds parameter is less than zero or greater than OPEN_MAX.

See also

accept(), listen();
read(), select(), write() [1]

U26110-J-Z125-3-76 141

Standard POSIX functions for sockets read(), readv()

read(), readv() - receive a message from a socket

#include <sys/socket.h>

#include <sys/uio.h>

ssize_t read(int s, char *buf, int len);

ssize_t readv(int s, const struct iovec *iov, int iovcnt);

Description

The read() and readv() functions receive messages from a socket. read() and readv() can only
be used with a socket over which a connection is set up. The length of the message is
returned.

The s parameter designates the socket from which the message is received.

For read(), the buf parameter points to the first byte of the receive buffer. The len parameter
specifies the length (in bytes) of the receive buffer, and thus the maximum message length.

For readv(), the received data is placed in a vector with the members iov[0],... ,iov[iovcnt-1].
The vector members are objects of the type struct iovec. The address of the vector is passed
in the iov parameter. Each vector member contains the address and length of a storage area
into which readv() reads the data received from socket s. readv() fills one area after the other
with data. readv() does not move on to the next area until the current area is completely filled
with data.

The struct iovec structure is declared as follows:

struct iovec {
caddr_t iov_base; /* buffer for data */
size_t iov_len; /* length of buffer */
};

iovcnt indicates the number of vector members.
If no messages are available on the socket, the receive call waits for an incoming message,
unless the socket is non-blocking. See the section “ioctl() - control sockets” on page 132 for
more information. In this case, read() and readv() return the value -1, and the errno variable
is set to the value EWOULDBLOCK.

The poll() or select() function can be used to determine when further data arrives.

142 U26110-J-Z125-3-76

read(), readv() Standard POSIX functions for sockets

If the process which calls read() or readv() receives a signal before any data is available, the
call is repeated. The call is not repeated if the calling process uses sigaction() to set the
signal to interrupt this call (see also the manual “C Library Functions (BS2000/OSD) for
POSIX Applications”).

Return value

>0:
If successful

-1:
If errors occur. errno is set to indicate the error.

Errors

EBADF
The s parameter is not a valid descriptor.

ECONNRESET
The connection to the partner was interrupted (only with type SOCK_STREAM
sockets).

EFAULT
The data is to be received in a non-existent or protected part of the process address
range.

EINTR
The calling process received a signal before any data could be received and the signal
to interrupt the function call is set.

EIO
User data has been lost.

ENETDOWN
The connection to the network is down.

ENOTCONN
No connection exists for the socket.

ENOTSOCK
Descriptor s references a file and not a socket.

EWOULDBLOCK
The socket is marked as non-blocking and the requested operation would block.

See also

connect(), getsockopt(), recv(), send(), socket();
fcntl(), ioctl(), read(), select(), write() [1]

U26110-J-Z125-3-76 143

Standard POSIX functions for sockets select()

select() - multiplex input/output

#include <sys/types.h>
#include <sys/select.h>
#include <sys/time.h>

int select(int width, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO(&fdset);

int fd;

fd_set fdset;

Description

The select() function tests three different sets of socket descriptors passed with the readfds,
writefds and exceptfds parameters.
select() determines

– which descriptors in the set passed with readfds are ready for reading,

– which descriptors in the set passed with writefds are ready for writing,

– for which descriptors in the set passed with exceptfds a pending exception exists.

The descriptor sets are stored as bit fields in Integer strings. The size of the bit fields (and
descriptors) is defined by the FD_SETSIZE constant. FD_SETSIZE is defined in
<sys/select.h> with a value which is by default at least as large as the maximum number of
descriptors supported by the system.

The width parameter specifies the number of bits to be tested in each bit mask. select() tests
bits 0 to width-1 in the separate bit masks. width normally has the value supplied by the
ulimit() function as the maximum number of socket descriptors. The ulimit() function is
described in the manual “C Library Functions (BS2000/OSD) for POSIX Applications”.
select() replaces the descriptor sets passed with the call with corresponding subsets. These
subsets each contain all descriptors that are ready for the operation concerned.

144 U26110-J-Z125-3-76

select() Standard POSIX functions for sockets

You can use the following macros to manipulate bit masks or descriptor sets:

FD_ZERO(&fdset)
Initializes the descriptor set fdset as an empty set.

FD_SET(fd, &fdset)
Extends the descriptor set fdset by descriptor fd.

FD_CLR(fd, &fdset)
Removes descriptor fd from descriptor set fdset.

FD_ISSET(fd, &fdset)
Tests whether descriptor fd is a member of descriptor set fdset:

– Return value ! = 0: fd is a member of fdset.
– Return value == 0: fd is not a member of fdset.

The behavior of these macros is undefined if the descriptor value is <0 or ≥ FD_SETSIZE.

The timeout parameter defines the maximum time that the select() function has for complete
selection of the ready descriptors. If timeout is the null pointer, select() blocks for an
undefined time.
You can enable polling by passing a pointer for timeout to a timeval object whose compo-
nents all have the value 0.

If the descriptors are of no interest, the null pointer can be passed as the current parameter
for readfds, writefds and exceptfds.

If select() determines the read readiness of a socket descriptor after calling listen(), this
indicates that a subsequent accept() call for this descriptor will not block.

Return value

>0:
The positive number indicates the number of ready descriptors in the descriptor set.

0:
Indicates that the timeout limit has been exceeded.

-1:
If errors occur. errno is set to indicate the error. The descriptor sets are then not
changed.

U26110-J-Z125-3-76 145

Standard POSIX functions for sockets select()

Errors

EBADF
One of the descriptor sets specified an invalid descriptor.

EFAULT
One of the pointers that were passed points to a non-existent area in the process
address range.

EINTR
A signal was received before one of the selected events arrived or before the time limit
expired.

EINVAL
A component of the specified time limit is outside the valid range.
The valid range is defined as follows:

– 0 ≤ t_sec ≤ 108
– 0 ≤ t_usec < 106

Note

In rare circumstances, select() can indicate that a descriptor is ready for writing while a write
attempt would actually block. This can occur If the system resources required for writing are
exhausted or not present. If it is critical for your application that writes to a file descriptor do
not block, you should set the descriptor to non-blocking input/output with a fcntl() call.

See also

accept(), connect(), listen(), recv(), send();
fcntl(), read(), ulimit(), write() [1]

146 U26110-J-Z125-3-76

write(), writev() Standard POSIX functions for sockets

write(), writev() - send a message from socket to socket

#include <sys/socket.h>
#include <sys/uio.h>

ssize_t write(int s, char *buf, int len);
ssize_t writev(int s, const struct iovec *iov, int iovcnt);

Description

The write() and writev() functions send messages from one socket to another. write() and
writev() can only be used with a socket over which a connection is set up.

The s parameter designates the socket over which the message is sent.

For write(), the buf parameter points to the first byte of the send buffer, and len specifies the
length of the message in the send buffer in bytes.

For writev(), the data to be sent is supplied in the vector with the members
 iov[0], ... ,iov[iovcnt-1]. The vector members are objects of the type struct iovec. The address
of the vector is passed in the iov parameter. Each vector member contains the address and
length of a storage area from which writev() reads the data to be sent.

The struct iovec structure is declared as follows:

struct iovec {
caddr_t iov_base; /* buffer for data */
size_t iov_len; /* length of buffer */

};

iovcnt indicates the number of vector members.

If the message is too long to be transported completely by the underlying protocol level,
error EMSGSIZE is returned and the message is not transferred.

If the process which calls write() and writev() receives a signal before any send data is
buffered, the call is repeated.
The call is not repeated if the calling process uses sigaction() to set the signal to interrupt
this call (see also the description of SA_RESTART at sigaction() in the manual “C Library
Functions (BS2000/OSD) for POSIX Applications“).

U26110-J-Z125-3-76 147

Standard POSIX functions for sockets write(), writev()

Return value

0:
If successful (number of bytes actually sent)

-1:
If errors occur. errno is set to indicate the error. The descriptor sets are then not
changed.

Errors

EBADF
The s parameter is not a valid descriptor.

ECONNRESET
The connection to the partner was interrupted (only with type SOCK_STREAM
sockets).

EFAULT
The data is to be sent to a non-existent or protected part of the process address range.

EINTR
The calling process received a signal before any data could be buffered for sending and
the signal for interrupting the function call is set.

EINVAL
A parameter specifies an illegal value.

EMSGSIZE
The message is too long to be sent in one piece.

ENETDOWN
The connection to the network is down.

ENOBUFS
The system could not provide an internal buffer. The operation can succeed if memory
is freed.
The output queue for a network interface is full. This generally leads to the interface
stopping sending, but can also be due to a temporary jam.

ENOTCONN
No connection exists for the socket.

ENOTSOCK
Descriptor s references a file and not a socket.

148 U26110-J-Z125-3-76

write(), writev() Standard POSIX functions for sockets

EPIPE
The socket is not activated for writing or the socket is connection-oriented and the
partner has shut the connection down.
If the socket is of type SOCK_STREAM, the SIGPIPE signal is generated for the calling
process.

EWOULDBLOCK
The socket is marked as non-blocking and the requested operation would block.

See also

connect(), getsockopt(), recv(), socket();
fcntl(), select(), write() [1]

U26110-J-Z125-3-76 149

7 XTI(POSIX) basics
X/Open Transport Interface (XTI) is the standard defined by X/Open for a number of
programming interfaces which allow the application to access network levels, similarly to
the socket interface.

XTI offers two types of services:

● connection-oriented service

● connectionless service

XTI appears to the user as a finite, event-controlled state machine.
This means:

● for a transport endpoint, there is a finite number of defined states

● each of these states can only be reached via specific events

● in each state, only specific functions can be executed.

150 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

7.1 Connection-oriented service

The connection-oriented service transports data over a one-time “virtual connection”. This
service is tailored for applications which require a secure, data flow-oriented connection.

7.1.1 Connection-oriented service phases

The connection-oriented service comprises three phases:

– local management
– connection setup
– data transfer
– connection shutdown

Local management

The local management defines functions between the transport user, the transport provider
and other instances which control connection setup.

Examples of local functions:

– The user has to set up a communications channel to the transport provider. Each
channel between the user and transport provider is called a transport endpoint. The user
selects a special transport provider and sets up a transport endpoint with the t_open()
function.

– Each user can manage one or more transport endpoints, which he has to identify to the
transport provider. For this, the user assigns each transport endpoint a transport
address, which is unique throughout the network, with the t_bind() function, i.e. he binds
a transport address to the transport endpoint. The structure of the transport address is
defined by the transport provider concerned.

In addition to t_open() and t_bind(), further functions exist for supporting the local transport
interface management. These are summarized in table 2.

U26110-J-Z125-3-76 151

XTI(POSIX) basics Connection-oriented service

Connection setup

In this phase, a communication connection is set up between two users.
The connection setup can be illustrated using the example of two transport users who have
a client/server relationship with each other: one transport user (server) makes a number of
services available to a group of users (clients) and then waits for requests from these
clients. Each client can request a service after setting up a connection to the server.

The client requests a connection with the t_connect() function. One parameter of t_connect(),
the address, identifies the server that the client wishes to reach. The server has to use the
t_listen() function to be informed of all incoming connection requests. The server accepts a
request to set up a connection with t_accept(). The transport connection is then set up.

Function Description

t_alloc() Reserves memory for the transport interface

t_bind() Binds an address to a transport endpoint.

t_close() Closes a transport endpoint.

t_error() Prints an error message from the transport provider.

t_free() Releases the memory area reserved with t_alloc().

t_getinfo() Returns the parameter set of the current transport provider.

t_getstate() Returns the state of the transport endpoint.

t_look() Returns the current events of the transport endpoint.

t_open() Sets up a transport endpoint that is to be bound to a specific transport
provider.

t_optmgmt() Negotiates protocol-specific options with the transport provider.

t_sync() Synchronizes the transport endpoint with the transport provider.

t_unbind() Unbinds an address from a transport endpoint.

Table 2: Functions for local management of the transport interface

152 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

Table 3 shows the connection setup functions.

Data transfer

Data transfer allows two users to exchange data in both directions over an established
connection. The t_snd() and t_rcv() functions send and receive data respectively over this
connection. It is ensured that the data sent arrives at the receiver in the same order as sent.

Table 4 shows the functions for connection-oriented data transfer.

Function Description

t_accept() Accepts a request to set up a connection.

t_connect() Requests a connection with a particular user at a specified address.

t_listen() Waits for a request to set up a connection from another user.

t_rcvconnect() Confirms a connection setup request if t_connect() was called in
asynchronous mode.

Table 3: Functions for connection setup

Function Description

t_rcv() Receives data.

t_snd() Sends data.

Table 4: Functions for connection-oriented data transfer

U26110-J-Z125-3-76 153

XTI(POSIX) basics Connection-oriented service

Connection shutdown

The user sends the transport provider a request to shut an established connection down.
There are two different types of connection shutdown:

● Abortive connection release:
The abortive connection release directs the transport provider to terminate the
connection immediately, whereby all previously sent data that has not reached the
receiver may be lost. The transport user can initiate such a connection release with the
t_snddis() function. The communication partner affected by this shutdown can query the
cause of the shutdown with the t_rcvdis() function. The t_rcvdis() function handles
incoming requests after a connection has been aborted.

● Orderly connection shutdown:
In addition to the abortive connection release, some transport providers also enable a
connection to be shut down in an orderly manner, where no data is ever lost. The
t_sndrel() and t_rcvrel() functions implement an orderly connection shutdown.

The orderly connection shutdown between two users, user1 and user2, always
progresses in the following steps:

1. User1, who is the first who wishes to shut the connection down, uses the t_sndrel()
function to send user2 a request to shut the connection down. t_sndrel() informs
user2 that user1 will send no further data.

2. After receiving such a message with the t_rcvrel() function, user2 can still send data
to user1.

3. After transferring all data, user2 must also call t_sndrel(). This informs user1 that
user2 is now ready to shut the connection down.

4. The connection is shut down as soon as user1 receives the message from user2
with t_rcvrel().

154 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

Table 5 shows the functions for shutting a connection down.

Function Description

t_rcvdis() Informs about an abortive connection release.

t_rcvrel() Indicates that the communications partner wants an orderly connection
shutdown.

t_snddis() Requests an abortive connection release or refuses a connection
request.

t_sndrel() Requests an orderly connection shutdown.

Table 5: Functions for connection shutdown

U26110-J-Z125-3-76 155

XTI(POSIX) basics Connection-oriented service

Interaction between the connection-oriented service functions

Figure 4 illustrates the interaction between the XTI functions which implement the separate
phases of the connection-oriented service. The separate XTI functions are described in
detail in chapter “XTI(POSIX) library functions” on page 223.

Figure 4: Interaction between the connection-oriented service functions

Protocol: TCP
connection-oriented

CLIENT SERVER

t_open()

t_bind()

t_connect()

t_snd()

t_rcv()

t_sndrel(),t_snddis()

t_rcvrel(),t_rcvdis()

t_unbind()

t_close()

“/dev/tcp“

t_rcvconnect()

t_open()

t_bind()

t_listen()

t_snd()

t_rcv()

t_sndrel(),t_snddis()

t_rcvrel(),t_rcvdis()

t_unbind()

t_close()

“/dev/tcp“

t_accept()

[t_open()]
synchronous

asynchronous

156 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

7.1.2 Connection-oriented client/server model

This section provides a detailed description of the separate phases of the connection-
oriented service using an example program for the following simple client/server appli-
cation:

1. The client and server carry out their local management tasks.

2. A connection is set up between the client and server.

3. The server transfers a file to the client. The client receives the file from the server and
outputs it to its standard output.

4. The client and server shut the connection down.

The example program is described in separate program sections, where two program
sections explain each phase of the connection-oriented service. One program section takes
on the role of the client and the other the role of the server.

The program code used in the examples in this section is shown completely and coherently
in section “Client in the connection-oriented service” on page 202 and section “Server in the
connection-oriented service” on page 204.

U26110-J-Z125-3-76 157

XTI(POSIX) basics Connection-oriented service

Local management using the example client/server model

Before the client and server can set up a communications connection, they must first each
set up a local channel to the transport provider with t_open(). After this, they must each use
t_bind() to make a local address known under which each can be reached via its assigned
transport endpoint.
The user gets the various services offered by the transport interface with the t_open() call.

The services are built up as follows:

Three service types are defined:

The user receives the preset features of the transport endpoint with t_open(). If these are
dynamic features, they may subsequently change. The user can obtain information on the
current features of the transport endpoint with t_getinfo().

Address Maximum size of an address

Options Maximum number of bytes for protocol-specific options which the
user can exchange with the transport provider

tsdu Maximum message size which can be transferred in the
connection-oriented or connectionless services

etsdu Maximum number of bytes for expedited data which can be sent
over a connection

Connection setup
(connect)

Maximum number of bytes for user data which can be exchanged
during connection setup

Connection shutdown
(discon)

Maximum number of bytes of user data which can be transferred
during connection shutdown

Service type Type of the service supported by the transport provider

T_COTS The transport provider supports the connection-oriented service
but does not allow an orderly connection shutdown. The connection
can only be aborted.

T_COTS_ORD The transport provider supports the connection-oriented service
and provides the option of an orderly connection shutdown
(standard for XTI(POSIX) in the connection-oriented service).

T_CLTS The transport provider supports the connectionless service.

158 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

Once a user has set up a transport endpoint, he must pass the transport provider the
address under which he can be reached via this endpoint. As described above, the user
passes the transport endpoint address to the transport provider with t_bind(). With server
stations, t_bind() also ensures that incoming connection requests can be processed by the
transport provider and forwarded to the transport endpoint.

One additional function is available while the transport endpoint is being set up: the user
can change features with t_optmgmt(). Each transport protocol is expected to provide its own
set of changeable features. These can, for example, be parameters that affect the service
quality. Because of the protocol-specific nature of these parameters, only applications for a
special protocol environment will use this option.

The local management tasks are shown below using a client and a server as examples. The
two examples contain the definitions and calls.

Local management by the client

#include <xti.h>
#include <stdio.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define SRV_ADDR 0x7F000001
#define SRV_PORT 8888

main()
{

int fd;
int nbytes;
int flags = 0;
char buf[1024];
struct t_call *sndcall;
struct sockaddr_in *sin;

if ((fd = t_open("/dev/tcp", O_RDWR, NULL)) < 0)
{

t_error("t_open() failed");
exit(1);

}
if (t_bind(fd, NULL, NULL) < 0)
{

t_error("t_bind() unsuccessful");
exit(2);

}

U26110-J-Z125-3-76 159

XTI(POSIX) basics Connection-oriented service

The first parameter of t_open() is the path name of the device which provides the requested
transport service. In this example, /dev/tcp is a device file and provides a connection-
oriented transport protocol. This transport protocol is opened for read/write accesses by the
second parameter. The user can employ the third parameter to get information on the
available features. This information is required to create programs that are independent of
protocols. To keep the example simple, this information is not accessed.

The client and server assume that the transport provider has the following features:

– Support for service type T_COTS_ORD, which is used in the example for the orderly
connection shutdown.

– User data cannot be exchanged during connection setup or shutdown.

– No protocol-specific features are provided.

Since these features are not needed by the user, NULL is passed as the third parameter in
the t_open() call. A different device file must be opened if the user requires a service type
other than T_COTS_ORD. An example for T_CLTS is shown in section “Connectionless
service using an example transaction system” on page 175.

t_open() returns an integer value, which is required in all further transport provider calls to
identify the transport endpoint set up with t_open(). This integer value is a file descriptor.

After the transport endpoint has been set up, the user calls t_bind() to assign the transport
endpoint an address. The first parameter of t_bind() identifies the transport endpoint and the
second parameter describes the address which is to be bound to the transport endpoint.
When t_bind() returns, the third parameter contains the actually bound address.

In contrast to the address of a server transport endpoint, which is needed by all clients to
access the server, the address of a client does not have to be generally known. As no other
process will try and access the address of a client, the client does not normally bother with
its own address. This is shown in the above example in the t_bind() call where NULL is
passed as the second and third parameters. If the second parameter is NULL, the transport
provider assigns an address. The third NULL parameter means that the client is “not inter-
ested” in the address assigned by the transport provider.

If either t_open() or t_bind() is unsuccessful, t_error() is called to output an appropriate error
message to stderr. If any of the transport provider functions should fail, the global integer
variable t_errno is set to a corresponding value that indicates the error more closely. A
number of such error values, and the t_errno variable itself, are defined in <xti.h> for the
transport provider. t_error() outputs an error message according to the value of t_errno. This
function works in the same way as the perror() function which outputs an error message
according to the value of errno. If the error in the transport provider is a system error, t_errno
is set to the value TSYSERR and errno is set to the appropriate system error value.

160 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

Local management by the server

The server in this example has to proceed in a similar manner before communications can
be started. The server has to set up a transport endpoint which waits continuously for
connection requests.

The definitions and calls required are as follows:

#include <xti.h>
#include <stropts.h>
#include <fcntl.h>
#include <stdio.h>
#include <signal.h>
#include <netinet.in.h>
#include <sys/socket.h>

#define FILENAME "/etc/services"
#define DISCONNECT -1
#define SRV_ADDR 0x7F000001
#define SRV_PORT 8888

int conn_fd; /* For the connection file descriptor */

main()
{

int listen_fd; /* File descriptor for
* connection request
*/

struct t_bind *bind;
struct t_call *call;
struct sockaddr_in *sin;

if ((listen_fd = t_open("/dev/tcp", O_RDWR, NULL)) < 0)
{

t_error("t_open() call for listen_fd failed.");
exit(1);

}

if ((bind = (struct t_bind *)t_alloc(listen_fd, T_BIND, T_ALL)) == NULL)
{

t_error("t_alloc() for t_bind structure failed.");
exit(2);

}

U26110-J-Z125-3-76 161

XTI(POSIX) basics Connection-oriented service

bind->qlen = 1;
bind->addr.len=sizeof(struct sockaddr_in);
sin=(struct sockaddr_in *)bind->addr.buf;
sin->sin_family=AF_INET;
sin->sin_port=htons(SRV_PORT);
sin->sin_addr.s_addr=htonl(SRV_ADDR);

if (t_bind(listen_fd, bind, bind) < 0)
{

t_error("t_bind() for listen_fd failed.");
exit(3);

}

Analogous to the client, the server also calls t_open() to set up a connection to the desired
transport provider, i.e. the server sets up a transport endpoint (listen_fd). The server will use
this transport endpoint listen_fd later when it calls the t_listen() function to wait for connection
requests.

Before the server can use the t_bind() function to bind an address to the transport endpoint
listen_fd, the server has to provide this address. The address is passed with the second
parameter (bind) when t_bind() is called.

The bind parameter is a pointer to an object of data type struct t_bind. All structures and
constants of the transport provider are declared/defined in <xti.h>.

The t_bind structure is declared in <xti.h> as follows:

struct t_bind {
struct netbuf addr;
unsigned qlen;

};

bind->qlen defines the maximum number of allowed connection requests.
If the value of bind->qlen is greater than 0, incoming connection requests can be processed
with this transport endpoint. The server then puts incoming connection requests for the
address provided in bind->addr into a queue. bind->qlen also defines the maximum number
of requests that the server can process simultaneously. The server must reply to all
requests by either accepting or refusing them. A connection request is pending if the server
has not replied to it.
A server will often completely process one connection request and then the next. In this
case, qlen should be set to the value 1. If a server wants to process several requests simul-
taneously, bind->qlen specifies the maximum number of requests which can be processed
simultaneously.
Since the server in the example processes one connection request after the other,
bind->qlen must be assigned the value 1. An example of a server that processes several
requests simultaneously is shown in section “Managing multiple connections simulta-
neously and event- controlled operation” on page 193.

162 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

addr has the data type struct netbuf and describes the address to be bound.
The netbuf structure is declared in <xti.h> as follows:

struct netbuf {
unsigned int maxlen;
unsigned int len;
char *buf;

};

buf is a pointer to a data buffer, len specifies the number of bytes in the buffer and maxlen
specifies the maximum number of bytes that can be written into the buffer. The last entry is
only required if data is transported from the transport provider to the user.

Calling t_alloc() reserves memory dynamically for a t_bind object. The first parameter of
t_alloc() names the file descriptor which identifies the transport endpoint. The second
parameter specifies the transport provider structure to be created, i.e. t_bind in this case.
The third parameter specifies which components of this structure are to be created. T_ALL
means that memory is to be reserved for all the components of the structure. This creates
the addr buffer in the above example. The size of the buffer is determined by the transport
provider, who defines a maximum address length. This length is in the maxlen component
of the netbuf structure.
Using t_alloc() ensures compatibility with future versions of the transport provider.

The data is interpreted as an address with objects of type struct t_bind. It is generally
assumed that the structure of an address differs from protocol to protocol. The structure of
netbuf is created such that all protocols can be supported.

Finally, the address information is assigned to the new t_bind object. In the example, the
address itself is structured according to the Internet communications domain address
structure (see struct sockaddr_in on page 14).

The server now binds the address created above to the transport endpoint listen_fd with the
t_bind() function. After the t_bind() call has been successfully executed, the server can be
accessed by any client via this address. The transport provider puts incoming connection
requests into a queue and this initiates the next phase of the connection setup protocol, the
actual connection setup.

Connection setup using the example client/server model

The connection setup illustrates the difference between the client and server. The transport
provider makes different, special functions available to each of them. The client calls
t_connect() to request a connection while the server uses t_listen() to wait for connection
requests. The server can either accept a connection with the t_accept() function or refuse it
with t_snddis(). The client is informed of the decision of the transport provider when the
t_connect() function terminates.

U26110-J-Z125-3-76 163

XTI(POSIX) basics Connection-oriented service

Connection request by the client

To continue with the client/server example, the following steps are required for connection
setup from the viewpoint of the client:

if ((sndcall = (struct t_call *)t_alloc(fd, T_CALL, T_ADDR)) == NULL) {
t_error("t_alloc() failed");
exit(3);

}
sndcall->addr.len=sizeof(struct sockaddr_in);
sin=(struct sockaddr_in *)sndcall->addr.buf;
sin->sin_family=AF_INET;
sin->sin_port=htons(SRV_PORT);
sin->sin_addr.s_addr=htonl(SRV_ADDR);

if (t_connect(fd, sndcall, NULL) < 0) {
t_error("t_connect() for fd failed");
exit(4);

}

Before the client can send a connection request to the server with t_connect(), the client
must specify the address of the server. This address is then passed as the second
parameter (sndcall) with the t_connect() call.

The sndcall parameter is a pointer to an object of data type struct t_call.

The t_call structure is declared in <xti.h> as follows:

struct t_call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

};

t_alloc() is used in the example to set up a t_call object dynamically. No features or user data
are specified in the above example. Only the server address is used. T_ADDR is selected
as the third parameter of t_alloc() to set up an appropriate buffer for the address information.

After t_alloc() has been successfully executed, the server deposits the server address and
its length into the memory area reserved by t_alloc(). The server address is thereby struc-
tured according to the address structure of the Internet communications domain
(see struct sockaddr_in on page 14).

164 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

The t_connect() call sends a connection request to the server. The first parameter of the call
is the transport endpoint over which the connection is to be set up. The address of the
desired server is passed with the second parameter (sndcall). The third parameter is also a
pointer to an object of type struct t_call. This t_connect() parameter is used to get information
on the established connection. Since this information is not needed here, NULL is passed
as the third parameter in the example. If t_connect() is successful, the connection is set up.
If the server refuses the connection request, t_errno is set to the value TLOOK.

The TLOOK error has a special significance for the transport interface: TLOOK informs the
user if an interface function was interrupted by an unexpected asynchronous event on the
specified transport endpoint. TLOOK therefore does not indicate an interface error, but only
that the called function is not executed because of the pending event. The defined transport
interface events are described on page 182.

The user can determine which event has occurred when a TLOOK error is reported, with
the t_look() function. If the connection request is refused in the above example, the client
receives a message about the aborted connection. The program is terminated in this case.

Connection acceptance by the server

When the client requests a connection with t_connect(), a corresponding event is set at the
transport endpoint of the server. The steps required for handling this event are shown
below. For each client, the server accepts the request and creates a new process to
manage the connection.

if ((call = (struct t_call *)t_alloc(listen_fd, T_CALL, T_ADDR)) == NULL){
t_error("t_alloc() for t_call structure failed");
exit(5);

}

while (1) {
if (t_listen(listen_fd, call) < 0) {

t_error("t_listen for listen_fd failed");
exit(6);

}

if ((conn_fd = accept_call(listen_fd, call)) != DISCONNECT)
run_service(listen_fd);

}
}

The server uses t_alloc() to set up an object of type struct t_call that is required by t_listen().
The third parameter of t_alloc(), T_ADDR, causes the buffer for the address of the client to
be created.
The value of maxlen in a netbuf object specifies the actual length of the created buffer.

U26110-J-Z125-3-76 165

XTI(POSIX) basics Connection-oriented service

The server runs in an endless loop and processes one incoming connection request in each
loop run. The server thereby proceeds as follows:

1. The server calls the t_listen() function to wait for connection requests that arrive at the
transport endpoint listen_fd. The transport address of the sender of a connection
request is stored by t_listen() in the t_call object to which the pointer variable call points.
If no connection requests are pending, the t_listen() function blocks the process until a
connection request arrives.

2. When a connection request arrives, the server calls the user-defined accept_call()
function to confirm the connection. accept_call() accepts the connection request on a
new transport endpoint and returns the relevant file descriptor as the result. This file
descriptor is stored in the global conn_fd variable. Since the connection is set up on a
new transport endpoint, the server can wait for further requests on the old transport
endpoint. The accept_call() function is described in detail below.

3. If the connection acceptance was successful, the run_service() function creates a new
process to manage the connection. The user-defined run_service() function is described
in detail on page 168.

The transport interface supports an asynchronous mode and this is described in chapter
“Advanced XTI(POSIX) concepts” on page 191.

The accept_call() function, which the server calls to accept a connection request, is defined
as follows:

accept_call(listen_fd, call)
int listen_fd;
struct t_call *call;
{

int resfd;
struct t_call *refuse_call;

if ((resfd = t_open("/dev/tcp", O_RDWR, NULL)) < 0) {
t_error(„t_open() call for accept failed”);
exit(7);

}
while (t_accept(listen_fd, resfd, call) < 0) {

if (t_errno == TLOOK) {
if (t_look(listen_fd) == T_DISCONNECT) { /* Connection abort */

 if (t_rcvdis(listen_fd, NULL) < 0) {
t_error("t_rcvdis() failed for listen_fd");
exit(9);

}

166 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

if (t_close(resfd) < 0) {
t_error("t_close failed for responding fd");
exit(10);

}
/* Terminate call and wait for further calls */
return(DISCONNECT);

} else { /* new T_LISTEN; delete event */
if ((refuse_call =

(struct t_call *)t_alloc(listen_fd,T_CALL,0)) == NULL) {
 t_error("t_alloc() for refuse_call failed");

exit(11);
}

if (t_listen(listen_fd, refuse_call) < 0) {
t_error("t_listen() for refuse_call failed");
exit(12);

}

if (t_snddis(listen_fd, refuse_call) < 0) {
t_error("t_snddis() for refuse_call failed");
exit(13);

}

if (t_free((char *)refuse_call, T_CALL) < 0) {
t_error("t_free() for refuse_call failed");
exit(14);

}
}

} else {
 t_error("t_accept() failed");
 exit(15);

}
}
return(resfd);

}

The accept_call() call needs two parameters:

– listen_fd specifies the transport endpoint on which the connection request arrived.

– call is a pointer to an object of data type struct t_call that contains all the information for
these requests.

The t_call() function first creates an additional transport endpoint. This new transport
endpoint resfd is used to accept the connection request.

U26110-J-Z125-3-76 167

XTI(POSIX) basics Connection-oriented service

The t_accept() function accepts the connection request. The first parameter of the t_accept()
function specifies the transport endpoint on which the request was received. The second
parameter specifies the transport endpoint on which the request is to be confirmed.
A request can be confirmed on the same transport endpoint on which it was received.

In this case, other clients cannot make any requests for the duration of this connection.
The third parameter of t_accept() points to the t_call object of the currently processed
connection request. This object should contain the address of the calling client and the
sequential number of the t_listen() call. The value of call->sequence is significant if the server
manages several connections. You will find an appropriate example in section “Event-
controlled server” on page 210.

To keep this example simple, the server terminates the program if the t_open() call fails.
exit(2) closes the transport endpoint assigned to listen_fd. The transport provider thereby
sends the client a message to the effect that the connection was aborted and the
connection request was unsuccessful. The t_connect() call fails and t_errno is set to TLOOK.

t_accept() execution can fail if an asynchronous event occurs on the receiving transport
endpoint before the connection is accepted. t_errno is then set to TLOOK. Table 9 on
page 183 shows that precisely one of the two following events can arrive:

● An abort message has arrived for the previously reported connection request, i.e. the
client who sent the connection request wants to abort the connection.

When an abort request arrives, the server must immediately use a t_rcvdis() call to
analyze the reason for the request. The t_rcvdis() function has a parameter which is a
pointer to an object of data type t_discon (see page 270). The t_discon object is required
to store the abort condition. The reason for the abort is not queried in this example and
the parameter is therefore set to NULL. After the abort condition is received,
accept_call() closes the transport endpoint and returns a DISCONNECT as its result.
This informs the server that the connection was closed by the client.

● A new connection request arrived during execution of t_accept().

In this example, the server refuses this connection request in order to be able to accept
the currently processed connection request without interruption. The server thereby
proceeds as follows:

1. The server creates a new object of type struct t_call with t_alloc() .

2. The server then accepts the new connection request with t_listen() which returns a
unique ID for the new connection request in the refuse_call->sequence field.

3. The server refuses the new connection request with t_snddis().

4. The server repeats the t_accept() call after releasing the t_call object referenced by
refuse_call.

The transport connection has been set up with the newly created transport endpoint. This
allows the receive endpoint to handle new connection requests.

168 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

Data transfer using the example client/server model

Once the connection has been set up, the client and server can start exchanging data. They
use the t_snd() and t_rcv() functions for this. From this point on, the transport provider does
not distinguish between the client and server. Each user can send and receive data or close
the connection. The transport provider offers secured data transfer and maintains the order
of sending over an established connection.
In the example, the server sends one file to the client over the established connection.

Data sending by the server

The server organizes the data transfer by creating a new process which sends the data to
the client. The parent process waits for further connection requests while the child process
transfers the data.

The run_service() function is called to create this child process. The following extract from
the definition of run_service() illustrates this procedure:

run_service(listen_fd)
int listen_fd;
{

int nbytes;
FILE *logfp; /* Pointer to the protocol file */
char buf[1024];

switch (fork()) {

case -1:
perror("fork failed");
exit(20);
break;

default: /* Parent process */

/* Close conn_fd and terminate the function */
if (t_close(conn_fd) < 0) {

t_error("t_close() failed for conn_fd");
exit(21);

}
return;

case 0: /* Child */

/* Close listen_fd and transfer the file */
if (t_close(listen_fd) < 0) {

t_error("t_close() failed for listen_fd");
exit(22);

}

U26110-J-Z125-3-76 169

XTI(POSIX) basics Connection-oriented service

if (t_look(conn_fd) != 0) { /* Has connection abort arrived? */
fprintf(stderr, "t_look: unexpected event \n");
exit(25);

}

while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)
if (t_snd(conn_fd, buf, nbytes, 0) < 0) {

t_error("t_snd() failed");
exit(26);

}

After the fork(), the parent process returns to the main loop and waits for new connection
requests.

The child process manages the new connection in the meantime. If the fork() call fails, exit()
closes the established connection and sends an abort message to the client. This causes
the t_connect() call of the client to fail.

The child process reads 1024 bytes of the protocol file and sends the data with the t_snd()
call to the client. buf points to the start of the data buffer and nbytes defines the number of
characters to be transferred.

If the user makes too much data available to the transport provider for transfer, the transport
provider can refuse acceptance to ensure correct flow control. In this case, the t_snd() call
blocks until the flow control is released again and the transfer can proceed. The t_snd() call
is then not terminated until the transport provider is passed as many characters as defined
by the nbytes variable.

The t_snd() function does not check whether an abort request arrived until the data is
passed to the transport provider. Because the data flow is in just one direction it is also not
possible for the user to handle incoming events. If, for example, the connection is inter-
rupted, the user should be informed that data could be lost. The user can call t_look() before
each t_snd() call to check whether incoming events arrived.

170 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

Data reception by the client

In the example, the server transfers a file to the client over the established connection. The
client receives the file and directs it to the standard output. The client uses the following
program section to receive the data:

while ((nbytes = t_rcv(fd, buf, 1024, &flags)) != -1)
if (fwrite(buf, 1, nbytes, stdout) == 0) {

fprintf(stderr, "fwrite failed \n");
exit(5);

}
}

The client calls the t_rcv() function to receive the incoming data. If no data is available, the
process is blocked by the t_rcv() call until data is available. t_rcv() then returns the number
of bytes in the receive buffer buf (maximum 1024). The client then writes the received data
to the standard output. The data transfer is terminated when the t_rcv() call fails, which
happens if a connection shutdown request is received. This is explained in more detail on
the following page.

If the fwrite() call fails, the program is terminated and the transport endpoint is closed.
Closing a transport endpoint (with exit() or t_close()) in the data transfer phase causes a
connection abort and the communications partner receives an abort message.

U26110-J-Z125-3-76 171

XTI(POSIX) basics Connection-oriented service

Connection shutdown using the example client/server model

As already mentioned, there are two different forms of connection shutdown that can be
supported by the transport provider.

– The abortive connection release terminates a connection immediately. This can lead to
loss of data if all data has not reached the receiver.

Any user can initiate such an abort by calling the t_snddis() function. If problems occur
within the transport provider, the transport provider can also initiate a connection abort.

When the abort message reaches the receiver, he has to call the t_rcvdis() function to
receive the message. t_rcvdis() returns a value which defines the reason for the abort
as a result. This value is dependent on the transport provider used and should not be
interpreted by protocol-independent programs.

– The orderly connection shutdown terminates a connection only after all data has been
transferred.

All transport providers must support the first variant, i.e. abortive connection release. In the
example, it is implied that the transport provider also allows the orderly connection
shutdown.

Connection shutdown by the server

Once all data has been transferred, the server can initiate an orderly connection shutdown
as follows:

if (t_sndrel(conn_fd) < 0) {
t_error("t_sndrel() failed");
exit(27);

}

The connection is only shut down after both ends have sent a shutdown request and each
has received a confirmation (see page 153).

172 U26110-J-Z125-3-76

Connection-oriented service XTI(POSIX) basics

Connection shutdown by the client

The connection shutdown progresses in the same way from the viewpoint of the client as it
does from the viewpoint of the server. As already mentioned, the client receives data until
the t_rcv() call fails. If the server calls either t_snddis() or t_sndrel(), the t_rcv() call fails and
t_errno is set to T_LOOK. The client handles this condition as follows:

if ((t_errno == TLOOK) && (t_look(fd) == T_ORDREL)) {
if (t_rcvrel(fd) < 0) {

t_error("t_rcvrel() failed");
exit(6);

}
if (t_sndrel(fd) < 0) {

t_error("t_sndrel() failed");
exit(7);

}
exit(0);

}
t_error("t_rcv() failed");
exit(8);

}

When an event arrives at the transport endpoint of the client, the client checks whether the
expected request for orderly shutdown has arrived. If it has, the client calls t_rcvrel() to
receive the request. The client then calls t_sndrel(). This indicates to the server that the
client is also ready to shut the connection down. At this point, the client program is termi-
nated, also causing the transport endpoint to be closed.

If the transport provider does not support the orderly connection shutdown discussed
above, the users must employ the abortive connection release. The users themselves are
then responsible for ensuring that the connection shutdown does not cause data to be lost.
For example, a specific combination of bytes can be used to indicate that the connection is
to be terminated. There are many ways of preventing data loss. Each application and each
higher protocol must have a mechanism that adjusts itself to the prevailing transport
environment.

U26110-J-Z125-3-76 173

XTI(POSIX) basics Connectionless service

7.2 Connectionless service

The connectionless service is packet-oriented and supports the transfer of datagrams.
Datagrams are fully addressed units of data which, from the viewpoint of the transport
provider, have no logical relationship to each other.

Connectionless services are of interest to applications which

– only communicate briefly with a partner,
– can be dynamically configured,
– do not require guaranteed delivery of the data in the same order as sent.

Connectionless services are therefore preferably used for short request/reply dialogs as
are, for example, typical for transaction systems.

7.2.1 Phases of the connectionless service

The connectionless service comprises the following two phases:

– local management
– data transfer

Local management

The same functions are needed for the local management as with a connection-oriented
service (see section “Connection-oriented service” on page 150).

Data transfer

The data transfer allows the user to send datagrams to another user. Each datagram must
contain the complete destination address. This message-based data exchange is
supported by the t_sndudata() and t_rcvudata() functions.

Table 6 shows the functions for connectionless data transfer.

Function Description

t_rcvudata() Receives a message from another user.

t_rcvuderr() Receives error information about a previously sent message.

t_sndudata() Sends a message to a specific user.

Table 6: Functions for connectionless data transfer

174 U26110-J-Z125-3-76

Connectionless service XTI(POSIX) basics

Interaction of the connectionless service functions

Figure 5 illustrates the interaction between the XTI functions which implement the two
phases of the connectionless service. The separate XTI functions are described in detail in
chapter “XTI(POSIX) library functions” on page 223.

Figure 5: Interaction of the connectionless service functions

Protocol: UDP
connectionless

t_open()

t_bind()

t_sndudata()

t_unbind()

t_close()

“/dev/udp“

t_rcvudata()

U26110-J-Z125-3-76 175

XTI(POSIX) basics Connectionless service

7.2.2 Connectionless service using an example transaction system

The connectionless service is explained in more detail using an example transaction
system: The server waits for incoming requests and then processes and answers them.

Local management using an example transaction system

As with the connection-oriented service, the user has to execute the local management
before transferring data. The user has to call an appropriate connectionless service with
t_open() and then bind his address to the transport endpoint with t_bind().

The user can employ the t_optmgmt() function to change the protocol features. As with the
connection-oriented service, each transport provider has its own features. Using
t_optmgmt() therefore makes the programs dependent on the protocol used.

The server executes the local management with the following definitions and calls:

#include <stdio.h>
#include <fcntl.h>
#include <xti.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define SRV_ADDR 0x7F000001
#define SRV_PORT 8888

main()
{

int fd;
nt flags;

struct t_bind *bind;
struct t_unitdata *ud;
struct t_uderr *uderr;
struct sockaddr_in *sin

if ((fd = t_open("/dev/udp", O_RDWR, NULL)) < 0) {
t_error("The transport provider cannot be opened");
exit(1);

}

if ((bind = (struct t_bind *)t_alloc(fd,T_BIND, T_ADDR)) == NULL) {
t_error("t_alloc() of the t_bind structure failed");
exit(2);

}

176 U26110-J-Z125-3-76

Connectionless service XTI(POSIX) basics

bind->addr.len=sizeof(struct sockaddr_in);
sin=(struct sockaddr_in *)bind->addr.buf;
sin->sin_family=AF_INET;
sin->sin_port=htons(SRV_PORT);
sin->sin_addr.s_addr=htonl(SRV_ADDR);

bind->qlen = 0;

if (t_bind(fd, bind, bind) < 0) {
t_error("t_bind() failed");
exit(3);

}

The server creates a transport endpoint by calling t_open().

The server uses t_bind() to bind a specific address to the transport endpoint, to enable
potential clients to recognize and access the server. The server uses t_alloc() to create an
object of data type t_bind and supplies the buf and len components with appropriate values
in the addr component of the t_bind object. The address itself is structured according to the
address structure of the Internet communications domain.

One important difference between the connection-oriented and connectionless services is
that the contents of the t_bind qlen component are meaningless in the connectionless
service: all user datagrams can be received as soon as the t_bind() call has ended. During
connection setup with the connection-oriented service, the transport provider defines a
client/server relationship. Such a relationship does not exist with the connectionless mode.
In this example, it is not the transport provider that defines a client/server relationship, but
rather the application type.

Data transfer using an example transaction system

As soon as the user has bound an address to the transport endpoint, he can send and
receive datagrams. Each message sent is accompanied by the address of the receiver.

The following series of calls show the server in the data transfer phase:

if ((ud = (struct t_unitdata *)t_alloc(fd,T_UNITDATA, T_ALL)) == NULL) {
t_error("t_alloc() of the t_unitdata structure failed");
exit(5);

}

U26110-J-Z125-3-76 177

XTI(POSIX) basics Connectionless service

if ((uderr = (struct t_uderr *)t_alloc(fd, T_UDERROR, T_ALL)) == NULL) {
t_error("t_alloc() of the t_uderr structure failed");
exit(6);

}
for(;;) {

if (t_rcvudata(fd, ud, &flags) < 0) {
if (t_errno == TLOOK) {

/*
* Error with a previously sent datagram
*/

if (t_rcvuderr(fd, uderr) < 0) {
t_error(„t_rcverr failed“);
exit(7);
}
fprintf(stderr,
"Faulty datagram, error = %d \n",
uderr->error);
continue;

}
t_error("t_rcvudata() failed");
exit(8);
}

/*
* query() processes the request and writes the reply
* in ud->udata.buf and the length in ud->udata.len
*/

query(ud);

if (t_sndudata(fd, ud, 0) < 0) {
t_error("t_sndudata() failed");
exit(9);

}
}

}

query()
{
/* Only an extract, for simplification reasons */

}

178 U26110-J-Z125-3-76

Connectionless service XTI(POSIX) basics

To store datagrams, the server must first create an object of data type struct t_unitdata with
t_alloc().

The t_unitdata structure is declared in <xti.h> as follows:

struct t_unitdata {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

};

addr contains the address of the sender for incoming datagrams and the address of the
receiver for outgoing datagrams. opt specifies possible options of the employed protocol
that are to be used on this datagram. udata contains the user data. addr, buf and udata must
be provided with buffers of sufficient size to store incoming datagrams. As described in
section “Connection-oriented service” on page 150, this is ensured by specifying T_ALL
with the t_alloc() call. The maxlen component of each component (of type struct netbuf) of the
created t_unitdata object is supplied with an appropriate value by t_alloc().
The server also creates an object of type struct t_uderr for processing datagram errors (see
page 179).

The server runs in an endless loop. It receives requests, processes them and replies to the
clients. t_rcvudata() is called first to receive the next request. t_rcvudata() receives the next
possible datagram. If no datagrams are available, t_rcvudata() blocks the process until a
datagram is received. The second parameter of the t_rcvudata() call specifies the t_unitdata
object in which the datagram is to be stored.

The third parameter (flags) must be a pointer to an integer value. This value can be set to
T_MORE when t_rcvudata() is ended to indicate that the udata buffer was not large enough
to accept the complete datagram. In this case, additional t_rcvudata() calls supply the
remaining part of the datagram.
Since the buffer in this example was created with t_alloc(), this case cannot occur and the
server does not need to test flags.

Once a datagram has been successfully received, the server calls query() to process the
request.

U26110-J-Z125-3-76 179

XTI(POSIX) basics Connectionless service

Datagram errors

If the transport provider cannot process a datagram passed with t_sndudata(), a T_UDERR
error is reported to the user. With this error, the datagram address and options are returned
together with a protocol-dependent error value. The described condition can, for example,
occur if the transport provider does not find the specified destination address.

It is expected that each protocol defines all causes for a datagram not being sent.

The error indication does not provide information as to whether the datagram was success-
fully sent. The transport protocol decides how the error indication is used. It must be empha-
sized once more at this point that the connectionless service does not guarantee reliable
data delivery.

The server is informed of the error as soon as it tries to receive a datagram. The t_rcvudata()
call fails and t_errno is set to TLOOK. If t_errno is set to TLOOK, only an T_UDERR can
have occurred so the server calls t_rcvuderr() to determine the cause of the error. The
second parameter of the t_rcvuderr() call is a previously created object of data type
struct t_uderr. This object is supplied with values by the t_rcvuderr() call.

The t_uderr structure is declared in <xti.h> as follows:

struct t_uderr {
struct netbuf addr;
struct netbuf opt;
long error;};

addr and opt specify the destination address and the options set for this datagram. error
indicates a protocol-dependent error value which specifies why the datagram was not
processed. The server outputs the error value and then returns to the normal loop.

180 U26110-J-Z125-3-76

States and state transitions XTI(POSIX) basics

7.3 States and state transitions

The following tables describe:

● transport interface states

● transport interface and t_look() events

● outgoing events

● incoming events

● state transitions caused by transport system user actions

● transport interface state transitions

● TLOOK error events

U26110-J-Z125-3-76 181

XTI(POSIX) basics States and state transitions

Transport interface states

The following table describes the states used to describe the state transitions of the
transport interface.

State Meaning Service type

T_UNINIT Not initialized. Start and end state of the interface T_COTS,
T_COTS_ORD,
T_CLTS

T_UNBND Initialized but not bound T_COTS,
T_COTS_ORD,
T_CLTS

T_IDLE No connection established T_COTS,
T_COTS_ORD,
T_CLTS

T_OUTCON Outgoing connection waiting for the server T_COTS,
T_COTS_ORD

T_INCON Incoming connection waiting for the server T_COTS,
T_COTS_ORD

T_DATAXFER Data transfer T_COTS,
T_COTS_ORD

T_OUTREL Orderly connection shutdown (waiting for confir-
mation for orderly connection shutdown)

T_COTS_ORD

T_INREL Incoming orderly connection shutdown (waiting for
request for orderly connection shutdown)

T_COTS_ORD

Table 7: Transport interface states

182 U26110-J-Z125-3-76

States and state transitions XTI(POSIX) basics

Transport interface and t_look() events

The user can call the t_look() function to determine which event has occurred if a TLOOK
error is reported. The TLOOK error has a special significance for the transport interface.
TLOOK informs the user when a function of the interface was interrupted by an unexpected
asynchronous event on the specified transport endpoint. An error indicated by TLOOK must
therefore not be interpreted as an interface error. The called function is not executed
because of the pending event.

The following transport interface events are defined:

Event Meaning

T_LISTEN A connection request arrived at the transport endpoint. T_LISTEN can
only occur with a transport endpoint which is assigned an address with
qlen > 0.

T_CONNECT Confirmation of a previously sent connection request has arrived. The
confirmation is sent when the server accepts a connection request.

T_DATA User data has arrived.

T_DISCONNECT A message reporting that a connection has been aborted or refused
has arrived

T_ORDREL The request for an orderly connection shutdown has arrived.

T_UDERR The report about an error with a previously sent datagram has arrived.

Table 8: Transport interface events

U26110-J-Z125-3-76 183

XTI(POSIX) basics States and state transitions

Events at TLOOK error

Table 9 describes the asynchronous events which lead to terminating an XTI function with
the TLOOK error.

If execution of an XTI function leads to a TLOOK error on a transport endpoint, subsequent
calls to the same or other XTI functions affected by the same TLOOK return the TLOOK
error until the causing event has been handled. You can identify the event causing the
TLOOK error with the XTI t_look() function and then handle it with a suitable other XTI
function.

XTI function Event

t_accept() T_DISCONNECT, T_LISTEN

t_connect() T_DISCONNECT, T_LISTEN

t_listen() T_DISCONNECT

t_rcv() T_DISCONNECT, T_ORDREL

t_rcvconnect() T_DISCONNECT

t_rcvrel() T_DISCONNECT

t_rcvudata() T_UDERR

t_snd() T_DISCONNECT, T_ORDREL

t_sndudata() T_UDERR

t_unbind() T_LISTEN, T_DATA

t_sndrel() T_DISCONNECT

t_snddis() T_DISCONNECT

Table 9: TLOOK error events

184 U26110-J-Z125-3-76

States and state transitions XTI(POSIX) basics

Outgoing events

The outgoing events are described in table 10 on page 185. They correspond to the values
returned by the specified transport functions, where the functions send a request or reply
to the transport provider.

Some of the events (e.g. accept) in the table are discriminated according to the context in
which they occur. The context depends on the values of the following variables:

– ocnt
Number of pending connection requests

– fd
File descriptor of the current transport endpoint

– refsd
File descriptor of the transport endpoint on which a connection is accepted

U26110-J-Z125-3-76 185

XTI(POSIX) basics States and state transitions

Event Meaning Service type

opened Successful termination of t_open() T_COTS,
T_COTS_ORD,
T_CLTS

bind Successful termination of t_bind() T_COTS,
T_COTS_ORD,
T_CLTS

optmgmt Successful termination of t_optmgmt() T_COTS_ORD,
T_CLTS

unbind Successful termination of t_unbind() T_COTS,
T_COTS_ORD,
T_CLTS

closed Successful termination of t_close() T_COTS,
T_COTS_ORD,
T_CLTS

connect1 Successful termination of t_connect() in synchronous
mode

T_COTS,
T_COTS_ORD

connect2 TNODATA error with t_connect() in asynchronous mode
or TLOOK error caused by a connection shutdown
request arriving at the communications endpoint

T_COTS,
T_COTS_ORD

accept1 Successful termination of t_accept() with ocnt == 1,
fd == resfd

T_COTS,
T_COTS_ORD

accept2 Successful termination of t_accept() with ocnt == 1,
fd != resfd

T_COTS,
T_COTS_ORD

accept3 Successful termination of t_accept() with ocnt >1 T_COTS,
T_COTS_ORD

snd Successful termination of t_snd() T_COTS,
T_COTS_ORD

snddis1 Successful termination of t_snddis() with ocnt <=1 T_COTS,
T_COTS_ORD

snddis2 Successful termination of t_snddis() with ocnt >1 T_COTS,
T_COTS_ORD

sndrel Successful termination of t_sndrel() T_COTS_ORD

sndudata Successful termination of t_sndudata() T_CLTS

Table 10: Outgoing events

186 U26110-J-Z125-3-76

States and state transitions XTI(POSIX) basics

Incoming events

The incoming events correspond to the successful return values of the specified function,
where these functions receive data or information about events from the transport provider.
The only incoming event that is not connected directly to the return value of a function is
pass_conn. The pass_conn event occurs when a user transfers a connection to another
transport endpoint. This event occurs on a transport endpoint to which the connection was
transferred, although no transport interface function was called for it. The pass_conn event
describes the behavior when a user accepts a connection on another transport endpoint.

In the following table, the rcvdis events are discriminated according to the context in which
they occur. The context depends on the value of ocnt. The value of ocnt specifies the number
of pending connection requests on the transport endpoint.

Event Meaning Service type

listen Successful termination of t_listen() T_COTS,
T_COTS_ORD

rcvconnect Successful termination of t_rcvconnect() T_COTS,
T_COTS_ORD

rcv Successful termination of t_rcv() T_COTS,
T_COTS_ORD

rcvdis1 Successful termination of t_rcvdis() with
ocnt <= 0

T_COTS,
T_COTS_ORD

rcvdis2 Successful termination of t_rcvdis() with
ocnt = = 1

T_COTS,
T_COTS_ORD

rcvdis3 Successful termination of t_rcvdis() with
ocnt > 1

T_COTS,
T_COTS_ORD

rcvrel Successful termination of t_rcvrel() T_COTS_ORD

rcvudata Successful termination of t_rcvudata() T_CLTS

rcvuderr Successful termination of t_rcvuderr() T_CLTS

pass_conn Receive a transferred connection T_COTS,
T_COTS_ORD

Table 11: Incoming events

U26110-J-Z125-3-76 187

XTI(POSIX) basics States and state transitions

State transitions caused by transport system user actions

In the state tables listed under “State tables” (see page 188), some state transitions are
accompanied by a series of actions that have to be carried out by the transport service user.
These actions are identified with the notation “[n]”, where n is the number of the action to be
executed.

The actions concerned are as follows:

1. Set the number of pending connection requests to 0.

2. Increment the number of pending connection requests.

3. Decrement the number of pending connection requests.

4. Transfer a connection to another transport endpoint, as specified in t_accept().

188 U26110-J-Z125-3-76

States and state transitions XTI(POSIX) basics

State tables

The state transitions of the transport interface are described in the following tables. The
transition to the next state is shown for a current state and an event. All actions are also
defined which are to be executed by the transport system user. Such actions are identified
with “[n]”.

The contents of each box indicate the follow-up state. This is dependent on the current state
(at the head of the column) and the current incoming or outgoing event (at the left in the line
concerned). An empty box means that the state/event combination concerned is invalid.
Each box can contain an action list (as described in the previous section) in addition to the
follow-up state. The transport service user must execute the actions in the listed order.

You should note the following points when reading the state tables:

– The t_close() function is also handled in the state tables (see the closed event in
table 12). However, t_close() can be called from any state to close a transport endpoint.
If the address is bound to a transport endpoint, calling t_close() automatically releases
the address.

– The transport provider detects when a transport service user calls a function outside
the defined order. In this case, the transport provider refuses the function and sets
t_errno to TOUTSTATE. The state does not change.

– If a different transport error occurs, the state does not normally change. An exception
to this is a TLOOK or TNODATA error with t_connect(). Other exceptions are noted
explicitly in the description of the functions in chapter “XTI(POSIX) library functions” on
page 223. In the state tables, it is assumed that the transport interface is used correctly.

– The t_getinfo(), t_getstate(), t_alloc(), t_free(), t_sync(), t_look() and t_error() functions are
not included in the state tables as they do not affect the state.

The state transitions in the following phases are each handled in a separate table:

– local management (connection-oriented and connectionless service)

– data transfer in the connectionless service

– connection setup, data transfer and connection shutdown in the connection-oriented
service

U26110-J-Z125-3-76 189

XTI(POSIX) basics States and state transitions

Event State

T_UNINIT T_UNBND T_IDLE

opened T_UNBND

bind T_IDLE [1]

optmgmt T_IDLE

unbind T_UNBND

closed T_UNINIT

Table 12: Local management state transitions

Event State

T_IDLE

sndudata T_IDLE

rcvudata T_IDLE

rcvuderr T_IDLE

Table 13: Connectionless service state transitions

190 U26110-J-Z125-3-76

States and state transitions XTI(POSIX) basics

Event State

T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL

connect1 T_DATAXFER

connect2 T_OUTCON

rcvconnect T_DATAXFER

listen T_INCONN [2] T_INCONN [2]

accept1 T_DATAXFER
[3]

accept2 T_IDLE [3][4]

accept3 T_INCON [3][4]

snd T_DATAXFER T_INREL

rcv T_DATAXFER T_OUTREL

snddis1 T_IDLE T_IDLE [3] T_IDLE T_IDLE T_IDLE

snddis2 T_IDLE [3]

rcvdis1 T_IDLE T_IDLE T_IDLE T_IDLE

rcvdis2 T_IDLE [3]

rcvdis3 T_INCON [3]

sndrel T_OUTREL T_IDLE

rcvrel T_INREL T_IDLE

pass_conn T_DATAXFER

Table 14: Connection-oriented service state transitions

U26110-J-Z125-3-76 191

8 Advanced XTI(POSIX) concepts
Some of the most important advanced concepts of the transport interface are discussed in
this chapter:

● asynchronous execution mode

● simultaneous management of multiple connections by the server and
event-controlled operation of multiple connections by the server

192 U26110-J-Z125-3-76

Asynchronous execution mode Advanced XTI(POSIX) concepts

8.1 Asynchronous execution mode

Many of the transport interface functions can block a process if they wait for specific events
or block the process data flow. However, there are situations where the user will want to
prevent this blocking. For example, time-critical applications should never be blocked. In
another case, the process wants to continue working while waiting for a transport interface
event.

Each function which could block the process can therefore be executed in a special non-
blocking (asynchronous) mode. The t_listen() call normally blocks the calling process
(server) until the connection is confirmed. However, the server could also use the non-
blocking t_listen() call to periodically check whether the connection has been set up. The
asynchronous mode is enabled with the O_NONBLOCK parameter for the file ID
concerned. This can be done with t_open() when the transport endpoint is opened or with
an fcntl() call before a prospective blocking transport interface function is called. fcntl() can
be used at any time to enable/disable the asynchronous mode.
All program examples in this chapter use the default synchronous mode.

U26110-J-Z125-3-76 193

Advanced XTI(POSIX) concepts Simultaneous management/event-controlled operation

8.2 Managing multiple connections simultaneously and event-
controlled operation

An example is used in the following section to illustrate two important concepts:

● Simultaneous management of multiple connections by the server:

The server application shown in chapter “XTI(POSIX) basics” on page 149 can only
process one connection request at a time. However, the transport interface also allows
several connections to be processed simultaneously. This is, for example, meaningful
in the following cases:

– The server wishes to assign a priority to each client.

– Several clients wish to set up a connection to a server which is currently processing
a connection request. If the server can only process one connection request at any
one time, the clients find the server in an occupied state. However, if the server can
process several connections simultaneously, the clients will only find the server in
an occupied state if the server is already processing the maximum possible number
of clients requests.

● Programming event-controlled operation:

The programmer can write event-controlled programs using the transport interface.
With an event-controlled server, the process continuously polls a transport endpoint to
check if events have been reported by the transport interface. The server then calls the
interface function appropriate to the reported event.

The following example program uses the same definitions and calls for the local
management as the example server in section “Connection-oriented service” on page 150.
The program code used in the example is shown completely and coherently in section
“Event-controlled server” on page 210.

#include <xti.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <stropts.h>
#include <signal.h>
#include <sys/socket.h>
#include <netinet/in.h>

194 U26110-J-Z125-3-76

Simultaneous management/event-controlled operation Advanced XTI(POSIX) concepts

#define FILENAME "/etc/services"
#define NUM_FDS 1
#define MAX_CONN_IND 4
#define SRV_ADDR 0x7F000001
#define SRV_PORT 8888

int conn_fd;/* Server transport endpoint */

/* For storing the connections */
struct t_call *calls[NUM_FDS][MAX_CONN_IND];

main()
{

struct pollfd pollfds[NUM_FDS];
struct t_bind *bind;
struct sockaddr_in *sin;
int i;

/*
* Open a transport endpoint and bind the address.
* However, multiple endpoints are supported.
*/

if ((pollfds[0].fd = t_open("/dev/tcp", O_RDWR, NULL)) < 0) {
t_error("t_open() failed");
exit(1);
}

if ((bind = (struct t_bind *)t_alloc(pollfds[0].fd,
T_BIND, T_ALL)) == NULL) {

t_error("t_alloc() of t_bind structure failed");
exit(2);

}
bind->qlen = MAX_CONN_IND;
bind->addr.len=sizeof(struct sockaddr_in);
sin=(struct sockaddr_in *)bind->addr.buf;
sin->sin_family=AF_INET;
sin->sin_port=htons(SRV_PORT);
sin->sin_addr.s_addr=htonl(SRV_ADDR);
if (t_bind(pollfds[0].fd, bind, bind) < 0) {

t_error("t_bind() failed");
exit(3);

}

The file ID returned by t_open() is stored in the first member of the struct pollfd vector pollfds
(see the pollfd structure on page 138). The pollfds vector is used later when calling the
POSIX poll() function to process incoming events. poll() is a general C library function which
is described on page 138. It must be noted that just one transport endpoint is set up in this

U26110-J-Z125-3-76 195

Advanced XTI(POSIX) concepts Simultaneous management/event-controlled operation

example. However, since the remaining part of the example is laid out for multiple connec-
tions, only minor changes have to be made to manage multiple communications connec-
tions with this program.

An important point for this example is that the server sets bind->qlen to a value >1 and
passes it with the t_bind() call. This makes it possible for the server to receive multiple
connection requests on one transport endpoint. In the examples in chapter “XTI(POSIX)
basics”, the server always accepts and processes just one connection at a time. In contrast
to this, the server can accept up to MAX_CONN_IND requests simultaneously in this
example. However, the transport provider may reduce the value of bind->qlen if he cannot
process the number of connections required by the server.

The server proceeds as follows after making its address known:

pollfds[0].events = POLLIN;

for(;;) {
if (poll(pollfds, NUM_FDS, -1) < 0) {

perror("poll() failed");
exit(5);

}

for (i = 0; i < NUM_FDS; i++) {

switch (pollfds[i].revents) {

default:
perror("Poll returns an error message");
exit(6);
break;

case 0:
continue;

case POLLIN:
do_event(i, pollfds[i].fd);
service_conn_ind(i, pollfds[i].fd);

}
}

}
}

The events component of the first member of the pollfd vector pollfds sets the server to
POLLIN so that it is informed about all events arriving at the transport interface. The server
then goes into an endless loop, waits for events at the transport endpoints with poll() and
processes these events accordingly.

196 U26110-J-Z125-3-76

Simultaneous management/event-controlled operation Advanced XTI(POSIX) concepts

The poll() call blocks the process until an event arrives. After the end of the call, the server
checks each entry (corresponding to one transport endpoint) to see if an event has occurred
there. If revents is set to 0, no events arrived at this endpoint. If revents is set to POLLIN, an
event has arrived at this endpoint. In this case, the server calls do_event() to process the
event. If revents has a value other than POLLIN, an error has occurred at this endpoint and
the program is terminated.

In each loop run in which an event is found, the server calls service_conn_ind() (see
page 198) to process any pending requests. If a further request is pending while one is
being processed, service_conn_ind is exited immediately, whereby the current request is
stored for later processing with the do_event() function.

The do_event() function is called to process an incoming event and is defined as follows:

do_event(slot, fd)
{

struct t_discon *discon;
int i;

switch (t_look(fd)) {

default:
fprintf(stderr,"t_look: unexpected event \n");
exit(7);
break;

case -1:
t_error("t_look() failed");
exit(9);
break;

case 0:
/* This should never happen if POLLIN is reported */
fprintf(stderr,"t_look() reports no event\n");
exit(10);

case T_LISTEN:

/*
* Search for a free member in the calls field
*/

for (i = 0; i < MAX_CONN_IND; i++) {
if (calls[slot][i] == NULL)

break;
}

U26110-J-Z125-3-76 197

Advanced XTI(POSIX) concepts Simultaneous management/event-controlled operation

if ((calls[slot][i] = (struct t_call *)t_alloc(fd,
T_CALL, T_ALL)) == NULL) {

t_error("t_alloc() of t_call structure failed");
exit(11);

}

if (t_listen(fd, calls[slot][i]) < 0) {
t_error("t_listen() failed");
exit(12);

}
break;

case T_DISCONNECT:
discon = (struct t_discon *)t_alloc(fd, T_DIS, T_ALL);

if (t_rcvdis(fd, discon) < 0) {
t_error("t_rcvdis() failed");
exit(13);

}
/*
* Find and delete request in calls field
*/

for (i = 0; i < MAX_CONN_IND; i++) {
if (discon->sequence == calls[slot][i]->sequence) {

t_free(calls[slot][i], T_CALL);
calls[slot][i] = NULL;

}
}
t_free(discon, T_DIS);
break;

}
}

The do_event() function has two parameters: a number slot and a file ID fd.
slot indexes the vectors (submatrices) of the global calls matrix whose members are
pointers to t_call objects. Each transport endpoint to be interrogated is represented by a
vector in the calls matrix. The value of slot therefore specifies the transport endpoint to be
processed. The vector members point to the t_call objects in which the incoming requests
of the transport endpoint concerned are stored.

The t_look() call gets the event which occurred on the transport endpoint identified by fd. If
a connection request (T_LISTEN) or an abort request (T_DISCONNECT) has arrived, it is
processed accordingly. With other events, an appropriate error message is output and the
program is terminated.

198 U26110-J-Z125-3-76

Simultaneous management/event-controlled operation Advanced XTI(POSIX) concepts

With a connection request, do_event() searches for a free entry in the calls field. A t_call
object is now requested for this entry. The request is received with t_listen(). This field must
always contain at least one free field as t_bind() specified the maximum number of requests
than could be processed simultaneously when it created the field. The request is processed
later.

An incoming abort request must belong to a connection request that arrived earlier. This is
true if a client sends a connection request and then aborts it immediately. do_event() creates
a t_discon structure to receive the information for the abort.

The t_discon structure is declared in <xti.h> as follows:

struct t_discon {
struct netbuf udata;
int reason;
int sequence;

};

reason specifies the protocol-specific reason for the connection shutdown. sequence
specifies the number of the connection request that is to be aborted.

The t_rcvdis() function is called to receive the above information. *calls of the program in
which the requests are managed is then searched for the request specified in the sequence
component. Once the request is found, the memory is released and the entry set to NULL.

If any event has occurred at the transport endpoint, the service_conn_ind() function is called
to process all requests pending on this endpoint as follows:

service_conn_ind(slot, fd)
{

int i;

for (i = 0; i < MAX_CONN_IND; i++) {
if (calls[slot][i] == NULL)

continue;

if ((conn_fd = t_open("/dev/tcp", O_RDWR, NULL)) < 0) {
t_error("t_open() failed");
exit(14);

}

if (t_accept(fd, conn_fd, calls[slot][i]) < 0) {
if (t_errno == TLOOK) {

t_close(conn_fd);
return;

}
t_error("t_accept() failed");
exit(16);

}

U26110-J-Z125-3-76 199

Advanced XTI(POSIX) concepts Simultaneous management/event-controlled operation

t_free(calls[slot][i], T_CALL);
calls[slot][i] = NULL;

run_service(fd);
}

}

The field is searched for requests for the specified endpoint (slot). For each request, the
server opens a transport endpoint and accepts the request. If, in the meantime, another
event (connection request or connection shutdown) has arrived, the t_accept() call fails and
t_errno is set to TLOOK.

A user cannot accept any requests if other connection or abort requests are pending on this
transport endpoint.

When this error occurs, conn_fd is closed immediately and the function is exited. The
request remains intact in the field and can therefore be processed at a later time. The server
process is now back in the main loop and the event can be handled with the next poll() call.
This method allows multiple requests to be processed simultaneously.

Once all events have been processed, the service_conn_ind() function can set up the
connections and call the run_service() function to transfer the data. The run_service() function
is described in section “Connection-oriented client/server model” on page 168.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U26110-J-Z125-3-76 201

9 Examples for XTI(POSIX)
Sections of example programs are shown and explained in chapter “XTI(POSIX) basics” on
page 149 and chapter “Advanced XTI(POSIX) concepts” on page 191. These example
programs are shown again in full and coherently in this chapter.

202 U26110-J-Z125-3-76

Client in the connection-oriented service Examples for XTI(POSIX)

9.1 Client in the connection-oriented service

The following client program in the connection-oriented service is described in detail in
section “Connection-oriented client/server model” on page 156. The client sets up a
transport connection to a server, receives data from the server and writes the data to its
standard output. The connection is shut down using the orderly connection shutdown of the
transport interface. The client can communicate with any of the connection-oriented servers
described in the examples in this chapter.

#include <stdio.h>
#include <xti.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define SRV_ADDR 0x7F000001
#define SRV_PORT 8888

main()
{

int fd;
int nbytes;
int flags = 0;
char buf[1024];
struct t_call *sndcall;
struct sockaddr_in *sin;

if ((fd = t_open("/dev/tcp", O_RDWR, NULL)) < 0) {
t_error("t_open() failed");
exit(1);

}

if (t_bind(fd, NULL, NULL) < 0) {
t_error("t_bind() failed");
exit(2);

}

if ((sndcall = (struct t_call *)t_alloc(fd,T_CALL, T_ADDR)) == NULL) {
t_error("t_alloc() failed");
exit(3);

}
sndcall->addr.len=sizeof(struct sockaddr_in);
sin = (struct sockaddr_in *)sndcall->addr.buf;
sin->sin_family=AF_INET;
sin->sin_port=htons(SRV_PORT);
sin->sin_addr.s_addr=htonl(SRV_ADDR);

U26110-J-Z125-3-76 203

Examples for XTI(POSIX) Client in the connection-oriented service

if (t_connect(fd, sndcall, NULL) < 0) {
t_error("t_connect() failed for fd");
exit(4);

}

while ((nbytes = t_rcv(fd, buf, 1024, &flags)) != -1) {
if (fwrite(buf, 1, nbytes, stdout) == 0) {

fprintf(stderr, "fwrite() failed\n");
exit(5);

}
}

if ((t_errno == TLOOK) && (t_look(fd) == T_ORDREL)) {
if (t_rcvrel(fd) < 0) {

t_error("t_rcvrel() failed");
exit(6);

}
if (t_sndrel(fd) < 0) {

t_error("t_sndrel() failed");
exit(7);

}
exit(0);

}
t_error("t_rcv() failed");
exit(8);

}

204 U26110-J-Z125-3-76

Server in the connection-oriented service Examples for XTI(POSIX)

9.2 Server in the connection-oriented service

The following server program for the connection-oriented service is described in detail in
section “Connection-oriented client/server model” on page 156. The server sets up a
transport connection to a client and then passes a protocol file to this client. The connection
is shut down using the orderly connection shutdown of the transport interface. The client in
the connection-oriented service described in the previous section can communicate with
the server described here.

#include <xti.h>
#include <stropts.h>
#include <fcntl.h>
#include <stdio.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define FILENAME "/etc/services"
#define DISCONNECT -1
#define SRV_ADDR 0x7F000001
#define SRV_PORT 8888

int conn_fd; /* Connection setup */

main()
{

int listen_fd; /* Monitor transport endpoint */
struct t_bind *bind;
struct t_call *call;
struct sockaddr_in *sin;

if ((listen_fd = t_open("/dev/tcp", O_RDWR, NULL)) < 0) {
t_error("t_open() failed for listen_fd");
exit(1);

}

if ((bind = (struct t_bind *)t_alloc(listen_fd,T_BIND, T_ALL)) == NULL) {
t_error("t_alloc() of the t_bind structure failed");
exit(2);

}
bind->qlen = 1;
bind->addr.len=sizeof(struct sockaddr_in);
sin = (struct sockaddr_in *)bind->addr.buf;

sin->sin_family=AF_INET;
sin->sin_port=htons(SRV_PORT);
sin->sin_addr.s_addr=htonl(SRV_ADDR);

U26110-J-Z125-3-76 205

Examples for XTI(POSIX) Server in the connection-oriented service

if (t_bind(listen_fd, bind, bind) < 0) {
t_error("t_bind() for listen_fd failed");
exit(3);

}

if ((call = (struct t_call *)t_alloc(listen_fd,T_CALL, T_ALL)) == NULL) {
t_error("t_alloc() of t_call structure failed");
exit(5);

}

for(;;) {
if (t_listen(listen_fd, call) < 0) {

t_error("t_listen() for listen_fd failed");
exit(6);

}

if ((conn_fd = accept_call(listen_fd, call)) != DISCONNECT)
run_server(listen_fd);

}
}

accept_call(listen_fd, call)
int listen_fd;
struct t_call *call;
{

int resfd;
struct t_call *refuse_call;

if ((resfd = t_open("/dev/tcp", O_RDWR, NULL)) < 0) {
t_error("t_open() for responding fd failed");
exit(7);

}

while (t_accept(listen_fd, resfd, call) < 0) {
if (t_errno == TLOOK) {

if (t_look(listen_fd) == T_DISCONNECT) { /* Connection abort */
 if (t_rcvdis(listen_fd, NULL) < 0) {

t_error("t_rcvdis() failed for listen_fd");
exit(9);

}
if (t_close(resfd) < 0) {

t_error("t_close failed for responding fd");
exit(10);

}

206 U26110-J-Z125-3-76

Server in the connection-oriented service Examples for XTI(POSIX)

/* Terminate call and wait for further call */
return(DISCONNECT);

} else { /* New T_LISTEN; delete event */
if ((refuse_call =

(struct t_call*)t_alloc(listen_fd,T_CALL,0)) == NULL) {
 t_error("t_alloc() for refuse_call failed");

exit(11);
}

if (t_listen(listen_fd, refuse_call) < 0) {
t_error("t_listen() for refuse_call failed");
exit(12);

}

if (t_snddis(listen_fd, refuse_call) < 0) {
t_error("t_snddis() for refuse_call failed");
exit(13);

}

if (t_free((char *)refuse_call, T_CALL) < 0) {
t_error("t_free() for refuse_call failed");
exit(14);

}
}

} else {
 t_error("t_accept() failed");
 exit(15);

}
}

return(resfd);
}

run_server(listen_fd)
int listen_fd;
{

int nbytes;
FILE *logfp; /* File pointer to log file */
char buf[1024];

switch (fork()) {

case -1:
perror("fork failed");
exit(20);
break;

U26110-J-Z125-3-76 207

Examples for XTI(POSIX) Server in the connection-oriented service

default: /* Parent process */
/* Close conn_fd and remain active as monitor again */
if (t_close(conn_fd) < 0) {

t_error("t_close() for conn_fd failed");
exit(21);

}
return;

case 0: /* Child */

/* Close listen_fd and execute service */
if (t_close(listen_fd) < 0) {

t_error("t_close() for listen_fd failed");
exit(22);

}
if ((logfp = fopen(FILENAME, "r")) == NULL) {

perror("Log file cannot be opened");
exit(23);

}

if (t_look(conn_fd) != 0) { /* Was there an interruption? */
fprintf(stderr, "t_look: unexpected event\n");
exit(25);

}

while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)
if (t_snd(conn_fd, buf, nbytes, 0) < 0) {

t_error("t_snd() failed");
exit(26);

}

if (t_sndrel(conn_fd) < 0) {
t_error("t_sndrel() failed");
exit(27);

}
while(t_look(conn_fd) == 0) {

sleep(1);
}
if(t_look(conn_fd) == T_DISCONNECT) {

fprintf(stderr, "Connection aborted\n");
exit(12);

}
exit(0);

}
}

208 U26110-J-Z125-3-76

Datagram-oriented transaction server Examples for XTI(POSIX)

9.3 Datagram-oriented transaction server

The following program for a transaction system in connectionless mode is described in
detail in section “Connectionless service using an example transaction system” on
page 175. The server waits for incoming requests for data packets, then processes each
request and sends a reply.

#include <stdio.h>
#include <fcntl.h>
#include <xti.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define SRV_ADDR 0x7F000001
#define SRV_PORT 8888

main()
{

int fd;
int flags;
struct t_bind *bind;
struct t_unitdata *ud;
struct t_uderr *uderr;
struct sockaddr_in *sin;

if ((fd = t_open("/dev/udp", O_RDWR, NULL)) < 0) {
t_error("Not possible to open /dev/udp");
exit(1);

}

if ((bind = (struct t_bind *)t_alloc(fd,
T_BIND, T_ADDR)) == NULL) {
t_error("t_alloc() of the t_bind structure failed");
exit(2);

}
bind->addr.len=sizeof(struct sockaddr_in);
sin=(struct sockaddr_in *)bind->addr.buf;
sin->sin_family=AF_INET;
sin->sin_port=htons(SRV_PORT);
sin->sin_addr.s_addr=htonl(SRV_ADDR);
bind->qlen = 0;

if (t_bind(fd, bind, bind) < 0) {
t_error("t_bind() failed");
exit(3);

}

U26110-J-Z125-3-76 209

Examples for XTI(POSIX) Datagram-oriented transaction server

if ((ud = (struct t_unitdata *)t_alloc(fd,
T_UNITDATA, T_ALL)) == NULL) {
t_error("t_alloc() of t_unitdata structure failed");
exit(5);

}

if ((uderr = (struct t_uderr *)t_alloc(fd,
T_UDERROR, T_ALL)) == NULL) {
t_error("t_alloc() of t_uderr structure failed");
exit(6);

}

for(;;) {
if (t_rcvudata(fd, ud, &flags) < 0) {

if (t_errno == TLOOK) {
/*
* Error because of previous datagram
*/

if (t_rcvuderr(fd, uderr) < 0) {
t_error("t_rcvuderr() failed");
exit(7);

}
fprintf(stderr,
"Datagram error, error = %d\n",
uderr->error);
continue;

}
t_error("t_rcvudata() failed");
exit(8);

}
/*
* query() processes the request and writes the reply in
* ud->udata.buf and the length in ud->udata.len
*/

query(ud);

if (t_sndudata(fd, ud, 0) < 0) {
t_error("t_sndudata() failed");
exit(9);

}
}

}

query()
{
/* Only an extract, for simplification reasons */
}

210 U26110-J-Z125-3-76

Event-controlled server Examples for XTI(POSIX)

9.4 Event-controlled server

The following server program for the connection-oriented service is described in detail on
page 193ff in chapter “Advanced XTI(POSIX) concepts”. The server manages several
connection requests in an event-controlled manner. All of the connection-oriented clients
described earlier in this chapter can communicate with this server.

#include <xti.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define FILENAME "/etc/services"
#define NUM_FDS 1
#define MAX_CONN_IND 4
#define SRV_ADDR 0x7F000001
#define SRV_PORT 8888

int conn_fd; /* Connection to server */

/* For storing the connections */
struct t_call *calls[NUM_FDS][MAX_CONN_IND];

main()
{

struct pollfd pollfds[NUM_FDS];
struct t_bind *bind;
struct sockaddr_in *sin;
int i;

/*
* Only open and bind one transport endpoint,
* although it would also be possible for more
*/
if ((pollfds[0].fd = t_open("/dev/tcp", O_RDWR, NULL)) < 0) {

t_error("t_open() failed");
exit(1);

}

if ((bind = (struct t_bind *)t_alloc(pollfds[0].fd,
T_BIND, T_ALL)) == NULL) {

t_error("t_alloc() of the t_bind structure failed");
exit(2);

}

U26110-J-Z125-3-76 211

Examples for XTI(POSIX) Event-controlled server

bind->qlen = MAX_CONN_IND;
bind->addr.len=sizeof(struct sockaddr_in);
sin=(struct sockaddr_in *)bind->addr.buf;
sin->sin_family=AF_INET;
sin->sin_port=htons(SRV_PORT);
sin->sin_addr.s_addr=htonl(SRV_ADDR);

if (t_bind(pollfds[0].fd, bind, bind) < 0) {
t_error("t_bind() failed");
exit(3);

}

pollfds[0].events = POLLIN;

for(;;) {
if (poll(pollfds, NUM_FDS, -1) < 0) {

perror("poll() failed");
exit(5);

}

for (i = 0; i < NUM_FDS; i++) {

switch (pollfds[i].revents) {

default:
perror(
"Poll returns error event");
exit(6);
break;

case 0:
continue;

case POLLIN:
do_event(i, pollfds[i].fd);
service_conn_ind(i, pollfds[i].fd);

}
}

}
}

do_event(slot, fd)
{

struct t_discon *discon;
int i;

212 U26110-J-Z125-3-76

Event-controlled server Examples for XTI(POSIX)

switch (t_look(fd)) {

default:
fprintf(stderr,"t_look: unexpected event\n");
exit(7);
break;

case -1:
t_error("t_look() failed");
exit(9);
break;

case 0:
/* If POLLIN is returned, this should not happen */
fprintf(stderr,"No event returned from t_look()\n");
exit(10);

case T_LISTEN:
/*
* Find free member in call area
*/

for (i = 0; i < MAX_CONN_IND; i++) {
if (calls[slot][i] == NULL)

break;
}

if ((calls[slot][i] = (struct t_call *)t_alloc(fd,
 T_CALL, T_ALL)) == NULL) {

t_error("t_alloc() of t_call structure failed");
exit(11);

}

if (t_listen(fd, calls[slot][i]) < 0) {
t_error("t_listen() failed");
exit(12);

}
break;

case T_DISCONNECT:
discon = (struct t_discon *)t_alloc(fd, T_DIS, T_ALL);

if (t_rcvdis(fd, discon) < 0) {
t_error("t_rcvdis() failed");
exit(13);

}

U26110-J-Z125-3-76 213

Examples for XTI(POSIX) Event-controlled server

/*
* Find and delete ind call in area
*/

for (i = 0; i < MAX_CONN_IND; i++) {
if (discon->sequence == calls[slot][i]->sequence) {

t_free(calls[slot][i], T_CALL);
calls[slot][i] = NULL;

}
}
t_free(discon, T_DIS);
break;

}
}

service_conn_ind(slot, fd)
{

int i;

for (i = 0; i < MAX_CONN_IND; i++) {
if (calls[slot][i] == NULL)

continue;

if ((conn_fd = t_open("/dev/tcp", O_RDWR, NULL)) < 0) {
t_error("t_open() failed");
exit(14);

}

if (t_accept(fd, conn_fd, calls[slot][i]) < 0) {
if (t_errno == TLOOK) {

t_close(conn_fd);
return;

}
t_error("t_accept() failed");
exit(16);

}
t_free(calls[slot][i], T_CALL);
calls[slot][i] = NULL;

run_server(fd);
}

}

214 U26110-J-Z125-3-76

Event-controlled server Examples for XTI(POSIX)

run_server(listen_fd)
int listen_fd;
{

int nbytes;
FILE *logfp; /* Pointer to log file */
char buf[1024];
switch (fork()) {

case -1:
perror("fork() failed");
exit(20);
break;

default: /* Parent process */

/* Close conn_fd and monitor again */
if (t_close(conn_fd) < 0) {

t_error("t_close() failed for conn_fd");
exit(21);

}
return;

case 0: /* Child process */

/* Close listen_fd and execute service */
if (t_close(listen_fd) < 0) {

t_error("t_close() failed for listen_fd");
exit(22);

}
if ((logfp = fopen(FILENAME, "r")) == NULL) {

perror("Log file cannot be opened");
exit(23);

}

if (t_look(conn_fd) != 0) { /* Is there already a disconnect? */
fprintf(stderr, "t_look: unexpected event\n");
exit(25);

}

while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)
if (t_snd(conn_fd, buf, nbytes, 0) < 0) {

t_error("t_snd() failed");
exit(26);

}

U26110-J-Z125-3-76 215

Examples for XTI(POSIX) Event-controlled server

if (t_sndrel(conn_fd) < 0) {
t_error("t_sndrel() failed");
exit(27);

}
while(t_look(conn_fd) == 0) {

sleep(1);
}

if(t_look(conn_fd) == T_DISCONNECT) {
fprintf(stderr, "Connection aborted\n");
exit(12);

}
exit(0);

}
}

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U26110-J-Z125-3-76 217

10 XTI trace
XTI trace provides you with the means for creating trace information for the separate XTI
calls of a communication process.

You can control the XTI trace using the XTITRACE environment variable.
You can use the XTITRACE variable to

● enable the XTI trace and

● define which information is to be collected.

You can alternatively enable the XTI trace at program runtime with the XTI t_optmgmt()
function. The t_optmgmt() function is described in section “t_optmgmt() - manage transport
endpoint options” on page 260.

By default, the logged trace information is saved in the directory for temporary files. You can
use the xtitrace program to evaluate these files and output the trace information. You can
define the evaluation scope by specifying special options with the xtitrace call.

The following is described in the sections below:

● How you set the parameters of the XTITRACE environment variable to log the desired
trace information.

● How you output the logged trace information with the xtitrace program.

218 U26110-J-Z125-3-76

Setting XTITRACE parameters XTI trace

10.1 Setting the XTITRACE environment variable parameters

The first XTI call in a process evaluates the XTITRACE environment variable and, if
necessary, enables the XTI trace. After the trace is enabled, the temporary XTIFpid trace
file (pid specifies the process number) is opened in the desired directory (-f dir option, see
the following page), if it is not already open. The trace data is written into this file.

If the XTIFpid cannot accept any further data, the subsequent trace data is written into the
XTISpid file. This file has the same function as the XTIFpid file. Once the XTISpid is full,
XTIFpid is cleaned up and the new trace data is then written into it. The trace mechanism
can switch back and forth between the XTIFpid and XTISpid files a number of times if
necessary. With each file change, the process should save the data in the temporary file
that was just written, into a permanent file. This prevents the logged trace information from
being overwritten and allows it to be output at a later time with the xtitrace program.

The rw------- (0600) access rights are granted for the XTIFpid and XTISpid trace files and
they can be viewed under the user ID of the process. Memory is assigned dynamically for
buffering the trace files. This memory, and the XTIFpid and XTISpid files, remain assigned
for the duration of the process.

The options specified for XTITRACE control the trace mechanism:

– The s and S options define the scope of information to be logged.
– The r option controls the cyclic overwriting of the XTIFpid and XTISpid files.
– The f option controls the memory for the XTIFpid and XTISpid files.

You set the XTITRACE environment variable parameters with the following statements:

XTITRACE="-option [-r wrap][-f dir]";

export XTITRACE;

-option
option defines the trace type. A value must be entered for option when a trace is enabled.

You can enter the following two values for option:

– s
Logs the XTI call function names and their parameters and return values. If errors
occur, the values of t_errno and errno are logged and the error position errpos.

– S
Logs all information which is also logged if s is specified. If parameters occur which
are passed as pointers, the values of the objects addressed by the pointers are also
logged.
S should be specified in preference to s.

U26110-J-Z125-3-76 219

XTI trace Setting XTITRACE parameters

-r wrap
You input a decimal number for wrap.
wrap defines that the trace file is changed after wrap * BUFSIZ bytes: after each wrap *
BUFSIZ logged bytes, the trace mechanism switches over from the XTIFpid file to the
XTISpid file and viceversa. The data in the file that is switched to is thereby overwritten
in each case. The BUFSIZ constant is defined in <stdio.h>.

Default value for wrap: 512

-f dir
You use dir to specify the directory into which the XTIFpid and XTISpid trace files are
written.

Default value for dir: The standard /usr/tmp directory

220 U26110-J-Z125-3-76

Outputting trace information XTI trace

10.2 Outputting trace information with the xtitrace program

The xtitrace program reads the trace information generated by the XTI trace from one or
more files. xtitrace processes this trace information according to the options specified for
xtitrace and outputs the result to the standard output.

The status is 0 after successful execution of xtitrace, otherwise not equal to 0.

Calling the xtitrace program

You call the xtitrace program as follows:

xtitrace[-option] file ...

-option
You use option to define which information of the trace file(s) specified by file ... is to be
output. You can specify one or more of the following values for option with each xtitrace
call.

– c
Outputs the trace information of XTI calls for the following actions:

– Installation/deinstallation of a communications application
– Setup/shutdown of a connection

The XTI functions affected are: t_accept(), t_bind(), t_close(), t_connect(), t_listen(),
t_open(), t_rcvconnect(), t_rcvdis(), t_rcvrel(), t_snddis(), t_sndrel() and t_unbind().

– d
Outputs the trace information of XTI calls for data exchange.
The XTI functions affected are: t_rcv(), t_rcvudata(), t_rcvuderr(), t_snd() and
t_sndudata().

– m
Outputs the trace information of XTI calls not covered by the c and d options.
The XTI functions affected are: t_alloc(), t_error(), t_free(), t_getinfo(), t_getstate(),
t_look(), t_optmgmt() and t_sync().

– v
Outputs the trace information of all XTI calls and the values of the parameters and
options concerned. If parameters occur which are passed as pointers, the values of
the objects addressed by the pointers are also output. However, the last requires
that the data concerned was recorded during tracing (see section “Setting the
XTITRACE environment variable parameters” on page 218). If the S option was set
for XTITRACE, you should specify the value v for option. Specifying v has the same
effect as specifying cdmv.

U26110-J-Z125-3-76 221

XTI trace Outputting trace information

file ...
You use file to specify the name of a file which contains binary trace data. You can also
specify several file names.

XTI trace output format

The xtitrace program always starts its output with a header. After this, xtitrace writes the
trace information for the separate XTI calls. Depending on the parameters set in the
XTITRACE environment variable and xtitrace program, xtitrace outputs either a single line
or several lines in different formats.

Header format

The header contains the following information:

– XTI library version number
– trace start date and time
– specified values of the xtitrace output option
– name(s) of the trace file(s) whose contents are output by xtitrace

Example

XTI TRACE (Vx.x) Mon Aug 11 15:13:34 1997
OPTIONS ’cdmv’ , TRACE FILE ’XTIF00963’

Format of the first output line for a logged XTI call

The trace information for an XTI call always starts with a line that has the following format:

● The line starts with a time stamp:

minutes:seconds.milliseconds (e.g. 24:16.324)

The millisecond accuracy depends on the hardware used.

● After the time stamp comes the recorded XTI call (e.g. t_bind()). This is followed by a
list enclosed in parentheses and containing the parameters and their values for the XTI
call concerned (in the order required by XTI). The parameter values shown are either in
decimal (%d), hexadecimal (0x%x) or symbolic (%s) form. A parameter shown in
hexadecimal notation always starts with 0x.

The following applies for showing the parameters and their values:

– Values of pointers are shown in hexadecimal.

– With parameters of type integer (e.g. fd), the corresponding value can be shown in
hexadecimal, decimal or symbolic form. Parameters and their values are separated
by a blank.

222 U26110-J-Z125-3-76

Outputting trace information XTI trace

● With XTI functions whose execution depends on the state of the transport endpoint, the
trace log informs on whether the call blocks (default) or not (specification: O_NDELAY
or O_NONBLOCK).

Format of additional output lines for a logged XTI call

xtitrace only outputs the trace information described below if the two following conditions are
satisfied:

– The XTITRACE variable parameters were set with the S option for creating the trace.
– The xtitrace program parameters were set with the v option.

For parameters passed as pointers, xtitrace outputs the names and values of the data
objects addressed by these pointers. The values of the data objects (e.g. structure compo-
nents) are output in hexadecimal. The name conventions of parameters and structure
components correspond to the naming conventions used in chapter “XTI(POSIX) library
functions” on page 223.

The trace information on structure components also contains a few special characters
which have the following meaning:

> The component concerned must be assigned a value by the calling communications
application before the logged XTI function is called.

< A value is returned in the component concerned by the logged XTI function if the XTI
function executes correctly.

- The value of the component concerned is meaningless for the logged XTI function.

If “---” is output instead of a component value, the component concerned has no value
assigned.

Format of the last output line for a logged XTI call

The return value of the XTI function concerned is always output in the last line for a logged
XTI call. If errors occur, t_errno, possibly errno and information on the error position (errpos)
are output.

Example of a detailed report of an XTI call

24:16.320 t_bind (fd 5, req 0x8054ac8, ret 0x0)
req: addr.maxlen(-) addr.len(>) addr.buf(>)

___ 16 0x8054d48
0 00021800 00000000 00000000 00000000| |

qlen (>) 5
return: 0

U26110-J-Z125-3-76 223

11 XTI(POSIX) library functions
The XTI(POSIX) library functions are described in this chapter.

The first thing described is the format in which the separate XTI functions are described.
The subsequent overview collects several XTI functions together into task-oriented groups.
Finally, all XTI functions are described in alphabetic order.

224 U26110-J-Z125-3-76

Description format XTI(POSIX) library functions

11.1 Description format

The XTI functions are described in a uniform format which is structured as follows:

Function name - brief functional description

#include < ... >

Syntax of function

Description

Detailed description of the functionality and an explanation of the parameters.

Return value

List and description of all possible return values for the function.

Errors

List and description of the error codes which are stored in t_errno If an error occurs during
the function call or processing.

Note

Explanation of terms or information about interaction with other functions or tips for use.
This section may be missing.

See also

Cross references to the descriptions of other functions.

U26110-J-Z125-3-76 225

XTI(POSIX) library functions Overview of functions

11.2 Overview of functions

In the following overview of the XTI library functions, several functions are collected together
into task-oriented groups.

Connection setup and shutdown over transport endpoints

Function Description See

t_open() Set up transport endpoint page 256

t_close() Close transport endpoint page 237

t_bind() Assign a transport endpoint an address page 234

t_unbind() Deactivate a transport endpoint page 289

t_connect() Initiate a connection over a transport endpoint (e.g. by
a client)

page 238

t_rcvconnect() Get the status of a previously sent connection request page 268

t_listen() Test a transport endpoint for pending connection
requests (e.g. by a server)

page 252

t_accept() Accept a connection over a transport endpoint (e.g. by
a server)

page 229

t_rcvrel() Confirm reception of a request for orderly connection
shutdown

page 272

t_rcvdis() Get the cause of a connection shutdown page 270

t_sndrel() Initiate orderly connection shutdown page 282

t_snddis() Refuse a connection request or initiate an immediate
abort of an established connection

page 280

226 U26110-J-Z125-3-76

Overview of functions XTI(POSIX) library functions

Transferring data between transport endpoints

Getting information about transport endpoints

Managing options of a transport endpoint

Using the transport library data structures

Function Description See

t_rcv() Receive data over a transport endpoint
(connection-oriented)

page 266

t_rcvudata() Receive datagrams over a transport endpoint
(connectionless)

page 274

t_rcvuderr() Receive error information about a sent datagram
(connectionless)

page 276

t_snd() Send data over a transport endpoint
(connection-oriented)

page 278

t_sndudata() Send datagrams over a transport endpoint
(connectionless)

page 284

Function Description See

t_getinfo() Get protocol-specific information page 245

t_getstate() Get the current state of the transport provider page 250

t_getprotaddr() Get protocol addresses page 248

t_look() Get the current event on the transport endpoint
reported by the transport provider

page 254

Function Description see

t_optmgmt() Manage options of a transport endpoint page 260

Function Description See

t_alloc() Reserve memory dynamically for data structures
declared in the <xti.h> transport library

page 232

t_free() Release memory reserved for data structures
declared in the <xti.h> transport library

page 243

t_sync() Synchronize data structures of the <xti.h> transport
library

page 287

U26110-J-Z125-3-76 227

XTI(POSIX) library functions Overview of functions

Generating error messages

Function Description See

t_error() Output error message to standard output page 241

t_strerror() Output error message text page 286

228 U26110-J-Z125-3-76

Functions XTI(POSIX) library functions

11.3 Functions

The XTI(POSIX) library functions are described in alphabetic order in this section.

To be able to execute the XTI functions, the application must link in the X/Open-compliant
<xti.h> header file. The <xti.h> file is copied into the /usr/include directory when
SOCKETS(POSIX) is installed (see also section “Header files” on page 9).

If an XTI function returns the TSYSERR error, the errno error variable is set. the values for
errno are defined in <errno.h>.

U26110-J-Z125-3-76 229

XTI(POSIX) library functions t_accept()

t_accept() - accept connection

#include <xti.h>

int t_accept(int fd, int resfd, struct t_call *call);

Description

The transport user calls the t_accept() function to accept a connection over a transport
endpoint, which another transport user requested with the t_connect() function.

The fd parameter designates the local transport endpoint on which a connection request
arrived. The resfd parameter specifies the local transport endpoint over which the
connection is to be set up.

Two cases must be discriminated with the resfd transport endpoint on which the connection
is to be accepted:

– resfd == fd
No further connection requests may be pending on fd in this case, i.e. the transport user
must have already used t_accept() or t_snddis() to process all connection requests previ-
ously received on fd. Otherwise, t_accept() terminates with an error and sets t_errno to
TINDOUT.

– resfd != fd
In this case, resfd must be in the T_UNBND or T_IDLE state when t_accept() is called
(see section “t_getstate() - get current state” on page 250).

The user calls the call parameter to pass information that the transport provider needs for
setting the connection up. call is a pointer to an object of type struct t_call.

The t_call structure is declared in <xti.h> as follows:

struct t_call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

};

call->addr contains the protocol address of the transport user who sent the connection
request.

230 U26110-J-Z125-3-76

t_accept() XTI(POSIX) library functions

call->opt shows all the options of the connection concerned. The values and syntax of these
options are protocol-specific.
Sending user data (call->udata parameter) is not supported.
call->sequence contains the value previously returned by t_listen(), which uniquely identifies
the connection request pending on transport endpoint fd.

If further events are pending on the transport endpoint passed by fd (connection request or
connection shutdown request), t_accept() terminates with an error and sets t_errno to
TLOOK.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADF
The specified descriptor does not reference a transport endpoint.

TOUTSTATE
t_accept() was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd or the transport endpoint passed by resfd is not in either the
T_IDLE or T_UNBND state.

TACCES
The user has no allowance to accept a connection on the replying transport endpoint or
use the specified options.

TBADDATA
Sending user data is not supported.

TBADOPT
The specified options had the wrong format or contained invalid information.

TBADSEQ
An invalid sequence number was specified.

TINDOUT
The function was called with fd == resfd and further connection requests are pending for
the transport endpoint passed by fd. These previously received connection requests
must first be processed with t_accept() or t_snddis().

U26110-J-Z125-3-76 231

XTI(POSIX) library functions t_accept()

TLOOK
An asynchronous event arrived on the transport endpoint passed by fd and this must be
processed immediately.

TNOTSUPPORT
The function is not supported by the underlying transport service.

TRESQLEN
The transport endpoint passed by resfd (with resfd != fd) is assigned a protocol address
for which qlen > 0 applies.

TSYSERR
A system error occurred during execution of this function.

See also

t_connect(), t_getstate(), t_listen(), t_open(), t_rcvconnect()

232 U26110-J-Z125-3-76

t_alloc() XTI(POSIX) library functions

t_alloc() - reserve memory for library structure

#include <xti.h>

char *t_alloc(int fd, int struct_type, int fields);

Description

The transport user calls the t_alloc() function to reserve memory dynamically for various
types of structures. t_alloc() returns a pointer to the reserved structure object. Every
structure object created with t_alloc() can be passed as a current parameter when specific
XTI functions are called.

The user must specify the transport endpoint over which the structure object created with
t_alloc() is passed when an XTI function is called (e.g. t_bind()), as the current parameter
for fd. This allows t_alloc() to access the relevant size information. The size of the buffer that
is created results from the same information that the user receives with t_open() and
t_getinfo() for the transport endpoint concerned.

The struct_type parameter specifies the structure type. t_alloc() then reserves memory for
the structure and for buffers to which this structure refers.
The user can specify the following values for struct_type when calling t_alloc():

– T_BIND (for struct t_bind)

– T_CALL (for struct t_call)

– T_OPTMGMT (for struct t_optmgmt)

– T_DIS (for struct t_discon)

– T_UNITDATA (for struct t_unitdata)

– T_UDERROR (for struct t_uderr)

– T_INFO (for struct t_info)

Apart from t_info, all the above structures contain at least one component of type
struct netbuf.

U26110-J-Z125-3-76 233

XTI(POSIX) library functions t_alloc()

The netbuf structure is declared in <xti.h> as follows:

struct netbuf {
unsigned int maxlen;
unsigned int len;
char *buf;

};

The user sets the fields parameter to specify whether memory is also to be reserved for the
buffer for each netbuf structure in the structure specified by struct_type. fields is formed by
inclusive ORing of the bits in any combination of the values described below:

– T_ADDR: addr component of the t_bind, t_call, t_unitdata or t_uderr structures

– T_OPT: opt component of the t_optmgmt, t_call, t_unitdata or t_uderr structures

– T_UDATA: udata component of the t_call, t_discon or t_unitdata structures

– T_ALL: all relevant components of the structure specified by struct_type

t_alloc() reserves memory for the buffer assigned to each netbuf structure specified by the
fields parameter. t_alloc() also correspondingly initializes the buf pointer and the value of
maxlen in the separate netbuf structures.

If the value of maxlen in any of the netbuf structures specified by fields has the value -1 or
-2 (see t_open() or t_getinfo()), t_alloc() cannot determine the size of the buffer and termi-
nates with an error. t_errno is set to TSYSERR and errno to EINVAL. For each netbuf
structure not specified in fields, buf is set to NULL and maxlen to 0.

Return value

If execution was successful, t_alloc() returns a pointer to the newly created structure.
In an error occurs, the null pointer is returned and t_ errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TSYSERR
A system error occurred during execution of this function.

See also

t_free(), t_getinfo(), t_open()

234 U26110-J-Z125-3-76

t_bind() XTI(POSIX) library functions

t_bind() - assign a transport endpoint an address

#include <xti.h>

int t_bind(int fd, struct t_bind *req, struct t_bind *ret);

Description

The user calls the t_bind() function to assign the transport endpoint specified by the fd
parameter a protocol address and activates the transport endpoint.

After successful execution of t_bind(), the user has the following options:

– The user can call t_listen() in connection-oriented mode to check the transport endpoint
specified by fd for pending connection requests and then, if necessary, use t_accept() to
accept connections on fd. The user can also send connection requests to other
transport endpoints over transport endpoint fd with t_connect().

– In connectionless mode, the user can send or receive datagrams over the transport
endpoint specified by fd.

The req and ret parameters each point to an object of type struct t_bind.

The t_bind structure is declared in <xti.h> as follows:

struct t_bind {
struct netbuf addr;
unsigned qlen;

};

The user specifies the protocol address to be assigned to the transport endpoint in
req->addr. The user specifies the length of this address in bytes in req->addr.len.
req->addr.buf points to the address buffer. req->addr.maxlen is meaningless.

The transport user passes a pointer to a buffer in ret->addr.buf and specifies the maximum
length of this buffer in ret->addr.maxlen. After successful execution, t_bind() returns the
address assigned to transport endpoint fd in ret-> addr.buf. t_bind() returns the actual length
of this address in ret->addr.len.

t_bind() returns the TBUFOVFLW error code if the length specified in ret->addr.maxlen is too
small for storing the address returned by t_bind().
However, the state of the transport endpoint changes to T_IDLE.

U26110-J-Z125-3-76 235

XTI(POSIX) library functions t_bind()

req->qlen and ret->qlen are only significant if fd is run in connection-oriented mode, in which
case they define the maximum number of pending connection requests that the transport
provider supports for transport endpoint fd. A pending connection request is a connection
request which was passed to the endpoint of the user by the transport system and has to
date neither been accepted (t_accept()) nor refused (t_snddis()) by this user.
The number of connection requests for transport endpoint fd supported by the transport
provider is calculated as follows:

– Before calling t_bind(), the user specifies in req->qlen the number of pending connection
requests that the transport provider is to support on transport endpoint fd. req->qlen > 0
is only meaningful with a transport endpoint that the user later monitors passively for
pending connection requests with t_listen().

– req->qlen is evaluated by the transport provider. If the transport provider cannot support
the number of pending connection requests specified in req->qlen, he reduces the value
passed in req->qlen appropriately. However, the transport provider never reduces a
req->qlen value that is > 0 to 0. The transport provider can currently support a maximum
of 8 pending connection requests.

– t_bind() returns the number of pending connection requests that the transport provider
actually supports for transport endpoint fd in ret->qlen.

If the user does not want to specify the address to be bound (assigned) to transport
endpoint fd, he passes the null pointer as the current parameter for req. In this case, the
transport provider selects the address to be bound, whereby he implicitly assumes a value
of 0 for req->qlen.
The user can also pass the null pointer as the current parameter for ret, if he is indifferent
to the value of qlen and the address bound to fd with t_bind() by the transport provider.
It is permissible to pass the null pointer for both req and ret in the same t_bind() call. The
transport provider then selects the address which is bound to fd. However, t_bind() does not
return this information to the user.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TACCES
The user has no allowance to use the specified address.

TADDRBUSY
The specified protocol address is already in use.

236 U26110-J-Z125-3-76

t_bind() XTI(POSIX) library functions

TBADADDR
The specified protocol address has the wrong format or contains invalid information.

TBADF
The specified file descriptor does not reference a transport endpoint.

TBUFOVFLW
The allowed number of bytes for a result parameter is too small to store the value of the
parameter. The state of the transport provider is changed to T_IDLE and the information
to be returned in *ret is deleted.

TNOADDR
The transport provider could not reserve an address (see also section “Dependencies
of the BS2000/OSD BCAM transport system” on page 302).

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd.

TSYSERR
A system error occurred during execution of this function.

See also

t_open(), t_optmgmt(), t_unbind()

U26110-J-Z125-3-76 237

XTI(POSIX) library functions t_close()

t_close() - close transport endpoint

#include <xti.h>

int t_close(int fd);

Description

The user calls the t_close() function to inform the transport provider that he no longer needs
the transport endpoint specified by fd. t_close() releases all local library resources reserved
for fd.

t_close() should be called in the T_UNBND state (see section “t_getstate() - get current
state” on page 250). As t_close() does not check any state information, it can also be called
in all other states to close a transport endpoint.

If there are no further descriptors for transport endpoint fd in the calling process or any other
process, the transport endpoint is shut down completely, i.e. the system resources are
released. Established connections are aborted and any data not already sent or not fetched
by the receiver is lost.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

See also

t_getstate(), t_open(), t_unbind()

238 U26110-J-Z125-3-76

t_connect() XTI(POSIX) library functions

t_connect() - request connection

#include <xti.h>

int t_connect(int fd, struct t_call *sndcall, struct t_call *rcvcall);

Description

The user calls the t_connect() function to send a connection request over local transport
endpoint fd to another transport user who is specified by the protocol address passed with
the sndcall parameter.

the sndcall and rcvcall parameters each point to an object of type struct t_call.

The t_call structure is declared in <xti.h> as follows:

struct t_call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

};

the caller of t_connect() passes information in sndcall that the transport provider needs to
send a connection request:

– sndcall->addr contains the protocol address of the transport endpoint to which the
connection request is to be sent.

– sndcall->opt contains protocol-specific information which the transport provider needs.
However, sndcall->opt does not specify the structure of the options as the transport
provider himself defines the structure of all options passed to him. These options are
specific to the underlying protocol of the transport provider.
If the user passes the value 0 in sndcall->opt.len, the transport provider selects default
options and the user does not have to negotiate them with the transport provider.

Since sending user data is not supported, sndcall->udata is meaningless for t_connect().
sndcall->sequence is also meaningless for t_connect().

U26110-J-Z125-3-76 239

XTI(POSIX) library functions t_connect()

After successful execution, t_connect() returns information in rcvcall about the connection
that was just set up.

– rcvcall->addr contains the protocol address of the transport endpoint which accepted
the connection request with t_accept().
Before calling t_connect() the user must make the maximum length of the result buffer
(rcval->addr.buf) known in rcval->addr.maxlen.

– rcval->opt contains protocol-specific information concerning the newly set up
connection.
Before calling t_connect() the user must make the maximum length of the result buffer
(rcval->opt.buf) known in rcval->opt.maxlen.

Since receiving user data is not supported, rcvcall->udata is meaningless for t_connect().
rcvcall->sequence is also meaningless for t_connect().

By default, t_connect() works in synchronous mode and waits (blocks) until a reply arrives
from the destination user, i.e. transport user, to which the connection request was sent.
t_connect() only relinquishes control back to the calling transport user after receiving the
reply. Successful execution of t_connect() (return value 0) indicates that the requested
connection has been set up.

However, t_connect() is executed in asynchronous mode if t_open() or the POSIX fcntl()
function was used previously to set O_NDELAY or O_NONBLOCK for the transport
endpoint specified by fd. In asynchronous mode, t_connect() does not wait for the reply from
the destination user, but relinquishes control back to the calling user immediately after
getting the status of the connection request. If the requested connection has not been set
up yet, t_connect() returns the value -1 and sets t_errno to TNODATA.
In other words, t_connect() initiates the connection setup in asynchronous mode simply by
sending a connection request to the destination user. The local user can get the status of
the requested connection with the t_rcvconnect() function.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

240 U26110-J-Z125-3-76

t_connect() XTI(POSIX) library functions

Errors

TACCES
The user has no allowance to use the specified address or options.

TBADADDR
The specified protocol address has the wrong format or contains invalid information.

TBADDATA
Sending user data is not supported.

TBADF
The specified file descriptor does not reference a transport endpoint.

TBADOPT
The specified protocol options had the wrong format or contained invalid information.

TBUFOVFLW
The number of bytes that were reserved for a result parameter are not enough to store
the parameter value. If synchronous mode is being used, the state of the transport
provider from the user viewpoint is set to T_DATAXFER and the information for the
connection request, which should be returned in *rcvcall, is removed.

TLOOK
An asynchronous event occurred on the transport endpoint passed in fd and this must
be processed immediately.

TNODATA
O_NDELAY or O_NONBLOCK was set so that the function could initiate connection
setup procedure successfully but does not wait for a reply from the remote user.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd.

TSYSERR
A system error occurred during execution of this function.

See also

t_accept(), t_getinfo(), t_listen(), t_open(), t_optmgmt(), t_rcvconnect(), fcntl()

U26110-J-Z125-3-76 241

XTI(POSIX) library functions t_error()

t_error() - output error message to the standard output

#include <xti.h>

int t_error(char *errmsg);
extern int t_errno;
extern char *t_errlist[];
extern int t_nerr;

Description

The user calls the t_error() function to write a self-formulated message describing the last
error which occurred with an XTI function call, to the standard error output. his message,
which describes the error in context, is passed in the errmsg parameter.

t_errlist is a vector of messages, which are each represented as a character string and allow
user messages to be formatted. t_errno can be used as an index for this vector to receive a
specific error message in string format (without end-of-line termination). t_nerr is the
maximum index value for the t_errlist vector.
t_errno is set if an error occurs, however, it is not deleted for subsequent, successful calls.

The t_error() output comprises the error message passed by the user, followed by a colon
(:) and the standard error output of the XTI function for the current value in t_errno. If t_errno
has the value TSYSERR, t_error() also outputs the default error message for the current
value in errno.

Return value

Always 0

Errors

No error codes are defined for t_error().

242 U26110-J-Z125-3-76

t_error() XTI(POSIX) library functions

Example

If the t_connect() function on transport endpoint fd2 terminates with an error because an
invalid address was specified, the error can follow the call below:

t_error("t_connect failed");

The following message is output:

t_connect failed: incorrect addr format

"t_connect failed" tells the user which function failed. "incorrect addr format" indicates
the actual error which occurred.

U26110-J-Z125-3-76 243

XTI(POSIX) library functions t_free()

t_free() - release library structure memory

#include <xti.h>

int t_free(char *ptr, int struct_type);

Description

The user calls the t_free() function to release memory which was previously assigned with
the t_alloc() function. t_free() releases the memory for the object of type struct_type to which
pointer ptr points.

struct_type specifies one of the six structure types described for t_alloc():

– T_BIND (for struct t_bind)

– T_CALL (for struct t_call)

– T_OPTMGMT (for struct t_optmgmt)

– T_DIS (for struct t_discon)

– T_UNITDATA (for struct t_unitdata)

– T_UDERROR (for struct t_uderr)

– T_INFO (for struct t_info)

The t_free() function checks the ptr->addr, ptr->opt and ptr->udata components of type
struct netbuf in the struct_type *ptr object and releases the buffer to which the buf component
of the separate netbuf structures point. If a buf pointer is the null pointer, t_free() does not try
to release the memory involved. As soon as all buf buffers are released, t_free() releases the
structure to which ptr points.

t_free() produces undefined results if ptr or any buf pointer points to a memory area which
was not previously reserved with t_alloc().

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

244 U26110-J-Z125-3-76

t_free() XTI(POSIX) library functions

Errors

TSYSERR
A system error occurred during execution of this function.

See also

t_alloc()

U26110-J-Z125-3-76 245

XTI(POSIX) library functions t_getinfo()

t_getinfo() - get protocol-specific information

#include <xti.h>

int t_getinfo(int fd, struct t_info *info);

Description

The t_getinfo() function supplies the user with information about the current characteristics
of the underlying transport protocol bound to transport endpoint (file descriptor) fd.
t_getinfo() returns the same information in the t_info structure, to which the info parameter
points, that was returned by t_open() when transport endpoint fd was set up. This allows the
user to access the information supplied by t_open() at any time with t_getinfo().

The t_info structure, to which the info parameter points, is declared in <xti.h> as follows:

struct t_info {
long addr; /* Maximum length of the transport protocol address */
long options; /* Maximum number of bytes of the protocol-specific options */
long tsdu; /* Maximum size of a data packet (TSDU) */
long etsdu; /* Maximum size of a packet for expedited data (ETSDU) */
long connect; /* Maximum amount of data allowed for connection setup

function */
long discon; /* Maximum amount of data allowed for the t_snddis() and

t_rcvdis() functions */
long servtype; /* Service type offered by the transport provider */
long flags; /* Other transport provider information /*
};

The values of the t_info components have the following meaning:

addr
A value ≥ 0 defines the maximum length of a transport protocol address. The value -1
indicates that the address length is unlimited. The value -2 indicates that the transport
provider does not support user accesses to the transport protocol address.

options
A value ≥ 0 defines the maximum length in bytes that the transport provider supports
for protocol-specific options. The value -1 indicates that the length of the options is
unlimited. The value -2 indicates that the transport provider does not support options
that can be influenced by the user.

246 U26110-J-Z125-3-76

t_getinfo() XTI(POSIX) library functions

tsdu
A value > 0 defines the maximum length of a transport service data unit (TSDU). The
value 0 indicates that the transport provider does not support the TSDU concept
although he does offer sending a data stream over the connection without maintaining
logical block limits. The value -1 indicates that the length of a TSDU is unlimited. The
value -2 indicates that the transport provider does not support transferring normal data.

etsdu
A value > 0 defines the maximum length of an expedited transport service data unit
(ETSDU). The value 0 indicates that the transport provider does not support the ETSDU
concept although he does offer sending a data stream over the connection without
maintaining logical block limits. The value -1 indicates that the length of an ETSDU is
unlimited. The value -2 indicates that the transport provider does not support trans-
ferring expedited data.

connect
A value ≥ 0 defines the maximum amount of data that can be sent with connection setup
functions. The value -1 indicates that the amount of data that can be sent during
connection setup is unlimited. The value -2 indicates that the transport provider does
not support sending data with connection setup functions.

discon
A value ≥ 0 defines the maximum amount of data that can be sent with the t_snddis()
and t_rcvdis() functions. The value -1 indicates that the amount of data that can be sent
with connection shutdown functions is unlimited. The value -2 indicates that the
transport provider does not support sending data with connection shutdown functions.

servtype
This component specifies the service type supported by the transport provider (see
following page).

flags
This field specifies other transport provider information (no information is currently
supplied).

If the transport service user wishes to be independent of protocols, he can use the above
values to determine the size of buffers required for storing the separate pieces of infor-
mation. The user can also alternatively call the t_alloc() function to reserve memory for
these buffers. An error occurs if a user exceeds the permissible limits with an XTI function
call.
The values stored in the separate t_info components can be changed as a result of option
negotiation (with t_optmgmt()). The user can get information on the current characteristics
with the t_getinfo() function.

U26110-J-Z125-3-76 247

XTI(POSIX) library functions t_getinfo()

After t_getinfo() is executed, the info->servtype component contains one of the following
values:

T_COTS_ORD
The transport provider supports a connection-oriented service with an optional orderly
connection shutdown. t_getinfo() returns the value -2 for etsdu, connect and discon for this
service type.

T_CLTS
The transport provider supports a connectionless service. t_getinfo() returns the value
-2 for etsdu, connect and discon for this service type.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TSYSERR
A system error occurred during execution of this function.

See also

t_open()

248 U26110-J-Z125-3-76

t_getprotaddr() XTI(POSIX) library functions

t_getprotaddr() - get protocol addresses

#include <xti.h>

int t_getprotaddr(int fd, struct t_bind *boundaddr, struct t_bind *peeraddr);

Description

The getprotaddr() returns the local and remote protocol addresses currently assigned to
transport endpoint fd. The boundaddr and peeraddr parameters point to objects of type
struct t_bind.

The t_bind structure is declared in <xti.h> as follows:

struct t_bind {
struct netbuf addr;
unsigned qlen;

};

Before calling t_getprotaddr(), the user specifies the maximum size of the address buffer in
boundaddr->maxlen and peeraddr->maxlen. The user also specifies with boundaddr->addr.buf
and peeraddr->addr.buf pointers to buffers into which t_getprotaddr() is to return the address
concerned.

After t_getprotaddr() is executed, boundaddr->addr.buf points to the address assigned to
transport endpoint fd (if available). boundaddr->addr.len contains the length of this address.
If transport endpoint fd is in the T_UNBND state, t_getprotaddr() returns the value 0 in the
boundaddr->addr.len component.
After t_getprotaddr() is executed, peeraddr->addr.buf points to the address of the communi-
cations partner of fd (if available).
peeraddr->addr.len contains the length of this address. If transport endpoint fd is not in the
T_DATAXFER state, t_getprotaddr() returns the value 0 in the peeraddr->addr.len component.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

U26110-J-Z125-3-76 249

XTI(POSIX) library functions t_getprotaddr()

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TBUFOVFLW
The number of bytes reserved for a result parameter (with maxlen) is greater than 0 but
not large enough to store the value of the parameter concerned.

TPROTO
This error indicates that a communications problem was detected between XTI and the
transport system, for which no other suitable error description is available.

TSYSERR
A system error occurred during execution of this function.

See also

t_bind()

250 U26110-J-Z125-3-76

t_getstate() XTI(POSIX) library functions

t_getstate() - get current state

#include <xti.h>

int t_getstate(int fd);

Description

The t_getstate() function returns the current state of the transport endpoint.

Return value

If successful, the current state of the transport endpoint is returned.
If an error occurs, t_getstate() returns the value -1.

The current state of the transport endpoint can assume the following values:

T_UNBND
The transport endpoint is not bound to the transport service.

T_IDLE
The transport endpoint is bound to the transport system.

T_OUTCON
A sent connection request has not been processed yet.

T_INCON
An incoming connection request has not been processed yet.

T_DATAXFER
Data transfer phase

T_OUTREL
A request for orderly connection shutdown was sent (wait for indication of an orderly
connection shutdown)

T_INREL
Wait for a request for orderly connection shutdown.

If the transport provider is in a state transition at exactly the time of the t_getstate() call,
t_getstate() terminates with an error.

U26110-J-Z125-3-76 251

XTI(POSIX) library functions t_getstate()

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TSTATECHNG
The transport provider is currently changing state.

TSYSERR
A system error occurred during execution of this function.

See also

t_open()

252 U26110-J-Z125-3-76

t_listen() XTI(POSIX) library functions

t_listen() - wait for connection requests

#include <xti.h>

int t_listen(int fd, struct t_call *call);

Description

The user calls the t_listen() function to monitor transport endpoint fd passively for connection
requests which other transport endpoints send to fd with t_connect(). After execution of
t_listen(), the call parameter points an object of type struct t_call which contains information
about incoming connection requests.

The t_call structure is declared in <xti.h> as follows:

struct t_call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

};

t_listen() returns the protocol address of the transport service user who sent the connection
request, in call->addr.buf. Before calling t_listen(), the user must specify the maximum size
of the call->addr.buf result buffer in call->addr.maxlen.
Returning protocol-specific parameters in call->opt and user data in call->udata are not
supported.
After execution of t_listen(), the value of call->sequence uniquely identifies the connection
request which arrived, allowing the user to monitor several connection requests before
replying to one of them.

By default, t_listen() works in synchronous mode, waits (blocks) if no connection requests
are available and only returns control to the user after a connection request arrives.
However, if the user previously set O_NDELAY or O_NONBLOCK with t_open() or the
POSIX fcntl() function, t_listen() works in asynchronous mode. t_listen() then only polls for
pending connection requests (poll()) and does not wait. If no connection requests are
available, t_listen() returns the value -1 and sets t_errno to TNODATA.

U26110-J-Z125-3-76 253

XTI(POSIX) library functions t_listen()

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TBADQLEN
The qlen value of the transport endpoint to which fd refers is 0.

TBUFOVFLW
The number of bytes reserved (with maxlen) for a result parameter is not enough to store
the value of the parameter. The state of the transport provider changes to T_INCON
from the viewpoint of the user. The information about the connection request which is
to be returned in *call, is deleted.

TLOOK
An asynchronous event occurred on the transport endpoint passed in fd and this must
be processed immediately.

TNODATA
O_NDELAY or O_NONBLOCK is set but there are no connection requests in the queue.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TPROTO
The connection to the BCAM transport system has been shut down.

TSYSERR
A system error occurred during execution of this function.

See also

t_accept(), t_bind(), t_connect(), t_open(), t_rcvconnect(), fcntl()

254 U26110-J-Z125-3-76

t_look() XTI(POSIX) library functions

t_look() - get current event

#include <xti.h>

int t_look(int fd);

Description

The user calls the t_look() function to get the current event on the transport endpoint
specified by the fd parameter.
t_look() allows the transport provider to report an asynchronous event to the user if the user
executes functions in synchronous mode. Some events must be reported immediately to
the user and are indicated by a special error code (TLOOK) when the current or next
function is executed.
The user can call t_look() to periodically poll a transport endpoint for asynchronous events
(poll()).

Return value

If execution is successful, t_look() returns a value which indicates the event that occurred.
t_look() returns the value 0 if no events occurred.
If an error occurs, -1 is returned and t_errno is set to indicate the error.

The following events can be returned by t_look():

T_LISTEN
Indication of a connection was received.

T_CONNECT
Confirmation of a connection was received.

T_DATA
Data was received.

T_DISCONNECT
Indication of a connection shutdown was received.

T_UDERR
Indication of a datagram error was received.

T_ORDREL
Indication of an orderly connection shutdown was received.

U26110-J-Z125-3-76 255

XTI(POSIX) library functions t_look()

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TSYSERR
A system error occurred during execution of this function.

See also

t_open()

256 U26110-J-Z125-3-76

t_open() XTI(POSIX) library functions

t_open() - set up a transport endpoint

#include <xti.h>
#include <fcntl.h>

int t_open(char *path, int oflag, struct t_info *info);

Description

The user calls the t_open() function to set up a transport endpoint by opening a file in a UNIX
system which identifies a particular transport provider (i.e. the transport protocol). The
t_open() call is the first step in initializing a transport endpoint.
t_open() returns a file descriptor to a transport endpoint of this type.

The following are supported, based on the TCP/IP protocol:

– /dev/tcp for opening a connection-oriented transport endpoint
– /dev/udp for opening a connectionless transport endpoint

The user passes a pointer to the path name of the file to be opened, with the path parameter.
oflag can be formed by inclusive bit ORing of O_NDELAY or O_NONBLOCK with O_RDWR.
These options are declared in the <fcntl.h> header file.

The transport endpoint set up with t_open() is identified in subsequent XTI function calls by
the file descriptor returned by t_open().

The info parameter points to an object of type struct t_info in which t_open() returns the
characteristics of the underlying transport protocol.
t_open() does not return any protocol information if the null pointer is passed as the current
parameter for info when t_open() is called.

U26110-J-Z125-3-76 257

XTI(POSIX) library functions t_open()

The t_info structure is declared in <xti.h> as follows:

struct t_info {
long addr; /* Maximum length of the transport protocol address */
long options; /* Maximum number of bytes of the protocol specification

options */
long tsdu; /* Maximum size of a data packet (TSDU) */
long etsdu; /* Maximum size of an expedited data packet (ETSDU) */
long connect; /* Maximum allowed amount of data for connection setup

functions */
long discon; /* Maximum allowed amount of data for the t_snddis() and

t_rcvdis() functions */
long servtype; /* Service type offered by the transport provider */
long flags; /* Other transport provider information /*
};

The values of the t_info components have the following meaning:

addr
A value ≥ 0 defines the maximum length of a transport protocol address. The value -1
indicates that the address length is unlimited. The value -2 indicates that the transport
provider does not support user accesses to the transport protocol address.

options
A value ≥ 0 defines the maximum length in bytes that the transport provider supports
for protocol-specific options. The value -1 indicates that the length of the options is
unlimited. The value -2 indicates that the transport provider does not support options
that can be influenced by the user.

tsdu
A value > 0 defines the maximum length of a transport service data unit (TSDU). The
value 0 indicates that the transport provider does not support the TSDU concept
although he does offer sending a data stream over the connection without maintaining
logical block limits. The value -1 indicates that the length of a TSDU is unlimited. The
value -2 indicates that the transport provider does not support transferring normal data.

etsdu
A value > 0 defines the maximum length of an expedited transport service data unit
(ETSDU). The value 0 indicates that the transport provider does not support the ETSDU
concept although he does offer sending a data stream over the connection without
maintaining logical block limits. The value -1 indicates that the length of an ETSDU is
unlimited. The value -2 indicates that the transport provider does not support trans-
ferring expedited data.

258 U26110-J-Z125-3-76

t_open() XTI(POSIX) library functions

connect
A value ≥ 0 defines the maximum amount of data that can be sent with connection setup
functions. The value -1 indicates that the amount of data that can be sent during
connection setup is unlimited. The value -2 indicates that the transport provider does
not support sending data with connection setup functions.

discon
A value ≥ 0 defines the maximum amount of data that can be sent with the t_snddis()
and t_rcvdis() functions. The value -1 indicates that the amount of data that can be sent
with connection shutdown functions is unlimited. The value -2 indicates that the
transport provider does not support sending data with connection shutdown functions.

servtype
This component specifies the service type supported by the transport provider (see
below).

flags
This field specifies other transport provider information (no information is currently
supplied).

If the transport service user wishes to be independent of protocols, he can use the above
values to determine the size of buffers required for storing the separate pieces of infor-
mation. The user can also alternatively call the t_alloc() function to reserve memory for
these buffers. An error occurs if a user exceeds the permissible limits with an XTI function
call.

The info->servtype component contains one of the following values after t_open() is
executed:

T_COTS_ORD
The transport provider supports a connection-oriented service with an optional orderly
connection shutdown. t_open() returns the value -2 for etsdu, connect and discon for this
service type.

T_CLTS
The transport provider supports a connectionless service. t_open() returns the value
-2 for etsdu, connect and discon for this service type.

A transport endpoint can only support one of the above services at any one time.

Return value

If successful, t_open() returns a valid file descriptor.
If an error occurs, -1 is returned and t_errno is set to indicate the error.

U26110-J-Z125-3-76 259

XTI(POSIX) library functions t_open()

Errors

TSYSERR
A system error occurred during execution of this function.

TBADFLAG
An invalid option was specified.

TBADNAME
The name specified in path is invalid.

TPROTO
A connection could not be set up to the transport system.

See also

open()

260 U26110-J-Z125-3-76

t_optmgmt() XTI(POSIX) library functions

t_optmgmt() - manage transport endpoint options

#include <xti.h>

int t_optmgmt(int fd, struct t_optmgmt *req, struct t_optmgmt *ret);

Description

A transport service user can call the t_optmgmt() function to get, verify or negotiate protocol
options with the transport provider.

The fd parameter specifies a transport endpoint. The req and ret parameters each point to
an object of type struct t_optmgmt.

The t_optmgmt structure is declared in <xti.h> as follows:

struct t_optmgmt {
struct netbuf opt;
long flags;

};

The opt component specifies the protocol options. The flags component specifies the action
to be executed with these options. The options are represented by a netbuf structure,
similarly to the addresses with t_bind().

The transport user employs the req parameter to request a specific transport provider with
t_optmgmt() and to send options to the transport provider. The user specifies the length of
the buffer (in bytes) in which the options are passed to the transport provider, in req->opt.len.
req->opt.buf points to this buffer. req->opt.maxlen is meaningless.

Each option is stored in the option buffer req->opt.buf as a t_opthdr structure and must be
arranged within the buffer on word boundaries. If the user specifies several options, they
must all belong to the same protocol level.

U26110-J-Z125-3-76 261

XTI(POSIX) library functions t_optmgmt()

The t_opthdr structure is declared in <xti.h> as follows:

struct t_opthdr {
unsigned long len; /* Defines the total length of the option and */

 /* is calculated from the sum of the length */
/* of the t_opthdr structure and the length */
/* of a possible subsequent option value */

unsigned long level; /* Specifies the protocol level */
unsigned long name; /* Specifies the option */
unsigned long status; /* Supplies information as to whether this */

/* option could be set/reset */
};

The user can read from the option buffer and write to it with the
OPT_NEXTHDR (pbuf, buflen, poption) macro which is defined in <xti.h>. The pbuf
parameter, is a pointer to the start of the option buffer, buflen defines the length of the option
buffer and poption is a pointer to the current option within the buffer. The OPT_NEXTHDR
macro returns a pointer to the next option or the null pointer if the end of the buffer has been
reached.

Before calling t_optmgmt(), the user must specify in ret->opt.maxlen the maximum length (in
bytes) of the result buffer in which t_optmgmt() returns this information. req->opt.buf points
to this buffer. After t_optmgmt() is executed, ret->opt.len contains the actual length of the
returned options and flag values.

The user must specify one of the following actions in req->flags:

T_NEGOTIATE
The user employs this action to negotiate the values of the options specified in
req->opt.buf with the transport provider. The transport provider returns the negotiated
values in the result buffer ret->opt.buf.

The status field of the relevant t_opthdr structure shows the result of the operation for
each option.
The status field can assume the following values:

– T_SUCCESS, if the option could be successfully changed.

– T_PARTSUCCESS, if an option value lower than the specified one could be set.

– T_FAILURE, if the change could not be carried out.

– T_READONLY, if the option can only be read and not changed.

– T_NOTSUPPORT, if the transport provider does not support the option.

262 U26110-J-Z125-3-76

t_optmgmt() XTI(POSIX) library functions

t_optmgmt() returns the lowest common result of all option-specific results in ret->flags.
T_NOTSUPPORT has the highest validity and the validity of the results decreases in
the order T_NOTSUPPORT, T_READONLY, T_FAILURE, T_PARTSUCCESS,
T_SUCCESS.

In each protocol level, the user can reset all options supported in the level concerned
to its original values with the T_ALLOPT option. t_optmgmt() then returns all options with
their values in the result buffer ret->opt.buf.

T_CHECK
The user can employ this action to check whether the transport provider supports the
options specified in req->opt.buf.

If an option is specified without a value, t_optmgmt() only sets the status field in the result
buffer ret->opt.buf for this option.
The status field contains one of the following values:

– T_SUCCESS, if the transport provider supports the option.
– T_NOTSUPPORT, if the transport provider does not support the option.
– T_READONLY, if the option is read-only.

If an option is specified with a value, t_optmgmt() returns the result in the manner
described above under “T_NEGOTIATE”. t_optmgmt() then returns the lowest common
result of all option-specific results in ret->flags.

T_CURRENT
The user can employ this action to get the values of all options specified in req->opt.buf.
After t_optmgmt() is executed, ret->opt.buf contains the options and their current values.
ret->opt.flags indicates the result:

– T_SUCCESS, if the transport provider supports the option.
– T_NOTSUPPORT, if the transport provider does not support the option.
– T_READONLY, if the option is read-only.

On each protocol level, the user can employ the T_ALLOPT option to direct t_optmgmt()
to return all supported options with their values.

U26110-J-Z125-3-76 263

XTI(POSIX) library functions t_optmgmt()

T_DEFAULT
This action allows the user to have the default values of the options specified in *req
returned in *ret.
The status field of an option in ret->opt.buf then has the following value:

– T_SUCCESS, if the transport provider supports the option.
– T_NOTSUPPORT, if the transport provider does not support the option.
– T_READONLY, if the option is read-only.

t_optmgmt() then returns the lowest common result of all option-specific results in
ret->flags.

On each protocol level, the user can employ the T_ALLOPT option to return all options
supported in the level concerned with their original values.

Protocol levels and options

The options are distributed over different protocol levels.

Table 15 provides an overview of protocol levels and options:

XTI_GENERIC protocol level options

XTI_DEBUG
The user can define whether diagnostic information is to be generated with this option.

– XTI_GENERIC specified as an option value: diagnostic information is generated.
– No option value specified: no diagnostic information is generated.

See also chapter “XTI trace” on page 217 for details of diagnostic information.

Protocol level Option name Type of option value Option values

XTI_GENERIC XTI_DEBUG unsigned long 0 or XTI_GENERIC

INET_TCP TCP_KEEPALIVE struct t_kpalive (see text)

TCP_NODELAY unsigned long T_YES or T_NO

INET_IP IP_BROADCAST unsigned int T_YES or T_NO

Table 15: Protocol levels and options

264 U26110-J-Z125-3-76

t_optmgmt() XTI(POSIX) library functions

INET_TCP protocol level options

TCP_KEEPALIVE
Setting this option activates a mechanism which periodically tests that a connection is
still established. The option value is stored in an object of type struct t_kpalive.

The t_kpalive structure is declared in <xti.h> as follows:

struct t_kpalive {
long kp_onoff; /* Enable/disable option */
long kp_timeout; /* Keep-alive timeout in minutes */

};

The “sign-of-life monitoring” for connections can be enabled or disabled with the
kp_onoff parameter, which can assume the value T_YES or T_NO.
The kp_timeout parameter is meaningless as the transport system defines the time
intervals for connection monitoring itself.

TCP_NODELAY
This option allows the user to influence the time response when sending data.
Data is sent immediately by default. However, if delays occur when sending separate
pieces of data, the transport system collects the small amounts of data and sends them
together at a later time. This reduces the load on the network. If the TCP_NODELAY
option is set (option value T_YES) this mechanism is ineffective, i.e. the data is sent
immediately.

INET_IP protocol level options

IP_BROADCAST
The user controls the sending of broadcast messages with this option.
Since broadcast messages can always be sent in BS2000/OSD, the IP_BROADCAST
option has not functional significance. However, it must be noted that the reception of
broadcast messages may be unauthorized.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

U26110-J-Z125-3-76 265

XTI(POSIX) library functions t_optmgmt()

Errors

TACCES
The user has no rights to negotiate the specified options.

TBADF
The specified file descriptor does not reference a transport endpoint.

TBADFLAG
An invalid flag was specified.

TBADOPT
The specified protocol options either had the wrong format or contained invalid infor-
mation.

TBUFOVFLW
The number of bytes reserved for a result parameter with maxlen are not enough to store
the parameter value. The information to be returned in *ret is deleted.

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd.

TSYSERR
A system error occurred during execution of this function.

See also

t_getinfo(), t_open()

266 U26110-J-Z125-3-76

t_rcv() XTI(POSIX) library functions

t_rcv() - receive data over a connection

#include <xti.h>

int t_rcv(int fd, char *buf, unsigned nbytes, int *flags);

Description

The transport user can receive data over an established connection with the t_rcv() function.
The fd parameter identifies the local transport endpoint over which the data is received. buf
points to a receive buffer in which t_rcv() stores the incoming user data. The user specifies
the size of this receive buffer with nbytes.
The flags parameter is not supported.

By default, t_rcv() works in synchronous mode, i.e. t_rcv() waits for further data to arrive and
blocks if no data is currently available.
However, if O_NDELAY or O_NONBLOCK was previously set with t_open() or the POSIX
fcntl() function for the transport endpoint specified by fd, t_rcv() works in asynchronous
mode and terminates with an error if no data is available. t_rcv() then returns the value -1
and sets t_errno to TNODATA.

Return value

After successful execution, t_rcv() returns the number of received bytes.
If an error occurs, -1 is returned and t_errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TLOOK
An asynchronous event occurred on the transport endpoint passed in fd and this must
be processed immediately.

TNODATA
O_NDELAY or O_NONBLOCK was set but no data is currently available from the
transport provider.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

U26110-J-Z125-3-76 267

XTI(POSIX) library functions t_rcv()

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd.

TSYSERR
A system error occurred during execution of this function.

See also

t_open(), t_snd(), fcntl()

268 U26110-J-Z125-3-76

t_rcvconnect() XTI(POSIX) library functions

t_rcvconnect() - get the status of a connection request

#include <xti.h>

int t_rcvconnect(int fd, struct t_call *call);

Description

The transport user can call the t_rcvconnect() function to determine the status of a
connection that was previously requested with t_connect() in asynchronous mode. In
asynchronous mode, t_rcvconnect() is used in conjunction with t_connect() to set up a
connection. The connection is set up after successful execution of t_rcvconnect().

The fd parameter specifies the local transport endpoint on which the connection, which was
previously requested with t_connect(), is to be set up. The call parameter points to an object
of type struct t_call in which t_rcvconnect() returns information about the connection which
was previously requested with t_connect().

The t_call structure is declared in <xti.h> as follows:

struct t_call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

};

t_rcvconnect() returns the protocol address of the replying transport endpoint in call->addr.
Returning protocol-specific information or user data in call->udata is not supported by the
transport provider. call->sequence is meaningless for the t_rcvconnect() function.
Before calling t_rcvconnect(), the user must supply the maxlen component in the separate
netbuf structures of *call with the appropriate maximum buffer sizes.
The null pointer can also be passed as the current parameter for call. In this case,
t_rcvconnect() does not return any information to the user.

By default, t_rcvconnect() works in synchronous mode, waits for confirmation of a connection
previously requested with t_connect() and only returns control to the calling transport user
after receiving the confirmation. After t_rcvconnect() is executed, call->addr contains the
valid information about the connection that was just set up.

However, if the user previously set O_NDELAY or O_NONBLOCK with t_open() or the
POSIX fcntl() function, t_rcvconnect() works in asynchronous mode. t_rcvconnect() then does
not wait for connection confirmation, but returns control immediately to the calling user after
getting the status of the connection request. If the requested connection is not set up yet,

U26110-J-Z125-3-76 269

XTI(POSIX) library functions t_rcvconnect()

t_rcvconnect() returns the value -1 and sets t_errno to TNODATA. In this case, the user must
call t_rcvconnect() again at a later time to complete the connection setup phase and receive
the relevant information in call->addr.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TBUFOVFLW
The number of bytes reserved for a result parameter is not enough to store the value of
the parameter. The state of the transport provider is set to T_DATAXFER from the
viewpoint of the user and the information for the connection request that should be
returned in *call is removed.

TLOOK
An asynchronous event occurred on the transport endpoint passed in fd and this must
be processed immediately.

TNODATA
O_NDELAY or O_NONBLOCK was set but no connection confirmation has arrived yet.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd.

TSYSERR
A system error occurred during execution of this function.

See also

t_accept(), t_bind(), t_connect(), t_listen(), t_open(), fcntl()

270 U26110-J-Z125-3-76

t_rcvdis() XTI(POSIX) library functions

t_rcvdis() - get the cause of a connection shutdown

#include <xti.h>

int t_rcvdis(int fd, struct t_discon *discon);

Description

The user can get the cause of a connection shutdown with the t_rcvdis() function.
The fd parameter specifies the local transport endpoint of the connection which was shut
down. The discon parameter points to an object of type struct t_discon.

The t_discon structure is declared in <xti.h> as follows:

struct t_discon {
struct netbuf udata;
int reason;
int sequence;

};

After execution of t_rcvdis(), discon->reason contains a protocol-dependent code which
specifies the cause of the connection shutdown. This code corresponds to one of the
possible values for the errno error variable (defined in <errno.h>). The following codes are
currently possible:

ECONNREFUSED
The connection request was refused by the partner.

ECONNRESET
The connection was aborted by the partner.

ENETDOWN
The connection was aborted by the transport system. In this case, the user should close
the transport endpoint with t_close().

ETIMEDOUT
The connection could not be set up within a specific time.

U26110-J-Z125-3-76 271

XTI(POSIX) library functions t_rcvdis()

The value returned in discon->sequence identifies a pending connection request which is
associated with the connection setup. discon->sequence is only meaningful if the transport
user that called the t_rcvdis() function previously called t_listen() one or more times to
monitor socket fd for pending connection requests and is now processing these connection
requests. When a connection shutdown request arrives, the user can check the value of
discon->sequence to determine which of the pending connection requests is concerned.
Returning user data in discon->udata is not supported by the transport provider.

If the transport user is not interested in the returned values of discon->reason and
discon->sequence, he can specify the null pointer as the current parameter for discon with the
t_rcvdis() call.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TNODIS
There is currently no connection shutdown request available on the specified transport
endpoint.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd.

TSYSERR
A system error occurred during execution of this function.

See also

t_connect(), t_listen(), t_open(), t_snddis()

272 U26110-J-Z125-3-76

t_rcvrel() XTI(POSIX) library functions

t_rcvrel() - confirm a connection shutdown request

#include <xti.h>

int t_rcvrel(int fd);

Description

The user can confirm reception of a request for orderly connection shutdown with the
t_rcvrel() function. The fd parameter specifies the local transport endpoint belonging to the
connection.

After receiving the request, the user should never cause permanent blocking. However, the
user can send further data over the connection as long as he has not called the t_sndrel()
function.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TLOOK
An asynchronous event occurred on the transport endpoint passed in fd and this must
be processed immediately.

TNOREL
There is currently no indication for an orderly connection shutdown on the specified
transport endpoint.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd.

U26110-J-Z125-3-76 273

XTI(POSIX) library functions t_rcvrel()

TSYSERR
A system error occurred during execution of this function.

See also

t_open(), t_sndrel()

274 U26110-J-Z125-3-76

t_rcvudata() XTI(POSIX) library functions

t_rcvudata() - receive datagrams

#include <xti.h>

int t_rcvudata(int fd, struct t_unitdata *unitdata, int *flags);

Description

The user can receive a datagram from another user in connectionless mode with the
t_rcvudata() function.
The fd parameter specifies the local transport endpoint over which the datagram is
received. After t_rcvudata() is executed, flags informs the user whether the datagram was
received in full. unitdata is a pointer to an object of type struct t_unitdata in which t_rcvudata()
returns information about the received datagram.

The t_unitdata structure is declared in <xti.h> as follows:

struct t_unitdata {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

};

Before calling t_rcvudata(), the user must supply the maxlen component in the separate
netbuf structures of *unitdata with the maximum values of each buffer size.

After t_rcvudata() is executed, unitdata->addr contains the protocol address of the sender,
unitdata->opt contains protocol-specific options for the received datagram and
unitdata->udata contains the received user data.

By default, t_rcvudata() works in synchronous mode, i.e. t_rcvudata() waits for a datagram to
arrive and blocks if no datagrams are currently available.
However, if O_NDELAY or O_NONBLOCK was previously set with t_open() or the POSIX
fcntl() function for the transport endpoint specified by fd, t_rcvudata() works in asynchronous
mode and terminates with an error if no datagrams are available. t_rcvudata() then returns
the value -1 and sets t_errno to TNODATA.

If the buffer in unitdata->udata is too small to store the datagram, t_rcvudata() stores as much
of the datagram as possible in the buffer and sets the T_MORE flag. The T_MORE flag
indicates that an additional t_rcvudata() call is needed to receive the remaining part of the
datagram. Until the datagram is completely received, subsequent t_rcvudata() calls return
the value 0 for the lengths of the protocol address and options.

U26110-J-Z125-3-76 275

XTI(POSIX) library functions t_rcvudata()

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TBUFOVFLW
The number of bytes that were reserved for the protocol address to be returned or the
options, is too small to store this information. The information that should be returned
in *unitdata is deleted.

TLOOK
An asynchronous event occurred on the transport endpoint passed in fd and this must
be processed immediately.

TNODATA
O_NDELAY or O_NONBLOCK was set but there are currently no datagrams available
from the transport provider.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd.

TSYSERR
A system error occurred during execution of this function.
In the present case, the errno error variable contains more detailed information:

EFAULT The area specified in unitdata->addr, unitdata->opt or unitdata->udata is
outside the process address range.

ETIME The datagram was deleted because a transport system-dependent time
limit was exceeded (see also “Relevant settings with the BCAM transport
system” on page 303).

EINTR The call was interrupted by a signal.

See also

t_rcvuderr(), t_sndudata()

276 U26110-J-Z125-3-76

t_rcvuderr() XTI(POSIX) library functions

t_rcvuderr() - get error information about a sent datagram

#include <xti.h>

int t_rcvuderr(int fd, struct t_uderr *uderr);

Description

The user can get information about an error which occurred with a previously sent or
received datagram in connectionless mode, with the t_rcvuderr() function. t_rcvuderr()
should only be called after an error is indicated.

The fd parameter specifies the local transport endpoint over which the error message was
received. The uderr parameter is a pointer to an object of type struct t_uderr.

The t_uderr structure is declared in <xti.h> as follows:

struct t_uderr {
struct netbuf addr;
struct netbuf opt;
long error;

};

Before calling t_rcvuderr(), the user must supply the maxlen component in uderr->addr with
the value of each maximum buffer size.
Returning protocol-specific options in uderr->opt is not supported by the transport provider.

t_uderr() returns a protocol-specific error code in uderr->error. This error code corresponds
to one of the possible values for the errno error variable (defined in <errno.h>). The following
codes are currently possible:

EADDRNOTAVAIL
The partner to which the datagram was last to be sent with t_sndudata() is not reachable.

ENETDOWN
The transport endpoint was cut off by the transport system. In this case, the user should
close the transport endpoint with t_close().

If the user does not want to determine the faulty datagram, he can pass the null pointer as
the current parameter for uderr with the t_rcvuderr() call.

U26110-J-Z125-3-76 277

XTI(POSIX) library functions t_rcvuderr()

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TBUFOVFLW
The number of bytes reserved for the protocol address to be returned or the options is
too small to store this information. The information that is to be returned in *uderr is not
considered.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TNOUDERR
There is currently no error message for a datagram on the specified transport endpoint.

TSYSERR
A system error occurred during execution of this function.

See also

t_rcvdata(), t_sndudata()

278 U26110-J-Z125-3-76

t_snd() XTI(POSIX) library functions

t_snd() - send data over a connection

#include <xti.h>

int t_snd(int fd, char *buf, unsigned nbytes, int flags);

Description

The user sends data with the t_snd() function.
The fd parameter specifies the local transport endpoint over which the data is to be sent.
buf is a pointer to the user data to be sent. The user specifies the length of the user data (in
bytes) to be sent, with nbytes. flags is not supported by the transport provider and the value
0 must therefore be passed for flags with the t_snd() call.

By default, t_snd() works in synchronous mode and waits (blocks) if flow control limits
prevent all data being taken over by the transport provider at the time of the t_snd() call.
However, if O_NDELAY or O_NONBLOCK was previously set with t_open() or the POSIX
fcntl() function for the transport endpoint specified with fd, t_snd() is executed in
asynchronous mode and terminates with an error if flow control limits exist.

After successful execution, the return value of t_snd() defines the number of data bytes
accepted by the transport provider. This number normally corresponds to the value passed
in the nbytes parameter. However, in asynchronous mode it is possible that only part of the
data to be sent is accepted by the transport provider. In this case, t_snd() returns a value
less than nbytes.

Return value

After successful execution, t_snd() returns the number of bytes accepted by the transport
provider.
If an error occurs, t_errno is set to -1 to indicate the error.

U26110-J-Z125-3-76 279

XTI(POSIX) library functions t_snd()

Errors

TBADDATA
The nbytes parameter has the value 0, but sending null bytes is not supported by the
underlying transport provider.

TBADF
The specified file descriptor does not reference a transport endpoint.

TFLOW
O_NDELAY or O_NONBLOCK was set but the flow control has not allowed the
transport provider to accept data at this time.

TLOOK
An asynchronous event occurred on the transport endpoint passed in fd and this must
be processed immediately.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd.

TSYSERR
A system error occurred during execution of this function.

See also

t_open(), t_rcv(), fcntl()

280 U26110-J-Z125-3-76

t_snddis() XTI(POSIX) library functions

t_snddis() - refuse or abort a connection

#include <xti.h>

int t_snddis(int fd, struct t_call *call);

Description

The user can execute the following actions with the t_snddis() function:

– refuse a connection request
– initiate an abortive release of an established connection

The fd parameter specifies the local transport endpoint of the connection to be shut down
or requested. The call parameter points to an object of type struct t_call.

The t_call structure is declared in <xti.h> as follows:

struct t_call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

};

The call parameter is used differently, depending on whether t_snddis() is to be used to
refuse a connection request or set a connection up.

– If a connection request is to be refused, the null pointer must not be passed for call with
the t_snddis() call. The user must specify a value in call->sequence that identifies the
refused connection request to the transport provider. The contents of call->addr,
call->opt and call->udata are ignored by t_snddis().

– The null pointer can be passed for call if a connection is to be shut down.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

U26110-J-Z125-3-76 281

XTI(POSIX) library functions t_snddis()

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TBADSEQ
An invalid sequential number was specified or the null pointer was specified for call
when refusing connection request. The outgoing queue of the transport provider is
deleted, which can cause loss of data.

TLOOK
An asynchronous event occurred on the transport endpoint passed in fd and this must
be processed immediately.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd. The outgoing queue of the transport provider may be deleted,
which can cause loss of data.

TSYSERR
A system error occurred during execution of this function.

See also

t_connect(), t_getinfo(), t_listen(), t_open()

282 U26110-J-Z125-3-76

t_sndrel() XTI(POSIX) library functions

t_sndrel() - initiate an orderly connection shutdown

#include <xti.h>

int t_sndrel(int fd);

Description

The user initiates the orderly shutdown of a transport connection with the t_sndrel() function.
t_sndrel() also informs the transport provider that the user will send no further data.
The fd parameter specifies the local transport endpoint of the connection to be shut down.

After t_sndrel() is executed, the user must not send any further data over the connection.
However, the user can receive further data over the connection as long as he has not
received a request for orderly connection shutdown.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TFLOW
O_NDELAY or O_NONBLOCK was set but the flow control has not allowed the
transport provider to accept the function at this time.

TLOOK
An asynchronous event occurred on the transport endpoint passed in fd and this must
be processed immediately.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd.

U26110-J-Z125-3-76 283

XTI(POSIX) library functions t_sndrel()

TSYSERR
A system error occurred during execution of this function.

See also

t_open(), t_rcvrel()

284 U26110-J-Z125-3-76

t_sndudata() XTI(POSIX) library functions

t_sndudata() - send datagrams

#include <xti.h>

int t_sndudata(int fd, struct t_unitdata *unitdata);

Description

The user sends a datagram to another transport user in connectionless mode with the
t_sndudata() function.
The fd parameter specifies the local transport endpoint over which the datagram is sent.
The unitdata parameter is a pointer to an object of type struct t_unitdata.

The t_unitdata structure is declared in <xti.h> as follows:

struct t_unitdata {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

};

Before calling t_rcvudata(), the user specifies the destination protocol address in
unitdata->addr and the data to be transferred in unitdata->udata. Setting protocol-specific
options in unitdata->opt is not supported by the transport provider.
If the user specified the value 0 in unitdata->addr.len and the transport provider does not
support sending null bytes, t_sndudata() returns the value -1 and sets t_errno to TBADDATA.

By default, t_sndudata() works in synchronous mode and waits (blocks) if flow control limits
prevent the transport provider from accepting the datagram at the time of the t_sndudata()
call.
However, if O_NDELAY or O_NONBLOCK was previously set with t_open() or the POSIX
fcntl() function for the transport endpoint specified with fd, t_sndudata() works in
asynchronous mode and terminates with an error if the transport provider does not accept
the datagram immediately.

If t_sndudata() was called in an invalid state or the datagram length specified in
unitdata->udata.len is greater than the TSDU length, the transport provider generates an
EPROTO protocol error (see the TSYSERR error). If the EPROTO error was generated
because of an invalid state, it is only reported when transport endpoint fd is referenced. The
length of the TSDU (transport service data unit) is returned by the t_open() and t_getinfo()
functions.

U26110-J-Z125-3-76 285

XTI(POSIX) library functions t_sndudata()

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADADDR
The specified protocol address had the wrong format or contained invalid information.

TBADDATA
The nbytes parameter has the value 0, but sending null bytes is not supported by the
underlying transport provider, or the message was too long to be sent in one piece.

TBADF
The specified file descriptor does not reference a transport endpoint.

TFLOW
O_NDELAY or O_NONBLOCK was set but the flow control has not allowed the
transport provider to accept data at this time.

TLOOK
An asynchronous event occurred on the transport endpoint passed in fd and this must
be processed immediately.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TSYSERR
A system error occurred during execution of this function.
In the present case, the errno error variable contains more detailed information:

EFAULT The area specified in unitdata->addr, unitdata->opt or unitdata->udata is
outside the process address range.

ENOBUFS
Not enough system resources are currently available to execute the send
job.

EINTR The call was interrupted by a signal.

See also

t_rcvudata(), t_rcvuderr(), fcntl()

286 U26110-J-Z125-3-76

t_strerror() XTI(POSIX) library functions

t_strerror() - output error message

#include <xti.h>

char *t_strerror(int errnum);

Description

The user can generate the message text for an XTI error number or the relevant t_errno
error code with the t_strerror() function.

t_strerror() maps the XTI error number specified by the errnum parameter to the relevant
message string and returns a pointer to this character string. The message string is not
changed by the program but can be overwritten by subsequent t_strerror() calls. The
message string is not terminated with a newline character.

Return value

The t_strerror() function returns a pointer to the generated character string.

See also

t_error()

U26110-J-Z125-3-76 287

XTI(POSIX) library functions t_sync()

t_sync() - synchronize transport library

#include <xti.h>

int t_sync(int fd);

Description

The user can synchronize the data structures for the transport endpoint specified by fd,
which are managed by the transport library, with information of the underlying transport
provider using the t_sync() function. t_sync() also allows two cooperating processes to
synchronize their interaction with the transport provider.
For example, if a process creates a new process and calls exec(), the new process must call
the t_sync() function to:

– build up the private library data structure which is bound to a transport endpoint and

– synchronize the data structure with relevant transport provider information.

It must be noted that the transport provider sees all users of a transport endpoint as a single
user. Therefore, if several user processes use the same transport endpoint, they should
coordinate their tasks such that the transport provider does not end up in a faulty state. To
do this, the separate user processes can call t_sync() to get the current state of the transport
provider before initiating further actions.

Coordination with t_sync() is only allowed between cooperating processes as it is possible
that a process or incoming event can change the state of the transport provider after t_sync()
was executed.

288 U26110-J-Z125-3-76

t_sync() XTI(POSIX) library functions

Return value

After successful execution, t_sync() returns the state of the transport provider. If an error
occurs, -1 is returned and t_errno is set to indicate the error.

The following transport provider states are possible as t_sync() return values:

T_UNBND
The transport endpoint is not bound to the transport service.

T_IDLE
The transport endpoint is bound to the transport service.

T_OUTCON
A sent connection request has not been processed yet.

T_INCON
A connection request which arrived has not been processed yet.

T_DATAXFER
Data transfer phase.

T_OUTREL
A request for orderly connection shutdown was sent (wait for indication of an orderly
connection shutdown).

T_INREL
Wait for a request for orderly connection shutdown.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TSTATECHNG
The transport provider is changing state.

TSYSERR
A system error occurred during execution of this function.

See also

dup(), exec(), fork(), open()

U26110-J-Z125-3-76 289

XTI(POSIX) library functions t_unbind()

t_unbind() - deactivate transport endpoint

#include <xti.h>

int t_unbind(int fd);

Description

The transport user can call the t_unbind() function to deactivate a transport endpoint, which
was previously assigned an address with the t_bind() function. The fd parameter specifies
the transport endpoint which is to be deactivated.
After t_unbind() has been successfully executed, the transport provider accepts no further
data or events addressed to transport endpoint fd.

Return value

0:
If successful.

-1:
If an error occurs. t_ errno is set to indicate the error.

Errors

TBADF
The specified file descriptor does not reference a transport endpoint.

TLOOK
An asynchronous event occurred on the transport endpoint passed in fd and this must
be processed immediately.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TOUTSTATE
The function was called in the wrong position within a sequence of XTI function calls for
transport endpoint fd.

TSYSERR
A system error occurred during execution of this function.

See also

t_bind()

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U26110-J-Z125-3-76 291

12 Compiling and linking a communications
application
This chapter describes:

● Compiling and linking a SOCKETS(POSIX) or XTI(POSIX) application program with the
POSIX shell commands.

● Compiling and linking a SOCKETS(POSIX) application program in BS2000/OSD using
two example BS2000/OSD procedures.

292 U26110-J-Z125-3-76

... with the POSIX shell Compiling and linking a communications application

12.1 Compiling and linking with the POSIX shell

If the source file is stored in the UFS, you can compile your application program with the
following POSIX shell command:

c89 -c program.c

If necessary, you can use the -O switch to optimize the program code and -g for debugging.

The following command links the compiled program:

c89 -o program program.o -lxnet

The following command compiles and links the program in one step:

c89 -o program program.c -lxnet

You must additionally install the POSIX_HEADER installation package to be able to compile
your SOCKETS(POSIX) or XTI(POSIX) application program with the POSIX shell. The
package installation is described in the POSIX manual “Basics for Users and System
Administrators”.

The functions of SOCKETS(POSIX) support the ability of the C compiler to generate
programs containing ASCII literals, see also the compiler manual “C/C++ V3.1A
(BS2000/OSD)”.

U26110-J-Z125-3-76 293

Compiling and linking a communications application ... in BS2000/OSD

12.2 Compiling and linking in BS2000/OSD

The example procedure shown below illustrates how a SOCKETS(POSIX) or XTI(POSIX)
application can be compiled and linked in BS2000/OSD.

Example

/BEGIN-PROCEDURE LOGGING=ALL,PARAMETERS=YES(PROCEDURE-PARAMETERS=(-
/ &ELEMENT = ELEMENTNAME -
/ ,&SRCLIB = TEST.SRC.LIB -
/ ,&MODLIB = TEST.MOD.LIB -
/ ,&PRGLIB = TEST.PRG.LIB -
/ ,&PROMPT = NO -
/ ,&STDINCLIB = $TSOS.SYSLNK.CRTE -
/ ,&STDINCLIB1 = $TSOS.SYSLNK.CRTE.CPP -
/ ,&STDINCLIB2 = $TSOS.SYSLIB.POSIX-HEADER -
/ ,&INCLIB = $TSOS.SYSLIB.POSIX-SOCKETS.050 -
/ ,&SCHAL = $TSOS.SYSLNK.CRTE.POSIX -
/),ESCAPE-CHARACTER=C'&') -
/ ,INTERRUPTION-ALLOWED=YES
/ASSIGN-SYSDTA *SYSCMD
/ASSIGN-SYSLST LST.C.&ELEMENT
/REMARK *
/REMARK ** STARTING THE COMPILER **
/REMARK *
/START-CPLUS-COMPILER
//MODIFY-SOURCE-PROPERTIES -
// LANGUAGE=*C(MODE=*ANSI), -
// DEFINE='_OSD_POSIX'
//MODIFY-INCLUDE-LIBRARIES -
// USER-INCLUDE-LIBRARY=*SOURCE-LIBRARY, -
// STD-INCLUDE-LIBRARY=(-
// *STANDARD-LIBRARY, -
// &STDINCLIB2, -
// &INCLIB)
//MODIFY-RUNTIME-PROPERTIES -
// PARAMETER-PROMPTING=&PROMPT
//MODIFY-LISTING-PROPERTIES -
// OPTIONS=*YES, -
// SOURCE=*YES, -
// SUMMARY=*YES, -
// INCLUDE-INFORMATION=*ALL, -
// OUTPUT=*LIBRARY-ELEMENT(-
// LIBRARY=&MODLIB, -
// ELEMENT=&ELEMENT)
//COMPILE -
// SOURCE=*LIBRARY-ELEMENT(-

294 U26110-J-Z125-3-76

... in BS2000/OSD Compiling and linking a communications application

// LIBRARY=&SRCLIB, -
// ELEMENT=&ELEMENT..C), -
// MODULE-OUTPUT=*LIBRARY-ELEMENT(-
// LIBRARY=&MODLIB, -
// ELEMENT=&ELEMENT)
//END
/REMARK *
/REMARK
/REMARK IN THE FOLLOWING THE COMPILED PROGRAM IS LINKED TO THE REQUIRED
/REMARK LIBRARIES. THE LIBRARIES MUST BE SPECIFIED IN THE ORDER SHOWN IN
/REMARK THIS PROCEDURE.
/REMARK
/REMARK *
/REMARK
/REMARK ** SET RESOLVES-LINKS ***
/REMARK
/SET-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=&STDINCLIB
/SET-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=&STDINCLIB1
/SET-FILE-LINK LINK-NAME=BLSLIB03,FILE-NAME=&INCLIB
/REMARK *
/REMARK ** STARTING THE LINKER ***
/REMARK *
/ START-BINDER
//START-LLM-CREATION INTERNAL-NAME=&ELEMENT,INCL-DEF=PAR(TEST-SUP=YES)
//INCLUDE-MODULES LIB=&MODLIB,ELEM=&ELEMENT,TYPE=L
//INCLUDE-MODULES LIB=&SCHAL,ELEMENT=*ALL,TYPE=(L,R),TEST-SUPPORT=YES
//RESOLVE-BY-AUTOLINK LIBRARY=*BLSLIB-LINK
//SAVE-LLM LIB=&PRGLIB,ELEM=&ELEMENT,OVER=YES,TEST-SU=YES
//END
/REMARK *
/ASSIGN-SYSDTA *PRIMARY
/ASSIGN-SYSLST *PRIMARY
/END-PROCEDURE

U26110-J-Z125-3-76 295

13 Configuration and configuration files
When the POSIX subsystem is started, all steps required for configuring connection to the
network are carried out automatically. The only thing visible to the user is the starting of the
inetd daemon program by the init process.

This chapter describes:

● the inetd daemon program (Internet superserver)

● configuration files for hosts, networks, protocols and services

● dependencies of the SOCKETS(POSIX) and XTI(POSIX) applications on the
BS2000/OSD BCAM transport system

296 U26110-J-Z125-3-76

inetd daemon program Configuration and configuration files

13.1 inetd daemon program

inetd is one of the Internet daemons in UNIX systems. Since inetd plays a central role when
starting the Internet services, it is also called the “Internet superserver”.

As also in UNIX systems, inetd is configured using the /etc/inet/inetd.conf file. inetd is started
when the system is booted and uses the inetd.conf file to determine which services are to
be started via inetd if required. inetd then creates a socket for each service specified in the
inetd.conf file and assigns a port number to each of these sockets.

inetd uses select() calls (see page 143) for the separate sockets to ensure that they are
ready for reading. inetd then monitors the separate sockets with the listen() function for
connection requests from the clients.
inetd proceeds as follows with each socket on which a connection request is pending:

1. inetd accepts the connection request with accept().

2. inetd uses fork() and dup() to create two file descriptors for the socket, 0 (stdin)
and 1 (stdout).

3. inetd starts the relevant services for the socket with exec().

Using inetd therefore has the advantage that it is not necessary to start all server processes
when the system is booted: a server only has to be started when a client has requests for it.

inetd also simplifies the tasks of a server as inetd takes care of most of the communications
process during connection setup. The server can assume that the communications
endpoint assigned to it has file descriptors 0, 1 and 2 and is already connected to the client.
This allows the server to immediately execute functions such as read(), write(), send() or
rcv(), i.e. the server program code can be kept very simple.

An application programmer who develops servers started via inetd can get the address of
the communications partner, i.e. the address of the client socket, with the getpeername()
function (see page 100).

U26110-J-Z125-3-76 297

Configuration and configuration files Configuration files

13.2 Configuration files

The following files are described in this section:

– inetd.conf
– protocols
– services
– networks
– hosts

If you have modified these files, you must direct the inetd daemon program to reread the
files with the following POSIX command:

kill -1 process_number_of_inetd

13.2.1 inetd.conf - available servers

The file contains entries for the servers which the inetd daemon program calls when a
request arrives over the socket interface. By default, only the echo and time services of inetd
and the R command programs (rlogin ...) are activated.

Each entry for a server consists of a line in the following format:

service_name socket_type protocol wait_state ID server_program
server_arguments

service_name
Name of the service, as entered in /etc/inet/services

socket_type
Type of the socket. Datagram or stream socket

protocol
Name of the protocol, as entered in /etc/inet/protocols. tcp6 and udp6 can also be used
instead of tcp and udp, provided the server involved supports IPv6.

wait_state
Defines whether the server releases the socket immediately (nowait) or only after a
certain time (wait).

ID
User ID under which the server is to run

server_program
Path name of the server program

server_arguments
Possible parameters for the server call

298 U26110-J-Z125-3-76

Configuration files Configuration and configuration files

Example

#
Shell and login are BSD protocols.
#

#
Echo, discard,daytime, and chargen are used primarily for testing.
##

Additionally installed server applications can be entered into this file by systems support.

shell stream tcp nowait sysroot /usr/sbin/in.rshd in.rshd

login stream tcp nowait sysroot /usr/sbin/in.rlogind in.rlogind

echo stream tcp nowait sysroot internal

echo dgrm udp wait sysroot internal

discard stream tcp nowait sysroot internal

discard dgrm udp wait sysroot internal

daytime stream tcp nowait sysroot internal

daytime dgrm udp wait sysroot internal

chargen stream tcp nowait sysroot internal

chargen dgrm udp wait sysroot internal

U26110-J-Z125-3-76 299

Configuration and configuration files Configuration files

13.2.2 protocols - available protocols

The file contains information about the possible protocols. Each entry for a protocol consists
of a line in the following format:

protocol_name protocol_number aliases #comment

Example

The file is to be considered as being static since the numbers are only assigned by the
standards committees (OSI, IEEE and IANA).

ip 0 IP # internet protocol, pseudo protocol number

icmp 1 ICMP # internet control message protocol

ggp 3 GGP # gateway-gateway protocol

tcp 6 TCP # transmission control protocol

egp 8 EGP # exterior gateway protocol

pup 12 PUP # PARC universal packet protocol

udp 17 UDP # user datagramm protocol

hmp 20 HMP # host monitoring protocol

xns-idp 22 XNS-IDP # Xerox NS IDP

rdp 27 RDP # “reliable datagram” protocol

300 U26110-J-Z125-3-76

Configuration files Configuration and configuration files

13.2.3 services - available services

The file contains information about the services. Each entry for a service consists of a line
in the following format:

service_name port_number/protocol aliases # comment

A short extract from the file is shown below:

This file is static to a large degree since most of the numbers are standardized. However,
free numbers can be assigned in local networks.

13.2.4 networks - reachable networks

The file contains information about reachable networks. Each entry for a network consists
of a line in the following format:

network_name network_number aliases

Aliases are alternative names for the network, which are only known on the local system.

Example

The file contains one standard entry. loopback designates a network interface for local
communications.

Additional reachable networks can be entered into the file by systems support. It must be
noted that a network is only reachable if the system routing has information about the
network.

tcpmux 1/tcp

echo 7/tcp

echo 7/udp

telnet 23/tcp

smtp 25/tcp mail

snmp 161/udp # network management agent

login 513/udp # Xerox NS IDP

nfsd 2049/udp # NFS server daemon

xserver 6000/tcp # X-Window server display

loopback 127

firm 132.45

U26110-J-Z125-3-76 301

Configuration and configuration files Configuration files

13.2.5 hosts - reachable hosts

This file contains information about reachable (known) hosts. Each entry consists of a line
in the following format:

host_address host_name aliases

The file contains the following standard entry

127.0.0.1 localhost local

Entries by systems support are only required here if an application uses the gethostent()
function (see page 91) to get the reachable host names and addresses. This information
can be obtained via DNS or BCAM with the gethostbyname(), gethostbyaddr(),
getipnodebyname() and getipnodebyaddr() functions (see page 91 and page 94).

302 U26110-J-Z125-3-76

BCAM dependencies Configuration and configuration files

13.3 Dependencies of the BS2000/OSD BCAM transport system

This section outlines the points you must note with SOCKETS(POSIX) and XTI(POSIX)
applications with regard to the BS2000/OSD BCAM transport system. Please refer to the
manual “openNet Server V3.0 (BS2000/OSD)” [6] for more detailed information on BCAM.

BCAM as the SOCKETS(POSIX) and XTI(POSIX) communications manager

BCAM supports several communications architectures as the basis of the data communi-
cations system for BS2000/OSD hosts. Socket and XTI applications can communicate via
the TCP/IP and UDP/IP protocols of the Internet architecture. The communications system
is managed with BCAM administration commands. The most important BCAM commands
in this respect are BCIN (generate end systems dynamically) and BCSHOW (get state infor-
mation, e.g. port assignments). You can also use the corresponding SDF commands
instead of BCIN and BCSHOW. You will find additional BCAM commands that are relevant
for socket and XTI applications under “Relevant settings with the BCAM transport system”
on page 303.

Assigning a socket or transport endpoint a special Internet address

When SOCKETS(POSIX) is used on a system with more than one Internet port, linking of
a socket to a special Internet port is supported. For this purpose it may be necessary to set
the SO_REUSEADDR option with the setsockopt() function. However, up to and including
BCAM V17 the interface actually used to send datagrams and connection requests cannot
be selected in this way for sockets of the type SOCK_DGRAM or client sockets of the type
SOCK_STREAM.

U26110-J-Z125-3-76 303

Configuration and configuration files BCAM dependencies

Dependency of IPv6 support in SOCKETS(POSIX) on BCAM and SOCKETS(BS2000)

Communications with SOCKETS(POSIX) in the AF_INET6 (IPv6) Internet address family
requires BCAM version 16.0.

The new functions getaddrinfo(), freeaddrinfo(), gai_strerror(), getipnodebyaddr(),
getipnodebyname(), freehostinfo(), getnameinfo(), inet_ntop() and inet_pton(), which were intro-
duced with the IPv6 support in accordance with RFC 2553, can only be executed on
systems with BCAM V16.0 (or higher).

These functions always return the error EAFNOSUPPORT if they are executed on a system
with an earlier BCAM version.

The functions getaddrinfo(), getipnodebyaddr(), getipnodebyname() and getnameinfo() use the
DNS Resolver service of the SOCKETS(BS2000) subsystem (also for IPv4 addresses).
This requires at least SOCKETS(BS2000) V2.0.

Relevant settings with the BCAM transport system

The BCAM commands which have effects on SOCKETS(POSIX) and XTI(POSIX) applica-
tions are shown below. The BCAM commands and their parameters are described in detail
in the “openNet Server V3.0 (BS2000/OSD)” manual.

BCAM DCSTART and BCMOD commands (BCAM limits)

The MAXNPA, MAXNPT and MAXCNN operands limit the number of network applications
and connections.

BCAM BCTIMES command (BCAM time settings)

The CONN operand limits the wait time for connection requests.
The DATAGRAM operand limits the linger period for connectionless transport service
messages.
The LETT operand limits the linger period for connection-oriented transport service
messages.

BCAM BCOPTION command (BCAM mode options)

The BROADCAST operand defines whether the host is allowed to receive broadcast
messages. There are no restrictions on sending broadcast messages.

BCAM BCMOD and DCOPT commands (predefine/modify DCSTART parameters)

The FREEPORT# operand defines the first free port number that can be assigned dynam-
ically by BCAM to an application. PRIVPORT# defines the first socket port number that can
be assigned to non-privileged and privileged applications.
FREEPORT# must always be greater than or equal to PRIVPORT#.

304 U26110-J-Z125-3-76

BCAM dependencies Configuration and configuration files

Support for the Domain Name Service (DNS)

SOCKETS(POSIX) supports the DNS concept if the subsystem SOCKETS(BS2000) V2.0
and/or the DNS Resolver from the product interNet Services (formally TCP-IP-SV) have
been configured and started, see the manual "interNet Services V3.0 (BS2000/OSD)
Administrator Guide".
The DNS collects information on the hosts connected to a network and makes this infor-
mation available to all hosts via the network.

If you are using BCAM as of V16.0, the following DNS functionality is available:

– for gethostbyname(), gethostbyaddr()
DNS Resolver functionality in interNet Services (TCP-IP-SV)
DNS Resolver functionality in SOCKETS(BS2000)

– for getipnodebyname(), getipnodebyaddr(), getaddrinfo(), getnameinfo()
DNS Resolver functionality in SOCKETS(BS2000)

U26110-J-Z125-3-76 305

14 Compatibility restrictions

Compatibility to UNIX applications

The SOCKETS(POSIX) interface implementation complies with the SINIX V5.41 implemen-
tation and has been enhanced by the support of IPv6. This ensures that SOCKETS(POSIX)
applications are source-compatible to UNIX to a large degree. The following restrictions
apply:

● The RAW socket interface is not supported.

● Out-of-band data is not supported.

● Wait points for all blocking operations on POSIX file descriptors lie in the POSIX
subsystem and are therefore out of reach to the application programmer.

Compatibility to SOCKETS(BS2000) applications

SOCKETS(BS2000) applications are not compatible to applications developed with the
SOCKETS(POSIX) functions.

XTI Compatibilities

The following restrictions apply for XTI:

● Sending expedited data is not supported.

● Only the transport services for TCP/IP and UDP/IP are supported.

● IPv6 is not supported.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U26110-J-Z125-3-76 307

Related publications
The manuals are available as online manuals, see http://manuals.fujitsu-siemens.com, or in
printed form which must be paid and ordered separately at http://FSC-manualshop.com.

[1] C Library Functions (BS2000/OSD)
for POSIX Applications
Reference Manual

Target group
This manual addresses C and C++ programmers.
Contents
The manual documents the XPG4-conformant C programming interface which is supported
by the POSIX subsystem in BS2000. This programming interface permits access to both
the POSIX file system and BS2000 files. The programming interface also incorporates
extensions which ensure compatibility with the existing C library described in a separate
chapter.

[2] POSIX (BS2000/OSD)
Commands
User Guide

Target group
This manual addresses all users of the POSIX shell.
Contents
This manual is designed as a work of reference. It describes working with the POSIX shell
and the commands of the POSIX shell in alphabetical order.

http://manuals.fujitsu-siemens.com
http://FSC-manualshop.com

308 U26110-J-Z125-3-76

Related publications

[3] POSIX (BS2000/OSD)
Basics for Users and System Administrators
User Guide

Target group
BS2000 system administrators, POSIX administrators, BS2000 users,
users of UNIX workstations
Contents
– Introduction to and working with POSIX
– BS2000 software products in a POSIX environment
– Installing POSIX
– Controlling POSIX and administering file systems
– Administering POSIX users
– BS2000 commands for POSIX

[4] Reliant UNIX V5.45
Network Programming Interfaces
Programmer’s Guide

Target group
The manual is aimed at application programmers who want to develop software for use in
networks.
Contents
It describes how to write application programs that use the Reliant UNIX network functions
(TLI, Sockets, RCP).

[5] C/C++ V3.1A (BS2000/OSD)
C/C++ Compiler
User Guide

Target group
C and C++ users in a BS2000 environment.
Contents
– Description of all activities in the creation of executable C and C++ programs: compi-

lation, linking, loading, debugging
– Programming notes and detailed information on: optimization, program flow control,

linking of functions and languages, C and C++ language scope of the compiler.

U26110-J-Z125-3-76 309

Related publications

[6] openNet Server V3.0 (BS2000/OSD)
BCAM V17.0A
User Guide

Target group
The manual is intended for network planners, generators and administrators who define
BCAM BS2000 systems.
Contents
The manual describes BCAM itself, how it is embedded in TRANSDATA and TCP/IP and
ISO networks, plus generation and administrative activities. Generation examples illustrate
the description. Additionally BCAM tools for generation and diagnosis are described. To
conclude, the manual describes BCAM commands required for generation and operation.
Information is also provided on KOGS macros required for statistical generation and a list
of BCAM error messages is given.

[7] interNet Services V3.0 (BS2000/OSD)
Administrator Guide

Target group
This manual is intended for network planners, generators and administrators who wish to
use Internet Services in BS2000/OSD.
Contents
The manual describes the functionality of the Internet Services
BOOTP/DHCP, TFTP, DNS, FTP, TELNET, LDAP and NTP in BS2000/OSD. It also covers
the installation, administration, operation, and logging and diagnostic options of the
individual components, TLS-Support in FTP and TELNET Servers, FTP exit and the
TELNET exits as well as generating random numbers in BS2000/OSD and POSIX.

[8] interNet Services V3.0 (BS2000/OSD)
User Guide

Target group
This manual is intended for users and network planners, generators and administrators who
wish to use Internet Services in conjunction with
BS2000/OSD.
Contents
The manual introduces the components of interNet Services. It contains a detailed
description of FTP, TELNET, the FTAC interface for FTP and TELNET, and also of the
Mailreader. A further major topic of the manual is TLS/SSL support of FTP and TELNET.
Network administrators require this manual as a supplement to the Administrator Guide.

310 U26110-J-Z125-3-76

Related publications

[9] openNet Server (BS2000/OSD)
IPv6 Introduction and Conversion Guide, Stage 1
User Guide

Target group
This manual is intended for everyone responsible for deciding as to the introduction of IPv6
in BS2000/OSD, as well as anyone using the IPv6 functionality on BS2000/OSD
mainframes or planning to install IPv6 in BS2000/OSD.
Contents
The manual explains the commercial and technical foundations of IPv6. In addition, it
describes the transition from IPv4 to IPv6 with the aid of examples and outlines the current
status of the implementation of IPv6 in BS2000/OSD. Detailed information on “IPv6
addressing” and “DNS utilization” can be found in the appendix.

Other publications

X/Open CAE Specification
Networking Services, Issue 4

U26110-J-Z125-3-76 311

Index

/dev/tcp 159, 256
/dev/udp 256
/etc/inet/hosts 91, 301
/etc/inet/inetd.conf 297
/etc/inet/networks 98, 300
/etc/inet/protocols 101, 299
/etc/inet/services 19, 103, 300
/usr/include 9, 228
/usr/tmp 219
<arpa/inet.h> 9
<net/if.h> 9
<netdb.h> 9, 41
<netinet/in.h> 9
<sys.time.h> 9
<sys/byteorder.h> 9
<sys/socket.h> 9
<sys/sockio.h> 9
<sys/un.h> 9
<sys/xti_inet.h> 9
<xti.h> 10

A
abort connection 153, 171, 172

reporting 167
request 153, 169
t_snddis() 280

accept
connection 25, 77, 229
connection (server example) 28, 164

accept() 25, 50, 58
example 25
functions description 77

accept_call() 165

address 11
assign 18, 79, 234
assign automatically 23, 24
client 159
convert 41
host 41, 301
IN6ADDR_ANY 20
INADDR_ANY 20
INADDR_BROADCAST 51
Internet 43
local 24, 248
network 41, 42
protocol 44, 101
remote 248
server 159
socket 13, 18, 19
wildcard 20

address conversion with SOCKETS(POSIX) 41
example 47

address family 11, 124
AF_INET 11, 14, 18
AF_INET6 19
AF_UNIX 20

address see also name
address structure 11, 13

sockaddr 13
sockaddr_in 14, 18, 19
sockaddr_in6 14
sockaddr_un 15, 20

addressing
Internet address 13
socket 13

addressing-pair 24
advanced concepts of XTI 191

312 U26110-J-Z125-3-76

Index

AF_INET 16, 18, 24, 55
address conversion 42, 43
create socket 17
sockaddr_in structure 14

AF_INET6 11, 14, 17, 19
address conversion 42
create socket 17
sockaddr_in6 structure 14

AF_UNIX 16, 20
create socket 16
sockaddr_un structure 15

assign
address 79, 234
Internet address 302
name 20, 24

asymmetric
connection 24
protocol 57

asynchronous
event 254
mode 165, 192, 239, 252, 266, 268, 274,

278, 284
reporting 56

automatic address assignment 23, 24
available

protocol 299
servers 297
services 300

B
basics

of SOCKETS(POSIX) 7
of XTI(POSIX) 149

BCAM 8
BCAM command

BCIN 302
BCMOD 303
BCOPTION 54, 107, 303
BCSHOW 302
BCTIMES 303
DCSTART 303

BCAM dependencies 302
BCIN (BCAM command) 302
BCMOD (BCAM command) 303

BCOPTION (BCAM command) 54, 107, 303
BCSHOW (BCAM command) 302
BCTIMES (BCAM command) 303
bidirectional data transfer 11
binary IP address

convert 112
bind socket

see assign name or address
bind() 15, 18, 21

example 18, 58, 62
function description 79

bit mask 35
block 107, 117, 139, 144, 145, 192, 239

permanent 272
blocking 50, 77
broadcast

address 53
messages 51, 55, 107, 303

byte order 81
convert 46, 81
host 46, 109
network 46, 110

C
call, xtitrace 220
changes

compared with previous edition 3
character string 109
characteristics of the transport protocol 256
character-string see character string
client 24, 27, 47, 60

address 159
connection shutdown (example) 172
connectionless (example) 66
connection-oriented 151
connection-oriented (example) 60
connection-oriented service (example) 202
initiate connection 82, 238
local management (example) 158
process 57
receive data (example) 170
request connection (example) 27, 163

U26110-J-Z125-3-76 313

Index

client/server model 57, 156
communications (example) 27
local management 157
set up connection 162
shut down connection 171
transfer data 168

close socket 34
close transport endpoint 237
close() 34

example 34, 58, 60, 62, 66
function description 129

communication application 1, 7
communications

connectionless 12, 30, 40
connectionless (examples) 31
connection-oriented 11, 24, 39
connection-oriented (examples) 27

communications application, compile/link
in BS2000/OSD 293
with POSIX shell 292

communications domain see domain
communications endpoint 11
communications manager, BCAM as 302
communications partner

get name 100
compatibility restrictions 305
compile communications application

in BS2000/OSD 293
with POSIX shell 292

configuration 295
files 297
network 51
network connection 295

connect() 24, 31, 50
example 24, 60
function description 82, 85

connection
abort 153, 171, 172, 280
accept 25, 77, 229
accept (server example) 28, 164
asymmetric 24
get status 268
initiate see request connection
managing several simultaneously 193

connection (cont.)
orderly shutdown 153, 171, 282
pending see connection request
query status 37

connection acceptance 25
connection request 24, 25, 58, 82, 107, 161, 163,

167, 168, 187, 197, 238
client example 27, 163
get status 268
pending 114, 235
query status 37
refuse 280
send 82, 238
wait for 114, 252

connection setup 24, 151, 160, 162, 182
error 24

connection shutdown 55, 199
client example 172
confirm request 272
get cause 270
orderly 153
server example 171

connectionless
client (example) 66
communications 12, 30, 40
communications (examples) 31
mode 234, 274, 284
server (example) 62
service 173, 175
service (state transitions) 189
socket 12, 16, 30, 40

connection-oriented 11
client 151
client (example) 60
communications 11, 24, 39
communications (examples) 27
mode 234
server 151
server (example) 58
service 150
service (client example) 202
service (server example) 204
service (state transitions) 190
socket 11, 39

314 U26110-J-Z125-3-76

Index

control function (for sockets) 130, 132
F_DUPFD 130
F_GETFD 130
F_GETFL 130
F_GETOWN 130
F_SETFD 130
F_SETFL 130
F_SETOWN 130

conventions, notational 4
convert

address 41
address (example) 47
binary IP address 112
byte order 46, 81
host name 43
protocol name 44
service name 45

convert network address 42
create socket 124

AF_INET 17
AF_INET6 17
AF_UNIX 16

create socket-pair 126

D
daemon program, inetd see inetd
data

read from socket 26
receive 116, 266, 274
receive (client example) 170
send 119, 278
send (server example) 168
write to socket 26

data see also message
data transfer 152, 168, 173

bidirectional 11
secured and sequential 11

datagram 124
error 179
get error information 276
receive 116, 274
receive (example) 31
send 119, 284
server example 208

datagram socket 12, 16, 30, 40, 51, 82, 116
characteristics 12
create 17
properties 124
see also SOCK_DGRAM

DCSTART (BCAM command) 303
deactivate transport endpoint 289
dependencies of BCAM 302
description format

socket functions 70
XTI function 224

descriptor 8, 16, 67
test exception 143
test for events 139
test read readiness 143
test write readiness 143

descriptor set 35
manipulate 144

DNS 88, 304
DNS concept 91
domain 11, 16

AF_INET 16, 18, 24
AF_INET6 17, 19
AF_UNIX 11, 16, 20
define 124
local 16
local computer 11

Domain Name Service 88
dynamic

release memory 243
reserve memory 232

E
endhostent()

function description 91
endnetent()

function description 98
endprotoent()

function description 101
endservent()

function description 103
environment variable XTITRACE 217

set parameters 218

U26110-J-Z125-3-76 315

Index

error
datagram 276
during connection setup 24

error code of getaddrinfo()
output text 87

event
asynchronous 254
get current 254
incoming 186
on the transport interface 182
outgoing 184
to the transport interface 193

event handling 164, 182
event indicator 138

POLLERR 138
POLLHUP 139
POLLIN 138
POLLNVAL 139
POLLOUT 138
POLLRDNORM 138
POLLWRNORM 138

event-controlled
operation 193
operation (example) 193
server example 210

examples for XTI 201
execution mode see mode
extended socket functions 49

F
F_DUPFD 130
F_GETFD 130
F_GETFL 130
F_GETOWN 130
F_SETFD 130
F_SETFL 130
F_SETOWN 130
fcntl() 50, 56, 192

function description 130
SIOCGIFBRDADDR 53
SIOCGIFFLAGS 53

FD_CLR 144
FD_ISSET 36, 144
FD_SET 144

FD_SETSIZE 35, 143
FD_ZERO 144
file

/usr/include 228
configuration 297
header 9, 228
hosts 91, 301
inetd.conf 297
networks 98, 300
protocols 101, 299
services 19, 103, 300
XTIF... (trace file) 218
XTIS... (trace file) 218

file descriptor see descriptor
freeaddrinfo()

function description 85
freehostent() 86

function description 86
full duplex connection, shutdown 123
function see socket/POSIX/XTI function

G
gai_strerror()

function description 87
get

cause of a connection shutdown 270
current event 254
current state 250
error information about datagram 276
name 96
name of communications partner 100
name/address of socket 105
network address 98
port number 103
protocol address 101, 248
service name 103
socket type 107
status (connection request) 268
transport provider state 250

get information
about protocols 100
independent of protocol 88
protocol-specific 245

316 U26110-J-Z125-3-76

Index

getaddrinfo()
function description 88

gethostbyaddr() 43
function description 91

gethostbyname() 43
example 60, 66
function description 91

gethostent()
function description 91

gethostname()
function description 93

getipnodebyaddr() 42
getipnodebyname() 42
getnameinfo()

function description 96
getnetbyaddr()

function description 98
getnetbyname()

function description 98
getnetent()

function description 98
getpeername()

function description 100
getprotobyname()

function description 101
getprotobynumber()

function description 101
getprotoent()

function description 101
getservbyname() 45

application example 45
function description 103

getservbyport() 45
function description 103

getservent()
function description 103

getsockname()
function description 105

getsockopt() 55
example 55
function description 106

H
header file 9, 228

arpa/inet.h 9
net/if.h 9
netdb.h 9, 41
netinet/in.h 9
sys.time.h 9
sys/byteorder.h 9
sys/socket.h 9
sys/sockio.h 9
sys/un.h 9
sys/xti_inet.h 9
xti.h 10

host
convert name 43
get address 91, 301
get name 91
information about 91
local 91
name 301
name conversion 94
name, network-independent 41
reachable 301

host byte order 46, 109
hostent structure 43, 91
hosts 91, 301

known 301
htonl() 46

description 81
htons() 46

description 81

I
I/O multiplexing

example 37
select() 143
timeout 144
with poll() 138

ifconf structure 52
ifreq structure 52
IN6ADDR_ANY 20
INADDR_ANY 20
INADDR_BROADCAST 51
incoming event 186

U26110-J-Z125-3-76 317

Index

inet_addr()
function description 109

INET_IP 264
inet_lnaof()

function description 109
inet_makeaddr()

function description 109
inet_netof()

function description 109
inet_network()

function description 109
inet_ntoa()

function description 109
inet_ntop() 42

function description 112
inet_pton() 42

function description 112
INET_TCP 264
inetd 296
inetd.conf 297
input/output multiplexing 35

select() 35
interaction

socket functions (connectionless) 40
socket functions (connection-oriented) 39
socket functions (quasi-connection-

oriented) 40
XTI functions (connectionless) 174
XTI functions (connection-oriented) 155

Internet address 14, 41, 43
addressing 13
assign 302
assign automatically 23
assign with wildcard 20
manipulate 74, 109, 112
period notation 109

Internet domain 11, 16, 24, 25, 51
AF_INET6 25

interNet Services 91
Internet superserver see inetd
interrupt-controlled socket I/O 56

ioctl() 52
function description 132
SIOCGIFFLAGS 53
SIOCGSIGCONF 52

iovec structure 141, 146
IP address see Internet address
IPPORT_RESERVED 19
IPv4 address 18

automatic assignment 23
convert to host name 43

IPv6 address 19
convert to host name 42

J
job system (example)

data transfer 176
local management 175

L
library structure

release memory 243
reserve memory 232

library, SOCKETS- 41
link communications application

in BS2000/OSD 293
with POSIX shell 292

listen (socket or transport endpoint)
see listen() or t_listen()

listen() 25
example 25, 58
function description 114

local
address 24, 248
domain 11, 16
host 91
management 157, 173, 175
management (client example) 158
management (server example) 160, 175
management (state transitions) 189
management of transport interface 150
name 18
port number 24

lock 26
log, trace information 218

318 U26110-J-Z125-3-76

Index

M
macro

FD_CLR 144
FD_ISSET 36, 144
FD_SET 144
FD_ZERO 144
htonl() 46, 81
htons() 46, 81
ntohl() 46, 81
ntohs() 46, 81
OPT_NEXTHDR() 261

management
local 150, 157, 173, 175
local (client example) 158
local (server example) 160, 175
local (the transport interface) 150

manipulate
descriptor set 144
Internet address 74, 109, 112

memory
release dynamically 243
reserve dynamically 232

message
receive 116, 141, 266
see also data
send 119, 146, 274, 278, 284

mode
asynchronous 192, 239, 252, 266, 268, 274,

278, 284
connectionless 234, 274, 284
connection-oriented 234
synchronous 192, 239, 252, 254, 266, 268,

274, 278, 284
msghdr structure 117, 120
multicast messages 55
multiplex I/O 35

example 37
poll() 138
with select() 35, 143

N
name

assign 18, 20, 24, 79
communications partner 100
get 96
host 43, 301
local 18
of socket - get 105
protocol 44
service 45
socket 13
socket host 93

name see also address
netbuf structure 162, 233
netent structure 98
network

configuration 51, 52
get address 98
get name 98
information about 98, 300
number 110
reachable 300

network address 41, 42, 110
network byte order 46, 110
network connection (POSIX) 7

configure 295
network programming 7
networks 98, 300
non-blocking 138

input/output 145
mode see asynchronous mode
socket 50, 116, 141

notational conventions 4
ntohl() 46

description 81
ntohs() 46

description 81
number of a protocol 44

O
operation

event-controlled 193
event-controlled (example) 193

OPT_NXTHDR() 261

U26110-J-Z125-3-76 319

Index

options
protocol 263
socket 55
transport endpoint 260

orderly connection shutdown 153, 171, 282
output

error message 241, 286
trace information 220

output format of the XTI trace 221
output text

error code of getaddrinfo() 87
overview

socket functions 71
XTI functions 225

P
path name 20
pending connection request 235

checking for 37
period notation (Internet address) 109
poll() 35

events 138
function description 138

POLLERR 138
pollfd structure 138
POLLHUP 139
POLLIN 138
POLLNVAL 139
POLLOUT 138
POLLRDNORM 138
POLLWRNORM 138
port number 14, 18, 19, 41

assign with wildcard 23
get 103
local 24

POSIX
concept 8
functions 128
network connection 7

POSIX function
close() 34, 58, 60, 62, 66, 129
fcntl() 50, 56, 130, 192
ioctl() 52, 132
poll() 138

read() 26, 141
readv() 26, 141
select() 35, 37, 143
write() 26, 146
writev() 26, 146

POSIX subsystem 1, 7
POSIX_HEADER 292
protocol 57, 126

asymmetric 57
available 299
characteristics 245, 256
convert name 44
information about 101, 299
number 44
options 263
standard 16
symmetric 57
TCP 11, 16, 39
TCP/IP 124, 256, 302
UDP 12, 16, 30, 40, 174, 302

protocol address see address
protocol family 11, 124
protocol level 263

INET_IP 264
INET_TCP 264

protocols 101, 299
protoent structure 44

Q
quasi-connection-oriented 40
query

socket option 55
status (connection request) 37

R
reachable

host 301
network 300

read readiness
test (descriptor) 143

read() 26
example 26
function description 141

320 U26110-J-Z125-3-76

Index

readme file 5
readv() 26

example 26
function description 141

receive
data 116, 266, 274
datagram 116, 274
datagram (example) 31
message 141

received
data (client example) 170

record limit (of transferred data) 12
recv() 26

example 26, 58
function description 116

recvfrom() 30
example 30, 62
function description 116

recvmsg() 26
example 26
function description 116

refuse connection request 280
release memory 243

struct addrinfo 85
struct hostent 86

remote address 248
request

connection 24, 58, 82, 238
connection (client example) 27, 163

reserve memory 232
restrictions on compatibility 305
run_service() 168

S
secured data transfer 11
select() 35, 37

example 35, 37
function description 143

send
data 119, 278
data (server example) 168
datagram 119, 284
message 119, 146

send() 26, 50
example 26, 60
function description 119

sendmsg() 26
example 26
function description 119

sendto() 30, 54
example 30, 66
function description 119

sequential data transfer 11
servent structure 45, 103
server 25, 58

accept connection 164
accept connection (example) 28
address 159
connection shutdown (example) 171
connectionless (example) 62
connection-oriented 151
connection-oriented (example) 58
connection-oriented service (example) 204
datagram-oriented (example) 208
event-controlled (example) 210
local management (example) 160, 175
process 57
send data (example) 168
transfer data (example) 176

servers
available 297

service
available 300
connectionless 173, 175
connectionless (state transitions) 189
connection-oriented 150
connection-oriented (client example) 202
connection-oriented (server example) 204
connection-oriented (state transitions) 190
convert name 45
get name 103
information 103, 300
number see port number
request 58
types 157

service number see port number
services 19, 103, 300

U26110-J-Z125-3-76 321

Index

set
socket option 106

set up connection 24, 151, 162
set up transport endpoint 256
sethostent()

function description 91
setnetent()

function description 98
setprotoent()

function description 101
setservent()

function description 103
setsockopt() 55

application example 55
example 60
function description 106

shutdown
connection 55, 153, 171
connection (client example) 172
connection (orderly) 171, 282
connection (server example) 171
full duplex connection 123
socket 129

SIGIO signal 56
SIGPIPE signal 107
SIOCGIFBRDADDR 53
SIOCGIFCONF 52
SIOCGIFFLAGS 53
SIOCGLIFCONF

example 135
SO_ACCEPTCONN 107
SO_BROADCAST 107
SO_KEEPALIVE 107
SO_LINGER 107
SO_REUSEADDR 107
SO_TYPE 107
SOCK_DGRAM 30, 40, 82, 126

see also datagram socket
SOCK_STREAM 77, 82, 114, 126

see also stream socket
sockaddr structure 13
sockaddr_in structure 14, 18, 19
sockaddr_in6 structure 14
sockaddr_un structure 15, 20

socket
address 13
addressing 13
allow broadcast 51
assign name 18, 79
blocking 77
close 34
connectionless 12, 16, 30, 40
connection-oriented 11, 16, 25, 39
control functions 130, 132
create 16, 124
create socket-pair 126
datagram 12, 51
definition 11
get name 105
interrupt-controlled I/O 56
listen 25, 114
non-blocking 50, 77, 116, 141
options 55, 106
POSIX functions 128
receive message 116, 141
send message 146
shutdown 129
stream 11
test exception 143
test for pending connections 114
test read readiness 143
test write readiness 143

socket descriptor see descriptor
socket file descriptor see descriptor
socket function 1

accept() 25, 50, 58, 77
bind() 15, 18, 21, 58, 62, 79
connect() 24, 31, 50, 60, 82, 85
endhostent() 91
endnetent() 98
endprotoent() 101
endservent() 103
for address conversion 41
freeaddrinfo() 85
freehostent() 86
gai_strerror() 87
getaddrinfo() 88
gethostbyaddr() 43, 91

322 U26110-J-Z125-3-76

Index

socket function (cont.)
gethostbyname() 43, 60, 66, 91
gethostent() 91
gethostname() 93
getipnodebyaddr() 42
getipnodebyname() 42
getnameinfo() 96
getnetbyaddr() 98
getnetbyname() 98
getnetent() 98
getpeername() 100
getprotobyname() 101
getprotobynumber() 101
getprotoent() 101
getservbyname() 45, 103
getservbyport() 45, 103
getservent() 103
getsockname() 105
getsockopt() 55, 106
inet_addr() 109
inet_lnaof() 109
inet_makeaddr() 109
inet_netof() 109
inet_network() 109
inet_ntoa() 109
inet_ntop() 42, 112
inet_pton() 42, 112
interaction 39
listen() 25, 58, 114
recv() 26, 58, 116
recvfrom() 30, 62, 116
recvmsg() 26, 116
send() 26, 50, 60, 119
sendmsg() 26, 119
sendto() 30, 54, 66, 119
sethostent() 91
setnetent() 98
setprotoent() 101
setservent() 103
setsockopt() 55, 60, 106
socket() 16, 58, 60, 62, 66, 124
socketpair() 126

socket functions
overview 71

socket host 93
socket interface 1, 7
socket library 41
socket name see also name
socket option

get 106
query 55
set 55, 106
SO_ACCEPTCONN 107
SO_BROADCAST 107
SO_KEEPALIVE 107
SO_LINGER 107
SO_REUSEADDR 107
SO_TYPE 107

socket type 11
datagram socket see SOCK_DGRAM
get 107
SOCK_DGRAM 12, 16, 30, 40, 82
SOCK_DGRM 124
SOCK_STREAM 11, 16, 39, 77, 82, 114, 124
stream socket see SOCK_STREAM

socket() 16
example 17, 58, 60, 62, 66
function description 124

socketpair()
function description 126

SOCKETS(POSIX) 1
SOL_SOCKET 55
standard protocol 16
state see XTI state
state tables 188
state transitions 187
stream socket 39, 82, 116

characteristics 11
create 17
properties 124

stream socket see also SOCK_STREAM
streams connection

accept (example) 28
initiate (example) 27

struct addrinfo
release memory 85

struct hostent
release memory 86

U26110-J-Z125-3-76 323

Index

struct sockaddr_in6
address family AF_INET6 14

structure
hostent 43, 91
ifconf 52
ifreq 52
iovec 141, 146
msghdr 117, 120
netbuf 162, 233
netent 98
pollfd 138
protoent 44
servent 45, 103
sockaddr 13
sockaddr_in 14, 18, 19
sockaddr_in6 14
sockaddr_un 15, 20
t_bind 161, 232, 234, 243, 248
t_call 163, 229, 232, 238, 243, 252, 268, 280
t_discon 232, 243, 270
t_info 232, 243, 245, 257
t_kpalive 264
t_opthdr 261
t_optmgmt 232, 243, 260
t_uderr 179, 232, 243, 276
t_unitdata 178, 232, 243, 274, 284

symmetric
interface 30
protocol 57

synchronize transport library 287
synchronous

mode 192, 239, 252, 254, 266, 268, 274,
278, 284

T
t_accept() 151, 152, 162, 167

function description 229
t_alloc() 151, 162

function description 232
t_bind structure 161, 232, 234, 243, 248
t_bind() 150, 151, 157, 161

function description 234
t_call structure 163, 229, 232, 238, 243, 252,

268, 280

t_close() 151, 188
function description 237

t_connect() 151, 152, 162
function description 238

t_discon structure 232, 243, 270
t_errno 159, 164, 179, 188, 241
t_error() 151, 159

function description 241
t_free() 151

function description 243
t_getinfo() 151, 157

function description 245
t_getprotaddr()

function description 248
t_getstate()

function description 250
t_info structure 232, 243, 245, 257
t_kpalive structure 264
t_listen() 151, 152

function description 252
t_look() 151, 164, 182

function description 254
t_open() 150, 151, 157, 161

function description 256
t_opthdr structure 261
t_optmgmt structure 232, 243, 260
t_optmgmt() 151, 158, 175

function description 260
t_rcv() 152, 170

function description 266
t_rcvconnect() 152

function description 268
t_rcvdis() 153, 154, 167

function description 270
t_rcvrel() 153, 154, 172

function description 272
t_rcvudata() 173, 178

function description 274
t_rcvuderr() 173

function description 276
t_snd() 152, 169

function description 278
t_snddis() 153, 154, 162

function description 280

324 U26110-J-Z125-3-76

Index

t_sndrel() 153, 154, 172
function description 282

t_sndudata() 173, 179
function 284

t_strerror()
function description 286

t_sync() 151
function description 287

T_UDERR 179
t_uderr structure 179, 232, 243, 276
t_unbind() 151

function description 289
t_unitdata structure 178, 232, 243, 274, 284
TCP 11, 16, 39
TCP/IP 1, 7, 124, 256, 302
TCP-IP-SV 91
test

socket for pending connection requests 114
test exception (descriptor) 143
test see get
time-critical application 192
timeout (I/O multiplexing) 35, 144
TLOOK 164, 179, 182
trace file 218
trace information

log 218
output 220

trace see XTI trace
transaction server see server
transfer data 26, 152, 168, 173

connectionless communications 30
connection-oriented communications 26
server example 176

transport address 150
transport endpoint 150, 186

assign address 234
close 237
deactivate 289
features 157
get state 250
manage options 260
query several 194
set up 256

transport endpoint see also communications
endpoint 11

transport interface
events 182
local management 150, 157
states 181

transport library, synchronize 287
transport protocol characteristics 245
transport protocol see protocol
transport provider 157, 179, 184

get state 250
transport service, types 157
transport system BCAM 8
transport user 151, 187

U
UDP 12, 16, 30, 40, 174, 302

W
wildcard

address 20
port number 23

write readiness
test (descriptor) 143

write() 26
example 26
function description 146

writev() 26
example 26
function description 146

X
X/Open standard 1
X/Open Transport Interface (XTI) see XTI
XTI 8

advanced concepts 191
basics 149
examples 201
states and state transitions 180

XTI function 1, 223
description format 224
interaction (connectionless) 174
interaction (connection-oriented) 155
overview 225

U26110-J-Z125-3-76 325

Index

XTI function (cont.)
t_accept() 151, 152, 162, 167, 229
t_alloc() 151, 162, 232
t_bind() 150, 151, 157, 161, 234
t_close() 151, 188, 237
t_connect() 151, 152, 162, 238
t_error() 151, 159, 241
t_free() 151, 243
t_getinfo() 151, 157, 245
t_getprotaddr() 248
t_getstate() 250
t_listen() 151, 152, 252
t_look() 151, 164, 182, 254
t_open() 150, 151, 157, 161, 256
t_optmgmt() 151, 158, 175, 260
t_rcv() 152, 170, 266
t_rcvconnect() 152, 268
t_rcvdis() 153, 154, 167, 270
t_rcvrel() 153, 154, 172, 272
t_rcvudata() 173, 274
t_rcvuderr() 173, 276
t_snd() 152, 169, 278
t_snddis() 153, 154, 162, 280
t_sndrel() 153, 154, 172, 282
t_sndudata() 173, 179, 284
t_strerror() 286
t_sync() 151, 287
t_unbind() 151, 289

XTI library functions
see XTI function

XTI state
get current 250
transport interface 181

XTI trace 217
enable 218
example 222
log trace information 218
output format 221
output trace information 220

XTIF... (trace file) 218
XTIS... (trace file) 218
XTITRACE 217

options 218

xtitrace 220
call 220
example 222
options 220
output format 221

U26110-J-Z125-3-76

Contents
1 Preface . 1
1.1 Brief description of the product . 1
1.2 Target group . 1
1.3 Summary of contents . 2
1.4 Changes compared with the previous edition of the manual . 3
1.5 Notational conventions . 4
1.6 README file . 5

2 SOCKETS(POSIX) basics . 7
2.1 POSIX network connection via the SOCKETS interface . 7
2.2 Header files . 9
2.3 Socket types . 11
2.3.1 Stream sockets (connection-oriented) . 11
2.3.2 Datagram sockets (connectionless) . 12
2.4 Socket addressing . 13
2.4.1 Using socket addresses . 13
2.4.2 Addressing with an Internet addresses . 13
2.4.2.1 sockaddr_in address structure of the AF_INET address family 14
2.4.2.2 sockaddr_in6 address structure of the AF_INET6 address family 14
2.4.2.3 sockaddr_un address structure of the AF_UNIX address family 15
2.5 Creating a socket . 16
2.5.1 Creating a socket in the AF_INET domain . 17
2.5.2 Creating a socket in the AF_INET6 domain . 17
2.6 Assigning a name to a socket . 18
2.6.1 bind() call with AF_INET . 18
2.6.2 bind() call with AF_INET6 . 19
2.6.3 Dependencies on port numbers . 19
2.6.4 bind() call with AF_UNIX . 20
2.6.5 Assigning addresses with wildcards (AF_INET, AF_INET6) . 20
2.6.6 Automatic address assignment by the system . 23
2.7 Connection-oriented communications . 24
2.7.1 Connection request by the client . 24
2.7.2 Connection acceptance by the server . 25
2.7.3 Data transfer with connection-oriented communications . 26
2.7.4 Examples of connection-oriented client/server communications 27

 U26110-J-Z125-3-76

Contents

2.8 Connectionless communications in AF_INET and AF_INET6 . 30
2.8.1 Data transfer with connectionless communications . 30
2.8.2 Examples of connectionless communications . 31
2.9 Closing a socket . 34
2.10 Multiplexing input/output . 35
2.11 Interaction of the SOCKETS interface functions . 39

3 Address conversion with SOCKETS(POSIX) . 41
3.1 Converting host names into network addresses and vice versa 42
3.2 Converting protocol names into protocol numbers . 44
3.3 Converting service names into port numbers and vice versa . 45
3.4 Converting the byte order . 46
3.5 Example of address conversion . 47

4 Extended SOCKETS(POSIX) functions . 49
4.1 Non-blocking sockets . 50
4.2 Broadcast messages . 51
4.3 Socket options . 55
4.4 Multicast messages (AF_INET) . 55
4.5 Interrupt-controlled socket input/output . 56

5 Client/server model with SOCKETS(POSIX) . 57
5.1 Connection-oriented server . 58
5.2 Connection-oriented client . 60
5.3 Connectionless server . 62
5.4 Connectionless client . 66

6 SOCKETS(POSIX) user functions . 69
6.1 Description format . 70

Function name - brief description of the functionality . 70
6.2 Overview of functions . 71
6.3 Functions . 76

accept() - accept a connection over a socket . 77
bind() - assign a socket a name . 79
Byte order macros - convert byte order . 81
connect() - initiate a connection over a socket . 82
freeaddrinfo() - release memory for addrinfo structure . 85
freehostent() - release memory for hostent structure . 86
gai_strerror() - output text for the error code of getaddrinfo() . 87
getaddrinfo() - get information about host names, host addresses and
services regardless of protocol . 88
gethostent(), gethostbyname(), gethostbyaddr(), sethostent(), endhostent() -
get information about host names and addresses . 91
gethostname() - get the name of the current host . 93

U26110-J-Z125-3-76

Contents

getipnodebyaddr(), getipnodebyname() -
get information about host names and addresses . 94
getnameinfo() - get name of the communications partner . 96
getnetent(), getnetbyname(), getnetbyaddr(), setnetent(), endnetent() -
get information about network names . 98
getpeername() - get the name of the communications partner 100
getprotoent(), getprotobynumber(), getprotobyname(), setprotoent(), endprotoent() -
get information about protocols . 101
getservent(), getservbyport(), getservbyname(), setservent(), endservent() -
get information about services . 103
getsockname() - get the name of a socket . 105
getsockopt(), setsockopt() - get and set socket options . 106
inet_addr(), inet_network(), inet_makeaddr(), inet_lnaof(), inet_netof(), inet_ntoa() -
manipulate IPv4 Internet address . 109
inet_ntop(), inet_pton() - manipulate Internet addresses . 112
listen() - test a socket for pending connections . 114
recv(), recvfrom(), recvmsg() -
receive a message from a socket . 116
send(), sendto(), sendmsg() -
send a message from socket to socket . 119
shutdown() - close full duplex connection . 123
socket() - create socket . 124
socketpair() - create a pair of connected sockets . 126

6.4 Using standard POSIX functions for sockets . 128
close() - close socket . 129
fcntl() - control sockets . 130
ioctl() - control sockets . 132
poll() - multiplex input/output . 138
read(), readv() - receive a message from a socket . 141
select() - multiplex input/output . 143
write(), writev() - send a message from socket to socket . 146

7 XTI(POSIX) basics . 149
7.1 Connection-oriented service . 150
7.1.1 Connection-oriented service phases . 150
7.1.2 Connection-oriented client/server model . 156
7.2 Connectionless service . 173
7.2.1 Phases of the connectionless service . 173
7.2.2 Connectionless service using an example transaction system 175
7.3 States and state transitions . 180

8 Advanced XTI(POSIX) concepts . 191
8.1 Asynchronous execution mode . 192
8.2 Managing multiple connections simultaneously and event- controlled operation 193

 U26110-J-Z125-3-76

Contents

9 Examples for XTI(POSIX) . 201
9.1 Client in the connection-oriented service . 202
9.2 Server in the connection-oriented service . 204
9.3 Datagram-oriented transaction server . 208
9.4 Event-controlled server . 210

10 XTI trace . 217
10.1 Setting the XTITRACE environment variable parameters . 218
10.2 Outputting trace information with the xtitrace program . 220

11 XTI(POSIX) library functions . 223
11.1 Description format . 224

Function name - brief functional description . 224
11.2 Overview of functions . 225
11.3 Functions . 228

t_accept() - accept connection . 229
t_alloc() - reserve memory for library structure . 232
t_bind() - assign a transport endpoint an address . 234
t_close() - close transport endpoint . 237
t_connect() - request connection . 238
t_error() - output error message to the standard output . 241
t_free() - release library structure memory . 243
t_getinfo() - get protocol-specific information . 245
t_getprotaddr() - get protocol addresses . 248
t_getstate() - get current state . 250
t_listen() - wait for connection requests . 252
t_look() - get current event . 254
t_open() - set up a transport endpoint . 256
t_optmgmt() - manage transport endpoint options . 260
t_rcv() - receive data over a connection . 266
t_rcvconnect() - get the status of a connection request . 268
t_rcvdis() - get the cause of a connection shutdown . 270
t_rcvrel() - confirm a connection shutdown request . 272
t_rcvudata() - receive datagrams . 274
t_rcvuderr() - get error information about a sent datagram . 276
t_snd() - send data over a connection . 278
t_snddis() - refuse or abort a connection . 280
t_sndrel() - initiate an orderly connection shutdown . 282
t_sndudata() - send datagrams . 284
t_strerror() - output error message . 286
t_sync() - synchronize transport library . 287
t_unbind() - deactivate transport endpoint . 289

U26110-J-Z125-3-76

Contents

12 Compiling and linking a communications application . 291
12.1 Compiling and linking with the POSIX shell . 292
12.2 Compiling and linking in BS2000/OSD . 293

13 Configuration and configuration files . 295
13.1 inetd daemon program . 296
13.2 Configuration files . 297
13.2.1 inetd.conf - available servers . 297
13.2.2 protocols - available protocols . 299
13.2.3 services - available services . 300
13.2.4 networks - reachable networks . 300
13.2.5 hosts - reachable hosts . 301
13.3 Dependencies of the BS2000/OSD BCAM transport system 302

14 Compatibility restrictions . 305

Related publications . 307

Index . 311

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U26110-J-Z125-3-76

POSIX

SOCKETS/XTI for POSIX
User Guide

Target group

C and C++ programmers who develop communications applications on the basis of the
POSIX interface using SOCKETS and/or XTI functions.

Contents

– Introduction to SOCKETS(POSIX)
– User functions of SOCKETS(POSIX)
– Introduction to XTI(POSIX)
– XTI trace
– Library functions of XTI(POSIX)
– Compiling and linking of communications applications
– Configuration and configuration files, BCAM dependencies
– Restrictions on compatibility

Edition: March 2005

File: posix_s.pdf

Copyright © Fujitsu Siemens Computers GmbH, 2005.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

This manual was produced by
cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

http://www.cognitas.de

Comments on POSIX
SOCKETS/XTI for POSIX

U26110-J-Z125-3-76

Fujitsu Siemens computers GmbH
User Documentation
81730 Munich
Germany

Fax: (++49) 700 / 372 00001

e-mail: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Comments
Suggestions
Corrections

✁

Submitted by

mailto:manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Brief description of the product
	Target group
	Summary of contents
	Changes compared with the previous edition of the manual
	Notational conventions
	README file

	SOCKETS(POSIX) basics
	POSIX network connection via the SOCKETS interface
	Header files
	Socket types
	Stream sockets (connection-oriented)
	Datagram sockets (connectionless)

	Socket addressing
	Using socket addresses
	Addressing with an Internet addresses
	sockaddr_in address structure of the AF_INET address family
	sockaddr_in6 address structure of the AF_INET6 address family
	sockaddr_un address structure of the AF_UNIX address family

	Creating a socket
	Creating a socket in the AF_INET domain
	Creating a socket in the AF_INET6 domain

	Assigning a name to a socket
	bind() call with AF_INET
	bind() call with AF_INET6
	Dependencies on port numbers
	bind() call with AF_UNIX
	Assigning addresses with wildcards (AF_INET, AF_INET6)
	Automatic address assignment by the system

	Connection-oriented communications
	Connection request by the client
	Connection acceptance by the server
	Data transfer with connection-oriented communications
	Examples of connection-oriented client/server communications

	Connectionless communications in AF_INET and AF_INET6
	Data transfer with connectionless communications
	Examples of connectionless communications

	Closing a socket
	Multiplexing input/output
	Interaction of the SOCKETS interface functions

	Address conversion with SOCKETS(POSIX)
	Converting host names into network addresses and vice versa
	Converting protocol names into protocol numbers
	Converting service names into port numbers and vice versa
	Converting the byte order
	Example of address conversion

	Extended SOCKETS(POSIX) functions
	Non-blocking sockets
	Broadcast messages
	Socket options
	Multicast messages (AF_INET)
	Interrupt-controlled socket input/output

	Client/server model with SOCKETS(POSIX)
	Connection-oriented server
	Connection-oriented client
	Connectionless server
	Connectionless client

	SOCKETS(POSIX) user functions
	Description format
	Function name - brief description of the functionality

	Overview of functions
	Functions
	accept() - accept a connection over a socket
	bind() - assign a socket a name
	Byte order macros - convert byte order
	connect() - initiate a connection over a socket
	freeaddrinfo() - release memory for addrinfo structure
	freehostent() - release memory for hostent structure
	gai_strerror() - output text for the error code of getaddrinfo()
	getaddrinfo() - get information about host names, host addresses and services regardless of protocol
	gethostent(), gethostbyname(), gethostbyaddr(), sethostent(), endhostent() - get information abou...
	gethostname() - get the name of the current host
	getipnodebyaddr(), getipnodebyname() - get information about host names and addresses
	getnameinfo() - get name of the communications partner
	getnetent(), getnetbyname(), getnetbyaddr(), setnetent(), endnetent() - get information about net...
	getpeername() - get the name of the communications partner
	getprotoent(), getprotobynumber(), getprotobyname(), setprotoent(), endprotoent() - get informati...
	getservent(), getservbyport(), getservbyname(), setservent(), endservent() - get information abou...
	getsockname() - get the name of a socket
	getsockopt(), setsockopt() - get and set socket options
	inet_addr(), inet_network(), inet_makeaddr(), inet_lnaof(), inet_netof(), inet_ntoa() - manipulat...
	inet_ntop(), inet_pton() - manipulate Internet addresses
	listen() - test a socket for pending connections
	recv(), recvfrom(), recvmsg() - receive a message from a socket
	send(), sendto(), sendmsg() - send a message from socket to socket
	shutdown() - close full duplex connection
	socket() - create socket
	socketpair() - create a pair of connected sockets

	Using standard POSIX functions for sockets
	close() - close socket
	fcntl() - control sockets
	ioctl() - control sockets
	poll() - multiplex input/output
	read(), readv() - receive a message from a socket
	select() - multiplex input/output
	write(), writev() - send a message from socket to socket

	XTI(POSIX) basics
	Connection-oriented service
	Connection-oriented service phases
	Connection-oriented client/server model

	Connectionless service
	Phases of the connectionless service
	Connectionless service using an example transaction system

	States and state transitions

	Advanced XTI(POSIX) concepts
	Asynchronous execution mode
	Managing multiple connections simultaneously and event- controlled operation

	Examples for XTI(POSIX)
	Client in the connection-oriented service
	Server in the connection-oriented service
	Datagram-oriented transaction server
	Event-controlled server

	XTI trace
	Setting the XTITRACE environment variable parameters
	Outputting trace information with the xtitrace program

	XTI(POSIX) library functions
	Description format
	Function name - brief functional description

	Overview of functions
	Functions
	t_accept() - accept connection
	t_alloc() - reserve memory for library structure
	t_bind() - assign a transport endpoint an address
	t_close() - close transport endpoint
	t_connect() - request connection
	t_error() - output error message to the standard output
	t_free() - release library structure memory
	t_getinfo() - get protocol-specific information
	t_getprotaddr() - get protocol addresses
	t_getstate() - get current state
	t_listen() - wait for connection requests
	t_look() - get current event
	t_open() - set up a transport endpoint
	t_optmgmt() - manage transport endpoint options
	t_rcv() - receive data over a connection
	t_rcvconnect() - get the status of a connection request
	t_rcvdis() - get the cause of a connection shutdown
	t_rcvrel() - confirm a connection shutdown request
	t_rcvudata() - receive datagrams
	t_rcvuderr() - get error information about a sent datagram
	t_snd() - send data over a connection
	t_snddis() - refuse or abort a connection
	t_sndrel() - initiate an orderly connection shutdown
	t_sndudata() - send datagrams
	t_strerror() - output error message
	t_sync() - synchronize transport library
	t_unbind() - deactivate transport endpoint

	Compiling and linking a communications application
	Compiling and linking with the POSIX shell
	Compiling and linking in BS2000/OSD

	Configuration and configuration files
	inetd daemon program
	Configuration files
	inetd.conf - available servers
	protocols - available protocols
	services - available services
	networks - reachable networks
	hosts - reachable hosts

	Dependencies of the BS2000/OSD BCAM transport system

	Compatibility restrictions
	Related publications
	Comments, Suggestions, Corrections
	Index
	A
	B - C
	D - E
	F - G
	H - I
	J - L
	M - O
	P - R
	S
	T
	U - X

