
Loading Shared Objects in POSIX 1

1 General remarks
This is the interface description for shared objects (SO) used with POSIX in BS2000.

This version is based on the interfaces used by the existing BS2000/OSD V5.0 and higher.
The only dependency is on the BLSSERV V2.5A subsystem.

Please consider the following limitations and restrictions:

The sum of the number of loaded program contexts plus the number of loaded object
contexts is limited to 192. This is dependent on the number of 200 Link-and-Load systems
contexts currently available.

New functions

In addition to an error correction function, the update comprises the following new functions:

● A message with the name and type of the unresolved external link is output for each
unresolved external link.

2 Loading Shared Objects in POSIX

Definition of a shared object General remarks

1.1 Definition of a shared object

The following types of elements generated by the compiler itself or from the compiler output
have been supported in POSIX hitherto:

a.out executable file (type X)

file.o object generated by the compiler (type O)

libx.a ar library (type AR; normally containing types X and O)

We now introduce another object, called a “shared object”. The name “shared object” is
derived from UNIX. Other names for shared objects that we also use in certain contexts are
“dynamic library” or “shared library” as in UNIX.

In POSIX, a shared object always has the following structure:

object.so so element (type SO; built from types X, O, AR and SO itself, and
from PLAM libraries)

While generating a shared object, libraries (of type SO and AR) and files with .o extensions
can be specified. To use executable files (type X) while generating a shared object, these
files must be renamed (see page 10).

Supporting shared objects in POSIX

Shared objects can be reloaded in POSIX while running using an overlay technique
(program controlled reloading). The functions dlopen(), dlclose(), dlsym(), dlerror(), and
dladdr() are provided for reloading (see chapter 2).

In POSIX automatic reloading (like classic BS2000) is only possible for modules of the
runtime system CRTE.

Unlike UNIX, POSIX does not support the automatic binding of objects during runtime and
the shared coding can not be used by several programs in a shared memory.

Organization (Structure) of a shared object

Physically, a shared object is an ar library which contains object modules that are part of
the shared object and a description of the shared object itself. The description of the shared
object takes the form of a text file in the ar library. This text file is generated during the gener-
ation of the shared object (with the genso command).

Loading Shared Objects in POSIX 3

General remarks Definition of a shared object

The processing of this file is processed during dlopen() is done in the following way:

– If no dependent libraries are found, the o files are loaded in reverse order as specified
in the file.

– If a dependent shared object exists, then a new list is generated. The dependent shared
object is appended to the end of this list.

– Another search is then made for the first dependent object in the new list. This may be
a dependent object of the first dependent object.

This is repeated until all dependent objects (and dependent objects of these objects, ...) are
replaced by listed o files. Checks are made to avoid recursion. Finally, this results in a list
containing only o files which will then be loaded as specified in the list. This resolution of an
so file is what is described as dependency ordering in the description of dlopen().
The handling of ar files is the same as for o files; an ar file is considered as an ordered set
of o files.

Example

The following table contains a typical example of such a description. This is the description
of the example 1 of the genso command (see page 12):

Shared object description for file libtest21.so:

DLL? /posix315/bachmann/sharedlib/examples/libtest21.so
ofile_GM_.o
/posix315/bachmann/sharedlib/examples/test21.o
###SO### /posix315/bachmann/sharedlib/examples/libtest22.so
libtest22.so
###SO### /posix315/bachmann/sharedlib/examples/libtest23.so
libtest23.so
-X lang=c

Shared object description for file libtest22.so:

DLL? /posix315/bachmann/sharedlib/examples/libtest22.so
ofile_GM_.o
/posix315/bachmann/sharedlib/examples/test22.o
###SO### /posix315/bachmann/sharedlib/examples/libtest24.so
libtest24.so
-X lang=c

Shared object description for file libtest23.so:

DLL? /posix315/bachmann/sharedlib/examples/libtest23.so
ofile_GM_.o
/posix315/bachmann/sharedlib/examples/test23.o
-X lang=c

4 Loading Shared Objects in POSIX

Definition of a shared object General remarks

The elements of this shared object have the following appearance when they are processed
by dlopen():

The reference to libtest22.so in the description of libtest21.so is replaced by the description
of libtest22.so in a first step. This produces the following arrangement:

This procedure is repeated until finally the following is produced.

The elements are then loaded in this order.

Shared object description for file libtest24.so:

DLL? /posix315/bachmann/sharedlib/examples/libtest24.so
ofile_GM_.o
/posix315/bachmann/sharedlib/examples/test24.o
-X lang=c

Object libtest21.so:

ofile_GM_.o (libtest21.so)
libtest22.so
libtest23.so

Object libtest22.so:

ofile_GM_.o (libtest22.so)
libtest24.so

Object libtest23.so:

ofile_GM_.o (libtest23.so)

Object libtest24.so:

ofile_GM_.o (libtest24.so)

ofile_GM_.o (libtest21.so)

ofile_GM_.o (libtest22.so)

libtest24.so

libtest23.so

ofile_GM_.o (libtest21.so)

ofile_GM_.o (libtest22.so)

ofile_GM_.o (libtest24.so)

ofile_GM_.o (libtest23.so)

Loading Shared Objects in POSIX 5

General remarks Generation of a shared object

1.2 Generation of a shared object

A shared object is generated by a special command: genso. The options and parameters are
as for cc.

Option/Parameter Description Used with

-B plam
-B ar

The options –L and -l bracketed between
thee options are interpreted so that PLAM
libraries can be processed. The new
option –m is also interpreted.

-B static
-B dynamic

Specifies, whether ar libraries or dynamic
libraries are used to generate shared
objects

Used only at
generation time

-B symbolic Indicator of resolution algorithm

-L directory Name the directory

-L bs2000-user-id Only valid between –B plam and –B ar.
Specifies the BS2000 user ID:

$ stands for TSOS

. (period) stands for the user ID
under which the application is
running.

%name when run, the user ID is taken
from the environment variable
name.

-l xxx Name of the library:
libxxx.a or libxxx.so

If -l xxx is specified between –B plam and
–B ar, xxx is the name of the BS2000
library.

-m member Only applies between –B plam and –B ar.
Specifies the name of the PLAM library
member (L member).

-o output Names the output.

-S low | high The contents of the shared object are
output on stdout. For low this is only the
current object, for high this is also all
shared objects still dependent on it.

6 Loading Shared Objects in POSIX

Generation of a shared object General remarks

Other familiar options from UNIX like -h name, -Kpic and -b are not supported.

The genso command generates the so file. If –Bsymbolic is not specified, then at generation
time the external links are solved so far as possible. The objects in the so file are linked into
a link-and-load module (one LLM). When the shared object is loaded, the shared object
itself gets the highest priority in resolving the references.

Priority rules to find a library:

Directories for libraries are searched with the following priority:

1. directories contained in the variable LD_LIBRARY_PATH

2. directories defined by –L option

3. the default directory /usr/lib

-X lang=c |
lang=c++ |
lang=cobol

Specifies the programming language of
the object to be dynamically loaded.
Mixed objects are possible.

Default value is c.

file.o o file used for generation

Option/Parameter Description Used with

Loading Shared Objects in POSIX 7

General remarks Functions on shared objects

1.3 Functions on shared objects

Functions that are processed on shared objects are:

1.4 Installation

The components which are necessary for the shared object support are automatically
installed during an initial installation or a delta installation of POSIX-BC.

These components are installed in the following default directories:

Please note, that libdl.a is not a shared library, but an ar library. This library must be stati-
cally linked to the program that uses the above interfaces, for example with
cc -o prog prog.c -ldl.

Name Description

dlopen()1

1 The functions __dlopen_ascii(), __dlsym_ascii(), __dladdr_ascii(), and __dlerror_ascii() are provided for the call in
an ASCII environment.

Open a shared object

dlclose() Close a shared object

dlsym()1 Get addresses within a shared object

dladdr()1 Get nearest symbol name for a given address in a shared object

dlerror()1 Diagnostic information about a preceding function call processed with error

Name of the component Installation directory Type

libdl.a /usr/lib ar library

genso /usr/bin command

dlfcn.h /usr/include header file

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

Loading Shared Objects in POSIX 9

2 dll interfaces in BS2000/OSD
This chapter describes the genso command, the dlopen(), dlclose(), dlsym(), dlerror() and
dladdr() functions and the dlfcn.h header file.

10 Loading Shared Objects in POSIX

genso dll interfaces in BS2000/OSD

genso - generates a shared object

The genso command generates shared objects.

Syntax /usr/bin/genso [options] [files]

Options

genso accepts some of the options used for the POSIX C compiler; other options are derived
from the ld command used on UNIX systems.

-L dir Adds dir directory to the list of directories in which genso searches for libraries.

The -L option must be specified before the -l option. The -L option is valid until a
new -L option is specified.

-L bs2000-user-id
Only in connection with –B plam: name of the BS2000 user ID.
The following specifications are possible:

$ stands for TSOS

. (period) stands for the user ID under which the application is running.

%name
if a BS2000 user ID is to be explicitly specified. The user ID must then be
written in the environment variable name.

-l xxx libxxx.a or libxxx.so will be used to generate a shared object. Which type of library is
actually used depends on the actual use of –Bs tatic and –B dynamic. If nothing is
specified, dynamic libraries have priority over static ones.

-l plam-library
Only in connection with –B plam: name of the BS2000 PLAM library.

-m member
Only in connection with –B plam: name of the BS2000 PLAM library member to be
processed.

-o output
The name of the shared object to be generated. The shared object is stored under
this name in the current directory. The extension of the file name should be .so; the
.so file extension is not added automatically to the file name. To avoid misunder-
standings, the suffixes .o and .a are rejected.

Loading Shared Objects in POSIX 11

dll interfaces in BS2000/OSD genso

-B plam
From now on, PLAM libraries are processed. To switch to ar or so libraries, –B ar
must be specified.

-B ar
If PLAM libraries have been processed, ar libraries or so libraries will be processed
from now on.

-S low | -S high
The contents of the shared object are output to stdout.

-S low only outputs the contents of the current shared object.

-S high in addition to the contents of the current shared object, outputs the
contents of all dependent objects.

-X lang=c | lang=c++ | lang=cobol
Specifies the programming language of the object to be loaded. Mixed objects are
possible. Default value is c.

-B static
When this option is given in the command line, static libraries (.a) have priority over
dynamic libraries (.so).

-B dynamic
When this option is given in the command line, dynamic libraries (.so) have priority
over static libraries (.a).

-B symbolic
Address resolution is effected when an object is loaded (via dlopen) and the
sequence of resolving addresses is

1. the loaded program a.out;

2. all shared objects loaded before the actual object is loaded (RTLD_GLOBAL)

3. the currently loaded object.

-B symbolic not specified.
The resolution is effected reverse order (3 - 2 - 1).

files Only file names with .o file extension can be used. Executable files must be
renamed if necessary.

Files can only be specified after all options.

12 Loading Shared Objects in POSIX

genso dll interfaces in BS2000/OSD

Exit status The following exit values are returned:

0 Successful generation

>0 An error occurred

File In the directory in which the output will be generated, a directory is temporarily generated
and will be deleted when the command terminates.

Environment
Directories for libraries are searched with the following priority:

1. directories contained in the variable LD_LIBRARY_PATH. If more than one directory is
specified, the directories must be separated by colons (without blanks!).

2. directories defined by –L option.

Example 1 4 Shared Libraries have to be generated: libtest21.so, libtest22.so, libtest23.so and libtest24.so.
The o files test21.o, test22.o, test23.o and test24.o are located in the current directory. The
shared objects libtest23.so and libtest24.so only comprise the o files test23.o and test24.o re-
spectively. The library libtest22.so consists of test22.o and the dependent shared object
libtest24.so; the library libtest21.so consists of test21.o and the dependent shared objects
libtest22.so and libtest23.so.

The following calls of genso are required to generate the shared objects:

genso -o libtest24.so test24.o

genso -o libtest23.so test23.o

genso -o libtest22.so -l test24 test22.o

genso -o libtest21.so -l test22 -l test23 test21.o

With the option –S, you can view the contents of a shared object.

$ genso -S low ./libtest21.so

analysis of shared object ./libtest21.so
shared object ./libtest21.so consists of
 Grossmodul ofile_GM_.o built of
 objectmodule /home/bach/dll/test/reihentest/test21.o
 dep. shared object libtest22.so (/home/bach/dll/test/reihentest/libtest22.so)
 dep. shared object libtest23.so (/home/bach/dll/test/reihentest/libtest23.so)
 option: -X lang=c

variable LD_LIBRARY_PATH
 /usr/lib
 /home/bach/dll/test/reihentest

Loading Shared Objects in POSIX 13

dll interfaces in BS2000/OSD genso

If you also wish to view the contents of the dependent libraries, –S high must be specified.

$ genso -S high ./libtest21.so

analysis of shared object ./libtest21.so
shared object ./libtest21.so consists of
 Grossmodul ofile_GM_.o built of
 objectmodule /home/bach/dll/test/reihentest/test21.o
 dep. shared object libtest22.so (/home/bach/dll/test/reihentest/libtest22.so)
 dep. shared object libtest23.so (/home/bach/dll/test/reihentest/libtest23.so)
 option: -X lang=c

analysis of shared object /home/bach/dll/test/reihentest/libtest22.so
shared object /home/bach/dll/test/reihentest/libtest22.so consists of
 Grossmodul ofile_GM_.o built of
 objectmodule /home/bach/dll/test/reihentest/test22.o
 dep. shared object libtest24.so (/home/bach/dll/test/reihentest/libtest24.so)
 option: -X lang=c

analysis of shared object /home/bach/dll/test/reihentest/libtest24.so
shared object /home/bach/dll/test/reihentest/libtest24.so consists of
 Grossmodul ofile_GM_.o built of
 objectmodule /home/bach/dll/test/reihentest/test24.o
 option: -X lang=c

analysis of shared object /home/bach/dll/test/reihentest/libtest23.so
shared object /home/bach/dll/test/reihentest/libtest23.so consists of
 Grossmodul ofile_GM_.o built of
 objectmodule /home/bach/dll/test/reihentest/test23.o
 option: -X lang=c

variable LD_LIBRARY_PATH
 /usr/lib
 /home/bach/dll/test/reihentest

Example 2 A shared object with the name libp1.so must be generated from the following components:

– from the member UNTEST1.O from the PLAM library $BACH.DL.LIB
– from all members of the ar library libar.a and the o file file1.o.

The generation command is called up under the ID $BACH, and has the following format:

genso -o libp1.so -B plam -L . -lDL.LIB -m UNTEST1.O -B ar -L . -l ar file1.o

Here, -B plam -L . -lDL.LIB indicates that DL.LIB is a PLAM library located in the user ID
under which genso is called up.

14 Loading Shared Objects in POSIX

genso dll interfaces in BS2000/OSD

If you view the contents of libp1.so, you will see:

$ genso -S low ./libp1.so

analysis of shared object ./libp1.so
shared object ./libp1.so consists of
 Grossmodul ofile_GM_.o built of
 objectmodule /home/bach/dll/newcommands/file1.o
 arlibrary /home/bach/dll/newcommands/libar.a with elements
 objectmodule arfile1.o
 objectmodule arfile2.o
 plam library dl.lib with elements
 UNTEST1.O
 option: -X lang=c

variable LD_LIBRARY_PATH
 /usr/lib
 /home/bach/dll/TEST/SHLIB
 /home/bach/dll/TEST/test/scripts

Loading Shared Objects in POSIX 15

dll interfaces in BS2000/OSD dlopen

dlopen - gains an access to a shared object file

Syntax #include <dlfcn.h>

void *dlopen(const char *file, int mode);

The function __dlopen_ascii() with the same parameters must be used for the call in an
ASCII environment.

Description
dlopen() makes a shared object file specified by file available to the calling program.

A successful dlopen() returns a handle which the caller may use on subsequent calls to
dlsym() and dlclose(). The value of this handle should not be interpreted in any way by the
caller.

file is used to construct a pathname to the object file:

– If file is beginning with a slash character, the file argument is used as the complete
filename.

– If file does not begin with a slash character, the variable LD_LIBRARY_PATH is used to
generate the complete filename together with file. LD_LIBRARY_PATH contains a list
of directories separated by colon. If this list is empty, the current working directory is
used.

– If the value of file is 0, dlopen() provides a handle on a global symbol object. This object
provides access to the symbols from an ordered set of objects consisting of the original
program image file, together with any objects loaded at program startup and the set of
objects loaded using a dlopen() operation together with the RTLD_GLOBAL flag. As the
latter set of objects can change during execution, the set identified by handle can also
change dynamically.

The mode parameter describes how dlopen() will operate upon file with respect to the
processing of relocations and the scope of visibility of the symbols provided within file.
When an object is brought into the address space of a process, it may contain references
to symbols whose addresses are not known until the object is loaded. These references
must be resolved before the symbols can be accessed. The mode parameter governs when
these relocations take place and may have the following values:

RTLD_LAZY The same behavior as RTLD_NOW

RTLD_NOW All necessary relocations are performed when the object is first loaded.
Each shared object together with its dependent objects is loaded in a Link-
and-load context of its own. In case of unresolved relocations no warning is
sent; dlopen() does not end with an error.

16 Loading Shared Objects in POSIX

dlopen dll interfaces in BS2000/OSD

Any object loaded by dlopen() that requires relocations against global
symbols can reference the symbols in the original process image file, any
objects loaded at program startup, from the object itself as well as any other
object included in the same dlopen() invocation, and any objects that were
loaded in any dlopen() invocation and which specified the RTLD_GLOBAL
flag.

To determine the scope of visibility for the symbols loaded with a dlopen()
invocation, the mode parameter should be bitwise or'ed with one of the
following values:

RTLD_GLOBAL
The object's symbols are made available for the relocation processing of
any other object. In addition, symbol lookup using dlopen (0, mode) and an
associated dlsym() allows objects loaded with this mode to be searched.

RTLD_LOCAL The object's symbols are not made available for the relocation processing
of any other object.

If neither RTLD_GLOBAL nor RTLD_LOCAL is specified, then
RTLD_LOCAL is default value.

Note that once RTLD_GLOBAL has been specified, the object will maintain the
RTLD_GLOBAL status regardless of any previous or future specification of RTLD_LOCAL,
so long as the object remains in the address space (see dlclose()).

Symbols introduced into a program through calls to dlopen() may be used in relocation activ-
ities, for example. Symbols so introduced may duplicate symbols already defined by the
program or previous dlopen() operations.

The symbols introduced by dlopen() operations, and available through dlsym() are those that
are of type ENTRY shown by a VSVI call.

Return value
dlopen() returns NULL in the following cases:

– If the which is specified in file cannot be found
– file cannot be opened for reading
– the file object format is not dedicated (suitable) for processing by dlopen()
– if an error occurs during the process of loading file or relocating its symbolic references
– unresolved external links were found. In this case, the shared object is not processed

further.

The errno variable is not set. An error message (diagnostic information) will be available
through dlerror().

Loading Shared Objects in POSIX 17

dll interfaces in BS2000/OSD dlopen

 If the entries are indicated repeatedly, no error message is returned (no NULL
return value). In case of repeatedly indicated entries always the first entry is used.

If the environment variable LD_UNRESOLVED=YES is set, the shared onbjects will
be processed further even and if any unresolved external links are found (no NULL
return value).

The respective language-specific runtime system is loaded into the default context
before the shared object is loaded, and initialized. To do this, the runtime system
must be installed in BS2000 via IMON.

A message with the name and type of the external link (XDSECT, VCON or EX-
TERN) is output for each unresolved external link. Here up to 512 unresolved ex-
ternal links are taken into consideration. If there are more than 512 unresolved ex-
ternal links, a warning is also issued. In this way step-by-step corrections enable all
unresolved external links to be found and resolved.

Example 1 The following example illustrates how dlopen() can be used.

void *handle;

/* Open the object*/
handle = dlopen("./mylib.so",RTLD_LAZY + RTLD_GLOBAL);
if (handle == NULL) {
printf (error during dlopen, dlerror: %s\n”, dlerror());
exit(EXIT_FAILURE);
}

See also dlclose(), dlerror(), dlsym().

i

18 Loading Shared Objects in POSIX

dlclose dll interfaces in BS2000/OSD

dlclose - closes an object

Syntax #include <dlfcn.h>

int dlclose(void *handle);

dlclose() can also be called in an ASCII environment using identical syntax.
An own ASCII variant is not necessary since dlclose() uses no strings.

Description
dlclose() is used to inform the system that the object referenced by a handle returned from a
previous dlopen() invocation is no longer needed by the application.

Once an object has been closed using dlclose(), an application should assume that its
symbols are no longer available to dlsym(). All objects loaded automatically as a result of
invoking dlopen() on the referenced object are also closed.

Return value
If the referenced object was successfully closed, dlclose() returns 0.

If the object could not be closed, or if handle does not refer to an open object, dlclose()
returns a non-zero value.

The errno variable is not set. An error message (diagnostic information) will be available
through dlerror().

Application usage
The application should employ a handle returned from a dlopen() invocation only within a giv-
en scope bracketed by the dlopen() and dlclose() operations. Multiple calls to dlopen() refer-
encing the same object may return the same object for handle. Applications are also free to
re-use a handle. For these reasons, the value of a handle must be treated as an opaque ob-
ject by the application, used only in calls to dlsym() and dlclose().

For C++, language-specific finalizations are performed when the shared object is closed:

dlclose() marks the addressed shared object as being no longer accessible. The object is
only physically unloaded if there are no other shared objects which have or could have
references to this object.

Loading Shared Objects in POSIX 19

dll interfaces in BS2000/OSD dlclose

Example 1 The following example illustrates how dlclose() can be used.

void *handle;

int ret;
/* Close the object */
if ((ret = dlclose(handle)) != 0) {

printf (error during dlclose, ret: %d dlerror: %s\n”, ret, dlerror());
exit(EXIT_FAILURE);

}

See also dlerror(), dlopen(), dlsym().

20 Loading Shared Objects in POSIX

dlsym dll interfaces in BS2000/OSD

dlsym - obtains the address of a symbol from a dlopen() object

Syntax #include <dlfcn.h>

void *dlsym(void *handle, const char *name);

The function __dlsym_ascii() with the same parameters must be used for the call in an ASCII
environment.

Description
dlsym() allows a process to obtain the address of a symbol defined within an object made
accessible through a dlopen() call.

handle determines the search strategy. For handle the following entries are possible:

– The value that is returned by a dlopen() call and which has not been released since then
by a dlclose() call.

– RTLD_DEFAULT
All objects are searched in the chronological sequence of their loading.

– RTLD_NEXT
This only searches objects that were loaded after the object in which the dlsym() call was
performed.

– RTLD_SELF
The object from which the call dlsym() is placed is searched first. All objects loaded af-
terwards are searched next.

name is the name of the symbol as character string.

Return value
If handle does not refer to a valid object, or if the named symbol cannot be found within any
of the objects associated with handle, dlsym() will return NULL.

Note, that capitalization and the replacement of ’_’ through ’$’ are defined during the
compiling of the objects (with corresponding options of the cc command).

The errno variable is not set. An error message (diagnostic information) will be available
through dlerror().

Loading Shared Objects in POSIX 21

dll interfaces in BS2000/OSD dlsym

Example 1 The following example shows how one can use dlopen() and dlsym() to access either func-
tion or data objects. For simplicity, error checking has been omitted.

void *handle;
int *iptr, (*fptr)(int);

/* Opening the appropriate object*/
handle = dlopen("/usr/home/me/libfoo.so.1",RTLD_LAZY);

/* Searching the address of functions and data objects*/
fptr = (int (*)(int))dlsym(handle, "my_function");
iptr = (int *)dlsym(handle, "my_object");

/* Calling the function and handing over the integer value as a
parameter*/
(*fptr)(*iptr);

See also dlclose(), dlerror(), dlopen().

22 Loading Shared Objects in POSIX

dlerror dll interfaces in BS2000/OSD

dlerror - gets diagnostic information

Syntax #include <dlfcn.h>

char *dlerror(void);

The function __dlerror_ascii() with the same parameters must be used for the call in an
ASCII environment.

Description
dlerror() returns a null-terminated character string (with no trailing newline) that describes
the last error that occurred during dynamic linking processing. If no dynamic linking errors
have occurred since the last invocation of dlerror(), dlerror() returns NULL. Thus, invoking
dlerror() a second time, immediately following a prior invocation, will result in NULL being
returned.

Return value
If successful, dlerror() returns a null-terminated character string. Otherwise, NULL is re-
turned.

The errno variable is not set.

Application usage
The messages returned by dlerror() may reside in a static buffer that is overwritten on each
call to dlerror(). Application code should not write to this buffer. Programs wishing to pre-
serve an error message should make their own copies of that message.

See also dlclose(), dlopen(), dlsym().

Loading Shared Objects in POSIX 23

dll interfaces in BS2000/OSD dladdr

dladdr - translates an address to symbolic information

Syntax #include <dlfcn.h>

int dladdr(void *address, struct Dl_info *dlip);

The function __dladdr_ascii() with the same parameters must be used for the call in an ASCII
environment.

Description
dladdr() determines if the specified address is located within one of the mapped objects that
make up the current applications address space. An address is deemed to fall within a
mapped object when it is between the base address and the end address of that object. If
a mapped object fits these criteria, the symbol table made available to the dynamic linker is
searched to locate the nearest symbol to the specified address. The nearest symbol is one
that has a value less than or equal to the required address.

The Dl_info structure must be preallocated by the user. The structure members are filled in
by dladdr() based on the specified address.
The Dl_info structure includes the following members:

const char * dli_fname;
void * dli_fbase;
const char * dli_sname;
void * dli_saddr;

Descriptions of these members appear below:

Return value
If the specified address cannot be matched to a mapped object, a 0 is returned. Otherwise,
a non-zero return is made and the associated Dl_info elements are filled.

The errno variable is not set. An error message (diagnostic information) will be available
through dlerror().

Element Meaning

dli_fname Contains a pointer to the filename of the containing object.

dli_fbase Contains the base address of the containing object.

dli_sname Contains a pointer to the symbol name nearest to the specified address.
This symbol either has the same address or is the nearest symbol with a
lower address.

dli_saddr Contains the actual address of the above symbol.

24 Loading Shared Objects in POSIX

dladdr dll interfaces in BS2000/OSD

Note The Dl_info pointer elements point to addresses within the mapped objects. These address-
es may become invalid if objects are removed prior to these elements being used (see
dlclose()). If no symbol is found to describe the specified address, both the dli_sname and
dli_saddr members are set to 0.

The element dli_fbase of the structure Dl_info is not set and always has the value 0.

Example 1 void *handle;
int symboladdr;
int ret;
struct Dl_info obj_info;

/* For reasons of simplicity error traps have been omitted */

/* Open library */
handle = dlopen("mydynlib.so", RTLD_NOW | RTLD_GLOBAL);

/* Determine the address of the entry symbolname */
symboladdr = dlsym(handle, "symbolname");

/* What symbol is located at an offset of 8KByte from the symbol just
determined? */
symboladdr += 8192;

if((ret = dladdr((void *)symboladdr, (struct Dl_info *) &obj_info)) == 0) {
/* error */
 printf("dladdr() failed for address %08X\n", symboladdr);
 fprintf("dlerror(): %s\n", dlerror());
}

else {
/* success */
 printf("dladdr:\n
 \tdli_fname %s\n
 \tdli_fbase %08X\n
 \tdli_sname %s\n
 \tdli_saddr %08X\n",
 obj_info.dli_fname,
 (int)obj_info.dli_fbase,
 obj_info.dli_sname,
 (int)obj_info.dli_saddr);
}

See also dlclose(), dlerror(), dlopen().

Loading Shared Objects in POSIX 25

dll interfaces in BS2000/OSD dlfcn.h

dlfcn.h - header for dynamic linking

Syntax #include <dlfcn.h>

Description
The dlfcn.h header defines macros for use in the dlopen() construction of a mode argument.
In addition, dlfcn.h contains structures and prototypes of the function calls.

/***
* *
* Copyright (c) 2001 Fujitsu Siemens Computers GmbH *
* ALL RIGHTS RESERVED *
* *
***/

#ifndef _DLFCN_H
#define _DLFCN_H

#ident "@(#)$Header: dlfcn.h 1.3 2002/12/19 $ SNI"

/* Copyright (c) 1988 AT&T */
/* All Rights Reserved */

/* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T */
/* The copyright notice above does not evidence any */
/* actual or intended publication of such source code. */

/* Bachmann 98-12-01 */
/* etpnd=001 */
/* 02-07-10 new RTLD-defines for dlsym */
/* etpnd = 002 */
/* 02-11-17 support of ascii encoding */

#ifdef __cplusplus
extern "C" {
#endif

/* evtl. Standardwert fuer Zeichendarstellung festlegen */
#if defined(_LITERAL_ENCODING_ASCII)
if (_LITERAL_ENCODING_ASCII - 0 == 1) && !defined(_ASCII_SOURCE)
define _ASCII_SOURCE 1 /*automatische Umsetzung*/
endif
#endif
#if defined(_ASCII_SOURCE)
if (_ASCII_SOURCE - 0 != 0) && (_ASCII_SOURCE - 0!= 1)
error unsupported _ASCII_SOURCE
endif
#else

26 Loading Shared Objects in POSIX

dlfcn.h dll interfaces in BS2000/OSD

define _ASCII_SOURCE 0
#endif

/* declarations used for dynamic linking support routines */

/* support for dladdr */

struct Dl_info {
 const char * dli_fname;
 void * dli_fbase;
 const char * dli_sname;
 void * dli_saddr;
};

#ifdef __STDC__
extern void *__dlopen_ascii(const char *, int);
extern void *__dlsym_ascii(void *, const char *);
extern char *__dlerror_ascii(void);
extern int __dladdr_ascii(void *, struct Dl_info *);
extern void *dlopen(const char *, int);
extern void *dlsym(void *, const char *);
extern int dlclose(void *);
extern char *dlerror(void);
extern int dladdr(void *, struct Dl_info *);
#if (_ASCII_SOURCE - 0 == 1)
ifdef _MAP_NAME
define dlopen __dlopen_ascii
define dlsym __dlsym_ascii
define dlerror __dlerror_ascii
define dladdr __dladdr_ascii
else
define dlopen(_n, _f) __dlopen_ascii(_n, _f)
define dlsym(_h, _s) __dlsym_ascii(_h, _s)
define dlerror() __dlerror_ascii()
define dladdr(_v, _i) __dladdr_ascii(_v, _i)
endif
#endif /* _ASCII_SOURCE == 1 */
#else
extern void *dlopen();
extern void *dlsym();
extern int dlclose();
extern char *dlerror();
extern int dladdr();
#endif

Loading Shared Objects in POSIX 27

dll interfaces in BS2000/OSD dlfcn.h

/* valid values for mode argument to dlopen */

#define RTLD_LAZY 1 /* lazy function call binding */
#define RTLD_NOW 2 /* immediate function call binding */
#define RTLD_GLOBAL 4 /* symbols in this dlopen’ed obj are visible */
 /* to other dlopen’ed objs */
#define RTLD_LOCAL 8 /* symbols in this dlopen’ed obj are */
 /* invisible to other dlopen’ed objs */

#define RTLD_MAIN_UPPERCASE 0x10 /* uppercase names in main program */
#define RTLD_MAIN_DOLLAR 0x20 /* dollar for underscore in names */

/*
** new defines for dlsym
**
** RTLD_DEFAULT searches all objects loaded
** RTLD_NEXT searches all objects loaded after the object the call comes from
** RTLD_SELF searches all objects loaded after the object the call comes from
** including this object as the first one
**
*/

#define RTLD_DEFAULT (void *)(-2)
#define RTLD_NEXT (void *)(-1)
#define RTLD_SELF (void *)(-3)

#ifdef __cplusplus
}
#endif

#endif /* _DLFCN_H */

See also dlopen(), dlclose(), dlsym(), dlerror().

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

Loading Shared Objects in POSIX

Contents
1 General remarks . 1
1.1 Definition of a shared object . 2
1.2 Generation of a shared object . 5
1.3 Functions on shared objects . 7
1.4 Installation . 7

2 dll interfaces in BS2000/OSD . 9
genso - generates a shared object . 10
dlopen - gains an access to a shared object file . 15
dlclose - closes an object . 18
dlsym - obtains the address of a symbol from a dlopen() object 20
dlerror - gets diagnostic information . 22
dladdr - translates an address to symbolic information . 23
dlfcn.h - header for dynamic linking . 25

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

Loading Shared Objects in POSIX

Loading Shared Objects in POSIX
(BS2000/OSD)

Support of the functions dlopen, dlclose, dlsym,
dlerror and dladdr

Edition: March 2005

File: dynlnk.pdf

Copyright © Fujitsu Siemens Computers GmbH, 2005.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

This manual was produced by
cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

http://www.cognitas.de

Comments on POSIX-BC
Loading Shared Objects in POSIX

Loading Shared Objects in POSIX

Fujitsu Siemens computers GmbH
User Documentation
81730 Munich
Germany

Fax: 0 700 / 372 00000

e-mail: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Comments
Suggestions
Corrections

✁

Submitted by

mailto:manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	General remarks
	Definition of a shared object
	Generation of a shared object
	Functions on shared objects
	Installation

	dll interfaces in BS2000/OSD
	genso - generates a shared object
	dlopen - gains an access to a shared object file
	dlclose - closes an object
	dlsym - obtains the address of a symbol from a dlopen() object
	dlerror - gets diagnostic information
	dladdr - translates an address to symbolic information
	dlfcn.h - header for dynamic linking

	Comments, Suggestions, Corrections

