
U23166-J-Z125-3-76 1

1 Preface
The complexity of BS2000 processing has been reduced by breaking BS2000/OSD down
into functional units (subsystems). SSCM and DSSM are the two software products with
which all subsystems are declared and managed.

The static subsystem catalog (SSMCAT) is managed with SSCM (Static Subsystem
Catalog Management). The declarations required for all subsystems belonging to a config-
uration are stored in the subsystem catalog. SSMCAT forms the database for DSSM.

DSSM (Dynamic Subsystem Management) is the central instance in BS2000/OSD for
dynamic subsystem management.

The versions on which this description is based are DSSM V4.0 and SSCM V2.3.

1.1 Target group and summary of contents

This manual is intended for BS2000/OSD systems support staff.

This chapter “Preface” provides a general overview of the manual, a list of the changes
made since DSSM V3.6 and SSCM V2.1, and a description of the SDF syntax used for the
DSSM commands and SSCM statements.

The manual is divided into the following main chapters:

The chapter “The subsystem concept in BS2000/OSD” explains concepts and describes
relations that play an important role in the subsystem concept. A description of the version
dependencies between BS2000/OSD, DSSM and SSCM is followed by an overview of
important DSSM-compatible products included in the basic configuration of BS2000 and by
brief descriptions of selected unbundled DSSM-compatible products.

The chapter “DSSM” describes dynamic subsystem management (DSSM):
topics dealt with include tasks and functions, management strategies and error handling,
how to activate DSSM via the parameter service at startup time, and the accounting records
of DSSM.
The DSSM commands are described in detail.
The chapter is concluded by two comprehensive examples.

2 U23166-J-Z125-3-76

Changes since the edition December 1996 Preface

The chapter “SSCM” describes subsystem catalog management (SSCM). Following a brief
introduction, the SSCM statements are described in detail. The chapter concludes with
notes on the installation of SSCM and a number of examples.

At the back of the manual you will find a list of related publications and an index.

Other publications referred to in the text are given in the form of abbreviated titles accom-
panied by a number in square brackets. The full title of each of these publications can be
found under “Related publications” as of page 293.

1.2 Changes since the edition December 1996 (DSSM V3.6 and
SSCM V2.1)

The main changes with respect to the previous version are listed below:

New functions in DSSM V4.0

� The new SHOW-SUBSYSTEM-ATTRIBUTES command informs the user about the
attributes of global and local subsystems. The information can be output to SYSLST,
SYSOUT or in S-variables, see page 122.

� The SHOW-SUBSYSTEM-STATUS command shows the internal status of a subsystem
more accurately than previously for subsystem status IN-CREATE, IN-RESUME,
IN-DELETE or IN-HOLD, see page 142.

� The new MONJV operand in the START-SUBSYSTEM command allows subsystems to
be monitored with a monitoring job variable. MONJV indicates whether the subsystem
is active, stopped, interrupted or locked, see page 153.

� The new value *HIGHEST in the VERSION operand can be used with the following
commands to select the highest version of the subsystem that is entered in the static
subsystem catalog:

– HOLD-SUBSYSTEM
– RESUME-SUBSYSTEM
– START-LOCAL-SUBSYSTEM
– START-SUBSYSTEM
– STOP-LOCAL-SUBSYSTEM
– STOP-SUBSYSTEM

� Connection to non-privileged subsystems is improved by dynamically supplying the
entry points from the BLS name list at load time.

U23166-J-Z125-3-76 3

Preface Readme file

� The improved error handling during a system run allows the operator to, e.g. specify a
new, valid name for a file that was not found and then continue the system run (see
page 64).

New functions in SSCM V2.3

� With the new GENERATE-CATALOG-SOURCE statement, SSCM creates a file containing
a list of all SSCM statements that are required for (re)generating a subsystem catalog.

� The definitions of all versions of the specified subsystem can be deleted from the
catalog by specifying VERSION=*ALL in the REMOVE-CATALOG-ENTRY statement.

� Using the new value *BY-PROGRAM(...) in the SUBSYSTEM-ENTRIES operand of the SET-
SUBSYSTEM-ATTRIBUTES statement supplies the entries of the specified subsystems
dynamically at load time from the BLS name list. The *BY-PROGRAM(...) setting
concerned can be modified in the MODIFY-SUBSYSTEM-ATTRIBUTES statement.

1.3 Readme file - modifications incorporated in this version

Information on any functional changes and additions to the current product versions
described in this manual can be found in the product-specific README files. You will find
the README files on your BS2000/OSD system under the file names:

SYSRME.product.version.language

The user ID under which the README files are cataloged can be obtained from your
system support personnel. With IMON you can determine the filename with the following
command:

/SHOW-INSTALLATION-PATH INSTALLATION-UNIT=product, LOGICAL-ID=SYSRME.language

You can view the README files using /SHOW-FILE or an editor, and print them out on a
standard printer using the following commands:

/PRINT-DOCUMENT filename, LINE-SPACING=*BY-EBCDIC-CONTROL

4 U23166-J-Z125-3-76

Notational conventions Preface

1.4 Notational conventions

The following notational conventions are used in this manual:

For drawing your attention to particularly important information.

� Terms in continuous text that are to be particularly highlighted are shown in bold.

� In the examples, bold type indicates a user entry and this typewriter font is used
for system outputs.

� Short names and numbers are used for references to other publications. The complete
title of each publication is contained next to the number in the list of related publications
at the back of the manual.

i

U23166-J-Z125-3-76 5

Preface SDF syntax representation

1.5 SDF syntax representation

The following example shows the representation of the syntax of a command in a manual.
The command format consists of a field with the command name. All operands with their
legal values are then listed. Operand values which introduce structures and the operands
dependent on these operands are listed separately.

This syntax description is valid for SDF V4.5A.The syntax of the SDF command/statement
language is explained in the following three tables.

Table 1: Notational conventions

The meanings of the special characters and the notation used to describe command and
statement formats are explained in t able 1.

Table 2: Data types

Variable operand values are represented in SDF by data types. Each data type represents
a specific set of values. The number of data types is limited to those described in t able 2.

The description of the data types is valid for the entire set of commands/statements.
Therefore only deviations (if any) from the attributes described here are explained in the
relevant operand descriptions.

HELP-SDF Alias: HPSD

GUIDANCE-MODE = *NO / *YES

,SDF-COMMANDS = *NO / *YES

,ABBREVIATION-RULES = *NO / *YES

,GUIDED-DIALOG = *YES (...)

*YES(...)

 SCREEN-STEPS = *NO / *YES

 ,SPECIAL-FUNCTIONS = *NO / *YES

 ,FUNCTION-KEYS = *NO / *YES

 ,NEXT-FIELD = *NO / *YES

,UNGUIDED-DIALOG = *YES (...) / *NO

*YES(...)

 SPECIAL-FUNCTIONS = *NO / *YES
 ,FUNCTION-KEYS = *NO / *YES

6 U23166-J-Z125-3-76

SDF syntax representation Preface

Table 3: Suffixes for data types

Data type suffixes define additional rules for data type input. They contain a length or
interval specification and can be used to limit the set of values (suffix begins with without),
extend it (suffix begins with with), or declare a particular task mandatory (suffix begins with
mandatory). The following short forms are used in this manual for data type suffixes:

cat-id cat
completion compl
correction-state corr
generation gen
lower-case low
manual-release man
odd-possible odd
path-completion path-compl
separators sep
temporary-file temp-file
underscore under
user-id user
version vers
wildcard-constr wild-constr
wildcards wild

The description of the ‘integer’ data type in t able 3 contains a number of items in italics; the
italics are not part of the syntax and are only used to make the table easier to read.
For special data types that are checked by the implementation, t able 3 contains suffixes
printed in italics (see the special suffix) which are not part of the syntax.

The description of the data type suffixes is valid for the entire set of commands/statements.
Therefore only deviations (if any) from the attributes described here are explained in the
relevant operand descriptions.

U23166-J-Z125-3-76 7

Preface SDF syntax representation

Metasyntax

Representation Meaning Examples

UPPERCASE

LETTERS
Uppercase letters denote keywords
(command, statement or operand
names, keyword values) and
constant operand values. Keyword
values begin with *

HELP-SDF

SCREEN-STEPS = *NO

UPPERCASE

LETTERS

in boldface

Uppercase letters printed in
boldface denote guaranteed or
suggested abbreviations of
keywords.

GUIDANCE-MODE = *YES

= The equals sign connects an
operand name with the associated
operand values.

GUIDANCE-MODE = *NO

< > Angle brackets denote variables
whose range of values is described
by data types and suffixes (see
t ables 2 and 3).

SYNTAX-FILE = <filename 1..54>

Underscoring Underscoring denotes the default
value of an operand.

GUIDANCE-MODE = *NO

/ A slash serves to separate
alternative operand values.

NEXT-FIELD = *NO / *YES

(…) Parentheses denote operand
values that initiate a structure.

,UNGUIDED-DIALOG = *YES (...) / *NO

[] Square brackets denote operand
values which introduce a structure
and are optional. The subsequent
structure can be specified without
the initiating operand value.

SELECT = [*BY-ATTRIBUTES](...)

Indentation Indentation indicates that the
operand is dependent on a higher-
ranking operand.

,GUIDED-DIALOG = *YES (...)

*YES(...)

 SCREEN-STEPS = *NO /

 *YES

Table 1: Metasyntax (part 1 of 2)

8 U23166-J-Z125-3-76

SDF syntax representation Preface




A vertical bar identifies related
operands within a structure. Its
length marks the beginning and
end of a structure. A structure may
contain further structures. The
number of vertical bars preceding
an operand corresponds to the
depth of the structure.

SUPPORT = *TAPE(...)

*TAPE(...)

 VOLUME = *ANY(...)
 *ANY(...)
  ...

 

, A comma precedes further
operands at the same structure
level.

GUIDANCE-MODE = *NO / *YES

,SDF-COMMANDS = *NO / *YES

list-poss(n): The entry “list-poss” signifies that a
list of operand values can be given
at this point. If (n) is present, it
means that the list must not have
more than n elements. A list of
more than one element must be
enclosed in parentheses.

list-poss: *SAM / *ISAM

list-poss(40): <structured-name 1..30>

list-poss(256): *OMF / *SYSLST(...) /

<filename 1..54>

Alias: The name that follows represents a
guaranteed alias (abbreviation) for
the command or statement name.

HELP-SDF Alias: HPSDF

Representation Meaning Examples

Table 1: Metasyntax (part 2 of 2)

U23166-J-Z125-3-76 9

Preface SDF syntax representation

Data types

Data type Character set Special rules

alphanum-name A…Z
0…9
$, #, @

cat-id A…Z
0…9

Not more than 4 characters;
must not begin with the string PUB

command-rest freely selectable

composed-name A…Z
0…9
$, #, @
hyphen
period
catalog ID

Alphanumeric string that can be split into
multiple substrings by means of a period or
hyphen.
If a file name can also be specified, the string
may begin with a catalog ID in the form :cat: (see
data type filename).

c-string EBCDIC character Must be enclosed within single quotes;
the letter C may be prefixed; any single quotes
occurring within the string must be entered
twice.

date 0…9
Structure identifier:
hyphen

Input format: yyyy-mm-dd

jjjj: year; optionally 2 or 4 digits
mm: month
tt: day

device A…Z
0…9
hyphen

Character string, max. 8 characters in length,
corresponding to a device available in the
system. In guided dialog, SDF displays the valid
operand values. For notes on possible devices,
see the relevant operand description.

fixed +, -
0…9
period

Input format: [sign][digits].[digits]

[sign]: + oder -
[digits]: 0...9

must contain at least one digit, but may
contain up to 10 characters (0...9, period) apart
from the sign.

Table 2: Data types (part 1 of 6)

10 U23166-J-Z125-3-76

SDF syntax representation Preface

filename A…Z
0…9
$, #, @
hyphen
period

Input format:

[:cat:][$user.]

:cat:
optional entry of the catalog identifier;
character set limited to A...Z and 0...9;
maximum of 4 characters; must be enclosed
in colons; default value is the catalog
identifier assigned to the user ID, as
specified in the user catalog.

$user.
optional entry of the user ID;
character set is A…Z, 0…9, $, #, @;
maximum of 8 characters; first character
cannot be a digit; $ and period are
mandatory;
default value is the user's own ID.

$. (special case)
system default ID

file
file or job variable name;
may be split into a number of partial names
using a period as a delimiter:
name1[.name2[...]]
namei does not contain a period and must
not begin or end with a hyphen;
file can have a maximum length of 41
characters; it must not begin with a $ and
must include at least one character from the
range A...Z.

Data type Character set Special rules

Table 2: Data types (part 2 of 6)

file
file(no)
group

group
(*abs)
(+rel)
(-rel)

U23166-J-Z125-3-76 11

Preface SDF syntax representation

filename
(continued)

#file (special case)
@file (special case)

or @ used as the first character indicates
temporary files or job variables, depending
on system generation.

file(no)
tape file name
no: version number;
character set is A...Z, 0...9, $, #, @.
Parentheses must be specified.

group
name of a file generation group
(character set: as for “file”)

group

(*abs)
absolute generation number (1-9999);
* and parentheses must be specified.

(+rel)
(-rel)

relative generation number (0-99);
sign and parentheses must be specified.

integer 0…9, +, - + or -, if specified, must be the first character.

name A…Z
0…9
$, #, @

Must not begin with 0...9.

Data type Character set Special rules

Table 2: Data types (part 3 of 6)

(*abs)
(+rel)
(-rel)

12 U23166-J-Z125-3-76

SDF syntax representation Preface

partial-filename A…Z
0…9
$, #, @
hyphen
period

Input format: [:cat:][$user.][partname.]

:cat: see filename
$user. see filename

partname
optional entry of the initial part of a name
common to a number of files or file
generation groups in the form:
name1.[name2.[...]]
namei (see filename).
The final character of “partname” must be a
period.
At least one of the parts :cat:, $user. or
partname must be specified.

posix-filename A...Z
0...9
special characters

String with a length of up to 255 characters;
consists of either one or two periods or of alpha-
numeric characters and special characters.
The special characters must be escaped with a
preceding \ (backslash); the / is not allowed.
Must be enclosed within single quotes if alter-
native data types are permitted, separators are
used, or the first character is a ?, ! or ^
A distinction is made between uppercase and
lowercase.

posix-pathname A...Z
0...9
special characters
structure identifier:
slash

Input format: [/]part1/.../partn
where parti is a posix-filename;
max. 1023 characters;
must be enclosed within single quotes if alter-
native data types are permitted, separators are
used, or the first character is a ?, ! or ^

Data type Character set Special rules

Table 2: Data types (part 4 of 6)

U23166-J-Z125-3-76 13

Preface SDF syntax representation

product-version A…Z
0…9
period
single quote

Input format:

where m, n, s and o are all digits and a is a letter.
Whether the release and/or correction status
may/must be specified depends on the suffixes
to the data type (see suffixes without-corr,
without-man, mandatory-man and mandatory-
corr in t able 3).
product-version may be enclosed within single
quotes (possibly with a preceding C).
The specification of the version may begin with
the letter V.

structured-name A…Z
0…9
$, #, @
hyphen

Alphanumeric string which may comprise a
number of substrings separated by a hyphen.
First character: A...Z or $, #, @

text freely selectable For the input format, see the relevant operand
descriptions.

time 0…9
structure identifier:
colon

Time-of-day entry:

Input format:

hh: hours
mm: minutes
ss: seconds

vsn a) A…Z
0…9

a) Input format: pvsid.sequence-no
max. 6 characters
pvsid: 2-4 characters; PUB must

not be entered
sequence-no: 1-3 characters

b) A…Z
0…9
$, #, @

b) Max. 6 characters;
PUB may be prefixed, but must not be
followed by $, #, @.

Data type Character set Special rules

Table 2: Data types (part 5 of 6)

[[C]'][V][m]m.naso[']

correction status

release status

hh:mm:ss
hh:mm
hh

Leading zeros may be
omitted

14 U23166-J-Z125-3-76

SDF syntax representation Preface

x-string Hexadecimal:
00…FF

Must be enclosed in single quotes; must be
prefixed by the letter X. There may be an odd
number of characters.

x-text Hexadecimal:
00…FF

Must not be enclosed in single quotes;
the letter X must not be prefixed.
There may be an odd number of characters.

Data type Character set Special rules

Table 2: Data types (part 6 of 6)

U23166-J-Z125-3-76 15

Preface SDF syntax representation

Suffixes for data types

Suffix Meaning

x..y unit With data type “integer”: interval specification

x minimum value permitted for “integer”. x is an (optionally signed)
integer.

y maximum value permitted for “integer”. y is an (optionally signed)
integer.

unit with “integer” only: additional units.
The following units may be specified:

days byte
hours 2Kbyte
minutes 4Kbyte
seconds Mbyte

x..y special With the other data types: length specification
For data types catid, date, device, product-version, time and vsn the length
specification is not displayed.

x minimum length for the operand value; x is an integer.

y maximum length for the operand value; y is an integer.

x=y the length of the operand value must be precisely x.

special Specification of a suffix for describing a special data type that is
checked by the implementation. “special” can be preceded by other
suffixes. The following specifications are used:
arithm-expr arithmetic expression (SDF-P)
bool-expr logical expression (SDF-P)
string-expr string expression (SDF-P)
expr freely selectable expression (SDF-P)
cond-expr conditional expression (JV)

with Extends the specification options for a data type.

-compl When specifying the data type “date”, SDF expands two-digit year specific-
tions in the form yy-mm-dd to:

20jj-mm-tt if jj < 60
19jj-mm-tt if jj ≥ 60

-low Uppercase and lowercase letters are differentiated.

-path-
compl

For specifications for the data type “filename”, SDF adds the catalog and/or
user ID if these have not been specified.

-under Permits underscores (_) for the data type “name”.

Table 3: Data type suffixes (part 1 of 7)

16 U23166-J-Z125-3-76

SDF syntax representation Preface

with (contd.)

-wild(n) Parts of names may be replaced by the following wildcards.
n denotes the maximum input length when using wildcards.
Due to the introduction of the data types posix-filename and posix-
pathname, SDF now accepts wildcards from the UNIX world (referred to
below as POSIX wildcards) in addition to the usual BS2000 wildcards.
However, as not all commands support POSIX wildcards, their use for data
types other than posix-filename and posix-pathname can lead to semantic
errors.
Only POSIX wildcards or only BS2000 wildcards should be used within a
search pattern. Only POSIX wildcards are allowed for the data types posix-
filename and posix-pathname. If a pattern can be matched more than once
in a string, the first match is used.

BS2000
wildcards

Meaning

* Replaces an arbitrary (even empty) character string. If the
string concerned starts with *, then the * must be entered twice
in succession if it is followed by other characters and if the
character string entered does not contain at least one other
wildcard.

Termina-
ting period

Partially-qualified entry of a name.
Corresponds implicitly to the string “./*”, i.e. at least one other
character follows the period.

/ Replaces any single character.

<sx:sy> Replaces a string that meets the following conditions:
– It is at least as long as the shortest string (sx or sy)
– It is not longer than the longest string (sx or sy)
– It lies between sx and sy in the alphabetic collating

sequence; numbers are sorted after letters (A...Z0...9)
– sx can also be an empty string (which is in the first position

in the alphabetic collating sequence)
– sy can also be an empty string, which in this position stands

for the string with the highest possible code (contains only
the characters X'FF')

<s1,…> Replaces all strings that match any of the character combina-
tions specified by s. s may also be an empty string. Any such
string may also be a range specification “sx:sy” (see above).

Suffix Meaning

Table 3: Data type suffixes (part 2 of 7)

U23166-J-Z125-3-76 17

Preface SDF syntax representation

with-wild(n)

(continued) -s Replaces all strings that do not match the specified string s.
The minus sign may only appear at the beginning of string s.
Within the data types filename or partial-filename the negated
string -s can be used exactly once, i.e. -s can replace one of
the three name components: cat, user or file.

Wildcards are not permitted in generation and version specifications for file
names. Only system administration may use wildcards in user IDs.
Wildcards cannot be used to replace the delimiters in name components cat
(colon) and user ($ and period).

POSIX
wildcards

Meaning

* Replaces any single string (including an empty string). An *
appearing at the first position must be duplicated if it is followed
by other characters and if the entered string does not include
at least one further wildcard.

? Replaces any single character; not permitted as the first
character outside single quotes.

[cx-cy] Replaces any single character from the range defined by cx
and cy, including the limits of the range. cx and cy must be
normal characters.

[s] Replaces exactly one character from string s.
The expressions [cx-cy] and [s] can be combined into
[s1cx-cys2].

[!cx-cy] Replaces exactly one character not in the range defined by cx
and cy, including the limits of the range. cx and cy must be
normal characters.
The expressions [!cx-cy] and [!s] can be combined into
[!s1cx-cys2].

[!s] Replaces exactly one character not contained in string s. The
expressions [!s] and [!cx-cy] can be combined into [!s1cx-cys2].

Suffix Meaning

Table 3: Data type suffixes (part 3 of 7)

18 U23166-J-Z125-3-76

SDF syntax representation Preface

with (contd.)

wild-
constr(n)

Specification of a constructor (string) that defines how new names are to be
constructed from a previously specified selector (i.e. a selection string with
wildcards). See also with-wild. n denotes the maximum input length when
using wildcards.
The constructor may consist of constant strings and patterns. A pattern
(character) is replaced by the string that was selected by the corresponding
pattern in the selector.
The following wildcards may be used in constructors:

Wildcard Meaning

* Corresponds to the string selected by the wildcard * in the
selector.

Termina-
ting period

Corresponds to the partially-qualified specification of a name in
the selector;
corresponds to the string selected by the terminating period in
the selector.

/ or ? Corresponds to the character selected by the / or ? wildcard in
the selector.

<n> Corresponds to the string selected by the n-th wildcard in the
selector, where n is an integer.

Allocation of wildcards to corresponding wildcards in the selector:
All wildcards in the selector are numbered from left to right in ascending
order (global index).
Identical wildcards in the selector are additionally numbered from left to right
in ascending order (wildcard-specific index).
Wildcards can be specified in the constructor by one of two mutually
exclusive methods:

1. Wildcards can be specified via the global index: <n>

2. The same wildcard may be specified as in the selector; substitution
occurs on the basis of the wildcard-specific index. For example:
the second “/” corresponds to the string selected by the second “/” in the
selector

Suffix Meaning

Table 3: Data type suffixes (part 4 of 7)

U23166-J-Z125-3-76 19

Preface SDF syntax representation

with-wild-
constr

(continued)

The following rules must be observed when specifying a constructor:

– The constructor can only contain wildcards of the selector.

– If the string selected by the wildcard <...> or [...] is to be used in the
constructor, the index notation must be selected.

– The index notation must be selected if the string identified by a wildcard
in the selector is to be used more than once in the constructor. For
example: if the selector “A/” is specified, the constructor “A<n><n>” must
be specified instead of “A//”.

– The wildcard * can also be an empty string. Note that if multiple asterisks
appear in sequence (even with further wildcards), only the last asterisk
can be a non-empty string, e.g. for “****” or “*//*”.

– Valid names must be produced by the constructor. This must be taken
into account when specifying both the constructor and the selector.

– Depending on the constructor, identical names may be constructed from
different names selected by the selector. For example:
“A/*” selects the names “A1” and “A2”; the constructor “B*” generates
the same new name “B” in both cases.
To prevent this from occurring, all wildcards of the selector should be
used at least once in the constructor.

– If the constructor ends with a period, the selector must also end with a
period. The string selected by the period at the end of the selector
cannot be specified by the global index in the constructor specification.

Suffix Meaning

Table 3: Data type suffixes (part 5 of 7)

20 U23166-J-Z125-3-76

SDF syntax representation Preface

with-wild-
constr

(continued)

Examples:

without Restricts the specification options for a data type.

-cat Specification of a catalog ID is not permitted.

-corr Input format: [[C]'][V][m]m.na[']
Specifications for the data type product-version must not include the
correction status.

-gen Specification of a file generation or file generation group is not permitted.

-man Input format: [[C]'][V][m]m.n[']
Specifications for the data type product-version must not include either
release or correction status.

-odd The data type x-text permits only an even number of characters.

-sep With the data type “text”, specification of the following separators is not
permitted: ; = () < > Ë (i.e. semicolon, equals sign, left and right paren-
theses, greater than, less than, and blank).

-temp-
file

Specification of a temporary file is not permitted (see #file or @file under
filename).

Suffix Meaning

Table 3: Data type suffixes (part 6 of 7)

Auswahlmuster Auswahl Konstruktionsmuster neuer Name

A//* AB1
AB2
A.B.C

D<3><2> D1
D2
D.CB

C.<A:C>/<D,F> C.AAD
C.ABD
C.BAF
C.BBF

G.<1>.<3>.XY<2> G.A.D.XYA
G.A.D.XYB
G.B.F.XYA
G.B.F.XYB

C.<A:C>/<D,F> C.AAD
C.ABD
C.BAF
C.BBF

G.<1>.<2>.XY<2> G.A.A.XYA
G.A.B.XYB
G.B.A.XYA
G.B.B.XYB

A//B ACDB
ACEB
AC.B
A.CB

G/XY/ GCXYD
GCXYE
GCXY. 1)

G.XYC

1) The period at the end of the name may violate naming conventions (e.g. for fully-qualified

file names).

U23166-J-Z125-3-76 21

Preface SDF syntax representation

without
(contd.)

-user Specification of a user ID is not permitted.

-vers Specification of the version (see “file(no)”) is not permitted for tape files.

-wild The file types posix-filename and posix-pathname must not contain a
pattern (character).

mandatory Certain specifications are necessary for a data type.

-corr Input format: [[C]'][V][m]m.naso[']
Specifications for the data type product-version must include the correction
status and therefore also the release status.

-man Input format: [[C]'][V][m]m.na[so][']
Specifications for the data type product-version must include the release
status. Specification of the correction status is optional if this is not
prohibited by the use of the suffix without-corr.

-quotes Specifications for the data types posix-filename and posix-pathname must
be enclosed in single quotes.

Suffix Meaning

Table 3: Data type suffixes (part 7 of 7)

22 U23166-J-Z125-3-76

SDF syntax representation Preface

U23166-J-Z125-3-76 23

2 The subsystem concept in BS2000/OSD
In this chapter, important terms are explained and then information is provided for

� managing subsystems with DSSM and SSCM (see page 26)

� local subsystem management (see page 27)

� the version dependencies between BS2000/OSD, DSSM and SSCM (see page 28)

� the main DSSM-compatible products in the BS2000 basic configuration (see page 31)

� selected, unbundled DSSM-compatible products (see page 33).

2.1 Definitions

In BS2000/OSD, both global subsystems that are valid throughout the system and local
subsystems can be grouped together to form a local subsystem configuration and adminis-
tered task-local in a local subsystem catalog. Whenever reference is made in the following
to subsystems, configuration and catalog, what is meant is always the global subsystems
valid throughout the system, and their configuration and catalog. Local subsystems, their
configuration and catalog are always identified by the word “local”.

Subsystem

Within the context of dynamic subsystem management (DSSM), a subsystem is a unit that
executes a function and that can be loaded, started and terminated automatically and
independently, taking into account dependency relations to other subsystems.
A subsystem may consist of a number of subsystem components.

Each subsystem is identified uniquely to DSSM by its name and version number.
A subsystem is defined for DSSM by specifying its components and attributes.

24 U23166-J-Z125-3-76

Definitions The subsystem concept in BS2000/OSD

The attributes of a subsystem provide information on:
– identification (name and version)
– access privileges
– loading and processing mechanisms
– environment and dependency relations
– required address spaces
– call-up preferences
– existing call entries

The relations between different subsystems are marked by
– address space separations
– link relations
– functional dependencies
– holder task sharing

Subsystem components

The term “subsystem components” is used to denote the subsystem module (program
module) and the ancillary components, known as “subsystem satellites”.
The subsystem module is a component that is absolutely essential for installing the
subsystem. A subsystem may be composed of a number of different modules.
Satellites for subsystems include REP files, NOREF files, message files, syntax files and
information files; these files must be declared during installation and will be required to
activate the subsystem.

Subsystem call entries

The subsystem call entry is the visible point of entry through which the subsystem is acces-
sible to user tasks.
A call entry is characterized by its name, type, scope and lifetime. A subsystem may have
a number of call entries with different attributes. They are administered by DSSM.

Subsystem configuration

A subsystem configuration is the set of all subsystems that are to be available in a session.
Since only one subsystem configuration can be operated in the system at a given time, this
configuration must contain all the subsystems that have to be available in the system at the
same time.

A subsystem configuration is defined by its subsystems and their components and
attributes.

U23166-J-Z125-3-76 25

The subsystem concept in BS2000/OSD Definitions

A subsystem (or subsystem version) may be compatible within a given subsystem configu-
ration and in a certain combination, i.e. the subsystem can run in the system with certain
other subsystems. A subsystem may be optional or mandatory, i.e. the subsystem configu-
ration may or may not run without this subsystem.

When the system is in operation, a given subsystem configuration may be in one of two
states:

a) Load state:
the subsystems of the configuration are currently active, i.e. can actually be used;

b) Declaration state:
the subsystems or subsystem versions of the configuration are defined in the
subsystem catalog, i.e. could be activated.

Several different load states can be derived from a declaration state.

Subsystem catalog

Static subsystem catalog management (SSCM) generates a static subsystem catalog
(SSMCAT) in which the subsystem configuration is defined.
This subsystem catalog is loaded by dynamic subsystem management (DSSM) when the
system is started up. Once loaded, the static subsystem catalog becomes a dynamic
subsystem catalog.
During the session the subsystem catalog can be managed by means of the DSSM
commands ADD-SUBSYSTEM, MODIFY-SUBSYSTEM-PARAMETER and REMOVE-
SUBSYSTEM.

Both SSCM and DSSM use the data structure of the static subsystem catalog.
The subsystem catalog can contain up to 1000 subsystems with maximum totals of
16,000 call entries, 16,000 functional dependencies and 200 address space restrictions.

26 U23166-J-Z125-3-76

Administering subsystems with DSSM and SSCM The subsystem concept in BS2000/OSD

2.2 Administering subsystems with DSSM and SSCM

The purpose of dynamic subsystem management (DSSM) is to reduce the complexity of
BS2000 operation by dividing the operating system into functional units (subsystems).

DSSM supports the following as subsystems:

– software products (if expressly designated as DSSM-compatible, see t ables 4 and 5 as
of page 31),

– system exit routines and
– shared products.

In addition, system administration can make customized TU programs and system exit
routines DSSM-compatible and activate them as subsystems.

DSSM functions distinguish between privileged subsystems (TPR subsystems), which are
part of BS2000/OSD, and nonprivileged (or unprivileged) subsystems (TU subsystems),
such as user programs.
DSSM also distinguishes between subsystems that are loaded in system address space
and those that are loaded in user address space. TPR subsystems are always loaded in
system address space, whereas TU subsystems can be loaded either in system address
space or in user address space.

The SSCM subsystem enables flexible and user-friendly management of the static
subsystem catalog (SSMCAT).

The SSD object

The SSD object is an ISAM file with a key length of 11 bytes. It contains the definition(s) of
one or more subsystems (but not the definitions of different versions of one and the same
subsystem).
Each of these definitions contains attributes, call entries, references and dependencies of
the relevant subsystem, as well as information on disjunctive subsystems and the holder
task.

The SSD object itself cannot be loaded. Before it can be activated, it must be linked into a
static subsystem catalog using the SSCM statement ADD-CATALOG-ENTRY.

U23166-J-Z125-3-76 27

The subsystem concept in BS2000/OSD Local subsystem management

2.3 Local subsystem management

In BS2000/OSD it is possible to create and administer a local subsystem configuration on
a task-local basis. A local subsystem catalog can be loaded and unloaded, and local
subsystems can be activated and deactivated.
Local subsystem management is restricted to nonprivileged subsystems.

A local subsystem configuration consists of a group of subsystems which are available
locally in the user address space. These are known as local subsystems.
Any nonprivileged subsystem can be used as a local subsystem.

The parts making up a local subsystem configuration may include both subsystems or
subsystem versions which are not contained in the global subsystem configuration and
those which are already available in the global subsystem configuration. If the concerned
Subsystem is already included in the global subsystem configuration, it must be additionally
defined as a local subsystem for the calling task.

It is necessary to create a local subsystem catalog containing the subsystem definitions
(SSD) of the required local subsystem configuration.
Only nonprivileged (TU) subsystems can be included in this catalog. Once a subsystem has
been defined as a local subsystem it has the following characteristics:

– it is always loaded in the user address space
(MEMORY-CLASS=*LOCAL-UNPRIVILEGED)

– it is always loaded immediately at the time of its request by the START-LOCAL-
SUBSYSTEM command (CREATION-TIME=*AT-CREATION-REQUEST)

– it can be halted and unloaded at any time
(SUBSYSTEM-HOLD=*ALLOWED)

– no more than one version of the same subsystem may be active at any one time
(VERSION-COEXISTENCE=*FORBIDDEN)

– loading the subsystem in exchange mode is not permitted
(VERSION-EXCHANGE=*FORBIDDEN)

These characteristics are independent from the characteristics that the same subsystem
has in the global subsystem catalog.

Provision of local subsystems

The local subsystem catalog is created with the SSCM statement START-CATALOG-
CREATION, and the subsystem definitions (SSD) of the required local subsystem configu-
ration are added to the catalog by means of the ADD-CATALOG-ENTRY statement.

28 U23166-J-Z125-3-76

Version dependencies The subsystem concept in BS2000/OSD

The subsystem catalog that has been created is loaded for the local task with the LOAD-
LOCAL-SUBSYSTEM-CATALOG command. As a result, the local subsystems included in it
are available, but not yet activated. Activation of the local subsystems is brought about by
means of the START-LOCAL-SUBSYSTEM command.

When the task then calls a subsystem, an attempt is initially made to set up a link to the
local subsystem in the local subsystem catalog. If the subsystem is not contained in the
local catalog - in other words it is not a local subsystem - or if the local subsystem catalog
is not loaded, a connection is established to the global subsystem.

The SELECT-PRODUCT-VERSION command provides the option of dynamic assignment of
priorities to the various versions of a subsystem.

Local subsystems can be deactivated and the local subsystem catalog can be unloaded
with the STOP-LOCAL-SUBSYSTEM and UNLOAD-LOCAL-SUBSYSTEM-CATALOG commands
respectively.

For more details of working with local subsystems refer to the example on page 170.

2.4 Version dependencies between BS2000/OSD, DSSM and
SSCM

Which SSCM and DSSM versions are available under the various BS2000 versions?

There are one or two particular DSSM version(s) for each BS2000/OSD version. However,
higher DSSM versions up to V3.9 can run without problems on lower BS2000/OSD
versions. BS2000/OSD V3.0 or higher is required for DSSM V4.0.

BS2000/OSD-BC V3.0: with DSSM V3.6
with DSSM V3.8
with DSSM V3.9
with DSSM V4.0

SSCM V1.0, V2.0, V2.1
SSCM V1.0, V2.0, V2.1, V2.2
SSCM V1.0, V2.0, V2.1, V2.2, V 2.3A
SSCM V1.0, V2.0, V2.1, V2.2, V 2.3A, V 2.3B

BS2000/OSD-BC V3.1
(in OSD-SVP V1.0/V2.0):

with DSSM V3.7
with DSSM V3.8
with DSSM V3.9
with DSSM V4.0

SSCM V1.0, V2.0, V2.1
SSCM V1.0, V2.0, V2.1, V2.2
SSCM V1.0, V2.0, V2.1, V2.2, V 2.3A
SSCM V1.0, V2.0, V2.1, V2.2, V 2.3A, V 2.3B

BS2000/OSD-BC V4.0: with DSSM V3.8
with DSSM V3.9
with DSSM V4.0

SSCM V1.0, V2.0, V2.1, V2.2
SSCM V1.0, V2.0, V2.1, V2.2, V2.3A
SSCM V1.0, V2.0, V2.1, V2.2, V 2.3A, V 2.3B

BS2000/OSD-BC V5.0: with DSSM V4.0 SSCM V1.0, V2.0, V2.1, V2.2, V 2.3A, V 2.3B

U23166-J-Z125-3-76 29

The subsystem concept in BS2000/OSD Version dependencies

Which catalog format of the subsystem catalog (corresponds to the SSCM version)
is evaluated by the various DSSM versions?

The creation or modification of a subsystem catalog is not dependent on the DSSM version
that is currently running.
However, each DSSM version is able to evaluate only those catalog formats which have
been created by its “own” SSCM version or a lower SSCM version.
The full functionality of a DSSM version is never exploited unless it is run with the
associated SSCM version.

The catalog format of a SSCM version is supported by higher DSSM and SSCM versions
for compatibility reasons, and it is converted to the higher format when it is read and written
back.

Example

When a catalog generated with SSCM V2.1 is read and written back by DSSM V4.0 or
SSCM V2.3, it is given the format of SSCM V2.3.

SSCM V1.0: as of DSSM V3.0

SSCM V2.0: as of DSSM V3.5

SSCM V2.1: as of DSSM V3.6

SSCM V2.2: as of DSSM V3.8

SSCM V2.3: as of DSSM V3.9

30 U23166-J-Z125-3-76

Version dependencies The subsystem concept in BS2000/OSD

Under what conditions can SSCM versions V1.0 to V2.3B be loaded at the same time?

Up to DSSM V3.4, the appropriate SYSPRC.SSCM.0xx procedure must be used to load the
higher version.

Example

In order to allow SSCM V2.3 to be loaded when SSCM V1.0 is in use as a subsystem,
the SYSPRC.SSCM.023 procedure must be used; this loads SSCM V2.3 as a program.

As of DSSM V3.5, the version can be selected with the SELECT-PRODUCT-VERSION
command. The START-SSCM command then starts the selected version.

However, as the full functionality of a particular DSSM version can only be exploited with its
“own”, specially developed SSCM version, loading older SSCM versions at the same time
does not provide any advantages for the current BS2000 session.

On the other hand, parallel loading of different SSCM versions is necessary if a subsystem
declaration file SYSSSC or SYSSSD is to be generated for an SSCM/DSSM version that is
older than the current version (e.g. for version downgrading).

U23166-J-Z125-3-76 31

The subsystem concept in BS2000/OSD DSSM-compatible products: basic configuration

2.5 Overview of important DSSM-compatible products in the
BS2000 basic configuration

MC:
TU/TPR:
Rf.:

Memory classes (3-6) in which the product can be loaded
Processor state of the subsystems (TU: nonprivileged / TPR: privileged)
Reference in the list of related publications as of page 293

Product Function MC TU/TPR Rf.

ACS Support for file access via aliases 3,4 TPR 14

ADAM Operation of devices which are not supported by the logical
access methods of BS2000/OSD

3,4 TPR 1

AIDSYS System-related part of AID (Advanced Interactive
Debugger; cf. t able 5)

3,4 TPR -

BINDER Binding of a compiled source program with other object
modules and LLMs to create a loadable unit

4,6 TU 5

CALENDAR Creation of user-specific calendars 3,4 TPR 6

DIV Object-oriented access method used especially for
processing unstructured data

3,4 TPR 13

FASTPAM Block-oriented access method for NK4 disk files 3,4 TU/TPR 13

GET-TIME Provision of the date, standardized world time and local
time

4 TU 14

GSMAN Main memory management 3,4 TPR 14

IMON Monitor for software installation 17

IMON (IMON-BAS) Installation and registration of software 4 TPR -

IMON-GPN Support for the allocation of logical names and path names
of files

4 TPR -

INIT Initialization of magnetic tapes, MTCs and floppy disks 4,6 TU/TPR 9

MIP Management and output of system messages 4 TPR 9

NDM Device management 14

NKS Monitoring of resource reservations 4 TPR -

NKV[T]
NKV[D]

Monitoring of mounted data volumes
(T=Tape; D=Disk)

4 TPR -

NKISAM Record-oriented access method for files with “DATA” block
format (without separate PAM key)

4 TPR 13

PAMCONV Conversion of file formats 4,6 TU 9

Table 4: DSSM-compatible products in the BS2000 basic configuration (part 1 of 2)

32 U23166-J-Z125-3-76

DSSM-compatible products: basic configuration The subsystem concept in BS2000/OSD

PCA Buffering of data outside the operating system in a disk
control unit (hardware caching)

4 TPR 24

POSIX-BC Basic configuration component of POSIX 3,4 TPR 26
27

POSPRRTS Runtime functions for C (in TPR) 4 TPR

SDF System Dialog Facility; BS2000/OSD language interface 4 TU 35

SDFSYS System-related part of SDF
(discontinued after SDF V3.0)

4 TPR 35

SDF-CONV Conversion of procedure formats 6 TU 33

SDF-P-
BASYS

Basic configuration component of SDF-P
(for information on SDF-P see t able 5)

4 TPR 19

SHOW-FILE Screen display of file contents 3, 4 TPR 20

SIR Software installation 4 TPR 40

SPOOL Input/output control for certain device families

PRMPRES Creation and management of print resources in BS2000
SPOOL (component of PRM)

4 TU 28

PRMMAN Creation and management of print resources in BS2000
SPOOL (component of PRM)

4 TPR 28

SPOOL Organization of spoolin/spoolout and management of print
jobs

4 TPR 38

SRPMNUC System Resources and Privilege Management
(basic configuration component of SRPM; for information
on SECOS see t able 5)

4 TPR 35

SSCM Generation of subsystem catalogs 4,6 TU, p.179ff

SYSFILE Support of the system files SYSLST and SYSOUT 4 TPR 19

TANGRAM Allocation of related task groups to processors in accor-
dance with performance requirements

TANGRAM Regulating function 3,4 TPR 14

TANGBAS Management of task groups 3,4 TPR -

TSDRIVER Synchronization of system time with the time server 4 TPR -

VOLIN Formatting and initialization of hard disks 4,5 TPR 9

WARTOPT Monitoring of the maintenance task running under the user
ID HARDWARE-MAINTENANCE

3,4 TPR 14

Product Function MC TU/TPR Rf.

Table 4: DSSM-compatible products in the BS2000 basic configuration (part 2 of 2)

U23166-J-Z125-3-76 33

The subsystem concept in BS2000/OSD DSSM-compatible products: unbundled

2.6 Overview of selected unbundled, DSSM-compatible
products

MC:
TU/TPR:
Rf.:

Memory classes (3-6) in which the product can be loaded
Processor state of the subsystems (TU: nonprivileged / TPR: privileged)
Reference in the list of related publications as of page 293

Product Function MC TP/TPR Rf.

AID Test and diagnostics aid (Advanced Interactive Debugger)

AID Symbolic and non-symbolic debugging 4 TPR 2

LLMAID Information on link and load modules 4 TPR -

ARCHIVE Saving, reconstruction and transfer of data in files and job
variables

4 TPR 3

CRTE Runtime functions for C and COBOL 4,6 TU 7

DAB Caching in BS2000/OSD to avoid bottlenecks (software
caching)

3,4 TPR 8

Dprint (Distributed Print Services) Printing in computer networks

DPRINTCL Client part for Dprint: creation of print jobs 4 TPR 10

DPRINTCM Base mechanisms: implementation of general services 4 TPR 10

DPRINTSV Server part for Dprint: management of print jobs 4 TPR 10

DRV Recording procedure for maintaining duplicate disks 4 TPR 11

DUALCOPY Enhancing the reliability of systems and data security by
means of redundant recording

4 TPR 14

EDT Editor for SAM, ISAM and POSIX files and for elements of
program libraries

4,6 TU 12

FDDRL Physical data backup of disks and pubsets 4,5 TPR 15

HIPLEX MSCF Creation of a computer network on the basis of the BCAM
data communication network

3,4 TPR 23

HSMS Backup, archival and reconstruction of data and support
for data management on external storage units

4 TPR 16

HSMS-SV Operation of HSMS-CL (HSMS client in SINIX) 4 TPR 16

IMON-XT SHOW functions for IMON (for information on IMON see
t able 6)

4,6 TU 17

JV Control of jobs and programs by means of job variables 4 TPR 18

Table 5: DSSM-compatible, unbundled products (selection) (part 1 of 2)

34 U23166-J-Z125-3-76

DSSM-compatible products: unbundled The subsystem concept in BS2000/OSD

LMS Library management 4,6 TU 21

MAREN Management of data on archive volumes in BS2000
computer centers

3,4 TPR 22

PCS Tool for systems support in ensuring the best possible
setup and operation of the BS2000 system

3,4 TPR 25

PROP-XT Computer center automation and user-specific problem-
solving in computer centers

4 TPR 29

RSO Control of the output of remote SPOOL jobs on decen-
tralized (RSO) printers (only executable in conjunction with
SPOOL)

4 TPR 31

SDF-A Management and modification of the SDF user interface 6 TU 32

SDF-P Procedure and variable concept, commands for procedure
control, block-oriented error handling

4 TPR 34

SDF-P-BIF Builtin function of SDF-P 4 TPR 34

SECOS Access security control for BS2000/OSD

GUARDS Management of objects (guards) and evaluation of access
conditions (component of GUARDS)

4 TPR 36

GUARDDEF Management of standard guard as well as the attribute and
objects paths

4 TPR 36

GUARDCOO Management of co-ownership guard 4 TPR 36

SATCP Monitoring of events and alarms (component of SAT) 4 TPR 36

SRPMOPT (Component of SRPM) 4 TPR 36

SM2 Monitoring system for capturing and evaluating data on
BS2000/OSD performance and the level of utilization of
system resources

3,4 TPR 37

SPS BS2000 SPOOL add-on component and printer driver for
APA printers

4 TPR 39

Product Function MC TP/TPR Rf.

Table 5: DSSM-compatible, unbundled products (selection) (part 2 of 2)

U23166-J-Z125-3-76 35

3 DSSM
The purpose of dynamic subsystem management (DSSM) is to reduce the complexity of
BS2000 execution by dividing the operating system into functional units (subsystems).

Subsystems have the following features:

� each subsystem constitutes a self-contained unit

� subsystems can be activated, suspended, resumed and deactivated during the BS2000
session

� If a new version has been created for a subsystem, the old version can be exchanged
for the new one or both versions can be operated in parallel.

DSSM is the central facility for BS2000/OSD subsystem configuration management. DSSM
controls the loading, initialization, suspension, resumption and termination of subsystems
during the session. DSSM can modify the current system dynamically (on-line) by incorpo-
rating subsystems in the subsystem catalog or removing them from it, without having to
suspend and restart the system as a whole.

DSSM is mandatory for BS2000/OSD since important components of the basic configu-
ration (see product overviews on page 31) can be operated only with DSSM.

DSSM V4.0 is available for BS2000 versions from BS2000/OSD-BC V3.0 onwards.
Subsystem catalogs can be generated as of SSCM V1.0 for DSSM V4.0.

For information on the compatibility and portability of DSSM with regard to SSCM and
BS2000/OSD, see page 28.

36 U23166-J-Z125-3-76

DSSM command privileges DSSM

DSSM command privileges

As part of the BS2000 privilege concept, a system-global privilege for execution of DSSM
commands exists. The privilege to carry out subsystem management is referred to in
commands and messages as SUBSYSTEM-MANAGEMENT. This privilege is allocated by
default to the TSOS user ID after first startup. However, when SECOS is being used, the
privilege can be assigned to any desired user ID; this user ID will then have the sole
authority to issue these commands for execution (see also the “SECOS” manual [36]).

The following table contains an overview of all DSSM commands and the privileges
required for command execution.

Command Meaning Required privilege Page

SM O STD HM

ADD-SUBSYSTEM Extend dynamic subsystem
catalog

X 75

HOLD-SUBSYSTEM Place a subsystem in wait
state

X X 80

LOAD-LOCAL-SUBSYSTEM-
CATALOG

Load a local subsystem
catalog

X 83

MODIFY-SUBSYSTEM-
PARAMETER

Modify subsystem parameters X 85

RELEASE-SUBSYSTEM-SPACE Release reserved address
space for subsystems

X X X 110

REMOVE-SUBSYSTEM Remove inactive subsystem
from dynamic catalog

X 111

RESUME-SUBSYSTEM Cancel wait state for
subsystem

X X 113

SAVE-SUBSYSTEM-CATALOG Save changes to dynamic
subsystem catalog

X 116

SET-DSSM-OPTIONS Activate/deactivate DSSM
logging function

X X 120

SHOW-SUBSYSTEM-
ATTRIBUTES

Request information on
subsystem attributes

X X 122

SHOW-SUBSYSTEM-INFO Request information on
current subsystems configu-
ration

X 138

Continued� �

U23166-J-Z125-3-76 37

DSSM DSSM command privileges

Table 6: DSSM commands and required privileges

SHOW-SUBSYSTEM-STATUS Request information on status
of subsystems

X 142

subsys=*NON-PRIV-CLASS-5 X

subsys=*ALL / <subsys-name> X X

START-LOCAL-SUBSYSTEM Activate local subsystem in
user address space

X 150

START-SUBSYSTEM Activate subsystem X X 153

STOP-LOCAL-SUBSYSTEM Deactivate local subsystem in
user address space

X 159

STOP-SUBSYSTEM Deactivate subsystem X X 162

UNLOAD-LOCAL-SUBSYSTEM-
CATALOG

Unload local subsystem
catalog

X 166

UNLOCK-SUBSYSTEM Shift subsystem from
LOCKED status to NOT-
CREATED status

X 168

SM:
O:
STD:
HM:

SUBSYSTEM-MANAGEMENT privilege
OPERATING privilege
STD-PROCESSING privilege
HARDWARE-MAINTENANCE privilege

For managing subsystems
For entry from operator terminals
For executing user commands
For calling hardware test programs

Command Meaning Required privilege Page

SM O STD HM

38 U23166-J-Z125-3-76

Purpose and functions of DSSM DSSM

3.1 Purpose and functions of DSSM

The software product DSSM performs the following individual functions:

� DSSM sets up the entire subsystem configuration (such that it is capable of
functioning).

� DSSM activates and deactivates subsystems in order to expand the subsystem config-
uration or adapt it to current requirements.

� DSSM checks the compatibility of individual subsystem versions when activating and
deactivating subsystems.

� DSSM establishes the relations between subsystems and monitors them when
activating subsystems or dissolves existing relations to other subsystems when deacti-
vating subsystems.

� DSSM supports the linkage of tasks and programs to subsystems.

� DSSM supports the use of shared address space in memory pools.

All activities indicated below as being synchronous run in the task of the requester, while all
asynchronous activities run in the holder task.

3.1.1 Subsystem declaration (SSC)

In order to manage the subsystems, DSSM requires information in the form of a declaration.
This declaration determines which main components and satellites belong to a subsystem,
how the subsystem can be activated, and how to set up interfaces to it. Thus, anyone
creating a declaration must be familiar with the subsystem concerned. For this reason the
necessary declarations for all DSSM-compatible subsystems are supplied in a declaration
file.

Depending on the declaration, DSSM activates the subsystem and sets up interfaces and
relations to other subsystems and to DSSM itself. Interfaces to a subsystem can be
monitored by DSSM. In this way it is possible to deactivate the subsystem under the control
of DSSM. If the interfaces are not monitored, the subsystem itself is responsible for deacti-
vation.

The declarations are not given as operands in every DSSM call, as this would be too compli-
cated and excessive. The declarations are specified using SSCM and are stored in the
subsystem catalog, because

– these declarations are stable and rarely change
– these declarations are complex and extensive
– these declarations must frequently be accessed by DSSM
– not only internal subsystem information exists, but also cross-subsystem information.

U23166-J-Z125-3-76 39

DSSM Purpose and functions of DSSM

The declarations of all subsystems belonging to a configuration (= declaration state) make
up the SSMCAT subsystem catalog and are stored in a PAM file. This file is read in on
startup and remains in memory until system shutdown. The ADD-SUBSYSTEM command
can be used to extend the catalog during a session.

The LOAD-LOCAL-SUBSYSTEM-CATALOG command can be used to read the catalog and
dynamically load it into the user address space of the calling task.

3.1.2 Activation and restart

Activation of a subsystem is controlled by the attributes that were defined in the subsystem
catalog using the SSCM statement SET-SUBSYSTEM-ATTRIBUTES.

Activation is performed

a) automatically during the first DSSM call in the startup routine if CREATION-TIME=
*BEFORE-DSSM-LOAD or *AT-DSSM-LOAD was defined; activation must have been
successfully completed (*BEFORE-DSSM-LOAD means that the subsystem had already
been loaded before DSSM was first called by the startup routine. After DSSM is called,
this subsystem will be managed like any other. Version exchange or version
coexistence with another version defined with CREATION-TIME=*AT-DSSM-LOAD is
permitted. It is the responsibility of systems support to ensure that one version of the
subsystem is available at all times.)

b) automatically during the second DSSM call in the startup routine if CREATION-TIME=
*MANDATORY-AT-STARTUP was defined; in this case, activation must have been
successfully completed.

c) automatically during the second DSSM call in the startup routine if CREATION-
TIME=*BEFORE-SYSTEM-READY was defined (synchronous).

d) automatically after the second return to the startup routine if CREATION-TIME=*AFTER-
SYSTEM-READY was defined (asynchronous).

e) explicitly by means of the START-SUBSYSTEM command.

f) explicitly as a local subsystem by means of the START-LOCAL-SUBSYSTEM command.

g) explicitly when the $ESMCRE interface is called.

h) implicitly after the first SVC call for a subsystem which was defined with CREATION-
TIME=*AT-SUBSYSTEM-CALL(ON-ACTION=*STD or *ANY)
or implicitly after the first ISL call for a subsystem that was defined with CREATION-
TIME=*AT-SUBSYSTEM-CALL(ON-ACTION=*ISL-CALL or *ANY).

40 U23166-J-Z125-3-76

Purpose and functions of DSSM DSSM

With reference to the start point for subsystems see also the SSCM statement SET-
SUBSYSTEM-ATTRIBUTES as of page 243.

In the same way as the other files required for DSSM initialization (e.g. SSMCAT) and the
files required for activation of subsystems linked to startup, the program or object module
library (OML) and the DSSM REP and NOREF files must have been created on the home
pubset under the TSOS user ID, and must be available at startup.
Subsystems which are linked to startup are those whose activation points (creation points)
are specified by the following values:

– *BEFORE-SYSTEM-READY
– *AFTER-SYSTEM-READY
– *BEFORE-DSSM-LOAD
– *AT-DSSM-LOAD
– *MANDATORY-AT-STARTUP

An indispensable precondition for activation is that the subsystem name is known, i.e.
declared in the global or local subsystem catalog.

Activation takes place in the following steps:

1. The job is checked, in particular the dependencies on other subsystems (synchronous).

If a subsystem has components which were declared with the attribute *INSTALLED and
installed using IMON, DSSM calls IMON-GPN during the checking phase in order to
find out the path names of the files.

Depending on the availability of IMON-GPN and on the status of the installed instal-
lation unit (see the INSTALLATION-UNIT operand), DSSM acts as follows:

a) if the installation unit exists and a file name can be linked to the specified logical ID:

DSSM will use this file name as long as the subsystem is active (until STOP-
SUBSYSTEM) or until another file name is defined by means of the MODIFY-
SUBSYSTEM-PARAMETER command.

b) In the following situations, DSSM accesses the DEFAULT-NAME defined in the
catalog, if there is one:

– IMON-GPN is not available
– the INSTALLATION-UNIT does not exist in the IMON-GPN data
– the INSTALLATION-UNIT exists in the IMON-GPN data but has no connection to

a logical name (LOGICAL-ID)

The message ESM0665 explains what is happening:

ESM0665 'DEFAULT-NAME' USED FOR FILES OF SUBSYSTEM '(&00)'

U23166-J-Z125-3-76 41

DSSM Purpose and functions of DSSM

c) The INSTALLATION-UNIT exists in the IMON-GPN data with a few appropriate path
names but the queried logical name does not exist. DSSM now assumes that the
file does not exist. Two cases are to be discriminated:

1. Subsystems that were defined with the *AT-DSSM-LOAD or *MANDATORY-AT-
STARTUP attribute:
During startup, a query that must be answered is issued to the operator
terminal. The operator can now either specify a new, valid name for the file
concerned (information file, module library or REP file with the REP-FILE-
MANDATORY=*YES attribute) or stop the subsystem activation.

2. Subsystems that were defined with the *AT-CREATION-REQUEST, *AFTER-
SYSTEM-READY or *BEFORE-SYSTEM-READY attribute:
If one of the files (module library, information file or REP file with the REP-FILE-
MANDATORY=*YES attribute) is missing, the subsystem is not activated and this
is indicated with a message. If the message file or REP file (with the REP-FILE-
MANDATORY=*NO attribute) is missing, the subsystem is activated but a warning
is still output.

2. The subsystem is loaded in a holder task (asynchronous)
Loading of the subsystem code is initiated by the holder task.
In addition it makes its local address space (user address space) available for the
subsystems that were defined with MEMORY-CLASS=*LOCAL-PRIVILEGED/*LOCAL-
UNPRIVILEGED. The loading of subsystems with MEMORY-CLASS=*SYSTEM-GLOBAL is
also initiated by the holder task; however, they are not loaded into the holder task’s user
address space but into the shareable system address space.

When TU subsystems are activated with MEMORY-CLASS=*BY-SLICE, the shareable
program area is loaded into the shareable system address space, and the non-
shareable program area and/or data area into the user address space of the holder
task.

If a task establishes a connection to a subsystem of this type, only the data area that
has already been loaded in the user address space of the holder task is copied to the
same address in the private user address spaces of the connected tasks. This means
that address-related references between the program area and data area are always
possible. Performance is considerably enhanced by this method of address space
distribution because no access is made to the program library or object module library
when a task is connected to the subsystem, and external references do not have to be
resolved.

42 U23166-J-Z125-3-76

Purpose and functions of DSSM DSSM

If a subsystem was defined with MEMORY-CLASS=*BY-SLICE and is started for the first
time, DSSM informs the BLSSERV subsystem that the copy of the data area in the
private user address space can be accessed with the VSVI1 macro.
The VSVI1 macro informs the user about entries in the DBL tables. See the manual
“BLSSERV” [4] for details on the macro.

The holder task can also be used as the work task.

3. For TPR subsystems only: subsystem activation is started in the holder task if an INIT
routine has been defined (asynchronous).

4. After completion of activation, the subsystem is opened for connections of authorized
users (asynchronous).

Restarting a subsystem (RESUME-SUBSYSTEM) after a HOLD-SUBSYSTEM consists of
steps 1, 3 and 4.
In step 1 it is not necessary to call IMON-GPN.

If the activation or restart of a subsystem is initiated explicitly via the START-SUBSYSTEM or
RESUME-SUBSYSTEM command, the synchronous processing mode can be selected
instead of the asynchronous mode.

3.1.3 Interface establishment and cancelation

The interface to the job entry point of a subsystem is implemented in one of the following
ways:

a) implicitly and globally by linkage (this is possible only for interfaces to subsystems that
have already been loaded or between subsystems that are loaded at the same time)

b) implicitly and task-specifically via
– subsystem-specific SVC, ISL, bISL or system exit routines
– in the case of nonprivileged subsystems, BLS interfaces (BIND macro, START-

PROGRAM, LOAD-PROGRAM and START-<product-name>, autolink)

c) explicitly and task-specifically via internal system macros ($ESMCON and $ESMCCS).

Establishing an interface to a subsystem includes:

1. generating a subtask following a corresponding internal system call ($ESMCCS)

2. attachment to the memory pool, if required

U23166-J-Z125-3-76 43

DSSM Purpose and functions of DSSM

3. If a subsystem was defined with MEMORY-CLASS=*BY-SLICE, the private area is copied
into the local address space (user address space). When the subsystem is started for
the first time, DSSM informs the BLSSERV subsystem that the copy in the private user
address space can be accessed with the VSVI1 macro.

4. transferring the address to the task or calling the subsystem code

5. setting the subsystem-specific interface marker

6. incrementing the task-specific interface counter (except when defining the subsystem
with the attribute CONNECTION-SCOPE=*FREE).

It is also possible to set up an interface for job entries which the subsystem manages itself.

A relation can be canceled in one of these ways:

a) implicitly and task-specifically
– by program/task termination
– after a return from the subsystem job entry point if this was defined with the attribute

MODE=*SVC/*ISL and CONNECTION-SCOPE=*CALL
– after deactivation of subsystems with CONNECTION-SCOPE=*OPTIMAL

b) explicitly and task-specifically via an internal system macro on termination of an SVC
routine ($ESMDCN)

c) implicitly and subsystem-specifically on deactivation of a subsystem which was defined
with the attribute CONNECTION-SCOPE=*FREE.

Canceling a relation includes:

1. detachment from the memory pool

2. If the subsystem was defined with MEMORY-CLASS=*BY-SLICE, the part in the user
address space of the connected task is unloaded.
When the last connection is shut down, DSSM informs the BLSSERV subsystem that
this private part can no longer be accessed.

3. resetting the task-specific interface marker

4. decrementing the subsystem-specific interface counter (except for subsystems defined
with the attribute CONNECTION-SCOPE=*FREE)

5. the “detach” function in the case of an explicit call.

The address supplied to the task at the time of interface setup can no longer be used.

44 U23166-J-Z125-3-76

Purpose and functions of DSSM DSSM

3.1.4 Subsystem Deactivation or suspension

A precondition for this function is that the subsystem is active.

A subsystem can be deactivated in the following ways:

a) explicitly when the STOP-SUBSYSTEM command is entered (HOLD-SUBSYSTEM
suspends the subsystem)

b) explicitly when privileged macros are called at the program interface ($ESMDEL and
$ESMHLD)

c) implicitly when a START-SUBSYSTEM command is entered with the operand VERSION-
PARALLELISM=*EXCHANGE-MODE

d) automatically at shutdown, for all subsystems whose definitions include such a decla-
ration (STOP-AT-SHUTDOWN=*YES)

Deactivation of a subsystem (STOP-SUBSYSTEM) takes place in the following steps:

1. The job is checked, in particular the dependencies on other subsystems (synchronous).

2. The CLOSE-CTRL routine is started, provided one is defined (asynchronous).

3. The subsystem is closed for new users (asynchronous), preventing the connection of
any further tasks to the subsystem (except for those with entry points with
CONNECTION-SCOPE=*FREE or SVC/ISL calls for subsystems with entry points with
CREATION-TIME=*AT-SUBSYSTEM-CALL).
From this moment on, it is no longer possible to access code that has an entry point
defined with CONNECTION-SCOPE=*OPTIMAL.

4. The job termination routine (STOPCOM routine), if defined, is started (asynchronous).

5. Wait until the subsystem is jobless, i.e. the subsystem-specific connection counter is 0
and no task is accessing code that has an entry point defined with CONNECTION-
SCOPE=*OPTIMAL (asynchronous). Exception: if the operand FORCED=*YES is
specified in the DSSM command, deinitialization is started immediately.

6. Deinitialization, if defined, is started (asynchronous).

7. Unloading from the holder task (asynchronous).

A subsystem hold (HOLD-SUBSYSTEM) consists of steps 1 through 6.
If the deactivation or suspension of a subsystem is initiated explicitly via the STOP-
SUBSYSTEM or HOLD-SUBSYSTEM command, the synchronous processing mode can be
selected instead of the asynchronous mode.

U23166-J-Z125-3-76 45

DSSM Purpose and functions of DSSM

3.1.5 Swapping subsystem versions

It is possible to swap versions of a subsystem in the following three ways:

a) Deactivate the old version (STOP-SUBSYSTEM) and activate the new version of the
subsystem (START-SUBSYSTEM). Under certain circumstances, this may result in very
long subsystem downtimes because the new version is not activated until the old one
has been completely deactivated, i.e. when all tasks have cleared their links.

b) Activate the new version of the subsystem with START-SUBSYSTEM ...,VERSION-
PARALLELISM=*EXCHANGE-MODE. From this time onward, no new links to the old
version of the subsystem are set up. While the last tasks are clearing their links to the
old version of the subsystem, the new version is initialized. This method substantially
shortens the period of subsystem unavailability.

Provided they have been defined, the following routines are called one after the other:
– the STOPCOM routine of the old version,
– the INIT routine of the new version and
– the DEINIT routine of the old version.

For some subsystem it is potentially a problem that the DEINIT routine of the old version
is running while the new version has already been activated and is running.
A subsystem that was defined with VERSION-EXCHANGE=*FORBIDDEN cannot be
swapped in as a new version. It can, however, be deactivated (as the old version) in
exchange for a new version that has been defined with VERSION-EXCHANGE=
*ALLOWED.

The old version remains in the IN-DELETE state until there is no further task connected.
If the new version is in the CREATED state, activation of the old subsystem with
RESET=*YES is only possible if coexistence was approved for both versions at the time
of definition.

Activation of the old version with RESET=*YES is allowed if the new version is in the
IN-DELETE state and the old version was not defined with VERSION-EXCHANGE=
*FORBIDDEN.

c) The CLOSE-CTRL routine can be used to switch versions without interrupting subsystem
availability.
Provided they have been defined, the following routines are called one after the other:
– the CLOSE-CTRL routine of the old version,
– the INIT routine of the new version,
– the STOPCOM routine of the old version and
– the DEINIT routine of the old version.

If the initialization routine of the new version does not run correctly, the old version is
automatically reactivated and is in the CREATED state (the result of the CLOSE-CTRL
routine is reversible), thus avoiding any interruption of subsystem availability.

46 U23166-J-Z125-3-76

Purpose and functions of DSSM DSSM

Version swapping is allowed if a version of the subsystem is in the CREATED state and
all other versions of the subsystem that are declared in the catalog are in the NOT-
CREATED or LOCKED state.
A version exchange will not be executed if all declared versions of the subsystem are in
the NOT-CREATED or LOCKED state. In this case the version that is activated is the one
that was specified in the START-SUBSYSTEM command.

Example

Subsystem versions SPOOL V04.2.A and V04.3.A are defined with VERSION-
EXCHANGE=*ALLOWED.

/SHOW-SUBSYSTEM-STATUS SPOOL,*ALL
SUBSYSTEM SPOOL /V04.2.A IS NOT CREATED
SUBSYSTEM SPOOL /V04.3.A IS NOT CREATED

/START-SUBSYSTEM SPOOL,04.2.A,VERSION-PARAL=*EXCHANGE-MODE,SYNCH=*YES
ESM0220 FUNCTION ’CREATE’ FOR SUBSYSTEM ’SPOOL /V04.3.A’ COMPLETELY

PROCESSED
ESM0400 ’CREATE’ OR ’RESUME’ SUBSYSTEM ’SPOOL /V04.3.A’ WITH

’SYNCHRONOUS=YES’ AND ’RESET=NO’
ESM0220 FUNCTION ’CREATE’ FOR SUBSYSTEM ’SPOOL /V04.3.A’ COMPLETELY

PROCESSED

If there are one or more versions of the subsystem which are not in the NOT-CREATED
or LOCKED state (apart from the version in the CREATED state that is to be exchanged),
the exchange will be rejected, even if all versions allow coexistence.

Example

Subsystem versions UTM V04.0, V05.0 and V05.1 are defined with VERSION-
COEXISTENCE=*ALLOWED and VERSION-EXCHANGE=*ALLOWED.

/SHOW-SUBSYSTEM-STATUS UTM,*ALL
SUBSYSTEM UTM /V04.0 IS NOT RESUMED
SUBSYSTEM UTM /V05.0 IS NOT CREATED
SUBSYSTEM UTM /V05.1 IS CREATED

/START-SUBSYSTEM UTM,05.0,VERSION-PARALLELISM=*EXCHANGE-MODE
ESM0206 SOME ACTIONS IN PROGRESS FOR SUBSYSTEM ’UTM/V04.0’.

NO FURTHER ACTION ON ANOTHER VERSION POSSIBLE
ESM0224 REQUESTED FUNCTION ’CREATE’ FOR SUBSYSTEM ’UTM/V05.0’

REJECTED

U23166-J-Z125-3-76 47

DSSM Purpose and functions of DSSM

When the old version of the subsystem is replaced with a new one, the syntax file of the
new version is also loaded. This means that the syntax of the new version must also
recognize and execute commands and statements of the old version, i.e. it must be
ensured that the syntax of the new version supports that of the old version.

It is advisable to use the CLOSE-CTRL routine to swap versions only when the new
version which is to be activated is also the higher of the two.

3.1.6 Coexistence of versions

DSSM has offered the option of keeping two versions of a subsystem active, temporarily or
permanently, to permit all the tasks which are linked to the old version to continue working.
This coexistence mode must be specified when the subsystem is defined (using the SSCM
statement SET-SUBSYSTEM-ATTRIBUTES ...,VERSION-COEXISTENCE=*ALLOWED), and
must be explicitly requested in the START-SUBSYSTEM command.

If a temporary coexistence is in effect and version B of a subsystem is loaded whilst
version A of the subsystem is active, all new callers will be connected to version B. Jobs
which are connected to version A will still be processed. When all the jobs which use version
A have been processed, this version will automatically be terminated.
It should be noted that, in the definition, the “old” version which is being replaced must not
be dependent on the “new” version which replaces it.

If a permanent coexistence of different versions of a subsystem is required, then the
appropriate attribute must be specified in the definition for each of the subsystems, and this
mode must be explicitly requested in the START-SUBSYSTEM command.

3.1.7 Relations between subsystems

DSSM acts as the central mechanism responsible for managing the interrelations between
the subsystems, allowing various relations to be explicitly monitored.

Job relations to a subsystem via explicit or implicit connections are set up and monitored
by DSSM. A job relation can always be established between a task and a job entry.

Address relations via linkage editors and loaders must be specified explicitly in an
operand of the SSCM statement SET-SUBSYSTEM-ATTRIBUTES (REFERENCED-
SUBSYSTEMS). However, the operand should only be applied to subsystems from the same
“family” (privilege level, memory class, etc.). In the case of unbundled subsystems, system
administration should only select dynamic addressing mechanisms (SVC, ISL or system
exit mechanisms for privileged subsystems; the BLS interface, BIND, for nonprivileged
subsystems).

48 U23166-J-Z125-3-76

Purpose and functions of DSSM DSSM

Address relations restrict the unloadability of a subsystem, since unloading has to take
place in the reverse order from loading. Address relations are taken into account during
loading and unloading, but they are not monitored. They prevent a subsystem from being
unloaded, regardless of whether or not jobs exist.

Dependency relations require the availability of another subsystem. These relations can
be declared by means of the RELATED-SUBSYSTEMS operand of the SSCM statement
SET-SUBSYSTEM-ATTRIBUTES and are taken into account in the loading and unloading
sequences.

3.1.8 Relations between subsystem satellites and subsystems

During the installation of a subsystem, the references to its satellites are created.

The module library is a mandatory satellite, as no subsystem can be loaded without it.

If an information file or a syntax file is specified in the definition, they will also be given
the status of mandatory components, which will prevent the subsystem from being loaded
if they are missing.

If a REP file is specified in the definition, this will only be mandatory at load time if this has
been explicitly stated in the definition (REP-FILE-MANDATORY=*YES).

A message file can be specified in the definition, but this is not a mandatory component.
In other words, loading of the subsystem can be carried out even if the message file is
missing.

In following situations, DSSM sends a query to the operator terminal that must be answered
by the operator:

– the module library of a mandatory subsystem is missing (*AT-DSSM-LOAD or
*MANDATORY-AT-STARTUP attribute)

– the specified information is declared but not present
– the REP file with the REP-FILE-MANDATORY=*YES attribute is missing

Despite a missing file, the operator still has the option of continuing the startup process (e.g.
starting the subsystem without the information file). The operator is exclusively responsible
for a possible abnormal subsystem or system termination.

U23166-J-Z125-3-76 49

DSSM Purpose and functions of DSSM

3.1.9 Communication between subsystems and DSSM

The exchange of information and messages is essential for subsystem-specific routines for
initialization, deinitialization, job termination and the check on job termination (INIT, DEINIT,
STOPCOM and CLOSE-CTRL routines).

The communications area always consists of an information area for the started routine
(DSSM → subsystem) and an acknowledgment area (subsystem → DSSM).

The routine is started via

a) procedure call
during initialization (with no condition) or at deinitialization, job termination and the
check on job termination if the holder task is not being used as a work task

b) the interface (bourse or FITC) transferred during initialization
if the holder task is being used as a work task

Acknowledgment to DSSM is given via a procedure return with an acknowledgment area at
deinitialization, job termination and the check on job termination if the holder task is not or
is no longer being used as a work task. If the holder task is being used as a work task,
DSSM is notified via a NOTIFY call with the acknowledgment area serving as an input
parameter.

3.1.10 Information about subsystems

Users can request information about the status of a subsystem by means of the SHOW-
SUBSYSTEM-STATUS and SHOW-SUBSYSTEM-INFO commands. They can also obtain an
overview of the overall subsystem configuration.

3.1.11 Status of a subsystem

NOT-CREATED
The subsystem has been declared in the current system, but has not yet been activated
by a START-SUBSYSTEM command, or has been deactivated again since being
activated. Tasks cannot access this subsystem until it has been activated.

IN-CREATE
The subsystem is being activated, but loading and initialization have not been
completed. Tasks cannot access this subsystem yet.

50 U23166-J-Z125-3-76

Purpose and functions of DSSM DSSM

CREATED
The subsystem has been loaded and initialized. Tasks can access the subsystem.

IN-DELETE
The subsystem has been deactivated by a STOP-SUBSYSTEM command. Unloading
and deinitialization have not yet been completed.
Other tasks can no longer access this subsystem. Processing of tasks still connected
to the subsystem will be completed.

IN-HOLD
The subsystem has been suspended by a HOLD-SUBSYSTEM command. Deinitial-
ization has not yet been completed.
Other tasks can no longer access this subsystem. Processing of tasks still connected
to the subsystem will be completed.

IN-RESUME
The subsystem is being resumed by a RESUME-SUBSYSTEM command. Reinitialization
has not yet been completed. Tasks cannot yet access this subsystem.

NOT-RESUMED
The subsystem has been suspended by a HOLD-SUBSYSTEM command. Deinitial-
ization has been completed. Tasks cannot access this subsystem until a RESUME-
SUBSYSTEM command has been issued and successfully executed.

LOCKED
An unrecoverable error has occurred while the subsystem was active or was being
activated, deactivated, resumed or suspended. Any further attempt to issue the corre-
sponding commands will be rejected.

The following situations can put a subsystem into the LOCKED status:

– if the change to this status is specified in the INIT, DEINIT, STOPCOM or CLOSE-CTRL
routine (applies only to privileged subsystems);

– if the subsystem’s holder task has terminated abnormally and either no restart is
provided for this task, or it cannot be executed (see page 72) or

– if a problem occurs in deactivating the old version during a version swap that entails
an interruption of subsystem availability; regardless of the value of the RESTART
operand, the subsystem is in the LOCKED status; activation of the new version is
continued.

U23166-J-Z125-3-76 51

DSSM Purpose and functions of DSSM

When a subsystem is activated, deactivated, suspended or resumed, its status changes,
i.e. it progresses from an initial status to a final status (for example, when a subsystem is
activated, its final status is CREATED).
The initial status for a request may not always be the same; e.g. a START-SUBSYSTEM
command is acceptable for a subsystem with the status NOT-CREATED or IN-DELETE if the
parameter RESET=*YES has been set.

The different statuses possible for a subsystem are summarized in the following table. The
changes of status caused by a DSSM command are shown on a single line. The initial
status of the subsystem is indicated by a 1. The highest digit in the line denotes the final
status attainable by the appropriate DSSM command. Possible intermediate statuses are
also shown.

Table 7: Statuses of a subsystem

DSSM
commands

States of a subsystem Operand of
the DSSM
command1

1 Operand of the DSSM command which must be set in order to change t he status

NOT-
CREATED

IN-
CREATE

CREATED IN-
DELETE

IN-HOLD IN-
RESUME

NOT-
RESUMED

START-
SUBSYSTEM

1

1

2

2
2

3
3
3
3
3
3

1
1

2

2
2

1

1

RESET=*YES
RESET=*YES
RESET=*YES
RESET=*YES
RESET=*YES

STOP-
SUBSYSTEM

3
3
2
2

1 2
2

1
1

1

FORCED=*YES
FORCED=*YES

HOLD-
SUBSYSTEM

1 2
1

3
2

FORCED=*YES

RESUME-
SUBSYSTEM

3
3
3 1

2
2
2

1
1

RESET=*YES
RESET=*YES

52 U23166-J-Z125-3-76

Purpose and functions of DSSM DSSM

3.1.12 Subsystem monitoring with monitoring job variables

Subsystems can be monitored with monitoring job variables (MONJV). The MONJV must
be specified in the START-SUBSYSTEM command, see page 153. DSSM administers and
sets the MONJV during the entire subsystem runtime until it is shut down, with:

� explicit DSSM calls (/HOLD-SUBSYSTEM, /RESUME-SUBSYSTEM, /STOP-SUBSYSTEM,
/UNLOCK-SUBSYSTEM)

� implicit operations (subsystem, automatic restore ...)

� SHUTDOWN

The MONJV indicates whether the subsystem is active, stopped, interrupted or locked. The
MONJV can have the following contents:

Byte Length Contents Values

1 3 Status $R (running) /
$A (abnormal end) /
$L (loaded) /
$T (terminate)

4 1 Reserved 0

5 4 TSN ???? (four question marks)

9 4 Home Catid

13 4 Reserved

17 1 Type J / P / S

18 53 Reserved

71 3 Session number

74 8 Name of the subsystem

82 7 Version of the subsystem

89 15 Condition of the subsystem for $R: created
for $A: abnormal end / locked
for $L: in create
for $T: not created / not resumed /

in delete / in resume / in hold

104 24 Unused

128 127 Reserved for subsystem users

Table 8: Contents of monitoring job variables

U23166-J-Z125-3-76 53

DSSM Purpose and functions of DSSM

3.1.13 Overview of functions

This table provides an overview of the functions offered by DSSM/SSCM, and shows which
operands may be specified for the individual subsystem classes.

Function (operands) TPR TU Sys Share PU

SAS SAS UAS exits prod.

Subsystem declaration (SSCM) statement SET-SUBSYSTEM-ATTRIBUTES

Identification
SUBSYSTEM-NAME, VERSION,-
DYNAMIC-CHECK-ENTRY

X X X X X

Linking and loading
LIBRARY, REP-FILE,LINK-ENTRY, AUTOLINK,-
UNRESOLVED-EXTERNALS

X X X X X

CREATION-TIME
= *BEFORE-DSSM-LOAD/*AT-DSSM-LOAD/-

*BEFORE-SYSTEM-READY
= *AFTER-SYSTEM-READY/-

*AT-CREATION-REQUEST
= *AT-SUBSYSTEM-CALL

X

X

1

X X

X

X X

REFERENCED-SUBSYSTEMS 2 2 2 2 2

Address space
MEMORY-CLASS
= *SYSTEM-GLOBAL
= *LOCAL-PRIVILEGED
= *LOCAL-UNPRIVILEGED
= *BY-SLICE

X X

X

X
X
X

X 10
10
10
10

SUBSYSTEM-ACCESS
= *SYSTEM
= *HIGH

X
X X

X
X

SIZE X X

START-ADDRESS 3 3

Subsystem satellites
MESSAGE-FILE, SYNTAX-FILE X X X 8 8

SUBSYSTEM-INFO-FILE X 8

Starting and terminating
INIT, STOPCOM, DEINIT, CLOSE-CTRL routine,-
INTERFACE-VERSION

X X

Holder task for execution
RESTART-REQUIRED X X

Table 9: Overview of DSSM functions (part 1 of 2)

54 U23166-J-Z125-3-76

Purpose and functions of DSSM DSSM

Execution (operand SUBSYSTEM-ENTRIES=(...))
MODE
= *LINK
= *SVC/*SYS-EXIT/*ISL

X
X

X X
X

X

CONNECTION-ACCESS
= *SYSTEM
= *ALL

X
X X

X
X

CONNECTION-SCOPE
= *PROGRAM/*TASK/*FREE
= *CALL/*OPTIMAL

X
9

X X X X

Subsystem configuration (SSCM) statements

ASSIGN-HOLDER-TASK X 4 X 8

SET-SUBSYSTEM-ATTRIBUTES
(Operand RELATED-SUBSYSTEMS) X X X X X

SET-SUBSYSTEM-ATTRIBUTES
(Operand REFERENCED-SUBSYSTEMS) 11 11 11 11 11

SEPARATE-ADDRESS-SPACE 5 5

Subsystem management (DSSM) commands

START-SUBSYSTEM, STOP-SUBSYSTEM,
HOLD-SUBSYSTEM, RESUME-SUBSYSTEM

X X X X X

ADD-/REMOVE-/UNLOCK-SUBSYSTEM,
SAVE-SUBSYSTEM-CATALOG

X

MODIFY-SUBSYSTEM-PARAMETER X X X X X X

Subsystem information (DSSM) commands

SHOW-SUBSYSTEM-ATTRIBUTES X

SHOW-SUBSYSTEM-INFO X

SHOW-SUBSYSTEM-STATUS X X X X X

Global subsystem management (DSSM) commands

RELEASE-SUBSYSTEM-SPACE 6

SET-DSSM-OPTIONS 7 7 7 7 7 7

Function (operands) TPR TU Sys Share PU

SAS SAS UAS exits prod.

Table 9: Overview of DSSM functions (part 2 of 2)

U23166-J-Z125-3-76 55

DSSM Purpose and functions of DSSM

Key

TPR SAR
TU SAS
TU UAS
Sys exits
Share prod.
PU

X
1
2
3
4
5
6

7
8
9
10
11

Privileged subsystems (only system address space)
Nonprivileged subsystems with system address space
Nonprivileged subsystems with user address space
Relevant for system exits
Relevant for share products
Privileged user ID for systems support
(user ID with SUBSYSTEM-MANAGEMENT privilege)

Function available
Only for subsystems with SVC and/or ISL connection
Relations only from UAS to SAS
only for subsystems in class 6 memory
Holder task is required in system address space only for execution purposes
Required only for subsystems in the address space strip
Reservation for the nonprivileged address space strip or both strips can be
canceled
Only for diagnosis and debugging
Only where appropriate
Only in conjunction with MODE=*SVC or MODE=*ISL
Depending on storage location in the address space
Should be reserved for subsystems in the same “family”
(privileges, memory class, etc.)

56 U23166-J-Z125-3-76

Storage and task concepts DSSM

3.2 Storage and task concepts

Storage concept

Subsystems are loaded as follows, depending on the declaration:

� into the system address space (class 3 or class 4 memory)
if MEMORY-CLASS=*SYSTEM-GLOBAL

� into the user address space (memory pool: class 5 or class 6 memory)
if MEMORY-CLASS=*LOCAL-PRIVILEGED/*LOCAL-UNPRIVILEGED

� into both address spaces if MEMORY-CLASS=*BY-SLICE

Interfaces to subsystems in the user address space are possible only if the allocated
address area in the local task is free. The code must always be located at the same address
after linkage. For generally accessible subsystems in the user address space, which can be
addressed by any task at any time, a fixed area in class 5 memory is reserved, known as
the “address space strip”. This address space strip is shared by all generally available
subsystems, with a separate strip being available for each nonprivileged subsystem.

Problems can occur for user tasks if there is not enough class 5 memory space. The
address space strip reserved for subsystems can be released by means of the DSSM
command RELEASE-SUBSYSTEM-SPACE in order to obtain more class 5 memory space.

Subsystems that are not used at the same time and therefore do not call each other may
be located in parallel within the address space. The more parallel subsystems there are, the
smaller is the address space strip required. Care should be taken to ensure the right
balance of parallel subsystems, since a high degree of parallelism, though it saves address
space, may result in a deterioration of performance (the more parallelism, the more mutual
preemption). The distribution of the subsystems within the address space strip can be
controlled using the SSCM statement SEPARATE-ADDRESS-SPACE.

U23166-J-Z125-3-76 57

DSSM Storage and task concepts

Address space housekeeping

DSSM address space housekeeping provides a means of reducing the load on the system
address space (class 3 and class 4 memory) by putting subsystems in the address space
of the holder task. This is only of relevance to nonprivileged subsystems, however, because
all privileged subsystems are always loaded into the system address space (MEMORY-
CLASS=*SYSTEM-GLOBAL).
Transfer is straightforward, provided that the subsystems do not call each other, do not
depend on each other through a third program, and do not have the ability to run in class 6
memory as a main program.
Note that it is only possible to attempt to relocate nonprivileged subsystems which are
currently below the 16-Mbyte boundary.
For all other nonprivileged subsystems, loading above the 16-Mbyte boundary is recom-
mended (SUBSYSTEM-ACCESS=*HIGH).

Subsystems which are reentrant-compatible and run as main programs can also be
swapped out of the system address space. They must be available in the memory pool in
the class 6 memory (MEMORY-CLASS=*LOCAL-UNPRIVILEGED).

There is a strategy aimed at minimizing system address space occupancy for subsystems
that consist of a shareable code (program area) and a non-shareable code (data area). This
strategy works as follows:
The program area is loaded into the shareable address space (this corresponds to
MEMORY-CLASS=*SYSTEM-GLOBAL). The data area is loaded into the user address space
of the holder task; then, when a task is linked to the subsystem in the task’s private user
address space, it is copied to the same address.
This strategy is implemented when a subsystem is defined with MEMORY-CLASS=*BY-SLICE.

The advantages of this approach are as follows:

– address-related references between the program area and data area are always
possible because the copy of the data area begins at the same address as the original

– performance is considerably enhanced by this type of address space apportionment
because no access is made to the program library or object module library when a task
is linked to the subsystem, and external references do not need to be resolved.

The disadvantages of this approach are:

– once the address space for the data area has been defined and reserved at the time of
startup, it can be expanded to only a very limited degree; optimization of memory space
is not possible because of the strict apportionment of address space

– if the address space belonging to the task being linked and intended for the data area
is already occupied, the subsystem code (data area and program area) is loaded in its
entirety into the user address space of that task.

58 U23166-J-Z125-3-76

Storage and task concepts DSSM

Relocation from the system address space to the user address space is only worthwhile in
the following cases:

a) Where subsystems which are independent of each other and are not used simulta-
neously by user programs can be placed in parallel in the user address area. If this is
not the case, relocation is pointless, since they will take up more memory in the user
address space than in the system address space.

b) Where the subsystems are large enough to compensate for the loss that occurs through
the use of the memory pool (minimum size of a memory pool: 1Mbyte).

c) Where the subsystem must be located below the 16-Mbyte boundary (for subsystems
which may also be loaded above this boundary, the operand SUBSYSTEM-ACCESS=
*HIGH can be used to counteract any overloading of the lower 16 Mbytes).

Summary:

It is only appropriate to use parallel configuration of independent subsystems in memory
pools if the sum of the sizes of all the subsystems amounts to over 1Mbyte and none of the
subsystems is larger than 1Mbyte in size.

Task concept - holder task

A subsystem is activated under its own task, the holder task. Depending on the type of
subsystem, this task can be used as a subsystem work task or as a pure holder task. The
user address space of this task can be used for relocation from the system address space.

The number of holder tasks required should be kept as small as possible. A large number
of tasks does have a positive effect on parallelism, since the more tasks are created at the
same time, the more subsystems can be installed. On the other hand, more tasks also
require more task-specific tables.

DSSM itself minimizes the number of holder tasks. However, the distribution of subsystems
can also be controlled with SSCM by means of the ASSIGN-HOLDER-TASK statement (see
page 193) during generation of the subsystem catalog.
The default option is that all subsystems defined with MEMORY-CLASS=*BY-SLICE are
connected to the same holder task.

If an error occurs, a restart of the holder task is automatically initiated, to avoid bringing
down all the subsystems which are connected to the holder task. Provision is also made for
restarting a subsystem by means of the RESTART-REQUIRED operand of the SET-
SUBSYSTEM-ATTRIBUTES command. This parameter makes it possible to call the
subsystem initialization again if the holder task was terminated during the execution of
subsystem routines (see page 72).

U23166-J-Z125-3-76 59

DSSM Management of shared programs

3.3 Management of shared programs

DSSM supports the management of shared programs. This permits the following during a
session:

– unloading of shared programs, even from class 4 memory
– relocation of shared programs from class 4 memory to class 5 or class 6 memory.

Shared programs can be declared as subsystems and as such administered by DSSM.
They can be dynamically activated, deactivated, suspended and resumed, just like any
other subsystems.

This requires that the shared programs be declared during generation of the subsystem
catalog. Given this definition, a shared program can be activated and deactivated like a
normal subsystem after DSSM has been started.

Users can access the program via the BIND macro or by means of the START-PROGRAM and
LOAD-PROGRAM commands.

The entry point must always be defined by means of the SSCM statement SET-
SUBSYSTEM-ATTRIBUTES,...SUBSYSTEM-ENTRIES=, even if it is identical with the LINK-
ENTRY (of the reference address used to load the subsystem).

60 U23166-J-Z125-3-76

Management of the dynamic subsystem catalog DSSM

3.4 Management of the dynamic subsystem catalog

Adding to the dynamic subsystem catalog

System administration can extend the current dynamic subsystem configuration during a
session (ADD-SUBSYSTEM command). The catalog for the new subsystem configuration
must be generated using SSCM, and the following points must be noted:

� If required, the new catalog can be larger that the old one (i.e. it may also include all the
subsystems from the old catalog), or it may be created as a “delta” catalog, containing
only the new subsystem definitions.

� The “old” subsystem catalog, which was used during startup, will not automatically be
updated. At the next startup it is possible

– to use the “new” catalog, or

– to use instead a catalog which has been completely recreated and which, for
example, does not contain the versions of subsystems which are no longer being
used, and in which the required changes have been made to attributes (such as
CREATION-TIME).

� ASSIGN-HOLDER-TASK statement

This statement must not be specified for old and new subsystems.

Example

Subsystems in the old catalog:
Subsystems in the new catalog:

A, B, C
A, B, C, D and E

Then the following is allowed:
//ASSIGN-HOLDER-TASK TYPE=SHARED-HOLDER(BY-SUBSYSTEMS=(A,B))
//ASSIGN-HOLDER-TASK TYPE=SHARED-HOLDER(BY-SUBSYSTEMS=(D,E))

and the following is not allowed:
//ASSIGN-HOLDER-TASK TYPE=SHARED-HOLDER(BY-SUBSYSTEMS=(A,B,E))

U23166-J-Z125-3-76 61

DSSM Management of the dynamic subsystem catalog

� SET-SUBSYSTEM-ATTRIBUTES statement

The CREATION-TIME operand for a new subsystem must be compatible with any
versions of the subsystem which already exist in the old subsystem configuration.

Example

If version 1 of subsystem X in the old catalog is declared with CREATION-TIME=*AT-
SUBSYSTEM-CALL, then version 2 of subsystem X in the new catalog must have
CREATION-TIME=*AT-CREATION-REQUEST.

If CREATION-TIME=*BEFORE-SYSTEM-READY or *AFTER-SYSTEM-READY has been
specified for a new subsystem, the subsystem will not be created because the SYSTEM
READY point in time (i.e. system initialization) will not occur. A corresponding message
will be issued.

New subsystems which are being added and have the attribute MEMORY-CLASS=
*LOCAL-PRIVILEGED (class 5 memory) must not alter the width of the system or user
address space strip, nor the location of the old subsystems within this strip.

No relations may be declared from the old to the new subsystems (REFERENCED-
SUBSYSTEM and RELATED-SUBSYSTEM operands).

Example

� SEPARATE-ADDRESS-SPACE statement

New and old subsystems may be disjunctive, i.e. their addresses may overlap.

Example

Subsystems in the old catalog:
Subsystems in the new catalog:

A, B, C
A, B, C, D and E

X Y means that X requires Y in order to resolve external calls.

Then: A D
D E
D B,C

not allowed
is allowed
is allowed.

Subsystems in the old catalog:
Subsystems in the new catalog:

A, B, C
A, B, C, D and E

X Y means that X is disjunctive to Y.

Then: A D
D E
D B,C

is allowed
is allowed
is allowed.

62 U23166-J-Z125-3-76

Management of the dynamic subsystem catalog DSSM

Changing subsystem attributes during a session

The MODIFY-SUBSYSTEM-PARAMETER command can be used to change subsystem
attributes during a session, without the user having to shut down the subsystem configu-
ration or add a new version of the subsystem. Changes in the configuration can be saved
for the next startup by means of the SAVE-SUBSYSTEM-CATALOG command.

These possibilities are helpful especially in the following situations:

� In order to stop a subsystem, all the connected tasks must have cleared their links. If
the subsystem was not defined with the attribute FORCED-STATE-CHANGE=*ALLOWED,
there is no way of accelerating the deactivation of the subsystem. Should certain
considerations make it necessary to do so, however, it is now possible to change the
attribute dynamically by means of the MODIFY-SUBSYSTEM-PARAMETER command.

� If memory pool contention occurs because, for example, two subsystems are located at
the same address and the task can use only one of the two, the addresses of the
subsystems can be changed to avoid memory pool contention by means of the MODIFY-
SUBSYSTEM-PARAMETER command.

U23166-J-Z125-3-76 63

DSSM DSSM startup

3.5 Startup of dynamic subsystem management

Dynamic subsystem management is started during BS2000 system initialization.

All the information necessary for DSSM initialization is entered via the parameter service.
This information includes the name of the static subsystem catalog and the DSSM version
number. If absolutely necessary, logging of DSSM-specific data for error diagnosis may be
activated at this point.

All the records processed by means of the parameter service are listed in the form of
messages in the CONSLOG logging file.

The keyword for starting up subsystem management is DSSM.

The procedure for starting up DSSM via the parameter service is described in detail in the
manual “Introductory Guide to Systems Support” [14] .

In order for DSSM V4.0 to operate, the following files must be stored on the home pubset
under the TSOS user ID:

SYSLNK.DSSM.040 Library with load modules for DSSM

SYSNRF.DSSM.040 Reference file for DSSM REP file processing (NOREF file)

SYSREP.DSSM.040 REP correction file for DSSM

SYSSDF.DSSM.040 SDF syntax file

SYSMES.DSSM.040 Message file

The subsystem catalog which is to be created must likewise be placed on the home pubset
and stored under the TSOS user ID. The catalog may be named as desired, and the name
can be made known to the system via the parameter service.

The SSCM program is available for generating a subsystem catalog. This program is
described in detail as of page 179.

64 U23166-J-Z125-3-76

DSSM startup DSSM

Problem handling during a system run

If DSSM cannot be initialized, the reason is displayed in a message (e.g. missing static
subsystem catalog) and message ESM0401 is output. The operator can specify a new
subsystem catalog during the system run on the operator terminal if it was not defined in
the parameter file or the standard catalog (SYS.SSD.CAT.X) is not present.

The system run is generally not continued if mandatory subsystems cannot be started up.
The reason for the error during DSSM initialization must first be eliminated and the system
run must then be repeated.

If subsystems with the *BEFORE-SYSTEM-READY attribute cannot be started up, DSSM
continues the system run.

If one of the following files of a subsystem with the *AT-DSSM-LOAD or *MANDATORY-AT-
STARTUP attribute is missing, the operator can specify a new, valid name during the system
run:

– information file
– REP correction file
– module library

The system run is stopped if the operator does not input a new file name for the missing
REP correction file or the module library.

If the information file is missing, the operator can

– input a new, valid file name
– ignore the message and continue the system run
– ignore the message and stop the system run.

Format of the parameter record for starting up DSSM

START-SUBSYSTEM commands must be issued in the BS2000 session for any subsystems
that are not set up automatically during system initialization.

Format Meaning

SSMCAT=name Name of the static subsystem catalog

VERSION=versno Version number of DSSM

LOGGING=ON / OFF Controls DSSM-specific logging for error diagnostics

REPFILE=<repfile name> Name of the REP correction file for loading DSSM

U23166-J-Z125-3-76 65

DSSM DSSM startup

Excerpt from the parameter file

/BS2000 PARAMS
:
/BEGIN DSSM
 SSMCAT=name —— (1)
VERSION=versno ——— (2)
 LOGGING=ON / OFF ——— (3)
REPFILE=repfile name —— (4)
/EOF
:
/END-PARAMS

(1) Control and parameter records must exist in the parameter file only if the system
support wishes to set values different from the following default values:

(2) The version number refers to all DSSM-specific file names
(e.g. SYSLNK.DSSM.040, SYSREP.DSSM.040 in the case of BS2000/OSD-BC V5.0).

(3) The statement LOGGING=OFF deactivates logging. With LOGGING=ON a log
containing diagnostics data is created during DSSM startup.
Logging is not possible if only default values are specified.

(4) Name of the desired REP correction file for loading DSSM.
If the parameter is not specified, DSSM is loaded with the default name of the REP
correction file (SYSREP.DSSM.version).

for BS2000/OSD-BC V5.0: SSMCAT=$TSOS.SYS.SSD.CAT.X and VERSION=040

for BS2000/OSD-BC V4.0: SSMCAT=$TSOS.SYS.SSD.CAT.X and VERSION=040
or
SSMCAT=$TSOS.SYS.SSD.CAT.X and VERSION=039
or
SSMCAT=$TSOS.SYS.SSD.CAT.X and VERSION=038

for BS2000/OSD-BC V3.0: SSMCAT=$TSOS.SYS.SSD.CAT.X and VERSION=040
or
SSMCAT=$TSOS.SYS.SSD.CAT.X and VERSION=036

66 U23166-J-Z125-3-76

Accounting records DSSM

3.6 DSSM accounting records

General comments on the BS2000/OSD accounting system

The BS2000/OSD accounting system as a whole is controlled by systems support. Systems
support determines the time at which the accounting system is to be started, declares the
name of the accounting file, and defines the name and number of accounting records and
record extensions that are to be recorded in the accounting file.
Systems support also determines the cycle and scope of periodic data entry encompassing
certain accounting records and job classes.

The accounting system can be used by systems support to activate and deactivate
accounting records, either entirely or in part, during a session, and to influence the extent
of the individual accounting records.
Accounting records and record extensions which are not required can be deactivated by
means of the MODIFY-ACCOUNTING-PARAMETERS command.

The attributes used in the representation of each data field are as follows:

Field Consecutive number of the data field within the described part of the record

Displace-
ment

Relative distance of the data field from the start of the described part of the
record

Length Length of the data field in bytes

Format A

B

B2

C

F

X

Z

*

-

=

=

=

=

=

=

=

=

=

alphanumeric

binary number

binary representation of CPU time

printable characters, including special characters

file name

non-printable characters

unpacked decimal number (*)

specified for the individual record types or extension elements

reserved for future extensions; contains either a space or binary zero

(*) Time is shown in the form hhmmss, the date in the form yymmdd

U23166-J-Z125-3-76 67

DSSM Accounting records

An accounting record consists of the following four parts:

For more details about the BS2000/OSD accounting system refer to the manual “Intro-
ductory Guide to Systems Support” [14] or “Computer Center Ready Reference, Volume 1”
[41].

Subsystem record description

The record description (A) contains a record identifier, which serves the purpose of
differentiating the individual accounting records, a time stamp, and details of the length of
the identification section and of the basic information.

Address of the record description = left-hand end of record

Structure and contents:

Field no. Displacement Length Format Meaning

hex. dec. (bytes)

1
2
3
4
5

00
04
0C
0E
10

0
4

12
14
16

4
8
2
2
4

A
B
B
B
-

Record identifier 1

Time stamp of time of day clock 2

Length of identification section
Length of basic information
- reserved -

1 The record identifier serves to differentiate between the individual record types.
2 The time stamp is entered in the record by the system as the last item of information after creation of the record

is completed or after it has been transferred to the accounting system.

Length of the record description: 20 bytes

(A) Record description : record identifier, time stamp, ...

: user ID, account number,
(B) Identification section monitored resources , ...

(C) Basic information : default data

(D) Variable information : record extensions

68 U23166-J-Z125-3-76

Accounting records DSSM

Subsystem identification

The subsystem identification in the identification section (B) describes the subsystem to
which the subsystem account data relates.

Structure and contents:

Field no. Displacement Length Format Meaning

hex. dec. (bytes)

1
2
3
4

00
08
0F
17

0
8

15
23

8
7
8
6

A
A
Z
Z

Name of the subsystem
Version of the subsystem
Date of the call 1

Time of the call 2

1 Date in the form yyyymmdd
2 Time in the form hhmmss

Length of the DSSM identification section: 29 bytes

U23166-J-Z125-3-76 69

DSSM Accounting records

ESMC - subsystem initialization accounting record

The accounting record is written every time that the initialization phase of a subsystem is
executed.
This activation routine traverses the subsystem under the control of DSSM on execution of
the START-SUBSYSTEM and RESUME-SUBSYSTEM commands.

Maximum length of the subsystem initialization accounting record: 54 bytes

(A) Record description: record identifier: “ESMC”

(B) Identification section: subsystem identifier

(C) Basic information

(D) Variable information

The variable information of the subsystem initialization accounting record contains no
record extension.

Field no. Displacement Length Format Meaning

hex. dec. (bytes)

1
2
3

00
01
02

0
1
2

1
1
1

B
A
-

Status indicator 1

Season identifier (current) 2

- reserved -

1 There are two possible values for the status indicator:
1 subsystem is restarted after the wait state (RESUME-SUBSYSTEM command)
0 subsystem is started (START-SUBSYSTEM command)

2 “S” for summer time; “W” for winter time

Length of the basic information: 3 bytes

70 U23166-J-Z125-3-76

Accounting records DSSM

ESMD - subsystem termination accounting record

The accounting record is written every time that the deinitialization phase of a subsystem
is executed.
This termination routine traverses the subsystem under the control of DSSM on execution
of the STOP-SUBSYSTEM and HOLD-SUBSYSTEM commands.

Maximum length of the subsystem termination accounting record: 54 bytes

(A) Record description: record identifier: “ESMD”

(B) Identification section: subsystem identification

(C) Basic information

(D) Variable information

The variable information of the subsystem termination accounting record contains no
record extension.

Field no. Displacement Length Format Meaning

hex. dec. (bytes)

1
2
3

00
01
02

0
1
2

1
1
1

B
A
-

Status indicator 1

Season identifier (current) 2

- reserved -

1 There are two possible values for the status indicator:
1 subsystem is placed in the wait state (HOLD-SUBSYSTEM command)
0 subsystem is terminated (STOP-SUBSYSTEM command)

2 “S” for summer time; “W” for winter time

Length of the basic information: 3 bytes

U23166-J-Z125-3-76 71

DSSM Error handling in DSSM

3.7 Error handling in DSSM

DSSM task error

1. DSSM terminates abnormally during the first step of startup if, for example, subsystems
are activated that were defined with the attribute *BEFORE-DSSM-LOAD or *AT-DSSM-
LOAD. An error code is sent to the startup task.
Normally, startup is aborted. However, under certain circumstances it may be continued
without DSSM initialization (depending on how startup is implemented).

For information on the startup steps see page 211 or the manual “Introductory Guide to
Systems Support” [14].

2. DSSM terminates abnormally during the second step of startup if, for example,
subsystems are activated that were defined with the attribute *MANDATORY-AT-STARTUP
or *BEFORE-SYSTEM-READY or while the data structures of a subsystem with the
attribute *AFTER-SYSTEM-READY are being updated. If DSSM attempted to activate one
of these subsystems, its status is changed to LOCKED.

A return code is sent to the startup task when a subsystem with *MANDATORY-AT-
STARTUP is put in the LOCKED status. Whether or not startup is aborted depends on
how startup is implemented.

3. DSSM terminates abnormally during shutdown if the subsystem which is to be deacti-
vated is in the LOCKED status.
The shutdown of other subsystems continues normally.

4. Other causes that lead to abnormal DSSM termination:
DSSM analyzes the situation, restores the integrity of its internal tables and makes the
following decisions, depending on where the error occurred:

After restoring the integrity of the tables, DSSM resumes its work with the requests
waiting in the DSSM bourse.

The error occurs during ... Reaction

CREATE/DELETE/RESUME/HOLD Subsystem LOCKED (with error message)

the swapping of subsystem versions
– with interrupted availability

without interrupted availability

The faulty routine is called again; if it again
results in the error,
– the version concerned or
– both subsystem versions
are placed in the LOCKED status.

ADD-/MODIFY-SUBSYSTEM-PARAMETER,
REMOVE-SUBSYSTEM

The statement is aborted; parts of the
catalog may already have been changed.

restoration of the holder task Restoration is aborted.

SHOW-SUBSYSTEM-INFO, SAVE-CATALOG The request is terminated abnormally.

72 U23166-J-Z125-3-76

Error handling in DSSM DSSM

Holder task error

If problems occur in the holder task or it is terminated abnormally, DSSM analyzes the
situation, automatically initiates the restart of the holder task and makes the following
decisions:

The problem occurs ... Reaction to the holder task error when

RESTART-REQUIRED=*YES RESTART-REQUIRED=*NO

– when normal demands are being made on the subsystem

Activation Subsystem LOCKED Subsystem LOCKED

INIT routine INIT routine called Subsystem LOCKED

CLOSE-CTRL routine Subsystem CREATED Subsystem LOCKED

STOPCOM routine INIT routine called Subsystem LOCKED

DEINIT routine Deinitialization continued Subsystem LOCKED

Deactivation Subsystem LOCKED Subsystem LOCKED

Subsystem session
(work task)

INIT routine called Subsystem LOCKED

– when swapping subsystem versions and interrupting availability

Activation of V2 Subsystem V2 LOCKED and
swap aborted

Subsystem V2 LOCKED and
swap aborted

STOPCOM routine of V1 Subsystem V1 LOCKED and
INIT routine for V2 called

Subsystem V1 LOCKED and
INIT routine for V2 called

INIT routine of V2 INIT routine of V2 called and
DEINIT routine of V1 continued

Subsystem V2 LOCKED and
DEINIT routine of V1 continued

Deactivation of V1 Subsystem V1 LOCKED Subsystem V1 LOCKED

DEINIT routine of V1 Subsystem V1 LOCKED Subsystem V1 LOCKED

– when swapping subsystem versions without interrupting availability

Activation of V2 Subsystem V2 LOCKED and
swap aborted

Subsystem V2 LOCKED and
swap aborted

CLOSE-CTRL routine of
V1

Swap aborted
(subsystem V1 CREATED)

Subsystem V1 LOCKED and
unloading of V1

INIT routine of V2 INIT routine of V2 called and
DEINIT routine of V1 continued

Subsystem V2 LOCKED and
swap aborted

STOPCOM routine of V1 Subsystem V1 LOCKED Subsystem V1 LOCKED

DEINIT routine of V1 Subsystem V1 LOCKED Subsystem V1 LOCKED

Deactivation of V1 Subsystem V1 LOCKED Subsystem V1 LOCKED

U23166-J-Z125-3-76 73

DSSM Error handling in DSSM

Error log SERSLOG

DSSM writes an entry in the SERSLOG error log whenever

– a system call is faulty,
– inconsistent data is detected in the internal subsystem catalog or
– the DSSM task terminates abnormally (in this case, the SERSLOG entry contains a

message describing the current situation).

The entry may consist of up to three parts:

1. the parameter list of the faulty system call or the inconsistent data (in 2K units),

2. the return code (if it is not already included in the parameter list) and

3. the address of the faulty routine and the address of the routine that called the faulty
routine. This entry is useful for diagnostic purposes because DSSM uses its own central
SERSLOG call.

74 U23166-J-Z125-3-76

Command overview DSSM

3.8 DSSM commands

The SDF syntax representation of the commands is explained in section “SDF syntax
representation” on page 5.

Command Meaning Page

ADD-SUBSYSTEM Extend dynamic subsystem catalog 75

HOLD-SUBSYSTEM Place subsystem in wait state 80

LOAD-LOCAL-SUBSYSTEM-CATALOG Load local subsystem catalog 83

MODIFY-SUBSYSTEM-PARAMETER Modify subsystem parameters 85

RELEASE-SUBSYSTEM-SPACE Release reserved address space for
subsystems

110

REMOVE-SUBSYSTEM Remove inactive subsystem from dynamic
catalog

111

RESUME-SUBSYSTEM Cancel wait state for subsystem 113

SAVE-SUBSYSTEM-CATALOG Save changes to dynamic subsystem catalog 116

SET-DSSM-OPTIONS Activate/deactivate DSSM logging function 120

SHOW-SUBSYSTEM-ATTRIBUTES Request information on subsystem attributes 122

SHOW-SUBSYSTEM-INFO Request information on current subsystem
configuration

138

SHOW-SUBSYSTEM-STATUS Request information on status of subsystems 142

START-LOCAL-SUBSYSTEM Activate local subsystem in user address
space

150

START-SUBSYSTEM Activate subsystem 153

STOP-LOCAL-SUBSYSTEM Deactivate local subsystem in user address
space

159

STOP-SUBSYSTEM Deactivate subsystem 162

UNLOAD-LOCAL-SUBSYSTEM-CATALOG Unload local subsystem catalog 166

UNLOCK-SUBSYSTEM Shift subsystem from LOCKED status to NOT-
CREATED status

168

Table 10: DSSM commands

U23166-J-Z125-3-76 75

DSSM ADD-SUBSYSTEM

ADD-SUBSYSTEM
Extend dynamic subsystem catalog

Domain: SYSTEM-MANAGEMENT

Privileges: SUBSYSTEM-MANAGEMENT

Function

Using this command, system administration can extend the current subsystem configu-
ration during a session. The catalog specified may either be a completely new one, which
includes all the entries in the previous one, or it may contain only the new subsystems which
are to be added to the current catalog.

In either case, the subsystem catalog specified must have been generated using SSCM.

The (“old”) subsystem catalog used during system initialization is not automatically
updated. For the next session, system administration can either

� use the catalog generated by means of ADD-SUBSYSTEM during system initialization, or

� generate a completely new and updated subsystem catalog and use this for system
initialization. This new catalog need not build up quantitatively on an old predecessor
catalog nor qualitatively support its references and attributes.

Format

ADD-SUBSYSTEM

CATALOG = <filename 1..54 without-gen-vers>

,TYPE = *EXTENDED-ACTIVE-CONFIGURATION / *NEW-SUBSYSTEMS

76 U23166-J-Z125-3-76

ADD-SUBSYSTEM DSSM

Operands

CATALOG = <filename 1..54 without-gen-vers>
Name of the new subsystem catalog.

TYPE =
Specifies whether the current catalog is to be extended or replaced.

TYPE = *EXTENDED-ACTIVE-CONFIGURATION
A completely new catalog is to be activated, containing not only the entries from its prede-
cessor, but also the new subsystems (refer also to the notes on page 77).

TYPE = *NEW-SUBSYSTEMS
The specified catalog contains only new subsystems, which are to be added to the old
catalog.
DSSM will check the catalog to ensure that the subsystems which it contains really are new.
If any subsystem is found which is also listed in the catalog which is being extended, the
command will be rejected.

Restrictions:

� The subsystems specified for generation using SSCM with RELATED-SUBSYSTEM and
REFERENCED-SUBSYSTEM must be cycle-free, i.e. free of mutual dependency.

� It is not permitted to define different versions of a subsystem with the start attributes
AT-SUBSYSTEM-CALL, BEFORE-SYSTEM-READY, AFTER-SYSTEM-READY, BEFORE-
DSSM-LOAD, AT-DSSM-LOAD and MANDATORY-AT-STARTUP
(exception: AT-SUBSYSTEM-CALL is permitted if coexistence is defined for all versions
involved).

Command return codes

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

32 ESM0296 Abnormal termination (REQM error)
32 ESM0350 Internal DSSM problem during processing
64 ESM0260 File not found
64 ESM0261 Storage space limit reached in DSSM catalog
64 ESM0262 File is not a catalog
64 ESM0322 Maximum number of relations exceeded
64 ESM0325 Inconsistencies in catalog
64 ESM0332 Incompatible version of catalog
64 ESM0340 Reserved address-space exhausted for subsystems with

MEMORY-CLASS=*BY-SLICE

U23166-J-Z125-3-76 77

DSSM ADD-SUBSYSTEM

Notes

There may be relationships between subsystems which are not defined in the current
catalog (see the operand FORCED=*FOR-ADD-SUBSYSTEM of the SSCM statement SAVE-
CATALOG). You can get round this problem by defining these subsystems in a new catalog
and adding them to the old catalog by means of the /ADD-SUBSYSTEM.
Example for TYPE=*EXTENDED-ACTIVE-CONFIGURATION:

Restrictions concerning the operand TYPE=*EXTENDED-ACTIVE-CONFIGURATION

� Subsystems with the attribute MEMORY-CLASS=*LOCAL-PRIVILEGED, which are being
added to the newly created catalog, must not exceed the size of the address space strip
in user or system address space, nor may their location in the address space overlap
with subsystems from the old catalog.

� The CREATION-TIME operand for any new subsystem must be chosen so as to be
compatible with versions of the same subsystem which are already defined in the old
catalog. In making this choice, the values BEFORE-SYSTEM-READY, AFTER-SYSTEM-
READY, BEFORE-DSSM-LOAD, AT-DSSM-LOAD and MANDATORY-AT-STARTUP could be
used, but would have no effect since the system startup time for a session which has
started will already have been passed; i.e. system administration will be given an appro-
priate warning, but the subsystem will not be loaded.

� When distributing subsystems to holder tasks (ASSIGN-HOLDER-TASK statement), the
“stand alone” principle must be observed, i.e. subsystems from different catalogs must
not be assigned to the same holder task.

Old catalog New catalog

//START-CATALOG-CREATION old-cat
//SET-SUBSYSTEM-ATTRIBUTES -
// SUBSYSTEM-NAME=ss1, -
// RELATED-SUBSYSTEM=ss2
//SAVE-CATALOG FORCED= -
// *FOR-ADD-SUBSYSTEM

//START-CATALOG-CREATION new-cat
//SET-SUBSYSTEM-ATTRIBUTES -
// SUBSYSTEM-NAME=ss1, -
// RELATED-SUBSYSTEM=ss2
//SET-SUBSYSTEM-ATTRIBUTES -
// SUBSYSTEM-NAME=ss2
//SAVE-CATALOG

78 U23166-J-Z125-3-76

ADD-SUBSYSTEM DSSM

Example

� The new catalog must be larger than its predecessor, because it not only contains the
old subsystems with their attributes (relations, dependencies, loading instructions), but
must also maintain details of the new subsystems.

� Link and dependency relationships (REFERENCED-SUBSYSTEM/RELATED-
SUBSYSTEM) must not violate the catalog boundaries. The catalog A must not contain
any relationships of a subsystem defined in this catalog to a subsystem defined in the
catalog B.

� Once REMOVE-SUBSYSTEM has been used to delete a subsystem from the catalog,
TYPE=*EXTENDED-ACTIVE-CONFIGURATION can no longer be specified.

It is not permissible to define different

� subsystems with an identical combination of the attributes: SVC-NUMBER / FUNCTION-
NUMBER / FUNCTION-VERSION.

� subsystems with an identical combination of the attributes: FUNCTION-NUMBER /
FUNCTION-VERSION (if the value *ALLOWED is set for VERSION-COEXISTENCE or
VERSION-EXCHANGE) for subsystems which are indirectly linked via System Procedure
Linkage (ISL).

� versions of a subsystem with an identical combination of the attributes:
SVC-NUMBER / FUNCTION-NUMBER / FUNCTION-VERSION if the value *ALLOWED is set
for VERSION-COEXISTENCE or VERSION-EXCHANGE.

� versions of a subsystem with an identical combination of the attributes: FUNCTION-
NUMBER / FUNCTION-VERSION / VERSION-COEXISTENCE or VERSION-EXCHANGE for
subsystems which are indirectly linked via System Procedure Linkage (ISL).

Subsystem overlaps must be avoided. To this end, DSSM compares the values of the SIZE
and START-ADDRESS operands in the SET-SUBSYSTEM-ATTRIBUTES statement.

Subsystems in the old catalog:
Subsystems in the new catalog:

A, B, C
A, B, C, D, E

Then:

//ASSIGN-HOLDER-TASK *SHARE-HOLDER(BY-SUB=(A,B))
//ASSIGN-HOLDER-TASK *SHARE-HOLDER(BY-SUB=(D,E))

is permissible
is permissible

but:

//ASSIGN-HOLDER-TASK *SHARE-HOLDER(BY-SUB=(A,D,C)) is not permissible

U23166-J-Z125-3-76 79

DSSM ADD-SUBSYSTEM

Assigning a holder task (via SSCM statement) for an old and a new subsystem has no effect
on the holder task allocation.

Table of incompatibilities for relations between subsystems in the old and new catalog:

x: this combination is not possible:
neither link relations (REFERENCED-SUBSYSTEM) nor any other dependencies
(RELATED-SUBSYSTEM) are permitted

r: link relations (REFERENCED-SUBSYSTEM) are not permitted

Subsystem in the new catalog Subsystem in the old catalog

M
A

N
A

D
AT

O
R

Y-
AT

-S
TA

R
T

U
P

B
E

F
O

R
E

-S
Y

S
T

E
M

-R
E

A
D

Y

A
F

T
E

R
-S

Y
S

T
E

M
-R

E
A

D
Y

AT
-C

R
E

AT
IO

N
-R

E
Q

U
E

S
T

AT
-S

U
B

S
Y

S
T

E
M

-C
A

LL

B
E

F
O

R
E

-D
S

S
M

-L
O

A
D

AT
-D

S
S

M
-L

O
A

D

S
TO

P
-A

T-
S

H
U

T
D

O
W

N
=

*Y
E

S

S
U

B
S

Y
S

T
E

M
-A

C
C

E
S

S
=

*L
O

W

S
U

B
S

Y
S

T
E

M
-A

C
C

E
S

S
=

*H
IG

H

M
E

M
O

R
Y-

C
LA

S
S

=*
LO

C
A

L-
P

R
IV

IL
E

G
E

D

M
E

M
O

R
Y-

C
LA

S
S

=*
LO

C
A

L-
U

N
P

R
IV

IL
E

G
E

D

M
E

M
O

R
Y-

C
LA

S
S

=*
B

Y-
S

LI
C

E

MANDATORY-AT-STARTUP x x x x

BEFORE-SYSTEM-READY x x x

AFTER-SYSTEM-READY x x

BEFORE-DSSM-LOAD x x x x x x

AT-DSSM-LOAD x x x x x

STOP-AT-SHUTDOWN=*NO r

SUBSYSTEM-ACCESS=*SYSTEM x x x

MEMORY-CLASS=*SYSTEM-
GLOBAL

x x

MEMORY-CLASS=*BY-SLICE r r r

Table 11: Incompatibilities for relations between subsystems in the old and new catalog

80 U23166-J-Z125-3-76

HOLD-SUBSYSTEM DSSM

HOLD-SUBSYSTEM
Place subsystem in wait state

Domain: SYSTEM-MANAGEMENT

Privileges: OPERATING
SUBSYSTEM-MANAGEMENT

Function

The HOLD-SUBSYSTEM command enables any given subsystem to be placed in the wait
state.
No new connection is permitted to the specified subsystem; the required resources (holder
task, address space) remain available. In addition, the FORCED operand can cause the
command to wait until the occupying tasks have finished executing or terminate them
forcibly without waiting. On completion of the deinitialization phase, the subsystem is in the
wait state; this can be canceled using the RESUME-SUBSYSTEM command.

The HOLD-SUBSYSTEM command is rejected if a subsystem was defined with SUBSYSTEM-
HOLD=*FORBIDDEN.

In order to ensure a high degree of parallelism and data integrity, time-consuming
administration tasks are not performed under control of the calling task; instead they
are transferred to a DSSM task.
As a rule, only the check of the requested function is carried out synchronously
(i.e. contingent upon a wait state for the calling task). DSSM carries out the actual
processing asynchronously and independent of the calling task.

Format

HOLD-SUBSYSTEM

SUBSYSTEM-NAME = <structured-name 1..8>

,VERSION = *STD / <product-version mandatory-man-corr> / <product-version without-man-corr> / *HIGHEST

,SUBSYSTEM-PARAMETER = *NONE / <c-string 1..254>

,FORCED = *NO / *YES

,SYNCHRONOUS = *NO / *YES

i

U23166-J-Z125-3-76 81

DSSM HOLD-SUBSYSTEM

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem to be placed in the wait state.

VERSION = *STD / <product-version mandatory-man-corr> /
<product-version without-man-corr> / *HIGHEST
Specifies the version number.
When specifying a version number, the format entered must match the format used when
the subsystem was defined. Release and correction levels either must be specified or may
not be specified (see statements SET-SUBSYSTEM-ATTRIBUTES on page 243 and SDF data
type “product-version” on page 13).

VERSION = *STD
If there is only one version of the subsystem which has been loaded, this version is
selected. If there are several suitable versions, the required version must be specified.

VERSION = *HIGHEST
Selects the highest version of the subsystem.

SUBSYSTEM-PARAMETER = *NONE / <c-string 1..254>
Specifies whether special parameters are to be processed, which can be evaluated only by
the specified subsystem.

FORCED =
Determines the mode and urgency of command processing.

FORCED = *NO
Processing and hence normal termination of all the tasks accessing this subsystem is
allowed to take its normal course.

FORCED = *YES
All accessing tasks are terminated immediately. This can lead to a system dump in the case
of a privileged subsystem; the program of tasks that are connected to a nonprivileged
subsystem is terminated and an error handling routine of the event class ABEND is
executed.

82 U23166-J-Z125-3-76

HOLD-SUBSYSTEM DSSM

SYNCHRONOUS =
Enables synchronous or asynchronous processing to be selected.

SYNCHRONOUS = *NO
The command is to be processed asynchronously, i.e. there is no need to wait for it to
execute before making another entry. After the syntax of the command has been checked
the calling task receives the message ESM0216. Error messages relating to execution of the
command are not output at the console.

SYNCHRONOUS = *YES
The command must first be executed before another entry can be made.
Accompanying error messages are output to the task.
In the event of a version swap this entry is relevant only to the new version that is to be
activated. Deactivation of the other, “old” version is always executed asynchronously.

Command return codes

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

1 0 CMD0001 No action necessary; subsystem already in wait state
1 ESM0414 Syntax error: an invalid version was specified

32 ESM0224 Command is not processed
32 ESM0228 Command terminated abnormally

U23166-J-Z125-3-76 83

DSSM LOAD-LOCAL-SUBSYSTEM-CATALOG

LOAD-LOCAL-SUBSYSTEM-CATALOG
Load local subsystem catalog

Domain: SYSTEM-MANAGEMENT

Privileges: STD-PROCESSING

Function

The LOAD-LOCAL-SUBSYSTEM-CATALOG command can be used by the caller to load a local
subsystem catalog into the task-specific user address space (class 5 memory).

A local subsystem catalog is not permitted to contain any privileged subsystems.

Only one local subsystem catalog can be loaded at any one time. An attempt to load
another local subsystem catalog without previously unloading the first catalog with the
UNLOAD-LOCAL-SUBSYSTEM-CATALOG command will be rejected with an error message.
The LOAD-LOCAL-SUBSYSTEM-CATALOG command is only executed if the specified catalog
was defined as a local catalog, i.e. if it does not contain any privileged subsystems and was
generated with SSCM V2.0 or higher.

A local subsystem catalog cannot be loaded if a program has already been loaded.
The RESTART-PROGRAM command is rejected while a local subsystem catalog is loaded.
Before the program can be restarted the local subsystem catalog must be explicitly
unloaded.

Format

Operands

CATALOG-NAME = <filename 1..54 without-gen-vers>
Name of the local subsystem catalog that is to be loaded into the task-specific user address
space (class 5 memory).

LOAD-LOCAL-SUBSYSTEM-CATALOG

CATALOG-NAME = <filename 1..54 without-gen-vers>

84 U23166-J-Z125-3-76

LOAD-LOCAL-SUBSYSTEM-CATALOG DSSM

Command return codes

Notes

� The size of the memory area occupied by the local subsystem catalog in the user
address space is solely dependent on the size of the subsystem definitions in the
catalog.
There is therefore no need for any expansion of memory space later.

� If the local subsystem catalog contains too many subsystems or if they are too large,
the user address space may become saturated. This problem can be prevented by
loading the local subsystem catalog above the 16-Mbyte boundary.

� Dependency relations or other connections between subsystems are not taken into
account in local subsystem management.

� If the WRCPT macro is called in a program while a local subsystem catalog is loaded, it
saves the local subsystem configuration to the checkpoint file. If the program is resumed
with the RESTART-PROGRAM command, the local subsystem configuration can be read
back in from this file.

Example

/load-local-subsystem-catalog catalog-name=local.dssmcat.1 ———————————— (1)
%ESM0254 COMMAND '/LOAD-LOCAL-SUBSYSTEM-CATALOG' COMPLETELY PROCESSED
/load-local-subsystem-catalog catalog-name=local.dssmcat.2 ———————————— (2)
%ESM0344 A LOCAL CATALOG IS ALREADY LOADED
%ESM0255 COMMAND '/LOAD-LOCAL-SUBSYSTEM-CATALOG' NOT PROCESSED

(1) First the local subsystem catalog LOCAL.DSSMCAT.1 is loaded. Execution of the
command is successful.

(2) Loading of another local subsystem catalog is rejected with message ESM0344: only
one file can be loaded as a local subsystem catalog at any one time.

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

64 ESM0255 Command not executed; a local catalog or a program is already
loaded

64 ESM0326 Processing of the command terminated; (system error, non-
compatible catalog versions, DMS error, catalog contains privileged
subsystems or the specified file is not a catalog)

U23166-J-Z125-3-76 85

DSSM MODIFY-SUBSYSTEM-PARAMETER

MODIFY-SUBSYSTEM-PARAMETER
Modify subsystem parameters

Domain: SYSTEM-MANAGEMENT

Privileges: SUBSYSTEM-MANAGEMENT

Function

A user with the SUBSYSTEM-MANAGEMENT privilege can run this command to modify the
parameters governing a subsystem; only the parameters explicitly specified are changed.

The command modifies only the dynamic subsystem catalog, not the static subsystem
catalog. Changes made are therefore only effective during the current session but not at the
next startup.
You can use the SAVE-SUBSYSTEM-CATALOG command to store the changes into a static
catalog and make them permanent. You must however note that some changes may be
pointless or even unfavorable at the next startup (e.g. if a message file is assigned to a
subsystem with the start attribute BEFORE-DSSM-LOAD1).

Only users who are very familiar with the subsystem that is being modified should
use this command. This is because the command is capable of making far-reaching
changes to the subsystem attributes.

The command has three different types of operand:

� operands which have their value stored in the dynamic subsystem catalog and which
take immediate effect (such as VERSION-COEXISTENCE).

� operands which have their value stored in the dynamic subsystem catalog but do not
take effect until the next /START-SUBSYSTEM (such as SUBSYSTEM-LIBRARY).

� operands which are accepted only if the subsystem is not currently running (such as
MESSAGE-FILE).

1 The BEFORE-DSSM-LOAD attribute can only be changed via SSCM, see chapter “SSCM” on page 179.

i

86 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

Format
(part 1 of 2)

MODIFY-SUBSYSTEM-PARAMETER

SUBSYSTEM-NAME = <structured-name 1..8>

,VERSION = <product-version mandatory-man-corr> / <product-version without-man-corr>

,INSTALLATION-UNIT = *UNCHANGED / *NONE / *STD / <text 1..30>

,INSTALLATION-USERID = *UNCHANGED / *NONE / <name 1..8> / *DEFAULT-USERID

,COPYRIGHT = *UNCHANGED / *NONE / <c-string 1..54>(...)

<c-string 1..54>(...)

 YEAR = *YEAR-1990 / <c-string 4..4>

,SUBSYSTEM-LIBRARY = *UNCHANGED / *STD / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = *UNCHANGED / *REFRESH / <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = *UNCHANGED / <filename 1..54>

,SUBSYSTEM-LOAD-MODE = *UNCHANGED / *STD / *ADVANCED

,REP-FILE = *UNCHANGED / *STD / *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = *UNCHANGED / *REFRESH / <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = *UNCHANGED / *NONE/ <filename 1..54>

,REP-FILE-MANDATORY = *UNCHANGED / *NO / *YES

,MESSAGE-FILE = *UNCHANGED / *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = *UNCHANGED / *REFRESH / <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = *UNCHANGED / *NONE/ <filename 1..54>

,SUBSYSTEM-INFO-FILE = *UNCHANGED / *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = *UNCHANGED / *REFRESH / <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = *UNCHANGED / *NONE/ <filename 1..54>

,SYNTAX-FILE = *UNCHANGED / *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = *UNCHANGED / *REFRESH / <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = *UNCHANGED / *NONE/ <filename 1..54>

,DYNAMIC-CHECK-ENTRY = *UNCHANGED / *STD / *NO / <text 1..8 without-sep>

Continued� �

U23166-J-Z125-3-76 87

DSSM MODIFY-SUBSYSTEM-PARAMETER

,CREATION-TIME = *UNCHANGED / *AT-CREATION-REQUEST / *AT-SUBSYSTEM-CALL(...) /

*AT-DSSM-LOAD / *MANDATORY-AT-STARTUP / *BEFORE-SYSTEM-READY /

*AFTER-SYSTEM-READY

*AT-SUBSYSTEM-CALL(...)

 ON-ACTION = *STD / *ISL-CALL / *ALL

,INIT-ROUTINE = *UNCHANGED / *NO / <text 1..8 without-sep>

,CLOSE-CTRL-ROUTINE = *UNCHANGED / *NO / *DYNAMIC / <text 1..8 without-sep>

,STOPCOM-ROUTINE = *UNCHANGED / *NO / *DYNAMIC / <text 1..8 without-sep>

,DEINIT-ROUTINE = *UNCHANGED / *NO / *DYNAMIC / <text 1..8 without-sep>

,STOP-AT-SHUTDOWN = *UNCHANGED / *NO / *YES

,INTERFACE-VERSION = *UNCHANGED / *NO / <text 1..8 without-sep>

,SUBSYSTEM-HOLD = *UNCHANGED / *ALLOWED / *FORBIDDEN

,STATE-CHANGE-CMDS = *UNCHANGED / *ALLOWED / *FORBIDDEN / *BY-ADMINISTRATOR-ONLY

,FORCED-STATE-CHANGE = *UNCHANGED / *ALLOWED / *FORBIDDEN

,RESET = *UNCHANGED / *ALLOWED / *FORBIDDEN

,RESTART-REQUIRED = *UNCHANGED / *NO / *YES

,VERSION-COEXISTENCE = *UNCHANGED / *FORBIDDEN / *ALLOWED

,VERSION-EXCHANGE = *UNCHANGED / *FORBIDDEN / *ALLOWED

,MEMORY-CLASS = *UNCHANGED / *SYSTEM-GLOBAL(...) / *LOCAL-UNPRIVILEGED(...) /*BY-SLICE(...)

*SYSTEM-GLOBAL(...)

 SUBSYSTEM-ACCESS = *LOW / *HIGH

*LOCAL-UNPRIVILEGED(...)

 SIZE = *UNCHANGED / <integer 1..32767 4Kbyte>
 ,SUBSYSTEM-ACCESS = *UNCHANGED / *LOW / *HIGH
 ,START-ADDRESS = *UNCHANGED / *ANY / <x-string 7..8>

*BY-SLICE(...)

 SIZE = <integer 1..32767 4Kbyte>

,LINK-ENTRY = *UNCHANGED (...) / <text 1..8 without-sep>(...)

*UNCHANGED(...)

 AUTOLINK = *UNCHANGED / *ALLOWED / *FORBIDDEN

<text 1..8 without-sep>(...)

 AUTOLINK = *ALLOWED / *FORBIDDEN

,UNRESOLVED-EXTERNALS = *UNCHANGED / *ALLOWED / *FORBIDDEN

,CHECK-REFERENCES = *UNCHANGED / *YES / *NO

,CHANGE-STATE = *UNCHANGED / *YES / *NO

(part 2 of 2)

88 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Specifies the name of the subsystem for which the parameters are to be changed.

VERSION = <product-version mandatory-man-corr> /
<product-version without-man-corr>
Specifies the version number.
When specifying a version number, the format entered must match the format used when
the subsystem was defined. Release and correction levels either must be specified or may
not be specified (see statements SET-SUBSYSTEM-ATTRIBUTES on page 243 and SDF data
type “product-version” on page 13).

INSTALLATION-UNIT =
Defines the name of the installed software unit (also referred to as a release unit). A value
other than *NONE must be specified for all subsystems installed with IMON-GPN, and also
if the value *INSTALLED(LOGICAL-ID=...) was defined for one of the operands SUBSYSTEM-
LIBRARY, REP-FILE, SUBSYSTEM-INFO-FILE, MESSAGE-FILE or SYNTAX-FILE.

INSTALLATION-UNIT = *UNCHANGED
The name of the installed software unit remains unchanged.

INSTALLATION-UNIT = *NONE
No name is assigned. This entry is not allowed for any subsystems installed with IMON.

INSTALLATION-UNIT = *STD
The name specified with the SUBSYSTEM-NAME operand is used as the name of the
installed software unit.

INSTALLATION-UNIT = <text 1..30>
New name of the installed software unit.

INSTALLATION-USERID = *UNCHANGED / *NONE / <name 1..8> / *DEFAULT-USERID
Changes the default user ID of the files associated with the subsystem (operands REP-FILE,
SUBSYSTEM-LIBRARY, SYNTAX-FILE and MESSAGE-FILE, SUBSYSTEM-INFO-FILE). File
names specified without a user ID are assumed to belong to the new installation user ID
defined here.
Any attempt to change the installation user ID is rejected if the subsystem is active and
there is a message file (MESSAGE-FILE operand) or a syntax file (SYNTAX-FILE operand)
assigned to it with no user ID specified.
The change takes effect immediately.

U23166-J-Z125-3-76 89

DSSM MODIFY-SUBSYSTEM-PARAMETER

INSTALLATION-USERID = *UNCHANGED
The installation user ID is not changed.

INSTALLATION-USERID = *NONE
Removes the installation user ID.
If an installation user ID existed before the command was issued, it is stripped from all files
to which it was assigned.

INSTALLATION-USERID = <name 1..8>
The user ID given here will be the new installation user ID. The name of the user ID must
be given without dollar sign “$”.

INSTALLATION-USERID = *DEFAULT-USERID
Selects the system default user ID as the installation user ID (which means that files begin
with “$.”).

COPYRIGHT = *UNCHANGED / *NONE / <c-string 1..54>(...)
Changes the copyright notice displayed when the subsystem is loaded.
The change takes effect as soon as the subsystem is restarted (START-SUBSYSTEM
command).

COPYRIGHT = *UNCHANGED
The copyright notice is not changed.

COPYRIGHT = *NONE
No copyright notice is displayed.

COPYRIGHT = <c-string 1..54>(...)
Changes the copyright notice displayed when the subsystem is loaded.

YEAR = *YEAR-1990 / <c-string 4..4>
Defines the year displayed as the first production year in the copyright notice. The
default year is 1990. Any other year must be specified explicitly. Note that the operand
value is not subjected to semantic validity checking.

SUBSYSTEM-LIBRARY = *UNCHANGED / *STD / *INSTALLED(...) /
<filename 1..54 without-gen-vers>
Changes the module library assignment for the specified subsystem. The module library
supplies the code which is loaded for a subsystem which is not yet running.
The change takes effect as soon as the subsystem is restarted (START-SUBSYSTEM
command).

SUBSYSTEM-LIBRARY = *UNCHANGED
The setting is left unchanged.

90 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

SUBSYSTEM-LIBRARY = *STD
Selects the default name SYSLNK.<subsysname>.<subsysvers#> for the library name
argument.
“subsysvers#” is a three-character value composed of the “mmm” elements specified in the
operand SUBSYSTEM-NAME=...(VERSION=...).

SUBSYSTEM-LIBRARY = *INSTALLED(...)
The library ID is determined by calling IMON-GPN (administration of installation paths).

LOGICAL-ID =
Specifies the logical ID of the program library or object module library under which the
library is known to IMON.

LOGICAL-ID = *UNCHANGED
The logical name of the program library or object module library remains unchanged.

LOGICAL-ID = *REFRESH
The path name belonging to the logical name has been changed and is now to be
updated in the catalog. The logical ID itself is unchanged.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
New logical ID of the program library or object module library.

DEFAULT-NAME =
Name of the library if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = *UNCHANGED
The library name remains unchanged.

DEFAULT-NAME = <filename 1..54>
New library name.

SUBSYSTEM-LIBRARY = <filename 1..54 without-gen-vers>
The fully qualified file name specified here is defined as the new library name (see “Notes”
on page 109).

SUBSYSTEM-LOAD-MODE = *UNCHANGED / *STD / *ADVANCED
Defines the way in which the subsystem is started.

SUBSYSTEM-LOAD-MODE = *UNCHANGED
The subsystem loading mode is left unchanged, i.e. the manner in which the subsystem is
started is not changed.

SUBSYSTEM-LOAD-MODE = *STD
BLS is invoked in STD run mode (via the BLS-DSSM interface $PBBND1) to load the
subsystem code as an object module.

U23166-J-Z125-3-76 91

DSSM MODIFY-SUBSYSTEM-PARAMETER

SUBSYSTEM-LOAD-MODE = *ADVANCED
BLS is called in ADVANCED run mode (via the BLS-DSSM interface $PBBND1) to load the
subsystem code as a link and load module.

REP-FILE = *UNCHANGED / *STD / *NO / *INSTALLED(...) /
<filename 1..54 without-gen-vers>
Changes the REP file assignment for the specified subsystem version. REP files are
designed to incorporate module updates in a subsystem which is not currently running. The
change takes effect as soon as the subsystem is restarted (START-SUBSYSTEM command).

REP-FILE = *UNCHANGED
The REP file parameters are not changed.

REP-FILE = *STD
The name of the REP file is the default name: SYSREP.<subsysname>.<subsysvers#>.
“subsysvers#” is a three-character value composed of the “mmm” elements specified in the
operand SUBSYSTEM-NAME=...(VERSION=...).

REP-FILE = *NO
There is no REP file for the subsystem.

REP-FILE = *INSTALLED(...)
The name of the REP file is determined by calling IMON-GPN (administration of installation
paths).

LOGICAL-ID =
Specifies the logical ID of the REP file under which the file is known to IMON.

LOGICAL-ID = *UNCHANGED
The logical ID of the REP file remains unchanged.

LOGICAL-ID = *REFRESH
The path name belonging to the logical ID has been changed and is now to be updated
in the catalog. The logical ID itself is unchanged.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
New logical ID of the REP file.

DEFAULT-NAME =
Name of the REP file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = *UNCHANGED
The name of the REP file remains unchanged.

DEFAULT-NAME = *NONE
No default name is assigned for the REP file.

92 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

DEFAULT-NAME = <filename 1..54>
New name of the REP file.

REP-FILE = <filename 1..54 without-gen-vers>
The fully qualified file name specified here is defined as the new REP file name (see “Notes”
on page 109).

REP-FILE-MANDATORY = *UNCHANGED / *NO / *YES
Defines whether the subsystem is started if errors occur while the REP file is being
processed. The change takes effect as soon as the subsystem is restarted (START-
SUBSYSTEM command).

REP-FILE-MANDATORY = *UNCHANGED
The current setting is left unchanged.

REP-FILE-MANDATORY = *NO
Errors during processing of the REP file have no effect on subsystem loading.

REP-FILE-MANDATORY = *YES
Dynamic subsystem management (DSSM) inhibits subsystem loading in the following
cases:

– DMS errors during REP file processing (e.g. REP file not cataloged)
– errors during REP file validation
– REP file incorrectly named
– DMS errors during NOREF file processing

MESSAGE-FILE = *UNCHANGED / *NO / *INSTALLED(...) /
<filename 1..54 without-gen-vers>
Changes the message file definition valid for the specified subsystem version.
The subsystem version must not be running at the time.
The requirements placed by DVS on the file name are not checked.

MESSAGE-FILE = *UNCHANGED
The current setting is left unchanged.

MESSAGE-FILE = *NO
No subsystem-specific message file is available.
This setting is needed for cases where BEFORE-DSSM-LOAD is defined as the activation
point for the subsystem, see chapter “SSCM” on page 179.

U23166-J-Z125-3-76 93

DSSM MODIFY-SUBSYSTEM-PARAMETER

MESSAGE-FILE = *INSTALLED(...)
The name of the message file is determined by calling IMON-GPN (administration of instal-
lation paths).

LOGICAL-ID =
Specifies the logical ID of the message file under which the file is known to IMON.

LOGICAL-ID = *UNCHANGED
The logical ID of the message file remains unchanged.

LOGICAL-ID = *REFRESH
The path name belonging to the logical ID has been changed and is now to be updated
in the catalog. The logical ID itself is unchanged.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
New logical ID of the message file.

DEFAULT-NAME =
Name of the message file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = *UNCHANGED
The name of the message file remains unchanged.

DEFAULT-NAME = *NONE
No default name is assigned for the message file.

DEFAULT-NAME = <filename 1..54>
New name of the message file.

MESSAGE-FILE = <filename 1..54 without-gen-vers>
The fully qualified file name specified here is defined as the new message file name (see
“Notes” on page 109).

SUBSYSTEM-INFO-FILE = *UNCHANGED / *NO / *INSTALLED(...) /
<filename 1..54 without-gen-vers>
Specifies which information file to use for the specified subsystem version.

SUBSYSTEM-INFO-FILE = *UNCHANGED
The current setting is left unchanged.

SUBSYSTEM-INFO-FILE = *NO
No information file is available.

94 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

SUBSYSTEM-INFO-FILE = *INSTALLED(...)
The name of the information file is determined by calling IMON-GPN (administration of
installation paths).

LOGICAL-ID =
Specifies the logical ID of the information file under which the file is known to IMON.

LOGICAL-ID = *UNCHANGED
The logical ID of the information file remains unchanged.

LOGICAL-ID = *REFRESH
The path name belonging to the logical ID has been changed and is now to be updated
in the catalog. The logical ID itself is unchanged.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
New logical ID of the information file.

DEFAULT-NAME =
Name of the information file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = *UNCHANGED
The name of the information file remains unchanged.

DEFAULT-NAME = *NONE
No default name is assigned for the information file.

DEFAULT-NAME = <filename 1..54>
New name of the information file.

SUBSYSTEM-INFO-FILE = <filename 1..54 without-gen-vers>
The fully qualified file name specified here is defined as the new information file name (see
“Notes” on page 109).

SYNTAX-FILE = *UNCHANGED / *NO / *INSTALLED(...) /
<filename 1..54 without-gen-vers>
Changes the syntax file definition valid for the specified subsystem version.
The syntax file contains the command and operand values valid for the subsystem version.
The subsystem version must not be loaded when the command is issued.
The requirements placed by DVS on the file name are not checked.

SYNTAX-FILE = *UNCHANGED
The current setting is left unchanged.

SYNTAX-FILE = *NO
No syntax file is available.
This setting is needed for cases where BEFORE-DSSM-LOAD or AT-DSSM-LOAD is defined
as the activation (creation) point for the subsystem.

U23166-J-Z125-3-76 95

DSSM MODIFY-SUBSYSTEM-PARAMETER

SYNTAX-FILE = *INSTALLED(...)
The name of the syntax file is determined by calling IMON-GPN (administration of instal-
lation paths).

LOGICAL-ID =
Specifies the logical ID of the syntax file under which the file is known to IMON.

LOGICAL-ID = *UNCHANGED
The logical ID of the syntax file remains unchanged.

LOGICAL-ID = *REFRESH
The path name belonging to the logical ID has been changed and is now to be updated
in the catalog. The logical ID itself is unchanged.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
New logical ID of the syntax file.

DEFAULT-NAME =
Name of the syntax file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = *UNCHANGED
The name of the syntax file remains unchanged.

DEFAULT-NAME = *NONE
No default name is assigned for the syntax file.

DEFAULT-NAME = <filename 1..54>
New name of the syntax file.

SYNTAX-FILE = <filename 1..54 without-gen-vers>
The fully qualified file name specified here is defined as the new syntax file name (see
“Notes” on page 109).

DYNAMIC-CHECK-ENTRY = *UNCHANGED / *STD / *NO / <text 1..8 without-sep>
Changes the reference address used to check that the loaded code for the subsystem is
correct.

DYNAMIC-CHECK-ENTRY = *UNCHANGED
The current setting is left unchanged.

DYNAMIC-CHECK-ENTRY = *STD
The reference address specified in the LINK-ENTRY operand is used as the reference
address for dynamic checking.

DYNAMIC-CHECK-ENTRY = *NO
No checking is performed. This setting is not allowed if the activation point defined for the
subsystem is BEFORE-DSSM-LOAD.

96 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

DYNAMIC-CHECK-ENTRY = <text 1..8 without-sep>
The address specified here is defined as the new reference address for dynamic checking.

CREATION-TIME = *UNCHANGED / *AT-CREATION-REQUEST /
*AT-SUBSYSTEM-CALL(...) / *AT-DSSM-LOAD / *MANDATORY-AT-STARTUP /
*BEFORE-SYSTEM-READY / *AFTER-SYSTEM-READY
Changes the creation time of a subsystem.

CREATION-TIME = *UNCHANGED
The current setting is left unchanged.

CREATION-TIME = *AT-CREATION-REQUEST
The subsystem creation time is reset to the (generation) default setting of “creation on
START-SUBSYSTEM invocation”.

CREATION-TIME = *AT-SUBSYSTEM-CALL(...)
The subsystem creation time is changed to the value AT-SUBSYSTEM-CALL. This means
that the subsystem starts up automatically in response to the first SVC or ISL call.
This operand value is available only for subsystems called by the SVC or ISL mechanism.

The operand value can be assigned to the specified subsystem version after it has been
withdrawn, if necessary, from another subsystem version. If no other version has this
attribute, it is directly transferred to the specified subsystem version. If some other
subsystem version has this attribute, it is withdrawn from that subsystem, either immedi-
ately (if the subsystem is not running) or after the subsystem has closed down (if it is
currently running).
Subsystems with the attribute VERSION-COEXISTENCE=*ALLOWED are an exception to this
rule. With them, different versions of the same subsystem can have the attribute CREATION-
TIME=*AT-SUBSYSTEM-CALL at the same time.
As with SSCM, this attribute can only be set for a subsystem with CALL entry
MODE=*SVC / *ISL.

ON-ACTION =
Determines what initiates automatic loading of the subsystem.

ON-ACTION = *STD
Default setting: loading begins when any SVC entry point belonging to the subsystem
is called.

ON-ACTION = *ISL-CALL
Loading begins when any ISL entry point belonging to the subsystem is called.

ON-ACTION = *ANY
Loading begins when any SVC or ISL entry point belonging to the subsystem is called.

U23166-J-Z125-3-76 97

DSSM MODIFY-SUBSYSTEM-PARAMETER

CREATION-TIME = *AT-DSSM-LOAD
The subsystem is to be loaded under the control of the DSSM task during system initial-
ization. It must be a privileged subsystem, and any address and dependency relations it has
must be with subsystems which also have this startup attribute or the BEFORE-DSSM-LOAD
startup attribute.
The file name for this subsystem must be located on the home pubset under the TSOS user
ID, as at startup time the user catalog is not accessible and IMPORT-PUBSET processing has
not been completed.
It is not permitted to link in a syntax file for these subsystems.

CREATION-TIME = *MANDATORY-AT-STARTUP
The subsystem must be loaded during system initialization (phase 2: after DSSM has been
loaded; see page 212). As with BEFORE-SYSTEM-READY, subsystem activation is initiated
synchronously; but in this case, as opposed to BEFORE-SYSTEM-READY, loading of the
subsystem must be completed successfully. Otherwise the startup routine is sent a
message indicating that a mandatory subsystem could not be loaded. The startup routine
then decides whether to continue or abort processing.
The subsystem must be a privileged subsystem, and any address and dependency
relations it has must be with subsystems which have the same start attribute or one of the
start attributes BEFORE-DSSM-LOAD or AT-DSSM-LOAD. The file name for this subsystem
must be cataloged on the home pubset.

CREATION-TIME = *BEFORE-SYSTEM-READY
The subsystem is to be loaded during system initialization (phase 2; see page 212).
Activation is initiated synchronously; control is not returned to the startup routine until after
completion of loading (or a loading error). Once the startup routine has regained control, it
can report “SYSTEM READY”.
The subsystem must be a privileged subsystem, and any address and dependency
relations it has must be with subsystems which have the same start attribute or one of the
start attributes BEFORE-DSSM-LOAD, AT-DSSM-LOAD or MANDATORY-AT-STARTUP.
The file name for this subsystem must be cataloged on the home pubset.

CREATION-TIME = *AFTER-SYSTEM-READY
Loading of the subsystem is initiated during system initialization (phase 2; see page 212).
Loading is not synchronized with the startup routine, which can report “SYSTEM READY”
before loading of this subsystem has been completed.
Any address and dependency relations the subsystem has must be with subsystems which
have the same start attribute or one of the start attributes BEFORE-DSSM-LOAD,
AT-DSSM-LOAD, MANDATORY-AT-STARTUP or BEFORE-SYSTEM-READY.
The files for this subsystem must be on the home pubset.

98 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

INIT-ROUTINE = *UNCHANGED / *NO / <text 1..8 without-sep>
Changes the subsystem initialization routine (see page 214), provided that this does not
affect the manner in which the subsystem functions.
The change takes effect immediately to allow the subsystem to be reconstructed if
necessary.

INIT-ROUTINE = *UNCHANGED
The current setting is left unchanged.

INIT-ROUTINE = *NO
No initialization routine is carried out.

INIT-ROUTINE = <text 1..8 without-sep>
The name specified here is defined as the new reference address name for the subsystem
(see “Notes” on page 109).

CLOSE-CTRL-ROUTINE = *UNCHANGED / *NO / *DYNAMIC / <text 1..8 without-sep>
Changes the subsystem’s CLOSE-CTRL routine (see page 215 or page 257), provided that
this does not affect the manner in which the subsystem functions. The change takes effect
immediately.

CLOSE-CTRL-ROUTINE = *UNCHANGED
The current setting is left unchanged.

CLOSE-CTRL-ROUTINE = *NO
DSSM processes the STOP-SUBSYSTEM and HOLD-SUBSYSTEM commands without calling
a CLOSE-CTRL routine.

CLOSE-CTRL-ROUTINE = *DYNAMIC
The CLOSE-CTRL routine is called by the subsystem dynamically at the end of the initial-
ization (INIT) routine. A reference address name must be defined for the routine
When the CLOSE-CTRL routine is called, the holder task of the subsystem must be a work
task (ASSIGN-HOLDER-TASK statement, page 193).

CLOSE-CTRL-ROUTINE = <text 1..8 without-sep>
The name specified here is defined as the new reference address name for the subsystem
(see “Notes” on page 109).

STOPCOM-ROUTINE = *UNCHANGED / *NO / *DYNAMIC / <text 1..8 without-sep>
Changes the subsystem’s STOPCOM routine (see page 215 or page 257), provided that this
does not affect the manner in which the subsystem functions. The change takes effect
immediately.

STOPCOM-ROUTINE = *UNCHANGED
The current setting is left unchanged.

U23166-J-Z125-3-76 99

DSSM MODIFY-SUBSYSTEM-PARAMETER

STOPCOM-ROUTINE = *NO
DSSM processes the STOP-SUBSYSTEM and HOLD-SUBSYSTEM commands without calling
a STOPCOM routine.

STOPCOM-ROUTINE = *DYNAMIC
The STOPCOM routine is called dynamically by the subsystem at the end of the CLOSE-
CTRL routine or, if this has not been defined, at the end of the initialization (INIT) routine.
When the STOPCOM routine is called, the holder task of the subsystem must be a work task
(ASSIGN-HOLDER-TASK statement, page 193).

STOPCOM-ROUTINE = <text 1..8 without-sep>
The name specified here is defined as the new reference address name for the STOPCOM
routine (see “Notes” on page 109).

DEINIT-ROUTINE = *UNCHANGED / *NO / *DYNAMIC / <text 1..8 without-sep>
Changes the subsystem’s DEINIT routine (see page 216 or page 259), provided that this
does not affect the manner in which the subsystem functions. The change takes effect
immediately.

DEINIT-ROUTINE = *UNCHANGED
The current setting is left unchanged.

DEINIT-ROUTINE = *NO
DSSM processes the STOP-SUBSYSTEM and HOLD-SUBSYSTEM commands without
invoking a DEINIT routine.

DEINIT-ROUTINE = *DYNAMIC
The DEINIT routine is called dynamically by the subsystem at the end of the STOPCOM
routine or, if this has not been defined, at the end of the CLOSE-CTRL routine. If this is also
not defined, the DEINIT routine is called at the end of the initialization (INIT) routine
When the DEINIT routine is called, the holder task of the subsystem must be used as a work
task (ASSIGN-HOLDER-TASK statement, page 193).

DEINIT-ROUTINE = <text 1..8 without-sep>
The name specified here is defined as the new reference address name for the DEINIT
routine (see “Notes” on page 109).

STOP-AT-SHUTDOWN = *UNCHANGED / *NO / *YES
Causes DSSM to close down the subsystem automatically as soon as the SHUTDOWN
command (terminate session) is issued. The change takes effect immediately.

STOP-AT-SHUTDOWN = *UNCHANGED
The current setting is left unchanged.

100 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

STOP-AT-SHUTDOWN = *NO
DSSM ignores the subsystem when the SHUTDOWN command is issued.

STOP-AT-SHUTDOWN = *YES
DSSM closes down the subsystem as soon as the SHUTDOWN command is issued (as with
/STOP-SUBSYSTEM).

INTERFACE-VERSION = *UNCHANGED / *NO / <text 1..8 without-sep>
Designates the entry point via which DSSM can access the interface version used for
decoupled calling of the INIT, CLOSE-CTRL, STOPCOM and DEINIT routines.
The change takes effect immediately.

INTERFACE-VERSION = *UNCHANGED
The current setting is left unchanged.

INTERFACE-VERSION = *NO
None of the following entry points is available:
INIT-ROUTINE, DEINIT-ROUTINE, STOPCOM-ROUTINE, CLOSE-CTRL-ROUTINE.

INTERFACE-VERSION = <text 1..8 without-sep>
The name specified here is defined as the new entry point.

SUBSYSTEM-HOLD = *UNCHANGED / *ALLOWED / *FORBIDDEN
Defines whether a command or macro can be used to halt or unload the subsystem.
The change takes effect immediately.

SUBSYSTEM-HOLD = *UNCHANGED
The current setting is left unchanged.

SUBSYSTEM-HOLD = *ALLOWED
A command or macro can be used to halt or unload the subsystem.

SUBSYSTEM-HOLD = *FORBIDDEN
As with the STOP-AT-SHUTDOWN operand value, the subsystem cannot be unloaded until
the BS2000 system is closed down by means of the SHUTDOWN command.

STATE-CHANGE-CMDS = *UNCHANGED / *ALLOWED / *FORBIDDEN /
*BY-ADMINISTRATOR-ONLY
Defines whether the DSSM commands START-SUBSYSTEM, RESUME-SUBSYSTEM, STOP-
SUBSYSTEM and HOLD-SUBSYSTEM are allowed for the subsystem.
The change takes effect immediately.
In the event of a version swap this entry is only of relevance for the new version that is to
be activated. Deactivation of the other, “old” version is always carried out.

STATE-CHANGE-CMDS = *UNCHANGED
The current setting is left unchanged.

U23166-J-Z125-3-76 101

DSSM MODIFY-SUBSYSTEM-PARAMETER

STATE-CHANGE-CMDS = *ALLOWED
The listed commands can be issued from the console or under a user ID with the
SUBSYSTEM-MANAGEMENT privilege.

STATE-CHANGE-CMDS = *FORBIDDEN
The listed commands cannot be issued either from the console or under a user ID with the
SUBSYSTEM-MANAGEMENT privilege.

STATE-CHANGE-CMDS = *BY-ADMINISTRATOR-ONLY
The listed commands can be issued under a user ID with the SUBSYSTEM-MANAGEMENT
privilege but not from the console.

FORCED-STATE-CHANGE = *UNCHANGED / *ALLOWED / *FORBIDDEN
Defines whether the FORCED operand of the DSSM commands STOP-SUBSYSTEM and
HOLD-SUBSYSTEM is allowed for the subsystem.
The change takes effect immediately.

FORCED-STATE-CHANGE = *UNCHANGED
The current setting is left unchanged.

FORCED-STATE-CHANGE = *ALLOWED
Use of the FORCED operand in these commands is allowed.

FORCED-STATE-CHANGE = *FORBIDDEN
Use of the FORCED operand is forbidden.

RESET = *UNCHANGED / *ALLOWED / *FORBIDDEN
Defines whether the operand RESET=*YES of the DSSM commands START-SUBSYSTEM
and RESUME-SUBSYSTEM is allowed for the subsystem.
The change takes effect immediately.

RESET = *UNCHANGED
The current setting is left unchanged.

RESET = *ALLOWED
The DSSM commands START-SUBSYSTEM and RESUME-SUBSYSTEM are accepted if
issued with the operand RESET=*YES.

RESET = *FORBIDDEN
The DSSM commands START-SUBSYSTEM and RESUME-SUBSYSTEM are rejected if issued
with the operand RESET=*YES.

102 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

RESTART-REQUIRED = *UNCHANGED / *NO / *YES
Defines whether the initialization (INIT) routine is invoked to restart the subsystem in the
event of abnormal holder task termination.
The initialization routine is invoked during reconstruction of the holder task.
The change takes effect immediately.

RESTART-REQUIRED = *UNCHANGED
The current setting is left unchanged.

RESTART-REQUIRED = *NO
In the event of abnormal holder task termination, the subsystem is locked during recon-
struction of the holder task.

RESTART-REQUIRED = *YES
The initialization routine is invoked to restart the system.

VERSION-COEXISTENCE = *UNCHANGED / *FORBIDDEN / *ALLOWED
Defines whether different versions of the subsystem can be active at the same time.
The change takes effect immediately.

VERSION-COEXISTENCE = *UNCHANGED
The current setting is left unchanged.

VERSION-COEXISTENCE = *FORBIDDEN
Only one version of the subsystem can be active.

VERSION-COEXISTENCE = *ALLOWED
Different versions of the subsystem can be active at the same time.

VERSION-EXCHANGE = *UNCHANGED / *FORBIDDEN / *ALLOWED
Defines whether a new subsystem version can be activated without having to delete the old
version. The change takes effect immediately.

VERSION-EXCHANGE = *UNCHANGED
The current setting is left unchanged.

VERSION-EXCHANGE = *FORBIDDEN
A new subsystem version cannot be activated unless the old version has been completely
deleted.

VERSION-EXCHANGE = *ALLOWED
A subsystem version can be activated without having to delete the other version.

U23166-J-Z125-3-76 103

DSSM MODIFY-SUBSYSTEM-PARAMETER

MEMORY-CLASS = *UNCHANGED / *SYSTEM-GLOBAL(...) /
*LOCAL-UNPRIVILEGED(...) / *BY-SLICE
Changes the subsystem’s memory class or defines the subsystem’s position in main
memory (above or below 16 Mbytes). Note the following:

– A privileged subsystem cannot be changed to a nonprivileged subsystem.
– If the memory class is changed, all suboperands must be specified.
– A subsystem cannot be made LOCAL-UNPRIVILEGED if there is an address overlap

between two LOCAL-UNPRIVILEGED subsystems sharing the same holder task.

The change takes effect as soon as the subsystem is restarted (START-SUBSYSTEM
command).

MEMORY-CLASS = *UNCHANGED
The current setting is left unchanged.

MEMORY-CLASS = *SYSTEM-GLOBAL(...)
The memory class of the subsystem is changed to class 3 or class 4 memory.

SUBSYSTEM-ACCESS = *LOW / *HIGH
Defines the rights of access to the requested space and the location of the requested
space in the address space.

SUBSYSTEM-ACCESS = *LOW
Nonprivileged address space is requested. The main memory location is below
16 Mbytes.

SUBSYSTEM-ACCESS = *HIGH
Nonprivileged address space up to 2 Gbytes is requested.

MEMORY-CLASS = *LOCAL-UNPRIVILEGED(...)
The memory pool is set up as class 6 memory (only for subsystems which are to be
executed in the same way as programs).

SIZE = *UNCHANGED / <integer 1..32767 4Kbyte>
Defines the size of the address space required for the memory pool in 4K pages. The
defined value must be large enough to hold the subsystem and all the selectable units
and load units dynamically loaded by the subsystem.

SIZE = *UNCHANGED
The current setting is left unchanged.

SIZE = <integer 1..32767 4Kbyte>
The address space specified here defines the size of the memory pool.

104 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

SUBSYSTEM-ACCESS = *UNCHANGED / *LOW / *HIGH
Defines the rights of access to the requested space and the location of the requested
space in the address space.

SUBSYSTEM-ACCESS = *UNCHANGED
The current setting is left unchanged.

SUBSYSTEM-ACCESS = *SYSTEM
Privileged address space is requested. The load address is above 16 Mbytes.

SUBSYSTEM-ACCESS = *LOW
Nonprivileged address space is requested. The load address is below 16 Mbytes.

SUBSYSTEM-ACCESS = *HIGH
Nonprivileged address space up to 2 gigabytes is requested.

START-ADDRESS = *UNCHANGED / *ANY / <x-string 7..8>
Defines the load address of the subsystem. This must be a multiple of X'100000'. It is
the responsibility of the user to specify an address pointing to class 6 memory.

START-ADDRESS = *UNCHANGED
The current setting is left unchanged.

START-ADDRESS = *ANY
The location of the subsystem in class 6 memory is defined by DSSM.

START-ADDRESS = <x-string 7..8>
Address in the segment raster at which the base address of the subsystem is to be
located. The address must be a multiple of x'100000'.

MEMORY-CLASS = *BY-SLICE(...)
The specified subsystem is a nonprivileged subsystem and consists of an LLM, which in
turn consists of a shareable code (program area) and a non-shareable code (data area).
The program area is loaded into the shareable address space (this corresponds to
MEMORY-CLASS=*SYSTEM-GLOBAL). The data area is loaded into the user address space
of the holder task and is copied into the private user address spaces of the connected tasks
at the same address.
If the subsystem is defined with *BY-SLICE, the following points must be borne in mind:

– If a reserved address space for the data area already exists, the command is executed
only if this address space actually has enough free space to accommodate the modified
subsystem.

– If no address space has been reserved to accommodate the data area, then address
space is created. Tasks connected to the subsystem when reserved address space is
created cannot use the data area.

U23166-J-Z125-3-76 105

DSSM MODIFY-SUBSYSTEM-PARAMETER

When a task is first connected to a subsystem that was defined with *BY-SLICE, DSSM
informs the BLSSERV subsystem that the copy of the data area in the private user
address space can be accessed with the VSVI1 macro.
The VSVI1 macro informs the user about entries in the DBL tables. See the manual
“BLSSERV“ [4] for details on the macro.
When the last connection is shut down, DSSM informs the BLSSERV subsystem that
this private area can no longer be accessed.

DSSM only accepts an address space change in the new *BY-SLICE attribute if
MODE=*LINK was specified for the type of specified incoming job for the subsystem and
CONNECTION-SCOPE=*TASK / *PROGRAM was specified for all subsystem entries.

SIZE = <integer 1..32767 4Kbyte>
Specifies the size of the requested memory space for the data area in 4K pages.

LINK-ENTRY = *UNCHANGED(...) / <text 1..8 without-sep>(...)
Changes the reference address used for subsystem loading. It is also possible to specify
whether automatic linking of modules to form load modules (AUTOLINK) is allowed. The
change takes effect as soon as the subsystem is restarted (START-SUBSYSTEM command).

LINK-ENTRY = *UNCHANGED(...)
The current setting is left unchanged.

AUTOLINK = *UNCHANGED / *ALLOWED / *FORBIDDEN
Defines whether automatic linking of modules to form load modules (AUTOLINK) is
allowed.

AUTOLINK = *UNCHANGED
The current setting is left unchanged.

AUTOLINK = *ALLOWED
AUTOLINK is allowed.

AUTOLINK = *FORBIDDEN
AUTOLINK is not allowed.

106 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

LINK-ENTRY = <text 1..8 without-sep>(...)
The address specified here is used as the new reference address for subsystem
loading.

AUTOLINK = *ALLOWED / *FORBIDDEN
Defines whether automatic linking of modules to form load modules (AUTOLINK) is
allowed.

AUTOLINK = *ALLOWED
AUTOLINK is allowed.

AUTOLINK = *FORBIDDEN
AUTOLINK is not allowed.

UNRESOLVED-EXTERNALS = *UNCHANGED / *ALLOWED / *FORBIDDEN
Defines whether unresolved external references prevent subsystem startup.

UNRESOLVED-EXTERNALS = *UNCHANGED
The current setting is left unchanged.

UNRESOLVED-EXTERNALS = *ALLOWED
Unresolved external reference do not prevent subsystem startup.
This setting is intended for debugging purposes only.

UNRESOLVED-EXTERNALS = *FORBIDDEN
Unresolved external reference prevent subsystem startup.

CHECK-REFERENCES = *UNCHANGED / *YES / *NO
Defines whether DSSM is to check the status of subsystems with which there is a depen-
dency relation. The status of these subsystems may determine whether loading or
unloading of the subsystem is allowed.
The change takes effect immediately.

CHECK-REFERENCES = *UNCHANGED
The current setting is left unchanged.

CHECK-REFERENCES = *YES
DSSM checks the status of subsystems with which there is a dependency relation.
Depending on the status of these subsystems, DSSM decides whether the subsystem
referred to by this command can be loaded or unloaded.

U23166-J-Z125-3-76 107

DSSM MODIFY-SUBSYSTEM-PARAMETER

CHECK-REFERENCES = *NO
If the subsystem referred to by this command has a dependency relation with another
subsystem, DSSM checks whether the latter subsystem has already been loaded. If it has,
the first subsystem can be loaded, even if the other one is not yet executable (the reference
is held to be resolved).
The RESUME-SUBSYSTEM, STOP-SUBSYSTEM and HOLD-SUBSYSTEM commands are
executed regardless of any dependency relations which may exist.

CHANGE-STATE = *UNCHANGED / *YES / *NO
Restricts the use of subsystem control commands, or cancels a restriction currently in force.
This operand is particularly significant in relation to a malfunctioning subsystem, as it can
be used to prevent loading, activation and deactivation of the subsystem for as long as it
takes to eliminate the malfunction. Corrections can thus be performed without risk.

The change takes effect immediately. It is applicable only to the current session (it is not
stored in the catalog referenced by the SAVE-SUBSYSTEM-CATALOG command). The next
time the subsystem is started up, the operand value is set to *NO.

CHANGE-STATE = *UNCHANGED
The current setting is left unchanged.

CHANGE-STATE = *YES
The commands locked by an operand value of CHANGE-STATE=*NO in an earlier MODIFY-
SUBSYSTEM-PARAMETER command are released for use, thus restoring full control of the
subsystem.

CHANGE-STATE = *NO
Prevents loading, activation, deactivation, suspension, restarting and unlocking of the
subsystem. The following commands are locked until the command MODIFY-SUBSYSTEM-
PARAMETER CHANGE-STATE=*YES is next entered:

– START-SUBSYSTEM
– RESUME-SUBSYSTEM
– STOP-SUBSYSTEM
– HOLD-SUBSYSTEM
– REMOVE-SUBSYSTEM
– UNLOCK-SUBSYSTEM

108 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-PARAMETER DSSM

Command return codes

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

Guaranteed message: ESM0254
0 CMD0001 Command executed with warnings

Guaranteed message: ESM0647
1 0 CMD0001 Command executed with warnings

(no logical ID found or message file (de)activated)
1 ESM0414 Syntax error: an invalid version was specified
1 ESM0415 Syntax error: an invalid INSTALLATION-UNIT name was specified
1 ESM0653 Syntax error: an invalid job entry point was specified

32 ESM0646 Internal DSSM problem during processing
32 ESM0646 Internal error
64 ESM0201 Subsystem not found
64 ESM0269 Subsystem without SVC or ISL entry
64 ESM0280 Command not executed in order to avoid inconsistencies in the

subsystem catalog
64 ESM0340 Reserved address-space exhausted for subsystems with

MEMORY-CLASS=*BY-SLICE
64 ESM0613 Changes to the message or syntax file or the installation user ID not

allowed. The subsystem must first be removed by means of STOP-
SUBSYSTEM.

64 ESM0617 Memory class changed; all parameters must be specified

U23166-J-Z125-3-76 109

DSSM MODIFY-SUBSYSTEM-PARAMETER

Notes

� Message ESM0647 is output if attributes that it already had are entered for the
subsystem. The message indicates successful changes. This change message output
can be avoided by using default values instead of existing ones (generally default value
*UNCHANGED).

� The CREATION-TIME operand is provided for changing subsystem parameters that were
added via the ADD SUBSYSTEM command.

� If file names are specified without a user ID in the operands LIBRARY, MESSAGE-FILE,
SYNTAX-FILE, REP-FILE and SUBSYSTEM-INFO-FILE, the subsystem’s installation user
ID is searched for the files.

� Changes to the operands INIT-ROUTINE, CLOSE-CTRL-ROUTINE, STOPCOM-ROUTINE
and DEINIT-ROUTINE are accepted only if they do not impair the functioning of the
subsystem.

� If a change cannot be implemented, a message to this effect is sent to SYSOUT.
Messages relating to accepted changes are written to the CONSLOG file.

Example

The ARCHIVE subsystem, Version 2.8, is to be started automatically as soon as the first
SVC call is issued:

/MODIFY-SUBSYSTEM-PARAMETER SUBSYSTEM-NAME=ARCHIVE,VERSION='02.8', -
CREATION-TIME=*AT-SUBSYSTEM-CALL

110 U23166-J-Z125-3-76

RELEASE-SUBSYSTEM-SPACE DSSM

RELEASE-SUBSYSTEM-SPACE
Release reserved address space for subsystems

Domain: SYSTEM-MANAGEMENT

Privileges: STD-PROCESSING
HARDWARE-MAINTENANCE
SUBSYSTEM-MANAGEMENT

Function

The RELEASE-SUBSYSTEM-SPACE command enables the user to specify a
subsystem group for which space in class 5 memory has been reserved by means of
SCOPE=*GLOBAL and deselect it for the duration of the task. In other words, the address
space reserved for this group is released and can be used for other purposes.

Format

Command return codes

RELEASE-SUBSYSTEM-SPACE

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

32 ESM0423 Problem with storage space management
32 ESM0424 Internal DSSM error

U23166-J-Z125-3-76 111

DSSM REMOVE-SUBSYSTEM

REMOVE-SUBSYSTEM
Remove inactive subsystem from dynamic catalog

Domain: SYSTEM-MANAGEMENT

Privileges: SUBSYSTEM-MANAGEMENT

Function

Using this command, system administration can remove an inactive subsystem from the
current dynamic subsystem catalog during the current session. Removal is logical only,
which means that the number of subsystems and CALL entries that can be added to the
current subsystem catalog by means of the ADD-SUBSYSTEM command after this
command (a maximum of 1000 subsystems and 16000 CALL entries) is not affected.

The REMOVE-SUBSYSTEM command is rejected if:

– the subsystem to be removed is active
– cross-references or dependency relations with regard to another subsystem exist

Format

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem to be removed.

VERSION = <product-version mandatory-man-corr> /
<product-version without-man-corr>
Specifies the version number.
When specifying a version number, the format entered must match the format used when
the subsystem was defined. Release and correction levels either must be specified or may
not be specified (see statements SET-SUBSYSTEM-ATTRIBUTES on page 243 and SDF data
type “product-version” on page 13).

REMOVE-SUBSYSTEM

SUBSYSTEM-NAME = <structured-name 1..8>

,VERSION = <product-version mandatory-man-corr> / <product-version without-man-corr>

112 U23166-J-Z125-3-76

REMOVE-SUBSYSTEM DSSM

Command return codes

Notes

� As soon as the subsystem has been removed, its references to and dependency
relations with other subsystems cease to exist.

� If the newest version of a nonprivileged subsystem is removed, all references and
dependency relations affecting the subsystem are no longer applicable.

� As soon as one subsystem has been removed using REMOVE-SUBSYSTEM, dynamic
extension of the current subsystem catalog by means of the ADD-SUBSYSTEM
command with the operand TYPE=*EXTENDED-ACTIVE-CONFIGURATION is no longer
possible. However, dynamic extension is possible if TYPE=*NEW-SUBSYSTEMS is
specified in the ADD-SUBSYSTEM command.

Example

The subsystem DAB Version 6.0 is to be removed:

/REMOVE-SUBSYSTEM SUBSYSTEM-NAME=DAB,VERSION='06.0'

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors
1 ESM0414 Syntax error: an invalid version was specified

32 ESM0646 Command processing terminated abnormally; an error occurred
when updating the preliminary routine or calculating the standard
version.

64 ESM0642 Command not executed

U23166-J-Z125-3-76 113

DSSM RESUME-SUBSYSTEM

RESUME-SUBSYSTEM
Cancel wait state for subsystem

Domain: SYSTEM-MANAGEMENT

Privileges: OPERATING
SUBSYSTEM-MANAGEMENT

Routing code: R

Function

By means of the RESUME-SUBSYSTEM command system administration can cancel the
wait state for any given subsystem.
Once the command has been executed, it is once again possible to set up connections to
the specified subsystem, provided the subsystem was previously placed in a defined wait
state by means of a HOLD-SUBSYSTEM command. This ensures that all necessary
resources (holder task, address space) are still available and that the initialization routine
is executable.

Format

RESUME-SUBSYSTEM

SUBSYSTEM-NAME = <structured-name 1..8>

,VERSION = *STD / <product-version mandatory-man-corr> / <product-version without-man-corr> / *HIGHEST

,SUBSYSTEM-PARAMETER = *NONE / <c-string 1..254>

,RESET = *NO / *YES

,SYNCHRONOUS = *NO / *YES

114 U23166-J-Z125-3-76

RESUME-SUBSYSTEM DSSM

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem whose wait state is to be canceled.

VERSION = *STD / <product-version mandatory-man-corr> /
<product-version without-man-corr> / *HIGHEST
Specifies the version number.
When specifying a version number, the format entered must match the format used when
the subsystem was defined. Release and correction levels either must be specified or may
not be specified (see statements SET-SUBSYSTEM-ATTRIBUTES on page 243 and SDF data
type “product-version” on page 13).

VERSION = *STD
If there is only one version of the subsystem in the wait state, the default value for this
version applies.
If there are two or more versions in the wait state, the appropriate version has to be
specified.

VERSION = *HIGHEST
Selects the highest version of the subsystem.

SUBSYSTEM-PARAMETER = *NONE / <c-string 1..254>
Specifies whether special parameters are to be processed, which can be evaluated only by
the specified subsystem.

RESET =
Influences the mode and urgency of command processing.

RESET = *NO
If the relevant subsystem is not yet in a defined wait state, the command is rejected until
this is the case.

RESET = *YES
The command is accepted regardless of any outstanding deactivation process and the
subsystem or selected components is/are initialized immediately (see “notes” below).

SYNCHRONOUS =
Allows you to choose between synchronous and asynchronous processing.

SYNCHRONOUS = *NO
The command is to be processed asynchronously, i.e. it is not necessary to wait for
command execution. Error messages concerning execution of the command are not output
at the console.

U23166-J-Z125-3-76 115

DSSM RESUME-SUBSYSTEM

SYNCHRONOUS = *YES
The command must first be executed before another entry can be made.
Appropriate error messages concerning execution are output to the task.

Command return codes

Notes

� In order to ensure a high degree of parallelism and data integrity, time-consuming
administration tasks are not executed under control of the calling task; instead they are
transferred to a DSSM task.
As a rule, only the check of the requested function is carried out synchronously (i.e.
contingent upon a wait state for the calling task). DSSM carries out the actual
processing asynchronously and independent of the calling task.

� A RESUME-SUBSYSTEM command after a HOLD-SUBSYSTEM command will be rejected
if DSSM has not yet completed the “hold subsystem” operation. However, by specifying
RESET=*YES system administration can enforce the unconditional cancelation of the
wait state for the subsystem; it is not necessary to wait until the HOLD-SUBSYSTEM
command has been completely processed.
In this case the initialization routine is started; the relevant subsystem is informed of the
RESET and can define the scope of the initialization routine itself (complete initialization,
partial initialization, no initialization).

If two versions of a subsystem are to be exchanged, the following points should be
borne in mind when using the operand RESET=*YES:

– if version A has the status IN-DELETE and version B has the status CREATED,
RESET=*YES can only be specified for A if coexistence was stipulated in the
definition with SSCM of both versions (see page 47)

– if both versions have the status IN-DELETE, RESET=*YES is permissible for one of
these versions if it was defined with RESET=*ALLOWED, VERSION-
EXCHANGE=*ALLOWED.

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

1 0 CMD0001 No action necessary; subsystem already in wait state
1 ESM0414 Syntax error: an invalid version was specified

32 ESM0224 Command will not be processed
32 ESM0228 Command terminated abnormally

116 U23166-J-Z125-3-76

SAVE-SUBSYSTEM-CATALOG DSSM

SAVE-SUBSYSTEM-CATALOG
Save changes to dynamic subsystem catalog

Domain: SYSTEM-MANAGEMENT

Privileges: SUBSYSTEM-MANAGEMENT

Function

With the aid of this command, users with the SUBSYSTEM-MANAGEMENT privilege can take
changes made to the dynamic subsystem catalog and save them to a static subsystem
catalog.

Changes made by means of the ADD-SUBSYSTEM, REMOVE-SUBSYSTEM or MODIFY-
SUBSYSTEM-PARAMETER command always refer to the dynamic subsystem catalog, not
the static subsystem catalog.

The changes can be saved to a static catalog with the SAVE-SUBSYSTEM-CATALOG
command. They are then also effective at the next startup.
You must however note that some changes may be pointless or even unfavorable at the next
startup (e.g. if a message file is assigned to a subsystem with the start attribute BEFORE-
DSSM-LOAD1).

Format

1 The BEFORE-DSSM-LOAD attribute can only be changed via SSCM, see chapter “SSCM” on page 179.

SAVE-SUBSYSTEM-CATALOG

CATALOG-NAME = *STD / *STARTUP-CATALOG / <filename 1..54 without-gen-vers>

,FORCED = *NO / *YES

U23166-J-Z125-3-76 117

DSSM SAVE-SUBSYSTEM-CATALOG

Operands

CATALOG-NAME = *STD / *STARTUP-CATALOG /
<filename 1..54 without-gen-vers>
Defines the name of the file to which the dynamic catalog is to be saved.

CATALOG-NAME = *STD
The dynamic catalog is saved under the default file name $.SYS.SSD.CAT.X.

CATALOG-NAME = *STARTUP-CATALOG
The dynamic catalog is saved under the name of the catalog used at startup.

CATALOG-NAME = <filename 1..54 without gen-vers>
The file name specified here is defined for the static catalog.

FORCED = *NO / *YES
Defines whether, despite errors, the dynamic catalog is saved to the static catalog.

FORCED = *NO
The errored dynamic catalog is not saved to the static catalog.

FORCED = *YES
The dynamic catalog is saved to the static catalog even though errors were detected in it.

Command return codes

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

32 ESM0288 DSSM bourse not available
32 ESM0296 Request for memory space (REQM) not executed
32 ESM0350 Internal DSSM error; DSSM task is started again
32 ESM0360 Insufficient memory space
32 ESM0409 DSSM not initialized
32 ESM0643 Internal error during save operation
64 ESM0648 Command not executed

118 U23166-J-Z125-3-76

SAVE-SUBSYSTEM-CATALOG DSSM

Notes

� The dynamic catalog to be saved may be inconsistent for a number of reasons. For
example, the catalog required by DSSM may have been saved using the operand
FORCED=*YES, in which case there will be inconsistencies between the subsystems.
Another possibility is that changes made by means of /MODIFY-SUBSYSTEM-
PARAMETER will be inacceptable at the next BS2000 startup, although they will be
accepted in the current BS2000 session. Because of the danger of such inconsis-
tencies, the catalog must first be subjected to a variety of checks before it can be saved.
Any errors detected in the course of these checks are reported, and a corresponding
message is output via SYSOUT.

� Even if the dynamic catalog was saved without inconsistencies being detected, it cannot
be taken for granted that the next startup carried out with this catalog will be successful.
For example, if the start time (CREATION-TIME) of a subsystem has been changed by
means of an earlier /MODIFY-SUBSYSTEM-PARAMETER so that it is no longer started
automatically during BS2000 system startup, this may lead to serious problems for
other subsystems.

� If a DMS error relating to the catalog file occurs during saving of the catalog, message
ESM1806 is output. The result of the save operation must be checked accordingly. If the
same message is output in relation to one of the subsystems involved, it should merely
be interpreted as a warning; it has no influence on the result of /SAVE-SUBSYSTEM-
CATALOG.

� If the specified catalog name is the same as the name of an existing file, a message is
displayed inquiring whether the user wishes to overwrite this file.

� If certain functions cannot be correctly processed, appropriate messages are output via
SYSOUT.

U23166-J-Z125-3-76 119

DSSM SAVE-SUBSYSTEM-CATALOG

Example

If the dynamic catalog does not contain any errors, it is to be saved as a static catalog under
the file name NEW.STATIC.CAT:

/SAVE-SUBSYSTEM-CATALOG CATALOG-NAME=COPY.DSSMCAT,FORCED=*NO
CHECK REPORT:
**** NO ERROR ****
CHECK OF LINK REFERENCES:
VERSION RANGE CHECK:
**** NO ERROR ****
LINK RELATION CHECK:
**** NO ERROR ****
CHECK OF FUNCTIONAL DEPENDENCE:
VERSION RANGE CHECK:
**** NO ERROR ****
DEPENDENCE RELATION CHECK:
**** NO ERROR ****
CYCLE CHECK:
**** NO ERROR ****
CHECK OF RELATED FILES:
**
* 2 * SUBSYSTEM NAME: ACS VERSION: 14.0 *
**
**** NO ERROR ****
**
* 3 * SUBSYSTEM NAME: ADAM VERSION: 14.0A00 *
**
**** NO ERROR ****
 .
 .
 .
 .
**
* 176 * SUBSYSTEM NAME: CRTEBASR VERSION: 01.3 *
**
**** NO ERROR ****
% ESM1200 CATALOG ':CAM1:$TSOS.COPY.DSSMCAT' GENERATED
% ESM0254 COMMAND 'SAVE-SUBSYSTEM-CATALOG' COMPLETELY PROCESSED

120 U23166-J-Z125-3-76

SET-DSSM-OPTIONS DSSM

SET-DSSM-OPTIONS
Activate/deactivate DSSM logging function

Domain: SYSTEM-MANAGEMENT

Privileges: OPERATING
SUBSYSTEM-MANAGEMENT

Routing code: R

Function

This command can be used to control the DSSM logging function. Logging to the
DSSMLOG file has a negative effect on performance. For this reason, this function should
only be used when errors actually occur.

The command can be issued regardless of the status of subsystem management. By
default, logging is deactivated at system startup (default value LOGGING=*OFF), but can be
activated by means of the startup parameter LOGGING=*ON (see page 64).

Format

Operands

LOGGING =
Determines whether DSSM-specific logging is to be carried out for error diagnosis.

LOGGING = *OFF
No DSSM-specific logging takes place.

LOGGING = *ON
All DSSM-specific data relevant for error diagnosis is logged in the file
DSSMLOG.<date>.<time>

SET-DSSM-OPTIONS

LOGGING = *OFF / *ON

,TITLE = *NONE / <c-string 1..100>

U23166-J-Z125-3-76 121

DSSM SET-DSSM-OPTIONS

TITLE =
Defines a header line which appears in the logging file.

TITLE = *NONE
No additional header text is to be included in the logging file.

TITLE = <c-string 1..100>
The specified text is the first record to be written to the logging file.
If the logging file is already open, the text is added at the current position, i.e. no new file is
created.
This operand is ignored if the logging function is deactivated.

Command return codes

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

32 ESM0432 Command not executed

122 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-ATTRIBUTES DSSM

SHOW-SUBSYSTEM-ATTRIBUTES
Request information on subsystem attributes

Domain: SYSTEM-MANAGEMENT

Privileges: STD-PROCESSING
SUBSYSTEM-MANAGEMENT

Function

The command informs the user about the attributes of global and local subsystems.

The following table shows what information on which subsystem type (global or local) is
output as a function of the user privileges.

The command supports output in S variables, see also the manual “Commands Volume 6”
[20] and page 128.

Privilege Information Subsystem type

STD-PROCESSING Attributes of nonprivileged
subsystems

Local and global in class 5
memory

SUBSYSTEM-MANAGEMENT Attributes of all subsystems Global

U23166-J-Z125-3-76 123

DSSM SHOW-SUBSYSTEM-ATTRIBUTES

Format

Operands

SUBSYSTEM-NAME = *ALL / <structured-name 1..8>
Specifies the subsystems about which the information is desired.

SUBSYSTEM-NAME = *ALL
Information is to be requested on all subsystems which are listed in the catalog (depending
on privilege).

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem about which SSCM provides information from the catalog.

VERSION = *ALL / <product-version mandatory-man-corr> /
<product-version without-man-corr>
Specifies the version of the selected subsystem.

SHOW-SUBSYSTEM-ATTRIBUTES

SUBSYSTEM-NAME = *ALL / <structured-name 1..8>

,VERSION = *ALL / <product-version mandatory-man-corr> / <product-version without-man-corr>

,INFORMATION = *MINIMUM / *ALL-ATTRIBUTES / *PARAMETERS(...)

*PARAMETERS(...)
 GENERAL-ATTRIBUTES = *NO / *YES

 ,INTERNAL-ENTRIES = *NO / *YES

 ,MEMORY-ATTRIBUTES = *NO / *YES

 ,RELATED-FILES = *NO / *YES

 ,LINK-ATTRIBUTES = *NO / *YES

 ,REFERENCE-RELATION = *NO / *YES

 ,DEPENDENCE-RELATION = *NO / *YES

 ,HOLDER-TASK-INFO = *NO / *YES

 ,SUBSYSTEM-ENTRIES = *NO / *YES

,OUTPUT = *SYSOUT / *SYSLST(...) / *NONE

*SYSLST(...)
 SYSLST-NUMBER = *STD / <integer 1..99>

 ,LINES-PER-PAGE = <integer 1..99>

124 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-ATTRIBUTES DSSM

VERSION = *ALL
Information on all versions of the subsystem stored in the catalog should be included in the
output. The output scope is dependent on the privileges possessed by the user.

VERSION = <product-version mandatory-man-corr> /
<product-version without-man-corr>
When specifying a version number, the format entered must match the format used when
the subsystem was defined. Release and correction levels either must be specified or may
not be specified (see statements SET-SUBSYSTEM-ATTRIBUTES on page 243 and SDF data
type “product-version” on page 13).

INFORMATION = *MINIMUM / *ALL-ATTRIBUTES / *PARAMETERS(...)
Declares the extent of the information output.

INFORMATION = *MINIMUM
Only the name, version and status of the subsystem are output.

INFORMATION = *ALL-ATTRIBUTES
All the information on the subsystem is output.

INFORMATION = *PARAMETERS(...)
Specifies which information is required.

GENERAL-ATTRIBUTES = *NO / *YES
Specifies whether the following attributes of the named subsystems should be read
from the catalog (*YES) or not (*NO):

– When should the subsystem be started after system initialization?
(CREATION-TIME)

– In which load mode should the subsystem be loaded?
(SUBSYSTEM-LOAD-MODE)

– Should the subsystem be automatically unloaded on shutdown?
(STOP-AT-SHUTDOWN)

– Can the loaded subsystem be stopped or unloaded?
(SUBSYSTEM-HOLD)

– Can the subsystem control commands be used? (STATE-CHANGE-CMDS)
– Is the FORCE option permitted? (FORCED-STATE-CHANGE)
– Is the RESET option permitted? (RESET)
– Does the initialization routine have to be repeated if the holder task is terminated

abnormally? (RESTART-REQUIRED)
– Can more than one version of the subsystem be active simultaneously?

(VERSION-COEXISTENCE)
– Can two versions of a subsystem be dynamically exchanged?

(VERSION-EXCHANGE)
– What is the name of the subsystem’s INSTALLATION-UNIT?

(INSTALLATION-UNIT)

U23166-J-Z125-3-76 125

DSSM SHOW-SUBSYSTEM-ATTRIBUTES

– What is the text of the copyright (text and date) of the subsystem? (COPYRIGHT)

INTERNAL-ENTRIES = *NO / *YES
Specifies whether the following information on the entry points of the specified
subsystems should be provided by SSCM (*YES) or not (*NO):

– the names of the entry points for the subsystem routines INIT, STOPCOM, DEINIT,
and CLOSE-CRTL

– the name of the entry point which is used for dynamic identity checks (DYNAMIC-
CHECK-ENTRY)

– the name of the interface version used to call the routines
INIT, STOPCOM, DEINIT, or CLOSE-CTRL (INTERFACE-VERSION)

MEMORY-ATTRIBUTES = *NO / *YES
Specifies whether the following memory-related information, which is stored for each
subsystem in the catalog, should be output (*YES) or not (*NO):

Specifies whether the subsystem memory attributes should be output. The memory
attributes are:

– memory class (MEMORY-CLASS)
– size of the required address space (SIZE)
– start address of the subsystem code (START-ADDRESS)
– privileges and access authorizations relating to the address space

(SUBSYSTEM-ACCESS)

RELATED-FILES = *NO / *YES
Specifies whether information on related components of the subsystem is to be
supplied (*YES) or not (*NO). The output also specifies whether the use of a REP file for
the subsystem is mandatory (REP-FILE-MANDATORY) as well as the user ID under which
the related components are cataloged (INSTALLATION-USERID).

The term "related components" comprises:
– the subsystem’s object module file (LIBRARY)
– the message file (MESSAGE-FILE)
– the syntax file (SYNTAX-FILE)
– the subsystem’s information file (SUBSYSTEM-INFO-FILE)
– the REP file (REP-FILE)

126 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-ATTRIBUTES DSSM

LINK-ATTRIBUTES = *NO / *YES
Specifies whether stored information relating to the binding and loading of the
subsystem is to be read from the catalog (*YES) or not (*NO):

– the name of the object module required for loading
/ENTRY/CSECT (LINK-ENTRY)

– integration of the function (AUTOLINK)
– information concerning behavior in the event of unresolved external references

(UNRESOLVED)
– Integration of the check run for reference subsystems (CHECK-REFERENCE)

REFERENCE-RELATION = *NO / *YES
Specifies whether the list of subsystems to which there are address references should
be taken into account on the output of catalog information (*YES) or not (*NO).

DEPENDENCE-RELATION = *NO / *YES
Specifies whether the list of subsystems with which there are dependence relations
should be taken into account on the output of catalog information (*YES) or not (*NO).

HOLDER-TASK-INFO = *NO / *YES
Specifies whether the identification of the holder task and the list of subsystems which
are to be located in a shared holder task should be taken into account on the output of
catalog information (*YES) or not (*NO)

SUBSYSTEM-ENTRIES = *NO / *YES
Specifies whether the list of incoming jobs specified on subsystem definition, together
with the associated attributes listed below, should be read from the catalog (*YES) or
not (*NO):

– type of specified incoming job (MODE)
– number of the routine (for *SVC or *SYSTEM-EXIT) (NUMBER)
– the function number of the entry point (FUNCTION-NUMBER)
– the version of the function number (FUNCTION-VERSION)
– information about calls to system exit routines (CALL-BY-SYSTEM-EXIT)
– privileges and access authorizations relating to entry points

(CONNECTION-ACCESS and CONNECTION-SCOPE)

OUTPUT = *SYSOUT / *SYSLST(...) / *NONE
Specifies the system file to which the information should be output.

OUTPUT = *SYSOUT
The information is output to SYSOUT.

U23166-J-Z125-3-76 127

DSSM SHOW-SUBSYSTEM-ATTRIBUTES

OUTPUT = *SYSLST(...)
The information is output to SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Specifies the number of the SYSLST file to which the information is to be output.

LINES-PER-PAGE = <integer 1..99>
Specifies the number of lines in a SYSLST page.

OUTPUT = *NONE
No output is sent to either SYSOUT or SYSLST. Only S variables are generated
(see below). For more information on S variables, refer to the manual “Commands
Volume 6” [20].

Command return codes

(SC2) SC1 Maincode Meaning
0 CMD0001 No error
1 ESM0414 Syntax error: invalid version specified

32 CMD2009 System error: on writing S variable area
32 ESM0360 System error: XVT or TCB unavailable
32 ESM0602 System error: memory management problems
32 ESM0611 System error: no connection tables for this task
32 ESM0671 System error: on writing to SYSOUT
64 ESM0600 Operand error: no version with *ALL
64 ESM0601 Specified subsystem not found
64 ESM0608 Subsystem version not found
64 OPS0002 Command interrupted

130 OPS0001 Command not executed because of insufficient memory space.
Repeat command later

128 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-ATTRIBUTES DSSM

Output in S variables

The information output in the S variables corresponds to the output to SYSOUT or SYSLST
(see the description of operands above). In the following table, the S variables are gathered
together in groups which correspond to their assignment to the suboperands of
INFORMATION=*PARAMETERS(...).

Command notation Abbreviated notation
in table

INFORMATION=*PARAMETERS(GENERAL-ATTRIBUTES=*NO/*YES) GEN-ATT

INFORMATION=*PARAMETERS(INTERNAL-ENTRIES=*NO/*YES) INT-ENT

INFORMATION=*PARAMETERS(MEMORY-ATTRIBUTES=*NO/*YES) MEM-ATT

INFORMATION=*PARAMETERS(RELATED-FILES=*NO/*YES) REL-FIL

INFORMATION=*PARAMETERS(LINK-ATTRIBUTES=*NO/*YES) LINK-ATT

INFORMATION=*PARAMETERS(REFERENCE-RELATION=*NO/*YES) REF-REL

INFORMATION=*PARAMETERS(DEPENDENCE-RELATION=*NO/*YES) DEP-REL

INFORMATION=*PARAMETERS(HOLDER-TASK-INFO=*NO/*YES) HOL-TASK

INFORMATION=*PARAMETERS(SUBSYSTEM-ENTRIES=*NO/*YES) SUB-ENT

(part 1 of 6)

Output information Name of the S variable T Contents Condition

Integration of the Autolink function var(*LIST).AUTOLINK S *ALLOW
*FORBID

LINK-ENT

Integration of the check run for
reference subsystems

var(*LIST).CHECK-REF S *YES
*NO

LINK-ENT

Address of the name of the entry
point for the subsystem routine
CLOSE-CTRL-ROUTINE
(if CRE)

var(*LIST).CLOSE-CTRL-ROUT.ADDR S <text 1..8> INT-ENT

Name of the entry point for the
subsystem routine CLOSE-
CTRL-ROUTINE

var(*LIST).CLOSE-CTRL-ROUT.NAME S <text 1..8>
*NO
*DYN

INT-ENT

Copyright (text and date) of the
subsystem

var(*LIST).COPYRIGHT S <string 1..54>
*NONE

GEN-ATT

U23166-J-Z125-3-76 129

DSSM SHOW-SUBSYSTEM-ATTRIBUTES

Start time of the subsystem
following system initialization

var(*LIST).CRE-TIME S *BEFORE-DSSM-
LOAD

*AT-DSSM-LOAD
*MANDATORY-AT-

STARTUP
*BEFORE-SYS-

READY
*AFTER-SYS-READY
*AT-CRE-REQ
*AT-SUBSYS-CALL

GEN-ATT

Name of the subsystem var(*LIST).DATA(*LIST).SUBSYS-NAME S <structured-name
1..8>

Version of the subsystem var(*LIST).DATA(*LIST).SUBSYS-VERSION S <product-version>

Address of the name of the entry
point for the subsystem routine
DEINIT (if CRE)

var(*LIST).DEINIT-ROUT.ADDR S <text 1..8> INT-ENT

Name of the entry point for the
subsystem routine DEINIT

var(*LIST).DEINIT-ROUT.NAME S <text 1..8>
*NO
*DYN

INT-ENT

Address of the name of the entry
point used for dynamic identity
checks (if CRE)

var(*LIST).DYN-CHECK-ENTRY-NAME.
ADDR

S <text 1..8> INT-ENT

Name of the entry point used for
dynamic identity checks

var(*LIST).DYN-CHECK-ENTRY-NAME.
NAME

S <text 1..8>
*NO

INT-ENT

Permission to use FORCE option var(*LIST).FORCED-STATE-CHA S *ALLOW
*FORBID

GEN-ATT

Subsystem name in the shared
holder task

var(*LIST).HOLDER-TASK.
SHARED-WITH-SUBSYS(*LIST).
SUBSYS-NAME

S <structured-name
1..8>

*WORK-TASK

HOL-TASK

Product version of the subsystem
in the shared holder task

var(*LIST).HOLDER-TASK.
SHARED-WITH-SUBSYS(*LIST).
SUBSYS-VERSION

S <product-version> HOL-TASK

TID of the holder task
(if CREATED)

var(*LIST).HOLDER-TASK.TID S <text 8> HOL-TASK

TSN of the holder task var(*LIST).HOLDER-TASK.TSN S <text 4> HOL-TASK

Address of the name of the entry
point for the subsystem routine
INIT (if CRE)

var(*LIST).INIT-ROUT.ADDR S <text 1..8> INT-ENT

Name of the entry point for the
subsystem routine INIT

var(*LIST).INIT-ROUT.NAME S <text 1..8>
*NO

INT-ENT

Name of the subsystem’s
INSTALLATION-UNIT

var(*LIST).INSTALL-UNIT S <text 1..30>
*NONE

GEN-ATT

(part 2 of 6)

Output information Name of the S variable T Contents Condition

130 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-ATTRIBUTES DSSM

User ID under which the related
components are cataloged

var(*LIST).INSTALL-USERID S <name 1..8>
*NONE
*DEF

REL-FIL

Address of the name of the
interface version used to call the
routines INIT-/STOPCOM-
/DEINIT-/CLOSE-CTRL (if CRE)

var(*LIST).INTERF-VERSION.ADDR S <text 1..8> INT-ENT

Name of the interface version used
to call the routines INIT-
/STOPCOM-/DEINIT-/CLOSE-
CTRL

var(*LIST).INTERF-VERSION.NAME S <text 1..8>
*NO

INT-ENT

Address of the name of the object
module /ENTRY/CSECT
required for loading (if CRE)

var(*LIST).LINK-ENTRY.ADDR S <text 1..8> LINK-ENT

Name of the object module
/ENTRY/CSECT required for
loading

var(*LIST).LINK-ENTRY.NAME S <text 1..8> LINK-ENT

Memory class var(*LIST).MEM-CLASS S *SYS-GBL
*LOC-PRIVIL
*LOC-UNPRIVIL
*BY-SLICE

MEM-ATT

Monitoring job variable var(*LIST).MONJV S *YES
*NO

GEN-ATT

Default name of the message file
(for *INSTALL)

var(*LIST).MSG-F.DEF-NAME S <filename 1..54>
*NONE

REL-FIL

Logic ID of the message file
(for *INSTALL)

var(*LIST).MSG-F.LOGIC-ID S <filename 1..30> REL-FIL

Name of the message file var(*LIST).MSG-F.NAME S <filename 1..54>
*INSTALL
*NO

REL-FIL

Criterion for automatic loading if
CREATION-TIME=*AT-SUBS-
CALL is set at start time:
on the first call to an associated
SVC, ISL or other interface

var(*LIST).ON-ACTION S *STD
*ISL-CALL
*ANY

GEN-ATT

Product version of the subsystem
for which address references
exist (*HIGH=highest product
version)

var(*LIST).REF-SUBSYS(*LIST).
HIGH-VERSION

S <product-version>
*HIGH

REF-REL

Product version of the subsystem
for which address references
exist (*LOW=lowest product
version)

var(*LIST).REF-SUBSYS(*LIST).
LOW-VERSION

S <product-version>
*LOW

REF-REL

(part 3 of 6)

Output information Name of the S variable T Contents Condition

U23166-J-Z125-3-76 131

DSSM SHOW-SUBSYSTEM-ATTRIBUTES

Name of the subsystem for which
address references exist

var(*LIST).REF-SUBSYS(*LIST).
SUBSYS-NAME

S <structured-name
1..8>

REF-REL

Product version of the subsystem
for which dependence relations
exist (*HIGH=highest product
version)

var(*LIST).RELATED-SUBSYS(*LIST).
HIGH-VERSION

S <product-version>
*HIGH

DEP-REL

Product version of the subsystem
for which dependence relations
exist (*LOW=lowest product
version)

var(*LIST).RELATED-SUBSYS(*LIST).
LOW-VERSION

S <product-version>
*LOW

DEP-REL

Name of the subsystem for which
dependence relations exist

var(*LIST).RELATED-SUBSYS(*LIST).
SUBSYS-NAME

S <structured-name
1..8>

DEP-REL

Default name of the REP file
(for *INSTALL)

var(*LIST).REP-F.DEF-NAME S <filename 1..54>
*NONE

REL-FIL

Logic ID of the REP file
(for *INSTALL)

var(*LIST).REP-F.LOGIC-ID S <filename 1..30> REL-FIL

Use of a REP file is mandatory for
this subsystem

var(*LIST).REP-F.MANDATORY S *YES
*NO

REL-FIL

Name of the REP file var(*LIST).REP-F.NAME S <filename 1..54>
*INSTALL
*NO

REL-FIL

Permit RESET option var(*LIST).RESET S *ALLOW
*FORBID

GEN-ATT

Repeat initialization routine on
abnormal termination of the
holder task

var(*LIST).RESTART-REQ S *YES
*NO

GEN-ATT

Size of the required address space
(for *LOC-PRIVIL and *BY-
SLICE)

var(*LIST).SIZE I <integer 1..32767> MEM-ATT

Start address of subsystem code
(for *LOC-UNPRIVIL)

var(*LIST).START-ADDR S <text 1..8> MEM-ATT

Use of subsystem control
commands

var(*LIST).STATE-CHA-CMDS S *ALLOW
*FORBID
*BY-ADM-ONLY

GEN-ATT

Should the subsystem be automat-
ically unloaded on shutdown?

var(*LIST).STOP-AT-SHUTDOWN S *YES
*NO

GEN-ATT

Address of the name of the entry
point for the subsystem routine
STOPCOM (if CRE)

var(*LIST).STOPCOM-ROUT.ADDR S <text 1..8> INT-ENT

Name of the entry point for the
subsystem routine STOPCOM

var(*LIST).STOPCOM-ROUT.NAME S <text 1..8>
*NO
*DYN

INT-ENT

(part 4 of 6)

Output information Name of the S variable T Contents Condition

132 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-ATTRIBUTES DSSM

Privileges and access authoriza-
tions relating to the address
space (for *SYS-GBL and
*LOC-UNPRIVIL)

var(*LIST).SUBSYS-ACCESS S *LOW
*SYS
*HIGH

MEM-ATT

Addresses of the entry points
(if CREATED)

var(*LIST).SUBSYS-ENTRIES(*LIST).ADDR S <text 1..8> SUB-ENT

Privileges relating to the entry
points

var(*LIST).SUBSYS-ENTRIES(*LIST).
CONN-ACCESS

S *ALL
*SYS
*SIH

SUB-ENT

Access authorizations relating to
the entry points

var(*LIST).SUBSYS-ENTRIES(*LIST).
CONN-SCOPE

S *TASK
*PROG
*FREE
*CALL
*OPTIM

SUB-ENT

Permit entry points on initial
connection

var(*LIST).SUBSYS-ENTRIES(*LIST).
FIRST-CONN

S *ALLOW
*FORBID

SUB-ENT

Function number of entry point
(for ISL or SVC)

var(*LIST).SUBSYS-ENTRIES(*LIST).
FUNC-NUM

I <integer 0..255> SUB-ENT

Version of the function number
(for ISL or SVC)

var(*LIST).SUBSYS-ENTRIES(*LIST).
FUNC-VERSION

I <integer 1..255> SUB-ENT

Type of specified incoming job var(*LIST).SUBSYS-ENTRIES(*LIST).MODE S *LINK
*ISL
*SVC
*SYS-EXIT

SUB-ENT

Name of entry point var(*LIST).SUBSYS-ENTRIES(*LIST).NAME S <text 1..8> SUB-ENT

Stop or unload the loaded
subsystem

var(*LIST).SUBSYS-HOLD S *ALLOW
*FORBID

GEN-ATT

Default name of the subsystem’s
information file (for *INSTALL)

var(*LIST).SUBSYS-INFO-F.DEF-NAME S <filename 1..54>
*NONE

REL-FIL

Logic ID of the subsystem’s infor-
mation file (for *INSTALL)

var(*LIST).SUBSYS-INFO-F.LOGIC-ID S <filename 1..30> REL-FIL

Name of the subsystem’s infor-
mation file

var(*LIST).SUBSYS-INFO-F.NAME S <filename 1..54>
*INSTALL
*NO

REL-FIL

Internal status var(*LIST).SUBSYS-INT-STA S INSTALLED
INITIALIZED
CONNECTABLE
WAIT-CLS-CTRL
WAIT-DISCON
WAIT-DEINIT
WAIT-STOP-COM

GEN-ATT

Default name of the subsystem’s
object module file (for *INSTALL)

var(*LIST).SUBSYS-LIB.DEF-NAME S <filename 1..54> REL-FIL

(part 5 of 6)

Output information Name of the S variable T Contents Condition

U23166-J-Z125-3-76 133

DSSM SHOW-SUBSYSTEM-ATTRIBUTES

Logic ID of the subsystem’s object
module file (for *INSTALL)

var(*LIST).SUBSYS-LIB.LOGIC-ID S <filename 1..30> REL-FIL

Name of the subsystem’s object
module file

var(*LIST).SUBSYS-LIB.NAME S <filename 1..54>
*INSTALL
*CPLINK

REL-FIL

Load mode in which the
subsystem is loaded

var(*LIST).SUBSYS-LOAD-MODE S *STD
*ADV
*ANY

GEN-ATT

Status of the subsystem var(*LIST).SUBSYS-STA S *NOT-CRE
*IN-CRE
*IN-HOLD
*IN-DEL
*IN-RESUME
*NOT-RESUMED
*CRE
*LOCK

GEN-ATT

Default name of the syntax file
(for *INSTALL)

var(*LIST).SYNTAX-F.DEF-NAME S <filename 1..54>
*NONE

REL-FIL

Logic ID of the syntax file
(for *INSTALL)

var(*LIST).SYNTAX-F.LOGIC-ID S <filename 1..30> REL-FIL

Name of the syntax file var(*LIST).SYNTAX-F.NAME S <filename 1..54>
*INSTALL
*NO

REL-FIL

Information on behavior in the
event of unresolved external
references

var(*LIST).UNRESOLVED-EXTERNAL S *ALLOW
*FORBID

LINK-ENT

More than one version of the
subsystem active simultaneously

var(*LIST).VERSION-COEXIST S *ALLOW
*FORBID

GEN-ATT

Dynamic exchange of two versions
of the subsystem

var(*LIST).VERSION-EXCHA S *ALLOW
*FORBID

GEN-ATT

Year specification
(if COPYRIGHT)

var(*LIST).YEAR S <string 4> GEN-ATT

(part 6 of 6)

Output information Name of the S variable T Contents Condition

134 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-ATTRIBUTES DSSM

Notes

� /SHOW-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=*ALL displays the same infor-
mation as /SHOW-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=*ALL, VERSION=*ALL.

� /SHOW-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=*ALL,VERSION=<version>
is not supported.

� If a subsystem is found in the local subsystem catalog, the word “Subsystem” will be
replaced in the output information by “LOCAL SUBSYSTEM”.

� If a user only has the *STD-PROCESSING privilege, he/she receives the attributes of the
local subsystem (if present) and the attributes of the nonprivileged global subsystems
(i.e. those where SUBSYSTEM-ACCESS is not *SYSTEM).

� Should an error occur when writing the information to SYSOUT or SYSLST (ESM0671),
the S variables are written as normal.

� Should an error occur in writing the S variables (OPS0001 or CMD2009), the writing of the
information to SYSOUT or SYSLST will be continued normally.

� Should the interrupt key [K2] be pressed during the input request (PLEASE ACKNOWLEDGE)
the output to SYSOUT as well as the output in S variables will be interrupted immedi-
ately. Return code OPS0002 is set.

� The complete matching of the respective outputs to SYSOUT/SYSLST can only be
guaranteed if the procedure which issued the command has forbidden interruption of
the output with the operand INTERRUPTION-ALLOWED=*NO.

U23166-J-Z125-3-76 135

DSSM SHOW-SUBSYSTEM-ATTRIBUTES

Examples

Example 1

Output of the attributes of non-privileged subsystems
(users with the *STD-PROCESSING privilege)

/show-subsystem-attributes subsystem-name=*all

%**
%* 3 * SUBSYSTEM NAME: ASSEMBH VERSION: 01.2 *
%**
% STATUS OF THE SUBSYSTEM : NOT CREATED
%**
%* 4 * SUBSYSTEM NAME: ASSTRAN VERSION: 01.7 *
%**
% STATUS OF THE SUBSYSTEM : NOT CREATED
%**
%* 5 * SUBSYSTEM NAME: ASSGENH VERSION: 01.2 *
%**
% STATUS OF THE SUBSYSTEM : NOT CREATED
%**
%* 6 * SUBSYSTEM NAME: BUILDER VERSION: 01.0 *
%**
% STATUS OF THE SUBSYSTEM : CONNECTABLE
%**
%* 7 * SUBSYSTEM NAME: CRTEBASR VERSION: 01.3 *
%**
% STATUS OF THE SUBSYSTEM : NOT CREATED
%**
%* 8 * SUBSYSTEM NAME: CRTEBASY VERSION: 01.3 *
%**
% STATUS OF THE SUBSYSTEM : CONNECTABLE
%**
.
.
.
.
%**
%* 192 * SUBSYSTEM NAME: MONSYS VERSION: 03.0B20 *
%**
% STATUS OF THE SUBSYSTEM : NOT CREATED
%**
%* 193 * SUBSYSTEM NAME: VAS-TU VERSION: 02.1 *
%**
% STATUS OF THE SUBSYSTEM : NOT CREATED
% ESM0608 SUBSYSTEM VERSION NOT FOUND. FUNCTION ABORTED
% ESM0255 'SHOW-SUBSYSTEM-ATTRIBUTES' COMMAND NOT PROCESSED

136 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-ATTRIBUTES DSSM

Example 2

Output of the attributes of non-privileged subsystems
(users with the *STD-PROCESSING privilege)

/show-subsystem-attributes subsystem-name=assembh,information=*all-attributes

%**
%* 3 * SUBSYSTEM NAME: ASSEMBH VERSION: 01.2 *
%**
%GENERAL ATTRIBUTES:
% INSTALLATION-UNIT : **** NOT SPECIFIED ****
% COPYRIGHT : FUJITSU SIEMENS COMPUTERS GMBH
% YEAR : 2000
% SUBSYSTEM-LOAD-MODE : ADVANCED
% CREATION-TIME : AT-CREATION-REQUEST
% STOP-AT-SHUTDOWN : NO
% SUBSYSTEM-HOLD : ALLOWED
% STATE-CHANGE-CMDS : ALLOWED
% FORCED-STATE-CHANGE : FORBIDDEN
% RESET : FORBIDDEN
% RESTART-REQUIRED : NO
% VERSION-COEXISTENCE : FORBIDDEN
% VERSION-EXCHANGE : FORBIDDEN
% STATUS OF THE SUBSYSTEM : NOT CREATED
% MONITORING JOB VARIABLE : NO
%INTERNAL ENTRIES:
% INIT-ROUTINE : **** NOT SPECIFIED ****
% CLOSE-CTRL-ROUTINE : **** NOT SPECIFIED ****
% STOPCOM-ROUTINE : **** NOT SPECIFIED ****
% DEINIT-ROUTINE : **** NOT SPECIFIED ****
% DYNAMIC-CHECK-ENTRY : **** NOT SPECIFIED ****
% INTERFACE-VERSION : **** NOT SPECIFIED ****
%MEMORY ATTRIBUTES:
% MEMORY-CLASS: SYSTEM GLOBAL SUBSYSTEM-ACCESS: HIGH
%RELATED FILES:
% INSTALLATION-USERID : *DEFAULT-USERID
% LIBRARY : $TSOS.SYSLNK.ASSEMBH.012
% MESSAGE-FILE : **** NOT SPECIFIED ****
% SYNTAX-FILE : **** NOT SPECIFIED ****
% SUBSYSTEM-INFO-FILE : **** NOT SPECIFIED ****
% REP-FILE : **** NOT SPECIFIED ****
% REP-FILE-MANDATORY : NO
%LINK ATTRIBUTES:
% LINK-ENTRY: IARC000
% AUTOLINK : ALLOWED UNRESOLVED: FORBIDDEN CHECK-REFERENCE: YES
%REFERENCED SUBSYSTEMS:
% NAME LOWEST VERSION HIGHEST VERSION
% ---- -------------- ---------------
% **** NONE ****
%FUNCTIONAL DEPENDENCE WITH SUBSYSTEMS:
% NAME LOWEST VERSION HIGHEST VERSION
% ---- -------------- ---------------
% **** NONE ****

Continued� �

U23166-J-Z125-3-76 137

DSSM SHOW-SUBSYSTEM-ATTRIBUTES

%SHARED-HOLDER-TASK: WITH SUBSYSTEMS:
% NAME VERSION NAME VERSION
% ---- ------- ---- -------
% SMI 01.0 ASSTRAN 01.7
% ASSGENH 01.2 BUILDER 01.0
% CRTEBASR 01.3 CRTEBASY 01.3
% PAMCONV 12.0 COBPARR 02.3
% CRTEPARR 02.3 DCE-RTS 01.0
% DRIVE21 02.1 DRIVE 02.1
% DRTS21 02.1 EDT 16.6
% EDTCON 16.6 ESQLCOB 02.0A00
% FOR1LZS 02.2C20 C5-MIG 01.0
% LEASY 06.0 MAREN 08.1
% OSS 04.0 PLI1 04.2
% PLI1RTS 04.2 PLI1IOS 04.2
% RPG3RTS 04.0B00 SESSQL 02.2
% UDS-D 02.0B70 UDS-SQL 02.0B70
% UXBASIC 03.0B20 UXCOMP 03.0B20
% UXRUN 03.0B20 VM2-MON 07.0
% SESKOMMD 03.0 SESDBH 03.0
.
.
.
.
.
% HSMS-API 06.0 HSMS-SV 06.0
% BCAM-CMD 16.0 BCAM-COS 16.0
% BCAM-SM2 16.0 CMX-TU 01.3
% CMX-TP 01.3 CMX-11 01.3
% DCAM-COS 13.1 DCM-DIAG 01.0
% SOC-TP 02.0 SOCKETS 02.0
% VTSU 13.1 VTSUTRAC 13.1
% XHCS-SYS 01.5 RFA 14.0
% SM2 14.0 TIAM 13.1
% VTSU-X29 01.4 SORT 07.8
% BLSSEC 14.0 FHS-TPR 08.2
% FHS 08.2 FHS-DM 08.2
% FHS-PRIV 08.2 JV 13.0
% GUARDCOO 04.0 GUARDDEF 04.0
% SATCP 04.0 SRPMOPT 04.0
% PERCON 02.7A10 LLMAID 01.0
% CRTEC 02.3 BINDER 02.1
% SSCM 02.3 ACO 02.2A00
% EDOR 08.3 EXIT#010 04.0A01
% EXIT#015 04.0A01 EXIT#020 04.0A01
% EXIT#051 04.0A01 EXSPO090 04.0A01
% EXSPO091 04.0A01 EXSPO092 04.0A01
% TASKDATE 14.0A00 TPME 04.0A01
% DCAM 13.1 SDFPBASY 02.1C30
% SDF-P 02.1C30
%SUBSYSTEM-ENTRIES:
% CE-BY-PROGRAM : NO
% NAME: IARC000
% MODE : LINK
% DUMMY-ENTRY : NO
% CONNECTION-ACCESS : ALL
% CONNECTION-SCOPE : PROGRAM
% FIRST-CONNECTION : ALLOWED

138 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-INFO DSSM

SHOW-SUBSYSTEM-INFO
Request information on current subsystems configuration

Domain: SYSTEM-MANAGEMENT

Privileges: SUBSYSTEM-MANAGEMENT

Function

The SHOW-SUBSYSTEM-INFO command enables system administration to request infor-
mation on the current subsystems configuration. Output is exclusively via SYSLST and
comprises the complete description of all known subsystems, including the following
dynamic features:
– current status
– load addresses of started subsystems
– number of connections registered since startup
– size of the subsystem (size of the memory space it occupies, including subsystem code

and metadata)

Format

Operands

SUBSYSTEM-NAME = *ALL
Output is directed to SYSLST and comprises the entire dynamic subsystem configuration.

SHOW-SUBSYSTEM-INFO

SUBSYSTEM-NAME = *ALL

U23166-J-Z125-3-76 139

DSSM SHOW-SUBSYSTEM-INFO

Command return codes

The following abbreviations are used in the output:

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

32 ESM0288 Problems with bourse communication
32 ESM0298 Problems with memory management
32 ESM0350 Internal DSSM error during processing
32 ESM0670 Error when writing to the SYSLST file

for CREATION-TIME

ACR
ASC
ADL
BDL
MAS
BSR
ASR

:
:
:
:
:
:
:

*AT-CREATION-REQUEST
*AT-SUBSYSTEM-CALL
*AT-DSSM-LOAD
*BEFORE-DSSM-LOAD
*MANDATORY-AT-STARTUP
*BEFORE-SYSTEM-READY
*AFTER-SYSTEM-READY

for MEMORY-CLASS

S
P
U
B

:
:
:
:

*SYSTEM-GLOBAL
*LOCAL-PRIVILEGED
*LOCAL-UNPRIVILEGED
*BY-SLICE

for SUBSYSTEM-ACCESS

SYS
ALL

:
:

*SYSTEM
*LOW / *HIGH

for INTERNAL-ENTRIES

DYN
YES
NO

:
:
:

*DYNAMIC
name
*NO

for CONNECTION-ACCESS

SYS : *SYSTEM

for STATE-CHANGE-CMDS

ADM : *BY-ADMINISTRATOR-ONLY

for REP-FILE

MAN : REP-FILE = *STD / file name and REP-FILE-MANDATORY = *YES

for GENERAL-ATTRIBUTES

YES
NO

:
:

*ALLOWED
*FORBIDDEN

140 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-INFO DSSM

Example

/show-subsystem-info
% ESM0254 COMMAND 'SHOW-SUBSYSTEM-INFO' COMPLETELY PROCESSED

The output is sent preformatted to SYSLST (extract of output):

A Fujitsu Siemens Computers GmbH 2000 DYNAMIC SUBSYSTEM MANAGEMENT DATE: 2001-10-29 TIME: 15-30-58 PAGE: 1
?
? CATALOG-LAYOUT : VERSION 309 PRINT-LAYOUT : VERSION 03.6
?
? STARTUP CATALOG-NAME : :T053:$TSOS.SYS.SSD.CAT.X FORCED GENERATION : NO
?
? DSSM BOURSE ID : 80A1002F
?
? CATALOG ADDRESS IN CLASS 4 : X'7FB32060' CATALOG ADDRESS IN CLASS 5 : X'70A00060'
?
? ADDRESS-STRIPE FOR LOCAL-PRIVILEGED SS : X'00100000' BYTES LENGTH START ADDRESS : X'00B00000'
? ADDRESS-STRIPE FOR PRIVATE SLICES OF SS: X'00A00000' BYTES LENGTH START ADDRESS : X'70500000'
?
A Fujitsu Siemens Computers GmbH 2000 DYNAMIC SUBSYSTEM MANAGEMENT DATE: 2001-10-29 TIME: 15-30-58 PAGE: 2
?
? | GENERAL ATTRIBUTES | INTERNAL ENTRIES | SUBSYST | MEMORY| RELATED FILES |
? | C S | C D | ENTRIES | | I | H
? | R H C C C X R | L S Y | | | M R S N | O
? | E U O F H O C E | O T D N | | A | S E Y F | L
? NR SS-NAME VERSION STD | A T M O R K E H S | S O E C | S | C C | G P N O | D
? | T D H M R E L X A T | I E P I H | Y | L C | F F F F | E
? | I O O A C S I I N A | N C C N E | S S | A E | I I I I | R
? | M W L N E E N S G R | I T O I C | V E | S S | L L L L | I
? | E N D D D T K T E T | T L M T K | C X | S S | E E E E | D
?--------------------------|---|---------------------|---------|-------|-----------------|-----
? 1 CP | | | | | |
? 2 ACS 14.0 YES | ACR YES YES YES NO NO YES NO NO NO | YES NO YES YES YES | NO NO | S SYS | NO IMO IMO NO | 44
? 3 ADAM 14.0A00 YES | ASC YES YES YES NO NO YES NO YES NO | YES NO NO YES YES | YES NO | S SYS | NO IMO NO NO | 44
? 4 AID 03.0 YES | ACR NO YES YES NO NO YES NO NO NO | YES NO NO YES NO | NO NO | S SYS | NO IMO NO NO | 44
? 5 SMI 01.0 YES | ASR NO YES YES NO NO YES NO YES NO | NO NO NO NO | NO NO | S SYS | NO NO NO NO | 44
? 6 LLMAID 01.0 YES | ASR NO YES YES YES NO YES YES YES NO | NO NO NO NO NO | NO NO | S SYS | NO IMO NO NO | 44
? 7 AIDSYS 14.0 YES | ASC NO YES YES NO NO YES NO NO NO | NO NO NO NO NO | NO NO | S SYS | NO IMO NO NO | 44
? 8 AIDSYSA 14.0 YES | MAS NO NO NO NO NO YES NO NO NO | YES NO NO YES NO | YES NO | S SYS | NO IMO NO NO | 44
? 9 ANITA 14.0 YES | ASC NO YES YES NO NO YES NO NO NO | YES NO NO YES | YES NO | S SYS | NO NO NO NO | 44
 .
 .
 .
 .
 .
? 175 UTM 05.1 YES | ACR NO YES YES NO NO NO YES YES NO | YES NO NO NO NO | NO NO | S SYS | NO IMO NO NO | 44
? 176 UTM-SM2 14.0 YES | ACR NO YES YES NO NO NO NO YES NO | YES NO YES YES NO | NO NO | S SYS | NO IMO NO NO | 44
? 177 VAS-TU 02.1 YES | ACR NO YES YES NO NO YES YES YES NO | NO NO NO NO NO | NO NO | P LOW | NO YES NO NO | 49
? 178 VM2-MON 07.0 YES | ACR NO NO NO NO NO NO NO NO NO | YES NO NO NO YES | NO NO | S SYS | IMO IMO IMO NO | 44
? 179 VOLIN 14.0 YES | ASC NO YES NO NO NO YES NO NO NO | YES NO NO NO YES | YES NO | S SYS | NO IMO NO NO | 44
? 180 XHCS-SYS 01.5 YES | BSR NO NO YES NO NO YES NO NO NO | YES NO NO NO YES | YES NO | S SYS | NO IMO NO NO | 44
? 181 VTSU-X29 01.4 YES | ACR NO YES YES NO NO YES NO NO NO | YES NO YES NO YES | NO NO | S SYS | NO IMO NO NO | 44
? 182 VTSUTRAC 13.1 YES | ACR NO YES YES NO NO YES NO NO NO | YES NO NO NO YES | NO YES | S SYS | NO IMO NO NO | 44
? 183 WARTOPT 14.0 YES | ASC NO YES YES NO NO YES NO NO NO | NO NO NO NO YES | YES NO | S SYS | IMO IMO NO NO | 44
? 184 XCS-TIME 14.0A00 YES | ACR NO YES NO NO NO NO NO NO YES | YES NO NO DYN NO | NO NO | S SYS | NO IMO NO NO | 43
? 185 EXPRESSO 01.0 YES | ACR NO YES YES NO NO YES NO NO NO | NO NO NO NO NO | NO YES | S SYS | NO YES NO NO | 44
A Fujitsu Siemens Computers GmbH 2000 DYNAMIC SUBSYSTEM MANAGEMENT DATE: 2001-10-29 TIME: 15-30-58 PAGE: 6
?
? 1 SS NAME : CP STATUS: CREATED
?
 Fujitsu Siemens Computers GmbH 2000 DYNAMIC SUBSYSTEM MANAGEMENT DATE: 2001-10-29 TIME: 15-30-58 PAGE: 7
?
? 2 SS NAME : ACS VERSION: 14.0 STANDARD VERSION: YES STATUS: NOT CREATED
?
? LINK ENTRY NAME /@: DACSUB / X'7FFFFFFF' LIBRARY DEFAULT : $TSOS.SYSLNK.ACS.140
? INSTALLATION UNIT : ACS LIBRARY LOGID : SYSLNK
?
? INTERFACE ENTRY : DACDSMV REP FILE DEFAULT : $TSOS.SYSREP.ACS.140
? REP FILE LOGID : SYSREP

for RELATED-FILES

YES
NO
IMO

:
:
:

*STD / file name
*NO
*INSTALLED

U23166-J-Z125-3-76 141

DSSM SHOW-SUBSYSTEM-INFO

? USED REP FILE NAME : *NO
?
? CHECK ID NAME /@: DACDSMC / X'7FFFFFFF' REP FILE MANDATORY : *NO SUBSYSTEM LOAD MODE: *ADVANCED
?
? CREATION TIME : AT CREATION REQUEST MESSAGE FILE NAME : *NO
?
? AUTO LINK : YES INFO FILE NAME : *NO
?
? CONTINUE (IGNORE UNRESOLVED EXTERNALS) : NO SYNTAX FILE DEFAULT : $TSOS.SYSSDF.ACS.140
? SYNTAX FILE LOGID : SYSSDF
?
? ROUTINES : NAME TYPE ADDRESS
? INITIALISATION : DACDSMI BLS X'7FFFFFFF'
? CLOSE CONTROL : *NO NONE --
? STOP COMMISSION : DACDSMS BLS X'7FFFFFFF'
? DEINITIALISATION : DACDSMD BLS X'63E2D6E2'
?
? CALL ENTRIES: INDEX NAME TYPE NUMBER FNUMBER FVERS ACCESS CONNECTION SCOPE ADDRESS A-MODE FIRST CONNECT
? 1 DACSUB ISL - - - SYS TASK -- - *ALLOWED
? 2 DACCMD ISL - - - SYS TASK -- - *ALLOWED
? 3 DACDSMI BLS - - - SYS TASK -- - *ALLOWED
? 4 DACDSMD BLS - - - SYS TASK -- - *ALLOWED
? 5 DACDSMS BLS - - - SYS TASK -- - *ALLOWED
? 6 DACDSMV BLS - - - SYS TASK -- - *ALLOWED
? 7 DACDSMC BLS - - - SYS TASK -- - *ALLOWED
?
? SUBSYSTEM RELATIONSHIPS :
? REFERENCED SUBSYSTEM(S): 1
? RELATED SUBSYSTEM(S): NONE
? DISJOINTED SUBSYSTEM(S): NONE
?
? ADDRESS SPACE :
? ACCESS : SYS
? MEMORY CLASS : 3/4
? MEMORY POOL : NO
? MEMORY SIZE :
?
? HOLDERTASK IDENTIFICATION : 44 TSN : HT2C

 .
 .
 .
 .
 .
 .

142 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-STATUS DSSM

SHOW-SUBSYSTEM-STATUS
Request information on status of subsystems

Domain: SYSTEM-MANAGEMENT

Privileges: STD-PROCESSING
OPERATING
SUBSYSTEM-MANAGEMENT

Routing code: R

Function

The SHOW-SUBSYSTEM-STATUS command informs the user of the status of global
subsystems which are made available to all users in class 5 memory (nonprivileged
subsystems) and, if a local subsystem catalog has been loaded, of the status of the user’s
local subsystems.
Errors which occur during execution of the SHOW-SUBSYSTEM-STATUS command do not
result in spin-offs (see /SET-JOB-STEP the “Commands Volume 1-5” manual [19]).

The command SHOW-SUBSYSTEM-STATUS outputs its information not only to SYSOUT. It
also supports output in S variables, see page 145. Users are then able to evaluate and
process the information in their own S procedures. For detailed information on working with
S variables see the manual “Commands Volume 6” [20].
The output information varies depending on the privileges of the caller (see the table on the
next page).

Privileged functions (SUBSYSTEM-MANAGEMENT or OPERATING privilege):

Using the SHOW-SUBSYSTEM-STATUS command, systems support can request infor-
mation on the status of global (privileged and nonprivileged) subsystems. In addition to the
type (global), name, version and status of the global subsystem, the following information
is displayed:

– which tasks have a connection to the specified subsystem (TSN and TID)
– the number of connections set up to a specified subsystem since startup

While the command is being processed, other jobs can set up or clear down a connection
to the subsystem; consequently, the list of displayed jobs may not reflect the current status.
Privileged users cannot request information on local subsystems belonging to other tasks.

Nonprivileged functions (STD-PROCESSING privilege)

The type (global or local), name, version and status of nonprivileged global or local
subsystems are displayed.

U23166-J-Z125-3-76 143

DSSM SHOW-SUBSYSTEM-STATUS

A user with all three privileges is able to obtain information on all subsystems, no matter
whether they are local or global, privileged or nonprivileged.
The following information is output depending on the caller’s privileges:

* Only the local subsystems whose owner is the calling user task are displayed.

STD-PROCESSING STD-PROCESSING and
SUBSYSTEM-MGMT

OPERATING or
SUBSYSTEM-MGMT

The requested information relates to locally defined subsystems only:*

a) all local subsystems

b) if none of them is in the
CREATED state, then all
local NOT-CREATED
subsystems, but without
indication of the version

a) all local subsystems

b) if none of them is in the
CREATED state, then all
local NOT-CREATED
subsystems, but without
indication of the version

no output

The requested information relates to locally defined and globally defined subsystems:*

a) all local subsystems
and all global, nonprivileged
subsystems

b) if all of them are in the NOT-
CREATED state, then as
under a), but without
indication of the version

a) all local subsystems and all
global subsystems with the
connected tasks, provided
they are in the CREATED, IN-
HOLD or IN-DELETE state

b) if all subsystems are in the
NOT-CREATED state,
then as under a), but without
indication of the version

a) no local subsystems, but all
global subsystems with the
connected tasks, provided
they are in the CREATED, IN-
HOLD or IN-DELETE state

b) if all of them are in the NOT-
CREATED state, then as
under a), but without
indication of the version

The requested information relates to globally defined subsystems only:

a) all global, nonprivileged
subsystems

b) if all of them are in the NOT-
CREATED state, then as
under a), but without
indication of the version

a) all global subsystems with
the connected tasks,
provided they are in the
CREATED, IN-HOLD or
IN-DELETE state

b) if all global subsystems are in
the NOT-CREATED state,
then as under a), but without
indication of the version

a) all global subsystems with
the connected tasks,
provided they are in the
CREATED, IN-HOLD or
IN-DELETE state

b) if all of them are in the NOT-
CREATED state, then as
under a), but without
indication of the version

144 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-STATUS DSSM

Format

Operands

SUBSYSTEM-NAME =
Specifies the name of the subsystem on which information is requested.

SUBSYSTEM-NAME = *ALL
Outputs information on all subsystems.
This operand value must not be specified together with VERSION=<product-version ...>.

SUBSYSTEM-NAME = *NON-PRIVILEGED-CLASS-5
Outputs information on all global subsystems occupying nonprivileged class 5 memory
pages (subsystems with the attribute MEMORY-CLASS=*LOCAL-PRIVILEGED).

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem on which information is requested.

VERSION =
Defines the version number.

VERSION = *STD
If the version is not specified of if *STD is specified explicitly, the following sequence applies:

1. The information supplied refers to the subsystem which does not have the status
NOT-CREATED.

2. If there is more than one version with a status other than NOT-CREATED, all of these
versions are included in the output information.

If all subsystem versions have the status NOT-CREATED, there is no version specified in the
output text. The information is output both for global subsystem versions and for local
subsystem versions - provided a local subsystem catalog is loaded.

SHOW-SUBSYSTEM-STATUS

SUBSYSTEM-NAME = *ALL / *NON-PRIVILEGED-CLASS-5 / <structured-name 1..8>

,VERSION = *STD / *ALL / <product-version mandatory-man-corr> / <product-version without-man-corr>

U23166-J-Z125-3-76 145

DSSM SHOW-SUBSYSTEM-STATUS

VERSION = *ALL
Information is to be supplied on all available versions of the relevant subsystem.
This entry is not permitted in conjunction with SUBSYSTEM-NAME=*NON-PRIVILEGED-
CLASS-5.

VERSION = <product-version mandatory-man-corr> /
<product-version without-man-corr>
Version number of this subsystem. This number must be identical to the format specified in
the definition of the subsystem. Release and correction levels either must be specified or
may not be specified (see statements SET-SUBSYSTEM-ATTRIBUTES on page 243 and SDF
data type “product-version” on page 13).

This operand value must not be specified together with SUBSYSTEM-NAME=*ALL/*NON-
PRIVILEGED-CLASS-5.

Command return codes

Output in S variables

If an error occurs during output to SYSOUT (message ESM0671), output in S variables
continues normally (assuming, of course, it has been requested).
If an error occurs in the course of output in S variables (message ESM0672 with return code
CMD2009), output to SYSOUT continues normally.

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors
1 ESM0414 Syntax error: invalid version specified

32 CMD2009 Error when writing the S variable area
32 ESM0360 System error: XVT or TCB not accessible
32 ESM0602 Problems with storage management
32 ESM0611 No connection tables for this task
32 ESM0671 Error when writing to SYSOUT
64 ESM0600 No version with *ALL
64 ESM0601 Specified subsystem not found
64 ESM0604 No version with *NON-PRIV-CLASS-5
64 ESM0608 Subsystem version not found
64 ESM0610 No subsystem with *NON-PRIV-CLASS-5
64 OPS0002 Command interrupted

130 OPS0001 Command not executed due to lack of memory space:
repeat command later

146 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-STATUS DSSM

The information given here corresponds in essence to that output via SYSOUT. If a version
was specified, the S variable SUBSYS-TYPE additionally describes whether the relevant
subsystem has been defined globally or locally.
If all versions of a subsystem in the subsystem catalog have the status NOT-CREATED and
if output of the subsystem is requested with VERSION=*STD, only the subsystem name and
the subsystem status are output.

Output information Name of the S variable T Contents Condition

Number of connected tasks since
the start of the subsystem

var(*LIST).CONN-NUM-SINCE-START I <integer 0..231-1>

Information on the user address
space for nonprivileged
subsystems

*RESERVED: the subsystem is in
class 5 memory

*UNRESERVED: a privileged user
has called the RELEASE-
SUBSYSTEM-SPACE command

var(*LIST).SUBSYS-ADDR-SPACE S *RESERVED
*UNRESERVED

Internal status, see table 12 on
page 147

var(*LIST).SUBSYS-INT-STA S INSTALLED
INITIALIZED
CONNECTABLE
WAIT-CLS-CTRL
WAIT-STOP-COM
WAIT-DISCON
WAIT-DEINIT
NONE

Name of the subsystem var(*LIST).SUBSYS-NAME S <structured-name 1..8>

Status of the subsystem var(*LIST).SUBSYS-STA S *CREATED
*IN-CREATE
*IN-DELETE
*IN-HOLD
*IN-RESUME
*LOCKED
*NOT-CREATED
*NOT-RESUMED

Is the relevant subsystem defined
locally or globally?
Only evaluated if a value is
assigned to the VERSION
operand.

var(*LIST).SUBSYS-TYPE S *GLB
*LOC

Version of the subsystem var(*LIST)..SUBSYS-VERSION S <product-version>

TID of the task which is currently
connected to the subsystem

var(*LIST).USED-TASK-LIST(*LIST).TID S <text 8>

TSN of the task which is currently
connected to the subsystem

var(*LIST).USED-TASK-LIST(*LIST).TSN S <text 4>

U23166-J-Z125-3-76 147

DSSM SHOW-SUBSYSTEM-STATUS

For details of working with S variables refer to Manual “Commands Volume 6” [20] (basic
principles, structure, declaration, assignment, access and further use).

For an example with output in S variables see page 173ff.

The contents of the S variable var(*LIST).SUBSYS-INT-STA is dependent on the status of the
subsystem (S variable var(*LIST).SUBSYS-STA):

Notes

� A combination of the operands SUBSYSTEM-NAME=*ALL and VERSION=*ALL supplies
the same amount of information as SUBSYSTEM-NAME=*ALL.

� If a subsystem is found in the local subsystem catalog, LOCAL is written in the output
before the remaining information.

� SHOW-SUBSYSTEM-STATUS does not supply any information for subsystems declared
with the attributes CONNECTION-SCOPE=*FREE and MEMORY-CLASS=*SYSTEM-
GLOBAL.
By contrast, subsystems with the attributes CONNECTION-SCOPE=*FREE and MEMORY-
CLASS=*LOCAL-PRIVILEGED or *LOCAL-UNPRIVILEGED are included in the output.

Status /
var(*LIST).SUBSYS-STA

Sub-Status
var(*LIST).SUBSYS-INT-STA

Meaning

IN-CREATE/
IN-RESUME

INSTALLED
INITIALIZED
CONNECTABLE

The subsystem is loaded.
The 'Init' routine has been executed.
The subsystem is ready.

IN-DELETE / IN-HOLD WAIT-CLS-CTRL

WAIT-DISCON

WAIT-STOP-COM

WAIT-DEINIT

INSTALLED

The 'Close Control' routine has been called. DSSM
is waiting for it to terminate.

DSSM is waiting for the last disconnection (forced
cancellation possible).

No further task is connected and DSSM is waiting
for the 'Stop Commission' routine to terminate.

No further task is connected, the 'Deinit' routine
has been called and DSSM is waiting for it to
terminate.

The subsystem has been loaded but not initialized.

NOT-CREATED /
NOT-RESUMED /
LOCKED /
CREATED

NONE The subsystem is in the displayed state. Since this
is not a transition state, there is no further infor-
mation.

Table 12: Contents of var(*LIST).SUBSYS-INT-STA depending on var(*LIST).SUBSYS-STA)

148 U23166-J-Z125-3-76

SHOW-SUBSYSTEM-STATUS DSSM

� If different versions of a subsystem are loaded (reloading in coexistence or exchange
mode), the privileged user can issue the SHOW-SUBSYSTEM-STATUS command without
specifying a version (operand VERSION=*STD / *ALL) in order to request information on
the status of all versions of the subsystem with a status unequal NOT-CREATED.

� Although tasks which are connected to a global subsystem with CONNECTION-
SCOPE=*OPTIMAL are counted in the sum of all connected tasks, they are not explicitly
listed with their TID and TSN.

� If an error occurs during output to SYSOUT (message ESM0671), output is continued in
the normal way in S variables, provided this has been requested.
If an error occurs during output in S variables (message ESM0672 or CMD2009), output to
SYSOUT is continued in the normal way.

� An interruption of command processing by pressing [K2] has the effect of interrupting
both output to SYSOUT and output in S variables. The return code OPS0002 is set.

� If the interrupt key [K2] is pressed during an input request (PLEASE ACKNOWLEDGE), output
to SYSOUT is aborted immediately. Output in S variables is continued in the normal
way, provided this has been requested. No message is output.

� It is only possible to guarantee that the outputs to SYSOUT and in S variables will fully
match if the procedure issuing the command has prohibited interruption of the output
by means of the operand INTERRUPT-ALLOWED=*NO.

� If a privileged user requires information about a specific subsystem (SUBSYSTEM-
NAME=<structured-name 1...8>) and output in S variables, the USED-TASK-LIST field may
be blank, even though it has been generated.
The number of list elements can be determined with the builtin function SIZE().

� If the subsystem is in a transition state, further information on the actual processing
state (sub-status) is output, see table 12 on page 147.

U23166-J-Z125-3-76 149

DSSM SHOW-SUBSYSTEM-STATUS

Examples

Example 1

/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=*NON-PRIVILEGED-CLASS-5 ————————— (1)
%SUBSYSTEM VAS-TU /V02.1 IS NOT CREATED IN CL5
% : : : (all other subsystems in CL5)

(1) SYSOUT output of information on all subsystems occupying nonprivileged class 5
memory. Nonprivileged users receive the same information as privileged users.

Example 2

/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=EDT ————————————————————————————— (1)
%SUBSYSTEM EDT /V16.6 IS USED BY 8 TASKS ——————————————————————— (2)
% TASKID 00070011 00020026 0002002A 00010038 0001003A 0001003B
% TSN 01QB 01LX XAAJ XAAD 01LH 01LG
% TASKID 0001003E 0001003F
% TSN 01LF 01LE
% 38 CONNECTIONS SINCE STARTUP
%SUBSYSTEM EDT /V16.5 IS USED BY 2 TASKS ——————————————————————— (3)
% TASKID 0001004F 00010051
% TSN 01LQ 01LR
% IS IN DELETE / WAIT-DISCON
% 252 CONNECTIONS SINCE STARTUP

(1) SYSOUT output of information on the subsystem EDT without specification of a
version. Only privileged users receive the information reproduced above.
Nonprivileged users receive only the following output line:

%SUBSYSTEM EDT /V16.6 IS CREATED
%SUBSYSTEM EDT /V16.5 IS IN DELETE / WAIT-DISCON

(2) The output indicates that two EDT subsystems (V16.6 and V16.5) are active.
The subsystem EDT V16.6 was started in exchange mode and is to replace the
subsystem EDT V16.5.

(3) The subsystem EDT V16.5 has the status IN-DELETE since it is still being used by
two other tasks.

For an example with output in S variables see section “Output in an S variable” on
page 173.i

150 U23166-J-Z125-3-76

START-LOCAL-SUBSYSTEM DSSM

START-LOCAL-SUBSYSTEM
Activate local subsystem in user address space

Domain: SYSTEM-MANAGEMENT

Privileges: STD-PROCESSING

Function

The START-LOCAL-SUBSYSTEM command can be used to activate a local subsystem by
loading its code into nonprivileged address space local to the task (user address space).
If a syntax file and message file are defined for the subsystem, they will also be activated.

The command is aborted and a message is issued if

– the specified subsystem is already activated
– the specified subsystem is not contained in the local subsystem catalog
– the associated syntax file or message file cannot be activated
– the subsystem code cannot be loaded

A local subsystem cannot be activated if a program is loaded.

Local subsystems are always loaded above the 16MB boundary.
As local subsystems are loaded into the user address space (nonprivileged class 5
memory), starting several local subsystems at (almost) the same time may result in
memory saturation and, as a consequence, the task may crash!

Format

START-LOCAL-SUBSYSTEM

SUBSYSTEM-NAME = <structured-name 1..8>

,VERSION = *STD / <product-version mandatory-man-corr> / <product-version without-man-corr> / *HIGHEST

i

U23166-J-Z125-3-76 151

DSSM START-LOCAL-SUBSYSTEM

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the local subsystem that is being activated.

VERSION = *STD / <product-version mandatory-man-corr> /
<product-version without-man-corr> / *HIGHEST
Specifies the version number.
When specifying a version number, the format entered must match the format used when
the subsystem was defined. Release and correction levels either must be specified or may
not be specified (see statements SET-SUBSYSTEM-ATTRIBUTES on page 243 and SDF data
type “product-version” on page 13).

VERSION = *STD
If there is more than one version of the specified subsystem and if no version is specified
or *STD is not explicitly specified, the subsystem with the lowest version number available
in the local subsystem catalog is selected.

VERSION = *HIGHEST
Selects the highest version of the subsystem.

Command return codes

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed, subsystem successfully started or

Command executed, with warning
1 0 CMD0001 No action necessary; the subsystem is already active

1 ESM0414 Syntax error: invalid version specified
64 ESM0255 Command not executed (a program is loaded, the specified

subsystem does not exist in the local subsystem catalog, or no local
subsystem catalog is loaded)

64 ESM0326 Command abnormally terminated

152 U23166-J-Z125-3-76

START-LOCAL-SUBSYSTEM DSSM

Example

/LOAD-LOCAL-SUBSYSTEM-CATALOG CATALOG-NAME=MY.LOCAL ——————————————————— (1)
%ESM0254 COMMAND 'LOAD-LOCAL-SUBSYSTEM-CATALOG' COMPLETELY PROCESSED
/START-LOCAL-SUBSYSTEM SUBSYSTEM-NAME=LOC-SUBS,VERSION='01.0'
%ESM0220 FUNCTION 'CREATE' FOR SUBSYSTEM 'LOC-SUBS/01.0' COMPLETELY PROCESSED

/START-LOCAL-SUBSYSTEM SUBSYSTEM-NAME=NO-NAME ————————————————————————— (2)
%ESM0201 SUBSYSTEM 'NO-NAME' NOT FOUND
%ESM0255 'START-LOCAL-SUBSYSTEM' COMMAND NOT PROCESSED

(1) First a local subsystem catalog is loaded, then a local subsystem is activated. Both
commands have been successfully executed.

(2) The second local subsystem cannot be activated because it is not known in the
current local subsystem catalog.

U23166-J-Z125-3-76 153

DSSM START-SUBSYSTEM

START-SUBSYSTEM
Activate subsystem

Domain: SYSTEM-MANAGEMENT

Privileges: OPERATING
SUBSYSTEM-MANAGEMENT

Routing code: R

Function

This command enables system administration to activate any desired subsystem.
The following information from the dynamic subsystem catalog is used to activate the
subsystem:

– information on loading and linking the subsystem
– information on initialization/deinitialization and on terminating the job relations
– information on calling points, subcomponents and operating dependencies (see corre-

sponding SSCM statements in chapter “SSCM” on page 179)

This command is rejected if:

– the subsystem cannot be found in the dynamic subsystem catalog
– another version of the subsystem exists and coexistence is not permitted (see the

VERSION-PARALLELISM operand on page 156)
– subsystems upon which the subsystem to be activated is dependent have not been

loaded
– a necessary file is missing (e.g. message file, library)

The operator or system administration receives a message confirming that the command
has been accepted or rejected. By means of the operand RESET=*YES, it is possible to
enforce initialization of subsystems which are in the process of being deactivated. Any
number of START-SUBSYSTEM commands can be issued in different tasks under the privi-
leged user ID of the system administrator, unless this is expressly prohibited by the param-
eters defined during subsystem definition.

154 U23166-J-Z125-3-76

START-SUBSYSTEM DSSM

Depending on the subsystem definition (SSCM statement SET-/MODIFY-SUBSYSTEM-
ATTRIBUTES with the SUBSYSTEM-LOAD-MODE operand), it can be activated in three
different ways:

– SUBSYSTEM-LOAD-MODE=*STD
The BLS is called in STD run mode and loads the subsystem as an object module.

– SUBSYSTEM-LOAD-MODE=*ADVANCED
The BLS is called in ADVANCED run mode and loads the subsystem as a link and load
module (LLM).

– SUBSYSTEM-LOAD-MODE=*ANY
The BLS is called in STD run mode and loads the subsystem as an object module. If an
error occurs during loading, the BLS is called a second time. This call is in ADVANCED
run mode and the subsystem is loaded as a link and load module (LLM).
If the first BLS call is not successful, a BLS error messages is output at the console.

Format

START-SUBSYSTEM

SUBSYSTEM-NAME = <structured-name 1..8>

,VERSION = *STD / <product-version mandatory-man-corr> / <product-version without-man-corr> / *HIGHEST

,SUBSYSTEM-PARAMETER = *NONE / <c-string 1..254>

,RESET = *NO / *YES

,SYNCHRONOUS = *NO / *YES

,VERSION-PARALLELISM = *NONE / *EXCHANGE-MODE(...) / *COEXISTENCE-MODE

*EXCHANGE-MODE(...)

 SUBSYSTEM-PARAMETER = *NONE / <c-string 1..254>

,MONJV = *NONE / <filename 1..54 without-gen-vers>

U23166-J-Z125-3-76 155

DSSM START-SUBSYSTEM

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem to be activated.

VERSION = *STD / <product-version mandatory-man-corr> /
<product-version without-man-corr> / *HIGHEST
Specifies the version number.
When specifying a version number, the format entered must match the format used when
the subsystem was defined. Release and correction levels either must be specified or may
not be specified (see statements SET-SUBSYSTEM-ATTRIBUTES on page 243 and SDF data
type “product-version” on page 13).

VERSION = *STD
If there is more than one version of the specified subsystem and if none of these versions
is specified or if *STD is specified explicitly, the subsystem declared with the start attribute
CREATION-TIME=*AT-SUBSYSTEM-CALL (see the SSCM statement SET-SUBSYSTEM-
ATTRIBUTES on page 243) is loaded. If this condition does not apply, the lowest version
number for this subsystem contained in the static subsystem catalog is selected.

Exception

If a version of a subsystem is to be activated automatically with the first SVC call, this
version is the default version.

VERSION = *HIGHEST
Selects the highest version of the subsystem.

SUBSYSTEM-PARAMETER = *NONE / <c-string 1..254>
Specifies whether special parameters are to be processed, which can be evaluated only by
the specified subsystem.

RESET =
Influences the mode and urgency of command processing.

RESET = *NO
If the relevant subsystem is in the process of being deactivated, the command is rejected
until this disconnection operation has been completed.

RESET = *YES
The command is accepted regardless of any outstanding deactivation process and the
subsystem or selected components is/are initialized (see notes below).
The version parameter is mandatory for this operand.

156 U23166-J-Z125-3-76

START-SUBSYSTEM DSSM

SYNCHRONOUS =
Allows you to choose between synchronous and asynchronous processing.

SYNCHRONOUS = *NO
The command is to be processed asynchronously, i.e. without having to wait for it to be
executed before making a new entry. After the syntax of the command has been checked,
the calling task receives message ESM0216. Error messages concerning execution of the
command are output at the console.

SYNCHRONOUS = *YES
The command must first be executed before another entry can be made.
Appropriate error messages concerning execution are output to the task.
In the event of a version swap this entry is only of relevance for the new version that is to
be activated. Deactivation of the other, “old” version is always carried out asynchronously.

VERSION-PARALLELISM =
Specifies whether different versions of the same subsystem may be active at the same time.

VERSION-PARALLELISM = *NONE
The coexistence of different versions of the same subsystem - regardless of what was
specified at definition time - is not to be permitted. If a version has a status other than “NOT-
CREATED”, activation is rejected.

VERSION-PARALLELISM = *EXCHANGE-MODE(...)
The temporary coexistence of two versions of the same subsystem is to be permitted.
Activation is permitted only if no version of the subsystem, or only one, has the status
CREATED. If two versions already have this status, implicit deactivation of the most recently
started version is initiated.
If a version of a subsystem has the status LOCKED, DSSM treats it as if it had the status
NOT-CREATED.
In the following cases the command is rejected if specified with this operand:

– the version to be replaced has been defined with HOLD=*NO, but without a CLOSE-CTRL
routine

– the command MODIFY-SUBSYSTEM-PARAMETER CHANGE-STATE=*NO was used for the
version to be replaced

– the operand RESET=*NO was specified at the same time
– the version status is not CREATED, NOT-CREATED or LOCKED

SUBSYSTEM-PARAMETER = *NONE / <c-string 1..254>
Specifies whether special parameters are to be processed, which can be evaluated only
by the specified subsystem.

U23166-J-Z125-3-76 157

DSSM START-SUBSYSTEM

VERSION-PARALLELISM = *COEXISTENCE-MODE
The coexistence of two or more versions of the same subsystem, without any restrictions,
is to be permitted. Prerequisite: this has been authorized for all relevant versions in the
SSCM statement SET-SUBSYSTEM-ATTRIBUTES.

MONJV = *NONE / <filename 1..54 without-gen-vers>
Defines the name of a monitoring job variable. The monitoring job variable indicates
whether the subsystem is active, stopped, interrupted or locked. The contents of the
monitoring job variable are listed on page 52.

Command return codes

Notes

� Subsystems generally have a variety of dependency relations and load relations to
other subsystems.
Due account must be taken of these relationships in order to ensure the proper
functioning of the individual subsystems. DSSM attempts to avoid potential conflicts
caused by user requests by rejecting any commands which would result in such a
conflict. Actions such as the installation of subsystems that do not exist or the unloading
of dependent subsystems are not executed.
However, if the user also generates complex subsystems with the statement CHECK-
REFERENCE=*NO (see the SSCM statement SET-SUBSYSTEM-ATTRIBUTES on
page 243), DSSM carries out the requested functions despite the risk of conflicts:
the START-SUBSYSTEM command loads the specified subsystem even if a subsystem
to which it has a defined relation has not yet been fully loaded.

� In order to ensure a high degree of parallelism and data integrity, time-consuming
administration tasks are not executed under control of the calling task; instead they are
transferred to a DSSM task.
As a rule, only the check of the requested function is carried out synchronously (i.e.
contingent upon a wait state for the calling task). DSSM carries out the actual
processing asynchronously and independent of the calling task.

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

1 0 CMD0001 No action necessary; subsystem already active
1 ESM0414 Syntax error: invalid version specified

32 ESM0224 Command is not processed
32 ESM0228 Command terminated abnormally

158 U23166-J-Z125-3-76

START-SUBSYSTEM DSSM

� A START-SUBSYSTEM command after a STOP-SUBSYSTEM command will be rejected if
DSSM has not yet completed the “unload subsystem” operation. However, by specifying
RESET=*YES system administration can enforce the unconditional loading of the sub-
system; it is not necessary to wait until the STOP-SUBSYSTEM command has been
completely processed.
In this case the initialization routine is started and the relevant subsystem is informed
of the RESET and can define the scope of the INIT routine itself (complete initialization,
partial initialization or no initialization).

Exception

If the relevant subsystem still has the status IN-DELETE even though it has been
deinitialized, the “unload subsystem” operation is not interrupted, despite the speci-
fication RESET=*YES. The START-SUBSYSTEM command is rejected until the
subsystem has the status NOT-CREATED and has released all resources.

� If two versions of a subsystem are to be exchanged, the following points should be
borne in mind when using the operand RESET=*YES:

– if version A has the status IN-DELETE and version B has the status CREATED,
RESET=*YES can only be specified for A if coexistence was stipulated in the SSCM-
definition of both versions (see page 47)

– if both versions have the status IN-DELETE, RESET=*YES is permissible for one of
these versions if it was defined with RESET=*ALLOWED, VERSION-
EXCHANGE=*ALLOWED.

� A restart (i.e. invocation of the INIT routine for subsystems defined with RESTART-
REQUIRED=*YES) is prohibited, as it might otherwise lead to illegal coexistence situa-
tions.

U23166-J-Z125-3-76 159

DSSM STOP-LOCAL-SUBSYSTEM

STOP-LOCAL-SUBSYSTEM
Deactivate local subsystem in user address space

Domain: SYSTEM-MANAGEMENT

Privileges: STD-PROCESSING

Function

The STOP-LOCAL-SUBSYSTEM command can be used to deactivate a local subsystem. If a
syntax file and a message file are defined for the subsystem, they will also be deactivated.
The subsystem code is unloaded.

A local subsystem cannot be deactivated unless it was previously activated with the START-
LOCAL-SUBSYSTEM command or if a program is still loaded. A message is output in both of
these cases.

Deactivation of the specified local subsystem is also terminated if it is not possible to
deactivate the associated syntax file and/or message file without error.

Format

STOP-LOCAL-SUBSYSTEM

SUBSYSTEM-NAME = <structured-name 1..8>

,VERSION = *STD / <product-version mandatory-man-corr> / <product-version without-man-corr> / *HIGHEST

160 U23166-J-Z125-3-76

STOP-LOCAL-SUBSYSTEM DSSM

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the local subsystem that is to be deactivated.

VERSION = *STD / <product-version mandatory-man-corr> /
<product-version without-man-corr> / *HIGHEST
Specifies the version number.
When specifying a version number, the format entered must match the format used when
the subsystem was defined. Release and correction levels either must be specified or may
not be specified (see statements SET-SUBSYSTEM-ATTRIBUTES on page 243 and SDF data
type “product-version” on page 13).

VERSION = *STD
If there is more than one version of the specified subsystem, the currently active subsystem
is selected.

VERSION = *HIGHEST
Selects the highest version of the subsystem.

Command return codes

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

1 0 CMD0001 No action necessary; subsystem already active
1 ESM0414 Syntax error: invalid version specified

32 ESM0255 Command not executed (a program is loaded, the specified
subsystem does not exist in the local subsystem catalog, or no local
subsystem catalog is loaded)

32 ESM0326 Command abnormally terminated

U23166-J-Z125-3-76 161

DSSM STOP-LOCAL-SUBSYSTEM

Example

/load-local-subsystem-catalog catalog-name=local.dssmcat.1 ———————————— (1)
%ESM0254 COMMAND '/LOAD-LOCAL-SUBSYSTEM-CATALOG' COMPLETELY PROCESSED
/load-local-subsystem-catalog catalog-name=local.dssmcat.1l ——————————— (1)
%ESM0254 COMMAND 'LOAD-LOCAL-SUBSYSTEM-CATALOG' COMPLETELY PROCESSED
/start-local-subsystem subsystem-name=loc-subs,version='01.0'
%ESM0220 FUNCTION 'CREATE' FOR SUBSYSTEM 'LOC-SUBS/01.0' COMPLETELY PROCESSED
/stop-local-subsystem subsystem-name=loc-subs,version='01.0' —————————— (2)
%ESM0220 FUNCTION 'DELETE' FOR SUBSYSTEM 'LOC-SUBS/01.0' COMPLETELY PROCESSED
/unload-local-subsystem-catalog
%ESM0254 COMMAND 'UNLOAD-LOCAL-SUBSYSTEM-CATALOG' COMPLETELY PROCESSED
/stop-local-subsystem subsystem-name=loc-subs,version= '01.0' ————————— (3)
%ESM0341 NO LOCAL SUBSYSTEM CATALOG LOADED
%ESM0255 'STOP-LOCAL-SUBSYSTEM' COMMAND NOT PROCESSED

(1) First a local subsystem catalog is loaded, then a local subsystem is activated. Both
commands were successfully executed.

(2) The local subsystem is deactivated. The current local subsystem catalog is then
unloaded. Both commands were successfully executed.

(3) The local subsystem cannot be deactivated (for the second time), because there is
no current local subsystem catalog.

162 U23166-J-Z125-3-76

STOP-SUBSYSTEM DSSM

STOP-SUBSYSTEM
Deactivate subsystem

Domain: SYSTEM-MANAGEMENT

Privileges: OPERATING
SUBSYSTEM-MANAGEMENT

Function

This command enables system administration to deactivate any desired subsystem. The
function and execution of the command can be described as follows:

1. The relevant subsystem is closed for all new callers.
2. The subsystem is deactivated as soon as all jobs accessing it have been terminated

normally. If the operand FORCED=*YES was specified in the STOP-SUBSYSTEM
command, all jobs accessing the subsystem are aborted immediately. (However, the
operand FORCED=*YES is only accepted if a previous STOP-SUBSYSTEM command
with the operand FORCED=*NO failed to terminate the jobs.)

3. The subsystem is unloaded.
4. All resources in use are released.

The STOP-SUBSYSTEM command is rejected if:

– the subsystem cannot be found in the dynamic subsystem catalog
– already activated subsystems or subsystems in the process of being activated are

dependent on the subsystem to be deactivated
– already activated subsystems or subsystems in the process of being activated have link

relations with the subsystem to be deactivated
– the operand FORCED=*YES was specified without a previous attempt to terminate the

jobs by means of FORCED=*NO

U23166-J-Z125-3-76 163

DSSM STOP-SUBSYSTEM

Format

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem to be deactivated.

VERSION = *STD / <product-version mandatory-man-corr> /
<product-version without-man-corr> / *HIGHEST
Specifies the version number.
When specifying a version number, the format entered must match the format used when
the subsystem was defined. Release and correction levels either must be specified or may
not be specified (see statements SET-SUBSYSTEM-ATTRIBUTES on page 243 and SDF data
type “product-version” on page 13).

VERSION = *STD
If there is only one version of the subsystem loaded, this version is selected.
If there are two or more loaded versions, the appropriate version must be specified.

VERSION = *HIGHEST
Selects the highest version of the subsystem.

SUBSYSTEM-PARAMETER = *NONE / <c-string 1..254>
Specifies whether special parameters are to be processed, which can be evaluated only by
the specified subsystem.

STOP-SUBSYSTEM

SUBSYSTEM-NAME = <structured-name 1..8>

,VERSION = *STD / <product-version mandatory-man-corr> / <product-version without-man-corr> / *HIGHEST

,SUBSYSTEM-PARAMETER = *NONE / <c-string 1..254>

,FORCED = *NO / *YES

,SYNCHRONOUS = *NO / *YES

164 U23166-J-Z125-3-76

STOP-SUBSYSTEM DSSM

FORCED =
Defines the mode and urgency of command processing.

FORCED = *NO
The processing and thus normal termination of all tasks accessing this subsystem must be
completed before the subsystem is deactivated.

FORCED = *YES
The immediate termination of all processes is initiated.
In the case of a privileged subsystem, this may result in a system dump. Tasks connected
to a nonprivileged subsystem can exit via the STXIT error routine provided by DSSM.

SYNCHRONOUS =
Allows you to choose between synchronous and asynchronous processing.

SYNCHRONOUS = *NO
The command is to be processed asynchronously, i.e. without having to wait for it to be
executed before making a new entry. After the syntax of the command has been checked,
the calling task receives message ESM0216. Error messages concerning execution of the
command are output at the console.

SYNCHRONOUS = *YES
The command must first be executed before another entry can be made.
Appropriate error messages concerning execution are output to the task.
In the event of a version swap this entry is only of relevance for the new version that is to
be activated. Deactivation of the other, “old” version is always carried out asynchronously.

Command return codes

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors

1 0 CMD0001 No action necessary; subsystem is no longer active
1 ESM0414 Syntax error: invalid version specified

32 ESM0224 Command is not processed
32 ESM0228 Command terminated abnormally

U23166-J-Z125-3-76 165

DSSM STOP-SUBSYSTEM

Notes

� In order to ensure a high degree of parallelism and data integrity, time-consuming
administration tasks are not performed under control of the calling task; instead they are
transferred to a DSSM task.
As a rule, only the check of the requested function is carried out synchronously (i.e.
contingent upon a wait state for the calling task). DSSM carries out the actual
processing asynchronously and independent of the calling task.

� STOP-SUBSYSTEM with the operand FORCED=*YES is accepted only if preceded by
FORCED=*NO and if the subsystem is simply waiting for deactivation of the task
accessing it.
The FORCED function cannot guarantee the “normal” behavior of tasks which are
connected to a privileged subsystem.
Tasks connected to a nonprivileged subsystem can run an error routine which enables
them to continue processing.
The FORCED function is implemented by running a contingency routine for every task
connected to the subsystem. Deactivation of the task is completed when this contin-
gency routine has been executed.
However, since DSSM does not wait for this routine to be executed, these tasks can be
registered as still connected to the subsystem after an intermediate START-SUBSYSTEM
command.

166 U23166-J-Z125-3-76

UNLOAD-LOCAL-SUBSYSTEM-CATALOG DSSM

UNLOAD-LOCAL-SUBSYSTEM-CATALOG
Unload local subsystem catalog

Domain: SYSTEM-MANAGEMENT

Privileges: STD-PROCESSING

Function

The UNLOAD-LOCAL-SUBSYSTEM-CATALOG command can be used by callers to unload a
local subsystem catalog from their own task-specific user address space (class 5 memory).

If there are any subsystems still active at this time, they are automatically deactivated and
execution of the UNLOAD-LOCAL-SUBSYSTEM-CATALOG command is resumed.

The command is rejected with an error message if a local subsystem catalog has not previ-
ously been loaded into the user address space with the LOAD-LOCAL-SUBSYSTEM-
CATALOG command.
A local subsystem catalog cannot be unloaded if a program is loaded at the same time.

Format

Command return codes

UNLOAD-LOCAL-SUBSYSTEM-CATALOG

(SC2) SC1 Maincode Meaning
0 CMD0001 Command successfully executed

32 ESM0255 Command not executed; there is no local catalog loaded or a
program is loaded

32 ESM0326 Command processing aborted (system error)

U23166-J-Z125-3-76 167

DSSM UNLOAD-LOCAL-SUBSYSTEM-CATALOG

Example

/load-local-subsystem-catalog catalog-name=local.dssmcat.1 ———————————— (1)
%ESM0254 COMMAND 'LOAD-LOCAL-SUBSYSTEM-CATALOG' COMPLETELY PROCESSED
/unload-local-subsystem-catalog ——————————————————————————————————————— (2)
%ESM0254 COMMAND 'UNLOAD-LOCAL-SUBSYSTEM-CATALOG' COMPLETELY PROCESSED
/unload-local-subsystem-catalog ——————————————————————————————————————— (3)
%ESM0341 NO LOCAL SUBSYSTEM CATALOG LOADED
%ESM0255 'UNLOAD-LOCAL-SUBSYSTEM-CATALOG' COMMAND NOT PROCESSED

(1) First a local subsystem catalog is loaded. Execution of the command is successful.

(2) Unloading of the local subsystem catalog is also successful.

(3) The second attempt to unload the local subsystem catalog is rejected with message
ESM0341: only a local subsystem catalog that has previously been loaded can be
unloaded.

168 U23166-J-Z125-3-76

UNLOCK-SUBSYSTEM DSSM

UNLOCK-SUBSYSTEM
Shift subsystem from LOCKED status to NOT-CREATED
status

Domain: SYSTEM-MANAGEMENT

Privileges: SUBSYSTEM-MANAGEMENT

Function

This command can be used by systems support to convert a locked subsystem (subsystem
with the status LOCKED) back into a declared but not activated status (NOT-CREATED
status). In other words, the subsystem is unlocked during the current session. UNLOCK-
SUBSYSTEM therefore contributes to ensuring interrupt-free operation of BS2000/OSD.

By means of its INIT, DEINIT, STOPCOM or CLOSE-CTRL routines a subsystem can be placed
in the LOCKED status. These routines either request DSSM to lock the subsystem
themselves or they trigger a dump and the restart of the holder task, which can then no
longer be executed without errors (RESTART-REQUIRED=*NO or - if *YES applies - the
maximum number of permissible attempts is exceeded).
If a subsystem is locked during the activation phase (INIT routine), this would mean that,
without the UNLOCK-SUBSSYSTEM command, the subsystem is not available until
shutdown and the subsequent RESTART command.

It is worth bearing in mind that not all subsystems can be unlocked without problems and
that restarting is not always possible (cf. the notes on the following page).

Format

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem that is to be unlocked.

UNLOCK-SUBSYSTEM

SUBSYSTEM-NAME = <structured-name 1..8>

,VERSION = <product-version mandatory-man-corr> / <product-version without-man-corr>

U23166-J-Z125-3-76 169

DSSM UNLOCK-SUBSYSTEM

VERSION = <product-version mandatory-man-corr> /
<product-version without-man-corr>
Version number of this subsystem. The format specified here must match the format used
when the subsystem was defined. Release and correction levels either must be specified
or may not be specified (see statements SET-SUBSYSTEM-ATTRIBUTES on page 243 and
SDF data type “product-version” on page 13).

Command return codes

Notes

The subsystem that is to be unlocked must have the LOCKED status.
Use of the UNLOCK-SUBSYSTEM command is subject to the following restrictions:

� Some subsystems cannot be terminated normally and restarted within the same
session. It must be possible to execute the STOP-SUBSYSTEM and HOLD-SUBSYSTEM
commands for the subsystem to be unlocked, i.e. the subsystem must not have been
defined with the attribute SUBSYSTEM-HOLD=*FORBIDDEN (cf. the restrictions of the
command STOP-SUBSYSTEM described on page 162).

� Dependencies on other subsystems may mean that the UNLOCK-SUBSYSTEM
command leads to inconsistencies in the subsystem catalog.
If this situation is to be avoided, all subsystems that relate to this subsystem must first
be stopped with /STOP-SUBSYSTEM. They must then be restarted together with the
unlocked subsystem with /START-SUBSYSTEM.

� Even if the subsystem can be restarted from every status and if all dependencies to
other subsystems - if there are any - have been taken into account (see above), it is not
absolutely certain that the subsystem will be active following execution of the UNLOCK-
SUBSYSTEM command and when the next START-SUBSYSTEM command is issued.
This restriction applies in particular if problems occur which are caused by the
subsystem itself.

(SC2) SC1 Maincode Meaning
0 CMD0001 Command executed without errors
1 ESM0414 Syntax error: invalid version specified

32 ESM0228 Command abnormally terminated
64 ESM0224 Command not processed

170 U23166-J-Z125-3-76

Examples DSSM

3.9 Examples

3.9.1 Use of local subsystems

/START-SSCM ——— (1)
% BLS0517 MODULE 'SSCM' LOADED
% SCM5000 PROGRAM SSCM VERSION V02.3B10 STARTED

//START-CATALOG-CREATION CATALOG-NAME=MEIN.KATALOG
//ADD-CATALOG-ENTRY FROM-FILE=SYSSSC.SDF-A.040 ——————————————————— (2)
//ADD-CATALOG-ENTRY FROM-FILE=SYSSSC.INIT.130
//CHECK-CATALOG ——— (3)
CHECK REPORT:
**** NO ERROR ****
CHECK OF LINK REFERENCES:
VERSION RANGE CHECK:
**** NO ERROR ****
LINK RELATION CHECK:
**** NO ERROR ****
CHECK OF FUNCTIONAL DEPENDENCE:
VERSION RANGE CHECK:
**** NO ERROR ****
DEPENDENCE RELATION CHECK:
**** NO ERROR ****
CYCLE CHECK:
**** NO ERROR ****
//SAVE-CATALOG —— (4)
% SCM0200 CATALOG 'MEIN.KATALOG' GENERATED

//END
% SCM0405 SSCM NORMALLY TERMINATED

/LOAD-LOCAL-SUBSYSTEM-CATALOG CATALOG-NAME=MEIN.KATALOG ——————————————— (5)
% ESM0254 COMMAND 'LOAD-LOCAL-SUBSYSTEM-CATALOG' COMPLETELY PROCESSED
/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=*ALL ———————————————————————————— (6)
% LOCAL SUBSYSTEM INIT /V13.0 IS NOT CREATED
% LOCAL SUBSYSTEM SDF-A /V04.0 IS NOT CREATED
% SUBSYSTEM INIT /V14.0 IS CREATED
% SUBSYSTEM SSCM /V02.3 IS CREATED
% SUBSYSTEM SDF-A /V04.1 IS CREATED
/START-SDF-A —— (7)
% BLS0517 MODULE 'SDF-A' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//END

U23166-J-Z125-3-76 171

DSSM Examples

/START-LOCAL-SUBSYSTEM SUBSYSTEM-NAME=SDF-A,VERSION=04.0 —————————————— (8)
% ESM0220 FUNCTION 'CREATE' FOR SUBSYSTEM 'SDF-A /04.0' COMPLETELY

PROCESSED

/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=*ALL ———————————————————————————— (9)
LOCAL SUBSYSTEM INIT /V13.0 IS NOT CREATED
LOCAL SUBSYSTEM SDF-A /V04.0 IS CREATED
% SUBSYSTEM INIT /V14.0 IS CREATED
% SUBSYSTEM SSCM /V02.3 IS CREATED
% SUBSYSTEM SDF-A /V04.1 IS CREATED
/START-SDF-A —— (10)
% BLS0517 MODULE 'SDF-A' LOADED
% SDA0001 'SDF-A' VERSION '04.0A00' STARTED
//END
/SELECT-PRODUCT-VERSION PRODUCT-NAME=SDF-A,VERSION=04.1,-

SCOPE=*PROGRAM ——— (11)
/START-SDF-A —— (12)
% BLS0517 MODULE 'SDF-A' LOADED
% SCM5000 PROGRAM SDF-A VERSION V04.1E10 STARTED
//END
% SCM0405 SDF-A NORMALLY TERMINATED
/STOP-LOCAL-SUBSYSTEM SUBSYSTEM-NAME=SDF-A,VERSION=04.0 ——————————————— (13)
% ESM0220 FUNCTION 'DELETE' FOR SUBSYSTEM 'SDF-A /04.0' COMPLETELY

PROCESSED
/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=*ALL ———————————————————————————— (14)
% LOCAL SUBSYSTEM INIT /V13.0 IS NOT CREATED
% LOCAL SUBSYSTEM SDF-A /V04.0 IS NOT CREATED
% SUBSYSTEM INIT /V14.0 IS CREATED
% SUBSYSTEM SSCM /V02.3 IS CREATED
% SUBSYSTEM SDF-A /V04.1 IS CREATED
/START-SDF-A —— (15)
% BLS0517 MODULE 'SDF-A' LOADED
% SDA0001 'SDF-A' VERSION '04.1E10' STARTED
//END
/SELECT-PRODUCT-VERSION PRODUCT-NAME=SDF-A,VERSION=04.0, -

SCOPE=*PROGRAM ——— (16)
/START-SDF-A —— (17)
% BLS0334 SYMBOL 'SDF-A' CANNOT BE FOUND. LOADING ABORTED
% NRTT101 ABNORMAL JOBSTEP TERMINATION BLS0532
/UNLOAD-LOCAL-SUBSYSTEM-CATALOG ——————————————————————————————————————— (18)
% ESM0254 COMMAND 'UNLOAD-LOCAL-SUBSYSTEM-CATALOG' COMPLETELY PROCESSED
/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=*ALL ———————————————————————————— (19)
% SUBSYSTEM INIT /V14.0 IS CREATED
% SUBSYSTEM SSCM /V02.3 IS CREATED
% SUBSYSTEM SDF-A /V04.1 IS CREATED

172 U23166-J-Z125-3-76

Examples DSSM

(1) The SSCM catalog manager is called.

(2) A local subsystem catalog with the name MY.CATALOG is created.
The subsystems SDF-A V04.0 and INIT V13.0 are added as local subsystems.

(3) The local catalog is then checked to confirm the compatibility and consistency of the
two local subsystems. The check reveals no errors.

(4) The local catalog MY.CATALOG is stored and SSCM is terminated.

(5) The local catalog MY.CATALOG is loaded in the user address space.

(6) From this point on, the local subsystems (as well as the global subsystems) can be
displayed and/or - if requested - output in an S variable.
The two local subsystems SDF-A V4.0 and INIT V13.0 are stored in the local
catalog but have the status NOT-CREATED because they have not yet been
activated.
The three subsystems listed are currently available in the global subsystem catalog.

(7) For example, if a START-SDF-A command is issued, it calls the global subsystem
SDF-A V4.1 and not the local subsystem with V4.0.
The subsystem SDF-A V4.1 is terminated without executing any statements.

(8) The local subsystem SDF-A V4.0 is activated.

(9) The display shows that the subsystem now has the status CREATED.

(10) When START-SDF-A is called, the local subsystem version has priority over the
global subsystem.

(11) The priority of the different subsystems is modified in favor of the global subsystem
SDF-A V4.1.

(12) The START-SDF-A command again calls the global subsystem SDF-A V4.1.

(13) The local subsystem SDF-A is deactivated.

(14) Both local subsystems are deactivated.

(15) When START-SDF-A is called, only the global subsystem can be started.

(16) The priority of the different subsystems is modified in favor of the local subsystem
SDF-A V4.0.

(17) hen START-SDF-A is called, this version cannot be found (it does not have the status
CREATED).

(18) The local subsystem catalog is unloaded.

(19) The display no longer shows any local subsystems.

U23166-J-Z125-3-76 173

DSSM Examples

3.9.2 Output in an S variable

This example illustrates output in S variables as a function of the privileges of the caller. It
does not represent a situation lifted from actual practice; it is rather an artificial, simplified
example designed specially to show the principles involved.

The following privileges exist:

a) The caller has only the privilege STD-PROCESSING

b) The caller has the privileges STD-PROCESSING and SUBSYSTEM-MANAGEMENT
or OPERATING

c) The caller does not have the privilege STD-PROCESSING, but does have at least one of
the privileges SUBSYSTEM-MANAGEMENT and OPERATING

The following configuration exists:

– the local subsystem AA V04.5 has the status CREATED

– the global nonprivileged subsystem AA V04.6 has the status CREATED;
one task is connected (TID=00010054, TSN=0123)

– the global, privileged subsystem XX V01.0 has the status CREATED:
one task is connected (TID=0002006F, TSN=0BFC)

– the global, privileged subsystem XX V02.0 has the status IN-DELETE:
two tasks are connected (TID=00070015, TSN=0CMM and TID=00010057,
TSN=00AP)

A compound variable of the type “list” with the name DATA is declared and assigned to the
S variable stream SYSINF.

/DECLARE-VARIABLE VAR-NAME=DATA(TYPE=*STRUCTURE),
MULTIPLE-ELEMENTS=*LIST
/ASSIGN-STREAM STREAM-NAME=SYSINF,TO=*VAT(VAR-NAME=DATA)
/SHOW-STREAM-ASSIGNMENT

STREAM-NAME = SYSINF
 ASSIGN-LEVEL = 0
 DESTINATION = *VARIABLE
 VARIABLE-NAME = DATA
 VAR-MODE = *EXTEND
 RETURN-VARIABLE-NAME = *NONE
 CONTROL-VAR-NAME = *NONE
 RET-CONTROL-VAR-NAME = *NONE
 STREAM-NAME = SYSMSG
 :

174 U23166-J-Z125-3-76

Examples DSSM

a) The caller has only the privilege STD-PROCESSING

/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=*ALL ———————————————————————————— (1)
% LOCAL SUBSYSTEM AA /V04.5 IS CREATED
% SUBSYSTEM AA /V04.6 IS CREATED
/SHOW-VAR DATA —— (2)

:
DATA(*LIST).SUBSYS-TYPE='*LOC'
DATA(*LIST).SUBSYS-NAME='AA'
DATA(*LIST).SUBSYS-VERSION='04.5'
DATA(*LIST).SUBSYS-STA='*CREATED'
DATA(*LIST).SUBSYS-TYPE='*GLB'
DATA(*LIST).SUBSYS-NAME='AA'
DATA(*LIST).SUBSYS-VERSION='04.6'
DATA(*LIST).SUBSYS-STA='*CREATED'

/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=AA —————————————————————————————— (3)
% LOCAL SUBSYSTEM AA /V04.5 IS CREATED
% SUBSYSTEM AA /V04.6 IS CREATED
/SHOW-VAR DATA —— (4)

:
DATA(*LIST).SUBSYS-TYPE='*LOC'
DATA(*LIST).SUBSYS-NAME='AA'
DATA(*LIST).SUBSYS-VERSION='04.5'
DATA(*LIST).SUBSYS-STA='*CREATED'
DATA(*LIST).SUBSYS-TYPE='*GLB'
DATA(*LIST).SUBSYS-NAME='AA'
DATA(*LIST).SUBSYS-VERSION='04.6'
DATA(*LIST).SUBSYS-STA='*CREATED'

(1) The names, versions and statuses of all global, nonprivileged subsystems and of all
local subsystems are output to SYSOUT.
In our specially constructed example, only the global subsystem AA is nonprivi-
leged. It is output - together with the local subsystem AA.

(2) Output in the S variable DATA explicitly contains the subsystem type “global” or
“local”.

(3) The restriction concerning output to subsystem AA does not result in any changes
in the output to SYSOUT, in contrast to (1).

(4) The restriction concerning output to subsystem AA does not result in any changes
in the output to the S variable DATA in contrast to (2).

U23166-J-Z125-3-76 175

DSSM Examples

b) The caller has the privileges STD-PROCESSING and SUBSYSTEM-MANAGEMENT
and/or OPERATING

/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=*ALL ———————————————————————————— (5)
% LOCAL SUBSYSTEM AA /V04.5 IS CREATED
% SUBSYSTEM AA /V04.6 IS CREATED
% SUBSYSTEM XX /V01.0 IS CREATED
% SUBSYSTEM XX /V02.0 IS IN DELETE / WAIT-DISCON
/SHOW-VAR DATA —— (6)

:
DATA(*LIST).SUBSYS-TYPE='*LOC'
DATA(*LIST).SUBSYS-NAME='AA'
DATA(*LIST).SUBSYS-VERSION='04.5'
DATA(*LIST).SUBSYS-STA='*CREATED'
DATA(*LIST).SUBSYS-TYPE='*GLB'
DATA(*LIST).SUBSYS-NAME='AA'
DATA(*LIST).SUBSYS-VERSION='04.6'
DATA(*LIST).SUBSYS-STA='*CREATED'
DATA(*LIST).SUBSYS-TYPE='*GLB'
DATA(*LIST).SUBSYS-NAME='XX'
DATA(*LIST).SUBSYS-VERSION='01.0'
DATA(*LIST).SUBSYS-STA='*CREATED'
DATA(*LIST).SUBSYS-TYPE='*GLB'
DATA(*LIST).SUBSYS-NAME='XX'
DATA(*LIST).SUBSYS-VERSION='02.0'
DATA(*LIST).SUBSYS-STA='*IN-DELETE'
DATA(*LIST).SUBSYS-INT-STA='WAIT-DISCON'

/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=AA —————————————————————————————— (7)
% LOCAL SUBSYSTEM AA /V04.5 IS CREATED
% SUBSYSTEM AA /V04.6 IS USED BY 1 TASK
% TASKID 00010054
% TSN 0123
% 4 CONNECTIONS SINCE STARTUP
/SHOW-VAR DATA —— (8)

:
DATA(*LIST).SUBSYS-TYPE='*LOC'
DATA(*LIST).SUBSYS-NAME='AA'
DATA(*LIST).SUBSYS-VERSION='04.5'
DATA(*LIST).SUBSYS-STA='*CREATED'
DATA(*LIST).SUBSYS-TYPE='*GLB'
DATA(*LIST).SUBSYS-NAME='AA'
DATA(*LIST).SUBSYS-VERSION='04.6'
DATA(*LIST).SUBSYS-STA='*CREATED'
DATA(*LIST).CONN-NUM-SINCE-START=4
DATA(*LIST).USED-TASK-LIST(*LIST).TID='00010054'
DATA(*LIST).USED-TASK-LIST(*LIST).TSN='0123'

176 U23166-J-Z125-3-76

Examples DSSM

(5) The names, versions and statuses of all global and local subsystems are output to
SYSOUT. In other words, information is provided on all subsystems loaded in the
current system.
In our specially constructed example, this refers to the global subsystems XX (privi-
leged, two versions) and AA (nonprivileged) and to the local subsystem AA.

(6) Output in the S variable DATA explicitly contains the subsystem type “global” or
“local”.

(7) The restriction affecting the output to subsystem AA does not result in any changes
as compared with (1): any tasks connected to a subsystem are shown together with
their TSN and TID. The total number of tasks connected to this subsystem since
startup is likewise output to SYSOUT.

(8) Output from the subsystems AA in the S variable DATA contains the same
information as in the output to SYSOUT, as well as additional information
concerning the subsystem type “global” or “local”.

c) The caller does not have the privilege STD-PROCESSING but does have one of the privi-
leges SUBSYSTEM-MANAGEMENT or OPERATING

/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=*ALL ———————————————————————————— (9)
% SUBSYSTEM AA /V04.6 IS CREATED
% SUBSYSTEM XX /V01.0 IS CREATED
% SUBSYSTEM XX /V02.0 IS IN DELETE / WAIT-CLS-CTRL
/SHOW-VAR DATA —— (10)

:
DATA(*LIST).SUBSYS-TYPE='*GLB'
DATA(*LIST).SUBSYS-NAME='AA'
DATA(*LIST).SUBSYS-VERSION='04.6'
DATA(*LIST).SUBSYS-STA='*CREATED'
DATA(*LIST).SUBSYS-TYPE='*GLB'
DATA(*LIST).SUBSYS-NAME='XX'
DATA(*LIST).SUBSYS-VERSION='01.0'
DATA(*LIST).SUBSYS-STA='*CREATED'
DATA(*LIST).SUBSYS-TYPE='*GLB'
DATA(*LIST).SUBSYS-NAME='XX'
DATA(*LIST).SUBSYS-VERSION='02.0'
DATA(*LIST).SUBSYS-STA='*IN-DELETE'
DATA(*LIST).SUBSYS-INT-STA='WAIT-CLS-CTRL'

U23166-J-Z125-3-76 177

DSSM Examples

/SHOW-SUBSYSTEM-STATUS SUBSYSTEM-NAME=XX —————————————————————————————— (11)
% SUBSYSTEM XX /V0.0 IS USED BY 1 TASK
% TASKID 0002006F
% TSN 0BFC
% 7 CONNECTIONS SINCE STARTUP
% SUBSYSTEM XX /V02.0 IS USED BY 2 TASKS
% TASKID 00070015 00010057
% TSN 0CMM 0OAP
% IS IN DELETE / WAIT-DISCON
% 12 CONNECTIONS SINCE STARTUP
/SHOW-VAR DATA —— (12)

:
DATA(*LIST).SUBSYS-TYPE='*GLB'
DATA(*LIST).SUBSYS-NAME='XX'
DATA(*LIST).SUBSYS-VERSION='01.0'
DATA(*LIST).SUBSYS-STA='*CREATED'
DATA(*LIST).CONN-NUM-SINCE-START=7
DATA(*LIST).USED-TASK-LIST(1).TID='0002006F'
DATA(*LIST).USED-TASK-LIST(1).TSN='0BFC'
DATA(*LIST).SUBSYS-TYPE='*GLB'
DATA(*LIST).SUBSYS-NAME='XX'
DATA(*LIST).SUBSYS-VERSION='02.0'
DATA(*LIST).SUBSYS-STA='*IN-DELETE'
DATA(*LIST).SUBSYS-INT-STA='WAIT-DISCON'
DATA(*LIST).CONN-NUM-SINCE-START=12
DATA(*LIST).USED-TASK-LIST(*LIST).TID='00070015'
DATA(*LIST).USED-TASK-LIST(*LIST).TSN='0CMM'
DATA(*LIST).USED-TASK-LIST(*LIST).TID='00010057'
DATA(*LIST).USED-TASK-LIST(*LIST).TSN='0OAP'

(9) The names, versions and statuses of all global subsystems are output to SYSOUT.
In our specially constructed example, this refers to the global subsystems XX (privi-
leged, two versions) and AA (nonprivileged).

(10) Output in the S variable DATA contains the same information as in output to
SYSOUT.

(11) The restriction concerning output to the subsystem XX produces the following
changes as compared with (9): any tasks connected to a subsystem are displayed
with their TSN and TID. The total number of tasks connected to this subsystem
since startup is likewise output to SYSOUT.

(12) Output from the subsystems XX in the S variable DATA contains the same
information as in output to SYSOUT, with the addition of information concerning the
subsystem type “global”.

178 U23166-J-Z125-3-76

Examples DSSM

U23166-J-Z125-3-76 179

4 SSCM
The subsystem SSCM (Static Subsystem Catalog Manager) ensures flexible, user-friendly
management of the static subsystem catalogs (SSMCAT).

SSCM V2.3 is available as of BS2000/OSD-BC V3.0 and for working as of DSSM V3.8.

For the procedure for installing SSCM V2.3, see page 289; for information on the
coexistence of SSCM versions, see page 289, and for information on version dependencies
between SSCM, DSSM and BS2000/OSD, see page 28.

4.1 Generating a subsystem catalog

The subsystem catalog which is to be created must be placed on the home pubset and
stored under the TSOS user ID. The catalog may be given any name desired, and the name
can be declared to the system by means of the parameter service (see page 65).

The program provided for generating a subsystem catalog is SSCM.

The diagram on the following page shows the procedure for generating a subsystem
catalog.

180 U23166-J-Z125-3-76

Generating a subsystem catalog SSCM

Figure 1: Generating a subsystem catalog

START-SSCM

START-CATALOG-CREATION START-SSD-CREATIONSTART-CATALOG-MODIFICATION

SSMCAT

SSMCAT

SYSSSC

SET-SUBSYSTEM-ATTRIBUTES SET-SUBSYSTEM-ATTRIBUTES

SET-SUBSYSTEM-ATTRIBUTES

MODIFY-SUBSYSTEM-ATTRIBUTES

ADD-CATALOG-ENTRY

SEPARATE-ADDRESS-SPACE

ASSIGN-HOLDER-TASK

SHOW-CATALOG

CHECK-CATALOG

SAVE-CATALOG

END

ADD-CATALOG-ENTRY

MODIFY-SUBSYSTEM-ATTRIBUTES

SEPARATE-ADDRESS-SPACE

ADD-SUBSYSTEM-ENTRIES

ASSIGN-HOLDER-TASK

SHOW-SSD

SAVE-SSD

OUTPUT

INPUT

INPUT OUTPUT

U23166-J-Z125-3-76 181

SSCM Starting and terminating

4.2 Starting and terminating SSCM

To start the SSCM program, use the START-SSCM command.

You can also call up SSCM using the abbreviation SSCM.

The message file for SSCM ($TSOS.SYSMES.SSCM.023) is activated and the SSCM link
load module in the SYSLNK.SSCM.023 module library is loaded (message BLS0517).

To terminate SSCM, use the END statement.

Monitoring programs by means of monitoring job variables

A job variable which is to be used to monitor a program must be declared in the START-SSCM
command with MONJV=<jv-name>.

SSCM can set the monitoring variable to the following values:

For details of program monitoring by means of monitoring job variables refer also to the
“Commands Volume 1-5” [19] and “Job Variables” [18] manuals.

Monitoring by means of task switches

If a statement is abnormally terminated by SSCM, task switch 31 is activated.

If task switch 1 is activated, SDF will merely execute a syntax check.

START-SSCM

MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767>

‘$T0000‘

‘$T1010‘

‘$A2010‘

‘$A2015‘

‘$A3020‘

The program terminated normally.
Statement rejected; execution of the program will be continued.
Statement rejected; the program has been terminated.
Unexpected EOF on SYSDTA; the program has been terminated.
SSCM-internal error; the program is being terminated.

182 U23166-J-Z125-3-76

The SSCM statements SSCM

4.3 The SSCM statements

SSCM is offered with an SDF interface for the user interface. This gives the SSCM user all
the functions and advantages offered by SDF - guided dialog, help texts for operands, the
use of default values.

The SDF syntax representation of the commands is explained in section “SDF syntax
representation” on page 5.

The following SSCM statements are available to (sub)system administration:

Table 13: SSCM statements

Command Meaning Page

ADD-CATALOG-ENTRY Add subsystem definition(s) to subsystem
catalog

183

ADD-SUBSYSTEM-ENTRIES Define additional job entry points 186

ASSIGN-HOLDER-TASK Distribute subsystems to holder tasks 193

CHECK-CATALOG Check subsystem definition(s) for consistency 196

GENERATE-CATALOG-SOURCE Create SSCM statement list for generation 198

MODIFY-SUBSYSTEM-ATTRIBUTES Modify subsystem attributes 200

MODIFY-WORK-TASK-ATTRIBUTE Modify work task parameters 233

REMOVE-ADDR-SPACE-SEPARATION Revoke disjunctive distribution of subsystems in
class 5 memory

235

REMOVE-CATALOG-ENTRY Logically delete definition of subsystem from
subsystem catalog

237

SAVE-CATALOG Save subsystem catalog as PAM file 238

SAVE-SSD Terminate subsystem definition(s) 240

SEPARATE-ADDRESS-SPACE Control disjunctive distribution of subsystems in
class 5 memory

241

SET-SUBSYSTEM-ATTRIBUTES Define attributes and entry points of subsystem 243

SHOW-CATALOG Show subsystem configuration 273

SHOW-SSD Show contents of SSD object (subsystem defini-
tions)

280

START-CATALOG-CREATION Define name of static subsystem catalog 285

START-CATALOG-MODIFICATION Modify static subsystem catalog 286

START-SSD-CREATION Generate SSD object for adding subsystem
definitions

287

U23166-J-Z125-3-76 183

SSCM ADD-CATALOG-ENTRY

ADD-CATALOG-ENTRY
Add subsystem definition(s) to subsystem catalog

Function

This statement copies the definition of new subsystems, which are held in an SSD object,
into the subsystem catalog which is currently open.

This statement will be rejected if the catalog into which the definitions are to be integrated
is not currently open as a result of a START-CATALOG-CREATION or START-CATALOG-
MODIFICATION statement. Any definition for a subsystem which is already contained in the
open catalog will be ignored; processing will continue, however, after output of a corre-
sponding message.

Format

Operands

FROM-FILE = <filename 1..54>
Name of the file in which to search for the subsystem definition(s). This file must be an SSD
object generated by SSCM of type ISAM, in which the attributes of one or more subsystems
are stored.

INSTALLATION-USERID =
Specifies a user ID under which the subsystem satellites (REP file, object module library,
message file, syntax file and subsystem information file) are expected, in cases where
these files have not already been assigned to a user ID.

ADD-CATALOG-ENTRY

FROM-FILE = <filename 1..54>

,INSTALLATION-USERID = *UNCHANGED / *DEFAULT-USERID / <name 1..8>

,CORRECTION-STATE = *UNCHANGED / <c-string 3..3> / <text 3..3>

184 U23166-J-Z125-3-76

ADD-CATALOG-ENTRY SSCM

INSTALLATION-USERID = *UNCHANGED
Default value: the files are expected under the user ID specified in the subsystem definition
(SET-SUBSYSTEM-ATTRIBUTES statement, page 243).

INSTALLATION-USERID = *DEFAULT-USERID
The files are expected under the system’s default user ID (prefix “$.”).

INSTALLATION-USERID = <name 1..8>
User ID under which the files are expected. If a different ID was specified in the SET-
SUBSYSTEM-ATTRIBUTES statement for an SSD object, it will be overwritten.

CORRECTION-STATE =
Replaces in the catalog the last three characters of the subsystem version from the SSD
file; these characters indicate the release and correction states of the subsystem version.
If the subsystem version in the SSD file consists of four characters, the three characters
specified for CORRECTION-STATE are chained with them.

CORRECTION-STATE = *UNCHANGED
Default value: the release and correction states remain unchanged.

CORRECTION-STATE = <text 3..3>
Specifies the release and correction states in the format: ann, in which the text elements
have the following meanings:

CORRECTION-STATE = <c-string 3..3>
Specifies the release and correction states as a character string in the format: ann;
for the meanings of the text elements, see CORRECTION-STATE=<text 3..3>.

Notes

� If a subsystem definition contains file names without a user ID and if no installation ID
is specified, the relevant DSSM task searches for the files under the user ID TSOS or,
in the case of a local subsystem, under the user ID of the calling task.
If the files are stored under a different user ID, this ID must be specified in the
INSTALLATION-USERID operand of one of the commands ADD-CATALOG-ENTRY, SET-
SUBSYSTEM-ATTRIBUTES or MODIFY-SUBSYSTEM-ATTRIBUTES.

� If an SSD object containing multiple subsystem definitions is specified in the FROM-FILE
operand, the release and correction states of all the subsystems defined in this SSD
object will be affected by the value of the CORRECTION-STATE and INSTALLATION-
USERID operands.

a
nn

Release state; alphabetic character
Correction state; numeric characters

U23166-J-Z125-3-76 185

SSCM ADD-CATALOG-ENTRY

� The file names of a subsystem are not changed if the release and correction states are
specified. Users wishing to change these names must use the MODIFY-SUBSYSTEM-
ATTRIBUTES statement to do so.

� If the CORRECTION-STATE operand is specified, a version check for mutually dependent
subsystems or for subsystems which have address relations with one another may
result in a CHECK-CATALOG error. This can be avoided by specifying suitable entries in
MODIFY-SUBSYSTEM-ATTRIBUTES MODIFY-REFER-SUBS=..., MODIFY-RELATED-
SUBS=....

186 U23166-J-Z125-3-76

ADD-SUBSYSTEM-ENTRIES SSCM

ADD-SUBSYSTEM-ENTRIES
Define additional job entry points

Function

This statement can be used to define further job entry points for a subsystem in an object
module file (SSD object) in addition to those already specified in SET-SUBSYSTEM-
ATTRIBUTES, even exceeding the maximum permitted number of 100.

Each ADD-SUBSYSTEM-ENTRIES statement (which can be executed repeatedly for one and
the same subsystem) can be used to define up to 100 additional job entry points for a single
subsystem.

ADD-SUBSYSTEM-ENTRIES is rejected if no START-SSD-CREATION statement was executed
beforehand.

The statement is rejected if the specified subsystem was defined with the SET-SUBSYSTEM-
ATTRIBUTES or the MODIFY-SUBSYSTEM-ATTRIBUTES statement with entry points that are
to be supplied dynamically (*BY-PROGRAM(...)).

Execution of the statement is aborted
– if the subsystem specified by TO-SUBSYSTEM and VERSION is not found in the current

SSD object or
– if an existing job entry point is to be defined a second time.
An error message is issued.

U23166-J-Z125-3-76 187

SSCM ADD-SUBSYSTEM-ENTRIES

Format

ADD-SUBSYSTEM-ENTRIES

TO-SUBSYSTEM = <structured-name 1..8>(...)

<structured-name 1..8>(...)

 VERSION = <c-string 3..8> / <text 3..8> “

,SUBSYSTEM-ENTRIES = list-poss(100): <text 1..8>(...)

<text 1..8>(...)

 MODE = *LINK / *ISL(...) / *SVC(...) / *SYSTEM-EXIT(...)
 *ISL(...)
  FUNCTION-NUMBER = *NONE / <integer 0..255>(...)
   <integer 0..255>(...)
    FUNCTION-VERSION = <integer 1..255>

 *SVC(...)
  NUMBER = <integer 0..255>
   ,CALL-BY-SYSTEM-EXIT = *ALLOWED / *FORBIDDEN
   ,FUNCTION-NUMBER = *NONE / <integer 0..255>(...)
   <integer 0..255>(...)
    FUNCTION-VERSION = <integer 1..255>
 *SYSTEM-EXIT(...)
  NUMBER = <integer 0..127>
 ,CONNECTION-ACCESS = *ALL / *SYSTEM / *SIH
 ,CONNECTION-SCOPE = *TASK / *PROGRAM / *FREE / *CALL / *OPTIMAL
 , FIRST-CONNECTION = *ALLOWED / *FORBIDDEN

188 U23166-J-Z125-3-76

ADD-SUBSYSTEM-ENTRIES SSCM

Operands

TO-SUBSYSTEM = <structured-name 1..8>(...)
Specifies the name and version of the subsystem for which additional job entry points are
to be defined.

VERSION = <c-string 3..8> / <text 3..8>
Specifies the version of the subsystem in the format “[V][n]n.m[ann]”. The text elements
have the following meanings:

SUBSYSTEM-ENTRIES =
Declares additional entry points (job entry points) which are to be associated with the
subsystem. Up to 100 job entry points can be defined per statement.

SUBSYSTEM-ENTRIES = list-poss(100): <text 1..8>
Specifies up to 100 job entry points by name; the type of each entry point must be defined
in the substructures.

MODE =
Defines the type of a job entry which is defined for the subsystem.

MODE = *LINK
Default value: the job entry cannot be accessed by indirect linkage, but only by using a
CONNECT relation through an external linkage editor symbol.
In the case of different versions of the same subsystem which use the same external
linkage editor symbol, DSSM automatically sets up a link to the highest loaded version
of the subsystem.

MODE = *ISL(...)
The job entry is implemented by indirect linkage via System Procedure Linkage (for
privileged subsystems only). If the specification includes in addition a function and
version number for the ISL entry point, the combination of entry point name, function
and version numbers must not match any other combination for the various other
subsystems in the catalog or the various versions of the same subsystem (if VERSION-
COEXISTENCE=*ALLOWED is specified, see the SET-SUBSYSTEM-ATTRIBUTES
statement).
For different subsystems, if the job entry is to be accessed by the same ISL entry point,
they must be uniquely identified by specifying the function and version numbers.
In the case of different versions of the same subsystem which use the same ISL entry
point, then - if the function and version numbers are not specified - DSSM will automat-
ically set up a connection to the highest loaded version of the subsystem.

nn
m
ann

= Main version (numeric)
= Revision version (numeric)
= Update status

(a=letter, release status; nn=numeric, correction status)

U23166-J-Z125-3-76 189

SSCM ADD-SUBSYSTEM-ENTRIES

In the case of different versions of the same subsystem which use the same ISL entry
point and for which the function and version numbers are not equal to *NONE, the
version to which the connection is set up will be selected in accordance with the function
and version numbers stored in the standard header of the caller’s parameter list.
The specification CONNECTION-ACCESS=*ALL (see the SET-SUBSYSTEM-ATTRIBUTES
statement) is not permissible for ISL entry points.

FUNCTION-NUMBER =
Specifies whether a particular function and version number of the ISL entry point is
to be addressed, because the same ISL entry point can be used by different
functions.

FUNCTION-NUMBER = *NONE
Default value: no particular function or version number is to be addressed.

FUNCTION-NUMBER = <integer 0..255>(...)
Number of the ISL entry point. The version must be nominated in the substructure
which follows.

FUNCTION-VERSION = <integer 1..255>
Version of the specified ISL function number.

MODE = *SVC(...)
Job entry is to be effected by an indirect connection using a supervisor call (SVC).
If the specification includes in addition a function and version number for the SVC entry
point, the combination of entry point name, function and version numbers must not
match any other combination for the various other subsystems in the catalog or the
various versions of the same subsystem (if VERSION-COEXISTENCE=*ALLOWED is
specified, see the SET-SUBSYSTEM-ATTRIBUTES statement).
For different subsystems, if the job entry is to be accessed by the same SVC, they must
be uniquely identified by specifying the function and version numbers.
In the case of different versions of the same subsystem which use the same SVC, then
- if the function and version numbers are not specified - DSSM will automatically set up
a connection to the highest loaded version of the subsystem.
In the case of different versions of the same subsystem which use the same SVC and
for which the function and version numbers are not equal to *NONE, the version to which
the connection is set up will be selected in accordance with the function and version
numbers stored in the standard header of the caller’s parameter list.
If this operand value is specified, it is better to set the operand CONNECTION-ACCESS
to the value *SYSTEM, instead of *ALL (see the SET-SUBSYSTEM-ATTRIBUTES
statement).

190 U23166-J-Z125-3-76

ADD-SUBSYSTEM-ENTRIES SSCM

NUMBER = <integer 0..255>
Number of the SVC via which job entry is to be effected. No SVC number greater
than 191 may be used in conjunction with CONNECTION-ACCESS=*ALL (see the
SET-SUBSYSTEM-ATTRIBUTES statement).

CALL-BY-SYSTEM-EXIT =
Defines whether the specified SVC number may be called from within system exit
routines.

CALL-BY-SYSTEM-EXIT = *ALLOWED
Default value: system exit routines are permitted to call the specified SVC number.

CALL-BY-SYSTEM-EXIT = *FORBIDDEN
System exit routines are not permitted to call the specified SVC number.

FUNCTION-NUMBER =
Specifies whether a particular function and version number of the SVC entry point
is to be addressed, because the same SVC entry point can be used by different
functions.

FUNCTION-NUMBER = *NONE
Default value: no particular function or version number is to be addressed.

FUNCTION-NUMBER = <integer 0..255>(...)
The number of an SVC entry point. The version must be nominated in the
substructure which follows.

FUNCTION-VERSION = <integer 1..255>
Version of the specified SVC function number.

MODE = SYSTEM-EXIT(...)
Job entry is to be effected by an indirect connection using system exit routines.
This operand must not be used in conjunction with CONNECTION-ACCESS=*ALL (see
the SET-SUBSYSTEM-ATTRIBUTES statement).

NUMBER = <integer 0..127>
Number of the system exit routine.

CONNECTION-ACCESS =
Specifies the access authorization (privileges) required by the subsystem.

CONNECTION-ACCESS = *ALL
Default value: privileged and nonprivileged program runs may access the subsystem.
This operand value must not be used in conjunction with MODE=*SYSTEM-
EXIT/*ISL/*SVC (with an SVC number greater than 191; see the SET-SUBSYSTEM-
ATTRIBUTES statement).

CONNECTION-ACCESS = *SYSTEM
Only privileged program runs may access the subsystem.

U23166-J-Z125-3-76 191

SSCM ADD-SUBSYSTEM-ENTRIES

CONNECTION-ACCESS = *SIH
Only tasks running in the SIH processor state may access the subsystem.
The subsystem called also runs in the SIH processor state, i.e. it is uninterruptible.
This operand value is permissible only for subsystems for which the entry point is
defined via:
– System Procedure Linkage (MODE=*ISL(FUNCTION-NUMBER=*NONE))
– CONNECTION-SCOPE=*OPTIMAL
– MEMORY-CLASS=*SYSTEM-GLOBAL(SUBSYSTEM-ACCESS=*SYSTEM)

CONNECTION-SCOPE =
Identifies the event which will call up the automatic cleardown of the connection to the
specified subsystem job entry point.

CONNECTION-SCOPE = *TASK
Default value: the connection will be cleared when the task terminates.

CONNECTION-SCOPE = *PROGRAM
The connection will be cleared when the program terminates, or before.
Only CONNECTION-SCOPE=*PROGRAM may be specified in conjunction with MEMORY-
CLASS=*LOCAL-UNPRIVILEGED (see the SET-SUBSYSTEM-ATTRIBUTES statement).
This operand value is recommended for subsystems which were declared with
SUBSYSTEM-ACCESS=*LOW/*HIGH.

CONNECTION-SCOPE = *FREE
DSSM is not to carry out any checking of the connections to the job entry point. The
connection will not be automatically cleared - unless explicitly requested. To avoid
problems or possible errors when the subsystem is being unloaded, the connections
must be managed by the subsystem itself.

CONNECTION-SCOPE = *CALL
On return from this job entry point, DSSM will automatically clear the connections.
This operand value is only available with subsystems for which the job entry is defined
by means of System Procedure Linkage (ISL) or supervisor calls (SVC).

CONNECTION-SCOPE = *OPTIMAL
The subsystem is deactivated or suspended when there are no further tasks with a
connection to this job entry point.
A routine with an entry point defined with *OPTIMAL must be terminated with RETURN.
If an entry point of a subsystem is defined with CONNECTION-SCOPE=*OPTIMAL, all of
its entry points should be defined in the subsystem catalog with MODE≠*LINK.
While a subsystem is deactivated or suspended, no call of the subsystem with
CONNECTION-SCOPE=*OPTIMAL is accepted.
Exception: if the subsystem was defined with CREATION-TIME=*AT-SUBSYSTEM-CALL
and the calling task is already connected to the subsystem (see the SET-SUBSYSTEM-
ATTRIBUTES statement).

192 U23166-J-Z125-3-76

ADD-SUBSYSTEM-ENTRIES SSCM

FIRST-CONNECTION =
Determines whether or not first connection of the task to the specified job entry point in
the subsystem is allowed. At least one job entry point of a subsystem must be defined
with FIRST-CONNECTION=*ALLOWED.

FIRST-CONNECTION = *ALLOWED
Default setting: first connection to the specified job entry point is allowed.

FIRST-CONNECTION = *FORBIDDEN
Connection to the specified job entry point via SVC or ISL is not allowed if the task has
not yet been connected to another job entry point belonging to the subsystem.
It is not permitted to specify this operand value for job entry points that have been
defined with MODE=*LINK/*SYSTEM-EXIT or CONNECTION-ACCESS=*SIH.

U23166-J-Z125-3-76 193

SSCM ASSIGN-HOLDER-TASK

ASSIGN-HOLDER-TASK
Distribute subsystems to holder tasks

Function

This statement is used to control the distribution of subsystems to holder tasks. The
subsystems listed in the statement can use the holder task as a work task, or will be set up
together in a holder task. If this statement is omitted when creating a catalog, SSCM will
make a standard assignment of the subsystems in order to limit the number of holder tasks.

This statement is mandatory for subsystems which use the holder task as a work task.

In order to become a work task, the entry points of the subsystem must be defined with one
of the following combinations:

The statement may only be used once for an SSD object. If there are two consecutive state-
ments for the same subsystem and there is a conflict (i.e. contradictory declarations), the
definition which requires the holder task to be used as a work task will take precedence.
A declaration referring to a shared holder task applies to every version of the subsystem,
except for any versions which use the holder task as a work task.

ASSIGN-HOLDER-TASK is rejected if none of the following statements has been executed
beforehand:

– START-SSD-CREATION
– START-CATALOG-CREATION
– START-CATALOG-MODIFICATION

CLOSE-CTRL STOPCOM DEINIT

*DYNAMIC *DYNAMIC *DYNAMIC

*DYNAMIC *NO *DYNAMIC

*NO *DYNAMIC *DYNAMIC *

* For compatibility reasons it is not obligatory to define a DEINIT routine
for a subsystem without a CLOSE-CTRL routine. It should be noted,
however, that no guarantee can be given for correct execution of the
subsystem in such a case.

*NO *NO *DYNAMIC *

194 U23166-J-Z125-3-76

ASSIGN-HOLDER-TASK SSCM

Format

Operands

TYPE =
Specifies whether the holder task is to be used as a work task or the subsystem is to be
created in a shared holder task.

TYPE = *WORK-TASK(...)
Default value: the holder task is to be used as a work task.

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem which is to use the holder task as a work task.

SUBSYSTEM-VERSION = <c-string 3..8> / <text 3..8>
Version of the subsystem which is to use the holder task as a work task.
This version must have been declared previously.

TSN =
Specifies the task sequence number (TSN) to be given to the subsystem’s work task.

TSN = *BY-DSSM
Default value: the TSN will be issued by DSSM when the work task is loaded.

TSN = <alphanum-name 1..4>
The TSN to be given to the work task when it is started.
The specified TSN must be uniquely defined and usable when the subsystem is loaded.

ASSIGN-HOLDER-TASK

TYPE = *WORK-TASK (...) / *SHARED-HOLDER(...)

*WORK-TASK(...)

 SUBSYSTEM-NAME = <structured-name 1..8>
 ,SUBSYSTEM-VERSION = <c-string 3..8> / <text 3..8>
 ,TSN = *BY-DSSM / <alphanum-name 1..4>

*SHARED-HOLDER(...)

 BY-SUBSYSTEMS = list-poss(15): <structured-name 1..8>
 ,TSN = *BY-DSSM / <alphanum-name 1..4>

U23166-J-Z125-3-76 195

SSCM ASSIGN-HOLDER-TASK

TYPE = *SHARED-HOLDER(...)
The subsystem is to be created in a shared holder task.

BY-SUBSYSTEMS = list-poss(15): <structured-name 1..8>
Names of up to 15 subsystems which are to be created in the same holder task.
The first of the subsystems in the list must have been declared previously.

TSN =
Specifies the task sequence number (TSN) to be given to the shared holder task.

TSN = *BY-DSSM
Default value: the TSN will be issued by DSSM when the work task is loaded.

TSN = <alphanum-name 1..4>
Task sequence number to be given to the shared holder task when it is started.
The specified TSN must be uniquely defined and usable when the subsystem is loaded.

196 U23166-J-Z125-3-76

CHECK-CATALOG SSCM

CHECK-CATALOG
Check subsystem definition(s) for consistency

Function

This statement is used to carry out consistency checks on the definitions of subsystems
held in a catalog.

CHECK-CATALOG will be rejected if the file name specified by the user does not exist, or if
the subsystem catalog is empty.

If the specified file name does not correspond with that of the catalog which is currently
open, the following message will be output:

SCM0011 DO YOU REALLY WANT TO OVERWRITE MEMORY CATALOG '(&00)'? REPLY (Y/N)

If the user replies with Y, the virtual definitions in the current catalog will be lost. If the reply
is N, execution of the CHECK-CATALOG statement will be aborted, and the user can then use
the SAVE-CATALOG statement to save to a file all subsystem definitions which have not yet
been saved.

The catalog cannot be saved without first carrying out checks on any link and
dependency relations.

Format

Operands

CATALOG-NAME =
Specifies the name of the catalog which holds the definitions which are to be checked.

CHECK-CATALOG

CATALOG-NAME = *CURRENT / <filename 1..54 without-gen-vers>

,DEPENDENCE-RELATION = *YES / *NO

,LINK-RELATION = *YES / *NO

,RELATED-FILES = *NO / *YES

,OUTPUT = *SYSOUT / *SYSLST(...)

*SYSLST(...)

 SYSLST-NUMBER = *STD / <integer 1..99>

i

U23166-J-Z125-3-76 197

SSCM CHECK-CATALOG

CATALOG-NAME = *CURRENT
Default value: the catalog which is currently open (START-CATALOG-CREATION or START-
CATALOG-MODIFICATION statement) is to be checked.

CATALOG-NAME = <filename 1..54 without-gen-vers>
Fully qualified name of the static subsystem catalog whose contents are to be checked.

DEPENDENCE-RELATION = *YES / *NO
Specifies whether the checks on subsystem definitions are also to take into account depen-
dency relations to other subsystems (*YES) or not (*NO). The catalog cannot be saved if *NO
was specified in a prior CHECK-CATALOG statement.

LINK-RELATION = *YES / *NO
Specifies whether the checks on subsystem definitions are also to take into account
address links to other subsystems (*YES, default value) or not (*NO). The catalog cannot be
saved if *NO was specified in a prior CHECK-CATALOG statement.

RELATED-FILES = *NO / *YES
Specifies whether the existence of files which have dependency relations to these
subsystems is to be checked (*YES) or not (*NO, default value).
If the names of dependent files were defined with the value *INSTALLED(...), the DEFAULT-
NAME specified there will also be checked.

OUTPUT =
Specifies where to output the information generated by the statement, i.e. the results of the
check run.

OUTPUT = *SYSOUT
Default value: the messages will be output to the terminal.

OUTPUT = *SYSLST(...)
The messages are to be output to SYSLST.

SYSLST-NUMBER =
Identifies the SYSLST file to which the output is to be directed.

SYSLST-NUMBER = *STD
Default value: output is to go to the default system file SYSLST.

SYSLST-NUMBER = <integer 1..99>
Output is to go to one of the system files from the set SYSLST01 to SYSLST99, the
number of which must be specified here.

198 U23166-J-Z125-3-76

GENERATE-CATALOG-SOURCE SSCM

GENERATE-CATALOG-SOURCE
Create SSCM statement list for generation

Function

With this statement, SSCM creates a file containing a list of all SSCM statements required
for (re)generation of a subsystem catalog (either for specific subsystems in the input catalog
or for all of them).

Format

Operands

CATALOG-NAME =
Specifies the subsystem catalog in which the subsystem definitions are saved.

CATALOG-NAME = *CURRENT
Default setting. The current subsystem catalog is used.

CATALOG-NAME = <filename 1..54 without-gen-vers>
Name of the subsystem catalog.

SUBSYSTEM-NAME =
Subsystems whose definitions are to be output.

SUBSYSTEM-NAME = *ALL
Default setting. The definitions of all subsystems are to be output.

GENERATE-CATALOG-SOURCE

CATALOG-NAME = *CURRENT / <filename 1..54 without-gen-vers>

,SUBSYSTEM-NAME = *ALL / <structured-name 1..8>(...)

<structured-name 1..8>(...)

 VERSION = *ALL / <c-string 3..8> / <text 3..8>

,OUTPUT = *SYSLST(...)

*SYSLST(...)

 SYSLST-NUMBER = *STD / <integer 1..99>

U23166-J-Z125-3-76 199

SSCM GENERATE-CATALOG-SOURCE

SUBSYSTEM-NAME = <structured-name 1..8>(...)
Name of the subsystem whose definition is to be output.

VERSION = *ALL / <c-string 3..8> / <text 3..8>
Version of the subsystem whose definition is to be output.

OUTPUT = *SYSLST(...)
System file to which the generated information is to be sent.

SYSLST-NUMBER = *STD
Default setting. The information will be sent to the SYSLST file.

SYSLST-NUMBER = <integer 1..99>
The information will be sent to the specified system file in the range SYSLST01 to
SYSLST99.

200 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

MODIFY-SUBSYSTEM-ATTRIBUTES
Modify subsystem attributes

Function

This statement can be used to change any of the attributes and entry points which were
defined in the SET-SUBSYSTEM-ATTRIBUTES statement.

When a definition is modified, the following points must be noted:

– the subsystem - identified by its name and version - must be present in the catalog
which is currently open

– any attempt to add a job entry or relation which already exists will be rejected
– it is impermissible to attempt to modify or delete a job entry or relation which has not

yet been defined
– the mode of a job entry may only be changed if all the parameters are specified; the

default values *UNCHANGED will be rejected
– the memory class for a subsystem may only be changed if all the parameters are

specified; the default values *UNCHANGED will be rejected

MODIFY-SUBSYSTEM-ATTRIBUTES is rejected if none of the following statements have been
executed beforehand:
– START-CATALOG-CREATION
– START-CATALOG-MODIFICATION

Note on syntax

A special data type <symbol>, which is fully described in the “BLSSERV” manual [4],
can also be used for the names of the entry points in the following operands (in the
format, the data type is specified as <name>):

– LINK-ENTRY – DEINIT-ROUTINE

– DYNAMIC-CHECK-ENTRY – INTERFACE-VERSION

– INIT-ROUTINE – ADD-SUBS-ENTRIES

– CLOSE-CTRL-ROUTINE – MODIFY-SUBS-ENTRIES

– STOPCOM-ROUTINE – REMOVE-SUBS-ENTRIES

U23166-J-Z125-3-76 201

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

Format
(part 1 of 4)

MODIFY-SUBSYSTEM-ATTRIBUTES

SUBSYSTEM-NAME = <structured-name 1..8>(...)

<structured-name 1..8>(...)

 VERSION = <c-string 3..8> / <text 3..8>

,INSTALLATION-UNIT = *UNCHANGED / *NONE / *STD / <text 1..30>

,INSTALLATION-USERID = *UNCHANGED / *NONE / *DEFAULT-USERID / <name 1..8>

,COPYRIGHT = *UNCHANGED / *NONE / <c-string 1..54>(...)

<c-string 1..54>(...)

 YEAR = *YEAR-1990 / <c-string 4..4>

,LIBRARY = *UNCHANGED / *STD / *CPLINK / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = *UNCHANGED / <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = *UNCHANGED / <filename 1..54 without-gen-vers>

,SUBSYSTEM-LOAD-MODE = *UNCHANGED / *STD / *ADVANCED

,REP-FILE = *UNCHANGED / *STD / *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = *UNCHANGED / <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = *UNCHANGED / <filename 1..54 without-gen-vers> / *NONE

,REP-FILE-MANDATORY = *UNCHANGED / *NO / *YES

,MESSAGE-FILE = *UNCHANGED / *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = *UNCHANGED / <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = *UNCHANGED / <filename 1..54 without-gen-vers> / *NONE

,SUBSYSTEM-INFO-FILE = *UNCHANGED / *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = *UNCHANGED / <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = *UNCHANGED / <filename 1..54 without-gen-vers> / *NONE

,SYNTAX-FILE = *UNCHANGED / *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = *UNCHANGED / <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = *UNCHANGED / <filename 1..54 without-gen-vers> / *NONE

continued� �

202 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

,DYNAMIC-CHECK-ENTRY = *UNCHANGED / *STD / *NO / <text 1..8 without-sep>

,CREATION-TIME = *UNCHANGED / *AT-CREATION-REQUEST / *AT-SUBSYSTEM-CALL(...) /

*AT-DSSM-LOAD / *BEFORE-DSSM-LOAD / *MANDATORY-AT-STARTUP /

*BEFORE-SYSTEM-READY / *AFTER-SYSTEM-READY

*AT-SUBSYSTEM-CALL(...)

 ON-ACTION = *STD / *ISL-CALL / *ANY

,INIT-ROUTINE = *UNCHANGED / *NO / <text 1..8 without-sep>

,CLOSE-CTRL-ROUTINE = *UNCHANGED / *NO / *DYNAMIC / <text 1..8 without-sep>

,STOPCOM-ROUTINE = *UNCHANGED / *NO / *DYNAMIC / <text 1..8 without-sep>

,DEINIT-ROUTINE = *UNCHANGED / *NO / *DYNAMIC / <text 1..8 without-sep>

,STOP-AT-SHUTDOWN = *UNCHANGED / *NO / *YES

,INTERFACE-VERSION = *UNCHANGED / *NO / <text 1..8 without-sep>

,SUBSYSTEM-HOLD = *UNCHANGED / *ALLOWED / *FORBIDDEN

,STATE-CHANGE-CMDS = *UNCHANGED / *ALLOWED / *FORBIDDEN / *BY-ADMINISTRATOR-ONLY

,FORCED-STATE-CHANGE = *UNCHANGED / *ALLOWED / *FORBIDDEN

,RESET = *UNCHANGED / *ALLOWED / *FORBIDDEN

,RESTART-REQUIRED = *UNCHANGED / *NO / *YES

,VERSION-COEXISTENCE = *UNCHANGED / *FORBIDDEN / *ALLOWED

,VERSION-EXCHANGE = *UNCHANGED / *FORBIDDEN / *ALLOWED

,ADD-SUBS-ENTRIES = *NONE / list-poss(100): <text 1..8>(...)

<text 1..8>(...)

 MODE = *LINK / *ISL(...) / *SVC(...) / *SYSTEM-EXIT(...)
 *ISL(...)
  FUNCTION-NUMBER = *NONE / <integer 0..255>(...)
   <integer 0..255>(...)
    FUNCTION-VERSION = <integer 1..255>
 *SVC(...)
  NUMBER = <integer 0..255>

  ,CALL-BY-SYSTEM-EXIT = *ALLOWED / *FORBIDDEN

  ,FUNCTION-NUMBER = *NONE / <integer 0..255>(...)
   <integer 0..255>(...)
    FUNCTION-VERSION = <integer 1..255>

continued� �

(part 2 of 4)

U23166-J-Z125-3-76 203

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

 *SYSTEM-EXIT(...)
  NUMBER = <integer 0..127>
 ,CONNECTION-ACCESS = *ALL / *SYSTEM / *SIH
 ,CONNECTION-SCOPE = *TASK / *PROGRAM / *FREE / *CALL / *OPTIMAL
 ,FIRST-CONNECTION = *ALLOWED / *FORBIDDEN

,MODIFY-SUBS-ENTRIES = *NONE / list-poss(100): <text 1..8>(...) / *BY-PROGRAM(...)

<text 1..8>(...)

 MODE = *UNCHANGED / *LINK / *ISL(...) / *SVC(...) / *SYSTEM-EXIT(...)
 *ISL(...)
  FUNCTION-NUMBER = *UNCHANGED (...) / *NONE / <integer 0..255>(...)
   *UNCHANGED(...)

   FUNCTION-VERSION = *UNCHANGED / <integer 1..255>
   <integer 0..255>(...)

   FUNCTION-VERSION = <integer 1..255>
 *SVC(...)
  NUMBER = *UNCHANGED / <integer 0..255>

  ,CALL-BY-SYSTEM-EXIT = *UNCHANGED / *ALLOWED / *FORBIDDEN

  ,FUNCTION-NUMBER = *UNCHANGED (...) / *NONE / <integer 0..255>(...)
   *UNCHANGED(...)

   FUNCTION-VERSION = *UNCHANGED / <integer 1..255>
   <integer 0..255>(...)

   FUNCTION-VERSION = <integer 1..255>
 *SYSTEM-EXIT(...)
  NUMBER = <integer 0..127>
 ,CONNECTION-ACCESS = *UNCHANGED / *ALL / *SYSTEM / *SIH
 ,CONNECTION-SCOPE = *UNCHANGED / *TASK / *PROGRAM / *FREE / *CALL / *OPTIMAL
 ,FIRST-CONNECTION = *UNCHANGED / *ALLOWED / *FORBIDDEN

*BY-PROGRAM(...)

 CONNECTION-SCOPE = *UNCHANGED / *TASK / *PROGRAM

,REMOVE-SUBS-ENTRIES = *NONE / list-poss(100): <text 1..8>

,MEMORY-CLASS = *UNCHANGED / *SYSTEM-GLOBAL(...) / *LOCAL-PRIVILEGED(...) /

*LOCAL-UNPRIVILEGED(...) / *BY-SLICE(...)

continued� �

(part 3 of 4)

204 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

*SYSTEM-GLOBAL(...)

 SUBSYSTEM-ACCESS = *LOW / *SYSTEM / *HIGH

*LOCAL-PRIVILEGED(...)

 SIZE = <integer 1..32767>

*LOCAL-UNPRIVILEGED(...)

 SIZE = *UNCHANGED / <integer 1..32767>
 ,SUBSYSTEM-ACCESS = *UNCHANGED / *LOW / *HIGH
 ,START-ADDRESS = *UNCHANGED / *ANY / <x-string 7..8>

*BY-SLICE(...)

 SIZE = <integer 1..32767>

,LINK-ENTRY = *UNCHANGED / <text 1..8 without-sep>(...)

<text 1..8 without-sep>(...)

 AUTOLINK = *ALLOWED / *FORBIDDEN

,ADD-REFER-SUBS = *NONE / list-poss(15): <structured-name 1..8>(...)

<structured-name 1..8>(...)

 LOWEST-VERSION = *LOWEST-EXISTING / <c-string 3..8> / <text 3..8>
 ,HIGHEST-VERSION = *HIGHEST-EXISTING / <c-string 3..8> / <text 3..8>

,MODIFY-REFER-SUBS = *NONE / list-poss(15): <structured-name 1..8>(...)

<structured-name 1..8>(...)

 LOWEST-VERSION = *UNCHANGED / *LOWEST-EXISTING / <c-string 3..8> / <text 3..8>
 ,HIGHEST-VERSION = *UNCHANGED / *HIGHEST-EXISTING / <c-string 3..8> / <text 3..8>

,REMOVE-REFER-SUBS = *NONE / list-poss(15): <structured-name 1..8>

,UNRESOLVED-EXTERNALS = *UNCHANGED / *ALLOWED / *FORBIDDEN

,CHECK-REFERENCE = *UNCHANGED / *YES / *NO

,ADD-RELATED-SUBS = *NONE / list-poss(100): <structured-name 1..8>(...)

<structured-name 1..8>(...)

 LOWEST-VERSION = *LOWEST-EXISTING / <c-string 3..8> / <text 3..8>
 ,HIGHEST-VERSION = *HIGHEST-EXISTING / <c-string 3..8> / <text 3..8>

,MODIFY-RELATED-SUBS = *NONE / list-poss(100): <structured-name 1..8>(...)

<structured-name 1..8>(...)

 LOWEST-VERSION = *UNCHANGED / *LOWEST-EXISTING / <c-string 3..8> / <text 3..8>
 ,HIGHEST-VERSION = *UNCHANGED / *HIGHEST-EXISTING / <c-string 3..8> / <text 3..8>

,REMOVE-RELATED-SUBS = *NONE / list-poss(100): <structured-name 1..8>

(part 4 of 4)

U23166-J-Z125-3-76 205

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

Operands

In each case, the default value *UNCHANGED means that the value set in the SET-
SUBSYSTEM-ATTRIBUTES statement is to remain valid.
If the type of job entry point declared (MODE operand) or the subsystem-specific address
space (MEMORY operand) is changed, all the suboperands of MODE or MEMORY must be
assigned a value explicitly, i.e. the operand value *UNCHANGED (default value) will be
rejected.

SUBSYSTEM-NAME = <structured-name 1..8>(...)
Specifies the name and version of the subsystem whose attributes are to be changed.

VERSION = <c-string> / <text 3..8>
The version of the subsystem must be specified in the format “[V][n]n.m[ann]”. The text
elements have the following meanings:

INSTALLATION-UNIT =
Defines the name of the installed software unit. A value other than *NONE must be specified
for all subsystems installed with IMON, and likewise if the value *INSTALLED(LOGICAL-ID=...)
was defined for the operands SUBSYSTEM-LIBRARY, REP-FILE, SUBSYSTEM-INFO-FILE,
MESSAGE-FILE and SYNTAX-FILE.
The syntax rules described in the “IMON“ manual [17] must be observed when defining the
name.

INSTALLATION-UNIT = *NONE
No name is assigned. This entry is not allowed for any subsystems installed with IMON.

INSTALLATION-UNIT = *STD
The name specified with the SUBSYSTEM-NAME operand is used as the new name of the
installed software unit.

INSTALLATION-UNIT = <text 1..30>
New name of the installed software unit.

INSTALLATION-USERID =
Specifies a user ID under which the relevant DSSM task expects the subsystem satellites
(REP file, object module library, message file, syntax file and subsystem information file) if
they have not yet been assigned to a user ID, in other words if the file name was specified
without a user ID.

nn
m
ann

= Main version (numeric)
= Revision version (numeric)
= Update status

(a=letter, release status; nn=numeric, correction status)

206 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

INSTALLATION-USERID = *NONE
The files will not be expected under a specific user ID.

INSTALLATION-USERID = *DEFAULT-USERID
The files will be expected under the default user ID (prefix “$.”) or, if the subsystem is a local
subsystem, under the user ID of the calling task.

INSTALLATION-USERID = <name 1..8>
User ID under which the subsystem satellites are to be expected.
If this statement applies to an SSD object, the files will only actually be expected under the
user ID specified here if no user ID was specified in the ADD-CATALOG-ENTRY statement
(inclusion of the subsystem definitions from the SSD object in the catalog, see page 183).
The ID specified in ADD-CATALOG-ENTRY takes precedence.

COPYRIGHT =
Specifies whether or not a copyright notice is to be displayed when the subsystem is started
and, if so, which one.

COPYRIGHT = *NONE
No copyright notice is to be output.

COPYRIGHT = <c-string 1..54>(...)
Text of the copyright notice which is to be output together with the creation date when the
subsystem is started.

YEAR = *YEAR-1990 / <c-string 4..4>
Number of the year which is to appear in the copyright notice as the creation date. This
is not subjected to a semantic check.

LIBRARY =
Specifies a new name for the program or object module library (OML) from which the object
code for the subsystem is to be loaded when it is activated.

LIBRARY = *STD
When the subsystem is started, the object code will automatically be loaded from the library
SYSLNK.<subsysname>.<subsysvers#>. This library is stored under the user ID under which
the holder task is running. For local subsystems this is the user ID of the caller, and for
global subsystems it is TSOS.
“<subsysvers#>” is a three-character value consisting of the elements “mmm” specified for
the operand SUBSYSTEM-NAME=...(VERSION=...).

LIBRARY = *CPLINK
The subsystem which is to be defined is linked to the BS2000/OSD control program (CP)
and must have been loaded before DSSM was activated. This operand may be used only
in conjunction with the operand CREATION-TIME=*BEFORE-DSSM-LOAD.

U23166-J-Z125-3-76 207

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

LIBRARY = *INSTALLED(...)
The library name must be determined by calling IMON-GPN (administration of installation
paths).
If one of the subsystem satellites is referenced with a logical ID, logical IDs must be
specified for all satellites belonging to this subsystem. If a logical ID is assigned, a value
other than *NONE must be assigned for the INSTALLATION-UNIT operand.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
Logical ID of the program library or object module library.

DEFAULT-NAME = <filename 1..54 without-gen-vers>
Library name if IMON-GPN is not available or if the logical ID is unknown.

LIBRARY = <filename 1..54 without-gen-vers>
Fully qualified file name of the object module library from which the object code for the
subsystem is to be loaded.

SUBSYSTEM-LOAD-MODE =
Specifies the load mode of the subsystem (via the BLS-DSSM interface $PBBND1).

SUBSYSTEM-LOAD-MODE = *STD
The BLS (Binder-Loader-Starter system) is called up in STD run mode and loads the
subsystem as an object module.

SUBSYSTEM-LOAD-MODE = *ADVANCED
The BLS is called up in ADVANCED run mode and loads the subsystem as a link and load
module (LLM).

REP-FILE =
Specifies whether or not system REPs are required for the subsystem which is being
defined, and identifies the file in which they are stored. These correction statements are
used during activation of the subsystem, and are applied solely to the modules stored and
loaded in the object module library, not to other subsystems or the BS2000/OSD control
program (CP). A REP file can also be specified for modules of a nonprivileged subsystem.
REP-FILE must not be specified together with LIBRARY=*CPLINK.

REP-FILE = *STD
By default, system REPs are loaded from the file SYSREP.<subsysname>.<subsysvers#>. This
library is stored under the user ID under which the holder task is running. For local
subsystems this is the user ID of the caller, and for global subsystems it is TSOS.
“<subsysvers#>” is a three-character value consisting of the elements “mmm” specified for
the operand SUBSYSTEM-NAME=...(VERSION=...).

208 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

REP-FILE = *NO
No REP files are to be processed for the subsystem.

REP-FILE = *INSTALLED(...)
The name of the REP file must be determined by calling IMON-GPN (administration of
installation paths).
If one of the subsystem satellites is referenced with a logical ID, logical IDs must be
specified for all satellites belonging to this subsystem. If a logical ID is assigned, a value
other than *NONE must be assigned for the INSTALLATION-UNIT operand.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
Logical ID of the REP file.

DEFAULT-NAME =
Name of the REP file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = <filename 1..54 without-gen-vers>
A new name is assigned.

DEFAULT-NAME = *NONE
No new name is assigned.

REP-FILE = <filename 1..54 without-gen-vers>
Fully qualified name of the REP file from which the correction statements are to be read.

REP-FILE-MANDATORY =
Specifies whether or not a REP file declared via the REP-FILE operand is to be processed
when loading the subsystem.

REP-FILE-MANDATORY = *NO
The use of a REP file is not mandatory, i.e. neither the REP file nor its entries are to be
checked when the subsystem is activated. Even if the REP file cannot be accessed or if
individual correction statements are invalid, the subsystem will still be started.

REP-FILE-MANDATORY = *YES
If any of the following errors occurs during processing of the REP file, the attempt to load
the subsystem will be terminated:
– the REP file is not cataloged, or it cannot be read
– checking of the correction statements reveals an error
– the name of a correction statement is invalid
– DMS reports an error during access to the NOREF file (this file is used during loading

of a subsystem to prevent invalid system REPs from being logged at the operator
terminal)

U23166-J-Z125-3-76 209

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

MESSAGE-FILE =
Specifies whether there is a subsystem-specific message file which is to be automatically
activated when the subsystem is loaded.
For subsystems which are defined with the creation time AT-DSSM-LOAD, a dependency
relation to the MIP subsystem must be specified in the RELATED-SUBSYSTEM operand.

MESSAGE-FILE = *NO
No message file is to be activated. This value is mandatory for all subsystems which are
defined with the creation time BEFORE-DSSM-LOAD (see also the CREATION-TIME
operand), as it is not possible to activate a message file as early as this.

MESSAGE-FILE = *INSTALLED(...)
The name of the message file must be determined by calling IMON-GPN (administration of
installation paths).
If one of the subsystem satellites is referenced with a logical ID, logical IDs must be
specified for all satellites belonging to this subsystem. If a logical ID is assigned, a value
other than *NONE must be assigned for the INSTALLATION-UNIT operand.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
Logical ID of the message file.

DEFAULT-NAME =
Name of the message file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = <filename 1..54 without-gen-vers>
A new name is assigned.

DEFAULT-NAME = *NONE
No new name is assigned.

MESSAGE-FILE = <filename 1..54 without-gen-vers>
Fully qualified name of the message file. This will be automatically activated when the
subsystem is loaded (START-SUBSYSTEM command) and automatically deactivated when it
is unloaded (STOP-SUBSYSTEM).

SUBSYSTEM-INFO-FILE =
Specifies whether or not a subsystem information file (SSINFO) is available. This file
contains subsystem-specific data (subsystem satellites and configuration data) which
cannot be processed centrally by DSSM.

SUBSYSTEM-INFO-FILE = *NO
No information file is available for the subsystem.

210 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

SUBSYSTEM-INFO-FILE = *INSTALLED(...)
The name of the information file must be determined by calling IMON-GPN (administration
of installation paths).
If one of the subsystem satellites is referenced with a logical ID, logical IDs must be
specified for all satellites belonging to this subsystem. If a logical ID is assigned, a value
other than *NONE must be assigned for the INSTALLATION-UNIT operand.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
Logical ID of the information file.

DEFAULT-NAME =
Name of the information file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = <filename 1..54 without-gen-vers>
A new name is assigned.

DEFAULT-NAME = *NONE
A new name is assigned.

SUBSYSTEM-INFO-FILE = <filename 1..54 without-gen-vers>
Fully qualified name of the information file. This name is automatically passed to the
activation and deactivation routines (INIT-/DEINIT-/CLOSE-CTRL-ROUTINE operands) when
they are called.

SYNTAX-FILE =
Specifies whether the subsystem has linked to it a syntax file which will be activated
automatically when the subsystem is loaded. For subsystems which are defined with the
start attribute MANDATORY-AT-STARTUP, a dependency relation to the SDF subsystem must
be declared in the REFERENCED-SUBSYSTEM operand.

SYNTAX-FILE = *NO
No syntax file is to be activated. This value is mandatory for all subsystems which are
defined with the start time BEFORE-DSSM-LOAD or AT-DSSM-LOAD (see also the CREATION-
TIME operand), as it is not possible to activate a syntax file as early as this.

SYNTAX-FILE = *INSTALLED(...)
The name of the syntax file must be determined by calling IMON-GPN (administration of
installation paths).
If one of the subsystem satellites is referenced with a logical ID, logical IDs must be
specified for all satellites belonging to this subsystem. If a logical ID is assigned, a value
other than *NONE must be assigned for the INSTALLATION-UNIT operand.

U23166-J-Z125-3-76 211

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
Logical ID of the syntax file.

DEFAULT-NAME =
Name of the syntax file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = <filename 1..54 without-gen-vers>
A new name is assigned.

DEFAULT-NAME = *NONE
No new name is assigned.

SYNTAX-FILE = <filename 1..54 without-gen-vers>
Fully qualified name of the syntax file which is to be automatically activated when the
subsystem is loaded.

DYNAMIC-CHECK-ENTRY =
Specifies whether a dynamic identity check is to be carried out on the subsystem. For this
purpose, an entry point must be specified, at which both the subsystem name (eight
characters) and also the version number (four or seven characters) must be located. DSSM
checks whether the identification specified in the definition agrees with the subsystem
which is loaded.

DYNAMIC-CHECK-ENTRY = *STD
The entry point specified in the LINK-ENTRY operand is to be applied in carrying out the
identity check.

DYNAMIC-CHECK-ENTRY = *NO
No check is to be carried out. However, this value of the operand must not be used for any
subsystems which are loaded before DSSM is activated (CREATION-TIME=*BEFORE-DSSM-
LOAD).

DYNAMIC-CHECK-ENTRY = <text 1..8 without-sep>
Name of the entry point which is to be used in applying the identity check.

CREATION-TIME =
Specifies the point in time at which activation of the subsystem (CREATE routine) is initiated.
There are two separate phases during system initialization when DSSM takes over the
control of system initialization after it has been called by the startup routine:

Phase 1: The DSSM code is loaded, the DSSM task is generated and started. This
task reserves class 5 memory, reads in the subsystem catalog, and starts
those subsystems which have been defined with the start attributes
BEFORE-DSSM-LOAD and AT-DSSM-LOAD. After these subsystems have
been loaded, control of system initialization returns to the startup routine.

212 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

Phase 2: Following a second call, all those subsystems are loaded which have been
defined with the start attributes MANDATORY-AT-STARTUP, BEFORE-SYSTEM-
READY and AFTER-SYSTEM-READY.
In the case of the first two of these start attributes, loading of the
subsystems is synchronized with the start routine (i.e. loading must be
completed), but for the last of them asynchronous loading is initiated.
Control of system initialization returns to the startup routine.

If different versions of a subsystem are to be defined, it is only possible to specify the start
attributes, for use in phases 1 and 2 of system initialization, for one of these versions.

CREATION-TIME = *AT-CREATION-REQUEST
The subsystem must be explicitly loaded by means of the START-SUBSYSTEM command.

CREATION-TIME = *AT-SUBSYSTEM-CALL(...)
The subsystem is to be automatically loaded when the first SVC or ISL call is made. This
operand value is reserved for subsystems which are called via SVC or ISL.
If two or more versions of a subsystem are defined with this operand value, VERSION-
COEXISTENCE=*ALLOWED must be specified for all of these versions and FUNCTION-
NUMBER and FUNCTION-VERSION must be specified for their SVC or ISL entry points,
which were declared with CONNECTION-ACCESS with a value other than *SIH.
At least one of the specified subsystems must have been declared with SUBSYSTEM-
ENTRIES ..., MODE=*SVC or *ISL (corresponding to the value of the ON-ACTION operand).

ON-ACTION =
Determines what initiates automatic loading of the subsystem.

ON-ACTION = *STD
Default setting: loading begins when any SVC entry point belonging to the subsystem
is called.

ON-ACTION = *ISL-CALL
Loading begins when any ISL entry point belonging to the subsystem is called.

ON-ACTION = *ANY
Loading begins when any SVC or ISL entry point belonging to the subsystem is called.

CREATION-TIME = *AT-DSSM-LOAD
The subsystem is to be loaded during system initialization (phase 1) under the control of
the DSSM task.
The subsystem must be a privileged one, and may only have address or dependency
relations to subsystems which are also defined with this start attribute or with the start
attribute BEFORE-DSSM-LOAD.
The files for this subsystem must be held on the home pubset under the TSOS user ID,
because at the time of startup the user catalog is not accessible and IMPORT-PUBSET
processing has not been completed.
It is not permissible to link in a syntax file for these subsystems.

U23166-J-Z125-3-76 213

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

CREATION-TIME = *BEFORE-DSSM-LOAD
The subsystem is to be loaded during system initialization (phase 1), but not under the
control of the DSSM task.
Such subsystems are linked to the control program, and do not need to be synchronized
with the DSSM task when activated. However, after the subsystem is loaded it again runs
under the control of DSSM and can, from the user’s point of view, be controlled in the same
way as other subsystems.
No address or dependency relations are possible to subsystems which are defined with any
other start attribute. Nor is it permissible to link in a message or syntax file. All job entries
(SUBSYSTEM-ENTRIES operand) must be declared, because DSSM creates the (privileged)
connection to these job entries. Responsibility for ensuring that at least one version of this
subsystem is available at any given time rests entirely with the subsystem developer.
The name of the link context for these subsystems must be unique, because DSSM must
also honor an unload request even if the subsystem code has not been loaded. An entry
point (DYNAMIC-CHECK-ENTRY operand) must have been specified.

CREATION-TIME = *BEFORE-SYSTEM-READY
The subsystem is to be loaded during system initialization (phase 2). Activation is initiated
synchronously; not until loading is complete (or a load error occurs) does control return to
the startup routine, which can then report “SYSTEM READY”.
The subsystem must be privileged, and may only have address or dependency relations to
subsystems defined with the same attribute or with the start attribute BEFORE-DSSM-LOAD,
AT-DSSM-LOAD or MANDATORY-AT-STARTUP.
The files for this subsystem must be cataloged on the home pubset.
If a nonprivileged subsystem is declared with this operand value, it is automatically
assigned the value *AFTER-SYSTEM-READY. SSCM issues a message.

CREATION-TIME = *MANDATORY-AT-STARTUP
The subsystem must be loaded during system initialization (phase 2). Activation is initiated
synchronously - as in the case of BEFORE-SYSTEM-READY. By contrast with the latter,
however, loading of the subsystem must in this case be completed successfully. Otherwise
a message is passed to the startup routine reporting that a mandatory subsystem could not
be loaded. In this case, the startup routine will decide whether processing should continue
or be terminated.
The subsystem must be privileged, and may only have address or dependency relations to
subsystems defined with the same attribute or with the start attribute BEFORE-DSSM-LOAD
or AT-DSSM-LOAD. The files for this subsystem must be cataloged on the home pubset.

214 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

CREATION-TIME = *AFTER-SYSTEM-READY
The loading of this subsystem is to be initiated during system initialization (phase 2).
Execution of this routine is not synchronized with the startup routine, which can report
“SYSTEM READY” before subsystem loading is complete.
The subsystem may only have address or dependency relations to subsystems defined with
the same attribute or with the start attribute BEFORE-DSSM-LOAD, AT-DSSM-LOAD,
MANDATORY-AT-STARTUP or BEFORE-SYSTEM-READY. The files for this subsystem must be
cataloged on the home pubset.

INIT-ROUTINE =
Specifies whether there is an initialization routine for the subsystem which must be
performed when it is started or resumed. In this case, the name of an entry point must have
been declared, and DSSM will delegate initialization to the holder task of the subsystem
concerned. It is strongly recommended that an entry point be defined for all subsystems
which have the start attribute BEFORE-DSSM-LOAD. During loading of the subsystem, (i.e.
when the initialization routine is carried out) the subsystem is then informed that DSSM can
assume control over the opening and closing of relations.

INIT-ROUTINE = *NO
No initialization routine is to be performed.

INIT-ROUTINE = <text 1..8 without-sep>
Name of the entry point to the initialization routine.
In the holder task, control is passed to the initialization routine, so that the subsystem can
initialize itself. To permit this, it is passed:
– the name and the version of the subsystem, as defined in SSMCAT
– the name of the SSINFO file, if one was specified in the SUBSYSTEM-INFO-FILE operand
– the address of the entry point specified during loading and linking (LINK-ENTRY

operand)
– the link context name used by the dynamic binder loader (DBL)
– the name of the memory pool (for subsystems in class 5 or class 6 memory), in order

that the subsystem can refer to its own selectable units/load units during dynamic
loading

– the name of the message file
– the address of the SUBSYSTEM-PARAMETER operand, if a string has been specified in

the START-SUBSYSTEM command

At the end of initialization, a return message is expected from the subsystem, indicating
whether initialization has been successful and whether the holder task is to be used as a
work task (as specified in the ASSIGN-HOLDER-TASK statement, page 193). Depending on
what is reported here, the task will from then on be controlled by DSSM or by the
subsystem.

U23166-J-Z125-3-76 215

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

CLOSE-CTRL-ROUTINE =
Specifies whether the subsystem incorporates a routine for controlling its
suspension/deactivation.
If a subsystem is deactivated (by a STOP-SUBSYSTEM or HOLD-SUBSYSTEM command),
DSSM passes control to this routine at the identified entry point in the holder task, or (for
*DYNAMIC) this is reported via a bourse or FITC link (as determined by return messages
during initialization).
The parameters passed are the same ones as are passed for the INIT-ROUTINE operand.
Branching to this routine ensures that a connection to the subsystem still exists.

If a CLOSE-CTRL routine exists, it is possible to change versions without interrupting the
BS2000 session. At any given point in time, there is exactly one valid version (either the old
version is still available, or the new version has already become available). Without a
CLOSE-CTRL routine, changing versions always entails interrupting the connection so that
the STOPCOM routine of the old version and the INIT routine of the new version can execute
(see also page 45).

CLOSE-CTRL-ROUTINE = *NO
The subsystem incorporates no routine that controls the deactivation or suspension of the
subsystem.

CLOSE-CTRL-ROUTINE = *DYNAMIC
This routine is called up via the bourse or FITC port. The subsystem passes the required
parameters to the CLOSE-CTRL routine dynamically at the end of the INIT routine, and
DSSM is informed of the identity of the bourse or FITC port.
In order for the CLOSE-CTRL routine to run, an INIT routine (INIT-ROUTINE operand) and a
STOPCOM routine (operand STOPCOM-ROUTINE=*NO/*DYNAMIC) must have been
specified.
The holder task of the subsystem must be a work task when the CLOSE-CTRL routine is
called (ASSIGN-HOLDER-TASK statement, page 193).

CLOSE-CTRL-ROUTINE = <text 1..8 without-sep>
Name of the entry point of the relevant subsystem routine.

STOPCOM-ROUTINE =
Specifies whether the subsystem incorporates a routine which can carry out active termi-
nation of tasks.

STOPCOM-ROUTINE = *NO
The subsystem concerned incorporates no such routine.

216 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

STOPCOM-ROUTINE = *DYNAMIC
This routine is called via the bourse or FITC. The subsystem passes the required param-
eters to the STOPCOM routine dynamically at the end of the CLOSE-CTRL routine or (if none
exists) at the end of the INIT routine. DSSM is informed of the identity of the bourse or FITC
port.
A prerequisite for the use of the STOPCOM routine is than an INIT routine has been specified
(INIT-ROUTINE operand). When the STOPCOM routine is called, the holder task for the
subsystem must be used as a work task (ASSIGN-HOLDER-TASK statement, page 193).

STOPCOM-ROUTINE = <text 1..8 without-sep>
Name of the entry point to the subsystem routine concerned.

DEINIT-ROUTINE =
Specifies whether the subsystem incorporates a routine which can carry out deinitialization
of the subsystem. This deinitialization routine causes the resources which were requested
by the subsystem (memory, files, devices) to be returned.
If a subsystem is deactivated (by a STOP-SUBSYSTEM or HOLD-SUBSYSTEM command),
then DSSM passes control to this routine at the identified entry point in the holder task, or
(for *DYNAMIC) this is reported via a bourse or FITC link (as determined by return messages
during initialization).
If a subsystem is defined with an INIT routine and a CLOSE-CTRL routine, a DEINIT routine
– with the same operand value as the CLOSE-CRTL routine – must be specified.
The parameters which are passed are the same as for the INIT-ROUTINE operand.
Branching to this routine ensures that calling tasks will no longer be connected to the
subsystem and all existing call relations to the subsystem are deleted.

DEINIT-ROUTINE = *NO
The subsystem concerned does not incorporate a deinitialization routine to request the
release of resources; this is done by DSSM itself.

DEINIT-ROUTINE = *DYNAMIC
The routine is called via the bourse or FITC.
The subsystem passes the required parameters to the DEINIT routine dynamically at the
end of the STOPCOM routine or, if none exists, at the end of the CLOSE-CTRL routine or, if
neither a STOPCOM nor a CLOSE-CTRL routine is incorporated, at the end of the INIT
routine. DSSM is informed of the identity of the bourse or FITC port.
A prerequisite for the use of the DEINIT routine is than an INIT routine has been specified
(INIT-ROUTINE operand). When the DEINIT routine is called, the holder task for the
subsystem must be used as a work task (ASSIGN-HOLDER-TASK statement, page 193).

DEINIT-ROUTINE = <text 1..8 without-sep>
Name of the entry point to the subsystem routine concerned.

U23166-J-Z125-3-76 217

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

STOP-AT-SHUTDOWN =
Specifies whether the subsystem is to be unloaded automatically at shutdown after the user
tasks have terminated.

STOP-AT-SHUTDOWN = *NO
The subsystem will not be unloaded automatically.
This parameter should not be specified for subsystems which have address relations to
other subsystems which are defined with STOP-AT-SHUTDOWN=*YES.

STOP-AT-SHUTDOWN = *YES
The subsystem will be unloaded automatically at shutdown.
This specification will be ignored if no STOPCOM, DEINIT or CLOSE-CRTL routine is
specified. In this case, SSCM issues a message.

INTERFACE-VERSION =
Identifies the entry point via which DSSM can access the interface version which is to be
used for calling the INIT, DEINIT, STOPCOM or CLOSE-CTRL routine.

INTERFACE-VERSION = *NO
The subsystem does not call a INIT, DEINIT, STOPCOM or CLOSE-CTRL routine.

INTERFACE-VERSION = <text 1..8 without-sep>
Name of the entry point. The entry point points to the standard header where the interface
version is stored. The standard header is generated by calling the macro $ESMINT(I) with
MF=I/L.
This operand is mandatory for subsystems for which an INIT, DEINIT, STOPCOM or CLOSE-
CTRL routine has been specified.

SUBSYSTEM-HOLD =
Specifies whether the subsystem which is loaded may be suspended or unloaded.

SUBSYSTEM-HOLD = *ALLOWED
The subsystem which is loaded may be suspended and unloaded. The commands HOLD-
SUBSYSTEM and STOP-SUBSYSTEM are permissible for this subsystem.

SUBSYSTEM-HOLD = *FORBIDDEN
The commands HOLD-SUBSYSTEM and STOP-SUBSYSTEM must not be used for this
subsystem; it will only be unloaded at shutdown - as specified by the STOP-AT-SHUTDOWN
operand.
Unloading the subsystem by replacing it with another subsystem entails no interruption.

218 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

STATE-CHANGE-CMDS =
Specifies whether or not the DSSM commands for controlling the subsystem (START-
SUBSYSTEM, STOP-SUBSYSTEM, HOLD-SUBSYSTEM and RESUME-SUBSYSTEM) may be
used during a session.
If a changeover is made from one version of a subsystem to another, the value specified for
STATE-CHANGE-CMDS for the version being replaced is ignored.

STATE-CHANGE-CMDS = *ALLOWED
The commands may be used from the operator terminal and under the privileged user ID
(the user ID which has the SUBSYSTEM-MANAGEMENT system privileges).

STATE-CHANGE-CMDS = *FORBIDDEN
The commands must not be used - neither from the operator terminal nor under the privi-
leged user ID.

STATE-CHANGE-CMDS = *BY-ADMINISTRATOR-ONLY
The commands may only be used under the privileged user ID; the commands are not
available to the operator at the operator terminal.
If a subsystem is deactivated (with a STOP-SUBSYSTEM or HOLD-SUBSYSTEM command),
DSSM passes control to this routine at the specified entry point in the holder task, or (if
*DYNAMIC was specified) this is reported via a bourse or FITC link (as determined by return
messages during initialization).
The parameters passed are the same ones as are passed for the INIT-ROUTINE operand.
Branching to this routine ensures that calling tasks will no longer be connected to the
subsystem. Tasks which are still in a call relation to the subsystem remain unaffected by
this.

FORCED-STATE-CHANGE =
Specifies whether use of the operand FORCED=*YES is permitted within the commands
STOP-SUBSYSTEM and HOLD-SUBSYSTEM. This function can be used to force the uncon-
ditional deactivation of the subsystem.

FORCED-STATE-CHANGE = *FORBIDDEN
It is not possible to force deactivation of the subsystem. DSSM will reject any use of the
FORCED operand in the commands concerned, and will issue a corresponding error
message.

FORCED-STATE-CHANGE =* ALLOWED
The operand FORCED=*YES may be used for this subsystem.
This operand value must not be used in conjunction with SUBSYSTEM-HOLD=*FORBIDDEN.

U23166-J-Z125-3-76 219

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

RESET =
Specifies whether the operand RESET=*YES is permitted within the commands
START-SUBSYSTEM and RESUME-SUBSYSTEM. This function can be used to force the
unconditional loading or resumption of the subsystem, even if the state of the subsystem is
currently IN-DELETE or IN-HOLD.

RESET = *FORBIDDEN
It is not possible to force the activation of the subsystem. DSSM will reject the use of the
RESET operand in the commands concerned, and will issue a corresponding error
message.

RESET = *ALLOWED
The operand RESET=*YES may be used for this subsystem.
This operand value must not be specified together with SUBSYSTEM-HOLD=*FORBIDDEN.

RESTART-REQUIRED =
Specifies whether the initialization routine for the subsystem is to be executed if the holder
task terminates abnormally.

RESTART-REQUIRED = *NO
The initialization routine is not used to restart the subsystem.

RESTART-REQUIRED = *YES
If the holder task terminates abnormally, the initialization routine should be used. Provision
must have been made in the INIT-ROUTINE operand for executing this routine.

VERSION-COEXISTENCE =
Specifies whether more than one version of the same subsystem may be active at a time.

VERSION-COEXISTENCE = *FORBIDDEN
The current version of the subsystem cannot coexist with another version of the same
subsystem.

VERSION-COEXISTENCE = *ALLOWED
The current version of the subsystem can coexist with another version of the same
subsystem (coexistence mode).
In the definition of the job entry point (SUBSYSTEM-ENTRIES operand), indirect links via
system exit routines must not have been specified. If different versions of the same
subsystem are loaded and the same job entry point is defined for these, the link which is
implemented is always to the highest loaded version of the subsystem.
If coexistent subsystems access coexistent syntax files, the latter must have been declared
in the SSD object and cannot be administered by SDF.
However, where the links are via SVC and ISL, it is possible to select a version using the
operands FUNCTION-NUMBER and FUNCTION-VERSION.

220 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

VERSION-EXCHANGE =
Specifies whether a subsystem may be loaded in exchange mode. Exchange mode allows
the temporary coexistence of two versions of the same subsystem. If version B of a
subsystem is loaded whilst version A of the subsystem is already active, all new callers will
be connected to version B. Jobs which are connected to version A will still be processed.
When all the jobs which use version A have been processed, this will automatically be termi-
nated.
In the definition it should be noted that the “old” version which is being replaced must not
be dependent on the “new” version which replaces it.

VERSION-EXCHANGE = *FORBIDDEN
The current version of the subsystem must not be replaced.

VERSION-EXCHANGE = *ALLOWED
Exchange mode, which allows the temporary coexistence of two subsystems, is permitted
for the current subsystem version.

ADD-SUBS-ENTRIES / MODIFY-SUBS-ENTRIES =
Indicates whether new job entries are to be defined (ADD), or the attributes of existing job
entries are to be changed (MODIFY).

ADD-SUBS-ENTRIES / MODIFY-SUBS-ENTRIES = *NONE
Default value: new job entries are not to be added, nor are the attributes of existing job
entries to be modified.

ADD-SUBS-ENTRIES / MODIFY-SUBS-ENTRIES = list-poss(100): <text 1..8>
Either declares names of entry points for a maximum of 100 new job entries for the
subsystem (for each of which the type must be defined in the substructures (ADD), or
modifies job entry points which have already been defined (MODIFY).

MODE =
Defines the type of a job entry point which is defined for the subsystem.
If the type of the entry point declared is modified, all the suboperands of MODE must be
assigned a value explicitly; i.e. the operand value *UNCHANGED (default value for
MODIFY-SUBS-ENTRIES) will be rejected.

MODE = *LINK
The job entry point cannot be accessed by indirect linkage, but only by using a
CONNECT relation through an external linkage editor symbol.
In the case of different versions of the same subsystem which use the same external
linkage editor symbol, DSSM automatically sets up the link to the highest loaded
version of the subsystem.

U23166-J-Z125-3-76 221

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

MODE = *ISL(...)
The job entry is effected by indirect linkage via System Procedure Linkage (for privi-
leged subsystems only). If the specification includes in addition a function and version
number for the ISL entry point, the combination of entry point name, function and
version numbers must not match any other combination for the various other
subsystems in the catalog or the various versions of the same subsystem (if VERSION-
COEXISTENCE=*ALLOWED is specified).
For different subsystems, if the job entry point is to be accessed by the same ISL entry
point, they must be uniquely identified by specifying the function and version numbers.
In the case of different versions of the same subsystem which use the same ISL entry
point, then - if the function and version numbers are not specified - DSSM will automat-
ically set up a connection to the highest loaded version of the subsystem.
In the case of different versions of the same subsystem which use the same ISL entry
point and for which the function and version numbers are not equal to *NONE, the
version to which the connection is set up will be selected in accordance with the function
and version numbers stored in the standard header of the caller’s parameter list.
It is not permissible to enter a value of *ALL for the CONNECTION-ACCESS operand in
reference to ISL entry points.

FUNCTION-NUMBER =
Specifies whether a particular function and version number of the ISL entry point is
to be addressed, as the same ISL entry point can be used by different functions.

FUNCTION-NUMBER = *NONE
Default value: no particular function or version number is to be addressed.

FUNCTION-NUMBER = <integer 0..255>(...)
Number of the ISL entry point. The version must be nominated in the substructure
which follows.

FUNCTION-VERSION = <integer 1..255>
Version of the specified ISL function number.

222 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

MODE = *SVC(...)
Job entry is to be effected by an indirect connection using a supervisor call (SVC).
If the specification includes in addition a function and version number for the SVC entry
point, the combination of entry point name, function and version numbers must not
match any other combination for the various other subsystems in the catalog or the
various versions of the same subsystem (if VERSION-COEXISTENCE=*ALLOWED is
specified).
For different subsystems, if the job entry is to be accessed by the same SVC, they must
be uniquely identified by specifying the function and version numbers.
In the case of different versions of the same subsystem which use the same SVC, then
– if the function and version numbers are not specified – DSSM will automatically set
up a connection to the highest loaded version of the subsystem.
In the case of different versions of the same subsystem which use the same SVC and
for which the function and version numbers are not equal to *NONE, the version to which
the connection is set up will be selected in accordance with the function and version
numbers stored in the standard header of the caller’s parameter list.

NUMBER = <integer 0..255>
Number of the SVC via which job entry is to be effected. No SVC number greater
than 191 may be used in conjunction with CONNECTION-ACCESS=*ALL.

CALL-BY-SYSTEM-EXIT =
Defines whether the specified SVC number may be called from within system exit
routines.

CALL-BY-SYSTEM-EXIT = *ALLOWED
System exit routines are permitted to call the specified SVC number.

CALL-BY-SYSTEM-EXIT = *FORBIDDEN
System exit routines are not permitted to call the specified SVC number.

FUNCTION-NUMBER =
Specifies whether a particular function and version number of the SVC entry point
is to be addressed, as the same SVC entry point can be used by different functions.

FUNCTION-NUMBER = *NONE
No particular function or version number is to be addressed.

FUNCTION-NUMBER = <integer 0..255>(...)
Number of an SVC entry point. The version must be nominated in the substructure
which follows.

FUNCTION-VERSION = <integer 1..255>
Version of the specified SVC function number.

U23166-J-Z125-3-76 223

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

MODE = SYSTEM-EXIT(...)
Job entry is to be effected by an indirect connection using system exit routines.
This operand must not be used in conjunction with CONNECTION-ACCESS=*ALL.

NUMBER = <integer 0..127>
Number of the system exit routine.

CONNECTION-ACCESS =
Specifies the access authorization (privileges) required by the subsystem.

CONNECTION-ACCESS = *ALL
Privileged and nonprivileged program runs may access the subsystem.
This operand value must not be used in conjunction with MODE=*SYSTEM-
EXIT/*ISL/*SVC (with an SVC number greater than 191).

CONNECTION-ACCESS = *SYSTEM
Only privileged program runs may access the subsystem.

CONNECTION-ACCESS = *SIH
Only tasks running in the SIH processor state may access the subsystem.
The subsystem called also runs in the SIH processor state, i.e. it is uninterruptible.
This operand value is permissible only for subsystems for which the entry point is
defined via:
– System Procedure Linkage (MODE=*ISL(FUNCTION-NUMBER=*NONE))
– CONNECTION-SCOPE=*OPTIMAL
– MEMORY-CLASS=*SYSTEM-GLOBAL(SUBSYSTEM-ACCESS=*SYSTEM)

CONNECTION-SCOPE =
Identifies the event which will call up the automatic cleardown of the connection to the
specified subsystem job entry.

CONNECTION-SCOPE = *TASK
The connection will be cleared when the task terminates.

CONNECTION-SCOPE = *PROGRAM
The connection will be cleared when the program terminates, or before.
Only CONNECTION-SCOPE=*PROGRAM may be specified in conjunction with MEMORY-
CLASS=*LOCAL-UNPRIVILEGED.
This operand value is recommended for subsystems which were declared with
SUBSYSTEM-ACCESS=*LOW/*HIGH or MEMORY-CLASS=*BY-SLICE.

224 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

CONNECTION-SCOPE = *FREE
DSSM is not to carry out any checking of the connections to the job entry point. The
connection will not be automatically cleared - unless explicitly requested. To avoid
problems or possible errors when the subsystem is being unloaded, the connections
must be managed by the subsystem itself.

CONNECTION-SCOPE = *CALL
On return from this job entry point, DSSM will automatically clear the connections.
This operand value is only available with subsystems for which the job entry point is
defined by means of System Procedure Linkage (ISL) or supervisor calls (SVC).

CONNECTION-SCOPE = *OPTIMAL
The subsystem is deactivated or suspended when there are no further tasks with a
connection to this entry point.
A routine with an entry point defined with *OPTIMAL must be terminated with RETURN.
If an entry point of a subsystem is defined with CONNECTION-SCOPE=*OPTIMAL, all of
its entry points must be defined in the subsystem catalog with MODEî*LINK.
While a subsystem is being deactivated or suspended, no call of the subsystem with
CONNECTION-SCOPE=*OPTIMAL is accepted.

FIRST-CONNECTION =
Determines whether or not first connection of the task to the specified job entry point in
the subsystem is allowed. At least one job entry point of a subsystem must be defined
with FIRST-CONNECTION=*ALLOWED.

FIRST-CONNECTION = *ALLOWED
First connection to the specified job entry point is allowed.
This value is the default setting for the ADD-SUBS-ENTRIES statement.

FIRST-CONNECTION = *FORBIDDEN
Connection to the specified job entry point via SVC or ISL is not allowed if the task has
not yet been connected to another job entry point belonging to the subsystem.
It is not permitted to specify this operand value for job entry points that have been
defined with MODE=*LINK/*SYSTEM-EXIT or CONNECTION-ACCESS=*SIH.

MODIFY-SUBS-ENTRIES = *NONE / list-poss(100): <text 1..8> / *BY-PROGRAM(...)
The values *NONE and list-poss(100): <text 1..8> are described on page 220 at the ADD-
SUBS-ENTRIES operand.

U23166-J-Z125-3-76 225

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

MODIFY-SUBS-ENTRIES = *BY-PROGRAM(...)
The entry points of the specified subsystem are supplied dynamically from the BLS name
list at load time instead of statically from the catalog. A prerequisite for this functionality is
the use of BLSSERV as of version 2.1, that supports using EEN names as entry points for
DSSM subsystems.

The statement is rejected if the subsystem was not previously also defined with
*BY-PROGRAM with the SET-SUBSYSTEM-ATTRIBUTES statement. MODIFY-SUBS-ENTRIES
is used for changing the connection settings.

If *BY-PROGRAM is used, the ADD-SUBS-ENTRIES and REMOVE-SUBS-ENTRIES operands
must be specified with *NONE.

CONNECTION-SCOPE = *TASK / *PROGRAM
The connection is shut down at task or program termination.

REMOVE-SUBS-ENTRIES =
Defines whether or not existing job entries which have been defined for the subsystem are
to be deleted.

REMOVE-SUBS-ENTRIES = *NONE
Default value: none of the job entries is to be deleted.

REMOVE-SUBS-ENTRIES = list-poss(100): <text 1..8>
Names of the job entries (up to 100) which are no longer to apply to the subsystem.

MEMORY-CLASS =
Specifies the subsystem-specific address space in which the subsystem is to be loaded.
System administration can use this operand to define the address space valid for the
subsystem concerned so as to meet the special requirements of the installation.
If the subsystem-specific address space is modified, each of the suboperands of MEMORY
must be assigned a value explicitly (the operand value *UNCHANGED (default value) will be
rejected).

MEMORY-CLASS = *SYSTEM-GLOBAL(...)
The subsystem will be loaded in class 3 or class 4 memory. Resident CSECTs will be given
class 3 memory, all others will be given pageable class 4 memory.

SUBSYSTEM-ACCESS =
Identifies the access authorization (privileges) and the location of the requested
memory.

SUBSYSTEM-ACCESS = *LOW
Nonprivileged address space below the 16-Mbyte boundary is allocated.

226 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

SUBSYSTEM-ACCESS = *SYSTEM
Subsystems declared with this operand value are privileged subsystems to which privi-
leged address space above the 16-Mbyte boundary is allocated.
This operand value is mandatory for subsystems whose entry point is declared via SVC
(MODE=*SVC) or for which an INIT, STOPCOM, DEINIT or CLOSE-CTRL routine is
declared. It is not permitted in combination with CONNECTION-ACCESS=*ALL and
MODE=*LINK.

SUBSYSTEM-ACCESS = *HIGH
Nonprivileged address space up to 2 Gbytes is allocated.

MEMORY-CLASS = *LOCAL-PRIVILEGED(...)
The subsystem is given a memory pool in nonprivileged class 5 memory, located below the
16-Mbyte boundary.
This specification is suitable for nonprivileged subsystems which demand a relatively large
amount of address space (approx. 1 Mbyte) and have to be set up below the 16-Mbyte
boundary. These subsystems are loaded in memory pools at the same address, in order to
manage the use of the limited address space below 16 Mbytes.
Although such subsystems are loaded in parallel in the same address space, they cannot
be used simultaneously by the same task (see also the SEPARATE-ADDRESS-SPACE
statement, page 241).
The subsystem must not contain any resident CSECTs as otherwise a later attempt to
activate it will be aborted.

SIZE = <integer 1..32767>
Size of the required address space (in 4Kbyte pages) for the memory pool in class 5
memory. This value should be set at least high enough to ensure that the subsystem
and any selectable units/load units which it may load dynamically can be loaded in their
entirety. The upper limit is generation-specific.

MEMORY-CLASS = *LOCAL-UNPRIVILEGED(...)
The subsystem is given a memory pool in nonprivileged class 6 memory. This specification
is reserved for subsystems which can be executed like a program.
In keeping with this, their access authorization (privileges) must be defined with the value
*ALL in the CONNECTION-ACCESS operand.
This operand value must not be specified together with an entry point which was defined
with CONNECTION-ACCESS=*SYSTEM.
The subsystem must not contain any resident CSECTs as otherwise a later attempt to
activate it will be aborted.
If this operand value is specified, only CONNECTION-SCOPE=*PROGRAM is permissible for
clearing the connection to the specified subsystem entry point.

U23166-J-Z125-3-76 227

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

SIZE = <integer 1..32767>
Size of the required address space (in 4Kbyte pages) for the memory pool in class 6
memory. This value should be set at least high enough to ensure that the subsystem
and any selectable units/load units which it may load dynamically can be loaded in their
entirety. The upper limit is generation-specific.

SUBSYSTEM-ACCESS =
Identifies the location of the requested memory space.

SUBSYSTEM-ACCESS = *LOW
Nonprivileged address space below the 16-Mbyte boundary is allocated.
Because this specification is suitable for subsystems which can be executed like
programs, it is advisable additionally to specify CONNECTION-SCOPE=*PROGRAM.

SUBSYSTEM-ACCESS = *HIGH
Nonprivileged address space up to 2 Gbytes is allocated.
Because this specification is suitable for subsystems which can be executed like
programs, it is advisable additionally to specify CONNECTION-SCOPE=*PROGRAM.

START-ADDRESS =
Defines the start address in class 6 memory.

START-ADDRESS = *ANY
The location of the subsystem in class 6 memory will be determined by DSSM.

START-ADDRESS = <x-string 7..8>
Start address in the segment raster at which the subsystem’s start address is to be
located. The value specified must be an 8-character hexadecimal constant which is a
multiple of X'100000'.

MEMORY-CLASS = *BY-SLICE(...)
The specified subsystem is a nonprivileged subsystem and consists of an LLM, which in
turn consists of a shareable code (program area) and a non-shareable code (data area).
The program area is loaded into the shareable address space (this corresponds to
MEMORY-CLASS=*SYSTEM-GLOBAL). The data area is loaded into the user address space
of the holder task and is copied into the private user address spaces of the connected tasks
at the same address.
The following values must be specified together with MEMORY-CLASS=*BY-SLICE:
SUBSYSTEM-LOAD-MODE=*ADVANCED and CONNECTION-ACCESS=*ALL.

SIZE = <integer 1..32767>
Specifies the size of the requested memory space for the data area in 4K pages.
The value chosen here must be sufficiently large to allow the subsystem and, if appro-
priate, selectable units/load units dynamically loaded by the subsystem to be loaded in
full. The upper limit is dependent on generation.

228 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

LINK-ENTRY = <text 1..8 without-sep>(...)
Defines the name of the object module/ENTRY/CSECT required for loading (for the
operand in the call of the $PBBND1 macro to the dynamic binder loader DBL). The
subsystem must be loaded in its entirety by this ENTRY (if necessary, using autolink).

AUTOLINK =
Controls invocation of the autolink function during linking and loading.
The linkage editor’s autolink function permits the automatic insertion of modules which
are not explicitly inserted by appropriate statements. The main purpose of this function
is to save users of higher-level programming languages from having to make explicit
statements to insert individually the numerous modules of the runtime system which are
required. Further details of the autolink function can be found in the “BLSSERV”
manual [4].
The autolink function can also be implicitly circumvented if the first external reference
encountered during linkage editing of the object module which is to be loaded points to
a prelinked module. The advantage of this approach is that the paging behavior when
the subsystem is later executed can be optimized at this preliminary stage (during
linkage editing). In addition, errors during linkage editing can be avoided in this way.

AUTOLINK = *ALLOWED
The autolink function is allowed.

AUTOLINK = *FORBIDDEN
The autolink function is suppressed.

ADD-REFER-SUBS / MODIFY-REFER-SUBS =
Specifies whether to set up a list containing subsystems to which there are address
relations, for use in resolving external references (ADD), or if there already exists a list which
is to be modified (MODIFY).

ADD-REFER-SUBS / MODIFY-REFER-SUBS = *NONE
Default value: no list is to be set up, nor is an existing list to be modified.

ADD-REFER-SUBS / MODIFY-REFER-SUBS = list-poss(15):<structured-name 1..8>
There are external references to be specified (ADD) or modified (MODIFY).
External references can be nominated for a maximum of 15 other subsystems; these
subsystems must be used in resolving the external references. If any of the subsystems
nominated here is missing at the time of activation or deactivation (and if a check of the
external references has also been requested by the operand CHECK-REFERENCE=*YES),
the action will be aborted.
It is also possible to address the BS2000/OSD control program via these external refer-
ences - using the name CP. In the substructure which follows, it is possible to specify either
exactly one version, or a range of versions within which all versions are to be referred to.
If a version range list is used to limit the version of the CP subsystem, DSSM checks the
compatibility of the current CP version against the versions in the range list. The subsystem
will only be loaded if it is a compatible version.

U23166-J-Z125-3-76 229

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

The following restrictions should be noted when specifying subsystems to which there are
address relations:

– No address relations may be declared to subsystems which have the attribute MEMORY-
CLASS=*LOCAL-PRIVILEGED/*LOCAL-UNPRIVILEGED/*BY-SLICE.

– If the attribute SUBSYSTEM-ACCESS=*SYSTEM is specified for the subsystem which is
being defined, no subsystem may be addressed if it is defined with SUBSYSTEM-
ACCESS=*LOW or SUBSYSTEM-ACCESS=*HIGH.

– Subsystems which have the attribute STOP-AT-SHUTDOWN=*YES may have address
relations only to other subsystems which also have this attribute.

– As a rule, a nonprivileged subsystem must not have any address relations to the control
program (CP)

– If a reference is made to a subsystem which has at least one version that may be
operated in coexistence or exchange mode, a unique version must be specified

– Any address relations must be defined in accordance with the start attributes
(CREATION-TIME operand); i.e. a subsystem may have relations to other subsystems
only if these were started at the same time or earlier.

LOWEST-VERSION =
Specifies the lowest value (lowest version) in the subsystem version range list.

LOWEST-VERSION = *LOWEST-EXISTING
The lowest version in the catalog is to be addressed.

LOWEST-VERSION = <c-string 3..8> / <text 3..8>
Version of the subsystem which is to be used as the lower limit of the range of versions.

HIGHEST-VERSION =
Specifies the upper value (highest version) in the subsystem version range list.

HIGHEST-VERSION = *HIGHEST-EXISTING
The highest version in the catalog is to be addressed.

HIGHEST-VERSION = <c-string 3..8> / <text 3..8>
Version of the subsystem which is to be used as the upper limit of the range of versions.

MODIFY-REFER-SUBS =
See the description of ADD-REFER-SUBS.

230 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

REMOVE-REFER-SUBS =
Indicates whether or not existing external references to other subsystems are to be deleted.

REMOVE-REFER-SUBS = *NONE
Default value: none of the existing external references to other subsystems is to be deleted.

REMOVE-REFER-SUBS = list-poss(15): <structured-name 1..8>
Names of a maximum of 15 external references which are to be made invalid.

UNRESOLVED-EXTERNALS =
Defines how the load procedure is to behave if there are unresolved external references.

UNRESOLVED-EXTERNALS = *FORBIDDEN
If unresolved external references occur, the load procedure will be terminated.

UNRESOLVED-EXTERNALS = *ALLOWED
The load procedure will be continued; unresolved external references will be given the value
X'FFFFFFFF’.

CHECK-REFERENCE =
Defines whether or not the subsystems specified in the REFERENCED-SUBSYSTEM
operand are to be checked in respect of their status and availability.

CHECK-REFERENCE = *YES
The referenced subsystems will be checked. If any of them is missing, DSSM will abandon
the activation or unloading of the subsystem.

CHECK-REFERENCE = *NO
DSSM is not to carry out any check.
Even if the user generates complex subsystems with this statement, DSSM will still execute
the requested functions despite the risk of conflicts:

– The START-SUBSYSTEM command loads the specified subsystem even if a subsystem
to which defined relations exist has not yet been fully loaded.

– DSSM executes the RESUME-SUBSYSTEM, STOP-SUBSYSTEM and HOLD-SUBSYSTEM
commands without performing any check on relations or dependencies.

ADD-RELATED-SUBS / MODIFY-RELATED-SUBS =
Specifies whether a list of subsystems for which dependency relations exist are to be
created (ADD) or an existing list of dependent subsystems is to be modified (MODIFY).

U23166-J-Z125-3-76 231

SSCM MODIFY-SUBSYSTEM-ATTRIBUTES

ADD-RELATED-SUBS / MODIFY-RELATED-SUBS = *NONE
Default value: no dependency relations are to be defined or modified for the subsystem.

ADD-RELATED-SUBS / MODIFY-RELATED-SUBS = list-poss(100):
<structured-name 1..8>
Dependency relations are to be defined (ADD) or modified (MODIFY) for up to 100 other
subsystems, without which the subsystem currently being defined cannot function.
It is also permissible to define dependency relations to the BS2000/OSD control program
(CP). The rules and restrictions which apply when doing so are analogous to those for
address relations, where they are described in more detail (see the ADD-REFER-SUBS
operand).
A dependency relation always points to a single version of a subsystem. In the substructure
which follows, it is possible to specify either exactly one version, or a range of versions
within which all versions are to be referred to.

The following general restrictions should be noted when specifying dependent subsystems:

– The relation which is defined must not contain closed loops. A loop arises if subsystem
A is dependent on B, B is dependent on C, and this is in turn dependent on A

– If the subsystem which is being defined has been given the attribute MEMORY-
CLASS=*SYSTEM-GLOBAL, then it is not permissible to address any subsystems defined
with MEMORY-CLASS=*LOCAL-PRIVILEGED or *LOCAL-UNPRIVILEGED.

– For subsystems which have the attribute SUBSYSTEM-ACCESS=*SYSTEM, no depen-
dency relations may be defined to subsystems to which SUBSYSTEM-ACCESS =*LOW or
SUBSYSTEM-ACCESS=*HIGH or MEMORY-CLASS=*BY-SLICE applies

– The dependency relations must be defined to correspond to the start attributes
(CREATION-TIME operand); i.e. a subsystem may only be dependent on subsystems
which are started at the same time or earlier.

LOWEST-VERSION =
Specifies the lowest value (lowest version) in the subsystem version range list.

LOWEST-VERSION = *LOWEST-EXISTING
The lowest version in the catalog is to be addressed.

LOWEST-VERSION = <c-string 3..8> / <text 3..8>
Version of the subsystem which is to be used as the lower limit of the range of versions.

HIGHEST-VERSION =
Specifies the upper value (highest version) in the subsystem version range list.

HIGHEST-VERSION = *HIGHEST-EXISTING
The highest version in the catalog is to be addressed.

HIGHEST-VERSION = <c-string 3..8> / <text 3..8>
Version of the subsystem which is to be used as the upper limit of the range of versions.

232 U23166-J-Z125-3-76

MODIFY-SUBSYSTEM-ATTRIBUTES SSCM

MODIFY-RELATED-SUBS =
See the description of ADD-RELATED-SUBS.

REMOVE-RELATED-SUBS =
Specifies whether existing dependency relations to other subsystems are to be deleted.

REMOVE-RELATED-SUBS = *NONE
Default value: none of the existing dependency relations to other subsystems is to be
deleted.

REMOVE-RELATED-SUBS = list-poss(100): <structured-name 1..8>
Names of a maximum of 100 subsystems to which all dependency relations are to be
removed.

U23166-J-Z125-3-76 233

SSCM MODIFY-WORK-TASK-ATTRIBUTE

MODIFY-WORK-TASK-ATTRIBUTE
Modify work task parameters

Function

This statement can be used to specify subsystems which are no longer to use their holder
tasks as a work task. It is possible to specify in addition a new TSN which is to be given to
the holder task. This statement will be rejected if the specified subsystem does not exist, or
if it does not use the holder task as a work task.

MODIFY-WORK-TASK-ATTRIBUTE will be rejected if neither of the following statements has
been executed beforehand:
– START-CATALOG-CREATION
– START-CATALOG-MODIFICATION

Format

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem which is using the holder task as a work task.

SUBSYSTEM-VERSION = <c-string 3..8> / <text 3..8>
Version of the subsystem which is using the holder task as a work task.
This version must have been declared previously.

MODIFY-WORK-TASK-ATTRIBUTE

SUBSYSTEM-NAME = <structured-name 1..8>

,SUBSYSTEM-VERSION = <c-string 3..8> / <text 3..8>

,WORK-TASK = *UNCHANGED (...) / *NO

*UNCHANGED(...)

 TSN = *BY-DSSM / <alphanum-name 1..4>

234 U23166-J-Z125-3-76

MODIFY-WORK-TASK-ATTRIBUTE SSCM

WORK-TASK =
Specifies whether the holder task is no longer to be used as a work task, or if the holder
task is simply to be given a new TSN.

WORK-TASK = *UNCHANGED
The subsystem is to continue to use the holder task as a work task. However, a new TSN
can be issued for the holder task, in the substructure which follows.

TSN =
Specifies the task sequence number (TSN) to be given to the subsystem’s work task.

TSN = *BY-DSSM
Default value: the TSN is issued by DSSM when the work task is loaded.

TSN = <alphanum-name 1..4>
Task sequence number to be given to the work task when it is started.
The specified TSN must be uniquely defined and usable when the subsystem is loaded.

WORK-TASK = *NO
The holder task for the specified subsystem is no longer to be used as a work task.

U23166-J-Z125-3-76 235

SSCM REMOVE-ADDR-SPACE-SEPARATION

REMOVE-ADDR-SPACE-SEPARATION
Revoke disjunctive distribution of subsystems in class 5
memory

Function

This statement can be used to revoke the declarations made using a SEPARATE-ADDRESS-
SPACE statement (see page 241) and specifying the non-overlapping (disjunctive) distri-
bution of subsystems in class 5 memory.

Use of this statement is irrelevant for subsystems in class 3 or class 4 memory (operand
MEMORY-CLASS=*SYSTEM-GLOBAL in the SET-SUBSYSTEM-ATTRIBUTES statement) and
for subsystems in class 6 memory (MEMORY-CLASS=*LOCAL-UNPRIVILEGED).
Subsystems in class 6 memory are never used in parallel, and may therefore overlap in the
address space; subsystems in class 3 or 4 memory never overlap.

REMOVE-ADDR-SPACE-SEPARATION will be rejected if neither of the following statements
has been executed beforehand:
– START-CATALOG-CREATION
– START-CATALOG-MODIFICATION

The name of the subsystem must be contained in the catalog. If any of the address relations
specified in the list of subsystems does not exist, it will be ignored; processing of the
statement will continue.

Format

REMOVE-ADDR-SPACE-SEPARATION

SUBSYSTEM-NAME = <structured-name 1..8>

,FROM-SUBSYSTEMS = list-poss(15): <structured-name 1..8>

236 U23166-J-Z125-3-76

REMOVE-ADDR-SPACE-SEPARATION SSCM

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem which until now was not permitted to overlap with other
subsystems.
The subsystem must be known to SSCM and must already be defined.

FROM-SUBSYSTEMS = list-poss(15): <structured-name 1..8>
List of a maximum of 15 subsystems for each of which a declaration has been made to the
effect that it must not overlap with the subsystem named in the SUBSYSTEM-NAME operand.
The declaration will be revoked for these subsystems.

U23166-J-Z125-3-76 237

SSCM REMOVE-CATALOG-ENTRY

REMOVE-CATALOG-ENTRY
Logically delete definition of subsystem from subsystem
catalog

Function

This statement is used to logically delete the definition of a subsystem which is stored in the
subsystem catalog.

The statement will be rejected if a current (non-empty) catalog, in which the definition is
stored, has not been opened by a START-CATALOG-CREATION or START-CATALOG-
MODIFICATION statement.

The statement will also be rejected if the subsystem specified is not contained in the catalog
named. If the subsystem is removed from the catalog, then any disjunctive relations
(declared by a SEPARATE-ADDRESS-SPACE statement) will also be deleted.

Where there are dependency or load relations, the removal of a subsystem may
lead to errors during consistency checks on the catalog.

Format

Operands

SUBSYSTEM-NAME = <structured-name 1..8>(...)
Name of the subsystem whose definition is to be deleted from the catalog.

VERSION = *ALL / <c-string 3..8> / <text 3..8>
Specifies the version of the subsystem whose definition is to be deleted from the
catalog. If VERSION=*ALL is specified, the definitions of all versions of the specified
subsystem are deleted from the catalog.

REMOVE-CATALOG-ENTRY

SUBSYSTEM-NAME = <structured-name 1..8>(...)

<structured-name>(...)

 VERSION = *ALL / <c-string 3..8> / <text 3..8>

i

238 U23166-J-Z125-3-76

SAVE-CATALOG SSCM

SAVE-CATALOG
Save subsystem catalog as PAM file

Function

With the aid of this statement, a subsystem catalog created in memory by means of state-
ments entered earlier can be saved as a PAM file.

The file name is either derived from the last START-CATALOG-CREATION statement (see
page 285) or from the START-CATALOG-MODIFICATION statement (see page 286), or a new
file name can be specified in fully qualified form.

SAVE-CATALOG will be rejected with an error message:
– if neither of the statements START-CATALOG-CREATION or START-CATALOG-

MODIFICATION has been executed beforehand
– if the catalog created in memory contains no definitions, i.e. is empty
– if the catalog already contains a file with the name (other than *CURRENT) specified in

CATALOG-NAME and REPLACE-OLD-FILE=*NO was specified.

Note that this statement must be preceded by a check run for the catalog. This check run
can be initiated by a CHECK-CATALOG statement (see page 196).

Format

SAVE-CATALOG

CATALOG-NAME = *CURRENT / <filename 1..51 without-gen-vers>(...)

 REPLACE-OLD-FILE = *NO / *YES

,FORCED = *NO / *YES / *FOR-ADD-SUBSYSTEM

U23166-J-Z125-3-76 239

SSCM SAVE-CATALOG

Operands

CATALOG-NAME =
File name under which the catalog is to be saved.

CATALOG-NAME = *CURRENT
The catalog will be saved under the file name specified in the last START-CATALOG-
CREATION or START-CATALOG-MODIFICATION statement.

CATALOG-NAME = <filename 1..51 without-gen-vers>
Fully qualified file name under which the catalog is to be saved.

REPLACE-OLD-FILE= *NO / *YES
Specifies whether an existing, cataloged file with the name specified in CATALOG-NAME
may be overwritten (*YES) or not (*NO).

FORCED =
Determines how SSCM is to behave if there are errors in the subsystem definition.

FORCED = *NO
Default value: in the case of errors which SSCM recognizes during the analysis of the
subsystem definition, the catalog is not to be saved in a PAM file.
Errors may arise in the definitions of subsystems due to a set of relations (address, depen-
dency or external reference relations) which contains loops. Such a loop results if a relation
(“→”) is defined which, after a number of steps, refers back to itself:

FORCED = *YES
In spite of any errors which SSCM may identify during the analysis of the subsystem defini-
tions, the catalog is to be saved in a PAM file.
Responsibility for a catalog saved in this way lies with the user; the behavior of DSSM
cannot be guaranteed.

FORCED = *FOR-ADD-SUBSYSTEM
The specified catalog will be saved even if the following errors arise:
– a subsystem includes dependency relations to undefined subsystems or
– a subsystem is to share a holder task with an undefined subsystem.

Use of this operand is a good idea when a catalog is to be created that contains nothing but
new subsystems, which may, however, have relations to other subsystems defined in the
old catalog. This new catalog is added to the existing old catalog by means of the command
ADD-SUBSYSTEM ...,TYPE=*NEW-SUBSYSTEMS.

Subsystem A
Subsystem B
Subsystem C

Subsystem B
Subsystem C
Subsystem A

240 U23166-J-Z125-3-76

SAVE-SSD SSCM

SAVE-SSD
Terminate subsystem definition(s)

Function

The SAVE-SSD statement terminates the sequence of statements used to define one or
more subsystems initiated by the statements START-SSD-CREATION (see page 287) and
SET-SUBSYSTEM-ATTRIBUTES (see page 243).
This statement requests SSCM to save the subsystem definition(s) to the ISAM file named
in the START-SSD-CREATION statement. This ISAM file is called the SSD object.

SAVE-SSD will be rejected if neither of the following statements has been executed
beforehand:
– START-SSD-CREATION
– SET-SUBSYSTEM-ATTRIBUTES

SAVE-SSD is aborted and an error message is issued if the SSD object contains
subsystems which
– have been defined with CLOSE-CTRL-ROUTINE=*DYNAMIC, but the holder task is not

being used as a work task
– have different INSTALLATION-UNIT names (installed software units)

Format

SAVE-SSD

U23166-J-Z125-3-76 241

SSCM SEPARATE-ADDRESS-SPACE

SEPARATE-ADDRESS-SPACE
Control disjunctive distribution of subsystems in class 5
memory

Function

This statement is used to control the disjunctive distribution of subsystems in class 5
memory. Using this statement, it is possible to prevent unwanted overlaps in the address
spaces of subsystems which could be caused by the SET-SUBSYSTEM-ATTRIBUTES state-
ments.

Use of this statement is irrelevant for subsystems in class 3 or class 4 memory (operand
MEMORY-CLASS=*SYSTEM-GLOBAL in the SET-SUBSYSTEM-ATTRIBUTES statement), and
for subsystems in class 6 memory (MEMORY-CLASS=*LOCAL-UNPRIVILEGED).
Subsystems in class 6 memory are never used in parallel, and may therefore overlap in the
address space; subsystems in class 3 or 4 memory never overlap.

SET-SUBSYSTEM-ATTRIBUTES will be rejected if none of the following statements has been
executed beforehand:
– START-SSD-CREATION
– START-CATALOG-CREATION
– START-CATALOG-MODIFICATION

Format

Operands

SUBSYSTEM-NAME = <structured-name 1..8>
Name of the subsystem which must not overlap with other subsystems.
The subsystem must be known to SSCM and must already be defined.

SEPARATE-ADDRESS-SPACE

SUBSYSTEM-NAME = <structured-name 1..8>

,FROM-SUBSYSTEMS = list-poss(15): <structured-name 1..8>

242 U23166-J-Z125-3-76

SEPARATE-ADDRESS-SPACE SSCM

FROM-SUBSYSTEMS = list-poss(15): <structured-name 1..8>
List of a maximum of 15 subsystems, none of which may overlap with the subsystem named
in the SUBSYSTEM-NAME operand.

Notes

The SEPARATE-ADDRESS-SPACE statement always creates at least two disjunctive
relations, as can be seen from the following example:

//SEPARATE-ADDRESS-SPACE SUBSYSTEM-NAME=ONE,FROM-SUBSYSTEMS=(TWO,THREE)

Execution of this statement creates the following relations:

– the address space of subsystem ONE is non-overlapping with the address space of
subsystem TWO

– the address space of subsystem ONE is non-overlapping with the address space of
subsystem THREE

– the address space of subsystem TWO is non-overlapping with the address space of
subsystem ONE

– the address space of subsystem THREE is non-overlapping with the address space of
subsystem ONE

U23166-J-Z125-3-76 243

SSCM SET-SUBSYSTEM-ATTRIBUTES

SET-SUBSYSTEM-ATTRIBUTES
Define attributes and entry points of subsystem

Function

This statement enables all the attributes and entry points for a subsystem to be set.

The way in which the definition of a new subsystem will be compiled depends on what
statement preceded the definition:

– After a START-CATALOG-CREATION statement (page 285), the subsystem can be
integrated into the catalog.

– After a START-SSD-CREATION statement (page 287), the subsystem can be integrated
into the SSD object.
However, it is not permissible to set up different versions of the same subsystem in the
same SSD object.

Subsystems defined with the operand MEMORY-CLASS=*SYSTEM-GLOBAL ..., SUBSYSTEM-
ACCESS=*SYSTEM are privileged subsystems.

When setting up the definition, the following points should be noted:

– The name and version of the subsystem must not already be present in the subsystem
catalog.

– Two different versions of one and the same subsystem cannot be defined in the same
SSD object.

– The subsystem name CP is reserved for DSSM and must not be specified.
– The names of the entry points must not be present in duplicate.
– The name of the subsystem which is being defined must not be included in the list of

subsystems to which there are address or dependency relations.
– Within this list, a subsystem name must not appear more than once.

SET-SUBSYSTEM-ATTRIBUTES is rejected if none of the following statements were executed
beforehand:

– START-SSD-CREATION
– START-CATALOG-CREATION
– START-CATALOG-MODIFICATION

244 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

Note on syntax

The special data type <symbol>, which is described in detail in the “BLSSERV” manual
[4], can also be used for the names of the entry points in the following operands (in the
format, the data type is specified as <name>):

Format

– LINK-ENTRY – DEINIT-ROUTINE

– DYNAMIC-CHECK-ENTRY – INTERFACE-VERSION

– INIT-ROUTINE – SUBSYSTEM-ENTRIES

– CLOSE-CTRL-ROUTINE – STOPCOM-ROUTINE

(part 1 of 4)

SET-SUBSYSTEM-ATTRIBUTES

SUBSYSTEM-NAME = <structured-name 1..8>(...)

<structured-name 1..8>(...)

 VERSION = <c-string 3..8> / <text 3..8>

,INSTALLATION-UNIT = *NONE / *STD / <text 1..30>

,INSTALLATION-USERID = *NONE / *DEFAULT-USERID / <name 1..8>

,COPYRIGHT = *NONE / <c-string 1..54>(...)

<c-string 1..54>(...)

 YEAR = *YEAR-1990 / <c-string 4..4>

,LIBRARY = *STD / *CPLINK / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = <filename 1..54 without-gen-vers>

,SUBSYSTEM-LOAD-MODE = *ANY / *STD / *ADVANCED

,REP-FILE = *STD / *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = <filename 1..54 without-gen-vers> / *NONE

,REP-FILE-MANDATORY = *NO / *YES

Continued� �

U23166-J-Z125-3-76 245

SSCM SET-SUBSYSTEM-ATTRIBUTES

,MESSAGE-FILE = *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = <filename 1..54 without-gen-vers> / *NONE

,SUBSYSTEM-INFO-FILE = *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = <filename 1..54 without-gen-vers> / *NONE

,SYNTAX-FILE = *NO / *INSTALLED(...) / <filename 1..54 without-gen-vers>

*INSTALLED(...)

 LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>

 ,DEFAULT-NAME = <filename 1..54 without-gen-vers> / *NONE

,DYNAMIC-CHECK-ENTRY = *STD / *NO / <text 1..8 without-sep>

,CREATION-TIME = *AT-CREATION-REQUEST / *AT-SUBSYSTEM-CALL(...) / *AT-DSSM-LOAD /

*BEFORE-DSSM-LOAD / *MANDATORY-AT-STARTUP / *BEFORE-SYSTEM-READY /

*AFTER-SYSTEM-READY

*AT-SUBSYSTEM-CALL(...)

 ON-ACTION = *STD / *ISL-CALL / *ANY

,INIT-ROUTINE = *NO / <text 1..8 without-sep>

,CLOSE-CTRL-ROUTINE = *NO / *DYNAMIC / <text 1..8 without-sep>

,STOPCOM-ROUTINE = *NO / *DYNAMIC / <text 1..8 without-sep>

,DEINIT-ROUTINE = *NO / *DYNAMIC / <text 1..8 without-sep>

,STOP-AT-SHUTDOWN = *NO / *YES

,INTERFACE-VERSION = *NO / <text 1..8 without-sep>

,SUBSYSTEM-HOLD = *ALLOWED / *FORBIDDEN

,STATE-CHANGE-CMDS = *ALLOWED / *FORBIDDEN / *BY-ADMINISTRATOR-ONLY

,FORCED-STATE-CHANGE = *FORBIDDEN / *ALLOWED

,RESET = *FORBIDDEN / *ALLOWED

,RESTART-REQUIRED = *NO / *YES

,VERSION-COEXISTENCE = *FORBIDDEN / *ALLOWED

,VERSION-EXCHANGE = *FORBIDDEN / *ALLOWED

Continued� �

(part 2 of 4)

246 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

,SUBSYSTEM-ENTRIES = *NONE / list-poss(100): <text 1..8>(...) / *BY-PROGRAM(...)

<text 1..8>(...)

 MODE = *LINK / *ISL(...) / *SVC(...) / *SYSTEM-EXIT(...)
 *ISL(...)
  FUNCTION-NUMBER = *NONE / <integer 0..255>(...)
   <integer 0..255>(...)
    FUNCTION-VERSION = <integer 1..255>
 *SVC(...)
  NUMBER = <integer 0..255>
   ,CALL-BY-SYSTEM-EXIT = *ALLOWED / *FORBIDDEN
   ,FUNCTION-NUMBER = *NONE / <integer 0..255>(...)
   <integer 0..255>(...)
    FUNCTION-VERSION = <integer 1..255>
 *SYSTEM-EXIT(...)
  NUMBER = <integer 0..127>
 ,CONNECTION-ACCESS = *ALL / *SYSTEM / *SIH
 ,CONNECTION-SCOPE = *TASK / *PROGRAM / *FREE / *CALL / *OPTIMAL
 , FIRST-CONNECTION = *ALLOWED / *FORBIDDEN

*BY-PROGRAM(...)

 CONNECTION-SCOPE = *TASK / *PROGRAM

,MEMORY-CLASS = *SYSTEM-GLOBAL (...) / *LOCAL-PRIVILEGED(...) / *LOCAL-UNPRIVILEGED(...) /

*BY-SLICE(...)

*SYSTEM-GLOBAL(...)

 SUBSYSTEM-ACCESS = *LOW / *SYSTEM / *HIGH

*LOCAL-PRIVILEGED(...)

 SIZE = <integer 1..32767>

*LOCAL-UNPRIVILEGED(...)

 SIZE = <integer 1..32767>
 ,SUBSYSTEM-ACCESS = *LOW / *HIGH
 ,START-ADDRESS = *ANY / <x-string 7..8>

Continued� �

(part 3 of 4)

U23166-J-Z125-3-76 247

SSCM SET-SUBSYSTEM-ATTRIBUTES

Operands

SUBSYSTEM-NAME = <structured-name 1..8>(...)
Specifies the name and version of the subsystem which is to be defined.

VERSION = <c-string 3..8> / <text 3..8>
The version of the subsystem must be specified in the format “[V][n]n.m[ann]”. The text
elements have the following meanings:

INSTALLATION-UNIT =
Defines the name of the installed software unit. A value other than *NONE must be specified
for all subsystems installed with IMON, and likewise if the value *INSTALLED(LOGICAL-ID=...)
was defined for the operand SUBSYSTEM-LIBRARY, REP-FILE, SUBSYSTEM-INFO-FILE,
MESSAGE-FILE or SYNTAX-FILE.
The syntax rules described in the “IMON“ manual [17] must be observed when defining the
name.

*BY-SLICE(...)

 SIZE = <integer 1..32767>

,LINK-ENTRY = <text 1..8 without-sep>(...)

<text 1..8 without-sep>(...)

 AUTOLINK = *FORBIDDEN / *ALLOWED

,REFERENCED-SUBSYSTEM = *NONE / list-poss(15): <structured-name 1..8>(...)

<structured-name 1..8>(...)

 LOWEST-VERSION = *LOWEST-EXISTING / <c-string 3..8> / <text 3..8>
 ,HIGHEST-VERSION = *HIGHEST-EXISTING / <c-string 3..8> / <text 3..8>

,UNRESOLVED-EXTERNALS = *FORBIDDEN / *ALLOWED

,CHECK-REFERENCE = *YES / *NO

,RELATED-SUBSYSTEM = *NONE / list-poss(100): <structured-name 1..8>(...)

<structured-name 1..8>(...)

 LOWEST-VERSION = *LOWEST-EXISTING / <c-string 3..8> / <text 3..8>

 ,HIGHEST-VERSION = *HIGHEST-EXISTING / <c-string 3..8> / <text 3..8>

nn
m
ann

= Main version (numeric)
= Revision version (numeric)
= Update status

(a=letter, release status; nn=numeric, correction status)

(part 4 of 4)

248 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

INSTALLATION-UNIT = *NONE
Default setting: no name is assigned. This default setting is not allowed for any subsystems
installed with IMON.

INSTALLATION-UNIT = *STD
The name specified via the SUBSYSTEM-NAME operand is used as the name of the installed
software unit.

INSTALLATION-UNIT = <text 1..30>
Name of the installed software unit.

INSTALLATION-USERID =
Defines a user ID under which the relevant DSSM task expects the subsystem satellites
(REP file, object module library, message file, syntax file and subsystem information file) if
these files have not yet been assigned to a user ID, i.e. the file name was specified without
a user ID.

INSTALLATION-USERID = *NONE
Default value: the files will not be expected under a specific user ID.

INSTALLATION-USERID = *DEFAULT-USERID
The files are expected under the default system ID (prefix “$.”) or under the user ID of the
calling task if the subsystem is a local subsystem.

INSTALLATION-USERID = <name 1..8>
User ID under which the subsystem satellites are to be expected.
If this statement applies to an SSD object, the files will only actually be expected under the
user ID specified here if no user ID was specified in the ADD-CATALOG-ENTRY statement
(inclusion of subsystem definitions from the SSD object in the catalog, see page 183). The
ID specified in ADD-CATALOG-ENTRY takes precedence.

COPYRIGHT =
Specifies whether or not a copyright notice is to be displayed when the subsystem is started
and, if so, which one.

COPYRIGHT = *NONE
Default value: no copyright notice is to be output.

COPYRIGHT = <c-string 1..54>(...)
Text of the copyright notice which is to be output together with the creation date when the
subsystem is started.

YEAR = *YEAR-1990 / <c-string 4..4>
Number of the year which is to appear in the statement as the creation date. This is not
subjected to a semantic check.

U23166-J-Z125-3-76 249

SSCM SET-SUBSYSTEM-ATTRIBUTES

LIBRARY =
Specifies the name of the program or object module library (OML) from which the object
code for the subsystem is to be loaded when it is activated.

LIBRARY = *STD
Default value: when the subsystem is started, the object code will automatically be loaded
from the library SYSLNK.<subsysname>.<subsysvers#>. This library is stored under the user
ID under which the holder task is running. For local subsystems this is the user ID of the
caller, and for global subsystems it is TSOS. “<subsysvers#>” is a three-character value
consisting of the elements “mmm” (for the operand SUBSYSTEM-NAME=...(VERSION=...)).

LIBRARY = *CPLINK
The subsystem which is to be defined is linked to the BS2000/OSD control program (CP)
and must have been loaded before DSSM was activated. This operand may only be used
in conjunction with the operand CREATION-TIME=*BEFORE-DSSM-LOAD.

LIBRARY = *INSTALLED(...)
The library name must be determined by calling IMON (administration of installation paths).
If one of the subsystem satellites is referenced with a logical ID, logical IDs must be
specified for all satellites belonging to the subsystem. If a logical ID is assigned, a value
other than *NONE must be assigned for the INSTALLATION-UNIT operand.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
Logical ID of the program library or object module library.

DEFAULT-NAME = <filename 1..54 without-gen-vers>
New library name if IMON-GPN is not available or if the logical name is unknown.

LIBRARY = <filename 1..54 without-gen-vers>
Fully qualified file name of the object module library from which the object code for the
subsystem is to be loaded.

SUBSYSTEM-LOAD-MODE =
Specifies the load mode of the subsystem (via the BLS-DSSM interface $PBBND1).

SUBSYSTEM-LOAD-MODE = *ANY
Default value: the BLS (Binder-Loader-Starter system) is called up in STD run mode and
loads the subsystem as an object module. If an error occurs during loading, BLS will be
called a second time. The call takes place in ADVANCED run mode, and the subsystem is
loaded as a link and load module (LLM).
Support for this operand value is provided only for the sake of compatibility.

250 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

SUBSYSTEM-LOAD-MODE = *STD
The BLS is called up in STD run mode and loads the subsystem as an object module.

SUBSYSTEM-LOAD-MODE = *ADVANCED
The BLS is called up in ADVANCED run mode and loads the subsystem as a link and load
module (LLM).

REP-FILE =
Specifies whether or not system REPs are required for the subsystem which is being
defined, and identifies the file in which they are stored. These correction statements are
used during activation of the subsystem, and are applied solely to the modules stored and
loaded in the object module library, not to other subsystems or the BS2000/OSD control
program. A REP file can also be specified for modules of a nonprivileged subsystem.
REP-FILE must not be specified together with LIBRARY=*CPLINK.

REP-FILE = *STD
Unless another file is specified, system REPs are loaded from the REP file with the name
SYSREP.<subsysname>.<subsysvers#>. This REP file is stored under the user ID under which
the holder task is running. For local subsystems this is the user ID of the caller, and for
global subsystems it is TSOS.
“<subsysvers#>” is a three-character value consisting of the elements “mmm” specified for
the operand SUBSYSTEM-NAME=...(VERSION=...).

REP-FILE = *NO
No REP files are to be processed for the subsystem.

REP-FILE = *INSTALLED(...)
The name of the REP file must be determined by calling IMON-GPN (administration of
installation paths). If one of the subsystem satellites is referenced with a logical ID, logical
IDs must be specified for all satellites belonging to this subsystem. If a logical ID is
assigned, a value other than *NONE must be assigned for the INSTALLATION-UNIT operand.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
Logical ID of the REP file.

DEFAULT-NAME =
Name of the REP file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = <filename 1..54 without-gen-vers>
A new name is assigned.

DEFAULT-NAME = *NONE
No new name is assigned.

REP-FILE = <filename 1..54 without-gen-vers>
Fully qualified name of the REP file from which the correction statements are to be read.

U23166-J-Z125-3-76 251

SSCM SET-SUBSYSTEM-ATTRIBUTES

REP-FILE-MANDATORY =
Specifies whether or not a REP file declared via the REP-FILE operand is to be processed
when loading the subsystem.

REP-FILE-MANDATORY = *NO
Default value: the use of a REP file is not mandatory, i.e. neither the REP file nor its entries
are to be checked when the subsystem is activated. Even if the REP file can‘t be accessed
or if individual correction statements are invalid, the subsystem will still be started.

REP-FILE-MANDATORY = *YES
If any of the following errors occurs during processing of the REP file, any attempt to load
the subsystem will be terminated:

– the REP file is not cataloged, or it cannot be read
– checking of the correction statements reveals an error
– the name of a correction statement is invalid
– DMS reports an error during access to the NOREF file (this file is used during loading

of a subsystem to prevent invalid system REPs from being logged at the operator
terminal)

MESSAGE-FILE =
Specifies whether there is a subsystem-specific message file which is to be automatically
activated when the subsystem is loaded. For subsystems which are defined with the
creation time AT-DSSM-LOAD, a dependency relation to the MIP subsystem must be
specified in the RELATED-SUBSYSTEMS operand.

MESSAGE-FILE = *NO
Default value: no message file is to be activated. This value is mandatory for all subsystems
which are defined with the creation time BEFORE-DSSM-LOAD (see also the CREATION-TIME
operand), as it is not possible to activate a message file as early as this.

MESSAGE-FILE = *INSTALLED(...)
The name of the message file must be determined by calling IMON-GPN (administration of
installation paths).
If one of the subsystem satellites is referenced with a logical ID, logical IDs must be
specified for all satellites belonging to the subsystem. If a logical ID is assigned, a value
other than *NONE must be assigned for the INSTALLATION-UNIT operand.

252 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
Logical ID of the message file.

DEFAULT-NAME =
Name of the message file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = <filename 1..54 without-gen-vers>
A new name is assigned.

DEFAULT-NAME = *NONE
No new name is assigned.

MESSAGE-FILE = <filename 1..54 without-gen-vers>
Fully qualified name of the message file. This will be automatically activated when the
subsystem is loaded (START-SUBSYSTEM command) and automatically deactivated when it
is unloaded (STOP-SUBSYSTEM).

SUBSYSTEM-INFO-FILE =
Specifies whether or not a subsystem information file (SSINFO) is available. This file
contains subsystem-specific data (subsystem satellites and configuration data) which
cannot be processed centrally by DSSM.

SUBSYSTEM-INFO-FILE = *NO
Default value: no information file is available for the subsystem.

SUBSYSTEM-INFO-FILE = *INSTALLED(...)
The name of the information file must be determined by calling IMON-GPN (administration
of installation paths).
If one of the subsystem satellites is referenced with a logical ID, logical IDs must be
specified for all satellites belonging to this subsystem. If a logical ID is assigned, a value
other than *NONE must be assigned for the INSTALLATION-UNIT operand.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
Logical ID of the information file.

DEFAULT-NAME =
Name of the information file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = <filename 1..54 without-gen-vers>
A new name is assigned.

DEFAULT-NAME = *NONE
A new name is assigned.

U23166-J-Z125-3-76 253

SSCM SET-SUBSYSTEM-ATTRIBUTES

SUBSYSTEM-INFO-FILE = <filename 1..54 without-gen-vers>
Fully qualified name of the information file. This name is automatically passed to the
activation and deactivation routines (INIT-/DEINIT-/STOPCOM-/CLOSE-CTRL-ROUTINE
operands) when they are called.

SYNTAX-FILE =
Specifies whether the subsystem has linked to it a syntax file which will be activated
automatically when the subsystem is loaded. For subsystems which are defined with the
start attribute MANDATORY-AT-STARTUP, a dependency relation to the SDF subsystem must
be declared in the RELATED-SUBSYSTEMS operand.

SYNTAX-FILE = *NO
Default value: no syntax file is to be activated. This value is mandatory for all subsystems
which are defined with the start time BEFORE-DSSM-LOAD or AT-DSSM-LOAD (see also the
CREATION-TIME operand), as it is not possible to activate a syntax file as early as this.

SYNTAX-FILE = *INSTALLED(...)
The name of the syntax file must be determined by calling IMON-GPN (administration of
installation paths).
If one of the subsystem satellites is referenced with a logical ID, logical IDs must be
specified for all satellites belonging to this subsystem. If a logical ID is assigned, a value
other than *NONE must be assigned for the INSTALLATION-UNIT operand.

LOGICAL-ID = <filename 1..30 without-catid-userid-gen-vers>
Logical ID of the syntax file.

DEFAULT-NAME =
Name of the syntax file if IMON-GPN is not available or if the logical ID is unknown.

DEFAULT-NAME = <filename 1..54 without-gen-vers>
A new name is assigned.

DEFAULT-NAME = *NONE
No new name is assigned.

SYNTAX-FILE = <filename 1..54 without-gen-vers>
Fully qualified name of the syntax file which is to be automatically activated when the
subsystem is loaded.

254 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

DYNAMIC-CHECK-ENTRY =
Specifies whether a dynamic identity check is to be carried out on the subsystem. For this
purpose, an entry point must be specified, at which both the subsystem name (eight
characters) and also the version number (four or seven characters) must be located. DSSM
checks whether the identification specified in the definition agrees with the subsystem
which is loaded.

DYNAMIC-CHECK-ENTRY = *STD
By default, the entry point specified in the LINK-ENTRY operand will be applied in carrying
out the identity check.

DYNAMIC-CHECK-ENTRY = *NO
No check is to be carried out. However, this value of the operand must not be used for any
subsystems which are loaded before DSSM is activated (CREATION-TIME=*BEFORE-DSSM-
LOAD).

DYNAMIC-CHECK-ENTRY = <text 1..8 without-sep>
Name of the entry point which is to be used in applying the identity check.

CREATION-TIME =
Specifies the point in time at which activation of the subsystem (CREATE routine) is initiated.
There are two separate phases during system initialization when DSSM takes over the
control of system initialization after it has been called by the startup routine:

Phase 1: The DSSM code is loaded, the DSSM task is generated and started. This
task reserves class 5 memory, reads in the subsystem catalog, and starts
those subsystems which have been defined with the start attributes
BEFORE-DSSM-LOAD and AT-DSSM-LOAD. After these subsystems have
been loaded, control of system initialization returns to the startup routine.

Phase 2: Following a second call, all those subsystems are loaded which have been
defined with the start attributes MANDATORY-AT-STARTUP, BEFORE-SYSTEM-
READY and AFTER-SYSTEM-READY.
In the case of the first two of these start attributes, loading of the
subsystems is synchronized with the startup routine (i.e. loading must be
completed), but for the last of them asynchronous loading is initiated.
Control of system initialization returns to the startup routine.

If different versions of a subsystem are to be defined, it is only possible to specify the start
attributes, for use in phases 1 and 2 of system initialization, for one of these versions.

CREATION-TIME = *AT-CREATION-REQUEST
Default value: the subsystem must be explicitly loaded by means of the START-SUBSYSTEM
command.

U23166-J-Z125-3-76 255

SSCM SET-SUBSYSTEM-ATTRIBUTES

CREATION-TIME = *AT-SUBSYSTEM-CALL(...)
The subsystem is to be automatically loaded when the first SVC or ISL call is made. This
operand value is reserved for subsystems which are called via SVC or ISL.
If two or more versions of a subsystem are defined with this operand value, VERSION-
COEXISTENCE=*ALLOWED must be specified for all of these versions and FUNCTION-
NUMBER and FUNCTION-VERSION must be specified for their SVC or ISL entry points,
which were declared with CONNECTION-ACCESS with a value other than *SIH.
At least one of the specified subsystems must have been declared with SUBSYSTEM-
ENTRIES ..., MODE=*SVC/*ISL (corresponding to the value of the ON-ACTION operand).

ON-ACTION =
Determines what initiates automatic loading of the subsystem.

ON-ACTION = *STD
Default setting: loading begins when any SVC entry point belonging to the subsystem
is called.

ON-ACTION = *ISL-CALL
Loading begins when any ISL entry point belonging to the subsystem is called.

ON-ACTION = *ANY
Loading begins when any SVC or ISL entry point belonging to the subsystem is called.

CREATION-TIME = *AT-DSSM-LOAD
The subsystem is to be loaded during system initialization (phase 1) under the control of
the DSSM task.
The subsystem must be a privileged one, and may only have address or dependency
relations to subsystems which are also defined with this start attribute or with the start
attribute BEFORE-DSSM-LOAD.
The files for this subsystem must be held on the home pubset under the TSOS user ID,
because at the time of startup the user catalog is not accessible and IMPORT-PUBSET
processing has not been completed.
Specification of a syntax file is not permitted for these subsystems.

CREATION-TIME = *BEFORE-DSSM-LOAD
The subsystem is to be loaded during system initialization (phase 1), but not under the
control of the DSSM task.
Such subsystems are linked to the control program, and do not need to be synchronized
with the DSSM task when activated. However, after the subsystem is loaded it again runs
under the control of DSSM and can, from the user’s point of view, be controlled in the same
way as other subsystems.
No address or dependency relations are possible to subsystems which are defined with any
other start attribute. Nor is it permissible to link in a message or syntax file. All job entries
(SUBSYSTEM-ENTRIES operand) must be declared, because DSSM creates the (privileged)
connection to these job entries. Responsibility for ensuring that at least one version of this
subsystem is available at any given time (e.g. PLAM) rests entirely with the subsystem
developer.

256 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

The name of the link context for these subsystems must be unique because DSSM must
also honor an unload request even if DSSM has not loaded the subsystem code. An entry
point (operand DYNAMIC-CHECK-ENTRY) must have been specified.

CREATION-TIME = *BEFORE-SYSTEM-READY
The subsystem is to be loaded during system initialization (phase 2). Activation is initiated
synchronously; not until loading is complete (or a load error occurs) does control return to
the startup routine, which can then report “SYSTEM READY”.
The subsystem must be privileged, and may only have address or dependency relations to
subsystems defined with the same attribute or with the start attribute BEFORE-DSSM-LOAD,
AT-DSSM-LOAD or MANDATORY-AT-STARTUP. The files for this subsystem must be cataloged
on the home pubset.
If a nonprivileged subsystem is declared with this operand value, it is automatically given
the value *AFTER-SYSTEM-READY. SSCM issues a message.

CREATION-TIME = *MANDATORY-AT-STARTUP
The subsystem must be loaded during system initialization (phase 2). Activation is initiated
synchronously - as in the case of BEFORE-SYSTEM-READY. By contrast with the latter
however, loading of the subsystem must in this case be completed successfully. Otherwise
a message is passed to the startup routine reporting that a mandatory subsystem could not
be loaded. In this case, the startup routine will decide whether processing should continue
or be terminated.
The subsystem must be privileged, and may only have address or dependency relations to
subsystems defined with the same attribute or with the start attribute BEFORE-DSSM-LOAD
or AT-DSSM-LOAD. The files for this subsystem must be cataloged on the home pubset.

CREATION-TIME = *AFTER-SYSTEM-READY
The loading of this subsystem is to be initiated during system initialization (phase 2).
Execution of this routine is not synchronized with the startup routine, which can report
“SYSTEM READY” before subsystem loading is complete.
The subsystem may only have address or dependency relations to subsystems defined with
the same attribute or with the start attribute BEFORE-DSSM-LOAD, AT-DSSM-LOAD,
MANDATORY-AT-STARTUP or BEFORE-SYSTEM-READY. The files for this subsystem must be
cataloged on the home pubset.

U23166-J-Z125-3-76 257

SSCM SET-SUBSYSTEM-ATTRIBUTES

INIT-ROUTINE =
Specifies whether there is an initialization routine for the subsystem which must be
performed when it is started or resumed. In this case, the name of an entry point must be
known, and DSSM will delegate initialization to the holder task of the subsystem concerned.
It is strongly recommended that an entry point be defined for all subsystems which have the
start attribute BEFORE-DSSM-LOAD. During loading of the subsystem (i.e. when the initial-
ization routine is carried out), the subsystem is then informed that DSSM can assume
control over the opening and closing of relations.
An INIT routine must be declared with RESTART-REQUIRED=*YES.

INIT-ROUTINE = *NO
Default value: no initialization routine is run.

INIT-ROUTINE = <text 1..8 without-sep>
Name of the entry point to the initialization routine.
In the holder task, control is passed to the initialization routine, so that the subsystem can
initialize itself. To permit this, it is passed:

– the name and version of the subsystem, as defined in SSCMCAT
– the name of the SSINFO file, if one was specified in the SUBSYSTEM-INFO-FILE operand
– the address of the entry point specified during loading and linking (LINK-ENTRY

operand)
– the link context name used by the dynamic binder loader
– the name of the memory pool (for subsystems in class 5 or class 6 memory), in order

that the subsystem can refer to its own selectable units/load units during dynamic
loading

– the name of the message file
– the address of the SUBSYSTEM-PARAMETER operand, if a string has been specified in

the START-SUBSYSTEM command

At the end of initialization, a return message is expected from the subsystem, indicating
whether initialization was successful and whether the holder task is to be used as a work
task (as specified in the ASSIGN-HOLDER-TASK statement, page 193). Depending on what
is reported here, the task will from then on be controlled by DSSM or by the subsystem.

CLOSE-CTRL-ROUTINE =
Specifies whether a special routine is to be run for the subsystem if it is suspended or
deactivated.
If a subsystem is deactivated (by a STOP-SUBSYSTEM or HOLD-SUBSYSTEM command),
DSSM passes control to this routine at the identified entry point in the holder task, or (for
*DYNAMIC) this is reported via a bourse or FITC link (as determined by return messages
during initialization).

258 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

The parameters passed are the same ones as are passed for the INIT-ROUTINE operand.
Branching to this routine ensures that a connection to the subsystem still exists.
If a CLOSE-CTRL routine exists, it is possible to change versions without interrupting the
BS2000 session. At any given point in time, there is exactly one valid version (either the old
version is still available, or the new version has already become available). Without a
CLOSE-CTRL routine, changing versions always entails interrupting the connection so that
the STOPCOM routine of the old version and the INIT routine of the new version can execute
(see also page 45).

CLOSE-CTRL-ROUTINE = *NO
Default value: the subsystem designates no routine which is to be run when the subsystem
is deactivated or suspended.

CLOSE-CTRL-ROUTINE = *DYNAMIC
This routine is called up via the bourse or FITC. The subsystem passes the required param-
eters to the CLOSE-CTRL routine dynamically at the end of the INIT routine, and DSSM is
informed of the identity of the bourse or FITC port.
In order for the CLOSE-CTRL routine to run, an INIT routine (INIT-ROUTINE operand) and a
STOPCOM routine (operand STOPCOM-ROUTINE=*NO/*DYNAMIC) must have been
specified.
The holder task of the subsystem must be a work task when the CLOSE-CTRL routine is
called (ASSIGN-HOLDER-TASK statement, page 193).

CLOSE-CTRL-ROUTINE = <text 1..8 without-sep>
Name of the entry point of the relevant subsystem routine.

STOPCOM-ROUTINE =
Specifies whether the subsystem incorporates a routine which can carry out active termi-
nation of tasks.
If a subsystem is deactivated (by a STOP-SUBSYSTEM or HOLD-SUBSYSTEM), then DSSM
passes control to this routine at the identified entry point in the holder task, or (for
*DYNAMIC) this is reported via a bourse or FITC link (as determined by return messages
during initialization).
The parameters which are passed are the same as for the INIT-ROUTINE operand.
Branching to this routine ensures that calling tasks will no longer be connected to the
subsystem. Tasks which still have outstanding call relations to the subsystem are
unaffected by this.
If CLOSE-CTRL-ROUTINE=*DYNAMIC is declared, the operand STOPCOM-
ROUTINE=*NO/*DYNAMIC must be specified.

STOPCOM-ROUTINE = *NO
Default value: the subsystem concerned incorporates no such routine.

U23166-J-Z125-3-76 259

SSCM SET-SUBSYSTEM-ATTRIBUTES

STOPCOM-ROUTINE = *DYNAMIC
This routine is called via the bourse or FITC. The subsystem passes the required param-
eters to the STOPCOM routine dynamically at the end of the CLOSE-CTRL routine or (if none
exists) at the end of the INIT routine. DSSM is informed of the identity of the bourse or FITC
port.
A prerequisite for the use of the STOPCOM routine is than an INIT routine has been specified
(INIT-ROUTINE operand). When the STOPCOM routine is called, the holder task for the
subsystem must be used as a work task (ASSIGN-HOLDER-TASK statement, page 193).

STOPCOM-ROUTINE = <text 1..8 without-sep>
Name of the entry point to the subsystem routine concerned.

DEINIT-ROUTINE =
Specifies whether the subsystem incorporates a routine which can carry out deinitialization
of the subsystem. This deinitialization routine causes the resources which were requested
by the subsystem (memory, files, devices) to be returned.
If a subsystem is deactivated (by a STOP-SUBSYSTEM or HOLD-SUBSYSTEM command),
then DSSM passes control to this routine at the identified entry point in the holder task, or
(for *DYNAMIC) this is reported via a bourse or FITC link (as determined by return messages
during initialization).
If a subsystem is defined with an INIT routine and a CLOSE-CTRL routine, a DEINIT routine
- with the same operand value as the CLOSE-CRTL routine - must be specified.
The parameters which are passed are the same as for the INIT-ROUTINE operand.
Branching to this routine ensures that calling tasks will no longer be connected to the
subsystem and all existing call relations to the subsystem are deleted.

DEINIT-ROUTINE = *NO
Default value: the subsystem concerned does not incorporate a deinitialization routine to
request the release of resources.

DEINIT-ROUTINE = *DYNAMIC
The routine is called via the bourse or FITC.The subsystem passes the required parameters
to the DEINIT routine dynamically at the end of the STOPCOM routine or, if none exists, at
the end of the CLOSE-CTRL routine or, if neither a STOPCOM nor a CLOSE-CTRL routine is
incorporated, at the end of the INIT routine. DSSM is informed of the identity of the bourse
or FITC port.
A prerequisite for the use of the DEINIT routine is than an INIT routine has been specified
(INIT-ROUTINE operand). When the DEINIT routine is called, the holder task for the
subsystem must be used as a work task (ASSIGN-HOLDER-TASK statement, page 193).

260 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

DEINIT-ROUTINE = <text 1..8 without-sep>
Name of the entry point to the subsystem routine concerned.

STOP-AT-SHUTDOWN =
Specifies whether the subsystem is to be unloaded automatically at shutdown after the user
tasks have terminated.

STOP-AT-SHUTDOWN = *NO
Default value: the subsystem will not be unloaded automatically.
This parameter should not be specified for subsystems which have address relations to
other subsystems which are defined with STOP-AT-SHUTDOWN=*YES.

STOP-AT-SHUTDOWN = *YES
The subsystem will be unloaded automatically at shutdown.
This specification will be ignored if no STOPCOM, DEINIT or CLOSE-CRTL routine is
specified.

INTERFACE-VERSION =
Identifies the entry point via which DSSM can access the interface version which is to be
used for calling the INIT, DEINIT, STOPCOM or CLOSE-CTRL routine.
This operand is mandatory for subsystems for which an entry point was specified (INIT,
CLOSE-CTRL, STOPCOM, DEINIT routine).

INTERFACE-VERSION = *NO
Default value: the subsystem does not call a INIT, DEINIT, STOPCOM or CLOSE-CTRL routine.

INTERFACE-VERSION = <text 1..8 without-sep>
Name of the entry point. The entry point points to the standard header where the interface
version is stored. The standard header is generated by calling the macro $ESMINT(I) with
MF=I/L. This operand is mandatory for subsystems for which an INIT, DEINIT, STOPCOM or
CLOSE-CTRL routine was defined.

SUBSYSTEM-HOLD =
Specifies whether the subsystem which is loaded may be suspended or unloaded.

SUBSYSTEM-HOLD = *ALLOWED
Default value: the subsystem which is loaded may be suspended and unloaded. The
commands HOLD-SUBSYSTEM and STOP-SUBSYSTEM are permissible for this subsystem.

SUBSYSTEM-HOLD = *FORBIDDEN
The commands HOLD-SUBSYSTEM and STOP-SUBSYSTEM must not be used for this
subsystem; it will only be unloaded at shutdown - as specified by the STOP-AT-SHUTDOWN
operand.
Unloading the subsystem by replacing it with another subsystem entails no interruption.

U23166-J-Z125-3-76 261

SSCM SET-SUBSYSTEM-ATTRIBUTES

STATE-CHANGE-CMDS =
Specifies whether or not the DSSM commands for controlling the subsystem (START-
SUBSYSTEM, STOP-SUBSYSTEM, HOLD-SUBSYSTEM and RESUME-SUBSYSTEM) may be
used during a session.
If a change is made from one version of a subsystem to another, the value specified for
STATE-CHANGE-CMDS for the version being replaced is ignored.

STATE-CHANGE-CMDS = *ALLOWED
Default value: the commands may be used from the operator terminal and under the privi-
leged user ID (the user ID which has the SUBSYSTEM-MANAGEMENT system privilege).

STATE-CHANGE-CMDS = *FORBIDDEN
The commands must not be used - neither from the operator terminal nor under the privi-
leged user ID.

STATE-CHANGE-CMDS = *BY-ADMINISTRATOR-ONLY
The commands may only be used under the privileged user ID; the commands are not
available to the operator at the operator terminal.

FORCED-STATE-CHANGE =
Specifies whether use of the operand FORCED=*YES is permitted within the commands
STOP-SUBSYSTEM and HOLD-SUBSYSTEM. This function can be used to force the uncon-
ditional deactivation of the subsystem.

FORCED-STATE-CHANGE = *FORBIDDEN
Default value: it is not possible to force deactivation of the subsystem. DSSM will reject any
use of the FORCED operand in the commands concerned, and will issue a corresponding
error message.

FORCED-STATE-CHANGE = *ALLOWED
The operand FORCED=*YES may be used for this subsystem.
This operand value must not be used in conjunction with SUBSYSTEM-HOLD=*FORBIDDEN.

RESET =
Specifies whether the operand RESET=*YES is permitted within the commands
START-SUBSYSTEM and RESUME-SUBSYSTEM. This function can be used to force the
unconditional loading or resumption of the subsystem, even if the state of the subsystem is
currently IN-DELETE or IN-HOLD.

RESET = *FORBIDDEN
Default value: it is not possible to force the activation of the subsystem. DSSM will reject the
use of the RESET operand in the commands concerned, and will issue a corresponding
error message.

262 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

RESET = *ALLOWED
The operand RESET=*YES may be used for this subsystem.
This operand value must not be specified together with SUBSYSTEM-HOLD=*FORBIDDEN.

RESTART-REQUIRED =
Specifies whether the initialization routine for the subsystem is to be executed if the holder
task terminates abnormally.

RESTART-REQUIRED = *NO
Default value: the initialization routine is not used to restart the subsystem.

RESTART-REQUIRED = *YES
If the holder task terminates abnormally, the initialization routine should be used. Provision
must have been made in the INIT-ROUTINE operand for executing this routine.

VERSION-COEXISTENCE =
Specifies whether more than one version of the same subsystem may be active simulta-
neously.

VERSION-COEXISTENCE = *FORBIDDEN
Default value: the current version of the subsystem cannot coexist with another version of
the same subsystem.

VERSION-COEXISTENCE = *ALLOWED
The current version of the subsystem can coexist with another version of the same
subsystem (coexistence mode).
In the definition of the job entry point (SUBSYSTEM-ENTRIES operand), indirect links via
system exit routines must not have been specified. If different versions of the same
subsystem are loaded and the same job entry point is defined for these, the link which is
implemented is always to the highest loaded version of the subsystem.
If coexistent subsystems access coexistent syntax files, the latter must have been declared
in the SSD object and cannot be administered by SDF.
However, where the links are via SVC and ISL, it is possible to select a version using the
operands FUNCTION-NUMBER and FUNCTION-VERSION.

VERSION-EXCHANGE =
Specifies whether a subsystem may be loaded in exchange mode. Exchange mode allows
the temporary coexistence of two versions of the same subsystem. If version B of a
subsystem is loaded whilst version A of the subsystem is already active, all new callers will
be connected to version B. Jobs which are connected to version A will still be processed.
When all the jobs which use version A have been processed, this will automatically be termi-
nated.
In the definition it should be noted that the “old” version which is being replaced must not
be dependent on the “new” version which replaces it.

U23166-J-Z125-3-76 263

SSCM SET-SUBSYSTEM-ATTRIBUTES

VERSION-EXCHANGE = *FORBIDDEN
Default value: the current version of the subsystem must not be replaced.

VERSION-EXCHANGE = *ALLOWED
Exchange mode, which allows the temporary coexistence of two subsystems, is permitted
for the current subsystem version.

SUBSYSTEM-ENTRIES =
Specifies the entry points (job entries) which are linked to the subsystem. Up to 100 entry
points can be declared. If more than 100 entry points are desired for a subsystem, the
additional ones can be defined by means of the statement MODIFY-SUBSYSTEM-
ATTRIBUTES (for a subsystem in the catalog) or the statement ADD-SUBSYSTEM-ENTRIES
(for a subsystem in an SSD object).

SUBSYSTEM-ENTRIES = *NONE
Default value: no new job entries are to be declared.

SUBSYSTEM-ENTRIES = list-poss(100): <text 1..8>
Declares the names of the entry points for a maximum of 100 job entries; the type of each
of these must be defined in the substructures.

MODE =
Defines the type of a job entry point which is defined for the subsystem.

MODE = *LINK
Default value: the job entry point cannot be accessed by indirect linkage, but only by
using a CONNECT relation through an external linkage editor symbol.
In the case of different versions of the same subsystem which use the same external
linkage editor symbol, DSSM automatically sets up the link to the highest loaded
version of the subsystem.

MODE = *ISL(...)
The job entry is effected by indirect linkage via System Procedure Linkage (for privi-
leged subsystems only). If the specification includes in addition a function and version
number for the ISL entry point, the combination of entry point name, function and
version numbers must not match any other combination for the various other
subsystems in the catalog or the various versions of the same subsystem (if VERSION-
COEXISTENCE=*ALLOWED is specified).
For different subsystems, if the job entry point is to be accessed by the same ISL entry
point, they must be uniquely identified by specifying the function and version numbers.
In the case of different versions of the same subsystem which use the same ISL entry
point, then - if the function and version numbers are not specified - DSSM will automat-
ically set up a connection to the highest loaded version of the subsystem.
In the case of different versions of the same subsystem which use the same ISL entry
point and for which the function and version numbers are not equal to *NONE, the
version to which the connection is set up will be selected in accordance with the function

264 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

and version numbers stored in the standard header of the caller’s parameter list.
The value *ALL for the CONNECTION-ACCESS operand is not permissible for ISL entry
points.

FUNCTION-NUMBER =
Specifies whether a particular function and version number of the ISL entry point is
to be addressed, as the same ISL entry point can be used by different functions.

FUNCTION-NUMBER = *NONE
Default value: no particular function or version number is to be addressed.

FUNCTION-NUMBER = <integer 0..255>(...)
Number of the ISL entry point. The version must be nominated in the substructure
which follows.

FUNCTION-VERSION = <integer 1..255>
Version of the specified ISL function number.

MODE = *SVC(...)
Job entry is to be effected by an indirect connection using a supervisor call (SVC).
If the specification includes in addition a function and version number for the SVC entry
point, the combination of entry point name, function and version numbers must not
match any other combination for the various other subsystems in the catalog or the
various versions of the same subsystem (if VERSION-COEXISTENCE=*ALLOWED is
specified).
For different subsystems, if the job entry point is to be accessed by the same SVC, they
must be uniquely identified by specifying the function and version numbers.
In the case of different versions of the same subsystem which use the same SVC, then
- if the function and version numbers are not specified - DSSM will automatically set up
a connection to the highest loaded version of the subsystem.
In the case of different versions of the same subsystem which use the same SVC and
for which the function and version numbers are not equal to *NONE, the version to which
the connection is set up will be selected in accordance with the function and version
numbers stored in the standard header of the caller’s parameter list.
If this operand value is specified, it is better to set the operand CONNECTION-ACCESS
to the value *SYSTEM, instead of to *ALL.

NUMBER = <integer 0..255>
Number of the SVC via which job entry is to be effected. No SVC number greater
than 191 may be used in conjunction with CONNECTION-ACCESS=*ALL.

CALL-BY-SYSTEM-EXIT =
Defines whether the specified SVC number may be called from within system exit
routines.

CALL-BY-SYSTEM-EXIT = *ALLOWED
Default value: system exit routines are permitted to call the specified SVC number.

U23166-J-Z125-3-76 265

SSCM SET-SUBSYSTEM-ATTRIBUTES

CALL-BY-SYSTEM-EXIT = *FORBIDDEN
System exit routines are not permitted to call the specified SVC number.

FUNCTION-NUMBER =
Specifies whether a particular function and version number of the SVC entry point
is to be addressed, as the same SVC entry point can be used by different functions.

FUNCTION-NUMBER = *NONE
Default value: no particular function or version number is to be addressed.

FUNCTION-NUMBER = <integer 0..255>(...)
Number of an SVC entry point. The version must be nominated in the substructure
which follows.

FUNCTION-VERSION = <integer 1..255>
Version of the specified SVC function number.

MODE = SYSTEM-EXIT(...)
Job entry is to be effected by an indirect connection using system exit routines.
This operand must not be used in conjunction with CONNECTION-ACCESS=*ALL.

NUMBER = <integer 0..127>
Number of the system exit routine.

CONNECTION-ACCESS =
Specifies the access authorization (privileges) required by the subsystem.

CONNECTION-ACCESS = *ALL
Default value: privileged and nonprivileged program runs may access the subsystem.
This operand value must not be used in conjunction with MODE=*SYSTEM-
EXIT/*ISL/*SVC (with an SVC number greater than 191).

CONNECTION-ACCESS = *SYSTEM
Only privileged program runs may access the subsystem.

CONNECTION-ACCESS = *SIH
Only tasks running in the SIH processor state may access the subsystem.
The subsystem called also runs in the SIH processor state, i.e. it is uninterruptible.

This operand value is permissible only for subsystems for which the entry point is
defined via:

– System Procedure Linkage (MODE=*ISL(FUNCTION-NUMBER=*NONE))
– CONNECTION-SCOPE=*OPTIMAL
– MEMORY-CLASS=*SYSTEM-GLOBAL(SUBSYSTEM-ACCESS=*SYSTEM)

266 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

CONNECTION-SCOPE =
Identifies the event which will call up the automatic cleardown of the connection to the
specified subsystem job entry.

CONNECTION-SCOPE = *TASK
Default value: the connection will be cleared when the task terminates.

CONNECTION-SCOPE = *PROGRAM
The connection will be cleared when the program terminates, or before.
Only CONNECTION-SCOPE=*PROGRAM may be specified in conjunction with MEMORY-
CLASS=*LOCAL-UNPRIVILEGED.
This operand value is recommended for subsystems which were declared with
SUBSYSTEM-ACCESS=*LOW/*HIGH or MEMORY-CLASS=*BY-SLICE.

CONNECTION-SCOPE = *FREE
DSSM is not to carry out any checking of the connections to the job entry point. The
connection will not be automatically cleared - unless explicitly requested. To avoid
problems or possible errors when the subsystem is being unloaded, the connections
must be managed by the subsystem itself.

CONNECTION-SCOPE = *CALL
On return from this job entry point, DSSM will automatically clear the connections.
This operand value is only available with subsystems for which the job entry is defined
by means of System Procedure Linkage (ISL) or supervisor calls (SVC).

CONNECTION-SCOPE = *OPTIMAL
The subsystem is deactivated or suspended when there are no further tasks with a
connection to this entry point.
A routine with an entry point defined with *OPTIMAL must be terminated with RETURN.
If an entry point of a subsystem is defined with CONNECTION-SCOPE=*OPTIMAL, all of
its entry points should be defined in the subsystem catalog with MODEî*LINK.
While a subsystem is deactivated or suspended, no call of the subsystem with
CONNECTION-SCOPE=*OPTIMAL is accepted.

FIRST-CONNECTION =
Determines whether or not first connection of the task to the specified job entry point in
the subsystem is allowed. At least one job entry point of a subsystem must be defined
with FIRST-CONNECTION=*ALLOWED.

FIRST-CONNECTION = *ALLOWED
Default value: first connection to the specified job entry point is allowed.

FIRST-CONNECTION = *FORBIDDEN
Connection to the specified job entry point via SVC or ISL is not allowed if the task has
not yet been connected to another job entry point belonging to the subsystem.
It is not permitted to specify this operand value for job entry points that have been
defined with MODE=*LINK/*SYSTEM-EXIT or CONNECTION-ACCESS=*SIH.

U23166-J-Z125-3-76 267

SSCM SET-SUBSYSTEM-ATTRIBUTES

SUBSYSTEM-ENTRIES = *BY-PROGRAM(...)
The entry points of the specified subsystem are supplied dynamically from the BLS name
list at load time instead of statically from the catalog. A prerequisite for this functionality is
the use of BLSSERV as of version 2.1, that supports using Extended External Names (EEN
names) as entry points for DSSM subsystems.

The value cannot be specified together with the SUBSYSTEM-ACCESS=*SYSTEM operand.

The MODE, CONNECTION-ACCESS and FIRST-CONNECTION operands are supplied with the
default values if the entry points are defined with this value.

The value *BY-PROGRAM is not restricted to EEN names. It can also be specified for
subsystems that have a large number of entry points.

CONNECTION-SCOPE = *TASK / *PROGRAM
The connection is shut down at task or program termination.

MEMORY-CLASS =
Specifies the subsystem-specific address space in which the subsystem is to be loaded.
System administration can use this operand to define the address space valid for the
subsystem concerned so as to meet the special requirements of the installation.

MEMORY-CLASS = *SYSTEM-GLOBAL(...)
Default value: the subsystem will be loaded in class 3 or class 4 memory. Resident CSECTs
will be given class 3 memory, all others will be given pageable class 4 memory.

SUBSYSTEM-ACCESS =
Identifies the access authorization (privileges) and location of the requested memory.

SUBSYSTEM-ACCESS = *LOW
Default value: nonprivileged address space below the 16-Mbyte boundary is allocated.

SUBSYSTEM-ACCESS = *SYSTEM
Subsystems declared with this operand value are privileged subsystems to which privi-
leged address space above the 16-Mbyte boundary is allocated.
This operand value is mandatory for subsystems whose entry point is declared via SVC
(MODE=*SVC) or for which an INIT, STOPCOM, DEINIT or CLOSE-CTRL routine is
declared. It is not permitted with CONNECTION-ACCESS=*ALL and MODE=*LINK.
The value cannot be specified together with an entry point that was specified together
with CONNECTION-ACCESS=*ALL or MODE=*LINK.
The value cannot be specified together with the SUBSYSTEM-ENTRIES=*BY-PROGRAM
operand.

SUBSYSTEM-ACCESS = *HIGH
Nonprivileged address space up to 2 Gbytes is allocated.

i

268 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

MEMORY-CLASS = *LOCAL-PRIVILEGED(...)
The subsystem is given a memory pool in nonprivileged class 5 memory, located below the
16-Mbyte boundary.
This specification is suitable for nonprivileged subsystems which demand a relatively large
amount of address space (approx. 1 Mbyte) and have to be set up below the 16-Mbyte
boundary. These subsystems are loaded in memory pools at the same address, in order to
manage the use of the limited address space below 16 Mbytes.
Although such subsystems are loaded in parallel in the same address space, they cannot
be used simultaneously by the same task (see also the SEPARATE-ADDRESS-SPACE
statement, page 241).
The subsystem must not contain any resident CSECTs, as otherwise a later attempt to
activate it will be aborted.

SIZE = <integer 1..32767>
Size of the required address space (in 4Kbyte pages) for the memory pool in class 5
memory. This value should be set at least high enough to ensure that the subsystem
and any selectable units/load units which it may load dynamically can be loaded in their
entirety. The upper limit is generation-specific.

MEMORY-CLASS = *LOCAL-UNPRIVILEGED(...)
The subsystem is given a memory pool in nonprivileged class 6 memory. This specification
is reserved for subsystems which can be executed like a program.
In keeping with this, their access authorization (privileges) must be defined with the value
*ALL in the CONNECTION-ACCESS operand.
This operand value must not be specified together with an entry point which was defined
with CONNECTION-ACCESS=*SYSTEM.

The subsystem must not contain any resident CSECTs, as otherwise a later attempt to
activate it will be aborted.
If this operand value is specified, only CONNECTION-SCOPE=*PROGRAM is permissible for
clearing the connection to the specified subsystem entry point.

SIZE = <integer 1..32767>
Size of the required address space (in 4Kbyte pages) for the memory pool in class 6
memory. This value should be set at least high enough to ensure that the subsystem
and any selectable units/load units which it may load dynamically can be loaded in their
entirety. The upper limit is generation-specific.

SUBSYSTEM-ACCESS =
Identifies the location of the requested memory space.

SUBSYSTEM-ACCESS = *LOW
Default value: nonprivileged address space below the 16-Mbyte boundary is allocated.
Because this specification is suitable for subsystems which can be executed like
programs, it is advisable additionally to specify CONNECTION-SCOPE=*PROGRAM.

U23166-J-Z125-3-76 269

SSCM SET-SUBSYSTEM-ATTRIBUTES

SUBSYSTEM-ACCESS = *HIGH
Nonprivileged address space up to 2 Gbytes is allocated.
Because this specification is suitable for subsystems which can be executed like
programs, it is advisable additionally to specify CONNECTION-SCOPE=*PROGRAM.

START-ADDRESS =
Defines the start address in class 6 memory.

START-ADDRESS = *ANY
Default value: the location of the subsystem in class 6 memory will be determined by
DSSM.

START-ADDRESS = <x-string 7..8>
Start address in the segment raster at which the subsystem’s start address is to be
located. The value specified must be an 8-character hexadecimal constant which is a
multiple of X'100000'.

MEMORY-CLASS = *BY-SLICE(...)
The specified subsystem is a nonprivileged subsystem and consists of an LLM, which in
turn consists of a shareable code (program area) and a non-shareable code (data area).
The program area is loaded into the shareable address space (this corresponds to
MEMORY-CLASS=*SYSTEM-GLOBAL). The data area is loaded into the user address space
of the holder task and is copied into the private user address spaces of the connected tasks
at the same address.
The following values must be specified together with MEMORY-CLASS=*BY-SLICE:
SUBSYSTEM-LOAD-MODE=*ADVANCED and CONNECTION-ACCESS=*ALL.
The value can only be specified together with the MODE=*LINK and CONNECTION-
SCOPE=*TASK or *PROGRAM operands.

SIZE = <integer 1.32767>
Specifies the size of the requested memory space for the data area in 4K pages.
The value chosen here must be sufficiently large to allow the subsystem and, if appro-
priate, selectable units/load units dynamically loaded by the subsystem to be loaded in
full. The upper limit is dependent on generation.

LINK-ENTRY = <text 1..8 without-sep>(...)
Defines the name of the object module/ENTRY/CSECT required for loading (for the
operand in the call of the $PBBND1 macro to the dynamic binder loader DBL). The
subsystem must be completely loaded by this ENTRY (if necessary, using autolink).

AUTOLINK =
Controls invocation of the autolink function during linking and loading.
The linkage editor’s autolink function permits the automatic insertion of modules which
are not explicitly inserted by appropriate statements. The main purpose of this function
is to save users of higher-level programming languages from having to make explicit

270 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

statements to insert individually the numerous modules of the runtime system which are
required. Further details of the autolink function will be found in the
“BLSSERV” manual [4].

The autolink function can also be implicitly circumvented if the first external reference
encountered during linkage editing of the object module which is to be loaded points to
a prelinked module. The advantage of this approach is that the paging behavior when
the subsystem is later executed can be optimized at this preliminary stage (during
linkage editing). In addition, errors during linkage editing can be avoided in this way.

AUTOLINK = *FORBIDDEN /*ALLOWED
Default value: the autolink function will be suppressed or allowed.

REFERENCED-SUBSYSTEM =
Specifies whether there is a list of subsystems to which there are address relations, and
which is to be used for resolving external references

REFERENCED-SUBSYSTEM = *NONE
Default value: the subsystem which is being defined has no external references.

REFERENCED-SUBSYSTEM = list-poss(15): <structured-name 1..8>
The system which is being defined has external references to a maximum of 15 other
subsystems; these subsystems must be used in resolving the external references. If any of
the subsystems nominated here is missing at the time of activation or deactivation (and if a
check of the external references has also been requested by the operand CHECK-
REFERENCE=*YES), the action will be aborted.
It is also possible to address the BS2000/OSD control program via these external refer-
ences - using the name CP. In the substructure which follows, it is possible to specify either
exactly one version, or a range of versions within which all versions are to be referred to.
If a version range list is used to limit the version of the CP subsystem, DSSM checks the
compatibility of the current CP version against the versions in the range list. The subsystem
will only be loaded if it is a compatible version.

The following restrictions should be noted when specifying subsystems to which there are
address relations:

– No address relations may be declared to subsystems which have the attribute MEMORY-
CLASS=*LOCAL-PRIVILEGED/*LOCAL-UNPRIVILEGED/*BY-SLICE.

– Subsystems which have the attribute STOP-AT-SHUTDOWN=*NO may have address
relations only to other subsystems which also have this attribute.

– If the attribute SUBSYSTEM-ACCESS=*SYSTEM is specified for the subsystem being
defined, subsystems defined with SUBSYSTEM-ACCESS=*LOW or SUBSYSTEM-
ACCESS=*HIGH must not be addressed.

– As a rule, a nonprivileged subsystem must not have any address relations to the control
program (CP).

U23166-J-Z125-3-76 271

SSCM SET-SUBSYSTEM-ATTRIBUTES

– If a reference is made to a subsystem which has at least one version that may be
operated in coexistence or exchange mode, a unique version must be specified.

– Any address relations must be defined in accordance with the start attributes
(CREATION-TIME operand); i.e. a subsystem may only have relations to other
subsystems if these are started at the same time or earlier.

UNRESOLVED-EXTERNALS =
Defines how the load procedure is to behave if there are unresolved external references.

UNRESOLVED-EXTERNALS = *FORBIDDEN
Default value: if unresolved external references occur, the load procedure will be termi-
nated.

UNRESOLVED-EXTERNALS = *ALLOWED
The load procedure will be continued, unresolved external references will be given the value
X'FFFFFFFF'.

CHECK-REFERENCE =
Defines whether or not the subsystems specified in the REFERENCED-SUBSYSTEM
operand are to be checked in respect of their status and availability.

CHECK-REFERENCE = *YES
Default value: the referenced subsystems will be checked. If any of them is missing, DSSM
will abandon the activation or unloading of the subsystem.

CHECK-REFERENCE = *NO
DSSM is not to carry out any check. However, even if the user generates complex
subsystems with this statement, DSSM will still perform the requested functions in spite of
the risk of conflicts:

– the START-SUBSYSTEM command will load the specified subsystem, even if there is a
subsystem to which it has defined relations and which is not yet fully loaded;

– the commands RESUME-SUBSYSTEM, STOP-SUBSYSTEM and HOLD-SUBSYSTEM will
be executed by DSSM without any checks being made on relations and dependencies.

RELATED-SUBSYSTEM =
Defines whether or not there is a list of subsystems for which there are dependency
relations.

RELATED-SUBSYSTEM = *NONE
Default value: there are no dependency relations for the subsystem which is being defined.

RELATED-SUBSYSTEM = list-poss(100): <structured-name 1..8>
The subsystem which is being defined has dependency relations to up to 100 other
subsystems, without which the subsystem currently being defined cannot function.
It is also permissible to define dependency relations to the BS2000/OSD control program

272 U23166-J-Z125-3-76

SET-SUBSYSTEM-ATTRIBUTES SSCM

(CP). The rules and restrictions which apply when doing so are analogous to those for
address relations, where they are described in more detail (REFERENCED-SUBSYSTEM
operand).
A dependency relation always points to a single version of a subsystem. In the substructure
which follows, it is possible to specify either exactly one version, or a range of versions
within which all versions are to be referred to.

The following general restrictions should be noted when specifying dependent subsystems:

– The relation which is defined must not contain closed loops. A loop arises if subsystem
A is dependent on B, B is dependent on C and this is in turn dependent on A.

– If the subsystem which is being defined has been given the attribute MEMORY-
CLASS=*SYSTEM-GLOBAL, it is not permissible to address any subsystems defined with
MEMORY-CLASS=*LOCAL-PRIVILEGED or *LOCAL-UNPRIVILEGED.

– For subsystems which have the attribute SUBSYSTEM-ACCESS=*SYSTEM, no depen-
dency relations may be defined to subsystems to which SUBSYSTEM-ACCESS=*LOW or
SUBSYSTEM-ACCESS=*HIGH or MEMORY-CLASS=*BY-SLICE applies.

– The dependency relations must be defined to correspond to the start attributes
(CREATION-TIME operand); i.e. a subsystem may only be dependent on subsystems
which are started at the same time or earlier.

LOWEST-VERSION =
Specifies the lowest value (lowest version) in the subsystem version range list.

LOWEST-VERSION = *LOWEST-EXISTING
The lowest version in the catalog is to be addressed.

LOWEST-VERSION = <c-string 3..8> / <text 3..8>.
Version of the subsystem which is to be used as the lower limit of the range of versions.

HIGHEST-VERSION =
Specifies the upper value (highest version) in the subsystem version range list.

HIGHEST-VERSION = *HIGHEST-EXISTING
The highest version in the catalog is to be addressed.

HIGHEST-VERSION = <c-string 3..8> / <text 3..8>.
Version of the subsystem which is to be used as the upper limit of the range of versions.

U23166-J-Z125-3-76 273

SSCM SHOW-CATALOG

SHOW-CATALOG
Show subsystem configuration

Function

This statement can be used to output the contents of a subsystem configuration, which is
stored in a subsystem catalog, to either the screen or a file, as required.
The output always contains the name of the subsystem catalog and information on whether
and how the catalog is saved in the event of an error (this behavior is set in the statement
SAVE-CATALOG ..., FORCED=...).

SHOW-CATALOG will be rejected if the specified file or subsystem name or the specified
subsystem version does not exist. If the subsystem catalog is empty, a warning message
will be issued and the statement aborted.

If the specified file name does not correspond to that of the catalog which is currently open,
the following message is output:

SCM0011 DO YOU REALLY WANT TO OVERWRITE MEMORY CATALOG '(&00)'? REPLY (Y/N)

If the reply is Y, the virtual definitions in the current catalog will be lost. If the reply is N,
execution of the SHOW-CATALOG statement will be aborted. With the aid of SAVE-CATALOG,
the user can store in a file all subsystem definitions not yet saved.

If the CHECK-CATALOG statement was not used to run a consistency check beforehand,
SHOW-CATALOG may detect consistency errors in the subsystem catalog.

274 U23166-J-Z125-3-76

SHOW-CATALOG SSCM

Format

Operands

CATALOG-NAME =
Specifies the name of the catalog which contains the definitions that are to be displayed. If
this catalog file name does not exist or if the specified catalog is empty, the statement will
be rejected.

CATALOG-NAME = *CURRENT
Default value: the contents of the catalog which is currently open (START-CATALOG-
CREATION or START-CATALOG-MODIFICATION statement) are to be output.

SHOW-CATALOG

CATALOG-NAME = *CURRENT / <filename 1..54 without-gen-vers>

,CONTAINED-SUBSYSTEMS = *NO / *YES

,SUBSYSTEM-NAME = *ALL / <structured-name 1..8>(...)

<structured-name 1..8>(...)

 VERSION = *ALL / <c-string 3..8> / <text 3..8>

,GENERAL-ATTRIBUTES = *YES / *NO

,INTERNAL-ENTRIES = *YES / *NO

,MEMORY-ATTRIBUTES = *YES / *NO

,RELATED-FILES = *YES / *NO

,LINK-ATTRIBUTES = *YES / *NO

,REFERENCE-RELATION = *YES / *NO

,DEPENDENCE-RELATION = *YES / *NO

,ADDR-SPACE-RELATION = *YES / *NO

,HOLDER-TASK-INFO = *YES / *NO

,SUBSYSTEM-ENTRIES = *YES / *NO

,OUTPUT = *SYSLST(...) / *SYSOUT

*SYSLST(...)

 SYSLST-NUMBER = *STD / <integer 1..99>
 ,SUMMARY = *YES / *NO

U23166-J-Z125-3-76 275

SSCM SHOW-CATALOG

CATALOG-NAME = <filename 1..54 without-gen-vers>
Fully qualified name of the static subsystem catalog whose contents are to be displayed.

CONTAINED-SUBSYSTEMS = *NO / *YES
Specifies whether to output the list of DSSM subsystems defined in the catalog (*YES) or
not (*NO).

SUBSYSTEM-NAME =
Specifies the subsystems on which information is being requested.
If the name of the subsystem or a version on which information is requested does not exist,
the statement will be rejected. The scope of the information to be output for the subsystems
can be restricted by specifying appropriate criteria in the following operands.

SUBSYSTEM-NAME = *ALL
Default value: information is requested about all the subsystems which are listed in the
catalog directory.

SUBSYSTEM-NAME = <structured-name 1..8>(...)
Name of the subsystem for which SSCM is to provide information from the catalog.

VERSION =
Specifies the version of the selected subsystem.

VERSION = *ALL
The information which is output should cover all versions of the subsystem stored in the
catalog.

VERSION = <c-string 3..8> / <text 3..8>
Information from the catalog should only be provided for these versions of the selected
subsystem.

GENERAL-ATTRIBUTES = *YES / *NO
Specifies whether the following general attributes of the named subsystems are to be read
from the catalog (*YES) or not (*NO):

– when is the subsystem to be started after system initialization? (CREATION-TIME)
– in what mode is the subsystem to be loaded? (SUBSYSTEM-LOAD-MODE)
– is the subsystem to be automatically unloaded at shutdown? (STOP-AT-SHUTDOWN)
– may the subsystem be suspended or unloaded after it has been loaded?

(SUBSYSTEM-HOLD)
– may the commands for controlling a subsystem be used? (STATE-CHANGE-CMDS)
– is the FORCE option permitted? (FORCED-STATE-CHANGE)
– is the RESET option permitted? (RESET)
– must the initialization routine be executed if the holder task is terminated

abnormally? (RESTART-REQUIRED)

276 U23166-J-Z125-3-76

SHOW-CATALOG SSCM

– may more than one version of the subsystem be active simultaneously?
(VERSION-COEXISTENCE)

– may two versions of a subsystem be dynamically exchanged? (VERSION-EXCHANGE)
– What is the name of the installation unit of the subsystem?

(INSTALLATION-UNIT)
– What is the copyright (text and date) of the subsystem?

(COPYRIGHT)

INTERNAL-ENTRIES = *YES / *NO
Specifies whether SSCM is to provide the following information about the entry points to the
specified subsystems (*YES) or not (*NO):

– the names of the entry points for the subsystem routines INIT, STOPCOM, DEINIT and
CLOSE-CTRL

– the name of the entry point to be used for dynamic identity checking (DYNAMIC-CHECK-
ENTRY)

– the name of the interface version to be used in calling the INIT, STOPCOM, DEINIT or
CLOSE-CTRL routine (INTERFACE-VERSION).

MEMORY-ATTRIBUTES = *YES / *NO
Specifies whether the following memory-related information on the subsystems, which is
stored in the catalog, is to be output (*YES) or not (*NO):

– memory class (MEMORY-CLASS)
– size of required address space (SIZE)
– start address of the subsystem code (START-ADDRESS)
– privileges and access authorization for the address space (SUBSYSTEM-ACCESS)

RELATED-FILES = *YES / *NO
Specifies whether to supply information about the subsystem satellites (*YES) or not (*NO).
This output includes information as to whether it is mandatory to use a REP file for this
subsystem (REP-FILE-MANDATORY) and concerning the user ID under which the satellites
are cataloged (INSTALLATION-USERID).

The term “subsystem satellites” covers:
– the subsystem’s object module file (LIBRARY)
– the message file (MESSAGE-FILE)
– the syntax file (SYNTAX-FILE)
– the subsystem’s information file (SUBSYSTEM-INFO-FILE)
– the REP file (REP-FILE)

U23166-J-Z125-3-76 277

SSCM SHOW-CATALOG

LINK-ATTRIBUTES = *YES / *NO
Specifies whether the information on the linkage and loading of the subsystem is to be read
from the catalog (*YES) or not (*NO):

– the name of the object module/ENTRY/CSECT required for loading (LINK-ENTRY)
– the inclusion of the autolink function (AUTOLINK)
– the information on system response when there are unresolved external references

(UNRESOLVED)
– the inclusion of a check run for referenced subsystems (CHECK-REFERENCE)

REFERENCE-RELATION = *YES / *NO
Specifies whether the list of subsystems to which address relations exist is to be included
in the output of catalog information (*YES) or not (*NO).

DEPENDENCE-RELATION = *YES / *NO
Specifies whether the list of subsystems to which dependency relations exist is to be
included in the output of catalog information (*YES) or not (*NO).

ADDR-SPACE-RELATION = *YES / *NO
Specifies whether the list of subsystems with which any address space overlap must be
avoided is to be included in the output of catalog information (*YES) or not (*NO).

HOLDER-TASK-INFO = *YES / *NO
Specifies whether the identity of the holder task and the list of subsystems which are to be
created within a common holder task is to be included in the output of catalog information
(*YES) or not (*NO).

SUBSYSTEM-ENTRIES = *YES / *NO
Specifies whether the list of entry points declared in the definition of the subsystem and the
following attributes of these entries are to be read from the catalog (*YES) or not (*NO):

– type of the declared job entry point (MODE)
– number of the routine (for an SVC or system exit) (NUMBER)
– the function number of the entry point (FUNCTION-NUMBER)
– the version of the function number (FUNCTION-VERSION)
– information about calling via system exit routines (CALL-BY-SYSTEM-EXIT)
– the privileges and access authorization for entry points

(CONNECTION-ACCESS and CONNECTION-SCOPE)

278 U23166-J-Z125-3-76

SHOW-CATALOG SSCM

OUTPUT =
Specifies where the information generated by the statement is to be output.

OUTPUT = *SYSLST(...)
Default value: the messages are to be output to SYSLST.

SYSLST-NUMBER =
Identifies the SYSLST file to which the output is to be directed.

SYSLST-NUMBER = *STD
Default value: output should go to the standard system file, SYSLST.

SYSLST-NUMBER = <integer 1..99>
Output is to go to one of the system files from the set SYSLST01 to SYSLST99, the
number of which is given here.

SUMMARY = *YES / *NO
Specifies whether the requested output is to be preceded by a summary of all the
subsystems listed in the catalog directory (*YES) or not (*NO).
For OUTPUT=*SYSLST(SUMMARY=*YES) see the overview of abbreviations below.

OUTPUT = *SYSOUT
The messages will be output to the data display terminal.

U23166-J-Z125-3-76 279

SSCM SHOW-CATALOG

Overviews of the subsystems in the catalog (see operand
OUTPUT=*SYSLST(SUMMARY=*YES)) make use of the following abbreviations:

for CREATION-TIME

ACR
ASC
ADL
BDL
MAS
BSR
ASR

:
:
:
:
:
:
:

*AT-CREATION-REQUEST
*AT-SUBSYSTEM-CALL
*AT-DSSM-LOAD
*BEFORE-DSSM-LOAD
*MANDATORY-AT-STARTUP
*BEFORE-SYSTEM-READY
*AFTER-SYSTEM-READY

for MEMORY-CLASS

S
P
U
B

:
:
:
:

*SYSTEM-GLOBAL
*LOCAL-PRIVILEGED
*LOCAL-UNPRIVILEGED
*BY-SLICE

for SUBSYSTEM-ACCESS

SYS
ALL

:
:

*SYSTEM
*LOW / *HIGH

for INTERNAL-ENTRIES

DYN
YES
NO

:
:
:

*DYNAMIC
name
*NO

for CONNECTION-ACCESS

SYS : *SYSTEM

for STATE-CHANGE-CMDS

ADM : *BY-ADMINISTRATOR-ONLY

for REP-FILE

MAN : REP-FILE = *STD / filename and REP-FILE-MANDATORY = *YES

for GENERAL-ATTRIBUTES

YES
NO

:
:

*ALLOWED
*FORBIDDEN

for RELATED-FILES

YES
NO
IMO

:
:

*STD / filename
*NO
*INSTALLED

280 U23166-J-Z125-3-76

SHOW-SSD SSCM

SHOW-SSD
Show contents of SSD object (subsystem definitions)

Function

This statement outputs the contents of an SSD object either to the screen or to another file.
The definitions of one or more subsystems are stored in an SSD object.
Each of the subsystem definitions which is stored in the specified SSD object (ISAM file)
will be output separately.

The name and version of the SSD object are always output, as is the name of the domain
for the SSD object and information on whether PULS problem messages have been incor-
porated in the SSD object.

It should be borne in mind that SHOW-SSD does not output the complete contents of the
SSD object, but only the subsystem definition statements entered since the last ADD-
CATALOG-ENTRY statement.

Format

SHOW-SSD

SSD-FILE-NAME = *CURRENT / <filename 1..54 without-gen-vers>

,GENERAL-ATTRIBUTES = *YES / *NO

,INTERNAL-ENTRIES = *YES / *NO

,MEMORY-ATTRIBUTES = *YES / *NO

,RELATED-FILES = *YES / *NO

,LINK-ATTRIBUTES = *YES / *NO

,REFERENCE-RELATION = *YES / *NO

,DEPENDENCE-RELATION = *YES / *NO

,ADDR-SPACE-RELATION = *YES / *NO

,HOLDER-TASK-INFO = *YES / *NO

,SUBSYSTEM-ENTRIES = *YES / *NO

,OUTPUT = *SYSLST(...) / *SYSOUT

*SYSLST(...)

 SYSLST-NUMBER = *STD / <integer 1..99>

U23166-J-Z125-3-76 281

SSCM SHOW-SSD

Operands

SSD-FILE-NAME =
Specifies the name of the SSD object (ISAM file) which contains the definitions that are to
be displayed. If there is no ISAM file with this name or if the specified file is empty, the
statement will be rejected.

SSD-FILE-NAME = *CURRENT
Default value: the contents of the SSD object which is currently open (START-SSD-
CREATION statement) are to be output.

SSD-FILE-NAME = <filename 1..54 without-gen-vers>
Fully qualified name of the SSD object whose contents are to be displayed.

GENERAL-ATTRIBUTES = *YES / *NO
Specifies whether the following general attributes of the subsystems defined in the SSD
object are to be displayed (*YES) or not (*NO):

– when is the subsystem to be started after system initialization?
(CREATION-TIME)

– in which load mode is the subsystem to be loaded?
(SUBSYSTEM-LOAD-MODE)

– is the subsystem to be automatically unloaded at shutdown?
(STOP-AT-SHUTDOWN)

– may the subsystem be suspended or unloaded after it has been loaded?
(SUBSYSTEM-HOLD)

– may the commands for controlling a subsystem be used?
(STATE-CHANGE-CMDS)

– is the FORCE option permitted?
(FORCED-STATE-CHANGE)

– is the RESET option permitted?
(RESET)

– must the initialization routine be executed if the holder task is terminated
abnormally? (RESTART-REQUIRED)

– may more than one version of the subsystem be active simultaneously?
(VERSION-COEXISTENCE)

– may two versions of a subsystem be dynamically exchanged?
(VERSION-EXCHANGE)

– What is the name of the installation unit of the subsystem?
(INSTALLATION-UNIT)

– What is the copyright (text and date) of the subsystem?
(COPYRIGHT)

282 U23166-J-Z125-3-76

SHOW-SSD SSCM

INTERNAL-ENTRIES = *YES / *NO
Specifies whether SSCM is to provide the following information about the entry points to the
subsystems contained in the file (*YES) or not (*NO):

– the names of the entry points for the subsystem routines INIT, STOPCOM, DEINIT and
CLOSE-CTRL

– the name of the entry point to be used for dynamic identity checking (DYNAMIC-CHECK-
ENTRY)

– the name of the interface version to be used in calling the INIT, STOPCOM, DEINIT or
CLOSE-CTRL routine (INTERFACE-VERSION).

MEMORY-ATTRIBUTES = *YES / *NO
Specifies whether the following memory-related information on the subsystems, which is
stored in the SSD object as part of the subsystem definition, is to be output (*YES) or not
(*NO):

– memory class (MEMORY-CLASS)
– size of the required address space (SIZE)
– start address of the subsystem code (START-ADDRESS)
– privileges and access authorization for the address space (SUBSYSTEM-ACCESS)

RELATED-FILES = *YES / *NO
Specifies whether information about the subsystem satellites is to be supplied (*YES) or not
(*NO). This output includes information as to whether it is mandatory to use a REP file for
this subsystem (REP-FILE-MANDATORY) and concerning the user ID under which the satel-
lites are cataloged (INSTALLATION-USERID). The term “subsystem satellites” covers:

– the subsystem’s object module file (LIBRARY)
– the message file (MESSAGE-FILE)
– the syntax file (SYNTAX-FILE)
– the subsystem’s information file (SUBSYSTEM-INFO-FILE)
– the REP file (REP-FILE)

LINK-ATTRIBUTES = *YES / *NO
Specifies whether the information on the linkage and loading of the subsystem is to be read
from the SSD object (*YES) or not (*NO):

– the name of the object module/ENTRY/CSECT required for loading (LINK-ENTRY)
– the inclusion of the autolink function (AUTOLINK)
– the information on system response when there are unresolved external references

(UNRESOLVED)
– the inclusion of a check run for referenced subsystems (CHECK-REFERENCE)

U23166-J-Z125-3-76 283

SSCM SHOW-SSD

REFERENCE-RELATION = *YES / *NO
Specifies whether the list of subsystems to which address relations exist is to be included
in the output of SSD file information (*YES) or not (*NO).

DEPENDENCE-RELATION = *YES / *NO
Specifies whether the list of subsystems to which dependency relations exist is to be
included in the output of SSD object information (*YES) or not (*NO).

ADDR-SPACE-RELATION = *YES / *NO
Specifies whether the list of subsystems with which any address space overlap must be
avoided is to be included in the output of SSD file information (*YES) or not (*NO).

HOLDER-TASK-INFO = *YES / *NO
Specifies whether the identity of the holder task and the list of subsystems which are to be
created within a common holder task are to be included in the output of SSD file information
(*YES) or not (*NO).

SUBSYSTEM-ENTRIES = *YES / *NO
Specifies whether the list of entry points declared in the definition of the subsystem and the
following attributes of these entries are to be read from the SSD object (*YES) or not (*NO):

– type of the declared entry point (MODE)
– number of the routine (for an SVC or system exit) (NUMBER)
– function number of the entry point (FUNCTION-NUMBER)
– version of the function number (FUNCTION-VERSION)
– information about invocation via system exit routines (CALL-BY-SYSTEM-EXIT)
– the privileges and access authorization for entry points

(CONNECTION-ACCESS and CONNECTION-SCOPE)

284 U23166-J-Z125-3-76

SHOW-SSD SSCM

OUTPUT =
Specifies where the information generated by the statement is to be output.

OUTPUT = *SYSLST(...)
Default value: the messages are to be output to SYSLST.

SYSLST-NUMBER =
Identifies the SYSLST file to which the output is to be directed.

SYSLST-NUMBER = *STD
Default value: output is to go to the standard system file, SYSLST.

SYSLST-NUMBER = <integer 1..99>
Output is to go to one of the system files from the set SYSLST01 to SYSLST99, the
number of which must be given here.

OUTPUT = SYSOUT
The messages will be output to the data display terminal.

U23166-J-Z125-3-76 285

SSCM START-CATALOG-CREATION

START-CATALOG-CREATION
Define name of static subsystem catalog

Function

This statement declares the name of a new static subsystem catalog. The SSD objects
containing the definitions of the subsystems can then be inserted in this file.

START-CATALOG-CREATION will be rejected and an error message issued if a file of the
same name already exists, or if the same catalog entry has been created using CREATE-
FILE. The definition is terminated by saving the new catalog (SAVE-CATALOG statement,
page 238).

However, if there are two consecutive START-CATALOG-CREATION or START-CATALOG-
MODIFICATION statements, the following message will appear in interactive jobs:

SCM0011 DO YOU REALLY WANT TO OVERWRITE MEMORY CATALOG '(&00)'? REPLY (Y/N)

If the reply is Y, the reserved memory space will be released, and the declared attributes of
the catalog will be abandoned.
If the reply is N, the second START-CATALOG-CREATION statement is considered invalid and
the first statement can be terminated by SAVE-CATALOG.

In the case of batch jobs, the response Y is given implicitly.

Format

Operands

CATALOG-NAME =
Name of the static subsystem catalog which is to be created.
If no catalog of this name exists, the statement will be rejected.

CATALOG-NAME = *STD
The default value is the file SYS.SSD.CAT.X on the home pubset.

CATALOG-NAME = <filename 1..51 without-gen-vers>
Fully qualified file name.

START-CATALOG-CREATION

CATALOG-NAME = *STD / <filename 1..51 without-gen-vers>

286 U23166-J-Z125-3-76

START-CATALOG-MODIFICATION SSCM

START-CATALOG-MODIFICATION
Modify static subsystem catalog

Function

This statement allows an existing static subsystem catalog to be modified. New SSD
objects containing the definitions of the subsystems can then be inserted in this file.

The definition of a modified catalog is terminated by means of the statements CHECK-
CATALOG (see page 196) and SAVE-CATALOG (see page 238).

START-CATALOG-MODIFICATION will be rejected if the name specified for the file does not
exist, or was not created beforehand by means of a START-CATALOG-CREATION statement.

If there are two consecutive START-CATALOG-MODIFICATION statements or if START-
CATALOG-MODIFICATION is specified after the statement START-CATALOG-CREATION
without a concluding SAVE-CATALOG statement, the following message will be displayed in
interactive jobs:

SCM0011 DO YOU REALLY WANT TO OVERWRITE MEMORY CATALOG '(&00)'? REPLY (Y/N)

If the reply is Y, the reserved memory space will be released, and the changes just made
to attributes of the catalog will be abandoned.
If the reply is N, the second START-CATALOG-MODIFICATION statement is considered invalid,
and the first statement can be concluded with SAVE-CATALOG.

In the case of batch jobs, the response Y is given implicitly.

Format

Operands

CATALOG-NAME = <filename 1..54 without-gen-vers>
Fully qualified file name of the subsystem catalog which is to be modified.

START-CATALOG-MODIFICATION

CATALOG-NAME = <filename 1..54 without-gen-vers>

U23166-J-Z125-3-76 287

SSCM START-SSD-CREATION

START-SSD-CREATION
Generate SSD object for adding subsystem definitions

Function

The START-SSD-CREATION statement initiates the generation of an SSD object for adding
subsystem definitions. The user must specify the name of the SSD object, the name of the
file in which it is to be stored, and the names of the files required or referenced by the
subsystem.

START-SSD-CREATION is rejected and an error message issued if the file to be specified for
SSD-FILE-NAME already exists.

The SAVE-SSD statement (see page 240) for saving all declared attributes can be entered
only after successfully executing the SET-SUBSYSTEM-ATTRIBUTES statement.

Format

Operands

SSD-NAME = <name 1..8>
Name of the SSD object.
The name must comply with the following convention: the first three letters correspond to
the product’s message class, and the last three letters are “SSC”.

VERSION = <integer 1.999>
Version of the SSD object.

START-SSD-CREATION

SSD-NAME = <name 1..8>

,VERSION = <integer 1..999>

,DOMAIN = <structured-name 1..13>

,CORRECTION = *NONE / list-poss(20): <alphanum-name 8..8>

,SSD-FILE-NAME = <filename 1..51 without-userid without-gen-vers>

,BLOCK-CONTROL-INFO = *STD / *WITHIN-DATA-BLOCK

288 U23166-J-Z125-3-76

START-SSD-CREATION SSCM

DOMAIN = <structured-name 1..13>
Identifier of the MONSYS domain for the SSD object. The name of this domain is used inter-
nally by the system to implement the unique, consistent assignment of all components to
the subsystem.

CORRECTION =
Indication of whether PULS problem messages are incorporated in the SSD object for the
subsystems.

CORRECTION = *NONE
Default value: no PULS problem messages are incorporated in the SSD object.

CORRECTION = list-poss(20) <alphanum-name 8..8>
List of a maximum of 20 problem messages which are corrected in the SSD object.

SSD-FILE-NAME = <filename 1..51 without-userid without-gen-vers>
Name of the new ISAM file which is to be created and in which the SSD object is to be
saved. If the file name already exists, the statement will be rejected.

BLOCK-CONTROL-INFO =
Specifies the file format in which the file for the SSD object is to be created.

BLOCK-CONTROL-INFO = *STD
Default setting: SSCM first attempts to create the SSD object as a K file (block format
PAMKEY) with block length 1 (BUFFER-LENGTH=*STD(SIZE=1)).
In the event of an error an attempt is made to create the SSD object with block length 2.
If this attempt is also unsuccessful, the SSD object is created as an NK file with block format
DATA and block length 2.

BLOCK-CONTROL-INFO = *WITHIN-DATA-BLOCK
SSCM creates the SSD object as an NK file in the DATA block format and with block
length 2.

Notes

Successful processing of the START-SSD-CREATION statement can be followed only by the
statements listed below. The ones marked with an asterisk can be used more than once in
order to define different subsystems (but not different versions of the same subsystem):

– ADD-SUBSYSTEM-ENTRIES (*)
– ASSIGN-HOLDER-TASK (*)
– SEPARATE-ADDRESS-SPACE (*)
– SET-SUBSYSTEM-ATTRIBUTES (*)
– SHOW-SSD

U23166-J-Z125-3-76 289

SSCM Installing SSCM

4.4 Installing SSCM

It is recommended to install SSCM with IMON.

SSCM V2.3 is delivered with the following files:

� the module library SYSLNK.SSCM.023, which contains the SSCM object module

� the system syntax file SYSSDF.SSCM.023 containing statements for SSCM

� the user syntax file SYSSDF.SSCM.023.USER containing statements for SSCM

� the procedure SYSPRC.SSCM.023, which SSCM starts by means of START-PROGRAM

� the subsystem declaration file SYSSSC.SSCM.023.120, for use as of BS2000/OSD-BC
V3.0

� the message file SYSMES.SSCM.023 for use as of BS2000/OSD-BC V3.0

� the REP file SYSREP.SSCM.023 (if present)

Before you can install SSCM V2.3, it is first necessary to satisfy the following conditions:

1. The SSCM subsystem definition must be entered in the subsystem catalog.

2. The SYSLNK.SSCM.023 library must be cataloged under the installation user ID that was
named with ADD-CATALOG-ENTRY or SET-SUBSYSTEM-ATTRIBUTES when SSCM was
entered in the subsystem catalog (by default, this is the system user ID whose files
generally begin with “$.”).

3. The SSCM subsystem is activated by means of the command START-SUBSYSTEM
SSCM and it is started by means of the command START-SSCM.
This subsystem also includes the message file, the syntax file and the REP file, which
are activated automatically. The system syntax file SYSSDF.SSCM.023 must have the
attribute SHARE=SPECIAL.

If the procedure SYSPRC.SSCM.023 is used to call SSCM V2.3, points 1 and 3 cease to
apply.

Coexistence of SSCM versions

SSCM versions V1.0 to V2.3 can be defined simultaneously in the system catalog. The
version can be selected with the SELECT-PRODUCT-VERSION command. The START-SSCM
command then starts the selected version.

For information on compatibility and portability between the various BS2000/OSD, SSCM
and DSSM versions see page 28.

290 U23166-J-Z125-3-76

Examples SSCM

4.5 Examples

The following examples show sequences of SSCM statements that are intended to facilitate
understanding of the procedure for creating and modifying certain objects.

4.5.1 Generation of an SSD object

/START-SSCM
//START-SSD-CREATION SSD-NAME=SS1SSC,VERSION=001,DOMAIN=DSSM,

CORRECTION=*NONE,SSD-FILE-NAME=SYSSSC.SS1.001 ————————————————— (1)
//SET-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=SS1(VERSION=1.0),

SUBSYSTEM-ENTRIES=ENTRY1(CONNECTION-ACCESS=*ALL,
CONNECTION-SCOPE=*TASK),

REFERENCED-SUBSYSTEM=SS2(LOWEST-VERS=01.0,HIGHEST-VERSION=02.5),
RELATED-SUBSYSTEM=SS3(LOWEST-VERSION=02.0,HIGHEST-VERSION=02.0),
LINK-ENTRY=E1 ——— (2)

//SEPARATE-ADDRESS-SPACE SUBSYSTEM-NAME=SS1,
FROM-SUBSYSTEMS=(SS5,SS6,SS9) ————————————————————————————————— (3)

//ASSIGN-HOLDER-TASK TYPE=*SHARED-HOLDER(
BY-SUBSYSTEMS=(SS1,SS2,SS3),TSN=*BY-DSSM) ————————————————————— (4)

//SAVE-SSD —— (5)

(1) Declaration of the SSD object.

(2) Definition of the chief attributes of the SS1 subsystem: the entry points,
references and dependencies.

(3) Specification of the subsystems which must not share address space with SS1; in
this example, these are the subsystems SS5, SS6 and SS9.

(4) Specification of the holder task attributes of SS1, SS2 and SS3.

(5) Saving of the SSD object containing the definition of subsystem SS1. In addition,
the SSD object is saved to the ISAM file SYSSSC.SS1.001 specified under (1).

U23166-J-Z125-3-76 291

SSCM Examples

4.5.2 Creation of a static subsystem catalog

/START-SSCM
//START-CATALOG-CREATION CATALOG-NAME=KAT1 ———————————————————————————— (1)
//ADD-CATALOG-ENTRY FROM-FILE=SYSSSC.SS1.001,

INSTALLATION-USERID=*UNCHANGED,CORRECTION-STATE=*UNCHANGED ———— (2)
//ADD-CATALOG-ENTRY FROM-FILE=SYSSSD.SS2.001,

INSTALLATION-USERID=*UNCHANGED,CORRECTION-STATE=*UNCHANGED ———— (3)
//SET-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=SS3(VERSION=V2.5A00),

:
: ——— (4)

//CHECK-CATALOG ——— (5)
//SAVE-CATALOG CATALOG-NAME=*CURRENT,FORCED=*NO ——————————————————————— (6)

(1) Declaration of the static subsystem catalog.

(2) Addition of the subsystem definition in the object form for SS1 to the subsystem
catalog.

(3) Addition of the subsystem definition in the UGEN format for SS2 to the subsystem
catalog.

(4) Definition of the attributes of the SS3 subsystem.

(5) Performance of a catalog check.

(6) Saving of the resultant static subsystem catalog.

292 U23166-J-Z125-3-76

Examples SSCM

4.5.3 Modification of a static subsystem catalog

/START-SSCM
//START-CATALOG-MODIFICATION CATALOG-NAME=KAT1 ———————————————————————— (1)
//ADD-CATALOG-ENTRY FROM-FILE=SYSSSC.SS5,

INSTALLATION-USERID=*UNCHANGED,CORRECTION-STATE=*UNCHANGED ———— (2)
//ADD-CATALOG-ENTRY FROM-FILE=SYSSSD.SS4,

INSTALLATION-USERID=*UNCHANGED,CORRECTION-STATE=*UNCHANGED ———— (3)
//SET-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=SS1(V01.0A10),

LINK-ENTRY=SS1ENT,MEMORY-CLASS=*SYSTEM-GLOBAL(SUBSYSTEM-ACCESS=
*SYSTEM),INIT-ROUTINE=INITROUT,DEINIT-ROUTINE=*DYNAMIC,
INTERFACE-VERSION=INTVERS ————————————————————————————————————— (4)

//SEPARATE-ADDRESS-SPACE SUBSYSTEM-NAME=SS1,
FROM-SUBSYSTEMS=(SS5,SS6) ————————————————————————————————————— (5)

//ASSIGN-HOLDER-TASK TYPE=*WORK-TASK(SUBSYSTEM-NAME=SS1,
SUBSYSTEM-VERSION=V01.0A10) ——————————————————————————————————— (6)

//REMOVE-CATALOG-ENTRY SUBSYSTEM-NAME=SS7(VERSION=V03.2A00) ——————————— (7)
//MODIFY-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=SS2(VERSION=V11.0A10),

INSTALLATION-USERID=UIDXYZ,....
: ——— (8)

//REMOVE-ADDR-SPACE-SEPARATION SUBSYSTEM-NAME=SS1,
FROM-SUBSYSTEMS=SS2 ——— (9)

//MODIFY-WORK-TASK-ATTRIBUTE SUBSYSTEM-NAME=SS3,
SUBSYSTEM-VERSION=00.1,WORK-TASK=*NO ————————————————————————— (10)

//CHECK-CATALOG ——— (11)
//SAVE-CATALOG CATALOG-NAME=*CURRENT,FORCED=*NO ——————————————————————— (12)

(1) Specification of the catalog whose contents are to be modified.

(2) Addition of a subsystem definition contained in an SSD object.

(3) Addition of a subsystem definition that was written in the old DSSMGEN syntax
(UGEN format).

(4)-(6) Addition of a new subsystem and specification of its attributes.

(7) Deletion of a subsystem definition from the catalog.

(8) Modification of a subsystem definition which has already been entered in the
catalog.

(9) Removal of the strict address space separation on both subsystems.

(10) Modification of the work task attributes of a subsystem which is being used as a
work task.

(11) Performance of a catalog check.

(12) Saving of the modified static subsystem catalog.

U23166-J-Z125-3-76 293

Related publications

Ordering manuals

Please apply to your local office for ordering the manuals.

[1] ADAM (BS2000/OSD)
Abstract Device Access Method
User Guide

Target group
The manual is intended for Assembler programmers
Contents
ADAM can be used to address devices in an Assembler program which are not supported
by the logical access methods of BS2000/OSD. The manual describes the ADAM macros
required for programming.

[2] AID (BS2000)
Advanced Interactive Debugger
Core Manual
User Guide

Target group
Programmers in BS2000
Contents
– Overview of the AID system
– Description of facts and operands which are the same for all programming languages
– Messages
– Comparison between AID and IDA
Applications
Testing of programs in interactive or batch mode

294 U23166-J-Z125-3-76

Related publications

[3] ARCHIVE (BS2000/OSD)
User Guide

Target group
– BS2000/OSD users
– BS2000/OSD system administrators
– BS2000/OSD operators
Contents
Functions and statements of the program ARCHIVE for logical data saving. ARCHIVE is
used for saving, reconstructing and transferring files and job variables.

[4] BLSSERV
Dynamic Binder Loader / Starter
User Guide

Target group
This manual is intended for software developers and experienced BS2000/OSD users
Contents
It describes the functions, subroutine interface and XS support of the dynamic binder loader
DBL as a component of the BLSSERV subsystem, plus the method used for calling it. It also
includes a description of the commands for calling the static loader ELDE and a description
of the migration from DLL to DBL.

[5] BINDER (BS2000/OSD)
User Guide

Target group
Software developers
Contents
The manual describes the BINDER functions, including examples. The reference section
contains a description of the BINDER statements and BINDER macro.

[6] CALENDAR (BS2000/OSD)
User Guide

Target group
Users and systems support in BS2000/OSD
Contents
This manual describes the product CALENDAR for creating calendars with complex sched-
uling dates. It comprises a mask-driven interactive interface (calendar editor) and a program
interface for Assembler and C.

U23166-J-Z125-3-76 295

Related publications

[7] CRTE (BS2000/OSD)
Common RunTime Environment
User Guide

Target group
This manual addresses all programmers and system administrators in a BS2000
environment.
Contents
It describes the common runtime environment for COBOL85, COBOL2000, C and C++
objects and for "language mixes":
– CRTE components
– ILCS program communication interface
– linkage examples

[8] DAB (BS2000/OSD)
Disk Access Buffer
User Guide

Target group
This manual is addressed to systems support.
Contents
The manual begins with some introductory chapters dealing with DAB caching, the DAB
cache media and the DAB functions, and continues with detailed descriptions of the DAB
commands.
Overview of contents:
– DAB caching, DAB media, DAB functions
– DAB application notes, performance behavior, installation, starting and terminating

DAB
– DAB commands and messages

[9] BS2000/OSD-BC
Utility Routines
User Guide

Target group
The manual addresses both nonprivileged users and systems support.
Contents
The manual describes the utilities delivered with the BS2000 basic
configuration BS2000/OSD-BC.

296 U23166-J-Z125-3-76

Related publications

[10] Distributed Print Services (BS2000/OSD)
Printing in Computer Networks
User Guide

Target group
This manual is intended for nonprivileged users, device administrators and systems support
of BS2000/OSD.
Contents
The manual provides descriptions of the principles, use and administration of Distributed
Print Services for each of these user groups. Possible uses of Distributed Print Services are
illustrated by examples.

[11] DRV (BS2000/OSD)
Dual Recording by Volume
User Guide

Target group
Systems support, operators and nonprivileged users
Contents
This manual describes the DRV (Dual Recording by Volume) method, which enables data
to be kept in duplicate on two disks. It explains how DRV mode is set and controlled and
how DRV users can obtain information on disk allocation.

[12] EDT (BS2000/OSD)
Statements
User Guide

Target group
This manual is intended for established EDT users as well as users not yet familiar with
EDT.
Contents
The manual describes the processing of SAM and ISAM files, elements from program
libraries and POSIX files. It also contains descriptions of the EDT operating modes,
statement codes, procedures and statements.

U23166-J-Z125-3-76 297

Related publications

[13] BS2000/OSD-BC
Introductory Guide to DMS
User Guide

Target group
This manual is addressed to nonprivileged users and systems support staff.
Contents
It describes file management and processing in BS2000.
Attention is focused on the following topics:
– volumes and files
– file and catalog management
– file and data protection
– OPEN, CLOSE and EOV processing
– DMS access methods (SAM, ISAM,...)

[14] BS2000/OSD-BC
Introductory Guide to Systems Support
User Guide

Target group
This manual is addressed to BS2000/OSD systems support staff and operators.
Contents
The manual covers the following topics relating to the management and monitoring of the
BS2000/OSD basic configuration: system initialization, parameter service, job and task
control, memory/device/system time/user/file/pubset management, assignment of privi-
leges, accounting and operator functions.

[15] FDDRL (BS2000/OSD)
User Guide

Target group
BS2000/OSD system administrators and operators
Contents
FDDRL physically saves and restores the contents of entire disks und pubsets. The manual
describes the functions and statements of the program FDDRL for physical data saving in
the computer center.

298 U23166-J-Z125-3-76

Related publications

[16] HSMS / HSMS-SV (BS2000/OSD)
Hierarchical Storage Management System
2 Volumes
User Guide

Target group
– BS2000/OSD users
– BS2000/OSD system administrators
– HSMS administrators
Contents
Volume 1 contains the description of the functions, management and the installation
– Description of the data saving, archival, migration and data transfer functions
– HSMS management, invocation, execution and installation
– HSMS messages
Volume 2 contains the description of the HSMS statements in alphabetical order

[17] IMON (BS2000/OSD)
Installation Monitor
User Guide

Target group
This manual is intended for systems support staff of the BS2000/OSD operating system.
Contents
The manual describes the installation and administration of BS2000 software using the
IMON installation monitor and its three components IMON-BAS, IMON-GPN and IMON-
SIC. Installation (standard and customer-specific) using the component IMON-BAS for
systems with BS2000-OSD V2.0 and as of BS2000-OSD V3.0/V4.0 is described in detail
with the aid of examples in two separate chapters.

[18] JV (BS2000/OSD)
Job Variables
User Guide

Target group
The manual addresses both nonprivileged users and systems support.
Contents
The manual describes management and possible uses of job variables. The command
descriptions are divided according to function areas. The macro calls are described in a
separate chapter.

U23166-J-Z125-3-76 299

Related publications

[19] BS2000/OSD-BC
Commands (volumes 1-5)
User Guides

Target group
The manual addresses both nonprivileged BS2000/OSD users and systems support.
Contents
This manual contains BS2000/OSD commands (basic configuration and selected products)
with the functionality for all privileges. The introduction provides information on cmd input.

[20] BS2000/OSD-BC
Commands, Volume 6, Output in S Variables and SDF-P-BASYS
User Guide

Target group
This manual is addressed to programmers and users who write procedures.
Contents
Volume 6 contains tables of all S variables that are supplied with values by the SHOW
commands in conjunction with structured output. Further chapters deal with:
– introduction to working with S variables
– SDF-P-BASYS V2.2A

[21] LMS (BS2000)
SDF Format
User Guide

Target group
BS2000 users.
Contents
Description of the statements for creating and managing PLAM libraries and the members
these contain.
Frequent applications are illustrated with examples.

300 U23166-J-Z125-3-76

Related publications

[22] MAREN (BS2000/OSD)
Volume 1 and 2
User Guides

Target group
This manual is addressed to all BS2000 users, computer center managers, operators and
systems support staff.
Contents
Volume 1 contains an introduction to working with MAREN. This covers
– the MAREN catalog and its migration
– the management of magnetic tape cartridges and locations
– the support provided by MAREN for programs for data backup
– the support provided by MAREN for archiving systems
Volume 2 is divided into a privileged and a nonprivileged section containing overviews,
interface descriptions and examples of working with MAREN.
– The privileged section describes the management of MAREN using MARENADM, the

configuration and installation of MAREN, the creation and migration of the MAREN
catalog, and error recovery.

– The nonprivileged section describes the MAREN commands and the MAREN user
program.

The Appendix includes the messages and the global parameters.

[23] HIPLEX MSCF (BS2000/OSD)
BS2000 Processor Networks
User Guide

Target group
This manual is addressed to systems support, operators and nonprivileged users.
Contents
HIPLEX MSCF (BS2000) makes it possible to combine two or more BS2000/OSD mainfra-
mes to form an LCS, CCS, SPVS or XCS computer network. The manual describes
HIPLEX MSCF (BS2000), possible applications, prerequisites for use, and commands.

[24] PCA (BS2000/OSD)
Peripheral Cache Administrator
User Guide

Target group
The manual addresses systems support of the BS2000/OSD operating system.
Contents
The manual describes the PCA hardware, caching modes and procedures, efficient use
and performance of PCA, as well as the PCA functions, commands and messages.

U23166-J-Z125-3-76 301

Related publications

[25] PCS (BS2000/OSD)
Performance Control Subsystem
User Guide

Target group
This manual is addressed to systems support staff.
Contents
The manual describes how the Performance Control Subsystems (PCS) can be used to
optimize the performance of a computer system in accordance with the task category
concept. An introduction to the basic principles of PCS is followed by a description of PCS
operation. The possible values for the PCS parameters are described in detail. Important
information on the various settings are presented in a number of tables.

[26] POSIX (BS2000/OSD)
POSIX Basics for Users and System Administrators
User Guide

Target group
BS2000 system administrators, POSIX administrators, BS2000 users,
users of UNIX/SINIX workstations
Contents
– Introduction to and working with POSIX
– BS2000 software products in a POSIX environment
– Installing POSIX
– Controlling POSIX and administering file systems
– Administering POSIX users
– BS2000 commands for POSIX

[27] POSIX (BS2000/OSD)
Commands
User Guide

Target group
This manual addresses all users of the POSIX shell.
Contents
This manual is designed as a work of reference. It describes working with the POSIX shell
and the commands of the POSIX shell in alphabetical order.

302 U23166-J-Z125-3-76

Related publications

[28] PRM (BS2000/OSD)
User Guide

Target group
The manual addresses SPOOL users, systems support and RSO device administrators.
Contents
This manual describes the PRM utility routine for creating and managing print resources for
BS2000 SPOOL. The manual deals with the description of the two PRM user interfaces:
the SDF statements for interactive and batch mode, and the FHS-based menu interface for
interactive mode.

[29] PROP-XT (BS2000/OSD)
Programmed Operating with SDF-P
Product Manual

Target group
System administrators, system users, work process schedulers, and anyone involved in
similar activities.
Contents
PROP-XT permits programmed operating by the user by means of administration proce-
dures created with the user-friendly language elements of SDF-P. It also allows simple
administrative activities to be automated using special administration commands.

[30] RFA (BS2000/OSD)
Remote File Access
User Guide

Target group
Users and systems support
Contents
The manual explains the basics of the RFA concept. All RFA commands are described in
detail, as are the particularities of DMS commands when accessing files on a remote
system by means of RFA.

U23166-J-Z125-3-76 303

Related publications

[31] RSO (BS2000/OSD)
Remote SPOOL Output
User Guide

Target group
This manual is directed at nonprivileged users, RSO device administrators, SPOOL admin-
istrators and systems support of BS2000/OSD.
Contents
The manual describes the functions and options of the user groups with respect to utilizing
and controlling decentralized printers (RSO printers) and deals with the technical charac-
teristics of all RSO printers.

[32] SDF-A (BS2000/OSD)
User Guide

Target group
This manual is intended for experienced BS2000 users and system administration staff.
Contents
It describes how to process syntax files and explains the SDF-A functions on the basis of
examples. The SDF-A statements are listed in alphabetical order.
The manual also includes a description of the SDF-SIM utility routine.
SDF-A V4.1A can be used as of BS2000/OSD-BC V1.0.

[33] SDF-CONV (BS2000/OSD)
User Guide

Target group
This manual is addressed to all BS2000 users.
Contents
The procedure format and command language of procedures can be converted as follows:
– from ISP to SDF command language
– from non-S to S procedure format
– simultaneous conversion of command language and procedure format.

304 U23166-J-Z125-3-76

Related publications

[34] SDF-P (BS2000/OSD)
Programming in the Command Language
User Guide

Target group
The manual addresses BS2000/OSD users and systems support.
Contents
SDF-P is a structured procedure language in BS2000. The introduction is followed by a
detailed description of commands, functions and macros.

[35] SDF (BS2000/OSD)
SDF Management
User Guide

Target group
This manual is intended for system administrators and experienced BS2000 users.
Contents
It describes how SDF is installed and administered using SDF commands and the SDF-I,
SDF-U and SDF-PAR utility routines. It includes a description of SDF-I, SDF-U and
SDF-PAR statements.

[36] SECOS (BS2000/OSD
Security Control System
User Guide

Target group
– BS2000 system administrators
– BS2000 users working with extended access protection for files
Contents
Capabilities and application of the functional units:
– SRPM (System Resources and Privileges Management)
– SRPMSSO (Single Sign On)
– GUARDS (Generally Usable Access Control Administration System)
– GUARDDEF (Default Protection)
– GUARDCOO (Co-owner Protection)
– SAT (Security Audit Trail).

U23166-J-Z125-3-76 305

Related publications

[37] SM2 (BS2000/OSD)
Software Monitor
Volume 1: Administration and Operation

Target group
This manual is addressed to users and systems support staff.
Contents
The monitoring system SM2 supplies users with statistical data on the performance of their
DP systems and on resource utilization. Volume 1 of the manual describes operation of the
SM2 monitor, the SM2 monitoring programs and the SM2 screen reports.
Analysis and display of the SM2 monitored data are dealt with in Volume 2.

[38] SPOOL (BS2000/OSD)
User Guide

Target group
This manual is intended for nonprivileged users, Spool & Print administrators, RSO device
administrators and systems support staff.
Contents
The manual describes the operation of SPOOL.

[39] SPOOLAPA PRINTING SYSTEM
Printing with APA
Summary Description

Target group
System administrators, dp organizers, dp managers
Contents
The new printing concept for BS2000, known as APA (All Points Addressable), is described.
APA opens up new design options, such as free positioning and use of pre-made compo-
nents, on high-performance printers.

[40] BS2000/OSD-BC V5.0
System Installation
User Guide

Target group
This manual is intended for BS2000/OSD system administration.
Contents
The manual describes the generation of the hardware configuration with UGEN and the
following installation services: disk organization with MPVS, the installation of volumes
using the SIR utility routine, and the IOCFCOPY subsystem.

306 U23166-J-Z125-3-76

Related publications

[41] BS2000/OSD-BC V5.0
Computer Center Ready Reference, Volume 1

Target group
This Ready Reference is addressed to systems support staff in BS2000 computer centers.
Contents
The Ready Reference is intended to assist systems support staff in their daily work in the
BS2000 computer center. It contains tables and excerpts from other manuals presenting
information on BS2000 operation in concise, condensed form; information on accounting
records, the parameter service and the syntax of the computer center utility routines.

[42] BS2000/OSD Technische Beschreibung
(Technical Description, currently available in German only)

Target group
BS2000 users with an interest in the technical background of their systems (software
engineers, systems analysts, computer center managers, system administrators)
Computer scientists interested in studying a concrete example of a general-purpose
operating system.

U23166-J-Z125-3-76 307

Index

$ESMINT(I) (macro) 217, 260
$PBBND1 (macro) 207, 228, 249
$TSOS.SYS.SSD.CAT.X (default name of subsy-

stem catalog) 65, 117, 285

A
abnormal DSSM termination 71
accounting 66

record description 67
record structure 67

activation of a subsystem 39, 153, 211
ADD-CATALOG-ENTRY (SSCM statement) 182,

183
address relations

between subsystems 47, 270
checking 197
outputting 278, 284
specifying and editing 228

address space
determine 53
distribution 241
housekeeping by DSSM 57
overlaps 235
overlaps, preventing 241

ADD-SUBSYSTEM (DSSM command) 74, 75
ADD-SUBSYSTEM-ENTRIES (SSCM

statement) 182, 186
alias 8
alphanum-name (data type) 9
ASSIGN-HOLDER-TASK (SSCM statement) 60,

182, 193
asynchronous activities 38

B
BIND (macro) 47, 59

C
cat (suffix for data type) 20
cat-id (data type) 9
CHECK-CATALOG (SSCM statement) 182, 196
checking function

for subsystem catalog 196
class x memory (loading subsystems) 56
coexistence

of SSCM versions 30, 289
of subsystem versions (coexistence

mode) 47, 219, 262
coexistence mode 219, 262
command-rest (data type) 9
commands, DSSM 74
communication subsystem/DSSM 49
compl (suffix for data type) 15
composed-name (data type) 9
configuration

of a subsystem 38
of subsystems 138

CONSLOG logging file 63
console 218
constructor (string) 18
control program (CP) 228
corr (suffix for data type) 20, 21
CREATED (status) 50
c-string (data type) 9

D
data area 57

of a subsystem 41

308 U23166-J-Z125-3-76

Index

data type
alphanum-name 9
cat-id 9
command-rest 9
composed-name 9
c-string 9
date 9
device 9
filename 10
fixed 9
integer 11
name 11
partial-name 12
posix-filename 12
posix-pathname 12
product-version 13
structured-name 13
text 13
time 13
vsn 13
x-string 14
x-text 14

data types in SDF 5
suffixes 6

date (data type) 9
deactivation

of subsystems 44, 162
of subsystems (CLOSE-CTRL routine) 215,

257
declaration file, installation for SSCM 289
declaration of a subsystem 38
declaration state 25
definition

deleting for a subsystem 237
of a subsystem (in the SSD object) 26
of a subsystem configuration 38
subsystem, adding into a catalog 183

deinitialization
of subsystems (DEINIT routine) 216

dependency relations
removing 232

device (data type) 9
display parameters of subsystems 142

DSSM 26
address space housekeeping 57
command overview 74
communication with subsystems 49
crashes 71
error handling 71
holder task 58
holder task error 72
information on subsystem attributes 122
logging 120
overview of commands 36
overview of functions 53
products in BS2000 basic configuration 31
purpose 35
shared programs 59
startup 63
startup (parameter record) 64
storage concept 56
subsystem catalog, see subsystem catalog
subsystem components 24
subsystem configuration 38
subsystem definition 23
subsystem relations 47
task concept 58
task error 71
unbundled products 33
version dependencies 28
work task 58

DSSM (parameter record) 64
DSSM logging, activate/deactivate 120
DSSMLOG logging file 120
dynamic subsystem management, see DSSM

E
entry points

defining or modifying 220
deleting 225

error handling in DSSM 71
error log SERSLOG 73
ESMC (DSSM accounting record) 69
ESMD (DSSM accounting record) 70
establishing an interface to a subsystem 42

U23166-J-Z125-3-76 309

Index

Examples
load of a local subsystem catalog 84
MODIFY-SUBSYSTEM-PARAMETER 109
output in an S variable 173
REMOVE-SUBSYSTEM 112
SAVE-SUBSYSTEM-CATALOG 119
SHOW-SUBSYSTEM-INFO 140
SHOW-SUBSYSTEM-STATUS 149
START-LOCAL-SUBSYSTEM 152
STOP-LOCAL-SUBSYSTEM 161
UNLOAD-LOCAL-SUBSYSTEM-

CATALOG 167
use of local subsystems 170

exchange mode 220, 262
external references

deleting 230
removing 230
specifying and editing 228

F
filename (data type) 10
fixed (data type) 9
FORCED operand

for placing subsystems in the wait state 80
force subsystem deactivation 162

G
gen (suffix for data type) 20
GENERATE-CATALOG-SOURCE (SSCM

statement) 182, 198
generating a subsystem catalog 179, 285
generating SSMCAT, statements 179
global index 18

H
hold subsystem 44
holder task 38, 49, 193, 233

at subsystem activation 41
canceling use of 233
distributing subsystems 193

holder task error 72
HOLD-SUBSYSTEM (DSSM command) 74, 80

I
Identification of subsystems 53
IMON 289
IN-CREATE (status) 49
IN-DELETE (status) 50
index 18
information

on subsystem attributes 122
on subsystem configuration 138
on subsystems 49, 142

information file 48
IN-HOLD (status) 50
initializing subsystems 153
initializing subsystems (INIT routine) 214, 257
IN-RESUME (status) 50
installing SSCM 289
integer (data type) 11
ISAM file, SSD object 26
ISL entry 47
ISL entry point 221

J
job control 142
job entry points

defining 263
defining or modifying 220
deleting 225
of a subsystem 24, 186
outputting 278, 284

job relations between subsystems 47

L
linkage (indirect) 220
linking and loading of subsystems 53
load address, of subsystems 138
load mode, of a subsystem 207, 249
load modules for DSSM 63
load state 25
LOAD-LOCAL-SUBSYSTEM-CATALOG (DSSM

command) 74, 83
local subsystem 27

activate 74, 150
deactivate 74, 159
example 170

310 U23166-J-Z125-3-76

Index

local subsystem catalog
load 74, 83
unload 74, 166

LOCKED (status) 50, 71, 168
logging file

CONSLOG 63
DSSMLOG 120

logging function 74, 120
logging of parameter processing 63
low (suffix for data type) 15

M
man (suffix for data type) 20, 21
managing the dynamic subsystem catalog 60
mandatory (suffix for data type) 21
memory pool 56
memory pool contention 62
message file 48, 63, 209, 251

installing for SSCM 289
SYSMES.SSCM.023 289

metasyntax of SDF 5
modifying subsystem parameters 85
MODIFY-SUBSYSTEM-ATTRIBUTES (SSCM

statement) 182, 200
MODIFY-SUBSYSTEM-PARAMETER (DSSM

command) 74, 85
MODIFY-WORK-TASK-ATTRIBUTE (SSCM

statement) 182, 233
module library 48

installation for SSCM 289
SYSLNK.SSCM.023 289

monitoring job variables 52
monitoring job variables (SSCM) 181

N
name (data type) 11
NOREF file 63
notational conventions 4

for SDF 5
NOT-CREATED (status) 49
NOT-RESUMED (status) 50

O
object code library 206, 249

object module file, see SSD object 183
odd (suffix for data type) 20
operator terminal 218
overview

of DSSM functions 53
of SSCM statements 182

P
parameter service 63
partial-filename (data type) 12
path-compl (suffix for data type) 15
performance improvement 41
place subsystem in wait state 80
posix-filename (data type) 12
posix-pathname (data type) 12
products (DSSM-compatible) in BS2000 basic

configuration 31
products, unbundled (DSSM-compatible) 33
product-version (data type) 13
program area 57

of a subsystem 41
program monitoring using monitor job variables

(SSCM) 181

Q
quotes (suffix for data type) 21

R
README file 3
reentrant subsystems 57
references 4
relations, between subsystems 47
RELEASE-SUBSYSTEM-SPACE (DSSM

command) 74, 110
remove inactive subsystem from catalog 111
REMOVE-ADDR-SPACE-SEPARATION (SSCM

statement) 182, 235
REMOVE-CATALOG-ENTRY (SSCM

statement) 182, 237
REMOVE-SUBSYSTEM (DSSM command) 74,

111
REP file 48, 63

installation for SSCM 289
SYSREP.SSCM.023 289

U23166-J-Z125-3-76 311

Index

REP file library 207, 250
restart of subsystems 39, 42
RESUME-SUBSYSTEM (DSSM command) 74,

113

S
S variable, output (example) 173
satellites 24, 48, 53
save changes to static subsystem catalog 116
SAVE-CATALOG (SSCM statement) 182, 238
SAVE-SSD (SSCM statement) 182, 240
SAVE-SUBSYSTEM-CATALOG (DSSM

command) 74, 116
SDF syntax file 63
sep (suffix for data type) 20
SEPARATE-ADDRESS-SPACE (SSCM

statement) 61, 182, 241
SERSLOG error log 73
set up connection to subsystems after canceling

the wait state 113
SET-DSSM-OPTIONS (DSSM command) 74,

120
SET-SUBSYSTEM-ATTRIBUTES (SSCM

statement) 53, 61, 182, 243
shared programs 59
SHOW-CATALOG (SSCM statement) 182, 273
SHOW-SSD (SSCM statement) 182, 280
SHOW-SUBSYSTEM-ATTRIBUTES (DSSM

command) 122
SHOW-SUBSYSTEM-INFO (DSSM

command) 74, 138
SHOW-SUBSYSTEM-STATUS (DSSM

command) 74, 142
SSCM 26, 179

check catalog 196
coexistence of SSCM versions 30, 289
controlling distribution of subsystems to holder

tasks 193
files for installation 289
installion 289
modifying subsystem definitions 200
overview of functions 53
program monitoring using monitoring job

variables 181

SSCMCAT 25, 39, 42, 179
SSD object 280
starting and terminating 181
starting via a procedure 289
statements 182
subsystem catalog, see subsystem catalog
version dependencies 28

SSCMCAT (subsystem catalog) 39
SSD object 26, 183, 243, 280
SSINFO (information file) 252
SSMCAT (static subsystem catalog) 25
SSMCAT (subsystem catalog) 26, 179
start

SSCM 181
SSCM via a procedure 289
subsystem 153

START-CATALOG-CREATION (SSCM
statement) 182, 285

START-CATALOG-MODIFICATION (SSCM
statement) 182, 286

START-LOCAL-SUBSYSTEM (DSSM
command) 74, 150

START-SSD-CREATION (SSCM statement) 182,
287

START-SUBSYSTEM (DSSM command) 74, 153
startup routine 39
startup time

reset 96
subsystem 96

startup, subsystem linked to startup 40
statements, SSCM 182
states of a subsystem 49
static subsystem catalog 116
Static Subsystem Catalog Manager (SSCM) 179
status change 51
STOP-LOCAL-SUBSYSTEM (DSSM

command) 74, 159
stopping

subsystems 44, 81
subsystems (CLOSE-CTRL routine) 215,

257
STOP-SUBSYSTEM (DSSM command) 74, 162
storage concept of DSSM 56

312 U23166-J-Z125-3-76

Index

structured-name (data type) 13
subsystem

(inactive) remove from catalog 74, 111
activate 74, 153
activate DSSM logging 120
activation 39
add to catalog 183
cancel wait state 74, 113
canceling address space overlap

declarations 235
change status 51
changing attributes during a session 62
checking a catalog 196
coexistence of versions 47
communication with DSSM 49
components 24, 153
configuration 24
controlling distribution to holder tasks 193
data area 41, 57
deactivate 74, 162
deactivation 44, 162
declaration 38, 53
define call entries 24
define creation time 39
defining 243
defining and modifying dependency

relations 230
defining and modifying external

references 228
deleting entry points 225
deleting from catalog 237
determine job status 74, 142
determine load address 138
downtimes because swapping versions 45
entry points 220
external references 228
forced deactivation 162
generating subsystem catalog 285
global management 54
hold 44, 80
identification to DSSM 23
in memory pool 226
increasing the number of job entry points for an

SSD object 186

subsystem
information about 49
interface cancelation 42
interface establishment 42
job entry points 186
link and load 53
linked to startup 40
load mode 207, 249
local 27
locked 168
mandatory 25
modify parameters 74, 85
modifying definition 200
nonprivileged (TU subsystem) 26
optional 25
outputting contents of an object module

file 280
outputting contents of catalog 273
place in wait state 74, 80
preventing address space overlaps 241
privileged (TPR subsystem) 26
program area 41, 57
querying attribute information 122
reentrant 57
release address space 74, 110
removing dependency relations 232
removing external references 230
request information on configuration 74, 138
request information on subsystem

attributes 74
restarting 42
saving catalog 238
saving the definition 240
SSD object 280
start 153
states 49
stopping (CLOSE-CTRL routine) 215
swapping versions 45
system address space 56
terminate 162
unload 162
unlock 74, 168
user address space 56
versions 47

U23166-J-Z125-3-76 313

Index

subsystem address space
allocation 235
declaring 225
distribution 241
release 110

subsystem attributes 24
requesting information 122

subsystem catalog 24, 38
adding in new subsystem 183
checking 196
default file name 65, 117, 285
defining more than 100 job entry points 186
deleting subsystem 237
extending 74, 75
extending the static catalog 183
generating 179, 285
local 27
modifying 286
outputtting contents 273
save changes 74, 116
saving 238
SSMCAT 39

subsystem configuration 38, 54
local 27

subsystem definition 23, 243
in the SSD object 26
modifying 200
saving 240

subsystem information 54
subsystem initialization accounting record

(ESMC) 69
subsystem management 54
subsystem relations 24, 47
subsystem satellites 24, 48, 53
subsystem termination accounting record

(ESMD) 70
suffixes for data types 6, 15
SVC entry 47
swapping versions of a subsystem 45

unavailability 45
without interrupting availability 45

synchronous activities 38
syntax description 5

syntax file 48
activated during loading 253
installation for SSCM 289
SYSSDF.SSCM.023 289
SYSSDF.SSCM.023.USER 289

SYS... files for installing SSCM 289
SYSLST 278, 284
SYSPRC.SSCM.023 (procedure for starting

SSCM) 289
SYSSSD.SSCM.023 (declaration file) 289
system address space 56
system exit routines 47, 190, 223
system initialization 63, 211

T
task

subsystem occupancy 142
termination when placing subsystems in the

wait state 80
task concept of DSSM 58
task error 71
temp-file (suffix for data type) 20
terminate

SSCM 181
subsystem 162
tasks (STOPCOM routine) 215
tasks accessing subsystems 80
tasks occupying subsystems 162

text (data type) 13
TID of occupying tasks 142
time (data type) 13
time for activation of subsystems 39
TPR subsystem 26
TSN

of holder task 194
of occupying tasks 142
of work task 194

TU subsystem 26

U
unavailability of subsystems because swapping

versions 45
under (suffix for data type) 15
unloading subsystems 162

314 U23166-J-Z125-3-76

Index

UNLOAD-LOCAL-SUBSYSTEM-CATALOG
(DSSM command) 74, 166

UNLOCK-SUBSYSTEM (DSSM command) 74,
168

unprivileged, see nonprivileged
user (suffix for data type) 21
user address space 56

V
vers (suffix for data type) 21
version coexistence 47
version dependencies between BS2000, DSSM

and SSCM 28
version swappimg for subsystems 45
vsn (data type) 13

W
wait state

cancel for subsystem 113
subsystem 80

wild(n) (suffix for data type) 16
wild-constr (suffix for data type) 18
with (suffix for data type) 15
with-constr (suffix for data type) 18
with-low (suffix for data type) 15
without (suffix for data type) 20
without-cat (suffix for data type) 20
without-corr (suffix for data type) 20
without-gen (suffix for data type) 20
without-man (suffix for data type) 20
without-odd (suffix for data type) 20
without-sep (suffix for data type) 20
without-user (suffix for data type) 21
without-vers (suffix for data type) 21
with-under (suffix for data type) 15
with-wild(n) (suffix for data type) 16
work task 48, 49, 58, 193

X
x-string (data type) 14
x-text (data type) 14

U23166-J-Z125-3-76 315

Contents
1 Preface . 1
1.1 Target group and summary of contents . 1
1.2 Changes since the edition December 1996 (DSSM V3.6 and SSCM V2.1) 2
1.3 Readme file - modifications incorporated in this version . 3
1.4 Notational conventions . 4
1.5 SDF syntax representation . 5

2 The subsystem concept in BS2000/OSD . 23
2.1 Definitions . 23
2.2 Administering subsystems with DSSM and SSCM . 26
2.3 Local subsystem management . 27
2.4 Version dependencies between BS2000/OSD, DSSM and SSCM 28
2.5 Overview of important DSSM-compatible products in the BS2000 basic configuration . 31
2.6 Overview of selected unbundled, DSSM-compatible products 33

3 DSSM . 35
3.1 Purpose and functions of DSSM . 38
3.1.1 Subsystem declaration (SSC) . 38
3.1.2 Activation and restart . 39
3.1.3 Interface establishment and cancelation . 42
3.1.4 Subsystem Deactivation or suspension . 44
3.1.5 Swapping subsystem versions . 45
3.1.6 Coexistence of versions . 47
3.1.7 Relations between subsystems . 47
3.1.8 Relations between subsystem satellites and subsystems . 48
3.1.9 Communication between subsystems and DSSM . 49
3.1.10 Information about subsystems . 49
3.1.11 Status of a subsystem . 49
3.1.12 Subsystem monitoring with monitoring job variables . 52
3.1.13 Overview of functions . 53
3.2 Storage and task concepts . 56
3.3 Management of shared programs . 59
3.4 Management of the dynamic subsystem catalog . 60
3.5 Startup of dynamic subsystem management . 63

316 U23166-J-Z125-3-76

Contents

3.6 DSSM accounting records . 66
ESMC - subsystem initialization accounting record . 69
ESMD - subsystem termination accounting record . 70

3.7 Error handling in DSSM . 71
3.8 DSSM commands . 74

ADD-SUBSYSTEM
Extend dynamic subsystem catalog . 75
HOLD-SUBSYSTEM
Place subsystem in wait state . 80
LOAD-LOCAL-SUBSYSTEM-CATALOG
Load local subsystem catalog . 83
MODIFY-SUBSYSTEM-PARAMETER
Modify subsystem parameters . 85
RELEASE-SUBSYSTEM-SPACE
Release reserved address space for subsystems . 110
REMOVE-SUBSYSTEM
Remove inactive subsystem from dynamic catalog . 111
RESUME-SUBSYSTEM
Cancel wait state for subsystem . 113
SAVE-SUBSYSTEM-CATALOG
Save changes to dynamic subsystem catalog . 116
SET-DSSM-OPTIONS
Activate/deactivate DSSM logging function . 120
SHOW-SUBSYSTEM-ATTRIBUTES
Request information on subsystem attributes . 122
SHOW-SUBSYSTEM-INFO
Request information on current subsystems configuration . 138
SHOW-SUBSYSTEM-STATUS
Request information on status of subsystems . 142
START-LOCAL-SUBSYSTEM
Activate local subsystem in user address space . 150
START-SUBSYSTEM
Activate subsystem . 153
STOP-LOCAL-SUBSYSTEM
Deactivate local subsystem in user address space . 159
STOP-SUBSYSTEM
Deactivate subsystem . 162
UNLOAD-LOCAL-SUBSYSTEM-CATALOG
Unload local subsystem catalog . 166
UNLOCK-SUBSYSTEM
Shift subsystem from LOCKED status to NOT-CREATED status 168

3.9 Examples . 170
3.9.1 Use of local subsystems . 170
3.9.2 Output in an S variable . 173

U23166-J-Z125-3-76 317

Contents

4 SSCM . 179
4.1 Generating a subsystem catalog . 179
4.2 Starting and terminating SSCM . 181
4.3 The SSCM statements . 182

ADD-CATALOG-ENTRY
Add subsystem definition(s) to subsystem catalog . 183
ADD-SUBSYSTEM-ENTRIES
Define additional job entry points . 186
ASSIGN-HOLDER-TASK
Distribute subsystems to holder tasks . 193
CHECK-CATALOG
Check subsystem definition(s) for consistency . 196
GENERATE-CATALOG-SOURCE
Create SSCM statement list for generation . 198
MODIFY-SUBSYSTEM-ATTRIBUTES
Modify subsystem attributes . 200
MODIFY-WORK-TASK-ATTRIBUTE
Modify work task parameters . 233
REMOVE-ADDR-SPACE-SEPARATION
Revoke disjunctive distribution of subsystems in class 5 memory 235
REMOVE-CATALOG-ENTRY
Logically delete definition of subsystem from subsystem catalog 237
SAVE-CATALOG
Save subsystem catalog as PAM file . 238
SAVE-SSD
Terminate subsystem definition(s) . 240
SEPARATE-ADDRESS-SPACE
Control disjunctive distribution of subsystems in class 5 memory 241
SET-SUBSYSTEM-ATTRIBUTES
Define attributes and entry points of subsystem . 243
SHOW-CATALOG
Show subsystem configuration . 273
SHOW-SSD
Show contents of SSD object (subsystem definitions) . 280
START-CATALOG-CREATION
Define name of static subsystem catalog . 285
START-CATALOG-MODIFICATION
Modify static subsystem catalog . 286
START-SSD-CREATION
Generate SSD object for adding subsystem definitions . 287

318 U23166-J-Z125-3-76

Contents

4.4 Installing SSCM . 289
4.5 Examples . 290
4.5.1 Generation of an SSD object . 290
4.5.2 Creation of a static subsystem catalog . 291
4.5.3 Modification of a static subsystem catalog . 292

Related publications . 293

Index . 307

U23166-J-Z125-3-76

DSSM V4.0/SSCM V2.3

Subsystem Management in BS2000/OSD

User Guide

Target group

This manual addresses systems support staff and software consultants of BS2000/OSD.

Contents

The following are described: BS2000/OSD subsystem concept, dynamic subsystem
management (DSSM) V4.0, subsystem catalog management (SSCM) V2.3 and the
associated commands and statements.
DSSM supports the option of creating and managing user-specific subsystem configu-
rations on a task-local basis.

Edition: March 2002

File: d s s m .pdf

Copyright © Fujitsu Siemens Computers GmbH, 2002.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

This manual was produced by
cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

http://www.cognitas.de

U23166-J-Z125-3-76

U23166-J-Z125-3-76

Comments on DSSM V4.0/SSCM V2.3
Subsystem Management in BS2000/OSD

U23166-J-Z125-3-76

Fujitsu Siemens computers GmbH
User Documentation
81730 Munich
Germany

Fax: (++49) 700 / 372 00000

e-mail: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Comments
Suggestions
Corrections

�

Submitted by

mailto:manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Titel
	Contens
	Preface
	Target group and summary of contents
	Changes since the edition December 1996 (DSSM V3.6 and SSCM V2.1)
	Readme file - modifications incorporated in this version
	Notational conventions
	SDF syntax representation

	The subsystem concept in BS2000/OSD
	Definitions
	Administering subsystems with DSSM and SSCM
	Local subsystem management
	Version dependencies between BS2000/OSD, DSSM and SSCM
	Overview of important DSSM-compatible products in the BS2000 basic configuration
	Overview of selected unbundled, DSSM-compatible products

	DSSM
	Purpose and functions of DSSM
	Subsystem declaration (SSC)
	Activation and restart
	Interface establishment and cancelation
	Subsystem Deactivation or suspension
	Swapping subsystem versions
	Coexistence of versions
	Relations between subsystems
	Relations between subsystem satellites and subsystems
	Communication between subsystems and DSSM
	Information about subsystems
	Status of a subsystem
	Subsystem monitoring with monitoring job variables
	Overview of functions

	Storage and task concepts
	Management of shared programs
	Management of the dynamic subsystem catalog
	Startup of dynamic subsystem management
	DSSM accounting records
	ESMC - subsystem initialization accounting record
	ESMD - subsystem termination accounting record

	Error handling in DSSM
	DSSM commands
	ADD-SUBSYSTEM Extend dynamic subsystem catalog
	HOLD-SUBSYSTEM Place subsystem in wait state
	LOAD-LOCAL-SUBSYSTEM-CATALOG Load local subsystem catalog
	MODIFY-SUBSYSTEM-PARAMETER Modify subsystem parameters
	RELEASE-SUBSYSTEM-SPACE Release reserved address space for subsystems
	REMOVE-SUBSYSTEM Remove inactive subsystem from dynamic catalog
	RESUME-SUBSYSTEM Cancel wait state for subsystem
	SAVE-SUBSYSTEM-CATALOG Save changes to dynamic subsystem catalog
	SET-DSSM-OPTIONS Activate/deactivate DSSM logging function
	SHOW-SUBSYSTEM-ATTRIBUTES Request information on subsystem attributes
	SHOW-SUBSYSTEM-INFO Request information on current subsystems configuration
	SHOW-SUBSYSTEM-STATUS Request information on status of subsystems
	START-LOCAL-SUBSYSTEM Activate local subsystem in user address space
	START-SUBSYSTEM Activate subsystem
	STOP-LOCAL-SUBSYSTEM Deactivate local subsystem in user address space
	STOP-SUBSYSTEM Deactivate subsystem
	UNLOAD-LOCAL-SUBSYSTEM-CATALOG Unload local subsystem catalog
	UNLOCK-SUBSYSTEM Shift subsystem from LOCKED status to NOT-CREATED status
	Examples
	Use of local subsystems
	Output in an S variable

	SSCM
	Generating a subsystem catalog
	Starting and terminating SSCM
	The SSCM statements
	ADD-CATALOG-ENTRY Add subsystem definition(s) to subsystem catalog
	ADD-SUBSYSTEM-ENTRIES Define additional job entry points
	ASSIGN-HOLDER-TASK Distribute subsystems to holder tasks
	CHECK-CATALOG Check subsystem definition(s) for consistency
	GENERATE-CATALOG-SOURCE Create SSCM statement list for generation
	MODIFY-SUBSYSTEM-ATTRIBUTES Modify subsystem attributes
	MODIFY-WORK-TASK-ATTRIBUTE Modify work task parameters
	REMOVE-ADDR-SPACE-SEPARATION Revoke disjunctive distribution of subsystems in class 5 memory
	REMOVE-CATALOG-ENTRY Logically delete definition of subsystem from subsystem catalog
	SAVE-CATALOG Save subsystem catalog as PAM file
	SAVE-SSD Terminate subsystem definition(s)
	SEPARATE-ADDRESS-SPACE Control disjunctive distribution of subsystems in class 5 memory
	SET-SUBSYSTEM-ATTRIBUTES Define attributes and entry points of subsystem
	SHOW-CATALOG Show subsystem configuration
	SHOW-SSD Show contents of SSD object (subsystem definitions)
	START-CATALOG-CREATION Define name of static subsystem catalog
	START-CATALOG-MODIFICATION Modify static subsystem catalog
	START-SSD-CREATION Generate SSD object for adding subsystem definitions
	Installing SSCM
	Examples
	Generation of an SSD object
	Creation of a static subsystem catalog
	Modification of a static subsystem catalog

	Related publications
	Comments, Suggestions, Corrections
	Index
	A-D
	E
	F-L
	M-R
	S
	T-U
	V-X

