
Edition November 2006

ESQL-COBOL V3.0 A
ESQL-COBOL for SESAM/SQL-Server

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Fax forms for sending us your comments are included at the
back of the manual.

There you will also find the addresses of the relevant User
Documentation Department.

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks
Copyright © Fujitsu Siemens Computers GmbH 2006.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

http://www.cognitas.de

U22424-J-Z125-3-76

Contents

1 Preface . 7

1.1 Brief product description . 8

1.2 Target group . 8

1.3 Summary of contents . 9

1.4 README file . 9

1.5 Changes since the last version of the manual . 10

1.6 Notational conventions . 11
1.6.1 Notational conventions for statements . 11
1.6.2 SDF syntax . 12

2 Embedding SQL in COBOL programs . 29

2.1 Creating an ESQL-COBOL application . 30

2.2 Elements in an ESQL-COBOL program . 31

2.3 Host variables . 32
2.3.1 Defining host variables . 32
2.3.2 Specifying host variables in SQL statements . 38
2.3.2.1 Qualifying the names of lower-ranking data fields 39
2.3.2.2 Addressing vectors . 40
2.3.3 Indicator variables . 42
2.3.3.1 Defining indicator variables . 42
2.3.3.2 Specifying indicator variables in an SQL statement 43
2.3.3.3 Verifying the transfer of values . 44
2.3.3.4 Transferring the NULL value . 44

2.4 Assigning SQL and COBOL data types . 45
2.4.1 Fixed-length character string . 46
2.4.2 Variable-length character string . 47
2.4.3 Fixed-length national character string . 49

Contents

 U22424-J-Z125-3-76

2.4.4 Variable-length national character string . 50
2.4.5 Small integer . 52
2.4.6 Integer . 54
2.4.7 Fixed-point number (packed) . 56
2.4.8 Fixed-point number (unpacked) . 57
2.4.9 Single-precision floating-point number . 59
2.4.10 Double-precision floating-point number . 60
2.4.11 Floating-point number . 60
2.4.12 Date . 61
2.4.13 Time . 63
2.4.14 Timestamp . 65
2.4.15 Vectors . 67

2.5 SQL statements in an ESQL-COBOL program . 68

2.6 SQL comments in an ESQL-COBOL program . 70

2.7 The communication area . 71
2.7.1 Structure of the communication area . 71
2.7.2 Making the communication area available . 74
2.7.3 Error handling and success monitoring . 76
2.7.3.1 Controlling program execution with COBOL statements 77
2.7.3.2 Controlling program execution with the SQL statement WHENEVER 77

2.8 INCLUDE elements . 79

3 Precompiling an ESQL-COBOL program . 81

3.1 Calling and controlling the ESQL precompiler . 82
3.1.1 Assigning the requisite libraries and files . 83
3.1.2 Precompiling with database contact . 84
3.1.3 Starting the ESQL precompiler . 84

3.2 ESQL precompiler options . 87
3.2.1 Overview of the ESQL precompiler options . 87
3.2.1.1 Specifying input sources . 87
3.2.1.2 Specifying the properties of the ESQL-COBOL program 88
3.2.1.3 Controlling precompilation . 89
3.2.2 Specifying the output target for the generated COBOL program 90
3.2.3 Specifying INCLUDE libraries . 92
3.2.4 Specifying the output target for the SQL link and load module 93
3.2.5 Specifying a job variable . 95
3.2.6 Controlling precompilation . 96
3.2.7 Specifying the input source for the ESQL precompiler 99
3.2.8 Specifying the properties of the ESQL-COBOL program 101

Contents

U22424-J-Z125-3-76

3.3 ESQL precompiler termination behavior . 108
3.3.1 Monitoring termination behavior with job variables 108
3.3.2 Messages output by the ESQL precompiler . 109
3.3.3 Creating diagnostic documents . 111

4 Compiling the COBOL program . 113

5 Linking an ESQL-COBOL application . 115

6 Starting an ESQL-COBOL application . 117

7 ESQL-COBOL applications under openUTM . 119

7.1 The language subset under openUTM . 119

7.2 Generating a UTM application . 120

7.3 Starting a UTM application . 122

8 Sample programs . 123

8.1 The program QUERY . 124

8.2 The program UPDATE . 131

8.3 The program INSERT . 136

8.4 The program DELETE . 140

8.5 The program DYNAMIC . 145

9 Messages output by the ESQL-COBOL system 153

Contents

 U22424-J-Z125-3-76

10 Appendix . 165

10.1 Mixed-mode operation of SQL and CALL DML interfaces 166

10.2 Demonstration database . 166
10.2.1 Schema ORDER_PROC . 166
10.2.1.1 CUSTOMERS table . 167
10.2.1.2 CONTACTS table . 168
10.2.1.3 ORDERS table . 169
10.2.1.4 SERVICE table . 170
10.2.1.5 ORDSTAT table . 171
10.2.2 Schema PARTS . 172
10.2.2.1 ITEMS table . 172
10.2.2.2 PURPOSE table . 173
10.2.2.3 WAREHOUSE table . 174
10.2.2.4 COLOR_TAB table . 175
10.2.2.5 TABTAB table . 176

Glossary . 177

Related publications . 181

Index . 189

U22424-J-Z125-3-76 7

1 Preface
ESQL-COBOL is an important add-on product for the SESAM®/SQL-Server database
system. Through its functions and its architectural features, the SESAM/SQL-Server
database system fulfills all today’s requirements of a powerful database server. This is
reflected in the product name, SESAM/SQL-Server.

For the sake of simplicity, this manual refers to SESAM/SQL when describing the SESAM/
SQL-Server database system.

This chapter includes

● Brief product description for ESQL-COBOL

● Target group

● Summary of contents

● Changes since the last version of the manual

● Notational conventions

8 U22424-J-Z125-3-76

Brief product description Preface

1.1 Brief product description

ESQL-COBOL allows you to embed SQL in the COBOL host language.

Using SQL statements embedded in COBOL, you can:

– define, query and update SESAM/SQL databases

– perform database administration tasks for SESAM/SQL databases

SQL

SQL (Structured Query Language) is a relational database language which has been
standardized by ISO (International Organization for Standardization) in ISO/IEC
9075:2003. The standardization of SQL means that you can create portable SQL applica-
tions.

ESQL-COBOL fully supports the mandatory features of the SQL standard. In addition, it
supports some optional features from the SQL standard. Moreover, ESQL-COBOL includes
powerful extensions to the SQL standard. The language subset supported is described in
“SQL Reference Manual Part 1: SQL Statements” [2] and “SQL Reference Manual Part 2:
Utilities” [3].

1.2 Target group

This manual is aimed at COBOL programmers who wish to use SQL statements to define
or access SESAM/SQL databases.

The manual assumes a basic knowledge of BS2000, a knowledge of SQL, and experience
in COBOL programming. If applications are to be generated under openUTM, a knowledge
of UTM is also necessary.

U22424-J-Z125-3-76 9

Preface Summary of contents

1.3 Summary of contents

This manual covers the following topics:

– The embedding of SQL in a COBOL program

– Precompilation of the ESQL-COBOL program with the ESQL precompiler

– Compilation of a COBOL program

– Linking of an ESQL-COBOL application

– Starting an ESQL-COBOL application

– ESQL-COBOL applications under UTM

– Example programs and messages from the ESQL-COBOL system

The examples provided are based mainly on the sample database presented in the
appendix.

The manual contains a glossary which defines the technical terms used.
As well as the table of contents, you can use the running headers and the index to find the
information you require. References to other publications are included in the text in abbre-
viated form. The complete title of the publication is included in the list of related publications
at the back of the manual.

1.4 README file

Please refer to the product-specific README file for details on functional modifications and
supplements to this manual regarding the current version of the product. The README file
is located on your BS2000 computer under the name
SYSRME.product.version.language. Please consult systems support for the user ID under
which the README file is located. You can view the README file with the command
/SHOW-FILE or view it in an editor or print it to a standard printer using the following
command:

/PRINT-DOCUMENT filename, LINE-SPACING=*BY-EBCDIC-CONTROL

or, if SPOOL with a version earlier than 3.0A is used:

/PRINT-FILE FILE-NAME=filename,LAYOUT-CONTROL=
PARAMETERS(CONTROL-CHARACTERS=EBCDIC)

10 U22424-J-Z125-3-76

Changes since the last version of the manual Preface

1.5 Changes since the last version of the manual

This section describes the changes made between this edition of the manual and the last
version:

● Support of character representation in UTF-16:

– Data type NCHAR

– Data type NVARCHAR

U22424-J-Z125-3-76 11

Preface Notational conventions for statements

1.6 Notational conventions

This manual uses two sets of notational conventions:

– conventions for statements which are not in SDF format

– SDF syntax for commands in SDF format

1.6.1 Notational conventions for statements

The statements are represented using a specific metasyntax. The meanings of the
individual syntax elements are summarized in the table below:

Syntax element Meaning Example
italics Italics denote a variable to which a current

value has to be assigned.
level-no data-name

Example of input:
01 COMPANY

Fixed-space font The fixed-space font is used in examples. EXEC SQL

Example of input:
EXEC SQL

Alternatives are enclosed in braces. Each
line contains one alternative expression.
Only one expression may be selected. The
braces are metacharacters and must not
be entered. Example of input:

 9
[] Expressions in square brackets may be

omitted. The brackets are metacharacters
and must not be entered.

[INDICATOR]

...
,...

{ },...

Repetition characters:
You can specify the preceding expression
repeatedly; each such expression must be
separated from the next by a blank or a
comma.

The expression enclosed in braces may
be specified repeatedly; each such
expression must be separated from the
next by a comma.

expression,...

Example of input:
ADDRESS,SALARY

Table 1: Notational conventions for COBOL statements

X
A
9

12 U22424-J-Z125-3-76

SDF syntax Preface

1.6.2 SDF syntax

Figure 1 shows an example of how command syntax is represented in a manual. The
command format comprises a field containing the command name, which is followed by a
list of all the operands and their permitted settings. Operand values that introduce struc-
tures and the operands that are dependent on them are also listed.

Figure 1: Syntax diagram for the user command HELP-SDF

This syntax description is based on SDF Version 4.0A. The syntax of the SDF command/
statement language is explained in the three tables that follow.

Table 2: Metasyntax

The meanings of the special characters and the notation used to describe command and
statement formats are explained in this table.

Table 3: Data types

Variable operand values are represented in SDF by data types. Each data type represents
a specific set of values. The number of data types is limited to those described in this table.

The description of the data types is valid for the entire set of commands/statements. For
this reason, only deviations (if any) are explained in table 4 in the operand descriptions.

HELP-SDF Short name: HPSDF

GUIDANCE-MODE = *NO / *YES

,SDF-COMMANDS = *NO / *YES

,ABBREVIATION-RULES = *NO / *YES

,GUIDED-DIALOG = *YES (...)

*YES(...)
  SCREEN-STEPS = *NO / *YES
 ,SPECIAL-FUNCTIONS = *NO / *YES
 ,FUNCTION-KEYS = *NO / *YES
 ,NEXT-FIELD = *NO / *YES

,UNGUIDED-DIALOG = *YES (...) / *NO

*YES(...)
  SPECIAL-FUNCTIONS = *NO / *YES
  ,FUNCTION-KEYS = *NO / *YES

U22424-J-Z125-3-76 13

Preface SDF syntax

Table 4: Suffixes for data types

Data type suffixes define additional rules for data type input. They can be used to extend or
limit the set of values. The following short forms are used in this manual for data type
suffixes:

cat-id cat
completion compl
construction constr
correction-state corr
generation gen
lower-case low
manual-release man
odd-possible odd
path-completion path-compl
separators sep
underscore under
user-id user
version vers
wildcards wild

The entry for the ‘integer’ data type in table 4 also contains a number of items set in italics;
the italics are not part of the syntax and are only used to make the table easier to read.

The description of the data types suffixes is valid for the entire set of commands/state-
ments. For this reason, only deviations (if any) are explained in table 4 in the relevant
operand descriptions.

14 U22424-J-Z125-3-76

SDF syntax Preface

Metasyntax

Representation Meaning Examples
UPPERCASE
LETTERS

Uppercase letters denote
keywords. The keywords for
constant operand values begin
with *.

HELP-SDF

SCREEN-STEPS = *NO

UPPERCASE
LETTERS
in boldface

Uppercase letters printed in
boldface denote guaranteed or
suggested abbreviations of
keywords.

GUIDANCE-MODE = *YES

= The equals sign connects an
operand name with the associated
operand values.

GUIDANCE-MODE = *NO

< > Angle brackets denote variables
whose range of values is described
by data types and suffixes (see
Tables 3 and 4).

SYNTAX-FILE = <full-filename 1..54>

Underscoring Underscoring denotes the default
value of an operand.

GUIDANCE-MODE = *NO

/ A slash serves to separate
alternative operand values.

NEXT-FIELD = *NO / *YES

(…) Parentheses denote operand
values that initiate a structure.

,UNGUIDED-DIALOG = *YES (...) / *NO

[] Square brackets denote operand
values which introduce a structure
and are optional. The subsequent
structure can be specified without
the initiating operand value.

SELECT = [*BY-ATTRIBUTES](...)

Indentation Indentation indicates that the
operand is dependent on a higher-
ranking operand.

,GUIDED-DIALOG = *YES (...)

*YES(...)

 SCREEN-STEPS = *NO /
 *YES

Table 2: Metasyntax (part 1 of 2)

U22424-J-Z125-3-76 15

Preface SDF syntax




A vertical bar identifies related
operands within a structure. Its
length marks the beginning and
end of a structure. A structure may
contain further structures. The
number of vertical bars preceding
an operand corresponds to the
depth of the structure.

SUPPORT = *TAPE(...)

 *TAPE(...)

 VOLUME = *ANY(...)
 *ANY(...)
  ...
 

, A comma precedes further
operands at the same structure
level.

GUIDANCE-MODE = *NO / *YES

,SDF-COMMANDS = *NO / *YES

list-poss(n): The entry “list-poss” signifies that a
list of operand values can be given
at this point. If (n) is present, it
means that the list must not have
more than n elements. A list of
more than one element must be
enclosed in parentheses.

list-poss: *SAM / *ISAM

list-poss(40): <structured-name 1..30>

list-poss(256): *OMF / *SYSLST(...) /
<full-filename 1..54>

Abbreviation: The name that follows represents a
guaranteed alias for the command
or statement name.

HELP-SDF Abbreviation: HPSDF

Representation Meaning Examples

Table 2: Metasyntax (part 2 of 2)

16 U22424-J-Z125-3-76

SDF syntax Preface

Data types

Data type Character set Special rules
alphanum-name A…Z

0…9
$, #, @

cat-id A…Z
0…9

Not more than 4 characters;
must not begin with the string PUB

command-rest freely selectable
composed-name A…Z

0…9
$, #, @
hyphen
period
catalog ID

Alphanumeric string that can be split into
multiple substrings by means of a period or
hyphen.
If a file name can also be specified, the string
may begin with a catalog ID in the form :cat:
(see data type full-filename).

c-string EBCDIC character Must be enclosed within single quotes;
the letter C may be prefixed; any single quotes
occurring within the string must be entered
twice.

date 0…9
Structure identifier:
hyphen

Input format: yyyy-mm-dd

yyyy: year; optionally 2 or 4 digits
mm: month
dd: day

device A…Z
0…9
hyphen

Character string, max. 8 characters in length,
corresponding to a device available in the
system. In interactive prompting, SDF displays
the valid operand values. For notes on possible
devices, see the relevant operand description.

fixed +, -
0…9
period

Input format: [sign][digits].[digits]

[sign]: + or -
[digits]: 0...9

must contain at least one digit, but may
contain up to 10 characters (0...9, period) apart
from the sign.

Table 3: Data types (part 1 of 6)

U22424-J-Z125-3-76 17

Preface SDF syntax

full-filename A…Z
0…9
$, #, @
hyphen
period

Input format:

[:cat:][$user.]

 :cat:
optional entry of the catalog identifier;
character set limited to A...Z and 0...9;
maximum of 4 characters; must be enclosed
in colons; default value is the catalog
identifier assigned to the user ID, as
specified in the user catalog.

 $user.
optional entry of the user ID;
character set is A…Z, 0…9, $, #, @;
maximum of 8 characters; first character
cannot be a digit; $ and period are
mandatory;
default value is the user' s own ID.

 $. (special case)
system default ID

file
file or job variable name;
may be split into a number of partial names
using a period as a delimiter:
name1[.name2[...]]
namei does not contain a period and must
not begin or end with a hyphen;
file can have a max. length of 41 characters;
it must not begin with a $ and must include
at least one character from the range A...Z.

Data type Character set Special rules

Table 3: Data types (part 2 of 6)

file
file(no)
group

group
(*abs)
(+rel)
(-rel)

18 U22424-J-Z125-3-76

SDF syntax Preface

full-filename
(continued)

#file (special case)
@file (special case)

or @ used as the first character indicates
temporary files or job variables, depending
on system generation.

file(no)
tape file name
no: version number;
character set is A...Z, 0...9, $, #, @.
Parentheses must be specified.

group
name of a file generation group
(character set: as for “file”)

group

 (*abs)
absolute generation number (1-9999);
* and parentheses must be specified.

 (+rel)
(-rel)

relative generation number (0-99);
sign and parentheses must be specified.

integer 0…9, +, - + or -, if specified, must be the first character.
name A…Z

0…9
$, #, @

Must not begin with 0...9.

Data type Character set Special rules

Table 3: Data types (part 3 of 6)

(*abs)
(+rel)
(-rel)

U22424-J-Z125-3-76 19

Preface SDF syntax

partial-filename A…Z
0…9
$, #, @
hyphen
period

Input format: [:cat:][$user.][partname.]

:cat: see full-filename
$user. see full-filename

partname

optional entry of the initial part of a name
common to a number of files or file
generation groups in the form:
name1.[name2.[...]]
namei (see full-filename).
The final character of “partname” must be a
period.
At least one of the parts :cat:, $user. or
partname must be specified.

posix-filename A...Z
0...9
special characters

String with a length of up to 255 characters;
consists of either one or two periods or of alpha-
numeric characters and special characters.
The special characters must be escaped with a
preceding \ (backslash); the slash (/) is not
allowed.
Must be enclosed within single quotes if alter-
native data types are permitted, separators are
used, or the first character is a ? or !
A distinction is made between uppercase and
lowercase.

posix-pathname A...Z
0...9
special characters
structure identifier:
slash

Input format: [/]part1/.../partn
where parti is a posix-filename;
max. 1024 characters;
must be enclosed within single quotes if alter-
native data types are permitted, separators are
used, or the first character is a ? or !

Data type Character set Special rules

Table 3: Data types (part 4 of 6)

20 U22424-J-Z125-3-76

SDF syntax Preface

product-version A…Z
0…9
period
single quote

Input format:

where n is a digit and a is a letter.
The release and correction status must be
specified if product-version does not include a
suffix (see suffix without-corr and without-man in
Table 4).
product-version may be enclosed within single
quotes (possibly with a preceding C).
The specification of the version may begin with
the letter V.

structured-name A…Z
0…9
$, #, @
hyphen

Alphanumeric string which may comprise a
number of substrings separated by a hyphen.
First character: A...Z or $, #, @

text

freely selectable For the input format, see the relevant operand
descriptions.

time

0…9
structure identifier:
colon

Time-of-day entry:

Input format:

hh: hours
mm: minutes
ss: seconds

vsn a) A…Z
0…9

a) Input format: pvsid.sequence-no
max. 6 characters

 pvsid: 2-4 characters; PUB
must not be entered

sequence-no: 1-3 characters
 b) A…Z

0…9
$, #, @

b) Max. 6 characters;
PUB may be prefixed, but must not be
followed by $, # or @.

Data type Character set Special rules

Table 3: Data types (part 5 of 6)

[[C]'][V][n]n.nann[']

correction status
release status

hh:mm:ss
hh:mm
hh

Leading zeros may be
omitted

U22424-J-Z125-3-76 21

Preface SDF syntax

x-string Hexadecimal:
00…FF

Must be enclosed in single quotes; must be
prefixed by the letter X. There may be an odd
number of characters.

x-text Hexadecimal:
00…FF

Must not be enclosed in single quotes;
the letter X must not be prefixed.
There may be an odd number of characters.

Data type Character set Special rules

Table 3: Data types (part 6 of 6)

22 U22424-J-Z125-3-76

SDF syntax Preface

Suffixes for data types

Suffix Meaning
x..y unit a) with data type integer: interval specification
 x minimum value permitted for “integer”.

x is an (optionally signed) integer.
 y maximum value permitted for “integer”.

y is an (optionally signed) integer.
 unit with “integer” only: additional units.

The following units may be specified:
 days byte

hours 2Kbyte
minutes 4Kbyte
seconds Mbyte

 b) with the other data types: length specification
 x minimum length for the operand value; x is an integer.
 y maximum length for the operand value; y is an integer.
 x=y the length of the operand value must be precisely x.
with Extends the specification options for a data type.

-compl When specifying the data type “date”, SDF expands two-digit
year specifications in the form yy-mm-dd to:

 20yy-mm-dd if yy < 60
19yy-mm-dd if yy ≥ 60

-low Uppercase and lowercase letters are differentiated.
-under Permits underscores “_” for the data type “name”.

Table 4: Data type suffixes (part 1 of 6)

U22424-J-Z125-3-76 23

Preface SDF syntax

with (contd.)
-wild(n) Parts of names may be replaced by the following wildcards.

n denotes the maximum input length when using wildcards.
Due to the introduction of the data types posix-filename and posix-
pathname, wildcards from the UNIX world (referred to below as POSIX
wildcards) are now accepted in addition to the usual BS2000 wildcards.
However, only POSIX wildcards or only BS2000 wildcards should be used
within a search pattern. Only POSIX wildcards are allowed for the data types
posix-filename and posix-pathname. If a pattern can be matched more than
once in a string, the first match is used.
BS2000
wildcards

Meaning

* Replaces an arbitrary (even empty) character string. If the
string concerned starts with *, then the * must be entered twice
in succession if it is followed by other characters and if the
character string entered does not contain at least one other
wildcard.

Termina-
ting period

Partially-qualified entry of a name.
Corresponds implicitly to the string “.*”, i.e. at least one other
character follows the period.

/ Replaces any single character.
<sx:sy> Replaces a string that meets the following conditions:

– It is at least as long as the shortest string (sx or sy)
– It is not longer than the longest string (sx or sy)
– It les between sx and sy in the alphabetic collating

sequence; numbers are sorted after letters (A...Z0...9)
– sx can also be an empty string (which is in the first position

in the alphabetic collating sequence)
– sy can also be an empty string, which in this position stands

for the string with the highest possible code (contains only
the characters X'FF')

<s1,…> Replaces all strings that match any of the character combina-
tions specified by s. s may also be an empty string. Any such
string may also be a range specification “sx:sy” (see above).

Suffix Meaning

Table 4: Data type suffixes (part 2 of 6)

24 U22424-J-Z125-3-76

SDF syntax Preface

with-wild(n)
(continued) -s Replaces all strings that do not match the specified string s.

The minus sign may only appear at the beginning of string s.
Within the data types full-filename or partial-filename the
negated string -s can be used exactly once, i.e. -s can replace
one of the three name components: cat, user or file.

Wildcards are not permitted in generation and version specifications for file
names. Only the system administration may use wildcards in user IDs.
Wildcards cannot be used to replace the delimiters in name components cat
(colon) and user ($ and period).
POSIX
wildcards

Meaning

* Replaces any single string (including an empty string). An *
appearing at the first position must be duplicated if it is followed
by other characters and if the entered string does not include
at least one further wildcard.

? Replaces any single character; not permitted as the first
character outside single quotes.

[cx-cy] Replaces any single character from the range defined by cx
and cy, including the limits of the range. cx and cy must be
normal characters.

[s] Replaces exactly one character from string s.
The expressions [cx-cy] and [s] can be combined into
[s1c1-c2s2]

[!cx-cy] Replaces exactly one character not in the range defined by cx
and cy, including the limits of the range. cx and cy must be
normal characters.
The expressions [!cx-cy] and [!s] can be combined into
[!s1c1-c2s2]

[!s] Replaces exactly one character not contained in string s. The
expressions [!s] and [!cx-cy] can be combined into [!s1c1-c2s2]

Suffix Meaning

Table 4: Data type suffixes (part 3 of 6)

U22424-J-Z125-3-76 25

Preface SDF syntax

with (contd.)
-constr Specification of a constructor (string) that defines how new names are to be

constructed from a previously specified selector (i.e. a selection string with
wildcards). See also with-wild.
The constructor may consist of constant strings and patterns. A pattern
(character) is replaced by the string that was selected by the corresponding
pattern in the selector.
The following wildcards may be used in constructors:
Wildcard Meaning
* Corresponds to the string selected by the wildcard * in the

selector.
Termina-
ting period

Corresponds to the partially-qualified specification of a name in
the selector;
corresponds to the string selected by the terminating period in
the selector.

/ or ? Corresponds to the character selected by the / or ? wildcard in
the selector.

<n> Corresponds to the string selected by the n-th wildcard in the
selector, where n is an integer.

Allocation of wildcards to corresponding wildcards in the selector:
All wildcards in the selector are numbered from left to right in ascending
order (global index).
Identical wildcards in the selector are additionally numbered from left to right
in ascending order (wildcard-specific index).
Wildcards can be specified in the constructor by one of two mutually
exclusive methods:
1. Wildcards can be specified via the global index: <n>

2. The same wildcard may be specified as in the selector; substitution
occurs on the basis of the wildcard-specific index. For example:
the second “/” corresponds to the string selected by the second “/” in the
selector

Suffix Meaning

Table 4: Data type suffixes (part 4 of 6)

26 U22424-J-Z125-3-76

SDF syntax Preface

with-constr
(continued) The following rules must be observed when specifying a constructor:

– The constructor must include at least one wildcard of the selector.

– If the number of identical wildcards exceeds those in the selector, the
index notation must be used.

– If the string selected by the wildcard <...> or [...] is to be used in the
constructor, the index notation must be selected.

– The index notation must be selected if the string identified by the
wildcard “*” is to be duplicated. For example:
“<n><n>” must be specified instead of “**”.

– The wildcard * can also be an empty string. Note that if multiple asterisks
appear in sequence (even with further wildcards), only the last asterisk
can be a non-empty string, e.g. for “****” or “*//*”.

– Valid names must be produced by the constructor. This must be taken
into account when specifying both the constructor and the selector.

– Depending on the constructor, identical names may be constructed from
different names selected by the selector. For example:
 “A/*” selects the names “A1” and “A2”; the constructor “B*” generates
the same new name “B” in both cases.
To prevent this from occurring, all wildcards of the selector should be
used at least once in the constructor.

– If the selector ends with a period, the constructor must also end with a
period (and vice versa).

Suffix Meaning

Table 4: Data type suffixes (part 5 of 6)

U22424-J-Z125-3-76 27

Preface SDF syntax

with-constr
(contd.)

Examples:

without Restricts the specification options for a data type.
-cat Specification of a catalog ID is not permitted.
-corr Input format: [[C]'][V][n]n.na[']

Specifications for the data type product-version must not include the
correction status.

-gen Specification of a file generation or file generation group is not permitted.
-man Input format: [[C]'][V][n]n.n[']

Specifications for the data type product-version must not include either
release or correction status.

-odd The data type x-text permits only an even number of characters.
-sep With the data type “text”, specification of the following separators is not

permitted: ; = () < > ? (i.e. semicolon, equals sign, left and right parentheses,
greater than, less than, and blank).

-user Specification of a user ID is not permitted.
-vers Specification of the version (see “file(no)”) is not permitted for tape files.

Suffix Meaning

Table 4: Data type suffixes (part 6 of 6)

Selector Selection Constructor New name
A//* AB1

AB2
A.B.C

D<3><2> D1
D2
D.CB

C.<A:C>/<D,F> C.AAD
C.ABD
C.BAF
C.BBF

G.<1>.<3>.XY<2> G.A.D.XYA
G.A.D.XYB
G.B.F.XYA
G.B.F.XYB

C.<A:C>/<D,F> C.AAD
C.ABD
C.BAF
C.BBF

G.<1>.<2>.XY<2> G.A.A.XYA
G.A.B.XYB
G.B.A.XYA
G.B.B.XYB

A//B ACDB
ACEB
AC.B
A.CB

G/XY/ GCXYD
GCXYE
GCXY. 1)

G.XYC
1) The period at the end of the name may violate naming conventions (e.g. for fully-qualified
file names).

28 U22424-J-Z125-3-76

SDF syntax Preface

U22424-J-Z125-3-76 29

2 Embedding SQL in COBOL programs
This chapter tells you how to create an ESQL-COBOL application. It covers the following
topics:

● Creating an ESQL-COBOL application

● Elements in an ESQL-COBOL program

● Host variables

● Assigning SQL and COBOL data types

● SQL statements in an ESQL-COBOL program

● SQL comments in an ESQL-COBOL program

● Communication area

● INCLUDE elements

30 U22424-J-Z125-3-76

Creating an ESQL-COBOL application Embedding SQL in COBOL programs

2.1 Creating an ESQL-COBOL application

The figure below shows how to create an executable ESQL-COBOL application from an
ESQL-COBOL program.

Figure 2: Creating an executable ESQL-COBOL application

ESQL-COBOL
program

INCLUDE
elements

ESQL
Precompiler

COBOL
Program

SESAM/SQL
connection

module

COBOL
compiler

COBOL
object module

SQL
link and load

Binder BINDER
DBL linking

Executable
application
(load unit)

COBOL-COPY
elements

UTM
connection

module

COBOL
run-time module

Substitution
file

U22424-J-Z125-3-76 31

Embedding SQL in COBOL programs Elements in an ESQL-COBOL program

Precompilation

The ESQL-COBOL program is precompiled with the ESQL precompiler. If the ESQL-
COBOL program contains the SQL statement INCLUDE, the relevant INCLUDE elements
are linked into it. Substitution files can be used to convert or port ESQL-COBOL applica-
tions. This facilitates the substitution of names, names in double quotes, and keywords. If
the ESQL-COBOL program is error-free, the ESQL precompiler generates an SQL link and
load module (LLM) and a COBOL program that does not contain any SQL statements.

Compilation

The COBOL program generated is compiled with the COBOL2000 compiler. If the COBOL
program is error-free, the COBOL compiler generates a COBOL link module.

Linking

The generated modules (the COBOL runtime module, the SESAM/SQL connection
module, and, possibly, UTM connection modules) are linked with the linker BINDER and the
linking loader DBL to create an executable ESQL-COBOL application in the form of a load
unit.

2.2 Elements in an ESQL-COBOL program

In addition to COBOL language constructs, an ESQL-COBOL program consists of the
following:

● the definition of host variables

● SQL statements and comments

● a communication area

The sections that follow describe how the individual elements are embedded in a COBOL
program and outline the rules that you must follow.

32 U22424-J-Z125-3-76

Host variables Embedding SQL in COBOL programs

2.3 Host variables

A host variable is a COBOL data field that you can use in an embedded SQL statement.
You can use a host variable to transfer values from the database to the ESQL-COBOL
program and process them there. You can also use a host variable to transfer data in the
opposite direction, to the database, to supply values needed for computations.
Furthermore, you can use a host variable as an indicator variable. An indicator variable is
a special host variable which is used to monitor the transfer of data and the NULL value.
The SESAM/SQL manual “SQL Reference Manual Part 1: SQL Statements” [2] describes
the SQL statements in which host variables can be used.

2.3.1 Defining host variables

A host variable has to be defined in the source code of the ESQL-COBOL program before
it is used in an SQL statement. With nested programs, the host variable definition has to be
visible as defined in COBOL rules each time the host variable is used (see “Naming host
variables” on page 37). When a host variable is used in a DECLARE CURSOR statement,
the definition has to be visible during each OPEN CURSOR statement for the cursor in
question.

You define host variables in a DECLARE SECTION in the DATA DIVISION. You can define
as many DECLARE SECTIONs as you wish. However, DECLARE SECTIONs must not be
nested. The definition of host variables is governed by COBOL conventions relating to the
definition of data fields, and by SESAM/SQL-specific rules. In addition, data types are
supported which correspond to the SQL data types VARCHAR, NVARCHAR, DATE,
TIME(3) and TIMESTAMP(3). These data types and the SESAM/SQL-specific rules are
described in section “Assigning SQL and COBOL data types” on page 45. A detailed
description of the definition of COBOL data fields is provided in the “COBOL2000 (BS2000/
OSD) Reference Manual” [16].

U22424-J-Z125-3-76 33

Embedding SQL in COBOL programs Host variables

EXEC SQL BEGIN DECLARE SECTION END-EXEC

 hostvariable_def ...

EXEC SQL END DECLARE SECTION END-EXEC

hostvariable_def:: =

level-number [] [...]

If column 7 of a line in the DECLARE SECTION contains a character other than a blank,
the ESQL precompiler interprets the line as a comment. This means that lines of COBOL
cannot be continued in the subsequent line with a hyphen within a DECLARE SECTION. It
is therefore recommended that you mark comment lines with an asterisk (*) in column 7.
Debugging lines marked with a D are permitted and are likewise interpreted as comment
lines by the ESQL precompiler.

The clauses can be in any order. Each clause may only be specified once.

EXEC SQL BEGIN DECLARE SECTION END-EXEC

EXEC SQL END DECLARE SECTION END-EXEC
The beginning and end of a DECLARE SECTION. Each must be written out in full on a
separate line between column 8 and column 72.

data-name

FILLER

PICTURE clause
USAGE clause
GROUP-USAGE clause
SIGN clause
VALUE clause
BASED clause
SYNC clause
OCCURS clause
EXTERNAL clause
GLOBAL clause
REDEFINES clause
VARCHAR
NVARCHAR
DATE
TIME
TIMESTAMP(3)

34 U22424-J-Z125-3-76

Host variables Embedding SQL in COBOL programs

level-number
The level number. Level numbers are governed by COBOL conventions. The level
numbers 66 is not permitted. If you have selected the ISO language subset with the
precompile option SOURCE-PROPERTIES (see section “Specifying the properties of
the ESQL-COBOL program” on page 101), only the level numbers 01 and 77 are
permitted.

data-name
A data name compliant with COBOL rules. The permitted characters include uppercase
and lowercase letters, digits and hyphens. No distinction is made between uppercase
and lowercase. data-name must not be more than 30 characters long and must not be a
reserved COBOL word. VARCHAR, TIMESTAMP, EXEC and END-EXEC, too, may not
be used as data-name. data-name must not begin or end with a hyphen, and must contain
at least one letter. If you have chosen the ISO language subset with the precompiler
option SOURCE-PROPERTIES (see section “Specifying the properties of the ESQL-
COBOL program” on page 101), you must specify a data name. The names of variables
with the level number 01 or 77 must be unique in the source code. Lower-ranking data
names must be unique within the data group (see “Naming host variables” on page 37).
To avoid names that conflict with data names from the communication area, you should
therefore not use data names that begin with the letters SQL within a DECLARE
SECTION, except for SQLCODE and SQLSTATE.

PICTURE clause
PICTURE clause. The PICTURE clause for an alphanumeric data field must contain at
least an X. The mask characters A and 9 are supported for alphanumeric fields in order
to maintain compatibility with earlier SESAM/SQL versions. However, you should only
use the mask character X. In the PICTURE clause for a numeric data field, the first mask
character you must enter is S. The PICTURE clause cannot be used with floating-point
numbers (USAGE IS COMP-1 or USAGE IS COMP-2) (see section “Single-precision
floating-point number” on page 59 and section “Double-precision floating-point number”
on page 60).
The PICTURE clause for a national data item may only contain the PICTURE symbol N.

USAGE clause
USAGE clause. If you do not specify a USAGE clause, DISPLAY is chosen automati-
cally. However, if the data item is national, defined by the PICTURE symbol N in the
PICTURE character-string, USAGE NATIONAL is assumed. The USAGE clause may
only be used in connection with data fields that have no lower-ranking data fields.

GROUP-USAGE clause
GROUP-USAGE clause. In COBOL, GROUP-USAGE NATIONAL defines that a group
with only national subitems is treated as a national elementary item and not as an
alphanumeric item as it would be otherwise.

SIGN clause
SIGN clause for numeric data fields. The SIGN clause is only permitted if no USAGE
clause or USAGE IS DISPLAY is specified.

U22424-J-Z125-3-76 35

Embedding SQL in COBOL programs Host variables

VALUE clause
VALUE clause. In the VALUE clause, literals are specified in accordance with the
COBOL rules. National literals are introduced by N’ or NX’ in accordance with the
COBOL definition. When a national literal is specified in the VALUE clause, the optional
PICTURE phrase can be omitted and is derived from the literal.

Decimals can be specified using a point or a comma. An alphanumeric value specified
with the VALUE clause can be enclosed in single quotes (‘) instead of double quotes
("), depending on how the ESQL precompiler and the COBOL compiler have been
configured.

SYNCHRONIZED clause
SYNCHRONIZED clause.

OCCURS clause
OCCURS clause. The OCCURS clause may only be used to specify the exact number
of repetitions of a data field (Format 1, see the „COBOL2000 (BS2000/OSD) Reference
Manual“ [16]). The OCCURS clause must not be nested.

ASCENDING, DESCENDING, KEY and DEPENDING are ignored by the precompiler.

EXTERNAL clause
EXTERNAL clause.

GLOBAL clause
GLOBAL clause.

VARCHAR
Definition of a host variable for a variable-length string. See section “Variable-length
character string” on page 47 for information on this data type.

NVARCHAR
Definition of a host variable for a variable-length national string. See section “Variable-
length national character string” on page 50 for information on this data type.

DATE
Definition of a host variable for a date. See section “Date” on page 61 for information
on this data type.

TIME(3)
Definition of a host variable for a point in time. See section “Time” on page 63 for infor-
mation on this data type.

TIMESTAMP(3)
Definition of a host variable for a timestamp. See section “Timestamp” on page 65 for
information on this data type.

36 U22424-J-Z125-3-76

Host variables Embedding SQL in COBOL programs

Example

Defining host variables:

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC
*
*** HOST VARIABLES FOR ORDERS TABLE
*
 01 ORDERS.
 02 ORDER-NUM PIC S9(9) USAGE IS BINARY.
 02 ORDER-DATE DATE.
 03 YEAR PIC S9(4) USAGE IS BINARY.
 03 MONTH PIC S9(4) USAGE IS BINARY.
 03 DAY PIC S9(4) USAGE IS BINARY.
 02 ORDER-TEXT PIC X(30).
 02 ORDER-STATUS PIC S9(9) USAGE IS BINARY.

 EXEC SQL END DECLARE SECTION END-EXEC
 .
 .
 .
 further COBOL data definitions
 .
 .
 .

Limitations of the ISO language subset

If you have used the precompiler option SOURCE-PROPERTIES to select the ISO
language subset (see section “Specifying the properties of the ESQL-COBOL program” on
page 101), the following clauses must not be used:

– BASED
– SYNCHRONIZED
– OCCURS
– EXTERNAL
– GROUP-USAGE
– GLOBAL
– VARCHAR
– NVARCHAR
– DATE
– TIME(3)
– TIMESTAMP(3)

U22424-J-Z125-3-76 37

Embedding SQL in COBOL programs Host variables

These clauses are subject to a number of limitations, which are described in the sections
on the individual data types (see section “Assigning SQL and COBOL data types” on
page 45).

Naming host variables

The ESQL precompiler does not recognize the structure of nested ESQL-COBOL
programs. This can lead to undesired referencing if a nested ESQL-COBOL program
contains a host variable and a COBOL variable that have identical names. You can avoid
unwanted referencing of this type by naming variables systematically.

Example

Unwanted referencing in a nested ESQL-COBOL program:

 PROGRAM-ID. A1.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

* HOST VARIABLE X

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 X PIC X(10).
 EXEC SQL END DECLARE SECTION END-EXEC.
 .
 .
 .
 PROGRAM-ID. A2.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

* COBOL VARIABLE X

 01 X PIC X(11).

 PROCEDURE DIVISION.
 01.
 EXEC SQL
 SELECT A INTO :X -- COBOL VARIABLE X FROM A2 IS REFERENCED
 -- WHEN IT SHOULD NOT BE
 FROM T
 END EXEC
 END-PROGRAM A2.
 END-PROGRAM A1.

38 U22424-J-Z125-3-76

Host variables Embedding SQL in COBOL programs

2.3.2 Specifying host variables in SQL statements

When you specify a host variable in an SQL statement, the variable must be preceded by
a colon. The name of the host variable must not be followed immediately by a letter, digit or
hyphen.

Example

Defining host variables for the CUSTOMERS table and using them in an SQL
statement:

 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC
*
* DEFINITION OF HOST VARIABLES FOR THE CUSTOMERS TABLE
*
 01 CUSTOMERS.
 05 CUST-NUM PIC S9(9).
 05 COMPANY PIC X(40).
 05 STREET PIC X(40).
 EXEC SQL END DECLARE SECTION END-EXEC
 .
 .
 .

 PROCEDURE DIVISION.

*
* USING HOST VARIABLES IN AN SQL STATEMENT
*

 EXEC SQL
 INSERT INTO CUSTOMERS (CUST_NUM, COMPANY, STREET)
 VALUES (:CUST-NUM,:COMPANY,:STREET)
 END EXEC

U22424-J-Z125-3-76 39

Embedding SQL in COBOL programs Host variables

2.3.2.1 Qualifying the names of lower-ranking data fields

In an SQL statement, a lower-ranking data field must be specified in such a way that it can
be identified clearly and unambiguously. To do this you can qualify the name of the lower-
ranking data field with the name of a higher-ranking data field by preceding the name of the
lower-ranking data field with the name of the higher-ranking data field and separating the
two with a period. Data fields are qualified in the opposite order to the order used in COBOL.

Example

Defining and using host variables as a data group:

 DATA DIVISION.
 WORKING-STORAGE SECTION.

 *
 * DEFINITION OF HOST VARIABLES
 *
 EXEC SQL BEGIN DECLARE SECTION END-EXEC
 01 ADDRESS.
 02 STREET PIC X(40).
 02 ZIP PIC S9(6).
 02 CITY PIC X(40).
 EXEC SQL END DECLARE SECTION END-EXEC

 .
 .
 .

 PROCEDURE DIVISION.

 *
 * ADDRESSING HOST VARIABLES IN AN SQL STATEMENT
 *
 EXEC SQL
 SELECT STREET FROM CUSTOMERS INTO :ADDRESS.STREET
 END-EXEC

 .
 .
 .
 *
 * ADDRESSING HOST VARIABLES IN A COBOL STATEMENT
 *
 MOVE "Edlingerstrasse" TO STREET OF ADDRESS.

40 U22424-J-Z125-3-76

Host variables Embedding SQL in COBOL programs

2.3.2.2 Addressing vectors

If a host variable is defined as a vector, it is possible to address a single element of the
vector or a range of the vector. To address a single element of a vector, you specify the
element’s index. To address a range of a vector, you specify the indexes for the start and
the end of the range. The counting of the indexes of vectors begins with 1 in SQL and
COBOL.

Example

Defining and using the vector for color components in the COLOR_TAB table:

 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 EXEC SQL BEGIN DECLARE SECTION END-EXEC
*
*** DEFINITION OF VECTOR
*
 01 COLOR.
 02 COLOR-COMP PIC SV99 OCCURS 3 TIMES.
*
 EXEC SQL END DECLARE SECTION END-EXEC
 .
 .
 .

 PROCEDURE DIVISION.

 .
 .
 .
*
*** USING A VECTOR IN AN SQL STATEMENT
*
 EXEC SQL
 SELECT RGB(1..3) INTO :COLOR-COMP(1..3)
 FROM COLOR_TAB
 WHERE COLOR_NAME = 'skyblue'

 END-EXEC
*
 .
 .
 .

U22424-J-Z125-3-76 41

Embedding SQL in COBOL programs Host variables

*
*** ADDRESSING THE RANGE OF THE VECTOR IN AN SQL STATEMENT
*
 EXEC SQL
 UPDATE COLOR_TAB
 SET RGB(1..2) = :COLOR-COMP(1..2)
 WHERE COLOR_NAME = 'skyblue'
 END-EXEC.
*
*** ADDRESSING AN INDIVIDUAL ELEMENT OF THE VECTOR
*

 EXEC SQL
 UPDATE COLOR_TAB
 SET RGB(1) = :COLOR-COMP(1)
 WHERE COLOR_NAME = 'flame'

END-EXEC

42 U22424-J-Z125-3-76

Host variables Embedding SQL in COBOL programs

2.3.3 Indicator variables

A host variable can be combined with an indicator variable in an SQL statement. An
indicator variable is a host variable that you use to verify the transfer of values from the
database to an associated host variable and to transfer the NULL value.

2.3.3.1 Defining indicator variables

You define indicator variables in the same way as other host variables within a DECLARE
SECTION in the DATA DIVISION. The data type of the indicator variable must be assigned
to the SQL data type SMALLINT (see section “Small integer” on page 52).

If the host variable is a vector, the associated indicator variable must also be defined as a
vector with the same number of elements.

If the data type of the host variable is assigned to the SQL data type DATE, TIME(3),
TIMESTAMP(3) or VARCHAR, the associated indicator variable has to be defined as a
simple data field.

Example 1

Defining host variables and their associated indicator variables for the ORDERS table:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC
 *
 **** DEFINITION HOST VARIABLES
 *
 01 COMPANY PIC X(40).
 *
 01 ORDERS.
 02 ORDER-NUM PIC S9(9) USAGE IS BINARY.
 02 ORDER-DATE DATE.
 03 YEAR PIC S9(4) USAGE IS BINARY.
 03 MONTH PIC S9(4) USAGE IS BINARY.
 03 DAY PIC S9(4) USAGE IS BINARY.
 02 ORDER-TEXT PIC X(30).
 02 ORDER-STATUS PIC S9(9) USAGE IS BINARY.
 *
 *** DEFINITION OF ASSOCIATED INDICATOR VARIABLES
 *
 01 IND-COMPANY PIC S9(4) USAGE IS BINARY.
 *
 01 IND-ORDERS.
 02 IND-ORDER-NUM PIC S9(4) USAGE IS BIANRY.
 02 IND-ORDER-DATE PIC S9(4) USAGE IS BINARY.
 02 IND-ORDER-TEXT PIC S9(4) USAGE IS BINARY.
 02 IND-ORDER-STATUS PIC S9(4) USAGE IS BINARY.

 EXEC SQL END DECLARE SECTION END-EXEC

U22424-J-Z125-3-76 43

Embedding SQL in COBOL programs Host variables

Example 2

Defining a vector and the relevant indicator variable for the COLOR_TAB table:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC
*
*** HOST VARIABLES FOR COLOR_TAB
*
 01 COLOR-TAB.
 02 COLOR-NAME PIC X(15).
 02 RGB PIC SV99 OCCURS 3 TIMES.
*
*** INDICATOR VARIABLES FOR COLOR_TAB
*
 01 IND-COLOR-TAB.
 02 IND-COLOR-NAME PIC S9(4) COMP.
 02 IND-RGB PIC S9(4) COMP OCCURS 3 TIMES.
*
 EXEC SQL END DECLARE SECTION END-EXEC

2.3.3.2 Specifying indicator variables in an SQL statement

A host variable may only be combined with an indicator variable if the host variable is used
as follows:

– to query data in the database

– to enter values in the database

– to update values in the database

– in computations (functions, expression, predicates, search conditions)

You must mark indicator variables with a colon in SQL statements, just as you would any
other host variable. You specify the indicator variable after the host variable to which the
indicator variable is to apply. The host variable and the indicator variable can be separated
by a blank. You can also mark the indicator variable with the keyword INDICATOR.

Example

Specifying indicator variables for a simple host variable and a vector in an SQL
statement:

 EXEC SQL
 FETCH CUR_COLOR_TAB
 INTO :COLOR-NAME INDICATOR :IND-COLOR-NAME,
 :RGB(1..3) INDICATOR :IND-RGB(1..3)
 END-EXEC

44 U22424-J-Z125-3-76

Host variables Embedding SQL in COBOL programs

2.3.3.3 Verifying the transfer of values

When a value in the database is queried and assigned to a host variable, the associated
indicator variable is set by SESAM/SQL as follows:

2.3.3.4 Transferring the NULL value

The NULL value is impossible to represent in a host variable. For this reason, indicator
variables are needed to transfer NULL values.

When the SQL statement is executed, the host variable’s value is not used; the NULL value
is used instead.

Example

The indicator variable IND1 is set to the value -2 in order to transfer the NULL value to
the database with the host variable CUST-NUM:

IF CUST-NUM = '000000000'
 THEN
 MOVE -2 TO IND1
 ELSE
 MOVE 0 TO IND1.

EXEC SQL
 UPDATE ORDERS
 SET CUST_NUM = :CUST-NUM INDICATOR :IND1
END-EXEC

Value Meaning
0 The host variable contains the value that is read.

The assignment was error-free.
-1 The value to be assigned is the NULL value. The assignment did not take

place.
>0 With alphanumeric values:

The host variable was assigned a truncated string.
The value of the indicator variable indicates the string’s original length.

Table 5: Values stored in indicator variables and their meanings

U22424-J-Z125-3-76 45

Embedding SQL in COBOL programs Assigning SQL and COBOL data types

2.4 Assigning SQL and COBOL data types

When defining a host variable you have to choose a COBOL data type whose assigned
SQL data type suits the relevant column.

SQL data types are described in the “SQL Reference Manual Part 1: SQL Statements” [2];
COBOL data types are described in the “COBOL2000 (BS2000/OSD) Reference Manual”
[16].

In the sections that follow, the associated COBOL data type is specified with each SQL data
type.

The ISO language subset

If you have selected the ISO language subset with the precompiler option SOURCE-
PROPERTIES (see section “Specifying the properties of the ESQL-COBOL program” on
page 101), certain limitations apply to individual clauses, and you must abide by the
sequence specified for the clauses. The restrictions and the sequence are described for the
individual data types under the heading ISO language subset.

Repetition of mask characters in the PICTURE clause

A mask character can be repeated in a PICTURE clause by including it more than once, or
by specifying a repetition factor in brackets. You can also combine the two methods.

Example

The following are all equivalent expressions:

PIC XXX
PIC X(3)
PIC X(2)X

The representation of PICTURE, USAGE and SIGN clauses

For clarity’s sake, IS is not specified below in the PICTURE, USAGE and SIGN clauses.
However, you can include IS if you wish. In addition, the PICTURE clause is abbreviated to
PIC, but PICTURE can be written out in full.

46 U22424-J-Z125-3-76

CHARACTER Assigning SQL and COBOL data types

2.4.1 Fixed-length character string

The following COBOL data type is assigned to the SQL data type CHARACTER(n):

PIC (n) [...].

ISO language subset

PIC X(n) [VALUE clause].

n Integer between 1 and 256 which specifies the length of the string. With host variables
that are only used in the SQL statement PREPARE or EXECUTE IMMEDIATE, the
string may be up to 32,000 characters long. The mask character X must be specified at
least once. The mask characters A and 9 are supported in order to maintain compati-
bility with earlier versions of SESAM/SQL. You should only use the mask character X.

Example

The SQL data type and associated COBOL data type for a fixed-length character string:

SQL data type

COMPANY CHARACTER(40)

COBOL data type

01 COMPANY-NAME PIC X(40).

X
A
9

[USAGE] DISPLAY
VALUE clause
BASED clause
SYNC clause
OCCURS clause
EXTERNAL clause
GLOBAL clause

U22424-J-Z125-3-76 47

Assigning SQL and COBOL data types VARCHAR

2.4.2 Variable-length character string

The following COBOL data type is assigned to the SQL data type VARCHAR(m) or
CHAR[ACTER] VARYING(max):

st_nr1 [dataname1] VARCHAR [BASED].

st_nr2 dataname2 PIC S9(n) [USAGE] [...].

st_nr2 dataname3 PIC (m) [...].

ISO language subset

Host variables with the data type VARCHAR are not permitted.

st_nr1 dataname1 VARCHAR.
Declares a data group with the SQL stat type VARCHAR. The data name of the lower-
ranking data fields dataname2 and dataname3 must be different.

st_nr2 dataname2 PIC...
Lower-ranking data field of the data type “small integer”, where 1 ≤ n ≤ 4 (see section
“Small integer” on page 52). The contents of this data field specify the length of the
string.

st_nr2 dataname3 PIC...
Lower-ranking data field with the data type “fixed-length” string, where 1 ≤ m ≤ 32000
(see section “Fixed-length character string” on page 46). This data field contains the
string. m is the maximum length of string of the SQL data type VARCHAR(m).

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

VALUE clause

SYNC clause

X
A
9

[USAGE] DISPLAY
VALUE clause
SYNC clause

48 U22424-J-Z125-3-76

VARCHAR Assigning SQL and COBOL data types

Example

The SQL data type and associated COBOL data type for a variable-length character
string:

SQL data type

TITLE VARCHAR(500)

COBOL data type

01 TITLE VARCHAR

02 LENGTH PIC S9(4) USAGE IS BINARY.
O2 STRING PIC X(500).

U22424-J-Z125-3-76 49

Assigning SQL and COBOL data types NCHAR

2.4.3 Fixed-length national character string

The following COBOL data type is assigned to the SQL data type NCHAR(n):

PIC N(n) [...].

ISO language subset

PIC N(n) [VALUE clause].

n Integer between 1 and 128 which specifies the length of the string (in national character
positions). The mask character N must be specified at least once.

Example

The SQL data type and associated COBOL data type for a fixed-length national
character string:

SQL data type

COMPANY NCHAR(40)

COBOL data type

01 COMPANY-NAME PIC N(40).

[USAGE] DISPLAY
VALUE clause
BASED clause
SYNC clause
OCCURS clause
EXTERNAL clause
GLOBAL clause

50 U22424-J-Z125-3-76

NVARCHAR Assigning SQL and COBOL data types

2.4.4 Variable-length national character string

The following COBOL data type is assigned to the SQL data type NVARCHAR(m):

st_nr1 [dataname1] NVARCHAR [BASED].

st_nr2 dataname2 PIC S9(n) [USAGE] [...].

st_nr2 dataname3 PIC N(m) [...].

ISO language subset

Host variables with the data type NVARCHAR are not permitted.

st_nr1 dataname1 NVARCHAR.
Declares a data group with the SQL stat type NVARCHAR. The data name of the lower-
ranking data fields dataname2 and dataname3 must be different.

st_nr2 dataname2 PIC...
Lower-ranking data field of the data type “small integer”, where 1 ≤ n ≤ 4 (see section
“Small integer” on page 52). The contents of this data field specify the length of the
string.

st_nr2 dataname3 PIC...
Lower-ranking data field with the data type “fixed-length national string”, where
1 ≤ m ≤ 16,000 (see section “Fixed-length character string” on page 46). This data field
contains the string. m is the maximum length of string of the SQL data type
NVARCHAR(m).

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

VALUE clause

SYNC clause

[USAGE] DISPLAY
VALUE clause
SYNC clause

U22424-J-Z125-3-76 51

Assigning SQL and COBOL data types NVARCHAR

Example

The SQL data type and associated COBOL data type for a variable-length national
character string:

SQL data type

TITLE NVARCHAR(500)

COBOL data type

01 TITLE NVARCHAR

02 LENGTH PIC S9(4) USAGE IS BINARY.
O2 STRING PIC N(500).

52 U22424-J-Z125-3-76

SMALLINT Assigning SQL and COBOL data types

2.4.5 Small integer

The following COBOL data type is assigned to the SQL data type SMALLINT:

PIC S9(n) [USAGE] [...].

ISO language subset

PIC S9(n) [USAGE] [VALUE clause].

n Integer between 1 and 4 which indicates the number of places.

The SQL data type SMALLINT comprises integers in the range from -32768 to +32767. The
COBOL data type PIC S9(4) comprises integers in the range from -9999 to +9999, which
is narrower. When USAGE IS BINARY is specified, the value in COBOL statements is
truncated to four decimal places. A COBOL statement containing such a variable can cause
an overflow if the value of the variable is outside the range -9999 to +9999.

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

VALUE clause
BASED clause
SYNC clause
OCCURS clause
GLOABAL clause
EXTERNAL clause

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

U22424-J-Z125-3-76 53

Assigning SQL and COBOL data types SMALLINT

Examples

The SQL data type and associated COBOL data type for a small integer for values
expected to be in the range from -9999 to +9999:

SQL data type:

PAGE SMALLINT

COBOL data type:

01 PAGE PIC S9(4) USAGE IS BINARY.

The SQL data type and associated COBOL data type for a small integer for a value
expected to be in the range from -32768 to 32767:

SQL data type:

PAGE SMALLINT

COBOL data type:

01 PAGE PIC S9(4) USAGE IS COMP.

54 U22424-J-Z125-3-76

INTEGER Assigning SQL and COBOL data types

2.4.6 Integer

The following COBOL data type is assigned to the SQL data type INTEGER:

PIC S9(n) [USAGE] [...].

ISO language subset

PIC S9(n) [USAGE] [VALUE-clause].

n Integer between 5 and 9 which specifies the number of places.

The data type INTEGER comprises integers in the range from -2147483648 to
+2147483647. The COBOL data type PIC S9(9) COMP comprises integers in the range
from -999999999 to +999999999, which is narrower. When USAGE IS BINARY is specified,
the value in COBOL statements is truncated to nine decimal places. A COBOL statement
containing such a variable can cause an overflow if the value of the variable is outside the
range -9999999999 to +999999999.

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

VALUE clause
BASED clause
SYNC clause
OCCURS clause
GLOBAL clause
EXTERNAL clause

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

U22424-J-Z125-3-76 55

Assigning SQL and COBOL data types INTEGER

Examples

The SQL data type and associated COBOL data type for an integer with expected
values in the range -999999999 to +999999999:

SQL data type:

CUST_NUM INTEGER

COBOL data type:

01 CUSTOMER-NUM PIC S9(9) USAGE IS BINARY.

The SQL data type and associated COBOL data type for an integer with expected
values in the range -2147483648 to 2147483647:

SQL data type:

CUST_NUM INTEGER

COBOL data type:

01 CUSTOMER-NUM PIC S9(9) USAGE IS COMP.

56 U22424-J-Z125-3-76

DECIMAL Assigning SQL and COBOL data types

2.4.7 Fixed-point number (packed)

The following COBOL data type is assigned to the SQL data type DECIMAL(n) or
DECIMAL(n,m):

 [USAGE] [...].

ISO language subset

Host variables of the data type DECIMAL are not permitted.

n Integer between 1 and 31 which specifies the total number of decimal places.

m Integer between 1 and n which specifies the number of decimal places.

Examples

The SQL data type and associated COBOL data type for a fixed-point number without
decimal places (packed):

SQL data type:

YEAR DECIMAL(2)

COBOL data type:

01 YEAR PIC S9(2) USAGE IS PACKED-DECIMAL.

The SQL data type and associated COBOL data type for a fixed-point number with
decimal places (packed):

SQL data type:

SUBTOTAL DECIMAL(6,4)

COBOL data type:

01 SUBTOTAL PIC S9(2)V9(4) USAGE IS PACKED-DECIMAL.

PIC S9(n)
PIC S9(n-m)[V[9(m)]]
PIC SV9(m)

COMP[UTATIONAL]-3

PACKED-DECIMAL

VALUE clause
BASED clause
SYNC clause
OCCURS clause
GLOBAL clause
EXTERNAL clause

U22424-J-Z125-3-76 57

Assigning SQL and COBOL data types NUMERIC

2.4.8 Fixed-point number (unpacked)

The following COBOL data type is assigned to the SQL data type NUMERIC(n) or
NUMERIC(n,m):

 [...]

ISO language subset

 [USAGE] DISPLAY LEADING SEPARATE [VALUE clause].

n Integer between 1 and 31 which specifies the total number of decimal places.

m Integer between 1 and n which specifies the number of decimal places.

PIC S9(n)
PIC S9(n-m)[V[9(m)]]
PIC SV9(m)

[USAGE DISPLAY]

[SIGN [SEPARATE [CHARACTER]]]

VALUE clause
BASED clause
SYNC clause
EXTERNAL clause
GLOBAL clause
OCCURS clause

TRAILING

LEADING

PIC S9(n)
PIC S9(n-m)[V[9(m)]]
PIC SV9(m)

58 U22424-J-Z125-3-76

NUMERIC Assigning SQL and COBOL data types

Examples

The SQL data type and associated COBOL data type for a fixed-point number without
decimal places (unpacked):

SQL data type:

NUMBER NUMERIC(8,0)

COBOL data type:

01 NUMBER PIC S9(8)

The SQL data type and associated COBOL data type for a fixed-point number with
decimal places (unpacked):

SQL data type:

PRICE NUMERIC(8,2)

COBOL data type:

01 PRICE PIC S9(6)V9(2)

U22424-J-Z125-3-76 59

Assigning SQL and COBOL data types REAL

2.4.9 Single-precision floating-point number

The following COBOL data type is assigned to the SQL data type REAL:

[USAGE COMP[UTATIONAL]-1
[VALUE clause]
[BASED clause]
[SYNC clause]
[EXTERNAL clause]
[GLOBAL clause]
[OCCURS clause]

ISO language subset

Host variables of the data type REAL are not permitted.

Example

The SQL data type and assigned COBOL data type for a single-precision floating-point
number:

SQL data type:

REAL_NUM REAL

COBOL data type:

01 REAL-NUM USAGE COMP-1.

60 U22424-J-Z125-3-76

DOUBLE PRECISION / FLOAT Assigning SQL and COBOL data types

2.4.10 Double-precision floating-point number

The following COBOL data type is assigned to the SQL data type DOUBLE PRECISION:

[USAGE] COMP[UTATIONAL]-2
[VALUE clause]
[BASED clause]
[SYNC clause]
[EXTERNAL clause]
[GLOBAL clause]
[OCCURS clause]

ISO language subset

Host variables of the data type DOUBLE PRECISION are not permitted.

Example

The SQL data type and assigned COBOL data type for a double-precision floating-point
number:

SQL data type:

NUM DOUBLE PRECISION

COBOL data type:

01 NUM USAGE COMP-2.

2.4.11 Floating-point number

No COBOL data type is assigned to the SQL data type FLOAT(n).

However, the range of values covered by the SQL data type FLOAT(n) is covered by the
SQL data type DOUBLE PRECISION, or if n ≤ 21, by the SQL data type REAL (see section
“Double-precision floating-point number” on page 60 and section “Single-precision floating-
point number” on page 59). Host variables of the data type DOUBLE PRECISION or REAL
can therefore be used to read attributes of the data type FLOAT(n).

U22424-J-Z125-3-76 61

Assigning SQL and COBOL data types DATE

2.4.12 Date

The following COBOL data type is assigned to the SQL data type DATE:

st_nr1 [d_name1] DATE [BASED].

st_nr2 d_name2 PIC S9(y) [USAGE] [...].

st_nr2 d_name3 PIC S9(m) [USAGE] [...].

st_nr2 d_name4 PIC S9(d) [USAGE] [...].

ISO language subset

Host variables of the data type DATE are not permitted.

st_nr1 d_name1 DATE
Defines a data group with the SQL data type DATE. The data group contains three
lower-ranking data fields with the data type “small integer”.

st_nr2 d_name2 ... st_nr2 d_name4 ...
Lower-ranking data fields with the data type “small integer”. The first data field is the
year, the second is the month, and the third is the day. y,m,d are integers between 1
and 4. The data fields must have different names.

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

VALUE clause

SYNC clause

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

VALUE clause

SYNC clause

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

VALUE clause

SYNC clause

62 U22424-J-Z125-3-76

DATE Assigning SQL and COBOL data types

Example

SQL data type with assigned COBOL data type for a date:

SQL data type:

DATE_INF DATE

COBOL data type:

01 DATE-INF DATE.

02 YEAR PIC S9(4) BINARY.
02 MONTH PIC S9(2) BINARY.
02 DAY PIC S9(2) BINARY.

U22424-J-Z125-3-76 63

Assigning SQL and COBOL data types TIME

2.4.13 Time

The following COBOL data type is assigned to the SQL data type TIME(3):

st_nr1 [d_name1] TIME(3) [BASED].

st_nr2 d_name2 PIC S9(h) [USAGE] [...].

st_nr2 d_name3 PIC S9(m) [USAGE] [...].

st_nr2 d_name4 PIC S9(s) [USAGE] [...].

st_nr2 d_name5 PIC S9(t) [USAGE] [...].

ISO language subset: Host variables of the data type TIME(3) are not permitted.

st_nr1 d_name1 TIME(3)
Defines a data group with the SQL data type TIME(3). The data group contains four
lower-ranking data fields with the data type “small integer”.

st_nr2 d_name2 ... st_nr2 d_name5
Lower-ranking data fields with the data type “small integer” (see section “Small integer”
on page 52). The first data field contains the hours, the second contains the minutes,
the third contains the seconds, and the fourth contains the milliseconds. The data fields
must have different names.

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

VALUE clause

SYNC clause

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

VALUE clause

SYNC clause

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

VALUE clause

SYNC clause

COMP[UTATIONAL]
COMP[UTATIONAL]-5
BINARY

VALUE clause

SYNC clause

64 U22424-J-Z125-3-76

TIME Assigning SQL and COBOL data types

Example

SQL data type and assigned COBOL data type for a time:

SQL data type:

TIME_INF TIME(3)

COBOL data type:

01 TIME-INF TIME(3).

02 HOURS PIC S9(2) BINARY.
02 MINUTES PIC S9(2) BINARY.
02 SECONDS PIC S9(2) BINARY.
02 MILLISECS PIC S9(3) BINARY.

U22424-J-Z125-3-76 65

Assigning SQL and COBOL data types TIMESTAMP

2.4.14 Timestamp

The following COBOL data type is assigned to the SQL data type TIMESTAMP(3):

st_nr1 [d_name1] TIMESTAMP(3).

st_nr2 d_name2 PIC S9(y) [VALUE clause].
st_nr2 d_name3 PIC S9(m) [VALUE clause].
st_nr2 d_name4 PIC S9(d) [VALUE clause].
st_nr2 d_name5 PIC S9(h) [VALUE clause].
st_nr2 d_name6 PIC S9(m) [VALUE clause].
st_nr2 d_name7 PIC S9(s) [VALUE clause].
st_nr2 d_name8 PIC S9(t) [VALUE clause].

ISO language subset

Host variables with the data type TIMESTAMP(3) are not permitted.

st_nr1 d_name1 TIMESTAMP(3).
Defines a data group with the SQL data type TIMESTAMP(3). The data group contains
seven lower-ranking data fields with the data type “small integer”.

st_nr2 d_name2 ... st_nr2 d_name8 ...
Lower-ranking data fields with the data type “small integer” (see section “Small integer”
on page 52). The data fields contain the year, the month, the day, the hours, the
minutes, the seconds, and the milliseconds. The data fields must have different names.

66 U22424-J-Z125-3-76

TIMESTAMP Assigning SQL and COBOL data types

Example

The SQL data type and assigned COBOL data type for a timestamp:

SQL data type:

TIME_STAMP TIMESTAMP(3)

COBOL data type:

01 TIME-STAMP TIMESTAMP(3).
 02 YEAR PIC S9(4) BINARY.
 02 MONTH PIC S9(2) BINARY.
 02 DAY PIC S9(2) BINARY.
 02 HOUR PIC S9(2) BINARY.
 02 MINUTE PIC S9(2) BINARY.
 02 SECOND PIC S9(2) BINARY.
 02 MILLISECS PIC S9(3) BINARY.

U22424-J-Z125-3-76 67

Assigning SQL and COBOL data types Vectors

2.4.15 Vectors

Using OCCURS, you can define vectors for multiple columns which occur more than once.
Only level numbers 02 through 49 may be selected.

ISO language subset

The OCCURS clause must not be used with host variables.

OCCURS clauses must not be nested in a DECLARE SECTION.

Example

Multiple columns with three occurrences, and the assigned COBOL data type:

SQL data type:

RGB(3)

NUMERIC(2,2)

COBOL data type:

01 RGB.

02 COLOR-COMP PIC SV99 OCCURS 3 TIMES.

68 U22424-J-Z125-3-76

SQL statements in a COBOL program Embedding SQL in COBOL programs

2.5 SQL statements in an ESQL-COBOL program

An SQL statement must be introduced with EXEC SQL and concluded with END-EXEC.
The SQL statements WHENEVER, DECLARE CURSOR, CREATE TEMPORARY VIEW
and INCLUDE can be embedded at any point in the source code. All other SQL statements
have to be embedded in a PROCEDURE DIVISION in ESQL-COBOL programs.

During precompilation, the SQL statements WHENEVER, DECLARE CURSOR, CREATE
TEMPORARY VIEW and INCLUDE are removed by the ESQL precompiler or replaced with
comment lines. The ESQL precompiler replaces all other embedded SQL statements with
COBOL statements. Using the precompiler option PRECOMPILER-ACTION and the
parameter ESQL-STATEMENTS, you can specify whether the original SQL statements and
the EXEC SQL and END-EXEC strings should be removed from the source code or
retained as comments. Lines that are not embedded between EXEC SQL and END-EXEC
are included unaltered in the COBOL program generated by the ESQL precompiler. If END-
EXEC is followed by a period, the period is included in the source code after the inserted
COBOL statements. The resulting source code must be permitted in COBOL.

EXEC SQL

SQL statement

END-EXEC

The EXEC SQL and END-EXEC strings and the embedded SQL statement must be placed
in columns 8-72 of the COBOL source code. Column 7 must contain a blank. Columns 1-6
and 73-80 can be used as in COBOL. The SQL statement must not contain continuation
lines with a hyphen in column 7. COBOL comment lines may be embedded between EXEC
SQL and END-EXEC.

EXEC SQL
A single string which must be written in full in a single line.

SQL statement
There may only be one SQL statement between EXEC SQL and END-EXEC. Any
number of blanks may be used within the SQL statement to separate the elements in
the statement.

U22424-J-Z125-3-76 69

Embedding SQL in COBOL programs SQL statements in a COBOL program

Temporary views and cursors have to have already been defined in the text of the ESQL-
COBOL program before they are used for the first time. Host variables have to have been
defined in the text of the ESQL-COBOL program before they are used in SQL statements.
If a host variable is used in a DECLARE CURSOR statement, the definition of the host
variable has to be visible to this cursor in each OPEN CURSOR statement.

END-EXEC
A single string which must be written in full in a single line. The remainder of the line
after END-EXEC is included unaltered in the COBOL program. It therefore has to be
permitted at this location in COBOL.

Example 1

Embedding an UPDATE statement in an ESQL-COBOL program:

EXEC SQL
 UPDATE CONTACTS
 SET DEPARTMENT = :DEPARTMENT
 WHERE CONTACT_NUM = '11'
END-EXEC

Example 2

Embedding a WHENEVER statement:

PARAGRAPH01.
 EXEC SQL
 WHENEVER SQLERROR GOTO PARAGRAPH99
 END-EXEC
PARAGRAPH02.

Explanation:
During precompilation, the EXEC SQL and END-EXEC strings and the WHENEVER
statement are removed. This means that END-EXEC must not be followed by a period
because the following kind of source code is not permitted in COBOL:

PARAGRAPH01.
 .
PARAGRAPH02.

70 U22424-J-Z125-3-76

SQL comments in a COBOL program Embedding SQL in COBOL programs

2.6 SQL comments in an ESQL-COBOL program

You can include SQL comments in SQL statements to document the program.

An SQL comment begins with the string – – and ends with the end of the line. The comment
must be located between column 8 and column 72.

The string – – does not introduce a comment if it occurs in an alphanumeric literal, a name
in double quotes, or in a data name. Alphanumeric literals and names in double quotes are
described in the “SQL Reference Manual Part 1: SQL Statements” [2].

Example

Specifying SQL comments:

EXEC SQL
-- UPDATE DEPARTMENT
 UPDATE CONTACTS
 SET DEPARTMENT = :DEPARTMENT
 WHERE CONTACT_NUM = '11' -- DEPARTMENT HAS BEEN CHANGED
END-EXEC

U22424-J-Z125-3-76 71

Embedding SQL in COBOL programs Communication area

2.7 The communication area

Every ESQL-COBOL program must contain the communication area. Information on the
SQL statements executed is stored in the communication area. This information can be
queried in the ESQL-COBOL program and is important for error handling and success
monitoring (see section “Error handling and success monitoring” on page 76). ESQL-
COBOL applications should not alter the values of variables in the communication area.

2.7.1 Structure of the communication area

There are two variant forms of communication area in ESQL-COBOL. These only differ in
terms of the SQLCODE data field. The codes returned by SQL statements are stored in the
SQLCODE data field. Future versions of the SQL standard will not support the SQLCODE
data field. In future, codes returned by SQL statements will only be placed in the SQLSTATE
data field.

The variant without the SQLCODE data field

The communication area does not contain the SQLCODE data field. You should use this
variant for new ESQL-COBOL applications that you are writing for SESAM/SQL.

The variant for previous versions of ESQL-COBOL

In this variant, the communication area contains the SQLCODE data field. You can use this
variant for applications originally developed for previous versions of SESAM/SQL.

72 U22424-J-Z125-3-76

Communication area Embedding SQL in COBOL programs

Variant without SQLCODE

01 SQLca.
 05 SQLstatementid PIC S9(9) BINARY.
 05 SQLcallcount PIC S9(9) BINARY.
 05 SQLidmark PIC X(16).
 05 SQLline PIC S9(9) BINARY.

01 SQLda.
 05 SQLda01 PIC S9(4) BINARY.
 88 SQLda01val VALUE mmm.
 05 SQLda02 PIC S9(4) BINARY.
 05 SQLda03 PIC S9(4) BINARY.
 05 SQLda04 PIC S9(4) BINARY.
 05 SQLerrline PIC S9(4) BINARY.
 05 SQLerrcol PIC S9(4) BINARY.
 05 SQLda07 PIC S9(4) BINARY.
 05 SQLda08 PIC X(5).
 05 SQLCLI-SQLSTATE redefines SQLda08 PIC X(5).
 05 SQLerrm PIC X(240).
 05 SQLda10 PIC X.
 05 SQLda21 PIC S(9) BINARY.
 05 SQLda22 PIC X(4) BINARY.
 05 SQLda23 PIC 9(4) BIANRY.
 05 SQLda24 PIC X(2).
 05 SQLrowcount PIC S9(9) BINARY.
 05 SQLda99 PIC X(nnn).

Variant for previous versions of ESQL-COBOL

01 SQLca.
 05 SQLstatementid PIC S9(9) BINARY.
 05 SQLcallcount PIC S9(9) BINARY.
 05 SQLidmark PIC X(16).
 05 SQLline PIC S9(9) BINARY.
 05 SQLCODE PIC S9(4) BINARY.

01 SQLda.
 .
 . (Structure as in variant 1)
 .

U22424-J-Z125-3-76 73

Embedding SQL in COBOL programs Communication area

SQLca

Data group that contains information on the SQL statements that have executed.

SQLstatementid

SQLcallcount

SQLidmark
Reserved for internal use.

SQLline
Contains the line number in which the last SQL statement executed begins in the
COBOL program generated by the ESQL compiler.

SQLCODE
Contains the return code of the SQL statement last executed. An overview of the return
codes is provided in section “Error handling and success monitoring” on page 76. The
individual return codes are described in the “Messages” manual [7].

This data field is only contained in the communication area variant which is compatible
with previous versions of SESAM/SQL.

SQLda
Diagnostics area for SESAM/SQL.

SQLda01, SQLda02, ... SQLda99
Reserved for internal use. In future versions of SESAM/SQL the names and the
sequence of these data fields may be changed. When writing applications you should
therefore not rely on the sequence of these data fields and should not interpret their
contents in the ESQL-COBOL program.

SQLerrline
If an error occurs, this contains the line number of the location in the text of a prepared
statement at which an error occurred. It contains 0 (null) if it was impossible to detect
the location, or if to do so would be of little value.

SQLerrcol
If an error occurs, this contains the column number of the location in the text of a
prepared statement at which an error occurred. It contains 0 (null) if it was impossible
to detect the location, or if to do so would be of little value.

SQLerrm
After the execution of an SQL statements that returns a value other than 00000, this
contains an error message text. The text contains the error class (W for WARNING or
E for ERROR), the message number SQLnnnn, and the message text.

74 U22424-J-Z125-3-76

Communication area Embedding SQL in COBOL programs

SQLrowcount
Contains the following information after the execution of the relevant statements:
– after an INSERT statement, the number of rows inserted
– after an UPDATE or DELETE statement with a search condition, the number of rows

for which the search condition was fulfilled
– after an UPDATE or DELETE statement without a WHERE clause, the number of

records in the referenced table
– after an UNLOAD statement, the number of rows unloaded
– after a LOAD statement, the number of rows loaded
– after an EXPORT statement, the number of rows which were copied into the export

file
– after an IMPORT statement, the number of rows which were copied from the export

file

Otherwise the contents are not defined.

2.7.2 Making the communication area available

The communication area must be inserted in the ESQL-COBOL program’s DATA
DIVISION. To do this, you use the SQL-INCLUDE statement or the COBOL-COPY
statement. If you use the SQL-INCLUDE statement, you must assign the library with the
communication area during precompilation as an INCLUDE library (see section “INCLUDE
elements” on page 79). If you use the COBOL-COPY statement, you must assign the library
with the communication area as the COBOL-COPY library during compilation with the aid
of the link name COBLIB.

The following libraries contain the communication area:

– SYSLIB.ESQL-COBOL.030.INCL-V2

contains the communication area without SQLCODE for ESQL-COBOL applications for
SESAM/SQL.

ESQL-COBOL applications for SESAM/SQL

You should make available a communication area without SQLCODE for ESQL-COBOL
applications for SESAM/SQL. In addition, you must define the data field SQLSTATE or
SQLCODE in a DECLARE SECTION. It is recommended that you use SQLSTATE.

Defining SQLSTATE or SQLCODE

SQLSTATE or SQLCODE has to be defined in the source code before the first SQL
statement. SQLSTATE has to be defined in a DECLARE SECTION. SQLCODE can be
defined inside or outside a DECLARE SECTION.

U22424-J-Z125-3-76 75

Embedding SQL in COBOL programs Communication area

If SQLSTATE and SQLCODE are both defined in a program, the SQLCODE field is not
supplied with a value. SQLCODE always has the value 0. Program control operations
based on SQLCODE will not then function correctly.

The data type of SQLSTATE must correspond to the SQL data type CHAR(5). The data type
of SQLCODE must correspond to the SQL data type SMALLINT. The OCCURS clause
must not be specified in the definition of SQLSTATE or SQLCODE, not even in a higher-
ranking data field.

Example

Defining SQLSTATE and adding a communication area without SQLCODE. A
prerequisite here is that the library SYSLIB.ESQL-COBOL.030.INCL-V2 is assigned as
an INCLUDE library.

 DATA DIVISION. WORKING-STORAGE SECTION.
**
* DEFINITION OF SQLSTATE
**
EXEC SQL BEGIN DECLARE SECTION END-EXEC
01 SQLSTATE PIC X(5).

.
.
EXEC SQL END DECLARE SECTION END-EXEC
**
* INSERTION OF COMMUNICATION AREA
**
EXEC SQL
 INCLUDE SQLCA
END-EXEC
.
.
.

76 U22424-J-Z125-3-76

Communication area Embedding SQL in COBOL programs

2.7.3 Error handling and success monitoring

In order to make sure that database processing is working correctly, you must check
whether each executable SQL statement was completed successfully after it has executed.
You do this by querying the result in the SQLSTATE or SQLCODE data field. After each
executable SQL statement, SQLSTATE or SQLCODE contains the statement’s return code.
The individual return codes are described in the “Messages” manual [7]. Additional infor-
mation on error handling and success monitoring can be obtaned by querying the commu-
nication area (see section “The communication area” on page 71).

The table below provides an overview of the return codes placed in SQLSTATE or
SQLCODE and their meanings.

You have two options for adjusting the course of program execution in response to the
return code:

– with COBOL statements

– with the SQL statement WHENEVER

SQLSTATE SQLCODE Meaning
00000 0 The SQL statement completed successfully.
01nnn 0 < nnn < 100 Warning. The SQL statement was executed.
02nnn 100 No data was read. The end of the table was reached,

or the table was empty.
remaining
values

< 0 Error. The SQL statement was not executed.

40nnn < -1000 Error. The transaction was rolled back.
Table 6: Overview of the return codes in SQLSTATE and SQLCODE

U22424-J-Z125-3-76 77

Embedding SQL in COBOL programs Communication area

2.7.3.1 Controlling program execution with COBOL statements

You can use COBOL statements and your own error-handling routines to query the return
code in SQLSTATE or SQLCODE and respond to any errors that have occurred.

Example

Querying SQLSTATE and selecting the appropriate branch:

ANALYSE-SQL-ERROR.
 EVALUATE SQLSTATE(1:2) ALSO SQLSTATE(3:3)
 WHEN "00" THROUGH "01" ALSO ANY
 CONTINUE
 WHEN "02" ALSO “000”
 PERFORM CURSOR-AT-END
 .
 .
 .
 END-EVALUATE.

2.7.3.2 Controlling program execution with the SQL statement WHENEVER

You use the SQL statement WHENEVER to define the actions to be carried out if the end
of a table is reached, the table is empty, or an error has occurred. The WHENEVER
statement does not allow a selective response to individual error situations.

WHENEVER

NOT FOUND
The end of the table was reached or the table is empty.

SQLERROR
Error. Differentiation between different error situations is not possible here.

GO TO [:]name or GOTO [:]name
Specifies the point at which program execution is to continue. name is a chapter name
or paragraph name. The paragraph name must not be qualified. The label specified
must comply with COBOL conventions. The colon is supported to maintain compatibility
with previous SESAM/SQL versions, but should not be used in new applications.

CONTINUE
Cancels exception handling. Branching does not take place.

NOT FOUND

SQLERROR

GO TO [:]name
GOTO [:]name
CONTINUE

78 U22424-J-Z125-3-76

Communication area Embedding SQL in COBOL programs

The WHENEVER statement remains valid until one of the following conditions occurs:

– The source code contains a WHENEVER statement for the same error class (NOT
FOUND or SQLERROR).

– The source code contains a CONTINUE which cancels the WHENEVER statement for
the error class in question.

Example

Specifying and canceling exception handling:

* SPECIFICATION OF EXCEPTION HANDLING

 EXEC SQL
 WHENEVER SQLERROR GOTO REPORTING
 END-EXEC
.
.
.

* CANCELATION OF EXCEPTION HANDLING

 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC
.
.
.
REPORTING SECTION.

* IF ERROR OCCURS, DISPLAY MESSAGE AND ROLL BACK TRANSACTION

DISPLAY "ERROR !" UPON DSG

EXEC SQL
 ROLLBACK WORK
END-EXEC

U22424-J-Z125-3-76 79

Embedding SQL in COBOL programs INCLUDE elements

2.8 INCLUDE elements

You can store sections of code that you use repeatedly as INCLUDE elements in a PLAM
library and add them to an ESQL-COBOL program as and when necessary with the SQL
statement INCLUDE. During precompilation, the ESQL precompiler replaces the SQL
statement INCLUDE and the EXEC SQL and END-EXEC strings with the code of the
INCLUDE element.

An INCLUDE element may contain ESQL-COBOL or COBOL code. INCLUDE elements
may also include the SQL statement INCLUDE (nesting). The maximum nesting depth is
nine.

The SQL statement INCLUDE is an extension to the SQL standard. If you specify the ISO
language subset with the precompiler option SOURCE PROPERTIES (see section “Speci-
fying the properties of the ESQL-COBOL program” on page 101), you cannot use the SQL
statement INCLUDE.

Using the precompiler option INCLUDE-LIBRARY, you can specify the libraries from which
INCLUDE elements can be inserted (see section “Specifying INCLUDE libraries” on
page 92).

80 U22424-J-Z125-3-76

INCLUDE elements Embedding SQL in COBOL programs

Example

Assigning the SQL-INCLUDE library ESQL.INCLUDE.LIB.1 and the SQL-INCLUDE
element ERRCOP:

1. Assigning the SQL-INCLUDE library with the precompiler option:

 //PRECOMPILE -
 //INCLUDE-LIBRARY = ESQL.INCLUDE.LIB.1 -
 .
 .
 further precompiler options
 .
 .
 //END

2. Inserting an SQL-INCLUDE element from the SQL-INCLUDE library into an ESQL-
COBOL program with an SQL-INCLUDE statement:

 DATA DIVISION.
 WORKING-STORAGE SECTION.

 .
 .
 EXEC SQL
 INCLUDE ERRCOP
 END-EXEC
 .
 .

Explanation: During precompilation, the source code

EXEC SQL
 INCLUDE ERRCOP
END-EXEC

is replaced with the contents of the SQL-INCLUDE elements ERRCOP.

U22424-J-Z125-3-76 81

3 Precompiling an ESQL-COBOL program
This chapter covers the following topics:

● Calling and controlling the ESQL precompiler

● ESQL precompiler options

● Termination behavior of the ESQL precompiler and error messages

82 U22424-J-Z125-3-76

Calling and controlling the ESQL precompiler Precompiling an ESQL-COBOL program

3.1 Calling and controlling the ESQL precompiler

You can call the ESQL precompiler interactively or from a procedure. You can set the
options used to control the ESQL precompiler when you call it interactively or start it from a
procedure. You can also specify the precompiler option SOURCE-PROPERTIES to define
the properties of the ESQL-COBOL program directly in the ESQL-COBOL program.

Specifying the precompiler option SOURCE-PROPERTIES in the ESQL-COBOL
program

Using the following statement, you can specify the precompiler option SOURCE-
PROPERTIES in the ESQL-COBOL program:

//PRECOMPILE SOURCE-PROPERTIES=parameters
//END

You may only specify one PRECOMPILE statement. This must begin in the first line and
first column of the ESQL-COBOL program.

The precompiler option specified in the ESQL-COBOL program takes precedence over any
other options specified (e.g. precompiler options specified when the precompiler is called
interactively). The REPLACE-TOKENS parameter constitutes an exception here: all the
options specified are evaluated. A detailed description of the precompiler option SOURCE-
PROPERTIES is provided in section “Specifying the properties of the ESQL-COBOL
program” on page 101.

U22424-J-Z125-3-76 83

Precompiling an ESQL-COBOL program Calling and controlling the ESQL precompiler

3.1.1 Assigning the requisite libraries and files

Before you start the ESQL precompiler, you must assign the following libraries:

– the SESAM/SQL module library
– the CRTE library

Assigning the SESAM/SQL module library

To do this, you can use any of the following statements:

/SET-FILE-LINK LINK-NAME=SESAMOML,FILE-NAME=sesam-modlib (1)
/SET-TASKLIB LIBRARY=sesam-modlib (2)
/SET-FILE-LINK LINK-NAME=BLSLIBnn,FILE-NAME=sesam-modlib (3)

(1) Assigns the SESAM module library with the link name SESAMOML.

(2) Assigns the SESAM module library as TASKLIB.

(3) Assigns the SESAM module library as BLSLIB with 00 ≤ nn ≤ 99

Assigning the CRTE library

The CRTE library must be assigned as BLSLIB. It is recommended that you use BLSLIB00:

/SET FILE-LINK LINK-NAME=BLSLIB00,FILE-NAME=crte-lib

84 U22424-J-Z125-3-76

Calling and controlling the ESQL precompiler Precompiling an ESQL-COBOL program

3.1.2 Precompiling with database contact

When precompiling with database contact, you usually also assign a configuration file with
CONNECT-SESAM-CONFIGURATION or with the link name SESCONF. If you do not
assign a configuration file, the defaults apply. Detailed descriptions of the configuration files
for the independent and linked-in DBHs are provided in the Core Manual [1].

3.1.3 Starting the ESQL precompiler

You can start the ESQL precompiler with the command START-ESQLCOB or the command
START-PROGRAM. If you wish to monitor the ESQL program with a job variable, you have
the following options:

– You use the command START-ESQLCOB and specify the precompiler option MONJV
(see section “Specifying a job variable” on page 95).

– You use the command START-PROGRAM and include the parameter MONJV in the
call.

Starting the ESQL precompiler with START-ESQLCOB

You can start the ESQL-COBOL precompiler as follows using the START-ESQLCOB
command:

START-ESQLCOB precompiler-option ,...

START-ESQLCOB
ESQL precompiler call.

precompiler-option
ESQL precompiler option for controlling precompilation. A description of the individual
ESQL precompiler options is provided in section “ESQL precompiler options” on
page 87.

U22424-J-Z125-3-76 85

Precompiling an ESQL-COBOL program Calling and controlling the ESQL precompiler

Starting the ESQL precompiler with START-PROGRAM

A detailed description of the START-PROGRAM command is provided in the BS2000
manual “BS2000/OSD-BC Commands, Volumes 1 - 5” [18]. You can start the ESQL
precompiler with the START-PROGRAM command as follows:

/START-PROGRAM FROM-FILE=*MODULE(LIBRARY=precompiler_bibl,ELEMENT=ESQLCOB - (1)
/ ,PROGRAM-MODE=ANY - (2)
/ ,RUN-MODE=ADVANCED - (3)
/ (ALTERNATE-LIBRARIES=YES -
/ ,LOAD-INFORMATION=REFERENCES -
/ ,UNRESOLVED-EXTRNS=DELAY) -
/)
//PRECOMPILE precompiler-option, ... (4)
//END (5)

(1) ESQL precompiler call. precompiler_lib is the library which contains the precompiler.
The standard library name is SYSLNK.ESQL-COBOL.030.

(2) The load unit’s modules can be loaded above or below 16Mbytes.

(3) The DBL, which is called implicitly by START-PROGRAM, operates in a mode that
supports new functions (as of BS2000 V10.0A). This information is required to allow
the processing of link and load modules. Alternative libraries are scanned. Any
unresolved external references are resolved later.

(4) Introduces the precompiler options.
The precompiler option MONJV is not permitted here. If you wish to monitor the
ESQL precompiler with job variables, you must specify the MONJV parameter in the
START-PROGRAM command. A detailed description of the individual ESQL
precompiler options is provided in section “ESQL precompiler options” on page 87.

(5) Indicates the end of the ESQL precompiler options.

86 U22424-J-Z125-3-76

Calling and controlling the ESQL precompiler Precompiling an ESQL-COBOL program

The command sequence for precompiling an ESQL-COBOL program:

/SET-FILE-LINK LINK-NAME=BLSLIBnn,FILE=crte-lib (1)
/SET-FILE-LINK LINK-NAME=SESAMOML,FILE-NAME=sesam-modlib (2)
/CONNECT-SESAM-CONFIGURATION TO-FILE=global-configuration-file, -
/ CONFIGURATION-LINK=linkname
or
/SET-FILE-LINK LINK-NAME=SESCONF,FILE-NAME=filename (3)
/START-ESQLCOB - (4)
/ SOURCE=esql-cobol-program - (5)
/ ,INCLUDE-LIBRARY=SYSLIB.ESQL-COBOL.030.INCL-V2 - (6)
/ ,PRECOMPILER-ACTION=(SQL-ENTRY-NAME=entry-name) - (7)
/ ,SOURCE-PROPERTIES=(CATALOG=database-name -
/ ,SCHEMA=schema-name -
/ ,AUTHORIZATION='authorization-key' -
/) (8)

(1) Assigns the CRTE library as BLSLIB. It is recommended that you use BLSLIB00.

(2) Assigns the SESAM/SQL module library.

(3) Assigns the configuration file. This is only necessary if precompilation with
database contact is to be carried out (see section “Controlling precompilation” on
page 96).

(4) Calls the ESQL precompiler.

(5) The ESQL-COBOL program that is to be precompiled (see section “Controlling
precompilation” on page 96).

(6) The library from which the communication area is inserted (see section “Specifying
INCLUDE libraries” on page 92).

(7) Entry point for the SQL link and load module generated by the ESQL precompiler
(see section “Controlling precompilation” on page 96).

(8) Specifies default database names, schema names and authorization keys (see
section “Specifying the properties of the ESQL-COBOL program” on page 101).

U22424-J-Z125-3-76 87

Precompiling an ESQL-COBOL program ESQL precompiler options

3.2 ESQL precompiler options

You control how the ESQL precompiler works and executes using ESQL precompiler
options. You specify ESQL precompiler options in SDF format.

This section provides an overview of the control options you can use and describes the
individual ESQL precompiler options in alphabetical order.

3.2.1 Overview of the ESQL precompiler options

The tables that follow group together the ESQL precompiler options according to their
contents:

– specification of input sources

– specification of properties of the ESQL-COBOL program

– control of precompilation

– specification of output targets

– specification of job variables

3.2.1.1 Specifying input sources

Precompiler option INCLUDE-LIBRARY

Precompiler option SOURCE

Parameter Brief description Possible information
INCLUDE library PLAM libraries

Table 7: Precompiler option INCLUDE-LIBRARY

Parameter Brief description Possible information
Specifies an ESQL-COBOL
program

– *SYSDATA
– cataloged file
– library element

Table 8: Precompiler option SOURCE

88 U22424-J-Z125-3-76

ESQL precompiler options Precompiling an ESQL-COBOL program

3.2.1.2 Specifying the properties of the ESQL-COBOL program

Precompiler option SOURCE-PROPERTIES

Parameter Brief description Possible information
HOST-LANGUAGE Specifies the host language – COBOL
ESQL-DIALECT Specifies the language

subset
– SQL standard with SESAM-

specific extensions

– SQL standard

– SESAM-SQL V1.1
QUOTATION-
CHARACTER

Specifies the delimiter for
character strings

Quotes
– single
– double

CATALOG Specifies the default
database name

– via an option

– via an embedded option in the
ESQL-COBOL program

SCHEMA Specifies the default schema
name

– via an option

– via an embedded option in the
ESQL-COBOL program

AUTHORIZATION Specifies access authori-
zation for the SQL statement

– via an option

– via an SQL statement
REPLACE-BY-FILE
REPLACE-TOKENS

Replacements used in the
conversion of existing appli-
cations for the current
version of SESAM/SQL

Replacements
– are read in from a file
– are specified as a list

Table 9: Precompiler option SOURCE-PROPERTIES

U22424-J-Z125-3-76 89

Precompiling an ESQL-COBOL program ESQL precompiler options

3.2.1.3 Controlling precompilation

Precompiler option PRECOMPILER-ACTION

Specifying output targets

Precompiler option HOST-PROGRAM

Precompiler option MODULE-LIBRARY

Parameter Brief description Possible information
DATABASE-
CONTACT

Database contact during
precompilation

– with database contact

– without database contact
SQL-ENTRY-NAME Specifies the entry point of

the SQL link and load
module

The relevant entry point

ESQL-STATEMENTS Inclusion of SQL statements
in the generated COBOL
program

– inclusion as a comment

– not included in the generated
COBOL program

ESQL-XREF Creation of a cross-
reference list as a comment

– yes
– no

Table 10: Precompiler option PRECOMPILER-ACTION

Parameter Brief description Possible information
Specifies the output target
for the COBOL program

– cataloged file

– library element
Table 11: Precompiler option HOST-PROGRAM

Parameter Brief description Possible information
Defines destination for SQL
link and load module

Library member

Table 12: Precompiler option MODULE-LIBRARY

90 U22424-J-Z125-3-76

HOST-PROGRAM Precompiling an ESQL-COBOL program

Specifying job variables

Precompiler option MONJV

3.2.2 Specifying the output target for the generated COBOL program

You specify the output target for the COBOL program generated by the ESQL compiler with
the precompiler option HOST-PROGRAM.

HOST-PROGRAM =
Specifies the output target for the COBOL program generated by the ESQL precompiler.

HOST-PROGRAM = *STD-FILE
The COBOL program generated is written to the cataloged file HOST.PROGRAM.

HOST-PROGRAM = <full-filename 1..54 without-gen-vers>
The COBOL program is stored in a cataloged file with the name specified.

HOST-PROGRAM = *LINK(...)

LINK-NAME = <full-filename 1..8 without-gen-vers>
The COBOL program generated is written to the cataloged file assigned via the link
name.

Parameter Brief description Possible information
Specifies job variables for
monitoring the ESQL
precompiler

desired job variable

Table 13: Precompiler option MONJV

HOST-PROGRAM

HOST-PROGRAM = *STD-FILE / <full-filename 1..54 without-gen-vers> / *LINK(...) /
 *LIBRARY-ELEMENT(...)

 *LINK(...)
 LINK-NAME = <full-filename 1..8 without-gen-vers>

*LIBRARY-ELEMENT(...)
 LIBRARY = <full-filename 1..54 without-gen-vers> / *LINK(...)
  *LINK(...)
   LINK-NAME = <full-filename 1..8 without-gen-vers>
 ,ELEMENT = <full-filename 1..38 without-cat-user-gen-vers> (...)
  VERSION = *UPPER-LIMIT / *HIGHEST-EXISTING / *INCREMENT / <text 1..24>

U22424-J-Z125-3-76 91

Precompiling an ESQL-COBOL program HOST-PROGRAM

HOST-PROGRAM = *LIBRARY-ELEMENT(...)
The generated COBOL program is stored in the specified element in the PLAM library.

LIBRARY = <full-filename 1..54 without-gen-vers>
The name of the PLAM library in which the generated COBOL program is stored.

LIBRARY = *LINK(...)
The PLAM library for the generated COBOL program is assigned via a link name.

LINK-NAME = <full-filename 1..8 without-gen-vers>
The link name of the PLAM library for the generated COBOL program.

ELEMENT = <full-filename 1..38 without-cat-user-gen-vers>(...)
The library element in which the COBOL program is stored. cat and user can be
specified, but they will not be interpreted as such.

VERSION =
Specifies the version of the library element.

VERSION = *UPPER-LIMIT
The library element is assigned the highest possible version number (indicated by
LMS with @).

VERSION = *HIGHEST-EXISTING
The library element with the highest version number is overwritten.

VERSION = *INCREMENT
The highest existing version number is incremented by one and assigned to the
library element. A prerequisite here is that the highest existing version number must
end with a digit. If it does not, an error message is displayed.

VERSION = <alphanum-name 1..24>
The library element is assigned the specified version ID. If the version ID is to be
incremented, it must end with a digit.

92 U22424-J-Z125-3-76

INCLUDE-LIBRARY Precompiling an ESQL-COBOL program

3.2.3 Specifying INCLUDE libraries

You specify the libraries in which INCLUDE elements are to be found using the precompiler
option INCLUDE-LIBRARY.

INCLUDE-LIBRARY =
Here you specify the PLAM libraries from which INCLUDE elements are to be inserted. The
libraries are scanned in the sequence in which you specify them. You can specify up to nine
libraries.

INCLUDE-LIBRARY = *NONE
No INCLUDE elements can be inserted.

INCLUDE-LIBRARY = list-poss (9): *LINK(...)

LINK-NAME = <full-filename 1..8 without-gen-vers>
A list of references to libraries that are to be searched for INCLUDE elements.

INCLUDE-LIBRARY = list-poss(9): <full-filename 1..54 without-gen-vers>
A list of libraries that are to be searched for INCLUDE elements.

INCLUDE-LIBRARY

INCLUDE-LIBRARY = *NONE / list-poss(9): *LINK(...) / list-poss(9): <full-filename 1..54 without-gen-vers>

*LINK(...)
 LINK-NAME = <full-filename 1..8 without-gen-vers>

U22424-J-Z125-3-76 93

Precompiling an ESQL-COBOL program MODULE-LIBRARY

3.2.4 Specifying the output target for the SQL link and load module

You use the precompiler option MODULE-LIBRARY to specify the library to which the
ESQL precompiler is to write the SQL link and load module during precompilation.

MODULE-LIBRARY = *LIBRARY-ELEMENT(...)
Specifies the PLAM library.

LIBRARY = <full-filename 1..54 without-gen>
The name of the PLAM library for the generated SQL link and load module. If the library
does not already exist, it is created automatically. The default library is SQLPROG.LIB.

LIBRARY = *LINK(...)
Assigns the PLAM library for the generated SQL link and load module via a link name.

LINK-NAME = <full-filename 1..8 without-gen>
The link name of the PLAM library for the generated SQL link and load module.

ELEMENT = <full-filename 1..38 without-cat-user-gen-vers>(...)
The name of the library element to which the ESQL precompiler writes the generated
SQL link and load module. The default is SQLPROG.OUT. cat and user can be
specified, but they will not be interpreted as such.

VERSION =
Specifies the version of the library element.

VERSION = *UPPER-LIMIT
The library element is assigned the highest possible version number (indicated by
LMS with @).

VERSION = *HIGHEST-EXISTING
The library element with the highest version number is overwritten.

MODULE-LIBRARY

MODULE-LIBRARY = *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 LIBRARY = <full-filename 1..54 without-gen-vers> / *LINK(...)
  *LINK(...)
   LINK-NAME = <full-filename 1..8 without-gen-vers>
 ,ELEMENT = <full-filename 1..38 without-cat-gen-user-vers>(...)
  VERSION = *UPPER-LIMIT /*HIGHEST-EXISTING / *INCREMENT /<text 1..24>

94 U22424-J-Z125-3-76

MODULE-LIBRARY Precompiling an ESQL-COBOL program

VERSION = *INCREMENT
The highest existing version number is incremented by one and assigned to the
library element. A prerequisite here is that the highest existing version number must
end with a digit. If it does not, an error message is displayed.

VERSION = <alphanum-name 1..24>
The library element is assigned the specified version ID. If the version ID is to be
incremented, it must end with a digit.

U22424-J-Z125-3-76 95

Precompiling an ESQL-COBOL program MONJV

3.2.5 Specifying a job variable

The precompiler option MONJV may only be used if you start the ESQL precompiler with
the START-ESQLCOB command (see section “Starting the ESQL precompiler” on
page 84).

You use the precompiler option MONJV to specify a job variable for monitoring precompi-
lation. During precompilation, the ESQL precompiler sets a status indicator and a return
code in the job variable. For a description of possible status indicators and return codes,
see section “Monitoring termination behavior with job variables” on page 108.

MONJV = *NONE
Precompilation is not monitored with a job variable.

MONJV = <full-filename 1..54 without-gen-vers>
Specifies the job variable used to monitor precompilation.

MONJV

MONJV = *NONE / <full-filename 1..54 without-gen-vers>

96 U22424-J-Z125-3-76

PRECOMPILER-ACTION Precompiling an ESQL-COBOL program

3.2.6 Controlling precompilation

You use the precompiler option PRECOMPILER-ACTION to control precompilation.

PRECOMPILER-ACTION = PARAMETERS(...)
Controls how the ESQL precompiler operates.

DATABASE-CONTACT =
Specifies whether the ESQL-COBOL program is to be compiled with or without
database contact.

DATABASE-CONTACT = NO
The ESQL-COBOL program is compiled without database contact. The database
system does not need to be active during precompilation.

DATABASE-CONTACT = YES
The ESQL-COBOL program is compiled with database contact. The database system
has to be active during precompilation. Before you start the ESQL precompiler you must
assign a configuration file with the link name SESCONF (see section “Starting the
ESQL precompiler” on page 84).

CATALOG-CHECKS =
If the ESQL-COBOL program is compiled with database contact, you can specify
whether inconsistencies between the ESQL-COBOL program and the database are
to be treated as errors or as warnings. Inconsistencies can occur, for example,
when not all the tables planned for a database have been created. If just errors in
the error classes “note” or “warning” are detected during precompilation, an SQL
link and load module is generated. If an error in the error class “error” occurs, no
SQL link and load module is generated.

PRECOMPILER-ACTION

PRECOMPILER-ACTION = PARAMETERS(...)

PARAMETERS(...)
 DATABASE-CONTACT = NO / YES(...)
  YES(...)
  CATALOG-CHECKS = STD / DYNAMIC
  APPLICATION-TYPE = INDEPENDENT / LINKEDIN
 ,SQL-ENTRY-NAME = <name 1..7>
 ,ESQL-STATEMENTS = SOURCE-COMMENTS / REMOVED
 ,ESQL-XREF = NO / YES

U22424-J-Z125-3-76 97

Precompiling an ESQL-COBOL program PRECOMPILER-ACTION

CATALOG-CHECKS = STD
Inconsistencies between the ESQL-COBOL program and the database are treated
as errors.

CATALOG-CHECKS = DYNAMIC
Inconsistencies between the ESQL-COBOL program and the database are treated
as errors in the error class “warning”. The SQL link and load module is generated,
even if inconsistencies are detected. You have to adapt the database or the ESQL-
COBOL program accordingly before running the ESQL-COBOL application.

APPLICATION-TYPE =
Here you specify whether the independent DBH or the linked-in DBH is to be used
during precompilation with database contact. For information on the DBH, see the
„Core Manual“ [1] and „Database Operation“ manual [5].

APPLICATION-TYPE = INDEPENDENT
The independent DBH is used during precompilation with database contact. The
independent DBH can work with a number of different users. If you use the
independent DBH, the application can access the database concurrently with other
applications.

APPLICATION-TYPE = LINKEDIN
The linked-in DBH is used during precompilation with database contact. The linked-
in DBH can only work with a single user. You should therefore use the linked-in DBH
if you wish to access a database not accessed by any other applications, e.g., a
private test database.

SQL-ENTRY-NAME = <name 1..7>
The entry point used to call the SQL link and load module in the COBOL program. You
must specify the entry point explicitly. In a run unit comprising several ESQL-COBOL
programs, the entry point must be unique. Because of the need to maintain compatibility
with ESQL-COBOL V1.1, the ESQL precompiler appends a Q to the entry point.

ESQL-STATEMENTS =
This is used to specify whether SQL statements are to be retained as comments in the
COBOL program.

ESQL-STATEMENTS = SOURCE-COMMENTS
SQL statements are retained as comments in the COBOL program.

ESQL-STATEMENTS = REMOVED
SQL statements are removed from the COBOL program.

98 U22424-J-Z125-3-76

PRECOMPILER-ACTION Precompiling an ESQL-COBOL program

ESQL-XREF =
Specifies whether a cross-reference list should be included in the information section at
the end of the generated COBOL program. The cross-reference list contains database
names, file names and host variables. For each occurrence of a host variable, the list
contains the line number of the ESQL-COBOL program, details of the way the host
variable was used (input, output, I/O, defining, or unknown), and the line number in the
COBOL program generated by the ESQL precompiler.

U22424-J-Z125-3-76 99

Precompiling an ESQL-COBOL program SOURCE

3.2.7 Specifying the input source for the ESQL precompiler

You use the precompiler option SOURCE to specify the input source from which the ESQL
precompiler reads the ESQL-COBOL program.

SOURCE =
Specifies the input source.

SOURCE = *SYSDTA
The ESQL precompiler reads the ESQL-COBOL program from the SYSDTA system file. If
SYSDTA is assigned to the console, you can enter the ESQL-COBOL program interactively.
The ESQL precompiler displays an asterisk (*) as a prompt. You complete entry of the
ESQL-COBOL program as follows:

Key
/EOF
/RESUME-PROGRAM

Using the BS2000 command ASSIGN-SYSDTA, you can redirect SYSDTA to a cataloged
file or a PLAM library before you call the ESQL precompiler. You can then read the ESQL-
COBOL program and the precompiler options from the cataloged file or the library element.
However, it is recommended that you save the precompiler options and the ESQL-COBOL
program separately.

SOURCE = <full-filename 1..54 without-gen-vers>
The ESQL-COBOL program is read from the cataloged file specified.

SOURCE = *LINK(...)
The ESQL-COBOL program is read from a cataloged file assigned via a link name.

LINK-NAME = <full-filename 1..8 without-gen-vers>
Specifies the link name used to assign the cataloged file.

SOURCE

SOURCE = *SYSDTA / <full-filename 1..54 without-gen-vers> / *LINK(...) / *LIBRARY-ELEMENT(...)

*LINK(...)
 LINK-NAME = <full-filename 1...8 without-gen-vers>

*LIBRARY-ELEMENT(...)
 LIBRARY = <full-filename 1..54 without-gen-vers> / *LINK(...)
  *LINK(...)
   LINK-NAME = <full-filename 1..8 without-gen>
 ,ELEMENT = <full-filename 1..38 without-cat-user-gen-vers> (...)
  VERSION = *HIGHEST-EXISTING / UPPER-LIMIT / <text 1..24>

K2

100 U22424-J-Z125-3-76

SOURCE Precompiling an ESQL-COBOL program

SOURCE = *LIBRARY-ELEMENT(...)
Specifies the PLAM library and the library element from which the ESQL-COBOL program
is read.

LIBRARY = <full-filename 1..54 without-gen-vers>
Name of the PLAM library.

LIBRARY = *LINK(...)
The ESQL-COBOL program is read from a PLAM library assigned via a link name.

LINK-NAME = <full-filename 1..8 without-gen-vers>)
Link name of the PLAM library.

ELEMENT = <full-filename 1..38 without-cat-user-gen-vers>
Name of the library element. cat and user can be specified, but they will not be inter-
preted as such.

VERSION =
Specifies the version of the library element.

VERSION = *HIGHEST-EXISTING
The ESQL precompiler reads the ESQL-COBOL program from the library element
with the highest version number.

VERSION = *UPPER-LIMIT
The ESQL precompiler reads the ESQL-COBOL program from the library element
with the highest possible version number (indicated by LMS with @).

VERSION = <alphanum-name 1..24>
The ESQL precompiler reads the ESQL-COBOL program from the specified
version of the library element.

U22424-J-Z125-3-76 101

Precompiling an ESQL-COBOL program SOURCE-PROPERTIES

3.2.8 Specifying the properties of the ESQL-COBOL program

You use the precompiler option SOURCE-PROPERTIES to specify the properties of the
ESQL-COBOL program.

SOURCE-PROPERTIES = PARAMETERS
Specifies the properties of the ESQL-COBOL program.

HOST-LANGUAGE = COBOL
The ESQL program’s host language.

SOURCE-PROPERTIES

SOURCE-PROPERTIES = PARAMETERS(...) / STD

PARAMETERS(...)
 HOST-LANGUAGE = COBOL
 ,ESQL-DIALECT = ALL-FEATURES(...) / ISO(...) / OLD(...)
 (...)
  UTM-RESTRICTIONS = NO / YES
 ,QUOTATION-CHARACTER = ESQL-STANDARD / HOST-STANDARD
 ,CATALOG = *INLINE / <text 1..18>/ <c-string 1..18>
 ,SCHEMA = *INLINE / <text 1..31> / <c-string 1 ..31>
 ,AUTHORIZATION = *IMPLICIT / <text 1..18> / <c-string 1..18>
 ,REPLACE-BY-FILE = *NONE / <full-filename 1..54 without-gen-vers> / *LINK(...) /

 LIBRARY-ELEMENT(...)
 *LINK(...)
  LINK-NAME = <full-filename 1..8 without-gen-vers>
 LIBRARY-ELEMENT(...)
  LIBRARY = <full-filename 1..54 without-gen> / *LINK(...)
  *LINK(...)
   LINK-NAME = <full-filename 1..8 without-gen-vers>
 ,ELEMENT = <full-filename 1..38 without-cat-user-gen-vers(...)
  VERSION = HIGHEST-EXISTING / UPPER-LIMIT / <text 1..24>
 ,REPLACE-TOKENS = *NONE /list-poss(2000):*SUBSTITUTE(...)
 SUBSTITUE(...)
  IDENTIFIER = <c-string 1..128>
  ,REPLACEMENT = <c-string 1..128>

102 U22424-J-Z125-3-76

SOURCE-PROPERTIES Precompiling an ESQL-COBOL program

ESQL-DIALECT =
Selects the language subset. This parameter facilitates the porting of ESQL-COBOL
programs developed for earlier SESAM/SQL versions or other database systems. If the
ESQL program contains SQL elements that are not permitted in the chosen language
subset, the ESQL precompiler outputs error messages and does not create an SQL link
and load module.

ESQL-DIALECT = ALL-FEATURES(...)
Selects the SQL standard ISO/IEC 9075:2003 dialect and SESAM-specific extensions.
This option is recommended if you wish to use all the available features of SESAM/
SQL.

ESQL-DIALECT = ISO(...)
Selects the SQL standard ISO/IEC 9075:2003 as the permitted dialect. This option is
recommended when precompiling ESQL-COBOL programs developed for other SQL
database systems. If this option is selected, only those keywords are reserved that are
defined in the SQL standard. The keywords reserved additionally by SESAM/SQL are
no longer treated as reserved when this option is selected.

ESQL-DIALECT = OLD(...)
Selects the dialect supported by SESAM/SQL V1.1. This option can be specified when
precompiling ESQL-COBOL programs developed for SESAM/SQL V1.1. Keywords
reserved in the current SESAM/SQL version are not treated as reserved and can be
used as names.

UTM-RESTRICTIONS =
Specifies whether the dialect used in the ESQL-COBOL program should be
checked for compliance with UTM. In UTM operations, only UTM language
constructs are permitted for transaction management. The SQL statements
COMMIT WORK and ROLLBACK WORK may therefore not be used for committing
or rolling back transactions.

UTM-RESTRICTIONS = NO
The SQL statements COMMIT WORK and ROLLBACK WORK are permitted.

UTM-RESTRICTIONS = YES
The SQL statements COMMIT WORK and ROLLBACK WORK are not permitted.
During program execution, the SQL statements PREPARE and EXECUTE
IMMEDIATE for COMMIT WORK and ROLLBACK WORK cause an error.

U22424-J-Z125-3-76 103

Precompiling an ESQL-COBOL program SOURCE-PROPERTIES

QUOTATION-CHARACTER =
Defines how alphanumeric literals and names in quotes are delimited in SQL state-
ments. In the case of literals in COBOL text, the delimiters are defined during translation
with the COBOL compiler (see the „COBOL2000 (BS2000/OSD)) User’s Guide“ [17]).

QUOTATION-CHARACTER = ESQL-STANDARD
Quotation marks are used in accordance with the SQL standard: alphanumeric literals
are enclosed in single quotes; names in quotes are enclosed in double quotes.

QUOTATION-CHARACTER = HOST-STANDARD
Alphanumeric literals are enclosed in double quotes; names in quotes are enclosed in
single quotes.

CATALOG =
Sets the default database name. In accordance with SQL rules, this database name is
valid for all SQL objects of the ESQL-COBOL program for which you have not specified
a database name. You must include the preset database name explicitly, even if you
precompile without database contact.

CATALOG = *INLINE
The default database name is specified directly in the ESQL-COBOL program with the
precompiler option SOURCE-PROPERTIES.

CATALOG = <text 1..18>/<c-string 1..18>
Sets the specified database name as the default database name. The specified
database name must conform to the conventions governing database names (see the
„SQL Reference Manual Part 1: SQL Statements“ [2]).

SCHEMA =
Sets the default schema name. In accordance with SQL rules, this name is valid for all
SQL objects of the ESQL-COBOL program for which you have not specified a schema
name. You must include the preset schema name explicitly, even if you precompile
without database contact.

SCHEMA = *INLINE
The default schema name is specified directly in the ESQL-COBOL program with the
precompiler option SOURCE-PROPERTIES.

SCHEMA = <text 1..31> / <c-string 1..31>
Sets the specified schema name as the default schema name. The specified schema
name must be unique within the database.

104 U22424-J-Z125-3-76

SOURCE-PROPERTIES Precompiling an ESQL-COBOL program

AUTHORIZATION =
Specifies the authorization key.

AUTHORIZATION = *IMPLICIT
The authorization key is specified with the SQL statement SET SESSION
AUTHORIZATION.

AUTHORIZATION = <text 1..18>/<c-string 1..18>
Specifies the authorization key. The authorization key specified here cannot be altered
using the SQL statement SET SESSION AUTHORIZATION.

REPLACE-BY-FILE =
Specifies the replace-by file from which the replacement pairs are read.
The replace-by file has the following format:

//PRECOMPILE SOURCE-PROPERTIES= (-
// (-
// REPLACE-TOKENS= -
// *SUBSTITUTE(’1st_string_to_replace’ , ’replacement1’) -
// ,*SUBSTITUTE(’2nd_string_to_replace’ , ’replacement2’) -
// ...
//))
// END
//PRECOMPILE SOURCE-PROPERTIES= -
// (-
// ...
//)
// END

The file may contain more than one PRECOMPILE statement. The END statement must be
the last statement in the file. To aid debugging, it is recommended that replacement pairs
be spread across a number of different PRECOMPILE statements.

U22424-J-Z125-3-76 105

Precompiling an ESQL-COBOL program SOURCE-PROPERTIES

Example

Qualifying the names of the temporary views and tables with the schema names.
The example assumes that quotes are used in accordance with the SQL standard:
names in quotes are delimited with double quotes (option SOURCE-PROPERTIES,
parameter QUOTATION-CHARACTER = ESQL-STANDARD).

//PRECOMPILE SOURCE-PROPERTIES= (-
// (-
// REPLACE-TOKENS= -
// *SUBSTITUTE(’PERSONNELDATA’ , ’MODULE.PERSONNELDATA’) -
// ,*SUBSTITUTE(’"PROFIT&LOSS"’ , ’MODULE."PROFIT&LOSS"’) -
// ,*SUBSTITUTE(’ITEMS’ , ’PARTS_SCHEMA.ITEMS’) -
//))
// END

Explanation:
The names of the temporary views PERSONNELDATA and PROFIT&LOSS are
qualified with MODULE. PROFIT&LOSS is a name in quotes. The ITEMS table is
qualified with the PARTS_SCHEMA schema name.

REPLACE-BY-FILE = *NONE
No replace-by file is specified.

REPLACE-BY-FILE = <full-filename 1..54 without-gen-vers>
The ESQL precompiler uses the cataloged file specified as the replace-by file.

REPLACE-BY-FILE = *LINK(...)
The ESQL precompiler uses a cataloged file assigned via a link name as the
replace-by file.

LINK-NAME = <full-filename 1..8 without-gen-vers>
Link name of the cataloged file.

REPLACE-BY-FILE = *LIBRARY-ELEMENT(...)
Specifies the PLAM library and the library element from which replacement pairs are to
be read.

LIBRARY = <full-filename 1..54 without-gen-vers>
Name of the PLAM library.

LIBRARY = *LINK(...)
The ESQL precompiler reads the replacement pairs from a PLAM library which is
assigned via a link name.

LINK-NAME = <full-filename 1..8 without-gen-vers>
Link name of the PLAN library.

106 U22424-J-Z125-3-76

SOURCE-PROPERTIES Precompiling an ESQL-COBOL program

ELEMENT = <full-filename 1..38 without-cat-user-gen-vers>(...)
Name of the library element. cat and user can be specified, but they will not be inter-
preted as such.

VERSION =
Specifies the version of the library element.

VERSION = *HIGHEST-EXISTING
The ESQL precompiler reads the replacements pairs from the library element with
the highest version number.

VERSION = *UPPER-LIMIT
The ESQL precompiler reads the replacement pairs from the library element with
the highest possible version number (indicated by LMS with @).

VERSION = <alphanum-name 1..24>
The ESQL precompiler reads the synonyms from the specified library element.

REPLACE-TOKENS =
Performs replacements when converting or porting ESQL-COBOL applications.
Names, names in quotes, and keywords can be replaced. The strings to be replaced
and the relevant replacements can be specified in pairs or can be read from a replace-
by file. All the options specified (when the precompiler is called, in the ESQL-COBOL
program, and in a replace-by file) are evaluated on equal terms.
Replacement is governed by the following rules:

● Replacements are only carried out in the SQL source code. The SQL source code
can be in the source code of the ESQL-COBOL program or can be inserted with the
SQL statement INCLUDE.

● Names, names in quotes and keywords can be replaced.

● The string to be replaced must be fully contained in a single line.

● The type of delimiters for names in quotes (single or double quotes) is specified with
the QUOTATION-CHARACTER parameter. Quotes that are to be interpreted as alpha-
numeric literals rather than as quotation marks have to be doubled up.

U22424-J-Z125-3-76 107

Precompiling an ESQL-COBOL program SOURCE-PROPERTIES

● Replacements are not performed in the following:
– the SQL statements INCLUDE or WHENEVER
– strings that follow EXEC SQL and begin with INCLUDE or WHENEVER
– the strings EXEC SQL or END-EXEC
– numeric literals
– alphanumeric literals
– names and host variables

REPLACE-TOKENS = *NONE
No replacements are carried out.

REPLACE-TOKEN = list-poss(2000): *SUBSTITUTE(...)
Specifies replacement pairs. Quotes that are to be interpreted as alphanumeric literals
rather than as delimiters have to be doubled up. Doubled up quotes are treated as two
characters.

IDENTIFIER = <c-string 1..128>
Strings that are to be replaced. You can specify names, names in quotes and
keywords.

REPLACEMENT = <c-string 1..128>
Replacements for the strings specified with IDENTIFIER.

SOURCE-PROPERTIES = STD
The default settings apply for all parameters.

108 U22424-J-Z125-3-76

ESQL precompiler termination behavior Precompiling an ESQL-COBOL program

3.3 ESQL precompiler termination behavior

The precompiler’s termination behavior depends on whether errors occurred during
precompilation and, if so, on the error class to which the errors in question belonged. This
section describes the monitoring of termination behavior with job variables, the structure of
error messages and how they are output and the creation of diagnostic documentation.

3.3.1 Monitoring termination behavior with job variables

The ESQL precompiler’s termination behavior is particularly important when it is called from
a procedure. You can monitor the execution and termination behavior of the precompiler
with job variables.

The following tables provides you with an overview of possible termination states, their
effects on subsequent execution of a procedure, and the contents of a job variable.

Error Termination Job variable Behavior in
procedureStatus

indicator
Return
code

No error Normal
SQL link and load
module is
generated.

$T 0000 No branching
Messages in the error
class “note”

0001

Messages in the error
class “warning”

1002

ESQL precompiler
completes operation
but outputs errors in
the error class “error”

Error
No SQL link and
load module is
generated.

2004 No branching
to next STEP,
ABEND,
ABORT, END
or LOGOFF
command

Error, e.g. invalid
option, input file does
not exist, insufficient
storage capacity

2005

Internal error in ESQL
precompiler

$A 3006

Table 14: Termination behavior of ESQL precompiler

U22424-J-Z125-3-76 109

Precompiling an ESQL-COBOL program ESQL precompiler termination behavior

3.3.2 Messages output by the ESQL precompiler

The ESQL-COBOL system normally outputs messages to SYSOUT and in the precompiled
COBOL program. Informational messages, such as messages at the start or end of
precompilation, are only output to SYSOUT. If output in the COBOL program is impossible
because of the nature of the error, messages pertaining to serious internal errors or system
errors are only output to SYSOUT.

The message line is located in the COBOL program below the line in which the error
occurred.

Messages output by the ESQL-COBOL system have the following structure:

Message number Position Error class - Message text

Message number
Each message number is unique, and you can check up on the associated
message text in chapter “Messages output by the ESQL-COBOL system”.
The messages are grouped in ranges of numbers as follows:

Position Error position in the format lllll:fff.

lllll Number of the line in which the error occurred.

ddd The file that contains the error. A 1 indicates the COBOL program.
INCLUDE files are numbered in sequence. The INCLUDE files and the
associated numbers are listed in the information section of the generated
COBOL program.

If errors occur which are impossible to assign to a specific line, the position
information is not included.

Range Meaning
IQB0000 - IQB0899 Messages pertaining to precompiler options, I/O,

storage administration, and module generation
IQB0900 - IQB0999 Internal ESQL precompiler errors
IQB1000 - IQB1999 Messages pertaining to syntax analysis
IQB2000 - IQB2999 Messages pertaining to semantic analysis
IQB3000 - IQB3099 ESQL construct-specific messages
IQB9000 - IQB9099 Informational messages

110 U22424-J-Z125-3-76

ESQL precompiler termination behavior Precompiling an ESQL-COBOL program

Error class Indication of the severity of the error. The error classes have the following
meanings:

N Note
No serious error has occurred. However, it is recommended that you check
the relevant location in the ESQL-COBOL program. Precompilation
continues and the SQL link and load module is generated.

W Warning
The precompiler has detected an inconsistency or an item that will no longer
be supported in a future version. The error will not have any immediate or
serious consequences, but it is recommended that you check the relevant
location in the program. Precompilation continues; the link and load module
can be generated.

E Error
The ESQL precompiler has detected a lexical, syntactic or semantic error.
Precompilation continues, but the SQL link and load module is not
generated. Correct the ESQL-COBOL program and restart precompilation.

F Fatal
A fatal error caused precompilation to abort. The error could be in the
precompiler options or a system error in the ESQL-COBOL system. The
SQL link and load module is not generated. Correct the error in question
and restart precompilation.

S System
Internal ESQL precompiler error. The SQL link and load module is not
created. Prepare appropriate diagnostic documents and contact the
relevant systems support staff (see section “Creating diagnostic
documents” on page 111).

Message text The message text describes the error that occurred.

The ESQL precompiler also outputs the following information at the end of the COBOL
program:

– The total number of errors that occurred.

– The number of errors in each individual error class.

– The precompiler options that were set.

– The line numbers of references to database names in the ESQL-COBOL program and
the COBOL program.

– The name and number of the ESQL-COBOL program, the INCLUDE files used, and the
line numbers of the ESQL-COBOL programs and the COBOL program in which the
INCLUDE files are referenced or linked.

U22424-J-Z125-3-76 111

Precompiling an ESQL-COBOL program ESQL precompiler termination behavior

– List of cross-references, showing the names of all host variables and the type of
reference, provided the parameter XREF=YES was set in the precompiler option
PRECOMPILER-ACTION (see section “Controlling precompilation” on page 96).

A full list of messages is provided in chapter “Messages output by the ESQL-COBOL
system” on page 153.

3.3.3 Creating diagnostic documents

In order to have access to the necessary diagnostic documents it is advisable to log the
execution of ESQL-COBOL compilation runs. You can do this with the following BS2000
command:

MODIFY-JOB-OPTIONS LOGGING=PARAMETERS(LISTING=YES)

When internal ESQL precompiler errors occur (numbers in the range IQB0900 - IQB0999),
create the following diagnostic information for the systems support staff responsible:

– the ESQL-COBOL program used

– the COBOL program created, if available

– the version number of the ESQL precompiler

– the version number of the CRTE and the SQL run-time system, or the SESAM/SQL
server

– a dump, if you are given the option

– a list of ESQL precompiler options that were set

– the log of job execution

The ESQL precompiler’s version number is displayed on screen when you start the
precompiler. It is also included in the COBOL program created. Ask your system adminis-
trator for the version numbers of the CRTE system and the SQL run-time system. The
ESQL precompiler options that were set are listed at the end of the COBOL program
created. If you have enabled logging of job execution with the BS2000 command MODIFY-
JOB-OPTIONS, the log is written to SYSLST.

112 U22424-J-Z125-3-76

ESQL precompiler termination behavior Precompiling an ESQL-COBOL program

U22424-J-Z125-3-76 113

4 Compiling the COBOL program
You compile the COBOL program created by the ESQL precompiler with the COBOL2000
COBOL compiler.

 If you use new language elements which were only implemented with Version V3.0
together with the COBOL85 Compiler, incompatibilities can occur.

The COBOL compiler is described in the “COBOL2000 (BS2000/OSD) Reference Manual”
[16] and the “COBOL2000 (BS2000/OSD)) User’s Guide” [17].

The command sequence for compiling a COBOL program:

/START-COBOL2000-COMPILER - (1)
/SOURCE=cobol-program - (2)
/,COMPILER-ACTION=MODULE-GENERATION (3)

(1) Loads and starts the COBOL compiler. The entries are read from the console.

(2) Assigns the COBOL program that is to be compiled. Using cobol_program, specify the
output target set with the ESQL precompiler’s HOST-PROGRAM option. If you did
not set an output target, specify the default output target HOST.PROGRAM here.

(3) Specify the compilation steps to be carried out. The COBOL compiler carries out a
full compilation. If it completes without errors, a COBOL link module is generated.

i

114 U22424-J-Z125-3-76

Compiling the COBOL program

U22424-J-Z125-3-76 115

5 Linking an ESQL-COBOL application
To link an ESQL-COBOL application, you require the linker BINDER and the dynamic
linking loader DBL. Detailed descriptions of the BINDER and the DBL are provided in the
manuals “Binder in BS2000/OSD” [19] and “Dynamic Binder Loader / Starter in BS2000/
OSD” [20].

During linking, the following modules are combined to create an executable load unit:

– the SQL link and load module created by the ESQL precompiler

– the COBOL link module created by the COBOL compiler

– the SESAM/SQL connection module for the independent or linked-in DBH

The COBOL runtime system can be linked with the ESQL-COBOL application. However, it
is recommended that the runtime system be dynamically loaded when the ESQL-COBOL
application starts. This makes the ESQL-COBOL application more compact, and the latest
run-time system is always used when the ESQL-COBOL application is started.

Linking an ESQL-COBOL application:

/START-BINDER (1)
//START-LLM-CREATION INTERNAL-NAME=internal_name (2)
//INCLUDE-MODULES LIBRARY=library,ELEMENT=(sql-link-and-load-module) (3)
//INCLUDE-MODULES LIBRARY=library,ELEMENT=(cobol-link-module) (4)
//INCLUDE-MODULES LIBRARY=SYS.MOD,ELEMENT=sesam/sql-connection-module (5)
//RESOLVE-BY-AUTOLINK LIBRARY=crte-lib (6)
//SAVE-LLM LIBRARY=library,ELEMENT=element (7)
//END

(1) Calls BINDER.

(2) Creates a link and load module (LLM) with the internal name internal_name.

(3) Links in the SQL link and load module. Enter the names of the library and the
element you selected as the output target for the SQL link and load module during
precompilation with the precompiler option MODULE-LIBRARY. If you did not set
an output target, specify the default output target:
LIBRARY = SQLPROG.PLIB, ELEMENT = SQLPROG.OUT

116 U22424-J-Z125-3-76

Linking an ESQL-COBOL application

(4) Links in the COBOL link module. Enter the names of the library and the element you
selected as the output target during compilation with the COBOL compiler. If you
did not set an output target, specify the default output target:
LIBRARY=*OMF,ELEMENT=*ALL

(5) Links in the SESAM/SQL connection module from the SESAM/SQL module library.
If the ESQL-COBOL application is to work with the independent DBH, specify the
element SESMOD. If the linked-in DBH is to be used instead, specify the element
SESLINK.

(6) Links in the CRTE for the COBOL run-time system. This statement only has to be
specified if the run-time system is linked statically. However, it is recommended that
the run-time system be loaded dynamically when the ESQL-COBOL application is
started (see chapter “Starting an ESQL-COBOL application” on page 117).

(7) Saves the created link and load module under the specified name as an element of
the type L in the specified library.

Run units comprising a number of different ESQL-COBOL applications

You can also create a run unit (RUN UNIT) consisting of several compiled and executable
ESQL-COBOL applications. It is important to pay attention to the following:

– Cursors and temporary views are only valid within the module in which they are defined
and not in the whole of the run unit.

– The entry points you have defined with the precompiler option PRECOMPILER-
ACTION have to be unique within the run unit (see section “Controlling precompilation”
on page 96).

U22424-J-Z125-3-76 117

6 Starting an ESQL-COBOL application
Before you start an ESQL-COBOL application, you have to assign the SESAM/SQL module
library to the link name SESAMOML. It is recommended that you load the COBOL run-time
system dynamically when you start the application. To do this, you assign the CRTE library
to BLSLIB. If the ESQL-COBOL application works with the linked-in DBH, the CRTE library
must be assigned as BLSLIB, and PROGRAM-MOD=ANY must be specified in the START-
PROGRAM command.

You can create and assign a configuration file. If you do not assign a configuration file, the
defaults defined for the DBH name and the configuration apply. Detailed descriptions of the
configuration files for the independent DBH and the linked-in DBH are provided in the “Core
Manual” [1].

118 U22424-J-Z125-3-76

Starting an ESQL-COBOL application

The command sequence used to start an ESQL-COBOL application:

/SET-FILE-LINK LINK-NAME=SESAMOML, FILE-NAME=sesam-modlib (1)
/SET-FILE-LINK LINK-NAME=BLSLIBnn, FILE-NAME=crte-lib (2)
/CONNECT-SESAM-CONFIGURATION TO-FILE=global-configuration-file, -
/ CONFIGURATION-LINK=linkname
or
/SET-FILE-LINK LINK-NAME=SESCONF,FILE-NAME=filename (3)
/START-PROGRAM FROM-FILE=- (4)
/ *MODULE(LIBRARY=library, ELEMENT=element - (5)
/ ,PROGRAM-MODE=ANY - (6)
/ ,RUN-MODE=ADVANCED - (7)
/ (ALTERNATE-LIBRARIES =YES) - (8)
/)

(1) Assigns the SESAM/SQL module library.

(2) Assigns the CRTE library as BLSLIB. It is recommended that you use BLSLIB00.
This needs to be assigned if the application is to work with the linked-in DBH, or the
COBOL run-time system is to be loaded dynamically. To allow modules to be loaded
from the CRTE library, ALTERNATE-LIBRARIES=YES has to be specified in the
START-PROGRAM command.

(3) Assigns the configuration file.

(4) Loads and starts the ESQL-COBOL application.

(5) Calls the dynamic linking loader DBL to start the ESQL-COBOL application. The
ESQL-COBOL application is loaded from the specified library or element. Specify
the name of the library and the element that you specified in SAVE-LLM as the
output target for the ESQL-COBOL application when it was linked.

(6) The entry is required if the ESQL-COBOL application works with the linked-in DBH.

(7) Sets the DBL’s operating mode. This entry is required in order to process link and
load modules.

(8) Specifies that modules are to be loaded dynamically from libraries assigned with
BLSLIB. This entry is required if you wish to load the COBOL run-time system
dynamically.

U22424-J-Z125-3-76 119

7 ESQL-COBOL applications under openUTM
This chapter describes important issues that require your attention when running an ESQL-
COBOL application as a program unit in a UTM application.

Detailed information on UTM applications is provided in the following UTM manuals:
„Generating and Handling Applications“ [11] and „Programming Applications“ [12].

7.1 The language subset under openUTM

Only UTM language constructs can be used for transaction logging in ESQL-COBOL appli-
cations for UTM operations. This means that you may not use the SQL statements
COMMIT WORK or ROLLBACK WORK to commit or roll back transactions. Using the
precompiler option SOURCE-PROPERTIES, you can verify the language subset used
during precompilation (see section “Specifying the properties of the ESQL-COBOL
program” on page 101).

UTM takes care of the synchronization of UTM and database transactions. When a UTM
transaction is committed, UTM automatically completes the database transaction, too.

120 U22424-J-Z125-3-76

Generating a UTM application ESQL-COBOL applications under openUTM

7.2 Generating a UTM application

This section describes special aspects that require attention when generating UTM appli-
cations with ESQL-COBOL program units. Generation is described in detail in the UTM
manuals „Generating and Handling Applications“ [11] and „Programming Applications“ [12].

The KDCDEF statement DATABASE

In the KDCDEF statement DATABASE, you must specify SESSQL as the ENTRY name for
SESAM/SQL. It is recommended that you load the UTM connection module SESUTMC
dynamically. To do this, you specify the SESAM/SQL module library in the DATABASE
statement using the LIB parameter. Specify the DATABASE statement as follows:

DATABASE TYPE=SESAM,ENTRY=SESSQL,LIB=sesam-modlib

If the application also contains CALL-DML program units, you must also add the following
DATABASE statement:

DATABASE TYPE=SESAM,ENTRY=SESAM,LIB=sesam-modlib

Compiling the KDCROOT connection program

Before compiling the KDCROOT connection program, you assign the SESAM module
library. The statement depends on the assembler you use.

Example 1

Assigning the SESAM macro library with ASSEMBH:

/SET-FILE-LINK LINK-NAME=UTMLIB,FILE-NAME=utm_macro_library
/SET-FILE-LINK LINK-NAME=SESAMLIB,FILE=sesam_macro_library
/START-PROGRAM FROM-FILE=$ASSEMBH
//COMPILE -
//SOURCE=kdcroot
//,MACRO-LIBRARY=(*LINK(LINK-NAME=SESAMLIB) -
.
.

U22424-J-Z125-3-76 121

ESQL-COBOL applications under openUTM Generating a UTM application

Example 2

Assigning the SESAM macro library with ASSGEN:

/FILE sesam-macro-library,LINK=ALTLIB2
/EXEC $ASSGEN
*COMOPT ALTLIB2
.
.

Substitution of UTM programs

The entry point used to call the SQL link and load module during a UTM application must
be unique.
When generating UTM applications with ESQL/COBOL program units:

– either use new entry points or

– ensure the entry points are unique by closing all those UTM application sessions with
entry points already in use.

122 U22424-J-Z125-3-76

Starting a UTM application ESQL-COBOL applications under openUTM

7.3 Starting a UTM application

Before you start a UTM application with ESQL-COBOL program units, you must assign the
SESAM/SQL module library. It is recommended that you load the relevant run-time systems
dynamically when you start the UTM application.

In a UTM application, the parameters for the SESAM/SQL connection module can be
specified in a (global) configuration file or in the UTM start procedure. The specifications in
the configuration file take precedence over the UTM start parameters, which are ignored if
you specify a configuration file.
Refer to the “Core Manual” [1] for a description of the configuration file and the start param-
eters.

Add the following statements to the start procedure for the UTM application:

/SET-FILE-LINK LINK-NAME=SESAMOML, FILE-NAME=sesam-modlib (1)
.
.
/CONNECT-SESAM-CONFIGURATION TO-FILE=global-configuration file, -
/ CONFIGURATION-LINK=linkname
oder
/SET-FILE-LINK LINK-NAME=SESCONF,FILE-NAME=filename (2)
/START-PROGRAM FROM-FILE=*MODULE(LIBRARY=userlib,ELEMENT=elementname - (3)
/ ,RUN-MODE=ADVANCED -
/ (ALTERNATE-LIBRARIES =YES) -
/)
.UTM utm-start-parameters (4)
.FHS fhs-start-parameters (5)
.UTM END (6)

.

.

(1) Assign the SESAM/SQL module library.

(2) Assigns the configuration file.

(3) Calls the dynamic linking loader DBL to start the UTM application.

(4) Specifies the UTM start parameters. The individual start parameters are described
in the “Generating and Handling Applications” manual [11].

(5) Specifies the start parameters for the form generating system FHS. The individual
start parameters are described in the “FHS (TRANSDATA)” manual [14].

(6) Concludes UTM start parameter entry.

U22424-J-Z125-3-76 123

8 Sample programs
The following sample programs provide an insight into the range of applications possible
with ESQL-COBOL. All the sample programs are based on the sample database:

– Outputting data record by record, see section “The program QUERY” on page 124
– Updating data, see section “The program UPDATE” on page 131
– Inserting a record, see section “The program INSERT” on page 136
– Deleting a record, see section “The program DELETE” on page 140
– Specifying a dynamic SQL statement, see section “The program DYNAMIC” on

page 145

After each SQL statement, a check is carried out to determine whether the statement was
executed correctly. If an error has occurred, SQLSTATE contains the relevant return code.
The system outputs the return code and the number of the line in the COBOL program
created by the ESQL precompiler. In the interest of clarity, the indicator variables defined in
the examples are not always evaluated.

124 U22424-J-Z125-3-76

The program QUERY Sample programs

8.1 The program QUERY

The program QUERY outputs all the orders issued by a company, which are contained in
the ORDERS table. Users can specify the company for which they would like to see the
orders. The program defines a cursor. The data in the cursor table is output record by
record. The default database and the default schema are specified with the precompiler
option SOURCE-PROPERTIES (CATALOG = SAMPLE, SCHEMA=ORDER_ADMIN).

*=============================

 IDENTIFICATION DIVISION.

 PROGRAM-ID. QUERY.

*=============================

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SPECIAL-NAMES.

 TERMINAL IS DSG.

 INPUT-OUTPUT SECTION.

*=============================

 DATA DIVISION.
*=============================

*

 WORKING-STORAGE SECTION.

*
*** OUTPUT VARIABLES FOR ORDERS.
*

 01 CA-OUTPUT.
 02 CA-ORDER-NUM PIC ZZZ9.
 02 CA-ORDER-DATE-Y PIC Z9999.
 02 FILLER PIC X VALUE "-".
 02 CA-ORDER-DATE-M PIC 99.
 02 FILLER PIC X VALUE "-".
 02 CA-ORDER-DATE-D PIC 99.
 02 FILLER PIC X VALUE " ".
 02 CA-ORDER-TEXT PIC X(30).
 02 CA-ORDER-STATUS PIC Z9.

U22424-J-Z125-3-76 125

Sample programs The program QUERY

*** OUTPUT VARIABLES FOR ERROR OUTPUT.
*

 01 OUTPUT.
 02 FILLER PIC X(7) VALUE "ERROR ".
 02 O-SQLSTATE PIC X(5).
 02 FILLER PIC X(10) VALUE " IN LINE ".
 02 O-SQLLINE PIC Z(8)9.

*** INSERT COMMUNICATION AREA.
*

 EXEC SQL
 INCLUDE SQLCA
 END-EXEC

*** HOST VARIABLES.
*

 EXEC SQL BEGIN DECLARE SECTION END-EXEC

*** SQLSTATE.
*

 01 SQLSTATE PIC X(5).

*** FIELD FOR THE COMPANY NAME ENTERED.
*

 01 COMPANY-NAME PIC X(40).

*** FIELD FOR THE CUSTOMER NUMBER FOUND.
*

 01 CUSTOMER-NUM PIC S9(9) USAGE IS BINARY.

*** HOST VARIABLES FOR ORDERS.
*

 01 ORDERS.
 02 ORDER-NUM PIC S9(9) USAGE IS BINARY.
 02 ORDER-DATE DATE.
 03 YEAR PIC S9(4) USAGE IS BINARY.
 03 MONTH PIC S9(4) USAGE IS BINARY.
 03 DAY PIC S9(4) USAGE IS BINARY.
 02 ORDER-TEXT PIC X(30).
 02 ORDER-STATUS PIC S9(9) USAGE IS BINARY.

126 U22424-J-Z125-3-76

The program QUERY Sample programs

*** INDICATOR VARIABLES FOR ORDERS.
*

 01 IND-ORDERS.
 02 IND-ORDER-NUM PIC S9(4) USAGE IS BINARY.
 02 IND-ORDER-DATE PIC S9(4) USAGE IS BINARY.
 02 IND-ORDER-TEXT PIC S9(4) USAGE IS BINARY.
 02 IND-ORDER-STATUS PIC S9(4) USAGE IS BINARY.

*

 EXEC SQL END DECLARE SECTION END-EXEC

*=============================

 PROCEDURE DIVISION.

 CONTROL SECTION.

 S-0.

*** ERROR HANDLING.
*

 EXEC SQL
 WHENEVER SQLERROR GOTO POSTPROCESSING
 END-EXEC

 S-1.

 PERFORM START.

 S-2.

 PERFORM QUERY.

 S-3.

 PERFORM END.

 S-9.

***********************END OF PROGRAM**************************

 STOP RUN.

*=============================

 START SECTION.

*=============================

 A-1.

 DISPLAY "** STARTING PROGRAM **" UPON DSG.

U22424-J-Z125-3-76 127

Sample programs The program QUERY

 A-9.

 EXIT.

*=============================

 QUERY SECTION.

*=============================

 F-1.

 DISPLAY "ENTER THE NAME OF THE COMPANY" UPON DSG.
 DISPLAY "WHOSE ORDERS YOU WISH TO DISPLAY." UPON DSG.
 ACCEPT COMPANY-NAME FROM DSG.

*** END IF CUSTOMER NOT FOUND
*

 EXEC SQL
 WHENEVER NOT FOUND GOTO CUST-NUM-END
 END-EXEC

*** SELECT ROW FROM "CUSTOMERS" TABLE.
*

 EXEC SQL
 SELECT CUST_NUM
 INTO :CUSTOMER-NUM
 FROM CUSTOMERS
 WHERE COMPANY = :COMPANY-NAME
 END-EXEC

 DISPLAY "CUSTOMER’S ORDERS ", COMPANY-NAME UPON DSG.

*** DEFINE CURSOR FOR THE SPECIFIED CUSTOMER’S ORDERS.
*

 EXEC SQL
 DECLARE CUR_ORDERS CURSOR FOR
 SELECT ORDER_NUM, ORDER_DATE, ORDER_TEXT, ORDER_STAT
 FROM ORDERS
 WHERE CUST_NUM = :CUSTOMER-NUM
 END-EXEC

*** OPEN CURSOR.
*

 EXEC SQL
 OPEN CUR_ORDERS
 END-EXEC.

*** END LOOP WHEN END OF TABLE IS REACHED.
*

128 U22424-J-Z125-3-76

The program QUERY Sample programs

 EXEC SQL
 WHENEVER NOT FOUND GOTO TABLE-END
 END-EXEC

*** POSITION CURSOR ON FIRST OR NEXT ROW.
*

 F-2.

 EXEC SQL
 FETCH CUR_ORDERS
 INTO :ORDER-NUM INDICATOR :IND-ORDER-NUM,
 :ORDER-DATE INDICATOR :IND-ORDER-DATE,
 :ORDER-TEXT INDICATOR :IND-ORDER-TEXT,
 :ORDER-STATUS INDICATOR :IND-ORDER-STATUS
 END-EXEC.

 F-3.

MOVE ORDER-NUM OF ORDERS TO CA-ORDER-NUM
 IF IND-ORDER-DATE = -1
 THEN
 MOVE -1 TO CA-ORDER-DATE-Y
 MOVE 0 TO CA-ORDER-DATE-M
 MOVE 0 TO CA-ORDER-DATE-D
 ELSE
 MOVE YEAR OF ORDER-DATE TO CA-ORDER-DATE-Y
 MOVE MONTH OF ORDER-DATE TO CA-ORDER-DATE-M
 MOVE DAY OF ORDER-DATE TO CA-ORDER-DATE-D
 END-IF
 IF IND-ORDER-TEXT = -1
 THEN
 MOVE "NULL" TO CA-ORDER-TEXT
 ELSE
 MOVE ORDER-TEXT TO CA-ORDER-TEXT
 END-IF
 MOVE ORDER-STATUS TO CA-ORDER-STATUS
 DISPLAY CA-OUTPUT UPON DSG
 GO TO F-2.
 TABLE-END.

*** END OF TABLE REACHED
*

 EXEC SQL
 WHENEVER NOT FOUND CONTINUE
 END-EXEC
 DISPLAY "END OF TABLE REACHED" UPON DSG

U22424-J-Z125-3-76 129

Sample programs The program QUERY

*** CLOSE CURSOR.
*

 EXEC SQL
 CLOSE CUR_ORDERS
 END-EXEC.
 GO TO F-9.
 CUST-NUM-END.

*** CUSTOMER NOT FOUND
*

 EXEC SQL
 WHENEVER NOT FOUND CONTINUE
 END-EXEC
 DISPLAY "CUSTOMER ", COMPANY-NAME, " NOT FOUND" UPON DSG.

 F-9.
 EXIT.

*=============================

 END SECTION.

*=============================

 E-1.

*** END TRANSACTION.
*

 EXEC SQL
 COMMIT WORK
 END-EXEC.

130 U22424-J-Z125-3-76

The program QUERY Sample programs

 E-2.

 DISPLAY "** PROGRAM COMPLETED CORRECTLY **" UPON DSG.

 E-9.

 EXIT.

*=============================

 POSTPROCESSING SECTION.

*=============================

 N-1.

 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC

 MOVE SQLSTATE TO O-SQLSTATE
 MOVE SQLLINE TO O-SQLLINE
 DISPLAY OUTPUT UPON DSG

*** ROLL BACK TRANSACTION.
*

 EXEC SQL
 ROLLBACK WORK
 END-EXEC.

 N-2.

 DISPLAY "** THE PROGRAM COULD NOT COMPLETE
- "CORRECTLY **" UPON DSG
 STOP RUN.

 N-9.

 EXIT.

U22424-J-Z125-3-76 131

Sample programs The program UPDATE

8.2 The program UPDATE

The program UPDATE modifies the elements that make up a color in the COLOR_TAB
table. The default database and the default schema are specified with the precompiler
option SOURCE-PROPERTIES (CATALOG = SAMPLE, SCHEMA=ORDER_ADMIN).

*=============================

 IDENTIFICATION DIVISION.

 PROGRAM-ID. UPDATE.

*=============================

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SPECIAL-NAMES.

 TERMINAL IS DSG.

 INPUT-OUTPUT SECTION.

*=============================

 DATA DIVISION.

*=============================

 WORKING-STORAGE SECTION.

*** OUTPUT VARIABLES FOR ERROR OUTPUT.
*

 01 OUTPUT.
 02 FILLER PIC X(7) VALUE "ERROR ".
 02 O-SQLSTATE PIC X(5).
 02 FILLER PIC X(10) VALUE " IN LINE ".
 02 O-SQLLINE PIC Z(8)9.

*** OUTPUT VARIABLES.
*

 01 C-OUTPUT.
 02 C-RED PIC Z9.99.
 02 C-GREEN PIC Z9.99.
 02 C-BLUE PIC Z9.99.

*** INSERT COMMUNICATION AREA.
*

132 U22424-J-Z125-3-76

The program UPDATE Sample programs

 EXEC SQL
 INCLUDE SQLCA
 END-EXEC

*** HOST VARIABLES.
*

 EXEC SQL BEGIN DECLARE SECTION END-EXEC

*** SQLSTATE.
*

 01 SQLSTATE PIC X(5).

*** VECTOR FOR RGB COMPONENTS OF A COLOR.
*

 01 COLOR.
 02 COLOR-COMP PIC SV99 OCCURS 3 TIMES.

 EXEC SQL END DECLARE SECTION END-EXEC

*=============================

 PROCEDURE DIVISION.

 CONTROL SECTION.

 S-0.

*** ERROR HANDLING.
*

 EXEC SQL
 WHENEVER SQLERROR GOTO POSTPROCESSING
 END-EXEC

 S-1.

 PERFORM START.

 S-2.

 PERFORM UPDATE.

 S-3.

 PERFORM END.

 S-9.

***********************END OF PROGRAM**************************

 STOP RUN.

U22424-J-Z125-3-76 133

Sample programs The program UPDATE

*=============================

 START SECTION.

*=============================

 A-1.

 DISPLAY "** STARTING PROGRAM **" UPON DSG.

 A-9.

 EXIT.

*=============================

 UPDATE SECTION.

*=============================

 U-1.

 EXEC SQL
 SELECT RGB(1..3) INTO :COLOR-COMP(1..3)
 FROM COLOR_TAB
 WHERE COLOR-NAME = 'skyblue'
 END-EXEC

 MOVE COLOR-COMP(1) TO C-RED
 MOVE COLOR-COMP(2) TO C-GREEN
 MOVE COLOR-COMP(3) TO C-BLUE

 DISPLAY "Color components for skyblue: ", C-OUTPUT
 UPON DSG.

 U-2.

 MOVE 0.1 TO COLOR-COMP(1)
 MOVE 0.2 TO COLOR-COMP(2)

*** UPDATE A ROW IN THE "COLOR_TAB" TABLE.
*

 EXEC SQL
 UPDATE COLOR_TAB
 SET RGB(1..2) = :COLOR-COMP(1..2)
 WHERE COLOR_NAME = 'skyblue'
 END-EXEC.

 U-3.

 EXEC SQL
 SELECT RGB(1..3) INTO :COLOR-COMP(1..3)
 FROM COLOR_TAB
 WHERE COLOR_NAME = 'skyblue'
 END-EXEC

134 U22424-J-Z125-3-76

The program UPDATE Sample programs

 MOVE COLOR-COMP(1) TO C-RED
 MOVE COLOR-COMP(2) TO C-GREEN
 MOVE COLOR-COMP(3) TO C-BLUE

 DISPLAY "Color components for skyblue: ", C-OUTPUT
 UPON DSG.

 U-9.

 EXIT.

*=============================

 END SECTION.

*=============================

 E-1.

*** END TRANSACTION.
*

 EXEC SQL
 COMMIT WORK
 END-EXEC.

 E-2.

 DISPLAY "** PROGRAM COMPLETED CORRECTLY **" UPON DSG.

 E-9.

 EXIT.

*=============================

 POSTPROCESSING SECTION.

*=============================

 N-1.

 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC

 MOVE SQLSTATE TO O-SQLSTATE
 MOVE SQLLINE TO O-SQLLINE
 DISPLAY OUTPUT UPON DSG

*** ROLL BACK TRANSACTION.
*

 EXEC SQL
 ROLLBACK WORK
 END-EXEC.

U22424-J-Z125-3-76 135

Sample programs The program UPDATE

 N-2.

 DISPLAY "** THE PROGRAM COULD NOT COMPLETE
- "CORRECTLY **" UPON DSG

 STOP RUN.

 N-9.

 EXIT.

136 U22424-J-Z125-3-76

The program INSERT Sample programs

8.3 The program INSERT

The program INSERT inserts a row in the ORDERS table. The default database and the
default schema are specified with the precompiler option SOURCE-PROPERTIES
(CATALOG = SAMPLE, SCHEMA=ORDER_ADMIN).

*=============================

 IDENTIFICATION DIVISION.

 PROGRAM-ID. INSERT.

*=============================

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SPECIAL-NAMES.

 TERMINAL IS DSG.

 INPUT-OUTPUT SECTION.

*=============================

 DATA DIVISION.

*=============================

 WORKING-STORAGE SECTION.

*** OUTPUT VARIABLES FOR ERROR OUTPUT.
*

 01 OUTPUT.
 02 FILLER PIC X(7) VALUE "ERROR ".
 02 O-SQLSTATE PIC X(5).
 02 FILLER PIC X(10) VALUE " IN LINE ".
 02 O-SQLLINE PIC Z(8)9.

*** INSERT COMMUNICATION AREA.
*

 EXEC SQL
 INCLUDE SQLCA
 END-EXEC

*** HOST VARIABLES.
*

 EXEC SQL BEGIN DECLARE SECTION END-EXEC

U22424-J-Z125-3-76 137

Sample programs The program INSERT

*** SQLSTATE.
*

 01 SQLSTATE PIC X(5).

*** HOST VARIABLES FOR ORDERS.
*

 01 ORDERS.
 02 ORDER-NUM PIC S9(9) USAGE IS BINARY.
 02 CUST-NUM PIC S9(9) USAGE IS BINARY.
 02 CONTACT-NUM PIC S9(9) USAGE IS BINARY.
 02 ORDER-TEXT PIC X(30).
 02 TARGET DATE.
 03 YEAR PIC S9(4) USAGE IS BINARY.
 03 MONTH PIC S9(4) USAGE IS BINARY.
 03 DAY PIC S9(4) USAGE IS BINARY.
 02 ORDER-STATUS PIC S9(9) USAGE IS BINARY.

 EXEC SQL END DECLARE SECTION END-EXEC

*=============================

 PROCEDURE DIVISION.

 CONTROL SECTION.

 S-0.

*** ERROR HANDLING.
*

 EXEC SQL
 WHENEVER SQLERROR GOTO POSTPROCESSING
 END-EXEC

 S-1.

 PERFORM START.

 S-2.

 PERFORM INSERT.

 S-3.

 PERFORM END.

 S-9.

***********************END OF PROGRAM**************************

 STOP RUN.

138 U22424-J-Z125-3-76

The program INSERT Sample programs

*==============================

 START SECTION.

*==============================

 A-1.

 DISPLAY "** STARTING PROGRAM **" UPON DSG.

 A-9.

 EXIT.

*=============================

 INSERT SECTION.

*=============================

 I-1.

 MOVE 345 TO ORDER-NUM
 MOVE 101 TO CUST-NUM
 MOVE 20 TO CONTACT-NUM
 MOVE "Network installation" TO ORDER-TEXT
 MOVE 1991 TO YEAR OF TARGET
 MOVE 6 TO MONTH OF TARGET
 MOVE 20 TO DAY OF TARGET
 MOVE 1 TO ORDER-STATUS

*** INSERT ROW IN THE "ORDERS" TABLE.
*

 EXEC SQL
 INSERT INTO ORDERS (ORDER_NUM, CUST_NUM, CONTACT_NUM,
 ORDER_TEXT, TARGET, ORDER_STAT)
 VALUES (:ORDER-NUM, :CUST-NUM, :CONTACT-NUM,
 :ORDER-TEXT, :TARGET, :ORDER-STATUS)
 END-EXEC.

 I-9.

 EXIT.

*==============================

 END SECTION.

*==============================

 E-1.

*** END TRANSACTION.
*

U22424-J-Z125-3-76 139

Sample programs The program INSERT

 EXEC SQL
 COMMIT WORK
 END-EXEC.

 E-2.

 DISPLAY "** THE PROGRAM COMPLETED CORRECTLY **" UPON DSG.

 E-9.

 EXIT.

*==============================

 POSTPROCESSING SECTION.
*==============================

 N-1.

 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC
 MOVE SQLSTATE TO O-SQLSTATE
 MOVE SQLLINE TO O-SQLLINE
 DISPLAY OUTPUT UPON DSG

*** ROLL BACK TRANSACTION.
*

 EXEC SQL
 ROLLBACK WORK
 END-EXEC.

 N-2.

 DISPLAY "** THE PROGRAM COULD NOT COMPLETE
- "CORRECTLY **" UPON DSG

 STOP RUN.

 N-9.

 EXIT.

140 U22424-J-Z125-3-76

The program DELETE Sample programs

8.4 The program DELETE

The program DELETE deletes all orders that have already been stored (orders with an
order status of 5). All information on the service is deleted from the SERVICE table. The
order is then deleted from the ORDERS table. The default database and the default schema
are specified with the precompiler option SOURCE-PROPERTIES (CATALOG = SAMPLE,
SCHEMA=ORDER_ADMIN).

*=============================

 IDENTIFICATION DIVISION.

 PROGRAM-ID. DELETE.

*=============================

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SPECIAL-NAMES.

 TERMINAL IS DSG.

 INPUT-OUTPUT SECTION.

*=============================

 DATA DIVISION.

*=============================

 WORKING-STORAGE SECTION.

*** OUTPUT VARIABLES FOR ERROR OUTPUT.
*

 01 OUTPUT.
 02 FILLER PIC X(7) VALUE "ERROR ".
 02 O-SQLSTATE PIC X(5).
 02 FILLER PIC X(10) VALUE " IN LINE ".
 02 O-SQLLINE PIC Z(8)9.

*** VARIABLE USED TO OUTPUT THE ORDER NUMBER.
*

 01 O-ORDER-NUM PIC Z(8)9.

*** INSERT COMMUNICATION AREA.
*

 EXEC SQL
 INCLUDE SQLCA
 END-EXEC

U22424-J-Z125-3-76 141

Sample programs The program DELETE

*** HOST VARIABLES.
*

 EXEC SQL BEGIN DECLARE SECTION END-EXEC

*** SQLSTATE.
*

 01 SQLSTATE PIC X(5).

*** HOST VARIABLES FOR ORDERS.
*

 01 ORDERS.
 02 ORDER-NUM PIC S9(9) USAGE IS BINARY.
 02 ORDER-TEXT PIC X(30).

*** INDICATOR VARIABLES FOR ORDERS.
*

 01 IND-ORDERS.
 02 IND-ORDER-NUM PIC S9(4) USAGE IS BINARY.
 02 IND-ORDER-TEXT PIC S9(4) USAGE IS BINARY.

 EXEC SQL END DECLARE SECTION END-EXEC

*=============================

 PROCEDURE DIVISION.

 CONTROL SECTION.

 S-0.

*** ERROR HANDLING.
*

 EXEC SQL
 WHENEVER SQLERROR GOTO POSTPROCESSING
 END-EXEC

 S-1.

 PERFORM START.

 S-2.

 PERFORM DELETE.

 S-3.

 PERFORM END.

 S-9.

142 U22424-J-Z125-3-76

The program DELETE Sample programs

***********************END OF PROGRAM**************************

 STOP RUN.

*=============================

 START SECTION.

*=============================

 A-1.

 DISPLAY "** STARTING PROGRAM **" UPON DSG.

 A-9.

 EXIT.

*==============================

 DELETE SECTION.

*==============================

 D-1.

*** DEFINE CURSOR FOR THE ORDERS

*** ALREADY STORED (ORDER-STATUS=5).
*

 EXEC SQL
 DECLARE CUR_ORDERS CURSOR FOR
 SELECT ORDER_NUM, ORDER_TEXT
 FROM ORDERS
 WHERE ORDER_STAT = 5
 END-EXEC

*** OPEN CURSOR.
*

 EXEC SQL
 OPEN CUR_ORDERS
 END-EXEC.

*** END LOOP IF END OF TABLE IS REACHED.
*

 EXEC SQL
 WHENEVER NOT FOUND GOTO TABLE-END
 END-EXEC.

U22424-J-Z125-3-76 143

Sample programs The program DELETE

*** POSITION CURSOR ON FIRST OR NEXT ROW.
*

 D-2.

 EXEC SQL
 FETCH CUR_ORDERS
 INTO :ORDER-NUM INDICATOR :IND-ORDER-NUM,
 :ORDER-TEXT INDICATOR :IND-ORDER-TEXT
 END-EXEC.

 D-3.

 MOVE ORDER-NUM TO O-ORDER-NUM

 DISPLAY "DELETE ORDER ", O-ORDER-NUM, ": ", ORDER-TEXT
 UPON DSG

*** DELETE ALL THE INFORMATION ON THE SERVICE CONTAINED
*** IN THE SERVICE TABLE.
*

 EXEC SQL
 DELETE FROM SERVICE
 WHERE ORDER_NUM = :ORDER-NUM
 END-EXEC

*** DELETE THE ORDER FROM THE ORDERS TABLE.
*

 EXEC SQL
 DELETE FROM ORDERS
 WHERE ORDER_NUM = :ORDER-NUM
 END-EXEC
 GO TO D-2.

 TABLE-END.
 DISPLAY "ALL ORDERS ALREADY " UPON DSG.
 DISPLAY "STORED HAVE " UPON DSG.
 DISPLAY "BEEN DELETED" UPON DSG.

*** CLOSE CURSOR.
*

 EXEC SQL
 CLOSE CUR_ORDERS
 END-EXEC.

 D-9.

 EXIT.

144 U22424-J-Z125-3-76

The program DELETE Sample programs

*=============================

 END SECTION.

*=============================

 E-1.
*** END TRANSACTION.
*

 EXEC SQL
 COMMIT WORK
 END-EXEC.

 E-2.

 DISPLAY "** PROGRAM COMPLETED CORRECTLY **" UPON DSG.

 E-9.

 EXIT.

*==============================

 POSTPROCESSING SECTION.

*==============================

 N-1.

 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC
 MOVE SQLSTATE TO O-SQLSTATE
 MOVE SQLLINE TO O-SQLLINE
 DISPLAY OUTPUT UPON DSG

*** ROLL BACK TRANSACTION.
*

 EXEC SQL
 ROLLBACK WORK
 END-EXEC.

 N-2.
 DISPLAY "** THE PROGRAM COULD NOT COMPLETE
- "CORRECTLY **" UPON DSG

 STOP RUN.

 N-9.

 EXIT.

U22424-J-Z125-3-76 145

Sample programs The program DYNAMIC

8.5 The program DYNAMIC

The program DYNAMIC demonstrates the use of dynamic SQL statements. It outputs data
on an order from the SERVICE table. When the program executes, users can specify an
order number and a search condition for the data they wish to view. The program defines a
dynamic cursor. The formulation entered is converted into a cursor description. The cursor
description is translated dynamically and the assigned cursor is opened. Users can then
enter a dynamic SQL statement in order to update, delete or insert data in the SERVICE
table. The dynamic SQL statement is prepared and executed in a single step. The default
database and the default schema are specified with the precompiler option SOURCE-
PROPERTIES (CATALOG = SAMPLE, SCHEMA=ORDER_ADMIN).

*=============================

 IDENTIFICATION DIVISION.

 PROGRAM-ID. DYNAMIC.

*=============================

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SPECIAL-NAMES.

 TERMINAL IS DSG.

 INPUT-OUTPUT SECTION.

*=============================

 DATA DIVISION.

*=============================

 WORKING-STORAGE SECTION.

*** OUTPUT VARIABLES FOR ERROR OUTPUT.
*

 01 OUTPUT.
 02 FILLER PIC X(7) VALUE "ERROR ".
 02 O-SQLSTATE PIC X(5).
 02 FILLER PIC X(10) VALUE " IN LINE ".
 02 O-SQLLINE PIC Z(8)9.

146 U22424-J-Z125-3-76

The program DYNAMIC Sample programs

*** VARIABLE USED TO OUTPUT A RECORD IN THE SERVICE TABLE.
*

 01 S-OUTPUT.
 02 SO-SERVICE-NUM PIC ZZZZ9.
 02 SO-ORDER-NUM PIC ZZZZ9.
 02 SO-SERVICE-DATE.
 03 YEAR PIC Z9999.
 03 FILLER PIC X VALUE "-".
 03 MONTH PIC 99.
 03 FILLER PIC X VALUE "-".
 03 DAY PIC 99.
 03 FILLER PIC X VALUE " ".
 02 SO-SERVICE-TEXT PIC X(25).
 02 FILLER PIC X VALUE " ".
 02 SO-SERVICE-UNIT PIC X(10).
 02 SO-SERVICE-TOTAL PIC ZZ9.99.
 02 SO-SERVICE-PRICE PIC ZZZZ9.
 02 SO-VAT PIC Z9.99.
 02 SO-INV-NUM PIC ZZZ9.

*** FIELD USED TO STORE THE ORDER NUMBER ENTERED
*

 01 ORDER-NUM-ENTRY PIC Z(9).

*** FIELD USED TO STORE CONDITION FOR SEARCH
*

 01 CONDITION PIC X(200).

*** INSERT COMMUNICATION AREA.
*

 EXEC SQL
 INCLUDE SQLCA
 END-EXEC

*** HOST VARIABLES.
*

 EXEC SQL BEGIN DECLARE SECTION END-EXEC

*** SQLSTATE.
*

 01 SQLSTATE PIC X(5).

*** FIELD USED TO STORE THE ORDER NUMBER ENTERED.
*

 01 ORDER-NUMBER PIC S9(9) USAGE IS BINARY.

U22424-J-Z125-3-76 147

Sample programs The program DYNAMIC

*** FIELD USED TO STORE CURSOR DESCRIPTION.
*

 01 DESCRIPTION PIC X(200).

*** FIELD USED TO STORE THE DYNAMIC STATEMENT.
*

 01 STATEMENT PIC X(200).

*** HOST VARIABLES FOR SERVICE.
*

 01 SERVICE.
 02 SERVICE-NUM PIC S9(9) USAGE IS BINARY.
 02 ORDER-NUM PIC S9(9) USAGE IS BINARY.
 02 SERVICE-DATE DATE.
 03 YEAR PIC S9(4) USAGE IS BINARY.
 03 MONTH PIC S9(4) USAGE IS BINARY.
 03 DAY PIC S9(4) USAGE IS BINARY.
 02 SERVICE-TEXT PIC X(25).
 02 SERVICE-UNIT PIC X(10).
 02 SERVICE-TOTAL PIC S999V99.
 02 SERVICE-PRICE PIC S9(4).
 02 VAT PIC SV99.
 02 INV-NUM PIC S9(4).

*** INDICATOR VARIABLES FOR SERVICE.
*

 01 IND-SERVICE.
 02 IND-SERVICE-NUM PIC S9(4) USAGE IS BINARY.
 02 IND-ORDER-NUM PIC S9(4) USAGE IS BINARY.
 02 IND-SERVICE-DATE PIC S9(4) USAGE IS BINARY.
 02 IND-SERVICE-TEXT PIC S9(4) USAGE IS BINARY.
 02 IND-SERVICE-UNIT PIC S9(4) USAGE IS BINARY.
 02 IND-SERVICE-TOTAL PIC S9(4) USAGE IS BINARY.
 02 IND-SERVICE-PRICE PIC S9(4) USAGE IS BINARY.
 02 IND-VAT PIC S9(4) USAGE IS BINARY.
 02 IND-INV-NUM PIC S9(4) USAGE IS BINARY.

 EXEC SQL END DECLARE SECTION END-EXEC

148 U22424-J-Z125-3-76

The program DYNAMIC Sample programs

=============================

 PROCEDURE DIVISION.

 CONTROL SECTION.

 S-1.

*** ERROR HANDLING.
*

 EXEC SQL
 WHENEVER SQLERROR GOTO POSTPROCESSING
 END-EXEC

 S-2.

 PERFORM START.

 S-3.

 PERFORM CURSOR-ACCESS.

 S-4.

 PERFORM DYNAMIC.

 S-5.

 PERFORM END.

 S-9.

***********************END OF PROGRAM**************************

 STOP RUN.

*=============================

 START SECTION.

*=============================

 A-1.

 DISPLAY "** STARTING PROGRAM **" UPON DSG.

 A-9.

 EXIT.

*=============================

 CURSOR-ACCESS SECTION.

*=============================

 C-1.

 DISPLAY "ENTER THE ORDER NUMBER (NINE DIGITS)." UPON DSG.

 ACCEPT ORDER-NUM-ENTRY FROM DSG

U22424-J-Z125-3-76 149

Sample programs The program DYNAMIC

 DISPLAY "ENTER THE CONDITION THAT IS " UPON DSG.
 DISPLAY "TO APPLY TO THE SERVICES TO BE LISTED."
 UPON DSG

 ACCEPT CONDITION FROM DSG.

 C-2.

*** CREATE CURSOR DESCRIPTION.
*

 INITIALIZE DESCRIPTION
 STRING "SELECT * FROM SERVICE WHERE ORDER_NUM = ? AND " CONDITION
 DELIMITED BY SIZE INTO DESCRIPTION

*** PREPARE CURSOR DESCRIPTION.
*

 EXEC SQL
 PREPARE CUR_DESCRIPTION FROM :DESCRIPTION
 END-EXEC.

 C-3.

*** DEFINE CURSOR FOR THE SERVICES ASSOCIATED WITH
*** THE SPECIFIED ORDER.
*

 EXEC SQL
 DECLARE CUR_SERVICE CURSOR FOR CUR_DESCRIPTION
 END-EXEC

*** OPEN CURSOR.
*** THE PLACEHOLDER IN THE CURSOR DESCRIPTION IS SET
*** TO THE SELECTED ORDER NUMBER.
*

 MOVE ORDER-NUM-ENTRY TO ORDER-NUMBER
 EXEC SQL
 OPEN CUR_SERVICE USING :ORDER-NUMBER
 END-EXEC.

*** END LOOP IF THE END OF THE TABLE IS REACHED.
*

 EXEC SQL
 WHENEVER NOT FOUND GOTO TABLE-END
 END-EXEC

*** POSITION CURSOR ON FIRST/NEXT RECORD.
*

150 U22424-J-Z125-3-76

The program DYNAMIC Sample programs

 C-4.

 EXEC SQL
 FETCH CUR_SERVICE
 INTO :SERVICE-NUM INDICATOR :IND-SERVICE-NUM,
 :ORDER-NUM INDICATOR :IND-ORDER-NUM,
 :SERVICE-DATE INDICATOR :IND-SERVICE-DATE,
 :SERVICE-TEXT INDICATOR :IND-SERVICE-TEXT,
 :SERVICE-UNIT INDICATOR :IND-SERVICE-UNIT,
 :SERVICE-TOTAL INDICATOR :IND-SERVICE-TOTAL,
 :SERVICE-PRICE INDICATOR :IND-SERVICE-PRICE,
 :VAT INDICATOR :IND-VAT,
 :INV-NUM INDICATOR :IND-INV-NUM
 END-EXEC

 MOVE SERVICE-NUM TO SO-SERVICE-NUM
 MOVE ORDER-NUM TO SO-ORDER-NUM
 MOVE YEAR OF SERVICE-DATE TO YEAR OF SO-SERVICE-DATE
 MOVE MONTH OF SERVICE-DATE TO MONTH OF SO-SERVICE-DATE
 MOVE DAY OF SERVICE-DATE TO DAY OF SO-SERVICE-DATE
 MOVE SERVICE-TEXT TO SO-SERVICE-TEXT
 MOVE SERVICE-UNIT TO SO-SERVICE-UNIT
 MOVE SERVICE-TOTAL TO SO-SERVICE-TOTAL
 MOVE SERVICE-PRICE TO SO-SERVICE-PRICE
 MOVE VAT TO SO-VAT
 MOVE INV-NUM TO SO-INV-NUM
 DISPLAY S-OUTPUT UPON DSG
 GO TO C-4.

 TABLE-END.

*** END OF TABLE REACHED
*

 EXEC SQL
 WHENEVER NOT FOUND CONTINUE
 END-EXEC
 DISPLAY "END OF TABLE REACHED" UPON DSG

*** CLOSE CURSOR.
*

 EXEC SQL
 CLOSE CUR_SERVICE
 END-EXEC.

U22424-J-Z125-3-76 151

Sample programs The program DYNAMIC

 C-9.

 EXIT.

*=============================

 DYNAMIC SECTION.

*=============================

 D-1.

 DISPLAY "ENTER AN SQL STATEMENT" UPON DSG
 DISPLAY "(INSERT, UPDATE OR DELETE). CANCEL WITH '*'"
 UPON DSG
 INITIALIZE STATEMENT
 ACCEPT STATEMENT FROM DSG.

 D-2.

 IF STATEMENT NOT = "*"
 THEN

*** PREPARE AND EXECUTE DYNAMIC STATEMENT
*** IN A SINGLE STEP.
*

 EXEC SQL
 EXECUTE IMMEDIATE :STATEMENT
 END-EXEC

 DISPLAY "STATEMENT EXECUTED" UPON DSG
 END-IF.

 D-9.

 EXIT.

*=============================

 END SECTION.

*=============================

 E-1.

*** END TRANSACTION.
*

 EXEC SQL
 COMMIT WORK
 END-EXEC.

 E-2.

 DISPLAY "** PROGRAM COMPLETED SUCCESSFULLY **" UPON DSG.

152 U22424-J-Z125-3-76

The program DYNAMIC Sample programs

 E-9.

 EXIT.

*=============================

 POSTPROCESSING SECTION.

*=============================

 N-1.

 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC
 MOVE SQLSTATE TO O-SQLSTATE
 MOVE SQLLINE TO O-SQLLINE
 DISPLAY OUTPUT UPON DSG

*** ROLL BACK TRANSACTION.
*

 EXEC SQL
 ROLLBACK WORK
 END-EXEC.

 N-2.

 DISPLAY "** THE PROGRAM COULD NOT COMPLETE
- "CORRECTLY **" UPON DSG
 STOP RUN.

 N-9.

 EXIT.

U22424-J-Z125-3-76 153

9 Messages output by the ESQL-COBOL system
IQB0001 ESQL-COBOL V2.0A00

IQB0101 (&00) INSUFFICIENT MEMORY (REASON (&01))

IQB0201 (&00) OPEN FAILURE ON FILE <(&01)> (REASON (&02))

IQB0202 (&00) CLOSE FAILURE ON FILE <(&01)> (REASON (&02))

IQB0203 (&00) WRITE FAILURE ON FILE <(&01)> (REASON (&02))

IQB0204 (&00) READ FAILURE ON FILE <(&01)> (REASON (&02))

IQB0205 (&00) NO LIBRARY PATH DECLARED TO INCLUDE <(&01)>

IQB0206 (&00) LIBRARY PATH FAILURE ON INCLUDE <(&01)> (REASON (&02))

IQB0207 (&00) NESTING LIMIT EXCEEDED ON INCLUDE OF <(&01)>

IQB0208 (&00) INPUT FILE <(&01)> RECORD SIZE EXCEEDS NORM, TRUNCATED

IQB0209 (&00) OUTPUT FILE <(&01)> RECORD SIZE <(&02)> EXCEEDS NORM, TRUNCATED

IQB0220 (&00) UNRECOVERABLE I/O ERROR OCCURRED

IQB0301 (&00) SDF: ERROR CODE (0X(&01))

IQB0302 (&00) SDF: ILLEGAL STATEMENT (0X(&01))

IQB0303 (&00) SDF: UNRECOVERABLE SYSTEM ERROR

IQB0304 (&00) SDF: OPERAND ERROR DETECTED

IQB0305 (&00) SDF: TRANSFER AREA IS TOO SMALL

IQB0306 (&00) SDF: INCORRECT STATEMENT PROCESSED

IQB0307 (&00) SDF: INCORRECT STATEMENT (END/STEP PROCESSED)

IQB0308 (&00) SDF: ERRONEOUS DEFAULT VALUES IN STATEMENT SYNTAX

IQB0309 (&00) SDF: DIALOG ERROR CORRECTION NOT POSSIBLE

IQB0310 (&00) SDF: LOGGING AREA TOO SMALL

IQB0311 (&00) SDF: UNEXPECTED END-STATEMENT FOUND

IQB0312 (&00) SDF: DIALOG ERROR CORRECTION REFUSED

IQB0313 (&00) SDF: NOT AVAILABLE FOR EXECUTION

154 U22424-J-Z125-3-76

IQB0314 Messages output by the ESQL-COBOL system

IQB0314 (&00) SDF: PROGRAM NOT KNOWN IN SYNTAX FILE

IQB0315 (&00) SDF: NOT LOADED IN MEMORY

IQB0316 (&00) SDF: STATEMENT NOT KNOWN OR WRONG SYNTAX FILE IN USE

IQB0317 (&00) TOO MANY PRECOMPILE STATEMENTS ((&01)) READ FROM SYSSTMT

IQB0318 (&00) *SUBSTITUTE IDENTIFIER-TOKEN <(&01)> DUPLICATE

IQB0319 (&00) *SUBSTITUTE REPLACEMENT-TOKEN <(&01)> FOR NULL IDENTIFIER-TOKEN

IQB0320 (&00) ESQL-DIALECT=ISO AND QUOTATION-CHARACTER=HOST-STD CONFLICT

IQB0321 (&00) CATALOG AND SCHEMA OPTIONS MUST BE EXPLICITLY ASSIGNED

IQB0330 (&00) SQLOPT (V1.0B) STATEMENTS FOUND IN ESQL-HOST-PROGRAM

IQB0350 (&00) PREMATURE END OF ESQL-HOST-PROGRAM INPUT FILE

IQB0351 (&00) CONFLICTING OR UNORDERED OPTIONS IN ESQL-HOST-PROGRAM

IQB0352 (&00) //PRECOMPILE ... OPTIONS EXCEED SDF TRANSLATION-AREA SIZE

IQB0357 (&00) CONTINUATION LINE EXPECTED IN ESQL-HOST-PROGRAM LINE (&01)

IQB0358 (&00) //PRECOMPILE NOT TERMINATED BY //END IN ESQL-HOST-PROGRAM

IQB0359 (&00) INCORRECT //PRECOMPILE ... OPTIONS IN ESQL-HOST-PROGRAM

IQB0360 (&00) COBRUN/COMOPT NOT TERMINATED BY END IN ESQL-HOST-PROGRAM

IQB0361 (&00) //COMPILE ... NOT TERMINATED BY //END IN ESQL-HOST-PROGRAM

IQB0362 (&00) UNEXPECTED SQLOPT OPTION IN ESQL-HOST-PROGRAM LINE (&02): (&01)

IQB0370 (&00) REPLACE-BY-FILE SYNONYM-INPUT-FILE IS EMPTY

IQB0371 (&00) //PRECOMPILE ... STATEMENT NOT FOUND IN REPLACE-BY-FILE INPUT

IQB0372 (&00) //PRECOMPILE ... IN REPLACE-BY-FILE INPUT NOT TERMINATED BY //END

IQB0373 (&00) INCONSISTENCIES IN SDF-SYNTAX-FILE (REPLACE-BY-FILE)

IQB0374 (&00) UNRECOGNIZABLE DATA IN INPUT (REPLACE-BY-FILE)

IQB0375 (&00) CONTINUATION LINE EXPECTED IN REPLACE-BY-FILE LINE (&01)

IQB0376 (&00) INCORRECT //PRECOMPILE ... OPTIONS IN INPUT (REPLACE-BY-FILE)

IQB0501 (&00) WRITE FAILURE ON OBJECT MODULE LIBRARY (INSUFFICIENT MEMORY)

IQB0502 (&00) WRITE FAILURE ON OBJECT MODULE LIBRARY (REASON (&01))

IQB0601 (&00) SESMOD/SESLINK NOT FOUND DURING DYNAMIC LOAD

IQB0701 (&00) ERROR LIMIT REACHED BEFORE ALL ERRORS COULD BE FLAGGED

IQB0900 (&00) INTERNAL ERROR: (&01) WHILST OUTPUTTING OBJECT MODULE

IQB0901 (&00) (&01)

U22424-J-Z125-3-76 155

Messages output by the ESQL-COBOL system IQB0903

IQB0903 (&00) INTERNAL ERROR: <(&01)>. REASON (&02)

IQB0905 (&00) INTERNAL ERROR: <(&01)> (&02)

IQB0907 (&00) INTERNAL ERROR: <(&01)> <(&02)>

IQB0909 (&00) INTERNAL ERROR: (&01)

IQB0910 (&00)(&01)

IQB0921 (&00) INTERNAL ERROR: (&01) (&02)

IQB0931 (&00) INTERNAL ERROR: DC, (&01) TOO LONG OPTION-IDENTIFIER

IQB0932 (&00) INTERNAL ERROR: DC, (&01) SQL-SYSTEM-FAILURE RC=(&02)/EC=(&03)

IQB0933 (&00) INTERNAL ERROR: DC, (&01): UNKNOWN COMBINATION RC=(&02)/EC=(&03)

IQB0934 (&00) INTERNAL ERROR: DC, (&01): UNDEF. REACTION FOR RC=(&02)/EC=(&03)

IQB0935 (&00) INTERNAL ERROR: DC, AT TO ICSQLE CONVERSION FOR (&01)

IQB0936 (&00) INTERNAL ERROR: DC, ICSQLE TO AT CONVERSION

IQB0937 (&00) INTERNAL ERROR: DC, PARAMETER-NAME ICSQLE TO AT CONVERSION

IQB0938 (&00) INTERNAL ERROR: DC, DATATYPE ICSQLE TO AT CONVERSION RESULT (&01)

IQB0939 (&00) INTERNAL ERROR: DC, TOO MANY SUBSEQUENT CALLS TO (&01)

IQB0940 (&00) INTERNAL ERROR: DC, SQLROW OUT OF RANGE <(&01)>

IQB0941 (&00) INTERNAL ERROR: DC, USAGE ICSQLE TO AT CONVERSION RESULT (&01)

IQB0942 (&00) INTERNAL ERROR: DC, CATALOG-NAME ICSQLE TO NT CONVERSION

IQB0943 (&00) INTERNAL ERROR: DC, VARIABLE BUFFER SIZE INCONSISTENCY

IQB0945 (&00) INTERNAL ERROR: HG, LABEL-NAME TOO LONG <(&01)>

IQB0946 (&00) INTERNAL ERROR: HG, NODE <KIND ZERO> DETECTED

IQB0947 (&00) INTERNAL ERROR: HG, IDMARK TOO LONG <(&01)>

IQB0948 (&00) INTERNAL ERROR: HG, ENTRY-NAME TOO LONG <(&01)>

IQB0949 (&00) INTERNAL ERROR: HG, FORGOTTEN MESSAGE FOR LINE <(&01)> FOUND

IQB0950 (&00) INTERNAL ERROR: HG, INCLUDE STACK <(&01)>

IQB0951 (&00) INTERNAL ERROR: HG, UNKNOWN EXCEPTION-CONDITION <(&01)> FROM AT

IQB0952 (&00) INTERNAL ERROR: HG, WRONG STATE <(&01)> IN FUNCTION <(&02)>

IQB0953 (&00) INTERNAL ERROR: HG, MORE THAN ONE COLLISION RANGE FOUND

IQB0955 (&00) INTERNAL ERROR: LC, OPERATION (&01): LINE-NUMBER OUT OF SEQUENCE

IQB0956 (&00) INTERNAL ERROR: LC, OPERATION (&01): RANGE NOT SET

IQB0977 (&00) INTERNAL ERROR: AT, (&01)

156 U22424-J-Z125-3-76

IQB1001 Messages output by the ESQL-COBOL system

IQB1001 (&00) INVALID EXCEPTION CONDITION

IQB1002 (&00) <END DECLARE SECTION> EXPECTED

IQB1003 (&00) INVALID TOKEN; CONTINUE, GO TO OR GOTO EXPECTED

IQB1004 (&00) INVALID TOKEN; TO EXPECTED

IQB1005 (&00) INVALID TOKEN; FOUND EXPECTED

IQB1006 (&00) RIGHT-HAND DELIMITER <QUOTE> EXPECTED

IQB1008 (&00) <BEGIN DECLARE SECTION> MISSING

IQB1010 (&00) TOO LONG COBOL DATA-NAME

IQB1011 (&00) LABEL NAME EXPECTED

IQB1012 (&00) INVALID SCALE; (3) EXPECTED

IQB1013 (&00) <INCLUDE> NOT ISO-CONFORM

IQB1014 (&00) INVALID OR MISSING <INCLUDE> SPECIFICATION

IQB1015 (&00) INVALID ESQL STATEMENT

IQB1016 (&00) INVALID OR MISSING COBOL DATA-NAME

IQB1017 (&00) TOO LONG PICTURE STRING

IQB1018 (&00) INVALID OR MISSING DATA-ITEM PICTURE SIZE SPECIFICATION

IQB1019 (&00) PICTURE STRING NOT ISO-CONFORM

IQB1020 (&00) INVALID OR MISSING COBOL PROCEDURE-NAME

IQB1021 (&00) FILE TO BE INCLUDED NOT FOUND

IQB1022 (&00) TOO MANY NESTED FILES FOR INCLUSION

IQB1023 (&00) REPLACEMENT OBJECT LENGTH EXCEEDS LIMIT

IQB1024 (&00) <INCLUDE> WITHIN REPLACEMENT OBJECT NOT ALLOWED

IQB1025 (&00) <WHENEVER> WITHIN REPLACEMENT OBJECT NOT ALLOWED

IQB1026 (&00) INVALID REPLACEMENT OBJECT

IQB1027 (&00) DELIMITED IDENTIFIER NOT ENDED BY <QUOTE> IN REPLACEMENT OBJECT

IQB1028 (&00) IDENTIFIER EXPECTED AFTER < . > IN REPLACEMENT OBJECT

IQB1029 (&00) LEVEL NUMBER NOT SPECIFIED AS 1 OR 2 DIGIT(S)

IQB1030 (&00) PARSER STACK EXAUSTED

IQB1031 (&00) INVALID INDEX OR RANGE

IQB1032 (&00) UNSIGNED INTEGER EXPECTED AFTER < (>

IQB1033 (&00) INVALID OR MISSING COBOL PROCEDURE-NAME

U22424-J-Z125-3-76 157

Messages output by the ESQL-COBOL system IQB1034

IQB1034 (&00) END-EXEC EXPECTED

IQB1035 (&00) INVALID COBOL DATA-ITEM DEFINITION

IQB1036 (&00) QUALIFICATION OF COBOL IDENTIFIER NOT ISO-CONFORM

IQB1037 (&00) INDEX NOT ISO-CONFORM

IQB1038 (&00) INVALID <INCLUDE>

IQB1039 (&00) LEVEL NUMBER OUT OF RANGE

IQB1040 (&00) INVALID PICTURE STRING

IQB1041 (&00) PERIOD < . > EXPECTED

IQB1042 (&00) INVALID TOKEN; LEADING OR TRAILING EXPECTED

IQB1043 (&00) INVALID OR MISSING USAGE CLAUSE

IQB1044 (&00) INVALID OR MISSING OCCURS CLAUSE

IQB1045 (&00) INVALID VALUE CLAUSE

IQB1046 (&00) INVALID TIMESTAMP SPECIFICATION

IQB1047 (&00) INVALID TIME SPECIFICATION

IQB1048 (&00) LEVEL NUMBER EXPECTED

IQB1049 (&00) INVALID OR MISSING COBOL DATA-NAME

IQB1050 (&00) INVALID OR MISSING PICTURE CLAUSE

IQB1051 (&00) INVALID OR MISSING SIGN CLAUSE

IQB1052 (&00) INVALID OR MISSING LEADING CLAUSE

IQB1053 (&00) INVALID OR MISSING SEPARATE CLAUSE

IQB2001 (&00) SIGN CLAUSE NOT ALLOWED

IQB2002 (&00) ONLY USAGE DISPLAY ALLOWED

IQB2003 (&00) SIGN CLAUSE ONLY ALLOWED WITH USAGE DISPLAY

IQB2004 (&00) NO PICTURE CLAUSE ALLOWED WITH COMP-1 OR COMP-2

IQB2005 (&00) USAGE BINARY OR COMP IN SQL ONLY ALLOWED FOR INTEGERS

IQB2006 (&00) TOO MANY DIGIT POSITIONS FOR USAGE BINARY OR COMP

IQB2007 (&00) INCORRECT LEVEL NUMBER

IQB2008 (&00) INCORRECT LEVEL NUMBER : LEVEL NUMBER OUT OF RANGE

IQB2009 (&00) DUPLICATE PICTURE CLAUSE ILLEGAL

IQB2010 (&00) DUPLICATE SIGN CLAUSE ILLEGAL

IQB2011 (&00) DUPLICATE SYNCHRONIZED CLAUSE ILLEGAL

158 U22424-J-Z125-3-76

IQB2012 Messages output by the ESQL-COBOL system

IQB2012 (&00) DUPLICATE USAGE CLAUSE ILLEGAL

IQB2013 (&00) DUPLICATE EXTERNAL CLAUSE ILLEGAL

IQB2014 (&00) DUPLICATE GLOBAL CLAUSE ILLEGAL

IQB2015 (&00) DUPLICATE OCCURS CLAUSE ILLEGAL

IQB2016 (&00) DUPLICATE VALUE CLAUSE ILLEGAL

IQB2017 (&00) ILLEGAL NESTING OF OCCURS

IQB2018 (&00) OCCURS CLAUSE NOT ALLOWED FOR THIS LEVEL NUMBER

IQB2019 (&00) ILLEGAL ITEM SUBORDINATE TO VARCHAR

IQB2020 (&00) CLAUSE ILLEGAL WITH VARCHAR

IQB2021 (&00) ITEM SUBORDINATE TO DATETIME ILLEGAL

IQB2022 (&00) CLAUSE ILLEGAL WITH DATETIME

IQB2024 (&00) TOO FEW SUBORDINATE COMPONENTS

IQB2025 (&00) VALUE ILLEGAL IN OCCURS CLAUSE

IQB2026 (&00) TOO BIG OCCURS VALUE

IQB2027 (&00) ILLEGAL REDEFINITION OF HOST VARIABLE

IQB2028 (&00) COBOL TYPE NOT ALLOWED

IQB2029 (&00) CLAUSE NOT ALLOWED FOR GROUP ITEMS

IQB2030 (&00) HOST VARIABLE UNDEFINED

IQB2031 (&00) AMBIGUOUS QUALIFICATION

IQB2032 (&00) ILLEGAL GROUP REFERENCE IN HOST IDENTIFIER

IQB2033 (&00) SUBSCRIPT OUT OF RANGE

IQB2034 (&00) SUBSCRIPT ON ITEM NOT SUBORDINATE TO OCCURS

IQB2035 (&00) ILLEGAL SUBSCRIPT RANGE

IQB2036 (&00) TYPE OF HOST VARIABLE NOT ALLOWED IN SQL STATEMENT

IQB2037 (&00) TOO MANY QUALIFICATIONS IN HOST IDENTIFIER

IQB2038 (&00) INDEX OR INDEX RANGE MISSING

IQB2040 (&00) INCORRECT TYPE FOR SQLCODE

IQB2041 (&00) ILLEGAL DECLARATION OF SQLCODE AFTER SQL STATEMENT

IQB2042 (&00) INCORRECT TYPE FOR SQLSTATE

IQB2043 (&00) ILLEGAL DECLARATION OF SQLSTATE AFTER SQL STATEMENT

IQB2044 (&00) SQLCODE MUST NOT BE A GROUP ITEM

U22424-J-Z125-3-76 159

Messages output by the ESQL-COBOL system IQB2045

IQB2045 (&00) SQLCODE MUST NOT CONTAIN, NOR BE SUBORDINATE TO OCCURS

IQB2046 (&00) SQLSTATE MUST NOT BE A GROUP ITEM

IQB2047 (&00) SQLSTATE MUST NOT CONTAIN, NOR BE SUBORDINATE TO OCCURS

IQB2048 (&00) SQLCODE ALREADY DEFINED

IQB2049 (&00) SQLSTATE ALREADY DEFINED

IQB2050 (&00) DATA DESCRIPTION NOT CONFORMING WITH ISO SQL

IQB2051 (&00) HOST VARIABLE NOT CONFORMING WITH ISO SQL

IQB2052 (&00) ILLEGAL ITEM SUBORDINATE TO NVRCHAR

IQB2053 (&00) CLAUSE ILLEGAL WITH NVARCHAR

IQB2054 (&00) ONLY USAGE NATIONAL ALLOWED

IQB3000 (&00) (&01)

IQB3001 (&00) EMBEDDED SQL STATEMENT TOO LONG

IQB3002 (&00) EMBEDDED SQL STATEMENT CONTAINS TOO MANY HOST VARIABLES

IQB9001 (&00)BEGIN (&01)

IQB9002 (&00)COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1994.

IQB9003 (&00)ALL RIGHTS RESERVED.

IQB9004 (&00)MESSAGE STATISTICS: (&01) NOTES, (&02) WARNINGS, (&03) ERRORS

IQB9006 (&00)MODULE NOT GENERATED

IQB9007 (&00)MODULE GENERATED

IQB9008 (&00)END (&01) -- TIME USED = (&02) SECS.

SIS0001 COMP=SISMF,VER=100,DATE=930131,COMPNR=00000000

SIS0003 No previous error occured

SIS0004 Not enough or too many inserts passed

Meaning
Missing inserts are substituted by the empty string.
Unnecessary inserts are ignored.

160 U22424-J-Z125-3-76

SIS0005 Messages output by the ESQL-COBOL system

SIS0005 PROSYS messages are not available

SIS0006 Version of message class (&00) is wrong

SIS0007 Version of set (&00) in the specified catalog is wrong

SIS0008 Message (&00)(&01) is not defined

SIS0009 In the specified catalog message (&00),(&01) is not defined

SIS0010 Message catalog (&00) can not be opened

SIS0011 Parameter (&00) is wrong

SIS0012 System specific error occured

SIS0036 PROSOS internal Error

SIS0100 Error during initialisation of SHS

SIS0101 reserved

SIS0102 Insufficient memory

SIS0103 Invalid size parameter -- (&00)

SIS0104 Size (&00) too big

SIS0105 Option requires an argument -- (&00)

SIS0106 Illegal option -- (&00)

SIS0107 Handle does not point to string container

SIS0108 Invalid close mode

SIS0109 String container cannot be opened

SIS0110 Invalid access of a string container

SIS0111 Write access of a string container not allowed

SIS0112 System specific error occured

SIS0200 No more space available

SIS0201 Error during object generation: (&00)

SIS0202 File (&00) cannot be opened

SIS0601 End of file detected

SIS0602 Specified record does not exist

SIS0603 Specified record exists

SIS0604 Begin of file detected

SIS0605 Specified link does not exist

SIS0606 Length of file name exceeds P_MAXFILENAME

U22424-J-Z125-3-76 161

Messages output by the ESQL-COBOL system SIS0607

SIS0607 Length of path string exceeds P_MAXPATHSTRG

SIS0608 Length of path name exceeds P_MAXPATHNAME

SIS0609 Length of link name exceeds P_MAXLINKNAME

SIS0610 No more space available

SIS0611 Number of path elements exceeds P_MAXHIERARCHY

SIS0612 Function not supported

SIS0613 Missing file name or syntax error in file name

SIS0614 Number of secondary keys exceeds P_MAXKEYS

SIS0615 Number of open files exceeds system specific boundary

SIS0616 Specified file does not exist

SIS0617 Write access not allowed

SIS0618 No file name found

SIS0619 File locked

SIS0620 Illegal combination of file attributes

SIS0621 File handle is invalid

SIS0622 Current record smaller than MINSIZE

SIS0623 Current record bigger than MAXSIZE

SIS0625 No read sequential performed before rewrite sequential

SIS0626 Record format out of range or not allowed

SIS0627 MINSIZE greater than MAXSIZE

SIS0628 Organisation out of range or not allowed

SIS0629 File exists but MUST_NOT_EXIST specified

SIS0630 Specified access function not allowed

SIS0631 Key parameters out of range or not allowed

SIS0632 Duplicate key not allowed

SIS0633 Record currently locked

SIS0634 Current key out of sequence

SIS0635 Specified path undefined

SIS0637 End of line detected

SIS0638 Record truncated

SIS0640 No more space available to extend the file

162 U22424-J-Z125-3-76

SIS0643 Messages output by the ESQL-COBOL system

SIS0643 Open type out of range or not allowed

SIS0644 Length of link string exceeds P_MAXLINKSTRG

SIS0645 Invalid version identification specified

SIS0646 Existence out of range

SIS0647 Syntax error in file, link or path string

SIS0649 Close type out of range or not allowed

SIS0650 Access not permitted

SIS0651 Parameter error

SIS0652 Invalid pointer to I/O area

SIS0653 Invalid record length detected

SIS0654 Space limit on device reached

SIS0655 Print control out of range or not allowed

SIS0656 Code set out of range or not allowed

SIS0657 Combination of open type and existence not allowed

SIS0658 I/O interrupted

SIS0659 Length of keyword exceeds P_MAXKEYWORD

SIS0660 Keyword ambiguous

SIS0661 Number of exits exceeds P_MAXEXITS

SIS0662 New line character detected

SIS0663 New page character detected

SIS0664 Not all pathes closed

SIS0665 Next indexed record has same secondary key

SIS0666 Secondary key of written record exists already

SIS0667 Current record number exceeds specified MAX_REC_NR

SIS0668 Path name exists already

SIS0669 Link name exists already

SIS0670 Positioning condition out of range

SIS0671 Unknown control character detected

SIS0672 No file name created

SIS0673 Last partial record not completed

SIS0674 Seek type out of range

U22424-J-Z125-3-76 163

Messages output by the ESQL-COBOL system SIS0675

SIS0675 Record format not determinable

SIS0676 MAXSIZE not determinable

SIS0677 PROSOS-D internal error

SIS0678 Specified file is a container of files

SIS0679 Specified file unreachable with given path

SIS0680 Version not incrementable

SIS0681 Reopen after implicit close failed

SIS0682 Failure on initialisation of PROSOS-D

SIS0683 Link indirections by extern variables exceed P_MAXLINKNESTING

SIS0901 Catalog handle is invalid

SIS0902 Catalog or view (&00) not present

SIS0903 End of catalog or view reached

SIS0904 No more space available

SIS0905 Function not supported

SIS0906 (&00) is file

164 U22424-J-Z125-3-76

SIS0906 Messages output by the ESQL-COBOL system

U22424-J-Z125-3-76 165

10 Appendix
This chapter covers the following topics:

● Mixed-mode operation of the SQL and CALL DML interfaces

● Demonstration database

166 U22424-J-Z125-3-76

Mixed-mode operation of SQL and CALL DML interfaces Appendix

10.1 Mixed-mode operation of SQL and CALL DML interfaces

SESAM/SQL supports the CALL DML interface and the SQL interface. The interfaces can
be used together in an ESQL-COBOL application (mixed-mode operation). On SESAM/
SQL server V2.1 and lower, the two interfaces cannot be used together within a single
transaction. Since SESAM/SQL server V2.2 there could be SQL statements in CALL DML
transactions.

Resources

In mixed-mode operation, CALL DML statements only address resources that have been
reserved as a result of CALL DML statements in the SESAM/SQL DBH. SQL statements
only address resources reserved as a result of SQL statements. An application that uses
both interfaces has signed itself off correctly from the DBH if the resources of both inter-
faces have been released.

Status codes

An application returns SQL status codes (SQLCODE or SQLSTATE or both) if the last
statement passed to the DBH was an SQL statement. If the last statement passed to the
DBH was a CALL DML statement, the application returns CALL DML status codes.

10.2 Demonstration database

Most of the examples in this manual reference the demonstration database described
below. You are provided with the definition of each table and a representation of the data in
the table. The demonstration database contains the schemas ORDER_PROC and PARTS.

10.2.1 Schema ORDER_PROC

Data concerning customers, contact persons, orders, order status and service can be
administered in the order processing schema. The order processing schema comprises the
tables CUSTOMERS, CONTACTS, ORDERS, SERVICE and ORDER_STAT.

U22424-J-Z125-3-76 167

Appendix Demonstration database

10.2.1.1 CUSTOMERS table

The CUSTOMERS table is defined as follows:

The CUSTOMERS table contains the following data:

CREATE TABLE customers

(cust_num INTEGER CONSTRAINT cust_num_primary PRIMARY KEY,

 company CHAR(40) CONSTRAINT company_notnull NOT NULL,

 street CHAR(40),

 zip NUMERIC(5),

 city CHAR(40),

 country CHAR(3),

 cust_tel CHAR(25),

 cust_info CHAR(50),

CONSTRAINT PlausPlz CHECK(country IS NULL OR zip IS NULL OR

(country = ’D’ AND zip >= 00000)

OR (country <> ’D’))

)

cust_
num

company street zip city country cust_tel cust_info

100 Siemens AG Otto-Hahn-Ring 6 81739 Munich D 089/636-8 Electrical

101 Login GmbH Rosenheimer Str. 34 81667 Munich D 089/4488870 PC networks

102 JIKO GmbH Posener Str. 12 30659 Hanover D 0551/123874 Import/
export

103 Plenzer Trading Paul-Heyse-Str. 12 80336 Munich D 089/923764 Fruit market

104 Freddy´s Fishery Hirschgartenstr. 12 12587 Berlin D 016/5739921 Unit retail

105 The Poodle Parlor Am Muehlentor 26 41179 Moenchen-
gladbach

D 040/873562 Service

106 Foreign Ltd. 26 West York St. New York,
NY

USA 001703/
2386532

Commercial
agency

107 Externa & Co KG Berner Weg 78 3000 Berne 33 CH Lawyer

Table 15: Data in the table CUSTOMERS

168 U22424-J-Z125-3-76

Demonstration database Appendix

10.2.1.2 CONTACTS table

The CONTACTS table is defined as follows:

The CONTACTS table contains the following data:

CREATE TABLE contacts

(contact_num INTEGER CONSTRAINT contact_num_primary PRIMARY KEY,

 cust_num INTEGER CONSTRAINT co_cust_num_notnull NOT NULL,

 fname CHAR(25),

 lname CHAR(25) CONSTRAINT name_notnull NOT NULL,

 title CHAR(20),

 contact_tel CHAR(25),

 position CHAR(50),

 department CHAR(30),

 contact_info CHAR(50),

 CONSTRAINT co_cust_num_ref_customers FOREIGN KEY (cust_num)
 REFERENCES customers

)

contact_
num

cust_
num

fname lname title contact_tel position depart-
ment

contact_
info

10 100 Walter Kuehne Dr. 089/6361896 CEO Personnel

11 100 Stefan Walkers Mr. 089/63640182 Secretary Sales

20 101 Roland Loetzerich Mr. 089/4488870 Manager Networks

25 102 Ewald Schmidt Mr. 0551/123873 Training

26 103 Beate Kredler Ms. 089/923764 Organization SQL
course

30 104 Xaver Bauer Mr. 016/6739921 Sales exec.

35 105 Anke Buschmann Ms. 02161/584097 Manager

40 106 Mary Davis Ms. 001703/2386531 Management Purchas-
ing

41 106 Robert Heinlein Mr. 001703/2386532 Trainer Purchas-
ing

Table 16: Data in the table CONTACTS

U22424-J-Z125-3-76 169

Appendix Demonstration database

10.2.1.3 ORDERS table

The ORDERS table is defined as follows:

The ORDERS table contains the following data:

CREATE TABLE orders

(order_num INTEGER CONSTRAINT order_num_primary PRIMARY KEY,

 cust_num INTEGER CONSTRAINT o_cust_num_notnull NOT NULL,

 contact_num INTEGER,

 order_date DATE DEFAULT CURRENT_DATE,

 order_text CHAR(30),

 actual DATE,

 target DATE,

 order_stat INTEGER DEFAULT 1 CONSTRAINT order_stat_notnull NOT NULL,

 CONSTRAINT o_cust_num_ref_customers FOREIGN KEY (cust_num)
 REFERENCES customers,

 CONSTRAINT contact_num_ref_contacts FOREIGN KEY (contact_num)
 REFERENCES contacts,

 CONSTRAINT order_stat_ref_ordstat FOREIGN KEY (order_stat)
 REFERENCES ordstat(ord_stat_num,)

)

order_
num

cust_
num

contact_
num

order_date order_text actual target order_
stat

200 102 25 1990-04-10 Staff training 1990-05-01 1990-05-01 5

210 106 40 1990-12-13 Customer administration 1991-04-20 1991-04-01 3

211 106 41 1990-12-29 Database CUSTOMERS 1991-04-10 1991-04-01 4

250 105 35 1991-01-17 Mailmerge intro 1991-03-01 2

251 105 35 1991-01-17 Customer administration 1991-05-01 2

300 101 20 1991-02-15 Network test/comparison 1

305 105 35 1991-05-01 Staff training 1991-05-01 2

Table 17: Data in the table ORDERS

170 U22424-J-Z125-3-76

Demonstration database Appendix

10.2.1.4 SERVICE table

The SERVICE table is defined as follows:

The SERVICE table contains the following data:

CREATE TABLE service

(service_num INTEGER CONSTRAINT service_num_primary PRIMARY KEY,

 order_num INTEGER CONSTRAINT s_order_num_notnull NOT NULL,

 service_date DATE,

 Service_text CHAR(25),

 service_unit CHAR(10),

 service_total INTEGER CONSTRAINT service_total_pos
 CHECK (service_total > 0),

 service_price NUMERIC (5,0),

 vat NUMERIC(2,2),

 inv_num NUMERIC(4,0),

 CONSTRAINT order_num_ref_orders FOREIGN KEY(order_num)
 REFERENCES orders

)

service_
num

order_
num

service_date service_text service_
unit

service_
total

service_
price

vat inv_
num

1 200 1990-04-20 Training documen-
tation

Pages 45 75 0.15 3

2 200 1990-04-25 Training Day 1 1500 0.15 3

3 200 1990-04-26 Training Day 1 1500 0.15 3

4 211 1991-01-20 Systems analysis Day 8 1200 0.00 10

5 211 1991-01-29 Database design Day 10 1200 0.00 10

6 211 1991-02-15 Copies/transpar-
encies

Pages 30 50 0.15 10

7 211 1991-03-27 Manual Fixed
price

1 200 0.07 10

10 250 1991-02-20 Travel expenses Fixed
price

2 125 0.00

11 250 1991-02-20 Training Day 0.5 1200 0.15

Table 18: Data in the table SERVICE

U22424-J-Z125-3-76 171

Appendix Demonstration database

10.2.1.5 ORDSTAT table

The ORDSTAT table is defined as follows:

The ORDSTAT table contains the following data:

CREATE TABLE ordstat

(ord_stat_num INTEGER CONSTRAINT ord_stat_num_primary PRIMARY KEY,

 ord_stat_text CHAR(15) CONSTRAINT ord_stat_text_notnull NOT NULL

)

ord_stat_num ord_stat_text

1 planned

2 contract

3 completed

4 paid

5 archived

Table 19: Data in the table ORDSTAT

172 U22424-J-Z125-3-76

Demonstration database Appendix

10.2.2 Schema PARTS

The PARTS schema is used for managing parts. It comprises the tables ITEMS,
PURPOSE, WAREHOUSE, COLOR_TAB and TABTAB.

10.2.2.1 ITEMS table

The ITEMS table is defined as follows:

The ITEMS table contains the following data:

CREATE TABLE items

(item_num INTEGER CONSTRAINT item_num_primkey PRIMARY KEY,

 item_name CHARACTER(20) CONSTRAINT item_name_notnull NOT NULL,

 color CHARACTER(15),

 price NUMERIC(8,2) CONSTRAINT price_notnull NOT NULL,

 stock INTEGER CONSTRAINT i_stock_notnull NOT NULL,

 min_stock INTEGER,

)

item_num item_name color price stock min_stock

1 Bicycle black 700.50 2 1

10 Frame black 150.00 10 5

11 Frame edelweiss 150.00 10 5

120 Front wheel metallic 40.00 3 5

130 Back wheel metallic 40.00 12 5

200 Handlebars metallic 60.00 1 5

210 Front hub metallic 5.00 15 1

220 Back hub metallic 5.00 14 10

230 Felge black 10.00 9 10

240 Spoke black 1.00 211 00

500 Screw M5 black 1.10 300 00

501 Nut M5 black 0.75 295 00

Table 20: Data in the table ITEMS

U22424-J-Z125-3-76 173

Appendix Demonstration database

10.2.2.2 PURPOSE table

The PURPOSE table is defined as follows:

The PURPOSE table contains the following data:

CREATE TABLE purpose

(item_num INTEGER CONSTRAINT p_item_num_notnull NOT NULL,

 part INTEGER CONSTRAINT part_notnull NOT NULL,

 number INTEGER CONSTRAINT number_notnull NOT NULL,

 CONSTRAINT p_item_num_ref_items FOREIGN KEY (item_num)
 REFERENCES items,

 CONSTRAINT part_ref_items FOREIGN KEY (part) REFERENCES items

)

item_num part number

1 10 1

1 120 1

1 130 1

1 200 1

120 210 1

120 230 1

120 240 15

120 500 5

120 501 5

200 500 10

200 501 10

Table 21: Data in the table PURPOSE

174 U22424-J-Z125-3-76

Demonstration database Appendix

10.2.2.3 WAREHOUSE table

The WAREHOUSE table is defined as follows:

The WAREHOUSE table contains the following data:

CREATE TABLE warehouse

(item_num INTEGER CONSTRAINT w_item_num_notnull NOT NULL,

 stock INTEGER CONSTRAINT w_stock_notnull NOT NULL,

 location CHAR(25),

 CONSTRAINT w_item_num_ref_items FOREIGN KEY (item_num)
 REFERENCES items

)

item_num stock location

1 2 Main warehouse

10 10 Main warehouse

11 10 Main warehouse

120 3 Main warehouse

130 3 Main warehouse

130 9 Parts warehouse

240 11 Main warehouse

240 200 Parts warehouse

500 120 Main warehouse

500 180 Parts warehouse

Table 22: Data in the table WAREHOUSE

U22424-J-Z125-3-76 175

Appendix Demonstration database

10.2.2.4 COLOR_TAB table

The COLOR_TAB table is defined as follows:

The COLOR_TAB table contains the following data:

CREATE TABLE color_tab

(color_name CHARACTER(15),

 rgb (3)NUMERIC(2,2)

)

color_name rgb

flame 0.98 0 0

orange 0.9 0.3 0

skyblue 0 0 0.99

aquamarine 0 0.1 0.99

edelweiss 0.99 0.99 0.99

black 0 0 0

metallic 0 0.2 0.3

Table 23: Data in the table COLOR_TAB

176 U22424-J-Z125-3-76

Demonstration database Appendix

10.2.2.5 TABTAB table

The TABTAB table is defined as follows:

The TABTAB table contains the following data:

CREATE TABLE tabtab

(table_num INTEGER CONSTRAINT table_num_primkey PRIMARY KEY,

 table_name CHARACTER(20) CONSTRAINT table_name_notnull NOT NULL,

 comment CHARACTER(50),

)

table_num table_name comment

1 ITEMS Parts data

2 PURPOSE Related bicycle data

3 WAREHOUSE Warehouse locations

4 COLOR_TAB Permissible colors

5 TABTAB Tables used

Table 24: Data in the table TABTAB

U22424-J-Z125-3-76 177

Glossary
This glossary contains the definitions of the most important terms used in this manual.
Terms in italics indicate that there is actually an entry for this term in this glossary.
The “Synonym(s)” line, refers to terms with similar or identical meanings that are used in
other documentation, but not in SESAM/SQL manuals.

base table
Table created using the CREATE TABLE statement. A base table is permanently
stored in the database. Base tables are also generated as the result of migration.
Base tables can have different table styles.
The number and data type of the columns as well as any integrity constraints
can be defined using the SQL statement CREATE TABLE. ALTER TABLE can
be used to modify them. The number of rows is not part of the table definition.

column
Part of a table. Each column is assigned a name and a data type and contains
column values of this data type. Columns may be atomic or multiple columns.
Synonym: attribute

cursor
Pointer within a special type of derived table, the cursor table, that allows rows
to be retrieved one at a time.
A cursor name is defined when the cursor is declared. The cursor description
also includes an indication whether the cursor table is updatable or subject to a
particular order criterion.

database
Related collection of data that is processed, manipulated and administered by
the database system.
In SESAM/SQL, a database consists of the catalog in the catalog space and
user data in the associated user spaces. A database is identified by its database
name.

178 U22424-J-Z125-3-76

D Glossary

database handler (DBH)
SESAM/SQL component that analyzes, executes and coordinates all the
database accesses of a DBH session .
The database handler (DBH) is available in two variants:
– the independent DBH

This type of database handler is an independent program system that
supports multi-user operation. The independent DBH executes under a
separate task.

– the linked-in DBH
This type of database handler is linked into, and exclusively processes the
requests of, a single application program. The linked-in DBH executes
under the same task as this application program.

Synonyms: SESAM/SQL DBH, DBH

embedded SQL statement
SQL statement embedded in a host language (e.g. C, COBOL) program. Its is
started using EXEC SQL and ended using END-EXEC or ’;’. This allows SQL
statements to be clearly distinguished from host language statements and
precompiled.

host variable
Variable in a host language (e.g. C, COBOL) referred to in an embedded SQL
statement. Host variables are prefixed with a colon. They are declared in the
DECLARE section.

indicator variable
Special type of host variable of the numeric data type SMALLINT, which is
assigned to another host variable. The indicator variable indicates whether the
other host variable contains the NULL value or whether data was lost during
transfer of character-string values.

multiple column
Column which can contain more than one value of the same data type for each
row. Each of these values is called an occurrence.
Synonyms: multiple attribute, multiple field

preparable SQL statement
SQL statement that is not compiled until the host language (e.g. C or COBOL)
program is executed. Thus, database queries which were not known when the
program was generated can be formulated dynamically.

row
Ordered sequence of values arranged horizontally in an SQL table.
Synonym: tuple

U22424-J-Z125-3-76 179

Glossary S

schema
Schemas are held in the catalog space of a database.
Schemas are subdivided into two categories: user-defined schemas and infor-
mation schemas.
User-defined schemas contain the metadata for the base tables and views in the
database. Moreover, user-defined schemas contain information on privileges.
A user-defined schema is assigned a name and an owner who can access it
using his/her authorization identifier. User-defined schemas are created using
the SQL statement CREATE SCHEMA and can be modified using various other
statements (e.g. CREATE TABLE).
There must be two information schemas for each database:
INFORMATION_SCHEMA and SYS_INFO_SCHEMA. They enable the user to
access the metadata contained in the user-defined schemas, such as base
table definitions, views, integrity constraints, privileges, etc.
The INFORMATION_SCHEMA can be accessed by every user using SQL. The
SYS_INFO_SCHEMA contains system-specific data and can only be accessed
by the universal user.

SQL
Structured query language. SQL is the language most commonly used for
processing relational databases. In contrast to the procedural languages of
non-relational database systems, SQL is descriptive, i.e. the user describes, in
set-oriented form, the result of the operation rather than the steps to get there.
SQL is based on the English language and can be easily comprehended. It
offers extensive means of data definition, data manipulation, transaction
management, access control, etc. Embedded SQL (ESQL) makes it possible to
access a database using embedded SQL statements from host language programs
(e.g. in C or COBOL). SQL was first standardized by the International Organi-
zation for Standardization in 1987. SESAM/SQL supports the current interna-
tional standard ISO/IEC 9075:2003. This standard is referred to as SQL2
standard in this manual.

table
A table is a two-dimensional arrangement of data elements comprising rows
(horizontal) and columns (vertical).
A distinction is made between base tables, views and derived tables.
Synonym: relation

180 U22424-J-Z125-3-76

V Glossary

transaction
Sequence of related statements (either SQL statements only or CALL DML
statements only) which move a database from one consistent state to another
consistent state. A transaction is performed either in its entirety or not at all.
Special statements are available for transaction processing:
CALL DML has one statement each for the following operations: opening,
closing (committing) and rolling back a transaction.
SQL has special statements for ending and rolling back a transaction only. In
UTM appliocations, the corresponding UTM calls must be used for this purpose.
There is no special SQL statement for defining the start of a transaction: the first
transaction initiating statement after the previous transaction has been
committed or rolled back or after the program has been started is taken by SQL
to be the start of the transaction.

view
Named virtual table which is combined from one or more tables. A view is
defined in a query expression using the CREATE VIEW or CREATE
TEMPORARY VIEW (temporary view) statement. The derived table produced
by the query expression is generated anew every time the view is referenced in
an SQL statement.
The derived table thus always contains the most current data from the
database.

U22424-J-Z125-3-76 181

Related publications
The manuals are available as online manuals, see http://manuals.fujitsu-siemens.com, or in
printed form which must be paid and ordered separately at http://FSC-manualshop.com.

[1] SESAM/SQL-Server (BS2000/OSD)
Core Manual
User Guide

Target group
The manual is intended for all users and to anyone seeking information on SESAM/SQL.
Contents
The manual gives an overview of the database system. It describes the basic concepts. It
is the foundation for understanding the other SESAM/SQL manuals.

[2] SESAM/SQL-Server (BS2000/OSD)
SQL Reference Manual Part 1: SQL Statements
User Guide

Target group
The manual is intended for all users who wish to process an SESAM/SQL database by
means of SESAM/SQL statements.
Contents
The manual describes how to embed SQL statements in COBOL, and the SQL language
constructs. The entire set of SQL statements is listed in an alphabetical directory.

[3] SESAM/SQL-Server (BS2000/OSD)
SQL Reference Manual Part 2: Utilities
User Guide

Target group
The manual is intended for all users responsible for SESAM/SQL database administration.
Contents
An alphabetical directory of all utility statements, i.e. statements in SQL syntax imple-
menting the SESAM/SQL utility functions.

http://manuals.fujitsu-siemens.com
http://FSC-manualshop.com

182 U22424-J-Z125-3-76

Related publications

[4] SESAM/SQL-Server (BS2000/OSD)
CALL DML Applications
User Guide

Target group
SESAM application programmers
Contents
– CALL DML statements for processing SESAM databases using application programs
– Transaction mode with UTM and DCAM
– Utility routines SEDI61 and SEDI63 for data retrieval and direct updating
– Notes on using both CALL DML and SQL modes

[5] SESAM/SQL-Server (BS2000/OSD)
Database Operation
User Guide

Target group
The manual is intended for SESAM/SQL system administrators.
Contents
The manual covers the options available to the system administrator for controlling and
monitoring database operation.

[6] SESAM/SQL-Server (BS2000/OSD)
Utility Monitor
User Guide

Target group
The manual is intended for SESAM/SQL-Server database and system administrators.
Contents
The manual describes the utility monitor. The utility monitor can be used to administer the
database and the system. One aspect covered is its interactive menu interface.

[7] SESAM/SQL-Server (BS2000/OSD)
Messages
User Guide

Target group
All users of SESAM/SQL.
Contents
The message manual contains information relating to the structure and invocation of
messages for the SESAM/SQL server database system and the distribution component
SESAM/SQL-DCN. The SQL status codes and CALL DML status codes are also listed in
full here.

U22424-J-Z125-3-76 183

Related publications

[8] SESAM/SQL-Server (BS2000/OSD)
Migrating SESAM Databases and Applications to SESAM/SQL-Server
User Guide

Target group
Users of SESAM/SQL-Server.
Contents
This manual gives an overview of the new concepts and functions. Its primary subject is,
however, the difference between the previous and the new SESAM/SQL version(s). It
contains all the information a user may require to migrate to SESAM/SQL-Server V2.0.

[9] SESAM/SQL-Server (BS2000/OSD)
Performance
User Guide

Target group
Experienced users of SESAM/SQL.
Contents
The manual covers how to recognize bottlenecks in the behavior of SESAM/SQL and how
to remedy this behavior.

[10] openUTM V5.2
Concepts and Functions
User Guide

Target group
Anyone who wants information about the functionality and performance capability of
openUTM.
Contents
The manual contains a general description of all the functions and features of openUTM,
plus introductory information designed to help first-time users of openUTM.

[11] openUTM (BS2000/OSD)
Generating and Handling Applications
User Guide

Target group
This manual is intended for application planners, technical programmers, administrators
and users of UTM applications.
Contents
The manual describes the generation of UTM applications with distributed processing, the
tools available with openUTM for this purpose, and the UTM objects created in the course
of generation. It also contains all the information necessary for structuring, operating and
monitoring a productive UTM application.

184 U22424-J-Z125-3-76

Related publications

[12] UTM (TRANSDATA)
Programming Applications
User’s Guide

Target group
Programmers of UTM applications
Contents
– Language-independent description of the KDCS program interface
– Structure of UTM programs
– KDCS calls
– Testing UTM applications
– All the information required by programmers of UTM applications
Applications
BS2000 transaction processing

[13] openUTM V3.4A, openUTM-D V3.4A (BS2000/OSD)
New Interfaces and Functions
Supplements to the UTM Manuals for V3.3A/3.4A
User Guide

Target group
Organizers, planners, programmers and administrators of UTM applications.
Contents
This is a supplement to the manuals for UTM V3.3A/UTM-D V2.0A. It contains a description
of the X/Open interfaces CPI-C and XATMI under UTM, and the new functions in UTM
V3.3B and UTM V3.4.

[14] FHS (TRANSDATA)
User Guide

Target group
Programmers
Contents
Program interfaces of FHS for TIAM, DCAM and UTM applications. Generation, application
and management of formats.

U22424-J-Z125-3-76 185

Related publications

[15] CRTE V2.5A (BS2000/OSD)
Common Runtime Environment
User Guide

Target group
This manual addresses all programmers and system administrators in a BS2000
environment.
Contents
It describes the common runtime environment for COBOL85, COBOL2000, C and C++
objects and for "language mixes":
– CRTE components
– ILCS program communication interface
– linkage examples

[16] COBOL2000 (BS2000/OSD)
COBOL Compiler
Reference Manual

Target group
COBOL users in BS2000/OSD
Contents
– COBOL glossary
– Introduction to Standard COBOL
– Description of the full language set of the COBOL2000 compiler:

formats, rules and examples illustrating the COBOL ANS85 language elements of the
"High" language subset, the Fujitsu Siemens-specific extensions and the extensions
defined by the forthcoming COBOL standard, specifically the object orientation.

[17] COBOL2000 (BS2000/OSD))
COBOL Compiler
User’s Guide
Target group
COBOL users of BS2000/OSD
Contents
– Using the COBOL2000 compiler
– Linking, loading and starting of COBOL programs
– Debugging aids
– File processing with COBOL programs
– Checkpointing and restart
– Program linkage
– COBOL2000 and POSIX
– Useful software for COBOL users
– Messages of the COBOL2000 system

186 U22424-J-Z125-3-76

Related publications

[18] BS2000/OSD-BC
Commands, Volumes 1 - 5
User Guide

Target group
This manual is addressed to nonprivileged users and systems support staff.
Contents
Volumes 1 through 5 contain the BS2000/OSD commands ADD-... to WRITE-... (basic
configuration and selected products) with the functionality for all privileges. The command
and operand functions are described in detail, supported by examples to aid understanding.
An introductory overview provides information on all the commands described in Volumes
1 through 5.
The Appendix of Volume 1 includes information on command input, conditional job variable
expressions, system files, job switches, and device and volume types.
The Appendix of Volumes 4 and 5 contains an overview of the output columns of the SHOW
commands of the component NDM. The Appendix of Volume 5 contains additionally an
overview of all START commands.
There is a comprehensive index covering all entries for Volumes 1 through 5.

[19] BINDER
Binder in BS2000/OSD
User Guide

Target group
Software developers
Contents
The manual describes the BINDER functions, including examples. The reference section
contains a description of the BINDER statements and BINDER macro.

[20] BLSSERV
Dynamic Binder Loader / Starter in BS2000/OSD
User Guide

Target group
This manual is intended for software developers and experienced
BS2000/OSD users
Contents
It describes the functions, subroutine interface and XS support of the dynamic binder loader
DBL as a component of the BLSSERV subsystem, plus the method used for calling it.

U22424-J-Z125-3-76 187

Related publications

Other related literature

International Organization for Standardization (ISO):
Database Language SQL
ISO/IEC 9075:2003
Short title: SQL2 standard

An introduction to Database Systems,
C.J.Date
Addison Wesley, 2003

188 U22424-J-Z125-3-76

Related publications

U22424-J-Z125-3-76 189

Index

A
alphanum-name (data type) 16
alphanumeric data field 34
authorization key

specifying 104

B
base table 177
BINDER 115

C
CALL DML interface 166
calling the ESQL precompiler 82
cat (suffix for data type) 27
cat-id (data type) 16
catalog name

setting default 103
changes (to functions) 10
CHARACTER (data type) 46
COBOL data types

assigning to SQL data types 45–67
COBOL link module

linking 116
column 177
command

syntax 12
command-rest (data type) 16
comment lines

in a DECLARE SECTION 33
comments

in an SQL statement 70
communication area 71

for ESQL-COBOL V1.1 applications 71
making available 74
structure 71

variants 71
compilation 31, 113
compl (suffix for data type) 22
composed-name (data type) 16
configuration file

assigning 117
constr (suffix for data type) 25
corr (suffix for data type) 27
cross-reference list

generating 98
CRTE

linking 116
c-string (data type) 16
cursor 177

D
data names for host variables 34
data types

CHARACTER 46
CHARACTER VARYING 47, 50
DATE 61
DECIMAL 56
DOUBLE PRECISION 60
FLOAT 60
INTEGER 54
NCHAR 49
NUMERIC 57
NVARCHAR 50
REAL 59
SDF 12, 16, 22
SMALLINT 52
TIME(3) 63
TIMESTAMP(3) 65
VARCHAR 47
vectors 67

190 U22424-J-Z125-3-76

Index

data types for host variables 32, 45–67
database 177
database contact 96
database handler 178
database name

setting default 103
DATE (data type) 35, 61
date (data type) 16, 61
DBL 115
DECIMAL (data type) 56
DECLARE SECTION 32

comments 33
default

catalog name 103
database name 103
schema name 103

delimiters
defining 103

demonstration database 166
device (data type) 16
diagnostic documents

creating 111
DOUBLE PRECISION (data type) 60

E
embedded SQL statement 178
entry point of SQL link and load module 97
error classes 110
error handling 76
ESQL precompiler

calling 82
controlling 87
messages 109
monitoring with job variable 84
specifying the input source 99
termination behavior 108

ESQL precompiler options 87–107
overview 87

ESQL-COBOL application
as a UTM program unit 120
linking 115
starting 117

ESQL-COBOL program
compiling 113
information section 110
specifying properties 101

example
DELETE program 140
DYNAMIC program 145
INSERT program 136
QUERY program 124
UPDATE program 131

exception handling 77
EXTERNAL clause 35

F
FHS start parameters

specifying 122
fixed (data type) 16
fixed-length character string (data type) 46
fixed-length national character string (data

type) 49
fixed-point number (data type)

packed 56
unpacked 57

FLOAT (data type) 60
floating-point number (data type) 60

double-precision 60
single-precision 59

full-filename (data type) 17

G
gen (suffix for data type) 27
GLOBAL clause 35
GROUP-USAGE clause 34

H
host variable 178

vector 40

U22424-J-Z125-3-76 191

Index

host variables 32
data name 34
data types 32
defining 32
ISO language set 36
level numbers 34
naming 37
permitted data types 45–67
specifying in SQL statements 38

HOST-LANGUAGE (precompiler option) 101
HOST-PROGRAM (precompiler option) 90

I
INCLUDE (SQL statement) 79
INCLUDE elements 79
INCLUDE library

specifying 92
INCLUDE-LIBRARY (precompiler option) 92
independent DBH 97
INDICATOR (keyword) 43
indicator variable 178

stored values 44
indicator variables 42

defining 42
specifying in an SQL statement 43
transferring the NULL value 44

input source for the ESQL precompiler
specifying 99

INTEGER (data type) 54
integer (data type) 18

small 52
ISO dialect

selecting 102

J
job variable

specifying 95

K
KDCDEF statement DATABASE 120
KDCROOT 120

L
language subset

selecting 102
under UTM 119

level numbers for host variables 34
link 115
linked-in DBH 97
linking 31
low (suffix for data type) 22
lower-ranking data field

qualifying the name of 39

M
making communication area available 74
man (suffix for data type) 27
mask characters 34, 45
messages 109, 153

structure 109
mixed-mode operation 166
modifications (functions) 10
MODULE-LIBRARY (precompiler option) 93
MONJV (precompiler option) 95
multiple column 178

N
name (data type) 18
NCHAR (data type) 49
nested ESQL-COBOL programs 37
notational conventions 11
NUMERIC (data type) 57
numeric data field 34
NVARCHAR (data type) 35, 50

O
OCCURS clause 35
odd (suffix for data type) 27
options of the ESQL precompiler 87–107
output target for generated COBOL program

specifying 90
output target for SQL link and load module

specifying 93

192 U22424-J-Z125-3-76

Index

P
packed fixed-point number (data type) 56
partial-filename (data type) 19
PICTURE clause 34
porting 102

replacements 106
posix-filename (data type) 19
posix-pathname (data type) 19
precompilation 31, 84–111

command sequence 86
controlling 87, 96
database contact 96
starting 84

precompiler option
INCLUDE-LIBRARY 92
MODULE-LIBRARY 93
MONJV 95
PRECOMPILER-ACTION 96
SOURCE 99
SOURCE-PROPERTIES 101

precompiler options 87–107
HOST-PROGRAM 90
overview 87

PRECOMPILER-ACTION (precompiler
option) 96

preparable SQL statement 178
product-version (data type) 20
properties of the ESQL-COBOL program

specifying 101

R
README file 9
REAL (data type) 59
replacement file

specifying 104
replacements

performing 106
row 178
RUN UNIT 116

S
schema 179
schema name

setting default 103

SDF
syntax 12

SDF metasyntax 12, 14
sep (suffix for data type) 27
SESAM macro library 120
SESAM/SQL connection module

linking 116
SESAM/SQL module library

assigning 117, 122
SIGN clause 34
small integer (data type) 52
SMALLINT (data type) 52
SOURCE (precompiler option) 99
SOURCE-PROPERTIES (precompiler

option) 101
specifying in the ESQL-COBOL program 82

SQL 8, 179
SQL comments 70
SQL data types

assigning to COBOL data types 45–67
SQL link and load module

entry point 97
linking 115

SQL statement
INCLUDE 79
specifying indicator variables 43
WHENEVER 77

SQL statements
specifying host variables 38
specifying in a COBOL program 68

SQLca (variable) 73
SQLCODE (variable) 73

defining 74
SQLda (variable) 73
SQLerrcol (variable) 73
SQLerrline (variable) 73
SQLerrm (variable) 73
SQLline (variable) 73
SQLrowcount (variable) 74
SQLSTATE (variable)

defining 74
START-ESQLCOB (command) 84
starting the ESQL precompiler 82
START-PROGRAM (command) 85

U22424-J-Z125-3-76 193

Index

statement
syntax 12

structure of communication area 71
structured-name (data type) 20
success monitoring 76
SYNCHRONIZED clause 35
syntax

SDF 12

T
table 179
text (data type) 20
time (data type) 20, 63
TIME(3) (data type) 35, 63
timestamp (data type) 65
TIMESTAMP(3) (data type) 35, 65
transaction 180
transfer of values

verifying 44
transferring the NULL value 44

U
under (suffix for data type) 22
unpacked fixed-point number (data type) 57
USAGE clause 34
user (suffix for data type) 27
UTM application

configuration file 122
generating 120
starting 122

UTM language subset 119
UTM start parameters

specifying 122
UTM-compatible language subset 102

V
VALUE clause 35
VARCHAR (data type) 35, 47
variable-length character string (data type) 47
variable-length national character string (data

type) 50
variants of communication area 71
vectors 40, 67
vers (suffix for data type) 27

version
previous 10

view 180
vsn (data type) 20

W
WHENEVER (SQL statement) 77
wild(n) (suffix for data type) 23
with (suffix for data type) 22
with-compl (suffix for data type) 22
with-constr (suffix for data type) 25
with-low (suffix for data type) 22
with-under (suffix for data type) 22
with-wild(n) (suffix for data type) 23
without (suffix for data type) 27
without-cat (suffix for data type) 27
without-corr (suffix for data type) 27
without-gen (suffix for data type) 27
without-man (suffix for data type) 27
without-odd (suffix for data type) 27
without-sep (suffix for data type) 27
without-user (suffix for data type) 27
without-vers (suffix for data type) 27

X
x-string (data type) 21
x-text (data type) 21

194 U22424-J-Z125-3-76

Index

Comments on ESQL-COBOL V3.0 A
ESQL-COBOL for SESAM/SQL-Server

U22424-J-Z125-3-76

Fujitsu Siemens Computers GmbH
User Documentation
81730 Munich
Germany

Fax: (++49) 700 / 372 00000

e-mail: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Comments
Suggestions
Corrections

✁

Submitted by

mailto:manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface 7
	Embedding SQL in COBOL programs 29
	Precompiling an ESQL-COBOL program 81
	Compiling the COBOL program 113
	Linking an ESQL-COBOL application 115
	Starting an ESQL-COBOL application 117
	ESQL-COBOL applications under openUTM 119
	Sample programs 123
	Messages output by the ESQL-COBOL system 153
	Appendix 165

	Preface
	Brief product description
	Target group
	Summary of contents
	README file
	Changes since the last version of the manual
	Notational conventions
	Notational conventions for statements
	SDF syntax

	Embedding SQL in COBOL programs
	Creating an ESQL-COBOL application
	Elements in an ESQL-COBOL program
	Host variables
	Defining host variables
	Specifying host variables in SQL statements
	Qualifying the names of lower-ranking data fields
	Addressing vectors

	Indicator variables
	Defining indicator variables
	Specifying indicator variables in an SQL statement
	Verifying the transfer of values
	Transferring the NULL value

	Assigning SQL and COBOL data types
	Fixed-length character string
	Variable-length character string
	Fixed-length national character string
	Variable-length national character string
	Small integer
	Integer
	Fixed-point number (packed)
	Fixed-point number (unpacked)
	Single-precision floating-point number
	Double-precision floating-point number
	Floating-point number
	Date
	Time
	Timestamp
	Vectors

	SQL statements in an ESQL-COBOL program
	SQL comments in an ESQL-COBOL program
	The communication area
	Structure of the communication area
	Making the communication area available
	Error handling and success monitoring
	Controlling program execution with COBOL statements
	Controlling program execution with the SQL statement WHENEVER

	INCLUDE elements

	Precompiling an ESQL-COBOL program
	Calling and controlling the ESQL precompiler
	Assigning the requisite libraries and files
	Precompiling with database contact
	Starting the ESQL precompiler

	ESQL precompiler options
	Overview of the ESQL precompiler options
	Specifying input sources
	Specifying the properties of the ESQL-COBOL program
	Controlling precompilation

	Specifying the output target for the generated COBOL program
	Specifying INCLUDE libraries
	Specifying the output target for the SQL link and load module
	Specifying a job variable
	Controlling precompilation
	Specifying the input source for the ESQL precompiler
	Specifying the properties of the ESQL-COBOL program

	ESQL precompiler termination behavior
	Monitoring termination behavior with job variables
	Messages output by the ESQL precompiler
	Creating diagnostic documents

	Compiling the COBOL program
	Linking an ESQL-COBOL application
	Starting an ESQL-COBOL application
	ESQL-COBOL applications under openUTM
	The language subset under openUTM
	Generating a UTM application
	Starting a UTM application

	Sample programs
	The program QUERY
	The program UPDATE
	The program INSERT
	The program DELETE
	The program DYNAMIC

	Messages output by the ESQL-COBOL system
	Appendix
	Mixed-mode operation of SQL and CALL DML interfaces
	Demonstration database
	Schema ORDER_PROC
	CUSTOMERS table
	CONTACTS table
	ORDERS table
	SERVICE table
	ORDSTAT table

	Schema PARTS
	ITEMS table
	PURPOSE table
	WAREHOUSE table
	COLOR_TAB table
	TABTAB table

	Glossary
	Related publications
	Other related literature

	Index
	A - D
	E - H
	I - O
	P - S
	T - X

	Comments, Suggestions, Corrections

