
Edition March 2007

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

a
tio

ns
sy

st
e

m
e

A
G

 1
9

95

P
fa

d:
 F

:\
gf

is
ch

er
\U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

01
\e

n
\u

ni
co

d
e_

e.
vo

r

Unicode in BS2000/OSD
Introduction

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to
manuals@fujtsu-siemens.com.

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Siemens Computers GmbH 2007.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@fujitsu-siemens.com
http://www.cognitas.de

U41646-J-Z125-1-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
28

. M
a

rc
h

20
07

S

ta
nd

 1
6:

24
.5

4
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

ht
sm

an
u

al
_0

60
60

0
1\

en
\u

ni
co

d
e_

e.
iv

z

Contents

1 Introduction . 7

1.1 Target group . 7

1.2 Concept of the manual . 8

2 Overview . 9

2.1 What is Unicode? . 9

2.2 Motivation for Unicode support . 10

3 Unicode encodings . 13

3.1 UTF-8 . 15

3.2 UTF-EBCDIC (UTFE) . 17

3.3 UTF-16 . 22

3.4 UTF-32 . 22

3.5 Normalization . 23

3.6 Sort sequence . 24

4 Unicode in BS2000/OSD . 27

4.1 Basics of Unicode support in BS2000/OSD . 27

4.2 Overview of the affected interfaces . 29

4.3 Configuring the terminal emulation MT9750 . 32

Contents

 U41646-J-Z125-1-76

5 Unicode adjustments in BS2000 applications . 35

5.1 Character handling in BS2000/OSD (XHCS) . 36

5.2 Representing and processing Unicode characters with COBOL 37

5.3 Advanced Interactive Debugger (AID) . 38

5.4 Storing, searching for and managing Unicode data in databases 39
5.4.1 Unicode concept in SESAM/SQL . 39
5.4.2 Unicode concept in Oracle . 41

5.5 Support for Unicode fields in formats . 43

5.6 Outputting print jobs with Unicode data . 45
5.6.1 Central printers (AFP-IPDS) . 45
5.6.2 Decentralized printers (RSO) . 45

5.7 Web integration of Unicode-capable applications (WebTransactions) 47

6 Unicode adjustments for file processing . 49

6.1 Creating and editing Unicode files (EDT) . 50

6.2 Converting and normalizing Unicode files (PERCON) 51

6.3 Sorting Unicode fields (SORT) . 51

6.4 Transferring Unicode files (openFT) . 52

7 Tips and tricks . 53

7.1 Tips on SESAM/SQL . 53

7.2 Tips on LMS . 54

8 Appendix . 57

8.1 Unicode products in BS2000/OSD: overview and dependencies 57

8.2 Extended BS2000 macros . 59

8.3 Coded Character Set Names (CCSN): default values 61

Contents

U41646-J-Z125-1-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
28

. M
a

rc
h

20
07

S

ta
nd

 1
6:

24
.5

4
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

ht
sm

an
u

al
_0

60
60

0
1\

en
\u

ni
co

d
e_

e.
iv

z

8.4 Useful code tables . 63
8.4.1 Conversion from ISO8859 to EBCDIC (BS2000/OSD) and vice versa 63
8.4.2 Unicode characters convertible to IS08859.n . 65

Glossary . 89

Abbreviations . 93

Tables . 95

Related publications . 97

Index . 99

 U41646-J-Z125-1-76

U41646-J-Z125-1-76 7

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

55
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

1

1 Introduction
Unicode combines all worldwide text symbols into a single character set. Unlike earlier
coding systems, such as 7- or 8-bit encoding, Unicode is also independent of different
vendors, systems and countries.

In the course of the increasing internationalization of software programs, and because more
and more customers are opening up their BS2000/OSD applications to the Internet, which
uses Unicode encoding, the Unicode character set is gaining in importance also within
BS2000/OSD and its applications.

1.1 Target group

This Overview Guide is aimed at application programmers and system administrators who
want to get an idea of what Unicode support is offered them in BS2000/OSD and which
BS2000 components they need for this.

This guide does not replace the manuals for the individual products.

Concept of the manual Introduction

8 U41646-J-Z125-1-76

1.2 Concept of the manual

Chapter 2 provides a brief overview of Unicode and the motivation for Unicode support in
BS2000/OSD.

Chapters 3 and 4 provide basic definitions and concepts relating to Unicode, which apply
to all BS2000/OSD products affected by Unicode and which supplement their respective
manuals.

Chapters 5 and 6 then explain the precise nature of the Unicode support in key individual
applications and file-processing programs in BS2000/OSD.

In addition, chapter 7 offers tips and tricks for converting BS2000/OSD applications to
Unicode.

In the appendix you will find useful tables to help you with Unicode conversion.

The manual is completed by a glossary, lists of abbreviations, tables, related publications
and an index.

U41646-J-Z125-1-76 9

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

56
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

2

2 Overview

2.1 What is Unicode?

Unicode is an alphanumeric character set, standardized by the International Standard-
ization Organization (ISO) and the Unicode Consortium, for the encoding of characters,
letters, numbers, punctuation marks, syllable characters, special characters and
ideograms. An ideogram is a graphic symbol that represents an idea and in so doing uses
symbolic characters for abstract concepts or is composed of two or more pictograms.
Unicode combines all worldwide text symbols in a single character set.

Unicode is universal

Unicode thus contains not only the letters of the Latin alphabet with all its country-specific
peculiarities, but also the Greek, Cyrillic, Arabic, Hebrew and Thai alphabets as well as the
so-called CJK scripts – the various Chinese, Japanese and Korean scripts. It also encodes
mathematical, commercial and technical special characters. Unicode is therefore
independent of languages and scripts and thus supports internationalization, i.e. the devel-
opment of software programs which can be easily adapted to all possible languages and
cultures. Conversely, Unicode also enables localization, i.e. the adjustment of software to
"local" linguistic and cultural conditions without changing the program. This allows the
setting of country-specific properties and the uniform display of symbols which are linked
with base characters (normalization of diacritical marks).

Multibyte character sets

Before Unicode, most encoding systems represented characters using 7 or 8 bits, which
limited the number of characters of the corresponding character sets to 128 or 256. Among
the best-known are ASCII and EBCDIC, which both exist in different national and in some
cases also vendor-specific forms.

Unicode, on the other hand, is vendor- and system-independent. It uses character sets
(also known as coded character sets or code sets) of 2 or 4 bytes to encode each text
character, which the ISO refers to as UCS-2 (Universal Character Set 2) or UCS-4.

Motivation for Unicode support Overview

10 U41646-J-Z125-1-76

In UCS-2 the first 256 of the maximum 65,536 characters correspond to the characters of
the character set ISO Latin-1 (ISO 8859-1). ISO Latin-1 is widely used and combines the
characters of western European languages.

UTF-8 and UTF-16

Instead of the name UCS-2 defined by the ISO, the name UTF-16 (UCS Transformation
Format 16-bit) is often used and is a standard defined by the Unicode Consortium. UTF-16
also uses characters of 4 bytes in length (surrogates), which extends the number of
characters to more than 1.1 million.

As well as UTF-16, UTF-8 (UCS Transformation Format 8-bit) is also widely used. UTF-8
represents every Unicode character in 1 to 4 bytes, depending on its position. The first 128
characters of UTF-8 correspond to ASCII.

For detailed information, visit the website of the Unicode Consortium at:
http://www.unicode.org/standard/WhatIsUnicode.html.

2.2 Motivation for Unicode support

The standard character set in BS2000/OSD is EBCDIC.DF.03IRV (EDF03IRV), a 7-bit
character set whose characters correspond to the ASCII 7-bit character set extended to
include the second control-character block of ISO8859-1. EDF03IRV contains only 95
printable characters.

You can extend it to 181 printable characters by introducing an 8-bit character set. This
extension allows you to set up character sets for specific language areas, but it is not suffi-
cient to map the different characters of all European languages, let alone all active
languages, in a single-byte character set. The 8-bit EBCDIC tables familiar from BS2000
are based on the characters of the corresponding IS08859 tables, even though not every
ISO8859-n table has an equivalent in BS2000/OSD.

http://www.unicode.org/standard/WhatIsUnicode.html

Overview Motivation for Unicode support

U41646-J-Z125-1-76 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

56
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

2

Applications in the Internet

More and more BS2000/OSD customers are opening up their BS2000/OSD applications to
the Internet. The character set used in the Internet is UTF-8. The language Java uses UTF-
16 to encode the data. Java applications and Java applets are linked to BS2000/OSD
databases via Java Database Connectivity (JDBC). It is anticipated that converting the data
from the Internet into single-byte encoding will not be sufficient in the future. Moreover, the
literal transfer of words from a non-Latin text into the Latin script (transliteration) is not
desired, or rather not possible because the relevant diacritical marks are not present in the
set character set.

European languages

If not just western European but also eastern European address data is to be stored in a
column of a database table, the pool of characters in an EBCDIC table is no longer suffi-
cient, because international postal regulations on how to write an address state that the
sender must specify the name and address of the recipient in the language of the country
of destination and with its characters. Equally, the destination in foreign addresses must be
written in capital letters in the notation of the destination country. This means that the
character set of the "Name", "Address" and "City" columns of the database table must be
able to accept Latin, Greek, Cyrillic etc. characters.

12 U41646-J-Z125-1-76

U41646-J-Z125-1-76 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

57
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

3

3 Unicode encodings
In Unicode, each character is assigned a number, a so-called code point.

A Unicode code point is generally given in the form U+n, where n consists of 4 to 6
hexadecimal numbers.

The set of all code points forms the so-called code space. The code space of the Unicode
standard V4 comprises 1,114,112 code points, most of which have not yet been assigned.
The code space is divided into so-called planes, each containing 65,536 code points. The
most important of these is Plane 0, the Basic Multilingual Plane (BMP), which covers the
code points from U+0000 through U+FFFF. The code points from U+0000 through U+00FF
correspond to those of ISO8859-1. Planes 15 and 16 are reserved by the Unicode standard
for the definition of private characters (Private Use Area).

Plane –
0FFF

–
1FFF

–
2FFF

–
3FFF

–
4FFF

–
5FFF

–
6FFF

–
7FFF

–
8FFF

–
9FFF

–
AFFF

–
BFFF

–
CFFF

–
DFFF

–
EFFF

–
FFFF

0 00000

1 10000

2 20000

3 30000

4 40000

5 50000

6 60000

7 70000

8 80000

9 90000

10 A0000

11 B0000

12 C0000

13 D0000

14 E0000

15 F0000

16 100000

Table 1: Code space of the Unicode standard V4

Unicode encodings

14 U41646-J-Z125-1-76

Key:

In Unicode support, it is of crucial importance how these code points are encoded in bytes.
The Unicode Consortium defines three different coding possibilities for this: UTF-8, UTF-16
and UTF-32.

A special case, which is not directly part of the Unicode standard, is UTF-EBCDIC, a
Unicode encoding for servers which use the EBCDIC character set.

The following sections provide details of the various coding possibilities as well as the
normalization and sorting of Unicode strings.

General scripts, symbols

Chinese, Japanese and Korean scripts (CJK)

Surrogates

Private Use Area

Composite characters

Unused code points

Tag characters

Unicode encodings UTF-8

U41646-J-Z125-1-76 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

57
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

3

3.1 UTF-8

UTF-8 uses a variable number of bytes for encoding the Unicode characters. The byte
representation of the ASCII characters remains unchanged. For all other characters, the
number of leading ones in the first byte indicates how many bytes belong to a character.
Subsequent bytes always begin with 10.

Example

UTF-8 has the advantage over older multibyte character sets that, with a character that is
encoded with multiple bytes, none of the individual bytes represents a valid character.

Because UTF-8 is ASCII-compatible, the memory requirement for character strings with
this type of Unicode encoding does not change in English. For all other Latin-x character
sets, texts become on average 10% longer. Greek, Cyrillic or Arabic characters lie in the
range between 128 and 2047 (U+00000080 through U+000007FF), making the memory
requirements for texts in these languages around 70% higher.

The characters of the east-Asian languages lie in the range above this and require approx-
imately 3 bytes per character.

UTF-8 Serialized bytes

Unicode range 1st byte 2nd byte 3rd byte 4th byte

U+000000 - U+00007F 0nnnnnnn

U+000080 - U+0007FF 110nnnnn 10nnnnnn

U+000800 - U+00FFFF 1110nnnn 10nnnnnn 10nnnnnn

U+010000 - U+10FFFF 11110nnn 10nnnnnn 10nnnnnn 10nnnnnn

Unicode character UTF-8

U+ 20AC (euro symbol) 11100010 10000010 10101100

UTF-8 Unicode encodings

16 U41646-J-Z125-1-76

For standard-compliant UTF-8 encoding, the shortest encoding always applies, i.e. the
code point U+7F must always be represented as 0111 1111 = x'7F' and not as the two-byte
encoding 1100 0001 1011 1111 = x'C1BF'.

This rule results in the following table of valid UTF-8-byte allocations.

0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-0 00 10 20 30 40 50 60 70 400-
43F

800-
FFF

1000-
3FFF

-1 01 11 21 31 41 51 61 71 440-
47F

1000-
1FFF

4000-
7FFF

-2 02 12 22 32 42 52 62 72 80-
BF

480-
4BF

2000-
2FFF

8000-
BFFF

-3 03 13 23 33 43 53 63 73 C0-
FF

4C0-
4FF

3000-
3FFF

C000-
FFFF

-4 04 14 24 34 44 54 64 74 100-
13F

500-
53F

4000-
4FFF

10000-
10FFFF

-5 05 15 25 35 45 55 65 75 140-
17F

540-
57F

5000-
5FFF

-6 06 16 26 36 46 56 66 76 180-
1BF

580-
5BF

6000-
6FFF

-7 07 17 27 37 47 57 67 77 1C0-
1FF

5C0-
5FF

7000-
7FFF

-8 08 18 28 38 48 58 68 78 200-
23F

600-
63F

8000-
8FFF

-9 09 19 29 39 49 59 69 79 240-
27F

640-
67F

9000-
9FFF

-A 0A 1A 2A 3A 4A 5A 6A 7A 280-
2BF

680-
6BF

A000-
AFFF

-B 0B 1B 2B 3B 4B 5B 6B 7B 2C0-
2FF

6C0-
6FF

B000-
BFFF

-C 0C 1C 2C 3C 4C 5C 6C 7C 300-
33F

700-
73F

C000-
CFFF

-D 0D 1D 2D 3D 4D 5D 6D 7D 340-
37F

740-
77F

D000-
DFFF

-E 0E 1E 2E 3E 4E 5E 6E 7E 380-
3BF

780-
7BF

E000-
EFFF

-F 0F 1F 2F 3F 4F 5F 6F 7F 3C0-
3FF

7C0-
7FF

F000-
FFFF

Table 2: Byte allocation in UTF-8 representation

Unicode encodings UTF-EBCDIC (UTFE)

U41646-J-Z125-1-76 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

57
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

3

Key:

3.2 UTF-EBCDIC (UTFE)

For systems which use EBCDIC, the Unicode Consortium has a technical report which
proposes conversion of Unicode characters into EBCDIC:

The first step of the procedure described there extends the range of single-byte encoding
of UTF-8 Unicode characters to include the second control-character block (U+80 through
U+9F) and limits the range of subsequent bytes of a multibyte encoding to the range x'A0'
through x'BF'. The resulting encoding is called modified UTF-8 (UTF-8MOD).

In the second step, the standard conversion from IS08859-n to EBCDIC.DF.04.n is used to
transform the modified UTF-8 into UTF-EBCDIC (UTFE).

Single-byte encoding (number matches the Unicode code point)

Subsequent byte of a multibyte representation

First byte of a two-byte encoding

First byte of a three-byte encoding

Outside the code space of Unicode V4.0 (not a valid UTF-8 encoding)

First byte of a four-byte encoding (outside the BMP)

UTF-8MOD Serialized bytes

Unicode range 1st byte 2nd byte 3rd byte 4th byte 5th byte

U+000000 - U+00007F 0nnnnnnn

U+000080 - U+00009F 100nnnnn

U+0000A0 - U+0003FF 110nnnnn 101nnnnn

U+000400 - U+003FFF 1110nnnn 101nnnnn 101nnnnn

U+004000 - U+03FFFF 11110nnn 101nnnnn 101nnnnn 101nnnnn

U+040000 - U+10FFFF 1111100n 101nnnnn 101nnnnn 101nnnnn 101nnnnn

UTF-EBCDIC (UTFE) Unicode encodings

18 U41646-J-Z125-1-76

Example

The resulting single-byte range of the UTFE encoding (see table 4 on page 21) corre-
sponds to the character set EBCDIC.DF.03IRV (EDF03IRV), the standard character set in
BS2000/OSD. Unlike the other Unicode encodings, UTFE can be parsed by all
BS2000/OSD applications which are restricted to EDF03IRV. This applies particularly to
BS2000/OSD itself. A BS2000/OSD command only ever contains characters from the
single-byte range of UTFE. If a character from the multibyte range is included in the input
string, a syntax error is correctly identified. All control characters are also contained in the
single-byte range.

 This conversion deviates from the proposal of the technical report of the Unicode
standard, because the EBCDIC encoding in BS2000/OSD and in z/OS are not
identical. This means that the UTFE encoding in ORACLE does not correspond to
that of BS2000/OSD.

However, because both are based on the UTF-8MOD encoding, one form can
easily be converted into the other via a suitable conversion table.

Unicode character UTF-8MOD UTF-EBCDIC

U+ 20AC (euro symbol) 11101000 10100101 10101100
E8 A5 AC 80 B2 BA

i

Unicode encodings UTF-EBCDIC (UTFE)

U41646-J-Z125-1-76 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

57
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

3

For a standard-compliant UTF-8MOD encoding, the shortest encoding always applies, i.e.
the code point U+7F can, according to the above schema, only be represented by 0111
1111 = x'7F', not by the two-byte encoding 1100 0011 1011 1111= x'C3BF'. This rule results
in the following table 3 with the valid UTF-8MOD byte allocations as a pre-stage to UTFE.

0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-0 00 10 20 30 40 50 60 70 80 90 200-
21F

4000-
7FFF

-1 01 11 21 31 41 51 61 71 81 91 220-
23F

400-
7FF

8000-
FFFF

-2 02 12 22 32 42 52 62 72 82 92 240-
25F

800-
BFF

10000-
17FFF

-3 03 13 23 33 43 53 63 73 83 93 260-
27F

C00-
FFF

18000-
1FFFF

-4 04 14 24 34 44 54 64 74 84 94 280-
29F

1000-
13FF

20000-
27FFF

-5 05 15 25 35 45 55 65 75 85 95 A0-
BF

2A0-
2BF

1400-
17FF

28000-
2FFFF

-6 06 16 26 36 46 56 66 76 86 96 C0-
DF

2C0-
2DF

1800-
1BFF

30000-
37FFF

-7 07 17 27 37 47 57 67 77 87 97 E0-
FF

2E0-
2FF

1C00-
1FFF

38000-
3FFFF

-8 08 18 28 38 48 58 68 78 88 98 100-
11F

300-
31F

2000-
23FF

40000-
FFFFF

-9 09 19 29 39 49 59 69 79 89 99 120-
13F

320-
33F

2400-
27FF

100000-
10FFFF

-A 0A 1A 2A 3A 4A 5A 6A 7A 8A 9A 140-
15F

340-
35F

2800-
2BFF

-B 0B 1B 2B 3B 4B 5B 6B 7B 8B 9B 160-
17F

360-
37F

2C00-
2FFF

-C 0C 1C 2C 3C 4C 5C 6C 7C 8C 9C 180-
19F

380-
39F

3000-
33FF

-D 0D 1D 2D 3D 4D 5D 6D 7D 8D 9D 1A0-
1BF

3A0-
3BF

3400-
37FF

-E 0E 1E 2E 3E 4E 5E 6E 7E 8E 9E 1C0-
1DF

3C0-
3DF

3800-
3BFF

-F 0F 1F 2F 3F 4F 5F 6F 7F 8F 9F 1E0-
1FF

3E0-
3FF

3C00-
3FFF

Table 3: Byte allocation in UTF-8MOD representation

UTF-EBCDIC (UTFE) Unicode encodings

20 U41646-J-Z125-1-76

Key for table 3 and table 4:

Single-byte encoding

Second control-character block: single-byte encoding

Subsequent byte of a multibyte representation

First byte of a two-byte encoding

First byte of a three-byte encoding

First byte of a four-byte encoding

First byte of a five-byte encoding

Not a valid UTF-8MOD encoding

Unicode encodings UTF-EBCDIC (UTFE)

U41646-J-Z125-1-76 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

57
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

3

The following table 4 shows the byte allocation in UTF-EBCDIC representation (UTFE).
This byte allocation is the result of converting UTF-8MOD to UTFE by means of the
standard conversion from IS08859-n to EBCDIC.DF.04.n.

The single-byte range of this UTFE encoding corresponds to the standard character set in
BS2000/OSD (EBCDIC.DF.03IRV).

0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-0 00 01 02 03 85 09 86 7F 87 8D 8E 0B 0C 0D 0E 0F

-1 10 11 12 13 8F 92 08 97 18 19 9C 9D 1C 1D 1E 1F

-2 80 81 82 83 84 0A 17 1B 88 89 8A 8B 8C 05 06 07

-3 90 91 16 93 94 95 96 04 98 99 9A 9B 14 15 9E 1A

-4 20 A0 800-
BFF

1000-
13FF

E0 400-
7FF

C00-
FFF

1400-
17FF

1C00-
1FFF

8000-
FFFF

60 2E 3C 28 2B 7C

-5 26 2400-
27FF

2800-
2BFF

2C00-
2FFF

2000-
23FF

3400-
37FF

3800-
3BFF

3C00-
3FFF

3000-
33FF

3E0-
3FF

21 24 2A 29 3B 9F

-6 2D 2F C2 C4 C0 C1 C3 A0-BF E0-FF 220-
23F

5E 2C 25 5F 3E 3F

-7 100000
-

10FFFF

120-
13F

140-
15F

160-
17F

100-
11F

1A0-
1BF

1C0-
1DF

1E0-
1FF

180-
19F

A8 3A 23 40 27 3D 22

-8 300-
31F

61 62 63 64 65 66 67 68 69 AB BB 4000-
7FFF

FD FE B1

-9 B0 6A 6B 6C 6D 6E 6F 70 71 72 AA BA 1800-
1BFF

B8 C0-DF A4

-A B5 AF 73 74 75 76 77 78 79 7A A1 BF 200-
21F

3A0-
3BF

3C0-
3BF

AE

-B A2 A3 A5 B7 A9 A7 B6 BC BD BE AC 5B 5C 5D B4 2E0-
2FF

-C F9 41 42 43 44 45 46 47 48 49 AD 20000
-

27FFF

38000
-

3FFFF

10000
-

17FFF

18000
-

1FFFF

30000
-

37FFF

-D A6 4A 4B 4C 4D 4E 4F 50 51 52 B9 FB FC 360-
37F

FA FF

-E 320-
33F

40000-
FFFFF

53 54 55 56 57 58 59 5A B2 D4 D6 D2 D3 D5

-F 30 1F 32 33 34 35 36 37 38 39 B3 7B 380-
39F

7D 340-
35F

7E

Table 4: Byte allocation in UTFE representation

UTF-16 Unicode encodings

22 U41646-J-Z125-1-76

3.3 UTF-16

In UTF-16, all Unicode characters between U+0000 and U+FFFF are encoded by 2 bytes.
The characters in this range are often also known as the 2-byte Universal Character Set
(UCS-2). All characters above U+FFFF are represented by 4 bytes, so-called surrogate
pairs.

To uniquely identify these surrogate pairs, the range between U+D800 and U+DFFF has
been reserved for them. The first 16 bits of such a pair always begin with x’110110’ and the
second with x’110111’. The remaining bits of the character to be represented are distributed
over the remaining positions as in UTF-8.

Therefore, characters which are encoded with UTF-16, like those in UTF-8, do not have a
fixed length. In practice, however, 2 bytes are sufficient. Microsoft Windows and Java, for
example, support Unicode as 2-byte characters, i.e. UTF-16 without surrogate pairs (UCS-
2).

With this encoding you must also bear in mind how the processor arranges the bytes: With
Big Endian the most significant byte is located at the lowest memory address, while with
Little Endian the least significant byte is at the lowest memory address:

Little Endian is used, for example, by all Intel systems, Big Endian, for example, on SPARC,
by TCP/IP or the Java Virtual Machine.

UTF-16 doubles the text length for all common non-East-Asian languages.

Example

3.4 UTF-32

Every character of the Unicode standard is encoded directly as a 32-bit unit. This also
quadruples the memory requirement for European languages. With this encoding too, the
processor attribute Big Endian or Little Endian must be taken into account, see also section
“UTF-16”.

Because of its high memory requirements, UTF-32 does not yet play a very prominent role.

Unicode character Big Endian Little Endian

U+ 20AC (euro symbol) 00100000 10101100 10101100 00100000

Unicode encodings Normalization

U41646-J-Z125-1-76 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

57
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

3

3.5 Normalization

The encoding of a character in Unicode is not unique, i.e. there could be more than one
encoding for a character.

A typical example is the German umlauts. For the “Ä” there are the following Unicode
encodings: ’u+00C4’ and the combination of “A” (’u+0041’) and the umlaut symbol
(’u+0308’).

This characteristic of Unicode is very much a hindrance to programming and has therefore
resulted in the normalization functions DECOMPOSE and COMPOSE.

The DECOMPOSE function dismantles each “composite” character into its individual
components, i.e. the base character and the diacritical marks linked to it. The sequence of
the linked diacritical marks is strictly defined.

The COMPOSE function maps all code points which together produce a character into the
relevant code point.

The normalization process requires a great deal of computing power. Therefore
BS2000/OSD, like the SQL standard, assumes that the data is present in normalized, i.e.
compressed form.

If you are not sure whether the data exists in normalized form, you should perform a normal-
ization. In BS2000/OSD the normalization functions are offered via the component XHCS,
see also the XHCS (BS2000/OSD) manual. If the contents of a file are to be converted into
“composite” form, this can be done using the BS2000/OSD utility PERCON, see also the
PERCON V2.9A (BS2000/OSD) manual. Normalization in BS2000/OSD is limited to the
range of code points ’u+0000’ through ’u+2FFF’.

Example

The Unicode code point ’u+1ED6’ corresponds to the Latin upper-case letter “O” with
circumflex and tilde. This character can be produced by means of three Unicode code
points: ’u+00D4’ for “Ô” and ’u+0303’ for tilde, or ’u+004F’ for “O” and ’u+302’ for
circumflex and ’u+0303’ for tilde. The Unicode code-point sequence ’u+00D5’ for the
“Õ” with tilde and ’u+302’ for circumflex also produces this character. The only rule is
that the base character must come before the diacritical marks linked to it.

This means that the result of applying the DECOMPOSE function to the Latin upper-
case letter “O” with circumflex and tilde is the Unicode code-point sequence ’u+004F’,
’u+0302’, ’u+0303’, while the result of the COMPOSE function is ’u+1ED6’.

Sort sequence Unicode encodings

24 U41646-J-Z125-1-76

3.6 Sort sequence

In most programs, character strings are compared in binary form. The binary sort sequence
of the characters depends on their encoding:

● For all ISO8859 and Unicode encodings, the following applies:
Numbers (1-9) < Latin upper-case letters (A-Z) < Latin lower-case letters (a-z)

● For EBCDIC and UTFE, the following applies:
Latin lower-case letters (a-z) < Latin upper-case letters (A-Z) < numbers (1-9).

 If records contain data in both UTF-16 code and EBCDIC code, make sure that the
correct algorithm is used for sorting.

The Unicode standard describes a linguistic sorting algorithm, which performs comparisons
at several levels.

For this purpose, each character is assigned a collation element which describes the weight
(priority) of the character within the individual comparison level. Within each level, the
sequence is defined by numbers.

The so-called sort key of a string is formed by combining the numbers of each level into a
string. If the value on one level of a collation element is binary zero, this element is not used
to form the sort key on this level. Two strings are compared, level by level, via the sort key.
The first difference determines the result of the comparison.

In BS2000/OSD, sorting as far as level 3 is supported. The meanings of the individual levels
are shown in the following table.

At the highest level (level 1), the base characters are assigned valences, without the
influence of the subsequent characters and diacritical additions. At level 2, base characters
with diacritical additions, e.g. accents, tilde, are distinguished. If the strings being compared
are completely the same at level 1, differences at level 2 are brought to bear. If levels 1 and
2 do not produce a difference, at level 3 upper- and lower-case letters are also distin-
guished. Comparison is always from left to right.

Comparison level Description Example

Level 1 Base character role < roles < rule

Level 2 Accents role < rôle < roles

Level 3 Upper/lower case role < Role < rôle

i

Unicode encodings Sort sequence

U41646-J-Z125-1-76 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

57
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

3

 The values for the collation elements (Unicode Default Collation Table), which are
published on the Unicode Consortium website, may change. For this table, visit
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt.

In BS2000/OSD you can obtain the collation element via XHCS, see also the XHCS
(BS2000/OSD) manual.

i

http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

26 U41646-J-Z125-1-76

U41646-J-Z125-1-76 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

58
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

4

4 Unicode in BS2000/OSD

4.1 Basics of Unicode support in BS2000/OSD

Application scenario

With the Unicode support in BS2000/OSD, the available code sets in BS2000/OSD
systems have been extended to include additional characters. The programming and
runtime environment you require to allow you to add Unicode data fields to your existing
applications is provided. It is assumed that the number of fields that have to be converted
to Unicode or additionally inserted is small. These are primarily name and address fields.

You need only modify applications or parts of applications which also use the extended
functionality.

Unicode is supported in BS2000/OSD on the basis of the existing products. Unicode-based
characters are only permitted for the texts to be processed or managed, i.e. for the field or
container contents, but not for field or container names. The product-specific rules for
commands and object names still remain.

Concept of the Coded Character Set Name (CCSN)

To support different character sets and encodings, the concept of Coded Character Sets
(CCS) exists. A CCS defines a character set and the encoding of these characters in the
file. XHCS is the central source of information for the CCSs available in BS2000/OSD, see
also page 36. The CCS name serves to identify the various character sets and encodings.

During the conversion from a 7-bit to an 8-bit character set and afterwards, it is necessary
to distinguish converted data from non-converted data.

Basics of Unicode support in BS2000/OSD Unicode in BS2000/OSD

28 U41646-J-Z125-1-76

Therefore in BS2000/OSD-BC V7.0 you can control the default value of the CCS name of
a file as follows:

● In principle, an explicit specification of the CCS name always takes precedence.

● When a new file is created, the CCS name of the user entry of the public volume set
which receives it is taken over as the CCS name of the file if it is not EDF03IRV.
If it is EDF03IRV, the file is given - as before - the CCS name *NONE. LMS behaves in
the same way with regard to new elements; these are given the CCS name of the library
if no value is specified for the CCS name.

● If you are working with the system-standard character set, the behavior remains the
same as before.

● If you are working with an 8-bit character set, the use of a code at file level and library-
element level is clearly specified.

● If you copy, save or restore a file, the file attribute CCS name is always transported
along with it.

For an overview of the CCSN default values, see the table “Default values for CCSN” on
page 61.

Further principles of the Unicode embedding in BS2000/OSD

In addition, the following considerations were taken as a basis for the embedding of
Unicode in BS2000/OSD:

● Within applications, Unicode characters are encoded in UTF-16, at command level in
UTFE.

● The Unicode character pool is limited to UCS-2, i.e. surrogate pairs (see also section
“UTF-16” on page 22) are not supported.

● XHCS offers the services and the interface for encoding tasks and provides the conver-
sions between the encodings (EBCDIC, Unicode).

● The area of use is assumed to be central Europe:
– Conversion functions are only offered from the European language area.
– Sorting and normalization are only available up to Unicode code point U+2FFF. As

of U+3000, the Chinese, Japanese and Korean characters begin.
– Only glyphs for European languages are available.

● The size of all BS2000/OSD and database containers remains the same.
Because a UTF-16 character occupies two bytes of memory, in a SAM record, for
example, depending on the file organization, a maximum of around 16,000 characters
can be stored and not around 32,000, as before.

● Private disks are not supported, as they do not allow storage of the CCSN.

Unicode in BS2000/OSD Overview of the affected interfaces

U41646-J-Z125-1-76 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

58
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

4

4.2 Overview of the affected interfaces

The following diagram shows Unicode in the BS2000/OSD system environment in the form
of the Unicode encodings on the individual interfaces. For the sake of greater clarity, some
of the technical details have been omitted.

XHCS

openFT EDT openUTM
openUTM
application

DB system

FHS

VTSU
Main

BCAM

openFT

UTF-16

EBCDIC
UTF-8

UTFE

UTF-16

BS2000/OSD

UTF-16
EBCDIC

UTFE

UTFE
UTF-16

EBCDIC

UTFE

UTFE
UTF-16
EBCDIC

NEABX
810 protocol

 Screen
buffer

UTF-8MOD

MT9750

Third-party

(SESAM/SQL,
Oracle)

UTFE

UTFE

UTFE

UTF-16

UTF-8

UTF-8

Unicode
EBCDIC

Unicode
EBCDIC

UTF-16
EBCDIC

UTF-8
UTF-16

Windows

system,
e.g. UNIX
system

memory

Overview of the affected interfaces Unicode in BS2000/OSD

30 U41646-J-Z125-1-76

Key:

The Unicode encodings on the different interfaces in BS2000/OSD are a result of the
different requirements: UTF-8 is the preferred Unicode encoding in networks. Therefore the
file-transfer program openFT uses UTF-8 encoding to transport data in heterogeneous
environments. This means that openFT converts the data to be sent into UTF-8 and
transfers it in non-transparent mode to the openFT partner in the destination system, which
in turn converts the data into the desired target format. For conversion in BS2000/OSD,
openFT uses the system component eXtended Host Code Support (XHCS).

UTFE corresponds to EDF03IRV in its single-byte encoding. In other words, parsers whose
syntax elements do not use any characters outside the EDF03IRV character pool, can also
process a UTFE string. This property is utilized at the BS2000 command level and, for
example, in the EDT file editor when parsing the EDT statement.

The following sequence can be processed correctly in BS2000/OSD:

/MODIFY-TERMIMAL-OPTIONS CODED-CHARACTER-SET=UTFE (1)
...
/START-EDTU (2)
@COPY F=UNICODE-FILE (3)
@ON&CA 'Dolina Kukol' TO 'Долина Кукол' (4)
...

Explanation:

(1) switches the input to UTFE.

(2) Calls EDT. The UTFE encoding does not differ from EDF03IRV, i.e. the BS2000
command processor can interpret the command correctly.

(3) Opens the file UNICODE-FILE and reads it into the main memory. File names which do
not comply with the BS2000 file-naming conventions are rejected. While the data is
read from the file into the main memory, it is converted to UTF-16 and the CCSN of the
file is evaluated. For internal processing of Unicode data, EDT uses the Unicode
encoding UTF-16, because this encoding is a fixed-length encoding in the range
supported by BS2000/OSD (UCS-2), which assigns exactly 2 bytes to each character.
This is more suitable for processing than the variable-length Unicode encoding UTFE.

(4) The EDT command interpreter also recognizes the replace command. To execute the
command, however, both strings 'Dolina Kukol' and '’Долина Кукол’ are converted from
UTFE to UTF-16. The data is then processed in UTF-16.

EBCDIC Any EBCDIC encoding, e.g. EDF03IRV, EDF041 etc.

Unicode Possible Unicode encodings UTF-8, UTFE, UTF-16

Unicode in BS2000/OSD Overview of the affected interfaces

U41646-J-Z125-1-76 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

58
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

4

For the VTSU, UTFE is only another 8-bit EBCDIC character set. All VTSU control
characters have the same encoding as in EDF03IRV. With the terminal setting UTFE, on
the RDATA interface, only the characters from a-z are converted to A-Z, i.e. from lower to
upper case, by default.

With version 8.3A, FHS lets you display both UTF-16 and EBCDIC and numeric fields in a
mask. The COBOL application fills out the fields according to the addressing aids created
by IFG. The entire mask with field contents is converted by FHS to UTFE and put in the
output buffer. openUTM sends this buffer via VTSU to the emulation.

In the transport layer on the client side, the incoming data stream is converted from UTFE
to UTF-8MOD. This conversion is equivalent to the conversion of EBCDIC to ISO8859 in
EBCDIC messages. The emulation MT9750 transfers this data stream to its screen buffer
and converts it into UTF-16 (Little Endian) for further processing.

In COBOL2000 version 1.4 and higher, the processing of Unicode data is possible with the
help of the class ’national’. A national character in COBOL has the encoding UTF-16. Data
fields with the class ’national’ can be stored in a database table in columns with the data
type NATIONAL CHARACTER (NCHAR) or NATIONAL CHARACTER VARYING
(NVCHAR).

For further details, see sections “Representing and processing Unicode characters with
COBOL” on page 37 and “Storing, searching for and managing Unicode data in databases”
on page 39.

Data interchange between different systems

If UTF-16 character strings are sent from an application on a system A to a second appli-
cation on a system B, e.g. via the UPIC interface, no conversion is necessary if the UTF-16
encoding is the same on both sides (Little Endian or Big Endian). Otherwise, the two bytes
per UTF-16 character must be exchanged on one side.

 The CPI-C calls Convert_Incoming and Convert_Outgoing of UPIC only provide
conversion from EBCDIC to ASCII or vice versa. Therefore they cannot be used.i

Configuring the terminal emulation MT9750 Unicode in BS2000/OSD

32 U41646-J-Z125-1-76

4.3 Configuring the terminal emulation MT9750

The terminal emulation MT9750 V7.0 allows you to send Unicode data to BS2000/OSD. To
do this you must configure the session parameters of the emulation accordingly.

Ê On the “Configuration” menu, select “Terminal Settings (DSS)...”.
The “Terminal Configuration” dialog box opens.

Ê For the terminal mode (“DSS Mode”) select the option “Unicode”.

Ê For the terminal type (“DSS Type”) select the entry “DSS9763”.

When a connection is established between the emulation and the BS2000/OSD system, the
VTSU is notified that the terminal supports not only the EBCDIC character sets EDF03IRV,
EDF041, EDF042 etc. but also the character set UTFE (Unicode). This is necessary to
make the BS2000 command MODIFY-TERMINAL-OPTIONS CCS = UTFE possible. It is
not possible to specify UTF-16 here because the BS2000 command processor cannot
interpret UTF-16.

The BS2000 command SHOW-TERMINAL-ATTRIBUTES *CAPABILITIES outputs the
information received by the VTSU from the emulation.

The numbers after the string CHARACTER-SET-x = are the so-called ISO numbers. They
describe which ISO8859-n character sets the data display terminal supports. For UTFE the
pseudo-ISO number 240 was chosen.

Unicode in BS2000/OSD Configuring the terminal emulation MT9750

U41646-J-Z125-1-76 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

58
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

4

Example: Output of /SHOW-TERMINAL-ATTRIBUTES *CAPABILITIIES

COLOUR-SUPPORT = 8 HARDWARE-INFOLINE = YES
LINE-MODE = YES EXTENDED-LINE-MODE = YES
PHYSICAL-MODE = YES FORM-MODE = YES
PROTOCOL-TYPE = 810 EXTEND-FIELD-ATTRIB = YES
STATUS-REQUEST = YES ENCRYPTION-SUPPORT = NO
DOORS-SUPPORT = NO DESK2000-SUPPORT = NO
NUMBER-OF-8-BIT-CHARACTER-SET-SUPPORTED = 7
CHARACTER-SET-1 = 1 CHARACTER-SET-2 = 2
CHARACTER-SET-3 = 5 CHARACTER-SET-4 = 7
CHARACTER-SET-5 = 9 CHARACTER-SET-6 = 15
CHARACTER-SET-7 = 240 CHARACTER-SET-8 = NO
CHARACTER-SET-9 = NO CHARACTER-SET-10 = NO
CHARACTER-SET-11 = NO CHARACTER-SET-12 = NO
CHARACTER-SET-13 = NO CHARACTER-SET-14 = NO
CHARACTER-SET-15 = NO CHARACTER-SET-16 = NO

In this example the terminal supports the character sets EDF041, EDF042, EDF045,
EDF047, EDF049, EDF04F and UTFE.

If an application wants to send/receive Unicode data to/from the emulation, the VTSU must
be notified. This can be done on the one hand via the BS2000 command MODIFY-
TERMINAL-OPTIONS (see above) or, on the other, in the application via the VTSU-B
control block.

The encoding of all data that is sent or received with a call must be present in UTFE.

The setting in the VTSU-B control block takes precedence over the value set with MODIFY-
TERMINAL-OPTIONS. However, it only applies for the current call. The next call can be
made with a different valid character set. But changing the character set results in the old
screen content being deleted.

UTFE, like UTF-8, is a variable encoding of the Unicode code points. This means that,
depending on the code point, between one and a maximum of five bytes are required for
encoding. This property makes programming difficult. It is therefore normal to work with
UCS-2 within programs. UCS-2 is the non-variable part of UTF-16, i.e. each character
requires exactly two bytes, see also section “What is Unicode?” on page 9. This is provided
that the character pool of the BMP is sufficient.

The necessary conversion functions are provided by the system component XHCS, see
also section “Character handling in BS2000/OSD (XHCS)” on page 36.

34 U41646-J-Z125-1-76

U41646-J-Z125-1-76 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

59
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

5

5 Unicode adjustments in BS2000 applications
This chapter describes the Unicode adjustments in the BS2000 software products for
program development and testing, data storage, printing and Web integration, which the
customer needs in order to adapt their BS2000 applications to Unicode:

● XHCS, the software for handling characters in BS2000/OSD

● COBOL language for displaying and processing Unicode characters

● AID, the Advanced Interactive Debugger

● Databases SESAM/SQL and Oracle 10g for BS2000/OSD

● IFG and FHS for generating and handling formats

● RSO for controlling the output of print jobs

● WebTransactions for Web integration of Unicode-capable applications

For more detailed information on implementing the Unicode support, see the relevant
product-specific manuals and the chapter “Related publications” on page 97.

Character handling with XHCS Unicode adjustments in BS2000 applications

36 U41646-J-Z125-1-76

5.1 Character handling in BS2000/OSD (XHCS)

In BS2000/OSD, EXtended Host Code Support (XHCS) manages the character sets,
provides the services and interface for encoding tasks, and provides the conversions
between the encodings (EBCDIC, Unicode).

The various software programs do not need to store information on character sets perma-
nently, as the XHCS interfaces are available to any user program.

The following list outlines the key functions of XHCS in connection with Unicode support.
XHCS

● Converts from and to UTF-16, UTF-8 and UTFE as well as from and to ISO and
EBCDIC and maps the case functions (TOUPPER, TOLOWER).

● Outputs information on code compatibility.

● Normalizes input strings.

● Provides the product SORT for sorting the required sort tables for the European
languages, see also section “Sort sequence” on page 24.

● Supports the definition of additional Unicode characters. You can also obtain collation
elements in BS2000/OSD via XHCS.

For further details of XHCS, see the XHCS (BS2000/OSD) manual.

Unicode adjustments in BS2000 applications Representing and processing with COBOL

U41646-J-Z125-1-76 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

59
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

5

5.2 Representing and processing Unicode characters with
COBOL

Basic paradigms

● COBOL programs are still written in EBCDIC.

● Application data is still largely encoded in EBCDIC. The Unicode character set is only
used where necessary.

● The individual application must program the use of Unicode data.

● Restrictions remain the same in terms of bytes.

Implementation of UTF-16 support

COBOL2000 V1.4 supports UTF-16 by implementing the key language elements for the
data type ’national’ from the COBOL standard ISO1989:2002.

The support includes:

● PICTURE picture characters N and USAGE NATIONAL as well as GROUP-USAGE
NATIONAL

● National literals and national figurative constants

● Implicit conversion of EBCDIC to UTF-16 in transfers (MOVE) and in conditions

● Explicit conversion with the functions NATIONAL-OF and DISPLAY-OF

● Substitute characters and exception handling during conversions

● Extension of the functionality of existing language elements to support national data (in
particular conditions, INITIALIZE, INSPECT, STRING, UNSTRING, SORT, MERGE and
the functions NUMVAL, LOWER-CASE, UPPER-CASE, LENGTH, BYTE-LENGTH and
REVERSE).

Data of the class ’national’ is largely defined and used in the same way as the EBCDIC data
of the class ’alphanumeric’.

Detailed information on national data and conversion between EBCDIC and UTF-16 repre-
sentation can be found in the COBOL2000 (BS2000/OSD) language description.

Advanced Interactive Debugger AID Unicode adjustments in BS2000 applications

38 U41646-J-Z125-1-76

5.3 Advanced Interactive Debugger (AID)

To support Unicode, the Advanced Interactive Debugger (AID) offers:

● The data type %UTF16
This data type is equivalent to the data type ’national’, which COBOL2000 offers as part
of its Unicode support, see page 37. With this data type, every character has a two-byte
encryption.

● Conversion functions from single-byte EBCDIC to UTF-16 and vice versa:
functions %UTF16() and %C().

● The option of entering strings in UTFE format (U'..').

● The option of displaying the current code settings and available character sets with
%SHOW %CCSN.

For further details, see the AID manual “Debugging of COBOL Programs”.

Unicode adjustments in BS2000 applications Unicode data in databases

U41646-J-Z125-1-76 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

59
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

5

5.4 Storing, searching for and managing Unicode data in
databases

The database systems SESAM/SQL V5.0 and Oracle 10g for BS2000 allow you to store,
search for and manage Unicode strings.

5.4.1 Unicode concept in SESAM/SQL

The concept of Unicode support in SESAM/SQL allows the use of Unicode characters in
the columns of tables and takes into account coded character sets in databases, in
input/output files and for user programs.

The SESAM/SQL database contains in the catalog the name of a coded character set,
which specifies how character data in the database is interpreted.

This concept affects the SQL language description, the utility functions and the
SESAM/SQL user programs, as described in the following.

For basic information on Unicode support in SESAM/SQL, see the SESAM/SQL-Server
(BS2000/OSD) Core Manual.

SQL language description

New data types NATIONAL CHARACTER and NATIONAL CHARACTER VARYING

In SESAM/SQL databases you can define table columns of the data type NATIONAL
CHARACTER and NATIONAL CHARACTER VARYING and save Unicode data in them in
UTF-16 format. Metadata such as names of tables, columns and views, for example, is still
specified in EBCDIC.

The byte lengths of the character data types are unchanged. Because a UTF-16 character
occupies two bytes of memory, the following maximum numbers of characters result for
Unicode:
NCHAR 128 characters
NVARCHAR 16,000 characters

Unicode data types are also supported by the database functions for recovering and
modifying data. In addition, host variables and SQL literals in UTF-16 format can be used.

New function TRANSLATE

Via the SQL language, SESAM/SQL offers the conversion function TRANSLATE for
converting EBCDIC data into Unicode data and vice versa
(N[VAR]CHAR <–> [VAR]CHAR).

For the conversion, SESAM/SQL uses the conversion functions provided by XHCS.

Unicode data in databases Unicode adjustments in BS2000 applications

40 U41646-J-Z125-1-76

Utilities

Coded character sets are taken into account in the following utility functions:

● CREATE CATALOG
Creates a database. During database creation a coded (EBCDIC) character set
(parameter CODE_TABLE) can be defined.

● ALTER CATALOG
Allows you to change the coded character set of a database.

● EXPORT TABLE
Allows you to export a table from a database into an export file. The export file is created
with the Coded Character Set Name (CCSN) of the database.

● IMPORT TABLE
Allows you to import a table from an export file into a database. The CCSN of the export
file is checked against the CCSN of the database.

● UNLOAD
Allows you to unload data from a table into a file. In delimiter format, the file is created
optionally with the CCSN of the database or with the CCSN UTFE. With other formats,
the file is created with the CCSN of the database. During unloading, the data is
converted if necessary.

● LOAD
Allows you to load data from a file into a table. In delimiter format, a file with the CCSN
UTFE or a CCSN of type EBCDIC can also be processed. A file CCSN of type EBCDIC
is checked against the CCSN of the database. During loading, the data is converted if
necessary.

SESAM/SQL applications

SESAM/SQL applications connect to the database via the so-called Database Handler
(DBH). Depending on whether the DBH is independent or linked-in, you must specify the
character set differently. With the new connection-module parameter CCSN (Coded
Character Set Name), you specify for the application the character set with which the appli-
cation interprets character data.
With a linked-in DBH, this is done via the DBH option.

The SESAM/SQL application can work with the database if the CCSN of the database and
the CCSN of the application have identical values, or if no coded character set is used for
the database.

Unicode adjustments in BS2000 applications Unicode data in databases

U41646-J-Z125-1-76 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

59
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

5

Compatibility

“Old” databases can be operated unchanged without taking into account coded character
sets. However, SESAM cannot then convert from and to UTF-16. Statements which require
such conversions are rejected.

Output files which contain Unicode data cannot be used as input files in older SESAM/SQL
versions.

5.4.2 Unicode concept in Oracle

Oracle 10g supports a variety of different character sets, including several Unicode
character sets.

A list of all character sets supported by Oracle can be found in the manual "Oracle
Database Globalization Support Guide Part Number B14225-02".

 The UTFE character set listed there corresponds to the UTF-EBCDIC character set
defined by IBM and not the BS2000 character set UTFE.

The Oracle character sets supported in BS2000/OSD are listed in the manual "Oracle
User's Guide for Fujitsu Siemens Computers BS2000/OSD".

A distinction must be made here between the character set on the application side, the
character set for the database, and the "national" character set for columns with the
Unicode data type. If necessary, Oracle converts between these character sets using its
own tables, regardless of the character sets of the operating system.

In Oracle in BS2000/OSD, you cannot specify a Unicode character set as the character set
for the database or the character set on the application side.

The concept of Unicode support in Oracle in BS2000/OSD does, however, allow the use of
Unicode characters in columns with the Unicode data type.

For basic information on Unicode support in Oracle, see the manual "Oracle Database
Globalization Support Guide Part Number B14225-02".

SQL functionality

In Oracle databases you can store Unicode data in table columns of certain data types.

Specifically, these data types are as follows:

NCHAR Fixed-length text data, maximum 2000 bytes

NVARCHAR2 Variable-length text data, maximum 4000 bytes

NCLOB Character Large Object, maximum 4 GB, stored in UTF-16

i

Unicode data in databases Unicode adjustments in BS2000 applications

42 U41646-J-Z125-1-76

You can define the character set of NCHAR and NVARCHAR2 data with CREATE
DATABASE with either UTF-8 or AL16UTF-16, the UTF-16 character set of Oracle.

You can edit the Unicode data in these columns via different interfaces, for example SQL
and PL/SQL for storing, recovering and modifying data.

You can also use host variables and SQL literals in UTF-16 format.

Via SQL, Oracle offers the conversion functions TRANSLATE, TO_CHAR and
TO_NCHAR, for converting EBCDIC data into Unicode data and vice versa.

There are also the functions NCHR() and UNISTR() for creating individual Unicode
characters and Unicode literals.

Utilities

Export/Import

Unicode data of types NCHAR, NVARCHAR2 and NCLOB is written unchanged to a binary
file during export and can thus also be imported into other databases.

SQL*Loader

The SQL*Loader allows you to load Unicode data from an input file into the database.

In the SQL*Loader control file you can specify via the CHARACTERSET parameter that the
data in the input file should be in UTF-16 format.

Oracle applications

Oracle applications can process Unicode data in the database via the interfaces Pro*Cobol,
Pro*C, OCI, JDBC and ODBC.

Compatibility

Oracle has supported Unicode data in NCHAR data types since version 9i.

In "old" 8.1.7 Oracle databases, for columns of type NCHAR, other character sets may have
been defined as Unicode. In this case, after upgrading the database from 8.1.7 to 10g, you
must also upgrade the NCHAR columns, as described in the manual "Oracle Database
Upgrade Guide Part Number B14238-01".

Unicode adjustments in BS2000 applications Unicode fields in formats

U41646-J-Z125-1-76 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

59
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

5

5.5 Support for Unicode fields in formats

As of version 8.3A of the Format Handling System (FHS), formatted messages between
user program and terminal may also contain Unicode characters. This is enabled by the so-
called Unicode formats, which can be generated with the Interactive Format Generator
(IFG) as of version 8.3.

A Unicode format means a format which contains at least one field that was given the
attribute UNICODE during the format definition in IFG.

Fields with the attribute UNICODE have the following properties:

● The user can enter any character from the BMP in this field.

● The contents of the field are stored in the addressing aid of the user program. Each
character occupies two bytes.

● The encoding of the character is UTF-16.

Terminal emulation and formats

On the user interface, the terminal emulation supports two modes:

● Either the whole format is defined in Unicode mode, i.e. the user can enter any Unicode
character in any input field.

● Or the format is not defined in Unicode mode, i.e. input is limited to the set 7-bit or 8-bit
(ISO8859-x) character set.

The emulation does not support a mixture of these two modes in one mask, i.e. it cannot
within a mask limit the input for one field to ISO8859-1 and at the same time allow the input
of Unicode characters for another field in the same mask.

Checks which have previously been performed in mode 2 by the terminal emulation must
be relocated to the application. FHS takes over these checks for the so-called # formats.

Processing # formats in FHS

With Unicode formats, FHS analyzes the user’s UTFE input string, allocates the substrings
to the individual fields of the format and converts them according to the field definitions.

● If the field is assigned the attribute UNICODE, FHS converts it to UTF-16 and transfers
it to the point in the user program specified by the addressing aid of the format.

● If the field is not a UNICODE field, FHS checks whether all entered characters are
compatible with the basic character set of the format – defined during generation in IFG
– or with the character set that was defined via USER/LTERM in openUTM. The

Unicode fields in formats Unicode adjustments in BS2000 applications

44 U41646-J-Z125-1-76

currently valid character set is determined as with the 8-bit formats. If FHS does not
detect any errors, the characters are converted to EBCDIC and transferred to the point
in the user program which defines the addressing aid of the format.

If a character cannot be mapped to the target character set, FHS initiates the ’field
validation check failures', i.e. FHS
– either puts a return code in the addressing aid or
– outputs a standard error message.

For further information, see the FHS (BS2000/OSD) manual.

Defining individual UNICODE fields with IFG

In IFG the attribute UNICODE can be assigned in the display properties of the fields
(mask 0305), provided the relevant field is a pure text field. In the display properties of the
format (mask 030A), the option “Requires UNICODE support” is set to “YES” as soon as
the format contains a UNICODE field.

In IFG it is not possible to enter Unicode characters. Therefore, it is also not possible to
define any constant texts or selection fields in IFG which contain Unicode characters.

Addressing aids can be generated for Unicode formats for the languages COBOL and
Assembler using IFG.

For further information, see the IFG (BS2000/OSD) manual.

Unicode adjustments in BS2000 applications Print jobs with Unicode data

U41646-J-Z125-1-76 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

59
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

5

5.6 Outputting print jobs with Unicode data

For the output of Unicode characters, APF-IPDS printers and UTF-8-capable RSO printers
are supported.

5.6.1 Central printers (AFP-IPDS)

The print file contains the net data stream. A second file, the page definition, defines how
this net data is interpreted and printed. It is therefore possible to switch from UNICODE and
EBCDIC fields.

If a text file or certain lines or parts of lines are encoded in Unicode, you must create or
appropriately adjust a page definition and specify the Unicode character set in the print
command.

5.6.2 Decentralized printers (RSO)

Remote Spool Output (RSO) controls the output of print jobs to decentralized printers.

The EBCDIC-based mechanism of RSO can also process UTFE data, because the single-
byte range of the UTFE encoding corresponds to the character set EBCDIC.DF.03IRV
(EDF03IRV), see also section “UTF-EBCDIC (UTFE)” on page 17.

Print jobs with Unicode data Unicode adjustments in BS2000 applications

46 U41646-J-Z125-1-76

Figure 1: Processing of Unicode files

With LAN-to-host printing, i.e. with output of files from a PC or Unix-based systems to RSO
printers, UTF-8 files must be converted to UTFE before they can be processed. Likewise,
UTF-16 data must be converted to UTFE before processing. XHCS provides the basics for
conversion from one encoding to another, see also the XHCS (BS2000/OSD) manual.

If a printer supports ASCII and UTF-8, e.g. the Unicode-capable UTF-8 printer PRINT-
RONIX P7000, RSO can work in both ASCII mode (via EBCDIC) and UTF-8 mode (via
UTFE), depending on the encoding of the incoming file. Because RSO evaluates the Coded
Character Set name of the file (CCS-NAME), only one character set per file is possible.

For further information, see the “RSO (BS2000/OSD)” manual.

Conversion

to UTFE
Conversion

to UTFE

Adjustment to
printer

Conversion
to UTF-8

SRAM

UTF-8 printer

UTFE

RSO

UTFE UTF-8 UTF-16

Unicode adjustments in BS2000 applications Web integration

U41646-J-Z125-1-76 47

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
4.

59
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

5

5.7 Web integration of Unicode-capable applications
(WebTransactions)

As part of the Unicode support, WebTransactions generates UTF-8-encoded data. This data
is forwarded to the browser and back again in order to support Unicode-capable host appli-
cations.

The templates inform the browser which character encoding it is to use to display the data
and to send the response
– either via the attribute charset in the HTTP header Content-Type or
– via the HTML tag

<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />.

BizTransactions does not support Unicode.

WebTransactions for OSD

As part of the Unicode support from BS2000/OSD, the terminal protocol 9750 supported by
WebTransactions for OSD becomes Unicode-capable.

The Unicode support must be explicitly activated, otherwise WebTransactions for OSD
behaves compatibly with the previous versions.

For this purpose a new terminal type was introduced:
The system-object attribute TERMINAL_TYPE now also recognizes the value 9763-
UNICODE.

If you set this value, the emulation integrated in the host adapter reveals itself to be
Unicode-capable during connection establishment to BS2000/OSD. The relevant
BS2000/OSD application then has the option of using this capability.

When the host application switches to Unicode mode,

● the field contents from/to BS2000/OSD are interpreted as UTF-EBCDIC,

● the corresponding contents of the host objects are output as UTF-8-encoded during
evaluation, and interpreted as UTF-8-encoded during assignment.

The host adapter indicates this in the system-object attribute HOST_CHARSET with the
new value UTF-8.

Because all templates generated by WebTransactions for this host adapter assign the
system-object attribute HOST_CHARSET to the global system-object attribute CHARSET,
the content type in the HTTP header is appropriately set such that the browser can interpret
the data correctly.

For further information, see the WebTransactions manual “Connecting to OSD Applications”.

Web integration Unicode adjustments in BS2000 applications

48 U41646-J-Z125-1-76

WebTransactions for openUTM

As part of the Unicode support from BS2000/OSD, the host adapter used by
WebTransactions for openUTM can process data on the UPIC interface as well as Unicode
characters.

The Interactive Format Generator (IFG) used to formulate the screen masks enables
individual fields to be assigned the UNICODE attribute (see also page 43). With the OSD
program IFG2FLD, the format descriptions are exported into a format which can be read by
WebLab – the format-description source.

IFG2FLD calculates the offsets of the individual fields in the UPIC buffer depending on the
UNICODE attribute. This format-description source is converted by the integrated
generator in WebLab into format-specific FLD files, taking into account the Unicode
attribute. The FLD files must be newly generated for all formats containing Unicode fields.
Previously generated templates can remain unchanged if the switch to Unicode fields was
the only change in the format. You may have to insert the assignment of the value UTF-8
to the system-object attribute CHARSET at a central point or in these format-specific
templates.

This new Unicode attribute is also available to the WebTransactions applications as a host-
object attribute: It can take the values ’Y’ and ’N’.

● For all fields flagged with Unicode==’Y’, the host data in the UPIC buffer is regarded as
UTF-16 data and converted into UTF-8 data for the browser, or the UTF-8 browser data
is converted into UTF-16 host data.

● The ASCII-EBCDIC conversion, which is dependent on the system-object attribute
HOST_CHAR_CODE, is only performed if Unicode==’N’.

In addition, the attribute of the same name on the host control object
WT_HOST_MESSAGE.Unicode indicates whether the active message contains at least
one field with Unicode==’Y’.
Depending on this attribute, the template can set the global system-object attribute
CHARSET to the value UTF-8. The templates generated by WebTransactions automatically
contain this assignment. With existing templates which are not to be regenerated, you may
have to insert this manually.

For further information, see the WebTransactions manual “Connecting to openUTM Applica-
tions via UPIC”.

U41646-J-Z125-1-76 49

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
5.

00
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

6

6 Unicode adjustments for file processing
This chapter explains the Unicode support in the following BS2000/OSD file-processing
programs:

● EDT for editing Unicode files

● PERCON for conversion and normalization

● SORT for sorting fields

● openFT for file transfer

Detailed information on implementing the Unicode support can be found in the respective
product-specific manuals, see also “Related publications” on page 97.

EDT Unicode adjustments for file processing

50 U41646-J-Z125-1-76

6.1 Creating and editing Unicode files (EDT)

The file editor (EDT) allows you to create and edit Unicode files in the character sets UTF-
8, UTF-16 or UTFE.

EDT V17.0 can be operated in a V16.6-compatible ’compatibility’ mode and a Unicode
mode.

● In Unicode mode, EDT V17.0A can edit Unicode-encoded files.

Users who want to edit Unicode-encoded files are offered easy-to-use support. This
includes the option of editing differently encoded files in different EDT work files simul-
taneously, and removing the limit on the record length (previously 256 characters). EDT
can process records of up to 32,768 bytes when writing to a file.

The consequence of the Unicode representation in the work files is that all interfaces
on which the user has direct access to the records of the work file cannot remain
compatible. This applies to the L-mode subprogram interface, the @RUN interface, and
the locate mode of the IEDTGLE interface. These interfaces can therefore no longer be
used if you want to use the new functions.

● The compatibility mode offers the full functionality of EDT V16.6B, including the old L-
mode subprogram interface. A new @MODE statement in compatibility mode allows
you to switch to Unicode mode.

For further information, see the EDT (BS2000/OSD) manual.

Unicode adjustments for file processing PERCON and SORT

U41646-J-Z125-1-76 51

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
5.

00
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

6

6.2 Converting and normalizing Unicode files (PERCON)

The Peripheral Converter (PERCON) allows you to convert SAM files or parts of them which
are not Unicode-encoded into Unicode format and vice versa. Conversion occurs whenever
the input and output files have been assigned different Coded Character Set (CCS) names.

Because Unicode data can be present in non-normalized form, PERCON additionally offers
the option of converting this data into the composite character representation, see also
section “Normalization” on page 23.

For further information, see the PERCON V2.9A (BS2000/OSD) manual.

6.3 Sorting Unicode fields (SORT)

SORT allows you to sort fields which contain Unicode characters according to the
Unicode Default Collation Table. This table contains the values for the collation elements,
see also the website of the Unicode Consortium at
http://www.unicode.org/Public/UCA/4.0/allkeys-4.0.0txt.
Sorting is currently possible for the Unicode character set UTF-16, in which each character
is represented by two bytes (without surrogate pairs).

Every UTF-16 character is assigned a so-called collation element, which defines the
sequence in which the UTF-16 characters are sorted, see also section “Sort sequence” on
page 24. The collation elements themselves are defined by means of a table supplied by
XHCS, see also the XHCS (BS2000/OSD) manual. This table contains a weight of the
character at different levels. For more information on the different levels, see the section
“Sort sequence” on page 24.

For further information on how SORT works, see the SORT V7.9A (BS2000/OSD) manual.

http://www.unicode.org/Public/UCA/4.0/allkeys-4.0.0txt

openFT Unicode adjustments for file processing

52 U41646-J-Z125-1-76

6.4 Transferring Unicode files (openFT)

If you transfer files with openFT partners as of V10, you can assign the coded character sets
to be used locally and remotely for the data conversion in the request. Unicode files can
also be transferred with these partner systems.

You define the coded character sets to be used either by specifying a parameter in the
TRANSFER-FILE command or with DMS files in the file catalog.

During file transfer within BS2000/OSD, XHCS is used for the code conversion.
For file transfer to other systems, the standard code tables for the conversion are imple-
mented in openFT and can be set via operating parameters in openFT.

For further information on file transfer with openFT, see the manuals on openFT V10.0A for
BS2000/OSD.

U41646-J-Z125-1-76 53

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
5.

01
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

7

7 Tips and tricks

7.1 Tips on SESAM/SQL

If you are editing Unicode files with SESAM/SQL, you should bear in mind the following:

CCSN of the database / CCSN of the application

Using the statement ALTER CATALOG ALTER CODE_TABLE, you can alter the CCSN
(code table) of the database. Be aware that an application can only access a database
correctly via the DBH if the CCSN parameter in the configuration file of the application
matches the CCSN of the database. In the case of an application with linked-in-DBH, the
parameter CODED-CHARACTER-SET of the DBH option LINKED-IN-ATTRIBUTES must
be identical with the CCSN of the database.

If the values are not identical, access to the database is only possible if the CCSN _NONE_
is defined for the database.

Furthermore, it is always possible to access the metadata of the database by means of the
Utility Monitor via the SNF and INF masks. In the SNF.1 mask, the CCSN currently defined
for the database is output. In the CNF mask, the CCSN entered in the configuration file of
the application (or DBH option file with linked-in DBH) is output. You can use these two
masks to check whether the CCSNs match.

CCSN of the terminal

In the SQL mask of the Utility Monitor, records returned by a SELECT statement are output.

Alphanumeric values of the data type CHARACTER (VARYING) are taken over as they
stand in the database, while numeric and time-data types are converted to CHARACTER.
NATIONAL values of the data type N[VAR]CHAR are converted to CHARACTER according
to the CCSN of the database. For non-convertible values, the substitute character “period
(.)” is output.

The screen shows the characters in the CCSN that is set for the terminal. The setting can
be checked with the BS2000 command SHOW-TERMINAL-OPTIONS and, if necessary,
modified with the MODIFY-TERMINAL-OPTIONS command.

Tips on LMS Tips and tricks

54 U41646-J-Z125-1-76

Caution: This command is only permitted as long as no program is loaded.

If the CCSN set for the terminal differs from the CCSN of the database, some of the
characters will not be displayed correctly on the screen.

Unloading in delimiter format with UTFE

During unloading in delimiter format with UTFE, the values of the columns are converted to
UTFE and output to the unload file. Bear in mind that the encoding in UTFE can be between
one and five bytes long.

7.2 Tips on LMS

If you are using LMS and Unicode files, you should bear in mind the following:

EXTRACT-ELEMENT in ISAM file

LMS extracts library elements by default as ISAM files with an 8-byte EBCDIC ISAM key.
This can be interpreted by EDT as a line number. If the element in question has an ISO
(ASCII) character set, LMS generates a file which contains both EBCDIC and ASCII
characters. It may then not be able to edit this file satisfactorily with other products, e.g.
EDT. UTF16 is even more problematic, as then the ISAM key consists of single-byte
characters and the data of two-byte characters.

You can, however, extract the elements by specifying ACCESS-METHOD = *SAM or add
an ISAM file created by EDT to a library with //ADD-ELEMENT. By default the ISAM key is
then removed with a warning (also with a 16-byte key).

You can, however, also have the key saved in the element with SOURCE-ATTRIBUTES =
*KEEP and later extract the element unchanged with the key and edit it further with EDT
V17.

Tips and tricks Tips on LMS

U41646-J-Z125-1-76 55

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
5.

01
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.k
0

7

EDIT-ELEMENT

With the LMS statement EDIT-ELEMENT you can edit elements with EDT. LMS uses the
EDT subprogram interface in compatibility mode (EDT-UP V16) for this. Elements in a
Unicode character set cannot be edited with EDIT-ELEMENT, as the EDT-UP V16 interface
cannot handle Unicode. LMS passes the statement @CODENAME UTF8/16/E to the EDT-
UP interface. This is rejected by EDT V17 with a return code.

You can, however, edit the element from within EDT with @OPEN LIBRARY=… .

ADD-ELEMENT and EXTRACT-ELEMENT from the EDT statement line (@USE)

The EDT statement @USE allows you to execute certain LMS statements in the EDT
statement line. These include the statements ADD-ELEMENT and EXTRACT-ELEMENT.

● ADD-ELEMENT (read from EDT work file)

You have created Unicode data in an EDT work file and now you want to write this data
from the EDT statement line into a library element with ADD-ELEMENT. EDT passes
the ADD-ELEMENT statement to LMS, and LMS now attempts to read the data using
the EDT-UP function IEDTGET. EDT rejects this operation with a return code because
LMS wants to read the data via the EDT-UP V16 interface.

● EXTRACT-ELEMENT (write to EDT work file)

You want to write a Unicode element to an EDT work file from within the EDT statement
line using the LMS statement EXTRACT-ELEMENT. EDT rejects this operation as with
EDIT-ELEMENT, because here too LMS attempts to pass a @CODENAME UTF8/16/E
statement to EDT via the EDT-UP V16 interface.

Unicode elements can, however, be written to or read from a library with the EDT functions
@WRITE LIBRARY=… and @COPY LIBRARY=… .

56 U41646-J-Z125-1-76

U41646-J-Z125-1-76 57

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

8 Appendix

8.1 Unicode products in BS2000/OSD: overview and
dependencies

BS2000/OSD-BC as of version 6.0B is required for all Unicode products.

Product Version Requires (in addition to
BS2000/OSD-BC V6.0B or higher)

BS2000/OSD-BC 6.0B (2nd correction package
2006)
contains
– CRTE-BASYS 1.6
– CRTE-MSG 1.6
– SPOOL 4.8
– SPSERVE 2.9
– SYSFILE 15.0B

–

7.0
contains
– CRTE-BASYS 1.6
– CRTE-MSG 1.6
– SPOOL 4.8
– SPSERVE 2.9
– SYSFILE 16.0

–

AID 3.2 openNet Server 3.2, MT9750 7.0

COBOL2000 1.4 XHCS 2.0, CRTE 2.6

CRTE 2.6 –

CRTE-
BASYS

1.6 –

CRTE-MSG 1.6 –

EDT 17.0 openNet Server 3.2

Table 5: Unicode products: overview and dependencies

Overview of Unicode products in BS2000/OSD Appendix

58 U41646-J-Z125-1-76

ESQL-COBOL
(COBOL SQL-
Precompiler)

3.0 SESAM 5.0, COBOL2000 1.4

FHS 8.3 openNet Server 3.2, MT9750 7.0, IFG 8.3

IFG 8.3 FHS 8.3, COBOL2000 1.4

MT9750 7.0 openNet Server 3.2

openFT 10.0 –

openNet Server 3.2
contains
– XHCS 2.0
– VTSU-B 13.2

–

ORACLE 10g –

PERCON 2.9 XHCS 2.0

RSO 3.5 XHCS 2.0

SESAM/SQL-
Server

5.0 COBOL2000 1.4, ESQL-COBOL 3.0,
XHCS 2.0

SORT 7.9 XHCS 2.0

SYSFILE 15.0B for OSD 6.0B –

16.0 for OSD 7.0 –

VTSU-B 13.2 MT9750 7.0

WebTransactions 7.1 openNet Server 3.2

XHCS 2.0 –

Product Version Requires (in addition to
BS2000/OSD-BC V6.0B or higher)

Table 5: Unicode products: overview and dependencies

Appendix Extended BS2000 macros

U41646-J-Z125-1-76 59

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

8.2 Extended BS2000 macros

GCCSN – display CCS name for command and file input

The STREAM parameter for outputting the Coded Character Set name for the BS2000
system files is new.

STREAM=
Name of the system file for which the CCS name is to be output.

Note

If SYSOUT/SYSLST was allocated to a file or a library element, the CCS name cannot
change between the opening and closing of the file or library element.
If, however, SYSOUT was allocated to a terminal, you can temporarily change the CCS
name dynamically in your program via the VTSUC-B for the current WROUT request.
This change only applies for the current request and cannot therefore be determined
via the GCCSN macro.

WROUT – pass record to SYSOUT

The ASSIGN parameter for specifying whether changes to the SYSOUT allocation are to
be displayed is new.

ASSIGN=
Defines whether changes to the SYSOUT allocation are to be displayed. The user program
is notified of the initial default allocation and of every subsequent allocation for SYSOUT via
the error address.
The write operation does not occur if a change is detected.
This operand is only permitted for a 31-bit interface.

GCCSN

STREAM = SYSDTA/SYSCMD/SYSOUT/SYSLST/SYSLST(1)..(99)

, ...

WROUT

record,error,

, ...

, [ASSIGN = NO / YES]

Extended BS2000 macros Appendix

60 U41646-J-Z125-1-76

NO
Changes to the SYSOUT allocation are not displayed.

YES
Changes to the SYSOUT allocation are displayed.

Note

The SYSOUT allocation is displayed in an output field of the parameter list and is
supplied from the SYSFILE processing.

The user program thus has the option of reacting to the changed basic conditions and
is able to perform any necessary conversions of the output string in order to then re-
initiate the write operation with the corrected output string.

TSTAT – query properties of data terminal /
DCSTA – generate operand table for data-terminal properties

With the TSTAT macro you request information on the terminal in timesharing mode.
DCSTA generates receiving fields or symbolic field names (DSECTs) for the information
you receive by calling TSTAT.

In the BASIC section of the DSECT DCSTA in the STACSSx field, the value x'F0' is output
for Unicode-capable terminal types.

VTSUCB – create VTSU parameters for input/output

If Unicode fields are to be output on the terminal, they must be converted to UTFE.

The CCS name in VTSUCB must then be supplied with UTFE. Other Unicode CCS names
(UTF16 or UTF8) are not allowed.

Appendix Default values for CCSN

U41646-J-Z125-1-76 61

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

8.3 Coded Character Set Names (CCSN): default values

Variable/Command/Program Default value Comments

CLASS-2 option
HOSTCODE

EDF03IRV

ADD-USER From CLASS-2 option
HOSTCODE

MODFY-USER-ATTR
CCS=*STD

From CLASS-2 option
HOSTCODE

VTSU TIAM/UTM/DCAM-PTERM8=N:
– EDF03IRV
TIAM/UTM/DCAM-PTERM8=Y:
– 8-bit terminal:

CCSN of HOME-PUB-SET
– 7-bit terminal:

CCSN=EDF03IRV

The parameters TIAM-
PTERM8, UTM-PTERM8 and
DCAM-PTERM8 are found in
the VTSU parameter file under
TSOS.
They are valid throughout the
system.

MODIFY-TERMINAL-
OPTIONS
CCS=*8-BIT-DEFAULT

8-bit terminal:
– CCSN=

CCSN of HOME-PUB-SET
7-bit terminal:
– Error message

You can also specify a CCSN
explicitly, but this must be
supported by the terminal.

EDT After loading of EDT
– in DIALOG mode the CCSN

matches the CCSN set in the
VTSU

– in BATCH mode the CCSN
matches the CCSN of the
allocated statement input file

EDT in Unicode mode:
Each window can have data with
a separate CCSN. If data is
copied from one window to
another, the data is converted.

EDT in compatibility mode:
In interactive mode, when a file
is imported, the CCSN can
change to that of the file, as long
as there is no data in either of
the EDT windows. This means
that all EDT windows can only
contain data with the same
CCSN.

Table 6: Default values for CCSN

Default values for CCSN Appendix

62 U41646-J-Z125-1-76

BS2000/OSD:
Creating a file:
CREATE-FILE
CREATE-FILE-GROUP
MODIFY-FILE-ATTRIBUTES
MODIFY-FILE-GROUP-
ATTRIBUTES

CCSN of the receiving Public
Volume Set (PVS) = EDF03IRV
-> CCSN of the file = *NONE

CCSN of the receiving PVS !=
EDF03IRV
-> The file receives the CCSN of
the user entry of the PVS.

LMS EDIT-ELEMENT
ELEMENT=*NONE
TO-ELEMENT=<output>

EDT determines the CCSN, see
EDT.

PLAM CCS=*NONE
CCS=
CCS of the PLAM library

Action Command Default value Comment

Defining the system
default character set

CLASS-2 option
HOSTCODE=<ccsn>

EDF03IRV Evaluation occurs with ADD-
USER command, with XHCS
CCSN=*SYSDEF

Setting up a user ID ADD-USER From CLASS-2
option HOSTCODE

Defines the CCS name in the
user entry of the HOME PVS.
Evaluation:
XHCS CCSN=*USRDEF
VTSU macro DCSTA
STACURCH

Setting up a user
entry for a user ID

ADD-USER From CLASS-2
option HOSTCODE

Defines the CCS name in the
user entry of the PVS.

Table 7: Actions and associated default values for CCSN

Variable/Command/Program Default value Comments

Table 6: Default values for CCSN

Appendix Useful code tables

U41646-J-Z125-1-76 63

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

8.4 Useful code tables

8.4.1 Conversion from ISO8859 to EBCDIC (BS2000/OSD) and vice versa

ISO8859-n and EBCDIC.DF.04.n have the same pool of characters. Conversion from one
character set to the other is based on the following conversion table:

Conversion from ISO8859 to EBCDIC (BS2000/OSD)

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0- 00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F

1- 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F

2- 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

3- F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F

4- 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

5- D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 BB BC BD 6A 6D

6- 4A 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

7- 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 FB 4F FD FF 07

8- 20 21 22 23 24 04 06 08 28 29 2A 2B 2C 09 0A 14

9- 30 31 25 33 34 35 36 17 38 39 3A 3B 1A 1B 3E 5F

A- 41 AA B0 B1 9F B2 D0 B5 79 B4 9A 8A BA CA AF A1

B- 90 8F EA FA BE A0 B6 B3 9D DA 9B 8B B7 B8 B9 AB

C- 64 65 62 66 63 67 9E 68 74 71 72 73 78 75 76 77

D- AC 69 ED EE EB EF EC BF 80 E0 FE DD FC AD AE 59

E- 44 45 42 46 43 47 9C 48 54 51 52 53 58 55 56 57

F- 8C 49 CD CE CB CF CC E1 70 C0 DE DB DC 8D 8E DF

Table 8: Conversion from ISO8859 to EBCDIC (BS2000/OSD)

Useful code tables Appendix

64 U41646-J-Z125-1-76

Conversion from EBCDIC (BS2000) to ISO8859

Unused byte positions in ISO8859/ EBCDIC tables

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0- 00 01 02 03 85 09 86 7F 87 8D 8E 0B 0C 0D 0E 0F

1- 10 11 12 13 8F 0A 08 97 18 19 9C 9D 1C 1D 1E 1F

2- 80 81 82 83 84 92 17 1B 88 89 8A 8B 8C 05 06 07

3- 90 91 16 93 94 95 96 04 98 99 9A 9B 14 15 9E 1A

4- 20 A0 E2 E4 E0 E1 E3 E5 E7 F1 60 2E 3C 28 2B 7C

5- 26 E9 EA EB E8 ED EE EF EC DF 21 24 2A 29 3B 9F

6- 2D 2F C2 C4 C0 C1 C3 C5 C7 D1 5E 2C 25 5F 3E 3F

7- F8 C9 CA CB C8 CD CE CF CC A8 3A 23 40 27 3D 22

8- D8 61 62 63 64 65 66 67 68 69 AB BB F0 FD FE B1

9- B0 6A 6B 6C 6D 6E 6F 70 71 72 AA BA E6 B8 C6 A4

A- B5 AF 73 74 75 76 77 78 79 7A A1 BF D0 DD DE AE

B- A2 A3 A5 B7 A9 A7 B6 BC BD BE AC 5B 5C 5D B4 D7

C- F9 41 42 43 44 45 46 47 48 49 AD F4 F6 F2 F3 F5

D- A6 4A 4B 4C 4D 4E 4F 50 51 52 B9 FB FC DB FA FF

E- D9 F7 53 54 55 56 57 58 59 5A B2 D4 D6 D2 D3 D5

F- 30 31 32 33 34 35 36 37 38 39 B3 7B DC 7D DA 7E

Table 9: Conversion from EBCDIC (BS2000) to ISO8859

Table Unused ISO8859 position Unused EBCDIC.DF.04 position

ISO8859-1 - -

ISO8859-2 - -

ISO8859-3 A5,AE,BE,C2,D0,E3,F0 B2,AF,B9,62,AC,46,8C

ISO8859-4 - -

ISO8859-5 - -

ISO8859-7 AE,D2 AF,ED

ISO8859-15 - -

Table 10: Unused byte positions in ISO8859/EBCDIC tables

Appendix Useful code tables

U41646-J-Z125-1-76 65

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Contents of ISO and corresponding EBCDIC code tables

8.4.2 Unicode characters convertible to IS08859.n

Unicode7-bit characters convertible to IS08859-n

All Unicode 7-bit characters listed in the following table can be converted into the following
character sets:
– ISO8859.1 or EBCDIC.DF.04-1
– ISO8859.2 or EBCDIC.DF.04-2
– ISO8859.3 or EBCDIC.DF.04-3
– ISO8859.4 or EBCDIC.DF.04-4
– ISO8859.5 or EBCDIC.DF.04-5
– ISO8859.7 or EBCDIC.DF.04-7
– ISO8859.9 or EBCDIC.DF.04-9
– ISO8859.15 or EBCDIC.DF.04-15

ISO table EBCDIC BS2000/OSD Contents

ISO/IEC 8859-1 EBCDIC.DF.04-1 Part 1: Latin alphabet No. 1

ISO/IEC 8859-2 EBCDIC.DF.04-2 Part 2: Latin alphabet No. 2

ISO/IEC 8859-3 EBCDIC.DF.04-3 Part 3: Latin alphabet No. 3

ISO/IEC 8859-4 EBCDIC.DF.04-4 Part 4: Latin alphabet No. 4

ISO/IEC 8859-5 EBCDIC.DF.04-5 Part 5: Latin/Cyrillic alphabet

ISO/IEC 8859-6 Part 6: Latin/Arabic alphabet

ISO/IEC 8859-7 EBCDIC.DF.04-7 Part 7: Latin/Greek alphabet

ISO/IEC 8859-8 Part 8: Latin/Hebrew alphabet

ISO/IEC 8859-9 EBCDIC.DF.04-9 Part 9: Latin alphabet No. 5

ISO/IEC 8859-10 Part 10: Latin alphabet No. 6

ISO/IEC 8859-11 Part 11: Latin/Thai alphabet

ISO/IEC 8859-13 Part 13: Latin alphabet No. 7

ISO/IEC 8859-14 Part 14: Latin alphabet No. 8 (Celtic)

ISO/IEC 8859-15 EBCDIC.DF.04-F Part 15: Latin alphabet No. 9

ISO/IEC 8859-16 Part 16: Latin alphabet No. 10

Table 11: Contents of ISO and corresponding EBCDIC code tables

Useful code tables Appendix

66 U41646-J-Z125-1-76

Table 12: Unicode 7-bit characters convertible to IS08859-n

Unicode Code Point Character

u+0000

u+0001 START OF HEADING

u+0002 START OF TEXT

u+0003 END OF TEXT

u+0004 END OF TRANSMISSION

u+0005 ENQUIRY

u+0006 ACKNOWLEDGE

u+0007 BELL

u+0008 BACKSPACE

u+0009 HORIZONTAL TABULATION

u+000A LINE FEED

u+000B VERTICAL TABULATION

u+000C FORM FEED

u+000D CARRIAGE RETURN

u+000E SHIFT OUT

u+000F SHIFT IN

u+0010 DATA LINK ESCAPE

u+0011 DEVICE CONTROL ONE

u+0012 DEVICE CONTROL TWO

u+0013 DEVICE CONTROL THREE

u+0014 DEVICE CONTROL FOUR

u+0015 NEGATIVE ACKNOWLEDGE

u+0016 SYNCHRONOUS IDLE

u+0017 END OF TRANSMISSION BLOCK

u+0018 CANCEL

u+0019 END OF MEDIUM

u+001A SUBSTITUTE

u+001B ESCAPE

u+001C FILE SEPARATOR

u+001D GROUP SEPARATOR

Appendix Useful code tables

U41646-J-Z125-1-76 67

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Table 12: Unicode 7-bit characters convertible to IS08859-n

Unicode Code Point Character

u+001E RECORD SEPARATOR

u+001F UNIT SEPARATOR

u+0020 SPACE

u+0021

u+0022

u+0023

u+0024

u+0025

u+0026

u+0027

u+0028

u+0029

u+002A

u+002B

u+002C

u+002D

u+002E

u+002F

u+0030

u+0031

u+0032

u+0033

u+0034

u+0035

u+0036

u+0037

u+0038

u+0039

u+003A

u+003B

Useful code tables Appendix

68 U41646-J-Z125-1-76

Table 12: Unicode 7-bit characters convertible to IS08859-n

Unicode Code Point Character

u+003C

u+003D

u+003E

u+003F

u+0040

u+0041

u+0042

u+0043

u+0044

u+0045

u+0046

u+0047

u+0048

u+0049

u+004A

u+004B

u+004C

u+004D

u+004E

u+004F

u+0050

u+0051

u+0052

u+0053

u+0054

u+0055

u+0056

u+0057

u+0058

u+0059

Appendix Useful code tables

U41646-J-Z125-1-76 69

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Table 12: Unicode 7-bit characters convertible to IS08859-n

Unicode Code Point Character

u+005A

u+005B

u+005C

u+005D

u+005E

u+005F

u+0060

u+0061

u+0062

u+0063

u+0064

u+0065

u+0066

u+0067

u+0068

u+0069

u+006A

u+006B

u+006C

u+006D

u+006E

u+006F

u+0070

u+0071

u+0072

u+0073

u+0074

u+0075

u+0076

u+0077

Useful code tables Appendix

70 U41646-J-Z125-1-76

Table 12: Unicode 7-bit characters convertible to IS08859-n

Unicode Code Point Character

u+0078

u+0079

u+007A

u+007B

u+007C

u+007D

u+007E

u+007F <control> DELETE

u+0080 <control>

u+0081 <control>

u+0082 <control>= BREAK PERMITTED HERE

u+0083 <control>= NO BREAK HERE

u+0084 <control>

u+0085 <control>=NEXT LINE (NL)

u+0086 <control>= START OF SELECTED AREA

u+0087 <control>= END OF SELECTED AREA

u+0088 <control>= CHARACTER TABULATION SET

u+0089

u+008A <control>= LINE TABULATION SET

u+008B <control>= PARTIAL LINE FORWARD

u+008C <control>= PARTIAL LINE BACKWARD

u+008D <control>= REVERSE LINE FEED

u+008E <control>= SINGLE SHIFT TWO

u+008F <control>= SINGLE SHIFT THREE

u+0090 <control>= DEVICE CONTROL STRING

u+0091 <control>= PRIVATE USE ONE

u+0092 <control>= PRIVATE USE TWO

u+0093 <control>= SET TRANSMIT STATE

u+0094 <control>= CANCEL CHARACTER

<control>= CHARACTER TABULATION WITH
JUSTIFICATION

Appendix Useful code tables

U41646-J-Z125-1-76 71

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Table 12: Unicode 7-bit characters convertible to IS08859-n

Unicode Code Point Character

u+0095 <control>= MESSAGE WAITING

u+0096 <control>= START OF GUARDED AREA

u+0097 <control>= END OF GUARDED AREA

u+0098 <control>= START OF STRING

u+0099 <control>

u+009A

u+009B

u+009C <control>= STRING TERMINATOR

u+009D <control>=OPERATING SYSTEM COMMAND

u+009E <control>= PRIVACY MESSAGE

u+009F

<control>= SINGLE CHARACTER
INTRODUCER

<control>= CONTROL SEQUENCE
INTRODUCER

<control>= APPLICATION PROGRAM
COMMAND

Useful code tables Appendix

72 U41646-J-Z125-1-76

Unicode characters convertible to ISO8859-n

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+00A0 1,2,3,4,5,7,9,15

u+00A1 1,9,15

u+00A2 1,9,15

u+00A3 1,3,7,9,15

u+00A4 1,2,3,5,9

u+00A5 1,9,15

u+00A6 1,7,9

u+00A7 1,2,3,4,5,7,9,15

u+00A8 1,2,3,4,7,9

u+00A9 1,7,9,15

u+00AA 1,9,15

u+00AB 1,7,9,15

u+00AC 1,7,9,15

u+00AD 1,2,3,4,5,7,9,15

u+00AE 1,9,15

u+00AF 1,4,9,15

u+00B0 1,2,3,4,7,9,15

u+00B1 1,7,9,15

u+00B2 1,3,7,9,15

u+00B3 1,3,7,9,15

u+00B4 1,2,3,4,9

u+00B5 1,3,9,15

u+00B6 1,9,15

u+00B7 1,3,7,9,15

u+00B8 1,2,3,9

u+00B9 1,9,15

u+00BA 1,9,15

u+00BB 1,7,9,15

u+00BD 1,3,7,9

u+00BE 1,9

u+00BF 1,9,15

Appendix Useful code tables

U41646-J-Z125-1-76 73

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+00C0 1,3,9,15

u+00C1 1,2,3,4,9,15

u+00C2 1,2,3,4,9,15

u+00C3 1,4,9,15

u+00C4 1,2,3,4,9,15

u+00C5 1,4,9,15

u+00C6 1,4,9,15

u+00C7 1,2,3,9,15

u+00C8 1,3,9,15

u+00C9 1,2,3,4,9,15

u+00CA 1,3,9,15

u+00CB 1,2,3,4,9,15

u+00CC 1,3,9,15

u+00CD 1,2,3,4,9,15

u+00CE 1,2,3,4,9,15

u+00CF 1,3,9,15

u+00D0 1,15

u+00D1 1,3,9,15

u+00D2 1,3,9,15

u+00D3 1,2,3,9,15

u+00D4 1,2,3,4,9,15

u+00D5 1,4.9,15

u+00D6 1,2,3,4,9,15

u+00D7 1,2,3,4,9,15

u+00D8 1,4,9,15

u+00D9 1,3,9,15

u+00DA 1,2,3,4,9,15

u+00DB 1,3,4,9,15

u+00DC 1,2,3,4,9,15

u+00DD 1,2,15

u+00DE 1,15

Useful code tables Appendix

74 U41646-J-Z125-1-76

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+00DF 1,2,3,4,9,15

u+00E0 1,3,9,15

u+00E1 1,2,3,4,9,15

u+00E2 1,2,3,4,9,15

u+00E3 1,4,9,15

u+00E4 1,2,3,4,9,15

u+00E5 1,4,9,15

u+00E6 1,4,9,15

u+00E7 1,2,3,9,15

u+00E8 1,3,9,15

u+00E9 1,2,3,4,9,15

u+00EA 1,3,9,15

u+00EB 1,2,3,4,9,15

u+00EC 1,3,9,15

u+00ED 1,2,3,4,9,15

u+00EE 1,2,3,4,9,15

u+00EF 1,3,9,15

u+00F0 1,15

u+00F1 1,3,9,15

u+00F2 1,3,9,15

u+00F3 1,2,3,9,15

u+00F4 1,2,3,4,9,15

u+00F5 1,4,9,15

u+00F6 1,2,3,4,9,15

u+00F7 1,2,3,4,9,15

u+00F8 1,4,9,15

u+00F9 1,3,9,15

u+00FA 1,2,3,4,9,15

u+00FB 1,3,4,9,15

u+00FC 1,2,3,4,9,15

u+00FD 1,2,15

Appendix Useful code tables

U41646-J-Z125-1-76 75

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+00FE 1,15

u+00FF 1,9,15

u+0100 4

u+0101 4

u+0102 2

u+0103 2

u+0104 2,4

u+0105 2,4

u+0106 2

u+0107 2

u+0108 3

u+0109 3

u+010A 3

u+010B 3

u+010C 2,4

u+010D 2,3

u+010E 2

u+010F 2

u+0110 2,4

u+0111 2

u+0112 4

u+0113 4

u+0116 4

u+0117 4

u+0118 2,4

u+0119 2,4

u+011A 2

u+011B 2

u+011C 3

u+011D 3

u+011E 3,9

Useful code tables Appendix

76 U41646-J-Z125-1-76

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+011F 3,9

u+0120 3

u+0121 3

u+0122 4

u+0123 4

u+0124 3

u+0125 3

u+0126 3

u+0127 3

u+0128 4

u+0129 4

u+012A 4

u+012B 4

u+012E 4

u+012F 4

u+0130 3,9

u+0131 3,9

u+0134 3

u+0135 3

u+0136 4

u+0137 4

u+0138 4

u+0139 2

u+013A 2

u+013B 4

u+013C 4

u+013D 2

u+013E 2

u+0141 2

u+0142 2

u+0143 2

Appendix Useful code tables

U41646-J-Z125-1-76 77

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+0144 2

u+0145 4

u+0146 4

u+0147 2

u+0148 2

u+014A 4

u+014B 4

u+014C 4

u+014D 4

u+0150 2

u+0151 2

u+0152 15

u+0153 15

u+0154 2

u+0155 2

u+0156 4

u+0157 4

u+0158 2

u+0159 2

u+015A 2

u+015B 2

u+015C 3

u+015D 3

u+015E 2,3,9

u+015F 2,3,9

u+0160 2,4,15

u+0161 2,4,15

u+0162 2

u+0163 2

u+0164 2

u+0165 2

Useful code tables Appendix

78 U41646-J-Z125-1-76

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+0166 4

u+0167 4

u+0168 4

u+0169 4

u+016A 4

u+016B 4

u+016C 3

u+016D 3

u+016E 2

u+016F 2

u+0170 2

u+0171 2

u+0172 4

u+0173 4

u+0178 15

u+0179 2

u+017A 2

u+017B 2,3

u+017C 2,3

u+017D 2,4,15

u+017E 2,4,15

u+02C7 2,4

u+02D8 2,3

u+02D9 2,3,4

u+02DB 2,4

u+02DD 2

u+037A 7

u+0384 7

u+0385 7

u+0386 7

u+0388 7

Appendix Useful code tables

U41646-J-Z125-1-76 79

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+0389 7

u+038A 7

u+038C 7

u+038E 7

u+038F 7

u+0390 7

u+0391 7

u+0392 7

u+0393 7

u+0394 7

u+0395 7

u+0396 7

u+0397 7

u+0398 7

u+0399 7

u+039A 7

u+039B 7

u+039C 7

u+039D 7

u+039E 7

u+039F 7

u+03A0 7

u+03A1 7

u+03A3 7

u+03A4 7

u+03A5 7

u+03A6 7

u+03A7 7

u+03A8 7

u+03A9 7

u+03AA 7

Useful code tables Appendix

80 U41646-J-Z125-1-76

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+03AB 7

u+03AC 7

u+03AD 7

u+03AE 7

u+03AF 7

u+03B0 7

u+03B1 7

u+03B2 7

u+03B3 7

u+03B4 7

u+03B5 7

u+03B6 7

u+03B7 7

u+03B8 7

u+03B9 7

u+03BA 7

u+03BB 7

u+03BC 7

u+03BD 7

u+03BE 7

u+03BF 7

u+03C0 7

u+03C1 7

u+03C2 7

u+03C3 7

u+03C4 7

u+03C5 7

u+03C6 7

u+03C7 7

u+03C8 7

u+03C9 7

Appendix Useful code tables

U41646-J-Z125-1-76 81

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+03CA 7

u+03CB 7

u+03CC 7

u+03CD 7

u+03CE 7

u+0401 5

u+0402 5

u+0403 5

u+0404 5

u+0405 5

u+0406 5

u+0407 5

u+0408 5

u+0409 5

u+040A 5

u+040B 5

u+040C 5

u+040E 5

u+040F 5

u+0410 5

u+0411 5

u+0412 5

u+0413 5

u+0414 5

u+0415 5

u+0416 5

u+0417 5

u+0418 5

u+0419 5

u+041A 5

u+041B 5

Useful code tables Appendix

82 U41646-J-Z125-1-76

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+041C 5

u+041D 5

u+041E 5

u+041F 5

u+0420 5

u+0421 5

u+0422 5

u+0423 5

u+0424 5

u+0425 5

u+0426 5

u+0427 5

u+0428 5

u+0429 5

u+042A 5

u+042B 5

u+042C 5

u+042D 5

u+042E 5

u+042F 5

u+0430 5

u+0431 5

u+0432 5

u+0433 5

u+0434 5

u+0435 5

u+0436 5

u+0437 5

u+0438 5

u+0439 5

u+043A 5

Appendix Useful code tables

U41646-J-Z125-1-76 83

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+043B 5

u+043C 5

u+043D 5

u+043E 5

u+043F 5

u+0440 5

u+0441 5

u+0442 5

u+0443 5

u+0444 5

u+0445 5

u+0446 5

u+0447 5

u+0448 5

u+0449 5

u+044A 5

u+044B 5

u+044C 5

u+044D 5

u+044E 5

u+044F 5

u+0451 5

u+0452 5

u+0453 5

u+0454 5

u+0455 5

u+0456 5

u+0457 5

u+0458 5

u+0459 5

u+045A 5

Useful code tables Appendix

84 U41646-J-Z125-1-76

Table 13: Unicode characters convertible to ISO8859-n

Unicode Code Point ISO8859-n / EBCDIC.DF.04.n Character

u+045B 5

u+045C 5

u+045E 5

u+045F 5

u+2015 7

u+2018 7

Appendix Useful code tables

U41646-J-Z125-1-76 85

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Characters required for German “Meldewesen” (reporting system) with no equiv-
alent in ISO8859-n

Table 14: Characters required for German “Meldewesen” (reporting system) with no equivalent in ISO8859-n

Unicode Code Point Character

u+0114

u+0115

u+012C

u+012D

u+014E

u+014F

u+0166

u+0167

u+0174

u+0175

u+0176

u+0177

u+019D

u+01A0

u+01A1

u+01AF

u+01B0

u+01CD

u+01CE

u+01CF

u+01D0

u+01D1

u+01D2

u+01D3

u+01D4

u+01E6

u+01E7

Useful code tables Appendix

86 U41646-J-Z125-1-76

Table 14: Characters required for German “Meldewesen” (reporting system) with no equivalent in ISO8859-n

Unicode Code Point Character

u+01F4

u+01F5

u+0212

u+0213

u+0272

u+1E20

u+1E21

u+1E24

u+1E25

u+1E30

u+1E31

u+1E44

u+1E45

u+1E60

u+1E61

u+1E62 S

u+1E63 s

u+1E84

u+1E85

u+1E8E

u+1E8F

u+1E90

u+1E91

u+1E92

u+1E93

u+1EA0

u+1EA1

.

.

Appendix Useful code tables

U41646-J-Z125-1-76 87

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

är
z

20
07

S

ta
nd

 1
6:

25
.0

2
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

h
ts

m
an

u
al

_
06

0
60

0
1\

en
\u

ni
co

d
e_

e.
an

h

Table 14: Characters required for German “Meldewesen” (reporting system) with no equivalent in ISO8859-n

Unicode Code Point Character

u+1EAA

u+1EAB

u+1EBC

u+1EBD

u+1EC4

u+1EC5

u+1ECA

u+1ECB

u+1ECC

u+1ECD

u+1ED6

u+1ED7

u+1EE4

u+1EE5

u+1EF2

u+1EF3

u+1EF8

u+1EF9

u+2264

88 U41646-J-Z125-1-76

U41646-J-Z125-1-76 89

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
28

. M
ä

rz
 2

00
7

 S
ta

n
d

16
:2

5.
03

P
fa

d:
 F

:\g
fis

ch
er

\U
N

IC
O

D
E

\u
eb

er
si

ch
ts

m
a

nu
a

l_
06

06
00

1
\e

n\
un

ic
o

de
_e

.m
ix

Glossary
Basic Multilingual Plane (BMP)

Corresponds to UCS-2.
UCS-2 can only represent the BMP characters, but characters from the BMP
can be saved in UCS-2, UTF-8, etc.

Big Endian
Type of byte ordering by the processor in a particular encoding.
In Big Endian, the most significant byte is stored at the lowest memory address.

Byte Order Marks (BOM)
BOMs indicate whether a UTF-16 or UTF-32 string is in Little Endian or Big
Endian format.

Code point
See Unicode code point.

Code space
The set of all code points. The code space of the Unicode standard V4 recog-
nizes 1,114,112 code points. The code space is divided into planes, each
encompassing 65,536 code points.

Collation element
Sorting element.
The Unicode standard describes a linguistic sort algorithm, which is based on
the fact that each character is assigned a collation element. It consists of a
series of up to three levels.

Diacritical mark
Mark which is linked to a base character or symbol, e.g. accent, tilde.

Little Endian
Type of byte ordering by the processor in a particular encoding.
In Little Endian the least significant byte is stored at the lowest memory
address.

Glossary

90 U41646-J-Z125-1-76

Normalization
Procedure for consistent representation of characters which can have several
Unicode code points (e.g. diacritical marks).

Surrogate pairs
All characters above U+FFFF in the Unicode encoding UTF-16. These are
represented by 4 bytes.
U+D800 - U+DBFF: High surrogate
U+DC00- U+DFFF: Low surrogate
A pair of high and low surrogates map the code points from U+10000 through
U+10FFFF.

Unicode code point
In Unicode, each character is assigned a number, the so-called code point.
A Unicode code point is generally specified in the form U+n, where n consists
of 4 to 6 hexadecimal numbers.

UCS-2 (2-byte Universal Character Set)
In UTF-16, all Unicode characters between U+0000 and U+FFFF are encoded
with 2 bytes. The characters in this range are also known as the 2-byte
Universal Character Set (UCS-2). The range of surrogates U+D800 through
U+DFFF and the byte order marks U+FEFF and U+FFFE are excluded.

UTF-8
Unicode encoding, defined by the Unicode Consortium.
UTF-8 uses a variable number of bytes for encoding the Unicode characters.
The byte representation of the ASCII characters remains unchanged. With a
character that is encoded with several bytes, none of the individual bytes repre-
sents a valid character.

Glossary

U41646-J-Z125-1-76 91

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
28

. M
ä

rz
 2

00
7

 S
ta

n
d

16
:2

5.
03

P
fa

d:
 F

:\g
fis

ch
er

\U
N

IC
O

D
E

\u
eb

er
si

ch
ts

m
a

nu
a

l_
06

06
00

1
\e

n\
un

ic
o

de
_e

.m
ix

UTF-8-Mod (modified UTF-8)
Preliminary stage of UTF-EBCDIC. The single-byte encoding of UTF-8 is
extended to include the second control-character block (U+80 - 8+9F). The
number of possible following bytes is reduced accordingly. With a subsequent
conversion from UTF-8MOD to EBCDIC, the representation of the EDF03IRV
characters remains unchanged.
A technical report from the Unicode Consortium proposes for systems which
use EBCDIC a conversion of Unicode characters to EBCDIC.

UTF-16
Unicode encoding, defined by the Unicode Consortium.
In UTF-16, all Unicode characters between U+0000 and U+FFFF are encoded
with 2 bytes. All characters above U+FFFF are represented by 4 bytes, so-
called surrogate pairs.

UTF-32
Unicode encoding, defined by the Unicode Consortium.
Every character in the Unicode standard is encoded directly as a 32-bit unit.

UTF-EBCDIC (UTFE)
Unicode encoding for machines which use the EBCDIC character set.

92 U41646-J-Z125-1-76

U41646-J-Z125-1-76 93

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

ä
rz

 2
00

7
 S

ta
n

d
16

:2
5.

04
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

eb
er

si
ch

ts
m

an
u

al
_0

60
6

00
1\

en
\u

ni
co

de
_e

.a
b

k

Abbreviations
BMP Basic Multilingual Plane

ISO International Standardization Organization

UCS-2 Universal Character Set 2

UCS-4 Universal Character Set 4

UTF-8 UCS Transformation Format 8-bit or Unicode Transformation Format

UTF-8MOD Modified UTF-8

UTF-16 UCS Transformation Format 16-bit

UTFE In BS2000/OSD: UTF-EBCDIC

94 U41646-J-Z125-1-76

U41646-J-Z125-1-76 95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 M

a
rc

h
20

07
 S

ta
nd

 1
6:

25
.0

4
P

fa
d:

 F
:\g

fis
ch

er
\U

N
IC

O
D

E
\u

eb
e

rs
ic

h
ts

m
a

nu
al

_
06

0
60

01
\e

n\
un

ic
od

e_
e.

tv
z

Tables
Table 1: Code space of the Unicode standard V4 . 13

Table 2: Byte allocation in UTF-8 representation. 16

Table 3: Byte allocation in UTF-8MOD representation . 19

Table 4: Byte allocation in UTFE representation . 21

Table 5: Unicode products: overview and dependencies. 57

Table 6: Default values for CCSN . 61

Table 7: Actions and associated default values for CCSN . 62

Table 8: Conversion from ISO8859 to EBCDIC (BS2000/OSD) 63

Table 9: Conversion from EBCDIC (BS2000) to ISO8859 . 64

Table 10: Unused byte positions in ISO8859/EBCDIC tables . 64

Table 11: Contents of ISO and corresponding EBCDIC code tables 65

Table 12: Unicode 7-bit characters convertible to IS08859-n . 66

Table 13: Unicode characters convertible to ISO8859-n . 72

Table 14: Characters required for German “Meldewesen” (reporting system)
with no equivalent in ISO8859-n. 85

96 U41646-J-Z125-1-76

U41646-J-Z125-1-76 97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
28

. M
ä

rz
 2

00
7

 S
ta

n
d

16
:3

4.
12

P
fa

d:
 F

:\g
fis

ch
er

\U
N

IC
O

D
E

\u
eb

er
si

ch
ts

m
an

ua
l_

06
06

00
1

\e
n\

un
ic

o
de

_e
.li

t

Related publications
The manuals are available as online manuals, see http://manuals.fujitsu-siemens.com, or in
printed form which must be paid and ordered separately at http://FSC-manualshop.com.

[1] XHCS (BS2000/OSD)
8-bit Code and Unicode Support in BS2000/OSD
User Guide

[2] PERCON V2.9A (BS2000/OSD)
User Guide

[3] COBOL2000 (BS2000/OSD)
COBOL Compiler
Reference Manual

[4] AID (BS2000/OSD)
Advanced Interactive Debugger
Core Manual

[5] AID (BS2000/OSD)
Debugging of COBOL Programs

[6] IFG (BS2000/OSD)
Interactive Format Generator
User Guide

[7] FHS (BS2000/OSD)
Format Handling System for openUTM, TIAM, DCAM
User Guide

[8] SESAM/SQL-Server (BS2000/OSD)
Core Manual
User Guide

[9] SORT V7.9A (BS2000/OSD)
User Guide

http://manuals.fujitsu-siemens.com
http://FSC-manualshop.com

Related publications

98 U41646-J-Z125-1-76

[10] EDT (BS2000/OSD)
Statements
User Guide

[11] openFT V10.0A for BS2000/OSD
Enterprise File Transfer in the Open World
User Guide

[12] openFT V10.0A for BS2000/OSD
Installation and Administration
System Administrator Guide

[13] RSO (BS2000/OSD)
Remote Spool Output

[14] WebTransactions
Concepts and Functions

[15] WebTransactions
Connecting to OSD Applications
User Guide

[16] WebTransactions
Connecting to openUTM Applications via UPIC
User Guide

Additional publications

Website of the Unicode Consortium:
http://www.unicode.org/standard/WhatIsUnicode.html

Oracle User's Guide for Fujitsu Siemens Computers BS2000/OSD
http://www.oracle.com/technology/documentation/database10gr2.html

Oracle Database Globalization Support Guide
Part Number B14225-02

Oracle Database Upgrade Guide
Part Number B14238-01

http://www.unicode.org/standard/translations/german.html
http://www.oracle.com/technology/documentation/database10gr2.html

U41646-J-Z125-1-76 99

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
28

. M
a

rc
h

20
07

S

ta
nd

 1
6:

30
.0

3
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

ht
sm

an
u

al
_0

60
60

0
1\

en
\u

ni
co

d
e_

e.
si

x

Index

formats (FHS)
processing 43

%C()
AID function 38

%SHOW %CCSN (AID) 38
%UTF16 (AID data type) 38
%UTF16()

AID function 38

A
Advanced Interactive Debugger (AID) 38
AFP-IPDS printer 45
AID 38

%SHOW%CCSN 38
data type %UTF16 38

AID (Advanced Interactive Debugger) 38
AID function

%C() 38
%UTF16() 38

AL16UTF-16 42
ALTER CATALOG (SESAM/SQL) 40
application scenario 27
applications

Web integration 47
ASCII compatibility 15

B
Basic Multilingual Plane 13
Big Endian 22
BMP 13
byte positions (EBCDIC table)

unused 64
byte positions (ISO8859 tables)

unused 64

C
CCSN

actions and associated default values 62
concept 27
default values 61
SESAM/SQL 40, 53

central printers 45
CJK scripts 9
COBOL

representation/processing of Unicode
characters 37

COBOL standard ISO1989 2002 37
COBOL2000 V1.4 37
code compatibility 36
code point 13
code space 13
code table

conversion from EBCDIC (BS2000/OSD) to
ISO8859 64

conversion from ISO8859 to EBCDIC
(BS2000/OSD) 63

Coded Character Set Name
actions and associated default values 62
concept 27
default values 61
PERCON 51
SESAM/SQL 40

coded character sets in utility functions (SESAM/
SQL) 40

collation element 24, 36, 51
compatibility

Oracle 10g 42
SESAM/SQL 41

compatibility mode
EDT 50

Index

100 U41646-J-Z125-1-76

COMPOSE (function) 23
conversion

between encodings 36
EBCDIC (BS2000/OSD) to ISO8859 (code

table) 64
ISO8859 to EBCDIC (BS2000/OSD) (code

table) 63
Oracle 10g 41
to Unicode 51
Unicode characters to EBCDIC 17

conversion function
TO_CHAR (Oracle 10g) 42
TO_NCHAR (Oracle 10g) 42
TRANSLATE (Oracle 10g) 42
TRANSLATE (SESAM/SQL) 39

CREATE CATALOG (SESAM/SQL) 40

D
data class

national 37
data type

%UTF16 (AID) 38
DCSTA

BS2000 macro 60
decentralized printers 45
DECOMPOSE (function) 23
definition

additional Unicode characters 36
dependencies of Unicode products in BS2000/

OSD 57
diacritical mark 23

E
EBCDIC and corresponding ISO code table

contents 65
EBCDIC table

unused byte positions 64
EBCDIC.DF.03IRV 10, 18, 45
EDF03IRV 18
EDT 50

compatibility mode 50
Unicode mode 50

encodings
conversion 36

export
of Unicode data (Oracle 10g) 42

EXPORT TABLE (SESAM/SQL) 40
EXtended Host Code Support 36
EXTRACT-ELEMENT 54

F
FHS 31, 43

processing # formats 43
file editing

with EDT 50
file transfer (Unicode) 52
format

in Unicode mode 43
Format Handling System 43
formats

defining Unicode fields 44
Unicode characters 43

function
COMPOSE 23
DECOMPOSE 23

G
GCCSN

BS2000 macro 59
German Meldewesen

characters with no equivalent in ISO8859-
n 85

I
IFG 31, 43, 44
import

of Unicode data (Oracle 10g) 42
IMPORT TABLE (SESAM/SQL) 40
integrating Unicode-capable applications into the

Web 47
Interactive Format Generator 43
interfaces (BS2000/OSD)

Unicode encodings 29
ISO and corresponding EBCDIC code table

contents 65
ISO8859 tables

unused byte positions 64

Index

U41646-J-Z125-1-76 101

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
28

. M
a

rc
h

20
07

S

ta
nd

 1
6:

30
.0

3
P

fa
d

: F
:\

gf
is

ch
e

r\
U

N
IC

O
D

E
\u

e
be

rs
ic

ht
sm

an
u

al
_0

60
60

0
1\

en
\u

ni
co

d
e_

e.
si

x

L
level (Unicode code space) 13
linguistic sort algorithm (Unicode standard) 24
LINKED-IN-ATTRIBUTES 53
Little Endian 22
LOAD (SESAM/SQL) 40

M
mark

diacritical 23
MT9750 configuration 32

N
national

data class 37
NATIONAL CHARACTER (data type) 39
NATIONAL CHARACTER VARYING (data

type) 39
NCHAR 39, 41
NCHR (SQL function Oracle 10g) 42
NCLOB 41
normalization 23, 36, 51
NVARCHAR 39
NVARCHAR2 41

O
openFT 52
Oracle 10g 41

compatibility 42
Oracle applications

processing 42

P
PERCON 51
Peripheral Converter (PERCON) 51
plane (Unicode code space) 13
printers

central 45
decentralized 45

PRINTRONIX P7000 46
processing

Oracle applications 42

R
RDATA interface 31
Remote Spool Output 45
RSO 45

S
SESAM/SQL 39

compatibility 41
conversion function TRANSLATE 39
Unicode concept 39

SESAM/SQL applications 40
SORT 51
sort key 24
sort sequence 24, 36

Unicode standard 24
sorting

Unicode fields 51
SQL language description

Unicode support 39
SQL*Loader 42
surrogate pair 22

T
terminal emulation MT9750

configuration 32
TO_CHAR

conversion function in Oracle 10g 42
TO_NCHAR

conversion function in Oracle 10g 42
transfer

Unicode files 52
TRANSLATE

conversion function in Oracle 10g 42
conversion function in SESAM/SQL 39

transport layer
Unicode encoding 31

TSTAT
BS2000 macro 60

U
UCS-2 9, 22
UCS-4 9
UNICODE

field attribute 43

Index

102 U41646-J-Z125-1-76

Unicode
conversion to 51
defining fields in formats 44
in formats 43

Unicode 7-bit characters
convertible to ISO8859.x 65

Unicode characters
convertible to ISO8859.n 72
definition 36
representation/processing (COBOL) 37

Unicode Default Collation Table 25, 51
Unicode encoding

on BS2000/OSD interfaces 29
transport layer 31

Unicode fields
sorting 51

Unicode files
transfer 52

Unicode format 43
Unicode in BS2000/OSD

basic considerations 28
Unicode mode

EDT 50
Unicode products in BS2000/OSD

dependencies 57
Unicode support

WebTransactions for openUTM 48
WebTransactions for OSD 47

UNISTR (SQL function Oracle 10g) 42
UNLOAD (SESAM/SQL) 40
UTF-16 10, 22
UTF-32 22
UTF-8 10, 15

ASCII compatibility 15
UTF-8MOD 17

byte allocation 19
UTFE 17

byte allocation 21
Oracle 10g 41
SESAM/SQL 54

UTF-EBCDIC 17
utility functions (SESAM/SQL)

coded character sets 40

V
VTSU 31
VTSUCB

BS2000 macro 60

W
Web integration

of Unicode-capable applications 47
WebTransactions 47
WebTransactions for openUTM

Unicode support 48
WebTransactions for OSD

Unicode support 47
WROUT

BS2000 macro 59

X
XHCS 36

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Contents
	Introduction
	Target group
	Concept of the manual

	Overview
	What is Unicode?
	Motivation for Unicode support

	Unicode encodings
	UTF-8
	UTF-EBCDIC (UTFE)
	UTF-16
	UTF-32
	Normalization
	Sort sequence

	Unicode in BS2000/OSD
	Basics of Unicode support in BS2000/OSD
	Overview of the affected interfaces
	Configuring the terminal emulation MT9750

	Unicode adjustments in BS2000 applications
	Character handling in BS2000/OSD (XHCS)
	Representing and processing Unicode characters with COBOL
	Advanced Interactive Debugger (AID)
	Storing, searching for and managing Unicode data in databases
	Unicode concept in SESAM/SQL
	Unicode concept in Oracle

	Support for Unicode fields in formats
	Outputting print jobs with Unicode data
	Central printers (AFP-IPDS)
	Decentralized printers (RSO)

	Web integration of Unicode-capable applications (WebTransactions)

	Unicode adjustments for file processing
	Creating and editing Unicode files (EDT)
	Converting and normalizing Unicode files (PERCON)
	Sorting Unicode fields (SORT)
	Transferring Unicode files (openFT)

	Tips and tricks
	Tips on SESAM/SQL
	Tips on LMS

	Appendix
	Unicode products in BS2000/OSD: overview and dependencies
	Extended BS2000 macros
	Coded Character Set Names (CCSN): default values
	Useful code tables
	Conversion from ISO8859 to EBCDIC (BS2000/OSD) and vice versa
	Unicode characters convertible to IS08859.n

	Glossary
	Abbreviations
	Tables
	Related publications
	Index
	A - C
	D - I
	L - U
	V - X

