EDT V17.0A Unicode Mode

Statements

Edition December 2007

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@fujitsu-siemens.com

Certified documentation
according to DIN EN ISO 9001:2000

To ensure a consistently high quality standard and
user-friendliness, this documentation was created to

meet the regulations of a quality management system which
complies with the requirements of the standard

DIN EN ISO 9001:2000.

cognitas. Gesellschaft fir Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks
Copyright © Fujitsu Siemens Computers GmbH 2008.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

Alle hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@fujitsu-siemens.com
http://www.cognitas.de

Contents

1.1
1.2
1.3

21

2.2

2.21
222
223

23

2.31
232
2.3.3
234

3.1

3.1.1
3.1.2
3.1.3

3.2

3.2.1
3.2.2
3.2.3

Preface e 17
Structure of the EDT documentation 18
Target groups forthe EDTmanuals 18
Structure of the EDT statementsmanual 19
Modified and new functionality in EDTV17.0A 21
Introduction to the EDT operatingmodes 21
Unicodemode i i i i i i s et e e e e e e e e e e e e e e e e 22
Additional functions -overview L 22
Additional functions - explanations L. 23
Functions that are no longer supported 25
Compatibilitymode e 26
@CODENAME statement 26
@IF statement 26
@MODE statement 26
Messages e e 26
Underlying EDT concepts i i i i i i ittt e e 27
Work files i it e 27
Properties of work files 27
Currentwork file e 30
Empty work file 31
Line numbers i i i e e e e e e e e e e e e e e e e e e e 33
Current line number and currentincrement 34
Symboliclinenumbers 35
Implicit increment assignment L Lo 35

U41709-J-2125-1-76

Contents

3.24

3.2.4.1
3.24.2
3.24.3
3.244
3.2.4.5

3.3

3.4
3.4.1
3.4.2
34.3
34.4
3.4.5
3.4.6
3.4.7
3.4.8
34.9
3.4.10
3.4.11
3.4.12
3.4.13
3.4.14
3.4.15
3.4.16

3.5

3.5.1
3.5.2
3.5.3
3.54
3.5.5

3.6

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7

Line numberassignment 36
Using the source linenumbers 36
Insertion at the current linenumber 38
Insertion after implicitdeletion 39
Insertion at predefined linenumber L. 40
Insertion betweentwolines L. 41

Recordmarks e e e e e e e e e e e e e e e 45

Charactersets i i i i e e e e e e e e e e e e e e e e 47

Character sets in BS2000 e 47

Supported charactersets 49

Strings e 50

Conversion and substitute characters 51

Substitute character representation in Unicode 52

Communications characterset, 53

Charactersetsinwork fileso 54

Readinginfiles 55

Writing files e 57

Copying betweenwork files 57

Charactersetinastatement 58

The character set EDFO3DRVo 58

Stringvariables 59

Svariablesandjobvariables 60

POSIXfiles e e 60

Outputs to SYSOUT and SYSLST 60

EDT variables e e e e e e e e e e e e e e 61

Integervariables 61

String variables 62

Line numbervariables 62

Jobvariables e 63

Svariables e 63

EDT procedures i i i i i it e e e e e e e e e e e e e e e 64

Creating and executing EDT procedures 65

@INPUT procedures o i i e e 68

Calling an EDT procedure in a BS2000 system procedure 71

EDT start procedure 72

Unconditional and conditional branches 72

External and internalloops 74

Parameters e e 76

U41709-J-2125-1-76

Contents

3.7

3.7.1
3.7.2
3.7.3
3.74
3.7.5
3.7.6
3.7.7
3.7.8

41

411
41.2
41.3

4.2

4.21
422
423

4.3
4.4

4.5

451
452
453
454
455

4.6
4.6.1
4.6.2

5.1
5.1.1
5.1.1.1
5.1.1.2
5.1.1.3

Searchingwith@ON e 78
Casesensitivity e 79
Using wildcards in searchterms 80
Negative searches 81
Delimiter characters e 81
Indirect specification of the searchterm 83
Searchrange e 84
Othersearch parameters 85
Recordingahit 86
Using EDT o e e e e e e e e e e e e e e e e 87
Starting EDT e e e e e e e 87
The EDT startcommand 88
Calling EDT asamainprogram i 90
Calling EDT asasubroutine 90
Interrupting and terminatingan EDTsession 91
Interruptingan EDT session 91
Terminatingan EDT session 92
EDT commandreturncodeo 94
Monitoring the EDT session with monitoring job variables 96
Inputandoutput e 97
Jobswitches & & @ i i i e e e e e e e e e e e e e e e e 98
Jobswitch 4 98
Jobswitch 5 98
Jobswitch 6 98
Jobswitch 7 99
Jobswitch 8 99
Access protection L L L e e e e e e e e e 929
Constraints for privileged userIDs 99
Uninterruptible procedures 100
EDTworkmodes @ i i i it i e e e e e e e e e e e e e e e e 101
Fmode. e 101
The work window 103

Statementcode column 105

Line numberdisplay e 105

Datawindow 105

U41709-J-2125-1-76

Contents

51.14
51.1.5
5.1.1.6
51.1.7
5.1.1.8
5.1.1.9
5.1.2

5.1.2.1
5.1.2.2
5.1.2.3
51.24
5.1.25
5.1.3

5.1.3.1
5.1.3.2
514

5.2

5.21
522
523
524

6.1

6.1.1
6.1.2
6.1.3
6.1.4

6.2

6.3

6.3.1
6.3.2
6.3.3

6.4

6.4.1
6.4.2
6.4.3
6.4.4

StatementcodesinFmode 109
Statement in data window — splitingarecord 112
Statementline 113
Statementbuffer 114
Statusdisplay 114
Processingsequence e e 115
Modifying the work window 116
Line numberdisplay e 116
Outputtinglongrecords 117
Columncounter 118
Secondworkwindow L 119
Hexadecimalmode 120
FunctionkeysinFmode 123
The Fkeys e 123
The KKeys e e 124
StatementsinFmode 125
Lmode @ e 126
InputinLmode e 126
Entering records in character, hexadecimal or binary format 127
FunctionkeysinLmode 128
StatementsinL mode 129
File processing i i i i i i i e e e e e e e e e e e 131
Filetypes o e e e e e e e e 131
SAMfiles e 131
ISAMfAiles e 132
POSIXfiles e 134
Libraryelements 135
Basic information on reading and writingdata 137
Reading and writing all supported filetypes 138
Reading e 138
Writing o 138
Filelinknames e 139
Characteristics of the old file access statements 140
Predefining filenames 140
Partial readingand writing Lo 141
Versionnumbers L L e e 141
Filelinknames e 142

U41709-J-2125-1-76

Contents

6.5
6.5.1
6.5.2

6.6
6.6.1
6.6.2

6.7

6.7.1
6.7.2
6.7.3

6.8
6.8.1
6.8.2

6.9

6.10

6.10.1
6.10.2
6.10.3
6.10.4

71

7.2
7.21

7.3

7.4

7.41
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8

Reading and writing SAM files with the old statements 143
Reading e 143
Writing e e 143
Reading and writing ISAM files with the old statements 144
Reading e 144
Writing e e e 145
Real processing of ISAMfiles 146
Opening L e 146
Processing e e 147
Closing e 147
Reading and writing POSIX files with the old statements 148
Reading e 148
Writing e e 148
Filecatalogs i e e e e e e e e e e e e e e 149
Systemfiles e e e e e e 149
The SYSDTA systemfile e 149
The SYSOUT systemfile 150
The SYSLST systemfile 152
The system files SYSLST01..SYSLST99 154
Description of thestatements 155
Metasyntax e e e e e e 155
Statementsyntax e e 157
Indirect operand specification oL 161
Structure of the statement descriptions 162
Operandsyntax 0 i i i it e e e e e e e e e e e 164
Charactersand symbols L 166
Variables e 169
Numbers e e 171
Stings 172
Linesandlineranges 177
Columnsand columnranges e 180
File names and other system designations 181
Other e e 184

U41709-J-2125-1-76

Contents

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Statementoverview L e e e 187
EDT parameter settings e 187
File processing i i i i i e e e e e e 190
Old statements for processing SAM and ISAMfiles 191
Old statements for processing POSIXfiles 192
Moving or positioning the work file 192
Treatmentof linenumbers o 0 193
Creating, inserting and modifyingtexts 194
Copying and transferringlines 196
Deleting work files, lines, texts andrecordmarks 196
Comparingworkfiles e 197
Switching the work mode or operatingmode 197
Output lines and information 198
Interrupting or terminating EDT 199
Runtime control in EDT procedures 200
Administering and executing EDT procedures 201
Callingauserprogram & i i it v it i e e e e 202
Working with job variables, 202
Working withSvariables 203
EDT statements (alphabetical) 205
@< -—Move datawindowtotheleft 205
@<< - Move data window to the start of therecord 207
@+ -—Increase the currentlinenumber 208
+ — Move datawindowforwards 209
++ — Move to the last (marked) record in the work file 21
$0..$22 - Changeworkfile, 212
@- - Decrease the currentlinenumber 213

U41709-J-2125-1-76

Contents

9.8

9.9

9.10
9.1
9.12
9.13
9.14
9.15
9.16
9.17
9.18

9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.35
9.36

— —Move datawindowbackwards 214
—— — Move to the first (marked) record in the work file 216
@> - Move data windowtotheright 217
@: - Declaring a statementsymbol 219
—Outputthelaststatement, 221
@AUTOSAVE — Automaticsaving i i i v it 223
@BLOCK-Setblockmode uienen. 225
@CHECK (format 1) —Checklines 226
@CHECK (format 2) — Check lines for convertibility 228
@CLOSE — Write back and close afile 231
@CODENAME (format 1) — Define the character set for work files

andstringvariables e e e e 234
@CODENAME (format 2) — Define the communications characterset 236
@COLUMN - Insert text and delete blanks atend ofline 237
@COMPARE (format 1) — Compare two work files 240
@COMPARE (format 2) — Compare two work files linebyline. 248
@CONTINUE —Empty statement 253
@CONVERT - Convert uppercaseorlowercaseu... 255
@COPY (format1)-Readinafile 256
@COPY (Format 2) — Copy lines or string variables 260
@CREATE (format1)—Checkline, 265
@CREATE (format 2) — Assign string to string variable 268
@CREATE (format 3) — Read in string and createline 270
@CREATE (format 4) — Read in line and assign to string variable 272
@DELETE (format 1) — Copy lines and string variables 274
@DELETE (format 2) — Completely delete workfiles 277
@DELETE (format 3) — Delete files and libraryelements 278
@DELETE (format 4) — Deleterecordmarks 280
@DELIMIT — Declare text delimitercharacters 281
@DIALOG —Callscreendialog i 282

U41709-J-2125-1-76

Contents

9.37
9.38
9.39
9.40
9.41
9.42
9.43
9.44
9.45
9.46
9.47
9.48
9.49
9.50
9.51
9.52
9.53
9.54
9.55
9.56
9.57
9.58
9.59
9.60
9.61
9.62
9.63
9.64
9.65

@DO (format 1) — Start EDT procedures from work files 285
@DO (format 2) — Activate or deactivate logging 295
@DROP — Delete work files e 297
@EDIT (format 1) — SwitchtoFmode 299
@EDIT (format 2) — Set input from terminal 300
@EDIT (format 3) — Set input from SYSDTA 301
@EDIT (format 4) — Control fullrecord display 303
@ELIM — Delete records inan ISAMfile 304
@END - Exit current work file or terminate the EDT session 307
@ERAJV —Delete jobvariables 309
@EXEC—Startprogram i e e e e e e e 310
@FILE — Presetfilename, 312
@FSTAT - Output BS2000 catalog information 314
@GET -Read ISAMfile e 317
@GETJV - Read value of jobvariable 320
@GETLIST — Read elements of alistvariable 322
@GETVAR-ReadSwvariable 324
@GOTO - Branch statementinprocedures 326
@HALT —Terminate EDT @ i i i i i i i e et e e e 328
@HEX — Set hexadecimalmode 330
@IF (format 1) — Query errorswitches 331
@IF (format 2) — Compare strings, line numbers and numbers 333
@IF (format 3) — Query @ON hits or work filestatus 341
@IF (format 4) — Query job and user switches 344
@IF (format 5) — Query EDT parameter settings 346
@INDEX — Control line numberdisplay 348
@INPUT (format 1) — Start @INPUT procedure 350
@INPUT (format 2) — Start @INPUT procedure fromDMSfile 353
@INPUT (format 3) — Define EDT inputmode 357

U41709-J-2125-1-76

Contents

9.66
9.67
9.68
9.69
9.70
9.7
9.72
9.73
9.74
9.75
9.76
9.77
9.78
9.79
9.80

9.81
9.82
9.83

9.84
9.85
9.86
9.87
9.88
9.89
9.90
9.91
9.92
9.93

@LIMITS - Output line numbers and number oflines 358
@LIST - Print work file ranges or string variables 359
@LOAD —Load program o i i i e e e e e e e e e e e 365
@LOG-Controllogging 0 i i it e e e e e e e e e 367
@LOWER - Lowercase and uppercaseoninput 368
@MODE - Change operatingmode 370
@MOVE — Move lines or stringvariables 37
@NOTE—Empty statement 375
@ON (format 1) — Output lines or string variables containing the search term . 377
@ON (format 2) — Output the start column ofa hitstring 382
@ON (format 3) — Mark lines withsearchterm 386
@ON (format4) — Copy markedlines 389
@ON (format 5) — Copy lines with searchterm 391
@ON (format 6) — Replace hitstring 394
@ON (format 7) — Replace or insert before or after the

hitstring L e e e e e e e e e e e e e e e e 396
@ON (format 8) — Delete hitstring 400
@ON (format 9) — Delete before or after the hitstring 402
@ON (format 10) — Delete lines or string variables which contain the

searchterm e e e e e e e e 404
@OPEN (format 1) —Openandreadafile 407
@OPEN (format 2) — Real processing of an ISAMfile 411
@P-KEYS — Define programmable keys 414
@PAGE —Formfeed @ @ i e e e e e 416
@PAR - Define EDT parametersettings 417
@PARAMS - Define procedure parameters 430
@PREFIX —Insertstringas prefix, 437
@PRINT - Print or output line ranges or the content of string variables 440
@PROC (format 1) — Switchworkfiles 444
@PROC (format 2) — Output information about work files 447

U41709-J-2125-1-76

Contents

9.94

9.95

9.96

9.97

9.98

9.99

9.100
9.101
9.102
9.103
9.104
9.105
9.106
9.107
9.108
9.109
9.110
9.111
9.112
9.113
9.114
9.115
9.116
9.117
9.118
9.119
9.120
9.121
9.122

@QUOTE - Redefine delimiter character for strings 450
@RANGE - Declare linerangesymbol 451
@READ —-Read aSAMfile 452
@RENUMBER —Renumberlines, 455
@RESET - Reset EDT and DMS error switches 457
@RETURN — Return from EDT procedures 458
@RUN-Calluserroutine i i i ittt e 460
@SAVE — Write as ISAMfile 462
@SCALE - Outputcolumncounter 465
@SDFTEST —Syntaxcheck by SDF 467
@SEARCH-OPTION - Set default value for searching with @ON 471
@SEPARATE — Performlinebreak 473
@SEQUENCE (format 1) — Perform line numbering 475
@SEQUENCE (format 2) — Adopt linenumbers 477
@SEQUENCE (format 3) — Check linenumbers 479
@SET (format 1) — Supply values for integer variables 481
@SET (format 2) — Supply values for string variables 484
@SET (format 3) — Supply values for line number variables 486
@SET (format 4) — Store values of variables 488
@SET (format 5) —Dateandtime 490
@SET (format 6) — Modify current increment and line number 492
@SETF - Change work file and setposition 494
@SETJV - Catalog job variable and assignvalue 497
@SETLIST - Extend listvariable 499
@SETSW - Setjoband userswitches 501
@SETVAR - Declare S variable and assignvalue 503
@SHIH - Output statementbuffer 505
@SHOW (format 1) — Output directory 507
@SHOW (format 2) — Output supported charactersets 514

U41709-J-2125-1-76

Contents

9.123
9.124
9.125
9.126
9.127
9.128
9.129
9.130
9.131
9.132
9.133
9.134
9.135
9.136
9.137
9.138
9.139
9.140
9.141
9.142
9.143
9.144
9.145

@SORT -Sortlineranges i 516
@SPLIT - Display 2workwindows 518
@STAJV — Output job variable information 520
@STATUS - Display current settings and contents of variables 523
@SUFFIX - Append strings i i i i i i i e e e e e e e 527
@SYMBOLS —Definesymbols 529
@SYNTAX —Settestmode it 531
@SYSTEM - Enter systemcommands 533
@TABS (format 1) — Define and output hardwaretabs 536
@TABS (format 2) — Define and output softwaretabs 538
@TABS (format 3) — Expand software tabs in work files 542
@TMODE - Output task attributes 543
@UNLOAD —Unloadamodule 544
@UNSAVE - Delete SAM or ISAMfile 546
@USE - Define external statementroutines 547
@VDT -Controlscreenformat 551
@VTCSET -Controlscreenoutput 552
@WRITE (format 1) —Writefile 553
@WRITE (format 2) — Write SAMfile 558
@XCOPY - Read POSIXfile 561
@XOPEN —Open and read a POSIXfile 563
@XWRITE - Save content of current work file in a POSIXfile 565
0..22 — Switchwork file e 567

U41709-J-2125-1-76

Contents

10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25

Statement codes in F mode (alphabetical) 569
+ — Move forward in the work window 569
+ — Move forward in work window by structuredepth 570
*—Deletecopy buffer e 571
——Move backward inworkwindow, 572
— — Move backward in work window by structuredepth 572
A —-Copy ormove afteraline 574
B - Copy or move beforealine 576
C-Collectlinesforcopying i ... 577
D—-Deleterecords L e e e e 579
D—-Deleterecordmark 579
E-Insertcharacters e 580
H — Activate hexadecimal mode forarecord 582
| — Activate permanent insertfunction 0oL, 583
J-—Jointworecords 586
K - Copy a line to the statementline 587
L—-Convertlinesintolowercase, 589
M- Collectlinesformove 590
O-Copyormoveonalinerange 592
R - Collect lines for multiple copying 597
S — Position the work window (horizontally and vertically) 599
T-Syntaxtestby SDF i e 601
U-Convertlinesintouppercase 606
X—-Modifylines e e e e 607
1.9—-Insertlines e e e e 608
1.9-Setrecordmark e e 609

U41709-J-2125-1-76

Contents

11

1.1
11.2
11.3
1.4
11.5

11.6
11.6.1
11.6.2
11.6.3
11.6.4
11.6.5
11.6.6
11.6.7
11.6.8
11.6.9
11.6.10
11.6.11

11.7

12

121

12.2
12.21
12.2.2
12.2.2.1
12222
12.2.2.3
12224
12.2.2.5
12.2.3
1224
12.2.4.1
12242
12243
12244
12.2.5

Compatibilitymode e 611
@CODENAME - Definecharacterset 611
@IF (format 5) — Query EDT parameter settings 613
@MODE - Change operatingmode 614
Activating compatibility and Unicodemode 615
Subroutine interfaces and operatingmodes 616
Charactersets o e e e e e e e 618
Supported charactersets L L 618
Stings e 619
Communications characterset 619
Character setsinworkfiles 619
Readinginfiles 620
Writingfiles L 620
Copying between work files L o 620
Character setinstatements Lo 621
String variables L 621
Svariablesandjobvariables o 622
POSIXfiles 622
Starting EDT e e e e e e e e e e 622
Migrationaids e e e 623
Compatibilitymode 623
Unicodemode e e e e e e e e e e e e e 623
Functions that are no longer supported 624
Modified statementactions Lo o 625

I/Ostatements 625

Work file statements 626

ONstatements e 626

Tabulators 627

Miscellaneous e e 627
Changes in the screen display and on input/output 629
Changes in the general or work file-specific parameter settings 630

Charactersets e 630

Linenumbers e e 631

Work file-specific 631

Miscellaneous e e 631
Changes to the subroutineinstance 632

U41709-J-2125-1-76

Contents

13

131
13.2
13.3
13.4
13.5

14

141
14.2
14.3

14.4
14.41
14.4.2

MeSSages e e e e e e e e e e e e e e e e e e e 635
Message weight (severity) o e 635
Errorswitch @ i o e e e e e e e e e e e e e e e e e 636
Messages which requirearesponse 636
Messageoutput e e e e 637
Messagetexts e e e e e e 638
Logistics e e e e e e e e e e e e 721
Software requirements e e e e 721
Scopeofdelivery e e e e e e 722
Productstructure @ @ i i i i it e e e e e e e e e e e 723
Installation i i i e e e e e e e e e e e e e e e e e e 724
Publicinstallation 724
Private installation e 726
GloSSary i i e 729
Related publications e 735
INdeX e 737

U41709-J-2125-1-76

1 Preface

EDT is the BS2000 file editor, used for the user-friendly creation and editing of BS2000 files
in SAM and ISAM formats, as well as text-type library elements and POSIX files.

The repetitive operations which occur during editing such as deleting, modifying, inserting
and copying records and characters, searching for records containing certain character
strings, outputting records etc. are performed using powerful yet easy-to-learn statements.

EDT V17.0A can be used in an extended Unicode mode and a V16.6-compatible compati-
bility mode.

e In Unicode mode, EDT V17.0A can edit character sets coded in Unicode and other
character sets. Users benefit from easy-to-handle support capabilities such as, for
example, the ability to edit differently coded files in various EDT work files simulta-
neously. In addition, there is no longer any restriction to line length (previously 256
characters). When reading from and writing to files, EDT is able to process all the record
lengths provided by DMS and LMS. In the case of POSIX files, it is able to process files
with a maximum length of 32768 characters.

The fact that a Unicode representation is used internally in EDT means that the compat-
ibility of all the various interfaces at which users previously had direct access to the
internal EDT data cannot be maintained. This applies to the old L mode subroutine
interface, the former @RUN interface and the Locate mode of the IEDTGLE interface.
These interfaces can therefore no longer be used in Unicode mode.

e The compatibility mode provides the full functionality of EDT V16.6B with only slight
extensions.

Even though EDT has been designed to be an interactive program, itis also able to process
files and library elements in batch mode.

File editing operations which have to be performed frequently in identical or similar forms
can be programmed using EDT procedures.

EDT can call other programs as subroutines and can itself be called as a subroutine by a
user program.

U41709-J-2125-1-76 17

Structure of the EDT documentation Preface

1.1

1.2

Structure of the EDT documentation

The manuals

e EDT V17.0A Unicode Mode Statements

e EDT V17.0A Unicode Mode Subroutine Interface
describe EDT's Unicode mode. The manuals

e EDT V16.6B Statements

e EDT V16.6A Subroutine Interface

contain a description of the compatibility mode.

In addition, the EDT V17.0A Statements manual contains a section describing the exten-
sions in the compatibility mode compared to EDT V16.6B.

The manuals dealing with the EDT statements describe the fundamental concepts of EDT
in each of these modes and can be used as a reference for the many EDT statements.

The manuals dealing with the subroutine interface describe how the user can write
programs which can be called by EDT or which themselves call EDT as a subroutine can
be programmed. These manuals can only be used properly in combination with the
manuals describing the EDT statements.

Target groups for the EDT manuals

While the manual dealing with the EDT statements is intended for EDT novices and users,
the manual dealing with the EDT subroutine interfaces is intended for experienced EDT
users and programmers who want to employ EDT in their own programs.

This manual, which deals with the EDT statements, is intended for users who are not yet

familiar with EDT through to experienced EDT users for whom chapter 9 “EDT statements”
which contains a description of all the EDT statements will constitute a valuable reference
document. The section on “EDT procedures” will be of great help to EDT users who want
to write their own EDT procedures or modify existing EDT procedures.

In order to call EDT, you should be familiar with the most important BS2000 commands.

18

U41709-J-2125-1-76

Preface

Structure of the EDT statements manual

1.3 Structure of the EDT statements manual

This manual first provides an introduction to EDT, followed by a description of files and
library elements as well as the use and creation of EDT procedures. It also provides an
overview of all the EDT statements together with a detailed description and a large number
of examples.

The extensions to the compatibility mode and the way it interacts with Unicode mode are
presented in a separate chapter.

This manual covers the following individual topics:

Modified and new functionality in EDT V17.0A

major changes and important new features in EDT V17.0A
Introduction to the new functionality.

Underlying EDT concepts

The fundamental concepts and mechanisms on which EDT is based.
This includes the handling of work files, operations involving lines, character sets and
EDT variables as well as the use of EDT procedures.

Running EDT

The EDT start command. Starting, interrupting and terminating an EDT session.
Monitoring the EDT session, input/output, job switches and access protection.

EDT work modes

File processing in F mode: screen-oriented operation of EDT, description of the
statement codes and statements which can only be used in F mode.
File processing in L mode: line-oriented operation.

File processing
Processing of all the file types supported by EDT: ISAM, SAM, POSIX files and libraries.
EDT statements

A thematically organized overview of the statements. Presentation of the metasyntax,
statement syntax and operand syntax.
EDT statements in alphabetical order accompanied by numerous examples.

In many statements, the subdivision and designation of the formats is now clearer than
the presentation in the EDT V16.6B manual. However, these changes are simply
modifications to the presentation which do not reflect any technical differences.

U41709-J-2125-1-76 19

Structure of the EDT statements manual Preface

— Compatibility mode

Description of the extensions to the compatibility mode and the way it interacts with
Unicode mode. New statements in compatibility mode.

— EDT messages

List of all the EDT messages together with their meanings and the actions to be taken
in response to them.

— Logistics

Requirements and procedures for the installation and start-up of EDT V17.0A.

20 U41709-J-2125-1-76

2 Modified and new functionality in EDT V17.0A

EDT version V17.0A provides a range of important new functions.

For example, it supports the processing of files coded in Unicode and the restriction of
record lengths to 256 characters has been eliminated.

A brief introduction to the modified and new functionality is provided below.

2.1 Introduction to the EDT operating modes

The most important new feature of EDT V17.0A compared to the preceding versions is the
capability to process files coded in Unicode. This support was introduced in order to achieve
the following two aims:

e Users who want to process files coded in Unicode should be able work in an easy-to-
use environment. This includes, for example, the ability to edit differently coded files in
various EDT work files simultaneously as well as the elimination of the line length
restriction (previously 256 characters).

e Users who want to continue to edit files coded in 7-bit or 8-bit character sets as before
should be able to make use of functions and interfaces compatible with EDT V16.6B.
This relates, in particular, to the execution of EDT procedures and operations at the
subroutine interfaces.

The increase in the permitted record length together with the fact that a Unicode represen-
tation is used internally in the work files means that the compatibility of all the various inter-
faces at which users previously had direct access to the internal EDT data cannot be
maintained. This applies to the old L mode subroutine interface, the former @RUN interface
and the Locate mode of the IEDTGLE interface. It is therefore no longer possible to use
these interfaces if you wish to make use of the new functionality.

Nevertheless, programs which simply use the EDT subroutine interfaces to permit their
users to edit files without having to exit the current program should also be able to operate
with Unicode files with the smallest possible number of changes.

U41709-J-2125-1-76 21

Unicode mode

Modified and new functionality in EDT V17.0A

2.2

2.21

This is possible because it is now possible to run EDT V17.0A in two modes:

In Unicode mode which has been extended for the processing of Unicode files but in
which there are certain incompatibilities, in particular at the level of the subroutine
interface.

In compatibility mode which offers the full functionality of EDT V16.6B but which does
not support the processing of Unicode files, increased record lengths or locally
configured character sets.

For more information on the operating modes and the way they interact see chapter 11.

Unicode mode

Additional functions - overview

In Unicode mode, the following additional functions are available:

Processing of files with different character sets in the EDT work files, and in particular
files with Unicode coding (UTF16, UTFE or UTF8) or ISO coding (the special treatment
of POSIX files coded in ISO is eliminated in the new approach). Interpretation of a
substitute representation of Unicode characters.

Processing of files with record lengths of up to 32768 bytes (upper limit of DMS).
Consistent handling up empty records.
All 23 work files are also available in F mode.

Consistent extension to many statements.

22

U41709-J-2125-1-76

Modified and new functionality in EDT V17.0A Unicode mode

2.2.2 Additional functions - explanations

Local character sets

In EDT V17.0A Unicode mode, it is possible to define a different character set for each work
file. This includes the 7-bit and 8-bit character sets which were supported in the past as well
as the Unicode character sets UTF8, UTF16 and UTFE, the ISO character sets supported by
XHCS and the user-defined character sets declared in XHCS.

In statements both in literals and in data, it is possible to specify Unicode characters by
means of a substitute representation by defining the hexadecimal value of the corre-
sponding UTF16 code.

The character sets for the individual work files are set either implicitly by reading a corre-
spondingly coded file or explicitly via the @ CODENAME statement.

A detailed description of working with local character sets, and in particular of data transfer
between work files or between EDT variables and work files can be found in the section
“Character sets” on page 47.

Long records

The restriction of the record length to 256 characters is eliminated in EDT V17.0A Unicode
mode. When reading from and writing to DMS files, EDT is able to process records of a
maximum length of 32768 bytes (depending on file format). This limit is imposed by the
DMS and refers to the byte count. In the case of library elements, the limit imposed by LMS
is 32763 bytes. Because when Unicode character sets are used, characters may be coded
by multiple bytes, the permitted number of characters per record may be lower. Internally,
EDT works with long buffers with the result that this restriction only has an impact when the
records are converted into the work file character set for write operations. EDT provides a
statement (@CHECK, Format 2) which can be used to check whether records need to be
truncated on write operations.

In the case of POSIX files, the line length is restricted only by the maximum EDT line length
of 32768 characters (not bytes).

The elimination of the record length restriction applies equally to records in work files, string
variables and statement lengths and has an effect on the statement syntax (e.g. in the case
of column specifications), the layout of the status display, the subdivision of the screen on
@EDIT LONG and on the subroutine interface.

U41709-J-2125-1-76 23

Unicode mode Modified and new functionality in EDT V17.0A

Consistent handling of empty lines

The files that are to be processed by EDT may contain records of length 0.

In the case of POSIX or SAM files, the records genuinely have length 0. In the case of ISAM
files with standard attributes, the records may have the length 8 or 16 (in the case of files
coded in UTF16).

To permit the depiction of records of length 0 in the data window, EDT in Unicode mode
indicates the end of the record using a terminal-specific logical line end character [LZE].
The terminal fills the remainder of the screen to the right of with protected NULL
characters (X' 00"). If the end of the record is located outside of the data window then
is not displayed. The screen line then ends with the last character of the record that is still
visible or consists only of protected NUL characters.

A record of zero length is therefore depicted in the data window by a screen line which
consists only of the character in column 1 and protected NULL characters (empty
line). If is entered in column 1 of a line then a record of length 0 is created for this line
in the work file.

Empty lines should be distinguished from new lines which EDT provides in F mode after the
last record in the file or during the processing of the statementcodes 1. .9 or I. These lines
do not (yet) correspond to any record in the work file and consist only of NULL characters
(X'00") without (and which can be overwritten).

The character can usually be omitted during input.

It only has to be entered when the record is intended to end with NULL characters. When
input is performed in F mode, EDT ignores all NULL characters at the end of the entered
line, i.e. all the NULL characters up to the first character which is not NULL (this can be an
or another character) are truncated from the right. The itself is ignored on input.
Since new lines only consist of NULL characters they are ignored overall on input and are
not inserted in the work file.

In contrast, entering an in column n of a new line would cause a record with n—1
blanks to be inserted by default in the work file after data transfer (or alternatively a record
with n—1 NULL characters depending on the definition made using @SYMBOLS FILLER).
In particular, a record of length 0 would be inserted for n=1.

The terminal does not permit any entries to the right of the character in a line. When
adding entries to a line, it is therefore necessary to activate the terminal insertion mode or
to overwrite the character. This incompatibility with EDT V16.6B is tolerated since it
permits the consistent handling of blank lines in Unicode mode.

For a more precise description of program behavior on the entry of lines which contain NULL
characters or fill characters, see section “F mode” on page 101.

24

U41709-J-2125-1-76

Modified and new functionality in EDT V17.0A Unicode mode

2.2.3

Availability of all work files

In F mode, it is now possible to switch to one of the work files 10 to 22 by entering the corre-
sponding number in the statement line. In the past, this was only possible in L mode with
the help of the @PROC statement (see also section “F mode” on page 101).

Uniformity of the statement interfaces

In EDT V17.0A, it is now possible to access files of all supported file types using a uniform
set of statements (@QOPEN, @CLOSE, @COPY, @WRITE) (see also “File processing” on
page 131 and the descriptions of the individual statements).

To make this possible, the statements have been extended by the corresponding operands.
Although it is still possible to use the old statements, users are recommended to employ
only the new statements.

For reasons of completeness and consistency, new operands have also been introduced
for other statements. For the related details, see the statement descriptions.

Functions that are no longer supported

In Unicode mode, the following EDT V16.6B functions are no longer available:
e Output to SDF list variables on @LOG

e V15-compatible L mode syntax control

e Support for the old L mode subroutine interface

e Support for the TEDTGLE interface's Locate mode.

e Support for the previous @RUN interface. A new @RUN interface is now available.
e Support for terminals with Arabic or Farsi character sets.

e Support for 3270 terminals (IBM) and printer terminals.

e The @CODE statement whose use in combination with XHCS was already indicated
as pointless in the EDT V16 manual.

e The @UPDATE and @ZERO-RECORDS statements.

U41709-J-2125-1-76 25

Compatibility mode Modified and new functionality in EDT V17.0A

2.3

2.31

2.3.2

2.3.3

2.3.4

Compatibility mode
The compatibility mode provides the full functionality of EDT V16.6B including the old L

mode subroutine interface. The extended functions provided in Unicode mode are not
available in compatibility mode.

The EDT V17.0A compatibility mode has simply been extended by a small number of
required functions.

For a detailed description of compatibility mode see chapter 11.

@CODENAME statement
The @CODENAME statement has also been extended in compatibility mode. This means

that it is possible to perform targeted modifications to the character set for migration
purposes even in non-empty work files.

@IF statement

The EDT V17.0A compatibility mode has been extended by format 5 of the @IF statement.
This makes it possible to query the current operating mode and react if necessary.

@MODE statement

The new @MODE statement is also present in compatibility mode and makes it possible to
switch to Unicode mode.

Messages

The message EDT4983 may occur in EDT V17.0A compatibility mode.

26

U41709-J-2125-1-76

3 Underlying EDT concepts

3.1

3.1.1

This section describes the underlying concepts and high-level mechanisms which are used
in EDT.

Work files

Users have 23 work files in virtual memory available to them for file processing purposes.
These are work files 0 to 22. The work files are able to accommodate records of a length
up to 32768 characters. This means that it is possible to process DMS files and library
elements with the maximum permitted record length. The maximum number of records
permitted in a work file is 99999999.

In work files, it is possible to enter new data, read in existing files for processing, generate
and edit data using EDT statements or copy data from other work files.

In F mode, work file 9 is used by a number of EDT statements in order to store results
(@COMPARE, @FSTAT, @SHIH, @SHOW, @STAJV, @STATUS).
This may cause existing content to be deleted without warning.

However, if a file is open in work file 9 then a message EDT5189 is output and the related
statement is not executed. Work file 9 should therefore only be used as a temporary help
file.

Properties of work files

Each work file has certain properties which can be modified using EDT statements and
which have an effect on the operation of EDT statements or the way work files are
displayed. The table below collates the various work file properties.

U41709-J-2125-1-76 27

Work files

Underlying EDT concepts

Properties Initial Value can be changed by
value

General

Current character set for the | *NONE @CODENAME

work file implicitly via data input (file read operations,
screen input, statements)

Work file occupied (only for |notused |@PROC, @DELETE, @DROP, used in F

work files 1 to 22) mode

Work file empty Yes Read file, screen input, miscellaneous state-
ments

Work file modified No Modify work file, @DELETE

Save file present No @AUTOSAVE and modify work file,
@DELETE

Line numbers

Current line number 1. @SET (Format 6), @+, @-, implicitly via

(symbolic line number *) data input (read file, screen input, statements)

Current increment value 1. @SET (Format 6), @PAR INCREMENT

Current renumbering value | Off @PAR RENUMBER

Lowest assigned line number [0.0000 Implicitly due to file read operation, screen

(display by means of operation, miscellaneous statements

@LIMITS)

Symbolic line number % = * Implicitly due to file read operation, screen
operation, miscellaneous statements

Highest assigned line number |0.0000 Implicitly due to file read operation, screen

(display by means of operation, miscellaneous statements

@LIMITS)

Symbolic line number $ = * Implicitly due to file read operation, screen
operation, miscellaneous statements

Symbolic line number ? 0.0000 @ON

Memory area @SET (Format | Empty @SET (Format 6)

6)

28

U41709-J-2125-1-76

Underlying EDT concepts

Work files

window

Properties Initial Value can be changed by
value

File processing

Link to file name (local @FILE | No link @FILE, @READ, @GET, @DELETE

entry)

Link to open file No link @OPEN, @CLOSE

Default library name *NONE @PAR LIBRARY

Default element type S @PAR ELEMENT-TYPE

Default character set for a EDFO41 @PAR CODE

POSIX file

Input

Differentiation between Off @PAR LOWER

uppercase and lowercase

Maximum record length for |32768 @PAR LIMIT

entry in F mode

Escape character for Unicode | *NONE @PAR ESCAPE-CHARACTER

substitute representation

Unicode substitute character | Off @PAR DATA-REPLACEMENT

including for data

Representation of work file

Full display of records in F Off @PAR EDIT-LONG

mode

Hexadecimal mode Off @PAR HEX

Data window and statement | Off @PAR EDIT-FULL

code column are both

overwritable simultaneously

Ruler in data window Off @PAR SCALE

Information line in data Off @PAR INFORMATION

Data window-specific representation

window 1

First line displayed in 0.0000 @SETF, +, -, ++, ——, statement codes
data window 1 +, —, B, I, S, 1..9indatawindow 1
Firstcolumn displayedindata |1 @SETF, >, <, <<in data window 1
window 1

Line number display in data | Off @PAR INDEX in data window 1

U41709-J-2125-1-76

29

Work files Underlying EDT concepts

Properties Initial Value can be changed by

value
First line displayed in 0.0000 @SETF, +, —, ++, ——, statement codes
data window 2 +, -, B, I, S, 1..9indatawindow 2
First column displayed indata |1 @SETF, >, <, <<in data window 2
window 2
Line number display in data |On @PAR INDEX in data window 2
window 2
Other
Program name for *NONE @PAR SDF-PROGRAM

SDF syntax check

Type of program name for INTERNAL | @PAR SDF-NAME-TYPE
SDF syntax check

Character for data record *NONE @PAR SEPARATOR

separation

Character for structure sheets | @ @PAR STRUCTURE
Write protection at record Off @PAR PROTECTION
level

Indicator for hits on last @ON | Off @ON

for @IF (Format 3)

Column for hits on last @ON |0 @ON

for @IF (Format 3)

The work file properties defined with the @PAR statement can be reset to their initial values
using @PAR $0..$22 without the need for any further operands.

3.1.2 Current work file

At any time there is precisely one work file which is referred to as the current work file. Data
is entered and EDT statements are executed in the current work file if no other work file is
explicitly specified in the statement).

In F mode, a section of the current work file is usually displayed on the screen. The number
of the current work file is displayed in the status bar. It is possible to move the displayed
section of the work file (see the statements @SETF and +, -, ++, --, >, <, <<) or change the
current work file (see statements @SETF, $0..$22 and 0..22).

30 U41709-J-2125-1-76

Underlying EDT concepts Work files

3.1.3

It is also possible to divide the work window and display sections from two work files simul-
taneously (see the section on the F mode). In this case, the current work file switches
between the two displayed work files. When a statement or statement code is processed
(see section “Processing sequence” on page 115) the current work file is always considered
to be the work file containing the statement line or statement code column from which the
current statement or statement code comes. When input in the data window is processed,
the current work file is considered to be the work file in whose data window the input is
made.

In L mode, the number of the current work file can be displayed by means of the @PROC
statement. The current work files are switched using the statements @SETF, @ PROC and
@END. However, an active work file (which contains an active @DO

procedure) can never be made into the current work file.

When EDT is started, work file 0 is the current work file.

Empty work file

An empty work file is a work file which contains no records. This is generated when
— EDT is started or

— when the work file is completely deleted with @DELETE (Format 2), @DROP or other
statements which implicitly execute a @DELETE (Format 2) or

— in F mode, when all the lines are deleted with the statement code D or M or when all the
lines are deleted with @DELETE (Format 1), @MOVE or @ON (Format 8 or 10).

In dialog operation, an empty work file can be recognized by the fact that it contains no
records. In EDT procedures, it is possible to use the @IF statement (Format 3) to check
whether a work file is empty.

Itis possible to write an empty work file. In such cases, the character set configured for the
work file may also be configured for the file depending on the operands set for the relevant
statement.

The properties of a work file when EDT is started are indicated in the table in the preceding
section. All the work file properties defined with the @PAR statement, with the exception of
those explicitly listed below, are retained following a delete operation.

The table below collates the additional properties of a work file following deletion.

U41709-J-2125-1-76 31

Work files

Underlying EDT concepts

Properties Values after deletion Values after the deletion
with @DELETE (Format | of all the present
2) or @DROP lines

General

Current character set for the *NONE Not changed

work file

Work file occupied (only for work | None (apart from current) |Yes

files 1 to 22)

Work file empty Yes Yes

Work file modified No Yes

Save file present

Save file deleted

Save file deleted

Line numbers

Current line number (symbolic 1. 0 + Current increment
line number *) value
Current increment value 1. Not changed
Lowest assigned line number 0.0000 0.0000
(display by means of @LIMITS)

Symbolic line number % 1. ==%*

Highest assigned line number 0.0000 0.0000
(display by means of @LIMITS)

Symbolic line number $ 1. ==%
Symbolic line number ? 0.0000 Not changed
Memory area Empty Not changed
(Format 6)

File processing

Link to file name No link Not changed

Link to open file

No link (implicit @CLOSE
executed)

Not changed (can be
revoked with @CLOSE)

Input

Unicode substitute character
including for data

Off

Not changed

32

U41709-J-2125-1-76

Underlying EDT concepts

Line numbers

Properties Values after deletion Values after the deletion
with @DELETE (Format | of all the present
2) or @DROP lines

Data window-specific representation

First line displayed in 0.0000 0.0000

data window 1

First column displayed in 1 Not changed

data window 1

First line displayed in 0.0000 0.0000

data window 2

First column displayed in 1 Not changed

data window 2

Other

Indicator for hits on last @ON for | Off Not changed

@IF (Format 3)

Column for hits on last @ON for |0 Not changed

@IF (Format 3)

3.2 Line numbers

Every line in a work file has an 8-digit line number (range of values 0000. 0001 to
9999.9999). However, there does not have to be a line for every line number.

The line numbers permit the unique identification of the lines in a work file. In addition, the
numerical values of the line numbers define a sequence for all the lines in a work file (if a
line has a lower number than another then it must precede the other line).

This means that it is possible to specify line ranges by defining the lowest and highest line

number in the range.

In many EDT statements which process lines in whatsoever form, line numbers are used in
order to define the lines or line ranges that are to be processed by the statement.

U41709-J-2125-1-76

33

Line numbers Underlying EDT concepts

3.21

Current line number and current increment

A current line number and current increment are assigned to each work file. In L mode, data
is entered in the line with the current line number.

The new, current line number is then determined on the basis of the previous current line
number plus the current increment value. If WRTRD is used to perform a read operation in L
mode then the current line number is used as a prompt for data entry. A line with the current
line number may exist but this is not obligatory.

In some EDT statements, the location in the work file at which the lines are to be inserted
can be defined by means of a temporary current line number and a temporary current
increment which are specified using the operands of the corresponding EDT statement and
which are valid only in this single statement or, otherwise, assume the role of the current
line number and current increment in this EDT statement. The current line number can also
be changed by running this type of EDT statement.

When EDT is started or after a work file has been completely deleted

(either explicitly or implicitly), the current line number is 1.0000 and the current increment
is 1.0000. The current line number and the current increment can be redefined using the
@SET statement (Format 6) or the current increment can be set separately by means of
@PAR INCREMENT.

The statements @+ and @- are used to redefine the current line number by adding or
subtracting the current increment to or from the previous current line number. If the @EDIT
statement has first been issued with the SEQUENTI AL operand then the current line number
is only formed in this way if there are no lines between the previous current line number and
the new current line number. If this is not the case, the first intervening line number
becomes the current line number. In all cases, the current increment remains unchanged.

The @RENUMBER statement modifies both the current line number and the current
increment. The new current line number is the line number of the last line in the work file
after renumbering plus new current increment defined by means of the @RENUMBER
statement. If only a line number is specified in the @RENUMBER statement then the new
current increment is implicitly defined in the same way on the basis of this line number as,
for example, in the @SET statement, format 6 (see section “Implicit increment assignment”
on page 35).

The current line number and the current increment are also modified by all statements
which completely delete the work file either explicitly or implicitly. After the explicit or implicit
deletion to the complete work file, the current incrementis 1.0000 and the current line
number is 1.0000. However, if the entire work file is implicitly deleted, the current line
number is then usually modified again by the application responsible for deletion.

If the @SET statement (format 6) is used to modify the current line number and the current
increment then the pair of values consisting of the previous current line number and the
previous current increment is saved in a memory area which may contain a maximum of
three such pairs of values (see the description of the @SET statement, format 6).

34

U41709-J-2125-1-76

Underlying EDT concepts Line numbers

3.2.2

3.2.3

If the @SET statement (format 6) is specified without parameters then the last pair of values
saved in this memory area becomes the current line number and current increment again.
All the statements which explicitly or implicitly delete the work file also completely delete
this memory area.

Symbolic line numbers

Alongside the line number variables (#L00. .#L20) which can be assigned any line
numbers, there are also four special characters (*, %, $, ?)which represent symbolic
line numbers.

The current line number can be addressed via the symbolic line number *, the lowest line
number in a work file by the symbolic line number % and the highest line number in a work
file by the symbolic line number §.

When EDT is started, these three symbolic line numbers have the value 1.0000. The
symbolic line number ? contains the first hit line returned by a preceding @ON statement.
When EDT is started, it has the value 0.0000 and is only modified by @ON statements
which return a hit. The four symbolic line numbers *, %, $ and ? are work file-specific.
In addition, the @DO statement (format 1) makes it possible to define a special character
as a loop character in a @DO procedure. This loop symbol is assigned a sequence of
values which are defined by means of a start value, an end value and an increment (which
must also be specified in the @DO statement).

In the procedure, this special character can then be used like a symbolic line number repre-
senting the current value of the loop symbol in EDT statements. For the special characters
that can be used as the loop symbol, see the description of the @DO statement (format 1).

Implicit increment assignment

If, in the case of statements for which both a line number and an increment can be specified
(e.g. @SET, format 6), only a line number is specified then the increment is implicitly
defined by the specified line number (the line number and increment may be either the
current line number and current increment or may take the form of specifications which
apply only to the statement in question).

If the expression which defines the line number contains only line number variables
(#LO. .#L20) or symbolic line numbers (%,*,$,?) or integer variables (#10. .#120) or
relative line number specifications (nL) or a combination of these then the new current
increment is 0.0001.

If a numerical line number specification forms part of a statement then the number of
decimal places in this numerical line number specification (maximum 4) determines the
current increment. If no decimal place is present then the current increment is 1, if one
decimal place is present then the current increment is 0.1 etc.

If four decimal places are present, the current increment is 0.0001.

U41709-J-2125-1-76 35

Line numbers Underlying EDT concepts

3.2.4 Line number assignment

3.24.1

Both the inclusion of new lines in a work file by means of EDT statements (e.g. by reading
a file or copying lines etc.) and the deletion of lines if the previous last line in the work file
is one of the deleted lines usually result in a modification to the current line number (there
are a few exceptions where the current line number remains unchanged). The new current
line number is usually determined from the line number of the last line in the work file plus
the current increment. However, in some cases, the current line number is the line number
of the last line inserted by the EDT statement plus the current increment.

The numbering of lines which are newly inserted in a work file is performed using one of the
five procedures listed below.

Using the source line numbers

The line numbers in the source are used. In the case of a copy operation, these are the lines
to be copied from another work file.

When data is read from a file then, in the case of ISAM files, the line numbers are formed
from the ISAM key (unless specified to the contrary). In the case of SAM files with the KEY
operand specified, the first eight characters of each record are interpreted as the line
number.

Any lines with the same line numbers present in the target file are overwritten. The new
current line number is formed from the line number of the last line plus the currentincrement
if the line number of the last line has changed. Otherwise it remains unchanged.

The following table indicates the EDT statements for which this procedure is used (in the
case of some EDT statements, other procedures may be used in the event of a different
format or different operands).

36

U41709-J-2125-1-76

Underlying EDT concepts

Line numbers

Statement Comments on operands General comments
@COPY Read in ISAM files with operand
Format 1 specification
KEY=LINENUMBER
@COPY No target specification
Format 2
@GET With operand specification
NORESEQ
@MOVE No target specification
@ON With operand specification KEEP If the OLD operand is not specified

Format4 + 5

then the target work file is deleted
before insertion.

@OPEN Open ISAM files with The work file must be empty before
Format 1 operand specification the statement is executed.
KEY=LINENUMBER
@OPEN Open a copy of SAM The work file must be empty before
Format 2 files with specification of KEY the statement is executed. If a file is
operand and open a copy of ISAM | already opened with the @OPEN
files statement (format 2) and a new
@OPEN statement (format 2) is
issued then the second @OPEN
statement is implicitly preceded by a
@CLOSE statement, i.e. the work
file is implicitly deleted.
@READ With specification of the KEY

operand

U41709-J-2125-1-76

37

Line numbers

Underlying EDT concepts

3.24.2

Insertion at the current line number

Lines are inserted starting at the current line number. The line numbers of the other lines

that are to be inserted are determined by adding the current increment to the line number
of each last inserted line. Any lines with the same line numbers present in the target file are
overwritten. The new, current line number is then the line number of the last newly inserted
line plus the current increment.

The following table indicates the EDT statements for which this procedure is used (in the
case of some EDT statements, other procedures may be used in the event of a different
format or different operands).

Statement Comments on operands General comments
L mode This not only relates to input at the L
data entry mode prompt but also to
data inputs in EDT procedures and
via the text operand of some L
mode statements.
@GET No operand specification
NORESEQ
@GETLIST
@ON No KEEP operation specified but OLD
Format4 +5 |operand specified
@OPEN Open a copy of SAM The work file must be empty before
Format 2 files without specifying the KEY the statement is executed. This is
operand the case after EDT is started or after
an explicit deletion. In both cases,
the current line number and the
current increment are both 1.0000.
However, it is possible to set a new
current line number and a new
current increment before executing
the statement.
@READ Without specification of the KEY
operand

38

U41709-J-2125-1-76

Underlying EDT concepts

Line numbers

3.243

Insertion after implicit deletion

The work file in which the lines are to be inserted is implicitly completely deleted prior to
insertion, i.e. the current increment and the current line number are both 1.0000 immedi-
ately before insertion. Lines are then inserted starting at the current line number(=

1.0000).

The line numbers of the other lines that are to be inserted are determined by adding the
current increment (= 1.0000) to the line number of each last inserted line. On completion
of the insertion operation, the new current line number is determined from the line number
of the last newly inserted line plus the current increment.

The following table indicates the EDT statements for which this procedure is used (in the
case of some EDT statements, other procedures may be used in the event of a different
format or different operands).

Statement Comments on operands General comments

@ON Without specification of the KEEP

Format4 +5 |and OLD operands

@OPEN Open a copy of SAM Before the second @OPEN

Format 2 files without specifying the KEY statement, a @CLOSE statement is
operand in a work file in which a file |issued, i.e. the work file is implicitly
has already been opened deleted.
with @OPEN (format 2).

@SHIH The output is sent to work file 9.

@STATUS Without target specification on The output is sent to work file 9.
output
in F mode

U41709-J-2125-1-76

39

Line numbers Underlying EDT concepts

3.24.4

Insertion at predefined line number

Lines are inserted starting at the line number specified as an operand in the statement. The
line numbers of the other lines that are to be inserted are determined by adding any
increment specified as an operand in the statement to the line number of the last line to be
inserted.

If no increment is specified in the statement then it is defined implicitly on the basis of the
specified line number (see section “Implicit increment assignment” on page 35) using the
same procedure as for implicitly defining the current increment on the basis of the current
line number. Any lines with the same line numbers present in the target file are overwritten.
The new current line number is formed from the line number of the last line plus the current
increment if the line number of the last line has changed. Otherwise it remains unchanged.

The following table indicates the EDT statements for which this procedure is used (in the
case of some EDT statements, other procedures may be used in the event of a different
format or different operands).

Statement Comments on operands General comments
@COMPARE |Ifthe LIST operand is not specified,
Format 1 output is sent to the screen; if LIST

is specified without a line number
then it is sent to

SYSLST
@COPY With target specification
Format 2
@FSTAT With target specification
@GETJV With output to a line Only one line is generated.
@GETVAR | With output to a line Only one line is generated.
@MOVE With target specification
@SHOW With target specification
Format 1 +2

@STAJV With target specification
@STATUS With target specification
@SYSTEM | With target specification

40

U41709-J-2125-1-76

Underlying EDT concepts Line numbers

3.24.5

Insertion between two lines

In this procedure, the new lines for insertion are inserted between two existing lines without
overwriting any existing lines. The procedure first attempts to insert the new lines on the
basis of the current increment. If it is not possible to insert the new lines in this way, the
increment used for line insertion is repeatedly divided by 10 until it is possible to insert the
lines or the smallest possible increment of 0.0001 has been reached.

If it is still not possible to insert the new lines in full at the smallest possible increment of
0.0001 then the insertion procedure is interrupted with an error message if the @PAR
RENUMBER=OFF statement has previously been used to deactivate automatic line
renumbering.

If, however, automatic line renumbering is active (@PAR RENUMBER=0ON), then the
procedure attempts to renumber the larger of the two line numbers between which insertion
is to be performed and any other line numbers following this in such a way that the insertion
operation can be completed successfully.

Only ifitis not possible to renumber sufficient lines is the insertion operation interrupted with
an error message. When EDT starts, the setting @PAR RENUMBER=ON always applies
for all work files. However, the setting can be modified individually for each work file.

The insertion operation is described in rather more detail below.

In this insertion procedure, it is always necessary to have two line numbers between which
the new lines are to be inserted. One of the two line numbers is predefined

(in some cases implicitly) by the corresponding statement. In the case of statement codes
in F mode this may be, for example, the line number of the line in which the statement code
was entered, thus in the case of the @XCOPY statement, for example, the line number of
what was previously the last line in the work file.

In most cases, insertion is performed after this explicitly or implicitly specified line number.
The line number of the next line is then used as the second line number. If insertion is
performed after the last line in the work file then the value 10000.0000 is used as the ficti-
tious line number for the second line.

Only in the case of the statement codes B, 1,1..9 and the @COPY statement (format 1)
with the BEFORE parameter specified is insertion performed before the predefined line. In
this case, the line number of the preceding line is used as the second line number.

If insertion is performed before the first line then the value 0.0000 is assumed for the
second line. If the work file is empty then 0.0000 is assumed for the first line number and
10000.0000 for the second line number.

In this case, the fictitious line number 0.0000 is used to determine the line number of the
first line that is to be inserted (= 0.0000 + increment) and cannot be occupied itself.

U41709-J-2125-1-76 41

Line numbers Underlying EDT concepts

Insertion without automatic renumbering (@PAR RENUMBER=OFF)

The current increment is used as the increment for the first insertion attempt. The line
number of the first line for insertion is obtained by adding the increment to the smaller of the
two line numbers between which insertion is to be performed. The line numbers of the
following lines for insertion are obtained by continuing to add the increment to each new
value calculated. If the lines numbered in this way fit between the two starting lines then this
numbering is used.

However, if they do not fit then the subsequent procedure depends on whether or not the
increment is equal to its smallest possible value of 0.0001.

If it is equal to 0.0001 then the insertion of lines is rejected with the message EDT5365.
If the increment is greater than 0.0001 then it is used to calculate a new increment by
dividing the preceding increment by 10 (the current increment is not modified!). If this new
increment is smaller than 0.0001, then 0.0001 is used as the new increment.

This new increment is then used for a new insertion attempt. If the lines for insertion can be
inserted using this new increment then the operation is complete.

However, if the increment is already 0. 0001 then the insertion operation is rejected with the
message EDT5365. If the increment is still greater than 0.0001, then it is again divided by
10 and a new attempt is made with this new increment.

The current line number only changes if at least one new line is created with a line number
greater than the previous highest line number and is then equal to the line number of the
last line in the work file plus the current increment (this is only possible when a line is
inserted after the previous last line).

Insertion with automatic renumbering (@PAR RENUMBER=0N)

In this case, a two-stage procedure is used in order to maintain maximum compatibility with
EDT V16.6B.
Exactly the same procedure is used as for @PAR RENUMBER=OFF.

If the increment has reached the value 0.01 and the lines can still not be inserted then an
attempt is made to renumber all the existing lines which would be overwritten by the newly
inserted lines in such a way that they can be appended at the last line inserted so far with
an increment of 0. 01. This is the procedure used in EDT V16.6B or in compatibility mode.
If it proves impossible to renumber sufficient lines in this way, EDT V16.6B or the compati-
bility mode interrupts the insertion operation with an error message.

In contrast, Unicode mode attempts to further reduce the increment (i.e. division by 10)
down to the smallest increment value of 0.0001 in order to insert the lines.

Once the smallest possible increment of 0.0001 has been reached, the lines are always
inserted with this increment of 0. 0001. All the existing lines which would be overwritten by
the newly inserted lines are now renumbered in such a way that they are appended to the
previous last inserted line using an increment of 0.0001.

42

U41709-J-2125-1-76

Underlying EDT concepts Line numbers

If this renumbering again overwrites existing lines then the operation is repeated, i.e. these
lines are also renumbered. If the renumbering operation does not overwrite any more
existing lines then the insertion/renumbering procedure has been completed.

Here again, the current line number only changes if at least one new line is created with a
line number greater than the previous highest line number and is then equal to the line
number of the last line in the work file plus the current increment.

The statement code 0 represents an exception here.

When this statement code is issued, only existing lines are overwritten starting with the line
indicated by 0. If all the lines following the line indicated by 0 have already been overwritten
and there are still lines present for insertion then these lines are inserted after the last
overwritten line in accordance with the procedure described above.

The following table indicates the EDT statements for which this procedure is used (in the
case of some EDT statements, other insertion procedures may be used in the event of a
different format or different operands). Statements which do not start with an EDT statement
symbol are statement codes.

Statement Comments on operands General comments
A
B
I
1.9
O See above for differences from
usual procedure
T
@COMPARE The work file is deleted before use
Format 2 and insertion is therefore performed
after line number 0.0000.
@COPY Read in SAM files, POSIX files and | If neither the AFTER nor the BEFORE
Format 1 library elements as well as ISAM operand is specified then insertion is
files with the KEY operand being performed after the previous last
specified and not equal to line; otherwise before or after the
LINENUMBER specified line.
@FSTAT Without target specification on The work file 9 is deleted before use
output in F mode and insertion is therefore performed

after line number 0.0000.

U41709-J-2125-1-76 43

Line numbers

Underlying EDT concepts

Statement Comments on operands General comments
@OPEN OPEN SAM files, POSIX files and | The work file must be empty before
Format 1 library elements as well as ISAM the statement is executed and
files with the KEY operand being insertion is therefore performed
specified and not equal to after the line number 0.0000.
LINENUMBER
@SDFTEST
@SEPARATE
@SHOW Without target specification on The work file 9 is deleted before use
Format1 +2 |outputin F mode and insertion is therefore performed
after line number 0.0000.
@STAJV Without target specification on The work file 9 is deleted before use
output in F mode and insertion is therefore performed
after line number 0.0000.
@XCOPY If the work file is not empty, insertion
is performed after the previous last
line. If the work file is empty, it is
performed after line number
0.0000.
@XOPEN The work file must be empty before

the statement is executed and
insertion is therefore performed
after the line number 0.0000.

44

U41709-J-2125-1-76

Underlying EDT concepts Record marks

3.3 Record marks

Every line in an EDT work file can be flagged with one or more record marks. The record

marks are noted in the EDT data area and are not visible to users. They are not taken over
when files are written to.

If EDT is not called as a subroutine, record marks 1 to 9 are available. If EDT is called as a
subroutine, the record marks 13, 14 and 15 can also be used for special functions.

The record marks 0, 10, 11 and 12 are reserved for internal special functions and are not

available to users irrespective of whether or not EDT is called as a subroutine.

Record marks 1 to 9 can be set and deleted both with EDT statements and statement codes
and with the TEDTPUT and TEDTPTM functions provided by the EDT subroutine interface. In
contrast, record marks 13, 14 and 15 can only be set and deleted with the TEDTPUT and
IEDTPTM functions.

No marks can be entered for lines in ISAM files opened for real processing with the @OPEN
statement (format 2).

Record marks can be set using

— the statementcode 1..9 in the statement code line
— the @ON statement (format 3) or
— the TEDTPUT and TEDTPTM functions when EDT is called as a subroutine

Record marks can be deleted using

— the statement code D in the statement code line
— the @DELETE statement (format 4) or
— the TEDTPUT and TEDTPTM functions when EDT is called as a subroutine

In F mode, record marks 1 to 9 can be used as the target for positioning in the work file,
either by means of one of the statements +, ++, — or - followed by [F3] or with the
@SETF statement.

In the case of the @ON (format 4) and @SETLIST statements with the MARK parameter,
record marks 1 to 9 are used to select the lines that are to be processed.

The @ON statement (format 4) can be used to copy marked lines to another work file while
@SETLIST can be used to take over the marked lines into an SDF-P list variable.

The record marks are deleted if a new record is created and replaces another record.
However, they are not deleted if a record is simply modified. New records are created using
the statements: @CREATE, @COPY (format 2), @MOVE, @READ, @GET, @GETJV,
@GETVAR, @GETLIST @ON (format 4, 5) and the statement codes A, B and 0. Modifica-
tions consist of the input of new content at the terminal (typed input), changes caused by
the statement codes L and U and the statements @PREFIX, @SUFFIX, @CONVERT,
@COLUMN, @SEQUENCE (format 1, 2) and @ON (format 6, 7, 8, 9). In the case of the

U41709-J-2125-1-76 45

Record marks Underlying EDT concepts

@SEPARATE statement, the original line retains the mark but the newly generated lines are
not marked. In the event of a join with J, the top line retains any mark it may have had but
the mark is not taken over by the lower line.

When renumbering is performed with @RENUMBER and @SORT or implicit renumbering
results from the insertion of other records, the marks in a record are retained.

If EDT is used as a subroutine, record marks can be set and deleted using the IEDTPUT
and TEDTPTM functions.

The IEDTGTM function can be used to read lines with specific record marks. A line's record
mark is also returned when reading is performed with IEDTGET.

Record mark 13 has the special function of an ignorer indicator. Lines marked in this way
are

— automatically deleted on return of control to the main program after a @DIALOG call
via the subroutine interface

— notincluded when writing to a file or library element

— not copied when lines are copied

— only taken into consideration by the TEDTGET and IEDTPUT functions if
the flag EAMIGN13 is set in the EAMFLAG field of control block EDTAMCB. The functions
IEDTGTM and IEDTPTM always take account of record mark 13 irrespective of whether
the flag EAMIGN13 is set in the EAMFLAG field.

In the @SDFTEST statement or the statement code T as well as in the statement codes J,
C,M, R, A, Band 0, lines with record mark 13 are always ignored.

Record mark 14 has the special function of an update indicator. Lines marked in this way
are depicted as being available to be overwritten in F mode. They continue to be available
for overwriting if only is sent or if this type of line is modified by a statement (e.g. the
@ON statements, formats 6 to 9).

Only if at least one character is entered directly in the line and sent with is the record
mark 14 deleted, with the result that the line is no longer displayed as being available for

overwriting.

Record mark 15 has the special function of a write protection indicator. Lines with record
mark 15 cannot be set to overwritable with the statement codes X, H or with inthe F
mode screen dialog.

However, such lines can be modified using statements (e.g. the @ON statement, formats
6 to 9) or one or more following lines can be appended to a line with record mark 15 using
statement code J

In both cases, record mark 15 continues to be present.

PROTECTION=0N must be set using the @PAR statement before it is possible to evaluate
record marks 14 and 15.

46

U41709-J-2125-1-76

Underlying EDT concepts Character sets

If a record with one of the marks 13, 14 or 15 is modified at the terminal by means of an
entry in the data window (typing) then these special marks are deleted.

3.4 Character sets

EDT makes it possible to process texts present in different character sets. In Unicode
mode, data can and must be converted between character sets. This greatly extends the
functionality compared to compatibility mode (see chapter “Compatibility mode” on

page 611).

Itis possible to specify a different character set for each work file. It is therefore possible to
process data in different character sets in different work files. These character sets can be
modified at any time using the @CODENAME statement. In addition, EDT possesses its
own character set — the communication character set — which it uses to communicate with
the terminal. This can be different from the character set used in any work file in which data
is stored.

3.4.1 Character sets in BS2000

In BS2000, character sets are provided by the software product XHCS. By default, these
include:

— 7-bit character sets such as, for example. 150646 (international 7-bit character set,
ASCII), EDFO31IRV (international reference version, EBCDIC), EDFO3DRV (German
reference version, EBCDIC).

— 8-bit character sets such as, for example. 15088591 (Latin Alphabet No.1, ASCII),
EDF041
(Latin Alphabet No.1, EBCDIC), EDF04DRV (extension of EDFO3DRYV) etc.

— The 3 Unicode character sets UTF16, UTF8 and UTFE.

XHCS also makes it possible to provide user-defined character sets. These character sets
must be assigned all the attributes that the character sets defined by default also possess,
i.e. all the property tables must be present. If this is not the case then the character set
cannot be used in EDT.

In addition, EDT also requires a conversion property. It must be possible to convert all the
occurring characters into UTF16.

U41709-J-2125-1-76 47

Character sets Underlying EDT concepts

Note
There is no guarantee that the glyphs of all Unicode characters are supported, for
example the MT9750 V7 and Spool in OSD V6 do not contain the full Unicode scope
but only the characters from the supported ISO 8859 variants 1,2,3,4,5,7,9,15.

In the text, the XHCS names for the names of the character sets and not the complete
names, i.e. EDF041 instead of EBCDIC.DF.04-1 or UTF16 instead of UTF-16.

The UTFE character set is a BS2000-proprietary Unicode character set in which the
characters are coded in byte sequences of variable length in the same way as in UTF8. The
special feature of this character set is that not only all the characters from EDFO3IRV but
also all the relevant BS2000 control characters with the same code are coded in a single
byte as previously. As a result, this character set is not just downwardly compatible with
EDFO3IRY, but also with the transport sequences used in communications with terminals.

The catalog entries of files and libraries in BS2000 may possess a character set specifi-
cation. This specification is evaluated by the various products used in BS2000 such as
OpenFT, SHOW-FILE and EDT.

Communication with a terminal is always performed in a character set. VTSU is responsible
for this communication. However, VTSU makes it possible to specify a character set for
each dialog step. Nevertheless, VTSU imposes certain restrictions as a function of the
terminal mode. If the dialog step takes place in 7-bit mode then only EDFO3IRV can be used
In 8-bit mode, it is only possible to specify an EBCDIC character set which is compatible
with an ISO character set variant that is supported by the terminal. If the terminal supports
Unicode, then communication can take place in UTFE.

Example
The terminal is only able to depict ISO character set variant 1. In this case, EDF041 or
EDFO4DRV can be specified as the character set in VTSUCB. The character set
15088591 cannot be specified since this is an ISO character set. The character set
EDF042 cannot be specified since it is not compatible with ISO character set variant 1.

For more information on XHCS and character sets, see [8].

48 U41709-J-2125-1-76

Underlying EDT concepts Character sets

3.4.2 Supported character sets

EDT only ever permits character sets which are supported by the current XHCS installation.
This applies to both batch mode and interactive mode.

The communication character set must be compatible with the terminal. However, it can be
different from the data character set.

The necessary conversions are handled via XHCS and the properties of the characters
(uppercase/lowercase, special characters) are provided by XHCS.

By default, the Unicode character sets, all the EBCDIC character sets and the ISO
character sets are permitted.

Handling invalid characters

lllegal byte sequences may occur in Unicode character sets. Thus, for example, in UTFE or
UTF8 several multibyte start characters may occur in sequence. EDT always rejects the
entry of this type of illegal byte sequence both when reading files or variables and in the
case of input in hex mode.

In UTF16, only characters from the surrogate range (xD800—xDFFF) are illegal.

All other characters, i.e. 2-byte sequences are accepted even if they cannot be depicted at
the terminal. Special EDT semantic considerations are also ignored, e.g. the requirement
that a character should not cause any line feed. In particular, even a Byte Order Mark (BOM)
has no effect but is simply transferred as a character.

In the case of 7-bit character sets or incompletely defined 8-bit character sets all bytes are
accepted and are taken over unchanged for reasons of compatibility. However, these
undefined characters can never be converted into another character set.

Handling of national 7-bit character sets

In Unicode mode, all the 7-bit character sets that are defined in XHCS are permitted (for the
handling of national 7-bit character sets, see section “The character set EDFO3DRV” on
page 58).

The @SHOW CCS statement can be used to query the currently supported character sets.

U41709-J-2125-1-76 49

Character sets Underlying EDT concepts

3.4.3 Strings

All strings are always interpreted and processed in a character set.

However, different character sets can be used. For example, data can be present in a file
in one character set, be stored in a different character set in the work file and be displayed
in a different character set again.

If necessary, in such cases, the string can be converted from the source into the target
character set. Thus, for example, a file which is present in the character set EDFO3IRV can
be read into a work file in the character set UTF16 and displayed in UTFE at a Unicode
terminal. It is then possible to insert any required characters (from the set of those
available).

For logging purposes, the file can also be output to SYSLST using the character set EDF041.

The following table indicates how EDT determines the character set to be used in each
case.

Source/target Character set for the string
Input/output at a terminal Communications character set
Reading from SYSDTA Character set assigned to SYSDTA (provided by the

BS2000 macro GCCSN). If *NONE, then EDFO3IRV is used.
If SYSDTA is assigned to a terminal then the communica-
tions character set is used.

Reading from a work file Character set for the work file

Writing to a work file Character set for the work file. If *“NONE, then character set
for the input data.

Reading from a string variable | Character set for the string variable.

Writing to a string variable When a new string variable is created, character set in the
CODE operand. If not specified, character set for the string.
If no new string variable is created, character set of the
string variable.

S variables or job variables | Character set from the CODE operand in the read/write
statement. EDF041, if not specified.

Executing an @INPUT Character set of the file which contains the @INPUT
procedure procedure. If *NONE, then EDFO3IRV is used.
Executing a @DO Character set of the work file which contains the @DO
procedure procedure.

Inserting from a DMS file or a | Character set from the file's catalog entry. If *NONE, then
library element EDFO3IRV is used.

50

U41709-J-2125-1-76

Underlying EDT concepts Character sets

3.4.4

Source/target Character set for the string
Writing to a DMS file or a If a new file is created, character set from the CODE
library element operand or character set of the work file. On write-back,

character set from the CODE operand or character set of
the file or work file

Reading and writing from/to a | Character set from the CODE operand in the

POSIX file read/write statement or the character set specified in
@PAR CODE. By default EDF041.
Writing to SYSOUT Character set assigned to SYSOUT (provided by the

BS2000 macro GCCSN). If *NONE, then EDFO3IRV is used.
If SYSOUT is assigned to a terminal then the communica-
tions character set is used.

Writing to SYSLST Character set assigned to SYSLST (provided by the
BS2000 macro GCCSN). If *NONE, then EDFO3IRV is used.

In the case of some statements (e.g. @CREATE, @SETJV), itis possible to specify multiple
character sets which are initially joined in an intermediate result.

If all the strings involved have the same character set then this is also the character set of
the intermediate result. If the involved strings have different character sets then the
character set of the intermediate result is UTFE.

This intermediate result is then converted into the target character set.

Conversion and substitute characters

If necessary, EDT converts data from each permitted character set into another permitted
character set. In such cases, if characters from the source data are not present in the target
character set then a substitute character is used if the user has defined one with the
statement @PAR SUBSTITUTION-CHARACTER. By default, no substitute character is
defined (SUBSTITUTION-CHARACTER=*NONE).

When output is sent to a terminal in interactive mode, then, unlike in the case of other output
destinations, the device-specific smudge character is used. If no substitute character is
defined then a blank is used for all characters that are not present in the target character
set when output is sent to SYSOUT/SYSLST. In all other cases, conversion is rejected, i.e.
the associated statement is not executed.

U41709-J-2125-1-76 51

Character sets Underlying EDT concepts

3.4.5

The @CHECK statement (format 2) can be used to check whether a line range can be
converted without loss into a target character set. This not only checks whether all the
characters are present in the target character set but also that no length restriction will be
exceeded. Strings may be significantly longer when converted into a Unicode character set.

Note
XHCS only converts compatible character sets with the result that conversion may
pass via a Unicode character set (since these are always compatible).

Substitute character representation in Unicode

In Unicode mode, EDT permits the entry of characters which are, for example, not defined
in the character set used in the source of the input, in the form of a substitute representation
in which the UTF16 code of the character is specified directly. To do this, the

@PAR ESCAPE-CHARACTER is used to declare a global or work file-specific escape
character which initiates the substitute representation. By default, no substitution is
performed (ESCAPE-CHARACTER=*NONE). The DATA-REPLACEMENT operand in the @PAR
statement can be used to define the context in which substitution takes place.

By default, the substitute representation is only evaluated within statements and there only
in literals (DATA-REPLACEMENT=0FF). Setting DATA-REPLACEMENT=0N causes this to be
performed in data input as well.

The substitute representation has the form specUxxxx, i.e. the escape character is
followed by a U or u (for Unicode) and exactly 4 hexadecimal numbers which specify the
code of the character. If, for example, the escape character % has been specified using
@PAR ESCAPE-CHARACTER="%', then the Greek Q can be entered in the form 4U03A9
or %u03a9 (the input is not case-sensitive).

If @PAR ESCAPE-CHARACTER=*NONE (default setting) has been declared either
globally or for the current work file, if the substitute representation is formally incorrect or if
no valid UTF16 character corresponds to the entered code then the substitute represen-
tation is treated as a normal string. The substitute representation is also not converted on
data entry in F mode if the string for the substitute representation exceeds a column position
for which a hardware tab has been defined.

If despite the specification of a valid UTF16 character, this cannot be converted into the
target character set, then the procedure is the same as if an invalid character had been
entered directly (e.g. via a corresponding keyboard).

The interpretation is independent of whether the characters entered using the substitute
representation can be displayed at the screen or not. As described in the previous section,
characters which cannot be displayed are depicted by means of the smudge character.

52

U41709-J-2125-1-76

Underlying EDT concepts Character sets

3.4.6 Communications character set

The communications character set is the character set used by EDT to exchange data with
a terminal.

In Unicode mode, the communications character set can be different from the character set
used in the current work file. Inputs and outputs are then converted accordingly if required.

Since VTSU is the interface to the terminal, the communications character set in interactive
mode can only be a character set that is accepted by VTSU with the exception of
EDFO3DRYV at a 7-bit terminal (see section “The character set EDFO3DRV” on page 58).
Restrictions consequently apply to the choice of the communications character set.

On start-up, EDT sets the character set from the terminal option CODED-CHARACTER-SET
as the communications character set. The @CODENAME statement (format 2) can be
used to set the communications character set explicitly. This setting remains valid until
modified by a subsequent @ CODENAME statement.

@CODENAME *AUTO, TERMINAL can be used to activate a mechanism by which EDT
automatically attempts to select the most suitable character set. If it is communicating with
a Unicode-compatible emulation, it specifies UTFE as the communications character set.

In the case of a terminal operating in 8-bit mode, i.e. if no communication via UTFE is
possible, then the communications character set is implicitly defined by the character set of
the work file displayed in the (top) work window.

If this character set changes, e.q. if EDT displays a different character set then the commu-
nications character set may also change. If the work file is empty and has the character set
*NONE then, by default EDT takes the character set from the terminal

option CODED-CHARACTER-SET. If 7-BIT is specified here, it uses EDFO31RY, otherwise the
character set specified here. If the work file displayed in the (top) work window has a
character set which is compatible with the terminal then this character set is specified.

If this character set is an ISO character set which is compatible with a character set which
is itself compatible with the terminal then this is specified. If this is not the case, EDF041 is
used.

For communications with a terminal in 7-bit mode, the communications character set
EDFO3IRV is always used.

The same rules apply in L mode. This also applies when reading from SYSDTA (@EDIT
ONLY), and SYSDTA is assigned to a terminal.

U41709-J-2125-1-76 53

Character sets Underlying EDT concepts

3.4.7 Character sets in work files

In Unicode mode, each work file may possess a separate character set.

Only in an empty work file is it possible for the character set to have the value *NONE. This
is the setting after EDT has started and after the complete deletion of a work file using
@DROP or @DELETE (format 2).

If the setting is *NONE then the character set can be defined either implicitly by inserting data
in the work file, or explicitly by means of a @CODENAME statement. Once the character
set for a work file has been set, all the characters which enter this work file are also
converted into this character set.

If data is inserted into an empty work file with the character set *NONE then the work file is
implicitly assigned the character set for this data on the basis of the source from which they
arrive. For information on how EDT determines the character set, see the table in the
section on strings.

If the work file already has a defined character set (i.e. not *NONE), then data is converted
from its source character set when it is inserted in this work file. Independently of whether
the work file is empty or not, the data is converted into the work file's character set on
insertion.

If data is present in the work file then switching the character set with the @CODENAME
statement causes this data to be converted into the new character set.

@CODENAME ...,GLOBAL makes it possible to specify the same character set for all the
work files using a single statement.

When migrations have to be performed, the @CODENAME statement provides additional
performance scope. With @CODENAME ...,FORCE=YES, itis possible to relabel the work
file's character set. The work file is then assigned a new character set. However, the data
it contains is not converted but remains unchanged. This option can be used to correct
incorrectly labeled files. The FORCE operand is only applicable to 7-bit and 8-bit character
sets.

54

U41709-J-2125-1-76

Underlying EDT concepts Character sets

3.4.8 Reading in files

In the following section, instead of talking about files or library elements, we refer only to
files.

When reading in a file, EDT evaluates the character set of the catalog entry.

If the work file into which the file is to be read does not as yet have any character set
(*NONE), the file's character set is defined for this work file and the file is read in. If the file
has the character set *NONE, EDFO3IRV is set.

If the work file already has a character set then the content of the file is converted from the
catalog entry's into the work file's character set when it is read in. The work file does not
have to be empty. It is therefore possible to read files with different character sets into a
work file. The data is then present in the work file's character set. If the file contains
characters which are not supported by the work file's character set then the file is not read
in unless a substitute character has been defined. This is then used. If the file contains an
invalid byte sequence (possible in Unicode character sets) then the file is not read in.

If the character set entered in the catalog is not supported then the file is also not read in.

If the file has been opened for real processing (see section “File processing” on page 131),
then the work file must be empty and, in order to be defined, its character set must be the
same as the file's character set or *NONE.

Example

~ R

OO WM
(e}
o

CODENAME UTFE;COPY FILE=ADDRESSES: s 0000.00: OOOOl(OO)j
-

To set the character set UTFE for work file 0, read in the file ADDRESSES with CCS=*NONE.

U41709-J-2125-1-76 55

Character sets

Underlying EDT concepts

f 1.00 BERGER ADALBERT
2.00 DUCK DONALD
3.00 GROOT GUNDULA
4.00 HOFER LUDWIG
5.00 STIWI MANUELA
6.00

CREATE 0.01
-

>ANGSTR@M ANDERS

HOCHWEG 10
WALTSTR.8
HAFERSTR.16
GANGGASSE 3A
POSTWEG 3

STERNWARTE

81234 MUENCHENS: + = v v v vomeevmmmeennnnnn
DISNEYLANDS ¢+ o vevemeemeemeenenneenns
89123 AUGSBURGS:+ + =+ v v v omeesmmmeennnnnn
80123 MUENCHENS =« s o v v evrmeemeeneeneanns
80123 MUENCHENS: + = vvmmeevmmmeennnnnn

STOCKHOLM *;-=--0001.00:00001(00)
/

Since the work file has the character set UTFE any characters from the Unicode character
set can be entered in it provided that the terminal supports Unicode. This can be achieved
as here, for example, by means of statements.

I

0.01 ANGSTR@M ANDERS STERNWARTE STOCKHOLMS = s v eveee e
1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHENS: + v overereeme e
2.00 DUCK DONALD WALTSTR.8 DISNEYLANDS - s v evereme e
3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURGS "+« s s srererme e
4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHENS = =« s mseeeeeme e oo e
5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHENS -+ v overeeeem e
6‘00 ..
... 000001:00001(00)
- J

However, it can also be achieved by entering the data directly. Here UE has been replaced
by U and AdTtwv etc has been inserted in line 6.

-

0.01 ANGSTR@M ANDERS STERNWARTE STOCKHOLMS s = v vmeeeemee e e h
1.00 BERGER ADALBERT HOCHWEG 10 81234 MUNCHENS = = oo ee e
2.00 DUCK DONALD WALTSTR.8 DISNEYLANDS: « v cveeeeeeveeeeeeeeeeeeees
3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURGS - «rrrmeremmme e s
4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUNCHEN< - = s erem e eeeeeeeeee
5.00 STIWI MANUE LA POSTWEG 3 80123 MUNCHENS =« v vvmemememeneneenens
6.00 TAGTWV Academi a AL NENG v e e et
... 0000.01:00001(00)

- /

56

U41709-J-2125-1-76

Underlying EDT concepts Character sets

3.4.9 Writing files

When new files are written, the character set of the work file is written to the catalog.

When the work file is written to a new file or an existing file with the character set *NONE,

the character set specified with the new CODE operand or the character set of the work file
becomes the character set for the file. If this character setis EDFO3IRV and the file previ-
ously had the character set *NONE then the value *NONE is retained.

If, on a write operation to an existing file with a character set not equal to *NONE, the
character sets of the file and work file are different (this occurs when a read-in file is written
back after an explicit change of character set with @CODENAME or when an existing file
is overwritten with new content), then an operand in the statements @CLOSE, @WRITE
(format 1) and @XWRITE makes it possible to select the character set to be used for
writing. If this operand is not specified then the write operation is rejected in batch mode. In
interactive mode, the user is asked which character set is to be used.

If the file's character set is selected, EDT converts the work file before writing. If characters
are present that cannot be depicted in the file's character set and if no substitute character
has been defined (see @PAR SUBSTITUTION-CHARACTER), then the write operation is
rejected with an error message. The user can then define the substitute character or modify
the character set for writing and write the file again.

3.4.10 Copying between work files

The @COPY statement, @MOVE statement, @ON statement or statement codes can be
used to copy data from one work file to another.

The source work file and target work file may have different character sets. In such cases,
the data to be copied can be converted from the source into the target character set. If
characters from the source data are not present in the target character set then the transfer
is rejected unless the user has defined a substitute character.

U41709-J-2125-1-76 57

Character sets Underlying EDT concepts

3.4.11

3.4.12

Character set in a statement

The analysis of statements is always performed in UTFE.

The statements are converted from the character set in which they were read in into UTFE.
This is always possible. This ensures, for example, that the '@' character can be used as
the EDT statement symbol in all character sets.

Alongside the EDT statement symbol, EDT also makes it possible to redefine a number of
other symbols of syntactic importance (single quotes and double quotes with @QUOTE,
the line range symbol with @RANGE, wildcard symbols and filler characters with
@SYMBOLS). To ensure consistent usage here, the set of permitted symbols is limited:
Only the following symbols can be used:

! " #S % & ’ () * 4
; - / : : < = > 7?7 @
[v 1 "~ _ { 1} -

This means that only the special characters from EDFO3IRV are permitted. Symbols which
are present as special characters only in other character sets are rejected. in the case of
EDF041, for example, these are § and & as well as the symbols that cannot be entered at a
normal keyboard such as Y4, 2, 1.

The character set EDF03DRV

The character set EDFO3DRYV is the only national 7-bit character set which is known in
XHCS. For reasons of compatibility, it is handled in a special way if the terminal is recog-
nized as a 7-bit terminal.

In this case, EDT also makes it possible to set EDFO3DRV as the communications character
set. However, the characters are also handled as EDFO31RV characters (without
conversion) on transfer to and from the terminal. The correct display of the characters is
ensured by the corresponding settings at the terminal or emulation. EDT is not able to check
whether these settings are consistent. This is the user's responsibility.

58

U41709-J-2125-1-76

Underlying EDT concepts Character sets

3.4.13 String variables

String variables may be assigned any text such as a line in a work file. They can be
accessed globally across work files. Every string variable has a content at all times since it
is assigned the character '_' (X'40"') on initialization.

String variables always have a character set since they have a content at all times. Each
string variable may have a different character set.

At EDT start time, string variables may be initialized by the S variables
SYSEDT-S00..SYSEDT-S20. If one or more of these S variables are present then their
values are taken over into the corresponding string variable. At this point, it is not possible
to specify a character set. The string variables are therefore assigned the initial character
set EDF041 irrespective of whether they were initialized with '_' or by S variables.

The @CREATE statement can be used to assign a new value to a string variable. In this
case, the CODE=name operand can be used to specify the resulting character set explicitly.
If CODE is not specified then the resulting character set is the character set of the value that
is to be assigned. If this value is obtained by joining strings with different character sets then
the umbrella character set UTFE is used.

The character set for a string variable can also be defined using the @CODENAME
statement. @ CODENAME name,#S0 converts the content of #S0 to the corresponding
character set. This character set is assigned to the string variable. @ CODENAME name
#S0,FORCE=YES can be used to relabel the character set (only permitted in the case of 7-
bit and 8-bit character sets).

The @SET statement can also be used to assign a value to a string variable. If this value
is specified as a string then a new string variable is created. It is then assigned the character
set of this string variable.

If the value is obtained from the content of an integer variable, the content of a line number
variable or line number or from the name of a printable string variable, then the string
variable, if newly created, is assigned the character set EDF041. If only a part of the content
is overwritten then the intermediate result is converted into the character set of the string
variable and inserted.

If a binary value is inserted then the string variable is always newly created and assigned
the character set EDF041.

U41709-J-2125-1-76 59

Character sets Underlying EDT concepts

3.4.14

3.4.15

3.4.16

S variables and job variables

The @GETVAR, @GETLIST and @GETJV statements can be used to transfer the
contents of S variables or job variables to string variables or work files.

In Unicode mode, each string requires a character set specification. Since S variables and
job variables record no information about their character sets, the character set must be
defined at transfer time. This is possible using the new operand CODE=name. If the operand
is not specified, the character set EDF041 is used. If the statement is applied to a line in a
work file then the content of the variable may be converted from this character set into the
character set of the work file if necessary. If it is applied to a string variable then the value
is taken over and the character set is assigned to the string variable.

Note
@GETVAR SYSEDT,CODE=name can be used to transfer the value of the SYSEDT
variable to the string variable again while taking account of the character set.

The statements @SETVAR, @SETLIST and @SETJV can be used to generate S variables
or job variables and assign a value to them.

In these statements, the CODE=name operand can be used to specify a character set into
which the values are to be converted before assignment. If the operand is not specified,
EDFO41 is used.

POSIX files

POSIX files also record no information about the associated character set.

In the statements used to read or write POSIX files, the operand CODE=name can be used
to specify the character set in which the file's data is present or the character set to be used
when writing the file. name may be any supported character set.

The specifications CODE=ISO - corresponding to CODE=1S088591 - and CODE=EBCDIC -
corresponding to CODE=EDF041 - are still possible for reasons of compatibility.

Outputs to SYSOUT and SYSLST

If SYSOUT is assigned to the terminal then output takes place in the communications
character set and characters which cannot be displayed in this character set are replaced
by the device-specific smudge character.

Otherwise, output to SYSOUT or SYSLST is performed in the relevant assigned character set
which can be determined using the BS2000 macro GCCSN. If this character set is *NONE

then EDFO3IRV is used. If the output contains characters which cannot be displayed in the
target character set and no substitute character has been defined then a blank is inserted.

60

U41709-J-2125-1-76

Underlying EDT concepts EDT variables

3.5 EDT variables

3.5.1

The EDT variables are used to store values. These values can be integer values, strings or
line numbers. In EDT procedures, these variables are used, for example, for the interme-
diate storage of values, as loop counters, for the input of strings (file names, search terms
etc.) or to perform simple calculations.

EDT variables are only valid for the current EDT session, provided that the operating mode
(see section “Introduction to the EDT operating modes” on page 21) does not change. They
are globally visible, i.e. they can be set, used or queried from within all work files. If a value
is assigned to a variable in a work file, then the variable is also available with the same
value in other work files.

EDT provides three types of variables which can be assigned the following values. 21
variables of each variable type are available and are indexed from 0 to 20.

— Integer variables (#10. .#120)
— String variables (#S0. .#520)
— Line number variables (#L0. .#L20)

The EDT variables are assigned values by means of various formats of the @SET
statement or using @CREATE (see @SET, format 1-5 and @CREATE). Another possibility
is to supply the EDT variables with the content of job variables (@GETJV) or S variables
(@GETVAR, @GETLIST) (see below).

The line number variable #L0 and the integer variables #10 to #13 should not be used
since they may be overwritten with values if an @ON statement returns a hit.

Although job variables and S variables do not form part of the EDT variables, they are
nevertheless discussed in the summary below since they are frequently used to store the
content of EDT variables either between EDT sessions or permanently.

Integer variables

The integer variables (#10. .#120) are used to store positive or negative integer values.
The largest possible value is 2147483647 (231 - 1).

The integer variables can be supplied with values by means of the @SET statement
(Format 1) and with @GETVAR. @STATUS can be used to output the content of integer
variables on screen. @IF (format 2) is used to evaluate the values of integer variables
within EDT procedures.

When EDT is started, all the integer variables are preset to the value 0.

U41709-J-2125-1-76 61

EDT variables Underlying EDT concepts

3.5.2

3.5.3

String variables

The string variables, (#S0. .#S20) can be used to store strings in all character sets
supported by EDT.

A string variable is similar to a record in a work file.

Like a record, it can accommodate a maximum of 32768 characters which can be
addressed either individually or in sections thanks to column specifications, they can be
searched in, replaced by other strings etc.

The integer variables can be supplied with values by means of the @SET statement,
formats 2, 4 and 5, by means of @CREATE or using @GETJV, @GETVAR or @GETLIST.
@PRINT can be used to output the content of the string variables on screen. @IF (format
2) is used to evaluate the values of string variables within EDT procedures and column
specifications make it possible to address subsections or individual lines.

When EDT is started, string variables are preset to a blank in the character set EDF041
unless they have assumed the values of any S variables SYSEDT-S00. .SYSEDT-S20
which may be present (see section “Starting EDT” on page 87).

Every string variable is assigned a character which specifies how the content of the variable
is to be interpreted.

In the case of the @CREATE and @SET statements as well as in @GETJV and
@GETVAR, this character set can be specified explicitly for the new string variable that is
to be filled. If no character set is specified or if the string variables are already assigned
values when EDT is started (see above) then the default values for the string variables are
set as a function of the data source and system environment.

In statements in which the name of a string variable could be confused with a file name or
a library element designation, it is necessary to prefix the variable name with a period in
order to indicate that a string variable is intended, e.g. @OPEN FILE=.#S1 opens the file
whose name is stored in the string variable #S1 whereas @OPEN FILE=#S1 opens the file
with the name '#S1".

Line number variables

Line numbers can be stored in the line number variables (#L0. . #L.20). The range of values
is 0.0001 to 9999.9999.

The line number variables can be supplied with values by means of the @SET statement
(format 3). @STATUS can be used to output the content of line number variables on screen.
@IF (format 2) is used to evaluate the values of line number variables within EDT proce-
dures.

When EDT is started, all the line number variables are preset to the (invalid) value 0.0000.

62

U41709-J-2125-1-76

Underlying EDT concepts EDT variables

3.5.4 Job variables

In systems in which the JV subsystem (Job Variable Support) is installed, it is possible to
use job variables in JV. Unlike the integer, string and line number variables, job variables
persist after EDT has terminated and it is possible to access existing job variables in EDT.

In EDT, it is possible to delete job variable entries (@QERAJV), output the values of job
variables or transfer these values to a work file or string variable (@GETJV), generate job
variables and assign values to them (@SETJV) as well as output information about job
variables or write this information to a work file (@STAJV). In EDT procedures, it is not
possible to evaluate the content of job variables directly but instead only after this has been
transferred to a work file or a string variable.

BS2000 does not assign any character set to job variables. When a job variable is read with
@GETJV, it is therefore possible to explicitly define the character set in which EDT is to
interpret the content of the job variable. If nothing is specified then the default mechanisms
described in the section on character sets apply.

3.5.5 S variables

It is possible to access S variables in EDT (for S list variables, it is necessary to install SDF-
P). Unlike the integer, string and line number variables, S variables persist after EDT has
terminated and it is possible to access existing S variables in EDT.

In EDT, it is possible to output the content of S variables of type STRING and INTEGER,
transfer this content to a work file, a string variable or an integer variable (@ GETVAR),
generate S variables of type STRING and INTEGER and assign values to them (@SETVAR)
as well as to generate S list variables (type LIST with element type STRING), extend such
variables, assign values to them (@SETLIST) and transfer their values to a work file
(@GETLIST). In EDT procedures, it is not possible to evaluate the content of S variables
directly but instead only after this has been transferred to a work file, a string variable or an
integer variable.

BS2000 does not assign any character set to S variables. When an S variable is read with
@GETVAR, it is therefore possible to explicitly define the character set in which EDT is to
interpret the content of the S variable. If nothing is specified then the default mechanisms
described in the section on character sets apply.

U41709-J-2125-1-76 63

EDT procedures Underlying EDT concepts

3.6 EDT procedures

EDT makes it possible to store sequences of statements in work files, cataloged files or
library elements and execute these as required. Alongside statements, records may also
be present which are then inserted in the current work file at the relevant current line
number. Such sequences of statements and records are referred to under the umbrella term
of EDT procedure.

EDT procedures are subdivided into @DO procedures and @INPUT procedures
depending on their storage location and the statement used to start them.

@DO procedures

are stored in an EDT work file (1. .22),

can only be executed as a whole,

permit the passing of parameters, nesting, (conditional) branches and loops and
are started with the EDT statement @DO.

@INPUT -procedures

— are stored in afile,

— can be executed as a whole or partially,

— do not permit the passing of parameters, nesting, branches or loops,
— can be started as an EDT start procedure when EDT starts or

— can be started with the EDT statement @INPUT.

The following sections start by explaining the concepts which apply to all procedure types.
These form the basic rules for the creation and execution of EDT procedures. This is
followed by a discussion of the possibilities offered by the @INPUT procedures and by
integrating EDT procedures in BS2000 system procedures. The EDT start procedure is
explained as a special type of @INPUT procedure. Finally, the language tools which can
only be used in combination with @DO procedures are described, namely branches, loops
and parameters.

64

U41709-J-2125-1-76

Underlying EDT concepts EDT procedures

3.6.1 Creating and executing EDT procedures

When creating and executing EDT procedures it is necessary to observe the following
rules.

Reading statements and data lines

When executing an EDT procedure, EDT reads statements and data lines in L mode. If the
EDT procedure is started in F mode, EDT switches to L mode, executes the procedure and
then switches back to F mode.

The distinction between statements and data lines is therefore governed by the same rules
as for input in L mode (see section “L mode” on page 126). In particular, lines with two
consecutive (possibly separated only by blanks) EDT statement symbols or user statement
symbols are interpreted as data lines. This makes it possible to construct other procedures
dynamically within procedures and run these immediately (see example below).

Permitted statements

All the statements that are permitted in L mode may be used in EDT statements with the
exception of the @DIALOG, @DROP and @INPUT statements (see section “L mode” on
page 126).

In @DO procedures, the statements @GOTO, @DO (Format 2) and @PARAMS are also
permitted. In @INPUT procedures, the @IF ... GOTO statement is tacitly ignored if the
condition is not fulfilled and is rejected with the error message EDT4942 if the condition is
fulfilled.

Current and active work file, special work files

In L mode, the current work file is called with the @PROC or @SETF statement and in F
mode with the @SETF statement or by entering the corresponding work window in the
statement line. When EDT procedures are executed, the read statements and records
always apply to the current work file. The current work file must therefore not be specified
in a @DO statement.

The attempt is rejected with the message EDT4906.

Active work files are those work files which contain a @DO procedure which is currently
being executed. If @DO procedures are nested then multiple work files can be active (up
to 22), i.e. those that have been activated by a @DO and have not yet been exited with a
@RETURN.

U41709-J-2125-1-76 65

EDT procedures Underlying EDT concepts

When @DO procedures are nested, an active work file may also be specified in @DO state-
ments.

Recursive calls are therefore possible but again only to a maximum nesting depth of 23. An
active work file must not be made into the current work file. A @PROC or @SETF statement
for an active work file is therefore rejected with the message EDT4959.

@DO procedures can be stored and run in every work file with the exception of work file 0,
i.e. in work files 1 to 22.

A @DO 0 is rejected with the message EDT3209.

Since many EDT statements write their output to work file 9 by default, it is advisable not to
use this work file for @DO procedures.

EDT procedures and character sets

When an EDT procedure is executed, statements and records are read in the character set
of the current EDT procedure.

In the case of @INPUT procedures, this is the character set of the cataloged file or library
element; in the case of @DO procedures, it is the character set of that active work file which
is being read. The read data records and the literals or text-type expressions may have to
be converted if they refer to objects (e.g. the current work file or a string variable) to which
another character set is assigned. For the precise rules, see section “Character sets” on
page 47.

Example: Creating and calling a @DO procedure in F mode

This switches to work file 22. The procedure is created in this work file.

66

U41709-J-2125-1-76

Underlying EDT concepts EDT procedures

'OO @COPY FILE:TESTFILE< ..
.OO @PAR LOWER=0N< ...

23 . OO ...
@do 22 ... 0000.00:00001(00)
k)

[CalE=ROSE l
o
o
o
%
.
>
«Q
<)
o
S
o
o
(9%
a
c
S
)
A

The result of running the procedure can be seen in work file 0.

U41709-J-2125-1-76 67

EDT procedures Underlying EDT concepts

Example: Calling a procedure in L mode as a @DO procedure

.0000 AN EXAMPLE
.0000 OF A PROCEDURE IN L MODE
.0000 THIS IS AN EXAMPLE

1. @PROC 1 (01)
1. @ @CREATE 1: 'THIS IS AN EXAMPLE'

2. @ @CREATE 2: 'OF A PROCEDURE IN L MODE'

3. @ @COPY 1 TO 3 (02)
4. @ @DELETE 1:1-8

5. @ @PRINT

6. @END (03)
1 @po 1 (04)
1

2

3

4.

(01) Processing switches to work file 1.

(02) EDT statements are written to work file 1 (@DO procedure). Here, the L mode input
mechanism is used to insert lines with two EDT statement symbols as data lines in
the work file and truncate these before the second statement symbol (see section
“L mode” on page 126).

(03) Processing returns to work file 0.

(04) Call of the @DO procedure. The statements in the work file are executed.

3.6.2 @INPUT procedures

EDT statements and records can be written as @INPUT procedures to a SAM, ISAM or.
POSIX file or to a library element of a permitted type (see section “File processing” on
page 131).

The advantages of an @INPUT procedure (permanent availability, informative procedure
name) can be combined with the benefits of @DO procedures (nesting, branches and
loops, parameter settings) by dynamically creating and executing one or more @DO proce-
dures within the @INPUT procedure. This makes use of the possibilities of L mode input
with two EDT application symbols.

68 U41709-J-2125-1-76

Underlying EDT concepts

EDT procedures

Structure of a @DO procedure within an @INPUT procedure

@DELETE Delete current work file
@... EDT statements
and records
@PROC procnr Switch to work file procnr
@DELETE Delete content of procnr
@@... q
@DO procedure: @INPUT procedure
EDT statements
. and records
@END Exit work file procnr
@DO procnr Call @DO procedure procnr
@... EDT statements
and records
Example
(1.00 @NOTE READ IN FILE NAME-)
2.00 @CREATE #SOO READ \FILENAME: ‘< ...
3.00 @NOTE OPEN WORK FILE 22+ -+-----
4.00 @PROC 22< ...
5.00 @DELETE< ..
6.00 @NOTE STORE FILE IN THE FORM YYMMDD IN #S01-- -
7.00 @ @SET #Sol = DATE ISO< ..
8.00 @ @SET #Sol = #501178< ..
9.00 @ @ON #801 CHANGE ALL '"="'" TO "' cseeoereeteeennttttttneneeccteennn
10.00 @NOTE——————————————— STORE TIME IN THE FORM HHMMSS IN #S02--- - -
11.00 @ @SET H#S02 = TIMES: - c v emee e ettt it
12.00 @NOTE————— ASSEMBLE COPY FILE COMMAND AND STORE IN #S03-«-------
13.00 @ @CREATE #S03 : '/COPY-FILE ',#S00,',',#S00, . ,#S01,'.' #502<---------
14.00 @NOTE—————————— ISSUE COPY FILE COMMAND AS SYSTEM COMMAND: - - - -
15.00 @ @SYSTEM #S03<t v v v v et v et e ettt
16.00 @NOTE CLOSE WORK FILE 22------
17 .00 @ENDS + ==+ s s v e s eeeaeee et teeteetee e tae e e eneesaesaeeneensennsnnsns
18.00 @DO 22< ...
19.00 ..
Z0.00 ..
21.00 ..
22.00 ..
23.00 ..
@urite file=backupcopy.input:««--rerrrrrrrerreerrerereeeene.. 0001.00:00001(00)
\ Wy,

U41709-J-2125-1-76

69

EDT procedures Underlying EDT concepts

The procedure is created in F mode in the work file 0 and is stored as a SAM file under the
name BACKUPCOPY . INPUT.

The @DO procedure consists of all the statements with two consecutive statement symbols
separated only by blanks (@ @ - see below).

22.00 ...
% EDTO0172 FILE 'BACKUPCOPY.INPUT' CREATED AND WRITTEN
@input file=backupcopy.input;22«- -, . 0001.00:00001(00)

The procedure is called with @INPUT. The statements in the SAM file

BACKUPCOPY . INPUT are processed. When this is done, the nested

@DO procedure (lines 6.00 to 16.00, EDT-statements with more than one statement
symbol @) are stored in work file 22 (see below) and executed immediately.
Processing then switches to work file 22.

(FILENAME: testfile 1

When the statement @CREATE ... READ is processed, an input prompt is output. Once the
file name TESTFILE is entered, a backup copy with the name TESTFILE.yymmdd.hhmmss
is created.

(1.00 @SET #501 = DATE IS0 v ssvms s oemee ettt ittt)
2.00 @SET #501 = #501:1*8< ..
3.00 @ON #S01 CHANGE ALL '—' TO ''Qevrrerromnnmeoenae ettt
4.00 @SET #302 = TIMES - s vt st ettt e e e
5.00 @CREATE #S03 : '/COPY-FILE ,#S00, ', 'L #S00, . L #S01, 'L #S02<
6.00 @SYSTEM #S03< v o v e s mrmsasesae e e ettt atatatatanatanananns
7.00 ..

T 00010000001(22)

The statements in the @INPUT procedure which have more than one application symbol
have been stored in work file 22 in the form of a @DO procedure and the content before
the second application symbol has been deleted.

70

U41709-J-2125-1-76

Underlying EDT concepts EDT procedures

3.6.3 Calling an EDT procedure in a BS2000 system procedure

An EDT procedure can be dynamically constructed and called within a BS2000 system
procedure.

Example of an EDT procedure in a BS2000 system procedure

/SET-PROCEDURE-OPTIONS DATA-ESCAPE-CHAR=*STD
/BEGIN-PARAMETER-DECLARATION

/DECLARE-PARAMETER FILE,TYPE=STRING, INITIAL-VALUE=*PROMPT
/END—PARAMETER-DECLARATION

/SHOW=FILE-ATTRIBUT &FILE (01)
/MODIFY-JOB-SWITCHES ON=(4,5) (02)
/START-EDT (03)
@PROC 20 (04)

@ @READ '&FILE'

@ @PAR LOWER=ON

@ @PAR SCALE=ON (05)
@ @PAR INFORMATION=ON

@ @PAR EDIT FULL=ON

@END (06)
@0 20 (07)
@DIALOG (08)
@HALT (09)
/SET-JOB-STEP

/MODIFY-JOB-SWITCHES OFF=(4,5) (10)

(01) Check whether the file specified via the procedure parameter is present. If not,
processing branches to SET-JOB-STEP.

(02) Setjob switches 4 and 5 (see section “Job switches” on page 98).

(03) CallEDT.

(04) Processing switches to work file 20.

(05) The EDT statements in the @DO procedure are stored in work file 20.

(06) Processing returns to work file 0.

(07) Call the @DO procedure located in work file 20 (read in a file, distinguish between

uppercase and lowercase, output a column counter, output an information line, set
data window and mark column to overwritable).

(08) Switch to F mode dialog. After termination of interactive mode with @HALT or
@RETURN, the system procedure run is continued at the point where it was inter-
rupted.

U41709-J-2125-1-76 71

EDT procedures Underlying EDT concepts

3.6.4

3.6.5

(09) Terminate EDT
(10) Reset the job switches.

EDT start procedure

The EDT start procedure is a special @INPUT procedure which is run when EDT is started
(see section “Starting EDT” on page 87). The EDT start procedure is determined on the
basis of the following search hierarchy.

1. If the link name $EDTPAR has been assigned then the file associated with it is defined
as the EDT start procedure and the search is terminated.

2. If afile named EDTSTART exists under the caller of EDT's user ID then this is used and
the search is terminated.

3. Ifinthe EDT installation, the system administrator has assigned the logical identification
SYSDAT . EDTSTART to an existing, accessible file then this file is used and the search is
terminated.

4. If the file $.EDTSTART exists under the default user ID and is accessible then this is
used and the search is terminated.

5. If steps 1 to 4 fail to identify any file then no EDT start procedure is executed.

Each time EDT is called, /SET-FILE-LINK can therefore be used to set an individual EDT
start procedure. In particular

/SET-FILE-LINK FILE-NAME=*DUMMY, LINK-NAME=$EDTPAR

can be set to prevent the execution of any EDT start procedure including the one set by the
system administrator.

Unconditional and conditional branches

The @GOTO statement is used in @DO procedures to branch to a line. The line number is
specified in the @GOTO statement. The line must exist and must not be located outside of
the procedure.

Ifa @GOTO statement is specified in an @IF statement then a condition-dependent branch
is possible in a @DO procedure. If the condition is fulfilled then processing branches to the
line specified in the GOTO statement. If the condition is not fulfilled then the procedure
continues with the statement which immediately follows the @IF statement.

To prevent the possible displacement of lines when the procedure is modified, the line
numbers should be determined again with @SET, format 6 (abbreviated to @ for improved
clarity) before branch destinations are specified (see also example).

72

U41709-J-2125-1-76

Underlying EDT concepts EDT procedures

Branches are not permitted in @INPUT procedures.

Example of unconditional and conditional branches

@PROC 2

@DELETE

@1.00 (01)

@ @CONTINUE *** [INE NUMBER 1.00 AS OF HERE ***

@ @CREATE #S1 READ 'PLEASE ENTER SEARCH TERM: (02)

@ @ON & FIND #S1 MARK 5

@ @IF .TRUE. @GOTO 2 (03)

@ @CREATE #S2: 'NO HIT FOUND'

@ @PRINT #S2

@ @GOTO 3 (04)

@2.00

@ @CONTINUE *** [LINE NUMBER 2.00 AS OF HERE ***

@ @DELETE MARK 5

@ @N & PRINT #S1 (05)

@3.00

@ @CONTINUE *** [LINE NUMBER 3.00 AS OF HERE ***

@END

(01) Statement @1.00 sets line number 1 .00 and, implicitly, the increment 0. 01 in work
file 2. The same applies equivalently for the other @SET statements.

(02) @CREATE...READ prompts the user to enter a search term. In the following line,
all the lines which contain the search term are flagged with record mark 5.

(03) @IF checks whether there are any hits and, if there are, branches to line 2. 00.

(04) If there are no hits, the corresponding message is output and processing branches
to the end of the procedure.

(05) If there are hits, the record mark is deleted and the hit lines are output.

The lines with two consecutive statement symbols are read back into the lines defined by
the @ statement in work file 2. The EDT procedure can then be executed with @DO 2.

U41709-J-2125-1-76

73

EDT procedures Underlying EDT concepts

3.6.6 External and internal loops

External loops make it possible to work through @DO procedures repeatedly in full. If only
parts of a procedure are to be looped through repeatedly then it is necessary to use internal
loops.

External loops are implemented by referencing a loop counter in the @DO procedure. The
start value, end value and increment of this counter must be specified when the procedure
is called in the @DO statement (see @DO statement page 285). The loop counter must be
a special character and should not conflict with special characters which have a fixed
meaning in EDT (e.g. % or $). In contrast, the characters ! or | are suitable. Within the
@DO procedure, the loop counter must be used like a line number (not like a line number
variable, i.e. it cannot be modified in the procedure).

When the last statement in the @DO procedure is executed, the loop counter is increased
or decreased by the specified increment and compared with the end value. If the
comparison value is not greater or lower than the end value accordingly, the procedure is
run again with the modified loop counter value. If the last statement in the @DO procedure
is not executed, for example because the procedure has been exited with @RETURN, the
procedure is not looped through again but is interrupted, perhaps before the specified end
value is reached. It may therefore be necessary to write an artificial (empty) final statement
(see @CONTINUE statement).

The special character representing the loop counter may be present, when the @DO
statement is entered, in a character set other than that used in the called procedure. If
necessary, it is converted in accordance with the same rules as the literals which may occur
in other EDT statements (see section “Character sets” on page 47).

External loops can be replaced by internal loops. In an external loop, alongside the start
and end value it is only possible to specify a fixed positive or negative increment. In an
internal loop, it is possible to specify a variable increment, for example via a line number
variable.

Example of an external loop

@PROC 3

@DELETE

@ @COLUMN 10 ON ! INSERT !:27-36:
@END

The above statement sequence constructs a @DO procedure containing the single
statement @COLUMN... in work file 3.

If this @DO procedure is started with @DO 3, !=11,15, then the values 11,12,13,14
and 15 are used sequentially for the loop counter ! (the implicit increment is 1). In these
lines, the content of the relevant line (columns 27-36) is inserted again at column 10.

74

U41709-J-2125-1-76

Underlying EDT concepts EDT procedures

If this procedure is applied to a work file with a smaller increment (for example 0.1) then
some lines may be ignored. If all the lines are to be taken into account independently of the
increment, an internal loop should be used (see example below).

Example of an internal loop

@PROC 4 (01)
@DELETE

@RESET

@1.00

@ @IF ERRORS : @GOTO 2 (02)

@ @IF #L10 > 15 @GOTO 2 (03)

@ @COLUMN 10 ON #L10 INSERT #L10:27-36: (04)

@ @SET #L10 = #L10 + 1L (05)

@ @GOTO 1 (06)
@2.00

@ @CONTINUE

@END. ...

@SET #L10 = 11 (07)
@po 4

(01) A @DO procedure is constructed in work file 4.

(02) The procedure should be aborted if EDT errors occur.

(03) If loop counter #L10 exceeds the value 15 then the procedure should be aborted.
(04) The content of the corresponding line in column 27-36 should be inserted again in

the line defined via #L10 in column 10.

(05) The line number is set to the next existing line number. Specifying the value 1
instead of 1L here would have the same effect as in the external loop (see above).

(06) Processing branches to the start of the loop.

(07) The start value of the loop counter is set outside of the @DO procedure and the
procedure is then called.

Note
Line 11.00 must exist in the file that is to be processed and the last line in the file to be
processed should be greater than 15. 00, otherwise the procedure is aborted with an
error message.

U41709-J-2125-1-76 75

EDT procedures Underlying EDT concepts

3.6.7 Parameters

When @DO procedures are created in EDT, @PARAMS can be used to define formal
parameters to which current values (current parameters) are assigned when the procedure
is called with @DO.

The @PARAMS statement must be the first statement in a @DO procedure and may only
occur once in the procedure. Both positional and keyword parameters are permitted. All the
positional parameters must be defined before the keyword parameters.

A formal parameter starts with the character &. This is followed by a letter which in turn is
followed by up to 6 letters or digits.

When the procedure is called, the parameters in the @DO statement are specified as the
current parameters. It is also possible to set keyword parameters to a default value within
the @PARAMS statement.

The default value is used if the corresponding keyword parameter is not specified in the
@DO statement. When the procedure is called, the formal parameters in the procedure are
replaced by the values of the current parameters or the default values.

The processing of these parameters should be considered as a two-stage process. First of
all in the called procedure, the text of the formal parameters is replaced by the current
parameters and the modified lines are then processed. Here, it may be necessary to take
account of the presence of a number of different character sets, i.e. the character set in the
statement (for the current parameters), the character set used in the work file that is to be
run as a procedure and the character set of the current work file to which the statements in
the procedure are applied or in which the records are inserted.

In the first stage of text substitution, it is therefore necessary to convert the character set of
the statement into the character set of the executing procedure.

This applies both to the names of the specified current parameters and the names of the
formal keyword parameters. If the current parameters contain a substitute representation
for Unicode characters (see section “Substitute character representation in Unicode” on
page 52), then they are not converted into the corresponding Unicode characters at the
time of text substitution even if the current parameters are quoted.

In the second stage of processing (execution), both lines and literals in statements must be
converted from the procedure's character set into the character set of the current work file.
This operation includes the interpretation of a substitute representation for Unicode
characters if substitute representation in a literal has been used.

It is not possible to pass through the current parameters unmodified since text substitution
can take place at any position in a line in the executing procedure (in literals, in other
operands or even in the statement name itself).

76

U41709-J-2125-1-76

Underlying EDT concepts EDT procedures

If in a Unicode environment, a procedure file is used which is present in a 7-bit or 8-bit
character set, undesired character substitutions may therefore occur during the recoding of
a parameter entered in Unicode into the character set used in the procedure file. This can
only be prevented by using the substitute representation for Unicode characters (see
above). For the precise rules governing recoding, see section “Character sets” on page 47.

Note
If EDT procedures with parameters are also to be used in BS2000 system procedures
which also contain parameters, it is advisable to set the BS2000 parameter symbol to
a value other than & (/SET-PROC-OPT DATA-ESCAPE-CHAR=...)in order to avoid
conflicts.

Example for the use of parameters in an EDT procedure

In the following example, a file is read into work file 0. The records which contain the search
term are copied into work file 5, prepared accordingly and output on the screen.

1. @PROC 4

1. @DELETE

1. @ @PARAMS &FILE,&SEARCH (01)
2. @ @DELETE

3. @ @READ '&FILE'

4. @ @ON & FIND PATTERN '&SEARCH' COPY TO (5)

5. @ @PROC 5

6. @ @QCREATE 0.01: '~' * 50

7. @ @QCREATE 0.02: 'MENU ', '&SEARCH'

8. @ @QCREATE 0.03: '~' * 50

9. @ @RENUMBER
10. @ QCREATE $+1: '~' * 50
11. @ @PRINT

12. @ @END

13. @END

1. @0 4 (MENU,CW 49) (02)
1.0000 ~rmmmmm s s S e

2.0000 MENU CW 49

CINO[0[010 Batetetetodoiadadedetotedototetototodoiadedadededodedetotetototoiaddadedededototetotetotodetadedades

4.0000 CW 49 - 05.12. CORN FRITTERS, CHOCOLATE MOUSSE

5.0000 CW 49 - 06.12. BEEFBURGER, BOILED POTATOES, YOGHURT

6.0000 CW 49 - 07.12. CUMBERLAND SAUSAGE, FRENCH FRIES, FRUIT SALAD
7.0000 CW 49 - 08.12. PENNE IN GARLIC AND MUSHROOM, TRIFLE

8.0000 CW 49 — 09.12. COD IN BATTER, SAUTE POTATOES, APPLE FLAN
EIO[0[010 BEatetetetodoiadadadetoteiototetototodotadededededotedetotetototoiaddadedededetodetetetedoddittatt

U41709-J-2125-1-76 77

Searching with @ON Underlying EDT concepts

3.7

10. @D0 4 (MENU, SAUSAGE) (02)
1L Q00 e e

2.0000 MENU SAUSAGE

B 0000~ e e e e e e

4.0000 CW 45 - 10.11. SAUSAGE AND EGG, FRENCH FRIES, CUSTARD PUDDING
5.0000 CW 49 — 07.12. CUMBERLAND SAUSAGE, FRENCH FRIES, FRUIT SALAD
B0 D000~

(01) Define the symbolic parameters (two positional parameters).

(02) Call the procedure with the associated current parameters. The formal parameters
in the @READ, @ON statement are replaced by the current values on each @DO
call.

Searching with @ON

There are ten formats of the @ON statement in which actions can be triggered depending
on the search term. The search term defines one or more strings which can be searched
for in a search range.

Alongside simple characters, the search term can include wildcards which act as place-
holders for groups of characters. The wildcards stand either for precisely one character or
for a string of any length. When a wildcard is interpreted, pattern matching occurs during
the search operation.

The search term is bounded by a delimiter character on both the left and right. There are
two different delimiters.

Depending on the delimiter character that is used, the start and/or end of the hit string is
determined either simply by the hit string or by the hit string plus additional text delimiter
characters before or after the search term. The two possible delimiter characters can be
combined as desired when the search term is entered directly. The strings that are
considered to be hits depend on the employed delimiter characters.

If wildcards are interpreted or if text delimiter characters are searched for in the search
object then the search term and the hit strings may not be identical. In such cases, it is even
possible that the individual hit strings will differ from one another.

The search term is only searched for in the line or column ranges which are specified in
the @ON statement. The following sections discuss the details which are of relevance
when searching using the @ON statement.

78

U41709-J-2125-1-76

Underlying EDT concepts

Searching with @ON

3.7.1 Case sensitivity

The @SEARCH-OPTION statement can be used to define whether a distinction should be
made between uppercase/lowercase when searching for strings with the @ON statement.
By default, searches are case-sensitive. If no distinction is to be made between
uppercase/lowercase then the search term and search area are temporarily converted from
lowercase to uppercase when the statement is executed.

The conversion is performed using the interface provided by XHCS. When
lowercase/uppercase conversion is performed, the lengths of the strings do not change
irrespective of the specified character set.

Example

@SEARCH-OPTION CASELESS-
SEARCH=0OFF

@ON & C'suCH' TO 'SUCH"

The uppercase/lowercase notation of a character is
taken into consideration during the search. This
corresponds to the default setting of the @SEARCH-
OPTION statement.

Only the string' suCH "is converted into 'SUCH'".
Strings of the form 'such’ or 'sucH' are not converted.

@SEARCH-OPTION CASELESS-
SEARCH=0ON

@ON & C'suCH' TO 'SUCH'

Uppercase/lowercase notation is not taken into
consideration during the search.

All 'such' strings in all possible case variations are
converted into 'SUCH".

The CASELESS—SEARCH setting only applies to formats 1 to 3 and 5 to 10.
In format 4 it is not relevant since searches in this format are only conducted for marked

lines.

U41709-J-2125-1-76

79

Searching with @ON Underlying EDT concepts

3.7.2 Using wildcards in search terms

Alongside simple characters, it is also possible to specify placeholders for groups of
character (so-called wildcards). There are two wildcards.

asterisk (Default value *) stands for a string of any length including an empty string.
If specified more than once in succession then it is interpreted as a single
asterisk, e.g. '"ABC**F' is equivalent to 'ABC*F".

slash (Default value /') stands for precisely one character.

If the keyword PATTERN is specified then the wildcards are interpreted and pattern
matching takes place. The wildcards are resolved into the shortest possible substring in the
search range.

If the keyword PATTERN is not specified then the wildcards are handled as simple constant
characters.

Example

@ON & PRINT 'AB*C’ Displays all the lines which contain precisely the string
AB*C

@ON & PRINT PATTERN 'AB*C’ | Displays all the lines which contain the strings ABC,
ABXC,
ABCDEFG, ABXXXXXXC etc.

Multiple wildcards may be present in every search term. A search term which consists only
of wildcards is also permitted. The @SYMBOLS statement can be used to redefine the
wildcards.

No wildcards can be specified within the substitute representation of Unicode characters.

80

U41709-J-2125-1-76

Underlying EDT concepts Searching with @ON

3.7.3

3.7.4

Negative searches

If the keyword NOT is specified in the @ON statement then the records and/or string
variables which do not contain the search term are identified. This is described in detail for
the individual formats of the @ON statement.

Example
The work file contains the following lines:

1.ABCD
2.ABCE
3.ABDE
4 .ACDE

With @ON & PRINT NOT 'AB' only the 4th line would be output.
With @ON & PRINT NOT 'ABC’, the 3rd and 4th line would be output.

Delimiter characters

On input, the search term is bounded by a delimiter character on both the left and right.
There are two different delimiter characters.

apostrophe (Default value ') specifies that text delimiter characters before or after the
search term should not be searched for in the search range. The start and
end of the hit string are therefore determined solely by the search term.

quotation mark
(Default value ") specifies that the hit string in the search range must be
bounded by a text delimiter character before and/or after the search term.
The start and/or end of the hit string are therefore defined by delimiter
characters or by the first or last column of the column range to be searched.

The settings for the delimiter character apostrophe and for the delimiter character quotation
mark can be modified using the @QUOTE statement.

The strings that are considered to be hits depend on the type of delimiter character used. If
the search term is enclosed in apostrophes then an occurrence of the search term in the
search range is considered to be a hit.

The wildcard asterisk has no significance if it occurs in the search term immediately next to
the delimiter character apostrophe.

If the search term's left-hand delimiter character is the quotation mark, then for the search
term to count as a hit it must be located either at the start of the line or a text delimiter
character must be located immediately in front of it.

U41709-J-2125-1-76 81

Searching with @ON Underlying EDT concepts

If the wildcard character asterisk is located immediately after the delimiter character
quotation mark in the search term then the hit string extends to the next text delimiter
character before the search term. If there is no text delimiter character then the hit string
continues to the start of the line.

If the search term's right-hand delimiter character is the quotation mark, then for the search
term to count as a hit it must be located either at the end of the line or a text delimiter
character must be located immediately after it. If the wildcard character asterisk is located
immediately before the delimiter character quotation mark in the search term then the hit
string extends to the next text delimiter character after the search term.

If there is no text delimiter character then the hit string continues to the end of the line.

By default, EDT presets the set of text delimiter characters to the characters: blank (X'40"')
and +.!*();—/,72:'=",
This character set can be redefined using the @DELIMIT statement.

To search for the delimiter characters apostrophe or quotation mark as part of a search term
then these must be specified in duplicate.

The first and last columns of a specified column range act as text delimiter characters
during the search in the same way as the start or end of a line.

The delimiter characters in a search term can be combined as desired.
Example 1
The work file contains the following lines:

1.ABCD
2.A,BCD
3.ABC,D
4.A,BC,D

With @ON & PRINT 'BC' 1 hitis identified in all 4 lines.

With @ON & PRINT "BC' 1 hitis identified in the 2nd and 4th lines.
With @ON & PRINT 'BC" 1 hitis identified in 3rd and 4th line.

With @ON & PRINT "BC" 1 hitis identified in the 4th line.

Example 2
The work file contains the following line:

1.XXX,ABCDEFGH-YYY
@ON 1 PRINT PATTERN 'EFG*"

The hit string is 'EFGH' since it extends to the right as far as the next text delimiter
character '—'.

@ON 1 PRINT PATTERN "*BCD'

The hit string is '"ABCD' since it extends to the left as far as the next text delimiter
character '—'.

82

U41709-J-2125-1-76

Underlying EDT concepts Searching with @ON

Example 3

@ON & PRINT 'This ""string"" contains no ''X"''.'
In this case, the search is conducted for the string

This "string" contains no 'X'.

3.7.5 Indirect specification of the search term

In the @ON statement, it is also possible to specify the search term via a line number, a line
number variable or a string variable (in each case a column specification is possible). The

line

with the specified line number or string variable contains the search term.

Examples

@CREATE 6 : 'AB*C//D'
@ON 2-3 PRINT PATTERN 6:2-5:

The search term is therefore 'B*C/ .

@CREATE 1 : 'ABCDEFG'
@SET #L3 =1
@ON 2-3 PRINT PATTERN #L3:4-7:

The search term is therefore 'DEFG' .

@SET #S0 = 'ABCD*E//F'
@ON & PRINT PATTERN #S0:3-8:

The search term is therefore 'CD*E//"'.

In the case of an indirect specification, the search term is treated as if it were enclosed in
apostrophes. The search for text delimiter characters in search ranges is therefore not
possible in the case of indirect entry.

U41709-J-2125-1-76

83

Searching with @ON Underlying EDT concepts

3.7.6 Search range

The @ON statement searches only in the specified search range.

Here, it is possible to specify one or more line ranges. A line range can also consist of just
a single line. The line ranges are searched through in the specified order. It is also possible
to specify a range of string variables for a line range.

An operand can be used to specify whether in each specified line range, the @ON
statement identifies only the first hit line or searches through all the lines in the line range.
By default, the @ON statement searches in all the lines in each specified line range.

Examples
@ON 1-3 FIND 'ABC'
In the @ON statement, only a single line range is searched.
@ON 1,2,3 FIND 'ABC'

The search range consists of three line ranges consisting of one line each. Depending
on the operands, the search result may be different from in the preceding example.

@ON #S01,#S03.-#S04 CHANGE 'ABC' TO 'DEF'
In the @ON statement, the string variables #501, #503 and #S04 are searched for a hit.

A column range can be specified for a search in a line. It is not permissible to specify
multiple column ranges. If no column range is specified then a default column range is used
(see @SEARCH-OPTION).

Examples
@ON &:15-15: CHANGE 'A' TO 'D'
In the @ON statement, only a single column is therefore examined.
@ON &:15-25: PRINT 'XYZ'

In the @ON statement, only a contiguous column range is therefore searched.

84

U41709-J-2125-1-76

Underlying EDT concepts Searching with @ON

3.7.7 Other search parameters

Depending on the operands, the search range can be searched through from either left to
right or from right to left (R operand). By default, EDT searches the lines from left to right.

When a search is performed in a line, an operand can be entered to control as of how many
occurrences a search term is considered to be a hit. By default, the first occurrence of the
search term in a line is considered to be a hit.

Once the search term has been found, the @ON statement performs certain actions
depending on the format in question.

Then, depending on the operand specification (ALL operand), the search for further hits in
a line may be continued. In this case, the @ON statement takes account of the fact that the
individual hit strings may not overlap.

This also applies if the hit strings are of variable length because the wildcard asterisk is inter-
preted or because a search is performed for text delimiter characters.

If the search is performed from left to right, the @ON statement therefore continues after
the hit string. If the search is performed from right to left, the search for further hits is
restricted to the columns located in front of the hit string.

As of the search for the second hit, every further occurrence of the search term in a line is
considered to be a hit. By default, the @ON statement only identifies the first hit within a
line.

U41709-J-2125-1-76 85

Searching with @ON Underlying EDT concepts

3.7.8 Recording a hit

EDT records the results of the search for hits in local switches or in variables.

@IF (format 3) can be used to query whether a hit was identified the last time the @ON
statement was run or whether the current work file was empty. If a hit was recorded, it is
also possible to query the number of the column in which the first hit string starts.

In addition, EDT records the results of the search operation in accessible variables.

The number of the line in which EDT identified the first hit is recorded in line number
variable #L0 and under the line number symbol ' ? '. If no hit is found or if the hit is identified
in a string then the values of #L.0 and '?' remain unchanged.

The number of the column in which the search term begins on the first identified hit
(independently of whether this is a line or a string variable), is stored in the integer variable
#10 and the number of the column in which it ends in the integer variable #11.

If no hit is found, the values of #10 and #11 remain unchanged.

This also applies to hits found in a string variable.

@PRINT #LO:#l0-#11 can be used to output the hit string on screen if the hit was located
in aline. If the operands V and ALL are specified then the number of hit lines or the number
of string variables which contain the search term is stored in the integer variable #12 and
the total number of hits is stored in the integer variable #13.

Independently of the specified character set, column specifications designate character
and not byte addresses.

In the case of a negative search, following the occurrence of the first record in which the
search term does not occur, the start position of the searched column range is recorded in
integer variable #10 and the end position in integer variable #11.

If the end position of the column range is greater than the record length then the record
length is stored in #11.

Example
The work file contains a line with the string > XXX-ABCD-YYY".

Search term Hit string Content of #10 and #11
*ABC*Y ABCD-YYY #I10 = 5; #I1 = 12
"ABC*Y”’ ABCD-Y #I10 = 5; #I1 = 10
"ABCD’ ABCD #I10 = 5; #I1 = 8
**BCD”’ BCD #10 = 6; #I1 = 8

86

U41709-J-2125-1-76

4 Using EDT

This section describes how EDT is integrated in the BS2000 system environment. This
includes the underlying processes involved in starting, terminating, interrupting and
monitoring EDT, an overview of the input and output flows and a presentation of the ways
in which the system can be protected against undesired access via EDT.

4.1 Starting EDT

Since EDT as of V17.0A can be run in two operating modes (see section “Introduction to
the EDT operating modes” on page 21), the EDT start commands have been extended
accordingly.

When starting EDT it is possible to decide whether to opt for compatibility and do without
the functional extensions —i.e. start EDT in compatibility mode — or to make use of the new
functions and accept the presence of certain incompatibilities — i.e. start EDT in Unicode
mode.

It is also possible to use EDT statements after start-up to switch between compatibility
mode and Unicode mode.

It is always essential to start in Unicode mode if you need to make use of the functional
extensions at the moment EDT is initialized, e.g. when running the EDT start procedure
(see “EDT start procedure” on page 72).

For details of the functional extensions and incompatibilities in Unicode mode and the use
of EDT statements to switch between modes, see section “Introduction to the EDT
operating modes” on page 21 and chapter “Compatibility mode” on page 611.

The start process in Unicode mode is described below.

For information on starting EDT in compatibility mode, see section “Compatibility mode” on
page 611.

U41709-J-2125-1-76 87

Starting EDT Using EDT

41.1 The EDT start command

As of EDT V17.0A, EDT can be loaded and started in Unicode mode using the command
/START—-EDTU.

The /START-EDTU command makes it possible to select a specific EDT version if multiple
versions coexist. /START-EDTU considers only EDT versions greater than or equal to
V17.0A.

The /START-EDTU command may only be used under user IDs which have the necessary
privileges (see section “Access protection” on page 99).

The alias for the /START-EDTU command is /EDTU.

START-EDTU Alias: EDTU

VERSION = *STD / <product-version 6..10> /<product-version 4..8 without-correction-state> /
<product-version 3..7 without-manual-release>

,MONJV = *NONE / <full-filename 1..54 without-gen-vers>
,CPU-LIMIT = *JOB-REST / <integer 1..32767>
,PROGRAM-MODE = *ANY / 24

VERSION =
Product version of EDT that is to be started.

VERSION = *STD
The version defined by the command /SELECT-PRODUCT-VERSION is selected. If there is
no defined version, the system selects the highest possible version.

VERSION = <product-version 6..10> /
<product-version 4..8 without-correction-state> /
<product-version 3..7 without-manual-release>

Explicit specification of the product version.

MONUJV = *NONE / <full-filename 1..54 without-gen-vers>

Name of the job variable which is to monitor the EDT session. The job variable must have
been cataloged beforehand (only for users of the JV software product [9]). For a detailed
description, see section “Monitoring the EDT session with monitoring job variables” on
page 96.

MONJV = *NONE
No job variable is used for monitoring.

88

U41709-J-2125-1-76

Using EDT

Starting EDT

CPU-LIMIT = *JOB-REST / <integer 1..32767>

The CPU time which EDT is allowed to use for execution. If this time is exceeded, then the
system informs the user of this in interactive mode. In batch mode, the session is
terminated.

CPU-LIMIT = *JOB-REST

If the operand CPU-LIMIT=STD has been specified in the /SET-LOGON-PARAMETERS
command then the program is not subject to any time restriction.

If the operand CPU-LIMIT=t has been setin the /SET-LOGON-PARAMETERS command, the
value defined during system generation is used as the time restriction for the EDT session.

PROGRAM-MODE =
Defines the addressing mode in which EDT is to run.

PROGRAM-MODE = *ANY
EDT is loaded in the upper address space and runs in 31-bit mode.

PROGRAM-MODE = 24

EDT is loaded in the lower address space and runs in 24-bit mode. If EDT is loaded in the
upper address space as a subsystem then a private copy is dynamically loaded into the
lower address space.

In interactive mode, EDT is started by default in F mode (full-screen mode, see section “F
mode” on page 101), while in batch mode the default start mode is L mode (line mode, see
section “L mode” on page 126).

If job switch 5 is set (see section “Job switches” on page 98) then L mode is also used for
interactive mode. In this case, EDT uses RDATA to read input from SYSDTA.

EDT's mode of operation is also influenced by the declaration of the user's default character
set with the /MODIFY-TERMINAL-OPTIONS command and by the character set defined for
SYSDTA (for more information, see sections “Introduction to the EDT operating modes” on
page 21 and “Character sets” on page 47).

The following initialization steps are executed during the EDT start phase:

1. Take over S variables defined via SDF-P into EDT string variables (see below)
2. Execute the EDT start procedure (see section “EDT start procedure” on page 72)

Processing takes place in the specified order. When EDT is started as a subroutine, these
initialization steps are not performed.

When EDT is started, the string variables #S00. .#S20 are initialized. If one or more of the
S variables SYSEDT-S00. .SYSEDT-S20 exist and are of STRING type then their content is
assigned to the corresponding string variables. The content of S variables of other types is
not taken over.

Since it is not possible to specify a character set at this point, the string variables are
assigned the character set EDF041.

U41709-J-2125-1-76 89

Starting EDT

Using EDT

41.2

41.3

Calling EDT as a main program

For reasons of compatibility, it is still possible to call EDT using /START-PROGRAM. EDT is
then loaded as a main program with one of the following BS2000 commands and is started

in Unicode mode:

Command AMODE
START-PROGRAM $.SYSPRG.EDT.170.EDTU AMODE 31
START-PROGRAM AMODE 24
*MODULE ($.SYSLNK.EDT.170,EDTCU, RUN-MODE=*ADVANCED)

Calling EDT as a subroutine

EDT cannot only be called as a main program but can also be called as a subroutine by a

user program.

The process of calling EDT as a subroutine is described in the manual "EDT Subroutine

Interfaces" [1].

For a discussion of the specific considerations relating to the interaction between Unicode
mode and EDT as a subroutine, see “Subroutine interfaces and operating modes” on

page 616.

90

U41709-J-2125-1-76

Using EDT Interrupting and terminating an EDT session
4.2 Interrupting and terminating an EDT session
The next two sections describe the special considerations to be borne in mind when inter-
rupting or terminating EDT.
4.2.1 Interrupting an EDT session

In both F mode and L mode, the EDT session can be interrupted by means of @SYSTEM
or by pressing [K2]. In both cases EDT remains loaded.

If, during the period of interruption, other programs are loaded via the BS2000 command
interface (e.g. with /START—PROGRAM or /LOAD-PROGRAM) or if procedures are started
which load other programs then EDT is unloaded without any query being issued and it is
then not possible to continue the EDT session.

It is possible to return to the interrupted EDT work mode using the /RESUME-PROGRAM
command. The /RESUME-PROGRAM command continues the EDT session at the point
where it was interrupted.

In F mode, if the work window in which the EDT session was interrupted is not displayed or
is incomplete following /RESUME—PROGRAM, then the original content can be restored by
pressing [K3]. If EDT is interrupted using then all input which has not yet been trans-
ferred is lost.

It is also possible to continue an interrupted EDT session mode using the
/INFORM—PROGRAM command. When this is done, any message passed in the command is
ignored.

If the @SYSTEM statement was specified in a statement sequence in F mode or in an input
block in L mode (BLOCK mode) and / INFORM—PROGRAM is used to return to EDT after the
interruption then a message is output and the remainder of the statement line or input block
after @SYSTEM is not executed.

If, at the time of interruption, EDT had not yet fully processed the lines in a @DO or
@INPUT procedure then the interrupted processing is aborted following a return with
/INFORM-PROGRAM. A message is output and the remaining lines are not executed.

If a line range is being executed in an EDT statement at the time of interruption then
execution of the statement is usually aborted and a message output on return to EDT with
/ INFORM—PROGRAM.

Note
The EDT run cannot be interrupted if EDT was started within a BS2000 system
procedure protected against interruption by means of the setting INTERRUPT—
ALLOWED=NO (see section “Access protection” on page 99).

U41709-J-2125-1-76 91

Interrupting and terminating an EDT session Using EDT

4.2.2 Terminating an EDT session

The statements @HALT, @RETURN (outside of procedures), @EXEC and @LOAD and,
in F mode, the key terminate EDT normally. When this is done, EDT closes all open
files.

In interactive mode, it may also be possible to terminate EDT with @END. In L mode, the
messages

% EDT4939 '@END' WITHOUT '@PROC' STATEMENT
% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

are first output to prevent any unintentional termination of EDT.

If EDT is running a screen dialog (after @DIALOG), then the statements @HALT,
@RETURN (outside of procedures), @END and the [K1] key terminate the screen dialog
but not EDT itself. In this case, the user is not asked to confirm.

@HALT ABNORMAL can be used to force an abnormal termination of the EDT session if
EDT was started as a main program. If EDT was started as a subroutine, @HALT
ABNORMAL returns control to the calling program and issues a special return code.

If there are any unsaved work files when termination is requested, EDT is not immediately
terminated if it is running in interactive mode. After the message

% EDT0900 EDITED FILE(S) NOT SAVED!

the numbers of the work files containing unsaved data are output. The user then sees the
following query:

% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

If the user replies N, the EDT session continues and the user can resume work, for example
by writing back as yet unsaved files. If the user replies Y the unsaved work files are lost and
EDT is terminated.

In F mode, if EDT is terminated with the key then the confirmation query
% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?
is output in the work window's message line even if there are no open work files.

When EDT is terminated, the content of the string variables #S00. . #S20 is assigned to the
corresponding S variables SYSEDT-S00. .SYSEDT-S20 if these exist and if they are able to
accept a value of type STRING. The values of the string variables are passed in the
character set EDF041. If conversion errors occur, the value is not transferred. If the value is
more than 4096 bytes long then it is truncated and only the first 4096 bytes are transferred.
No messages are output. This assignment step is omitted if it has already been performed
manually using @SETVAR with the KEEP operand or if EDT was started as a subroutine.

92

U41709-J-2125-1-76

Using EDT

Interrupting and terminating an EDT session

If the event Program runtime exceeded occurs (EDT runtime exceeds the value specified for
CPU-LIMIT in the /START-PROGRAM command), then a message is output to SYSOUT and
EDT is terminated abnormally if it is running in batch mode.

If the interrupt event PROCHK (program error) or ERROR (unrecoverable program error)
occurs and the EDT data area is still addressable then message EDT8910 is output and
specifies the program counter and interrupt weight. A memory dump is generated and EDT
is terminated abnormally.

To control system procedures in which EDT is called, information about the cause of EDT
termination and about the EDT session is provided both in the event of normal termination
with @HALT, @RETURN (in interactive mode, also with @END), or abnormal termination
brought about by the system or by the user with @HALT ABNORMAL.

This information is not available if the EDT session is aborted with the @EXEC or @LOAD
statements or with the BS2000 /CANCEL-PROGRAM command or if EDT is unloaded by
means of another BS2000 command.

U41709-J-2125-1-76 93

Interrupting and terminating an EDT session Using EDT

4.2.3 EDT command return code

EDT supplies a command return code that can be used by SDF-P for the control of S proce-
dures. The command return code makes it possible to react specifically to certain error
situations.

The command return code consists of three parts:

— the main code which corresponds to a message code by means of which more detailed
information can be queried using the command HELP-MSG—-INFORMATION

— subcode1 (SC1) which assigns the error situation that has occurred to an error class
which makes it possible to estimate the severity of the error

— subcode2 (SC2) which may contain additional information (value other than null)

SC2 |SC1 | Maincode |Meaning

0 0 | EDT8000 | Normal termination of the EDT session. No messages
were issued.

2 0 | EDT8000 | Normal termination of the EDT session. Only messages
of message severity 0, 1, 2 were issued (information,
warnings, no syntax errors)

5 0 | EDT8000 | Normal termination of the EDT session. At least one
message of message severity 4 or 5 occurred (function or
execution errors, no syntax errors)

10 0 | EDT8000 | Normal termination of the EDT session. At least one
message of level 3 severity was issued (syntax error in a
statement)

50 64 | EDT8101 | Abnormal termination by the user
(@HALT ABNORMAL)

100 64 | EDT8200 | Abort due to time overrun (program runtime exceeded)
100 64 | EDT8292 | Read error. Program aborted.
100 64 | EDT8293 | Write error. Program aborted.
150 64 | EDT8910 | Program interruption.
Abnormal abort with memory dump
150 64 | EDT8001 | Abnormal termination after program interruption
200 64 | EDT8002 | Errorin dynamic loading of EDT mode.
200 64 | EDT8003 | Insufficient virtual memory available
200 64 | EDT8005 |EDT initialization error
200 64 | EDT8006 | Installation error

For information on the messages and message levels, see section “Message texts” on
page 638.

If EDT is terminated abnormally, it is possible to query the components of the return code
using the SDF-P functions SUBCODE1 (), SUBCODE2() and MAINCODE ().

94

U41709-J-2125-1-76

Using EDT

Interrupting and terminating an EDT session

Example for the querying of return codes

/MODIFY-JOB-SWITCHES ON=5

/START-EDT

@LOG NONE

@...

@DIALOG

@...

@HALT

/SAVE-RETURNCODE

/TF-BLOCK-ERROR

/ WRITE-TEXT 'ERROR: &SUBCODE1l, &SUBCODEZ2, &MAINCODE'
/ELSE

/ WRITE-TEXT 'EDT TERMINATED NORMALLY'

/ IF (&SUBCODEZ > 5)

/ WRITE-TEXT 'A SYNTAX ERROR HAS OCCURRED'
/ RAISE-ERROR MAINCODE=EDT3002

/ END-IF

/ R

/END-1

/HELP-MSG-INFORMATION &MAINCODE
/MODIFY-JOB-SWITCHES OFF=5

If EDT is terminated normally, the /SAVE-RETURNCODE command can be used to save the
return code for evaluation (for more detailed information on command return codes and for
querying return codes, see the SDF-P User Guide [7]).

U41709-J-2125-1-76

95

Monitoring the EDT session with monitoring job variables Using EDT

4.3 Monitoring the EDT session with monitoring job variables

EDT execution can be monitored with a BS2000 job variable.
/START-EDTU MONJV=jvname

If a monitoring job variable is specified when EDT is started then this is filled with a value
when EDT terminates.

The value of the job variable consists of
— a 3-byte status display,
— a4-byte return code display,

The following table indicates the values which EDT may assign to the job variable.

Error class Termination Status Return Spin-off
indicator | code mechanism

No message Normal ST 0000 No
Note 1002

Function error 1005

Syntax error 1010

Interruption Abnormal $A 2050 Yes

by the user

Fatal Abnormal 2100

Fatal with DUMP 2150

Initialization error 3200

The value and meaning of the last 3 digits of the return code correspond to subcode 2 (SC?2)
of the command return code.

96 U41709-J-2125-1-76

Using EDT

Input and output

4.4

Input and output

Input to EDT may take the following form

— from the screen (primary source)

— from the system file SYSDTA

— from a SAM or ISAM file

— from a library element

— from a POSIX file

— from another EDT work file (@DO procedure)

When reading input, EDT distinguishes between data (texts) and statements.

Whether EDT reads from the terminal or from SYSDTA depends, on the one hand, on the
system environment (dialog or batch mode) and, on the other, on the EDT work mode

(F mode or L mode) (see section “EDT work modes” on page 101). The work modes can,
in turn, be set by means of job switches (see section “Job switches” on page 98) and state-
ments (@EDIT statement).

The other input sources must be explicitly declared in a statement (see the statements
@OPEN, @COPY, @READ, @GET, @XOPEN, @XCOPY, @INPUT, @DO)

Output from the EDT may take the following form:

— to the screen (primary target)
— to the system file SYSOUT

— toa SAM or ISAM file

— toalibrary element

— toa POSIXfile

— to the system file SYSLST

Whether EDT writes to the terminal or to SYSOUT depends, on the one hand, on the system
environment (dialog or batch mode) and, on the other, on the EDT work mode. The work
modes can, in turn, be set by means of job switches (see section “Job switches” on

page 98) and statements (@EDIT statement).

The other output targets are declared either directly or indirectly in a statement (see the
statements @CLOSE, @WRITE, @SAVE, @COPY, @XCLOSE, @XWRITE, @PRINT,
@LIST)

For details, see chapter “File processing” on page 131.

U41709-J-2125-1-76 97

Job switches Using EDT

4.5

4.51

4.5.2

4.5.3

Job switches

There are 5 job switches whose settings are evaluated by EDT for runtime control
purposes. Before the EDT session, the switches can be set or reset using the system
command /MODIFY-JOB—SWITCHES. During the EDT session, this is possible using
@SETSW.

Job switch 4

If job switch 4 is set before EDT is loaded then, after loading, the messages of the dynamic
binder loader (BLS05xx), the EDT start message in L mode (EDT0001) and, on EDT termi-
nation, the message

% EDT8000 EDT TERMINATED
are not output. The following messages are also not issued:

% EDT0900 EDITED FILE(S) NOT SAVED!
% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

If job switch 4 is set before EDT is loaded in batch mode then @LOG NONE is set, i.e. no
logging is performed during the EDT session.

Job switch 5

If job switch 5 is set when EDT starts then L mode is used. EDT uses RDATA to read input
from SYSDTA. The same effect (reading from SYSDTA with RDATA) can be achieved by
entering @EDIT ONLY at the screen. Instead of the current line number, EDT outputs * as
a prompt in interactive mode.

Changing the setting of this switch during the EDT session has no effect.

An explicit switchover (with @EDIT without operands in L mode or with @EDIT FULL
SCREEN in F mode) is nevertheless still possible.

Job switch 6

If output is sent to SYSLST (e.g. @LIST statement), EDT normally writes no more than 132
characters per line. If job switch 6 is set then EDT writes up to 160 characters per line.
Longer outputs are distributed over multiple lines.

Job switch 6 must already be set when EDT is started.

98

U41709-J-2125-1-76

Using EDT Access protection
4.5.4 Job switch 7
This job switch can be set either before EDT starts or during the EDT session. It prevents
EDT from automatically releasing previously assigned disk space after writing SAM or ISAM
files. Normally, EDT releases unoccupied disk space using the FILE macro (see chapter
“File processing” on page 131).
4.5.5 Job switch 8
In batch mode, EDT writes messages and outputs a series of statements (e.g.: @STATUS)
to SYSLST. If job switch 8 is set then EDT writes this output to SYSOUT (see section “System
files” on page 149).
Job switch 8 must already be set when EDT is started.
4.6 Access protection
There are two ways of protecting the system against unauthorized access via EDT.
— EDT may only be started if the user ID possesses a specific privilege.
— Protection by means of uninterruptible BS2000 system procedures which check which
EDT statements are called
4.6.1 Constraints for privileged user IDs

The /START-EDTU command can be entered under all user IDs which possess the privilege
TSOS and/or STANDARD—PROCESSING. If a user ID has only one or more of the following
privileges, then EDT is started but any statements with security implications are rejected.

Privilege Meaning System ID
HARDWARE-MAINTENANCE Hardware online maintenance |$SERVICE
SECURITY-ADMINISTRATION Security administration $SYSPRIV
SAT-FILE-MANAGEMENT Management of SAT files $SYSAUDIT
SAT-FILE-EVALUATION Evaluation of SAT files $SYSAUDIT

U41709-J-2125-1-76 99

Access protection Using EDT

The following statements have security implications for user IDs with these privileges:

Statement Meaning

@EXEC Start program

@LOAD Load program

@RUN Run a user program as a subroutine
@SYSTEM Issue system commands
@UNLOAD Unload program

@USE Define external statement routines

If used with the above-mentioned user IDs, these statements are rejected with error
message EDT4976.

4.6.2 Uninterruptible procedures

If BS2000 system procedures are protected against interruption by the caller by means of
INTERRUPT—-ALLOWED=NO then the following applies to EDT:

— ltis not possible to switch to system mode by means of [K2].

— If EDT procedures are aborted by means of [K2] then EDT issues the message
EDT0913 to ask whether any actions are to be performed.

— Ininteractive mode and when input is read from a file (read with RDATA from SYSDTA,
processing of an EDT start procedure), the statements with security implications —
@SYSTEM, @EXEC, @RUN, @LOAD, @UNLOAD and @USE — are rejected unless
the statements are issued by the protected procedure itself (SYSDTA=SYSCMD).

100 U41709-J-2125-1-76

5 EDT work modes

EDT offers two work modes for processing data:

— In FULL-SCREEN mode (F mode) the whole screen is available in 23 work files (0-22)
for the input of data and statements.

— In LINE mode (L mode), there are 23 work files (0-22) but only one screen line is
available for the entry of data and statements at any time.
To make it possible to distinguish between records and statements, statements must
start with the statement symbol (by default: @) or with the user statement symbol
(see @USE statement, page 547).

5.1 F mode

In F mode, EDT provides screen-oriented file processing for SAM and ISAM files, library
elements and POSIX files. A total of 23 work files (0—22) are available to the user.

Screen-oriented means that in the data area that is displayed on the screen,

— the data can be overwritten in any order
— text can be deleted and inserted anywhere in a screen line
— text can be entered at the end of the file or in newly inserted screen lines

In addition to the possibility of making changes directly at the screen, users can control file
processing by means of:

— statements entered in the statement line

— statement codes entered in the statement code column

— statements entered in the data window (e.g. division of lines)
— record mark

— function keys

The formatted screen output is referred to as the work window. This displays the data of the
work file which has been written to this file by means of screen input or by reading SAM or
ISAM files, library elements or POSIX files.

It is possible to switch from F mode to L mode (see @EDIT).

U41709-J-2125-1-76 101

F mode

EDT work modes

Supported terminals

In EDT's F mode, the characteristics of the employed terminal are clearly of special impor-
tance. EDT was designed for the 8160 and 9750 terminals and upwardly compatible
devices as well as for the corresponding terminal emulations and the associated character-
istics.

It is usually only possible to work purposefully with Unicode files if using a terminal
emulation which permits the input of Unicode characters and which is also able to display
these characters correctly in the screen window (e.g. MT9750 as of V7.0 with terminal type
9763 and Unicode terminal mode). The 3270 terminal is no longer supported in the EDT
Unicode mode. It can, however, still be used in compatibility mode.

During data transfer with a terminal, it is only ever possible to use one character set per
dialog step. A dialog step with a different character set modifies the terminal display globally
and not just the presentation of the most recently transferred data. This results in the screen
being deleted and then reconstructed.

Since EDT permits the simultaneous processing of work files which are coded in different
character sets, it must be possible to define the character set used for communication with
the terminal independently of the currently visible work files (in particular if the terminal does
not support the work file's character set). This is done using the @CODENAME statement
(format 2).

This statement simply modifies the screen display and possibly also the interpretation of the
screen input. It does not modify the character set used in the work files or the character set
of the underlying DMS file “Character sets” on page 47).

102

U41709-J-2125-1-76

EDT work modes F mode

5.1.1 The work window

The work window subdivides the screen into fields with different functions. The diagram
below indicates the structure of the work window with line number display active.

s ~N
A B C
D E
\ /
A = Statement code column
A+B = Line number display
C = Data window
D = Statement line
E = Status indicator

The display at the terminal is always constructed using the communications character set
specified for the terminal. This can be selected automatically by EDT or set explicitly by the
user with the @CODENAME statement (format 2) (see also section “Communications
character set” on page 53).

A valid character set that has been explicitly specified using @CODENAME name,
TERMINAL is always set independently of the content of the work files and of the character
sets defined for these work files. This character set remains valid until the user changes it
again or reactivates EDT's automatic character set selection capability with @ CODENAME
*AUTO, TERMINAL.

When EDT starts, the character set declared by means of /MODIFY-TERMINAL—-OPTIONS
is specified.

U41709-J-2125-1-76 103

F mode

EDT work modes

If EDT's automatic character set selection capability for communications with the terminal
is active then EDT proceeds as follows:

— If the terminal supports the display of Unicode character sets then the character set
UTFE is defined as the communications character set even if it differs from the character
set declared in /MODIFY-TERMINAL-OPTIONS.

— If the terminal supports 8-bit character sets (but not Unicode), the character set
declared by means of /MODIFY-TERMINAL-OPTIONS is defined. If 7-BIT is specified,
EDFO3IRV is used as the communications character set, otherwise the specified
character set is used.

— If the terminal can only operate in 7-bit mode, EDFO31IRV is used.

In certain situations, EDT's automatic character set selection capability results in the
communications character set being changed in order to optimally adapt the depiction to
the displayed contents. A switchover may occur whenever the current work file is changed
or when the EDT automatic character set selection capability for communications with
terminals is activated (switched on).

— If the terminal supports the display of Unicode character sets then UTFE is set immedi-
ately (even without a change of work file).

— If the terminal supports the display of Unicode character sets then the definition of the
communications character set is not modified when the work file is changed. If the
terminal can only operate in 7-bit mode, the communications character set never
changes.

— Ifthe terminal supports 8-bit character sets (but not Unicode) then the defined character
set is the one declared for the work file displayed in the (topmost) work file provided that
this character set is supported by the terminal.

If this character set is an EBCDIC or Unicode character set and is not supported by the
employed terminal then EDF041 is set. If itis an ISO character set then the data is
converted to EBCDIC in a way which is transparent to the user and the EBCDIC
character set which is assigned to the ISO character set is used.

If the work file displayed in the (topmost) work window is empty and has the character
set *NONE then the character set declared by means of /MODIFY-TERMINAL—-OPTIONS
is used.

The character set specified for output also defines the character set in which input at the
terminal arrives at EDT.

Independently of this character set which is used for transfer purposes, it may nevertheless
be necessary to reinterpret the input depending on whether or not it is to be evaluated
globally (statement codes, file names in statements etc.) or refers to objects with a separate
character set (work files, string variables etc.). The rules for this interpretation of the input,
in particular in the case of literals, are described in section “Character sets” on page 47.

104

U41709-J-2125-1-76

EDT work modes F mode

5.1.1.1

5.1.1.2

5.1.1.3

Statement code column

Functions can be triggered by entering single-character statement codes in the statement
code column.

In the default setting, when records are displayed in the data window, the statement code
column can be overwritten while the data window is protected against overwriting. The data
window lines are set to overwritable only when statement codes are entered in the
statement code column or when data is transferred with [F2]. It is not then possible to
specify any statement codes in the overwritable screen lines.

As an alternative to the default setting, the statement @PAR EDIT-FULL=ON can be used
while the line number display is active (@PAR INDEX=0N) to set the data window and the
statement code column to overwritable. It is then possible to enter a statement code and at
the same time modify data in this screen line (see @PAR EDIT-FULL).

Invalid entries in the statement code column can be deleted by overwriting them with blanks
or NULL characters.

Line number display

When EDT is called, the line number display is active by default. It can be deactivated using
@PAR INDEX=OFF.

With the exception of the start of the line number display which is also the statement code
column, it is not possible to overwrite the line number display.

Line numbers are displayed in 6-digit form. Four of these digits precede the decimal point
and two follow it. A non-overwritable blank separates the line number from the data line.

The complete line number with its total of four digits after the decimal point is displayed in
L mode.

Data window

In the data window, the current work file is displayed on the screen. A work file consists of
records. These records are output in the data window's screen lines and a record may be
longer than a single screen line. In this case only part of the record is visible in the data
window. The data window represents a section of the work file. However, it can be moved
to a new position in the work file.

Provided that their length does not exceed the number of characters that can be displayed
at the terminal, records that are longer than a data window line can be displayed in full in
EDIT-LONG mode (see @PAR EDIT-LONG).

U41709-J-2125-1-76 105

F mode

EDT work modes

If the file contains fewer records than the data window has lines, the remaining lines are
filled with the filler character (by default the NULL character) and are set to overwritable.
These lines are already sequentially numbered with the set default standard increment. The
same depiction is also used if the data window is positioned so close to the end of the file
that there are fewer records to be displayed than there are lines present in the data window.

When EDT is called, the empty work file 0 is displayed on the screen.

By default, the records in the data window cannot be overwritten. Before they can be
modified, individual records must be set to overwritable using the statement codes X or E or
all the data window lines must be set to overwritable with [F2]. In EDIT-FULL mode, which
is set with @PAR EDIT-FULL=0N, all the records in the data window are overwritable at all
times. In EDIT-FULL mode, statement codes can be entered in the statement code column
at the same time as entries for the same line are made in the data window (see @PAR
EDIT-FULL).

The function keys to as well as the [DUE] and [DUEZ2] keys can be used to
transfer input to the terminal. The keys to do not transfer the input and any
entered text is lost. Some function keys also trigger special actions in EDT, for more infor-
mation see sections “Function keys in F mode” on page 123 and “Function keys in L mode”
on page 128.

Empty lines and new lines

The files that are to be processed by EDT may contain records of length 0. In the case of
POSIX or SAM files, the records genuinely have length 0. In the case of ISAM files with
standard attributes, the records may have the length 8 or 16 (in the case of files coded in
UTF16).

To permit the depiction of records of length 0 in the data window, EDT in Unicode mode
indicates the end of the record using a terminal-specific character (Logical Line End).
The terminal fills the remainder of the screen to the right of with protected NULL
characters (X' 00'). If the end of the record is located outside of the data window then
is not depicted and the screen line then ends with the last character of the record that is still
visible or consists only of NULL characters. A record of zero length is therefore depicted in
the data window by a screen line which consists only of the character in column 1 and
protected NULL characters (empty line). If is entered in column 1 of a screen line then
a record of length 0 is created for this line in the work file.

Empty lines should be distinguished from new lines which EDT provides in F mode after the
last record in the file or during the processing of the statement codes 1..9 or I. These
screen lines do not (yet) correspond to any record in the work file and consist only of NULL
characters (X' 00 ") without (and can be overwritten).

106

U41709-J-2125-1-76

EDT work modes F mode

The character can usually be omitted during input. It only has to be entered when the
record is intended to end with NULL characters. EDT ignores NULL characters at the end of
the entered screen line, i.e. all the NULL characters up to the first character which is not
NULL (this can be an or another character) are truncated from the right. The
itself is not taken over into the record. Since new lines only consist of NULL characters they
are ignored overall on input and are not inserted in the work file. In contrast, entering an
in column n of a new line would cause a record with n—1 filler characters (default
value: blank) to be inserted in the work file after data transfer. In particular, a record of length
0 would be inserted for n=1.

The terminal does not permit any entries to the right of the character in a screen line
When adding entries to a line, it is therefore necessary to activate the terminal insertion
mode or to overwrite the character.

Treatment of filler characters in the data window

Since the deletes the remainder of the screen line at the terminal, it is not possible to
display any characters in the remainder of the line apart from the character specified for the
terminal at the hardware level (normally NULL). The EDT statement @SYMBOLS FILLER
can therefore no longer be used in Unicode mode to define the filler character displayed
between the end of the record and the end of the screen line in F mode. However, for
reasons of compatibility, the filler character specified in this way (default value: NULL) is still
replaced by a blank on entry within a record. If all the characters entered in a record, i.e.
including the NULL characters, are to be taken over unchanged into the work file, the
@SYMBOLS FILLER='_' statement must be used to change the filler character to blanks.

Treatment of NULL characters in the data window

If a screen line only contains NULL characters, i.e. no [LZE], and if the displayed section
comprises the entire record then the screen line is not taken over into the work file or is even
deleted from it when it existed before.

When a record is entered (typed into an empty file, appended at the end of a file, inserted
in screen lines which are provided for insertion after one of the statement codes 1. .9 or I),
NULL before or between other characters (including before) are converted into blanks
unless @SYMBOLS FILLER has been used to specify a character other than NULL as the
filler character (see above).

NULL characters at the end of a screen line are ignored. In the case of records which are
longer than the section that can be displayed on the screen, NULL characters at the end of
the screen line cause the remaining text to be placed at the first location that is not equal to
NULL, thus shortening the record. This mechanism is particularly common when performing
insertions with the statement code E.

U41709-J-2125-1-76 107

F mode

EDT work modes

The statement code D should always be used to delete an entire record. The and
keys can be used to delete sections of a record and operate as follows:

- deletes all the characters in the record as of the specified position (including the
characters to the right outside of the section displayed on screen). If an entry is made
in column 1 of the screen line, a record of length 0 is entered in the work file. can
therefore never be used to delete an entire record.

- deletes only the remainder of the screen line; any characters in the record outside
of the screen line are pulled in from the right in the next dialog step. If the displayed
section comprises the entire record and contains only NULL characters after the delete
operation, i.e. it also contains no [LZE], then the entire record is deleted and removed
from the work file. In this case, has the same effect as the statement code D.

Nondisplayable characters in the text

If a file contains characters which cannot be displayed on screen then these characters are
output as the device-specific smudge character which is set as the SUBSTITUTE-
CHARACTER in /MODIFY-TERMINAL-OPTIONS.

If such a record is modified, the original character, not the smudge character, is entered in
the file. If the position of the smudge character in the record changes due to insertion or
deletion ([EFG] / [AFG]) then a question mark ' ?' is entered at the position of the smudge
character and the line is displayed in protected mode with a ' ?' in the statement code
column. The original content of the record remains intact.

Warning
If insertion or deletion results in the position of the smudge character moving to a
location at which another smudge character was previously present, EDT cannot tell
whether the character in question is the original or the displaced smudge character. In
this case, the change is not indicated by a question mark '?' and the content of the
record may change in ways which were not intended.

Note
In LOWER OFF mode, lowercase letters in the file are output as smudge characters. This
is intended to remind users that they have activated the wrong mode. Texts which
contain nondisplayable characters should entered in HEX mode (see @PAR HEX) or via
the substitute representation (see below).

108

U41709-J-2125-1-76

EDT work modes

F mode

5.1.1.4 Statement codes in F mode

Statement codes are single-character statements. They are entered in the statement code

column. Statement codes are not case-sensitive.

The summary below presents the statement codes by thematic group.

Statement codes used to position the work window

Statement code | Function

+/- Position the work window (vertically)

+/- Position the work window in accordance with the structure depth
S Position the work window interactively (horizontally and vertically)

Statement codes used to copy and move records

Statement code | Function

*

Delete the copy buffer

Collect lines for copying

Collect lines for multiple copying

Collect lines for moving

Copy/move after a line

Copy/move before a line

O|m| >» 2O

Copy/move on a line range (O = on)

Statements codes for record processing

Statement code | Function

Delete records

Join two records

Convert records into lowercase

Convert records into uppercase

Modify records

Display/modify records in hexadecimal mode

Insert characters

©

Insert data lines

—|l2m Iz X|Cc|r|«<|0O

Activate the permanent insert function

U41709-J-2125-1-76

109

F mode

EDT work modes

Statements codes used to handle record marks

Statement code | Function

D Delete a record mark
1.9 Set a record mark

Other statement codes

Statement code | Function

K Copy a line to the statement line

T Syntax test by SDF

A detailed description of the individual statement codes can be found in chapter “Statement
codes in F mode (alphabetical)” on page 569.

Syntactic and semantic checks

The first step before processing the entries in a work window is to check the syntax and
semantics of the statement codes (see the section describing the processing sequence). If
invalid statement codes or invalid combinations (e.g. M followed by C, see below) are found
then the subsequent input processing steps are not performed. A ' ?"' is output in place of
the invalid statement codes and the cursor moves to the first invalid statement code.

Permitted combinations of statement codes in a work window

A distinction is made between the following cases when processing the statement code
depending on the function key used for data transfer and/or the entered statement codes.

1. If is used then EDT only accepts statement codes which can be sent using [F3]
(statements for setting and deleting record marks). These can be combined in any
desired way. If illegal statement codes are sent with then EDT considers these to
be invalid, marks them with '?"' and aborts the further processing of the input.

2. If is used then EDT only accepts statement codes which can be sent using (+
or — for positioning on the basis of the structure depth). Only one of these is permitted
per work window. If illegal statement codes are sent with then EDT considers these
to be invalid, marks them with ' ?' and aborts the further processing of the input.

3. Ifthe statement codes are sent with or a function key other than or then
the table below indicates which statement codes may be combined within a work
window. When reading the table, it should be borne in mind that a statement code
indicated in a row in the table should be entered in the statement code column of the
same work window above the statement code indicated in the table column. Statement

110

U41709-J-2125-1-76

EDT work modes F mode

codes can be combined (in this sequence) if there is no entry at the intersection
between the two codes in the table. An X at the intersection means that they cannot be
combined. Special cases are indicated by a lowercase letter and are annotated below.

+/ * -A/B|C/DIEIH|I |J|/K|ILIM|[O/R|S|T|U|X|1.9

+ X X | a

* X b|b b

- [X X X1 X|X X | a X X
A b

B b

C X X

D

E | X X X | X

H | X X X | X

I | X X X X | X

J

K X

L

M X X

(0] b

R X X

S | X X X1 X|X X | X X X
T | X X X1 X|X X X X
U

X | X X X | X

1.9 X X X | X
a) If a syntax error occurs in the SDF statement tested with T then + or — ignored.

b)

If neither C nor M nor O is specified at the same time as * then the message EDT5360 is
issued informing the user that the copy buffer has been emptied and can no longer be
copied.

U41709-J-2125-1-76 111

F mode EDT work modes
Processing sequence during the processing of statement codes
If multiple statement codes that can be combined with one another are entered in a work
window's statement code column then they are processed in the following sequence:
— all D statement codes
— the * statement code for deleting the copy buffer
— the K statement code
— all C, M and R statement codes for making entries in the copy buffer
— allUand L statement codes
— all J statement codes for joining two records
— all A, B, 0 statement codes for copy and move operations
— all T codes for testing SDF syntax
— the + and — statement codes for positioning
— the S statement code
— all the following statement codes: X (modify), H (modify, hexadecimal), E (insert
characters), 1..9 and I (insert lines)
The statement codes X, H, E and | as well as 1. .9 are processed from top to bottom in a
work window. The statement codes X, Hand E after I or 1. .9 may be lost if the lines can
no longer be displayed on screen due to the insertion area. No warning is issued.
The statement line is evaluated after the statement codes have been processed (see
section “Processing sequence” on page 115).
5.1.1.5 Statement in data window — splitting a record

@PAR SEPARATOR can be used to define a freely selectable record separator. If this
record separator is entered in a screen line in the data window then the record is split at this
point.

Several split points can be defined in one and the same record. The first part of the record
retains the originally assigned line number. The following record parts are inserted as new
records. Line numbers are assigned using the procedure Insertion between two lines (see
section “Line number assignment” on page 36).

When inserting the record separator it is necessary to make sure that no characters are lost
at the end of the data window line.

Records are only split when new records are inserted or existing records are modified, e.g.
when the separator character is inserted or overwritten. It is important to note that copying
or moving a record does not cause it to be split, even if the record contains separator
characters.

112

U41709-J-2125-1-76

EDT work modes F mode

5.1.1.6 Statement line

Entries in the statement line are interpreted as statements. For an overview of the F mode
statements, see the section “Statements in F mode” on page 125. The EDT statement
symbol (default value: @) does not have to be specified (except in the case of the @:
statement).

Users can enter one or more statements (statement sequence) in the statement line. The
individual statements must be separated by a semicolon (*; '). Processing is aborted if an
error occurs. An error message is output together with the unprocessed portion of the
statement input including the invalid statement.

When the input has been processed correctly, the statement line is deleted from the screen
output. The statement # or n# can be used to display the last entered statement or the nth
last entered statement again so that it can be re-issued either in its original form or modified.
In this case, at least one character must be overwritten, modified or added. Alternatively,
the @SHIH statement can be used to output the buffer containing the statements most
recently executed by EDT in work file 9 (see below).

The content of a statement line or the remainder of a line that is no longer required can be
deleted with [LZF].

A semicolon is not interpreted as a statement separator in literals.

When @EDIT is used to switch to L mode in a statement string then any residual part of the
statement sequence is not processed.

The maximum permitted statement length in F mode is smaller than in L mode due to the
limitation imposed by the terminal. For more information, see the following section.

Statement line continuation

If, when the screen is sent, the last character in the statement line is not a NULL character,
EDT assumes that the user needs a continuation area for input. In this case, a second line
is made available provided that the work window is large enough so that at least one further
data line can be output. EDT places the content of the statement line in the preceding
screen line and the now empty statement line is provided as the continuation line. A
maximum of two continuation lines can be provided. The maximum length of input is
therefore 189 characters for a terminal with 80 columns or 345 for a terminal with 132
columns.

Treatment of NULL characters in the statement line

NULL characters at the end of the statement line are ignored. Before the input is analyzed,
NULL characters in the statement sequence are converted into blanks.

U41709-J-2125-1-76 113

F mode

EDT work modes

5.1.1.7

5.1.1.8

Statement buffer

EDT saves the most recent statements entered in F mode in a buffer. This statement buffer
can be output using the @SHIH statement (Show Input History). The statement code K can
be used (following output to a work file) to enter the output line containing the required
statement in the statement line.

Alternatively, the # or n# statement can be used to retrieve the last or nth last statement
directly into the statement line.

The statement buffer can accommodate a maximum of 2048 statements (independently of
their length). No scrolling statements, statements for changing the operating or work mode
or the statements @SHIH and # themselves are entered in the statement buffer. In the
same way, statements that are not executed (e.g. because of syntax errors) are not entered
in the statement buffer. In contrast, statements that are executed are always entered in the
statement buffer, even if they report an error.

Statements that are entered in a statement chain are entered separately in the statement
buffer. Statements are always entered in the buffer in the form in which they were originally
issued and may therefore sometimes be entered in lowercase irrespective of the @LOWER
setting. Leading blanks are removed and empty input is ignored.

Status display

From left to right, the status display indicates:

— the line number of the first line in the work window (6 digits) or 0000. 00 if the work file
is empty

— the column number at which the display of records in the data window begins (5 digits)

— the number of the displayed work file (2 digits in parentheses)

The status display cannot be overwritten. If the status display has the format described here
(column number: 5 digits, work file number: 2 digits) this shows that EDT is operating in
Unicode mode (in compatibility mode, the column number has 3 digits and the work file
number 1 digit).

Example

L ... 0008.00100001<21)J

Line 8.00 is the first line in work window 21.

114

U41709-J-2125-1-76

EDT work modes F mode

5.1.1.9 Processing sequence

The input in a work window is processed in the following sequence:

1. Syntactical and semantic check of the input in the statement code column
2. Evaluation of the data window

3. Execution of the statement codes entered in the statement code column
4. Execution of the statements entered in the statement line

If two work windows are present (see also section “Second work window” on page 119) then
each of the above steps is performed first for the upper and then for the lower work window.

irrespective of the number of work windows, as long as insert or delete statement codes
(1..9,1,X,HorE) are present in the statement code column of one of the work windows,
only data windows and the statement code are evaluated. First of all, the records are taken
over from the data window into the file. The statement code column is then evaluated. The
content of the statement line remains unchanged and is not evaluated until none of the
above-mentioned statement codes is still specified in any of the work windows. In contrast,
if the permanent insert function is active (see statement code 1) then this does not prevent
the evaluation of the statement line.

If errors occur during processing then the following applies:

1. If errors are detected while checking the syntax or semantics of the statement code
column, the invalid statement codes are overwritten with question marks (' ? ') and the
further processing of the input is aborted.

2. If errors occur during the evaluation of the data window, for example because it is not
possible to split a line with @PAR RENUMBER=OFF, then the statement codes in the
affected work window are processed. However, the statement line is not processed and
is instead displayed again unchanged. Entries in a second work window, if present, are
processed normally.

3. If errors occur during the processing of statement codes, for example because it is not
possible to insert lines with @PAR RENUMBER=OFF, then the remaining statement
codes in the affected work window are processed. However, the statement line is not
processed and is instead displayed again unchanged. Statement codes in a second
work window, if present, are also processed. Here again, the statement line is not
executed.

4. Errors during the processing of entries in the statement line are not detected until state-
ments in the data window or statement codes have already been processed. State-
ments in a statement sequence continue to be executed until an invalid statement is
found. This applies to each work window independently of the other (see also section
“Statement line” on page 113).

U41709-J-2125-1-76 115

F mode

EDT work modes

5.1.2

5.1.2.1

Note
If, when the screen is split, @PAR SPLIT=0FF is entered in the upper statement line
and a statement is entered in the lower statement line then @PAR SPLIT=0OFF is
rejected with an error message.

If the two work windows are displaying the same or overlapping sections of the same
work file, then statement codes and statements in the two work windows may affect one
another, for example if a line is to be simultaneously deleted in one work window and
transferred to the copy buffer in the other.

Users are therefore advised not to work in this way. In contrast, non-overlapping
sections from the same work file can be processed simultaneously in two different work
windows without difficulty.

Modifying the work window

The user can modify the format of the work window by

— activating or deactivating the line number display,

— displaying long records in part or in whole in the data area,

— hiding or showing a column counter ("horizontal ruler”),

— displaying one or more work windows on the screen or

— activating or deactivating the hexadecimal display of the data.

When EDT starts, the format of the data within is set as follows by default:

— Line number display activated,

— No complete display of long records,
— No column counter,

— Non-split (only one) work window, and
— No hexadecimal display.

Line number display

The @PAR INDEX statement or the @INDEX statement which is only available in F mode
can be used to activate or deactivate the line number display in the work window. By default
(@PAR INDEX=0ON or @INDEX ON), the format with 72 characters per screen line (or 124
characters per screen line if @VDT F2 has been specified), 6-digit line number display and
blank as separator are set.

@PAR INDEX=0OFF or @INDEX OFF set 80 (or 132) characters per screen line without line
number display. In both formats, the first column of each screen line forms the statement
code column. If line numbers are displayed, this overlaps with the first column of the line
number display. If line numbers are not displayed, this overlaps with the first column of the
data window.

116

U41709-J-2125-1-76

EDT work modes F mode

5.1.2.2 Outputting long records

The @PAR EDIT-LONG statement or the @EDIT LONG statement which is only available
in F mode can be used to modify the screen output. In the case of records which exceed
the number of screen columns, it is possible to specify that

— records are fully displayed in the data window — provided that their length permits this
(@PAR EDIT-LONG=ON or @EDIT LONG ON)

— only a section consisting of 72, 80, 124 or 132 characters in a record (depending on the
@PAR INDEX setting) is displayed in the data window (@PAR EDIT-LONG=0OFF or
@EDIT LONG OFF).

EDIT-LONG mode functions without any line number display. A record is written continu-
ously over multiple screen lines.

When new records are input at the end of the work file or in an insert area made available
in one of the statement codes I or 1. .9, a line which is not terminated either with or
with NULL characters is combined with the following line to form a record. In this way, it is
possible, depending on the screen format, to enter records with a length of up to 3432
characters directly in EDIT-LONG mode. This only applies to new records. If an existing
record is continued at the end of a work file or is continued into the new line range immedi-
ately in front of an insert area then the new records are not combined with the existing
record. Existing records can only be extended with the statement code E (see below).

If an input line is shortened by converting a substitute representation (e.g. U20AC) into the
corresponding characters it is not combined with the following line even if the original input
line does not contain any terminating or NULL characters.

In EDIT-LONG mode, the hardware tabulator (see @TABS statement) only applies to the
first screen line in a record. In the case of existing records, it is not possible to use the
hardware tabulator to move to a position in the following screen lines. In the case of new
records (see previous section), the tabulator positions in all the lines are identical to those
in the first screen line.

If is used to set the entire data window to overwritable, any final record that is
completely displayed in the data window remains non-overwritable. If such a record is
marked with the statement code X then (if possible) the window is positioned in such a way
that the record is fully displayed in the data window. If this is not possible then the record
continues to be non-overwritable. Records that are so long that they cannot usually be
displayed in full cannot be edited in EDIT-LONG mode. This type of record can only be
edited after @PAR EDIT-LONG=O0OFF. It may then be necessary to scroll horizontally (>, <)
in order to move the section to be edited into the displayed area.

U41709-J-2125-1-76 117

F mode

EDT work modes

5.1.2.3

The statement code column is the first column on the screen. In the case of multi-line
records, the statement code must be entered in the first line. If a record is to be extended
with the statement code E then an entire line of NULL characters is output in EDIT-LONG
mode. If necessary, the window is repositioned to make this possible. The statement codes
S and H are not permitted in EDIT-LONG mode.

Unlike the display with @PAR EDIT-FULL=ON, in EDIT-LONG mode itis only ever possible
to overwrite either the statement code column or the associated record in the data window.

In EDIT-LONG mode, neither the column counter set with @PAR SCALE=0ON nor an infor-
mation line requested with @PAR INFORMATION=O0N are displayed. The column counter
and information lines are not displayed until EDIT-LONG mode is quitted.

If EDIT-LONG mode is quitted with @PAR EDIT-LONG=0FF or @EDIT LONG OFF then
the line number display remains active.

EDIT-LONG mode is also deactivated by @PAR INDEX=0ON, @PAR INDEX=OFF and
@PAR HEX=0ON.

Note
The statements for horizontal scrolling (>, <) and the @PAR EDIT-FULL=ON
statement are accepted and processed. However, the effects are not visible until EDI T—
LONG mode is exited or the line number display is restored.

Column counter

The @PAR SCALE=0N statement or the @SCALE ON statement which is only available
in F mode can be used to output a column counter (horizontal ruler) in the work window.
The column counter is displayed as the 1st screen line in the work window (not in EDIT—
LONG mode). The statements @PAR SCALE=0OFF or @SCALE OFF deactivate the display
of the column counter again.

If a tabulator has been defined (see @TABS), the column counter is extended by an
additional screen line in which the current position of the tabulator is displayed.

If the screen is split (see @PAR SPLIT), the @SCALE statement only applies to the work
window in which @SCALE was entered.

In EDIT-LONG mode, the @PAR SCALE statement is accepted and processed. However,
the effects (showing or hiding the column counter) are not visible until EDI T-LONG mode is
deactivated.

118

U41709-J-2125-1-76

EDT work modes F mode

5.1.2.4 Second work window

The @PAR SPLIT statement or the @SPLIT statement which is only available in F mode
can be used to activate or deactivate the display of a second work window on the screen.
The following applies when two work windows are displayed:

Each work window has its own statement line.

The cursor is positioned in the upper statement line once the screen has been split. After
each subsequent output, it is positioned in the statement line in which the last statement or
statement sequence was entered.

If a statement is entered in both statement lines, then the cursor is positioned in the upper
statement line. If an error occurs while processing a statement then the cursor is positioned
in the statement line in which the invalid statement was entered.

If, when the screen is split, @PAR SPLIT=0FF is entered in the upper statement line and
a statement is entered in the lower statement line then @PAR SPLIT=0OFF is rejected with
an error message.

Display in work windows with different character sets

Splitting the work window makes it possible to display two work windows which contain data
in different character sets. However, the terminal is only able to display one character set
correctly. In addition, changing the character set at the terminal always results in the screen
being deleted and then reconstructed (and should therefore be done as infrequently as
possible).

EDT therefore attempts to operate without switching the terminal character set if at all
possible. If the terminal supports Unicode character sets and automatic character set
selection is active, UTFE is used for communication with the terminal and this character set
is not changed when the window is split (for details, see the introduction to section “The
work window” on page 103). In this Unicode character set, the display in the two work
windows is correct or, at least, legible.

If a 7-bit or 8-bit character set is used for communication with the terminal, perhaps because
the terminal does not support Unicode, then, by default, the upper work window determines
the character set used for communication with the terminal unless the user has explicitly
modified this setting using the @ CODENAME statement.

In a data window containing an assigned work file which is not present in the terminal's
character set, the characters are displayed using their equivalents in the terminal's
character set or by smudge characters (if the character is invalid in this character set).

The character set used for communications with the terminal can be modified using the
@CODENAME statement (format 2).

This statement only modifies the display, not the coding of the data in the work file (see the
description of the @CODENAME statement).

U41709-J-2125-1-76 119

F mode EDT work modes
For the procedure used to interpret the input, see the introduction to the section “The work
window” on page 103 as well as section “Character sets” on page 47.
5.1.2.5 Hexadecimal mode

In F mode, EDT can display the content of work files in hexadecimal form and make it
available for editing in this format. This display mode is known as hexadecimal mode or HEX
mode for short. It is activated using the statement @PAR HEX=ON or the @HEX ON
statement which is only available in F mode. @PAR HEX=0OFF or @HEX OFF deactivates
HEX mode again. The statement code H can also be used to display an individual line in
hexadecimal form and make it available for editing in this format.

The HEX mode display is dependent on the character set in which the data in the work file
is coded. In the case of 7-bit and 8-bit character sets, each character is coded by two
hexadecimal digits. UTF16 requires four hexadecimal digits for each character while in UTF8
the number of digits required per character varies between two, four and six and in UTFE
the number varies between two and eight. In addition, the printable form of the line is always
displayed.

The first screen line displays the record content in printable form. Below each printable
character in this screen line, the character's hexadecimal code is displayed vertically over
multiple screen lines. These screen lines are referred to as hex lines below. There are two
hex lines when displaying 7 and 8-bit character sets, four when displaying UTF16, six for
UTF8 and eight for UTFE. They are followed by a column counter as in the case of @PAR
SCALE=0ON. Any column counter which may have been activated for a data window using
@PAR SCALE=ON is not output in HEX mode.

Only hexadecimal values (0. .9,A. .F) and NULL characters are displayed in the hex lines
and these, together with blanks, are also the only values permitted for input. Null bytes at
the end of a record are not removed and records which are still empty after the end of the
file and which are still displayed in the data window are also displayed by means of NULL
characters in the hex lines.

HEX mode applies to the current work file independently of the work window, i.e. if the same
work file is displayed in different work windows then the same display is used in both work
windows.

HEX mode is also deactivated by specifying @PAR EDIT-LONG=O0N.

120

U41709-J-2125-1-76

EDT work modes F mode

Modifying records in HEX mode

Modifications can be made both in the first screen line (printable form) or in the hex lines. If
characters are entered in both the character display and in the hex lines in the same record
in a single dialog step then the changes in the character display are ignored.

In the case of 7 or 8-bit character sets, only hexadecimal characters (0..9, A..F)maybe
entered in the hex lines and, in the case of Unicode character sets, the characters must
present a legal coding.

If invalid characters or codings are entered then a correction dialog opens, i.e. the screen is
output again with the invalid character or coding overwritten with a question mark. The
cursor is located in the first invalid screen line. The remaining, valid characters or codings
are displayed in modified form on the screen but are not yet taken over into the work file. If
the user does not want to correct the invalid character then it is possible to exit the correction
dialog by sending the screen unchanged with [DUE]. The old content of the invalid line is
then restored and the VALID lines are taken over into the work file. In contrast, does
not exit the correction dialog but simply cancels the last change made by means of keyboard
input. Hexadecimal characters may also be deleted (overwritten with NULL characters) or
removed. When removing such characters, it is important to make sure that the half-bytes
in the character codings are not disarranged.

Split screen display

When the screen is split (@PAR SPLIT), the display in HEX mode depends on the number
of data lines (screen lines in the data window) in the relevant screen:

— If only one screen line is missing then the column counter line is not output.

— Ifthere is not sufficient space to display all the hex lines then only the character display
line is displayed. Unlike in the compatibility mode display, the column counter line is not
output in this display mode since it is not of use here.

— Any remaining screen lines are used for the display of the following records. These
rules then apply recursively to such lines.

Since in HEX mode, records are always displayed by means of multiple screen lines, this
mode is only of any value if at least one record can be displayed together with all its hex
lines. If this is not the case, the message EDT2404 is output when HEX mode is activated.
However, HEX mode is activated nevertheless. The user can then enlarge the data window
to view the hex lines.

U41709-J-2125-1-76 121

F mode

EDT work modes

Special considerations when displaying UTFE and UTF8

In the subsets of UTF8 and UTFE supported in BS2000, characters are coded using one to
three or one to four bytes per character respectively. Despite this, each record is displayed
with six or eight hex lines. In the case of characters that are coded with fewer than six or
eight bytes respectively, the remaining hex lines contain NULL characters.

Example
The data in the example is coded in UTF8.

[1.00 Price change:< .. N
57667C66677663
025933E4525E7A
..... A..
..... 4..................
1 2 3 4 5 6 7—=
1 I I IR I
t 1 t 2 t 3 : 4 : 5 + 6 t 7
3‘00 ZOO’OO€< ...
2222223332332E ..
OOOOOOZOOCOOOZ ..
............. 8..
............. 2..
............. A..
............. C..
... OOOlOOOOOOl(OO)
- J
122 U41709-J-2125-1-76

EDT work modes F mode

5.1.3 Function keys in F mode

5.1.3.1

In EDT's F mode, it is possible to initiate a large number of actions using function keys. The
key is exceptional here since, on the one hand, it is the only function key that also
operates in L mode and, on the other, its action can be completely suppressed, for example
in noninterruptible procedures or when EDT has been called as a subroutine (e.g. in the
POSIX shell).

The F keys

All the F keys transfer the input in the data window, the statement code column and
statement line from the terminal to EDT. In addition, the keys to have special
functions:

Positioning at records with the same structure depth

can be used in combination with the statement codes + and — to move to the next
record with the same structure depth (see section “Statement codes in F mode” on
page 109).

Setting all the screen lines in the data window to overwritable

If the screen is sent with then the data window, or both data windows if the screen is
split, is set to overwritable on the following output.

When transfer is performed with [F2], if the entries in the statement line have not yet been
executed due to the processing sequence observed by EDT, for example because both a
statement and one of the statement codes 1. .9, I or E (see the section dealing with the
processing sequence) have been transferred with then the data window is first set to
overwritable and the statement line is output again unchanged. The changes then entered
in the data window become effective even before the processing of the statement line.

Processing record marks

in combination with the statement codes 1. .9 and D or the scrolling statements +, —
and ++, — triggers the following functions:

— Set record marks (statement codes 1. .9)
— Delete record marks (statement code D)
— Move to records with record marks (statements +,—, ++, —)

U41709-J-2125-1-76 123

F mode

EDT work modes

5.1.3.2 The K keys

Unlike the F keys, pressing a K key does not trigger any transfer of the modified data from
the screen to EDT. All input in the screen is therefore lost.

Terminating EDT

Pressing requests the termination of EDT. Unlike termination with @HALT, a confir-
mation query is issued in the work window's message line even if the work files do not
contain any unsaved data:

% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

If the user enters Y then EDT is terminated. If N is entered then EDT continues to run. If one
of the work files contains unsaved data then has the same effect as @HALT (see also
section “Terminating an EDT session” on page 92).

Interrupting the EDT session

It is possible to interrupt the EDT session and switch to system mode by means of the
@SYSTEM statement or by pressing [K2].

The /RESUME-PROGRAM command can be used to return to F mode. After this, the entire
screen is output again.

If the work window in which the EDT session was interrupted is not output or is output
incompletely after /RESUME-PROGRAM then the original content can be restored with [K3].

If, during the period of interruption, another program is loaded (e.g. with /START-PROGRAM
or /LOAD-PROGRAM) or if a procedure is started which loads another program then EDT is
unloaded without any query being issued.

Restoring the screen content, rejecting user input

If the screen content is moved (for example, due to a broadcast message), then can
be used to restore the original state. The screen content (together with any messages
output by EDT) is restored exactly as it was before the user entered the first character. The
key can therefore also be used to reject all user inputs and restart entry, for example
if the user has accidentally overwritten screen lines which should have remained
unchanged with new text.

to are treated in the same way as (see above).

124

U41709-J-2125-1-76

EDT work modes

F mode

5.1.4 Statements in F mode

The following statements are permitted in F mode

@AUTOSAVE
@BLOCK
@CHECK (Format 2)
@CLOSE
@CODENAME
@COLUMN
@COMPARE
@CONVERT
@COPY
@CREATE (Format 1+ 2)
@DELETE
@DELIMIT
@DO (Format 1)
@DROP
@EDIT

@ELIM

@END
@ERAJV
@EXEC
@FSTAT

@GET

@GETJV
@GETLIST
@GETVAR
@HALT
@HEX
@INDEX
@INPUT (Format 1+2)
@LIMITS
@LIST
@LOAD
@LOG
@LOWER
@MODE
@MOVE
@ON
@OPEN
@P-KEYS
@PAGE
@PAR
@PREFIX
@PRINT
@QUOTE
@RANGE
@READ
@RENUMBER
@RESET
@RETURN
@RUN
@SAVE
@SCALE
@SDFTEST

@SEARCH-OPTION
@SEPARATE
@SEQUENCE
@SET
@SETF
@SETJV
@SETLIST
@SETSW
@SETVAR
@SHIH
@SHOW
@SORT
@SPLIT
@STAJV
@STATUS
@SUFFIX
@SYMBOLS
@SYNTAX
@SYSTEM
@TABS
@TMODE
@UNLOAD
@UNSAVE
@USE
@VDT
@VTCSET
@WRITE
@XCOPY
@XOPEN
@XWRITE
0..22

In F mode, the EDT statement symbol (default value: @) does not have to be specified
(except in the case of the @: statement). For a detailed description of the statements, see

chapter 9.

U41709-J-2125-1-76

125

L mode EDT work modes
5.2 L mode
In L mode, files are processed line-by-line, that is to say that in interactive mode, EDT only
outputs one line (the current line) at a time or only reads one line (in both batch and inter-
active mode) from SYSDTA. This line may contain both records and statements and is
processed as soon as it has been read in.
Records are written to the current line and the current line is then increased by the current
increment. The current line can be addressed symbolically via the '*' symbol, e.g.
@PRINT *,
Statements are executed immediately. The EDT statement symbol @ is used for differenti-
ation (see below).
L mode is available in both interactive and batch mode.
When @DO procedures and @INPUT procedures are run as well as when SYSDTA is read
using RDATA (system procedures, batch mode), the statements are processed as if they had
been entered in L mode. In such cases, only L mode statements are therefore permitted.
The @EDIT FULL statement is used to switch to F mode.
5.2.1 Inputin L mode

EDT interprets input in L mode as a statement if

— the first character other than a blank is the EDT statement symbol (default value: @) or
a user statement symbol for an external statement routine (see @USE statement)

— and the second character other than a blank is not identical to the first character that is
not a blank.

If EDT recognizes a statement then it is executed immediately.

In the next two paragraphs, the term statement symbol is used to refer to both the EDT
statement symbol and the user statement symbol.

All input in which the first character other than a blank is not a statement symbol is inter-
preted as a record and is stored unchanged in the current line. In interactive mode, empty
input which is sent with[F1] instead of causes an empty line (line of length 0) to be
stored in the current line (see section “Function keys in L mode” on page 128).

126

U41709-J-2125-1-76

EDT work modes L mode

Input in which the first two characters other than blanks are statement symbols are also
interpreted as records but are subject to special processing:

The characters located before the second statement symbol (which can only be blanks or
the first statement symbol), are removed.

This special processing simplifies the creation of procedures in L mode (see also section
“EDT procedures” on page 64). The input is not immediately executed as a statement but
is stored as a statement and can therefore be subsequently run as many times as

necessary.

Examples

Input Interpretation

@RENUMBER Statement

uuuuuu @....._.RENUMBER Statement

RENUMBER Record, the value 'RENUMBER’ is stored
@@RENUMBER Record, the value '@RENUMBER’ is stored
(ORI @RENUMBER Record, the value '@RENUMBER’ is stored
T C F @._.RENUMBER Record, the value '‘@._RENUMBER’ is stored

5.2.2 Entering records in character, hexadecimal or binary format

In L mode, records (but not statements) can be entered not only as character strings but
also as sequences of hexadecimal or binary characters. The @INPUT statement (format 3)
is used to switch between these input formats.

By default, EDT expects L mode input in the form of character strings (@INPUT CHAR). In
this format, the character set of the underlying data source is used (terminal, SYSDTA, file,
library element, work file). Since the entered records are inserted in the current work file
and the character set used in this work file may be different from that of the data source, a
conversion operation may be necessary. The precise rules are described in section
“Character sets” on page 47.

If records are to be entered as sequences of hexadecimal or binary characters in L mode,
then this must be set explicitly using the statement @INPUT HEX or @INPUT BINARY.
The hexadecimal or binary characters themselves are expected in the character set used
in the associated input source. The specified codes are then interpreted in the character set
used in the current work file. If hexadecimal characters are entered which do not corre-
spond to any valid character in this character set then the input is rejected with the message
EDT5460 (see also section “Character sets” on page 47).

U41709-J-2125-1-76 127

L mode

EDT work modes

5.2.3

Once hexadecimal or binary input has been activated, only records in a valid hexadecimal
or binary format are accepted. Invalid input is rejected with the message EDT3902 or
EDT3901. If the number of entered characters is not a multiple of 2 or 8 then the input is left-
filled with blanks.

Since, when a hexadecimal representation is used, each character is coded by at least two
bytes, the number of characters that can be entered per line is reduced to no more than half
of the value that would otherwise apply to the input source in question. In the case of binary
representation, the number of characters is reduced to an eighth or less of the value appli-
cable for the input source.

Example

ABC

@INPUT HEX

ClC2C3

@INPUT BINARY
110000011100001011000011
. @PRINT

.0000 ABC

.0000 ABC

.0000 ABC

BWNHE™WWRN RN &

Function keys in L mode

The following description relates to interactive mode only.

In L mode, all the F keys have the same effect as [DUE], irrespective of whether RDATA
(input prompt is *) or WRTRD (input prompt is the line number) is used for reading.

The key transfers the entire screen content including any characters and end
marks that may be present. In EDT, this system characteristic may cause multiple lines to
be inserted in the current work file. Since this is not usually desired, the key should
not be used for entry in L mode.

In L mode, the key is used to enter a blank line (line of length 0). To do this, or

should be entered at the input prompt. In contrast, if only or [EM] is
entered, the input is ignored (as in the past) and the input prompt is displayed again. If other

characters are entered in addition to or [EM] then has the same effect as
[DUE].

If any of the K keys other than is entered then all the characters entered at the screen
are ignored and the input prompt is displayed again.

causes EDT to be interrupted and processing switches to system mode unless this is
prevented by the system settings (see section “Interrupting an EDT session” on page 91).

128

U41709-J-2125-1-76

EDT work modes L mode

5.2.4 Statements in L mode

The following statements are permitted in L mode

@+ @GETVAR @SEARCH-OPTION
@- @HALT @SEPARATE
@: @IF @SEQUENCE
@AUTOSAVE @INPUT @SET
@BLOCK @LIMITS @SETF
@CHECK @LIST @SETJV
@CLOSE @LOAD @SETLIST
@CODENAME @LOG @SETSW
@COLUMN @LOWER @SETVAR
@COMPARE @MODE @SHIH
@CONTINUE @MOVE @SHOW
@CONVERT @NOTE @SORT
@COPY @ON @STAJV
@CREATE @OPEN @STATUS
@DELETE @P-KEYS @SUFFIX
@DELIMIT @PAGE @SYMBOLS
@DIALOG @PAR @SYNTAX
@DO (Format 1) @PREFIX @SYSTEM
@DROP @PRINT @TABS
@EDIT @PROC @TMODE
@ELIM @QUOTE @UNLOAD
@END @RANGE @UNSAVE
@ERAJV @READ @USE
@EXEC @RENUMBER @VDT
@FILE @RESET @VTCSET
@FSTAT @RETURN @WRITE
@GET @RUN @XCOPY
@GETJV @SAVE @XOPEN
@GETLIST @SDFTEST @XWRITE

The following statements are not permitted in EDT procedures:
@DROP, @DIALOG, @INPUT (format 1 and 2)

The following statements are only permitted in EDT procedures:
@GOTO, @DO (format 2), @PARAMS

The EDT statement symbol (default value: @) must be specified in L mode.
For a detailed description of the statements, see chapter 9.

U41709-J-2125-1-76 129

L mode EDT work modes

130 U41709-J-2125-1-76

6 File processing

EDT can be used to process ISAM files, SAM files, library elements and POSIX files. These
files are loaded into work files for processing. When the term “file” is used below, it is
intended to refer to all four of these file types.

EDT also provides input/output interfaces to the BS2000 system files SYSDTA, SYSOUT and
SYSLST.

The handling of character sets on read and write operations is described in section
“Character sets” on page 47. Files with character sets which are not known in XHCS cannot
be processed.

6.1 File types

The file types supported by EDT are described in the following sections.

6.1.1 SAM files

When accessing an existing SAM file, any printer control character specification in the
catalog is ignored. Moreover, in the case of SAM files with variable record length, the
explicit specification of a record length in the catalog is ignored.

When EDT writes to a new SAM file, this file is usually stored on disk with the following
default attributes:

— variable record length without record length specification,

— block size 2 for files on NK4 disks or block size 1 otherwise. If when the file is opened,
the longest record that is to be written to it does not fit in this block size then a larger
block size (maximum 16) is used.

If the attributes of new files shall differ from these default values then the file attributes and
a file link name must be stored in the Task File Table before the file is written and the
write operation must be performed using this file link name.

However, only the attributes described in section “File link names” on page 139 are
evaluated.

U41709-J-2125-1-76 131

File types File processing

Usually, the files that are to be processed by EDT are read (fully or partially) into work files.
It is not possible to process SAM files directly on disk (real processing). However, EDT is
able to copy SAM files to ISAM files and then open these for real processing (see the
@OPEN statement, format 2, page 411).

File names used in EDT statements must comply with the requirements of the BS2000 data
management system. EDT checks the validity of file names.

EDT is able to process records of length 0.

SAM files on magnetic tape cannot be processed using the @OPEN (format 1) and
@CLOSE statements. In this case, the other statements (@COPY, @WRITE) should be
used. If a new SAM file is to be created on magnetic tape, its name and properties must first
be declared using the BS2000 /CREATE-FILE command.

It is not possible to process SAM files with record format UNDEFINED in EDT.
Similarly, attempts to process SAM files with the character set UTF16 and a fixed, odd-
numbered record length are rejected.

6.1.2 ISAM files

When accessing an existing ISAM file, any printer control character specification in the
catalog is ignored. Moreover, in the case of ISAM files with variable record length, the
explicit specification of a record length in the catalog is ignored.

When EDT writes to a new ISAM file, this file is usually stored with the following default
attributes:

— variable record length without record length specification,

— key position 5,

— keylength 16 in the case of files with the character set UTF16 or key length 8 in the case
of files with a different character set and

— block size 2 for files on NK4 disks or block size 1 otherwise. If when the file is opened,
the longest record that is to be written to it does not fit in this block size then a larger
block size (maximum 16) is used.

By default, no multiple keys are permitted on writing.

If the attributes of new files shall differ from these default values then the file attributes and
a file link name must be stored in the Task File Table before the file is written and the
write operation must be performed using this file link name.

However, only the attributes described in section “File link names” on page 139 are
evaluated.

Usually, the files that are to be processed by EDT are read (fully or partially) into work files.
It is also possible to process ISAM files directly on disk (real processing). This can only be
done in work file 0.

132 U41709-J-2125-1-76

File processing File types

File names used in EDT statements must comply with the requirements of the BS2000 data
management system. EDT checks the validity of file names.

EDT is able to process records which consist solely of the ISAM key.

When ISAM files are processed, the ISAM key can be read in as a line number, read into
the work file's data area (as line content) or completely ignored.

On a write operation, the ISAM key can be formed from the line number or taken over from
the data area.

If the ISAM key is to be retained it must therefore first be taken over as a line number or into
the data area and must not be modified by EDT statements.

If the ISAM key is taken over as a line number when read in, it must be numerical (each of
the 8 characters belongs to the range 0. .9) and the key 00000000 is not permitted.

If the file's key length is shorter than 8 (or 16 in the case of UTF16 files) and if the line
number is formed from the ISAM key then the line number is left-filled with zeros. For
example, in the case of a KEY—LENGTH specification of 4, the ISAM key 1234 would be
taken over as line number 0000.1234.

If the file's key length is shorter than 8 (or 16 in the case of UTF16 files) and if the ISAM key
is formed from the line number then the line number is truncated at the left. For example, in
the case of a KEY-LENGTH specification of 4, the line number 1234 .5678 would be written
as the ISAM key 5678. It is not therefore always possible to guarantee that the ISAM key
is unique. If multiple keys are permitted when writing to the file, then work file records for
which the same ISAM key was generated are written to the file. Otherwise, the write
operation is aborted and the message EDT4208 (DMS error code 0AAF) is output.

The only way to process ISAM files with non-standard key positions (#5 for variable record
lengths or #1 for fixed record lengths), with a key length greater than that specified as the
default, with non-numerical keys or with duplicate key values is to take the ISAM key over
into the data area.

If the ISAM key is located in the data area and modified in EDT, if lines are swapped or
records inserted, then the user must make sure that the sequence of work file records corre-
sponds to the sequence of ISAM keys as otherwise the write operation will be rejected with
the message EDT4208 (DMS error code 0AAB).

In the case of ISAM files with duplicate key values (duplicate keys), itis possible to read
in all the records provided that the key is not taken over as a line number. If the ISAM key
is taken over as a line number then only the last record with the same key is read in.

In order to process such files, the key should therefore also be taken over into the record.
When files with multiple keys are written, the attribute DUPLICATE-KEY=YES must be stored
inthe Task File Table.

It is not possible to process ISAM files with the character set UTF16 and a fixed, odd-
numbered record length or an odd-numbered key length.

U41709-J-2125-1-76 133

File types File processing

The definitions of any secondary keys in an ISAM file (in a secondary index) are retained if
the file is processed using the @OPEN and @CLOSE statements and the key fields are not
modified inconsistently in the data area.

If inconsistent changes are made, the message EDT5246 is output and the secondary index
is deleted. The secondary index is also deleted if the file is fully overwritten with the @SAVE
or @WRITE (format 2) statement (but not in the case of UPDATE).

6.1.3 POSIX files

The POSIX subsystem must be activated before it is possible to process files in the POSIX
file system.

The POSIX file names in the statements which permit access to POSIX files are path
names in the POSIX file system. EDT cannot be used to move to a position within the
POSIX file system. If no absolute path name (starting with ' /') is specified then the file
names always refer to the current directory. When the call is issued from BS2000, this is
the user's home directory.

POSIX file names used in EDT statements must comply with the requirements of the POSIX
file system. In particular, the maximum permitted length is 1023 bytes. It can be specified
directly as a string or indirectly as a string variable. If the name of a POSIX file contains

blanks or other special characters then it must be specified by means of a string variable.

POSIX file names are case-sensitive. Consequently, when input is made from a terminal,
@PAR LOWER=0N should be activated.

EDT reads data character-by-character. The end of a record is recognized by means of the
(character set-specific) end-of-record character (for example X' 15" in EBCDIC or X' 0A'
in ISO character sets). If a record is detected, it is placed in the current work file. If two end-
of-record characters occur one after the other then a record of length 0 is generated in the
work file.

If when reading a POSIX file, no end-of-record is recognized after 32768 characters then
EDT outputs the message EDT1253, truncates the output and ignores the characters
through to the next end-of-record character.

When the content of the work file is written to the POSIX file, a (character set-specific) end-
of-record character (for example X'15"' in EBCDIC or X '0A"' in ISO character sets) is
written after every work file record.

In the case of records of length 0, only an end-of-record character is written.

When writing write-protected POSIX files under the user ID TSOS in interactive mode, the
message EDT0244 is issued to ask the user whether write access is to be permitted. If itis
not, EDT issues the message EDT5312. In batch mode, EDT issues the message EDT5312
and does not permit write access.

134 U41709-J-2125-1-76

File processing File types

6.1.4

Unlike in the case of BS2000 files or library elements, the system permits the multiple
opening of the same POSIX file. EDT does not prevent this. Users must therefore take the
necessary care and attention.

Library elements

EDT is able to process elements in program libraries (PLAM libraries, Program Library
Access Method). For more detailed information on these libraries, see the LMS User Guide
[14].

In the current manual, program libraries are simply referred to as libraries.

Delta elements cannot be processed using EDT statements. Although read access is
possible, if users want to modify delta elements then they must use the LMS statements in
EDT. The precise procedure is described in the LMS User Guide [14].

The library name in EDT statements must comply with the BS2000 data management

system requirements for file names. It can be specified directly as a string or indirectly as a
string variable. If the library that is to be opened is a part of a file generation group then the
library name must be specified by means of a string variable (because of the parentheses).

EDT is able to process records of length 0.
Elements in libraries can be addressed individually via their element designations.

The element designation consists of the name, version and element type and is specified
in the following form:

elnamel(vers)1l,eltypel

Here, elname is the name of the element, vers the version designation of the element and
eltype the type of element.

The version and element type specifications are optional. If no value is entered for vers in
a statement then the highest existing version is used on read operations and highest
possible version on write operations. If no value is entered for e1type in a statement or if
the value is *STD then the value specified in @PAR ELEMENT-TYPE is used. The
presetting when EDT is started is S.

The element designation must comply with the name conventions as defined in the LMS
User Guide [14].

U41709-J-2125-1-76 135

File types File processing

In the read and write operations, it is only possible to specify text-type and user-defined
types as the element type. The text-type standard types are:

Type |Element content

Source program
Macros

Procedures
Text data

S

M

P Data edited for printing
J

D

X Data in any format

In the case of the standard types, no check is performed to determine whether the content
of the element is actually text-type. If the element type is a user-defined type, no check is
performed to determine whether it is derived from a text-type basic type.

Elements containing format B records cannot be edited by EDT. In the case of format A
records, EDT only takes account of record type 1 records. EDT leaves other record types
unmodified.

136 U41709-J-2125-1-76

File processing Basic information on reading and writing data

6.2 Basic information on reading and writing data

If a file that is to be read contains characters which are not supported by the work file's
character set then the file is not read in unless a substitute character has been defined
which is then used. If the file contains an invalid byte sequence (possible in Unicode
character sets) then the file is not read in.

Since EDT provides internal support for lines of up to 32768 characters, it is possible, when
writing to DMS file or library elements, that a record may not be written because it is too

long. In particular, when writing to a file which uses the UTF16, UTFE or UTF8 character set,
this may occur in connection with significantly shorter lines if the work file record contains
sufficient characters that are coded as 2-byte or 3-byte characters. This phenomenon can
therefore easily occur in files with a fixed record length. If it is not possible to write a record
because it is too long, EDT outputs the message EDT5444 and aborts the write operation.
It is then the user's responsibility to shorten the lines accordingly or use another file format.

If when writing a file with fixed record length, a work file record is shorter than the file's
record length, EDT fills the record with blanks up to the defined record length.

In the case of DMS files, the required file size is estimated before writing and, if possible,
the required number of pages is assigned as the primary allocation in order to prevent the
file from being split into a large number of different extents.

Once a DMS file has been closed after writing (statements @WRITE, @CLOSE, @SAVE),
EDT usually releases the unneeded disk storage space. This space is not released if job
switch 7 was set before writing or if the file name starts with a user ID.

When write operations are performed using the old statements (see chapter 9) - @WRITE
(format 2) and @SAVE - this can also be achieved by assigning the file name a fixed
predefined file link name and specifying the symbolic designation ' /' instead of the file
name.

U41709-J-2125-1-76 137

Reading and writing all supported file types File processing

6.3

6.3.1

6.3.2

Reading and writing all supported file types

The following statements can be used to process files belonging to all the file types
supported by EDT. It is recommended that you now use only these statements for file
processing.

Reading

The @OPEN statement (format 1) can be used to read a file into the current work file for
processing or to create a new file. The file remains open until it is closed with @CLOSE.

The @COPY statement (format 1) can also be used to read a file into the current work file.
After being read in, the file is closed again.

When ISAM files are read, the KEY operand in the @OPEN or @COPY statement can be
used to determine whether the ISAM key is to be ignored or to be taken over as a line
number or into the data area.

A file can be run as a procedure by means of the @INPUT statement (format 1).

Writing

The current work file can be written back to a file with @CLOSE provided that this has been
previously read in or created with @OPEN (format 1). After the write operation, the file is
closed and the work file is deleted.

The current work file can be written to a new file with @WRITE (format 1). The work file is
retained after writing.

The current work file can be written to an existing file with @WRITE (format 1). This
completely replaces the old file content. The work file is retained after writing.

The current work file can be written back to the file opened with @OPEN (format 1) with
@WRITE (format 1). The file remains open after writing and the work file is retained.

If a new SAM or ISAM file is created before the write operation then the file type's default
attributes are generally used. If file attributes other than the defaults are to be used then
they must be stored in the Task File Table together with a freely definable file link name
before the @OPEN or @WRITE statement is called and the call to the @OPEN or
@WRITE statement must use this file link name.

138

U41709-J-2125-1-76

File processing Reading and writing all supported file types

6.3.3 File link names

When using the new statements, it is possible to employ freely definable file link names to
address SAM and ISAM files. Here, it is essential that at least the file name is entered in
the Task File Table.

In the case of existing files only a few of the attributes are taken over from the Task File
Table. These are (if specified):

FILE-NAME
WRITE-CHECK

In the case of ISAM files, the following attributes are also taken over:

WRITE-IMMEDIATE
DUPLICATE-KEY
PADDING-FACTOR
SHARED-UPDATE

All the other specifications are ignored and are taken over from the existing file.
In the case of newly created files, more of the attributes specified inthe Task File Table
are taken over. These are (if specified):

FILE-NAME
ACCESS-METHOD
RECORD—FORMAT
RECORD-SIZE
PRINT-CONTROL
BLOCK-SIZE
BLOCK—-CONTROL
WRITE-CHECK

In the case of ISAM files, the following attributes are also taken over:

KEY—-LENGTH
KEY-POSITION
WRITE-IMMEDIATE
DUPLICATE-KEY
PADDING-FACTOR
VALUE-FLAG-LENGTH
PROPAGATE-VALUE-FLAG
LOGICAL-FLAG-LENGTH
SHARED-UPDATE

All other specifications are always ignored.

The access method specification is only used if there is no explicit specification in the corre-
sponding statement.

U41709-J-2125-1-76 139

Characteristics of the old file access statements File processing

6.4 Characteristics of the old file access statements

6.4.1

Preliminary comment
The term old does not refer to the distinction between these statements in Unicode and
compatibility mode but to the file access statements originally developed for EDT.
These remain valid in both operating modes.

The old file access statements @READ, @GET, @WRITE (format 2), @SAVE, @ELIM and
@OPEN (format 2) are subject to certain restrictions. They are not able to process all file
types and certain accesses are only possible using workarounds (definition of file link
names). They provide a number of special functions for the supported file types. These are
described in the present section.

If a file is read into the current work file using the @READ or @GET statements then the
file is closed again immediately after being read in. The file is then not opened again for
writing until a @WRITE or @SAVE statement is issued. If the UPDATE operand is not
specified in these statements, the old file content is deleted and completely replaced. The
file is not locked for other users while it is being processed. During a write operation, it is
therefore possible that intermediate changes made by other users may be overwritten.

Predefining file names

Following the read operation with @READ or @GET, the work file is linked to the file name
(implicit local @FILE entry). This predefines the file name for the @WRITE (format 2) and
@SAVE statements.

Linkage can also be performed explicitly using the @FILE statement. The predefined file
name then applies to the statements @READ, @GET and @WRITE (format 2), @SAVE,
@ELIM and @OPEN (format 2).

The linkage is eliminated again when the work file is completely deleted with @DELETE
(format 2) or with statements which implicitly execute a @DELETE (format 2) or is explicitly
deleted with the @FILE statement.

In addition, the @FILE statement can be used to define a presetting which applies globally
to all the work files. An explicit @FILE entry (including global entries) always has priority
over an implicit @FILE entry.

140

U41709-J-2125-1-76

File processing Characteristics of the old file access statements

6.4.2 Partial reading and writing

The @READ and @GET statements can be used to select the records which are to be read
from the file into the work file. When this is done, it is possible to modify the sequence of
records in the file. Records can be read into the work file more than once.

It is also possible to select the characters (columns) which are to be read from the selected
records into the work file. Here again, it is possible to modify the character sequence and
characters can be read in more than once.

If column values which exceed the record length are specified then blanks are read into the
work file in their place. This applies corresponding to the @INPUT statement (format 2).

If line ranges are specified for selection then only the specified (and possibly adjacent) lines
are examined for illegal byte sequences. However, they are examined in full independently
of any column selection which may have been made. lllegal byte sequences which occur
in non-read lines are not detected.

The @WRITE (format 2) and @SAVE statements can be used to select the work file
records to be written to the file. When this is done, it is possible to modify the sequence in
which the work file records are written.

Work file records can be written more than once. It is also possible to select the characters
(columns) which are to be written from the selected work file records into the file. Here
again, it is possible to modify the character sequence and characters can be written more
than once. If column values which exceed the work file record length are specified then
blanks are written to the file in their place.

6.4.3 Version numbers

In the statements @GET, @SAVE, @READ, @WRITE (format 2), @OPEN (format 2),
@ELIM, @INPUT (Format 2), @FILE and @UNSAVE it is possible, in addition to the file
name, to specify a version number between 0 and 255 or specify * to represent the current
version number. This makes it possible to protect the file against accidental overwriting.

When a file is first created, it is assigned the version number 1 after being written to disk.
Each time the file is written, DMS increases the version number by 1.

The version number is incremented up to 255. The following version number is then 0
again.

Read accesses (@GET, @READ) with a version number other than the current version
number are executed. The current version number is output in message EDT0902.

If * is specified as the version number then the current version number is also displayed in
the message EDT0902. Although this specification is possible in @INPUT (format 2), it is
completely ignored. Write accesses (@SAVE, @WRITE (format 2), @ELIM, @UNSAVE)

U41709-J-2125-1-76 141

Characteristics of the old file access statements File processing

6.4.4

and attempts to open files for real processing (@OPEN, format 2) with a version number
other than the current value are not executed. Instead, the correct version number is
displayed in the message EDT4985.

In the case of the explicit or symbolic specification of the current version number, the new
version number which has been incremented by 1 is displayed in the message EDT0902.

The version numbers provide increased protection against file destruction. If a version
number is specified when a file is read in, then the valid version number is output after the
read operation, thus making it possible to identify obsolete file versions.

The EDT version number should not be confused with the generation number of file gener-
ation groups in BS2000. This is a component of the file name.

For each generation, it is also possible to specify a version number.

The meaning of the EDT version number corresponds more closely to the variant number
of library elements.

File link names

In the statements @ELIM, @GET, @SAVE, @READ and @WRITE (format 2), it is possible
to specify ' /' instead of the file name if the fixed file link name EDTISAM (for @ELIM,
@GET, @SAVE) or EDTSAM (for @READ, @WRITE) has been assigned to the file before
it is accessed by EDT.

If the fixed file link name EDTISAM has been assigned to a file then the attributes are read
from the Task File Table when the file is opened for reading or writing with @GET or
@SAVE. If EDTSAM has been assigned to the file then the attributes from the Task File
Tab1e are used when the file is opened for reading or writing with @READ or @WRITE.

If on a write operation, the file attributes differ from the EDT standard format (see the
sections on ISAM files and SAM files) then it is only possible to write the files with the state-
ments @SAVE and @WRITE (format 2) if the discrepant attributes have first been entered
inthe Task File Table and the fixed file link name EDTISAM or EDTSAM has been
assigned to the file.

If the symbolic name '/ ' is specified for a file when a write operation is performed with
@SAVE or @WRITE then the unneeded disk storage space is not released after the file is
closed and no confirmation query is issued (EDT0903) asking whether an existing file
should be overwritten.

142

U41709-J-2125-1-76

File processing Reading and writing SAM files with the old statements

6.5 Reading and writing SAM files with the old statements

The old statements @READ and @WRITE (format 2) can still be used to access SAM files.
However, users are recommended only to use the new statements (see section “Reading
and writing all supported file types” on page 138).

These statements make it possible to select specific lines and columns and specify a
version number. If the file has been assigned the fixed file link name EDTSAM then it is also
possible to specify ' /' instead of the file name (see section “Characteristics of the old file
access statements” on page 140).

These statements also make it possible to interpret the first 8 characters in a SAM file (in
UTF16 files, these are the first 16 bytes) as a line number.

In the case of write operations, the associated EDT line numbers are used and the work file
record is written as of character 9.

On read operations, the first 8 characters of the record that is to be read are taken over as
a line number and the remainder of the record as of character 9 is taken over into the work
file.

In this case, a check is performed to verify that the characters in the line number are
numerical (for details, see the descriptions of the individual statements).

6.5.1 Reading

A SAM file can be read into the current work file for processing using the old @READ
statement. After being read in, the file is closed again.

An implicit local @FILE entry is created and this can be used in a subsequent @WRITE
statement.

6.5.2 Writing

The current work file can be written to a SAM file using the old @WRITE statement (format
2). This may either exist or can be created before the write operation. The work file is
retained after writing.

Existing SAM files with a fixed record length can only be overwritten in the same record
format if this file attribute has been stored with the file name and the fixed file link name
EDTSAMin the Task File Table before the @WRITE statement is executed.

If a new SAM file is created before the write operation then the default attributes are
generally used. If file attributes other than the default attributes are used then they must be
stored together with the file name and the fixed file link name EDTSAM in the Task File
Tab1e before the @WRITE statement.

U41709-J-2125-1-76 143

Reading and writing ISAM files with the old statements File processing

6.6 Reading and writing ISAM files with the old statements

6.6.1

The old statements @GET, @SAVE and @ELIM can still be used to access ISAM files.
However, users are recommended only to use the new statements (see section “Reading
and writing all supported file types” on page 138).

These statements make it possible to select specific lines and columns and specify a
version number.

If the file has been assigned the fixed file link name EDTISAM then it is also possible to
specify ' /' instead of the file name in the @GET and @SAVE statements (see section
“Characteristics of the old file access statements” on page 140).

Reading

An ISAM file can be read into the current work file for processing using the old @GET
statement. After being read in, the file is closed again.

An implicit local @FILE entry is created and this can be used in a subsequent @SAVE
statement.

The ISAM key is not usually transferred as a line number. However, this is possible by
means of the NORESEQ operand.

It is not possible to transfer the ISAM key into the data area with @GET. To do this, it is
necessary to store the file name, the fixed file link name EDTSAM and the ISAM access
method inthe Task File Table and use the statement @READ '/ '. In this case, it is not
possible to specify the file name in the @READ statement.

To read in ISAM files with non-standard key positions (5 for variable record lengths or #1
for fixed record lengths), with a key length greater than that specified as the default, with
non-numerical keys or with duplicate key values, it is necessary to take the ISAM key over
into the data area.

To do this, it is necessary to store the divergent file attributes together with the file name,
the fixed file link name EDTSAM and the ISAM access method inthe Task File Table.The
file is then read in using the @READ '/' statement.

144

U41709-J-2125-1-76

File processing Reading and writing ISAM files with the old statements

6.6.2 Writing

The current work file can be written to a ISAM file using the old @SAVE statement. This
may either exist or can be created before the write operation. The work file is retained after
writing.

Existing ISAM files with a fixed record length and/or a key length shorter than that defined
as the default can only be overwritten using these same attributes if the divergent file
attributes have been stored together with the file name and the fixed file link name EDTI SAM
inthe Task File Table before the @SAVE statement is executed.

Existing ISAM files whose ISAM key has been taken over into the data area can be
overwritten if the divergent file attributes have been stored in the Task File Table
together with the file name, the fixed file link name EDTSAM and the ISAM access method
and are written using the @WRITE ' /' statement. In this case, it is not possible to specify
the file name in the @WRITE statement.

If a new ISAM file is created before the write operation then the default attributes are
generally used.

If the ISAM key is to be formed from the line number when a new file is created then it may
be necessary to store the file attributes which differ from the default values in the Task
File Table together with the file name and the fixed file link name EDTISAM before the
@SAVE statement is executed.

If the ISAM key is to be taken from the data area when a new file is created then it may be
necessary to store the file attributes which differ from the default values in the Task File
Tab1e together with the file name and the fixed file link name EDTSAM and the ISAM access
method. The file is then written in using the @WRITE ' /' statement. In this case, it is not
possible to specify the file name in the @WRITE statement.

The @ELIM statement can be used to delete the ISAM file either fully or partially.

U41709-J-2125-1-76 145

Real processing of ISAM files File processing

6.7 Real processing of ISAM files

6.7.1

ISAM files can be processed directly on disk without first having to be read fully into the EDT
memory area. When this is done, work file 0 must be the current work file.

It must either be empty or a file must have been opened for real processing.

In the former case, the character set of work file 0 must be *NONE or must correspond to
the character set of the file that is to be opened.

In the latter case, the opened file is implicitly deleted. In this case, the work file is implicitly
deleted and the character set *NONE is set.

Opening

An ISAM file is opened for real processing using the @OPEN statement (format 2). If the
file does not yet exist, it is created before being opened. When this is done, the default
attributes for ISAM files are used unless a different specification has been made using the
fixed file link name EDTMAIN. The file remains open until processing is terminated by means
of an explicit or implicit close.

If the file link name EDTMAIN is used, it is still necessary to specify the file name in the
@OPEN statement. It is not possible to specify '/'.

The real processing of ISAM files with non-standard key positions or key lengths longer
than the default value is not supported.

The real processing of ISAM files with duplicate key values or non-numerical keys is not
supported. If such a file is opened then an error occurs as soon as one of its records is
processed.

If a file's key length is shorter than 8 (or 16 in the case of UTF16 files) then the line number
is left-filled with zeros when read in. For example, in the case of a KEY-LENGTH specification
of 4, the ISAM key 1234 would be taken over as line number 0000.1234. Furthermore, in
this case the current increment would be set to a suitable value. If when the file is opened,
the current increment has the default value 1 or if the set increment is greater than the
largest possible line number then it is set to the value 0.0001 for key lengths smaller than
or equal to 2, to 0. 01 for key lengths smaller than or equal to 5 and to the value 1.0
otherwise.

146

U41709-J-2125-1-76

File processing Real processing of ISAM files

6.7.2

6.7.3

Processing

Only the section of the ISAM file that is actually required is read into the current work file.
In F mode, these are the records which are fully or partially displayed on the screen and, in
L mode, the line range specified in an EDT statement. On a read operation, the ISAM key
is taken over as a line number.

In F mode, every change is immediately transferred to the disk file when the key or
another data transfer key is pressed. In L mode, the changes are transferred after the
execution of an EDT statement. Only the modified records are written back to the file. On a
write operation, the ISAM key is formed from the line number. It is not possible to renumber
lines when performing real processing.

A file's character set cannot be modified during real processing. The @CODENAME
statement is rejected with the message EDT5452.

Line numbers that are longer than the key length cannot be generated during real
processing. The corresponding statements are rejected with an error message in the same
way as when an excessively large increment is set.

Errors in the file (e.g. non-numerical keys, duplicate keys, illegal byte sequences etc.) may
sometimes not be detected until the corresponding records are to be read. Not all the
records in the file are read in when the file is opened. Any errors that are subsequently
detected are then reported by the command which was executing when they occurred. In
such cases, a file that has been opened for real processing is automatically closed.

Closing

A file that has been opened for real processing is closed with @CLOSE. It is also closed if
one of the statements @HALT, @EXEC, @LOAD, @OPEN (format 2), @DELETE (format
2) or @DRORP is entered.

The work file is deleted after the close operation.

U41709-J-2125-1-76 147

Reading and writing POSIX files with the old statements File processing

6.8

6.8.1

6.8.2

Reading and writing POSIX files with the old statements

The old statements @XOPEN, @XCOPY and @XWRITE can still be used to access
POSIX files. However, users are recommended only to use the new statements (see
section “Reading and writing all supported file types” on page 138).

Reading

A POSIX file can be read into the current work file for processing using the @XOPEN
statement. The file remains open until it is closed with @CLOSE.

The @XCOPY statement can also be used to read a POSIX file into the current work file.
After being read in, the file is closed again.

Writing

The current work file can be written back to a POSIX file with @CLOSE provided that this
has been previously read in with @XOPEN or if a new POSIX file has first been created
with @XOPEN, MODE=NEW. After the write operation, the file is closed and the work file
is deleted.

The current work file can be written to a new POSIX file with @XWRITE. The work file is
retained after writing.

The current work file can be written to an existing POSIX file with @XWRITE. This
completely replaces the old file content. The work file is retained after writing.

@XWRITE can be used to write the current work file back to a POSIX file which has been
opened with @XOPEN. The file remains open after writing and the work file is retained.

148

U41709-J-2125-1-76

File processing File catalogs

6.9

6.10

6.10.1

File catalogs

The @SHOW statement (format 1) can be used to output lists of files from the BS2000
catalog, from a POSIX directory or from a library.

The @DELETE statement (format 3) can be used within EDT to delete files from the
BS2000 catalog or from a POSIX directory or to delete elements from a library.

If the statements refer to library elements then all element types are permitted.

BS2000 file catalogs can also still be processed using the old statements. The @FSTAT
statement can be used to output lists of BS2000 files. The @UNSAVE statement can be
used to delete files from the BS2000 catalog from within EDT.

System files

EDT makes it possible to read from SYSDTA and write to SYSOUT and SYSLST.

The handling of character sets when accessing system files is described in section
“Character sets” on page 47. The system files SYSLST and SYSOUT should only be assigned
to files or library elements with a Unicode character set if it is certain that only EDT sends
output to these files. Otherwise files containing invalid characters could be created since
other system components do not usually take account of the character set assigned to
SYSLST or SYSOUT.

The SYSDTA system file

EDT reads from SYSDTA in the following cases:

— When reading lines in L mode if @EDIT ONLY is set or in batch mode. If the line repre-
sents an EDT statement then it is executed immediately. Otherwise, the line is stored in
the current work file.

— When reading with the statement @CREATE ... READ without a prompt or in batch
mode.

The records that are to be read from SYSDTA may have a maximum length of 32763 bytes
(RDATA permits an input area of 32767 bytes, where the first 4 bytes constitute the record
length field).

When EDT is initialized, the SYSDTA character set is determined.

This is used when reading from SYSDTA. If the assignment to SYSDTA changes then the
character set is determined again and reading is subsequently performed with the new
character set.

U41709-J-2125-1-76 149

System files File processing

6.10.2 The SYSOUT system file

In interactive mode, the following EDT output is written to SYSOUT:

1. Bothin F mode and in L mode, the output from the statements @COMPARE (format 1),
@LIMITS, @ON COLUMN, @SEQUENCE CHECK, @TABS VALUES is sent to
SYSOUT.

2. In L mode only, the output from the statements @COMPARE (format 2), @F STAT,
@PROC (format 2), @SHOW, @STAJV, @STATUS is written to SYSOUT.

In L mode only, EDT error messages are written to SYSOUT.

4. Logging output resulting from the statements @CHECK (L mode only), @DO PRINT,
@EDIT PRINT, @INPUT PRINT is written to SYSOUT.
In this case, work file records or EDT statements (sometimes with additional infor-
mation) are output.

5. Both in F mode and in L mode, the output from the statements @ON PRINT and
@PRINT (without the V operand) is written to SYSOUT. In this case, the work file records
are output together with line numbers.

In batch mode, only the messages concerning normal or abnormal termination (e.g.
EDT8000) are sent to SYSOUT unless job switch 8 is set.

If an error that cannot be corrected occurs when writing to SYSOUT then EDT is terminated.

The first character in each record when output is written to SYSOUT is a line feed character.
If SYSOUT is assigned to a terminal then it is not displayed. If SYSOUT is assigned to a file
then it becomes a component of the file. If a non-existent file is assigned, then the system
indicates in the catalog that the file contains EBCDIC control characters. However, EDT
does not evaluate the catalog entry but always generates EBCDIC line feed characters or
the control characters which correspond to these EBCDIC characters in the character set
which is assigned to SYSOUT.

If the user wants to print the file then it is possible to evaluate these line feed characters. If
output is sent to SYSOUT then the same line feed characters are used as in the case of
SYSLST (see section “The SYSLST system file” on page 152).

The length of output to SYSOUT is restricted (2032 bytes including the record length field and
line feed characters on output to files and 32767 bytes on output to the terminal).

If the output is longer than this then the record to be output is subdivided into sections of
maximum 2027 bytes in the case of output to a file and 32762 bytes in the case of output
to a terminal and the record is then output in several sections.

If SYSOUT is using a Unicode character set, this ensures that the line feed always takes
place at a character boundary.

150

U41709-J-2125-1-76

File processing System files

EDT sends output to SYSOUT in the assigned character set which is determined using the
BS2000 macro GCCSN except in the case of the terminal. Output to the terminal is always
sent in the specified communications character set. If the assignment to SYSOUT changes
then the character set is determined again and writing is subsequently performed with the
new character set. If this character set is *NONE then EDFO31IRV is used. If the output
contains characters which cannot be displayed in the target character set then the
substitute character defined with @PAR SUBSTITUTION-CHARACTER is used. If no such
character is defined, a blank is inserted.

When assigning a character set to SYSOUT it is always important to consider what compo-
nents send their output there since not all system components take account of the SYSOUT
character set correctly.

For example, in interactive mode, EDT output generated with WRTRD is sent to the terminal
in the communications character set.

In this case, if SYSOUT is assigned to a file, then the system also writes the data present in
the communications character set (e.g. UTFE) and any consequent user input (also in this
character set) to this file without taking account of the file's character set (with which
SYSOUT has been harmonized). This may cause problems if the file uses a different
character set.

It is therefore currently advisable only to use EBCDIC character sets as the SYSOUT
character set and to avoid redirecting SYSOUT to a file in interactive mode if at all possible.

If screen monitoring is active and SYSOUT is assigned to a terminal then output can be inter-
rupted by pressing [K2]. If the EDT session is continued with /RESUME-PROGRAM or
/INFORM—PROGRAM then the output is aborted and one or more messages are issued.

U41709-J-2125-1-76 151

System files File processing

6.10.3 The SYSLST system file

In both interactive and batch mode, the following EDT output is written to SYSLST:

1. Output from the statements @LIST (without I operand) and @PAGE is written to
SYSLST. In this case, the work file records are output together with line numbers.

2. Logging output resulting from the @LOG statement is written to SYSLST. In this case,
work file records or EDT statements are output.

In batch mode, the following EDT output is also written to SYSLST unless job switch 8 is set:

3. Output from the statements @COMPARE, @FSTAT, @LIMITS, @ON COLUMN,
@PROC (format 2), @SEQUENCE CHECK, @SHOW, @STAJV, @STATUS,
@TABS VALUES is written to SYSLST.

4. EDT error messages are written to SYSLST.

Logging output resulting from the statements @CHECK, @DO PRINT,
@EDIT PRINT, @INPUT PRINT is written to SYSLST. In this case, work file records or
EDT statements (sometimes with additional information) are output.

6. Output from the statements @ON PRINT and @PRINT is written to SYSLST. In this
case, the work file records are output together with line numbers.

If job switch 8 is set then EDT writes this output to SYSOUT in batch mode. Although this is
not explicitly formulated in the statement description, it applies even if only 'is output to
SYSLST in batch mode' is stated.

If it is not possible to write to SYSLST in batch mode then the output is aborted and the error
message EDT5498 is output at SYSOUT.

The first character in each record when output is written to SYSLST is a line feed character.
If a non-existent file is assigned, then the system indicates in the catalog that the file
contains EBCDIC control characters. However, EDT does not evaluate the catalog entry but
always generates EBCDIC line feed characters or the control characters which correspond
to these EBCDIC characters in the character set which is assigned to SYSLST. They are
evaluated if SYSLST is printed during task termination. If a file assigned to SYSLST is printed
then the user can trigger this evaluation.

If SYSLST has a Unicode character set then the control characters are converted accord-
ingly. It is therefore possible to process the file in EDT. When the file is printed, the control
characters are converted back again by the BS2000 SPOOL subsystem.

The line feed characters generated by EDT are presented in detail in the description of the
@LIST statement as is the treatment of Unicode files with line feed characters during print
operations.

152

U41709-J-2125-1-76

File processing System files

A number of statements generate additional line feeds at the start of their output or at the
start of a new section.

The line feed is usually omitted if the output occurs at the start if a page. The page size for
SYSLST is set with the @PAGE and @LIST statements and applies to all output to SYSLST.
If the SYSLST assignment is modified during the EDT session then EDT assumes that this
has occurred at the start of a page and restarts its line count accordingly.

Output to SYSLST is usually limited to a maximum of 132 characters (plus line feed
characters). If job switch 6 is set then the maximum length is 160 characters.

If the output is longer then it is split accordingly and output over several different sections.
Line feeds are always performed at character boundaries.

Outputto SYSLST is performed in the assigned character set which is determined using the
BS2000 macro GCCSN. If the assignment to SYSLST changes then the character set is deter-
mined again and writing is subsequently performed with the new character set. If this
character set is *NONE then EDF041 is used. If the output contains characters which cannot
be displayed in the target character set then the substitute character defined with @PAR
SUBSTITUTION-CHARACTER is used. If no such character is defined, a blank is inserted.

U41709-J-2125-1-76 153

System files File processing

6.10.4 The system files SYSLSTO01 .. SYSLST99

EDT logging output resulting from the @LOG statement can be written to the files
SYSLSTO1 to SYSLST99 in both interactive and batch mode.

It is only possible to send output to these system files if they are associated with a file, a
library element or an S variable.

The first character in each record when output is written to SYSLSTO01 to SYSLST99 is a line
feed character.

If a non-existent file is assigned, then the system indicates in the catalog that the file
contains EBCDIC control characters. However, EDT does not evaluate the catalog entry but
always generates EBCDIC line feed characters or the control characters which correspond
to these EBCDIC characters in the character set which is assigned to the relevant
SYSLSTnn file. If the user wants to print the file then it is possible to evaluate these line feed
characters.

If output is sent to SYSLSTO01 to SYSLST99 then EDT only uses a small number of line feed
characters, and in particular the page size is not monitored as in the case of SYSLST.

Output to SYSLSTO01 to SYSLST99 is usually limited to a maximum of 132 characters (plus
line feed characters). If job switch 6 is set then the maximum length is 160 characters. If the
output is longer then it is split accordingly and output over several different sections. Line
feeds are always performed at character boundaries.

Outputto SYSLSTO1 to SYSLST99 is performed in the assigned character set which is deter-
mined using the BS2000 macro GCCSN. If the assignment changes then the character set
is determined again and writing is subsequently performed with the new character set. If
this character set is *NONE then EDFO31RV is used. If the output contains characters which
cannot be displayed in the target character set then the substitute character defined with
@PAR SUBSTITUTION-CHARACTER is used. If no such character is defined, a blank is
inserted.

154 U41709-J-2125-1-76

7 Description of the statements

71

This section explains the notational conventions used in the detailed descriptions of the
statement and statement codes, the basic structure of the descriptions and the operand
types used in the various statements.

Metasyntax

The following metasyntax and typographic conventions are used for the formal presentation

of the statements.

Formal representation |Explanation Examples
UPPERCASE Uppercase characters and UPDATE,
and special characters designate | OVERWRITE
special characters constants or keywords which
the user must enter in exactly
the presented form.
UPPERCASE Semibold uppercase letters | @LOWER
semibold indicate the short form of the | The user may enter:
keywords. Any input between | @LOW, @LOWE
the short form and the long |or @LOWER
form is permitted.
lowercase Lowercase letters describe | @GOTO line
variable operands which the | The user may enter, for
user must replace with example:
current values during input. |@GOTO 3

U

Braces enclose a number of
alternatives, i.e. one of the
entries must be selected.

ON
@LOWER
OFF

The user may enter:
@LOWER ON or
@LOWER OFF

U41709-J-2125-1-76

155

Metasyntax

Description of the statements

| separates alternatives when
these are not located above
but next to one another.

@LOWER {ON | OFF}

. . designates alternatives
which are not listed individ-
ually but have to be selected
from a continuous range.

1..22

The user may enter a value
between 1 and 22.

$1..%22

The user may enter a symbol
between $1 and $22.

[]

Specifications in square
brackets are optional and
may be entered if the user
wishes.

o]

This construction with three
dots indicates the possible
repetition of the preceding
syntactic unit. Acomma must
be entered as a separator
between the repetitions.

Tine [,...]

The user may enter, for
example:

1, 3,7 o0r10.

Underscore

Value used by EDT if none of
the possible alternatives is
specified. If, in such a case,
none of the alternatives is
identified as the default value
then refer to the detailed
description to determine
EDT's behavior.

ON
@LOWER |]
OFF

The entries @LOWER and
@LOWER ON have the same
effect.

156

U41709-J-2125-1-76

Description of the statements Statement syntax

7.2 Statement syntax

This section explains the underlying concepts during the syntactic analysis of EDT state-
ments.

Because the two types of input are handled differently, when ever input is received EDT
must decide whether this is data input or an EDT statement (multiple EDT statements are
also possible. In F mode, these are separated by semicolons (;),and in L mode by
characters provided that BLOCK mode has been activated).

In F mode, EDT makes this decision on the basis of the location of the input. EDT always
interprets input in the statement line as an EDT statement and input in the data window as
data input. It interprets input in the statement code column as statement codes. The same
principle applies to the subroutine interface where EDT statements and data have to be
entered in separate input areas provided for the purpose.

In contrast, in L mode all the input is made in a line. To make it possible to distinguish
between data input and EDT statements in L mode, all EDT statements entered in L mode
must start with the EDT statement symbol (default value: @).

In F mode and at the subroutine interface, the EDT statement symbol may be omitted since
there is no danger of confusion with data input.

In L mode, the following special characteristics should also be noted.

If an entry starts with two EDT statement symbols (@@, where one or more blanks may be
located before and after the first @), EDT interprets the input as data input and the second
EDT statement symbol is considered to be the first character of the data input. EDT
removes all the characters (first EDT statement symbol and all the blanks) which occur
before the second EDT statement symbol. In L mode, it is therefore easy to write lines
containing EDT statements in EDT procedures (if an input starts with a single EDT
statement symbol then it is immediately executed as an EDT statement and is not written
to a line). In L mode, therefore, data input is only interpreted as a statement if the first
character which is not a blank is the EDT statement symbol and the first character that is
not a blank following the EDT statement symbol is not the EDT statement symbol.

The above applies equally to user statement symbols. If input starts with two identical user
statement symbols then this input is interpreted as data input and the second user
statement symbol is considered to be the first character in the data input. In contrast, if the
input starts with one user statement symbol or two different user statement symbols then
everything after the first user statement symbol is interpreted and executed as a user
statement (blanks are skipped).

Some EDT statements (e.g. @SET, format 6) possess the operand text (see section
“Operand syntax” on page 164). This text operand which EDT handles as a separate
input, may in turn take the form of either an EDT statement or a data input. EDT decides
which interpretation is correct on the basis of the rules used in L mode.

U41709-J-2125-1-76 157

Statement syntax Description of the statements

If EDT identifies the input as an EDT statement then, in case the input consists of multiple
EDT statements, it first isolates the first non-processed EDT statement in the input. In F
mode, the semicolon is used as the separator and semicolons are not taken into account
when literals are broken down. In L mode, the separator is the character. The
(separated) EDT statement is then copied to two internal buffers. One of the two buffers
then contains the EDT statement as it was input while, in the other, it is converted into
uppercase to simplify the recognition of the statement name and operands.

EDT then attempts to determine the statement name. If it is possible to identify the
statement name and if it corresponds to an EDT statement with an indirect operand speci-
fication (see section “Indirect operand specification” on page 161) then the operands are
now entered in the two internal buffers and in one of these, the input is again converted into
uppercase.

A syntax check of the EDT statement is then performed.

During the analysis of EDT statements, EDT accesses the originally entered statement for
those sections in which the distinction between uppercase and lowercase is relevant, e.g.
literals.

Unicode substitute representations in EDT statements are only interpreted inside of literals
(except in @DO and @PARAMS).

Furthermore, no tabulator expansion is performed in EDT statements. If there are no syntax
errors, the EDT statement is now executed and the originally entered EDT statement is then
written to the statement buffer (indirect operands are not resolved in this buffer).

An EDT statement begins with a statement name (e.g. @OPEN, @COPY, @WRITE) which
may be followed by one or more operands. In the case of some EDT statements, a
comment is permitted after the operands. One or more blanks are permitted (but not
necessary) before the EDT statement symbol and between the EDT statement symbol and
the statement name.

If an EDT statement possesses operands then these follow the statement name, possibly
separated by one or more blanks. The operands must be entered in the predefined order.
Any number of blanks may be entered before or after each operand. Some operands must
always be specified whereas others are optional.

If optional operands are omitted then default values are assumed for these operands. The
syntax description for each of the statements indicates which operands are optional and
which are not and what the default values for omitted operands are.

The blanks between the statement name and the operands or between the individual
operands themselves may be omitted. However, they must be entered if it would otherwise
not be possible to distinguish between the statement name and the operand or between two
successive operands.

Example
@SYMBOLS="?"is incorrect; the correct form is @SYMBOL S='?", since @SYMBOL is
a legal abbreviation of the statement @SYMBOLS.

158

U41709-J-2125-1-76

Description of the statements Statement syntax

Users are generally not advised to omit the blanks between the statement name and the
operands or between the individual operands since this may sometimes make statements
very difficult to understand.

Alongside the direct entry of operands as described above, they can also be specified
indirectly by means of string variables. This means that it is possible, for example, not to
specify operands until runtime, thus permitting much greater flexibility, in particular in EDT
procedures. This method of specifying operands is described in more detail in section
“Indirect operand specification” on page 161.

In the case of some EDT statements, a comment is permitted after the operands if present.
The syntax description of each statement indicates whether or not it may be accompanied
by a comment.

Most EDT statements can be abbreviated. This is usually achieved by omitting one or more
characters at the end of the statement name. In some cases, however, there are also abbre-
viations which do not result from the omission of characters. The @BLOCK statement, for
example, can be abbreviated as @BK, the @QUOTE statement can be abbreviated as
@QE and the @SETF statement in F mode can be reduced to the character #. In the
@SEARCH-OPTIONS statement, it is also possible to omit certain characters in the middle
of the statement name with the result, for example, that @SEA or @SEA-OPTIONS
constitute valid abbreviations for these statements. The @SET statement, in which the
statement name can be entirely omitted, is an exception here. However, if @SET (format
6) is used in F mode or at the subroutine interface then the statement symbol must be
specified to remove ambiguity. The minimum portion of the statement name that must be
present so that EDT can recognize the statement without ambiguity is indicated in bold print
in the syntax diagrams.

Starting with the shortest possible abbreviation, EDT attempts to uniquely identify the
statement name. If it is successful, any further characters in the statement name are
skipped. This operation continues until EDT has processed the complete statement name
or a character which does not correspond to the statement name is detected (this may also
be a blank). The first character other than a blank that does not correspond to the statement
name is interpreted as the first character of the operand section.

In the case of three pairs of statements (@DELETE/@DELIMIT, @ PAR/@PARAMS and
@UNSAVE/@UPDATE), the analysis of the statement name is not sufficient for a unique
identification of the statement since the shortest possible abbreviations are identical (@D,
@PAR and @U respectively). In these three cases, the first character of the operand
section is used for differentiation. In the case of the @DELIMIT statement, for example, the
operand section starts with the character =, whereas this character does not occur in the
operand section of the @DELETE statement (in the case of the @PARAMS, statement & is
the first character in the operand section and in the @UNSAVE statement, it is the character
'. Neither of these characters occurs in the operand section of the other statement in the

pair).

U41709-J-2125-1-76 159

Statement syntax Description of the statements

Example
Consider the input @DEL& (blanks between the statement name and the operand
section can be omitted). The abbreviations @DIALOG, @DO and @DR (for @DROP)
do not match. The only remaining abbreviation is @D which may stand for the
statement @DELETE or for the statement @DELIMIT. However, the @DELIMIT
statement can be excluded because the character = does not occur in the remainder
of the statement. The statement name is therefore @DELETE. The characters E and L
in the input are now skipped since they match the corresponding characters in the
statement name. However, the character & does not match the corresponding character
(E) in the statement name and is therefore the first (and in this case the only) character
in the operand section.

The above description of the procedure employed when analyzing statements also makes
it clear why error messages with no immediately obvious cause are sometimes output.

If no statement can be identified in the input, the message EDT3101 (illegal statement) is
output (e.g. @XD). However, there are a large number of situations in which the message
EDT3002 (operand error) is output even though the message EDT3101 would be expected.
Let us assume that in the above example, @DDL& is accidentally entered instead of
@DEL&. Exactly as in the above statement analysis, EDT would come to the conclusion
that the intended statement is @DELETE (@DELIMIT is not possible because there is no
=). However, the very next character after @D in the input differs from the corresponding
character in the statement name @DELETE. Therefore, everything as of this character is
considered to belong to the operand section (DL&). However, the string DL& cannot be
interpreted as a permitted operand for any of the three formats of the @DELETE statement
and the message EDT3002 is therefore output.

Notes

— The delimiter characters for literals (by default, the characters ' and ") can be redefined
using the @QUOTE statement. However, in the @DO and @PARAMS statements, the
character ' is always used as the delimiter for literals irrespective of any redefinition
performed using the @QUOTE statement.

— In @DO procedures, statements are not analyzed until the procedure parameters have
been substituted. Only then is any indirect operand specification resolved.

— ltis not permissible to include blanks in the keywords of statements or append
comments at the end of statements (comments are only permitted at the end of a
statement if this is explicitly indicated in the statement description).

— The statement @SYNTAX TESTMODE=0N activates test mode. In this case, with only
a few exceptions, EDT statements are not executed but simply subjected to a syntax
check in L mode. This makes it possible, for example, to make sure that EDT proce-
dures are suitable for execution before running them (for more detailed information, see
the @SYNTAX statement, page 531).

160

U41709-J-2125-1-76

Description of the statements Statement syntax

7.21

Indirect operand specification

In the case of indirect operand specification, all the operands that the user wants to specify
in the corresponding EDT statement are stored in a string variable (#S00. . #S20) before
the EDT statement is executed. In the EDT statement itself, the indirect operand specifi-
cation is introduced by the & character after the statement name and separated from it by
one or more blanks. Thee & character must be immediately followed by the name of the
string variable which contains the operands for the EDT statement. The statement may not
contain any other characters (apart from blanks).

Once the statement name has been identified, the remainder of the statement (the &
character followed by the name of the string variable) is replaced by the content of the string
variable and the operands it contains are evaluated.

If logging is active (e.g. @LOG ALL or @LOG COMMANDS) then the statement generated
by this substitution is output together with the original input.
If the line causing an error message is output then only the original input is specified.

If the length of the statement name together with the substitution of the string variable
exceeds 32768 then processing is rejected with error message EDT5485.

The text operand in the statements @+, @-, @IF (format 1) and @SET (format 6) may
itself be an EDT statement. Indirect operand specification is also possible in these EDT
statements specified in the text operand.

No indirect operand specification is permitted in the statements @: (redefine the EDT
statement symbol), @+, @- and value assignments to EDT variables with the @SET
statement (the statement name @SET is omitted). This also applies to the @PARAMS
statement since all its operands start with the character &.

Caution

If indirect operand specifications are used for the @IF and @SET (format 6) statements
then endless loops may occurin EDT if the text operand in these statements itself contains
an @IF or @SET (format 6) statement, e.g.:

1. @SET #S1='1: @SET &#S1' (1)
@SET &#S1 (2)

or:
1. @SET #S1='1: @IF &#S2' (1)
. @SET #S2='NO ERRORS: @SET &#S1' (1)
3. @SET &#S1 (2)

(1) The string variables #S1 and #S2 are filled with suitable content prior to indirect operand
specification.

U41709-J-2125-1-76 161

Structure of the statement descriptions Description of the statements

7.3

(2) Once this statement has been issued with indirect operands, EDT enters an endless
loop.

If additional different string variables are used, it is possible to construct statement
sequences of any required level of complexity which may also cause EDT to enter an
endless loop.

Structure of the statement descriptions

The detailed statement descriptions have a uniform structure:
1. Description of the function of the statement

2. Formal statement syntax

3. Detailed description of the operands

4

Description of the statement's special characteristics and limitations as well as notes on
its use

5. Examples

Every statement description starts with a general description of the function of the
statement. This is immediately followed by a formal description of the statement's syntax in
the following form:

Operation |Operands Modes

Operation |Operands

The Operation field contains the name of the statement written out in full and the maximum
permitted abbreviation of the application name is highlighted in semibold type. In the case
of all the statements which have to be introduced with the statement symbol in L mode or
which may be introduced by the statement symbol in F mode or at the subroutine interface,
the default statement symbol @ is also specified. In the case of statements which may not
be introduced by the statement symbol, it is omitted. In the case of a very few statements,
two possible statement names are specified. It is possible to use either of these. Any other
special characteristics which have to be taken into account when using the statement name
or one of its abbreviations are explained in the following text section of the statement
description.

The Operands field contains a formal syntactic description of the operands permitted for the
statement as if they were specified directly in a statement line. This also corresponds to the
syntax that must be observed when operand specification is made by means of a string

162

U41709-J-2125-1-76

Description of the statements Structure of the statement descriptions

variable when the statement is to be called with indirect operand specification. Otherwise,
there is no discussion of indirect operand specification itself in the statement descriptions
(see section “Statement syntax” on page 157). However, if indirect operand specification is
prohibited then this is mentioned in the text section of the statement description.

The naming of variable operands also identifies the operand type and thus describes the
syntax of the values that can be used for it. For a description of all the operand types, see
the section “Operand syntax” on page 164.

The Modes field lists the EDT operating modes in which the statement may be used. The
following specifications are possible:

F mode The statement may be used in F mode. If the field does not contain any
other entries then the statement may only be used in F mode. The following
text section of the statement description may indicate any other special
characteristics relating to the use of the statement in F mode.

L mode The statement may be used in L mode and consequently also in proce-
dures. If the field does not contain any other entries then the statement may
not be used in F mode. The following text section of the statement
description may indicate any other special characteristics relating to the use
of the statement in L mode.

@PROC The statement is only permitted in procedures. Itis not possible to use them
in L mode outside of procedures and they may also not be used in F mode.

The formal description of the statement syntax is followed by a detailed description of the
individual operands, usually in the order in which they occur. The description presents not
only the function of the operand in question but also any special semantic considerations
relating to the operands, the default values if operands are omitted and interactions
between operands. However, the syntax of variable operands is not described. This can be
found in the section “Operand syntax” on page 164.

The operand description is usually followed by a text section in which further special
characteristics and restrictions relating to the current statement are explained. This section
also contains any special comments concerning use.

Most of the statement descriptions end with one or more examples which again demon-
strate the special characteristics of the statement. Unless indicated otherwise, all the
examples assume the EDT default settings.

U41709-J-2125-1-76 163

Operand syntax Description of the statements

7.4 Operand syntax

This section contains the precise syntactic definition of the various variable operands which
occur in EDT statements. An operand's name always makes it possible to identify its
particular syntactic definition. Any special semantic considerations or restrictions within the
context of the particular statement in question are indicated in the operand descriptions in
the detailed statement descriptions.

All the operand types are defined in the following sections. These operand types are used
as operand names in the detailed statement descriptions. If syntactically equivalent
operands occur at various positions in a statement description then they are differentiated
by appending a sequential number. A definition is provided only for the basic names of any
such operands.

The following description of the operand syntax is subdivided into thematically linked
sections. Within the sections, the descriptions are organized in such a way that, if possible,
each operand type is defined before it is used for the first time. The following alphabetically
ordered overview will help readers find the particular definitions they require.

Operand Short description Page
binary Binary digit 166
char Any character 167
char* Any character or Unicode substitute representation 168
chars String 172
chars* String with Unicode substitute representation 172
col Column number 180
cols Column range 180
cols* Column range relative to the end of the record 180
comment Any comment: 173
dd Decimal digit 166
elname Name of a library element 182
eltype Type of a library element 181
entry Name of an entry point or a CSECT 181
escseq Unicode substitute representation 167
escsymb Escape character for Unicode substitute representation 167
file Name of a DMS file (quoted) 182
formal Formal parameter (in @DO procedures) 184

164

U41709-J-2125-1-76

Description of the statements

Operand syntax

Operand Short description Page
fraction Part of a line number (after the decimal point) 171
freetype Free type name of a library element 181
hd Hexadecimal digit 166
hex Sequence of hexadecimal digits 171
hpos Relative horizontal positioning statement 185
inc Increment for line numbers 177
int Integer 171
intex Integer expression 172
ivar Integer variable 169
line Line number specified directly or as an expression 178
lines Contiguous range of line numbers 178
linkname Link name for files or job variables 182
Inum Directly specified line number 177
loopsymb Loop counter 168
Isym Symbolically specified line number 177
Ivar Line number variable 169
m Record mark 185
message Any message text 173
modlib Library dynamically loaded from the module 183
n Unsigned integer 171
name String of maximum eight characters 173
op Mathematical operator + or - 168
param Parameter in @DO procedures 184
path Path name of a DMS file or job variable 183
procnr Name of a work file 185
progname Name of a program 182
rangesymb Range symbol 168
rel Relation in an @IF statement 168
search Search term in an @ON statement 175
spec Special character 167
str Quoted sequence of characters 173

U41709-J-2125-1-76

165

Operand syntax

Description of the statements

Operand Short description Page
strchar Quoted individual characters 174
strspec Quoted individual special character 174
string Directly or indirectly specified string 175
svar String variable 169
svarex Indirect specification of a string variable 170
svars Contiguous range of string variables 170
text Follow-up input in L mode statements 175
unicode UTF16 code of a character (4 hexadecimal digits) 167
ver Version number of a cataloged DMS file 183
vers Version number of a library element 183
Vvpos Relative vertical positioning statement 185
VpOs—op Vertical positioning operand 185
xpath Path name of a POSIX file 184

7.41 Characters and symbols

This section contains descriptions of the elementary operand types as well as operand
types which are only needed for the definition of other operand types but which do not
themselves occur as real operands in any of the statements.

Operand Definition

binary 01

The digit 0 or 1.

Operand Definition

dd 0]1]12|3|415|61718]9

Decimal digit.

Operand Definition

hd dd|A|B|C|D|E|F|a|b|c|d|e]|f

166

U41709-J-2125-1-76

Description of the statements Operand syntax

Hexadecimal digit.

Operand Definition
spec I"#S$% & ()*+,-./:;<=>2@[\]1*"_“{|}~

A special character from the group of characters specified above (see also section
“Character set in a statement” on page 58).

Operand Definition
unicode hd hd hd hd

Sequence of precisely four hexadecimal digits which specify a character's UTF16 code.

Operand Definition

escsymb spec

The current escape character which introduces a Unicode substitute representation
escseq. It can be defined using the statement @PAR ESCAPE-CHARACTER. By default,
no escape character is assigned.

Operand Definition

escseq escsymb U unicode

Substitute representation for a Unicode character. The sequence of hexadecimal digits for
the unicode operand type must correspond to the character's UTF16 coding. If the user has
defined the escape character % with @PAR ESCAPE-CHARACTER="%' then, for example,
%U20AC would be a valid Unicode corresponding to the character €.

Operand Definition

char Any character

Any character.

U41709-J-2125-1-76 167

Operand syntax Description of the statements

The group of available characters depends on the employed character set on the one hand,
and on the input source on the other. Thus it is not possible to input any character via the
keyboard even if the terminal is able to display this character. In the case of characters
which cannot be entered directly, the operand type char* permits a Unicode substitute
representation.

Operand Definition

char* char | escseq

Any character which is specified directly or in its UTF16 coding in the form of a Unicode
substitute representation (see also section “Substitute character representation in Unicode”
on page 52).

Operand Definition

rangesymb spec

The current range symbol. This can be modified using the @RANGE statement. By default,
this is the character &.

Operand Definition

loopsymb spec

The current loop counter which is defined in the @DO statement and which can be used in
the same way as a line number variable in the called @DO procedure.

Operand Definition

op +|-

One of the mathematical operators + or —.

Operand Definition

rel GT|LT|GE|LE|EQ|NE|>|<|>=|<=|=|<>

Character representing a relation which can be queried using the @IF statement.

168

U41709-J-2125-1-76

Description of the statements Operand syntax

The GT or > (greater than), LT or < (less than), GE or >= (greater than or equal to), LE or<=
(less than or equal to), EQ or = (equal to) and NE or <> (not equal to) have their usual mathe-
matical meanings.

7.4.2 Variables

This section contains the definition of integer variables, line number variables and string
variables together with expressions which determine these variables. The variables may be
specified in many EDT statements instead of explicitly defined numbers, line numbers or

strings.

Operand Definition

ivar #100..#120

One of the integer variables #100,#101, ... ,#120 (see section “EDT variables” on

page 61). Leading zeros in the numerical part of the variable designation may be omitted.
Integer variables can be used to store positive or negative integer values. The permitted
range of values is between -23"and 28'-1. If an integer variable is used in a statement
instead of an explicitly specified number then different limits apply depending on the

statement.

Operand Definition

Ivar #L00..#L20

One of the line number variables #L00,#L01, ... ,#L20 (see section “EDT variables” on

page 61). Leading zeros in the numerical part of the variable designation may be omitted.
A line number variable may have a value between 0.0001 and 9999.9999. When EDT is
started, all the line number variables have the invalid value 0. 0. Permissible values must
then be assigned to the line number variables before they are used.

Operand Definition
svar #S00..#S20

One of the string variables #S00,#S01. . . ,#S20 (see section “EDT variables” on page 61).
Leading zeros in the numerical part of the variable designation may be omitted. Every string
variable is assigned a content (a string) and a character set. If a string variable is deleted

U41709-J-2125-1-76 169

Operand syntax Description of the statements

then it has a blank as content and the character set EDF041. This is also the preliminary
default setting for all string variables. String variables may be used as work file line numbers
in many EDT statements.

Operand Definition

svarex svarfop ivar] | svar[op nL]

Indirect specification of a string variable in the form of an expression which describes its
position relative to a given string variable. The relative position of the desired sequence of
string variables can be defined by means of the content of an integer variable or explicitly
by specifying nL.

Examples

— If #110 contains the value 5, then #S0+#110 designates the variable #S5.
— If #13 contains the value 7, then #510-#13 designates the variable #S3.
— The expression #S15-51 designates the variable #S10.

— The expression #5S3+8L designates the variable #S11.

Operand Definition

svars svarex [[.] - [.] svarex]

A contiguous range of string variables

Note
The entry of dots before and/or after the range separator and the entry of leading zeros
before a variable name are still supported in the previous form for reasons of compati-
bility but are no longer necessary.

The specification svarexl-svarex2 (e.g. #S1-#S10) has the same effect as
svarex2-svarexl (e.g. #S10-#S1). Ifa svarex operand is now specified, the range
consists of only this one string variable.

Examples

— #S3 selects the string variable #S3.

— #S4-#S7 selects #S4 ,#S5,#S6 and #S7.

— #S2+1L-#S6-#13 selects #S3 and #S4 if #13 has the content 2.

170

U41709-J-2125-1-76

Description of the statements Operand syntax

7.4.3 Numbers

This section defines various numerical formats which are used in EDT. If certain formats
define semantic rules for the specified number then these are described here.

Operand Definition
n dd | ndd

Unsigned integer.
The number of permitted digits depends on the statement in question. Therefore, 00005
does not necessarily have to be equal to 5.

Operand Definition

fraction .dd | fraction dd

The part of a line number after the decimal point.
The values. 0001 to .9999 are permitted.

Operand Definition
hex hd | hex hd

Sequence of hexadecimal digits.

Operand Definition

int n|opn|ivar

Integer value which can be specified either explicitly or via an integer variable, for example:
5,0,-23456 or #10,#11,...#120.

Unlike the operand type n, only the numerical value is of significance in int and leading
zeros do not cause any distinction.

When explicitly specified, the permitted range of values is between -23" and 231-1.

U41709-J-2125-1-76 171

Operand syntax Description of the statements

744

Operand Definition

intex int | op int | intex op int

Integer expression.

Strings

This section defines strings which are used with different semantics in EDT statements, for
example in search statements, as comments or as special characters.

Strings without a defined delimiter (e.g. quotation mark) are first extracted during the syntax
analysis without taking account of the associated semantic constraints.

In this case, all the characters from the first character that is not a blank up to an internally
defined delimiter or the end of the statement are used (unless otherwise described for the
operand type). EDT normally uses the blank, comma, equals sign and parentheses as a
delimiter. Only when the operand has been extracted is it checked for length, characters
used and permitted syntax.

Operand Definition

chars char | chars char
String.

Operand Definition

chars* char* | chars* char*

String which may contain not only characters from the associated character set but also
substitute representations for Unicode characters. The substitute representation escseq
(see char*) for Unicode characters can be used if a character cannot be entered directly
at the keyboard or if Unicode characters are to be entered via files which are not themselves
coded in Unicode (see also section “Substitute character representation in Unicode” on
page 52).

If, for example, the character % is defined as escsymb using @PAR ESCAPE-
CHARACTER='%" then 'Have you got a %U20ac?' would be a valid operand of type
chars*.

172

U41709-J-2125-1-76

Description of the statements Operand syntax

Operand Definition

comment chars

Any comment.

Operand Definition

message chars

Any text (up to the end of the statement, including blanks) which is passed to the calling
program when EDT is called as a subroutine with @RETURN or @HALT.

The string may contain a maximum of 80 characters and only use printing characters from
the EDFO3IRV character set.

Operand Definition

name chars

String of maximum length of 8 characters corresponding to the SDF data type
<alphanum—name 1..8>.

Operand Definition
str " [chars*] " [*int] | B’ binary ’ [*int] | X’ hex’ [*int]

Sequence of quoted characters specified either as characters from the associated
character set or in their binary or hexadecimal coding. When displaying characters, the
Unicode substitute representation escseq is also permitted. Whether or not a blank string
is permitted in the character display depends on the statement in question and is set out in
the associated description.

If B or X is used, then the binary or hexadecimal digit is always interpreted in the character
set for the current work file (or in EDF041 if the current work file does not have a character
set) irrespective of what the employed command then does with the string.

If the string needs to contain a apostrophe then it is necessary to enter two apostrophe. The
valid quote character can be modified using the @QUOTE statement.

U41709-J-2125-1-76 173

Operand syntax Description of the statements

The optional specification of *int is intended for the repetition of strings, e.g. 'ab'*3 is
the equivalent of 'ababab'. Since the maximum length of a string is 32768, int must not
exceed this value. If int has the value 0 or if the string that is to be repeated has the length
0 then the resulting string has the length 0.

Examples
— Specifying 'A' 'BC' 'D' generates the string A'BC'D.

— Specifying 'ABC' *5 generates the string ABCABCABCABCABC.

— Specifying X' C1F2' *4 generates the string A2A2A2A2 if EDF041 has been defined as
the character set.

— SpecifyingB'11110000' *3 generates the string 000 if EDF041 has been defined as the
character set.

— Specifying 'That is the %U0391 and %U03a9' generates the string
'That is the A and Q' if a Unicode character set has been defined and the
character % has been declared for @PAR ESCAPE-CHARACTER.

Notes

— If an odd number of characters is used in a hexadecimal specification then the entry is
left-filled with zeros. Thus X'F' is equivalentto X' OF' and X'A'*4 is equivalent to
X'0A'*4,

— The same applies to binary representations if the number of binary characters is not a
multiple of 8. Here again, the value is left-filled with zeros until the number of binary
characters is a multiple of 8. Thus B'1' is the equivalent of B' 00000001"' and
B'1111'*2 is the equivalent of B' 00001111 '*2.

Operand Definition

strchar str | U'unicode’

Individual character in quotes or in binary or hexadecimal coding or direct specification of
UTF16 coding. The resulting string must have precisely the length 1.

Operand Definition

strspec str

Individual character in quotes or in binary or hexadecimal coding. The resulting string must
have precisely the length 1 and come from the group of characters defined in spec.

174

U41709-J-2125-1-76

Description of the statements Operand syntax

Operand Definition

string str | line[:cols[,...] [:]] | svarex[:cols][,...] [:]]

A directly or indirectly specified string.

If string is specified indirectly via a string variable or if a line number is specified then EDT
uses the content of the string variable or the content of the corresponding line as string.
If no such line exists, an error message is output and the statement is rejected.

If only a portion of a line or a string variable is required as string then this can be defined
by means of the appropriate column specifications. If column values which exceed the line
length are specified then a corresponding number of blanks are used in their place.

For example, if line 6 contains the string AB3CD6EF9 and string is specified as 6:1-
3,9,8,9,8-9,5-7,30,1,30-32,1:, then the corresponding string represented by this
expression is AB39F9F9D6E_ALLLA.

If the string specification in a statement consists of a line number which is itself modified
by the EDT statement then the original content of the line is used as the operand. If, for
example, line 1 has the value ABC and the EDT statement is @CREATE1:1,'D™3,1, then,
after execution of the statement, line 1 has the value ABCDDDABC.

Operand Definition

search string

Analogous to the string operand type but, however, a quotation mark (") can be used
instead of an apostrophe (') within the alternative str. Both characters can be redefined
using the @QUOTE statement.

The search operand type is only used in the @ON statement in order to define the search
term.

For an explanation of the meaning of the apostrophe and quotation mark characters in a
search statement, see “Searching with @ON” on page 78.

Operand Definition

text chars*

Follow-up input in certain L mode statements.

U41709-J-2125-1-76 175

Operand syntax Description of the statements

The text is treated in the same way as input in L mode, i.e. it is either considered to be a
statement and executed immediately or it is considered to be data input and inserted in the
current work file at the position of the current line number. EDT is able to determine the
nature of the input depending on whether the first characters other than blanks in the text
consist of one, two or no statement symbols or user statement symbols (see section “Input
in L mode” on page 126).

If the text consists of data input and contains Unicode substitute representations — escseq
— then these are only interpreted as Unicode characters if the employed escape character
has been defined with @PAR ESCAPE-CHARACTER and @PAR DATA-
REPLACEMENT=0N has been set. If the text is a statement then Unicode substitute repre-
sentations are only interpreted as Unicode characters inside literals. In this case, the inter-
pretation is independent of the setting of @PAR DATA-REPLACEMENT.

176

U41709-J-2125-1-76

Description of the statements Operand syntax

7.4.5 Lines and line ranges

This section defines the various formats which can be used to address lines and line ranges
in EDT statements.

Operand Definition
Inum n | fraction | n fraction
Line number.

Values between 0.0001 and 9999.9999 are permitted for 1num.

Operand Definition

inc Inum

Increment for line numbers.
Values between 0.0001 and 9999.9999 are permitted for inc.

Operand Definition

Isym var | *| % | $ | ? | loopsymb

Symbolically specified line number which is specified either as a line number variable or as
one of the symbols explained below (see also section “Symbolic line numbers” on page 35).

* Current line number, i.e. the line number which EDT last wrote to the terminal as an
acknowledgment in L mode. If the file is empty, * has the value 1.

% Lowest line number in the file. If the file is empty, % has the value 1.

$ Highest line number in the file. If the file is empty or possesses only a single line then
$=%.

? Line number of the first hit line resulting from a preceding @ON statement. The value
when EDT starts is 0. This can only be modified by a successful @ON statement.
Following an @ON, the symbolic line number ? therefore has the same value as #L00.

The symbolic line numbers *,%,$ and ? always refer to the current work file even if they
are used in a range specification for another work file or for an external file. Their values at
any given time can be output using the @STATUS statement.

U41709-J-2125-1-76 177

Operand syntax Description of the statements

Operand Definition
line Isym [op inc] ivar
[op4nL (1]
Inum Isym

The 11ine operand can be used to specify line numbers directly or as an expression which
describes their position relative to other line numbers.

If neither ivar nor nL occurs in the expression specified for 11 ne then the line number is
calculated as an absolute value, i.e. the line number is determined by adding or subtracting
the values of 1sym and/or Tnum.

If ivar ornL is specified then alogical line number is determined, i.e. the number of existing
lines specified by means of ivar or nL are skipped starting from an absolute value,
independently of the increment used for line numbering.

In the expression nL, n may not have the value 0. However, it is possible to store this value
in an integer variable. It is only possible to assign a logically determined line number if a
corresponding line actually exists. Otherwise an error message is output.

Examples
— 17.1 addresses the required line directly and absolutely.

— If*=50.1and %=1.0000, then *+3.5-% addresses the line 52.6000 absolutely.

— If%=1.0000 and #115=6, then %+#115 addresses the 6th logical line after line number
1.0000 (this is not necessarily line 7.0000).

— If%=1.000, then %+2L addresses the 2nd logical line after 1.0000.
— If%=1.0000 and *=3.0000, then %+* addresses line 4.0000.

— If*=50.1 and #15=1, then *+3.5+#15 addresses the line which logically follows line
53.6000 (this is not necessarily line 53.7000).

— 1f*=50.1000, then *+3.5+6L addresses the 6th logical line after 53.6000.

Operand Definition

lines rangesymb | line[[.] - [.] line]

A contiguous line range.

Specifying 1Tinel-11ine2 (e.g. 1-10) has the same effectas 1ine2-1inel (10-1).Ifonly
one 11ine operand is specified then the line range consists of only this one line.

178

U41709-J-2125-1-76

Description of the statements Operand syntax

The rangesymb operand represents the range symbol which can be declared by means of

the @RANGE statement. The default setting is the character '&' and the range 0.0001-

9999.9999.

Since the minus sign can both be used as a symbol for defining range limits and occur with

its arithmetical meaning in the 11ne expression, ambiguous cases may arise. The following

conventions help overcome this problem:

— If the first range limit ends with 1sym, then the correct notation is 1sym.-11ine.

— If the second range limit starts with 1sym, then the correct notation is Tine-.1sym... or
Tine—.1lsym op ...

Specifying . (period) makes it clear that the expression describes a range and not a
difference. The figure 0 can be entered instead of a period. Unlike in svars, the period may
only be entered in the specified cases here.

Examples
— 1-10 specifies the lines 1 to 10.

— %.-5 selects the range from the 1st line in the file through to line 5.

— %+5L-.$-10L selects the range from the 6th line in the file through to the 10th line
before the end of the file.

— %.-$% specifies the entire file.

— *+2.1-7.-.%+5L expresses the range *+2.1-7? through to the 6th line of the file.
— #L1.-#L2 designates the range from #L1 to #L2.

— 12.011 selects only the line 12.011.

— #L9 selects only the line whose number is stored in #L9 .

U41709-J-2125-1-76 179

Operand syntax Description of the statements

7.4.6 Columns and column ranges

This section defines the various formats which can be used to address columns and column
ranges in EDT statements.

Operand Definition

col int

Column number which may have a value between 1 and 32768. Nevertheless, some EDT
statements demand a smaller col value.

Operand Definition

cols col[-col]

A contiguous column range.

The second col must not be smaller than the first. If it is not specified then the first col may
either designate the specified column or the range from col through to the end of the line.
Which of these applies can be found in the descriptions of the relevant statements.

If the second col is specified and is greater than the line length then the column range
extends through to the end of the line in question. The procedure adopted if the first col is
greater than the line length is specified in the descriptions of the relevant statements.

Operand Definition

cols* col[-col]

Column range in which the associated column number is specified relative to the end of the
record. The rules specified for co1s apply equivalently to col1s*. However, the range col1-
co12 for each line must be replaced by (1inelength—col12+1)-(1inelength-col1+1). If
this results in negative column numbers, the value 1 should be used.

180 U41709-J-2125-1-76

Description of the statements Operand syntax

7.4.7 File names and other system designations

This section defines special formats for strings which are used in EDT statements to
designate external objects such as files or library elements.

Strings without a defined delimiter (e.g. apostrophe) are first extracted during the syntax
analysis without taking account of the associated semantic constraints.

In this case, all the characters from the first character that is not a blank up to an internally
defined delimiter or the end of the statement are used (unless otherwise described for the
operand type).

EDT normally uses the blank, comma, equals sign and parentheses as a delimiter. Only
when the operand has been extracted is it checked for length, characters used and
permitted syntax.

Operand Definition

entry chars | .svar

Name of an entry point (ENTRY) ora CSECT section. This specification is case-sensitive. The
name must not be longer than 32 characters and must comply with the BLS constraints for
symbol names.

Operand Definition

freetype name

Free type name of a library element, specified as a string of 2 to 8 characters in length which
may not begin with $ or SYS.

Operand Definition
eltype SIM|R|C|P|J|D|X|H|L|U]|F | *STD | freetype | .svar

Type of a library element.
Free type names can also be used to specify an element type. No check of the basic type
is performed. In some statements, only text types are permitted.

U41709-J-2125-1-76 181

Operand syntax Description of the statements

Operand Definition

elname chars | .svar

Name of a library element which corresponds to the SDF data type <composed—name
1..64 with—under>.

Operand Definition

progname chars

Name of a program whose statements are to be subjected to a syntax check by EDT. The
name must correspond to the SDF data type <structured-name 1..30>.

Operand Definition

file str

File name which can be specified by means of a printable, hexadecimal or binary represen-
tation.

The file name may consist of a maximum of 54 characters without wildcards or 80
characters with wildcards. The DMS constraints for file names must be taken into account.
The specification of wildcards is not permitted in all statements. These are the wildcards
accepted in DMS, not the wildcards patterns declared in EDT.

Whether or not partial file name specifications are permitted again depends on the relevant
statement and is set out in the corresponding description.

In some statements, it is also possible to specify ' /' to indicate the use of a given link
name. This is explained in the descriptions of the corresponding statements.

Operand Definition

linkname chars

Specifies a file or job variable via its link name.
The name must correspond to the SDF data type <filename 1..8 without—-gen>.

182

U41709-J-2125-1-76

Description of the statements Operand syntax

Operand Definition

path chars | .svar

Path name of a file or a job variable which can be specified either directly or via a string
variable.

The path name may consist of a maximum of 54 characters without wildcards or 80
characters with wildcards. The DMS constraints for file names must be taken into account.
The specification of wildcards is not permitted in all statements.

These are the wildcards accepted in DMS, not the wildcards patterns declared in EDT.
Whether or not partial file name specifications are permitted again depends on the relevant
statement and is set out in the corresponding description.

Operand Definition

modlib path

Library containing a module that is to be loaded by EDT.
The name must correspond to the SDF data type <filename 1..54 without-vers>.

Operand Definition

ver *|int

Version number of a cataloged file.

This can be specified either as * or int where int stands for a number between 0 and 255.
For information on using version numbers when reading and writing files, see section
“Version numbers” on page 141.

Operand Definition
vers chars | *STD

Version designation of a library element.
The designation must correspond to the SDF data type <composed-name 1..24 with-
under>.

U41709-J-2125-1-76 183

Operand syntax Description of the statements

7.4.8

Operand Definition

xpath chars | .svar

String which specifies the name of a POSIX file.

The specification of the complete path name is permitted. If no complete path name is
specified then the file is located in the current POSIX directory.

Blanks and commas in a name are only permitted if the name is specified in svar.
The path name must correspond to the SDF data type <posix—-pathname 1..1023>.

Other

This section describes syntax elements which do not correspond to any of the categories
described above.

Operand Definition

formal &id

Formal parameter of the form &1 d which is to be specified in the @PARAMS statement of
a @DO procedure.

The remainder of the operand — id — is the name and may consist of 7 letters or digits. The
first character must be a letter.

This operand is used for keyword and positional parameters.

Operand Definition

param " [chars*]’ | chars

Parameters which are passed to a procedure file for execution via @DO.

These consist of a freely defined string which must be quoted if a comma, a closing paren-
thesis or a Unicode character with substitute representation is to be passed as part of the
parameter sequence.

In this case, each apostrophe that is to be passed in the parameter expression must be
identified by duplicate apostrophes. The delimiting apostrophes can be redefined using
@QUOTE.

184

U41709-J-2125-1-76

Description of the statements Operand syntax

Operand Definition

procnr int

Number of a work file.
Values between 0 and 22 are permitted. In some statements, the value 0 is not permitted.

Operand Definition

m dd | ivar

Record mark 1. .9.

Operand Definition
hpos >[n] | <[n] | <<

Relative horizontal positioning statement.

Operand Definition

Vpos op n | vpos-op | vpos-op (m[,...])

Relative vertical positioning statement.

Operand Definition

vpos-op -] -

Vertical positioning operand.

U41709-J-2125-1-76 185

Operand syntax Description of the statements

186 U41709-J-2125-1-76

8 Statement overview

This overview presents the EDT statements ordered by topic and provides a brief

description. For the precise operand syntax, a detailed functional description and notes on
any restrictions or error messages, refer to the following alphabetically ordered description.
If the same statement can be assigned to a number of different topic groups then it is listed

more than once.

A corresponding comment indicates the statements which are no longer supported in EDT
V17.0 Unicode mode.

8.1 EDT parameter settings

The following statements are used to modify the predefined EDT parameter settings and
thus enable users to largely adapt the behavior and appearance of EDT to their own

requirements.

@: Defines a new statement symbol. F mode
L mode
@AUTOSAVE | Activates the automatic time-controlled saving of work files. | F mode
L mode
@BLOCK Activates or deactivates EDT's blocked input/output mode |F mode
@BK (BLOCK mode). L mode
@CHECK Activates the logging of all lines that are created or modified | F mode
(Format 1) in a work file or a string variable by a statement. It also L mode
makes it possible to check the number of characters per
line.
@CHECK Causes EDT to check whether the specified range in the | F mode
(Format 2) current work file or range of string variables can be L mode
converted into the target character set without loss.
@CODE This statement is only supported in compatibility mode. F mode
L mode
U41709-J-2125-1-76 187

EDT parameter settings Statement overview

@CODENAME | Defines the character sets for work files and string F mode
(Format 1) variables. L mode
@CODENAME | Specifies the communications character set which EDT F mode
(Format 2) uses in interactive mode in order to exchange data with the |L mode
terminal.
@DELIMIT Declares characters that act as delimiters when searches |F mode
are performed with @ON. L mode
@INPUT Specifies how EDT is to interpret text input in L mode. L mode
(Format 3)
@LOWER Specifies whether or not EDT converts lowercase F mode

characters into uppercase when data and statements are |L mode
input at the terminal.

@P-KEYS Loads the keyboard's programmable keys (P keys) with a |F mode
default assignment predefined by EDT or displays the EDT |L mode
predefined default assignment.

@PAR Specifies the EDT parameter settings. These settings F mode
control the screen display, behavior on input, default values | L mode
for statements and the declaration of special meanings for
certain characters.

@QUOTE Redefines the delimiter characters apostrophe and quotation |F mode
@QE mark. L mode
@RANGE Declares a symbol for a line range. F mode
L mode
@SEARCH- Makes presettings for searches using the @ON statement. |F mode
OPTION L mode
@SETSW User and job switches are set or reset. F mode
L mode
@SYMBOLS Declares the wildcard symbols asterisk and slash for F mode
searches using placeholders. The FILLER operand L mode
declares a filler character.
@SYNTAX Defines the type of syntax check for input in L mode. Itis |F mode
also possible to activate or deactivate the test mode. L mode
@TABS Tabulator positions are defined for positioning with the F mode
(Format 1) hardware tabulator and the current values of these positions |L mode
are output.
@TABS Tabulator characters and tabulator positions are defined for | F mode
(Format 2) positioning with software tabulators and the current values |L mode
are output.

188 U41709-J-2125-1-76

Statement overview

EDT parameter settings

@VDT The screen format for F mode is set. The function no longer | F mode
has any function in L mode and is supported for reasons of |L mode
compatibility only.

@VTCSET On output to SYSQOUT, specifies whether the line mode F mode
control characters which may be present in the lines of data | L mode
that are to be output are transferred unchanged or are
converted into smudge characters.

@EDIT In the interactive mode's L mode, this switches the input F mode

(Format 2) stream to terminal input. WRTRD is used for reading and the |L mode
current line number is output as the prompt. If the statement
is entered in F mode, operation first switches to L mode.
@EDIT In the interactive mode's L mode, this switches the input F mode
(Format 3) stream to input from SYSDTA. Reading is performed with L mode
RDATA. If the statement is entered in F mode, operation first
switches to L mode.
@EDIT In F mode, switches between the full display of records and | F mode
(Format 4) the display of a record section in the data window for the
current work file.

@HEX Activates or deactivates hexadecimal mode for the current | F mode
work file.

@INDEX In F mode, activates or deactivates the line number display | F mode
for the current work file in the relevant data window.

@SCALE In F mode, activates or deactivates the display of a column | F mode
counter (horizontal ruler) for the current work file in the work
window.

@SPLIT In F mode, activates or deactivates the display of a second | F mode
work window on the screen.

@ZERO- This statement is now only supported in compatibility mode. | F mode

RECORDS L mode
U41709-J-2125-1-76 189

File processing Statement overview

8.2 File processing

The file processing statements provide a uniform interface for all the file types supported by
EDT (DMS files, library elements and POSIX files).

These statements therefore represent the preferred way of processing files. The old, non-
uniform statements for the file types are now only supported for reasons of compatibility.

@CLOSE Causes the current work file to be written back to disk or | F mode
tape, opened SAM, ISAM or POSIX files or library elements |L mode
to be closed and the work file to be deleted.

@COPY Reads an existing SAM, ISAM or POSIX file or a library F mode

(Format 1) element in full into the current work file. The work file does |L mode
not have to be empty when this is done. After being read in,
the file or library element is closed again.

@DELETE Deletes files or library elements. F mode
(Format 3) L mode
@OPEN Opens an existing SAM, ISAM or POSIX file or a library F mode
(Format 1) element and reads it into the current work file or creates a |L mode
new file and opens this for processing.
@SHOW Outputs a library's directory or a list of files from the BS2000 | F mode
(Format 1) catalog or from a POSIX directory. L mode
@WRITE Creates a new SAM, ISAM or POSIX file or a library F mode
(Format 1) element and writes the content of the current work file to the | L mode

new file or overwrites an existing file with the content of the
current work file or writes the content of the current work file
back to a file opened using @OPEN (format 1). An opened
file remains open when @WRITE is issued and the content
of the work file is retained.

190 U41709-J-2125-1-76

Statement overview Old statements for processing SAM and ISAM files

8.3 Old statements for processing SAM and ISAM files

These statements for processing SAM and ISAM files are now only supported for reasons
of compatibility. The statements listed in section “File processing” on page 190 should be
used in their place.

@ELIM Deletes records in an ISAM file. If all the records are deleted | F mode
then - unlike @UNSAVE - the file name remains present in |L mode
the catalog.

@FILE Supplies a file name as the default value for @GET, F mode

@READ, @WRITE (Format 2), @SAVE, @OPEN (Format |L mode
2) and @ELIM. It is also possible to predefine a file name
that only applies to the current work file (explicit local
@FILE entry), or a file name which applies to all the work
files (global @FILE entry).

@GET Fully or partially reads an ISAM file from disk or tape into the | F mode
current work file. L mode

@OPEN Opens an ISAM file for processing directly on the disk. This | F mode
(Format 2) file may already exist, may be created before being opened |L mode

or be created as a copy of an existing SAM or ISAM file. It
is only possible to open ISAM files for real processing in
work file 0. This be empty or contain a file opened for real
processing using @OPEN (format 2).

@READ Fully or partially reads a SAM file from disk or tape into the | F mode
current work file. L mode

@SAVE Fully or partially writes the content of the current work file as | F mode
an ISAM file to disk. L mode

@UNSAVE Deletes a BS2000 file and the associated catalog entry. F mode
L mode

@WRITE Fully or partially writes the content of the current work file as | F mode
(Format 2) a SAM file to disk or tape. L mode

U41709-J-2125-1-76 191

Old statements for processing POSIX files

Statement overview

8.4 Old statements for processing POSIX files

These statements for processing POSIX files are now only supported for reasons of
compatibility. The statements listed in section
“File processing” on page 190 should be used in their place.

@XCOPY Reads a POSIX file which is stored in a POSIX file system |F mode
into the current work file. L mode
@XOPEN Opens a POSIX file which is stored in a POSIX file system |F mode
and reads it into the current work file. L mode
@XWRITE Writes the content of the current work file into a F mode
POSIX file. The work file is retained. L mode

8.5 Moving or positioning the work file

The following statements, which are primarily used in F mode, make it possible to move the

required section of a work file into the screen for processing.

Moves forwards in the work file (toward the end of the file).
The position can be moved forwards by a given number of
lines or to a record with a specified record mark.

F mode

Moves backwards in the work file (toward the beginning of
the file). The position can be moved backwards by a given

number of lines or to a record with a specified record mark.

F mode

++

Moves to the end of the work file or to the last record with a
specified record mark.

F mode

Moves to the beginning of the work file or to the first record
with a specified record mark.

F mode

Moves horizontally to the left in the work file, i.e. the data
window can be moved through column-by-column to the left
(toward the start of the record).

F mode

Moves horizontally to the right in the work file, i.e. the data
window can be moved through column-by-column to the
right (toward the end of the record).

F mode

<<

Moves horizontally to the start of the record in the work file,
i.e. the data window is moved through column-by-column to
the start of the record.

F mode

192

U41709-J-2125-1-76

Statement overview

Treatment of line numbers

see @SETF statement F mode

@END In L mode, causes the current work file to be exited. F mode
Processing returns to the work file in which the @PROC L mode
statement activating the current work file was issued. In F
mode, @END terminates the EDT session.

@ON Causes all records in which a hit is identified to be flagged |F mode

(Format 3) with the specified record mark. In F mode, the work window | L mode

is positioned at the first hit record.

@PROC In L mode, switches to another work file. This work file then |L mode

(Format 1) becomes the current work file.

@SETF Simultaneously sets the vertical and horizontal position of |F mode
the work window for a work file either with or without L mode
changing the current work file. In F mode, this statement
may be abbreviated to # (if specified with operands).

0..22 Switches to another work file. F mode

$0..$22 Switches to another work file. F mode

8.6 Treatment of line numbers

The following statements make it possible to adapt the line numbers and increments in a
work file to meet current requirements. It is also possible to store line numbers in variables
or number records sequentially.

@ See @SET (format 6). F mode
L mode

@+ The current line number is increased by the current L mode
increment or, in SEQUENTIAL mode (see the @EDIT
statement), processing switches to the next current line.

@- The current line number is reduced by the currentincrement | L mode
or, in SEQUENTIAL mode (see the @EDIT statement),
processing switches to the preceding line number.

@PAR Defines the current increment by means of the INCREMENT | F mode
operand. L mode

@RENUMBER | The lines present in the work file are renumbered. It is F mode
possible to specify both the line number which is to accom- | L mode
modate the first line in the work file and the increment which
is to be used for renumbering.

U41709-J-2125-1-76 193

Creating, inserting and modifying texts

Statement overview

@SEQUENCE |Causes EDT to write a number in each line of a contiguous | F mode
(Format 1) line range. A predefined number consisting of a maximum |L mode
of 8 digits (possibly with leading zeros) is written to the first
line of the line range. This also defines the number of digits
in all the following numbers. All the following numbers are
given by the total of the preceding number plus the
predefined increment.
@SEQUENCE | Causes EDT to write the associated line number in each |F mode
(Format 2) line of a contiguous line range. The line number is written as |L mode
an 8-digit number without a decimal point.
@SEQUENCE | Causes EDT to examine the content of a column or F mode
(Format 3) contiguous range of columns in each line of a contiguous | L mode
line range. It interprets the string it finds there as a binary
number and checks whether the binary numbers form an
ascending sequence.
@SET Assigns a value to a line number variable. This value may |F mode
(Format 3) consist of: a line number specification, the value of an L mode
integer variable, the specification of a line number as a
string or the binary value of the first 4 bytes in a string.
@SET Defines the current line number and the current increment |F mode
(Format 6) or restores earlier values for the line number and increment. | L mode

8.7 Creating, inserting and modifying texts

The following statements are used if it is necessary to make similar changes to text
occupying a large range. They can be used in EDT procedures to automate frequently
recurring changes.

@COLUMN Inserts or replaces text in existing work file lines or string | F mode
variables as of the specified column position. Blanks at the |L mode
end of a line are also deleted.

@CONVERT In line ranges, converts lowercase characters to uppercase |F mode
or uppercase to lowercase. L mode

@CREATE Creates a line with the specified content. F mode

(Format 1) L mode

@CREATE Assigns a string to a string variable. F mode

(Format 2) L mode

194

U41709-J-2125-1-76

Statement overview

Creating, inserting and modifying texts

@CREATE Reads a string from the terminal or from SYSDTA F mode
(Format 3) and creates a line with its content. L mode
@CREATE Reads a string from the terminal or from SYSDTA F mode
(Format 4) and creates a string variable with its content. L mode
@ON Searches for a string and replaces the hit string with the F mode
(Format 6) specified text. L mode
@ON Searches for a string and inserts text before or after the hit | F mode
(Format 7) string or replaces this. L mode
@PREFIX Prefixes each line or string variable in the specified range |F mode
with a string. L mode

@SDFTEST Checks whether a line range contains syntactically correct |F mode
SDF commands or syntactically correct SDF statements. |L mode

@SEPARATE Breaks a line or line range into multiple lines. The point at |F mode
which the break takes place can be specified by a separator |L mode
character or by a column position.

@SORT Sorts contiguous line ranges in the current work file in F mode
ascending or descending order. By specifying a column L mode
range, it is possible to restrict the sort operation to the
relevant section of the record.

@SUFFIX Inserts a string at the end of each line or string variable in | F mode
the specified range. L mode

@TABS Expands software tabulators in work files and F mode

(Format 3) string variables if a tabulator character and a corresponding | L mode
tabulator position have been defined.
(see @TABS, format 2).
@UPDATE This statement is now only supported in compatibility mode. | L mode
U41709-J-2125-1-76 195

Copying and transferring lines Statement overview

8.8 Copying and transferring lines

The following statements are used to copy or move larger text areas in cases where the
intuitive method using statement codes in F mode would be too fiddly.

@COPY Copies lines from the current or another work file or string |F mode
(Format 2) variable into the current work file. L mode
@MOVE Transfers lines from the current or another work file or string | F mode
variable into the current work file and deletes it at the L mode

original positions.
@ON Copies all the records marked with the specified record F mode
(Format 4) mark in the searched line ranges into the specified work file. | L mode
@ON Searches for a string and copies the hit lines into the F mode
(Format 5) specified work file.. L mode

8.9 Deleting work files, lines, texts and record marks

The following statements provide various ways of deleting records, parts of records or entire

work files.
@DELETE Fully or partially deletes lines and string variables. F mode
(Format 1) L mode
@DELETE Completely deletes work files. F mode
(Format 2) L mode
@DELETE Deletes record marks. F mode
(Format 4) L mode
@DROP Completely deletes the specified work files. L mode
@ON Deletes the hit string in the searched F mode
(Format 8) range. L mode
@ON Searches for a string and deletes the content of a work file | F mode
(Format 9) line or string variable before or after the hit string. L mode
@ON Searches for a string and deletes the work file lines or the |F mode
(Format 10) content of string variables which contain the search term. |L mode

196 U41709-J-2125-1-76

Statement overview

Comparing work files

8.10 Comparing work files

The two statements for comparing work files differ primarily in the layout of the output and
in the capability to compare only sections of work files.

@COMPARE Compares two work files with one another either in full orin | F mode
(Format 1) part. The results of the comparison can be sent to a work |L mode
file, SYSOUT or SYSLST as required.
@COMPARE Compares the contents of two work files line-by-line. EDT |F mode
(Format 2) stores the results in a work file. It is also possible to send the |L mode
results to SYSLST and, in L mode, SYSOUT.

8.11 Switching the work mode or operating mode

The following statements make it possible to switch between L mode and F mode or
between Unicode mode and compatibility mode.

@DIALOG In interactive mode, switches to the screen dialog. F mode
L mode
@EDIT In interactive mode, switches from L mode to F mode. F mode
(Format 1) L mode
@EDIT In the interactive mode's L mode, switches the input stream |F mode
(Format 2) to terminal input. WRTRD is used for reading and the current |L mode
line number is output as the prompt. If the statement is
entered in F mode, operation first switches to L mode.
@EDIT In the interactive mode's L mode, this switches the input F mode
(Format 3) stream to input from SYSDTA. Reading is performed with L mode
RDATA. If the statement is entered in F mode, operation first
switches to L mode.
@MODE Switches between Unicode mode and compatibility F mode
mode. L mode
U41709-J-2125-1-76 197

Output lines and information

Statement overview

8.12 Output lines and information

The following statements are used to output data and information. In most cases, it is

possible to decide whether the output is to be written to a work file or to SYSOUT or SYSLST.

[n] # Variant of the # statement (see the description of this F mode
statement). The nth last statement already executed is
output in the statement line again.
Outputs the last statement already executed by EDT in the |F mode
statement line again.
@FSTAT Outputs a list of files in the BS2000 catalog to a work file or |F mode
to SYSOUT or SYSLST as required. L mode
@LIMITS Outputs the lowest and the highest assigned line numbers |F mode
as well as the number of lines for the current work file. L mode
@LIST Outputs ranges of a work file or string variables to SYSLST |F mode
or at the printer. L mode
@LOG Activates or deactivates logging of input in batch mode and | F mode
interactive mode and controls the scope of logging. L mode
@ON Searches for a string and outputs the content of every F mode
(Format 1) line or string variable in which a hit is found. In interactive |L mode
mode, the output is written to SYSOUT and in batch mode it
is written to SYSLST.
@ON Searches for a string and outputs the line numbers or the |F mode
(Format 2) names of the string variables as well as the numbers of the |L mode
columns in which the hit strings start.
@PAGE Generates a form feed at SYSLST. F mode
L mode
@PRINT Outputs the content of the specified line ranges or string F mode
variables. In interactive mode, the output is written to L mode
SYSOUT and in batch mode it is written to SYSLST.
@PROC Outputs the number of the current work file, the numbers of |L mode
(Format 2) all the free work files and the numbers of all the occupied
work files.
@SHOW Outputs a library's directory or a list of files from the BS2000 | F mode
(Format 1) catalog or from a POSIX directory. L mode
@SHOW Outputs a list of the character sets supported by XHCS. In | F mode
(Format 2) interactive mode, it also indicates the character sets L mode

supported by the terminal.

198

U41709-J-2125-1-76

Statement overview

Interrupting or terminating EDT

@STATUS Outputs the EDT and system environment parameter F mode
settings as well as the values of line number and integer |L mode
variables.

@SHIH Outputs the EDT statement buffer. F mode

L mode

@TMODE Outputs information about the task under which EDT is F mode

running. The information is output as a message. L mode

8.13 Interrupting or terminating EDT

The following statements interrupt or terminate EDT or execute system commands without

exiting EDT.

@END In L mode, causes the current work file to be exited. F mode
Processing returns to the work file in which the @PROC L mode
statement activating the current work file was issued. In F
mode, @END terminates the EDT session or terminates the
screen dialog after @DIALOG.

@EXEC Terminates the EDT session and loads and starts the F mode
specified program. L mode

@HALT Terminates the EDT session, the screen dialog after F mode
@DIALOG or EDT as a subroutine with or without trans- |L mode
ferring a text to the calling program.

@LOAD Terminates the EDT session and loads the specified F mode
program. L mode

@RETURN In EDT procedures, terminates the execution of the F mode
procedure and returns to the point at which it was called. If |L mode
the @RETURN statement is issued outside of an EDT
procedure then the EDT session or, after @DIALOG, the
screen dialog is terminated.

@SYSTEM Interrupts (like [K2]) the EDT session or executes an F mode
operating system command without interrupting the EDT | L mode
session.

U41709-J-2125-1-76 199

Runtime control in EDT procedures Statement overview

8.14 Runtime control in EDT procedures

The following statements are used in EDT procedures to control execution and to program
loops and branches.

@CONTINUE | Does not perform any action. The statement is used to L mode
generate a line in EDT procedures which can be branched
to with @GOTO.
@GOTO In a @DO procedure, causes an unconditional jump to the | @PROC
specified line.
@IF In EDT procedures and in L mode checks whether EDT or |L mode
(Format 1) DMS errors have occurred. Depending on the result, a
specified string either is or is not processed as input.
@IF In EDT procedures, compares strings, line numbers or L mode
(Format 2) integer variables with one another. Depending on the result,
a specified string either is or is not processed as input.
@IF In EDT procedures, checks whether EDT identified a hit the |L mode
(Format 3) last time @ON was executed or whether the current work
file is empty. Depending on the result, a specified string
either is or is not processed as input.
@IF In EDT procedures, checks which job and/or user switches |L mode
(Format 4) are active and inactive. Depending on the result, a specified
string either is or is not processed as input.
@IF In EDT procedures or in L mode, identifies the currently set |L mode
(Format 5) operating mode. Depending on the result, a specified string
either is or is not processed as input.
@RESET Resets EDT and DMS error switches. F mode
L mode

U41709-J-2125-1-76

Statement overview

Administering and executing EDT procedures

8.15 Administering and executing EDT procedures

The following statements are used to start EDT procedures and supply parameters to them.
Further statements are used to switch between different procedure levels and to initialize
and modify variables.

@DO Starts a @DO procedure, i.e. the text lines and EDT state- |F mode
(Format 1) ments in the specified work file are processed. L mode
@DO Activates and deactivates the logging of the read state- @PROC
(Format 2) ments (see the PRINT operand in format 1 of the @DO
statement) at any location within the procedure.
@END In L mode, causes the current work file to be exited. F mode
Processing returns to the work file in which the @PROC L mode
statement activating the current work file was issued. In F
mode, @END terminates the EDT session or terminates the
screen dialog after @DIALOG.
@INPUT Starts an @INPUT procedure from any file. The statements | F mode
(Format 1) and/or records in the file are processed sequentially. L mode
@INPUT Starts an @INPUT procedure from a SAM or ISAM file. The |F mode
(Format 2) statements and/or records in the file are processed sequen- | L mode
tially. This format is now only supported for reasons of
compatibility and should no longer be used.
@NOTE Does not perform any action. The statement is used to L mode
insert comments in EDT procedures.
@PARAMS Defines symbolic parameters which can be used in a @PROC
@DO procedure.
@PROC Switches to another work file. This work file then becomes |L mode
(Format 1) the current work file.
@SET Assigns a value to an integer variable. F mode
(Format 1) L mode
@SET Assigns a value to a string variable. F mode
(Format 2) L mode
@SET Inserts the contents of an integer variable, the name of a | F mode
(Format 4) string variable or the contents of a line number variable as |L mode
of a given column in printable form in a work file line or string
variable.
@SET Stores the date and time as of the desired column in a string | F mode
(Format 5) variable or a work file line. L mode
U41709-J-2125-1-76 201

Calling a user program Statement overview

8.16 Calling a user program

The following statements are used to load and start routines written by users or third-party
suppliers in order to extend the EDT functionality.

@RUN Calls a user routine. This statement is different from the F mode
statement of the same name in L mode
compatibility mode

@UNLOAD Unloads modules that have been loaded with @USE. F mode

L mode

@USE Defines user statements by specifying a user statement F mode

symbol and the associated statement routine. L mode

8.17 Working with job variables

The following statements are used to process job variables.

@ERAJV Deletes job variable entries from the catalog. F mode
L mode

@GETJV Outputs the value of a job variable on the screen, writes itto | F mode
a work file or assigns it to a string variable. L mode

@SETJV Enters a job variable in the catalog or assigns it a value. F mode
L mode

@STAJV Outputs the properties of job variables on the screen orto a |F mode
work file. L mode

202 U41709-J-2125-1-76

Statement overview

Working with S variables

8.18 Working with S variables

The following statements are used to process S variables.

@GETLIST Writes elements of an S list variable to the current work file. | F mode
L mode

@GETVAR Outputs the value of an S variable on the screen, writes itto | F mode
a work file or assigns it to a string variable. L mode

@SETLIST Assigns elements to an S list variable. In this case, lines are | F mode
taken over from the current work file or from string variables. | L mode

@SETVAR Declares an S variable or assigns a value to an S variable. | F mode
L mode

U41709-J-2125-1-76 203

Working with S variables Statement overview

204 U41709-J-2125-1-76

9 EDT statements (alphabetical)

The following sections contain the detailed descriptions of all the EDT statements listed in
alphabetical order.

In the case of statements which contain special characters, the sequence followed is that
defined in the character set EBCDIC.DF.04. The statement symbol @ in the statement
name is ignored.

9.1 @< - Move data window to the left

The < statement moves the work file horizontally to the left, i.e. the data window can be
moved through column-by-column to the left (toward the start of the record).

The column number as of which the records are displayed in the data window is output in
the status display in the work window.

Operation Operands F mode
@< [n]
n Number of columns that the work window is to be shifted to the left. Values

between 0 and 32768 are permitted for n. If the value specified for n is
greater than the current column position then the position is set to the first
column.

If n is omitted, EDT moves to the left by the current line length of the data
window (depending on the employed terminal, the settings made for it in the
@VDT statement and the visibility of the line number display).

If EDT is in EDIT-LONG mode then the statement is accepted and processed (as can be
seen from the change in the status display). However, the change is not visible until EDIT-
LONG mode is exited.

U41709-J-2125-1-76 205

@<

EDT statements

Example

The data window starts at column 10 (see status display).

1.00 ADALBERT HOCHSTR.10 81234 MUENCHENS - - -+« + v veseseeeeeeeee e
2‘00 DONALD WALTSTREET 8 DISNE\(LAND<
3.00 GUNDULA ~ HAFERSTR.16 89123 AUGSBURGS: -« xvessreesseennsecenenees
4.00 LUDWIG ~ GANGGASSE 3A 80123 MUENCHENS: - v v eseensreeneeneeenn.
5.00 MANUELA ~ POSTWEG 3 80123 MUENCHENS - -+« + v veseseeeeeeeeeeeeee
6‘00 ..
L<9 ... Oool.oozooolo(oo)J

The data window is to be shifted 9 columns to the left.

(" 1.00 BERGER ADALBERT HOCHSTR.10 81234 MUENCHENS: - = vemrmmemeeeeeeeeees h
2.00 DUCK DONALD WALTSTREET 8 DISNEYLANDS: s ccsssmee e
3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURGS "+« xrrrmrrmm e eeeees
4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<: -« -vrmermeeee e
5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHENS - = v sermmemeeee e eeeees
6'00 ..

L OOOl.O0.0000l(OO)/

This operation causes the data window to start at column 1.

206

U41709-J-2125-1-76

EDT statements @<<

9.2 @<< - Move data window to the start of the record

The << statement moves the work file horizontally to the start of the record, i.e. the data
window can be moved through column-by-column to the left as far as the start of the record.
After this operation, the displayed section of the records starts at column 1. The column
number is output in the work window's status display.

Operation Operands F mode

@<<

If EDT is in EDIT-LONG mode then the statement is accepted and processed (as can be
seen from the change in the status display). However, the change is not visible until EDIT-
LONG mode is exited.

Example

The data window starts at column 10 (see status display).

1.00 ADALBERT HOCHSTR.10 81234 MUENCHENS -+« - v v seeseemme et
2.00 DONALD WALTSTREET 8 DISNEYLAND<
3.00 GUNDULA ~ HAFERSTR.16 89123 AUGSBURGS: -+« v v v ersssrroemenssseonnns
4.00 LUDWIG GANGGASSE 3A 80123 MUENCHENS: - v rrrsssrremenee e,
5.00 MANUELA POSTWEG 3 80123 MUENCHENS -+« - v v seeseemee e e
6.00 ..

t<< ... OOOl.OO:OOOlO(OO)J

The data window is shifted to the left as far as column 1.

(" 1.00 BERGER ADALBERT HOCHSTR.10 81234 MUENCHENS = -+ orrmrmeeee e eeeees h
2.00 DUCK DONALD WALTSTREET 8 DISNEYLANDS: s ccrsmmerreme e
3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURGS "« rrmrmmrme oo ees
4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<: ==« c-vrmermee e
5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHENS - <+ orrmrmeeme e eee
6.00 ..

This operation causes the data window to start at column 1.

U41709-J-2125-1-76 207

EDT statements

9.3 @+ -Increase the current line number

The @+ statement increases the current line number by the current increment or, in
SEQUENTIAL mode (see the @EDIT statement), processing switches to the next current

line.

Operation Operands ‘ L mode

@+ [:[text]]

text EDT statement or data input which is executed or inserted in the new

current line after the current line number has been increased. The string is
treated as if it had been entered at the prompt in L mode. In particular, the
decision to interpret the text as data input or as a statement is made in
accordance with the same rules (for more information, see section “L mode”
on page 126).

The text operand starts immediately after the character ': ', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

If no operand is specified then only the current line is modified.

The indirect specification of operands is not permitted for this statement.

208

U41709-J-2125-1-76

EDT statements

9.4 + - Move data window forwards

The + statement moves forwards in the work file (toward the end of the file). The position
can be moved forwards by a given number of characters or to a record with a specified

record mark.

Operation

Operands ‘ F mode

+ [DUE]

+ [F3]

+

i
([mf...1T)

If the statement is sent without operands by means of the key or a function key other
than then the position moves forwards by the number of records visible in the data
window. Any column counters or lines hidden by messages, for example, are taken into

account.

If the statement is sent without operands by means of then the position moves to the
next record having any record mark (1. .9). The statement +[F3] is therefore equivalent to

+() (see below).

n

Number of lines to be scrolled through forwards. Values between 0 and
99999999 are permitted for n. However, forwards scrolling stops when the
last record in the work file is visible in the first screen line.

The value of n determines the number of records by which the data window
can be moved forwards independently of the currently set increment in the
line number display or gaps in the record numbering.

Is one of the possible record marks (1. . 9) to which the position may be
moved. It is possible to specify multiple record marks which must be
separated by commas. The position moves forwards to the next record with
one of the specified record marks - this is displayed in the first screen line
of the data window. Marks with special functions (see section “Record
marks” on page 45) are ignored here.

If m is not specified then the position moves to the next record having any
record mark (1..9).

U41709-J-2125-1-76

209

EDT statements

Note

If the statement is sent with then it is important to make sure that only statement
codes that can be sent with are specified simultaneously (see section “Statement
codes in F mode” on page 109). Otherwise, the operation is aborted during the analysis
of the statement codes and the + statement is not executed.

Example

A column counter is displayed in the top data window which has been reduced with
@SPLIT. The last line in the data window is hidden by the message EDT0901.

e

} 1 } 2 } 3 : 4 . 5 6 7—=
1.00 BERGER ADALBERT HOCHSTR.10 81234 MUENCHENS = =« veeeeeeeeeeeeeeenn
2.00 DUCK DONALD WALTSTREET 8 DISNEYLANDS: « v v emeesemeeeemeeeeeeee
3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURGS ™ =t v eee

% EDT0901 NO MATCH IN RANGE
B T T T T T R T T T T I I RIS 0001'00:00001(00)

/

The + statement is to be used to scroll forwards.

(= 1 : 2 : 3 : 4 : 5 6 7——
4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHENS: =« v cvemmemmneeeeennns
5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHENS: === s sserreeeeeeeeecnn
6‘00 ..
7.00 ..
... 0004'00:00001(00)
1.00 ..
... 0000.00:00001(04)

_ J

The position scrolls forwards to the first line that was not previously visible (4 .00).

For an example of moving to a record with a record mark, see the description of the @ON

statement, format 4.

210

U41709-J-2125-1-76

EDT statements ++

9.5 ++ — Move to the last (marked) record in the work file

The ++ statement moves to the end of the work file or to the last record with a specified
record mark.

Operation Operands F mode
++

++

++ (Im....]1)

If the statement is sent without operands by means of the key or a function key other
than then the work file is positioned in such a way that the last record of the work file
is displayed in the last screen line of the data window (in contrast, +99999999 causes the
last record in the work file to be displayed in the first screen line of the data window).

If the statement is sent without operands by means of then the position moves to the
last record having any record mark (1. .9). The statement +[F3] is therefore equivalent to

++() [BUE).

m Is one of the possible record marks (1. .9) to which the position may be
moved. It is possible to specify multiple record marks which must be
separated by commas. The position moves forwards to the last record with
one of the specified record marks - this is displayed in the first screen line
of the data window. Marks with special functions (see section “Record
marks” on page 45) are ignored here.

If m is not specified then the position moves to the last record having any
record mark (1..9).

Note
If the statement is sent with then it is important to make sure that only statement
codes that can be sent with are specified simultaneously (see section on statement
codes). Otherwise, the operation is aborted during the analysis of the statement codes
and the ++ statement is not executed.

U41709-J-2125-1-76 211

$0..$22 EDT statements

9.6 $0..$22 — Change work file

This statement causes EDT to switch to another work file.

Operation Operands F mode
$0..$22

EDT displays the work file selected with the $0..$22 statement in the work window in which
the statement was entered. The line position and column position are set to the values that
were previously valid in the newly set work file. If the work file has not yet been used then
the default values apply.

The @SETF statement can also be used to change work file and, at the same time, set the
position to any required line and column.

Example
1.00 This statement switches EDT to another<::-«--cerrrrerrnrerrrerenreen.
2.00 WOPK Fil@me s s me e me et i it ittt it
3‘00 ..
$7 .. OOOlOO:OOOOl(OO)
- J
Statement $7 is entered in order to switch to work file 7.
L ... OOO0.000000]_<O7>J

Work file 7 is displayed in the work window (see status display).

212

U41709-J-2125-1-76

EDT statements

9.7 @- - Decrease the current line number

The @- statement reduces the current line number by the current increment or, in
SEQUENTIAL mode (see the @EDIT statement), processing switches to the preceding

current line.

Operation

Operands ‘ L mode

@_

[:[text]]

text

EDT statement or data input which is executed or inserted in the new
current line after the current line number has been decreased. The string is
treated as if it had been entered at the prompt in L mode. In particular, the
decision to interpret the text as data input or as a statement is made in
accordance with the same rules (for more information, see section “L mode”
on page 126).

The text operand starts immediately after the character ': ', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

If no operand is specified then only the current line is modified.

The indirect specification of operands is not permitted for this statement.

U41709-J-2125-1-76

213

EDT statements

9.8

— — Move data window backwards

The - statement moves backwards in the work file (toward the start of the file). The position
can be moved backwards by a given number of characters or to a record with a specified

record mark.

Operation

Operands ‘ F mode

— [DUE]

- [F3)

)
([mL...11)

If the statement is sent without operands by means of the key or a function key other
than then the position moves backwards by the number of records visible in the data
window. Any column counters or lines hidden by messages, for example, are taken into

account.

If the statement is sent without operands by means of then the position moves
backwards to the next record having any record mark (1. .9). The statement -[F3] is
therefore equivalent to -() (see below).

n

Number of lines to be scrolled through backwards. Values between 0 and
99999999 are permitted for n. However, backwards scrolling stops when
the first record in the work file is visible in the first screen line.

The value of n determines the number of records by which the data window
can be moved backwards independently of the currently set increment in
the line number display or gaps in the record numbering.

Is one of the possible record marks (1. .9) to which the position may be
moved. It is possible to specify multiple record marks which must be
separated by commas. The position moves backwards to the next record
with one of the specified record marks - this is displayed in the first screen
line of the data window. Marks with special functions (see section “Record
marks” on page 45) are ignored here.

If m is not specified then the position moves to the next record having any
record mark (1..9).

214

U41709-J-2125-1-76

EDT statements

Note

If the statement is sent with then it is important to make sure that only statement

codes that can be sent with are specified simultaneously (see section on statement
codes). Otherwise, the operation is aborted during the analysis of the statement codes
and the - statement is not executed.

Example

The increment 0.1 is set in the data window.

(t t 2 t 3 + 4 t 5 + 6 t 7— h
10.00 BERGER ADALBERT HOCHSTR.10 81234 MUENCHENS: ==+ v vsmee e eenns
10.10 DUCK DONALD ~ WALTSTREET 8 DISNEYLANDS - - -« v cvvrvsmrmenenen .
10.20 GROOT ~ GUNDULA HAFERSTR.16 89123 AUGSBURGS: -+« v xersrsernses s
10.30 HOFER LUDWIG ~ GANGGASSE 3A 80123 MUENCHENS: - ==« v-vrveneeannn.
10.40 STIWI MANUELA POSTWEG 3 80123 MUENCHENS - ==+ v ovseeeeeeeeens
10'50 ..
10.60 ..
10'70 ..

L,3 ... OOl0.00:OOOOl(Ol)J

Backwards scrolling is to be performed using -3.

- t 1 t 2 t 3 t 4 t 5 t 6 t 7—
9.70 ANGSTROM ANDERS STERNWARTE STOCKHOLMS » « + = v v ve e seeeeeeae e
9.80 BASLER MARIO SANBENER STR.1 80321 MUENCHENS: -« -vsvcvsncnnenn.
9.90 BAYER ALOIS OTTOSTR. 4 80123 MUENCHENS: =+ = v vmverevee e en.
10.00 BERGER ADALBERT HOCHSTR.10 81234 MUENCHENS: =« - vvemeeeeeeeens
10.10 DUCK DONALD ~ WALTSTREET 8 DISNEYLANDS - -« vcvvvsmrmenenennn.
10.20 GROOT ~ GUNDULA HAFERSTR.16 89123 AUGSBURGS: -« v xerrsermses s
10.30 HOFER LUDWIG ~ GANGGASSE 3A 80123 MUENCHENS: - =« v-vcrvreeeenennns
10.40 STIWI MANUELA POSTWEG 3 80123 MUENCHENS: ==+ v ovsee e eneeenns
10'50 ..
10.60 ..

... 0009.70:00001(01)

J

The position moves backwards 3 records (to line 9.70).

U41709-J-2125-1-76

215

- EDT statements

9.9 ——- — Move to the first (marked) record in the work file

The -- statement moves to the start of the work file or to the first record with a specified
record mark.

Operation Operands F mode

- -[OUE
--[F3
—- (tmi,.-1)

If the statement is sent without operands by means of the key or a function key other
than then the position moves to the first record in the work file, i.e. the first record in
the work file is displayed in the first line in the data window.

If the statement is sent without operands by means of then the position moves to the
first record having any record mark (1. .9). The statement
— —[F3] is therefore equivalent to — —()[DUE].

m Is one of the possible record marks (1. .9) to which the position may be
moved. It is possible to specify multiple record marks which must be
separated by commas. The position moves backwards to the first record
with one of the specified record marks - this is displayed in the first screen
line of the data window. Marks with special functions (see section “Record
marks” on page 45) are ignored here.

If m is not specified then the position moves to the first record having any
record mark (1..9).

Note
If the statement is sent with then it is important to make sure that only statement
codes that can be sent with are specified simultaneously (see section on statement
codes). Otherwise, the operation is aborted during the analysis of the statement codes
and the -- statement is not executed.

216 U41709-J-2125-1-76

EDT statements

9.10 @> - Move data window to the right

The > statement moves the position horizontally in the work file, i.e. the data window can

be moved through column-by-column to the right (toward the end of the record and

beyond).

The column number as of which the records are displayed in the data window is output in
the status display in the work window.

Operation Operands F mode
@> [n]
n Number of columns that the work window is to be shifted to the right. Values

between 0 and 32768 are permitted for n. The position can be moved so far
to the right that the last column of the screen line displays the maximum

column position which EDT permits for a record (32768). This applies

independently of whether the work file actually contains any records of this

length.

If n is omitted, EDT moves to the right by the current line length of the data
window (depending on the employed terminal, the settings made for it in the
@VDT statement and the visibility of the line number display).

If EDT is in EDIT-LONG mode then the statement is accepted and processed (as can be
seen from the change in the status display). However, the change is not visible until EDIT-
LONG mode is exited.

Example

(1.00 BERGER ADALBERT HOCHSTR.10 81234 MUENCHENS = = oo es h
2.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<: s s ssmmmmmmmmmeeemeeeeeee e
3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURGS =« ee s
4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHENS: == s cvemmeeemeee e e e
5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN< - = oo ermememeeee e e e
6.00 ..

\>9 .. 0001.00:00001(00))

The data window is shifted 9 columns to the right.

U41709-J-2125-1-76

217

@>

EDT statements

r 1.00 ADALBERT HOCHSTR.10
2.00 DONALD WALTSTREET 8
3.00 GUNDULA HAFERSTR.16
4.00 LUDWIG GANGGASSE 3A
5.00 MANUELA POSTWEG 3
6

N

81234 MUENCHEN<
DISNEYLAND<- - - -
89123 AUGSBURG<
80123 MUENCHEN<
80123 MUENCHEN<

‘OO ..

This operation causes the data window to start at column 10.

218

U41709-J-2125-1-76

EDT statements @:

9.11 @: - Declaring a statement symbol

The @: statement is used to define a new statement symbol.

Operation Operands ‘ F mode, L mode
@: spec
spec Special character for the new statement symbol.

If the spec operand is not a valid special character then @: is rejected with the error message
EDT3952.

The current range symbol (see @RANGE) may not be used for the spec operand and is
rejected with the error message EDT4315.

If this statement is issued in F mode then it also must be preceded by the previously valid
statement symbol.

When EDT starts, @ is the current statement symbol.
Caution

If the spec operand is assigned one of the special characters <, > (only in F mode), +,
-, $,%,*or? (in Fand L mode) then the statements may in some cases be ambiguous
and undesired program behavior may occur.

If the special character : is used for spec then it is no longer possible to undo the setting
since, from this moment onwards, a sequence of colons at the start of a line is inter-
preted as a sequence of statement symbols.

U41709-J-2125-1-76 219

@: EDT statements

Example

. @print (1)
.0000 This statement allows the user to declare a new

.0000 statement symbol.

@:! (2)
@print (3)
. Iprint (4)
.0000 This statement allows the user to declare a new

.0000 statement symbol.

.0000 @print

1.@ (5)

AP EHE PO WOWNDEFE W

(1
2

) @PRINT is used to output the content of the work file.
)

(3) @PRINT is now not interpreted as a statement but as text.
)
)

lis declared as the new statement symbol.

(4
(5

IPRINT outputs the content of the work file.

@ is declared as the statement symbol again.

220 U41709-J-2125-1-76

EDT statements #

9.12 # - Output the last statement

The # statement can be used to output one of the last statements already executed by EDT
in the statement line again. This does not apply to any of the scrolling statements or the
statements used to change work file.

Operation Operands F mode
[n] #
n n specifies the depth, i.e. how far back in the processing sequence the

statement to be output lies. Values between 1 and 2048 are permitted for n.

The # or 1# statement outputs the last statement already executed by EDT in the statement
line again. 2# outputs the second last statement. If the # statement is entered more than
once successively then the pointer in the statement buffer is preset to the specified position
each time. If the start of the buffer has been reached then the statement line remains empty.
If a # statement then follows, the position returns to the last saved statement (end of the
buffer). After each entry other than # or after an empty entry, the end of the buffer is taken
as the starting point again.

If the statement to be displayed is longer than the command line then up to 3 command
lines can be displayed. If even then it is not possible to display the statement in full, it is
truncated and no message is issued.

If a communications character set other than the current one was defined when a statement
was entered then the statement is converted accordingly for output in the statement line. If,
in such a case, it is not possible to convert individual characters then the message EDT5453
is issued. The statement is output nevertheless and the non-converted characters are
replaced by question marks '?'.

The statement buffer can accommodate a maximum of 2048 statements independently of
their various lengths.

At least one character in the statement line must be overwritten, modified or added if the
content of the line is to be sent as a statement.

This operation takes no account of whether a statement was entered in the upper or lower
part of a split screen. Statements are stored in the statement buffer independently of the
work file to which the statement was applied. Statements in a statement sequence (state-
ments separated by ';') are stored individually.

If a # statement is entered in a statement sequence then after # has been executed,
processing is aborted and the last executed statement is output. Any statements located
after # in the statement sequence are not executed.

U41709-J-2125-1-76 221

EDT statements

Note
In F mode, the statement # followed by operands is an abbreviation of the @SETF

statement and is used to position the data window. This statement should not be
confused with the one described here.

The statement @SHIH (Show Input History) can be used to output the entire EDT
statement buffer to a work file. It is then possible to use statement code K to copy
individual statements into the statement line.

222 U41709-J-2125-1-76

EDT statements @AUTOSAVE

9.13 @AUTOSAVE - Automatic saving

The @AUTOSAVE statement activates the automatic time-controlled saving of work files.

Operation Operands ‘ F mode / L mode
@AUTOSAVE {[ID=name] [[,] TIME=n] [ON]

OFF
name Freely selectable identifier for the autosave files which is included in the

names assigned to the autosave files (default value: EDT).

n Time interval in minutes(0. . 255) between a manual or automatic save and
the next automatic save (default value: 5).

If TIME=0 then a save is performed after every dialog step.
ON Automatic saving is activated (default value).
OFF Automatic saving is deactivated. All the autosave files are deleted.

The @AUTOSAVE statement is only effective in interactive mode, i.e. data is only saved in
interactive mode. The statement is ignored in batch mode and no message is issued.

When an EDT session starts, the autosave function is deactivated.

Under certain circumstances, it may not be possible to save very long records (close to
32768). In such cases, the maximum possible length of the record in question is saved and
the warning EDT2405 is issued.

A save operation is performed each time the autosave function is activated or after every
dialog step, i.e. before the next prompt, if the autosave function is activated and the time
defined when it was activated has elapsed since the last automatic save. All non-empty
work files whose content is not already present as a disk file (either explicitly created by the
user or created by the autosave function in the form of an autosave file) are saved. ISAM
files opened for real processing are not saved.

The names of the autosave files are formed as follows:
S.name.yyyy—mm—dd.hhmmss.SAVEnn

The specification yyyy—-mm—-dd. hhmmss is the point in time at which the autosave function
was activated. The specification nn is the number of the current work file.

U41709-J-2125-1-76 223

@AUTOSAVE EDT statements

An associated autosave file is deleted, if:
— the work file no longer contains any records, (e.g. @DELETE)

— the contents of the file have been explicitly saved as a file or library element. The
possible statements are: @WRITE, @SAVE, @XWRITE and @CLOSE.

All the autosave files are deleted when the statement @AUTOSAVE OFF is issued, when
the EDT session is terminated with one of the statements @HALT, @END, @EXEC or
@LOAD or when control returns to the main program.

The save files are not deleted on abnormal termination or if EDT is exited with or the
@SYSTEM statement without a return.

Note
The content and character set of an individual work file can be restored by issuing the
following statement in an empty work file.

@COPY FILE=S.name.yyyy-mm—dd.hhmmss.SAVEnn,KEY=LINENUMBER

224

U41709-J-2125-1-76

EDT statements @BLOCK

9.14 @BLOCK - Set block mode

The @BLOCK statement activates or deactivates EDT's blocked input/output mode (BLOCK
mode).

When BLOCK mode is active, it is possible, in L mode, to use a single entry at the terminal
to create multiple lines or input multiple statements for sequential execution or enter a
mixture of the two. The individual lines and/or statements must be separated using the
character.

Operation Operands F mode / L mode
@BLOCK ON
@BK []
OFF
ON Activates BLOCK mode (default value).
OFF Deactivates BLOCK mode.

When an EDT session starts, BLOCK is activated by default.

In BLOCK mode, the maximum number of lines that can be entered in a block is the number
that can be displayed on a screen page.

If the entered block contains an illegal statement then this is output together with the current
line number and the corresponding error message at the time of its execution. The
remainder of the block is then executed.

If an entered block contains a @BLOCK OFF statement then the remaining statements or
data input in the block are ignored.

In batch mode, the @BLOCK statement is ignored.

When @DO procedures are called, BLOCK mode is set to OFF. If the @DO procedure is
exited again, BLOCK mode is restored to the status it had before the @DO procedure was
called.

U41709-J-2125-1-76 225

@CHECK (format 1)

EDT statements

9.15 @CHECK (format 1) — Check lines

This statement can be used to log every line that is created or modified in a work file or a
string variable by a statement. In interactive mode, the line in question is output to SYSOUT
and in batch mode it is output to SYSLST. The @CHECK statement can also be used to
check the line length (number of characters per line) while taking account of tabulator

expansion.

Operation Operands ‘ L mode

@CHECK ON

[1] [col]
OFF

ON Activates CHECK mode (default value). If CHECK mode is activated then
every line that is created or modified in a work file or a string variable by one
of the following statements is written to SYSOUT: @COLUMN, @COPY
(format 2), @CREATE, @MOVE, @ON (formats 7 to 10), @PREFIX,
@SET (formats 2, 4 and 5), @SEPARATE, @SEQUENCE (formats 1 and
2), @SUFFIX.

OFF Deactivates CHECK mode.

col Specifies the number of characters per line for the check of the line length.

In particular, it displays any cases in which the predefined line length is
exceeded due to possible tabular expansion EDT checks the number of
characters in every line which is newly entered or created by one of the
following statements: @+, @—, @IF, @SET (format 6). The number of
characters per line is checked independently of the current CHECK mode
setting.

If aline is longer than the value specified in co1 then the line is nevertheless
created and EDT outputs the message EDT2901 to indicate that the
predefined number of characters per line has been exceeded. The default
value of col corresponds to the maximum possible value of 32768
characters per line while the minimum possible value of col is 1 character
per line.

The col value can also be modified using the @TABS statement.

226

U41709-J-2125-1-76

EDT statements @CHECK (format 1)

When EDT starts, CHECK mode is deactivated.

The @CHECK statement is only effective in L mode. Any temporary switch to F mode
deactivates the CHECK mode. This does not change the current value of col.

Specifying ON or OFF has no effect on the current value of col. Consequently, the current
value of col is not modified if only ON or OFF is specified. To reset co1 to the default value
32768, it is necessary to specify this default value explicitly (@ CHECK [ON,]32768 or
@CHECK OFF,32768).

U41709-J-2125-1-76 227

@CHECK (format 2)

EDT statements

9.16 @CHECK (format 2) — Check lines for convertibility

This format of the @CHECK statement can be used to check whether the specified range
in the current work file or range of string variables can be converted into the target character
set without loss.

Operation

Operands ‘ F mode, L mode

@CHECK

lines name
[{ }[,...] [:cols[:]1] [,] CODE =< *EDT } [LMARK[=m]]

svars *FILE
int
[LLENGTH =]
*EILE

lines

svars

cols

CODE=

name

*EDT

One or more line ranges to be checked. If the specified range contains no
lines or only empty lines then the result of the check is positive (empty lines
can always be written without loss).

One or more ranges of string variables to be checked.

Contiguous column range for checking in the current work file or in the
specified string variables.

If the range specification contains only a single column specification, this
indicates the range from the specified column through to the end of the line.
If the first column specification is greater than the line length then the line or
string variable is ignored.

If no column range is specified then the entire line or string variable is
checked.

Specifies, either directly or symbolically, the character set for which the
check is to be performed.

Name of the character set for which the check is to be performed. The
specified line range or range of string variables is converted into this
character set for test purposes. Depending on the selected option, faulty
lines are either marked or output to SYSOUT.

The character set that is set for the current work file should be used for the
check. Since a work file may not contain any records with characters which
are invalid in the work file's character set, the specification of *EDT is only
of any value if only a check for lines of excess length is to be performed (see
the LENGTH operand).

228

U41709-J-2125-1-76

EDT statements @CHECK (format 2)

*FILE The character set entered in the catalog for the open file or open library
element or which was specified in the CODE operand in the @OPEN
statement is to be used for the check. If no file or library element is open
then the specification of *FILE is rejected with error message EDT5467. If
the character set *NONE is entered for the file then the check is performed
using the character set EDFO31IRV.

MARK= The lines which cannot be converted without loss into the specified
character set should be assigned a record mark. This option is only
permitted if only line ranges in the current work file are to be checked. If
MARK is not specified then the lines or string variables which cannot be
converted without loss are output to SYSOUT.

m Record mark (1. .9) used to mark the lines which cannot be converted
without loss into the specified character set. If mis not specified, record mark
1 is used.
LENGTH= This specifies a maximum length (in bytes) which may not be exceeded

when the lines or string variables are converted. Since, when conversion is
performed into a Unicode character set, many characters are coded by
multiple bytes, a line may become longer on conversion. Lines or string
variables which exceed the specified maximum length on conversion are
therefore considered to contain an error.

int Explicitly defines a maximum length (1..32768).

*FILE The maximum length is calculated from the catalog entry for the open file or
open library element. A value is selected which guarantees that all the
checked records can be copied without loss into the file when all the other
relevant file properties (e.g. the file type and record format) are taken into
account. If no file or library element is open then the value 32768 is used.

If neither 1ines nor svars is specified then the entire current work file is checked.

A line or string variable is considered to contain an error for the purposes of the check
performed by @CHECK if, after conversion, it is either longer than the value specified in
LENGTH or if it contains characters which would have to be mapped to any substitute
character which may have been specified (see the statement @PAR SUBSTITUTION-
CHARACTER) when converted into the specified character set.

If EDT does not identify any such defective lines or string variables or if they are only found
to be of excess length (see below) then the user can be certain that a conversion into the
specified character set is possible even if no substitute characters have been specified.
Otherwise, the user can decide whether to specify a substitute character (if this has not
already been done) and accept the resulting loss of information or to modify the relevant
lines or string variables in order to permit loss-free conversion.

U41709-J-2125-1-76 229

@CHECK (format 2) EDT statements

Lines or string variables which are found to be excessively long are truncated when written
to a file, a job variable or an S variable if the checked length is of physical relevance (e.g.
in the case of files with a fixed record length). In all cases, truncation is performed at a valid
boundary between two characters. The length that is actually written may therefore be a
maximum of 3 bytes shorter than the checked length. If truncation is not acceptable, the
user must subdivide or shorten the identified lines in a meaningful way.

The function not only marks and/or outputs the lines or string variables in which errors are
detected but also issues a message summarizing the result of the check. If only invalid
characters are detected, the message EDT5453 is output and if only length overruns are
detected, the message EDT5462 is output. If both invalid characters and length overruns
occur, the message EDT5456 is output.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

230

U41709-J-2125-1-76

EDT statements

@CLOSE

9.17 @CLOSE - Write back and close a file

@CLOSE may be used to write back an open file, close this file and then delete the work

file.

Operation

Operands F mode, L mode

@CLOSE

NOWRITE
[{name}]
CODE =< *EDT
*FILE

NOWRITE

CODE=

name

*FILE

*EDT

The work file is deleted and is not written back. The opened file or library
element is closed unchanged. If a file has been opened for real processing
in work file 0 (see @OPEN, format 2) then NOWRITE has no effect.

The operand controls the character set in which the work file is to be written.
In the case of a file opened for real processing in work file 0 the operand
has no effect.

If the operand is not specified and if the character set of the SAM file, ISAM
file or library element or the character set used when opening a POSIX file
differs from that of the work file then, in batch mode, the message EDT5457
is output, no write operation is performed and the file remains open. In inter-
active mode, the query

% EDT0915 CONVERT TO FILE CCS (&00)? REPLY (Y=YES; N=NO)?

is output. If the user responds Y then a conversion to the file's character set
is performed before the write operation. If the user responds N then the work
file's character set is used.

Character set that is to be used for writing. The name of a valid character
set must be specified (see section “Character sets” on page 47).

Before the write operation, the work file is converted into the character set
of the existing SAM file, ISAM file or library element or into the character set
used when opening a POSIX file. If this character set was *NONE then
EDFO3IRV is used.

The work file's character set is used for writing irrespective of whether any
file that may exist has a different character set.

The @CLOSE statement is rejected with error message EDT5177 if the current work file
does not contain a file or library element opened with @OPEN or @XOPEN.

U41709-J-2125-1-76

231

@CLOSE

EDT statements

Atfter the close operation, the character set used for writing is entered in the catalog for SAM
files, ISAM files and library elements.

If the work file is converted before writing and if it contains characters which are invalid in
the character set used by the file that is to be written then these characters are replaced by
a substitute character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the file is not written, it remains open and error
message EDT5453 is output. The user can then define a substitute character or modify the
character set for writing and run @CLOSE again.

If the work file contains lines that are too long for the file that is to be written (e.g. if the file
has a fixed record length) or if the conversion operation creates any such records (possible
in the case of Unicode character sets), then the write operation is aborted with the message
EDT5444.

When ISAM files are written, the ISAM key is formed from the line number if
KEY=LINENUMBER or KEY=IGNORE was specified when the file was opened. If KEY=DATA
was specified when the file was opened then the ISAM key is taken over from the data area.
In this case, the user must make sure that the sequence of work file records corresponds
to the sequence of ISAM keys as otherwise the write operation will be rejected with the
message EDT4208 (DMS error code 0AAB).

The definition of any secondary keys in an ISAM file (in a secondary index) is retained after
@CLOSE unless the key fields have been modified inconsistently in the data area. In this
case, the message EDT5246 is output and the secondary index is deleted.

If, during the processing of an opened ISAM file, the character set is changed either from
or to UTF16 or if this occurs implicitly due to a corresponding specification in the CODE
operand then the file cannot be written back since this would modify the length of the key
field. In this case, the @CLOSE statement is rejected with the error message EDT5468.

After a SAM or ISAM file has been closed with @CLOSE, EDT usually releases the file's
no longer required disk storage space. However, this can be prevented by setting
job switch 7.

If the current version number was specified when an ISAM file was opened for real
processing (see @OPEN, format 2) whereas the AS operand was not specified then the
current version number (which has been incremented by 1) is displayed after @CLOSE.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
When @CLOSE is run, an implicit @DELETE (format 2) is executed for the current
work file. This resets a number of work file properties to their initial values.

232

U41709-J-2125-1-76

EDT statements @CLOSE

Example

@OPEN FILE=FILEL [@D)
<EDT statements> (2)
@CLOSE CODE=UTFE (3)

(1) The file FILEL is opened and read into the current work file in the file's character set.

(2) The current work file is processed.
(3) The file FILE1 is opened and read into the current work file in the file's character set.

In the BS2000 catalog, FILE1 is assigned the attribute
CODED—-CHARACTER-SET=UTFE. The current work file is deleted.

U41709-J-2125-1-76 233

@CODENAME (format 1) EDT statements

9.18 @CODENAME (format 1) — Define the character set for work
files and string variables

Format 1 of the @CODENAME statement can be used to define the character set used by
EDT for a work file or a string variable. The definition made in @CODENAME takes priority
over the implicit selection of a character set by EDT, for example on the basis of an entry in
the file catalog.

Operation Operands ‘ F mode, L mode
@CODENAME LOCAL vES
name [, 4 SLOBAL L 1 FORCE =]
$0...$22 NO
#S0...#S20 S
name Name of the character set that is to be defined. The character set name

must be known in XHCS; otherwise, the statement is rejected with message
EDT4980. The specified character set is defined for one or more work files
or for the string variable determined by means of the other operands.

LOCAL The specified character set is defined for the current work file. If the work
file is not empty and the operand FORCE=YES is not specified then the data
it contains is converted into the new character set.

GLOBAL The specified character set is defined globally for all EDT work files. All non-
empty work files are converted unless the operand FORCE=YES has been
specified. This setting does not apply to character sets for string variables.

The operand is primarily used if EDT is called as a subroutine via the old
subroutine interface (V16 format). If EDT recognizes that the same
character set is defined for all the work files then this character set is
entered in the global control block EDTPARG at the old subroutine interface.
If the calling program evaluates this entry, it is therefore advisable to use the
GLOBAL operand to define the same character set for all the work files (and
then not to change these again afterwards).

For the behavior of the old subroutine interface if no global character set is
defined and further details concerning the use of character sets at the
subroutine interface, see the Subroutine Interfaces User Guide [1].

$0..$22 The specified character set is defined for the specified work file. If the work
file is not empty and the operand FORCE=YES is not specified then the data
it contains is converted into the new character set.

234 U41709-J-2125-1-76

EDT statements @CODENAME (format 1)

#S0..#S20 The specified character set is defined for the specified string variable. If the
operand FORCE=YES is not specified then the data present in the string
variable is converted into the new character set.

FORCE=
NO The data in the specified work file or string variable is converted into the
specified character set.
YES The specification FORCE=YES is only permitted for 7 and 8-bit character sets

and results in the relabeling of the specified work file or string variable, i.e.
the content of the work file or string variable remains unchanged (as a byte
sequence) but is reinterpreted in the specified character set. This function
is used to correct errors in the assignment of character sets, for example
due to incorrect entries in the DMS catalog. In the case of Unicode
character sets, the statement is rejected with the message EDT5494.

If the work file is converted and if it contains characters which cannot be displayed in the
target character set then these characters are replaced by a substitute character provided
that such a character has been specified (see @PAR SUBSTITUTION-CHARACTER);
otherwise, the @CODENAME statement is rejected and error message EDT5453 is output.
Specifying GLOBAL does not, in this case, convert back work files which have already been
converted.

If a character set is assigned to a work file or a string variable using @CODENAME then

this assignment applies until it is explicitly modified by another @ CODENAME statement

or until the work file or string variable has been completely deleted (e.g. with @DELETE,

format 2). This means that all the data that is copied or read into the work file or character
set is converted into this character set (see section “Character sets in work files” on

page 54).

If an ISAM file is opened for real processing in work fileO by means of the @OPEN
statement (format 2) then every @ CODENAME statement which applies explicitly or
implicitly for this work file is rejected with message EDT5452.

In the case of an opened, existing file for which the character set *NONE is entered, calling
the @CODENAME statement always causes the character set used for writing to be
entered explicitly in the catalog when the file is written back with @CLOSE or @WRITE.

U41709-J-2125-1-76 235

@CODENAME (format 2) EDT statements

9.19 @CODENAME (format 2) — Define the communications

character set

Format 2 of the @CODENAME statement can be used to define the communications
character set used by EDT. The definition made in @CODENAME takes priority over the
implicit selection of a character set by EDT, for example on the basis of the employed
terminal.

Operation Operands ‘ F mode, L mode
@CODENAME name
[,TERMINAL]
*AUTO
name Name of the character set that is to be defined. The character set must be

known in XHCS. The character set must be supported by the employed
terminal; otherwise, the statement is rejected with message EDT5487.

If a communications character set is specified explicitly then it cannot be
selected automatically by EDT (see section “Communications character
set” on page 53).

*AUTO Activates automatic selection of the communications character set by EDT
(see section “Communications character set” on page 53).

If no operand is specified then only the character set defined using
/MODIFY-TERMINAL-OPTIONS is used as the communications character set. This is also
the default setting when EDT is started.

The specified character set is used as the communications character set for data exchange
with the terminal and the operand has no direct influence on the coding in the work files (see
section “Character sets” on page 47). However, empty work files which have no character
set and are only filled with data as a result of direct user input at the terminal are initially
assigned this character set. More specifically, if the automatic selection of the communica-
tions character set is active and a modern Unicode-compatible emulation is being used
then work files which are filled with data in this way are always assigned the character set
UTFE. This can only be prevented by the earlier explicit assignment of a work file character
set.

In batch mode, this statement is ignored.

236

U41709-J-2125-1-76

EDT statements

@COLUMN

9.20 @COLUMN - Insert text and delete blanks at end of line

The @COLUMN statement modifies the content of existing work file lines or string

variables.

During the first stage, new text is inserted or existing text is overwritten as of the specified
column. Then all the blanks are deleted (as far as the next character which is not a blank)
from right to left starting at the last character in the work file line or string variable. A work
file line which only consists of blanks remains present as an empty line in the work file. A
string variable which only contains blanks becomes an empty string variable after the delete

operation.

Operation Operands ‘ F mode, L mode

@COLUMN lines CHANGE

col ON [..11[] [:] string
svars INSERT

col Column as of which text is to be replaced or inserted.

lines One or more line ranges in which text is to be inserted or replaced. Only
existing lines are processed.

svars One or more ranges of string variables in which text is to be inserted or
replaced.

CHANGE The string specified with st ring replaces the existing text as of column co1
(default value).

INSERT The string specified with string is inserted as of column col.
This specification is obligatory if neither CHANGE nor INSERT is specified in
order to clearly separate the range specification from the string.

string String which is inserted or which replaces existing text as of the specified

column in every line of a specified line range. Itis also permissible to specify
an empty string.

The string is converted into the character set used by the work file or string
variable. If the string contains characters which cannot be displayed in the
target character set then these are replaced by a substitute character if such
a character has been specified.

(see @PAR SUBSTITUTION-CHARACTER); otherwise, the @COLUMN
statement is rejected and the error message EDT5453 is issued.

If the column as of which the text is to be inserted is located after the previous line end then
the intervening columns are filled with blanks.

U41709-J-2125-1-76

237

@COLUMN EDT statements

No text is replaced or inserted if this would cause the work file or string variable line length
to exceed the permitted maximum of 32768 characters. Instead, in this case, the message
EDT5474 is output. EDT does not check whether deleting blanks at the end of a line would
restore the line to a permitted value.

If errors occur during processing (EDT5453 or EDT5474) then the statement is aborted. Any
lines and/or string variables which have been successfully modified up to this point retain
their changes.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
This statement can be used to delete blanks at ends of lines without knowing the line
length. If an empty string is specified as the replacement text in the @COLUMN
statement then no text is replaced in the lines. The right-to-left delete operation causes
blanks to be deleted at the ends of the lines.

Example

1.00 126700 === oemmmmmeneneeeeeeeeeeeeeeeeeeteteaeaeeanoetetteeeeees
D 00 BABC+ v vttt et
B 00 sttt

Lco]umn 3 on 1:2 ... 0001'00:00001(01)/

The content of column 2.00 is to be entered in line 1.00 as of column 3. The old content of
line 1.00 is therefore overwritten.

T.00 123480 o s s v memme e ttte ettt e
D 00 BABC vttt
B0 sttt e

k\»(:O'Iumn 5 on 1 1nsert ‘567‘ 0001.00:00001(01)
_/

The string 567 is to be inserted in line 1.00 as of column 5. Consequently, no characters are
overwritten in line 1.00.

238 U41709-J-2125-1-76

EDT statements @COLUMN

1.00 123456780 - oo st v mme et teee ettt e
D 00 BABC+ vttt
N[I T T T T T T T T T T R

U41709-J-2125-1-76 239

@COMPARE (format 1)

EDT statements

9.21 @COMPARE (format 1) — Compare two work files

This format of the @COMPARE statement causes EDT to compare all or part of two work
files with one another. The results of the comparison can be sent to a work file, SYSOUT or
SYSLST as required.

Operation

Operands ‘ F mode / L mode

@COMPARE

[procnr1] :lines1 WITH [procnr2] :lines2

[,[int1] [(int2)] [LIST [line [(inc)] 111

procnr1, procnr2

lines1, lines2

int1, int2

Numbers of the two work files that are to be compared (0. .22). Itis also
possible to compare different ranges in the same work file (procnrl equals
procnr?2). If one of the files for comparison is work file 0 and if a file has
been opened in it for real processing with @OPEN, format 2 then
@COMPARE is rejected with the error message EDT4935. If procnrl or
procnr?2 is not specified then the value of the current work file is used for
the missing operand.

Line ranges that are to be compared with one another. The 1ines1 operand
defines the line range in the first work file (procnr1). The 1ines2 operand
defines the line range in the second work file (procnr?2). Neither of these
line ranges may be empty as otherwise the statement is rejected with the
error EDT4932.

intland int2 can be used to determine how tolerant EDT is to be if it finds
non-identical lines. If EDT does not find at least int2 consecutive lines that
are identical in the two files after examining int1 lines then it aborts the
comparison.

In addition, int2 specifies how many consecutive lines in a work file must
match the corresponding number of consecutive lines in the other work file
before EDT considers the ranges consisting of these lines to be identical.

The following applies to intl and int2: int2 < intl < 65535. The
default value for int1is 10, and for int2 itis 1.

240

U41709-J-2125-1-76

EDT statements @COMPARE (format 1)

LIST Specifies where EDT is to output the result of the comparison.

If LIST is specified without line, EDT outputs the result of the comparison to
SYSLST. In this case, EDT outputs the line number and the first 51
characters of line content for every line for which no match is found.

If LIST is specified with line then EDT writes the result of the comparison to
the current work file unless this is one of the two files involved in the
comparison. Otherwise, the @COMPARE statement is rejected with the
message EDT4909. The line number assignment can be influenced using
the 1ine and inc operands (see below). Only the numbers of the lines for
which no match is found are output. The line content is not output.

If LIST is not specified, EDT outputs the result of the comparison to SYSOUT
in interactive mode and to SYSLST in batch mode. The output format is the
same as for output to the current work file.

line The number of the line in the current work file which is to contain the first
line of the result of the comparison. The format in which EDT writes the
result is the same as that used when output is sent to SYSOUT.

inc Increment used to form the line numbers which follow line. If inc is not
specified then the increment implicitly specified by line is used (see section
“Implicit increment assignment” on page 35).

Before performing the comparison, EDT internally converts each line into UTF16 and
compares the resulting lines as byte sequences. The lines are identical if both the line
content and line length of this byte sequence are identical. The line numbers are ignored
during the comparison of the files. If both work files use the same character set then this
procedure is equivalent to a byte-by-byte comparison of the original lines.

It may be necessary to convert the output of the result of this comparison into a suitable
character set. If the output is sent to SYSOUT or SYSLST then this is the character set that
has been defined for SYSOUT or SYSLST. If the output is sent to the current work file then
this is the character set defined for this work file. If no character set is defined for the current
work file then output takes place using the character set of the compared work files. If these
use different character sets then the output takes place in the character set UTFE.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

EDT starts the comparison at the beginning of the specified line ranges. If EDT identifies a
non-identical pair of lines then it reads forwards in the two files to try to find the next block
of int2 identical lines.

In this case, EDT reads a maximum of int1 lines in each file. If, in this range, EDT identifies
int2 consecutive identical lines, it aligns the two files for further comparison at this point.
Otherwise, it aborts the comparison.

U41709-J-2125-1-76 241

@COMPARE (format 1) EDT statements

By choosing a suitable setting for int2, itis also possible to cause EDT to consider multiple
consecutive lines as a unit during the comparison. This can be of use in address files if the
address specifications consist of multiple lines (see example 2).

If the same values are selected for int2 and intl then EDT will not be able to find any
matching line ranges in the two files if even a single pair of lines is not identical.

EDT reports the result of the comparison in the form of commented lists of line numbers.

In this case, it does not separately specify whether lines or line ranges are identical. The
ranges for which a matching range has been found in the other file are identified together
by EDT (provided that they contain at least int?2 lines), i.e. they form pairs of matching
ranges. If empty ranges are permitted then it is also possible to form pairs for the non-
matching ranges since two adjacent pairs of matching ranges are necessarily separated by
precisely one pair of non-matching ranges, one of which may be empty.

EDT generates a commented list for each pair of non-matching ranges as a function of their
size and location.

If both members of a pair of non-matching ranges are not empty but comprise no more than
intl - int2 lines then the ranges are considered to be different:

NON-MATCHING LINES
Tn Tn

. n
n
If both members of a pair of non-matching ranges are not empty and one range contains

more than intl — int2 lines then the output of the above list is shortened accordingly and
the comparison is aborted with the message

NOTHING SEEMS TO MATCH

If one member of a pair of non-matching ranges is empty and the other contains no more
than intl - int2 lines then the non-empty range is listed as an additional range:

EXTRA LINES IN 1IST FILE
Tn

Tn

242 U41709-J-2125-1-76

EDT statements @COMPARE (format 1)

If the non-empty range is located in the second file then the output is equivalent but has a
different heading:

EXTRA LINES IN 2ND FILE

If the non-empty range contains more than intl - int2 lines and is not located at the end
of the line range for comparison then the output of the above list is shortened accordingly
and the comparison is aborted with the message

NOTHING SEEMS TO MATCH

If the non-empty range of more than int1 - int2 lines is located at the end of the line range
for comparison then the message

REACHED LIMIT ON 1ST FILE

or

REACHED LIMIT ON 2ND FILE

Is output instead, where 1ST or 2ND designates the file which contains the empty range.

If no non-matching ranges of more than intl - int2 lines are found in either file up to the
end of the line range for comparison then the note

REACHED LIMIT ON BOTH FILES

is also output if a pair of non-matching ranges is located at the end of the line ranges for
comparison. In contrast, if a pair of matching ranges is located at the end of the line ranges
for comparison, the message

REACHED LIMIT ON BOTH FILES AT SAME TIME

is output. If both of the line ranges for comparison match fully then this is the only message
to be output.

U41709-J-2125-1-76 243

@COMPARE (format 1)

EDT statements

Example 1

@PROC 1
@COPY FILE=PROC-FILE.1

@PRINT

.0000 AAAAAA

.0000 BBBBBB

.0000 ccccce

.0000 uuuuuu

.0000 VVVVVV

.0000 WWWWWW

@END

@PROC 2

@COPY FILE=PROC-FILE.Z2

(1)

@PRINT
.0000 AAAAAA
.0000 BBBBBB
.0000 777777
.0000 AAAAAA
.0000 BBBBBB
.0000 ccccce
.0000 uuuuuu
@END
1. @COMPARE 1:1-6 WITH 2:1-7, 5(2)
EXTRA LINES IN 2ND FILE
3.0000
4.0000
5.0000
EXTRA LINES IN IST FILE
5.0000
6.0000
REACHED LIMIT ON BOTH FILES
1. @COMPARE 1:1-6 WITH 2:1-7, 5(3)
NON-MATCHING LINES
1.0000 1.0000
2.0000 2.0000
3.0000 3.0000
4.0000 4.0000
5.0000 5.0000
NOTHING SEEMS TO MATCH
1. @COMPARE 1:1-6 WITH 2:1-7, 6(3)
EXTRA LINES IN 2ND FILE
1.0000
2.0000
3.0000

O NO O, WNRFORPRFE N0 WN R -

(2)

(3)

(4)

(5)

244

U41709-J-2125-1-76

EDT statements

@COMPARE (format 1)

EXTRA LINES IN 1IST FILE

5.
6.

0000
0000

REACHED LIMIT ON BOTH FILES

1.
(1) The SAM file PROC-FILE.1 is read into work file 1.
(2) The SAM file PROC-FILE.?2 is read into work file 2.

(3) If the examination of 5 lines in each of the two files does not reveal at least 2 consec-
utive identical line pairs then the comparison is to be aborted. The comparison is

continued through to the end of the two files.

(4) The @COMPARE issued in (3) is issued again in slightly modified form. It is now
necessary to find at least 3 consecutive identical line pairs. This time, EDT aborts the
comparison.

(5) The @COMPARE issued in (4) is issued again in slightly modified form. The
comparison should now only be aborted after 6 lines have been examined. It is

continued through to the end.

Example 2

This example assumes that the work files have already been filled with the corresponding

data.

5.
21.

1.
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.
11.

O Ny o~ W

12

0000

0000
0000

.0000
13.
14.
15.
16.
17.
18.
19.
20.

0000
0000
0000
0000
0000
0000
0000
0000

@PROC 1
@PRINT

Donald Duck

Am Dorfteich 11
12345 Entenhausen
Dagobert Duck
Schlossallee 1la
12345 Entenhausen
Daisy Duck

Am Dorfteich 12
12345 Entenhausen
Gustav Gans

Im Wiesengrund 10
12345 Entenhausen
Gustav Gans
Schmale Gasse 7
12345 Entenhausen

(1)

U41709-J-2125-1-76

245

@COMPARE (format 1)

EDT statements

.0000
.0000
.0000
.0000

AWM E O

5

@END
@PRINT

Gustav Gans
Im Wiesengrund 10
12345 Entenhausen

@COMPARE 0:& WITH 1:&, 9999(4)

EXTRA LINES IN 2ND FILE

1.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

9.0000
10.0000
11.0000
12.0000

O N OB W

EXTRA LINES IN 2ND FILE

17.0000
18.0000
19.0000
20.0000

REACHED LIMIT ON BOTH FILES

5.
5.

@ON 2 CHANGE '10"'" TO '13'
@COMPARE 0:& WITH 1:&, 9999(4)

NON-MATCHING LINES

1.0000
2.0000
3.0000
4.0000

1.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

9.0000
10.0000
11.0000
12.0000
13.0000
14.0000
15.0000
16.0000
17.0000
18.0000
19.0000

O N OB~ W

(2)

(3)

(4)

246

U41709-J-2125-1-76

EDT statements @COMPARE (format 1)

20.0000
REACHED LIMIT ON BOTH FILES
5.

(1) Work file 1 is output. This is an address file.

(2) On return from work file 1, work file 0 is output. It contains an address (4 lines) which is
to be searched for in work file 1.

(3) The search is performed by comparing the two files. Selecting the value 9999 for int1
(see the operand description) ensures that the comparison is not aborted. Selecting 4
for int2 ensures that only ranges with 4 matching lines are considered to be identical.
The output identifies the presence of EXTRA LINES both before and after the matching
range, i.e. the address is present in work file 1.

(4) Once the building number has been changed, the search is repeated. Since no further
range of 4 matching lines is found, only NON-MATCHING LINES are reported. The
address is therefore not present.

If the comparison is performed with @COMPARE 0:& WITH 1:&, 9999(1) instead of with
@COMPARE 0:& WITH 1:&, 9999(4) then the same output is obtained for both matching
and non-matching building numbers since EDT resynchronizes on the first matching line
(12345 Entenhausen).

U41709-J-2125-1-76 247

@COMPARE (format 2)

EDT statements

9.22 @COMPARE (format 2) - Compare two work files line by line

Format 2 of the @COMPARE statement can be used to compare the contents of two work
files line by line. EDT stores the results in a work file. This is deleted before the result is
stored in it. It is also possible to send the results to SYSLST and, in L mode, SYSOUT.

Operation

Operands ‘ F mode / L mode

@COMPARE

{ [procnr1] WITH procnr2

} [LIST [procnr3]] [,procnr4]
procnr1

procnr1

procnr2

LIST

procnr3

procnr4

Number of the work file that is to be compared. If procnrl is not specified
then the current work file is compared with procnr2.

Number of the work file against which the comparison is to be performed. If
procnr?2 is not specified then procnrl is compared with the current work
file.

If LIST is specified then the result is stored in work file procnr3. If procnr3
is not specified then the result is output to SYSLST.

If LIST is not specified then in the interactive mode's L mode, the result is
output to SYSOUT, in batch mode it is output to SYSLST and in F mode it is
written to work file 9. Work file 9 is deleted before being used. If a file is open
in work file 9 then the message EDT5189 is output and the statement is not
executed.

Work file in which the detailed result of the comparison is stored if any such
result is generated (see below). Line numbers are assigned using the
procedure “Insertion between two lines” (see section “Line number
assignment” on page 36).

The work file is deleted before being used. If a file is open in this work file
then it is implicitly closed without being written back (@CLOSE NOWRITE).

The specification of a work file as an auxiliary file is now only permitted for
reasons of compatibility. Any work file specified here is not used by EDT.

The work files procnrl and procnr2 must be different from one another. Otherwise, the
@COMPARE statement is rejected with the message EDT5499. The work file procnr3 can
be identical to procnrl or procnr2. However, in this case no detailed result is output (see

below).

248

U41709-J-2125-1-76

EDT statements @COMPARE (format 2)

If all the lines to be compared are either identical or different then only the message
EDT0291 or EDT0290 respectively is output. In this case, no detailed result of the
comparison is output.

If a detailed result is to be sent to procnr3 then the message EDT0297 is output once the
comparison has been completed. In this case, if one of the two files for comparison is the
work file which is to contain the result then the message EDT5350 is output and no detailed
result is output.

If one of the files for comparison is work file 0 then no ISAM file may be opened for real
processing with @OPEN, format 2. Otherwise, the @COMPARE statement is rejected with
the message EDT4935.

To make it possible to query the result of the comparison in EDT procedures, the EDT error
switch is set in addition to the output of the messages EDT0290 and EDT0297. This can be
queried using the @IF statement (see @IF statement):

EDT error switch Work file procnr3
EDT0291 Not set Empty
EDT0290 Set Empty
EDT0297 Set Not empty

If it is necessary to distinguish between all the cases listed above then it is necessary to
reset the EDT error switch with @RESET and delete the work file procnr3 before
performing a comparison with @COMPARE.

Before performing the comparison, EDT internally converts each line into UTF16 and
compares the resulting lines as byte sequences. The lines are identical if both the line
content and line length of these byte sequences are identical. The line numbers are ignored
during the comparison of the files. If both work files use the same character set then this
procedure is equivalent to a byte-by-byte comparison of the original lines.

It may be necessary to convert the output of the result of this comparison into a suitable
character set. If the output is sent to SYSOUT or SYSLST then this is the character set that
has been defined for SYSOUT or SYSLST. If the output is sent to a work file then this is the
character set of the compared work files. If these use different character sets then the
output takes place in the character set UTFE.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

U41709-J-2125-1-76 249

@COMPARE (format 2) EDT statements

The format of the output is identical irrespective of whether it is written to a work file or sent
to SYSLST or SYSOUT:

LINE#(1) FILENAME: DAT.270104
LINE#(0) FILENAME: COMP.1

A header line is output which identifies the columns assigned to the compared work files
together with LINE#... and the number of the relevant work file (in parentheses). In addition,
if present, the name of an opened file or library element or a local @FILE entry is output.

0007.10 CUST-100 SORT

0007.20 CUST-200 PERCON
0007.30 CUST-700 FDDRL

0010.00 $CUST-900 LMS

0010.00 $CUST-900 LMSCONV

In the case of lines which occur in only one work file, the line numbers and the content of
the records (possibly truncated by 17 characters) are output. Here, the location of the line
in either column 1 or in column 2 under the heading LINE#... indicates which of the work

files contains the record. This also applies equivalently for records with different contents.
These occur with one content only in the first work file and with the other content only in the
second work file and will generally appear consecutively.

0008.00=0010.00
0018.00=0020.00

In the case of lines with the same content, the identified line numbers are output in the form
0001.00=0006.00. If a number of consecutive records are identical (range of identical
records) then only the first and last pairs of line numbers in the range are output (for further
details, see the example).

250

U41709-J-2125-1-76

EDT statements @COMPARE (format 2)

Example

=
WNHFOWOWONOOITEWMN
o
o
(e
A

~
J

=
NHHOWOWONOYUTERWN
o
o
i
A

\@compare 2 with 1 T9st 3; 3o 0001.00:00001(01))

Work file 2 is compared with work file 1 and the result is stored in work file 3. Processing
then switches to work file 3.

U41709-J-2125-1-76 251

@COMPARE (format 2) EDT statements

10 LINE#C 1) FILENAME :v v v v v memeeeemiiiie ettt ennns
.20 LINEF(2) FILENAME <+ st s ovmmesoemeeateeet ettt
.30 000L1.00 Kecveomesemmeeensnneesnneeennuesenasesnanesenneeenneees
.40 0002.00 Yt roeomeemenoteaeeneenteateateneentsatenteaenneeneans
.50 0003.00 et v svvesemmeeennntesnnatennaesenateenanesennesenaeees
.60 0004.00 Geevreoesmesmenotenseneenteateuteneentsatentenenneenenns
.70 0005.00 He e et evvesemmeeenmnneennneeennaeeenaseenanesennesenneees
80 0001.00=0006. 00 == cceteeeroemeenneaeenataeeeeaet et
290 0003.00=0008. 00+ + = et s emmnemmmntenate ettt e

.50 0009.00 I< ...
‘60 0010‘00=0009'OO< ..
.70 0011.00=0010.00< ..

-)

The result of comparing work files 1 and 2 is stored in work file 3.

252 U41709-J-2125-1-76

EDT statements @CONTINUE

9.23 @CONTINUE - Empty statement

The @CONTINUE statement does not perform any action. It is used to generate a line in
EDT procedures which can be branched to by means of a @GOTO statement. It can also
be used to insert comments in EDT procedures. The @NOTE statement has the same
functionality as @CONTINUE.

Operation Operands ‘ L mode
@CONTINUE [comment]

comment The comment operand may contain any text as a comment.

Alongside the insertion of comments, this statement is also frequently used to define a last
line in an EDT procedure which can be specified as the destination of a branch operation
in a @GOTO or an @IF statement. This construction is required if an EDT procedure is
called in an external loop with a loop counter (e.g. @DO 5,!'=%,$), and an @IF ... RETURN
would result in an unwanted abort of the external loop. Instead, processing branches to the
end of the procedure in order to start the next pass.

Example
6. @PRINT
1.0000 WITH EDT
2.0000 ANYONE WHO KNOWS
3.0000 THE STATEMENTS CAN
4.0000 WRITE HIS PROGRAM ONE
5.0000 PROCEDURE AT A TIME
6. @PROC 1
1. @1.00
1.00 @ @CON OBJECTIVE: IF A LINE CONTAINS 'W' (1)
1.01 @ @CON DISPLAY IT ON THE SCREEN
1.02 @ @N ! FIND 'W'
1.03 @ @IF .FALSE. : @GOTO 2
1.04 @ @PRINT !
1.05 @2.00
2.00 @ @CONTINUE (2)
2.01 @END
6. @do 1,!=1,$% (3)
1.0000 WITH EDT
2.0000 ANYONE WHO KNOWS
4.0000 WRITE HIS PROGRAM
6.

U41709-J-2125-1-76 253

@CONTINUE EDT statements

(1) In this case, @CONTINUE is used to insert a comment.

(2) Inthis case, @CONTINUE is required because there must be a last line in a procedure
that can be branched to.

(3) @DO with a loop counter executes the procedure in work file 1 which acts on work file
0.

254 U41709-J-2125-1-76

EDT statements @CONVERT

9.24 @CONVERT - Convert uppercase or lowercase

The @CONVERT statement is used to convert lowercase characters into uppercase or
uppercase characters into lowercase in line ranges.

Operation Operands ‘ F mode, L mode
@CONVERT lines UPPER
[l [--]1TO =]
svars LOWER
lines One or more line ranges in which conversion is to be performed. Only
existing lines are processed.
svars One or more ranges of string variables in which conversion is to be
performed.
UPPER All lowercase characters are converted into uppercase.
LOWER All uppercase characters are converted into lowercase.

Either UPPER or LOWER must be specified. If neither 1ines nor svars is specified then
conversion is performed throughout the entire current work file.

The information about which characters in the character set used in the current work file are
lowercase or uppercase characters is obtained from XHCS. All other characters are left
unchanged.

If the statement is interrupted with and the EDT session is continued with /ITNFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

U41709-J-2125-1-76 255

@COPY (format 1)

EDT statements

9.25 @COPY (format 1) — Read in a file

@COPY (format 1) is used to read an existing file in full into the current work file. The work
file does not have to be empty when this is done. It is possible to specify the position in the
work file at which the file is to be inserted. After being read in, the file is closed again.

Whenever this section refers to a “file”, this can be a SAM file, an ISAM file, a library
element or a POSIX file.

Operation

Operands ‘ F mode, L mode

@COPY

LIBRARY=path1 ([ELEMENT=] elname [(vers)][,eltype])
ELEMENT=elname [(vers)][,eltype]

path2 LINENUMBER
FILE = [KEY =< DATA]

*linkname IGNORE

N
Y

POSIX - FILE = xpath [,CODE = name]

BEFORE
[[] { } line]
AFTER

LIBRARY=

path1
elname

vers

eltype

A library element is to be read in. This is defined by explicitly specifying the
library name and the element designation.

Name of the library.
Name of the element.

Version of the required element (see the LMS User Guide [14]). If vers is
not specified or if *STD is specified then the highest available version of the
element is selected.

Type of element. Permitted type specifications are S,M, P, J, D, X, *STD as
well as freely selectable type names having one of these types as basic
type. If eltype is not specified then the default type specified with @PAR
ELEMENT-TYPE is used. The permitted element types and their meanings
are described in chapter “File processing” on page 131.

256

U41709-J-2125-1-76

EDT statements

@COPY (format 1)

ELEMENT=

FILE=
path2

*linkname

KEY=

A library element is to be read in. This is defined by means of the element
designation without any library name specification. The default library set
with @PAR LIBRARY is used implicitly (if @PAR LIBRARY has been
specified, otherwise the error message EDT5181 is issued).

The operands eTname, vers and el type have the same meaning as when
a library is specified explicitly (see above).

A BS2000 file is to be read in.
Name of the BS2000 file (fully qualified file name) that is to be read in.

File link name of the BS2000 file that is to be read in. The file name and the
file attributes are stored in the Task File Table. The file link name must
not be specified as the special file name *BY—-PROGRAM. This results in the
error EDT4923. If no file link name is defined then the statement is rejected
with the message EDT5480.

If the file link name is declared as the special file name *DUMMY then it is
treated as an existing empty file.

In the case of ISAM files, specifies the location at which the ISAM key is
stored in the work file. In the case of other file types, this operand is ignored.

LINENUMBER

DATA
IGNORE

POSIX-FILE=
xpath

The ISAM key is stored as a line number in the work file. Any existing lines
with the same line numbers are overwritten. The operands BEFORE and
AFTER may not be specified. If the ISAM key cannot be interpreted as a line
number because the position of the key differs from the default value, the
key is too long or the keys are not numerical then the message EDT5459 is
output and the file is not read in.

The ISAM key becomes a component of the data range in the work file.

The ISAM key is not stored in the work file. This is the default value. If the
position of the key differs from the default value, the message EDT5466 is
output and the file is not read in.

A POSIX file is to be read in.

Path name of the POSIX file that is to be read into the current work file.
The xpath operand can also be specified as a string variable. It must be
specified as a string variable if the path name contains characters which
have a special meaning in EDT syntax (e.g. blanks, semicolons in F mode
or commas).

U41709-J-2125-1-76

257

@COPY (format 1) EDT statements

CODE= Defines the character set that is to be assumed for the POSIX file. Since it
is not possible to assign character sets to POSIX files in the POSIX file
system, a user specification is required here.

If CODE is not specified then the character set defined in @PAR CODE is
assumed.

name Character set of the POSIX file that is to be read in. The name of a valid
character set must be specified for name (see section “Character sets” on
page 47).

EBCDIC The keyword EBCDIC is now only supported for reasons of compatibility and
is a synonym for the character set EDF041.

ISO The keyword 150 is now only supported for reasons of compatibility and is
a synonym for the character set 1S088591.

BEFORE The file is inserted in front of the specified line in the work file. This operand
may not be specified if KEY=LINENUMBER is defined.

AFTER The file is inserted after the specified line in the work file. This operand may
not be specified if KEY=LINENUMBER is defined.

line Line number before or after which the file is inserted.

If the specified file does not exist or cannot be accessed as required or if the file cannot be
read in successfully then the statement is rejected with a corresponding error message.

In neither BEFORE nor AFTER is specified and if the KEY operand is not equal to LINENUMBER
then the file is inserted after the last line of the current work file.

When ISAM files are read with the operand KEY=LINENUMBER, the line numbers in the work
file are derived from the file's ISAM key. In all other cases, they are formed using the
procedure “Insertion between two lines” (see section “Line number assignment” on

page 36).

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the file that is to be read in. If this character set is *NONE then the work file
is assigned the character set EDFO3IRV.

If the work file already has a character set then the records that are to be read in are
converted from the file's character set into the work file's character set. If the file that is to
be read in contains characters which cannot be displayed in the work file's character set
then these are replaced by a substitute character if such a character has been specified.
(see @PAR SUBSTITUTION-CHARACTER), otherwise the file is not read in and the error
message EDT5453 is output.

258

U41709-J-2125-1-76

EDT statements @COPY (format 1)

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION—
CHARACTERS is specified. In this case, the read operation is rejected with the message
EDT5454.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example
@COPY LIBRARY=MACLIB(ELEMENT=XYZ,M) AFTER 12.3

The element with the name XYZ, the highest existing version and the element type M
(macro) from the library MACLIB is inserted in full after line 0012.3000 in the current work
file.

@PAR LIBRARY=DATA
@COPY ELEMENT=PERSONAL(@),D

The element with the name PERSONAL, the highest existing version and the element type D
(text data) from the library DATA is inserted after the last line in the current work file.

@COPY FILE=FILE.ISAM,KEY=LINENUMBER

The ISAM file FILE.ISAM is read into the work file. The line numbers in the work file are
formed from the ISAM key. Any existing lines are overwritten.

@COPY POSIX-FILE=/home/userl/test/data,CODE=UTF8

The POSIX file data in the directory /home/userl/test with the character set UTF8 is
inserted after the end of the current work file. When this is done, the file is converted into
the work file's character set.

U41709-J-2125-1-76 259

@COPY (format 2)

EDT statements

9.26 @COPY (format 2) — Copy lines or string variables

The @COPY statement copies records from the current or another work file or the content
of a string variable into the current work file.

For the sake of clarity, the line range in the source work file which contains the records that
are to be copied or the range of string variables are referred to as the “source range” below.
The line range in the current work file into which the records from the source work file are
to be copied is referred to as the “target range”.

Operation Operands ‘ F mode, L mode
@COPY lines [(procnr)]
[TO {line1 [(inc)] [:] [line2]} [,...]] > [,---]
svars

lines Contiguous line range that is to be copied into the current work file.
Symbolic line numbers in 11ines refer to the line numbers of the current
work file even if the lines are copied from another work file.

procnr Number of the source work file from which the lines are to be copied
(0..22).If procnris not specified then the lines are copied from the current
work file. An active work file may not be specified.

If the TO operand is not specified then procnr must not be the current work
file.

svars Range of string variables whose contents are to be copied into the current
work file.

TO... The operands which follow TO define the target range or ranges. If no target
range is specified then the line numbers in the source work file are taken
over into the current work file.

If the source work file is the current work file or if string variables are copied

then TO. . . must be specified. In these cases, if no target range is specified

then the @ COPY statement is rejected with the error message EDT3218.
line1 Number of the first line in the target range.

inc Increment used to form the line numbers following 1inel. If inc is not

specified then the increment implicitly specified by 1inel is used (see
section “Implicit increment assignment” on page 35).

The operands 1inel and 1ine?2 should be separated by : if inc is not
specified.

260

U41709-J-2125-1-76

EDT statements @COPY (format 2)

line2 Specifies the largest possible line number in the target range up to which
the copying of records is permitted.

As a result, nothing is copied into lines in the current work file with line
numbers higher than 1ine?2. This also applies if it is not possible to copy all
the records in the source range to the target range.

If 1ine2 is not specified then the @COPY statement does not define any
maximum value for the line numbers in the target range.

Inthe @COPY statement, it is possible to specify multiple comma-separated source ranges
each of which are associated with multiple target ranges. The number of source and target
ranges is only limited by the maximum permitted length of EDT statements.

If the source and target ranges overlap then the source range is copied line-by-line. This
means that a record may initially be copied to a line and then be copied again from this line
if the line is present in both the source and target ranges. In this way, it is possible to create
multiple copies of the source range or parts of it in the target range.

Any existing lines with the same line numbers present in the work file are overwritten on the
copy operation.

If a line with a number greater than the previous highest line number is created then the
current line number is modified.

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the source work file or the first specified string variable when the copy
operation is performed. If the current work file has a character set then the lines to be copied
or the contents of the string variables are converted into the character set of the current
work file. If characters which cannot be displayed in the work file's character set are
identified then these characters are replaced by a substitute character provided that such
a character has been specified (see @PAR SUBSTITUTION-CHARACTER); otherwise,
the @ COPY statement is rejected and error message EDT5453 is output.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

U41709-J-2125-1-76 261

@COPY (format 2) EDT statements

Note

Since the above syntax permits the omission of the TO operand, it is not always possible
to distinguish unambiguously between the target and source ranges. In such cases,
EDT interprets the ambiguous specification as a target range. Thus, for example, in the
input

@COPY 2-3(1) TO 7,1(1)

the specification 1(1) is interpreted as a second target range (the 1 in parentheses is
interpreted as the increment), whereas the specification 1 (0) at this point would be
interpreted as the next source range (the 0 cannot be an increment and is interpreted
as a work file number). If, in this example, the user wants to force the specification to
be interpreted as a source range, it would be possible, for example, to enter

@COoPY 2-3(1) TO 7,1-1(1)

to eliminate all ambiguities.

Example 1
L. 00 NOWSK® = v vt oo e e e e e e e e e et ettt ittt ettt
2‘00 WE CAN< ...
3.00 COPY< ..
4‘00 ..
Lcopy 1 to 7 ; copy 2 to 5 ; copy 1-3 to 30.1 (5)---rvvveeeeeees OOOl.OO:OOOOl(OO)J

The three @COPY statements are intended to copy line 1 to line 7, line 2 to line 5 and line
range from 1 to 3 to the line range starting at line 30.1 with the explicit increment 5.

-

~NOo1TwMNo

30.
35.
40.
41.

262

U41709-J-2125-1-76

EDT statements @COPY (format 2)

Example 2

The @COPY statement can be used to duplicate line ranges one or more times if the send
and receive areas overlap. In the example below, the first line is to be duplicated.

(1.

2.

3.

4.

5.

6.
Copy 172 tO 1.5 .. 0001'00:00001(00>)
\

This statement copies the line range from line number 1 to 2 to the line range starting at line
number 1.5 with the implicit increment 0.1.

In this case, EDT starts by copying line 1 to line 1.5. This line is located in the specified
source range. Consequently line 1.5 is copied to line 1.6 with the implicit increment 0.1.
Accordingly, line 1.6 is copied to 1.7, ..., line 1.9 to 2.0 (and the content of line 2 is
overwritten) and line 2.0 is then copied to line 2.1.

-

OONOTTARWNN R

copy
= /

The line range 3 to 5 is to be copied to the line range 4.1 to 5 with the implicit increment 0.1.

U41709-J-2125-1-76 263

@COPY (format 2) EDT statements

To do this, EDT first copies line 3 to line 4.1 and line 4 to line 4.2. The two newly created
lines are located in the specified source range. As a result, line 4.1 is copied to line 4.3, line
42t04.4 ..., line 4.8 to 5.0. This operation overwrites the content of line 5. Lines 4.9 and
5.0 are not copied since the highest possible line number in the target range has been
reached.

[B L0 T R R T I I I R R IR)
Y O A R A I IR
T I A R I I I R R IR
I O T I IR A I I
ST T R T I I I I R R IR
S T A R I I IR
1 T B I A I I R IR
2 O T I IR I IR LI
3.00 e 3o T R IR T I I I
4.00 I T T T T
4.10 3 1e T R LI R T I I
4.20 I T T T T
4 .30 e 3C e T R IR I I I
4 .40 1 T T T T
4 .50 e 3C e T R IR T I I R I
4.60 1 T T T
4.70 e 3C e T R IR T I I I
4.80 I T T T
4 .90 e 3C e T R TR T I
5.00 I T T T T I
6.00 ..
7 ‘OO ..
8.00 ..

... OOOl . OO : 00001(00)

. J

264

U41709-J-2125-1-76

EDT statements @ CREATE (format 1)

9.27 @CREATE (format 1) — Check line

Format 1 of the @CREATE statement creates a line with the specified content.

Operation Operands ‘ F mode, L mode
@CREATE line [:] [string[,...]] [,CODE=name]
line The line number in the current work file that is to be created. If this line

already exists then it is completely overwritten.

This must be specified if 11ne cannot be unambiguously separated from
string.

string One or more strings which are to be joined in the specified order and
inserted as a line.

name Character set that is to be defined for the current work file if this is empty
and has the character set *NONE.

During the first step, the character strings specified in string are joined to one another. If
all the strings involved have the same character set then the intermediate result is also
assigned this character set. If the involved strings have different character sets then the
intermediate result is assigned the character set UTFE.

If, after conversion, the intermediate result exceeds the maximum length of 32768
characters then it is truncated to the maximum length and message EDT2400 is output.

If the CODE operand is not specified and the current work file is empty and has the character
set *NONE then the intermediate result is inserted in the line without being converted. The
character set used for the intermediate result is assigned to the work file.

If the CODE operand is specified and the current work file is empty and has the character set
*NONE then the intermediate result is converted into the character set name before being
inserted. Precisely this character set is then defined for the current work file.

If the CODE operand is specified and the current work file already has a different character
set then the character set *NONE then the @CREATE statement is not executed and the
message EDT5458 is issued.

If the CODE operand is not specified and the current work file already has a character set
then the intermediate result is converted into the work file's character set before being
inserted.

If the string that is to be inserted contains characters which cannot be displayed in the work
file's character set then these characters are replaced by a substitute character provided
that such a character has been specified (see @PAR SUBSTITUTION-CHARACTER);
otherwise, the @CREATE statement is rejected and error message EDT5453 is output.

U41709-J-2125-1-76 265

@ CREATE (format 1) EDT statements

If string is not specified then the line is created as an empty line (line of length 0). The
character set EDF041 is defined for the current work file if this is empty and has the
character set *NONE and the CODE operand has not been specified.

The @CREATE statement does not modify the current line number. This also applies if new
lines are created after the end of the existing work file.

Example

1‘00 THIS IS THE FIRST LINE< ...
2.00 THIS IS THE SECOND LINE(..
3‘00 ..

create 3 'LINE 3 IS CREATED WITH @CREATE' v s 0001.00:00001(00)

A new line 3 is created with @CREATE.

—

1‘00 THIS IS THE FIRST LINE< ...
2.00 THIS IS THE SECOND LINE(..
3‘00 LINE 3 IS CREATED WITH @CREATE< ...
4.00 ..

\FPeate 3:3, " AND GETS LONGER' =« vrrmmme oo eee 0001.00:00001(00)
/

The new line 3 is created from the content of the old line 3 joined to the new text
AND GETS LONGER

(1.00 THIS IS THE FIRST LINES - -t s seeemmeee ettt
2.00 THIS IS THE SECOND LINES -+ c st ot e ettt ittt iieetaneeeeneennnn
3.00 LINE 3 IS CREATED WITH @CREATE AND GETS LONGER< -« «-crvrererermeeeeeeens
P/ o [0 TR I I R

kFreate 4:1, ' CHAINED WITH ',2,1; edit Tong on----=--vrrvceee-- 0001.00:00001(00)

/

The new line 4 is created and consists of the joining of line 1, the text CHAINED WITH and
lines 2 and 1.

266 U41709-J-2125-1-76

EDT statements @CREATE (format 1)

EDIT LONG ON is input to make it possible to display the content of line 4 in full at the
terminal.

/%HIS IS THE FIRST LINE< ... M
THIS IS THE SECOND LINE< ..
LINE 3 IS CREATEDE WITH @CREATE AND GETS LONGER<: =« vcovrrermreer e
THIS IS THE FIRST LINE CHAINED WITH THIS IS THE SECOND LINETHIS IS THE FIRST LIN

create 4:1:1-12:,'FOURTH',2:19-23: ; index on -« 0001.00:00001(00)
&

A new line 4 is created. The new content of this line consists of joining columns 1 to 12 of
line 1, the word FOURTH and columns 19 to 23 of line 2 in this order.

The work window then switches back to the default format.

l.oo THIS IS THE FIRST LINE< ...
Z'OO THIS IS THE SECOND LINE< ..
3.00 LINE 3 IS CREATED WITH @CREATE AND GETS LONGER<: =«
4'00 THIS IS THE FOURTH LINE< ..
5.00 ..

U41709-J-2125-1-76 267

@ CREATE (format 2) EDT statements

9.28 @CREATE (format 2) — Assign string to string variable

Format 2 of the @CREATE statement is used to assign strings to string variables.

Operation Operands ‘ F mode, L mode

@CREATE svarex [:] [string[,...]] [, CODE=name]

svarex New string variable that is to be created.
This must be specified if svarex cannot be unambiguously separated from
string.

string One or more strings which are to be chained together in the specified order

and assigned to a string variable.
name Character set that is to be defined for the specified string variable.

During the first step, the character strings specified in string are chained together. If all
the strings involved have the same character set then the intermediate result is also
assigned this character set. If the involved strings have different character sets then the
intermediate result is assigned the character set UTFE.

If, after conversion, the intermediate result exceeds the maximum length of 32768
characters then it is truncated to the maximum length and message EDT2400 is output.

If the CODE operand is not specified then the content and character set of the intermediate
result are assigned to the string variable.

If the CODE operand is specified then this character set is assigned to the string variable and
intermediate result is converted into the character set name before being assigned to the
string variable. If the string that is to be inserted contains characters which cannot be
displayed in the character set specified in name then these characters are replaced by a
substitute character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the @CREATE statement is rejected and error
message EDT5453 is output.

If neither the string nor the CODE operand is specified then the string variable is created with
a blank and the character set EDF041. If string is not specified but the CODE operand is
then the string variable is created with a blank in the character set specified in the CODE
operand.

268

U41709-J-2125-1-76

EDT statements @ CREATE (format 2)

Example

@READ ’SRC.EDF041° (1)
@CREATE #S01:1,CODE=UTF16 (2)
@DELETE

@READ *SRC.EDF045° (3)
@CREATE #S02:3,CODE=UTF16 (4)
@CREATE #S03: #S01,#S02 (5)

(1) The character set EDF041 is defined for the work file.

(2) The CODE operand is used to define the character set UTF16 for the string variable
#S01. The first line in the work file is converted from EDF041 to UTF16 and assigned to
the string variable #S01.

(3) The character set EDF045 is defined for the work file.

(4) The CODE operand is used to define the character set UTF16 for the string variable
#502. The third line in the work file is converted from EDF045 to UTF16 and assigned to
the string variable #S02.

(5) The character set UTF16, which is the character set of the strings #S01 and #S02, is
implicitly defined for the string variable #S03. The contents of the string variables #S01
and #S02 are chained together and assigned to the string variable #S03.

U41709-J-2125-1-76 269

@ CREATE (format 3) EDT statements

9.29 @CREATE (format 3) — Read in string and create line

Format 3 of the @CREATE statement is used to read a string from the terminal or from
SYSDTA and create a line with its content.

Operation Operands ‘ L mode
@CREATE line READ [string][,...]] [[CODE=name]
line The line number in the current work file that is to be inserted in a string. If

this line already exists then it is completely overwritten.

string One or more strings which are to be chained together in the specified order
and output at the terminal as a prompt.

If string is not specified then no prompt is output at the terminal.

name Character set that is to be defined for the current work file if this is empty
and has the character set *NONE.

In interactive mode, the prompt formed from the operands is output at the terminal and a
string is read. If the prompt formed from the operands exceeds the maximum length of
32763 bytes then it is truncated to the maximum length and error message EDT2402 is
output. If string is not specified then a string is read from SYSDTA instead of from the
terminal.

In batch mode, string is ignored and the string is always read from SYSDTA.
The maximum length of the read string depends on the input medium.

If the current work file already has a character set then the read string is converted into this
character set before being inserted. If the string that is to be inserted contains characters
which cannot be displayed in the work file's character set then these characters are
replaced by a substitute character provided that such a character has been specified (see
@PAR SUBSTITUTION-CHARACTER); otherwise, the @CREATE statement is rejected
and error message EDT5453 is output.

If the CODE operand is not specified and the current work file is empty and has the character
set *NONE then the read string is inserted in the line without being converted. The commu-
nications character set is defined as the character set for the current work file.

If the CODE operand is specified and the current work file already has a different character
set then the character set then the @CREATE statement is not executed and the message
EDT5458 is issued.

Entering without text at a terminal causes the specified line to be created as an empty
line (line of length 0). Empty input that is sent with or another function key is ignored
and the prompt is output again.

270

U41709-J-2125-1-76

EDT statements @ CREATE (format 3)

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example
1. @PROC 1
1. @CREATE 1 READ '*** NAME OF THE FIRST PARTICIPANT ?',CODE=UTF1l6 -

(1)
*%% NAME OF THE FIRST PARTICIPANT ? SCHOLLER
1. @PROC 2 (2)
4. @PRINT
1.0000 MAIER
2.0000 LINE IS OVERWRITTEN
3.0000 SCHMIDT
4. @CREATE 2 READ '*** MUELLER OR MULLER ?' (3)
*%% MUELLER OR MULLER ? MULLER

(1) The CODE operand is used to define the character set UTF16 for work file 1 which is
empty and has the character set *NONE. The prompt '*** NAME OF THE FIRST
PARTICIPANT ?' is output at the terminal and a string is read. This is converted into
the character set UTF16 and written to the first line of the work file.

(2) The character set EDF041 is defined for work file 2.

(3) The prompt '*** MUELLER OR MULLER ?' is output at the terminal and a string is
read. This is converted into the work file's character set (EDF041) and written to the
second line. When this is done, the existing content of the second line is completely
overwritten.

U41709-J-2125-1-76 271

@ CREATE (format 4) EDT statements

9.30 @CREATE (format 4) — Read in line and assign to string

variable

Format 4 of the @CREATE statement is used to read a string from the terminal or from
SYSDTA and assign it to a string variable.

Operation Operands ‘ L mode

@CREATE svarex READ [string[,...]] [CODE = name]

svarex New string variable that is to be created.

string One or more strings which are to be chained together in the specified order

and output at the terminal as a prompt.
If string is not specified then no prompt is output at the terminal.
name Character set that is to be defined for the specified string variable.

In interactive mode, the prompt formed from the operands is output at the terminal and a
string is read. If the prompt formed from the operands exceeds the maximum length of
32763 bytes then it is truncated to the maximum length and error message EDT2402 is
output. If string is not specified then a string is read from SYSDTA instead of from the
terminal.

In batch mode, string is ignored and the string is always read from SYSDTA.
The maximum length of the read string depends on the input medium.

If the CODE operand is not specified then the content of the string is assigned to the string
variable and the communications character set is defined as its character set.

If the CODE operand is specified then this character set is assigned to the string variable and
the read string is converted into the character set name before being assigned. If the string
that is to be inserted contains characters which cannot be displayed in the character set
specified in name then these characters are replaced by a substitute character provided that
such a character has been specified (see @PAR SUBSTITUTION-CHARACTER);
otherwise, the @CREATE statement is rejected and error message EDT5453 is output.

Entering without text at a terminal causes the specified string variable to be created as
an empty string variable. Empty input that is sent with or another function key is
ignored and the prompt is output again.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

272

U41709-J-2125-1-76

EDT statements @ CREATE (format 4)

Example 1

6. @PRINT
1.0000 HELLO
2.0000 NO-ONE IS TO LEAVE
3.0000 THE ROOM
4.0000 LINE
5.0000 IS TO BE
6. @SET #S1 = ' OUTPUT *** !
6 @PROC 1
1 @ @CREATE #S2 READ '*** WHICH ',4,5,#S1 (1)
2 @ @SET #L2 = SUBSTR #S2 (2)
3 @ @PRINT #L2
4 @END
6. @po 1
*** WHICH LINE IS TO BE OUTPUT *** 2 (3)
2.0000 NO-ONE IS TO LEAVE
6.

(1) @CREATE...READ is to be used to create the string variable #S2. First, however, the
text resulting from *** WHICH is output at the terminal together with the contents of
lines 4 and 5 and the string variable #S1.

(2) The input is interpreted and stored in the line number variable #L2.

(3) The query output via the terminal is answered.

Example 2
@CREATE #S01 READ 'MUELLER OR MULLER ?'

The prompt 'MUELLER OR MULLER ?' is output at the terminal and a string is read. The
content of the read string is assigned to the string variable and the communications
character set is defined as its character set.

@CREATE #S02 READ 'RESIDENT IN GUNZBURG OR DONAUWORTH ?',CODE=EDF041

The character set EDF041 is defined for the string variable #S02. The prompt RESIDENT IN
GUNZBURG OR DONAUWORTH ?' is output at the terminal and a string is read. This is
converted into the character set EDF041 and assigned to the string variable #S02.

U41709-J-2125-1-76 273

@DELETE (format 1) EDT statements

9.31 @DELETE (format 1) — Copy lines and string variables

This format of the @DELETE statement is used to delete lines in the current work file or a
range of string variables either in part or completely.

Operation Operands F mode, L mode
@DELETE lines
[:cols [[,...]
svars
lines The line range to be deleted.
svars The range of string variables whose contents are to be deleted.
cols Column range in the specified lines or string variables that is to be deleted.

If only one column number is specified then the remainder of the line or
string variable is deleted as of this column. If the first column specification
is greater than the length of the line or string variable then the line or string
variable is ignored.

If there is no column specification then the entire line or string variable is
deleted (see below).

Whenever a line range is deleted, only the specified records are removed. Furthermore, no
“clean up” operations are performed even if the work file does not contain any more records
after deletion.

Completely deleting a string variable restores this to the status which it had before it was first
assigned a value, i.e. it contains precisely one blank in the initial character set EDF041.

If an ISAM file has been opened for real processing in work file 0 using @OPEN (format 2)
then the corresponding range in the ISAM file is also deleted. However, the file's catalog
entry is always retained even if the file contains no further files after deletion.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

274 U41709-J-2125-1-76

EDT statements

@DELETE (format 1)

Example

(IO L0 I I IR I R I I N
Y O I I I I I I
J O B IR R I I I
I I I I IR
F = O I IR R I I I
e I T I
0 R R I IR
A N I I IR
3.00 eI R I IR I IR I R IR
4.00 Y T T T
4.10 3 1E T R TR T I IR IR
4.20 Y T T T T
4.30 eI R I TR I I
4 .40 Y T T T
4 .50 eI R I TR I IR R R
4 .60 Y T T
4.70 eI R I TR I I I I I
4 .80 Y T T T T
4.90 eI R I IR I I I
5.00 Y T T T
6.00 123456780012 =+ v n e v me s e s tee ettt e
700 ..
800 ..

@dew ete 1,2 ... OOOlOOOOOOl(OO)

- J

The line range consisting of line numbers 1 to 2 is deleted from the work file

(N R I I I IR)
3.00 e Je e T R I T IEIEIE II III
4.00 Y I R I I
4.10 e 1e e T R I T IEITII CIIRIIIPIPPIPI
4.20 Y I I I I IR
4 .30 e 1C e T RIS
4.40 Y I I R I I IR
4 .50 e Je e T R IRI E TIEITI CIIRIIIPIP IR PPIP I
4 .60 Y I I I I
4.70 e JC e T R I T IEICI ICIIRIIIPIPIPPPIP I
4 .80 Y I I I IR
4.90 e JC e T R IR I T IEITIE ICIIRIIIPIPIPPPIPI
5.00 Y I I IR
600 123456789012< ...
700 ..
800 ..
900 ..
1000 ..
1100 ..
1200 ..
1300 ..
1400 ..
1500 ..

@de] ete & 7710 ... 00021000001(00)

- J

Columns 7 to 10 inclusive are to be deleted throughout the entire work file.

U41709-J-2125-1-76

275

@DELETE (format 1) EDT statements

2 O T I I I LI
3.00 P T T T T T
4.00 P T T T T
4.10 P T T T T T
4.20 P T T T T
4 .30 P T T T T T
4 .40 P T T T T
4 .50 P R T T T T T
4.60 P T T T T
4.70 P I T T T T T
4.80 T T T T I
4 .90 P R T T T T T
5.00 P T T T T T I
6.00 12345612 =+ ns v e e e eae e e e tte ettt e
7 ‘OO ..
... 0002 . 10 : OOOOl(OO)
- J

The specified range has been deleted.

276 U41709-J-2125-1-76

EDT statements @DELETE (format 2)

9.32 @DELETE (format 2) — Completely delete work files

This format of the @DELETE statement is used for the complete deletion of work files.

Operation Operands ‘ F mode, L mode
@DELETE ALL
[]
(procnr,...])
ALL All the work files are deleted in full.
procnr The work files with the specified numbers (0. .22) are deleted in full.

If no operand is specified then the current work file is deleted in full.

In the F mode statement line, the abbreviation D without operands is rejected with an error
message in order to prevent the accidental deletion of the current work file when D
statement codes are entered.

If one of the specified work files is an active work file then the statement is rejected with the
message EDT5476.

Completely deleting a work file makes it into an empty work file. In particular, not only are
all the records deleted. In addition, the work file's character set is set to *NONE and other
work file-specific settings are restored to their default values (see section “Work files” on
page 27). Furthermore, a file that has been fully deleted (except for the current work file) is
removed from the set of work files in use (see @PROC USED).

The work files are deleted without a confirmation query, irrespective of their content. If files
are open in the work files that are to be deleted then these are implicitly closed without
being written back. This also applies to files opened for real processing using @OPEN
(format 2). The records they contain are therefore not deleted.

U41709-J-2125-1-76 277

@DELETE (format 3)

EDT statements

9.33 @DELETE (format 3) — Delete files and library elements

This format of the @DELETE statement can be used to delete files or elements in a library.

Operation Operands ‘ F mode, L mode
@DELETE LIBRARY=path1 ([ELEMENT=] elname [(vers)][,eltypel)
ELEMENT=elname [(vers)][,eltype]
FILE = path2
POSIX-FILE = xpath
LIBRARY= A library element is to be deleted.
path1 Name of the library.
elname Name of the element.
vers Version of the element that is to be deleted (see the LMS User Guide [14]).
If vers is not specified or if *STD is specified then the highest available
version of the element is deleted.
eltype Type of element. Permitted type specifications are S, M, P, J, D, X, R, C, H, L,
U, F, *STD and freely selectable type names having one of these types as
basic type. If e1type is not specified then the default type specified with
@PAR ELEMENT-TYPE is used. The permitted element types and their
meanings are described in section “File processing” on page 131.
ELEMENT= The library element to be deleted is defined by means of its name without
any library name specification. The default library specified with @PAR
LIBRARY is used implicitly (provided that @PAR LIBRARY has been
specified — otherwise the error message EDT5181 is output).
The operands elname, vers and el type have the same meaning as when
a library is specified explicitly (see above).
FILE= A BS2000 file is to be deleted.
path2 The fully qualified file name of a BS2000 file that you want to delete.
POSIX-FILE= A POSIX file is to be deleted.
xpath Path name of the POSIX file that you want to delete.

The xpath operand can also be specified via a string variable. It must be
specified via a string variable if it contains special characters which have a
special meaning in EDT syntax (e.g. blanks or semicolons in F mode).

278

U41709-J-2125-1-76

EDT statements @DELETE (format 3)

If the specified file does not exist or cannot be accessed as required then the statement is
rejected with a corresponding error message.

Example
@DELETE LIBRARY=PROGLIB(ELEMENT=TESTOLD(VER2))

Version VER?2 of the library element TESTOLD in the library PROGLIB and with element type
S is deleted.

U41709-J-2125-1-76 279

@DELETE (format 4) EDT statements

9.34 @DELETE (format 4) — Delete record marks

This format of the @DELETE statement is used to delete record marks (see section
“‘Record marks” on page 45).

Operation Operands ‘ F mode, L mode
@DELETE MARK [m[,...]]
m One or more record marks (1. . 9) that are to be deleted in all the records in

the current work file.

If mis not specified then all the record marks 1 to 9 are deleted in the records
present in the current work file.

Record marks with a special function (marks 13, 14, 15, see section “Record marks” on
page 45) are not deleted.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

280 U41709-J-2125-1-76

EDT statements @DELIMIT

9.35 @DELIMIT - Declare text delimiter characters

The @DELIMIT statement declares characters that act as text delimiters when searches
are performed with @ON (see section “Delimiter characters” on page 81).

Operation Operands F mode, L mode
@DELIMIT R
=[< str1]
+|—str2
R The blank . and the characters +.1*();-/,?:'=" are declared as text
delimiter characters.
str1 String containing all the characters that are to be declared as text delimiter
characters.
str2 String containing additional characters to be declared as text delimiter

characters (+) or characters that are no longer to be declared as text
delimiter characters (-).

If no operand is specified (@DELIMIT =) then no characters are to be used as text delimiter
characters.

U41709-J-2125-1-76 281

@DIALOG

EDT statements

9.36

@DIALOG - Call screen dialog

The @DIALOG statement can be used to switch EDT to screen dialog mode when input is
read from SYSDTA (usually in BS2000 system procedures or from the subroutine interface).
In screen dialog, the preceding read operation is interrupted and EDT reads its input from
the terminal in F mode (or in L mode after the entry of @EDIT). The screen dialog can be
exited again with @HALT, @END, @RETURN or [K1]. EDT then continues the interrupted
read operation.

Operation Operands ‘ F mode, L mode
@DIALOG

The statement is ignored in F mode. If, in L mode, @DIALOG is entered from a medium
other than SYSDTA (e.qg. if statements are read from an EDT procedure or if input is read
from the terminal with the line number as the prompt) or if it is called in batch mode then the
statement is rejected with the error message EDT5400 or EDT4920.

If screen dialog mode is called from a BS2000 system procedure then the statements
@SYSTEM without operands and @EDIT ONLY are prohibited and are rejected with the
message EDT4976. In this case, the only way to switch to the operating system is to press
provided that the BS2000 system procedure has not been protected against this with
the option INTERRUPT-ALLOWED=NO see section “Access protection” on page 99).

The screen dialog is terminated with @HALT, @END, @RETURN or [K1]. If @DIALOG is
called via the subroutine interface or from a BS2000 procedure then processing continues
with the statement that follows @DIALOG. If there are no further statements at the
subroutine interface after @DIALOG then control passes to the calling program. If it is
called from SYSDTA (after @EDIT ONLY) then the next input is requested from SYSDTA. In
all cases, EDT remains loaded and all the EDT parameter settings remain as they were at
the point screen dialog mode was exited.

282

U41709-J-2125-1-76

EDT statements @DIALOG

Example
BS2000 procedure PROC.DIALOG

/BEGIN-PROCEDURE LOGGING=A,PARAMETERS=YES(-
/ PROCEDURE-PARAMETERS=(&FILEl=,&FILEZ2=),—
/ ESCAPE-CHARACTER="&")

/ASSIGN-SYSDTA TO-FILE=*SYSCMD

/MODIFY-JOB-SWITCHES ON=(4,5) (D)
/START-EDTU

@PROC 1 (2)
@COPY FILE=&FILEL (3)
@PAR SCALE=ON (4)
@DIALOG (5)
@SETF(1) (6)
@WRITE FILE=&FILEZ (7)
@HALT (8)

/MODIFY-JOB-SWITCHES OFF=(4,5)
/ASSIGN-SYSDTA TO-FILE=*PRIMARY
/END—PROCEDURE

(1) Job switch 5 is set before EDT is loaded. This sets L mode and the input is read from
SYSDTA.

2
3
4
5

Processing switches to work file 1.
A file is to be read in. The file name is queried while the procedure is running.

(2)
(3)
(4) The display of the column counter is activated.

(5) EDT is to be switched to the F mode screen dialog and the work window is to be output
on the screen. It is then possible to input all F and L mode statements in this dialog
mode. The F mode screen dialog is terminated with @END, @HALT or @RETURN or

K1 and processing continues with the statement following @DIALOG.

(6) Work file 1 is again set as the current work file. This is necessary because the user may
have set a different work file in the F mode screen dialog.

(7) Work file 1 is written to a SAM file. The file name is queried while the procedure is
running.

(8) EDT is terminated.

U41709-J-2125-1-76 283

@DIALOG

EDT statements

fr/ca11—procedure name=proc.dialog

%/BEGIN-PROCEDURE LOGGING=A,PARAMETERS=YES(PROCEDURE—PARAMETERS
=(&FILEl=,&FILE2=),ESCAPE-CHARACTER="&")

%/ASSIGN-SYSDTA TO-FILE=*SYSCMD

%/MODIFY—JOB-SWITCHES ON=(4,5)

%/START-EDTU

%PROC 1

%@COPY FILE=&FILEL

%&FILEl=xmp1.dialog

The procedure PROC.DIALOQG is started. This requests the name of the file that is to be read
in. EDT then switches to F mode screen dialog.

(t 1 t 2 : 3 : 4 . 5 t 6 + 7——\
‘OO EDT -IS the BSZOOO fi'le< ...
.OO ed-‘tor’ uSed for the USEPr—<(s s+ s e resscressrstcosrcreosrcsesocoscccvcccosccos
‘OO fr‘-‘end'ly Cr‘eat-‘on and ed-it-‘ng< ..
of BS2000 files in SAM and ISAM formats<:::::ccrcrvrrrmrrrrenneenn
‘OO as We'l'l as text,'l-ike]-ibr‘ar\y< ...
.OO e]ements and POSIX «F-i'le5< ...

DT~ WN =
o
o

@ha]t .. 000100:00001(01)
- J

The column counter is displayed in accordance with the default values specified under (4).
@HALT terminates the F mode screen dialog again and the procedure which was inter-
rupted by @DIALOG continues.

The procedure then queries the name of the file to which the work file is to be written.
Depending on the actions performed in the F mode screen dialog, other messages may be
output.

(" %@SETF (1)
%@QWRITE FILE=&FILEZ
%&FILE2=xmp1.dialogl
%@WRITE FILE=XMPL.DIALOG1
B@HALT
%/MODIFY—JOB-SWITCHES OFF=(4,5)
%/ASSIGN-SYSDTA TO-FILE=*PRIMARY
%/END—PROCEDURE
/

284

U41709-J-2125-1-76

EDT statements

@DO (format 1)

9.37 @DO (format 1) — Start EDT procedures from work files

Format 1 of the @DO statement starts a @DO procedure, i.e. the text lines and EDT state-
ments in the specified work file are processed.

For information on the structure and processing of EDT procedures, see section “EDT
procedures” on page 64.

Operation

Operands ‘ F mode, L mode

@DO

procnr [,] [(param [,...])] [spec]
[=line1,line2 [, [-] line3]] [PRINT]

procnr

param

The number of the work file (1. .22) whose content is to be processed by
EDT.
If the work file is empty, error message EDT4950 is issued.

Parameters which are passed to the procedure that is to be run. The param-
eters must be defined in the procedure using @PARAMS (see the
@PARAMS statement). They are separated from one another by commas.

If parameters (including empty parameters) are specified in a procedure
which contains no @PARAMS statement then the statement is rejected with
the message EDT4944. If too many parameters are specified then the error
message EDT4963 or EDT4965 is output.

A distinction is made between positional and keyword parameters. In the
case of positional parameters, only the value of the parameter is passed. In
the case of keyword parameters, an expression of the form formal=value
is passed where formal is the keyword (not prefixed by the & character)
with which the parameter was defined in the @PARAMS statement
(detailed information on parameter transfer can be found in the description
of the @PARAMS statement below).

The positional parameters must be located before the keyword parameters
and must be specified in precisely the same order as they were defined in
@PARAMS. Keyword parameters can be specified in any order. If a
positional parameter is specified after a keyword parameter then the
statement is rejected with EDT4948. If a keyword parameter is specified
more than once then the message EDT3911 is issued.

The possible number of parameters is limited by the maximum length of an
EDT statement.

U41709-J-2125-1-76

285

@DO (format 1)

EDT statements

spec

Loop counter. In the procedure, this can be used as an operand in EDT
statements if it is necessary to address a line number. When the procedure
is executed, EDT uses the current value of the loop counter at all times (see
section “EDT procedures” on page 64).

The loop counter must be one of the permitted special characters as
otherwise @DO is rejected with the error message EDT3952. To avoid
errors and unpredictable events, the following characters should not be
used as a loop counter.

B x (i H#+- L <=>"

The command syntax means that the '="' character cannot be specified at
all. If the procedure is started in F mode then'; ' may not be used.

Suitable characters for the loop counter are:
vy L1/

If the loop counter is not specified then it is considered to be undefined. If
the sequence of operands 1inel,1ine2,[-111ne3 is not specified then
the loop counter has the value 1.

=line1,line2,[-]line3

A procedure is repeated several times (see example 3).

Before the first pass, EDT assigns the initial value 1inel to the loop
counter. After every pass, EDT increments or decrements (minus sign in
front of 1ine3) the loop counter by 11ine3. The default value for 1ine3is 1.
The procedure is repeated as long as the loop counter has not risen above
(or fallen below) the value of 1ine2. Otherwise the execution of the
procedure is aborted.

The procedure is passed through at least once since the counter value is
checked after the last line has been processed (REPEAT UNTIL). If the
presence of a @RETURN statement in the procedure means that the last
line is not processed then no check is performed and the procedure is not
repeated.

Line number symbols (e.g. %, $) may also be specified for 1inel, 1ine2 or
1ine3. EDT uses the value which this symbol had when @DO is executed.
If the value of this symbol changes during execution of the procedure then
the number of passes is not affected.

In the procedure, the loop counter is treated like a line number variable. The
loop counter is therefore only replaced by the current value if it is addressed
as a line number, in particular therefore not in literals. If the loop counter is

286

U41709-J-2125-1-76

EDT statements @DO (format 1)

specified in a statement which permits a line number with an implicit
increment then — in the same way as for line number variables - the implicit
increment is always considered to be 0.0001 (see example 6.

The fact that a special character is only considered to be a loop counter if it
is used instead of a line number and is specified as a loop counter in the
calling @DO statement means that the same loop counter can be used
more than once for nested external loops. In this case, it always has the
values that are specified in the calling @DO statement (see example 7). It
is not possible to access loop counters which have been specified in a lower
nested level at call time. The symbols used there are not replaced by line
numbers in higher levels and this usually results in syntax errors.

The default value for 1inel, 1ine2 and 1Tine3is 1.

PRINT Each line of the procedure should be logged (with expanded parameters)
before it is executed. In interactive mode, the output is written to SYSOUT
and in batch mode it is written to SYSLST.

Specifying PRINT also causes all error messages to be output and sets the
EDT error switch. Normally, the two messages EDT0901 and EDT4932 are
not output in procedures and the EDT error switch is not set (see section
“Message texts” on page 638).

The value of a positional parameter is determined by all the characters, including blanks,
specified between the commas or parentheses.

If there are no characters between the commas or parentheses then the value of the
positional parameter is a empty string.

The value of a keyword parameter is determined by all the characters, including blanks,
specified between the equals sign and the following comma or parenthesis.

If there are no characters between the equals sign and the following comma or parenthesis
then the value of the keyword parameter is a empty string.

A parameter may be enclosed in single quotes. These are not transferred if they occur as
the first or last character in the parameter value and only double quotes occur between
them.

In all other cases, the specified single quotes form part of the parameter (see the examples
for the @PARAMS statement). The comma and closing parenthesis characters may only
form part of a parameter if they occur in a substring in the parameter value that is enclosed
by single quotes.

Single quotes must always occur in pairs in a parameter value. An individual single quote
cannot be passed in a parameter value. If @QUOTE has already been used to assign the
function of the single quote to another character then this does not apply to the single
quotes enclosing the parameter value.

If a positional parameter is not specified then it is assigned the value of an empty string.
If a keyword parameter is not specified then it is assigned the default value defined in the
@PARAMS statement.

U41709-J-2125-1-76 287

@DO (format 1) EDT statements

During parameter substitution, the specified parameters are converted into the character
set used by the procedure work file. If the string variable contains characters which cannot
be displayed in the target character set then these are replaced by a substitute character if
such a character has been specified (see @PAR SUBSTITUTION-CHARACTER).
Otherwise, the @DO statement is rejected and the error message EDT5453 is output.

The parameters may contain Unicode substitute representations. These are not expanded
during the parameter substitution process. This is not done until the associated procedure
line is executed.

EDT procedures can be interrupted at any time using [K2].
In the operating system, it is then possible to use /RESUME—PROGRAM to continue the
procedure or use /INFORM—PROGRAM to return to EDT and abort the procedure.

The procedure cannot be aborted with / INFORM-PROGRAM while a user statement (see
@USE) is being executed.

An illegal statement during execution does not cause the procedure to be aborted.

Example 1
1. @SET #SO = 'TEST OF PROCEDURE FILE 1'
1. @PROC 1 (1)
1. @ @SET #S1 = #S0:1-4: (2)
2. @ @CREATE #S2: ' '*4,#50:5-8:
3. @ @CREATE #S3: ' '%9,#S0:9-24:
4. @ @CREATE #S4: ' '*24
5. @ @PRINT #S1.-#54
6. @ @PRINT #S0
7. @END (3)
1. @Dno 1 (4)
#S01 TEST
#S02 OF
#503 PROCEDURE FILE 1
#504
#S00 TEST OF PROCEDURE FILE 1
1.

(1) Processing switches to work file 1.

(2) EDT statements are written to work file 1. When the procedure is called with @DO,
these cause the string variables #S1 to #S4 to be created and output together with #S0.

(3) @END causes a return from work file 1.

(4) The procedure located in work file 1 is called.

288

U41709-J-2125-1-76

EDT statements @DO (format 1)

Example 2
1. @PROC 2 (1)
1. @ @PARAMS &STRING (2)
2. @ @SET #S1 = '+++++++++++'
3. @ @SET #S2 = &STRING (3)
4. @ @PRINT #S2
5. @END
1. @DO 2(#S1) PRINT (4)
1. @SET #S1 = '"+++++++++++"
1. @SET #S2 = #S1
1. @PRINT #S2
#S02 +++++++++++
1. @DO 2('#S1') PRINT (5)
1. @SET #S1 = '+++++++++++"
1. @SET #S2 = #S1
1. @PRINT #S2
#S02 +++++++++++
1. @DO 2(.'#S1'.) PRINT (6)
1. @SET #S1 = '+++++++++++"
1. @SET #S2 = _'#S1'.
1. @PRINT #S2
#S02 #S1

1.
(1) Processing switches to work file 2.

(2) The first line stored in this work file is a @PARAMS statement. This makes it possible
to address the positional parameter &STRING in this work file.

(3) #S2 isto be assigned a value that is not available at the time work file 2 is defined and
will only be defined in a @DO 2(...)... statement.

(4) The value #S1 present in parentheses causes &STRING to be replaced globally by the
value #S1 before the statements located in work file 2 are executed. PRINT causes the
statements to be output before they are executed.

(5) The value #S1 is now passed for the positional parameter &S TRING. Since the first and
last characters of this parameter value are single quotes they are removed when the
parameter value is replaced in work file 2 as the PRINT operand here clearly shows.
This therefore has the same effect as (4).

(6) The only difference to (5) is that the parameter value has been extended by a preceding
or following blank. However, this is sufficient to ensure that the content of the parameter
value is passed.

U41709-J-2125-1-76 289

@DO (format 1) EDT statements

Example 3

*

@PROC 3 (1)
@ @CREATE $+1: $,'*! (2)
@END (3)
@o 3,!=1,15 (4)
@PRINT

.0000 *

.0000 **

.0000 **x*

.0000 ***x*

L0000 **xH*

L0000 **xkxk

'OOOO K*hkkhAhhkk

WO N O WD HFENDMNDN N

'OOOO *hkhkkkhkkkk

9'0000 *hkkkkhkhkkhkk
10‘0000 *AhkAAKAAAAKX
11‘0000 *AhkAAKAkkAAAXKX
12‘0000 *AAAKkAAAA XK
13‘0000 KAhkAAKkkAAAAKKkK)k
14'0000 *hkhkkhkkhhkkhkhkkhkkAkikhk
15'0000 K*hkhkkhkkhkhkhkkkhkkhkkikhkkk

16'0000 K)hkkhkkhkhhrrkhkkkhkhkhkhrkx (5)

(1
(2
3
(4

) Processing switches to work file 3.

) A single EDT statement is written to work file 3.

) Processing returns to work file 0.

) Work file 3 is executed. In this case, the ! character is used as a loop counter. Work file
3 is executed 15 times. It would be possible to address line numbers there using !.
However, this can be omitted as in this example. The specification !=1,15 has the
same effect as issuing @DO 3 fifteen times without this sequence of operands.

(5) In the output, it can be seen that 15 new lines have been created.

290 U41709-J-2125-1-76

EDT statements

@DO (format 1)

Example 4

o1

.0000
.0000
.0000
.0000

PO wWNE OO WN

.0000

@PRINT
1111111
2222222
3333333
4444444
@SET #S4 =

@PROC 4

@ @PRINT !.-.$
@ @PRINT #S4 N
@END

@D0 4,1=$,%,-1
4444444

w

.0000
4.0000

3333333
4444444

2.0000
.0000
.0000

B~ W

20022222
3333333
4444444

.0000
.0000
.0000
.0000

B~ wnN

1111111
2022222
3333333
4444444

5.

(1) Processing switches to work file 4.

(2) Aline number is addressed via the loop counter !.

—
w
-~

(1)

(2)

(3)

Work file 4 is executed a number of times. On the first pass, the value of the highest

assigned line number is assumed for |. On each subsequent pass, this value is reduced
by 1 (third 1ine=-1) until the line number has the value of the lowest assigned line
number (%).

U41709-J-2125-1-76

291

@DO (format 1)

EDT statements

@PROC 4

@READ 'PROC-FILE.4'

(1)

@PRINT

@PARAMS &A, &OPTION=ALL
ABCABCABCABC

EFG

@N 1 CHANGE &OPTION 'ABC' TO '&A'

@5: &A
@END

(2)

(3)

@O0 4 ('A','B',0PTION=R)
@PRINT
ABCABCABCA,'B

(4)

EFG
A,''B

Processing switches to work file 4.

The SAM file PROC-FILE.4 is read into work file 4.

Processing returns to work file 0.

(5)

The default value ALL of the keyword parameter &0PTION is replaced by R at call time.
As a result, the search and replace operation in line 1 is performed backwards.

The execution of the work file caused lines to be written to the current work file. In line

Example 5
1.
1.
6.
1.0000
2.0000
3.0000
4.0000
5.0000
6.
1.
6.
1.0000
2.0000
5.0000
6.

(1

(2)

)

(4)

®)

1, EDT has removed one of the 2 successive single quotes. In line 3, EDT has taken
over the parameter value unchanged.

202

U41709-J-2125-1-76

EDT statements @DO (format 1)

Example 6

AAA

BBB

ccc

@PROC 1

@eCoPY 1-3 TO ! (D)
@END

@o 1,!=4,4 (2)
.0002 @b0 1,!=5.0,5.0 (3)
.0002 @PRINT (4)
.0000 AAA

.0000 BBB

.0000 CCC

.0000 AAA

.0001 BBB

.0002 CccCC

.0000 AAA

.0001 BBB

.0002 CCC

.0002

DO OO RADRNDRNWNRFRLOCRANERFD™WRN

(1) The procedure file contains a statement in which the increment is implicitly defined by
specifying the line number of the target range.

S

Calls the procedure with loop counter 4.

—
w
~

Calls the procedure with loop counter 5.0.

S

The output shows that the implicitincrement 0. 0001 is always used for the loop counter
as is also the case for line number variables.

U41709-J-2125-1-76 293

@DO (format 1)

EDT statements

Example 7

=W WN e

#S01
#S01
#S01
#S01
#S01
#S01
#S01
#S01
#S01
#S01
1.

@PROC 1

@ @po 2,

@END

@PROC 2

@ @SET #L1

@ @SET #S1 =

@ @PRINT #S1

@END

@o 1,!=1.4
1.0000
2.0000
1.0000
3.0000
2.0000
1.0000
4.0000
3.0000
2.0000
1.0000

(1)

(2)

(3)

(4)

(5)

(6)

(1) A @DO procedure is stored in work file 1. In this case, the loop counter ! is significant
for two reasons: on the one hand, it is redefined by the @DO procedure call in work file
2 and, on the other, the current value of the loop counter specified when work file 1 was
called is taken over as the initial value. This is possible because substitution is only
performed in locations where the | symbol is also used as a line number.

(2) In work file 2, the current value of the work file's loop counter is assigned to the line

number variable #L1.
(3) The line number variable #L1 is stored in printable form in #S1.

(4) The string variable #S1 is output.

(5) When work file 1 is called, the loop counter is allowed to run from 1 to 4.

(6) Theresultindicates that the internal loop counter (in work file 2) runs backwards 4 times
until it reaches 1.0000 on the basis of the starting values 1.0000 to 4.0000.

294

U41709-J-2125-1-76

EDT statements @DO (format 2)

9.38 @DO (format 2) — Activate or deactivate logging

This format of the @DO statement can be used to suspend or activate the logging of the
read statements (see the PRINT operand in format 1 of the @DO statement) at any location
within the procedure.

Operation Operands ‘ @PROC
@DbO { N
P
N EDT no longer logs the following lines of the procedure before they are
executed.
P EDT logs the following lines of the procedure before they are executed.

This statement can also be used for troubleshooting in EDT procedures. Itis possible to find
out, for example, whether a specific part of a procedure has been processed or not.

U41709-J-2125-1-76 295

@DO (format 2)

EDT statements

Example

[CSEONONONORONG]

P PP 0ONOYO>WwN - -

#S05 A

@PROC 5

@END
@0 5 PRINT
@SET #S5 = 'A'
@0 N

@PRINT #S5.-#S7

@SET #S5 = 'A!
@o N

(1)

@CREATE #S6: 'B'*6,#S5
@CREATE #S7: #S6,'C',#S6
@po P

@PRINT #S5.-#S7

(2)

@DELETE #S5.-#S7

(3)

(4)

#506 BBBBBBA
#S07 BBBBBBACBBBBBBA
1. @DELETE #S5.-#S7

1.

Processing switches to work file 5.

The lines that follow in the procedure are no longer logged.

EDT logs the following lines of the procedure before execution.

Processing returns to work file 0.

(5)

The procedure in work file 5 is started. The statements are to be logged before being

executed.

296

U41709-J-2125-1-76

EDT statements @DROP

9.39 @DROP - Delete work files

The @DROP statement completely deletes the specified work files.

Operation Operands L mode
@DROP { procnrl,...]
ALL
procnr The number of the work file (1. .22) that is to be deleted. Any number of
work files can be specified.
ALL Work files (1. .22) are deleted.

The @DROP statement may only be entered if the current work file is work file 0. @DROP
is also not permitted in @DO procedures.

The work files are deleted without a confirmation query, irrespective of their content. If files
have been opened with @OPEN or @XOPEN in the work files that are to be deleted then
these are implicitly closed.

Note
The @DROP statement has the same effect as deleting each of the specified work files
with @DELETE (format 2) and removes the specified work files from the set of work
files in use (see @PROC statement).
Opened files or library elements should first be written back and closed (see @CLOSE)
as otherwise any changes will be lost.

U41709-J-2125-1-76 297

@DROP

EDT statements

Example 1
1. @PROC USED (1)
<03> 1.0000 TO 3.0000
<05> 1.0000 TO 1.0000
<08> 1.0000 TO 1.0000
<10> 1.0000 TO 1.0000
<14> 1.0000 TO 1.0000
1. @DROP 10 (2)
1. @PROC USED
<03> 1.0000 TO 3.0000
<05> 1.0000 TO 1.0000 (3)
<08> 1.0000 TO 1.0000
<1l4> 1.0000 TO 1.0000
1. @DROP 8,5 (4)
1. @PROC USED
<03> 1.0000 TO 3.0000 (5)
<1l4> 1.0000 TO 1.0000
1.

(1) The work files 1. .22 that are in use should be output. In this case, these are the work
files 3, 5, 8, 10, 14.

(2) Work file 10 is deleted and released.
(3) @PROC USED reports that only the work files 3, 5, 8, 14 are still in use.

(4) @DROP can also be used to delete and release multiple work files such as, for
example, 5 and 8 here.

(5) This only leaves work files 3 and 14.

Example 2
1. @PROC USED (1)
<03> 1.0000 TO 3.0000
<14> 1.0000 TO 1.0000
1. @DROP ALL (2)
1. @PROC USED
% EDT0907 NO WORK FILES USED (3)
1.

(1) All the work files that are in use should be output.
(2) The work files 1. .22 are deleted and released.

(3) None of the work files 1 to 22 is now in use.

208

U41709-J-2125-1-76

EDT statements @EDIT (format 1)

9.40 @EDIT (format 1) — Switch to F mode

In interactive mode, format 1 of the @EDIT statement switches from L mode to

F mode.
Operation Operands F mode, L mode
@EDIT FULL [SCREEN]

In batch mode and in F mode, this statement is ignored. If it occurs inside an EDT
procedure, it is rejected with the message EDT4920.

If @EDIT FULL SCREEN is specified inside a statement block (BLOCK mode) in interactive
mode then the statements that follow it are ignored.

Note
The statement @PAR EDIT-FULL differs semantically from @EDIT FULL SCREEN and
cannot therefore be used as an alternative to @EDIT FULL SCREEN.

U41709-J-2125-1-76 299

@EDIT (format 2)

EDT statements

9.41 @EDIT (format 2) — Set input from terminal

In the interactive mode's L mode, format 2 of the @EDIT statement switches the input
stream to terminal input. WRTRD is used for reading and the current line number is output as

the prompt.

If the statement is entered in F mode, operation first switches to L mode. In batch mode,
this only affects logging (see note below).

Operation Operands F mode, L mode

@EDIT [PRINT] [SEQUENTIAL]

PRINT Specifying PRINT causes the line number and content of the current line to
be output on the screen before the prompt is output in interactive mode and
before the next statement or line of data is read in batch mode.

If PRINT is not specified, the statement deactivates this function again
without exiting L mode.

SEQUENTIAL The operand affects the incrementation of the current line number.
Normally, in L mode the current line number is increased or decreased by
the increment when a data line is entered in or when the statements @+ or
@- are issued. This may result in existing lines, i.e. the lines between the old
and the new current line number, being skipped without this being noticed
by the user.

If SEQUENTTIAL is specified then the current line number is only formed as
described above if there are no intervening lines. If this is not the case, the
first intervening line becomes the current line.

If SEQUENTTIAL is not specified, the statement deactivates this function
again without exiting L mode.

Note

In batch mode, EDT usually reads from SYSDTA. However, the type of logging that is
performed (see @LOG statement) differs depending on whether @EDIT format 2 or
@EDIT format 3 is specified. If @EDIT format 2 is specified then every logged entry
starts with the current line number whereas this is omitted in @EDIT format 3. The latter
behavior corresponds to the setting when EDT is started in batch mode.

300

U41709-J-2125-1-76

EDT statements

@EDIT (format 3)

9.42 @EDIT (format 3) — Set input from SYSDTA

In the interactive mode's L mode, format 3 of the @EDIT statement switches the input
stream to input from SYSDTA. Reading is performed with RDATA. The type of prompt
displayed and the method used depend on the operating system settings (by default, a * is

output).

If the statement is entered in F mode, operation first switches to L mode. In batch mode,
this only affects logging (see note below).

Operation

Operands ‘ F mode, L mode

@EDIT

ONLY [PRINT] [SEQUENTIAL]

PRINT

SEQUENTIAL

Specifying PRINT causes the line number and content of the current line to
be output on the screen before the prompt is output in interactive mode and
before the next statement or line of data is read in batch mode.

If PRINT is not specified then only the input stream is switched and the
SEQUENTTIAL operand is evaluated if it has been specified.

If the function is activated with @EDIT ONLY PRINT then the only way to
deactivate it without exiting L mode is to issue the @EDIT (format 2)
statement.

The operand affects the incrementation of the current line number.
Normally, in L mode the current line number is increased or decreased by
the increment when a data line is entered in or when the statements @+ or
@- are issued. This may result in existing lines, i.e. the lines between the old
and the new current line number, being skipped without this being noticed
by the user.

If SEQUENTIAL is specified then the current line number is only formed as
described above if there are no intervening lines. If this is not the case, the
first intervening line number becomes the current line number.

If SEQUENTTIAL is not specified then only the input stream is switched and
the PRINT operand is evaluated if it has been specified.

If the function is activated with @EDIT ONLY SEQUENTIAL then the only
way to deactivate it without exiting L mode is to issue the @EDIT (format 2)
statement.

U41709-J-2125-1-76

301

@EDIT (format 3) EDT statements

If the input is redirected to SYSDTA with @EDIT format 3 then statements and data are inter-
preted in the character set that is currently defined for SYSDTA. In interactive mode, this is
usually the same as the character set declared for the terminal using /MODIFY-TERMINAL~-
OPTIONS unless SYSDTA was previously assigned to a file. If the statements and data refer
to one of the EDT work files, it may be necessary to convert the input into the character set
of the work file in question. For details, see section “Character sets” on page 47.

Note
In batch mode, EDT usually reads from SYSDTA. However, the type of logging that is

performed (see @LOG statement) differs depending on whether @EDIT format 2 or
@EDIT format 3 is specified. If @EDIT format 2 is specified then every logged entry
starts with the current line number whereas this is omitted in @EDIT format 3. The latter
behavior corresponds to the setting when EDT is started in batch mode.

In interactive mode, if an EOF is identified at SYSDTA, EDT automatically switches to

terminal input.

302 U41709-J-2125-1-76

EDT statements @EDIT (format 4)

9.43 @EDIT (format 4) — Control full record display

In F mode, format 4 of the @EDIT statement switches between the full display of records
and the display of a record section in the current work file's data window.

Operation Operands F mode
@EDIT ON
LONG []
OFF
ON The display in F mode is set in such a way that the records are (if possible)

fully displayed in the data window. The line number display is deactivated.
For details of the display in EDIT-LONG mode, see section “The work
window” on page 103.

Activating EDIT-LONG mode implicitly deactivates the line number display
(@PAR INDEX=0FF) and hexadecimal mode (@PAR HEX=OFF).

OFF The display of long records in F mode is setin such a way that only a section
(depending on the terminal and @VDT and @PAR INDEX setting, this may
be 72, 80, 124 or 132 characters) is visible in the data window. For details
on work file display, see section “The work window” on page 103.

The line number display remains active when EDIT-LONG mode is exited.
EDIT-LONG mode is also deactivated by @PAR INDEX=0ON and @PAR
HEX=ON.

At the start of an EDT session, @EDIT LONG OFF is set by default for all the work files.

In EDIT-LONG mode, neither the column counter activated with @PAR SCALE=ON nor an
information line requested with @PAR INFORMATION=ON are displayed. The column
counter and information lines are not displayed until EDIT-LONG mode is exited.

The activation and deactivation of EDI T-LONG mode applies at work file level. If the relevant
work file is displayed in multiple data windows on the screen then the same mode is used
in both data windows.

The @PAR EDIT-LONG statement can be used instead of @EDIT format 4 and has the
same functionality. Furthermore, @PAR EDIT-LONG can be used for a specific work file or
globally for all the work files and is also permitted in L mode and therefore in EDT proce-
dures.

U41709-J-2125-1-76 303

@ELIM

EDT statements

9.44 @ELIM - Delete records in an ISAM file

The @ELIM statement deletes an ISAM file either fully or partially. If the entire content is
deleted then - unlike @UNSAVE - the file name remains present in the catalog. It is also
possible to delete the file in the work file and on disk simultaneously.

Operation

Operands ‘ F mode, L mode

@ELIM

[file] [(ver)] lines,...] [BOTH]

file

ver

lines

BOTH

Name of the ISAM file in which ranges are to be deleted. The name must
correspond to the SDF data type <filename 1. .54> or must consist of the
special specification '/ '.

If the f1i1e operand is not specified then the explicit local @FILE entry, if
present, and otherwise the global @FILE entry is used as the file name (see
also @FILE statement). If there is neither an explicit local nor a global
@FILE entry then the @ELIM statement is rejected with the error message
EDT5484.

If the specified file does not exist, is of the wrong type or cannot be
accessed, then the @ELIM statement is rejected with a corresponding
message.

If the file link name EDTISAM is assigned to a file then the user simply needs
to specify ' /' in order to delete records in the file (see chapter “File
processing” on page 131).

Version number of the file that is to be deleted. If the specified version
number does not match the file's version number, the statement is rejected
with message EDT4985.

One or more line ranges that are to be deleted from the ISAM file. If
symbolic line numbers are specified then their values are determined from
the current work file and therefore usually have nothing to do with the record
structure of the file specified in file.

If the range symbol (default value &) is specified for 1ines and the default
value is still set to 0.0001-9999.9999 (see @RANGE statement) then the
entire content of the file is deleted. However, the catalog entry is retained.

The designated line range is to be deleted both in the ISAM file and in the
work file.

304

U41709-J-2125-1-76

EDT statements @ELIM

The file is only opened temporarily during the delete operation. @ELIM can only be used to
delete records in files that do not have the default attributes assumed by EDT (e.g. no
variable record length) if a corresponding /SET-FILE-LINK command has been issued
with the file link name EDTISAM (see chapter “File processing” on page 131).

If the statement is interrupted with and the EDT session is continued with /ITNFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example

23 .OO ..
@get ’me‘l.e‘l.lm‘ noreseq 0001'00:00001(00)

The ISAM file XMPL.ELIM is read into work file 0. The ISAM keys are to be taken over as
the line numbers.

. 00 ONE e oo v v o e e ee e e e e A

00 TIWOKt w v s v s s e s e e ettt
00 THREES « v v v oo ee e oottt e et et e
00 FOURS: * =+ s s s s e mm e e ettt ettt
00 FIVE s e s o emee e ettt e e e e
N B G R I I
00 SEVENS « v v v o e me e ettt e e e
00 EIGHT s v s s s s e mm e e oo oottt ettt

O~NOYOTP WM

@eTim 'xmpl.elim' 5=7 both v OOOl.OO:OOOOl(OO))
N\

The line range 5-7 is deleted both in work file 0 and in the ISAM file XMPL.ELIM.
If the ISAM file is read using @GET without NORESEQ then the ranges to be deleted in the
ISAM file and the work file do not have to correspond.

-

OO wWwrn
o
o
iy
o
c
P~
A

.OO ..

@delete ; @get 'xmpl.elim' noreseq:---«---rrrrrrrrree e s 0001.00:00001(00)
S

Work file 0 is deleted and then the ISAM file XMPL.ELIMis read in again.

U41709-J-2125-1-76 305

@ELIM EDT statements

O wrn—

The line range 5 to 7 is also deleted in the ISAM file.

306 U41709-J-2125-1-76

EDT statements @END

9.45 @END - Exit current work file or terminate the EDT session

In L mode, @END causes the current work file to be exited. Processing returns to the work
file in which the @PROC statement activating the current work file was issued. In F mode,
@END terminates the EDT session or terminates the screen dialog.

Operation Operands F mode, L mode
@END [comment]
comment The comment operand may contain any text as a comment. It may only be

input in L mode.

In this statement, it is obligatory for at least one blank to be entered between the statement
name and any specified operands.

If the @END statement is entered in work file 0 in L mode then the message EDT4939 is
output. In batch mode and in EDT procedures, the next statement is then read. In interactive
mode, behavior after the warning message EDT4939 is the same as for the @HALT
statement without operands except that even if job switch 4 is set, the queries EDT0900 and
EDT0904 are still output.

In F mode, the @END statement is always processed in the same way as @HALT without
operands independently of the current work file, i.e. the EDT session or screen dialog is
terminated and, if EDT was called as a subroutine, control returns to the calling program
(see @HALT statement).

If the current work file (not equal to work file 0) in L mode was not set by means of a
@PROC statement but with @SETF or implicitly after a switch from F mode to L mode then
processing switches back to work file 0.

@END cannot be used to make a work file in which a @DO procedure is running (active
work file) the current work file. Any such attempt is rejected with the message EDT4959.

U41709-J-2125-1-76 307

@END

EDT statements

Example 1
1. @PROC 1 (1)
1. @ @SET #S1 = DATE
2. @ @SET #S2 = TIME (2)
3. @ @PRINT #S1.-#S2 N
4. @END (3)

(1) Processing switches to work file 1.
(2) An EDT procedure is entered in work file 1.

(3) Processing returns to work file 0. The procedure located in work file 1 can be called with
@DO 1.

Example 2
1. @PROC 7 (1)
1. @PROC (2)
<07>
1 @ @SET #S7 = 'THIS IS PROC 7'
2. @ @PRINT #S7
3. @PROC 8 (3)
1 @ @SET #S8 = 'THIS IS PROC 8'
2. @PROC USED
<07> 1.0000 TO 2.0000 (4)
<08> 1.0000 TO 1.0000
2. @END (5)
3. @PROC (6)
<07>
3. @END (7)
1. @PROC (8)
<00>

(1) Processing switches to work file 7.
(2
3
4
5

) Queries the current work file.

) Processing switches to work file 8.

) Work files 7 and 8 are in use.

) EDT returns to work file 7 (from where processing branched to work file 8 due to
@PROC).

(6) The query of the current work file confirms the return to work file 7.

(7) Processing returns to work file 0 again.

(8) Repeated query of the active work file confirms the return to work file 0.

308

U41709-J-2125-1-76

EDT statements

@ERAJV

9.46 @ERAJV - Delete job variables

The @ERAJV statement deletes job variable entries from the catalog.

Operation

Operands F mode, L mode

@ERAJV

string [ALL]

string

ALL

String indicating the name of the job variable that is to be deleted. All the
specifications that are also permitted in the BS2000 macro ERAJV are
allowed. Itis therefore also possible to make a partially qualified entry or use
wildcards. EDT does not perform any full syntax check.

If the specification does not designate any existing job variable then
message EDT4982 is output.

If ALL is specified then all the job variables designated by string are
removed from the catalog without any confirmation query.

If ALL is not specified and more than one job variable indicated by string is
present then the statement is not executed in batch mode. In interactive
mode, EDT issues the query

% EDT0298 ERASE ALL JOBVARIABLES (&00)7? REPLY (Y=YES; N=NO)?

If the user responds N then the message EDT0299 is output and the
statement is aborted.

If the BS2000 macro ERAJV is rejected by the system (for example, if the job variable is
password-protected) then EDT reports the error EDT4208.

If the Job Variable Support subsystem is not installed, the statement is rejected with the
error message EDT5254. For details concerning job variables, see the User Guide JV [9].

U41709-J-2125-1-76

309

@EXEC EDT statements

9.47 @EXEC - Start program

The @EXEC statement terminates the EDT session and loads and starts the specified

program.

Operation Operands F mode, L mode

@EXEC string

string String specifying the name of the program that is to be loaded and started.

The system expects the name of a BS2000 file which contains the program
that is to be loaded. It is not possible to specify a library element.

The @EXEC statement is one of the EDT statements with security implications (see also
section “Access protection” on page 99). The statement is rejected in uninterruptible
system procedures in interactive mode and on input from a file (read with RDATA from
SYSDTA not equal to SYSCMD, execution of a start procedure).

The @EXEC statement always causes EDT to be terminated irrespective of whether the
specified program file exists or contains a valid program.

As far as the handling of unsaved files and the related security queries is concerned,
@EXEC acts in the same way as the @HALT statement (see section “Terminating an EDT
session” on page 92). Since EDT is always terminated, save queries may, unlike in the case
of @HALT, also be issued if the statement was entered in the screen dialog (started with
@DIALOG).

If EDT was loaded as a subroutine and the EDT screen dialog has been activated with
@DIALOG, the @EXEC statement does not result in the continuation of the subroutine.
Instead, the user program is also unloaded.

It is therefore possible to prohibit users from issuing the @EXEC statement when EDT is
called as a subroutine. In this case, calls are rejected with message EDT4976.

Note
If @DIALOG was entered in a system procedure, then the remaining procedure
commands after @EXEC may be interpreted as input for the newly started program and
may therefore result in unexpected effects.

310 U41709-J-2125-1-76

EDT statements @EXEC

Example

The example assumes that the records present in the work file have not yet been saved.

1.00 EDT -is to be terminated< .. R
2.00 and LMS -iS to be -‘Oaded< ..
3.00 This is done with the @EXEC statement<:-«:--cevrrrrrrerrrenrrnrreeeen .
4.00 ...
@exec ‘$'|ms‘ ... 0001'0000001(00>
N J

EDT is to be terminated and LMS is to be loaded and started.

% EDT0900 EDITED FILE(S) NOT SAVED!
LOCAL FILE C 0)
% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?y
% BLS0500 PROGRAM 'LMS', VERSION 'V3.0A' OF 'yy-mm-dd' LOADED.
LMS0310 LMS VERSION V03.0A00 LOADED
CTL=(CMD) PRT=(0UT)
$

Since the work file has not yet been saved, EDT queries (in the same way as in @HALT),
whether it should really terminate. Only if the user responds Y is EDT terminated and LMS
loaded and started.

U41709-J-2125-1-76 311

@FILE

EDT statements

9.48 @FILE - Preset file name

The @FILE statement can be used to preset a file name for @GET, @READ, @WRITE,
@SAVE, @OPEN (format 2) and @ELIM. It is also possible to predefine a file name that
only applies to the current work file (explicit local @FILE entry), or a file name which applies
to all the work files (global @FILE entry).

Operation Operands ‘ F mode, L mode
@FILE [string [(ver)]] [LOCAL]
string String specifying a file name. The name must correspond to the SDF data

type <filename 1..54> or must consist of the special specification '/ '.

ver Version number of the file. If LOCAL is specified then the specification of the
version number has no effect. The version number can be overwritten by
means of an explicit specification in the file access statements.

LOCAL The specified file name is recorded as the work file-specific file name of the
current work file (explicit local @FILE entry). If string is not specified then
the local @FILE entry is deleted.

If LOCAL is not specified then the specified file name is recorded as the
global @FILE entry. If string is also not specified then the global @FILE
entry is deleted.

If there is no explicit local @FILE entry when the statements @READ ffile' or @GET 'file'
are executed then the specified file name becomes the local file name (implicit local @FILE
entry).

In the case of the @WRITE and @SAVE statements, the file name is searched for first in
the statement, then in the explicit local @FILE entry, then in the global @FILE entry and
finally in the implicit local @FILE entry.

In the case of the @GET, @READ and @ELIM statements, the file name is searched for
first in the statement, then in the explicit local @FILE entry and finally in the global @FILE
entry. These statements ignore an implicit local @FILE entry.

In the @OPEN statement (format 2), the file name is first searched for in the statement and
then in the global @FILE entry. The @OPEN statement ignores local @FILE entries.

Note
The local @FILE entry is also deleted if the work file is completely deleted with
@DELETE (format 2) or @DROP or if a file opened for real processing is closed with
@CLOSE.

312

U41709-J-2125-1-76

EDT statements @FILE

Example

23'00 ..
«F-I'Ie 'me].f‘i“e' (*) ; get OOO0.00:OOOO]_(OO)

The file name XMPL. FILE with the version number * is preset for the following @GET and
@SAVE statements. The file XMPL.FILE is then read in with @GET.

U WN
o
o
m
o
c
-~
A

.OO ..

% EDT0902 FILE 'XMPL.FILE' VERSION 002
de"ete 1_2 5 SAVE trttresrsseseeeseit it ittt e Oool.oozooool(oo))
N

The line range 1 to 2 is deleted in the work file and the content of the work file is then written
to the file XMPL.FILE with @SAVE.

3.00 THREE< .. M
4.00 FOUR< ...
5.00 FIVE< ...
6.00 ...

% EDT0903 FILE 'XMPL.FILE' IS IN THE CATALOG, FCBTYPE = ISAM

y EDT0296 OVERWRITE FILE? REPLY (Y=YES; N=NO) «--c-vvrevree--- 0003.00:00001(00)
&
3.00 THREE< .. M
4.00 FOUR< ...
5.00 FIVE< ...
6.00 ..

% EDT0902 FILE 'XMPL.FILE' VERSION 003
... 0003. OO : OOOOl(OO))

U41709-J-2125-1-76 313

@FSTAT

EDT statements

9.49 @FSTAT - Output BS2000 catalog information

The @FSTAT statement can be used to output a list of files from the BS2000 catalog. It is
possible to define the destination for the output. Optionally, it is also possible to output
additional information about the files. The list is alphabetically sorted on the file names.

Operation

Operands ‘ F mode, L mode

@FSTAT

file SHORT
[{ } 1 [[TO] line [(inc)]] [}]
svarex LONG [ISO4]

file

svarex

line

inc

SHORT

Designates the files that are to be listed. The fi1e operand must corre-
spond to the SDF data type <partial-filename 1..54 with-
wild(80)>.

Here, the symbolic name '/ ' for a file for which the LINK name EDTSAM or
EDTISAM has been assigned by means ofthe SET-FILE-LINK command is
not permitted.

If no file with the specified name is found, the message EDT5281 is output.

The list of files for output can also be specified by means of a string variable
(#S00. .#S20).

Line number as of which information is to be written to the current work file.
Any existing lines are overwritten.

If a line with a number greater than the previous highest line number is
created then the current line number is modified.

If 1ine is not specified then in the interactive mode's L mode, the result is
output to SYSOUT, in batch mode it is output to SYSLST and in F mode it is
written to work file 9. Work file 9 is deleted before being used. If a file is open
in work file 9 then the message EDT5189 is output and the statement is not
executed.

Increment used to form the line numbers which follow 1ine. If inc is not
specified then the increment implicitly specified by 1ine is used (see
section “Implicit increment assignment” on page 35).

This specification does not change the work file's current increment.

One file is output per line. Only file names, together with the associated
catalog ID and user ID, are output.

314

U41709-J-2125-1-76

EDT statements

@FSTAT

LONG

ISO4

Further catalog information is output in addition to the file names.

Column |Header Meaning

1-7 SIZE Number of PAM pages

8 P File on private or public data medium (*/.)
9-62 FILENAME File name with CATID and USERID
63-69 LAST PP Last used PAM page

71-78 |CR-DATE Creation date (format YY-MM-DD)

80 S SHARE attribute (Y/N/S)

81 A ACCESS attribute (W/R)

83-86 FCB FCB type (SAM/ISAM/PAM/BTAM/NONE)
88 R READ—PASS attribute (Y/N)

89 W WRITE-PASS attribute (Y/N)

91-98 CODESET Character set

The list is alphabetically sorted on the file names.

If the output is sent to SYSOUT or SYSLST then it is accompanied by a
header. If the output is sent to work file 9 (in F mode, without the line
operand) then the header is output in the information line (can be displayed
using @PAR INFORMATION=ON). If the output is written to a work file due
to the 11ine operand then no header is output.

The creation date is output in the form YYYY-MM-DD. The following fields
(see table) are moved accordingly.

If neither fi1e nor svarex is specified then a list of all the files under the user's own ID is

output.

If neither SHORT nor LONG is specified then only the file names are output (one per line). If
the file specification in fi1e or svarex contains a catalog ID, the file names are output with

the catalog ID and user ID.

Otherwise, the file names are output in the same form as they are specified in the

statement.

Partially qualified file names with a user ID form an exception here. In this case, @FSTAT
outputs a list of file names without catalog IDs or user IDs for reasons of compatibility.

U41709-J-2125-1-76

315

@FSTAT EDT statements

Output to SYSOUT or SYSLST is sent in the character set that has been defined for these
system files. If the output is written to a work file then it is sent in the work file's character
set. If the work file is empty and has the character set *NONE then the character set EDF041
is used. Characters that cannot be displayed in the target character set are always replaced
by blanks.

Caution

In the case of large files, the fields for the reserved and used size for output in LONG
mode may not be sufficient. In this case, nothing is output here. To ensure complete
output in these cases, only the @SHOW command (format 1) should be used.

316 U41709-J-2125-1-76

EDT statements

@GET

9.50 @GET — Read ISAM file

The @GET statement fully or partially reads an ISAM file from disk into the current work file.

Operation

Operands ‘ F mode, L mode

@GET

[file] [(ver)] [lines],...]] [:cols],...]:] INORESEQ]

file

ver

lines

Name of the ISAM file that is to be read in. The name must correspond to
the SDF data type <filename 1..54>or must consist of the special speci-
fication '/ ".

If there is as yet no local @FILE entry for the work file then, if the statement
is successful, the specified file name is entered as an implicit local @FILE
entry. If the fi1e operand is not specified then, if present, the explicit local
@FILE entry and otherwise the global @FILE entry is used as the file name
(see also @FILE statement). If neither an explicit local nor a global @FILE
entry is defined (e.g. there is only an implicit local file entry) then the @GET
statement is rejected with the error message EDT5484.

If the specified file does not exist or cannot be accessed as required then
the statement is rejected with a corresponding error message.

If the file link name EDTISAM is assigned to a file then the user simply needs
to specify ' /' in order to read this file (see chapter “File processing” on
page 131).

Version number of the file that is to be read. If the specified version number
does not match the file's version number, the message EDT0902 is output
and the file is read in nevertheless.

One or more line ranges that are to be read in from the ISAM file. If symbolic
line numbers are specified then their values are determined from the current
work file and therefore usually have nothing to do with the record structure
of the file specified in file.

If Tines is not specified, the entire file is read in.

The line numbers specified with 11ines always refer to the record keys even
if these are not taken over as line numbers. Consequently, if Tines is
specified, a check is always performed for valid record keys (see NORESEQ).

U41709-J-2125-1-76

317

@GET

EDT statements

cols One or more column ranges which define the section to be read in from
each record. The ranges may repeat and overlap. The column specifica-
tions refer to the characters in the file that is to be read in.
In the case of files which are present in a Unicode character set, they do not
usually correspond to the byte positions within a record. If column values
which exceed the record length are specified then blanks are read into the
work file in their place.
Columns are counted starting after the record key.

If no column range is specified then the lines are read in full.

NORESEQ The line numbers are formed from the ISAM keys of the ISAM files that are
read. When this is done, lines which have existing line numbers may be
overwritten.

In this case, EDT checks whether a valid line number is present in the
record key. To be valid, the key may consist only of the digits 0 to 9.
Otherwise, the @GET statement is aborted with the error message
EDT4984. The records read up to this point are taken over into the work file.
If a record has the key 0 then it is treated in the same way as a record with
1 (line number 0.0001) and the warning EDT2900 is issued.

If NORESEQ is not specified then the line numbers are assigned as a function
of the current line number and current increment (see section “Line number
assignment” on page 36).

The file is only opened during the read operation. Records which consist solely of the key
are read in as empty lines. If the file to be read in is empty, warning EDT2903 is output.

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the file that is to be read in. If this character set is *NONE then the work file
is assigned the character set EDFO3IRV.

If the work file already has a character set then the records that are to be read in are
converted from the file's character set into the work file's character set. If the file that is to
be read contains characters which cannot be displayed in the work file's character set then
these characters are replaced by a substitute character provided that such a character has
been specified (see @PAR SUBSTITUTION-CHARACTER); otherwise file read is aborted
and error message EDT5453 is output. This also applies if there are invalid characters
outside of the column range that is to be read. In contrast, invalid characters outside of the
line range that is to be read in are ignored.

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION-
CHARACTERS is specified. In this case, the read operation is rejected with the message
EDT5454.

318

U41709-J-2125-1-76

EDT statements @GET

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
If a attempt is made to use @GET to read a SAM file then EDT issues the error

message EDT1902 and sets the switch for EDT errors. It nevertheless reads the
specified file by performing an internal @READ for this file. In this case, the Tines or

NORESEQ operands are ignored.

U41709-J-2125-1-76 319

@GETJV

EDT statements

9.51

@GETJV - Read value of job variable

The @GETJV statement outputs the value of a job variable on the screen, writes it to a work
file or assigns it to a string variable.

Operation Operands ‘ F mode, L mode
@GETJV line
[string] [=] [,CODE=name]
svarex

string String which specifies the fully qualified name of a job variable. Although the
name must comply with the syntactic rules for job variable names, EDT
does not check these rules in full. If string is not specified then the job
variable is addressed using the file link name *EDTLINK. If this is not
defined then the message EDT5289 is output.

line Number of the line to which the value of the job variable is to be written.

svarex String variable in which the value of the job variable is to be written.

name Name of the character set in which the value of the job variable is to be inter-

preted. The character set must be valid; otherwise, the statement is rejected
with message EDT4980. If the operand is not specified, the value of the job
variable is interpreted in the character set EDF041 (see section “Character
sets” on page 47).

If neither 1ine nor svarex is specified, the value of the job variable is output to SYSOUT in
interactive mode and to SYSLST in batch mode.

If a line with a number greater than the previous highest line number is created then the
current line number is modified.

If the job variable does not exist then the message EDT4982 is output. If it cannot be
accessed then the message EDT4208 is output.

If the job variable is empty then an empty string is used as its value.

If the job variable contains an invalid byte sequence (possible in Unicode character sets)
then it is not read and the message EDT5454 is output.

320

U41709-J-2125-1-76

EDT statements @GETJV

If it is assigned to a string variable then this is also assigned the character set specified
implicitly or explicitly via name. If it is inserted in a work file then the value is converted into
the work file's character set. If the work file is empty and has the character set *NONE then
it is assigned the character set specified explicitly or implicitly via name. If the string that is
to be assigned contains characters which cannot be converted into the work file's character
set then these characters are replaced by a substitute character provided that such a
character has been specified (see @PAR SUBSTITUTION-CHARACTER); otherwise, the
string is not assigned and the error message EDT5453 is output.

If the Job Variable Support subsystem is not installed, the statement is rejected with the
error message EDT5254. For details concerning job variables, see the User Guide JV [9].

U41709-J-2125-1-76 321

@GETLIST

EDT statements

9.52 @GETLIST — Read elements of a list variable

The @GETLIST statement writes elements of a list variable into the current work file.

Operation

Operands ‘ F mode, L mode

@GETLIST

string [lines|,...]] [:cols][,...]:] [, CODE=name]

string

lines

cols

name

String which specifies the name of an S list variable.

Although the name must comply with the syntactic rules for S variable
names, EDT does not check these rules in full. If the name is longer than
246 characters then the statement is aborted with the message EDT3174.

One or more line ranges which specify the list elements which are to be
taken over.

Only the list variable elements that are identified by this line range are read.
Element names and line numbers are assigned to one another in such a
way that 0.0001 stands for the 1st element in the list, 0.0002 for the 2nd
element etc.

If no element corresponds to a specified line number then the specification
is ignored.

If 1ines is not specified, then all the elements are read.

One or more column ranges in the S variables that are to be read. The
ranges may repeat and overlap. Column n is assigned to the nth character.
All the specified characters are concatenated in the sequence in which the
columns are specified (possibly multiple times) and the result is inserted in
the work file. If the result is longer than 32768 characters then the statement
is aborted with the message EDT5474.

If a list element contains fewer characters than the specified column then a
blank is inserted for it.

If no column range is specified then each element is read in full.

Name of the character set in which the value of the S variable is to be inter-
preted. The character set name must be permitted; otherwise, the
statement is rejected with message EDT4980. If the operand is not
specified, the value of the S variable is interpreted in the character set
EDF041 (see section “Character sets” on page 47).

If the specified S variable is not a list then the message EDT4910 is output. If the value of a
list element is not of type STRING then the statement is aborted with the message EDT5343.
If the list does not contain any elements then the message EDT5340 is output.

322

U41709-J-2125-1-76

EDT statements @GETLIST

Line numbers are assigned using the procedure “Insertion at the current line number” (see
section “Line number assignment” on page 36). If the maximum line number is reached, the
statement is aborted and the message EDT5252 is output.

If a list element contains an invalid byte sequence (possible in Unicode character sets) then
the statement is aborted and the message EDT5454 is output.

On insertion, the values are converted into the work file's character set. If the work file is
empty and has the character set *NONE then it is assigned the character set specified
explicitly or implicitly via name. If the string that is to be assigned contains characters which
cannot be converted into the work file's character set then these characters are replaced
by a substitute character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the string is not assigned and the error
message EDT5453 is output.

If the statement is interrupted with and the EDT session is continued with /INFORM—
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

For details on S variables, see the SDF-P User Guide [7].

U41709-J-2125-1-76 323

@GETVAR

EDT statements

9.53 @GETVAR - Read S variable

The @GETVAR statement outputs the value of an S variable, writes it to a work file or
assigns it to a variable.

Operation

Operands ‘ F mode, L mode

@GETVAR

line
string [=< svarex]
ivar [,CODE=name]

SYSEDT

string

line

svarex

ivar

SYSEDT

name

String which specifies a valid S variable name. Although the name must
comply with the syntactic rules for S variable names, EDT does not check
these rules in full.

Number of the line to which the value of the S variable is to be written.

If the value of the S variable is not of type STRING then the statement is
aborted with the message EDT5342.

String variable in which the value of the S variable is to be written.

If the value of the S variable is not of type STRING then the statement is
aborted with the message EDT5342.

Integer variable (#10. .#120) into which the content of the S variable is to
be taken over.

If the value of the S variable is not of type INTEGER then the statement is
aborted with the message EDT5342.

If they exist and their values are of the type STRING then the contents of the
S variables SYSEDT-S00..SYSEDT-S20 are assigned to the string
variables #S00. .#S520. In the case of non-existent S variables, S variables
with no value or S variables of a different type, no error is reported. Instead
the associated string variable is not modified.

Name of the character set in which the value of the S variable is to be inter-
preted. If the value of the S variable is not of type STRING then the specifi-
cation is ignored. The character set name must be permitted; otherwise, the
statement is rejected with message EDT4980. If the operand is not
specified, the value of the S variable is interpreted in the character set
EDF041 (see section “Character sets” on page 47).

324

U41709-J-2125-1-76

EDT statements @GETVAR

If neither 1ine nor svarex nor ivar is specified then the value of the S variable is output
to SYSOUT in interactive mode and in batch mode it is output to SYSLST.

If the S variable is not present then the message EDT5274 is output. If it has no value then
the message EDT5340 is output (except in the case of SYSEDT).

If a line with a number greater than the previous highest line number is created then the
current line number is modified.

If the variable contains an invalid byte sequence (possible in Unicode character sets) then
it is not read and the message EDT5454 is output.

If it is assigned to a string variable then this is also assigned the character set specified
implicitly or explicitly via name.

If it is inserted in a work file then the value is converted into the work file's character set. If
the work file is empty and has the character set *NONE then it is assigned the character set
specified explicitly or implicitly via name.

If the string that is to be assigned contains characters which cannot be converted into the
work file's character set then these characters are replaced by a substitute character
provided that such a character has been specified (see @PAR SUBSTITUTION-
CHARACTER); otherwise, the string is not assigned and the error message EDT5453 is
output.

For details on S variables, see the SDF User Guide [6].

U41709-J-2125-1-76 325

@GOTO EDT statements

9.54 @GOTO - Branch statement in procedures

The @GOTO statement is used in a @DO procedure to execute an unconditional branch
to the specified line.

Operation Operands ‘ @PROC
@GOTO line
line The 11ine operand designates the line number to be branched to.

The @GOTO statement is only permitted in @DO procedures. If @GOTO is specified
outside of a @DO procedure then it is rejected with the message EDT4942. In an @INPUT
procedure, the message is output and processing continues with the statement which
follows the illegal @GOTO statement.

If 1ine is a line number variable which has the value 0.0000 at the time the branch is
executed (this corresponds to the preset values of line number variables when EDT is
started), then the @GOTO statement is rejected with the message EDT4932 and the
procedure continues with the statement which follows the invalid @GOTO statement.

The line which is branched to with @GOTO must exist in the associated procedure. If an
attempt is made to branch to a line which does not exist then error message EDT4974 is

issued and the procedure continues with the statement which follows the invalid @GOTO
statement.

If lines are to be branched to by means of @GOTO in EDT procedures then it is advisable
to always define the line numbers of these lines explicitly by means of the @SET statement
(format 6) in order to ensure that the numbers of the lines that are to be branched to do not
change implicitly if statements are inserted or deleted.

Note
It is not advisable to use symbolic line numbers since these always refer to the current
work file and not therefore to the procedure work file.
If the first statement in a procedure is the @PARAMS statement then this cannot be
branched to with @GOTO.

326 U41709-J-2125-1-76

EDT statements

@GOTO

Example

GO WN e

1.

@SET #13 =1

@PROC 3
@l

(1)

@ @IF #I3 > 5 : @RETURN
@ @STATUS = #I3

@ @SET #I3 = #I3+1

@ @GOTO 1

@END
@0 3

(2)

(3)

#103= 0000000001
#103= 0000000002
#103= 0000000003
#103= 0000000004
#103= 0000000005

1.

(1) The value 1 is assigned to the integer variable #13.

(2) Specification of the line number which is branched to by means of @GOTO.

(4)

(3) Ifthe procedure is executed in work file 3 then the value assigned to the integer variable
#13 should be incremented by 1 and output until it is greater than 5. This is implemented
by means of a loop. At the end of the loop, @GOTO branches back to the start of the

loop.

(4) The procedure in work file 3 is executed.

U41709-J-2125-1-76

327

@HALT

EDT statements

9.55 @HALT - Terminate EDT

The @HALT statement terminates the EDT session, the screen dialog after @DIALOG or
EDT if it has been called as a subroutine with or without transferring a text to the calling
program (see section “Terminating an EDT session” on page 92 for the general conse-
quences of terminating EDT).

Operation Operands F mode, L mode
@HALT ABNORMAL
[]
message

ABNORMAL If EDT was called as a main program, it is terminated abnormally. In proce-
dures, processing continues at the next JOB=STEP or in an ERROR-BLOCK.

If EDT was called as a subroutine then the entire string as of the first non-
blank character after @HALT is passed to the calling program as a
message text (see also message operand). If this string starts with

' ABNORMAL ' then a special return code (0008002C instead of 00080000) is
set.

message String which is passed to the calling program when EDT is called as a
subroutine. This operand may only be specified if EDT is called as a
subroutine.

If this string starts with ' ABNORMAL ' then a special return code (0008002C
instead of 00080000) is set.

In this statement, it is obligatory for at least one blank to be entered between the statement
name and any specified operands.

The @HALT statement causes the termination of the EDT session in interactive or batch
mode, if EDT was started as a main program with the /START—EDT or /START-EDTU
command or equivalent /START-PROGRAM command (see section “Starting EDT” on

page 87) and is not in screen dialog mode after @DIALOG. The EDT session is also termi-
nated if @HALT is entered via the subroutine interface's CMD function (see the Subroutine
Interfaces User Guide [1]).

In interactive mode, if the screen dialog is started with the @DIALOG statement from within
a system procedure or via the subroutine interface then @HALT simply terminates the
screen dialog and the system procedure or calling program is continued. The content of the
work files is retained and there is consequently no save confirmation query (see below). In
this case, specifying ABNORMAL has no special effect apart from informing the calling
program.

328

U41709-J-2125-1-76

EDT statements @HALT

If there are still any unsaved work files then, in interactive mode, the numbers of the work
files with unsaved data are output after the message EDT0900 before EDT is terminated.

In addition, if they exist, the local @FILE entry (see the statements @FILE, @READ,
@GET and @OPEN, format 2) or the name of an open file or the library and element name
of an open library element (see the statements @OPEN and @XOPEN) is output for each
of these work files.

In interactive mode, the user then sees the query:
% EDT0904 TERMINATE EDT? REPLY (Y=YES, N=NO)?

If the user responds N then, in F mode, the work window is displayed. In L mode, the prompt
is displayed again. The user may close or write back unsaved work files. If the user replies
Y then unsaved work files are lost. EDT is terminated.

If job switch 4 is set before EDT is called, the save query is not issued. The save query is
also not output if F mode has been called with @DIALOG (see also section “Terminating an
EDT session” on page 92).

Example

1. @HALT
% EDT0900 EDITED FILE(S) NOT SAVED!
LOCAL FILE C 0) :
LOCAL FILE C 1) :
LOCAL FILE (4) : L= EDT164
E= HALT(001),X
% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

@HALT terminates EDT in L mode. Since unsaved files are still present, the message
EDT0900 is output together with a list of the work files.

U41709-J-2125-1-76 329

@HEX

EDT statements

9.56 @HEX — Set hexadecimal mode

The @HEX statement activates or deactivates hexadecimal mode for the current work file.
In hexadecimal mode, all the records are displayed on screen in both printable and
hexadecimal form.

Operation Operands F mode
@HEX ON
[]
OFF
ON Activates hexadecimal mode (default value).

This implicitly deactivates EDIT-LONG mode.

OFF Deactivates hexadecimal mode.

The layout in hexadecimal mode is described in detail in section “F mode” on page 101.
When an EDT session starts, hexadecimal mode is deactivated for all the work files.

The activation and deactivation of hexadecimal mode applies at work file level. If the
relevant work file is displayed in multiple data windows on the screen then the same mode
is used in both data windows.

If, in the case of split screen display, the work window is so small that it is not possible to
display even one data line together with its hex lines then the message EDT2404 is output.
Hexadecimal mode is activated nevertheless. The user can then enlarge the data window
so that the hex lines can also be displayed.

The @PAR HEX statement can be used instead of @HEX and has the same functionality.
Furthermore, @PAR HEX can be used for a specific work file or globally for all the work files
and is also permitted in L mode and therefore in EDT procedures.

330

U41709-J-2125-1-76

EDT statements @IF (format 1)

9.57 @IF (format 1) — Query error switches

This format of the @IF statement can be used in EDT procedures and in L mode to check
whether EDT or DMS errors have already occurred. Depending on the result, a specified
string either is or is not processed as input.

EDT errors may occur, for example, if an incorrect EDT statement is entered. The DMS
error switch can be set for statements which access files (e.g. @WRITE, format 1) or may
indicate system access errors.

Operation Operands ‘ L mode

@IF ERRORS
NO [ERRORS]

[text]
DMS [ERRORS]
NO DMS [ERRORS]

ERRORS The condition is fulfilled if the EDT error switch is set.
NO ERRORS The condition is fulfilled if the EDT error switch is not set.

DMS ERRORS
The condition is fulfilled if the DMS error switch is set.

NO DMS ERRORS
The condition is fulfilled if the DMS error switch is not set.

text EDT statement or data line. If the condition is fulfilled, the string is treated
as if it had been entered at the prompt in L mode. In particular, the decision
to interpret the text as data input or as a statement is made in accordance
with the same rules (for more information, see section “L mode” on
page 126).

The text operand starts immediately after the character ': ', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

U41709-J-2125-1-76 331

@IF (format 1) EDT statements

Note
If a specific statement is to be checked then the error switch must be reset before the

relevant statement (see @RESET). Otherwise the @IF statement may return an
unwanted result since earlier statements may have already set the EDT or DMS switch.

The @IF ERRORS statement should not be used to query hits after @ON. @IF format
3 should be used for this.

Using @IF with @RETURN as a statement outside of procedures may cause EDT to
terminate (see the @RETURN statement).

332 U41709-J-2125-1-76

EDT statements

@IF (format 2)

9.58 @IF (format 2) — Compare strings, line numbers and

numbers

This format of the @IF statement can be used in EDT procedures to compare strings, line
numbers or integer numbers with one another. The operands may be specified either
explicitly (as literals) or via a reference (line number or EDT variable).

If the condition for the comparison is fulfilled then the specified string is processed as input.
If the condition is not fulfilled, the statement has no effect.

Operation

Operands ‘ L mode

@IF

[S] string1 rel string2
line1 rel line2 [text]

[1] int1 rel int2

The keyword S is only obligatory if stringl and string2 contain line
numbers or line number variables without column specifications, in which
case it specifies that the content of the lines identified by the line numbers or
knowledge variables is to be compared and not the line numbers
themselves.

For example, the statement @IF #L1=#L2 compares the line numbers in
#L1 and #L2. However, if the contents of the lines indicated by #1.1 and #L2
are to be compared then @IF S #L1=#L2 must be entered.

string1, string2 The strings to be compared.

line1, line2

int1, int2

The line numbers to be compared. The contents of the lines are not
compared.

The keyword I only has to be entered if a number (a literal) has been
explicitly entered for int1 as otherwise EDT cannot tell whether the input is
a line number or an integer.

The integers to be compared.

A (positive or negative) integer or an integer variable can be entered for
each of these (#10. .#120).

U41709-J-2125-1-76

333

@IF (format 2) EDT statements

rel Defines the relational operator:

Symbol Meaning

> or GT |greater than

< or LT less than

>= or GE |greater than or
equal to

<= or LE |less than or equal
to

= or EQ |equalto

<> or NE [not equal to

text EDT statement or data line. If the condition is fulfilled, the string is treated
as if it had been entered at the prompt in L mode. In particular, the decision
to interpret the text as data input or as a statement is made in accordance
with the same rules (for more information, see section “L mode” on
page 126).

The text operand starts immediately after the character ':',i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

The previous specification of GOTO or RETURN without a colon in procedures continues to
be supported for reasons of compatibility.

Comparisons of two strings depend, on the one hand, on the character set in which the
strings are encoded and, on the other, on the length of the strings (strings of zero length are
permitted).

In all cases, it is possible to assign the operands stringl and string2 a character set
which corresponds to their source. If the two character sets determined in this way are
identical then a binary comparison is performed in this shared character set.

If the two character sets are different but are both EBCDIC 7/8-byte character sets then a
binary comparison is performed as in the past.

Otherwise, the two character sets are converted internally into UTF16 and the comparison
is performed in UTF16.

Following any necessary conversion, the corresponding characters in the two strings are
compared. Processing thus either reaches a non-identical character pair or the end of one
or other of the two character strings. If the characters differ at any point then the two strings

334

U41709-J-2125-1-76

EDT statements @IF (format 2)

are considered to be non-identical. EDT interprets the two non-identical characters as
binary numbers on the basis of their character sets. The string with the character with the
larger binary number is considered to be the greater of the two. If no non-identical pair of
characters is identified then the longer of the two strings is considered to be the greater. If
the two strings are of the same length and no non-identical character pair is detected then
the strings are identical. If the two strings are of different lengths they can therefore never
be identical.

Note
When line numbers are compared, both%+3L and %+3 designate valid line numbers.
This can lead to difficulties of interpretation if followed by the relational operator LE. It
is therefore usually advisable to use the mathematical symbols for the relational
operators.
The use of column specifications with the st ring2 operand can also result in difficulties
of interpretation when the text operand is introduced. Special care must be taken to
ensure that the notation can be interpreted unambiguously in such cases. In particular,
it is obligatory to conclude the column specification with a colon (otherwise optional).

For reasons of compatibility, the sort weighting defined by XHCS when comparing
characters is ignored. This also applies to Unicode character sets. A sort operation, for
example using the SORT program, may therefore return a sequence different from the
result supplied by an @IF query in EDT.

Using @IF with @RETURN as a statement outside of procedures may cause EDT to
terminate (see the @RETURN statement).

Example 1

4. @PRINT

1.0000 PLEASE DO NOT LAUGH

2.0000 AT THIS EXAMPLE

3.0000 PLEASE DO NOT LAUGH

4 @SET #S0 = 'FIRST LINE = LAST LINE'

4. @SET #S1 = 'FIRST LINE NOT EQUAL TO LAST LINE' (1)

4. @SET #I9 = 2

4 @PROC 3

1 @ @IF S %+#I19 = $-2L : @GOTO 4 (2)

2 @ @PRINT #S1 N

3 @ @RETURN

4 @ @PRINT #SO N

5. @END

4. @Dno 3 (3)
FIRST LINE = LAST LINE

4. @ON 1 DELETE 'NOT'

4. @bo 3 (4)
FIRST LINE NOT EQUAL TO LAST LINE

4.

U41709-J-2125-1-76 335

@IF (format 2) EDT statements

(1) The string variables #S0 and #S1 as well as the integer variable #19 are filled with
content.

(2) When work file 3 is executed, line contents are compared here instead of line numbers.

(3) The execution of the statements stored in work file 3 results in the comparison of lines
(%+#19) and 1 ($-2L, i.e. 3—2). Since the contents of these two lines are identical,
processing branches to line 4 of work file 3.

(4) Since the content of line 1 has now changed, processing does not branch to line 4 of

work file 3.
Example 2
1. @SET #S4 = 'M! ()
1. @PROC 4
1. @ @PRINT #S4 N (2)
2. @ @CREATE #S4: 'M',#S4
3. @ @IF #S4 < 'M'*8 : @GOTO 1
4. @END
1. @po 4
M
MM
MMM
MMMM
MMMMM
MMMMMM
MMMMMMM

1.
(1) The string variable #S4 contains the character M.

(2) The following procedure is entered in work file 4: the content of #S54 is to be output. This
is to be followed by the current content of #S4 preceded by the letter M.

If the content of #S4 is smaller than MMMMMMMM then processing should start from the
beginning again.

336 U41709-J-2125-1-76

EDT statements

@IF (format 2)

Example 3

]

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

O NOY O PPN, OOPPWNEFE OONOOPEWN -

O

@PRINT

ABC

WHO

ABC

WANTS

ABC

TO TRY

ABC

HIS LUCK?

@PROC 6

@ @IF ! <= 'ABC'
@ @CREATE !:
@ @CONTINUE
@END

@0 6,!=%,%
@PRINT

: @GOTO 3
k1% 20

(1)

(2)

* *%*

HIS LUCK?

(1) In work file 6, the line numbers are addressed via the loop counter !. If the content of
the line currently addressed via the counter ! is different from ABC then the line content

should not be modified. Otherwise, the line content is to be replaced by
Kdhkkkkhkkhhkkhkkhkkhkhkhkkhkkhkhikikhkkik)

(2) Work file 6 is executed. During processing, all the lines in the current work file are to be
addressed in sequence by the loop counter !.

U41709-J-2125-1-76

337

@IF (format 2) EDT statements

Example 4

4. @PRINT

1.0000 PLEASE DO NOT LAUGH

2.0000 AT THIS EXAMPLE

3.0000 IT IS TOO SIMPLE

4 @SET #SO = 'RESULT POSITIVE'

4. @SET #S1 = 'RESULT NEGATIVE' (1)

4. @SET #I9 =1

4 @PROC 1 (2)

1 @ @IF %+#19 = $-1L : @GOTO 4 (3)

2 @ @PRINT #S1 N

3 @ @RETURN

4 @ @PRINT #SO N

5. @END

4. @po 1 (4)
RESULT POSITIVE

4. @SET #I9 = 2

4. @po 1 (5)
RESULT NEGATIVE

4.

(1) The string variables #S0 and #S1 are filled with content. The value 1 is assigned to the
integer variable #19.

(2) Work file 1 is opened.

(3) If @DO 1 is subsequently issued then this line causes the line numbers %+#19 and $-
1L to be compared.

% addresses the first line number (i.e. 1).
$ addresses the last line number (i.e. 3).
$-1L addresses the penultimate line number (i.e. 2).

(4) The procedure in work file 1 is executed. At this point, the relation indicated there
%+#19=$%-1L is true since 1+1=3-1 is true.

(5) At this point, the relation indicated in work file 1%+#19=$-1L is false since 1+2=3-1is
false.

338 U41709-J-2125-1-76

EDT statements

@IF (format 2)

Example 5

IS

— MWD RHERFEFNDNNAEPRPONDNE DD OND -

.0000
.0000
.0000

.0000
.0000
.0000
.0000

(1)

(2)

@PRINT

PLEASE DO NOT LAUGH

AT THIS EXAMPLE

IT IS TOO SIMPLE

@SET #L3 =5

@PROC 2

@ @IF %+6—#L3 <> $—* : @RETURN
@ @CREATE $+1: 'OR PERHAPS NOT'
@ @PRINT

@END

@$-1

@po 2

@l

@Do 2

PLEASE DO NOT LAUGH

AT THIS EXAMPLE

IT IS TOO SIMPLE

OR PERHAPS NOT

(3)

(1) If when work file 2 is executed, the relation indicated here is not fulfilled (<> means not

equal to) then the procedure is aborted at this point.

(2) Work file 2 is executed. Because *=$-1=2, the expression %+6-#L3<>$-* is equiv-
alentto 1+6-5<>3-2 and is therefore true. The execution of the procedure is therefore
aborted.

(3) At this point, *=1 and consequently the relation in work file 2 %+6-#L3<>$-* is false
because 1+6-5=3-1. Consequently, the remaining statements in work file 2 are
executed.

U41709-J-2125-1-76

339

@IF (format 2) EDT statements

Example 6

@SET #I3 =1 (1)
@PROC 7
@ @IF #I3 > 5 : QRETURN
@ @STATUS = #I3 (2)
@ @SET #I3 = #I3+1
@ @GOTO 1
@END
1. @po 7 (3)
#103= 0000000001
#103= 0000000002
#103= 0000000003
#103= 0000000004
#103= 0000000005
1.

(G A S O A

(1) The value 1 is assigned to the integer variable #13.

(2) The procedure in work file 7 should output the values for the integer variable #13
(@STATUS =#13) and increment these (#I13+1) until #13 has a value greater than 5
for the first time.

(3) Work file 7 is executed.

340 U41709-J-2125-1-76

EDT statements

@IF (format 3)

9.59 @IF (format 3) — Query @ON hits or work file status

This format of the @IF statement makes it possible to check in EDT procedures whether
EDT identified a hit the last time @ON was executed or whether the current work file is
empty. Depending on the result, a specified string either is or is not processed as input.

Operation Operands L mode
@IF .TRUE. [rel col]
.FALSE. :[text]
.EMPTY.
.TRUE. Processing branches if a hit was identified in the current work file the last
time @ON was executed.
If rel and col are specified then the condition is structured in such a way
that the column number in which the first identified hit begins is compared
with the column number specified by col using the relational operator
indicated by rel. The condition is only considered to be fulfilled if this
comparison is positive.
rel Defines the relational operator for the column numbers (see above):
Symbol Meaning
> or GT |greater than
< or LT |less than
>= or GE |greater than or
equal to
<= or LE |less than or equal
to
= or EQ |equalto
<> or NE |not equal to
col Column number which is compared with the number of the column in which
the first hit started in the current work file when the last @ON statement was
executed.
.FALSE. Processing branches if no hit was identified in the current work file the last

time @ON was executed.

U41709-J-2125-1-76

341

@IF (format 3) EDT statements

.EMPTY. Processing branches if the current work file is empty. A work file is empty if
it contains no records

text EDT statement or data line. If the condition is fulfilled, the string is treated
as if it had been entered at the prompt in L mode. In particular, the decision
to interpret the text as data input or as a statement is made in accordance
with the same rules (for more information, see section “L mode” on
page 126).

The text operand starts immediately after the character ': ', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

The previous specification of GOTO or RETURN without a colon continues to be supported for
reasons of compatibility.

Note
Using @IF with @RETURN as a statement outside of procedures may cause EDT to
terminate (see the @RETURN statement).

Example 1

o

@PRINT

.0000 WHO

.0000 WANTS

.0000 TO TRY

.0000 HIS LUCK

@PROC 8

@ @N ! FIND 'T'

@ @IF .FALSE. : @GOTO 4 (1)
@ @CREATE !: '*' * 20

@ @CONTINUE

@END

@o 8,!=%,% (2)
@PRINT

.0000 WHO

.0000 WANTS

.0000 TO TRY

‘OOOO R R R e R R R R R

O, OO, WD O W

o

(1) In work file 8, the line numbers are addressed via the loop counter !. If the letter T is
not present in one of the addressed lines then the line remains unchanged. Otherwise,
the line content is to be replaced by 20 asterisks.

342 U41709-J-2125-1-76

EDT statements

@IF (format 3)

(2) Work file 8 is executed. During processing, all the lines in the main file are to be
addressed in sequence by the loop counter !.

Example 2

o1

AP WNRFR OO0, WNDRE O WN -

.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000

o1

@PRINT

WHO

WANTS

PLENTY OF

LUCK?

@PROC 9

@ @N ! FIND '"EN'

@ @IF .TRUE. = 3 : @GOTO 4

@ @GOTO 5 (1)
@ @SUFFIX ! WITH ' GOOD'

@ @CONTINUE

@END

@0 9,!=%,% (2)
@PRINT

WHO

WANTS

PLENTY OF GOOD

LUCK?

(1) In the procedure in work file 9, the line numbers are addressed via the loop counter !.
If the string EN occurs in columns 3 to 4 of one of the lines addressed in this way, then
the string GOOD is to be appended to it. Otherwise, the line is left unchanged.

(2) The procedure in work file 9 is executed. During processing, all the lines in the main file
are addressed in sequence by the loop counter !.

U41709-J-2125-1-76

343

@IF (format 4)

EDT statements

9.60 @IF (format 4) — Query job and user switches

In EDT procedures, this format of the @IF statement checks which job and/or user switches
are active and inactive (see also @SETSW and section “Job switches” on page 98).
Depending on the result, a specified string either is or is not processed as input.

Operation

Operands L mode

@IF

ON
{ } = [U] int :[text]
OFF

ON
OFF

int

text

Processing branches if the specified switch is set.
Processing branches if the specified switch is not set.

Specifies that a user switch is to be checked. If U is not specified then a job
switch is checked.

Number of the switch (0. .31) whose setting is to be checked.

If the keyword U is specified before the switch number then the user switch
int belonging to the user's own ID is checked instead of the job switch int.

EDT statement or data line. If the condition is fulfilled, the string is treated
as if it had been entered at the prompt in L mode. In particular, the decision
to interpret the text as data input or as a statement is made in accordance
with the same rules (for more information, see section “L mode” on

page 126).

The text operand starts immediately after the character ':',i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

The previous specification of GOTO or RETURN without a colon in procedures continues to
be supported for reasons of compatibility.

Note

Using @IF with @RETURN as a statement outside of procedures may cause EDT to
terminate (see the @RETURN statement).

344

U41709-J-2125-1-76

EDT statements

@IF (format 4)

Example

= O WN e

—

SWITCH 15
1.
1.
SWITCH 15
1.

@SET #S2

@PROC 8
@ @IF ON = 15 : @GOTO 4
@ @PRINT #S2 N
@ @RETURN

@ @PRINT #S3 N
@END

@SETSW OFF = 15

'SWITCH 15 IS OFF!'
@SET #S3 = 'SWITCH 15 IS ON

(1)

@Do 8

(2)

IS OFF

(3)

@SETSW ON = 15
@Do 8

(4)

IS ON

(5)

(1) The procedure in work file 8 outputs the string variable #S3 if job switch 15 is set, and
the string variable #S2 otherwise.

2
3

5

(2) Switch 15 is reset.
(3) The procedure in work file 8 is executed.
(4) Switch 15 is set.
(5)

Work file 8 is executed.

U41709-J-2125-1-76

345

@IF (format 5)

EDT statements

9.61 @IF (format 5) — Query EDT parameter settings

This format of the @IF statement can be used in EDT procedures or in L mode to query the
operating mode that is currently set (see section “Introduction to the EDT operating modes”
on page 21). Depending on the result, a specified string either is or is not processed as

input.
Operation Operands ‘ L mode
@IF UNICODE
OPERATING-MODE = :[text]
COMPATIBL

OPERATING-MODE=

The EDT operating mode is checked.

UNICODE The condition is fulfilled if EDT is in Unicode mode.
COMPATIBLE

text

Note

The condition is fulfilled if EDT is in compatibility mode.

EDT statement or data line. If the condition is fulfilled, the string is treated
as if it had been entered at the prompt in L mode. In particular, the decision
to interpret the text as data input or as a statement is made in accordance
with the same rules (for more information, see section “L mode” on

page 126).

The text operand starts immediately after the character ': ', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

Using @IF with @RETURN as a statement outside of procedures may cause EDT to
terminate (see the @RETURN statement).

346

U41709-J-2125-1-76

EDT statements @IF (format 5)

Example
1. @IF OP = C : @GOTO 5
2. @SET #S2 = 'PROCEDURE ONLY RUNS IN COMPATIBILITY MODE'
3. @PRINT #S2 N
4. @HALT
5. @CONTINUE
6. ...other statements

The procedure results in the abnormal termination of EDT if it is not running in compatibility
mode.

U41709-J-2125-1-76 347

@INDEX

EDT statements

9.62 @INDEX - Control line number display

In F mode, the @INDEX statement activates or deactivates the line number display for the
current work file in the relevant data window (see also section “The work window” on
page 103).

Operation Operands F mode
@INDEX ON
[]
OFF
ON Activates line number display (default value).
OFF Deactivates line number display.

When an EDT session starts, the line number display is activated for both data windows of
all work files.

If the line number display is activated in F mode then, depending on the employed terminal
and the way it has been set with the @VDT statement (72 or 124 characters per line), the
6-digit line number display is output with a decimal point and a protected blank for the visual
separation of the line contents.

If the line number display is deactivated then 80 or 132 characters are output per line.
In both formats, the first column of each line forms the statement code column.

The setting for the line number display is saved separately for the upper and lower
(possible) data windows corresponding to each work file. If only one data window is
displayed on the screen then the setting is made for both (possible) data windows. In
contrast, if the screen is split (see @PAR SPLIT) then it applies only to the work window in
which it was entered even if the same work file is displayed in both work windows.

Specifying @INDEX ON deactivates EDIT-LONG mode (see the @EDIT statement).

The @PAR INDEX statement can be used instead of @INDEX. Furthermore, @PAR
INDEX can be used for a specific work file or globally for all the work files and is also
permitted in L mode and therefore in EDT procedures. Please refer to the description of the
@PAR statement for information on which of the data windows of the specified work file
@PAR INDEX applies to.

348

U41709-J-2125-1-76

EDT statements @INDEX

Example

s 1'00 EDT -is the BSZOOO f-iwe< .. \
2.00 ed-ltor-, Used «For\ the USEPr—<{+ s v evseercecercororcorcrensoscocsosorcnscnenssns
3'00 frnlend'l\y creat1on and ed~|t~|ng< ..
4.00 of BS2000 files in SAM and ISAM formats<:«:-:cccrrrrrrrrrrreneeeen.nn

@-index Off ... OOO].OO'OOOO].(OO)

-)

The line number display is deactivated.

EDT is the BS2000 E R =R T IR I
ed-itor\’ uSed «For- the (TR =) R R R R LI
friemﬂy creation and edit-ing< ..
of BS2000 files in SAM and ISAM fOrmats<: ==t =t s or e et e eoeeateneenetentenenennens

The work window is displayed without line numbers.

U41709-J-2125-1-76 349

@INPUT (format 1)

EDT statements

9.63 @INPUT (format 1) — Start @INPUT procedure

This format of the @INPUT statement starts an @INPUT procedure from a file. The state-
ments and/or records in the file are processed sequentially.

For information on the structure and processing of EDT procedures, see section “EDT
procedures” on page 64.

Operation Operands ‘ F mode, L mode
@INPUT LIBRARY=path1 ([ELEMENT=] elname [(vers)][,eltype])
ELEMENT=elname [(vers)][,eltype]
path2
JFILE = ~ [PRINT]
*linkname
POSIX-FILE=xpath [,CODE=name]

LIBRARY=... The @INPUT procedure is defined by explicitly specifying the library name

and the element name.

path1 Name of the library.

elname Name of the element.

vers Version of the required element (see the LMS User Guide [14]). If vers is
not specified or if *STD is specified then the highest available version of the
element is selected.

eltype Type of element. Permitted type specifications are S,M, P, J, D, X, *STD as
well as freely selectable type names having one of these types as basic
type. If eltype is not specified then the default type specified with @PAR
ELEMENT-TYPE is used. The permitted element types and their meanings
are described in chapter “File processing” on page 131.

ELEMENT=... The @INPUT procedure is defined by the element name or by specifying
the library name. The default library set with @PAR LIBRARY is used
implicitly (if @PAR LIBRARY has been specified - otherwise the error
message EDT5181 is issued).

The operands eTname, vers and el type have the same meaning as when
a library is specified explicitly (see above).
FILE= The @INPUT procedure is defined by the name of a BS2000 file.
path2 Name of the file that is to be read in as an @INPUT procedure.

350

U41709-J-2125-1-76

EDT statements

@INPUT (format 1)

*linkname

POSIX-FILE=
xpath

CODE=

name

EBCDIC

ISO

PRINT

File link name of the BS2000 file that is to be read in as an @INPUT
procedure. The file name and the file attributes are stored inthe Task File
Tab1e. The file link name must not be specified as the special file name
*BY—PROGRAM. This results in the error EDT4923. If no file link name is
defined then the statement is rejected with the message EDT5480.

If the file link name is declared as the special file name *DUMMY then it is
treated as an existing empty file.

The @INPUT file is defined by the path name of a POSIX file.
Path name of the POSIX file that is to be read in as an @INPUT procedure.

The xpath operand can also be specified as a string variable. It must be
specified as a string variable if the path name contains characters which
have a special meaning in EDT syntax (e.g. blanks, semicolons in F mode
or commas).

Defines the character set that is to be assumed for the POSIX file. Since it
is not possible to assign character sets to POSIX files in the POSIX file
system, a user specification is required here.

If CODE is not specified then the character set defined in @PAR CODE is
assumed.

Character set of the POSIX file that is to be read in. The name of a valid
character set must be specified for name (see section “Character sets” on
page 47).

The keyword EBCDIC is now only supported for reasons of compatibility and
is a synonym for the character set EDF041.

The keyword IS0 is now only supported for reasons of compatibility and is
a synonym for the character set 15088591.

Each line of the procedure should be logged before it is executed. In inter-
active mode, the output is written to SYSOUT and in batch mode it is written
to SYSLST.

Specifying PRINT also causes all error messages to be output and sets the
EDT error switch. Normally, the two messages EDT0901 and EDT4932 are
not output in procedures and the EDT error switch is not set (see section
“Message texts” on page 638).

If the specified file does not exist or cannot be accessed as required or if the file cannot be
read in successfully then the statement is rejected with a corresponding error message.

The @INPUT statement (format 1) must not be issued in @INPUT or in @DO procedures.

U41709-J-2125-1-76

351

@INPUT (format 1) EDT statements

If the statement is interrupted with and the EDT session is continued with /INFORM—
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

The execution of an @INPUT procedure is terminated when the @RETURN statement or
the last statement in the procedure has been executed.

If the @INPUT procedure contains records then these are inserted in the current work file
in the same way data input in L mode (empty records are ignored). If the current work file
is empty and has the character set *NONE then it is assigned the character set of the file if
records are inserted. If this character set is *NONE then the work file is assigned the
character set EDFO3IRV when records are inserted.

The statements or records read from the @INPUT procedure are interpreted in the
character set corresponding to the specified file. If this character set is *NONE then
EDFO3IRV is used.

This character set may differ from the character set used in the current work file. Since
statements always apply to the current work file and records are always inserted in the
current work file it may therefore be necessary to convert literals in statements or records.
If the file contains characters which cannot be displayed in the work file's character set then
these characters are replaced by a substitute character provided that such a character has
been specified (see @PAR SUBSTITUTION-CHARACTER); otherwise, the execution of
the @INPUT procedure is aborted with the error message EDT5453.

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION-
CHARACTERS is specified. In this case, the execution of the @INPUT procedure is aborted
with the message EDT5454.

352

U41709-J-2125-1-76

EDT statements

@INPUT (format 2)

9.64 @INPUT (format 2) — Start @INPUT procedure from DMS file

This format of the @INPUT statement starts an @INPUT procedure from a SAM or ISAM
file. Format 2 is now only supported for reasons of compatibility and should no longer be
used. The statements and/or records in the file are processed sequentially. For information
on the structure and processing of EDT procedures, see section “EDT procedures” on

page 64.

Operation

Operands ‘ F mode, L mode

@INPUT

RECORDS
file [(ver)] [lines[,...]] [:cols[....]:] [{ }] [PRINT]

KEY

file

ver

lines

cols

Name of the SAM or ISAM file that is to be read and processed. The name
must correspond to the SDF data type <filename 1..54>.

Here, the symbolic name '/' for a file for which the LINK name EDTSAM
or EDTISAM has been assigned by means of the SET-FILE-LINK command
is not permitted.

If the specified file does not exist or cannot be accessed as required or if the
file cannot be read in successfully then the statement is rejected with a
corresponding error message.

Although this operand may be entered for the purposes of symmetry, it is
completely ignored.

One or more line ranges that are to be processed in the ISAM or SAM file.
If 1ines is not specified then all the lines in the file are processed.

If symbolic line numbers are specified then their values are taken over from
the current work file and therefore usually have nothing to do with the record
structure of the specified file.

Any 11nes specification for SAM files is ignored unless one of the keywords
KEY or RECORDS has been specified at the same time.

One or more column ranges containing the statements to be processed.
The ranges may repeat and overlap. If column values which exceed the
record length are specified then blanks are read in their place.

If KEY is specified for SAM files or in the case of ISAM files then the column
count starts after the key in the record.

If no column range is specified then the lines are read in full.

U41709-J-2125-1-76

353

@INPUT (format 2) EDT statements

KEY Specifies that the first 8 characters of each line in a SAM file are to be inter-
preted as a line number. In the case of SAM files, this type of record can be
created by specifying @WRITE together with the KEY operand.

If KEY is specified in the @INPUT statement then these numbers are inter-
preted as line content rather than line numbers when the file is read.
Otherwise, EDT would consider every line in the file to be a text line.

RECORDS In the case of SAM files, specifies that a line range (see 1ines operand) is
to be selected via the logical line number. The logical line number of the 1st
line in the file is 0.0001, the logical line number of the 2nd line in the file is

0.0002 etc.

PRINT Each line of the procedure should be logged before it is executed. In inter-
active mode, the output is written to SYSOUT and in batch mode it is written
to SYSLST.

Specifying PRINT also causes all error messages to be output and sets the
EDT error switch. Normally, the two messages EDT0901 and EDT4932 are
not output in procedures and the EDT error switch is not set (see section
“Message texts” on page 638).

The @INPUT statement (format 2) must not be issued in @INPUT or in @DO procedures.

The keywords KEY and RECORDS are ignored in the case of ISAM files. If neither RECORDS
nor KEY is specified then any 11ines specification for a SAM file is ignored, i.e. all the lines
in the file are processed.

The execution of an @INPUT procedure is aborted if the @RETURN statement or the last
statement in the procedure has been processed.

In the case of ISAM files and SAM files (with the KEY operand), the record key should
always contain a valid line number and, when processing SAM files, EDT expects the
records to be present in ascending order.

If the file is read without any line range specification then the record keys are simply
ignored, i.e. they are not checked. In contrast, if line ranges are specified then EDT
processes SAM and ISAM files differently.

In the case of ISAM files, the keys corresponding to the records which are actually read are
checked. If a record contains a non-numerical key then execution of the procedure is
aborted with error EDT4984.

In the case of SAM files, records with non-numerical keys or with keywords which are
smaller than the current lower range boundary are ignored. If the keyword is greater than
the current upper range boundary then the record in question and all the records following
it are ignored. Furthermore, in the case of SAM files, records that are shorter than 8
characters are also ignored.

354

U41709-J-2125-1-76

EDT statements @INPUT (format 2)

If the @INPUT procedure contains records then these are inserted in the current work file
in the same way data input in L mode (empty records are ignored). If the current work file
is empty and has the character set *NONE then it is assigned the character set of the file if
records are inserted. If this character set is *NONE then the work file is assigned the
character set EDFO3IRYV when records are inserted.

The statements or records read from the @INPUT procedure are interpreted in the
character set corresponding to the specified file. If this character set is *NONE then
EDFO3IRV is used.

This character set may differ from the character set used in the current work file. Since
statements always apply to the current work file and records are always inserted in the
current work file it may therefore be necessary to convert literals in statements or records.
If the file contains characters which cannot be displayed in the work file's character set then
these are replaced by a substitute character if such a character has been specified (see
@PAR SUBSTITUTION-CHARACTER), otherwise execution of the @INPUT procedure is
aborted with the error message EDT5453. This also applies if there are invalid characters
outside of the column range that is to be read. In contrast, invalid characters outside of the
line range that is to be read are ignored.

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION—
CHARACTERS is specified. In this case, the execution of the @INPUT procedure is aborted
with the message EDT5454.

If the statement is interrupted with and the EDT session is continued with /ITNFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

U41709-J-2125-1-76 355

@INPUT (format 2)

EDT statements

Example

.0000
.0000
.0000
.0000
.0000

.0000
.0000

.0000
.0000

WHFEFMNWNhDEFEOOOO ol WM~ O

@PRINT

@DELETE

I AM LINE 1

I AM THE SECOND LINE
@PRINT 1

@PRINT 2

@WRITE 'SAM-INP' KEY

(1)

@SAVE ' ISAM-INP'
@INPUT 'SAM-INP' KEY
I AM LINE 1

I AM THE SECOND LINE

@INPUT 'ISAM-INP' 1-3,5.,4

I AM THE SECOND LINE
I AM LINE 1

(2)

(3)

(4)

(1) The content of the work file is written as a SAM file. When this is done, each line is

prefixed by a key calculated on the basis of the current line number.

(2) The content of the work file is written again, but in this case as an ISAM file.

(3) The complete file SAM—INP is read and executed. Since this file was created using
@WRITE together with a KEY specification, KEY must be specified. Otherwise, the

stored keys are not converted into line numbers.

(4) Lines 1-3,5,4 in the file ISAM—INP are to be read and executed in the specified
sequence.

356

U41709-J-2125-1-76

EDT statements

@INPUT (format 3)

9.65 @INPUT (format 3) — Define EDT input mode

This format of the @INPUT statement allows users to define how EDT is to interpret text
input in L mode.

Operation

Operands L mode

@INPUT

HEX | X [ISO]
BINARY

{[Qﬂ] }
[]

CHAR

HEX, X

ISO

BINARY

Causes EDT tointerpret record input in L mode as a sequence of characters
in the character set applicable to the input source (terminal, SYSDTA, file,
library element, work file) (see section “L mode” on page 126 which also
discusses the handling of character sets during input in L mode).

Causes EDT to interpret record input in L mode as a sequence of
hexadecimal characters (see section “L mode” on page 126 which also
discusses the handling of character sets during hexadecimal input).

This operand is no longer supported in EDT V17.0 Unicode mode. For
reasons of compatibility, it is ignored and no error message is issued if it is
input. In EDT V17.0 Unicode mode, ISO character sets are not subject to
any special processing. If an ISO character set is defined for the current
work file then hexadecimal input for this work file is automatically interpreted
in the correct code and there is no implicit conversion into EBCDIC.

Causes EDT to interpret record input in L mode as a sequence of binary
characters (see section “L mode” on page 126).

The default setting when EDT is called is @INPUT CHAR.

The maximum permitted abbreviation of the statement can only be used if operands are
specified. If called without operands, the maximum permitted abbreviation is @INP as EDT
otherwise recognizes the @INDEX statement.

Note

Even if @INPUT HEX or @INPUT BINARY has been specified, statements may not be
entered in hexadecimal or binary coding.

U41709-J-2125-1-76

357

@LIMITS

EDT statements

9.66 @LIMITS - Output line numbers and number of lines

The @LIMITS statement causes EDT to output the lowest and the highest assigned line

number as

well as the number of lines for the current work file.

In interactive mode, the output is written in a line to SYSOUT and in batch mode it is written

to SYSLST.

Operation

Operands F mode, L mode

@LIMITS

In the case

Example

4.

.0000
.0000
.0000

=B~ wnn =

.0000

~

100.
1.

03
0000

100.03

of files opened for real processing, the number of lines 0 is always output.

@PRINT

A

B

C

@LIMITS

T0 3.0000 3 LINES (1)
@COoPY 1-3 TO 99.01 (2)
@LIMITS

T0 99.0300 6 LINES (3)

(1) The lowest and highest assigned line numbers are output together with the number of

lines.

(2) Lines 1-

3 are copied to the lines 99.01, 99.02 and 99.03.

(3) The lowest and highest assigned line numbers are now 1.0000 or 99.0300. The
number of lines is now 6.

358

U41709-J-2125-1-76

EDT statements

@LIST

9.67 @LIST - Print work file ranges or string variables

The @LIST statement is used to output ranges of a work file or string variables to SYSLST
or at the printer. Unless specified to the contrary, every output line is prefixed by the line
number and every output string variable is prefixed by the number of the string variable.

Operation

Operands ‘ F mode, L mode

@LIST

lines C [in]
[[:cols[:]] [X] [N] [100 ST1L--]
svars P int

lines
svars

cols

Cint

The line range to be output.
The range of string variables whose contents are to be output.

Column range for output in the current work file or in the specified string
variables.

If only one column number is specified then the remainder of the line or
string variable is output as of this column. If the first column specification is
greater than the length of the line or string variable then the line or string
variable is ignored.

If no column range is specified then the line or string variable is read in full.

The lines are printed in hexadecimal form. The output format is the same as
in @PRINT.. X.

The line numbers or the numbers of the string variables are omitted on
printing.

EDT expects an EBCDIC line feed character as the first character in each
line in the specified column range. This generates a line feed during printing
but is not itself printed. The line feed character must be present in the
character set of the current work file or the current string variable (see
below). EDT bases its interpretation of this character on the meaning of the
equivalent EDF041 character.

Any characters which EDT cannot interpret in the first column result in a
simple line feed.

Values between 0 and 256 are permitted for int. If a value of int other than
0 is specified, EDT generates not only the line feeds present in the record
itself but also a form feed after int output lines (taking account of the form
and line feeds present in the record itself). If int has the value 0 then no
additional form feed is generated.

U41709-J-2125-1-76

359

@LIST

EDT statements

P int

The value set here for the page size remains valid and therefore influences
all outputs to SYSLST.

If int is not specified, EDT uses the last page size setting defined with the
@LIST or @PAGE statement independently of whether int was specified
in combination with C or P. If there has been no previous @LIST modifying
the value of int then the default value 65 is assumed (see @PAGE
statement).

EDT prefixes every output record with an EBCDIC line feed character.
When doing this, EDT only uses the EBCDIC feed characters Line feed
after printing each lineor Form feed in the coding corresponding
to the character set for the output file in question (SYSLST or temporary file)
(see below).

Values between 0 and 256 are permitted for int. If int is not equal to 0
then a form feed is inserted exactly after every int lines. If int has the
value 0 then no form feed is inserted. The value set here for the page size
remains valid and therefore influences all outputs to SYSLST.

Printing starts immediately. This means that EDT writes the records that are
to be output to a temporary file (using the system file SYSLST97) and then
outputs these after closure to the defined standard printer by means of a
/PRINT-DOCUMENT command.

When ranges from a work file are output, the temporary file is created in the
character set used by the work file provided that this is an EBCDIC
character set. If not, the reference character set is used provided that this
is an EBCDIC character set. In all other cases, the temporary file is created
in the character set UTFE. If ranges of string variables are to be output then
the character set is determined in the same way for each individual string
variable. If the character sets determined in this way are all identical then
this character set is used, otherwise UTFE.

If the user is not authorized to create temporary files or if the system admin-
istrator has prohibited the use of temporary files or if, for any other reason,
it is not possible to create the file or write its content then a @LIST
statement issued with the T operand is rejected with a corresponding error
message.

The I operand is only permitted in interactive mode. It is only of value if the
defined standard printer is able to reproduce the character set used for the
output correctly.

If I is not specified then the output is sent to SYSLST. If SYSLST is not
assigned to a file then printing does not start until after /LOGOFF. If SYSLST
is assigned to a file then users must initiate output themselves.

360

U41709-J-2125-1-76

EDT statements @LIST

S Eliminates the additional line feed which usually takes place before the first
output line.

If neither 1ines nor svars is specified then the entire current work file is output.

If neither P nor C is specified, EDT generates feed characters as in the case of P and the
last page size value set using @LIST or @PAGE is used.

If EDT generates the feed characters then it takes account of the set or specified page size
and usually generates an additional line feed before the first line of every range. This
operation is only omitted if the S operand is specified or if this line is output at the start of a
page. A line feed is inserted in the output after every 132 characters (or 160 characters if
job switch 6 is set).

When ranges in a work file are output, these are converted from the character set used in
the work file into the character set used for SYSLST or the character set of the temporary
file (see the description of the 1 operand. When ranges of string variables are output, each
string variable is converted from the character set assigned to it into the character set used
for SYSLST or the character set of the temporary file (see the description of the I operand.
If characters are found which do not correspond to a valid character in the target character
set then these are replaced by a substitute character if such a character has been specified
(see @PAR SUBSTITUTION-CHARACTER). Otherwise blanks are used.

The EBCDIC and ASA feed characters in BS2000 are valid characters in every employed
8-bit or Unicode character set and can therefore always be edited in EDT even if they
cannot be displayed. This is particularly true of the feed characters which are interpreted or
inserted by EDT (see the C and P operands. As a result, some feed characters are coded
as Unicode characters with more than one byte (see the table below).

In the case of print files which are present in a Unicode character set (e.g. SYSLST), the
BS2000 SPOOL subsystem converts the feed character from the print file's Unicode
character set into EDF041 and interprets the resulting character as explained in the User
Guide, Commands, Volume 3 [10], description of the /PRINT-DOCUMENT command.
Conversion is only performed if the file is printed using
LINE-SPACING=*BY—-EBCDIC—CONTROL or LINE-SPACING=*BY-ASA—-CONTROL. In the
case of files that are to be printed using LINE-SPACING=*BY—-IBM—-CONTROL no conversion
is performed. In these files, the feed characters are not usually valid Unicode characters
with the result that they cannot be processed in EDT. If the print file possesses a 7-bit or
8-bit character set then, as in the past, SPOOL interprets the feed character without
converting it.

U41709-J-2125-1-76 361

@LIST

EDT statements

The codings of the EBCDIC feed characters interpreted or generated by EDT are given
below for a number of character sets:

UTF16 |UTF8 UTFE EDF041 |Charac
ter

0020 20 40 40 o No feed before printing, new line after
printing

00a0 c2a0 6741 41 One line feed before printing, new
line after printing

00e2 c3a2 68b0 42 a Two lines feed before printing, new
line after printing

00e4 c3a4 689f 43 a Three lines feed before printing, new
line after printing

00e0 c3a0 6841 44 a Four lines feed before printing, new
line after printing

00e1 c3a1 68aa 45 a Five lines feed before printing, new
line after printing

00e3 c3a3 68b1 46 a Six lines feed before printing, new
line after printing

00e5 c3ab 68b2 47 a Seven lines feed before printing, new
line after printing

00e7 c3a7 68b5 48 C Eight lines feed before printing, new
line after printing

00f1 c3b1 688f 49 A Nine lines feed before printing, new
line after printing

0060 60 4a 4a Ten lines feed before printing, new
line after printing

002e 2e 4b 4b Eleven lines feed before printing, new
line after printing

003c 3c 4c 4c < Twelve lines feed before printing, new
line after printing

0028 28 4d 4d (Thirteen lines feed before printing,
new line after printing

002b 2b 4e 4e + Fourteen lines feed before printing,
new line after printing

007c 7c 4f 4f | Fifteen lines feed before printing, new
line after printing

0041 41 ci cl A Page feed before printing

362

U41709-J-2125-1-76

EDT statements @LIST

When interpreting feed characters, EDT also accepts the EBCDIC control characters
x'00'..x'0OF" (ortheir equivalents in other character sets) and interprets them as
x'40"'..x"4F"'. However, when output is written in the character set UTF8 or UTFE, EDT
never generates feed characters that are coded with more than one byte. Instead it
generates the corresponding number of single line feeds.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
The system files SYSLST and SYSOUT should only be assigned to files or library
elements with a Unicode character set if it is certain that only EDT sends output to these

files. Otherwise files containing invalid characters could be created since other system

components do not usually take account of the character set assigned to SYSLST or
SYSOUT.

U41709-J-2125-1-76 363

@LIST

EDT statements

Example

6. @PRINT

1.0000 THE @LIST STATEMENT

2.0000 PERMITS THE CONTENTS
3.0000 OF A WORK FILE TO BE
4.0000 TRANSFERRED TO PAPER
5.0000 IN ANY DESIRED FORM.

6. @LIST (1)
6. @LIST 4-5 N (2)
6. @LIST 4 :13-14 X (3)
6. @LIST & I (4)

(1) The entire content of the work file is to be output to SYSLST. The print-out (possibly
initiated by the system) is not started until LOGOFF.

Print output

1.0000 THE @LIST STATEMENT

2.0000 PERMITS THE CONTENTS
3.0000 OF A WORK FILE TO BE
4.0000 TRANSFERRED TO PAPER
5.0000 IN ANY DESIRED FORM.

(2) Lines 4 to 5 are to be output to SYSLST without line numbers.
Print output

TRANSFERRED TO PAPER
IN ANY DESIRED FORM.

(3) The two columns 12 and 13 of line 4 are to be output in hexadecimal to SYSLST.
Print output
4.0000 E3D6
(4) All the lines are to be printed immediately.
Print output
As in (1). However, the following system message is also displayed:
% SCP0810 SPOOLOUT OF FILE 'XXX' ACCEPTED, TSN: 'XXX', PNAME: 'XXX'.

in order to confirm that the print job has been assigned.

364

U41709-J-2125-1-76

EDT statements @LOAD

9.68 @LOAD - Load program

The @LOAD statement terminates the EDT session and loads the specified program.

Operation Operands F mode, L mode
@LOAD string
string String specifying the name of the program that is to be loaded. The system

expects the name of a BS2000 file which contains the program that is to be
loaded. It is not possible to specify a library element.

The @LOAD statement is one of the EDT statements with security implications (see also
section “Access protection” on page 99). The statement is rejected in uninterruptible
system procedures in interactive mode and on input from a file (read with RDATA from
SYSDTA not equal to SYSCMD, execution of a start procedure).

The @LOAD statement always causes EDT to be terminated irrespective of whether the
specified program file exists or contains a valid program.

As far as the handling of unsaved files and the related security queries is concerned,
@LOAD acts in the same way as the @HALT statement (see section “Terminating an EDT
session” on page 92). Since EDT is always terminated, save queries may, unlike in the case
of @HALT, also be issued if the statement was entered in the screen dialog (started with
@DIALOG).

If EDT was loaded as a subroutine and the EDT screen dialog has been activated with
@DIALOG, the @LOAD statement does not result in the continuation of the user program.
Instead, the user program is also unloaded.

It is therefore possible to prohibit users from issuing the @LOAD statement when EDT is
called as a subroutine. In this case, calls are rejected with the message EDT4976.

Note
If @DIALOG was issued in a system procedure, then the remaining procedure
commands after @LOAD are executed while the specified program is loaded instead
of EDT. This may result in unwanted effects.

U41709-J-2125-1-76 365

@LOAD EDT statements

Example

The example assumes that the records present in the work file have not yet been saved.

(1‘00 EDT -IS tO be ter‘m-inated< ..
2.00 and LMS 10adede:«c st st e ot et et e
3.00 This is done with the @LOAD statement<::«««-crerrrrrrrerrenerenerenen.
4.00 ..

@LOAD \$‘|ms‘ ... 000100:00001(00)

_ /

EDT is to be terminated and LMS is to be loaded.

e ™

% EDT0900 EDITED FILE(S) NOT SAVED!

LOCAL FILE C 0) :
% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?y
% BLS0500 PROGRAM 'LMS', VERSION 'V3.0Al OF 'yy-mm—-dd' LOADED,
/resume—program
% LMS0310 LMS VERSION VO3.0A00 LOADED
CTL=(CMD) PRT=(0UT)
$

Since the work file has not yet been saved, EDT queries (in the same way as in @HALT),
whether it should really terminate.

Since @LOAD was specified rather than @EXEC, a slash indicates that further system
commands are expected. LMS is not started until the /RESUME-PROGRAM command is
issued.

366 U41709-J-2125-1-76

EDT statements @LOG

9.69 @LOG - Control logging

The @LOG statement controls the logging of the input in batch and interactive mode.

Operation Operands ‘ F mode, L mode
@LOG ALL SYSLST
[< COMMANDS /] []
NONE SYSLST n
ALL All L mode input (text and statements) that is entered via RDATA or via the

terminal is to be logged.

In the case of inputs in the F mode's interactive mode, the input in the
statement lines (separated into individual statements if the case of
statement sequences) is logged.

COMMANDS Only statements are to be logged.
NONE Nothing is to be logged.
SYSLST Log outputis sentto SYSLST. This is the default setting when EDT is started.

SYSLST n Log output is written to the file to which SYSLSTnn is assigned (values
between 1 and 99 are permitted for n).

The default setting when EDT is started in batch mode is @LOG NONE if job switch 4 is
set and @LOG COMMANDS if job switch 4 is not set. If EDT is called in interactive mode
then @LOG NONE is set by default.

The definition of the output medium (SYSLST, SYSLSTnn) remains valid for subsequent
@LOG statements unless these specify a different value.

Note
Statements and data input which are read from EDT procedures and executed are not
logged by @LOG in either batch or interactive mode. The logging of such items must
be requested explicitly by means of @DO ...PRINT or @INPUT ...PRINT.
In test mode, the @LOG statement is not just checked for its syntax. It is also executed
(see @SYNTAX- statement).

Logging to list variables, which was possible in the predecessor version, is no longer
supported. It is, however, possible to use the /ASSIGN-SYSLST command to assign a
list variable to the system file SYSLST.

U41709-J-2125-1-76 367

@LOWER

EDT statements

9.70

@LOWER - Lowercase and uppercase on input

The @LOWER statement specifies whether or not EDT is to convert lowercase characters
into uppercase when data and statements are input at the terminal.

Operation Operands F mode, L mode
@LOWER ON
[]
OFF
ON EDT differentiates between uppercase and lowercase. Strings are

processed in the form that they are entered.
OFF EDT converts entered lowercase characters into uppercase.

In F mode, any lowercase characters present in the work file are converted
into smudge characters for output in the work window. If output is sent to
SYSOUT or SYSLST (e.g. by means of the @ON statement, format 1, in L
mode) then they are displayed as printable characters.

When EDT starts, the value ON is set as the default for all the work files.

The @LOWER statement applies globally to all the work files. The @PAR LOWER
statement can be used to set the way in which lowercase characters are handled for each
work file separately.

EDT uses the system component XHCS when converting from lowercase to uppercase.
Which characters are converted therefore depends on the definition of the associated
character set attributes in XHCS.

If the @LOWER statement is issued in L mode inside an input block (see @BLOCK) or in
F mode as part of a statement sequence (statements separated by ;) then the conversion
mode takes effect as of the statement or data line that follows @LOWER.

If @LOWER OFF is set then all the characters entered at the terminal are converted from
lowercase to uppercase irrespective of whether the input was made in F mode or L mode
or whether the input consists of statements or data lines. However, in F mode, this
conversion is not performed until a statement is stored in the statement buffer, i.e. state-
ments are stored here in the same way that they were entered (see also @SHIH
statement).

368

U41709-J-2125-1-76

EDT statements @LOWER

If input is read from files or work files, e.g. during the execution of EDT procedures or when
reading from SYSDTA after this has been assigned to a file, then text input and literals in
statements are not converted into uppercase even if @LOWER OFF is set. This is the same
behavior as when reading from files in which case there is also no conversion.

When statements are input, the setting @LOWER ON only affects literals. Statements and
keywords are always converted into uppercase when a statement is analyzed.

U41709-J-2125-1-76 369

@MODE

EDT statements

9.71 @MODE - Change operating mode

The @MODE statement is used to switch between the operating modes (compatibility
mode and Unicode mode, see section “Introduction to the EDT operating modes” on
page 21).

Operation Operands ‘ F mode, L mode

@MODE UNICODE
OPERATING-MODE =
COMPATIBL

OPERATING-MODE=
The EDT operating mode is switched.

UNICODE EDT changes from compatibility mode to Unicode mode. If EDT is already
running in Unicode mode, the statement is ignored.

COMPATIBLE
EDT changes from Unicode mode to compatibility mode. If EDT is already
running in compatibility mode, the statement is ignored.

It is only possible to change operating mode if all the EDT work files are empty and no files
are open. Otherwise, the statement is rejected with the message EDT4983.

Changing the operating mode amounts to terminating EDT in one mode and then restarting
it in another mode. When this is done, all the settings are lost and all the variables are reini-
tialized. For details, see section “Activating compatibility and Unicode mode” on page 615.

370

U41709-J-2125-1-76

EDT statements

@MOVE

9.72 @MOVE - Move lines or string variables

The @MOVE statement transfers records from the current or another work file to the
current work file and then deletes them at their original positions or transfers the contents
of string variables to the current work file and then reinitializes the string variables.

For the sake of clarity, the line range in the source work file which contains the records that
are to be moved or the range of string variables are referred to as the “source range” below.
The line range in the current work file into which the records from the source work file are
to be moved is referred to as the “target range”.

Operation

Operands ‘ F mode, L mode

@MOVE

lines [(procnr)]
}[TO {line1 [(inc)] [] [line2]} [,...]]} [,--]

svars

lines

procnr

svars

TO...

line1

inc

Contiguous line range that is to be moved to the current work file. Symbolic
line numbers in lines refer to the line numbers of the current work file even
if the lines are taken over from another work file.

Number of the source work file from which the records are to be moved
(0..22). If procnr is not specified then the records are moved from the
current work file. An active work file may not be specified. If the TO operand
is not specified then procnr must not be the current work file.

Range of string variables whose contents are to be moved into the current
work file. After transfer, the string variables are deleted, i.e. they are reini-
tialized with a blank in the character set EDF041.

The operands which follow TO define the target range or ranges. If no target
range is specified then the line numbers in the source work file are taken
over into the current work file.

If the source work file is the current work file or if string variables are moved
then TO. . . must be specified. In these cases, if no target range is specified
then the @MOVE statement is rejected with the error message EDT3218.

Number of the first line in the target range.

Increment used to form the line numbers following 1inel. If inc is not
specified then the increment implicitly specified by 1inel is used (see
section “Implicit increment assignment” on page 35).

The operands 1inel and 1ine2 should be separated by : if inc is not
specified.

U41709-J-2125-1-76

371

@MOVE

EDT statements

line2 Specifies the largest possible line number in the target range up to which
the transfer of records is permitted.

As a result, no move operation is performed to lines in the current work file
with line numbers higher than 1ine2. This also applies if it is not possible
to move all the records in the source range to the target range.

If 1ine2 is not specified then the @MOVE statement does not define any
maximum value for the line numbers in the target range.

In the @MOVE statement, it is possible to specify multiple comma-separated source
ranges each of which are associated with multiple target ranges. The number of source and
target ranges is only limited by the maximum permitted length of EDT statements. It is not
usually of value to specify multiple target ranges since the lines are deleted in the source
range the first time they are transferred and are therefore no longer available for further
move operations.

If the source and target ranges overlap then the source range is moved and deleted line-
by-line.

Any existing lines with the same line numbers present in the work file are overwritten on the
move operation.

If a line with a number greater than the previous highest line number is created then the
current line number is modified.

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the source work file or the first specified string variable when the move
operation is performed.

If the current work file has a character set then the lines to be moved or the contents of the
string variables are converted into the character set of the current work file. If characters
which cannot be displayed in the work file's character set are identified then these
characters are replaced by a substitute character provided that such a character has been
specified (see @PAR SUBSTITUTION-CHARACTER); otherwise, the @ MOVE statement
is rejected and error message EDT5453 is output.

If the statement is interrupted with and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

372

U41709-J-2125-1-76

EDT statements @MOVE

Note

Since the above syntax permits the omission of the TO operand, it is not always possible
to distinguish unambiguously between the target and source ranges. In such cases,
EDT interprets the ambiguous specification as a target range. Thus, for example, in the
input

@MOVE 2-3(1) TO 7,1(1)

the specification 1(1) is interpreted as a second target range (the 1 in parentheses is
interpreted as the increment), whereas the specification 1(0) at this point would be
interpreted as the next source range (the 0 cannot be an increment and is interpreted
as a work file number). If, in this example, the user wants to force the specification to
be interpreted as a source range, it would be possible, for example, to enter

@MOVE 2-3(1) TO 7,1-1(1)

to eliminate all ambiguities.

Example

move 2-=4 t0 20. .. o e 0001.00:00001(00)
- J

1.00 THIS LINE IS NOT MOVEDS. ...t i e et e e
2.00 LINE 2 AND LINE B<. .t e e e
3.00 AND LINE 4 ARE MOVED<. ... o e it
4.00 SEVERAL TIMESS. L e e e e e i
90.00 THE LINE IS NEVER OVERWRITTENS<.o
0L 00 o e

Lines 2 to 4 are to be moved to the line range starting at line 20. The value 1 is specified
implicitly as the increment for the target range.

Ve

move 20-22 to 100 (5) .. . OOOl.OO:OOOOl(OO))
-

1.00 THIS LINE IS NOT MOVED<. ...t i e e e e e
20.00 LINE 2 AND LINE B<. .. e e ettt
21.00 AND LINE 4 ARE MOVED<. ... e e e
22.00 SEVERAL TIMESS. .. i e e e e et
90.00 THE LINE IS NEVER OVERWRITTENS<.o i
0L 00 o e

U41709-J-2125-1-76 373

@MOVE EDT statements

Lines 20, 21 and 22 have now been created with the implicitincrement 1 and lines 2, 3 and
4 have been deleted.

Lines 20-22 are to be copied to 100, 105 and 110.

(1‘00 THIS LINE IS NOT MOVED< ...

90.00 THE LINE IS NEVER OVERWRITTENS: =+t s e emmeneenneenneteeeneeneennns
100.00 LINE 2 AND LINE Becssoeesommne ettt
105.00 AND LINE 4 ARE MOVEDS® *+ = s v v e s rmmeomemne e eeeteeteneneeneeneennnnn e
110.00 SEVERAL TIMESS« c s s o e v s e et e em ittt et ettt
R T

\move 1007‘$ to 82(5) : 89 0001'00:00001(00)
/

The line range from line 100 through to the end of the work file (100-. $) is to be copied to
the line range starting at line 82 with the explicit increment 5. Since 89 has been specified
as the highest possible line number for the target range, line 90 is not written.

1.00 THIS LINE IS NOT MOVEDS: =+ v s s v e semenneeeae e ee et eenetnaeeneennennns
82 .00 LINE 2 AND LINE 3t st oeeesomme e ettt ittt
87.00 AND LINE 4 ARE MOVEDS: # =t s v s oot o e ee e ettt teteteteaneeananeenns
90.00 THE LINE IS NEVER OVERWRITTENS - ® s eerememeeeeeeeeeeeeennenennnnnnnnnns

110.00 SEVERAL TIMESS: + s v v oo ememnaneneeeeeteteteeeeeeeeeeeeennnnnnannnnnnsns
O T T T

Since 89 has been specified as the highest possible line number for the target range, line
110 is not transferred.

374 U41709-J-2125-1-76

EDT statements

@NOTE

9.73 @NOTE - Empty statement

The @ NOTE statement does not perform any action. It is used to insert comments in EDT
procedures. Lines which contain a @NOTE statement can also be branched to by means
of @GOTO. The @ CONTINUE statement offers the same functionality as @ NOTE.

Operation Operands L mode
@NOTE [comment]
comment The comment operand may contain any text as a comment.

Alongside the insertion of comments, this statement is also frequently used to define a last
line in an EDT procedure which can be specified as the destination of a branch operation
in a @GOTO or an @IF statement. This construction is required if an EDT procedure is

called in an external loop with a loop counter (e.g. @DO 5,!'=%,$), and an @IF ... RETURN
would result in an unwanted abort of the external