
Edition May 2007

©
 S

ie
m

e
ns

 N
ix

do
rf

 I
nf

or
m

at
io

ns
sy

st
em

e
 A

G
 1

99
5

P

fa
d:

 F
:\C

P
P

V
3

.2
A

\C
P

P
_p

os
ix

_
cn

d_
e

_n
eu

\c
89

b
hb

.v
or

C/C++ V3.2A
POSIX Commands of the C/C++ Compiler

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to
manuals@fujitsu-siemens.com.

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Siemens Computers GmbH 2007.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@fujitsu-siemens.com
http://www.cognitas.de

U23625-J-Z125-6-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 S

e
pt

em
b

er
 2

00
7

 S
ta

nd
 1

6:
51

.5
4

P
fa

d:
 F

:\C
P

P
V

3
.2

A
\C

P
P

_p
o

si
x_

cn
d

_e
_n

e
u\

c8
9b

hb
.iv

z

Contents

1 Preface . 5

1.1 Brief product description . 5

1.2 Summary of contents . 6

1.3 Changes since the previous manual . 7

1.4 Notational conventions . 8

2 Basics . 9

2.1 Delivery structure and software environment . 9

2.2 From source code to program execution . 10
2.2.1 Providing the source code and header files . 10
2.2.2 Compiling . 11
2.2.3 Linking . 13

Linking user modules . 13
Linking the CRTE runtime libraries . 14

2.2.4 Debugging . 16
2.2.5 Using the POSIX library functions . 16

2.3 C++ template instantiation under POSIX . 17
2.3.1 Basic aspects . 17
2.3.2 Automatic instantiation . 19
2.3.3 Generating explicit template instantiation statements (ETR files) 24
2.3.4 Implicit inclusion . 31
2.3.5 Libraries and templates . 32

2.4 Porting software . 36

2.5 Introductory examples . 37

Contents

 U23625-J-Z125-6-76

3 The cc, c89 and CC commands . 39

3.1 Calling syntax and general rules . 40

3.2 Description of options . 45
3.2.1 General options . 46
3.2.2 Options for selecting compilation phases . 49
3.2.3 Options for selecting the language mode . 52
3.2.4 Preprocessor options . 55
3.2.5 Common frontend options in C and C++ . 58
3.2.6 C++-specific frontend options . 62

General C++ options . 62
Template options . 65

3.2.7 Optimization options . 69
3.2.8 Options for controlling object generation . 73
3.2.9 Debug option . 80
3.2.10 Runtime options . 80
3.2.11 Link editor options . 83
3.2.12 Options for controlling message output . 90
3.2.13 Options for outputting listings and CIF information 92

3.3 Files . 96

3.4 Environment variables . 96

3.5 Predefined preprocessor names . 97

4 Global listing generator (cclistgen) . 99

4.1 Calling syntax . 99

4.2 Options . 101

5 Appendix: overview of options (alphabetic) . 105

Related publications . 111

Index . 113

U23625-J-Z125-6-76 5

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
1

1 Preface

1.1 Brief product description

The BS2000 C/C++ Compiler V3.2A can be called from and controlled with options from the
BS2000 (SDF) or POSIX (POSIX shell) environment.

This manual describes controlling the compiler from the POSIX environment, where the
following POSIX commands are available:

The options and operands of the above calling commands cover most of the services and
functions available for controlling the compiler via the SDF interface (see the “C/C++ User
Guide” [4]). The syntax of the POSIX commands is based on the definition in the XPG4
Standard or on the normal UNIX shell commands.

The cc, c89 and CC calling commands also include linking the compiled objects together
to form an executable program.

The software products CRTE V2.6A and POSIX-HEADER V1.6A are required for creating
and running C and C++ programs in the POSIX environment. CRTE also contains the
standard header files and modules of the C and C++ library functions. The headers of
CRTE and also the POSIX headers are required for using the POSIX library functions.

cc, c89 Calls the compiler as a C compiler

CC Calls the compiler as a C++ compiler

cclistgen Calls the global listing generator

Summary of contents Preface

6 U23625-J-Z125-6-76

1.2 Summary of contents

This manual describes how C and C++ programs are compiled, linked and executed with
the C/C++ compiler and additional development tools in the POSIX environment.

Chapter 2 summarizes the C/C++ program development in the POSIX environment.

The compiler is called with the cc, c89 and CC commands, which are described in detail
with their options and the effects of these in chapter 3.

Chapter 4 describes the cclistgen command, which is used to call and control the global
listing generator.

All compiler options are listed alphabetically in chapter 5 (appendix) together with page
references.

In order to work effectively with this manual, you will need to be familiar with the C and C++
programming languages and the POSIX shell.

This manual is primarily intended for use as a reference manual for the POSIX commands
of the C/C++ compiler.

Detailed information on the services and functions of the C/C++ compiler beyond the
POSIX control can be found in the following manual:

“C/C++ BS2000/OSD, C/C++ Compiler”, User Guide

In addition to SDF control of the C/C++ compiler, the above manual contains further infor-
mation on topics not dealt with in this manual. These topics include:

– process and effects of optimization
– structure of the compiler listings and messages
– compiler C language support (a summary of the C language modes, implementation-

dependent behavior, #pragma directives, extensions to the ANSI/ISO C standard)
– compiler C++ language support (a summary of the C++ language modes, implemen-

tation-dependent behavior, extensions to the ANSI C++ standard)
– links between functions and language
– brief description of the C++ libraries supplied with CRTE

Preface Changes since the previous manual

U23625-J-Z125-6-76 7

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
1

1.3 Changes since the previous manual

The changes in this User Guide compared to C/C++ V3.1A are due to the following major
innovations:

● Runtime options

–K environment_encoding_std
–K environment_encoding_ebcdic
These options enable the encoding of external strings, such as arguments of main and
environment variables, to be controlled.

● Link editor options

–z dup_ignore
–z dup_warning
–z dup_error
These options enable the behavior of duplicated entry names to be controlled during
linking.

● RISC code generation is no longer supported in C/C++V3.2 and higher.
All the information on it has therefore been removed.

Notational conventions Preface

8 U23625-J-Z125-6-76

1.4 Notational conventions

The following notational conventions are used to depict commands, options and program
directives described in this User Guide:

*STD Uppercase letters, digits and special characters which do not
belong to the metalanguage characters designate keyword or
constants which must be entered exactly as shown.

-R msg_id Uppercase and lowercase letters, digits and special characters in
typewritten text are constants and must be entered exactly as
shown, except for the -K option arguments, which are shown in the
manual in lowercase letters, but may be entered in both uppercase
and lowercase (see page 42).

name Lowercase letters in italics denote variables, which must be
replaced by current values at the time of input.

{cc | c89} Braces enclose alternatives from which one must be selected. The
separator character | must not be specified.

[] Square brackets enclose options that may be omitted.

() Parentheses are constants and must be specified.

Ë This symbol indicates that at least one white space character is
necessary for the syntax.

... Ellipses signify repetition, i.e. the preceding unit can be repeated
several times in succession.

U23625-J-Z125-6-76 9

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

2 Basics

2.1 Delivery structure and software environment

The files required for controlling the BS2000 C/C++ compiler from the POSIX shell are
stored as follows in the POSIX file system:

Installation of the above POSIX files is described in the Release Notice for
C/C++ (BS2000/OSD) V3.2A.

C/C++ uses the C and C++ library function header (or include) files and modules supplied
with CRTE and the header files supplied with POSIX-HEADER for all POSIX library
functions. The libraries for programs lex and yacc are part of the software product
POSIX-SH.

The C and C++ library function modules are installed in BS2000 as PLAM libraries and not
in the POSIX file system. When linking with the cc/c89/CC commands, the link options are
issued to the relevant PLAM libraries as RESOLVE directives (of the LINK EDITOR).
See also the link option -l x (page 86).

The header files for the C and C++ library functions are stored as POSIX files in the
standard /usr/include , /usr/include/sys and /usr/include/CC directories. Instal-
lation of these header files is described in the CRTE Release Notice or in the manual
“POSIX Basics” [1].

/opt/C/bin/c89
 cclistgen
 cc
 CC

Links to the compiler and listing generator installed in BS2000
(PLAM library)
Links to opt/C/bin/c89

/usr/bin/cc
 c89
 CC

Link to /opt/C/bin/cc
Link to /opt/C/bin/c89
Link to /opt/C/bin/CC

/usr/bin/cclistgen Link to /opt/C/bin/cclistgen

From source code to program execution Basics

10 U23625-J-Z125-6-76

2.2 From source code to program execution

This section provides you with an overview of the following program creation stages in the
POSIX subsystem:

● Providing the source code and header files

● Compiling

● Linking

● Testing

● Using the POSIX library functions

2.2.1 Providing the source code and header files

The source code and header files may be provided in EBCDIC or ASCII code. The default
is EBCDIC in the POSIX file system and ASCII in the file systems of remote UNIX hosts. All
files in a file system (POSIX file system or merged in, remote file system) must be available
in the same codeset. The compiler does not query the codeset of individual files, it only
queries the codeset of a file system. The files of ASCII file systems are converted automat-
ically to EBCDIC, as long as the POSIX variable IO_CONVERSION is set to YES.

The the source code file names must contain one of the following standard suffixes:

c, C C source code (cc, c89) or C++ source code (CC) before the preprocessor run

cpp, CPP, cxx, CXX, cc, CC, c++, C++
 C++ source code before the preprocessor run (CC)

i C source code (cc, c89) after the preprocessor run

I C++ source code after the preprocessor run (CC)

In addition to the above suffixes, the -Y F option (see page 47) can be used to define
additional input file suffixes which are then also accepted by the compiler.

Source code and include members stored in BS2000 files or PLAM libraries cannot be
processed with the compiler in the POSIX file system.

The POSIX bs2cp command is provided for transferring BS2000 files and PLAM library
members into the POSIX file system and vice versa. The POSIX edt command is provided
for editing POSIX files in the POSIX shell. If the POSIX shell is accessed via rlogin, the
vi editor may also be used. See the manual “POSIX Commands” [2].

The standard header files for the C and C++ library functions available with CRTE are in the
standard /usr/include, /usr/include/sys and /usr/include/CC directories. These
directories are searched automatically by the compiler (or preprocessor).

Basics From source code to program execution

U23625-J-Z125-6-76 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

2.2.2 Compiling

C sources are compiled with the cc and c89 commands and C++ sources with the CC
command.

These commands are described in detail in chapter 3.

C and C++ language modes

The C and C++ sources can be compiled in various language modes via the following
options:

C language modes (cc/c89 commands):

– extended ANSI C (-X a), default
– strict ANSI C (-X c)
– Kernighan&Ritchie C (-X t)

C++ language modes (CC command):

– extended ANSI C++ (-X w), default
– strict ANSI C++ (-X e)
– Cfront V3.0.3 compatible C++ (-X d)

See page 52ff for the language mode options.

Creating an object file (“.o” file)

If the compilation run is not terminated after the preprocessor phase (see the -E and -P
options on page 49), the compiler creates an LLM for each compiled source file and stores
it by default in a POSIX object file named basename.o in the current directory. basename is
the name of the source file without the directory part or the standard suffixes (.c, .C etc.).

A different directory and/or file name may be defined for the object file with the -o option
(see page 46).

By default, a link run is started after compilation. If only one source file is compiled and
linked in one step, the object file is stored temporarily and then deleted. If at least two
source files or one source and one object file (.o file) are specified, the object files are not
deleted.

Linking can be prevented by specifying the -c option (see page 49).

From source code to program execution Basics

12 U23625-J-Z125-6-76

Creating an expanded, recompilable source program (“.i” file)

If the -P option is specified, only the preprocessor run is executed and one expanded,
recompilable source program is generated for each compiled source file. The result is
written by default into a POSIX source file named basename.i (cc, c89) or basename.I (CC)
in the current directory.

The -o option can be used to specify a different destination directory and/or file name for
the expanded source program (see page 46).

Creating compilation listings

The -N listing option can be used to request various compiler listings (e.g. source/error
listing, cross-reference listing, etc.). The compiler either writes the requested listings
separately for each compiled source file into a list file named basename.lst or collectively
for all compiled source files into a list file file specified with the -N output option (see
page 92).

You can also create CIFs (Compilation Information Files) for the output of compilation
listings, which are subsequently processed with the global listing generator cclistgen.
See the -N cif option (page 92) and chapter “Global listing generator (cclistgen)” on
page 99.

List files can be printed out with the POSIX bs2lp command (see the manual “POSIX
Commands” [32).

Output destinations and codeset

The compiler saves the output files by default in the current directory, i.e. in the directory
from which the compiler run was started.

The -o option (see page 46) can be used to specify a different directory and/or file name
as the output destination. This can be a directory in the local POSIX file system or in a
merged in file system on a remote host. However, it must be noted that it is only meaningful
to further process text files on SINIX/UNIX hosts or PCs, i.e. only expanded source
programs (“.i” files) and list files (“.lst” files).

The codeset of the destination file system determines the output codeset used for the files
(ASCII or EBCDIC).

How characters and strings are stored is controlled by the -K literal_encoding_...
option (see page 58).

Basics From source code to program execution

U23625-J-Z125-6-76 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

2.2.3 Linking

A C or C++ program can only be linked in the POSIX shell to form an executable program
with the cc, c89 and CC calling commands. A “standalone” link editor, normally found in
UNIX systems, does not exist. From the technical viewpoint, linking in the POSIX shell calls
the BS2000 link editor and supplies it with the appropriate directives (INCLUDE-
MODULES, RESOLVE-BY-AUTOLINK etc.).

A link run is started if none of the -c, -E, -M, -P or -y options are specified (see page 49),
as long as no errors occurred during a prior compilation. By default, the linked program is
written as an LLM into an executable POSIX file with the standard name a.out, in the
current directory. The -o option can be used to specify a different directory and/or file name
(see page 46).

No link listings can be generated when linking in the POSIX shell. If errors occur, appro-
priate error messages are output to stderr.

The -N binder option can be used to generate the standard listings of BINDER
(see page 92).

Linking user modules

User modules can only be linked in statically and not dynamically (i.e. at runtime). Programs
containing “unresolved externals” to user modules cannot be loaded in the POSIX shell.

The following can be input sources to the link editor:

– Object files generated by the compiler (“.o” files)

– Libraries created with the ar utility (“.a” files)

– LLMs that were copied from PLAM libraries into POSIX object files with the POSIX
bs2cp command (see “Introductory examples” on page 37). These may be LLMs that
were generated directly by a compiler in the BS2000 environment (SDF) or object
modules which were written into an LLM with the link editor.

– LLMs and object modules in BS2000 PLAM libraries. The PLAM libraries must be
assigned with the BLSLIBnn environment variable (see the -l BLSLIB option on
page 87).

The modules from the PLAM libraries may be modules generated by any BS2000 compiler
with ILCS capabilities (e.g. C/C++, COBOL85, COBOL2000, ASSEMBH).
You must observe language-specific requirements with the above (parameter passing,
required runtime systems, etc.).

Internal INCLUDE-MODULES directives are issued during linking with POSIX object files
and RESOLVE-BY-AUTOLINK directives are issued for ar libraries and PLAM libraries.

From source code to program execution Basics

14 U23625-J-Z125-6-76

Linking the CRTE runtime libraries

The link editor resolves the unresolved external references to the C and C++ runtime
systems via autolink (RESOLVE-BY-AUTOLINK) from the CRTE PLAM libraries.

C runtime system

When code is generated, the C runtime system modules can be linked or loaded with the
cc, c89 and CC commands as follows:

1. Loading the C runtime system dynamically (partial bind). There are two variants of the
partial bind linkage method:

– Standard partial bind (-d y)

Linking is carried out by default from the SYSLNK.CRTE.PARTIAL-BIND library if
no special linker options are specified. This library contains link modules that
resolve all unresolved external references to the C and COBOL runtime systems.
Only the connection modules required are linked. If a module loaded by the appli-
cation to be linked requires entries of the runtime system, this can result in
unresolved external references because the link modules to the runtime system’s
entries need not necessarily already be linked. In this case the complete partial bind
method should be used for linking (see also CRTE-BHB).

The C and COBOL runtime systems themselves are loaded dynamically at runtime,
either from class 4 memory, if it has been preloaded, or from the SYSLNK.CRTE
library.

The linked program requires considerably less disk storage space than if the C
runtime system is linked statically from the SYSLNK.CRTE library (see 2.). The load
time is also faster. The appropriate CRTE must be available when the program is
called.

– Complete partial bind (-d compl)

In this case, linking is done from the SYSLNK.CRTE.COMPL library. Basically, the
procedure for the complete partial bind is the same as that for the standard partial
bind method. With complete partial bind, the link modules provided in
SYSLNK.CRTE.COMPL contain all the entries and the external data of the
complete C and COBOL runtime systems. This means that the unresolved external
references which may occur when modules of an application which was linked in a
standard partial bind are loaded cannot occur in complete partial bind.
When you use shared libraries in POSIX, successful linking is only guaranteed with
a complete partial bind.

For more information on the partial bind linking method, see the manual “CRTE" [5].

Basics From source code to program execution

U23625-J-Z125-6-76 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

2. Linking the complete C runtime system statically (-d n)

If the -d n link option is specified (see page 84), all required C runtime system modules
are linked in from the SYSLNK.CRTE library.

3. Leaving the external references to the C runtime system unresolved (-z nodefs)

If the -z nodefs link option is specified (see page 89), the program is linked without a
RESOLVE to the C runtime library. The unresolved external references are then
resolved at runtime from the C runtime system preloaded in class 4 memory.
-z nodefs is not supported when linking C++ programs (CC command).

Cfront C++ library

The modules of the Cfront C++ library (SYSLNK.CRTE.CPP) and of the Cfront C++ runtime
system (SYSLNK.CRTE.CFCPP) can only be linked in statically. If the Cfront C++ mode
(-X d option) is specified in the CC command, these libraries are linked in automatically in
addition to the C runtime system.

See also the -l link option on page 86.

Standard C++ library

The modules of the standard C++ library (SYSLNK.CRTE.STDCPP) and of the ANSI C++
runtime stem ((SYSLNK.CRTE.RTSCPP) can only be linked in statically. These libraries are
linked in automatically in addition to the C runtime system if the extended or strict ANSI C++
mode is specified in the CC command (-X w or -X e option or no option -X..).

See also the -l link option on page 86.

C++ Tools.h++ library

The modules of the Tools.h++ library (SYSLNK.CRTE.TOOLS) can only be linked in stati-
cally. The library is available in the ANSI C++ modes (-X w or -X e option) and is only linked
in if the -l RWtools link option is also specified.

See also the -l link option on page 86.

POSIX link switch

The posix.o link switch available with CRTE (corresponds to the CRTE
SYSLNK.CRTE.POSIX library in the BS2000 environment) is linked in automatically. The
time, signal handling and clock functions, which are duplicated in the C runtime system,
are therefore generally executed with POSIX functions. Mixed processing of POSIX and
BS2000 is generally possible. Please refer to the manual “C Library Functions for POSIX
Applications” [3] for further details.

From source code to program execution Basics

16 U23625-J-Z125-6-76

2.2.4 Debugging

Linked programs can be debugged with the dialog debugger AID, provided the required
debugging information (LSD) has been generated by the compiler by specifying the -g
option (see page 80).

Note

When the -g option is used, the objects created may be much larger under some
circumstances due to the LSD information!

The AID debugger is activated with the POSIX debug programname command. When this
command is input, the BS2000 environment becomes the current environment. This is
indicated by the %xxxxyyyy/ prompt, where xxxxyyyy stands for the PID of the process
started using debug. The debugging commands as described in the manual “AID
Debugging of C/C++ Programs” [7] can then be input. Once the program is terminated, the
POSIX shell then becomes the current environment again.

The debug command is described with all operands in the manual “POSIX Commands” [2].

2.2.5 Using the POSIX library functions

In contrast to developing programs in the BS2000 environment (SDF), no special provisions
are required for using the POSIX library functions in the POSIX environment. The following
actions are executed automatically:

– setting the preprocessor defines _OSD_POSIX
– merging in the standard header files supplied with CRTE and POSIX-HEADER from the

standard /usr/include or /usr/include/sys directories
– linking in the POSIX posix.o link switch (corresponds to the PLAM

SYSLNK.CRTE.POSIX library in the BS2000 environment)

The PROGRAM-ENVIRONMENT variable is set to “Shell” when the program is started.

Please refer to the manual “C Library Functions for POSIX Applications” [3] for further
details.

Basics C++ template instantiation under POSIX

U23625-J-Z125-6-76 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

2.3 C++ template instantiation under POSIX

2.3.1 Basic aspects

The C++ language includes the concept of templates. A template is a description of a class
or function that serves as a model for a family of derived classes or functions. For example,
one can write a template for a Stack class, and then use a stack of integers, a stack of
floats, or a stack of any user-defined type. These stacks could then be typically written in
the source as Stack<int>, Stack<float> and Stack<X>. The compiler can create
instantiations of the template for each of the types required from a single source description
of the template for a stack.

The instantiation of a class template is always created as soon as it is required during
compilation.
The instantiations of template functions and member functions or static data members of a
class template (referred to as template entities below), by contrast, need not be created
immediately. This is mainly due to the following reasons:

– In the case of template entities with external linkage (functions and static data
members), it is important to have only one copy of the instantiated template entity
throughout the program.

– The ANSI C++ language allows one to write a specialization for a template entity, which
means that the user can supply a specific version to be used instead of the instantiation
generated from the template for a specific data type.
Since the compiler cannot know, when compiling a reference to a template entity, if a
specialization for that entity is available in another compilation unit, it cannot create the
instantiation immediately.

– The ANSI C++ language dictates that template functions which are not referenced
should not be compiled and should be checked for errors. Consequently, a reference to
a template class should not automatically instantiate all the member functions of that
class.

Note that some template entities such as inline functions are always instantiated when
used.

From the requirements listed above, it is evident that if the compiler is responsible for the
entire instantiation (“automatic” instantiation), these instantiations can only be performed
meaningfully on a program-wide basis. In other words, the compiler cannot make decisions
about the instantiation of template entities until it has seen the source code of all compi-
lation units in the program.

The C/C++ compiler provides an instantiation mechanism by which automatic instantiation
is carried out at link time (with the aid of a “prelinker”). Refer to section “Automatic instanti-
ation” on page 19 for further details.

C++ template instantiation under POSIX Basics

18 U23625-J-Z125-6-76

Explicit control over the instantiation process is available to the programmer via selectable
instantiation modes and #pragma directives:

● The instantiation mode selection options are -T auto, -T none, -T local and
-T all.They are described in detail in section “Template options” (page 65f).

● The following #pragma directives can be used to control instantiation of single
templates or a group of templates:

– The instantiate pragma creates the template instance specified as the
argument. This pragma can be used in analogy to the ANSI C++ language
convention template declaration for explicit instantiation requests. See also the
example on page 32.

– The do_not_instantiate pragma suppresses instantiation of the template
instance specified as the argument. Typical candidates for this pragma are template
entities for which specific definitions have been provided (specializations).

– The can_instantiate pragma informs the compiler that the template instance
specified as the argument can be, but does not have to be created in the compilation
unit. This pragma is required in conjunction with libraries and is only evaluated in
automatic instantiation mode. See also the example on page 34.

The exact syntax and general rules regarding these pragmas can be found in the
C/C++ User Guide [4], in the section “Pragmas for controlling template Instantiation”.

● It is possible to implement explicit control using the “explicit instantiation statements”
specified (in the source). These “explicit instantiation statements” can be generated
using -T etr_file_all or -T etr_file_assigned (see the section “Generating
explicit template instantiation statements (ETR files)” on page 24) and can then be
incorporated into the sources by the user.

Important information

The method of template instantiation preset for this compiler (automatic instantiation by
the prelinker and implicit inclusion) is also the method we recommend. There are
options allowing you to change the settings for this method, but you should do this only
in exceptional cases and only when you are very familiar with the entire application,
including all the templates which are defined and used.

Implicit inclusion: implicit inclusion must not be disabled (with
-K no_implicit_include) when templates from the standard C++ library
(SYSLNK.CRTE.STDCPP) are used, since otherwise no definitions are found.

Instantiation modes ≠ -T auto : there is a danger here that unsatisfied external refer-
ences (-T none), duplicates (-T all) or runtime errors (-T local) may occur.

Basics C++ template instantiation under POSIX

U23625-J-Z125-6-76 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

2.3.2 Automatic instantiation

Automatic instantiation (-T auto option) is supported by the compiler by default. This
allows you to compile your source code and link the generated objects without having to
worry about how the necessary instantiations are done.

Note that the discussion which follows refers to the automatic instantiation of template
entities for which there is no explicit instantiation request (template declaration) and no
instantiate pragma.

Requirements

For each instantiation, the compiler expects a source file that contains both a reference to
the required instantiation and the definition of the template entity as well as all types
required for the instantiation of that template entity. The last two requirements can be
satisfied by the following methods:

– Each .h file that declares a template entity also contains either the definition of the
entity or includes another file containing the definition.

– Implicit inclusion
When the compiler sees a template declaration in a .h file and discovers a need to
instantiate that entity, it looks for a source file with the same base name as the .h file
and a suffix that satisfies the conventions for C++ source file names (see the rules for
input file names on page 42ff). This file is then implicitly included by the compiler on
instantiation at the end of each compilation unit without a message being issued. See
also section “Implicit inclusion” on page 31 for details.

– The programmer makes sure that the files that define template entities also contain the
definitions of all required types and adds C++ code or instantiation pragmas in those
files to request the instantiation of the template entities therein.

C++ template instantiation under POSIX Basics

20 U23625-J-Z125-6-76

First instantiation without a definition list

The definition list method can also be used as an alternative to the following procedure (see
below).

The following steps are performed internally during automatic instantiation:

1. Create instantiation information files
No template entities are instantiated the first time that one or more source files are
compiled. For each source file that makes use of a template, an associated instantiation
information file is created if no such file already exists. An instantiation information file
has the suffix .o.ii. For example, the compilation of abc.C would result in the creation
of the file abc.o.ii. The instantiation information file must not be modified by the user.

2. Create object files
The created objects contain information on which instantiations could have been and
were created when compiling a source file.

3. Assign template instantiations
When the object files are linked, the prelinker is called before the actual linking takes
place. The prelinker examines the object files, looking for references and definitions of
template entities and for added information about entities that could be instantiated. If
it does not find a definition for a required template entity, it searches for an object file
which can instantiate the template entity.When it finds such a file, it assigns the instan-
tiation to it.

4. Update the instantiation information file
All instantiations that were assigned to a given file are recorded by name in the
associated instantiation information file.

5. Recompile
The compiler is internally called again to recompile each file for which the instantiation
information file was changed.

6. Create new object file
When the compiler compiles a file, it reads the instantiation information file for that
compilation unit and creates a new object file with the required instantiations.

7. Repetition
Steps 3 to 6 are repeated until all instantiations that are required and can be generated
have been created.

8. Linkage
The object files are linked together.

Basics C++ template instantiation under POSIX

U23625-J-Z125-6-76 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

First instantiation using the definition list (temporary repository)

Since the procedure above (see page 20) recompiles some files more than once, an option
was added that is intended to accelerate the overall process.

Generally the files are only recompiled once. The majority of instantiations are associated
with the first files to be recompiled in the method. This has disadvantages in some cases
since their object sizes increase due to this (although the sizes of other objects decrease
to compensate for this).

Increasing the size of individual modules can be a disadvantage in user applications when,
for example, precisely this module needs to be loaded often. The user must therefore
decide if the method that more evenly distributes the instances (default) is desired or if this
method is desired (due to improved response during prelinking).

This schema can be enabled by specifying the -T definition_list option.

Steps 3-5 above are modified. The resulting algorithm appears as follows then:

1. Create instantiation information files
When one or more source files are compiled for the first time, no template entities are
instantiated. One instantiation information file is created (if not already present) for
every source file that uses a template. An instantiation information file has the file suffix
.o.ii . When compiling abc.C, for example, the file abc.o.ii would be created. The
instantiation information file may not be modified by the user.

2. Create object files
The objects created contain information on which instances could be created and may
be needed when compiling a source file.

3. Assign template instances to a source file
If there are references for template entities for which there are no definitions in the set
of object files, then a file is selected that could instantiate one of the template entities.
All template entities that can be instantiated in this file are assigned to it.

4. Update instantiation information
The set of instances that this file is assigned to is recorded in the associated instanti-
ation file.

5. Save the definition list
A definition list is maintained internally in memory. It contains a list of all definitions
relating to templates that were found in all object files. This list can be read in and
changed during recompilation.

Note

This list is not stored in a file.

6. Recompilation
The compiler is called again internally to recompile the corresponding source file.

C++ template instantiation under POSIX Basics

22 U23625-J-Z125-6-76

7. Create new object file
When the compiler recompiles a file, it reads the instantiation information file for this
compilation unit and creates a new object file with the required instances.
If the compiler gets the chance during compilation to instantiate additional referenced
template entities that are not mentioned in the definition list or were not found in the
libraries resolved, then it also instantiates these template entities (e.g. for templates that
are contained in templates). It passes a list of instantiations received to the prelinker so
that the prelinker can assign them to the file.

This process permits faster instantiation. It also reduces the necessity of recompiling
and existing file more than once during the prelink process.

8. Repeat
Steps 3 - 7 are repeated until all necessary and generatable instances have been
created.

9. Link
The object files are linked.

Further development

Once a program has been linked correctly, the associated instantiation information files
contain all the names of the required instantiations. From then on, whenever source files
are compiled, the compiler will consult the instantiation information file and do the instanti-
ations therein as in a normal compilation run. In other words, except in cases where the set
of required instantiations changes, the prelinker will find all required instantiations stored in
the object files, so no further instantiation adjustments are needed. This applies even if the
entire program is recompiled.

If a specialization of a template entity has been provided somewhere in the program, the
prelinker will treat it as a definition. Since this definition will satisfy any references to the
template entity, the prelinker will see no need to request an instantiation for that template
entity. If a specialization is added to a program that has already been compiled, the prelinker
will remove the assignment of the instantiation from the corresponding instantiation infor-
mation file.

The instantiation information file must not be modified (e.g. renamed or deleted) by the user,
except in the following case: if a source file in which a definition was changed and another
source file in which a specialization was added are being compiled in sequence in the same
compiler run, and the compilation of the first file (with the changed definition) has aborted
with an error, the associated instantiation information file must be deleted manually to allow
the prelinker to regenerate it.

Basics C++ template instantiation under POSIX

U23625-J-Z125-6-76 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

Automatic instantiation, libraries and prelinked object files

When an executable file is generated with the CC command in automatic instantiation mode,
the prelinker will do the automatic instantiation only in individual object files (.o files), but
not in objects that are part of a library (.a library) or an object file that was prelinked with
the -r option.

When generating the executable file, libraries or prelinked object files that require instances
of template entities must either
– already contain these instances (which may be achieved by explicit instantiation and/or

the preinstantiation of objects using the -y option; see page 50)
– or provide appropriate header files with can_instantiate pragmas.

More details can be found in section “Libraries and templates” on page 32.

The option -T add_prelink_files provides a further method of controlling automatic
instantiation in connection with libraries (see page 66ff).

C++ template instantiation under POSIX Basics

24 U23625-J-Z125-6-76

2.3.3 Generating explicit template instantiation statements (ETR files)

In some cases, for example, when automatic instantiation cannot be used effectively, the
programmer has the option of using explicit (manual) instantiation in order to extend the
sources as required.
To make this process easier, it is possible to create an ETR file (ETR - Explicit Template
Request) which contains the instantiation statements for the templates used and which can
be incorporated into a source.
The options for creating this ETR file are described in the section "Template options" on
page 65.

The option has three possibilities: -T etr_file_none (default) /_all /_assigned.
If _none is specified, the file will not be generated, if _all is specified, all relevant infor-
mation is output, if _assigned is specified, then only the specified information is output.

The templates taken into account during the ETR analysis can be divided into the following
classes:

● Templates that are instantiated explicitly in the compilation unit. These are output using
_all.

● Templates that are assigned by the prelinker to the compilation unit and then instan-
tiated within the compilation unit. These can be output using both _all and _assigned.

● Templates that are used in the compilation unit and that can be instantiated here. These
are output using _all.

● Templates that are used in the compilation unit, but cannot be instantiated here. These
are output using _all.

The contents of an ETR file have the following format:

● Comments in the header will indicate that the file is a generated file.

● Four logical lines are created for each template (see the example below):

– a comment line containing the text ’The following template was’

– a comment line containing the type of the instance (for example, ’explicitly instan-
tiated’)

– a comment line containing the external name of the instance. This name is the same
as the entry in the ii file and can also be obtained from the binder listing or the binder
error listing

– a line which describes the explicit instantiation for this instance

Basics C++ template instantiation under POSIX

U23625-J-Z125-6-76 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

Notes

– If the lines described above are too long, they will be wrapped in the usual C++ fashion
using “Backslash newline”.

– The sequence of the output templates is not defined. If recompilation takes place or a
source is modified, the sequence may change.

– The fourth logical line is particularly interesting when copying to a source.

– The comments are always in English.

The following scenarios describe two possible uses of an ETR file:

1. The compiler is called during development using the -T auto and
-T etr_file_assigned options.
The instantiation statements output to the ETR files are incorporated into the appro-
priate sources. Productive operation is then activated using the -T none or -T auto
option the next time the compiler is called.
The advantage of this method is the considerable reduction in the time it takes to
complete prelinking during productive operation.

2. The compiler is called during development using the -T none and -T etr_file_all
options.
After binding the developer checks each unresolved external reference to see whether
it is a template, and if it is a template, when it can be instantiated. Particularly helpful in
this case are the output external names. Then, the developer selects a source for the
instantiation and inserts the instantiation statements there. In addition, the correct
header files must also be included.
This method requires a considerable amount of manual work. But you do not subse-
quently need to call the prelinker (-T none).
This procedure offers you precise control over the placing of instances
(which is important when using components with high performance requirements).

C++ template instantiation under POSIX Basics

26 U23625-J-Z125-6-76

Example 1

For a single ETR file compiled using two files, x.c and y.c (when using “etr_file_all”).

The following command sequence is used for compilation:
CC -c -T etr_file_all x.c y.c

Source x.c

template <class T> void f(T) {}
template <class T> void g(T);

template void f(long);

void foo()
{
 f(5);

 f(’a’);

 g(5);
}

Source y.c

template <class T> void f(T){}

void bar()
{
 f(5):
}

Basics C++ template instantiation under POSIX

U23625-J-Z125-6-76 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

ETR-file x.o.etr

// This file is generated and will be changed when the module is compiled

// The following template was
// explicitly instantiated
// __Of__F1&_
template void f(long);

// The following template was
//used in this module and can be instantiated here
// __Of__Fi&_
template void f(int);

// The following template was
// instantiated automatically by the compiler
// __Of__Fc&_
template void f(char);

// The following template was
// used in this module
// __Og__Fi&_
template void g(int);

ETR-file y.o.etr

// This file is generated and will be changed when the module is compiled

// The following template was
// used in this module and can be instantiated here
// __Of__Fi&_
template void f(int);

The user can now decide in which source they wish to make explicit instantiations (this
decision must always be made for entries with “used in this module and can be instantiated
here”), for example, insertion of template void f(int) and
template void f(char) in x.c (see the source in Example 2 page 28).
Then you will subsequently not need to use automatic template instantiation.

C++ template instantiation under POSIX Basics

28 U23625-J-Z125-6-76

Example 2

Example of the use of “etr_file_assigned”.
Two files are specified x.c and y.c:

Source x.c

template <class T> void f(T) {}
template <class T> void g(T);

template void f(long);

void foo()
{
 f(5);

 f(’a’);

 g(5);
}

Source y.c

template <class T> void f(T){}

void bar()
{
 f(5):
}

These programs are first compiled using the following commands and then prelinked:

 CC -c -T auto -T etr_file_assigned x.c
 CC -c -T auto -T etr_file_assigned y.c
 CC -y -T auto -T etr_file_assigned x.o y.o

Then a file is created x.o.etr (since only x template instantiations are assigned) which looks
like this:

// This file is generated and will be changed when the module is compiled

// The following template was
// instantiated automatically by the compiler
// __Of__Fi&_
template void f(int);

Basics C++ template instantiation under POSIX

U23625-J-Z125-6-76 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

// The following template was
// instantiated automatically by the compiler
// __Of__Fc&_
template void f(char);

The important lines are inserted in the file x.c, thus creating the file x1.c:

template <class T> void f(T){}
template <class T> void g(T);

template void f(long);

void foo()
{
 f(5);

 f(’a’);

 g(5);
}
template void f(int);
template void f(char);

Then production can be carried out using the following commands:

 CC -c -T none x1.c
 CC -c -T none y.c

C++ template instantiation under POSIX Basics

30 U23625-J-Z125-6-76

Example 3

The following example shows the four classes of template that can be output.
The assumptions are as in Example 1

The following commands are entered:

 CC -c -T auto y.c
 CC -y -T auto y.o (this assigns f(int) y)
 CC -c -T auto -T etr_file_all x.c
 CC -y -T auto -T etr_file_all x.o y.o

Thus creates the following ETR file, x.o.etr:

// This file is generated and will be changed when the module is compiled

// The following template was
// explicitly instantiated
// __Of__Fl&
template void f(long(;

// The following template was
// used in this module and can be instantiated here
// __Of__Fi&
template void f(int);

// The following template was
// instantiated automatically by the compiler
// __Of__Fc&
template void f(char);

// The following template was
// used in this module
// __Og__Fi&
template void g(int);

Basics C++ template instantiation under POSIX

U23625-J-Z125-6-76 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

2.3.4 Implicit inclusion

The implicit inclusion of source files is a method of finding definitions of template entities.
This method is enabled for the compiler by default (see also the -K implicit_include
option on page 68) and can be disabled with -K no_implicit_include. Please refer to
the notes on page 18 with regard to disabling implicit inclusion.

If implicit inclusion is enabled, the compiler looks for the definition of a template entity in
accordance with the following principle: if a template entity is declared in a header file
named basename.h and no definition for it is available in the compiled source code, the
compiler will assume that the definition for that template entity is in a source file with the
same base name as the header file and with a suffix that is valid for C++ source files
(e.g. basename.C).
Let us assume, for example, that a template entity ABC::f is declared in the header file
xyz.h. If the instantiation of ABC::f is requested on compilation, but no definition of
ABC::f exists in the compiled source code, the compiler will search the directory containing
the header file for a source file with the base name xyz and a suffix that applies to C++
source files (e.g. xyz.C). If such a file exists, it will be treated as if it were included at the
end of the source file containing the #include directive for xyz.h.

To ensure that the file containing the definition of a particular template entity can be found
during instantiation, the complete path name of the file with the declaration of the template
must be known. This information is not available in files containing #line directives. Conse-
quently, implicit inclusion is not possible in such cases.

Implicit inclusion and the make utility

When working with the make utility, implicit inclusions must be taken into account when
generating file dependency lines. In other words, the object file depends on explicitly
included headers as well as implicitly included files with template definitions.

When using the -M option, implicit inclusions will be taken into account in automatic instan-
tiation mode only if the instantiation information files have been correctly built.

The following steps are required for this purpose:

1. Compile all source files.
2. Link the program together so that all instantiations are assigned.
3. Generate file dependency lines with the make program using the -M option (see also

page 49).
4. Repeat steps 2 and 3 if the generated template instances have changed.

Controlling instantiation assignments

The assignment of instantiations to local object files can be enabled and disabled with the
-K assign_local_only and -K no_assign_local_only options (see page 68).

C++ template instantiation under POSIX Basics

32 U23625-J-Z125-6-76

2.3.5 Libraries and templates

Instantiations for template entities (template functions, member functions and static data
members of template classes) can be generated in automatic instantiation mode only if the
object meets the following conditions:

– It is not part of a .a library,
– it contains a reference to the template entity or the can_instantiate pragma for that

template entity,
– and it contains all definitions needed for the instantiation.

A library that requires instances for its implementation must either contain these instances
or provide special headers with can_instantiate pragmas. These two options are
explained individually below.

1. The library contains all required instances

The main point to be observed here is to ensure that no duplicates are created when
using multiple libraries.

The instantiation of template entities in libraries can be achieved by the following
methods:

a) automatic instantiation of the template unit using the prelinker with the option -y
(see page 50).

Caution

If multiple libraries that require the same entity are used, there is a potential risk of
duplicates being created, since a separate object is not created per entity. This can
be avoided by using the -T add_prelink_files option (see page 66).

b) by explicitly instantiating all template entities with the instantiation directive
template declaration or the instantiate pragma.

The main point to be observed here is to ensure that a separate object is created
per entity.

Example

Given:

– a library l.a with references to the instances t_list(Foo1) and
t_list(Foo2),

– a header file listFoo.h with the declarations of t_list, Foo1 and Foo2
– and a source file listFoo.C with the definitions of t_list, Foo1 and Foo2

Basics C++ template instantiation under POSIX

U23625-J-Z125-6-76 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

// l.h
#ifndef L_H
#define L_H
#include "listFoo.h"
void g();
#endif

// l.C (l.o is element of l.a)
#include "l.h"
void g()

{
Foo1 f1;
Foo2 f2;
//...
t_list(f1);
t_list(f2);
//...
}

//listFoo.h
#ifndef LIST_FOO_H
#define LIST_FOO_H
template <class T> void t_list (T t);
class Foo1;
class Foo2;
#endif

//listFoo.C
template <class T> class t_list (T t) {...};
class Foo1 {...};
class Foo2 {...};

Each of the referenced instances are contained in separate objects in the library
l.a.

// lf1.C (lf1.o is element of l.a)
// lf1.C contains an explicit instantiation for t_list(Foo1)
#include "listFoo.h"
template void t_list(Foo1);

// lf2.C (lf2.o is element of l.a)
// lf2.C contains a pragma to instantiate t_list(Foo2)
#include "listFoo.h"
template void t_list(Foo1);
#pragma instantiate void t_list(Foo2)

C++ template instantiation under POSIX Basics

34 U23625-J-Z125-6-76

2. The header files contain can_instantiate pragmas for all required instances.

Example

Given:

– a library l.a with a reference to the instance t_list(Foo),
– a header file listFoo.h with the declarations of t_list and Foo
– and a source file listFoo.C with the definitions of t_list and Foo.

// l.h
#ifndef L_H
#define L_H
#include "listFoo.h"
void g();
#endif

// l.C (l.o is element of l.a)
#include "l.h"
void g()

{
Foo f;
//...
t_list(f);
//...
}

//listFoo.h
#ifndef LIST_FOO_H
#define LIST_FOO_H
template <class T> void t_list (T t);
class Foo;
#pragma can_instantiate t_list(Foo)
#endif

//listFoo.C
template <class T> void t_list (T t) {...};
class Foo {...};

The object user.o and the library l.a are linked together (CC user.o l.a).

// user.C
#include "l.h"
int f ()

{
g();
}

Basics C++ template instantiation under POSIX

U23625-J-Z125-6-76 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

user.C includes l.h, which in turn includes listFoo.h. Consequently, user.C
contains notification that list(Foo) can be instantiated.

Automatic instantiation by the prelinker produces only one instance t_list(Foo).

Note

In order to generate the needed instances, the can_instantiate pragma must be
contained in a header file of the library that will be included by the user programs.

Porting software Basics

36 U23625-J-Z125-6-76

2.4 Porting software

When porting C source programs from UNIX/SINIX systems into POSIX BS2000, note must
made of the different, implementation-dependent handling of externally visible names by
the compiler.

The BS2000 C/C++ compiler uses the external name of the source program (e.g. function
name) to create a corresponding external name for the link editor (entry name). As default,
lowercase letters are converted to uppercase and the underscore character (_) is converted
to a dollar sign ($) (see also “Generating entry names” on page 74). These conversions
ensure that the objects created by the compiler can be linked to other objects (e.g. objects
created by BS2000 compilers in other languages or objects in object module format).

When selecting the externally visible name for C source programs, it is therefore imperative
that two names not only differ in uppercase/lowercase. For example, the function names
getc and getC will be mapped to the same external name GETC. Provided no names of
BS2000 compilers in other languages are affected, this behavior can be prevented using
the -K llm_case_lower option (see page 75).

Basics Introductory examples

U23625-J-Z125-6-76 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
2

2.5 Introductory examples

Compiling and linking with the c89 command

c89 hello.c
Compiles hello.c and creates the executable file a.out

c89 -o hello hello.c
Compiles hello.c and creates the executable file hello

c89 -c hello.c upro.c
Compiles hello.c and upro.c and creates the object files hello.o and upro.o

c89 -o hello hello.o upro.o
Links hello.o and upro.o to the executable file hello

Copying with the bs2cp command

bs2cp bs2:hello hello.c
Copies the cataloged BS2000 file HELLO to the POSIX file hello.c

bs2cp ’bs2:plam.bsp(hello.l,l)’ hello.o
Copies the LLM HELLO.L from the PLAM library PLAM.BSP to the POSIX object file
hello.o

Introductory examples Basics

38 U23625-J-Z125-6-76

U23625-J-Z125-6-76 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

3 The cc, c89 and CC commands

The C/C++ compiler can be called and supplied with options from the POSIX shell. The
options cover most of the services and functions available for controlling the compiler via
the SDF interface.
The syntax of the options, names of the processed or created objects and other conven-
tions are based on the definition in the XPG4 Standard. POSIX shell interface extensions
not covered by the XPG4 standard are based on the normal compiler or utility interface in
UNIX systems.

The compiler includes an integrated link phase which converts the normal shell link options
into corresponding link editor directives. A “standalone” link editor which is independent of
the calling command is not available in the POSIX shell.

Only POSIX files can be read and written when compiling with the C/C++ compiler in the
POSIX shell. BS 2000 files are not supported.
The source and header files may exist in either EBCDIC or ASCII code. It is assumed that
all files (from a remote, merged in or a POSIX file system) are in the same codeset.

Calling syntax and general rules The cc, c89 and CC commands

40 U23625-J-Z125-6-76

3.1 Calling syntax and general rules

{cc | c89 | CC} [option] ... operand ...

When you invoke the c89 command, you must specify all options (see page 41) before
entering operands (see page 42).
This "options before operands" sequence is not mandatory for the cc and CC commands.
Other differences between the cc, c89 and CC commands are summarized below.

The cc, c89 and CC commands

cc
If the compiler is called with cc, it works as a C compiler, and the default language mode
is set to extended ANSI C (see the -X a option on page 52).
Options and operands may be specified in any order on the command line.
In contrast to the c89 command, -L dir is interpreted as an operand (see -L on page 43
and the -- option on page 48).

c89
If the compiler is called with c89, it works as a C compiler, and the default language
mode is set to extended ANSI C (see the -X c option on page 52).
In this case, options and operands cannot be mixed on the command line, i.e. the
"options before operands" sequence must be maintained.
In contrast to the cc/CC commands, -L dir is interpreted here as an option (see -L on
page 43 and the -- option on page 48).

CC
If the compiler is called with CC, it works as a C++ compiler, and the default language
mode is set to extended ANSI C++ (see the -X w option on page 53).
Options and operands may be specified on the command line in any order.
In contrast to the c89 command, -L dir is interpreted as an operand (see -L on page 43
and the -- option on page 48).

The cc, c89 and CC commands Calling syntax and general rules

U23625-J-Z125-6-76 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

Options

No option specified
If the source code contains no syntax errors, and all unresolved references are
resolved, the compiler generates an executable file a.out, which contains the
executable program.
The compiler only stores the object code of the separate source files in .o files with the
same names if at least two source files or one source file and one (.o) object file are
specified.
If only a source file file.c is specified, no object file file.o is available after compilation as
it is a temporary file and is subsequently deleted. If an object file file.o exists before
compilation, this is also deleted.

option
You can specify options in the compiler call to control the compilation process and to
determine which arguments are passed to the programs for the individual compilation
phases.

Options can also be used to instruct the compiler to perform only some of the compi-
lation phases (see page 49ff). If the compilation process is not completed fully, all
options that refer to the skipped compilation phases are ignored by the compiler. If
multiple options are used to select the compilation phases to be performed, the
compiler will stop after the earliest specified phase.

An option always consists of a single letter that is identified by a leading hyphen ("-").

Multiple options may be grouped, i.e. specified in succession after a single hyphen
without any delimiting whitespace, only if none of the listed options take any arguments
(e.g. -V -c could also be entered as -Vc).

Options that take arguments must be specified in accordance with the XPG4 Standard
by separating the option and its argument with a space. This XPG4-compliant notation
is strongly recommended, but is not enforced by the compiler for compatibility reasons
(e.g. the compiler will accept -ohello instead of -o hello).

Arguments that contain delimiters (: or ,) or the equals sign (=) must not be specified
with any whitespace before or after these characters.

Examples

-D MAKRO = 1 illegal
-D MAKRO=1 legal
-R limit, 20 illegal
-R limit,20 legal

If the same option is specified more than once with conflicting arguments (e.g. -K at
and -K no_at), the last option specified on the command line applies.

Calling syntax and general rules The cc, c89 and CC commands

42 U23625-J-Z125-6-76

Options that are not known to the compiler, i.e. options that begin with an unrecognized
letter after the leading hyphen ("-"), are passed through to the link editor. If the unknown
option and the argument are separated by whitespace, the option is interpreted and
passed as an option without an argument.

Options with unrecognized arguments are ignored, and a corresponding warning is
issued.

Special input rules for the -K option

-K arg1[,arg2...]
The -K option can be used to specify one or more arguments in succession, with
a delimiting comma between each such argument. The delimiter between the
arguments (i.e. the comma) must not be preceded or followed by any whitespace.
Multiple -K options with one argument each have the same effect as a single -K
option with multiple arguments delimited by commas. The arguments specified with
the -K option may be entered in uppercase and/or lowercase letters (e.g. the
arguments PIC, pic, Pic, etc. are equivalent). In the case of conflicting specifica-
tions (e.g. -K uchar and -K schar), the last entry is taken without issuing a
warning.

Operands

The "operands" category includes the following entries:

– the names of input files, i.e.: file.suffix
– the link editor options -l x and -lBLSLIB
– only for the cc/CC commands: also the link editor option -L dir

The compiler processes all options first, and then the operands, in the order in which
they are specified on the command line.
All arguments that follow the -- option (which ends the input of options) on the
command line are interpreted as operands, even if they begin with a "-" character
(see the -- option on page 48).

file.suffix
The name of an input file.

The compiler determines the contents of a file, and thus the compilation steps to be
performed in each case, from the file name extension. The file name must therefore
have a suffix (or extension) that matches its contents. The possible suffixes that can be
used to identify source files will depend on the mode in which the compiler is invoked
and whether the compiler was called with the cc/c89 command (C mode) or with CC
(C++ mode).

The cc, c89 and CC commands Calling syntax and general rules

U23625-J-Z125-6-76 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

The following suffixes are interpreted in individual cases as listed below:

c, C C source code (cc, c89) or C++ source code (CC) before the preprocessor run

cpp, CPP, cxx, CXX, cc, CC, c++, C++
 C++ source code before the preprocessor run (CC)

i C source code (cc, c89) after the preprocessor run

I C++ source code after the preprocessor run (CC)

o Object file

a Static library with object modules created with the ar utility

In addition to the suffixes above, the -Y F option may be used to specify other user-
defined suffixes, which are then recognized by the individual compiler components (see
page 47).

File names with no suffix or an unrecognized suffix are passed through to the link editor
without issuing a warning.

At least one input file (file.suffix) or one library in the form -l x is required for each
compiler call.

If more than one input file is specified, these files need not be of the same type, i.e.
source files and object files may all be specified in the same compiler call. In the case
of object files and libraries, the order and position in which they are entered on the
command line are significant for linking.

-L dir
-L dir is only interpreted as an operand when the compiler is called with the cc and CC
commands. dir can be used to specify an additional directory that is to be searched by
the link editor for the libraries specified with the -l option (see page 88 for more details).

-l x
This operand instructs the link editor to search for libraries named libx.a (see “Link
editor options” on page 83ff for more details).

-l BLSLIB
This operand instructs the link editor to search through PLAM libraries which were
assigned with the BLSLIBnn shell environment variable (00 Ï nn Î 99) (see “Link editor
options” on page 83ff for more details).

Calling syntax and general rules The cc, c89 and CC commands

44 U23625-J-Z125-6-76

Exit status

0 Normal termination of the compiler run; no errors, but possibly with notes and
warnings

1 Normal termination of the compiler run; with errors

2 Abnormal termination of the compiler run; with the occurrence of a fatal error

The cc, c89 and CC commands Options

U23625-J-Z125-6-76 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

3.2 Description of options

The following sections describe the possible options for the cc, c89 and CC commands in
groups, depending on the context in which they are used. The options are classified as
follows:

– General options (page 46)
– Options for selecting compilation phases (page 49)
– Options for selecting the language mode (page 52)
– Preprocessor options (page 55)
– Common frontend options in C and C++ (page 58)
– C++-specific frontend options (page 62)
– Optimization options (page 69)
– Options for controlling object generation (page 73)
– Runtime options (page 80)
– Link editor options (page 83)
– Options for controlling message output (page 90)
– Options for outputting listings and CIF information (page 92)

The general aspects to be observed when entering options are discussed in section
“Calling syntax and general rules” on page 40).

A list of all options in alphabetic order with references to the pages on which they appear
can be found in the appendix (page 105ff).

General options The cc, c89 and CC commands

46 U23625-J-Z125-6-76

3.2.1 General options

-K arg1[,arg2...]
General input rules for the -K option can be found on page 42.
The following entries are possible as arg arguments for general control of the
compilation run:

verbose
no_verbose

Note that the -K verbose specification, which causes additional information on
template instantiation to be written to the standard error output stderr, is presently
only meaningful with the CC command.
-K no_verbose is the default setting.

-o output_destination
If this option is omitted, the compiler generates output files with default names and
places them in the current directory.
The -o option can be used to rename the various output files of a compiler run and/or
have them written to a different directory.

output_destination can be any of the following: only the name of a directory, only a file
name, or a file name including directory components. The specified directories must
already exist.

output_destination = directory name dir
The output files are created with default names and placed in the specified directory
dir as follows:
– When an executable file is generated, the file is assigned the name dir/a.out.
– If the -c option is specified, the object file is named dir/sourcefile.o.
– If the -E option is specified, the preprocessor output is written to the file

dir/sourcefilei.i (cc/c89 command) or dir/sourcefile.I (CC command)) instead
of the standard output stdout.

– If the -M option is specified, the preprocessor output (dependency lines for
further processing with make) is written to the file dir/sourcefile.mk instead of the
standard output stdout.

– If the -P option is specified, the preprocessor output is written to the file
dir/sourcefile.i (cc/c89 command) or dir/sourcefile.I (CC command).

With the exception of the executable file generated by the link editor, independent
output files are created for each compiled source file in cases where multiple source
files are specified for compilation.

The cc, c89 and CC commands General options

U23625-J-Z125-6-76 47

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

output_destination = a specified file_name or
output_destination = a specified directory and file name: dir/file_name

If an executable file is being generated or if the -o option is specified in combination
with option -c, -E, -M or -P, the compiler writes the result to a file named file_name
and places it in the current directory or in the directory specified with dir. Apart from
the executable file generated by the link editor, a different file name may be
specified for all other output files, but only if a single source file is listed for compi-
lation in each compiler call.
If more than one input file is specified but only one output file is specified, then a
warning is output and output_destination is reset to the default value.
If an executable file is created, the file name specified with -o must differ from an
object file generated by the compiler or specified explicitly in the command line. For
example, the following commands are rejected with errors:
cc -o hello.o hello.o
cc -o hello.o hello.c

-V
For each compiler component that is implicitly called during the execution of
cc/c89/CC, the version and possibly a copyright note are written in a separate line.
In the linking procedure the version of the CRTE being used and a list of the libraries
used are also output.

-Y F,file-type,user_suffix
This option can be used to define user-specific suffixes in the form user_suffix for input
files of type file-type in addition to the standard suffixes (see page 42).

The following entries are possible for file-type:

c++ C++ source file

c C source file

prec++ C++ preprocessor output file

prec C preprocessor output file

obj Object file

lib Static library

Example

-Y F,obj,llm

An input file named file.llm is recognized by the compiler as an object file.

General options The cc, c89 and CC commands

48 U23625-J-Z125-6-76

--
This option ends the input of options, i.e. causes all following arguments (except for the
link editor options that fall under the "operands" category) to be interpreted as file
names, even if they begin with a hyphen. This makes it possible to specify file names
that start with a hyphen (e.g. -hello.c).
The following link editor options are permitted after the -- option:
-l x
-l BLSLIB
-L dir (only with the cc and CC commands; in the c89 command, this entry would be
interpreted as a file name!)

The cc, c89 and CC commands Options for selecting compilation phases

U23625-J-Z125-6-76 49

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

3.2.2 Options for selecting compilation phases

All of the options listed below always suppress the linkage run and cause any link editor
options and operands that may have been specified to be ignored.

-c
Terminates the compiler run after an LLM has been created and placed into an object
file file.o for each compiled source file. The object is written by default into the current
directory. The -o option (see page 46) can be used to define a different file name and/or
directory.

-E
The compiler run is terminated after the preprocessor phase and the result is written to
the standard output stdout. Any blank lines present in the file are combined in the
process, and the corresponding #line directives are generated. By default, C and C++
comments are removed from the preprocessor output (see the -C option on page 55).
If the -o option is specified (see page 46), the result of the preprocessor run is written
to a file instead of the standard output stdout.

-M
The compiler run is terminated after the preprocessor phase; however, instead of the
normal preprocessor output (cf. -E, -P), a list of dependency lines that is suitable for
further processing with the POSIX make program is generated and written to the
standard output stdout. If the -o option is specified (see page 46), the file dependency
list is written to a file instead of the standard output stdout.

Note

Templates in ANSI-C++ sources are not included explicitly.

-P
The compiler run is terminated after the preprocessor phase, and the result is written to
a file named file.i (cc/c89 command) or file.I (CC command) and placed in the current
directory instead of the standard output stdout as in the -E option. The output does
not contain any additional #line directives. By default, C or C++ comments are
removed from the preprocessor output (see the -C option on page 55). file.i can be
subsequently compiled further with the cc/c89/CC commands, whereas file.I can only
be compiled with the CC command. If desired, the -o option (see page 46) may be used
to specify another file name and/or directory.

Options for selecting compilation phases The cc, c89 and CC commands

50 U23625-J-Z125-6-76

-y
This option can only be specified with the CC command in the ANSI C++ modes.
The compiler run is terminated after the prelinker phase (automatic template instanti-
ation), and an object file named sourcefile.o containing the instantiated templates is
generated for each compiled source file. This is meaningful for objects that are to be
subsequently incorporated in a library (.a library) or in a prelinked object file (-r); no
automatic instantiation is performed for templates within libraries or prelinked object
files. Note that the -y option can only be meaningfully used in the default automatic
instantiation mode (-T auto).

Example

Contents of the source files (extracts):

// a.h:

class A {int i;};

// f.h:

template <class T> void f(T)

{
/* any code */

}

// b.c:

#include "a.h"
#include "f.h"

void foo() {
A a;
f(a);

}

// main.c:

void main(void)
{

foo();
}

The cc, c89 and CC commands Options for selecting compilation phases

U23625-J-Z125-6-76 51

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

Commands:

CC -c b.c

The first compilation produces an object file b.o and a template information file
b.o.ii, where each contains an entry that the function f(A) is not instantiated.

CC -y b.o

The b.o and b.o.ii files generated in the first compilation run are updated, and
the function f(A) is instantiated.

ar -r x.a b.o

The module in b.o is added to the library x.a.

CC main.c x.a

An executable file named a.out is generated.

The following command sequence, by contrast, would not produce the desired
result:

rm *.o *.ii *.a a.out /* Cleanup the current directory */
CC -c b.c
ar -r x.a b.o
CC main.c x.a

This command sequence results in an error message. This is because the function
f(A) cannot be found, since no automatic instantiation is performed for the
templates in the library x.a.

Options for selecting the language mode The cc, c89 and CC commands

52 U23625-J-Z125-6-76

3.2.3 Options for selecting the language mode

-X a
-X c
-X t

These options are used to select the C language mode and can only be specified when
calling the compiler with cc and c89.

-X a
Extended ANSI C mode (the default setting when calling the compiler with cc and c89)
The compiler supports C code, as defined in the ANSI/ISO C standard, including the
ISO C Amendment 1). In addition, various other language extensions are also
supported (see the chapter “C language support” in the C/C++ User Guide [4]). Note
that the name space is not restricted to names specified by the standard. All C library
functions of the system (ANSI functions, POSIX and X/OPEN functions, and UNIX
extensions) may be used.
__STDC__ has a value of 0 and __STDC_VERSION__ the value 199409L.

-X c
Strict ANSI C mode
This mode can be used to test a program for ANSI/ISO compliance.
As in the extended ANSI C mode (-X a), the compiler supports C code in accordance
with the ANSI/ISO C standard.

However, in contrast to the extended ANSI C mode, the name space is restricted to the
names defined in the standard, and only the C library functions that are defined in the
ANSI/ISO standard are available.This is achieved as follows: specifying the -X c option
internally sets the _STRICT_STDC define. If this define is set, prototype declarations for
all C library functions not defined in standard headers in the ANSI/ISO C standard
(stdio.h, stdlib.h, etc.) are disabled or bypassed. However, the _STRICT_STDC
define only affects the prototype declarations in the standard headers defined in
ANSI/ISO. The BS2000 and POSIX-specific include headers do not use this define.

Deviations from the standard result in compiler messages (mostly warnings). If desired,
the output of errors can be forced in such cases by specifying the -R strict_errors
option.
__STDC__ has a value of 1 and __STDC_VERSION__ the value 199409L.

The cc, c89 and CC commands Options for selecting the language mode

U23625-J-Z125-6-76 53

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

-X t
K&R C mode
This mode should not be used for new developments. It is typically intended for porting
"old" K&R C sources and/or systematic conversions to ANSI C.
The compiler accepts C code, as defined by Kernighan&Ritchie in the reference manual
("The C Programming Language", First Edition). It also supports C language elements
of the ANSI C standard that are semantically identical to the Kernighan&Ritchie
"definition" of the C language (e.g. function prototypes, const, volatile). This
simplifies the conversion of a K&R C source to ANSI C. All C library functions of the
system (i.e. ANSI functions, POSIX and X/OPEN functions, UNIX extensions) are
available for use.
As far as the preprocessor behavior is concerned, ANSI/ISO C is the default. If desired,
the option -K kr_cpp can be specified to convert the preprocessor behavior to K&R C
(as required when porting old C sources, for example).
__STDC__ has a value of 0 and __STDC_VERSION__ is undefined.

-X w
-X e
-X d

These options are used to select the C++ language mode and can be specified when
calling the compiler with CC.

-X w
Extended ANSI C++ mode (the default when calling the compiler with CC).
The compiler supports C++ code in accordance with the definition proposed in the
ANSI C++ draft for the ANSI/ISO C++ standard. In this case, the name space is not
restricted to names specified in the standard.
The following C++ libraries are available:
– the standard C++ library (strings, containers, iterators, algorithms, and numerics),

including the Cfront-compatible I/O classes
– the Tools.h++ library
For more information on C++ libraries, see also the C++ User Guide [4]
As in the extended ANSI C mode (-X a), various language extensions as well as all C
library functions of the system are available for use.
__STDC__ has a value of 0, __cplusplus the value 2 and __STDC_VERSION the value
199409L.

Options for selecting the language mode The cc, c89 and CC commands

54 U23625-J-Z125-6-76

-X e
Strict ANSI C++ mode
In terms of the C++ language support (based on the ANSI/ISO C++) and the available
C++ libraries, this mode corresponds to the extended ANSI C++ mode (-X w).
However, in contrast to the extended ANSI C++ mode, only the C library functions
defined in the ANSI/ISO standard are available (analogous to the strict ANSI C mode
-X c).

Deviations from the standard result in compiler messages (mostly warnings), but the
output of errors can be forced in such cases by specifying the -R strict_errors
option.
__STDC__ has a value of 1, __cplusplus the value 199612L (which will be increased
in future versions) and __STDC_VERSION the value 199409L.

-X d
Cfront-C++ mode
This mode is only offered for compatibility reasons and should not be used for new
developments. It supports the C++ language elements of Cfront V3.0.3, which was first
released with the C++ V2.1 compiler.
The Cfront-compatible C++ library for complex mathematics and stream-oriented I/O is
available.
More information on the Cfront C++ library can be found in the C++ User Guide [4].
C++ sources must be compiled and linked with -X d if their objects are to be linkable
with C++ V2.1/V2.2 objects.
__STDC__ has a value of 0, __cplusplus the value 1 and __STDC_VERSION the value
199409L.

The cc, c89 and CC commands Preprocessor options

U23625-J-Z125-6-76 55

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

3.2.4 Preprocessor options

-A "name(tokens)"
This option can be used to define an assertion, as if by a preprocessor #assert
directive (see the section “Extensions over ANSI/ISO C” in the C/C++ User Guide [4]).
The quotes are required because of the special significance of parentheses in the
POSIX shell. The parentheses can alternatively be nullified with the backslash:
-A name\(tokens\)

-C
This option is evaluated only if the -E or -P option is also specified (see page 49). It
causes C or C++ comments to be retained in the preprocessor output. Such comments
are removed by default.

-D name[=value]
This option can be used to define names, symbolic constants and macros (as if by a
preprocessor #define directive).
-D name corresponds to the #define directive for defining names, i.e. #define name;
-D name=value corresponds to the #define directive for text substitutions,
i.e. #define name value.

-H
Causes a list of all header files used during the compilation run to be written to the
standard error output stderr.

-i header
This option specifies an include file header which is inserted before the source program
text (pre-include).

You can specify the header as follows:

– by giving the fully qualified path name of the include file
– by giving the relative path name of the include file on the basis of the option -I (see

page 56)

The include file specified as the header will be handled in exactly the same way as any
include file where an #include statement is specified at the beginning of the source
program file. If several header files are to be pre-included, the corresponding #include
instructions must be collected together in a single include file which is then specified
using the option -i.

Preprocessor options The cc, c89 and CC commands

56 U23625-J-Z125-6-76

-I dir
dir is added to the list of directories that are searched by the preprocessor for header
files. If this option is entered more than once, the order of entry determines the search
order for header files.

If the relative pathname of the header file (which does not begin with a slash /) is
specified in the #include directive enclosed within quotes "...", the preprocessor
searches the directories in the following order:

1. the directory of the source or header file containing the #include directive

2. the directories that were specified with the preprocessor -I option

3. either the directories specified with the -Y I option (see page 57) or the standard
directories listed below.

Last-searched standard-directories:

a) Only with the CC command in ANSI-C++ modes (-X w and -X e) the
/usr/include/CC directory

b) In all cases the standard /usr/include and /usr/include/sys directories

If the relative pathname of the header file is specified in the #include directive
enclosed within angular brackets <...>, the preprocessor will only search the directories
listed under points 2 and 3 above.

If you want the preprocessor to search some other directories last instead of the
standard directories listed above, you can specify such directories by using the -Y I
option (see below).

-K arg1[,arg2...]
General input rules for the -K option can be found on page 42.
The following entries are possible as arg arguments to control preprocessor behavior:

ansi_cpp
kr_cpp

-K ansi_cpp is the default setting in all C and C++ language modes of the
compiler. This means that preprocessor behavior in accordance with the ANSI/ISO
C standard is also supported in the K&R C mode.
The obsolete preprocessor behavior based on Reiser cpp and Johnson pcc can be
turned on with -K kr_cpp, but only in K&R C mode. The -K kr_cpp specification
is ignored in all other C and C++ language modes.

The cc, c89 and CC commands Preprocessor options

U23625-J-Z125-6-76 57

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

-U name
Undefines a macro or a symbolic constant name (as when using the preprocessor
directive #undef), where name is a predefined preprocessor name (see page 97) or a
name that was defined with the -D option in the command line before or after option -U .
This option has no effect on #define directives in the source program.

-Y I,dir[:dir...]
Instructs the preprocessor which directory or directories are to be searched for header
files last. dir specifies the directory.
Without this option, the last directories to be searched are the standard directories
(see the -I option, points a) and b)).

Common frontend options in C and C++ The cc, c89 and CC commands

58 U23625-J-Z125-6-76

3.2.5 Common frontend options in C and C++

-K arg1[,arg2...]
General input rules for the -K option can be found on page 42.
The following entries are possible as arg arguments to control the compiler frontend in
the C and C++ modes:

uchar
schar

The default data type char is unsigned. If -K schar is specified, char is treated
as a signed char in expressions and conversions.
Note that the use of this option may result in portability problems!

at
no_at

If -K no_at is specified, the “at” sign ‘@’ is not allowed in identifiers.
The default is -K at. The ‘@’ sign in identifiers is an extension to the ANSI standard
and using it causes a warning to be output in strict ANSI modes.

 If you are using a Cfront C++ library, you cannot use the option -K no_at.

dollar
no_dollar

If -K no_dollar is specified, the dollar sign ‘$’ is not allowed in identifiers.
The default is -K dollar. The ‘$’ sign in identifiers is an extension to the ANSI
standard and using it causes a warning to be output in strict ANSI modes.

literal_encoding_native
literal_encoding_ascii
literal_encoding_ascii_full
literal_encoding_ebcdic
literal_encoding_ebcdic_full

This option determines whether the C/C++ compiler creates the code for characters
or for strings in EBCDIC or ASCII format (ISO 8859-1).

In C/C++, literal strings can contain binary coded characters as octal or
hexadecimal escape sequences with the following syntax:

– octal escape sequences: ´\[0-7] [0-7][0-7]´
– hexadecimal escape sequences: ´\x[0-9A-F][0-9A-F]´

i

The cc, c89 and CC commands Common frontend options in C and C++

U23625-J-Z125-6-76 59

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

Whether or not the C/C++ compiler escape sequences are converted into ASCII
format depends on the value specified for the option literal_encoding_... .

literal_encoding_native
The C/C++ compiler leaves the character and literal string code in the EBCDIC
format, i.e. it transfers the characters and strings into the object code without
converting them.
literal_encoding_native is the default setting.

literal_encoding_ascii
The C/C++ compiler encodes the characters and literal strings in ASCII format.
Strings containing escape sequences will not be converted into ASCII format.

literal_encoding_ascii_full
The C/C++ compiler encodes the characters and literal strings in ASCII format.
Strings containing escape sequences will be converted into ASCII format.

literal_encoding_ebcdic
The C/C++ compiler leaves the character and literal string code in the EBCDIC
format, i.e. it transfers the characters and strings into the object code without
converting them.
literal_encoding_ebcdic has the same effect as
literal_encoding_ebcdic_full or literal_encoding_native.

literal_encoding_ebcdic_full
The C/C++ compiler leaves the character and literal string code in the EBCDIC
format, it transfers the characters and strings into the object code without converting
them.
literal_encoding_ebcdic_full has the same effect as
literal_encoding_ebcdic or literal_encoding_native.

Prerequisites for using the ASCII Format:

● For each and every CRTE function (C library function) in your program that works
with characters or strings, you must use the corresponding or matching include
file. If you do not do this, the CRTE functions will not be able to process the
character strings correctly. You should ensure that you include the include file
<stdio.h> for the function printf() with #include <stdio.h>.

● If you are using CRTE functions you must also specify the following options:

- K llm_keep
- K llm_case_lower

Common frontend options in C and C++ The cc, c89 and CC commands

60 U23625-J-Z125-6-76

signed_fields_signed
signed_fields_unsigned

If -K signed_fields_unsigned is specified, signed bit fields are always inter-
preted as unsigned. This option is only offered for compatibility with older C
versions and is only meaningful in K&R C mode.
The default is -K signed_fields_signed.

plain_fields_signed
plain_fields_unsigned

These arguments control whether integer bit fields (short, int, long) are treated
as signed or unsigned types by default.
The default is -K plain_fields_signed.

long_preserving
unsigned_preserving

These arguments control whether arithmetic operations with operands of type long
and unsigned int return a result of type long (long_preserving) in accordance
with K&R mode (first edition; appendix 6.6) or of type unsigned long
(unsigned_preserving) in accordance with ANSI/ISO C.
The default is -K unsigned_preserving.

alternative_tokens
no_alternative_tokens

These arguments control whether alternative tokens are to be recognized by the
compiler:

– Digraph sequences in the C and C++ language modes (e.g. <: for [),
– Additional keyword operators which are only valid in the C++ language modes

(e.g. and for &&, bitand for &).

-K alternative_tokens is the default in the ANSI C++ modes, and
-K no_alternative_tokens is the default for all other modes.

longlong
no_longlong

These arguments control whether the data type long long is recognized by the
compiler.
-K longlong is the default. In this case, the preprocessor define _LONGLONG is set.
The data type long long is an extension to the ANSI C and C++ Standard.
If -K no_longlong is set, the use of the data type long long will result in an error.

The cc, c89 and CC commands Common frontend options in C and C++

U23625-J-Z125-6-76 61

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

end_of_line_comments
no_end_of_line_comments

These arguments control whether the compiler accepts C++-style comments (//...)
in C programs as well. The -K end_of_line_comments option can only be
enabled in the extended ANSI C mode (-X a).
-K no_end_of_line_comments is the default.

C++-specific frontend options The cc, c89 and CC commands

62 U23625-J-Z125-6-76

3.2.6 C++-specific frontend options

The options described in the following sections on "General C++ options" and "Template
options" are only applicable to the CC command.

General C++ options

General C++ options can be used to control the following C++ features:

– how tables are defined for virtual class functions
– whether the keywords wchar_t and bool are recognized
– the scope of initialization directives in for and while loops
– whether the old specialization syntax is accepted

Apart from the definition of tables for virtual functions, none of the language features listed
above are supported in Cfront C++ mode.

-K arg1[,arg2...]
General input rules for the -K option can be found on page 42. The following entries are
possible as arg arguments to control the C++ frontend:

normal_vtbl
force_vtbl
suppress_vtbl

These arguments allow you to specify how the virtual function table is to be
generated by the compiler.

-K normal_vtbl (default)
The virtual function table is declared as static by default, i.e. one copy of the table
is generated for each module.

-K force_vtbl
This option causes the table in the module concerned to be defined and initialized
globally. The option may only be specified for one compilation unit.

-K suppress_vtbl
This option causes the table in the module concerned to be declared as external.

Note

These options only affect classes in which the normal heuristics is still effective for po-
sitioning the table of virtual functions. They therefore only affect classes which contain
no “non-inline non-pure virtual function”.

The cc, c89 and CC commands C++-specific frontend options

U23625-J-Z125-6-76 63

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

using_std
no_using_std

These arguments determine the use of ANSI C++ library functions for which names
have been defined in the standard name space std.

If -K using_std is specified, the compiler behaves as if the following lines were
entered at the start of a compilation unit:

namespace std{}
using namespace std;

-K using_std is the default in extended ANSI C++ mode (-X w).

-K no_using_std is the default in strict ANSI C++ mode (-X e) and the only
possible behavior in Cfront C++ mode (-X d).
If -K no_using_std is set in the extended or strict ANSI C++ mode, the source
program must contain the directive using namespace std; otherwise, the names
must be qualified appropriately before the first call to an ANSI C++ library function.

wchar_t_keyword
no_wchar_t_keyword

These arguments can be used to define whether wchar_t is recognized as a
keyword.

-K wchar_t_keyword is the default in the ANSI C++ modes. In this case, the
preprocessor macro _WCHAR_T is defined.

-K no_wchar_t_keyword is the default and the only possible behavior in the
Cfront C++ mode.

bool
no_bool

These arguments can be used to define whether bool is recognized as a keyword.

-K bool is the default in the ANSI C++ modes. In this case, the preprocessor
macro _BOOL is defined.

-K no_bool is the default and the only possible behavior in the Cfront C++ mode.

C++-specific frontend options The cc, c89 and CC commands

64 U23625-J-Z125-6-76

old_for_init
new_for_init

These arguments define how an initialization directive in for and while loops is to
be handled.

-K old_for_init
Specifies that an initialization directive has the same scope as the entire loop.
This is the default setting in the Cfront C++ mode.

-K new_for_init
Specifies the new ANSI C++-compliant scope rule, which surrounds the entire loop
in its own implicitly generated scope.
This is the default setting in the ANSI C++ modes.

no_old_specialization
old_specialization

These arguments are used to enable or disable acceptance of new template
specializations template<> syntax.

-K no_old_specialization is the default setting in the Cfront C++ mode. In this
case, the compiler implicitly defines the macro __OLD_SPECIALIZATION_SYNTAX
with the value 0.

If -K old_specialization is specified, the compiler implicitly defines the macro
__OLD_SPECIALIZATION_SYNTAX with the value 1.

The cc, c89 and CC commands C++-specific frontend options

U23625-J-Z125-6-76 65

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

Template options

The following options are only relevant in the ANSI-C++ modes as templates are not
supported in the Cfront C++ mode.

-T none
-T auto
-T local
-T all

These options control how templates with external linkage are instantiated. This
includes function templates as well as (non-static and non-inline) functions and static
variables that are members of class templates. These template types are combined
under the generic term "template entity" below.

In all instantiation modes, the compiler generates all instances per compilation unit that
are requested with the explicit instantiation directive template declaration or with the
instantiation pragma #pragma instantiate template entity.

The remaining template entities are instantiated as follows:

-T none
No instances are generated unless explicitly requested.

-T auto (default)
Instantiation is carried out globally for all compilation units by a prelinker. The prelinker
is activated when an executable file is generated with the CC command or if the -y
option (see page 50) is specified. No instantiations are performed by the prelinker when
generating a prelinked object file (-r option). The principle of automatic instantiation is
described in detail in section “Automatic instantiation” on page 19).

-T local
Instantiation is carried out per compilation unit.
All template entities used in a compilation unit are instantiated, with internal linkage for
the functions generated in the process. This provides a very simple mechanism for
starting template programming. The compiler instantiates the functions required in each
compilation unit as local functions. The program links them and then terminates
correctly. However, this method produces a large number of copies of the instantiated
functions and is therefore not recommended for production. And for the same reasons
this mode is not suitable if one of the templates contains static variables.

C++-specific frontend options The cc, c89 and CC commands

66 U23625-J-Z125-6-76

Warning:

The basic_string template contains a static variable which is used to represent an
empty string. If you use the -T local option and select the string type from the
library the empty string is no longer recognized. Try to avoid using this combination as
it can lead to serious problems.

-T all
Instantiation is carried out per compilation unit.
All template entities that are used or declared in a compilation unit are instantiated. All
member functions and static variables of a class template are instantiated regardless of
whether they are used or not. Function templates are also instantiated if they are just
declared.

-T add_prelink_files,pl_file1[,pl_file2...]
This option can be used to specify objects and libraries that are taken into account as
described below when the prelinker determines the instances to be generated:

pl_filei is the name of an object file (.o file) or a static library (.a file).

– If an object file or library pl_filei contains the definition of a function or static data
member, no instance of a template entity that is a duplicate this is generated.

– If an object file or library pl_filei needs instances for template entities, these
instances are not generated.

Problem

The libX.a and libY.a libraries contain references to the same template instances.
Duplicates occur if the objects of the two libraries were each preinstantiated with the
-y option.

In such cases, the prelinker must be informed that symbols are defined elsewhere and
it should therefore not generate any instances. The -T add_prelink_files option is
provided for this purpose.

Solution

The objects of the libX.a library are initially preinstantiated with the -y option. Then
the objects of the libY.a library are preinstantiated, using the
-T add_prelink_files,libX.a option to inform the prelinker to consider libX.a
and ensure that no duplicate of this is generated.

The cc, c89 and CC commands C++-specific frontend options

U23625-J-Z125-6-76 67

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

-T max_iterations,n
In automatic instantiation mode (-T auto), this option specifies the maximum number
n of prelinker runs. The default is n = 30. The number of prelinker runs is unlimited if n
is set to the value 0.

-T etr_file_none
-T etr_file_all
-T etr_file_assigned

These three options are used to control the creation of an ETR file file.etr
(ETR=Explicit Template Request) for the application of explicit template instantiation
(see section 2.3.3 on page 24).

Warning:

The etr_file_all and etr_file_assigned options are ignored if they are used in
conjunction with the preprocessor options -P / -E / -M.

-T etr_file_none
This is the default setting and suppresses the output of instantiation information.

-T etr_file_all
This option outputs all the possible template information.

-T etr_file_assigned
This option ensures that only those instantiation templates assigned by the prelinker are
output.

-T [no_]definition_list or -T [no_]dl

This options allows for internal communication between the front end and the prelinker
during the recompilation phase of the automatic template instantiation. You will find
more information in the section “First instantiation using the definition list (temporary
repository)” on page 21.

-K arg1[,arg2...]
General input rules for the -K option can be found on page 42. The following entries are
possible as arg arguments to control template instantiation:

C++-specific frontend options The cc, c89 and CC commands

68 U23625-J-Z125-6-76

assign_local_only
no_assign_local_only

These arguments determine whether or not instantiation assignments are only
supported locally. If -K assign_local_only is set, the following applies:

– Instantiations can only be assigned to object files that are located in the current
directory (local files).

– Instantiations can only be assigned to an object file if the current directory at the
time of the instantiation matches the current directory at compile time.

Example

cd dir1 # The current directory when
CC -c test1.c # compiling test1.c is dir1

cd ../dir2 # The current directory when
CC -c test2.c # compiling test2.c is dir2

cd ../dir1 # The current directory for the
 # prelinker is dir1
CC -K assign_local_only -o test test1.c ../dir2/test2.o

In this example, the assignment of instantiations is restricted to the local object
file test1.o.

-K no_assign_local_only is the default setting.

implicit_include
no_implicit_include

These arguments determine whether the definition of a template is implicitly
included (see "Implicit inclusion" on page 31).

-K implicit_include is the default setting.

instantiation_flags
no_instantiation_flags

-K instantiation_flags is the default setting and causes special symbols to be
generated for use by the prelinker during automatic instantiation.
If -K no_instantiation_flags is set, no such symbols are generated, so the
object size is reduced. Consequently, no automatic instantiation with -T auto is
possible in this case.

The cc, c89 and CC commands Optimization options

U23625-J-Z125-6-76 69

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

3.2.7 Optimization options

If none of the following optimization options are specified, the compiler does not carry out
any optimization. This corresponds to the SDF LEVEL=*LOW option.

The separate optimization options and their effects are described in detail in the C/C++
User Guide [4] in the section “Optimization”.

-O
-F O2

These options enable the standard optimization of the compiler. The only difference
between the two options is that every optimization strategy is internally executed only
once for -O, but several times for -F O2. Consequently, the overall compile time at
the -O optimization level is significantly less than the compile time required for the
“highly-optimized” -F O2 level.

The following standard optimizations are performed by the compiler:

– calculates constant expressions at compilation time
– optimizes the indexing in loops
– eliminates unnecessary assignments
– propagates constant expressions
– eliminates redundant expressions
– optimizes jumps and unconditional jump commands

In addition, registers are also optimized, but this can be disabled with the -F r option.

In contrast to the SDF option (where the optimization level can be set as *HIGH or
*VERY-HIGH without parameters), loop unrolling is disabled here.

If the standard optimization has not been explicitly enabled with -O or -F O2, it is
automatically activated at level -O if the -F loopunroll (loop expansion) or -F i,
-F inline_by_source (inline substitution of user-defined functions) options are
specified.

-F I[name]
This option allows you to specify the C library functions for which the implementation in
CRTE can be assumed. This permits better optimization of the program.
When -F I is specified without name, all calls for known C library functions are handled
separately.
When the -F I option is not specified, no call is handled separately.
When -F Iname is specified (without a separating blank), only the name function is
handled separately.
If several functions are to be handled separately, the -F Iname option must be specifed
several times.
The -F I option can be specified independently of normal optimization.

Optimization options The cc, c89 and CC commands

70 U23625-J-Z125-6-76

The compiler achieves the greatest effect by means of inline generation of a function.
In this case the function code is inserted directly in place of the function call. This elim-
inates time-consuming management activities required of the runtime system (e.g. sav-
ing and restoring registers or returning from the function), thus shortening program runt-
ime.

The following C library functions can be generated inline:

Functions which are generated inline cannot be replaced by other functions at linkage
time, nor can they be used as test points when debugging with AID.

The default compiler optimization does not have to be activated for generating C library
functions inline.

The compiler knows the semantics of the CRTE library functions. With the -F Iname
option you command the compiler to generate optimized functions that observe the
CRTE library function semantics. If no name is specified, then the compiler should use
all its knowledge of the CRTE functions (the compiler knows of about 150 functions).

Functions which are not generated inline are retained as calls. However, optimizations
are possible which are not feasible with the user functions. For example, the compiler
can use the information that the isdigit() function has no side effects.

Some functions are highly specialized since they are generated to be completely inline.
For these functions the compiler creates the code directly without passing it to CRTE.
These functions are listed in the table above.

In some cases this optimization may not be desired. If the program is to be debugged,
you may need to set a breakpoint in such a function. This is not possible for functions
generated to be completely inline, or more precisely, you can set a breakpoint, but it will
not be reached. The code generated by the compiler is used and not the function where
the breakpoint was set.

Another case is when a function is defined with a name that is already known to the
compiler. In most cases this function will use semantics different from the CRTE
semantics. If a conflict between such a function and this option arises, then all calls
assume the CRTE semantics. Warning CFE2067 is output in this case.

Note that the CRTE semantics are used in every compilation unit. The warning is only
output in the compilation unit that contains the private definition.

abs strcat

fabs strlen

labs strcmp

memcmp strncmp

memcpy strcpy

memset

The cc, c89 and CC commands Optimization options

U23625-J-Z125-6-76 71

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

-F i[name]
-F inline_by_source

These alternative options control the inline substitution of user-defined functions. As in
the case of some C library functions from the standard library (see -F I, page 69), each
call to an inline function is replaced by the corresponding function code. This saves the
code sequence for the call and return and thus results in faster execution times.
Specifying the -F i, -F iname or -F inline_by_source options automatically
activates the standard optimization (-O) as well, unless -F O2 was explicitly set.

-F i and -F iname
When -F i is specified with or without name, the compiler selects functions for inline
substitution in accordance with its own criteria. Any existing inline pragmas and
C++-specific inline functions in the source program are automatically considered by the
compiler in the search for suitable candidates (see also -F inline_by_source).

If name is specified (without a leading blank!), the function name will also be inlined. If
multiple user-selected functions are to be considered by the compiler for inline
substitution, the -F iname option must be specified more than once.
The -F iname option is ignored for C++ compilations, i.e. by the CC command.

-F inline_by_source
If this option is specified, only the following user-defined functions are inlined:

– For C compilations (cc, c89): C functions declared with the #pragma inline name
directive (see also the section “inline pragma” in the C/C++ User Guide [4]). The
inline pragma in not supported in C++.

– For C++ compilations (CC): the C++-specific inline functions. These are the
functions defined within classes and functions with the inline attribute.

Note on inline functions in C++

The inline substitution of C++-specific inline functions is also performed when optimi-
zation is not enabled or if the -F i or -F inline_by_source options are not set. This
can be suppressed with the -F no_inlining option.

Optimization options The cc, c89 and CC commands

72 U23625-J-Z125-6-76

-F loopunroll[,n]
This option controls loop unrolling. Multiple unrolling of the loop body speeds up loop
execution. This optimization option is not used by default. If it is specified, it automati-
cally activates the standard optimization (-O), unless -F O2 was explicitly set.

If -F loopunroll is specified without n, the compiler unrolls loop bodies four times.
You can use n to specify your own unroll factor, where n can be set to a value between
1 and 100.

Specifying -F loopunroll[,n] does not guarantee that the optimizer will always carry
out the loop expansion. The optmizer decides whether or not to run the loop expansion
on the basis of the loop structure and specified factor n.

-F no_inlining
This option suppresses the inline substitution of C++-specific inline functions, which is
performed by default even if the -F i or -F inline_by_source options have not been
specified.
If the -F no_inlining option in combination with the -F i or -F inline_by_source
option, the last specification on the command line applies.
If -F no_inlining is the last specified option, even the originally requested inlining of
user-defined C functions is suppressed (however, the implicitly set -O optimization
remains enabled).
The inlining of C library functions set with the -F I option (see page page 69) is not
affected by -F no_inlining.

The cc, c89 and CC commands Options for controlling object generation

U23625-J-Z125-6-76 73

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

3.2.8 Options for controlling object generation

-K arg1[,arg2...]
General input rules for the -K option can be found on page 42.
The following entries are possible as arg arguments to control object generation:

Assembler commands for subroutine entries

subcall_basr
subcall_lab

-K subcall_basr (default)
The BASR command is generated by default.

-K subcall_lab
The processor-independent LA and B assembler commands are generated.
Programs using these commands will run on all 7500 systems.
Warning: This option is not allowed in the ANSI-C++ mode.

Generating the ETPND area

The following options are used to delete the #pragma directive for generating an
ETPND area (see the section “ETPND pragma” in the C/C++ User Guide [4]) or to
define the date format of the ETPND area.

no_etpnd
calendar_etpnd
julian_etpnd

-K no_etpnd (default)
By default, no ETPND area is generated.

-K calendar_etpnd
The date format in the ETPND area is defined as follows:
8 bytes calendar date - 4 bytes load address.

-K julian_etpnd
The date format in the ETPND area is defined as follows:
6 bytes calendar date - 3 bytes Julian date - 4 bytes load address.

Options for controlling object generation The cc, c89 and CC commands

74 U23625-J-Z125-6-76

Generating the entry code for function calls

ilcs_opt
ilcs_out

-K ilcs_opt (default)
The ILCS entry code is generated inline. This speeds up the runtime of the created
object.

-K ilcs_out
A jump is made to the ILCS entry code for function calls in the runtime system. This
reduces the module code volume. The compatibility to C-V1.0 objects is ensured.

Handling enum data

enum_value
enum_long

-K enum_value (default)
By default, the enum data is handled as char, short or long, depending on the
value range.

-K enum_long
enum data is always handled as type long objects.

Generating the entry names with LLMs

llm_convert
llm_keep

-K llm_convert (default)
By default, underscore characters are converted to dollar signs when entry names
are generated.

-K llm_keep
The underscore characters are retained when generating entry names.

The underscore character conversion applies to all external symbols in the C
language modes and only the symbols declared with external "C" in the C++
language modes (not the entry names of the C library functions). The underscore
character is always retained when coding external C++ symbols.

The cc, c89 and CC commands Options for controlling object generation

U23625-J-Z125-6-76 75

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

no_llm_case_lower
llm_case_lower

-K no_llm_case_lower (default)
By default, lowercase letters are converted to uppercase when entry names are
generated.

-K llm_case_lower
The lowercase letters are retained when entry names are generated.

The lowercase to uppercase conversion applies to all external symbols in the C
language modes and the Cfront C++ mode, and only the symbols declared with
external "C" in the ANSI C++ language modes. Lowercase letters are always
retained when coding external C++ symbols in the ANSI C++ modes.

Warning:

The C library functions are only available in full if one of the following combinations
of options has been specified:

● -K dollar and -K no_llm_case_lower

● -K llm_keep and -K llm_case_lower

csect_suffix=suffix
csect_hashpath

These options specify how CSECT names are formed. By default the CSECT name
is derived from the module name, and the module name is derived from the source
name as long as it is not explicitly specified.
The options can be sued to generate different CSECT names when the object
names are the same.

With the help of these two options, a 30 character long string is created as the basis
for the real CSECT names. This basis can be output using ‘-K verbose / -v’.

The basis is changed in the usual manner by:

– converting all lower case letters to upper case letters ,

– converting all special characters such as ‘_’ or ‘.’ to ‘$’ and

– adding ’&@’ or ’&#’ to generate real CSECT names.

With the help of these options you select different suffixes that are appended to the
object names. If an object name is longer than 30 characters (not including the
length of the suffix), then it is truncated.

Options for controlling object generation The cc, c89 and CC commands

76 U23625-J-Z125-6-76

-K csect_suffix=
With this option you specify a user-defined suffix. A maximum of 10 characters are
used.

-K csect_hashpath
With this option you generate a 7 character long string from the full object path
(including ’..’; links are not expanded). This character string is used as the suffix.

Storing const objects

roconst
no_roconst

-K no_roconst (default)
By default, type const objects are stored in the data module.
(WRITEABLE).

-K roconst
Type const objects are stored in the code module (READ-ONLY). The constants
cannot be overwritten even if the const attribute is removed with a cast operator.

Caution: only global or local static constants are affected. Local auto variables
with the const type attribute cannot be stored in the READ-ONLY area.

Storing string constants

no_rostr
rostr

-K no_rostr (default)
By default, string constants are stored in the data module (WRITEABLE). This
allows the values to be overwritten if the const attribute is removed with a cast
operator.

-K rostr
String constants and aggregate initialization constants are stored in the code
module (READ-ONLY).

Floating-arithmetics in /390 and IEEE formats

no_ieee_floats
ieee_floats

-K no_ieee_floats (default setting)
By default, floating point data types and operations in /390 format are used.
-K ieee_floats
The IEEE format is used for floating-point data types and operations. This applies
to all variables and constants of the float, double and long double data types
inside the C/C++ programms.

The cc, c89 and CC commands Options for controlling object generation

U23625-J-Z125-6-76 77

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

Important:

● The same C/C++ program can produce different results depending on whether
the IEEE format or the /390 format is used for floating-point data types and
operations. The reasons for this are as follows:

– IEEE floating-point numbers use a different internal notation from /390
floating-point numbers.

– IEEE floating-point operations use different semantics from /390 floating-
point operations even on the same type of operation. This is the case, for
example, in rounding. IEEE format uses "Round to Nearest" as default
whereas /390 format uses "Round to Zero" as default.

● C++ library functions do no support the IEEE format and must therefore be
replaced with C functions where necessary (see the example below).

Prerequisites for using the IEEE-Format:

● For each and every CRTE function that works with floating-point numbers in
your program, you must use the corresponding or matching include file. If you
do not do this, the CRTE functions will not be able to process the floating-point
numbers correctly. You should ensure that you include the include file <stdio.h>
for the function printf() with #include <stdio.h>.

● CRTE contains some C library functions which use the IEEE format for floating-
point arithmetics. To ensure that the IEEE function names are correctly used,
you should specify the following two options for the option ieee_floats:

-K llm_keep
-K llm_case_lower

Generating shareable code

no_share
share

-K no_share (default)
By default, the compiler does not generate any shareable code.

-K share
The compiler generates shareable code comprising a shared code CSECT and a
non-shared data CSECT.
Modules containing shareable code can only be meaningfully further processed in
a BS2000 environment (SDF).

Options for controlling object generation The cc, c89 and CC commands

78 U23625-J-Z125-6-76

Storing workspace variables

workspace_static
workspace_stack

-K workspace_static (default)
By default, workspace variables are stored in the static data area.

-K workspace_stack
The data required for workspace variables is stored on the stack.

Multiple definition of externally visible variables

external_multiple
external_unique

-K external_multiple
An externally visible variable that is defined in several modules is only assigned one
memory area.
In order to achieve this, the variable may not be statically initialized in any of the
definitions. The compiler places the memory for this variable in the COMMON area.
If the variable is statically initialized during definition, the memory is placed in the
data area. It is then not possible to assign it just one memory area.
This behavior is the default in K&R C mode.

-K external_unique
Externally visible variables may only be defined in just one module and must be
declared as external in all other modules. The memory space for such variables
is placed in the data module of the object in which the variable was defined.
This behavior is the default in the ANSI C and all C++ language modes. The default
may not be changed in the C++ language modes.

Length of external C names

The following options define the length of external C names and affect all external
symbols in the C language modes, but only the symbols declared with extern "C" in
the C++ modes (not the entry names of C library functions).

c_names_std
c_names_unlimited
c_names_short

-K c_names_std (default)
By default, external C names may be a maximum of 32 characters long. Longer
names are truncated by the compiler to 32 characters. Only 30 characters are
allowed when generating shareable code (-K share).

The cc, c89 and CC commands Options for controlling object generation

U23625-J-Z125-6-76 79

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

-K c_names_unlimited
Names are not truncated. In this case, the compiler generates entry names in EEN
format. EENs can have a length of up to 32000 characters. Modules containing
EENs are saved by the compiler in LLM Format 4. More detailed information on how
LLMs in Format 4 are processed further can be found on page 83
(-B extended_external_names).
EENs are not supported in the Cfront C++ mode.

-K c_names_short
External C names are truncated to 8 characters.

Note

Options which affect the length of external names also affect the names of static func-
tions as the compiler handles the names of static functions like the names of external
functions.

Debug option The cc, c89 and CC commands

80 U23625-J-Z125-6-76

3.2.9 Debug option

-g
The compiler generates additional information (LSD) for the AID debugger. By default,
no debugging information is generated.

A program, i.e. an executable file generated by the link editor, can be debugged in the
POSIX shell with the debug command. Once this command is input, the user is in
BS2000 mode (indicated by %DEBUG/). The AID commands are then input as
described in the manual “AID Debugging of C/C++ Programs” [10]. The POSIX shell is
the current environment after the program is terminated.

A description of the debug command can be found in the manual “POSIX Commands”
[2].

3.2.10 Runtime options

The following options can be used during compilation of programs containing the main
function, to influence their behavior at runtime

-K arg1[,arg2...]
General input rules for the -K option can be found on page 42.
The following entries are possible as arg arguments to control the runtime behavior:

integer_overflow
no_integer_overflow

-K integer_overflow (default)
By default, the program mask is set to X‘0C‘ in compliance with the ILCS
convention.

-K no_integer_overflow
The program mask is set to X’00’.

The two program masks have the following effect:

X‘0C‘ X‘00‘

Fixed point overflow
Decimal overflow
Exponent underflow
Mantissa null

allowed
allowed
suppressed
suppressed

suppressed
suppressed
suppressed
suppressed

The cc, c89 and CC commands Runtime options

U23625-J-Z125-6-76 81

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

Notes

The ILCS program mask may not be changed with mixed code!

The -K integer_overflow option does not affect he selection of generated
commands. The result is that permitting INTEGER-OVERFLOWs does not neces-
sarily mean that an overflow is triggered in all cases.

prompting
no_prompting

-K prompting (default)
If the program is called from the BS2000 environment (SDF), a prompt line is output
in which parameters can be specified for the main function or for redirecting the
standard I/O stream.

-K no_prompting
No prompt line is output.

This option has no effect if the program is started from the POSIX shell as the
parameters are always specified in the command line in this case.

statistics
no_statistics

-K statistics (default)
The used CPU time is output when a program generated with this option is termi-
nated. However, this only occurs when the program is transferred to BS2000 and is
started there.

-K no_statistics
The used CPU time is not output.

stacksize=n
The -K stacksize option can be used to input a number n (8 to 99999) which defines
the number of KB to be reserved for the first segment of the C runtime stack. The default
is 64 KB.

–K environment_encoding_std
–K environment_encoding_ebcdic

These options enable the encoding of external strings, such as arguments of main and
environment variables, to be controlled.
These options are only effective with sources which contain the main function.

Runtime options The cc, c89 and CC commands

82 U23625-J-Z125-6-76

–K environment_encoding_std (default).
The external strings are encoded in the way specified in the options
–K literal_encoding_ascii, –K literal_encoding_ascii_full,
–K literal_encoding_ebcdic or –K literal_encoding_ebcdic_full

–K environment_encoding_ebcdic
This option is offered for reasons of compatibility. Despite
–K literal_encoding_ascii or –K literal_encoding_ascii_full
being specified, external strings are encoded in EBCDIC.

The table below explains the option combinations and the encoding of the external strings:

environment_
encoding_std

environment_
encoding_ebcdic

literal_encoding_ebcdic* EBCDIC EBCDIC

literal_encoding_ascii* ASCII EBCDIC

The cc, c89 and CC commands Link editor options

U23625-J-Z125-6-76 83

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

3.2.11 Link editor options

The following link editor options are not evaluated if one of the -c, -E , -M or -P options
are specified (terminate the compiler run after compilation or after the preprocessor run,
see page 49).

All options in the cc/c89/CC command that are not known to the compiler, i.e. options
which begin with an unrecognized letter after the hyphen "-", are passed through to the
link editor.

-B extended_external_names
-B short_external_names

This option controls the handling of symbol names in Extended External Name (EEN)
format by the link editor.

EENs, i.e. untruncated external C++ symbols are generally contained in modules that
were generated with the compiler in the ANSI C++ mode.
Untruncated external C symbols are generated only if the -K c_names_unlimited
option if specified at compilation (see page 78).
If this is the case, even external C symbols are not truncated to 32 bytes by the
compiler.
Modules with EENs are stored by the compiler in LLM Format 4. The modules of the
C++ libraries and of the CRTE runtime systems used in ANSI C++ mode are also
provided in LLM Format 4.

Note, however, that BLSSERV V2.0 or later (which can be currently used as of
BS2000/OSD V3.0) is required in order to load LLMs in Format 4 with the dynamic
binder-loader DBL.

If the modules generated by the compiler do not include any EENs, i.e. are in LLM
Format 1, this option has no effect, since the link editor always generates LLM Format
1 in accordance with the input format in this case.

By default, i.e. if the -B option is not specified, the LLM format generated by the link
editor depends on the BS2000/OSD version under which the cc/c89/CC command is
executed:

BS2000/OSD Versions 1 to 3:
From the original LLM Format 4, the link editor generates a format that is compatible
with DBL (< BLSSERV V2.0), i.e. LLM Format 1. The result module will then no longer
contain any EENs. LLMs in Format 1 cannot be linked partially, i.e. first linked with
unresolved external references to EENs and then linked further on an incremental
basis.

Link editor options The cc, c89 and CC commands

84 U23625-J-Z125-6-76

BS2000/OSD Version 4 or higher:
The link editor generates LLM Format 4. The EENs remain in the result module without
being truncated. LLMs in Format 4 can be partially linked, i.e. first linked with
unresolved external references to EENs and then processed further as desired by
means of the link editor (as of BLSSERV V2.0).

-B extended_external_names
This entry is needed if the link editor is running in BS2000/OSD Versions 1 to 3 and
is to generate LLM Format 4. By default, LLM Format 1 is generated in BS2000/OSD
Versions 1 to 3.

-B short_external_names
This entry is needed if the link editor is running in BS2000/OSD Version 4 and is to
generate LLM Format 1. By default, LLM Format 4 is generated in BS2000/OSD
Version 4 and higher.

Summary of generated LLM formats

-d y
-d n
-d compl

This option affects linking the C runtime system.

By default, i.e. if the option is either not specified or -d y is specified, a RESOLVE for
the standard C libc.a library is issued to the SYSLNK.CRTE.PARTIAL-BIND library.
Instead of the complete C runtime system being linked in, only a connection module is
linked that satisfies all unresolved external references to the C runtime system. The C
runtime system itself is loaded dynamically at runtime, either from class 4 memory if the
C runtime system has been preloaded, or from the SYSLNK.CRTE.

If -d n is specified, the C runtime system is linked in completely from the
SYSLNK.CRTE.

Input format Option -B Output format

OSD V1-3 OSD V4

LLM 1 no entry
extended_external_names /
short_external_names

LLM 1 LLM 1

LLM 4 (EEN) no entry LLM 1 LLM 4

short_external_names LLM 1 LLM 1

extended_external_names LLM 4 LLM 4

The cc, c89 and CC commands Link editor options

U23625-J-Z125-6-76 85

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

The complete partial bind method of the CRTE is supported with the -d compl option.
To accomplish this the SYSLNK.CRTE.COMPL library is linked in.
You will find a detailed description of the complete partial bind method in the "CRTE" [5]
manual.

In the ANSI-C++ mode the special library SYSLNK.CRTE.CPP-COMPL is linked
instead of the standard libraries SYSLNK.CRTE.STDCPP and
SYSLNK.CRTE.RTSCPP. This library is also used instead of SYSLNK.CRTE.TOOLS.

Note

The complete partial bind method is not supported in the CFRONT-C++ mode. The
option -d compl is reset to -dy in this case.

-K arg1[,arg2...]
General input rules for the -K-option can be found on page 42.
The following entries are possible as arg arguments to control the link editor:

link_stdlibs
no_link_stdlibs

-K link_stdlibs is the default setting and causes certain standard libraries to be
automatically linked in (see also the -l option, page 86). This means that the corre-
sponding -l options are automatically set for these libraries:

1. Only with the CC command

-l Cstd in the ANSI C++ modes
-l C and in Cfront C++ mode

2. Always

-l c

If -K no_link_stdlibs is specified, the above libraries are not linked in automat-
ically. This is, for example, meaningful if the -y option is used to terminate compi-
lation after prelinking (see page 50) or if a prelinked object file is generated with the
-r option (see page 88).

Link editor options The cc, c89 and CC commands

86 U23625-J-Z125-6-76

-l x
This option instructs the link editor to search the library named libx.a for resolving
external references via autolink. By default the link editor searches for the library in the
following directories in the order given below:

1. The directories specified with -L

2. Either the directories specified with the -Y P option (see page 89) or the standard
/usr/lib directory.

-l x falls into the category of operands and can also be specified with -- after options
have been input (see also “Operands” on page 42).

The standard libraries of the C and C++ runtime system are not installed in the POSIX
file system /usr/lib directory, they are stored as PLAM libraries in BS2000.

Assignment of standard code x to the BS2000 PLAM libraries:

x Library name Contents

c SYSLNK.CRTE.PARTIAL-BIND Connection module for loading the C runtime
system dynamically (default)

SYSLNK.CRTE Separate modules for completely linking the C
runtime system (with -d n)

m see c

C see c

SYSLNK.CRTE.CFCPP Cfront C++ runtime system

SYSLNK.CRTE.CPP Cfront C++ library for input/output and complex
mathematics

Cstd see c

SYSLNK.CRTE.RTSCPP ANSI C++ runtime system

SYSLNK.CRTE.STDCPP Standard C++ library

RWtools SYSLNK.CRTE.TOOLS C++ library Tools.h++

The cc, c89 and CC commands Link editor options

U23625-J-Z125-6-76 87

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

The link editor only resolves the unresolved external references from these PLAM
libraries if the -l x option is used and not if the path name is specified explicitly (e.g.
/usr/lib/libRWtools.a) using the file.suffix operand (see page 42)!

-l c is implicitly added as the last -l option for the cc and c89 commands,
-l C for the CC command in the Cfront C++ mode, and
-l Cstd for the CC command in the ANSI C++ modes (does not apply for
-K no_link_stdlibs).

The order and position in which the -l options and any object files (or source files from
which the compiler generates object files) are specified in the command line is signif-
icant to the link process.
For example, the program would be linked correctly with the CC test.c -l RWtools
command, but the CC -l RWtools test.c command would lead to an error.

-l BLSLIB
This option instructs the link editor to search PLAM libraries which were assigned with
the BLSLIBnn (00 Ï nn Î 99) shell environment variable.
The environment variables must be supplied with the library names and exported with
the POSIX export command before the compiler is called. The libraries are searched
in ascending order nn.
The number assignment nn must be sequential, without gaps and start with 00!

A separate RESOLVE directive to the link editor is generated internally for each BLSLIB
environment variable. It may be necessary to assign the environment variables several
times to libraries with cyclic dependencies (e.g. with forward and reverse references),
and not just once.

-l BLSLIB falls into the category of operands and can also be specified with -- after
options have been input (see also “Operands” on page 42).

Example

The library assigned with BLSLIB00 contains unresolved external references to the
library assigned with BLSLIB01 and this in turn contains unresolved external references
to the BLSLIB00 library (reverse references).

BLSLIB00=‘$RZ99.SYSLNK.CCC.999‘
BLSLIB01=‘$MYTEST.LIB‘
BLSLIB02=‘$RZ99.SYSLNK.CCC.999‘
export BLSLIB00 BLSLIB01 BLSLIB02
c89 mytest.o -l BLSLIB

Link editor options The cc, c89 and CC commands

88 U23625-J-Z125-6-76

-L dir
The dir option can be used to specify an additional directory in which the link editor is
to search for libraries specified with -l options. By default, only the /usr/lib directory
is searched for the libraries. A directory specified with -L is searched before the
standard /usr/lib directory or before the directories specified with the -Y P option.
The order in which the -L options are specified in the command line determines the link
editor search order.
This option only falls into the category of operands for the cc and CC commands and
can therefore only be specified with -- after the options have been input (see also
“Operands” on page 42).

-r
Several object files can be prelinked to form a single object file with this option. A
prelinked object file is not executable, but contains the relocation information required
to repeat a linkage run.
The following options are set implicitly when prelinking with -r:
-K no_link_stdlibs (see page 85) and -B extended_external_names (see
page 83). This means that the C/C++ standard libraries are not linked and that LLM
Format 4 is generated in the case of long C and C++ names (EENs). The
-K link_stdlibs and -B short_external_names options, if specified, are ignored.
Note that BLSSERV V2.0 must always be available in the ANSI C++ modes and also in
the C modes whenever long C names (EENs) are used so that the prelinked object files
can be processed further (i.e. linked). No instantiations by the prelinker are performed
when generating a prelinked object file.
Unresolved references do not cause error messages to be output.
The prelinked object file is given the name a.out or the name specified with the -o
option. The object file can only be meaningfully further processed (linked) if the name
of the prelinked object file is suffixed with .o or with a suffix which can be defined with
the -Y F option (see page 47).

-s
Symbol table information is stripped from the output file. The sections with additional
information for troubleshooting and with line numbers and associated offset information
are also removed.
The option is ignored if debugging information for AID is simultaneously requested
(-g options). It is also ignored in all C++ modes as the symbol tables are required at
runtime for global initialization. The option corresponds to the link editor SAVE-LLM
SYMBOL-DICTIONARY=*NO directive.

The cc, c89 and CC commands Link editor options

U23625-J-Z125-6-76 89

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

-Y P,dir1[:dir2...]
Instructs the link editor to search for libraries in the directories specified with dir last.
Without this option, the last directory to be searched is the standard /usr/lib
directory.

-z nodefs
This option is only supported when linking C programs (cc, c89). Specifying this option
allows a C program to be linked in which all external references to the standard C library
libc.a remain unresolved, i.e. no RESOLVE is issued to the library
SYSLNK.CRTE.PARTIAL-BIND or SYSLNK.CRTE. The unresolved external refer-
ences are resolved dynamically at runtime from the C runtime system which is
preloaded into class 4 memory.

If this option is used, unresolved externals to user modules are ignored and not
reported. Information on unresolved external references is only output when the
program is loaded.

–z dup_ignore
–z dup_warning
–z dup_error

These options control the behavior of duplicates during linking.

–z dup_ignore
Duplicates are ignored during linking.
This is the default.

–z dup_warning
Duplicates during linking result in a warning being issued.

–z dup_error
Duplicates during linking result in an error.

Programs which contain duplicates cannot be executed in POSIX.
The compiler cannot specify any duplicates which are found by name, but they are output
when an attempt is made to start the program.
The modules which contain the duplicates can be found using the BINDER listing
(see -N binder, page 92) and possibly also with the name mangler nm.

Options for controlling message output The cc, c89 and CC commands

90 U23625-J-Z125-6-76

3.2.12 Options for controlling message output

More detailed information on the compiler message output can be found in the C/C++ User
Guide [4] in the section “Structure of the compiler messages”.

-R diagnose_to_listing

This option allows you to sort diagnostic information (normally sent to stderr) as a
special “result listing” and to copy this to the end of the listing file. Note: the messages
are sorted according to their message weighting.

-R limit,n
This option defines the maximum number of errors tolerated by the compiler before it
aborts the compilation run. Notes and warnings are counted separately. The default
value is n = 50. If n = 0, the compiler will attempt to continue compiling as long as
possible, regardless of the number of errors that have occurred.

-R min_weight,min_weight
This option defines the minimum error weight (i.e. severity code) as of which diagnostic
messages from the compiler are to be output to the standard error output stderr.
-R min_weight,warning is the default setting. The following entries are possible for
min_weight:

notes All messages are output, i.e. even the notes.

warnings The output of notes is suppressed (default).

errors The output of notes and warnings is suppressed.

fatals The output of notes, warnings and errors is suppressed.

-R note,msgid,[msgid...]
-R warning,msgid,[msgid...]
-R error,msgid,[msgid...]

These options can be used to change the default severity code of diagnostic messages.
msgid is the corresponding message number. The severity code for fatal errors cannot
be changed. This also applies to errors, unless they have been explicitly marked in the
original message with an asterisk: [*error]. Depending on the language mode or the
position in the code, the same message ID msgid can have a different severity code
(warning or error).

The cc, c89 and CC commands Options for controlling message output

U23625-J-Z125-6-76 91

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

-R show_column
-R no_show_column

This option determines whether the diagnostic messages of the compiler are generated
in short or long form.
-R show_column is the default setting, which means that the original source program
line is shown with the error location marked (with ^) in addition to the diagnostic
message itself.
If -R no_show_column is specified, the marked source program line is not output.

-R strict_errors
-R strict_warnings

This option can only be used meaningfully in the strict ANSI C/C++ modes (-X c, -X e).
-K strict_warnings is the default, which means that warnings are issued for
language constructs that deviate from the ANSI/ISO standard, but do not represent a
serious violation of the semantic rules defined therein (e.g. implementation-dependent
language extensions; see the C/C++ User Guide [4]).
If -K strict_errors is specified, such cases are treated as errors with corresponding
messages.
More serious violations automatically lead to errors.

-R suppress,msgid,[msgid...]
Suppresses the output of the message with the message ID msgid. Some messages
(e.g. fatal errors) cannot be suppressed.

-R use_before_set
-R no_use_before_set

-R use_before_set is the default setting and causes warnings to be issued if local
auto variables are used in the program before being assigned a value.
If -R no_use_before_set is specified, the output of such warnings is suppressed.

-v
The output of messages with this option is the same as for the option combination
-R min_weight,notes and -K verbose.

-w
This option is a synonym for -R min_weight,errors.

Options for outputting listings and CIF information The cc, c89 and CC commands

92 U23625-J-Z125-6-76

3.2.13 Options for outputting listings and CIF information

-N binder[,file]
This option, which is analogous to the MAP operand of the BINDER statement
SAVE-LLM, can be used to request the standard listings of BINDER. These listings are
created only when an executable file or a prelinked object file (-r) is generated. If file is
not specified, the BINDER listings are written to an output file file.lst, where file is the
name of the executable or the prelinked object file (a.out or the name defined with the
-o option). file can be used to specify some other output file name. The -N binder
option is ignored if specified in combination with any of the options -c, -E, -M, -P or -y.

-N cif,[output-spec],consumer1[,consumer2 ...]
(output-spec is a file or a directory).
The compiler generates a CIF (Compilation Information File) containing information for
the specified consumers. If output-spec is not specified, the CIF is written into a separate
file named sourcefile.cif for each compiled source file. A different output file name can
be defined with output-spec. In this case, only one source file can be compiled. The
global listing generator cclistgen is provided to further process the generated CIF
information (see page 99).
The following entries can be made for consumer:

option
prepro
source_error
data_allocation_map
cross_reference
object
project (only with the CC command)
summary
ALL

If ALL is specified, all possible CIF information is generated, e.g. when the compiler run
is terminated after the preprocessor phase (-E, -P options), CIF information for an
options, preprocessor and statistics listing. The CIF may be very large if ALL is
specified!

-N listing1[,listing2...]
The compiler writes the listings requested with this option either into a separate
sourcefile.lst file for each compiled source file or for all compiled source files into the
listing file file specified with the -N output option.
When the maximum number of errors is reached (controlled by -R limit), no source
program information will be output to the source/error list. At this point the source/error
list can no longer taken as a reliable guide to real error status.

The cc, c89 and CC commands Options for outputting listings and CIF information

U23625-J-Z125-6-76 93

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

The following entries are possible for listing:

option or lo (options listing)

prepro or lp (preprocessor listing)

source_error or ls (source program/error listing)

data_allocation_map or lm (map listing)

cross_reference or lx (cross-reference listing, see also the -N xref option)

object or la (object listing)

project or lP (project listing, only with the CC command)

summary or lS (statistics listing)

ALL

If ALL is specified, all possible CIF information is generated, e.g. when the compiler run
is terminated after the preprocessor phase (-E, -P options), an options, preprocessor
and statistics listing.

Examples for the structure of compiler listings can be found in the section “Description
of listings” of the C/C++ User Guide [4].

-N output[,[output-spec][,layout][,[lpp][,cpl]]]
This option can be used to specify the name of the output file (output-spec) or output
directory in which the compiler listings for all source files are to be written.
If output-spec is not specified, a separate listing file sourcefile.lst is generated for each
compiled source file.
If output-spec specifies an existing output directory, the name output-spec/sourcefile.lst is
assigned by default. If this is not the case, the name output-spec is interpreted as the file
name.

The following entries can be made for layout:

normal or for_normal_print (default)
The default page length is 64 lines and the line width 132 characters.

rotation or for_rotation_print
The page length for the compiler listing is defined as 84 lines and the line width as 120
characters.

lpp can be used to define a page length of from 11 to 255 lines per page.

cpl can be used to define a line width of from 120 to 255 characters per line.

Options for outputting listings and CIF information The cc, c89 and CC commands

94 U23625-J-Z125-6-76

Note

Since the output file is prepared for printing under POSIX, there are up to 3 control
characters at the beginning of some lines in the file. In addition, every line is terminated
with the printer control character for a carriage return. If the output file is printed out,
then the line length is cpl–1.

-N title,text
This operand can be used to specify if an additional line is to appear in the header of
the listing and the text that is to be entered in it. In contrast to pragmas, which only apply
to source and preprocessor listings, the -N title option applies to all compiler listings.
In order to ensure that the desired text is transferred correctly, it is advisable to enter it
within quotes ("text"). In the case of source and preprocessor listings, TITLE and PAGE
pragmas (if any) override the -N title specification. See also the section on “Pragmas
to control the layout of listings” in the C/C++ User Guide [4].

-N xref,xrefopt1[,xrefopt2...]
The sections contained in the cross-reference listing requested with
-N cross_reference can be controlled with this option.
If the -N xref option is not specified, the cross-reference listing contains a list of the
variables, functions and labels (equivalent to -N xref,v,f,l).
The cross-reference listing always contains a FILETABLE section containing the names
of all files, libraries and members that the compiler used as sources.

If the -N xref option is specified, the cross-reference listing only contains the
FILETABLE section and the sections requested with the xrefopt argument:

p List of the names processed by the preprocessor in #include and #define
statements

y List of the user-defined types (typedefs, structure, union, classes and
counter types)

v List of variables

f List of functions

l List of labels

t List of templates (only with C++ compilations)

o=str The order in which the separate sections are listed in the cross-reference
listing. str is a string of up to 6 characters (letters for the lists shown above).
The default is the order as shown above (i.e., o=pyvflt). If the order
specified with o=str does not include all letters for the listings requested with
-N xref, the omitted letters are implicitly appended to the end of str in the
default order shown above.

The cc, c89 and CC commands Options for outputting listings and CIF information

U23625-J-Z125-6-76 95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

-K arg1[,arg2...]
General input rules for the -K option can be found on page 42.
The following entries are possible as arg arguments to control the listing output:

include_user
include_all
include_none

These arguments control whether and which header files are mapped to the source
program, preprocessor and cross-reference listings.

-K include_user is the default and only maps the user header files.

If -K include_all is specified, all header files are mapped, i.e. the standard
header files and those of the user.

If -K include_none is specified, no header files are mapped.

cif_include_user
cif_include_all
cif_include_none

These arguments control whether and from which header files (also called include
files) the CIF information for source/error, preprocessor and cross-reference listings
is to be generated.

-K cif_include_user is the default and causes only the user-defined header
files to be considered in the CIF.

If -K cif_include_all is specified, all header files, i.e., the standard headers and
the user-defined headers, are considered in the CIF.

If -K cif_include_none is specified, none of the header files are considered in
the CIF.

pragmas_interpreted
pragmas_ignored

These arguments control whether #pragma directives for controlling the layout of
listings are evaluated (see also the section “Pragmas to control the layout of listings”
in the C/C++ User Guide [4]).
-K pragmas_interpreted is the default.

Files The cc, c89 and CC commands

96 U23625-J-Z125-6-76

3.3 Files

file.c/.C C source file (cc, c89) or C++ source file (CC) before the preprocessor run

file.cpp/.CPP/.cxx/.CXX/.cc/.CC/.c++/.C++
 C++ source file before the preprocessor run

file.i C source file (cc, c89) after the preprocessor run

file.I C++ source file) after the preprocessor run

file.o LLM object file

file.a Static library containing object files created with the ar utility

file.lst File containing compilation listings

file.cif File containing CIF information for further processing with the global listing
generator cclistgen

file.etr File containing explicit instantiation statements

file.o.ii Information file for automatic template instantiation (used internally)

a.out Executable file

file.mk Preprocessor output file for further processing with make

/var/tmp/... Temporary files used during compilation

3.4 Environment variables

The cc/c89/CC commands can be influenced with the following environment variables:

LANG, LC_MESSAGES
 Message output language

NLSPATH Search path for the message catalog (currently not used)

TMPDIR Name of the directory in which temporary files are stored

BLSLIBnn Assignment of PLAM libraries which the link editor is to search with autolink

IO_CONVERSION

Automatic conversion (IO_CONVERSION=YES) from ASCII to EBCDIC.

The cc, c89 and CC commands Predefined preprocessor names

U23625-J-Z125-6-76 97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
3

3.5 Predefined preprocessor names

When the compiler is called with cc, c89 or CC, specific options, preprocessor macros and
predicates are predefined, dependent on the command.

Predefined preprocessor macros (defines)

_BOOL In the ANSI C++ modes (-X w|e) with the -K bool option (default)

__CGLOBALS_PRAGMA
 Always set

__cplusplus In all C++ language modes:

== 1 in Cfront C++ mode (-X d)
== 2 in extended ANSI C++ mode (-X w)
== 199612L in strict ANSI C++ mode (-X e)

c_plusplus In all C++ language modes (-X d|w|e)

__CFRONT_V3 In Cfront C++ mode (-X d)

__EDG_NO_IMPLICIT_INCLUSION
 In the ANSI C++ modes (-X w|e) if implicit inclusion was disabled

during template instantiation
(-K no_implicit_include)

__EXISTCGLOB Always set

LANGUAGE_C Input file is a C or C++ source file

_LANGUAGE_C Input file is a C or C++ source file

_LONGLONG -K longlong option

__OLD_SPECIALIZATION_SYNTAX
 In the ANSI C++ modes (-X w|e)

== 1 with the -K old_specialization option
== 0 with the -K no_old_specialization option (default)

_OSD_POSIX Always set

__OSD_POSIX Always set

__SIGNED_CHARS__ -K schar option

__SNI In all C modes (-X t|a|c) and in Cfront C++ mode (-X d)

__SNI_HOST_BS2000_POSIX
 Always set

Predefined preprocessor predicates The cc, c89 and CC commands

98 U23625-J-Z125-6-76

__SNI__STDCplusplus
 In all C++ language modes:

== 0 in Cfront and in extended ANSI C++ mode (-X d|w)
== 1 in strict ANSI C++ mode (-X e)

__SNI_TARG_BS2000_POSIX
 Always set

__STDC__ Always set:

== 0 in the K&R C (-X t), extended ANSI C (-X a), Cfront C++
(-X d) and extended ANSI C++ (-X w) language modes

== 1 in the strict ANSI C (-X c) and strict ANSI-C++ (-X e)
language modes

__STDC_VERSION__ Undefined in K&R C mode (-X t)

== 199409L in the ANSI C language modes in all C++ modes

_STRICT_STDC In the strict ANSI C and C++ language modes (-X c, -X e)

_WCHAR_T In the ANSI C++ modes (-X w|e) with the -K wchar_t_keyword
option (default)
If this option is not set (e.g. in the C modes or in Cfront C++ mode),
_WCHAR_T is defined in several standard includes to issue a
typedef for wchar_t

_WCHAR_T_KEYWORD In the ANSI C++ modes (-X w|e) with the -K wchar_t_keyword
option (default)

_XPG_IV With the c89 calling command

Predefined preprocessor predicates (#assert)

data_model(bit32)
 Always set

cpu(7500) With /390 code generation

machine(7500) With /390 code generation

system(bs2000) Always set

U23625-J-Z125-6-76 99

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
4

4 Global listing generator (cclistgen)
The global listing generator is called with the cclistgen command. The input sources for
the listing generator are the CIFs (Compilation Information Files) generated by the compiler
and written into a file sourcefile.cif or into an explicitly specified file file (see the -N cif
option on page 92). The generated listings are written by default to stdout or into an output
file specified in the -o option. The listing generator creates global module cross-reference
and project listings from the local module cross-reference and project listing CIF infor-
mation. The remaining listings are generated per source file.

4.1 Calling syntax

cclistgen [option] ... operand ...

Mixing options and operands is not allowed. The “options first, operands last” order must
be adhered to.

Options

No option specified
A source/error listing is generated and output to stdout.

option
Options can be used to control the type and scope of the listings to be generated.
The options are described in the next section (on page 101ff).

If cclistgen is called with illegal options, the program outputs an error message and
terminates with an exit status >0.

Calling syntax Global listing generator (cclistgen)

100 U23625-J-Z125-6-76

Operands

cif file
Name of the CIF file from which a listing is to be generated. An unlimited number of CIF
files can be specified, but at least one must be. The syntax of the .cif extension is not
checked, i.e. other file names are accepted (see also the -N cif compiler option on
page 92).

Exit status

The exit value 0 is returned if the listing was generated successfully; an exit value >0 is
returned if an error occurred.

Global listing generator (cclistgen) Options

U23625-J-Z125-6-76 101

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
4

4.2 Options

–o outputfile
The global listing is written to the file outputfile. If outputfile contains a directory path
section, the file is written into it, otherwise into the current directory. The listing is output
to stdout by default. If the -o option is used, the output codeset (ASCII or EBCDIC) is
determined by the destination system codeset. However, BS2000 print control
characters are always generated.

–V
The version and a copyright message are output to stderr.

-N listing1[,listing2...]
The listing generator writes the listings requested with this option either to stdout or
into the file specified with the -o outputfile option.
The following can be specified for listing:

option or lo (options listing)

prepro or lp (preprocessor listing)

source_error or ls (source/error listing)

data_allocation_map or lm (map listing)

cross_reference or lx (cross-reference listing)

object or la (object listing)

project or lP (project listing, only with the CC command)

summary or lS (statistics listing)

ALL

If ALL is specified, all possible listings are generated, e.g. when the compilation run is
terminated after the preprocessor phase (-E, -P option), an options, preprocessor and
statistics listing.

-N output [,layout][,[lpp][,cpl]]
The layout of the global listing can be influenced with this option.

Four specifications are possible for layout:

normal or for_normal_print (default)
The default for the page length is 64 lines and for the line width 132 characters.

Options Global listing generator (cclistgen)

102 U23625-J-Z125-6-76

rotation or for_rotation_print
Defines the page length as 84 lines and the line width as 120 characters.

A page length of from 11 to 255 lines can be defined with lpp.

A line width of from 120 to 255 characters can be defined with cpl.

Note

Since the output file is prepared for printing under POSIX, there are up to 3 control
characters at the beginning of some lines in the file. In addition, every line is terminated
with the printer control character for a carriage return. If the output file is printed out,
then the line length is cpl–1.

-N title,text
This operand can be used to specify if an additional line is to appear in the header of
the listing and the text that is to be entered in it. In contrast to pragmas, which only apply
to source and preprocessor listings, the -N title option applies to all compiler listings.
In order to ensure that the desired text is transferred correctly, it is advisable to enter it
within quotes ("text"). In the case of source and preprocessor listings, TITLE and PAGE
pragmas (if any) override the -N title specification. See also the section on “Pragmas
to control the layout of listings” in the C/C++ User Guide [4].

-N xref,xrefopt1[,xrefopt2...]
This option can be used to control which sections are included in the cross-reference
listing requested with the -N cross_reference option. If the -N xref option is not
specified, the cross-reference listing contains a list of the variables, functions and labels
(equivalent to -N xref,v,f,l).
The cross-reference listing always contains a FILETABLE section with the names of all
files, libraries and members that the compiler used as sources.

If the -N xref option is specified, the cross-reference listing contains the FILETABLE
section and only the sections requested with the xrefopt argument. The following can be
specified for xrefopt:

p List of the names in #include and #define directives processed by the
preprocessor.

y List of the user-defined types (typedefs, structure, union, classes and
counter types)

v List of variables

f List of functions

l List of labels

t List of templates (only with C++ compilations)

Global listing generator (cclistgen) Options

U23625-J-Z125-6-76 103

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
4

o=str The order in which the separate sections are listed in the cross-reference
listing. str is a string of 6 characters maximum (letters for the listings shown
above). The default is the order shown above (i.e. o=pyvflt). If the order
specified with o=str does not include all letters for the listings requested with
-N xref, the omitted letters are implicitly appended to the end of str in the
default order shown above.

-K arg1[,arg2...]
General input rules for the -K option can be found on page 42.
The following entries are possible as arg arguments to control the listing output:

include_user
include_all
include_none

These options control whether and which header files are mapped to the source
program, preprocessor and cross-reference listing.

-K include_user is the default and causes only the user header files to be
mapped.

If -K include_all is specified, all header files, i.e. the standard and the user
header files, are mapped.

No header files are mapped if -K include_none is specified.

pragmas_interpreted
pragmas_ignored

These arguments control whether #pragma directives are evaluated to control the t
layout of the listing (see also the section “Pragmas to control the layout of listings”
in the C/C++ User Guide [4]).
-K pragmas_interpreted is the default.

Options Global listing generator (cclistgen)

104 U23625-J-Z125-6-76

U23625-J-Z125-6-76 105

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
5

5 Appendix: overview of options (alphabetic)

Option Category Page

-- General 48

-A Preprocessor 55

-B extended_external_names Link 83

-B short_external_names Link 83

-C Preprocessor 55

-c Compilation phases (object code) 49

-D name[=value] Preprocessor 55

-d n Link 84

-d y Link 84

-d compl Link 84

-E name Compilation phases (preprocessor) 49

-F I Optimization 69

-F i Optimization 71

-F inline_by_source Optimization 71

-F loopunroll Optimization 72

-F no_inlining Optimization 72

-g Debug 80

-H Preprocessor 55

-i header Preprocessor 55

-I dir Preprocessor 56

-K [no_]alternative_tokens C and C++ frontend 60

-K ansi_cpp Preprocessor 56

-K [no_]assign_local_only C and C++ frontend (templates) 68

-K [no_]at C and C++ frontend 58

-K [no_]bool C and C++ frontend (general) 63

-K c_names_short Object generation 78

-K c_names_std Object generation 78

Overview of options (alphabetic) Appendix

106 U23625-J-Z125-6-76

-K c_names_unlimited Object generation 78

-K calendar_etpnd Object generation 73

-K cif_include_all CIF 95

-K cif_include_none CIF 95

-K cif_include_user CIF 95

-K csect_suffix= Object generation 75

-K csect_hashpath Object generation 75

-K [no_]dollar C and C++ frontend 58

-K [no_]end_of_line_comments C frontend 61

-K enum_long Object generation 74

-K enum_value Object generation 74

–K environment_encoding_std Runtime 81

–K environment_encoding_ebcdic Runtime 81

-K external_multiple Object generation 78

-K external_unique Object generation 78

-K force_vtbl C and C++ frontend (general) 62

-K [no_]ieee_floats Object generation 76

-K ilcs_opt Object generation 74

-K ilcs_out Object generation 74

-K [no_]implicit_include C and C++ frontend (templates) 68

-K include_all Listings 95

-K include_none Listings 95

-K include_user Listings 95

-K [no_]instantiation_flags C and C++ frontend (templates) 68

-K [no_]integer_overflow Runtime 80

-K julian_etpnd Object generation 73

-K kr_cpp Preprocessor 56

-K [no_]link_stdlibs Link 85

-K literal_encoding_ascii C and /C++ frontend 59

-K literal_encoding_ascii_full C and /C++ frontend 59

-K literal_encoding_ebcdic C and /C++ frontend 59

-K literal_encoding_ebcdic_full C and /C++ frontend 59

-K literal_encoding_native C- und /C++ frontend 59

Option Category Page

Appendix Overview of options (alphabetic)

U23625-J-Z125-6-76 107

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
5

-K llm_keep Object generation 74

-K [no_]llm_case_lower Object generation 75

-K llm_convert Object generation 74

-K [no_]longlong C and C++- frontend 60

-K long_preserving C and C++ frontend 60

-K new_for_init C and C++ frontend (general) 64

-K no_etpnd Object generation 73

-K normal_vtbl C and C++ frontend (general) 62

-K old_for_init C and C++ frontend (general) 64

-K [no_]old_spezialization C and C++ frontend (general) 64

-K plain_fields_signed C and C++ frontend 60

-K plain_fields_unsigned C and C++ frontend 60

-K pragmas_ignored Listings 95

-K pragmas_interpreted Listings 95

-K [no_]prompting Runtime 81

-K [no_]roconst Object generation 76

-K [no_]rostr Object generation 76

-K schar C and C++ frontend 58

-K [no_]share Object generation 77

-K signed_fields_signed C and C++ frontend 60

-K signed_fields_unsigned C and C++ frontend 60

-K stacksize=n Runtime 81

-K [no_]statistics Runtime 81

-K subcall_basr Object generation 73

-K subcall_lab Object generation 73

-K suppress_vtbl C and C++ frontend (general) 62

-K uchar C and C++ frontend 58

-K unsigned_preserving C and C++ frontend 60

-K [no_]using_std C and C++ frontend (general) 63

-K [no_]verbose General 46

-K [no_]wchar_t_keyword C and C++ frontend (general) 63

-K workspace_stack Object generation 78

-K workspace_static Object generation 78

Option Category Page

Overview of options (alphabetic) Appendix

108 U23625-J-Z125-6-76

-l BLSLIB Link 87

-L dir Link 43, 88

-l x Link 43, 86

-M Compilation phases (preprocessor) 49

-N binder,... Link (listings) 92

-N cif,... CIF 92

-N listing,... Listings 92

-N output Listings 93

-N title Listings 94

-N xref Listings 94

-O Optimization 69

-o output destination General 46

-P Compilation phases (preprocessor) 49

-r Link 88

-R diagnose_to_listing Compiler messages 90

-R error Compiler messages 90

-R limit Compiler messages 90

-R min_weight,... Compiler messages 90

-R note Compiler messages 90

-R [no_]show_column Compiler messages 91

-R strict_errors Compiler messages 91

-R strict_warnings Compiler messages 91

-R suppress Compiler messages 91

-R [no_]use_before_set Compiler messages 91

-R warning Compiler messages 90

-s Link 88

-T add_prelink_files C and C++ frontend (templates) 66

-T all C and C++ frontend (templates) 65

-T auto C and C++ frontend (templates) 65

-T [no_]definition_list C++ frontend (templates) 67

-T etr_file_all C++ frontend (templates) 67

-T etr_file_assigned C++ frontend (templates) 67

-T etr_file_none C++ frontend (templates) 67

Option Category Page

Appendix Overview of options (alphabetic)

U23625-J-Z125-6-76 109

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1

. O
kt

ob
e

r
20

07
 S

ta
nd

 1
6:

57
.1

1
P

fa
d:

 F
:\

C
P

P
V

3.
2

A
\C

P
P

_
po

si
x_

cn
d

_e
_

ne
u\

c8
9b

hb
.k

0
5

-T local C and C++ frontend (templates) 65

-T max_iterations C and C++ frontend (templates) 67

-T none C and C++ frontend (templates) 65

-U name Preprocessor 57

-V General 47

-v Compiler messages 91

-w Compiler messages 91

-X a Language mode (C) 52

-X c Language mode (C) 52

-X d Language mode (C++) 54

-X e Language mode (C++) 54

-X t Language mode (C) 53

-X w Language mode (C++) 53

-y Compilation phases (Prelinker) 50

-Y F,... General 47

-Y I,... Preprocessor 57

-Y P,... Link 89

-z nodefs Link 89

–z dup_ignore Link 89

–z dup_warning Link 89

–z dup_error Link 89

Option Category Page

Overview of options (alphabetic) Appendix

110 U23625-J-Z125-6-76

U23625-J-Z125-6-76 111

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
1.

 O
kt

o
be

r
20

07

S
ta

nd
 1

5:
58

.4
9

P
fa

d
: F

:\
C

P
P

V
3.

2A
\C

P
P

_
po

si
x_

cn
d_

e_
ne

u
\c

8
9b

h
b.

lit

Related publications
The manuals are available as online manuals, see http://manuals.fujitsu-siemens.com, or in
printed form which must be paid and ordered separately at http://FSC-manualshop.com.

[1] POSIX (BS2000/OSD)
POSIX Basics for Users and System Administrators
User Guide

[2] POSIX (BS2000/OSD)
Commands
User Guide

[3] C Library Functions (BS2000/OSD)
for POSIX Applications
Reference Manual

[4] C/C++ V3.2A (BS2000/OSD)
C/C++ Compiler
User Guide

[5] CRTE (BS2000/OSD)
Common RunTime Environment
User Guide

[6] C++ (BS2000)
C++ Library Functions

[7] AID V2.3B (BS2000/OSD)
Debugging of C/C++ Programs
User Guide

[8] Tools.h++ V7.0
User Guide

[9] Tools.h++ V7.0
Class Reference

http://manuals.fujitsu-siemens.com
http://FSC-manualshop.com

Related publications

112 U23625-J-Z125-6-76

[10] C++ Library Functions (BS2000)
Reference Manual

[11] AID (BS2000/OSD)
Advanced Interactive Debugger
Debugging of C/C++ Programs
User Guide

Other reference literature and standards

[12] The C Programming Language
3nd. Edition - ANSI-C
by Brian W. Kernighan und Dennis M. Ritchie

[13] The C++ Programming Language
(2nd. Edition)
by Bjarne Stroustrup

[14] The C++ Programming Language
(Third Edition)
by Bjarne Stroustrup

[15] I„American National Standard for Information Systems - Programming Language C“,
Doc.No. X3J11/90-013, February 14, 1990 bzw.
„International Standard ISO/IEC 9899 : 1990, Programming languages - C“

[16] „International Standard ISO/IEC 9899 : 1990, Programming languages - C /
Amendment 1 : 1994“

[17] „Working Paper for Draft Proposed International Standard for Information Systems -
Programming Language C++“,
Doc.No. X3J16/96-0219R1, WG21/N0137, Dec 2 1996

This document can be ordered from:
American National Standards Institute (ANSI), Standards Secretariat: ITIC,
1250 Eye Street NW, Suite 200, Washington DC 20005 (USA) or from:
Normenausschuß Informationstechnik im DIN
Deutsches Institut für Normung e.V.
10772 Berlin

[18] „International Standard ISO/IEC 14882 : 1998, Programming languages - C++“

U23625-J-Z125-6-76 113

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 S

e
pt

em
b

er
 2

00
7

 S
ta

nd
 1

6:
53

.1
2

P
fa

d:
 F

:\C
P

P
V

3
.2

A
\C

P
P

_p
o

si
x_

cn
d

_e
_n

e
u\

c8
9b

hb
.s

ix

Index

--, terminating option input 48
.a file 43
.C file 10, 43
.c file 10, 43
.cif file 92
.I file 10, 12, 43, 46, 49
.i file 10, 12, 43, 46, 49
.ii file 20
.lst file 12, 92
.mk file 46
.o file 11, 43, 49
__cplusplus 53, 97
__STDC__ 52, 98
__STDC_VERSION__ 52, 98
_STRICT_STDC 52, 98

A
-A 55
A -l 86
a.out 13, 41, 46
AID, dialog debugger 16, 80
ANSI C language mode

extended 52
strict 52

ANSI C++ language mode
extended 53
strict 54

ar command 13
ASCII code 10, 12
ASCII format 58
ASCII-Codierung 58
assertions (see preprocessor predicates) 98

B
-B extended_external_names 83
-B short_external_names 83
BLSSERV 83
bs2cp command 10, 13
bs2lp command 12

C
-C 55
-c 49
C language modes

cc/c89 command 52
C library functions 15
C runtime system 86

linking of 14
loading dynamically 84

C++ language modes, CC command 53
C++ standard library 86
C++ template instantiation 17
C/C++ compiler

delivery structure and software
environment 9

c89 command 40
c89/cc/CC commands

calling syntax and general rules 40
environment variables 96
files 96
operands 42
options 41, 45
predefined names 97

can_instantiate, #pragma directive 18
CC command 40
cc command 40

Index

114 U23625-J-Z125-6-76

cclistgen command
calling syntax 99
options 101

Cfront C++ language mode 54
Cfront C++ library 15
CIF information 92
compilation list 12
compiler options (see options) 45
compiling

cc/c89/CC commands 39
general 11

complete partial bind 14
complete partial bind method 85
const objects 76
CRTE, linking of 14, 84, 86
CSECT name

form 75
CSECT name, real 75
csect_hashpath 75
csect_suffix 75

D
-D 55
-d compl 84
-d n 84
-d y 84
debug command 16, 80
debug option 80
debugging 16
definition list

instantiation with 21
instantiation without 20

diagnostic messages of the compiler 90
dialog debugger AID 16, 80
directory

-I option 56
-L option 88
standard for header files 56

do_not_instantiate, #pragma directive 18

E
-E 49
EBCDIC code 10, 12
edt command 10

EEN names 79, 83
entry names 74
enum data 74
environment variables 96
ETPND area 73
examples

bs2cp command 37
c89 command 37

executable file 13
exit status

cclistgen command 100
exit status, cc/c89/CC command 44
externally visible names, handling by the

compiler 36

F
-F I 69
-F i 71
-F inline_by_source 71
-F loopunroll 72
-F no_inlining 72
-F O2 69
files, cc/c89/CC commands 96
floating-point arithmetics 76
form CSECT names 75
frontend options

C++-specific 62
common in C and C++ 58

G
-g 80
generate CSECT names 75
generate real CSECT names 75
global list generator (cclistgen) 99

H
-H 55
header file 10

search for 56

I
-I 56
-i 55
IEEE format 76

Index

U23625-J-Z125-6-76 115

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 S

e
pt

em
b

er
 2

00
7

 S
ta

nd
 1

6:
53

.1
2

P
fa

d:
 F

:\C
P

P
V

3
.2

A
\C

P
P

_p
o

si
x_

cn
d

_e
_n

e
u\

c8
9b

hb
.s

ix

IEEE_floating-point arithmetics 76
ILCS entry code 74
input file

cc/c89/CC command 42
cclistgen command 100

instantiate, #pragma directive 18
instantiation of templates 17
ISO C mode (see ANSI C mode) 52

K
-K alternative_tokens 60
-K ansi_cpp 56
-K assign_local_only 68
-K at 58
-K bool 63
-K c_names_short 78, 79
-K c_names_std 78
-K c_names_unlimited 78
-K calendar_etpnd 73
-K cif_ include_all 95
-K cif_ include_none 95
-K cif_ include_user 95
-K csect_hashpath 76
-K csect_suffix 76
-K dollar 58
-K end_of_line_comments 61
-K enum_long 74
-K enum_value 74
-K external_multiple 78
-K external_unique 78
-K force_vtbl 62
-K ieee_floats 76
-K ilcs_opt 74
-K ilcs_out 74
-K implicit_include 68
-K include_all 95, 103
-K include_none 95, 103
-K include_user 95, 103
-K instantiation_flags 68
-K integer_overflow 80, 81
-K julian_etpnd 73
-K kr_cpp 56
-K link_stdlibs 85
-K literal_encoding_ascii 59

-K literal_encoding_ascii_full 58, 59
-K literal_encoding_ebcdic 58, 59
-K literal_encoding_ebcdic_full 58, 59
-K literal_encoding_native 59
-K llm_case_lower 75
-K llm_convert 74
-K llm_keep 74
-K long_preserving 60
-K longlong 60
-K new_for_init 64
-K no_alternative_tokens 60
-K no_assign_local_only 68
-K no_at 58
-K no_bool 63
-K no_dollar 58
-K no_end_of_line_comments 61
-K no_etpnd 73
-K no_ieee_floats 76
-K no_implicit_include 68
-K no_instantiation_flags 68
-K no_integer_overflow 80
-K no_link_stdlibs 85
-K no_llm_case_lower 75
-K no_longlong 60
-K no_old_spezialization 64
-K no_prompting 81
-K no_roconst 76
-K no_rostr 76
-K no_share 77
-K no_statistics 81
-K no_using_std 63
-K no_wchar_t_keyword 63
-K normal_vtbl 62
-K old_for_init 64
-K old_spezialization 64
-K plain_fields_signed 60
-K plain_fields_unsigned 60
-K pragmas_ignored 103
-K pragmas_interpreted 103
-K prompting 81
-K roconst 76
-K rostr 76
-K schar 58
-K share 77

Index

116 U23625-J-Z125-6-76

-K signed_fields_signed 60
-K signed_fields_unsigned 60
-K stacksize=n 81
-K statistics 81
-K subcall_basr 73
-K subcall_lab 73
-K suppress_vtbl 62
-K uchar 58
-K unsigned_preserving 60
-K using_std 63
-K verbose 46
-K wchar_t_keyword 63
-K workspace_stack 78
-K workspace_static 78
K&R C language mode 53
-K, general input rules 42

L
l 86
-l BLSLIB 43, 87
-L dir 43, 88
-l x 43, 86
link editor options 83
link switch 15
linking

general 13
the CRTE 14

list output 92, 99
LLM

executable file 13
Formats 1 to 4 83
object file 11

M
-M 49
make command 49
make utility 31
message output 90
multiple definition of externally visible

variables 78

N
-N binder 92
-N listing 92, 101

-N output 93, 101
-N title 94, 102
-N xref 94, 102

O
-O 69
-o output_destination 46
object file 11, 49
object generation options 73
operands

cc/c89/CC commands 42
cclistgen command 100

optimization options 69
options 41, 45

C++-specific 62
compilation phases 49
debug 80
frontend in C and C++ 58
general 45
global list generator 101
input rules 41
language modes 52
link editor 83
lists and CIF information 92
message output 90
object generation 73
optimization 69
overview 105
preprocessor 55
runtime 80
templates 65

P
-P 49
partial bind 14
porting information 36
POSIX files

compilation list 12
executable file 13
header files 10
LLM object file 11
recompilable source program 12
source program 10

POSIX library functions 16

Index

U23625-J-Z125-6-76 117

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
2

8.
 S

e
pt

em
b

er
 2

00
7

 S
ta

nd
 1

6:
53

.1
2

P
fa

d:
 F

:\C
P

P
V

3
.2

A
\C

P
P

_p
o

si
x_

cn
d

_e
_n

e
u\

c8
9b

hb
.s

ix

POSIX link switch 15
predefined preprocessor macros, cc/c89/CC

commands 97
predefined preprocessor predicates, cc/c89/CC

commands 98
prelinker 17

option -T auto 65
-y option 50

preprocessor macros, predefined 97
preprocessor options 55
preprocessor phase 49
preprocessor predicates, predefined 98

R
-r 88
-R diagnose_to_listing 90
-R error 90
-R limit 90
-R min_weight 90
-R no_show_column 91
-R no_use_before_set 91
-R note 90
-R show_column 91
-R strict_errors 91
-R strict_warnings 91
-R suppress 91
-R use_before_set 91
-R warning 90
runtime options 80

S
-s 88
shareable code 77
source program

providing 10
recompilable 12

standard C++ library 15
standard header files 10
Standard partial bind 14
suffixes

defaults for input file names 42
defaults for output file names 46
for input file names (user-specific) 47
standard, for input file names 96

standard, for output file names 96
SYSLNK.CRTE 15, 84, 86
SYSLNK.CRTE.CFCPP 15, 86
SYSLNK.CRTE.COMPL 14
SYSLNK.CRTE.CPP 15, 86
SYSLNK.CRTE.PARTIAL-BIND 14, 84, 86
SYSLNK.CRTE.RTSCPP 15, 86
SYSLNK.CRTE.STDCPP 15
SYSLNK.CRTE.TOOLS 15, 86

T
-T add_prelink_files 66
-T all 65
-T auto 65
-T definition_list 21, 67
-T dl 67
-T etr_file_all 67
-T etr_file_assigned 67
-T etr_file_none 67
-T local 65
-T max_iterations 67
-T no_definition_list 67
-T no_dl 67
-T none 65
template instantiation 17
template options 65
Tools.h++ 15

U
-U 57

V
-V 47

global list generator 101
-v 91
vi command 10

W
-w 91

X
-X a 52
-X c 52
-X d 54

Index

118 U23625-J-Z125-6-76

-X e 54
-X t 53
-X w 53

Y
-y 50
-Y F 47
-Y I 57
-Y P 89

Z
-z dup_error 89
-z dup_ignore 89
-z dup_warning 89
-z nodefs 89

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Contents
	Preface
	Brief product description
	Summary of contents
	Changes since the previous manual
	Notational conventions

	Basics
	Delivery structure and software environment
	From source code to program execution
	Providing the source code and header files
	Compiling
	Linking
	Linking user modules
	Linking the CRTE runtime libraries
	Debugging
	Using the POSIX library functions

	C++ template instantiation under POSIX
	Basic aspects
	Automatic instantiation
	Generating explicit template instantiation statements (ETR files)
	Implicit inclusion
	Libraries and templates

	Porting software
	Introductory examples

	The cc, c89 and CC commands
	Calling syntax and general rules
	Description of options
	General options
	Options for selecting compilation phases
	Options for selecting the language mode
	Preprocessor options
	Common frontend options in C and C++
	C++-specific frontend options
	General C++ options
	Template options
	Optimization options
	Options for controlling object generation
	Debug option
	Runtime options
	Link editor options
	Options for controlling message output
	Options for outputting listings and CIF information

	Files
	Environment variables
	Predefined preprocessor names

	Global listing generator (cclistgen)
	Calling syntax
	Options

	Appendix: overview of options (alphabetic)
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

