
U9557-J-Z125-4-76 1

1 Preface
A source program processed by a compiler (Assembler, C, COBOL, FORTRAN, PL1 etc.)
may exist in either object module format or link and load module format. Object modules
(OMs) and link and load modules (LLMs) are the input objects for the Binder-Loader-
Starter system, which generates executable programs from these objects.

The binder links the translated source program to other object modules or link and load
modules to produce a loadable unit. To do this it locates the object modules and link and
load modules required for the program run and links them. It also resolves cross-references
between the modules, i.e. adjusts the addresses which reference fields in other modules
(external references) and therefore could not be entered by the language processor at
compilation or assembly time. This procedure is known as link editing.

A loader is needed to bring the unit generated by link editing into computer memory. Only
then can the program be run.

1.1 Brief product description

BINDER belongs to the Binder-Loader-Starter (BLS) system, which also provides the
user with the following functional units:

● the subsystem BLSSERV with the functionality of the dynamic binder loader DBL and
the static loader ELDE

● the old linkage editor TSOSLNK

● the security component BLSSEC (which may be optionally activated)

2 U9557-J-Z125-4-76

Brief product description Preface

The linker BINDER

BINDER is a linkage editor which links modules into a loadable unit with a logical and
physical structure. This unit is referred to as a link and load module (LLM). BINDER stores
the LLM as a type L library element in a program library or in a PAM file.

Modules linked by BINDER into an LLM may be:

● object modules (OMs) and prelinked OMs from an object module library (OML), from a
program library (type R) or from the temporary EAM object module file (OMF)

● prelinked LLMs, or LLMs generated by compilers, from a program library (type L)

● prelinked LLMs from a PAM file (PAM-LLM),

● prelinked object modules linked by the TSOSLNK linkage editor.

The linkage editor TSOSLNK

The TSOSLNK linkage editor links:

● one or more object modules (OMs) into an executable program (load module) and
stores this in a cataloged program file or as a type C library element in a program library

● multiple object modules (OMs) into a single prelinked module and stores this as a type
R library element in a program library or in the EAM object module file.

Instead of the linkage editor TSOSLNK, the user should use the linker BINDER, since
TSOSLNK will not be developed further and will be replaced by BINDER.

BLSSERV with the dynamic binder loader DBL and the static loader ELDE

The dynamic binder loader (DBL) links modules into a load unit and loads this into
memory. The DBL functionality is part of the BLSSERV subsystem.

Modules linked by DBL into a load unit may be:

● link and load modules (LLMs) linked by BINDER or generated by compilers and stored
in a program library (type L)

● link and load modules (LLMs) linked by BINDER and stored in a PAM file (PAM-LLMs,
as of BLSSERV V2.5),

● object modules (OMs) generated by compilers and stored in an object module library
(OML), in a program library (type R) or in the temporary EAM object module file

● prelinked object modules linked by the TSOSLNK linkage editor and stored in an object
module library (OML), in a program library (type R) or in the temporary EAM object
module file.

U9557-J-Z125-4-76 3

Preface Brief product description

The static loader ELDE loads an executable program that has been linked by TSOSLNK
and stored in a program file or as a type C library element in a program library. The ELDE
functionality is part of the BLSSERV subsystem.

The security component BLSSEC

If a “secure system” is required, the security component BLSSEC can be optionally loaded
as a subsystem. This causes the Binder Loader Starter system to run a security check
before each object is loaded by DBL or ELDE and thus ensures that the object is loaded
only if no problems have occurred. Activating the BLSSEC subsystem does, however,
reduce the loading efficiency for all load calls to BLS, so this subsystem should normally be
unloaded after a successful security check.

The following table shows which modules are processed or created by the individual
functional units. Figure 1 shows the interaction between these functional units.

The linkage editors BINDER and TSOSLNK are utility routines. The dynamic binder loader
DBL and the static loader ELDE, in contrast, belong to the subsystem BLSSERV which is
a component of the BS2000 Control System. They offer their functions via BS2000
commands and via program interfaces. Execution of a loaded program is initiated by a
starter program which is a component of the BLSSERV subsystem and is not visible to the
user.

System module

Type of module BINDER DBL TSOSLNK ELDE BLSSEC

Object module (OM) yes yes yes no yes

Link and load module (LLM) yes yes no no yes

Link and load module in PAM
file (PAM-LLM)

yes yes no no yes

Prelinked module yes yes yes no yes

Program (load module) no no yes yes yes

4 U9557-J-Z125-4-76

Brief product description Preface

Figure 1: Interaction of the functional units for linking and loading

Source program Compiler

Binder
BINDER

OMs

Library mainte-
nance routine

LMS

Programs

Compilation

Linkage

Loading

LLMs (type L)
OMs (type R) OMs (type R)

LLMs (type L)
Prelinked modules
(type R)
Programs (type C)

Prelinked
modules

EAM object
module file

Program file

Program
library
PLAM

Object
module

library OML

LLMs (type L)
OMs (type R)

Binder
TSOSLNK

Dynamic binder
loader (DBL)

Static loader
ELDE

Load unit in
memory

Program in
memory

Storage

Programs (type C)
LLMs (type L)
OMs and Prelinked
modules (type R)

OMsOMs

OMsOMs
OMsOMs

Subsystem
BLSSEC

BLSSERV

PAM-LLM

LLMs

LLMs

U9557-J-Z125-4-76 5

Preface Target group

1.2 Target group

This manual for the linker BINDER is addressed to software developers. The manual
provides a description of the facilities and use of BINDER, and is also intended to serve as
a reference work for all BINDER statements and the macro.

A separate Ready Reference is also available for BINDER. This contains the formats of all
BINDER statements and of the BINDER macro. The Ready Reference is intended as a
quick overview for users who are already familiar with BINDER.

1.3 Summary of contents

The description of the entire Binder-Loader-Starter (BLS) system is divided into three
manuals:

● This manual describes the linker BINDER with its functions, statements and subroutine
interface.

● The “BLSSERV Dynamic Binder Loader / Starter” manual [1] contains the description
of the dynamic binder loader DBL and the static loader ELDE.

● In the “TSOSLNK” manual [2] the old linkage editor TSOSLNK is described together
with the static loader ELDE.

This manual is organized as follows:

● The first four chapters describe the structures and contents of link and load modules
(LLMs), together with the functions and input/output of BINDER.

● The next three chapters deal with the BINDER run, the subroutine interface and the
BINDER statements in the form of a reference section.

● The following chapter presents various usage models for LLMs and explains how LLMs
must be generated to comply with these models.

● The chapter “Migration” lists the main differences between the old linkage editor/loader
concept (used up to BS2000 V9.5) and the new Binder-Loader-Starter system intro-
duced with BS2000 V10.0 and is intended to help the user make the transition.

● All the BINDER messages, with explanations of their meanings and possible remedial
action to be taken by the user, and a Glossary of important BINDER terms are provided
at the end of the manual.

6 U9557-J-Z125-4-76

Notational conventions Preface

README file

Information on functional changes and additions to the current product version
described in this manual can be found in the product-specific README file. You will find
the README file on your BS2000 computer under the file name
SYSRME.BINDER.version.E. The user ID under which the README file is cataloged can
be obtained from systems support.

You can view the README files using the /SHOW-FILE command or an editor, and print it
out on a standard printer using the following command:

/PRINT-DOCUMENT filename, LINE-SPACING=*BY-EBCDIC-CONTROL

1.4 Notational conventions

The following notational conventions are used in this manual:

● References in the text to other publications are given in an abbreviated form. The full
titles of all publications referred to can be found under “Related publications” at the back
of the manual. This includes instructions for ordering these publications.

● In the examples, user input appears in bold Courier typeface and system output in
ordinary Courier typeface.

i This symbol denotes important information which you should always observe.

1.5 Changes since the last version of this manual

The current version of the “BINDER” manual incorporates the following changes compared
to the previous version (“BINDER V2.1”):

● New //START- and //STOP-STATEMENT-RECORDING statements for activating and
deactivating logging of BINDER statements

● New operand STATEMENT-LIST for the //MODIFY-MAP-DEFAULTS and //SHOW-MAP
statements for outputting the logged statements in BINDER lists

● New operand NOREF for the //MODIFY-MAP-DEFAULTS and //SHOW-MAP state-
ments for controlling the output of unreferenced external references in BINDER lists

U9557-J-Z125-4-76 7

2 Introduction to the linker BINDER
BINDER is a new linkage editor which links together modules to produce link and load
modules (LLMs) and stores these as library elements (element type L) in a program library.

A link and load module (LLM) is an object in which the characteristics of prelinked modules
and of programs (load modules) created by the TSOSLNK linkage editor are combined,
providing:

● load time optimization (as with load modules)

● dynamic linking/loading (as with prelinked modules).

Like a prelinked module, an LLM comprises a number of modules that are linked by
BINDER. An LLM similarly incorporates the full functionality of load modules, e.g. overlays
and core image format.

The concept underlying the new BINDER differs considerably from that of the TSOSLNK
linkage editor. The main features of the BINDER concept are summarized below:

1. BINDER processes LLMs not only in batch mode but also in interactive mode. This
means:

– Each statement is processed immediately as it is entered.

– When creating an LLM, the user can request information about the current status of
the LLM at any time. The user can then decide whether to include further modules
in the current LLM or to remove modules.

2. LLMs that are stored in program libraries can be reused either in their entirety or
partially. This means:

– A complete LLM or a “sub-LLM” can be included in the current LLM.

– An LLM that is stored in a program library can be updated; modules can be included
in the LLM or reorganized within the LLM during this process.

3. During a single BINDER run, more than one LLM can be created or updated, i.e. the
BINDER run is not terminated after the first LLM has been saved. In addition, the same
LLM can be saved multiple times, e.g. with different characteristics in the same program
library or in different program libraries.

The structure and characteristics of a link and load module (LLM) are described in detail in
the following section.

8 U9557-J-Z125-4-76

Link and load modules (LLMs) Introduction to the linker BINDER

2.1 Link and load modules (LLMs)

A link and load module (LLM) comprises one or more modules. It is saved by BINDER as
a library element of element type L in a program library.

An LLM may incorporate the following modules:

– object modules (OMs) created by compilers

– prelinked modules linked by the TSOSLNK linkage editor (see the “TSOSLNK”
manual [2])

– existing link and load modules (LLMs) in a program library (element type L).

Prelinked modules have the same format as OMs created by compilers. They are therefore
regarded as OMs in the following.

An LLM has the following attributes:

– a logical structure

– a physical structure

– an identification

– contents.

2.2 Logical structure of an LLM

The logical structure of an LLM is implemented in the form of a tree. This tree structure
comprises the following elements (see figure 2):

1. The root, which is represented by the internal name (INTERNAL-NAME) of the LLM.
The internal name is referenced in the statement and operand descriptions.

2. The nodes, which are formed by substructures known as sub-LLMs. The sub-LLMs are
organized hierarchically in levels.

3. The leaves, which are formed by object modules (OMs) and empty sub-LLMs that are
linked in to the LLM.

Advantages of the logical structure are:

– Sub-LLMs of an LLM can be individually included, removed or replaced since each sub-
LLM can be addressed directly (see page 40ff).

– When resolving external references in an LLM, the scope of action can be restricted,
e.g. to the sub-LLM on the lowest level, since each sub-LLM can be searched as a
separate unit.

U9557-J-Z125-4-76 9

Introduction to the linker BINDER Logical structure of an LLM

Figure 2: Example of the logical structure of an LLM

OM114OM111 OM112 OM113 OM221 OM222

Sub-LLM11 OM12

OM1Sub-LLM1 Sub-LLM2 Sub-LLM3

OM211

 internal name
(INTERNAL NAME)

Sub-LLM21 Sub-LLM22

10 U9557-J-Z125-4-76

Physical structure of an LLM Introduction to the linker BINDER

2.3 Physical structure of an LLM

The object modules (OMs) of an LLM consist of control sections (CSECTs) that the
dynamic binder loader (DBL) loads into main memory as independent entities. With an
LLM, however, the user has the opportunity to combine the CSECTs from one or more OMs
of the LLM to form a single unit that allows all the CSECTs to be loaded contiguously into
main memory. A loadable unit of this type is known as a slice. The slices form the physical
structure of an LLM. There are no limitations on the size of a slice. We differentiate between
the following three types of physical structure for LLMs:

– LLMs with a single slice

– LLMs with slices formed on the basis of attributes of CSECTs (slices by attributes)

– LLMs with slices defined by the user (user-defined slices).

The user specifies the type of physical structure when creating an LLM with the START-
LLM-CREATION statement. The physical structure can be modified with the aid of the
MODIFY-LLM-ATTRIBUTES statement.

2.3.1 LLMs with a single slice

The LLM consists of a single slice. There are no overlays.

2.3.2 LLMs with slices by attributes

Certain attributes can be applied to the data and instructions of CSECTs; these are
evaluated during linking and loading.

If requested by the user, BINDER will combine all CSECTs having the same attributes or
the same combination of attributes to form a slice. A single CSECT cannot be split up over
more than one slice. It is always contained in one slice.

U9557-J-Z125-4-76 11

Introduction to the linker BINDER Physical structure of an LLM

BINDER forms slices on the basis of the following attributes:

READ-ONLY

– Read access (READ-ONLY=YES)
The CSECT can only be read. This attribute protects the CSECT in main memory
against overwriting.

– Read and write access (READ/WRITE) (READ-ONLY=NO)
The CSECT can be read and overwritten.

RESIDENT

– Main memory resident (RESIDENT=YES)
The CSECT is loaded into class 3 memory and held resident there.

– Pageable (PAGEABLE) (RESIDENT=NO)
The CSECT is pageable.

This attribute is relevant only for system shared code.

PUBLIC

– Shareable (PUBLIC=YES)
The CSECT contains data and instructions available for shared use. A slice created
from CSECTs with the attribute PUBLIC may be loaded in a Common Memory Pool
(see the “BLSSERV Dynamic Binder Loader / Starter” manual [1]) or as an unprivileged
subsystem (see the “Introductory Guide to Systems Support” [10]).

– Nonshareable (PRIVATE) (PUBLIC=NO)
The CSECT contains data and instructions available for private use only.

RMODE

– Residence mode (RMODE=ANY)
The CSECT can be loaded below 16 Mb and above 16 Mb.

– Residence mode (RMODE=24)
The CSECT can be loaded below 16 Mb only.

These attributes can be combined as desired. A maximum of 16 slices is permitted. The
names of the slices are determined by BINDER (see page 69).

12 U9557-J-Z125-4-76

Physical structure of an LLM Introduction to the linker BINDER

2.3.3 LLMs with user-defined slices

The physical structure of the LLM is determined by the user by means of SET-USER-
SLICE-POSITION statements. Overlay structures can also be defined (see page 60ff).
The CSECTs of a single object module (OM) cannot be split up over more than one slice.
They are always contained in one slice.

Example

Let us assume there is an LLM A with the following logical structure:

The following physical structures of LLM A can be defined, for example (see figure 3).

OM CSECT CSECT attributs

OM11 CS1
CS2

READ-ONLY and PRIVATE
READ-ONLY and PUBLIC

OM12 CS3
CS4

READ/WRITE and PUBLIC
READ-ONLY and PUBLIC

OM1 CS5
CS6

READ/WRITE and PRIVATE
READ-ONLY and PUBLIC

 internal name
(INTERNAL NAME)

CS1: READ-ONLY
PRIVATE

CS2: READ-ONLY
PUBLIC

OM11

CS3: READ/WRITE
PUBLIC

CS4: READ-ONLY
PUBLIC

OM11

CS5: READ/WRITE
PRIVATE

CS6: READ-ONLY
PUBLIC

OM11

LLM A

SUB-LLM1

U9557-J-Z125-4-76 13

Introduction to the linker BINDER Physical structure of an LLM

Single slice

The following are combined to form the single slice SLICE1:

– CSECTs CS1 and CS2 from OM11,

– CSECTs CS3 and CS4 from OM12 and

– CSECTs CS5 and CS6 from OM1.

The READ-ONLY and PUBLIC attributes of the CSECTs are ignored.

Slices by attributes

The following slices are formed:

– SLICE1 from all CSECTs having the attributes READ-ONLY and PUBLIC.
These are CSECTs CS2 from OM11, CS4 from OM12 and CS6 from OM1.

– SLICE2 from all CSECTs having the attributes READ/WRITE and PUBLIC.
This is CSECT CS3 from OM12.

– SLICE3 from all CSECTs having the attributes READ-ONLY and PRIVATE.
This is CSECT CS1 from OM11.

– SLICE4 from all CSECTS having the attributes READ/WRITE and PRIVATE.
This is CSECT CS5 from OM1.

User-defined slices

The following overlay structure is specified:

– CSECTs CS1 and CS2 from OM11 are combined to form SLICE1. SLICE1 is to be the
root slice in the overlay structure.

– CSECTs CS3 and CS4 from OM12 are combined to form SLICE2. SLICE2 is to be
contiguous with SLICE1.

– CSECTs CS5 and CS6 are combined to form SLICE3. SLICE3 is to overlay SLICE2.

14 U9557-J-Z125-4-76

Physical structure of an LLM Introduction to the linker BINDER

Figure 3: Example of the physical structures of an LLM

Single slice Slices by attributes User-defined slices

(READ/
 WRITE,
PUBLIC)

 (READ/
 WRITE,
PRIVATE)

 (READ-
 ONLY,
PRIVATE)

CS1

CS2

CS3

CS4

CS5

CS6

0

Address level

0

Address level

0

Address level

CS2

CS4

CS6

CS1

SLICE1

SLICE1 (READ-ONLY,
 PUBLIC)

CS3

CS5

SLICE2

SLICE3

SLICE4

CS1

CS2

CS3

CS4

CS5

CS6

SLICE3

SLICE1

SLICE2

(Root
slice)

U9557-J-Z125-4-76 15

Introduction to the linker BINDER Identification of an LLM

2.4 Identification of an LLM

Each LLM can be addressed:

– by means of an internal name and an internal version if it is created in the BINDER work
area

– by means of an element name and an element version if it is saved as a library element
in a program library.

Sub-LLMs are addressed by means of their path name.

Internal name and internal version

The internal name identifies the root in the tree structure of the LLM (see page 8). It is
specified using the START-LLM-CREATION statement (INTERNAL-NAME operand) and
can be modified with the MODIFY-LLM-ATTRIBUTES statement (INTERNAL-NAME
operand). If modules are to be replaced in the current LLM (REPLACE-MODULES) or
removed (REMOVE-MODULES), the internal names must be used.

In addition to the internal name, an internal version (INTERNAL-VERSION operand) can
be specified in the START-LLM-CREATION statement. This can be modified using the
MODIFY-LLM-ATTRIBUTES statement (INTERNAL-VERSION operand).

The internal name and the internal version are taken over as element name and element
version on saving of the LLM in a program library if corresponding values are set in the
SAVE-LLM statement.

The internal name and the internal version are logged with a message when the LLM is
loaded.

Element name and element version

In a program library a library element is identified by the element type and the element
identifier (see the “LMS” manual [4]). For an LLM stored as an element in a program library,
the element type is always “L”. The element identifier is composed of the element name and
the element version of the LLM.

The element name and the element version are specified in the SAVE-LLM statement
(ELEMENT and VERSION operands).

16 U9557-J-Z125-4-76

Identification of an LLM Introduction to the linker BINDER

Path name

Sub-LLMs and thus also the OMs within a sub-LLM are addressed through their path
names. The path name of a sub-LLM or OM consists of a hierarchically organized sequence
of individual names separated from one another by a period. The path name has the
following format:

The character string ’...’ must be replaced by:

– a sequence of further sub-LLM levels separated by periods or

– an empty character string (see “Abbreviation options”, page 19).

The structure of the path name is identical with the logical structure of the LLM (see
page 8ff). This means:

– The first name “internal-name” is always the internal name (root) of the LLM tree.

– The last name “subLLM-level-n” identifies the node to be addressed (level n).

– The names between the first and last identify the nodes that lie between the root and
the last level n. They form the link between the first and last names.

Example

LLM with node level 1

:<pathname>: = internal-name.subLLM-level-1.subLLM-level-2. subLLM-level-n

Sub-LLM/OM Path name

M1
OM11
OM12
M2
OM21
OM22

A.M1
A.M1.OM11
A.M1.OM12
A.M2
A.M2.OM21
A.M2.OM22

OM11 OM11 OM21 OM22

M1 M2

ARoot

Node
(level 1)

U9557-J-Z125-4-76 17

Introduction to the linker BINDER Identification of an LLM

Path name abbreviation

The user has the option of abbreviating the path name for a desired OM.

Description of the search procedure

In order to reach a desired OM, BINDER uses a method known as “backtracking” when
searching for the OM.

Starting from the root, the search proceeds along the leftmost path. When BINDER reaches
a branching point, the leftmost path is again selected.

Key to example and the following:

O Any node

 Path already searched

 Path not yet searched

x,y.. Node designation

When BINDER reaches level n (lowest level in the LLM, level 3 in the example) without
finding the desired OM, it returns to the node at level n-1 (node x on level 2 in the example).
This procedure is known as “backtracking”.

Here BINDER checks whether any other paths branch off from this node. If this is the case,
BINDER continues the search on the path nearest to the one previously searched (“second
leftmost” path).

x

0

Level 0

Level 1

Level 2

Level 3

Root

0 0 0

0 0 0 0 0 0

0 0

18 U9557-J-Z125-4-76

Identification of an LLM Introduction to the linker BINDER

This process is repeated until either the desired OM is found or all branches of a node have
been examined.

When all branches of a node have been searched without finding the OM, BINDER
backtracks another level and examines the next branch of this higher-level node.

In the example, BINDER backtracks to node b on level 1 and continues its search on the
path from node b to node y. If node y is identical with the desired OM, the search is success-
fully terminated.

If node y is not identical with the desired OM, the third path of node b is examined. If the
search on this path is also unsuccessful, BINDER backtracks to the root and then examines
the center sub-LLM in the same manner.

x

0

Level 0

Level 1

Level 2

Level 3

Root

0 0 0

0 0 0 0 0 0

0 0

x

0

Level 0

Level 1

Level 2

Level 3

Root

b 0 0

y 0 0 0 0 0

0 0

U9557-J-Z125-4-76 19

Introduction to the linker BINDER Identification of an LLM

Abbreviation options

If only one OM of the same name exists in the entire LLM, the path name may be abbre-
viated as follows:

If two or more OMs of the same name exist in the LLM, the path name must contain at least
one intermediate node in order to uniquely define the path to the desired OM for BINDER.

The following formats are possible:

a)

b)

Re format a):

If subLLM-level-n = subLLM-level-1 in this format, the two periods in the path name are
replaced by a single period, i.e.
internal-name..subLLM-level-1 = internal-name.subLLM-level-1.

This may lead to errors if

– a node on the first level and a node on a lower level in another path further to the right
have the same name and

– the desired node that is not a first-level node is located in the path lying further to the
right.

:<pathname>: = .subLLM-level-n

:<pathname>: = internal-name..subLLM-level-n

:<pathname>: = internal-name.subLLM-level-1..subLLM-level-n

20 U9557-J-Z125-4-76

Identification of an LLM Introduction to the linker BINDER

Example

Specifying “a..b.d” in this example would result in an error since

– the path “a..b.d” is converted into the path “a.b.d”

– d is not a node in the left subtree,

The path conversion is performed here because node a is a direct successor of root a in the
left subtree.

Re format b):

Depending on the position of the desired node, this format can be extended through the
specification of further intermediate nodes.

Desired
 node

Possible path specifications Search
successfulabbreviated complete

f .f
.b..f
a.b..f

a.b.e.f
a.b.e.f
a.b.e.f

yes
yes
yes

d .d
a.c..d
a..b.d

a.c.b.d
a.c.b.d

yes
yes
no

e

f

Level 0

Level 1

Level 2

Level 3

a

b c

0 0 b 0

0 0 0 d

U9557-J-Z125-4-76 21

Introduction to the linker BINDER Contents of an LLM

2.5 Contents of an LLM

An LLM always contains at least the text information and the physical structure infor-
mation.

● Text information (TXT)

The text information consists of the code and the data of the modules.

● Physical structure information

The physical structure information contains the description of the slices which belong
to the LLM.

The user can specify whether the LLM is also to contain the following information:

● External Symbols Vector (ESV)

The External Symbols Vector (ESV) contains all program definitions and references. An
LLM without an ESV cannot be included or modified by BINDER.

● Local relocation dictionary (LRLD)

The local relocation dictionary (LRLD) determines how addresses are aligned
(relocated) to a common reference address during linking and loading. If the LRLD is
complete, the LLM can be loaded at any desired address. If, however, the LRLD exists
only for unresolved external references, the LLM must be loaded at a specific address.
However, external references can be resolved. If no local relocation dictionary exists,
addresses cannot be relocated and the LLM must be loaded at a specific address. An
LLM without a complete LRLD cannot be included or modified by BINDER.

● Logical structure information

The logical structure information contains information about the logical structure of the
LLM. The logical structure information of an LLM can be present in its entirety (LLM with
all sub-LLMs and object modules) or only in part (only object modules (leaves), no sub-
LLMs). If no logical structure information is present, the LLM cannot be included or
modified by BINDER.

● List for symbolic debugging (LSD)

The list for symbolic debugging (LSD) is required by the debugging and diagnostic aids
for testing on the source language level. This presupposes that corresponding compiler
options are set during compilation of the source program.

The LSD information can be stored only if the External Symbols Vector (ESV) is also
stored. If no list for symbolic debugging is present, testing on the source language level
is not possible.

22 U9557-J-Z125-4-76

Contents of an LLM Introduction to the linker BINDER

● Descriptors for initialization and termination routines
(“Ini/Fini” information)

The descriptors for initialization and termination routines are required by new compilers
for object-oriented programming languages. They allow all the initialization and termi-
nation routines of an LLM to be executed in a defined order before or after the actual
module code. They have the following contents:

– type of routine: initialization or termination

– information about the address of the routine

– an identifier, which is generated by the compiler

If an LLM contains “Ini/Fini” information, this is noted in the LLM’s logical root node.

BLSSERV is required to load LLMs that contain “Ini/Fini” information. Therefore, they
cannot be loaded in BS2000/OSD versions earlier than V3.0, and only in BS2000/OSD
V3.0, if at least version V2.0 of BLSSERV is used.

The compiler determines whether or not the LLM contains “Ini/Fini” information.

Whether or not the LLM is to contain the External Symbols Vector (ESV) and/or the local
relocation dictionary (LRLD) is defined by the user on saving the LLM with the SAVE-LLM
statement.

Logical structure information and/or LSD information can be selected by the user when:

– creating an LLM (START-LLM-CREATION)

– updating an LLM (START-LLM-UPDATE)

– modifying the attributes of an LLM (MODIFY-LLM-ATTRIBUTES)

– saving an LLM (SAVE-LLM)

– including modules (INCLUDE-MODULES)

– replacing modules (REPLACE-MODULES)

– resolving external references by autolink (RESOLVE-BY-AUTOLINK)

The user can ascertain which additional information an LLM contains from the lists output
by the SHOW-MAP statement or on saving the LLM with the SAVE-LLM statement (see
page 133ff).

U9557-J-Z125-4-76 23

Introduction to the linker BINDER Limiting conditions for LLMs

2.6 Limiting conditions for LLMs

Specifying the attributes and contents of an LLM restricts the set of actions which can
subsequently be executed. For this reason, certain limiting conditions must be observed
when storing an LLM.

The table below lists the values of various operands in the SAVE-LLM statement and the
consequences which result from these for subsequent processing.

It should also be noted that an LLM with user-defined slices cannot be included in another
LLM. However, it is possible to modify an LLM with user-defined slices.

Operand REQUIRED-COMPRESSION

Value YES

Result The LLM can be loaded in all BS2000/OSD versions.

Operand LOGICAL-STRUCTURE SYMBOL-DICTIONARY RELOCATION-DATA

Value NONE NO UNRESOLVED-ONLY or
NO

Result 1. The LLM cannot be modified later.
2. The LLM cannot be included in another LLM.

Operand RELOCATION-DATA

Value UNRESOLVED-ONLY or NO

Result The LLM is not relocatable since the addresses cannot be relocated.
If the LLM is to be relocatable, RELOCATION-DATA=YES must be specified.

Value NO

Result Unresolved external references cannot be resolved.
They can be resolved only if RELOCATION-DATA = YES or
RELOCATION-DATA = UNRESOLVED-ONLY is specified.

Operand TEST-SUPPORT

Value NO

Result Testing at the source language level (e.g. with the debugger AID; see the “AID (BS2000)”
manual [9]) is not possible.

24 U9557-J-Z125-4-76

Limiting conditions for LLMs Introduction to the linker BINDER

LLM format

The table below shows the dependencies between the LLM format, the value of the FOR-
BS2000-VERSIONS operand with which it is selected, and the DBL and BLSSERV
versions with which it can be processed:

LLM format FOR-BS2000-VERSIONS operand Loadable with

1 FROM-V10 DBL
BS2000 V10.0A or higher

2 FROM-OSD-V1 DBL
BS2000/OSD-BC V1.0A or higher

3 FROM-OSD-V3 DBL
BS2000/OSD-BC V3.0A or higher

4 FROM-OSD-V4 BLSSERV V2.0A
BS2000/OSD-BC V4.0A or higher

U9557-J-Z125-4-76 25

Introduction to the linker BINDER Limiting conditions for LLMs

There are also dependencies between the LLM format and some LLM attributes. The table
below shows which LLM format is required for which LLM attributes:

If one of the LLM attributes listed above requires a format with a number higher than
specified with the FOR-BS2000-VERSIONS operand, BINDER outputs an error message.

Attribute LLM format

REQUIRED-COMPRESSION=*YES Ï 2

CONNECTION-MODE=*BY-RESOLUTION 1, 3, 4

RISC code present Ï 31

1 If the operand RELOCATION-DATA=*NO has been specified for SAVE-LLM, the LLM can also be saved in
format 1 or 2

RESOLUTION-SCOPE defined Ï 32

2 The LLM can be saved in format 1 or 2, but cannot be further processed with BINDER. The RESOLUTION-
SCOPE specification is ignored during the save.

LLM output in PAM file Ï 3

EEN names (see section “Symbol names” on page 98) 43

3 The LLM can be saved in format 1 - 3 if the EEN names (see section “Symbol names” on page 98) are
suppressed, but cannot be further processed with BINDER. The EEN names can be suppressed in one of the
following ways:
with the SYMBOL-DICTIONARY operand or automatically if all EEN external references are resolved and FOR-
BS2000-VERSION î FROM-OSD-V4. The EEN names (see section “Symbol names” on page 98) are not saved
in this case.

Initialization/termination information 44

4 The LLM can be saved in format 1 - 3, but cannot be further processed with BINDER. The “Ini/Fini” information
is saved, but not the information that the LLM contains “Ini/Fini” information.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9557-J-Z125-4-76 27

3 BINDER functions
The BINDER functions are divided into the following function groups:

– creating, modifying and saving an LLM

– including, removing and replacing modules

– creating the logical structure of an LLM

– creating the physical structure of an LLM

– resolving external references

– handling symbols

– merging modules

– changing the attributes of LLMs and modules

– display functions

– controlling list output and error processing.

Figure 4 illustrates the function groups with the associated BINDER statements and how
they interact.

The individual function groups are described in detail in the following sections.

28 U9557-J-Z125-4-76

BINDER functions

Figure 4: Overview of the BINDER functions

Modify attributes of LLMs and
modules

MODIFY-LLM-ATTRIBUTES
MODIFY-MODULE-ATTRIBUTES

Create physical structure

SET-USER-SLICE-POSITION

Create logical structure

BEGIN-SUB-LLM-STATEMENTS
END-SUB-LLM-STATEMENTS

Create an LLM

START-LLM-CREATION

Resolve external references

RESOLVE-BY-AUTOLINK
SET-EXTERN-RESOLUTION

Merge modules

MERGE-MODULES

Include, remove and replace
modules

INCLUDE-MODULES
REMOVE-MODULES
REPLACE-MODULES

Display
symbols information

SHOW-SYMBOL-INFORMATION

Handle symbols

MODIFY-SYMBOL-ATTRIBUTES
MODIFY-SYMBOL-TYPE
MODIFY-SYMBOL-VISIBILITY
RENAME-SYMBOLS

Control list output,
error processing and
default values

MODIFY-MAP-
DEFAULTS

MODIFY-ERROR-
PROCESSING

MODIFY-STD-
DEFAULTS

START-STATEMENT-
RECORDING

STOP-STATEMENT-
RECORDING

Save an LLM

SAVE-LLM

Display functions

SHOW-DEFAULTS
SHOW-LIBRARY-

ELEMENTS

Terminate
BINDER run

END

Change an LLM

START-LLM-UPDATE

Output lists

SHOW-MAP

Edit run

BINDER run

U9557-J-Z125-4-76 29

BINDER functions Creating, modifying and saving an LLM

3.1 Creating, modifying and saving an LLM

3.1.1 Creating an LLM

An LLM is created in the work area of BINDER by means of the START-LLM-CREATION
statement. This involves definition of the attributes of the LLM in accordance with the infor-
mation in the START-LLM-CREATION statement. The LLM created in the BINDER work
area is referred to as the current LLM. The current LLM can then be processed in the work
area. For example,

– modules can be included (INCLUDE-MODULES)

– modules can be removed (REMOVE-MODULES)

– modules can be replaced (REPLACE-MODULES).

Processing of the current LLM is terminated without implicit saving of the LLM. It is saved
as a type L element in a program library by means of the SAVE-LLM statement.

If an element with the same element name and the same element version already exists in
the program library, it will be overwritten if OVERWRITE=YES is specified.

When creating an LLM, the internal name (INTERNAL-NAME) must be specified in the
START-LLM-CREATION statement (see page 130f). It is entered as the element name for
the LLM in the program library if corresponding values were selected for the element name
in the SAVE-LLM statement on saving the LLM (ELEMENT=*INTERNAL-NAME).

The following optional specifications may be made:

– the internal version (INTERNAL-VERSION)

This is entered as the element version for the LLM in the program library if corre-
sponding values were selected for the element version in the SAVE-LLM statement on
saving the LLM (VERSION=*INTERNAL-VERSION). The element version is logged by
means of a message on loading the LLM.

– the physical structure (SLICE-DEFINITION)

LLMs with single slices, LLMs with slices by attributes or LLMs with user-defined slices
can be created (see page 10ff).

– copyright information (COPYRIGHT)

This comprises a text and the year number that are entered in the LLM. The copyright
information is logged by means of a message on loading the LLM.

30 U9557-J-Z125-4-76

Creating, modifying and saving an LLM BINDER functions

– Declarations concerning the logical structure information and the LSD information
(INCLUSION-DEFAULTS).

With the LOGICAL-STRUCTURE suboperand the user can define whether the logical
structure information is to be taken over from the modules into the current LLM during
inclusion or replacement of modules or whether substructures (sub-LLMs) are to be
ignored. In the latter case, only the object modules (OMs) are taken over from the
modules during inclusion or replacement of modules.

With the TEST-SUPPORT suboperand the user can define whether the LSD (list for
symbolic debugging) information is to be taken over from the modules during inclusion,
removal or replacement of modules.

The values of the LOGICAL-STRUCTURE and TEST-SUPPORT operands remain in
force up to the next START-LLM-CREATION or START-LLM-UPDATE statement (see
edit run, page 130). They can be used as default values in all INCLUDE-MODULES,
RESOLVE-BY-AUTOLINK and REPLACE-MODULES statements. The values can be
changed by means of the MODIFY-LLM-ATTRIBUTES statement.

U9557-J-Z125-4-76 31

BINDER functions Creating, modifying and saving an LLM

Example

Creating and saving an LLM

Explanation:

(1) BINDER call. BINDER sets up a work area.

(2) An LLM with the internal name X is created in the work area. The internal name X
forms the root in the logical structure of the LLM.

(3) The object modules A and B are read from program library LIB1 and included in the
current LLM.

(4) The LLM created is saved as an element with the element name Y in program
library LIB1.

(5) End of BINDER run.

Statements Current LLM
(work area)

Program library
(LIB1)

(1) START-BINDER

(2) START-LLM-CREATION
INTERNAL-NAME=X

(3) INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=(A,B)

(4) SAVE-LLM
LIBRARY=LIB1,
ELEMENT=Y

X

A B
X

A B

A
B

Y

X

A B

A
B

A
B

A
B

(5) END

X

32 U9557-J-Z125-4-76

Creating, modifying and saving an LLM BINDER functions

3.1.2 Updating an LLM

An LLM saved as a type L element in a program library is updated by means of the START-
LLM-UPDATE statement. The LLM is read from the program library into the BINDER work
area during this process. When the LLM has been read in it becomes the current LLM, i.e.
it has the same status as before it was saved in the program library. The current LLM can
then be processed in the work area. For example,

– modules can be included (INCLUDE-MODULES)

– modules can be removed (REMOVE-MODULES)

– modules can be replaced (REPLACE-MODULES)

– attributes of the LLM can be modified (MODIFY-LLM-ATTRIBUTES)

– attributes of modules can be modified (MODIFY-MODULE-ATTRIBUTES).

With the LOGICAL-STRUCTURE suboperand the user can define whether the logical
structure information is to be taken over from the modules into the current LLM during
inclusion, removal or replacement of modules or whether substructures (sub-LLMs) are to
be ignored. In the latter case, only the object modules (OMs) are taken over from the modules
during inclusion or replacement of modules.

With the TEST-SUPPORT suboperand the user can define whether the LSD (list for
symbolic debugging) information is to be taken over from the modules during inclusion or
replacement of modules.

The values assumed as default values for the LOGICAL-STRUCTURE and TEST-
SUPPORT operands are those defined on creation of the LLM with the START-LLM-
CREATION statement.

The values of the LOGICAL-STRUCTURE and TEST-SUPPORT operands remain in force
up to the next START-LLM-CREATION or START-LLM-UPDATE statement (see edit run,
page 130).They can be used as default values in all INCLUDE-MODULES, RESOLVE-BY-
AUTOLINK and REPLACE-MODULES statements. The default values for LOGICAL-
STRUCTURE and TEST-SUPPORT can be changed with the MODIFY-LLM-ATTRIBUTES
statement.

Processing of the current LLM is terminated without implicit saving of the LLM. It is saved
as a type L element in a program library by means of the SAVE-LLM statement. If the new
element keeps the same element name and the same element version, the previous
element will be overwritten in the program library if OVERWRITE=YES is specified.

U9557-J-Z125-4-76 33

BINDER functions Creating, modifying and saving an LLM

Example

Updating and saving an LLM

Statements Current LLM
(work area)

Program library
(LIB1)

(1) START-BINDER

(2) START-LLM-UPDATE
LIBRARY=LIB1

Z

A B

X

A B

A
B

Y

X

A B

ELEMENT=Y

C

(3) MODIFY-LLM-ATTRIBUTES
INTERNAL-NAME=Z

X

A B

A
B

Y

C

X

A B

A
B

Y

C

34 U9557-J-Z125-4-76

Creating, modifying and saving an LLM BINDER functions

Explanation:

(1) BINDER call. BINDER sets up a work area.

(2) An LLM saved as an element with the element name Y in program library LIB1 is to
be updated. To this end the LLM is read into the work area.

(3) The internal name X of the LLM is modified. The new internal name is Z.

(4) The object module C is read from program library LIB1 and included in the LLM. The
library name LIB1 is taken over from the preceding START-LLM-UPDATE statement
(current program library).

(5) The updated LLM is saved as an element with the same element name Y in program
library LIB1, overwriting the previous element.

(6) End of BINDER run.

Statements Current LLM
(work area)

Program library
(LIB1)

(5) SAVE-LLM
ELEMENT=Y,

Z

A C
X

A B

A
B

Y

OVERWRITE=YES

C

A
B

Y

C

(4) INCLUDE-MODULES
ELEMENT=C

B

Z

A CB Z

A CB
(6) END

U9557-J-Z125-4-76 35

BINDER functions Creating, modifying and saving an LLM

3.1.3 Modifying the attributes of an LLM

Attributes of an LLM defined during creation of the LLM with the START-LLM-CREATION
statement can be modified by means of the MODIFY-LLM-ATTRIBUTES statement. The
statement modifies the following attributes:

– the internal name (INTERNAL-NAME)

– the internal version (INTERNAL-VERSION)

– the type of physical structure of the LLM (SLICE-DEFINITION)

– the copyright information (COPYRIGHT)

– declarations concerning logical structure information (LOGICAL-STRUCTURE)

– declarations concerning LSD information (TEST-SUPPORT).

The type of the physical structure of the LLM may be modified as follows:

1. LLM with slices by attributes → LLM with single slice

2. LLM with single slice → LLM with slices by attributes

3. LLM with slices by attributes → LLM with slices by other attributes

4. LLM with user-defined slices → LLM with user-defined slices and modified values for
AUTOMATIC-CONTROL and EXCLUSIVE-SLICE-CALL.

3.1.4 Saving an LLM

The current LLM created or updated in the work area by means of a START-LLM-
CREATION or START-LLM-UPDATE statement, respectively, is saved as a type L element
in a program library by means of the SAVE-LLM statement. An LLM updated with the
START-LLM-UPDATE statement normally overwrites the existing element if the new
element keeps the same element name.
However, the OVERWRITE=NO operand can be used to prevent overwriting of the existing
element: the user then receives an error message if he/she attempts to save an element
under the same name and with the same version number. In contrast, if OVERWRITE=YES
is specified and the element does not already exist, the user does not receive an error
message.
When saving the LLM you can either explicitly specify the name of the program library or
select the current program library. The current program library is the library to which the
most recent preceding START-LLM-UPDATE or SAVE-LLM statement related.

36 U9557-J-Z125-4-76

Creating, modifying and saving an LLM BINDER functions

The element name and element version that the LLM is to receive when saved in the
program library can either be specified explicitly or the current name and the current version
are assumed. The current name and current version are taken by BINDER from the most
recent SAVE-LLM statement specified after the most recent START-LLM-CREATION or
START-LLM-UPDATE statement.

If no corresponding SAVE-LLM statement has been specified, BINDER takes as the
element name and element version

– the element name and element version from the most recent START-LLM-UPDATE
statement or

– the internal name and internal version from the most recent START-LLM-CREATION
statement.

The FOR-BS2000-VERSIONS operand can be used to specify the BS2000 version in which
the LLM is to be loadable with DBL.
If FOR-BS2000-VERSIONS=*FROM-V10 is specified, the LLM is stored in format 1.
If FOR-BS2000-VERSIONS=*FROM-OSD-V1 is specified, the LLM is stored in format 2
provided the user specified REQUIRED-COMPRESSION=YES or the LLM contains slices
created with the attribute PUBLIC.
LLMs in format 2 have the advantage that their text information can be compressed and that
resolution of the external references in the private slice by the public slice provides better
performance.

Notes

The operand REQUIRED-COMPRESSION can be used to compress the text information
(TXT) in LLMs.

The handling of name conflicts is controlled with the operand NAME-COLLISION (see also
page 94ff).

The default values for the operands FOR-BS2000-VERSIONS, OVERWRITE, REQUIRED-
COMPRESSION and NAME-COLLISION can be modified with the MODIFY-STD-
DEFAULTS statement.

When saving the LLM, the user can define the additional information (see page 21f) that is
to be included. However, certain limiting conditions (see page 23f) should be noted when
doing this. The following additional information may be selected:

– External Symbols Vector (ESV) (SYMBOL-DICTIONARY operand)

– local relocation dictionary (LRLD) (RELOCATION-DATA operand)

– logical structure information (LOGICAL-STRUCTURE operand) and

– LSD (list for symbolic debugging) information (TEST-SUPPORT operand).

U9557-J-Z125-4-76 37

BINDER functions Creating, modifying and saving an LLM

Example

Saving an LLM in different program libraries

Statements Current LLM
(work area)

Program library

LIB1
(1) START-LLM-CREATION

INTERNAL-NAME=X

(2) INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=(A,B)

(3) SAVE-LLM
LIBRARY=LIB1

X

A B X

A B

A
B

X

X

A B

A
B

X

C

LIB1

A
B
C

C

LIB1

38 U9557-J-Z125-4-76

Creating, modifying and saving an LLM BINDER functions

Statements Current LLM
(work area)

Program library

(4) INCLUDE-MODULES
ELEMENT=C

(5) SAVE-LLM
LIBRARY=LIB2,

X

A B

A
B

X

C

LIB1

X

A B

A
B

X

C

LIB1
X

A CB

X

A CB

X

A CB

Y

ELEMENT=Y

LIB2

U9557-J-Z125-4-76 39

BINDER functions Creating, modifying and saving an LLM

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) Object modules A and B are read from program library LIB1 and included in the
current LLM.

(3) The current LLM is saved in program library LIB1. The internal name X from the
most recent START-LLM-CREATION statement is taken over as the element name.

(4) Object module C is read from program library LIB1 and included in the current LLM.
The library name LIB1 is taken over from the most recent preceding INCLUDE-
MODULES statement.

(5) The current LLM is saved in program library LIB2 as an element with the element
name Y.

40 U9557-J-Z125-4-76

Including, removing and replacing modules BINDER functions

3.2 Including, removing and replacing modules

3.2.1 Including modules

With the INCLUDE-MODULES statement, BINDER includes modules in the current LLM in
the work area.
Both object modules (OMs) and LLMs can be included as modules. However, LLMs with
user-defined slices and LLMs without relocation data, without logical structure information
or without an External Symbols Vector cannot be included.
Whole LLMs can be included, or sub-LLMs selected, if the complete structure information
was included when saving the LLM (LOGICAL-STRUCTURE=WHOLE-LLM operand).
Sub-LLMs are selected by means of their path name
(operand ELEMENT=...(...,SUB-LLM=...)...).

The slice structure of the input LLM has no effect on the generation of slices in the LLM
currently being processed.

The following input sources may be used:

– for object modules: a program library (element type R), an object module library (OML)
or the EAM object module file (OMF)

– for LLMs and sub-LLMs: a program library (element type L).

The input source can either be specified explicitly or the current input source can be taken
over. The current input source is the library or EAM object module file from which the last
module was taken (by means of a START-LLM-UPDATE, INCLUDE-MODULES or
REPLACE-MODULES) statement.
All modules or individual explicitly specified modules can be included in the LLM from the
selected input source.

It is possible to specify for the modules that only LLMs, only OMs, or both types are to
searched for. Should identical names exist when both LLMs and OMs are being sought in a
program library, the priority can be defined through the TYPE operand. By default, an LLM
has a higher priority than an OM.

Modules in a program library are selected on the basis of their element version. If no
element version has been explicitly specified, the element with the highest element version
is assumed (see the “LMS” manual [4]). The name of the logical node (NAME operand)
generated by including a module can be either the internal name of the module (LLM/OM),
the external name of the module or a name assigned by the user.

With the RUN-TIME-VISIBILITY operand, the user can specify whether or not a module is
to be regarded as a runtime module. If RUN-TIME-VISIBILITY=YES is specified, all
symbols of this module are masked when the LLM is stored, but previously resolved
external references remain resolved.

U9557-J-Z125-4-76 41

BINDER functions Including, removing and replacing modules

These symbols are again made visible, for resolution of external references when including
or updating this LLM, during the BINDER run.

When including modules, the user can also control the handling of name conflicts.

Example 1

Different LLMs are created in succession in the work area. LLMs and OMs taken from
program library LIB1 are included in the current LLM. The current LLM is saved in program
library LIB1.

The program library LIB1 with the file link name EXLINK contains the following modules:
OMs: A,B
LLMs: A,B,Y,Z

Statements Current LLM
(work area)

(1) START-LLM-CREATION
INTERNAL-NAME=X1

(2) INCLUDE-MODULES LIBRARY=LIB1,

(3) SAVE-LLM LIBRARY=LIB1

(5) INCLUDE-MODULES

X1

A B

X1

X2

A Z

X2

Y

ELEMENT=(A,B)

(4) START-LLM-CREATION
INTERNAL-NAME=X2

LIBRARY=*LINK(EXLINK),
ELEMENT=(A,Y,Z),
TYPE=(R,L)

(6) SAVE-LLM LIBRARY=LIB1

42 U9557-J-Z125-4-76

Including, removing and replacing modules BINDER functions

(7) START-LLM-CREATION
INTERNAL-NAME=X3

(8) INCLUDE-MODULES LIBRARY=LIB1,

(9) SAVE-LLM LIBRARY=LIB1

(11) INCLUDE-MODULES LIBRARY=LIB1,

X3

A Y

X3

X4

A

X4

ELEMENT=(A,Y),

(10) START-LLM-CREATION
INTERNAL-NAME=X4

(13) SAVE-LLM LIBRARY=LIB1

TYPE=L

ELEMENT=A,TYPE=L

X4

A

B

(12) INCLUDE-MODULES ELEMENT=B,
TYPE=R, PATH-NAME=X4.A

U9557-J-Z125-4-76 43

BINDER functions Including, removing and replacing modules

Explanation:

(1) An LLM with the internal name X1 is created in the work area.

(2) The LLMs A and B are included in the current LLM from program library LIB1 since,
by default, in the case of elements having identical names a higher priority is
defined for LLMs.

(3) The current LLM is saved in program library LIB1. The internal name X1 from the
most recent START-LLM-CREATION statement is taken over as the element name.

(4) An LLM with the internal name X2 is created in the work area.

(5) From program library LIB1 referenced with the file link name EXLINK, the following
modules are included in the current LLM:

1. object module A since the TYPE=(R,L) operand defines a higher priority for
object modules in the event of elements having identical names.

2. LLMs Y and Z.

(6) The current LLM is saved in program library LIB1. The internal name X2 from the
most recent START-LLM-CREATION statement is taken over as the element name.

(7) An LLM with the internal name X3 is created in the work area.

(8) From program library LIB1, the LLMs A and Y are included in the current LLM since
only LLMs are selected through the TYPE=L operand.

(9) The current LLM is saved in program library LIB1. The internal name X3 from the
most recent START-LLM-CREATION statement is taken over as the element name.

(10) An LLM with the internal name X4 is created in the work area.

(11) From program library LIB1, the LLM A is included since only LLMs are selected
through the TYPE=L operand.

(12) Object module B is included as a sub-LLM on the node having the path name X4.A
since only object modules are selected through the TYPE=R operand. The program
library LIB1 is defined by the preceding INCLUDE-MODULES statement (current
program library).

(13) The current LLM is saved in program library LIB1. The internal name X4 from the
most recent START-LLM-CREATION statement is taken over as the element name.

44 U9557-J-Z125-4-76

Including, removing and replacing modules BINDER functions

Example 2

Including a sub-LLM

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) A sub-LLM A2 of an LLM A that is saved as element B in program library LIB1 is
included in the current LLM. The sub-LLM A2 is referenced in the LLM A through
the path name A.A2.

3.2.2 Removing modules

BINDER removes modules from the current LLM with the REMOVE-MODULES statement.
Object modules and sub-LLMs are removed. The sub-LLMs are defined through their path
names.

The following are not removed:

– the current sub-LLM (see page 49ff)

– a sub-LLM whose beginning is defined with the BEGIN-SUB-LLM-STATEMENTS state-
ments but whose end has not yet been specified by means of the END-SUB-LLM-
STATEMENTS statement, and any sub-LLM containing a sub-LLM as described here
(see page 49ff).

Statements Current LLM
(work area)

Program library

(2) INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=B

(1) START-LLM-CREATION
INTERNAL-NAME=X

A2

A21 A22

X

X

(SUB-LLM=A.A2)

A2

A21 A22

A

A1 A3

B

LIB1

U9557-J-Z125-4-76 45

BINDER functions Including, removing and replacing modules

Example

Removing an object module and a sub-LLM

Explanation:

(1) An LLM saved as an element with the name B in program library LIB1 is to be
updated. To this end the LLM is read into the work area.

(2) Object module A4 and sub-LLM A6, contained in sub-LLM A3 of the current LLM,
are removed. The path name PATH-NAME=A.A3 references the sub-LLM A3.

Statements Current LLM
(work area)

Program library

(2) REMOVE-MODULES
NAME=(A4,A6),
PATH-NAME=A.A3

(1) START-LLM-UPDATE
LIBRARY=LIB1, B

LIB1

A1 A2 A3

A4 A5 A6 A7

A

A8 A9

A1 A2 A3

A4 A5 A6 A7

A

A8 A9

A1 A2 A3

A

A5 A7

ELEMENT=B

46 U9557-J-Z125-4-76

Including, removing and replacing modules BINDER functions

3.2.3 Replacing modules

The REPLACE-MODULES statement replaces modules in the current LLM. The modules
in the current LLM can be replaced by object modules, LLMs, or both. Since replacing
modules involves implicit inclusion of other modules, the same restrictions apply as for
including modules (see page 40).

The following input sources may be used:

– for object modules: a program library (element type R), an object module library (OML)
or the EAM object module file (OMF)

– for LLMs and sub-LLMs: a program library (element type L).

The input source can either be specified explicitly or the current input source can be taken
over. The current input source is the library or EAM object module file from which the last
module was taken (by means of a START-LLM-UPDATE, INCLUDE-MODULES or
REPLACE-MODULES) statement.
All modules or individual explicitly specified modules can be fetched from the selected input
source.
It is possible to specify for the modules that only LLMs, only OMs, or both types are to
searched for. Should identical names exist when both LLMs and OMs are being sought in a
program library, the priority can be defined through the TYPE operand. Generally an LLM
has a higher priority than an OM.

The name of the new logical node (NAME operand) generated by including a module can
be either the internal name of the module (LLM/OM), the external name of the module or a
name assigned by the user. Modules in a program library are selected on the basis of their
element version. If no element version has been explicitly specified, the element with the
highest element version is assumed (see the “LMS” manual [4]).

With the RUN-TIME-VISIBILITY operand, the user can specify whether or not a module is
to be regarded as a runtime module. If RUN-TIME-VISIBILITY=YES is specified, all
symbols of this module are masked when the LLM is stored, but previously resolved
external references remain resolved. These symbols are again made visible, for resolution
of external references when including or updating this LLM, during the BINDER run.

When replacing modules, the user can also control the handling of name conflicts.

U9557-J-Z125-4-76 47

BINDER functions Including, removing and replacing modules

Example 1

Replacing an object module with an LLM

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) The LLM with element name B is included from program library LIB1.

(3) The LLM with element name C and element version 15 is read from program library
LIB2 and replaces object module A2 in the current LLM as a sub-LLM; path name
X.A references this sub-LLM.

Statements Current LLM
(work area)

Program library

(3) REPLACE-MODULES
NAME=A2,
PATH-NAME=X.A,

(1) START-LLM-CREATION
INTERNAL-NAME=X

B

LIB1

A1 A2 A3

A

K1 K2

X

A1 A2 A3

A

X

LIBRARY=LIB2,
ELEMENT=C(15)

A1 K A3

A

X

(2) INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=B

C(15)

LIB2

K1 K2

K

48 U9557-J-Z125-4-76

Including, removing and replacing modules BINDER functions

Example 2

Replacing an object module with an LLM

Explanation:

(1)/(2) See Example 1.

(3)/(4) The successive REMOVE-MODULES and INCLUDE-MODULES state-
ments have the same effect as one REPLACE-MODULES statement (see
Example 1). However, the structure of the LLM is different from the structure
in Example 1.

Statements Current LLM
(work area)

Program library

(3) REMOVE-MODULES
NAME=A2,
PATH-NAME=X.A,

(1) START-LLM-CREATION
INTERNAL-NAME=X

B

LIB1

A1 A2 A3

A

K1 K2

X

A1 A2 A3

A

X

A1 KA3

A

X

(2) INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=B

C(15)

LIB2

K1 K2

K

A1 A3

A

X

(4) INCLUDE-MODULES
LIBRARY=LIB2,
ELEMENT=C(15),
PATH-NAME=X.A,

U9557-J-Z125-4-76 49

BINDER functions Creating and modifying the logical structure of an LLM

3.3 Creating and modifying the logical structure of an LLM

3.3.1 Creating the logical structure of an LLM

The logical structure of an LLM is described by means of nested BEGIN-SUB-LLM-
STATEMENTS and END-LLM-STATEMENTS statements. The BEGIN-SUB-LLM-STATE-
MENTS statement defines the beginning of a sub-LLM, the END-SUB-LLM-STATEMENTS
statement the end of a sub-LLM on the corresponding nesting level. INCLUDE-MODULES,
REMOVE-MODULES and RESOLVE-BY-AUTOLINK statements, for example, can be
specified on any nesting level (see figure 5).

The node in the logical structure at which the sub-LLM is to begin can be defined through
the path name (see page 16ff) or the current sub-LLM can be taken over.

The current sub-LLM is defined as follows:

– The START-LLM-CREATION or START-LLM-UPDATE statement defines the root of the
LLM structure tree as the current sub-LLM.

– Each subsequent BEGIN-SUB-LLM-STATEMENTS statement creates a further level in
the current sub-LLM.

– Each END-SUB-LLM-STATEMENTS statement returns the current sub-LLM to the level
that contained the current sub-LLM prior to the associated BEGIN-SUB-LLM-
STATEMENTS statement.

50 U9557-J-Z125-4-76

Creating and modifying the logical structure of an LLM BINDER functions

Figure 5: Nesting of sub-LLMs

The following examples explain the effect of the statements BEGIN-SUB-LLM-
STATEMENTS and END-SUB-LLM-STATEMENTS.

START-LLM-CREATION / START-LLM-UPDATE
INCLUDE-MODULES
.

Creating/updating the LLM

.
BEGIN-SUB-LLM-STATEMENTS
INCLUDE-MODULES
RESOLVE-BY-AUTOLINK
.

Beginning of sub-
LLM

level-1

.
BEGIN-SUB-LLM-STATEMENTS
INCLUDE-MODULES
RESOLVE-BY-AUTOLINK
.

Beginning of sub-
LLM

level-2

.
BEGIN-SUB-LLM-STATEMENTS
INCLUDE-MODULES
RESOLVE-BY-AUTOLINK
REMOVE-MODULES
.
.
END-SUB-LLM-STATEMENTS

Beginning of

End of sub-LLM

level-n

level-n

.

.
END-SUB-LLM-STATEMENTS End of sub-LLM level-2

.

.
END-SUB-LLM-STATEMENTS End of sub-LLM level-1

.

.
SAVE-LLM Saving the LLM

U9557-J-Z125-4-76 51

BINDER functions Creating and modifying the logical structure of an LLM

Example 1

This example illustrates the simplest use of BEGIN-SUB-LLM-STATEMENTS and END-
SUB-LLM-STATEMENTS. Here, two sub-LLMs M1 and M2 are begun and ended in
succession.

Statements Current LLM
(work area)

(1) START-LLM-CREATION
INTERNAL-NAME=X

(2) INCLUDE-MODULES LIBRARY=LIB1,

(3) BEGIN-SUB-LLM-STATEMENTS

(4) INCLUDE-MODULES ELEMENT=OMB

X

OMA M1

X

ELEMENT=OMA

SUB-LLM-NAME=M1

OMA

OMB

(5) BEGIN-SUB-LLM-STATEMENTS
SUB-LLM-NAME=M11 X

OMA M1

OMB

OMC OMD

M11

(6) INCLUDE-MODULES
ELEMENT=(OMC,OMD)

52 U9557-J-Z125-4-76

Creating and modifying the logical structure of an LLM BINDER functions

(8) INCLUDE-MODULES ELEMENT=OME

X

OMA M1

OMB

OMC OMD

M11

(7) END-SUB-LLM-STATEMENTS

X

OMA M1

OMB

OMC OMD

M11 OME

(9) END-SUB-LLM-STATEMENTS X

OMA

OMB

OMC OMD

M11 OME

M1

U9557-J-Z125-4-76 53

BINDER functions Creating and modifying the logical structure of an LLM

Explanation:

(1) An LLM with the internal name X is created in the work area. The root X of the LLM
thus becomes the current LLM.

(2) Object module OMA is included from program library LIB1.

(3) A sub-LLM with the name M1 is begun at the root. M1 then becomes the current
sub-LLM.

(4) Object module OMB is included in the current sub-LLM M1 from the current
program library LIB1.

(5) A sub-LLM with the name M11 is begun in the current sub-LLM M1. M11 then
becomes the current sub-LLM.

(6) Object modules OMC and OMD are included in the current sub-LLM M11 from the
current program library LIB1.

(7) The current sub-LLM M11 is ended. M1 then becomes the current sub-LLM.

(10) BEGIN-SUB-LLM-STATEMENTS

(11) INCLUDE-MODULES

SUB-LLM-NAME=M2

(12) END-SUB-LLM-STATEMENTS

X

OMA

OMB

OMC OMD

M11 OME OMF OMG

M2
ELEMENT=(OMF,OMG)

X

OMA

OMB

OMC OMD

M11 OME OMF OMG

(13) SAVE-LLM LIBRARY=LIB1

M1

M1 M2

54 U9557-J-Z125-4-76

Creating and modifying the logical structure of an LLM BINDER functions

(8) Object module OME is included in the current sub-LLM M1.

(9) The current sub-LLM is ended. The root then becomes the current sub-LLM.

(10) A sub-LLM with the name M2 is begun at the root. M2 then becomes the current
sub-LLM.

(11) Object modules OMF and OMG are included in the current sub-LLM M2.

(12) The current sub-LLM M2 is ended. The root X then becomes the current LLM.

(13) The LLM created is saved in program library LIB1. The internal name X from the
most recent START-LLM-CREATION statement is taken over as the element name.

U9557-J-Z125-4-76 55

BINDER functions Creating and modifying the logical structure of an LLM

Example 2

This example illustrates the use of the statements BEGIN-SUB-LLM-STATEMENTS and
END-SUB-LLM-STATEMENTS with path names. Here, two sub-LLMs, M1 and M2, are
created. After M2 has been created, M1 is supplemented by a sub-LLM, M11.

Statements Current LLM
(work area)

(1) START-LLM-CREATION
INTERNAL-NAME=X

(2) BEGIN-SUB-LLM-STATEMENTS

(4) END-SUB-LLM-STATEMENTS

X

OMA

M1

X

SUB-LLM-NAME=M1

OMB

(5) BEGIN-SUB-LLM-STATEMENTS
SUB-LLM-NAME=M2

(3) INCLUDE-MODULES LIBRARY=LIB1,
ELEMENT=(OMA,OMB)

OMA OMB

X

M1

OMA OMB

X

M1 M2

OMC OMD

(6) INCLUDE-MODULES
ELEMENT=(OMC,OMD)

56 U9557-J-Z125-4-76

Creating and modifying the logical structure of an LLM BINDER functions

(7) BEGIN-SUB-LLM-STATEMENTS

(8) INCLUDE-MODULES

SUB-LLM-NAME=M11

(9) END-SUB-LLM-STATEMENTS

X

OMA OMB

OME OMF

M11 OMC OMD

M2

ELEMENT=(OME,OMF)

(11) SAVE-LLM LIBRARY=LIB1

M1

PATH-NAME=X.M1

X

OMA OMB

OME OMF

M11 OMC OMD

M2M1

X

OMA OMB

OME OMF

M11 OMC OMD

M2M1

(10) END-SUB-LLM-STATEMENTS

U9557-J-Z125-4-76 57

BINDER functions Creating and modifying the logical structure of an LLM

Explanation:

(1) An LLM with the internal name X is created in the work area. The root X of the LLM
thus becomes the current LLM.

(2) A sub-LLM with the name M1 is begun. M1 then becomes the current sub-LLM.

(3) Object modules OMA and OMB are included in the current sub-LLM M1 from
program library LIB1.

(4) M1 is ended. The root X of the LLM again becomes the current LLM.

(5) A sub-LLM with the name M2 is begun. M2 becomes the current sub-LLM.

(6) Object modules OMC and OMD are included in the current sub-LLM M2 from the
current program library LIB1.

(7) A sub-LLM M11 is begun. Path name X.M1 specifies that M11 is to begin in sub-
LLM M1. The sub-LLM M11 then becomes the current sub-LLM.

(8) Object modules OME and OMF are included in the current sub-LLM M11 from the
current program library LIB1.

(9) The sub-LLM M11 is ended. The sub-LLM M2, which was the current sub-LLM prior
to the beginning of the sub-LLM M11, again becomes the current sub-LLM.

(10) The current sub-LLM M2 is ended. The root X again becomes the current sub-LLM.

(11) The created LLM is saved in program library LIB1.

58 U9557-J-Z125-4-76

Creating and modifying the logical structure of an LLM BINDER functions

3.3.2 Modifying the logical structure of an LLM

The MODIFY-MODULE-ATTRIBUTES statement can be used to modify the logical
structure of an LLM. For this, the path name of a linked module is changed, causing the
module to be integrated elsewhere within the LLM.

In addition to the path name, the MODIFY-MODULE-ATTRIBUTES statement can also be
used to change the following attributes:

– the logical name of the (sub-)LLM (NEW-NAME)

– declarations for the list for symbolic debugging (LSD) (TEST-SUPPORT)

– masking of all symbols of a module (RUN-TIME-VISIBILITY)

– handling of name conflicts (NAME-COLLISION) if the value of the RUN-TIME-
VISIBILITY operand was changed.

The following example shows the effects of the MODIFY-MODULE-ATTRIBUTES
statement when modifying the logical structure of an LLM.

Example

Changing the path name of a sub-LLM
Statements Current LLM

(work area)
Program library

(1) START-LLM-UPDATE
LIBRARY=LIB1, Y

LIB1

A B C

A1 A2 B1 B2

X

A B C

A1 A2 B1 B2

X
ELEMENT=Y

U9557-J-Z125-4-76 59

BINDER functions Creating and modifying the logical structure of an LLM

Explanation:

(1) An LLM which is stored as an element with the name Y in program library LIB1 is to
be modified. For this, the LLM is loaded into the work area.

(2) The path name of sub-LLM A is changed from X to X.B, causing the sub-LLM to be
integrated elsewhere in the LLM.

(3) The modified LLM is again stored under element name Y in program library LIB1.

(2) MODIFY-MODULE-ATTRIBUTES
NAME=A,
PATH-NAME=X,

Y

LIB1

B1 A

B C

A1 A2

NEW-PATH-NAME=X.B

B2

X

B1 A

B C

A1 A2

B2

X

B1 A

B C

A1 A2

B2

X
(3) SAVE-LLM

LIBRARY=LIB1,
ELEMENT=Y

60 U9557-J-Z125-4-76

Creating the physical structure of an LLM BINDER functions

3.4 Creating the physical structure of an LLM

The physical structure of an LLM is implemented by means of slices (see page 10ff). The
following describes how to create physical structures of an LLM comprising

– user-defined slices or

– slices by attributes (of CSECTs)

3.4.1 User-defined slices

When creating the physical structure of an LLM, the user can define slices that are loaded
separately. Initially the loader loads only the root slice into main memory. The root slice
remains loaded during the entire program run. The user can have the other slices loaded
dynamically as soon as they are required for the program run.
Slices may overlay one another, i.e. they occupy the same address space in succession.
They have, for example, the same start address and can be loaded, overlaid and reloaded
as often as required. The user can request that an Overlay Control Module (OCM) be
generated in the root slice of the user program. This OCM controls the LDSLICE macros
that are required (see the “BLSSERV Dynamic Binder Loader / Starter” manual [1]) to
implement the overlay. If errors occur with LDSLICE (e.g. if an empty slice is to be loaded),
the user program is terminated in the ’ABNORMAL’ status.

Diagrammatic representation of the physical structure

The representation of the desired structure in the form of a diagram helps the user by illus-
trating the relationships between the individual slices in graphic form (see figure 6).

Each vertical line in this diagram represents one slice. The uppermost slice in the structure
is the root slice (%ROOT). This is loaded at the beginning, while the other slices are loaded
only when required.

Each horizontal line is an address level. All slices that start at the same address level have
the same load address that immediately follows the preceding slice. They may thus overlay
one another. These slices are therefore known as exclusive slices. The root slice is never
overlaid.

All slices through which a nonbranching line can be drawn lie in a common path. All slices
between the root slice and a slice X are referred to as being “higher than X” in the relevant
path of the diagram. All slices beneath a slice X are “lower than X”, relative to this slice. The
root slice is thus higher than all other slices. All exclusive slices are lower than the root
slices.

U9557-J-Z125-4-76 61

BINDER functions Creating the physical structure of an LLM

Each slice is assigned a level number that is determined by the number of higher slices in
the relevant path. The root slice has the level zero. A new region begins at an address level
that is situated such that overlaying by preceding slices is excluded.

The user can have an overview of the physical structure of the current LLM output at any
time by means of the SHOW-MAP statement.

Figure 6: Example of diagrammatic representation of the physical structure

Defining the physical structure

The user defines the physical structure using SET-USER-SLICE-POSITION statements.
The slice specified in a SET-USER-SLICE-POSITION statement becomes the current
slice. This is the slice in which modules are included or replaced if no specifications for the
slice are made in the INCLUDE-MODULES or REPLACE-MODULES statements (SLICE
operand).

If no slice has yet been defined with a SET-USER-SLICE-POSITION statement, the root
slice (%ROOT) is assumed as the current slice. Modules selected by autolink are only
linked into the root slice.

If the user wishes to use SET-USER-SLICE-POSITION statements to define the physical
structure, this must be declared in the START-LLM-CREATION statement on creating the
LLM (SLICE-DEFINITION=BY-USER operand).

0

Address level

Level 0

Level 1

Root slice
%ROOT

Slice A exclusive
Slice B

Level 2
Region

Slice C

Slice D exclusive
Slice E

Level 3

62 U9557-J-Z125-4-76

Creating the physical structure of an LLM BINDER functions

Example 1

Creating a physical structure comprising the root slice and two exclusive slices

Statements Current LLM
 (work area)

Physical structure

X

0

Address level

OMA CS1

CS2

%ROOT
X

OMA
CS1
CS2

X

OMA
CS1
CS2

0

Address level

OMA CS1

CS2

%ROOT

OMB
CS3
CS4

OMB CS3

CS4

S1

START-LLM-CREATION
INTERNAL-NAME=X,
SLICE-DEFINITION=BY-USER

(1)

(2)

(3)

(4)

INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=OMA,
SLICE=*ROOT

SET-USER-SLICE-POSITION
SLICE-NAME=S1,
POSITION=

BEHIND-SLICE(*ROOT)

INCLUDE-MODULES
ELEMENT=OMB,
SLICE=CURRENT-SLICE

U9557-J-Z125-4-76 63

BINDER functions Creating the physical structure of an LLM

Explanation:

(1) An LLM with the internal name X is created in the work area. The SLICE-
DEFINITION operand declares that the physical structure of the LLM is defined by
the user with SET-USER-SLICE-POSITION statements. The root slice %ROOT is
defined.

(2) Object module OMA is included in the current LLM in the work area from program
library LIB1. OMA contains the two CSECTs CS1 and CS2. The SLICE=*ROOT
operand defines that CS1 and CS2 constitute the root slice %ROOT.

(3) The slice S1 is defined. It immediately follows the root slice %ROOT. S1 becomes
the current slice.

(4) Object module OMB is included in the current LLM from program library LIB1. OMB
contains the two CSECTs CS3 and CS4. The CSECTs constitute the slice S1
(current slice).

(5) The slice S2 is defined. It immediately follows the root slice %ROOT. S2 becomes
the current slice. The slices S2 and S1 are mutually exclusive, i.e. S2 can overlay
S1.

(6) Object module OMC is included in the current LLM from program library LIB1. OMC
contains the two CSECTs CS5 and CS6. The SLICE=S2 operand defines that CS5
and CS6 constitute the slice S2.

(7) The current LLM is saved in program library LIB1.

X

OMA
CS1
CS2

0

Address level

OMA CS1

CS2

%ROOT

OMC
CS5
CS6

OMB CS3

CS4

S1

OMB
CS3
CS4

OMC CS5

CS6

S2

SET-USER-SLICE-POSITION
SLICE-NAME=S2,
POSITION=

BEHIND-SLICE(*ROOT)

(5)

INCLUDE-MODULES
ELEMENT=OMC,
SLICE=S2

(6)

SAVE-LLM LIBRARY=LIB1(7)

64 U9557-J-Z125-4-76

Creating the physical structure of an LLM BINDER functions

Example 2

Creating a physical structure comprising the root slice, two exclusive slices and a new
region

X

Statements Current LLM
 (work area)

Physical structure

X

0

Address level

OM1 CS1

%ROOT
X

OM1
CS1

X

OM1
CS1

0

Address level

OM1 CS1

%ROOT

S1

OM1
CS1

OM2
CS2

0

Address level

OM1 CS1

%ROOT

S1

S2

OM2
CS2

START-LLM-CREATION
INTERNAL-NAME=X,
SLICE-DEFINITION=BY-USER

(1)

(2)

(3)

(4)

(5)

INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=OM1,
SLICE=*ROOT

SET-USER-SLICE-POSITION
SLICE-NAME=S1,
POSITION=

BEHIND-SLICE(*ROOT)

SET-USER-SLICE-POSITION
SLICE-NAME=S2,
POSITION=

BEHIND-SLICE(*CURRENT)

INCLUDE-MODULES
ELEMENT=OM2,
SLICE=CURRENT-SLICE

U9557-J-Z125-4-76 65

BINDER functions Creating the physical structure of an LLM

0

Address level

OM1 CS1

%ROOT

S1

X

OM1
CS1

OM2
CS2

S2

OM2
CS2

S3

OM3
CS3

R1

0

Address level

OM1 CS1

%ROOT

S1

S2

OM2
CS2

S3

OM3
CS3

R1

OM2
CS2

X

OM1
CS1

OM2
CS2

OM2
CS2

S4

OM1 CS1

%ROOT

S1

S2

OM2
CS2

S3

OM3
CS3

R1

S4

0

Address level

OM4 CS4

X

OM1
CS1

OM2
CS2

OM3
CS3

OM4
CS4

SET-USER-SLICE-POSITION
SLICE-NAME=S3,
POSITION=BEGIN-REGION

(REGION=R1,
NEW-REGION=YES)

(6)

INCLUDE-MODULES
ELEMENT=OM3,
SLICE=S3

(7)

SET-USER-SLICE-POSITION
SLICE-NAME=S4,
POSITION=

BEHIND-SLICE(*ROOT)

(8)

SET-USER-SLICE-POSITION
SLICE-NAME=S1,
MODE=UPDATE

(9)

INCLUDE-MODULES
ELEMENT=OM4,
SLICE=S1

(10)

SAVE-LLM LIBRARY=LIB1(11)

66 U9557-J-Z125-4-76

Creating the physical structure of an LLM BINDER functions

Explanation:

(1) An LLM with the internal name X is created in the work area. The SLICE-
DEFINITION operand declares that the physical structure of the LLM is defined by
the user with SET-USER-SLICE-POSITION statements. The root slice %ROOT is
defined.

(2) Object module OM1 is included in the current LLM in the work area from program
library LIB1. OM1 contains the CSECT CS1. The SLICE=*ROOT operand defines
that CS1 constitutes the root slice %ROOT.

(3) The slice S1 is defined. It immediately follows the root slice. S1 becomes the current
slice.

(4) The slice S2 is defined. It immediately follows the current slice (*CURRENT
operand). S2 becomes the current slice.

(5) Object module OM2 is included in the current LLM in the work area from program
library LIB1. OM2 contains the CSECT CS2. The CSECT CS2 constitutes the slice
S2 (current slice).

(6) The slice S3 is defined. It begins at a new region R1. Its start address lies at the end
of S1 since the slices of region R1 may not overlay the higher slices. S3 becomes
the current slice.

(7) Object module OM3 is included in the current LLM in the work area from program
library LIB1. OM3 contains the CSECT CS3. The SLICE=S3 operand defines that
CS3 constitutes the slice S3.

(8) The slice S4 is defined. It immediately follows the root slice %ROOT. S4 becomes
the current slice. Slice S4 is exclusive with respect to slices S1 and S2, i.e. S4 can
overlay S1 and S2.

(9) The existing slice S1 is to be updated (MODE=UPDATE operand).

(10) Object module OM4 is included in the current LLM in the work area from program
library LIB1. OM4 contains the CSECT CS4. The SLICE=S1 operand defines that
CS4 constitutes the slice S1.

(11) The current LLM is saved in program library LIB1.

U9557-J-Z125-4-76 67

BINDER functions Creating the physical structure of an LLM

3.4.2 Slices by attributes

Procedure for forming slices

For an LLM whose slices are to be formed on the basis of attributes of CSECTs, BINDER
automatically forms slices on the basis of the following attributes:

READ-ONLY

– Read access (READ-ONLY=YES)
The CSECT can only be read. This attribute protects the CSECT in main memory
against overwriting.

– Read and write access (READ/WRITE) (READ-ONLY=NO)
The CSECT can be read and overwritten.

RESIDENT

– Main memory resident (RESIDENT=YES)
The CSECT is loaded into class 3 memory and held resident there.

– Pageable (PAGEABLE) (RESIDENT=NO)
The CSECT is pageable.

This attribute is relevant only for shared code of the system.

PUBLIC

– Shareable (PUBLIC=YES)
The CSECT contains data and instructions available for shared use (see page 68).

– Private (PRIVATE, i.e. PUBLIC=NO)
The CSECT contains data and instructions available for private use only.

RMODE

– Residence mode (RMODE=ANY)
The CSECT can be loaded below 16 Mb and above 16 Mb.

– Residence mode (RMODE=24)
The CSECT can only be loaded below 16 Mb.

By combining all these attributes, up to 16 different slices can be formed. The attributes on
which slices are based are defined by the user in the START-LLM-CREATION statement
(BY-ATTRIBUTES operand).

68 U9557-J-Z125-4-76

Creating the physical structure of an LLM BINDER functions

If the user specifies, for example, that slices are to be formed on the basis of the attribute
READ-ONLY, BINDER generates the following two slices:

1. one slice with all CSECTs READ-ONLY

2. one slice with all CSECTs READ/WRITE

All other attributes are not used for forming slices since the default values NO apply in the
BY-ATTRIBUTES operand.

If no CSECT having the attribute READ-ONLY is present, no slice is generated. BINDER
does not therefore generate an empty slice. All slices are loaded into main memory as an
entire unit. In the above example, the READ-ONLY slices and the READ/WRITE slices are
loaded into class 6 memory.

Slices with the attribute PUBLIC

Slices with the attribute PUBLIC=YES must be programmed as reentrant, since this is a
prerequisite for their use as shared code (see the “BLSSERV Dynamic Binder Loader /
Starter” manual [1]). All public slices of an LLM can be loaded only together as shared code
and form the PUBLIC part of this LLM. There are three possible ways of loading the PUBLIC
part of an LLM as shared code:

1. The user can load the public slices with DBL macro ASHARE in a common memory
pool in class 6 memory. The public slices can be unloaded with DBL macro DSHARE.

2. With DSSM, the public slices can be loaded as an unprivileged subsystem (see the
“Introductory Guide to Systems Support” [10]) in class 3 or class 4 memory. They can
be unloaded only via the DSSM.

When such an LLM is called with the LOAD-EXECUTABLE-PROGRAM or START-
EXECUTABLE-PROGRAM (or LOAD-PROGRAM/START-PROGRAM) command or with
DBL macro BIND, the private slices are loaded into the task-local class 6 memory. In order
to resolve the external references, the system searches the entire shared code for the public
slices belonging to the LLM. This search can be prohibited with the SHARE[-SCOPE]
operand in the program call (START-EXECUTABLE-PROGRAM, LOAD-EXECUTABLE-
PROGRAM, START-PROGRAM, LOAD-PROGRAM, BIND macro) (see the “BLSSERV
Dynamic Binder Loader / Starter” manual [1]). External references in the private slices are
resolved by the public slices, but external references in the public slices are not resolved by
the private slices. If the PUBLIC part of the LLM is not found in the shared code, loading of
the PUBLIC part into the task-local class 6 memory is initiated.

U9557-J-Z125-4-76 69

BINDER functions Creating the physical structure of an LLM

Slice name

The slice names are produced by BINDER. They are logged in the lists output by BINDER
(see page 133ff).

The slice name consists of 4 subnames (one subname for each attribute) and has the
following structure:

where:

Example

If only the attribute READ-ONLY is to be used for forming slices, two slices with the
following slice names are formed:

1. PUU-ROY-RTU-RMU Slice with read access

2. PUU-RON-RTU-RMU Slice with read and write access

 PUa-ROb-RTc-RMd

PUa
a
a=U
a=Y
a=N

Subname for the attribute PUBLIC
Identifier for the type of slice
Attribute not used for forming the slice (UNDEFINED)
Slice is sharerable (PUBLIC=YES)
Slice is not sharerable (PUBLIC=NO)

ROb
b
b=U
b=Y
b=N

Subname for the attribute READ-ONLY
Identifier for the type of slice
Attribute not used for forming the slice (UNDEFINED)
Slice with read access (READ-ONLY=YES)
Slice with read and write access (READ-ONLY=NO)

RTc
c
c=U
c=Y
c=N

Subname for the attribute RESIDENT
Identifier for the type of slice
Attribute not used for forming the slice (UNDEFINED)
Slice is main memory resident (RESIDENT=YES)
Slice is not main memory resident (RESIDENT=NO)

RMd
d
d=U
d=A
d=4

Subname for the attribute RESIDENCY-MODE
Identifier for the type of slice
Attribute not used for forming the slice (UNDEFINED)
RMODE=ANY
RMODE=24

70 U9557-J-Z125-4-76

Creating the physical structure of an LLM BINDER functions

3.4.3 Modifying the type of physical structure

The type of physical structure can be modified later with the MODIFY-LLM-ATTRIBUTES
statement (SLICE-DEFINITION operand). The type of physical structure may be modified
as follows:

1. LLM with slices by attributes → LLM with single slice

2. LLM with single slice → LLM slices by attributes

3. LLM with slices by attributes → LLM with slices by other attributes

4. LLM with user-defined slices → LLM with user-defined slices and modified values for
AUTOMATIC-CONTROL and EXCLUSIVE-SLICE-CALL.

3.4.4 Connection between private and public slices

The connection between private and public slices can be controlled by means of the
CONNECTION-MODE operand. This operand is subordinate to the FOR-BS2000-
VERSIONS operand in statements MODIFY-STD-DEFAULTS and SAVE-LLM.

The CONNECTION-MODE operand is applied only if the LLMs have been divided into
slices in accordance with the PUBLIC attribute of the CSECTs.

The connection between private and public slices can be made in two ways:

1. by resolution (CONNECTION-MODE=*BY-RESOLUTION):

While loading, the DBL sets up connections between the private part and all symbols
(name and type) in the PUBLIC part to which relocation information from the private part
refers.

2. by relocation (CONNECTION-MODE=*BY-RELOCATION):

While loading, the DBL sets up a single connection between the private part and the
PUBLIC part. If a subsystem ENTRY is specified, the connection refers to it.

Restriction

With LLM format 1, a connection between the private part and the PUBLIC part is set
up only when the public slice contains at least one definition to which an external
reference in the private part refers.

U9557-J-Z125-4-76 71

BINDER functions Creating the physical structure of an LLM

With CONNECTION-MODE=*BY-RELOCATION the performance of DBL when setting up
the connection is better than with CONNECTION-MODE=*BY-RESOLUTION. If, however,
you are using the indirect linkage mechanism (see the “BLSSERV Dynamic Binder
Loader/Starter” manual [1]) to connect to modules in the public slice, you should use
CONNECTION-MODE=*BY-RESOLUTION.

Note

If you have defined subsystem entries with the statement MODIFY-LLM-ATTRIBUTES,
the information on this is output to the stored LLM, regardless of its format. With
CONNECTION-MODE=*BY-RESOLUTION, specifications of subsystem entries have
no effect.

72 U9557-J-Z125-4-76

Resolving external references BINDER functions

3.5 Resolving external references

External references in the modules that are included in the LLM refer to a control section
(CSECT), an entry point (ENTRY) or a COMMON in a different module. BINDER attempts
to resolve all external references immediately, i.e. it searches within the created LLM for a
CSECT, an ENTRY or a COMMON with the same name and enters the address it has found
in the external reference.

To satisfy external references that are still unresolved the user can call the BINDER
autolink function using the RESOLVE-BY-LINK statement. BINDER searches the libraries
specified in RESOLVE-BY-AUTOLINK for CSECTs, ENTRYs and COMMONs in modules
that satisfy the unresolved external references. When a module that resolves an external
reference is found, it is included in the current LLM.

The user can specify that input libraries assigned through the file link name BLSLIBnn
(00ÎnnÎ99) are to be searched.

The libraries are searched in ascending order of values “nn” for this file link name. They
must be assigned prior to the BINDER run. These file link names are not released after a
BINDER run.

The autolink function primarily saves users of higher-level programming languages having
to repeatedly enter INCLUDE-MODULES statements in order to include the often fairly
numerous modules required for the runtime system.

Weak external references (WXTRNs) cannot be resolved by autolink. The names of
unresolved WXTRNs are logged by BINDER after execution of the autolink function in the
list of unresolved weak external references (see page 133ff). External references that are
not referenced in the program cannot be resolved by autolink either.

Note

The time required by autolink depends essentially on how many libraries need to be
searched before suitable modules are found. In the worst case, all specified libraries
have to be searched.

A list of unresolved external references is output provided the user does not suppress it with
the SHOW-MAP or MODIFY-MAP-DEFAULTS statement (see page 133ff).

U9557-J-Z125-4-76 73

BINDER functions Resolving external references

Depending on the mode under which BINDER is operating, the user can take the following
courses of action:

Interactive mode

The user can enter further INCLUDE-MODULES or RESOLVE-BY-AUTOLINK statements
in order to resolve any outstanding unresolved external references. If the user does not wish
to do this, BINDER will handle the unresolved external references as defined in the SET-
EXTERN-RESOLUTION statement (see page 88ff).

Batch mode

Unresolved external references are handled as defined in the SET-EXTERN-RESOLUTION
statement (see page 88ff).

3.5.1 Rules for resolving external references

Initially BINDER attempts to resolve external references with names of CSECTs, ENTRYs
and COMMONs from modules that it has included in the current LLM. However, an external
reference is never resolved with a name from a module included in the FORBIDDEN-
SCOPE of the module which contains the reference.

The following rules are applicable here:

● Rule 1
CSECTs, ENTRYs and COMMONs in the HIGH-PRIORITY-SCOPE of the module
which contains the external reference have priority over all other program definitions.
CSECTs, ENTRYs and COMMONs in the LOW-PRIORITY-SCOPE of this module are
only applied after all other program definitions.

● Rule 2
When a module is included in an LLM, the names of CSECTs, ENTRYs and COMMONs
within the same sub-LLM have priority over the names of CSECTs, ENTRYs and
COMMONs in other branches. During searching, the search commences with the sub-
LLM on the highest level that contains references and program definitions.

● Rule 3
A CSECT has priority over an ENTRY, and an ENTRY has priority over a COMMON.

● Rule 4
The external references are processed in succession. The OMs and sub-LLMs of the
current LLM are processed here in the order in which they are arranged in the logical
structure (in the LLM structure tree, from left to right).

74 U9557-J-Z125-4-76

Resolving external references BINDER functions

LLMs with user-defined slices are an exception to these rules. For these LLMs, the following
search sequence has priority over the three standard rules:

1. Search for definitions in the slice which also contains the external reference.

2. Search for definitions in the slices with the same path and same region as the slice
containing the external reference.

3. Search for definitions in slices following the slice containing the external reference.

4. Search for definitions in slices located in other regions.

5. Search for definitions in competing slices if START-LLM-CREATION ... EXCLUSIVE-
SLICE-CALL=YES was specified.

Example 1 (rule 1)

Requirement:
A HIGH-PRIORITY-SCOPE containing object module A3 must have been defined for
object module A2.

To resolve the EXTRN v(x) in sub-LLM A2, BINDER searches the HIGH-PRIORITY-SCOPE
of A2 first; in other words, A3 and not A1, as would be the case without RESOLUTION-
SCOPE. ENTRY x in A3 resolves EXTRN v(x).

Current LLM

A1
ENTRY

:x

A2
EXTRN

v(x)

A3
CSECT

:x

LLM2

LLM1

U9557-J-Z125-4-76 75

BINDER functions Resolving external references

Example 2 (rule 1)

Requirement:
A LOW-PRIORITY-SCOPE containing object module A1 must have been defined for
sub-LLM LLM2.

Object module A2 inherits the LOW-PRIORITY-SCOPE from the parent node, i.e. from sub-
LLM LLM2. BINDER starts its search for the unresolved EXTRN v(x) in object module A2
in modules which are not contained in the LOW-PRIORITY-SCOPE of A2. EXTRN v(x) is
therefore resolved with ENTRY x in A3.

Example 3 (rule 2)

Object module A2 with the EXTRN v(x) is included in sub-LLM LLM2. The EXTRN v(x) in
object module A2 is resolved by ENTRY x in object module A1 because A2 and A1 lie in the
same sub-LLM LLM2. The CSECT x in object module A3 lies in a different branch and is
ignored.

Current LLM

A1
ENTRY

:x

A2
EXTRN

v(x)

A3
CSECT

:x

LLM2

LLM1

Current LLM

A1
ENTRY

:x

A2
EXTRN

v(x)

A3
CSECT

:x

LLM2

LLM1

76 U9557-J-Z125-4-76

Resolving external references BINDER functions

Example 4 (rules 2 and 3)

Object module A3 with the EXTRN v(x) is included in sub-LLM LLM2. The EXTRN v(x) in
object module A3 is resolved by the CSECT x in object module A2 because A3 and A2 lie
in the same sub-LLM LLM2. Within LLM2 the CSECT x in A2 has priority over the ENTRY
x in A1.

Example 5 (rule 4)

Object module A3 with the EXTRN v(x) is included in the LLM1. The EXTRN v(x) in object
module A3 is resolved by the CSECT x in object module A1 because the LLM structure tree
is searched from left to right.

Current LLM

A1
ENTRY

:x

A2
CSECT

:x

A4
CSECT

:x

LLM2

LLM1

A3
EXTRN

v(x)

Current LLM

A1
CSECT

:x

A2
CSECT

:x

A3
EXTRN

v(x)

LLM1

U9557-J-Z125-4-76 77

BINDER functions Resolving external references

Example 6 (rules 2 and 3)

Object module A4 with the EXTRN v(x) is included in the LLM1. The EXTRN v(x) in object
module A4 is resolved by the CSECT x in object module A2 in accordance with the following
rules:

– Searching commences with the sub-LLM on the highest level. This is the sub-LLM
LLM2 (rule 1).

– Within the sub-LLM LLM2, the CSECT x in object module A2 has a higher priority than
the ENTRY x in object module A1 (rule 2).

3.5.2 Autolink function

The autolink function of BINDER enables the automatic inclusion of modules. In order to
resolve external references, BINDER searches for CSECTs and ENTRYs in those modules
and libraries specified in the RESOLVE-BY-AUTOLINK statement. The following rules are
applicable:

● Rule 1
The external references are processed in succession. The OMs and sub-LLMs of the
current LLM are processed in the order in which they are arranged in the logical
structure (in the LLM structure tree, from left to right).
Within an OM the external references are processed in accordance with their order in
the OM.

With the modules of a program library, all elements are searched in accordance with the
specified type (TYPE operand).

Current LLM

A1
ENTRY

:x

A2
CSECT

:x

A4
EXTRN

v(x)

LLM2

LLM1

A3
CSECT

:x

78 U9557-J-Z125-4-76

Resolving external references BINDER functions

● Rule 2
When a module is included in order to resolve an external reference, BINDER also
attempts to resolve further unresolved external references within the whole LLM by
using CSECTs, ENTRYs and COMMONs of this module.

● Rule 3
If more than one library is specified in a RESOLVE-BY-AUTOLINK statement, the libraries
are searched in the order in which they were specified in the statement. For each
individual library the modules are searched in accordance with rule 1.

● Rule 4
A scope can be specified in the RESOLVE-BY-AUTOLINK statement (SCOPE
operand). This scope defines the portion of the LLM structure tree within which external
references are resolved. External references outside this scope are not resolved.

● Rule 5
A path name can be specified in the RESOLVE-BY-AUTOLINK statement (PATH-NAME
operand). This defines in which sub-LLM of the current LLM modules are included.

● Rule 6
New external references that occur during the inclusion of modules are entered in the
list of unresolved external references, assuming they are defined in the specified scope
(SCOPE operand) and in the valid path (PATH-NAME operand).

For the modules included with RESOLVE-BY-AUTOLINK, the user can specify whether or
not they are to be regarded as runtime modules (RUN-TIME-VISIBILITY operand). If the
included module is to be a runtime module, all symbols are masked when this module is
stored. This can be used to avoid name conflicts when the LLM is loaded by DBL. This
masking of the symbols is, however, canceled if the module is read in again (e.g. with
INCLUDE-MODULES or START-LLM-UPDATE).

Note

The autolink function is not executed if the LLMs contain no relocation information, no
logical structure information or no External Symbols Vector, or if LLMs containing user-
defined slices are to be included. The autolink function is aborted in this case. The user
is responsible for ensuring that libraries contain no such modules.

U9557-J-Z125-4-76 79

BINDER functions Resolving external references

Example 1

Stage 1:

The EXTRN v(x) in object module A1 is resolved by the ENTRY x in object module A2
because A1 and A2 lie in the same sub-LLM. The ENTRY x in object module A3 lies in a
different branch and is ignored.
The EXTRN v(y) in object module A2 is resolved by the CSECT y in object module A4.

Stage 2:

The still unresolved EXTRN v(e) in object module A2 is resolved by the CSECT e in object
module A5 that is included by autolink.

Current LLM

A1
EXTRN

v(x)

A2
ENTRY

:x

A4
CSECT

:y

LLM2

LLM1

A3
ENTRY

:x
EXTRN

v(y)
EXTRN

v(e)

LLM3

Current LLM

A1
EXTRN

v(x)

A2
ENTRY

:x

A4
CSECT

:y

LLM1

A3
ENTRY

:x
EXTRN

v(y)
EXTRN

v(e)

A5
CSECT

:e

LLM2 LLM3

80 U9557-J-Z125-4-76

Resolving external references BINDER functions

Example 2

The following program libraries (see below) are assumed:

● A program library LIB1.
This contains the LLM A with an unresolved EXTRN v(t) and the LLM B with an
unresolved EXTRN v(u).

● A program library LIB2.
This contains the OM C with the ENTRY t and the OM D with two ENTRYs u and t.

● A program library LIB3.
This contains the OM E with the ENTRY u.

● A program library LIB4.
This contains the following modules:

– the OM F with the unresolved EXTRN v(s) and two ENTRYs u and t,

– the OM G with two ENTRYs s and t.

● A program library LIB5.
This contains the OM H with the ENTRY u.

A1 A2

A

v(t)

B1 B2

B

v(u)

A

B

LIB1

LIB2

C

D

t:

u:
t:

LIB3

Eu:

v(s)F
u:
t:

G
u:
t:

Hu:

LIB5

LIB4

U9557-J-Z125-4-76 81

BINDER functions Resolving external references

Case 1 (rules 1 and 2)

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) The LLMs A and B are included in the current LLM from program library LIB1.

(3) Program library LIB2 is searched for the unresolved EXTRN v(u). The OM D
resolves the EXTRN v(u). BINDER includes the OM D at the root of the current LLM
and attempts to resolve the unresolved EXTRN v(t) with an ENTRY in the OM D.
The ENTRY t in the OM D resolves the EXTRN v(t).

Statements Current LLM
(work area)

X

A

X

B

A1 A2 B1 B2
v(t) v(u)

X

A B

A1 A2 B1 B2
v(t) v(u)

(1) START-LLM-CREATION
INTERNAL-NAME=X

(2) INCLUDE-MODULES LIBRARY=LIB1,
ELEMENT=(A,B),TYPE=L

(3) RESOLVE-BY-AUTOLINK
LIBRARY=LIB2,TYPE=(L,R),
SYMBOL-NAME=U

D
:u

:t

82 U9557-J-Z125-4-76

Resolving external references BINDER functions

Case 2 (rule 1)

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) The LLMs A and B are included in the current LLM from program library LIB1.

(3) Program library LIB2 is searched for all unresolved EXTRNs (default value
SYMBOL-NAME=*ALL). The OM C resolves the EXTRN v(t) and the OM D
resolves the EXTRN v(u). BINDER includes the OMs C and D at the root of the
current LLM.

Statements Current LLM
(work area)

X

A

X

B

A1 A2 B1 B2
v(t)

(1) START-LLM-CREATION
INTERNAL-NAME=X

(2) INCLUDE-MODULES LIBRARY=LIB1,
ELEMENT=(A,B),TYPE=L

(3) RESOLVE-BY-AUTOLINK
LIBRARY=LIB2,TYPE=(L,R)

X

A B

A1 A2 B1 B2
v(t)

C D
:t :t

:uv(u)

v(u)

U9557-J-Z125-4-76 83

BINDER functions Resolving external references

Case 3 (rules 3, 4 and 5)

Statements Current LLM
(work area)

X

A

X

B

A1 A2 B1 B2
v(t) v(u)

(1) START-LLM-CREATION
INTERNAL-NAME=X

(2) INCLUDE-MODULES LIBRARY=LIB1,
ELEMENT=(A,B),TYPE=L

(3) RESOLVE-BY-AUTOLINK
LIBRARY=LIB2,TYPE=(L,R),
SYMBOL-NAME=T,
PATH-NAME=X.A

X

A B

A1 A2 B1 B2
v(t) v(u)

C
:t

(4) RESOLVE-BY-AUTOLINK
LIBRARY=(LIB3,LIB4,LIB5),
TYPE=(L,R),
SCOPE=EXPLICIT(WITHIN-SUB-LLM=B),
PATH-NAME=X.B

X

B1 B2
v(u)

E
:u

B

84 U9557-J-Z125-4-76

Resolving external references BINDER functions

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) The LLMs A and B are included in the current LLM from program library LIB1.

(3) Program library LIB2 is searched for the unresolved EXTRN v(t). The first
associated ENTRY t is found in OM C. BINDER includes the OM C in the sub-LLM
A (path name X.A).

(4) Program libraries LIB3, LIB4, LIB5 are searched here in the order LIB3 → LIB4 →
LIB5 for all as yet unresolved EXTRNs (default value SYMBOL-NAME=*ALL). Only
the unresolved EXTRNs within the sub-LLM B are to be encompassed by the
search (SCOPE operand). The first associated ENTRY u is found in LIB3 in the OM
E. BINDER includes the OM E in the sub-LLM B (path name X.B).

Case 4 (rules 3, 4 and 5)

X

A B

A1 A2 B1 B2
v(t) v(u)

C
:t

Statements Current LLM
(work area)

X

A

X

B

A1 A2 B1 B2
v(t) v(u)

(1) START-LLM-CREATION
INTERNAL-NAME=X

(2) INCLUDE-MODULES LIBRARY=LIB1,
ELEMENT=(A,B),TYPE=L

(3) RESOLVE-BY-AUTOLINK
LIBRARY=LIB2,TYPE=(L,R),
SYMBOL-NAME=T,
PATH-NAME=X.A

U9557-J-Z125-4-76 85

BINDER functions Resolving external references

Explanation:

(1), (2), (3) As in case 3.

(4) Program libraries LIB3, LIB4, LIB5 are searched here in the order LIB5 → LIB4 →
LIB3 for all as yet unresolved EXTRNs (default value SYMBOL-NAME=*ALL). Only
the unresolved EXTRNs within the sub-LLM B are to be encompassed by the
search (SCOPE operand). The first associated ENTRY u is found in LIB5 in the
OM H. BINDER includes the OM H in the sub-LLM B (path name X.B).

B1 B2
v(u)

H
:u

X
(4) RESOLVE-BY-AUTOLINK

LIBRARY=(LIB3,LIB4,LIB5),
TYPE=(L,R),
SCOPE=EXPLICIT(WITHIN-SUB-LLM=B),
PATH-NAME=X.B

A1 A2
v(t)

C
:t

A B

86 U9557-J-Z125-4-76

Resolving external references BINDER functions

Case 5 (rule 6)

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) The LLMs A and B are included in the current LLM from program library LIB1.

(3) Program library LIB4 is searched for all unresolved EXTRNs (default value
SYMBOL-NAME=*ALL). The OMs in program library LIB4 are searched in alpha-
betical order. The OM F resolves the EXTRNs v(t) and v(u). BINDER includes the
OM F at the root of the current LLM. The unresolved external reference v(s) in the
OM F is entered in the list of unresolved external references. BINDER searches
program library LIB4 for a module that resolves the EXTRN v(s), and finds the
OM G. The OM G is included at the root of the current LLM.

Statements Current LLM
(work area)

X

A

X

B

A1 A2 B1 B2
v(t)

(1) START-LLM-CREATION
INTERNAL-NAME=X

(2) INCLUDE-MODULES LIBRARY=LIB1,
ELEMENT=(A,B),TYPE=L

v(u)

(3) RESOLVE-BY-AUTOLINK
LIBRARY=LIB4,TYPE=(L,R)

X

A B

A1 A2 B1 B2
v(t)

F G
:sv(s)v(u)

:u
:t

U9557-J-Z125-4-76 87

BINDER functions Resolving external references

Case 6 (rules 4 and 6)

Explanation

(1) An LLM with the internal name X is created in the work area.

(2) The LLMs A and B are included in the current LLM from program library LIB1.

(3) Program library LIB4 is searched for all unresolved EXTRNs of the LLM B (default
value SYMBOL-NAME=*ALL). The OMs in program library LIB4 are searched in
alphabetical order. The OM F resolves the EXTRN v(u). BINDER includes the OM F
at the root of the current LLM. The unresolved external reference v(s) in the OM F
is entered in the list of unresolved external references. The EXTRN v(s) remains
unresolved because it lies outside the scope. Although the EXTRN v(t) lies outside
the scope it is resolved because the module F was included with the ENTRY t.

Statements Current LLM
(work area)

X

A

X

B

A1 A2 B1 B2
v(t)

(1) START-LLM-CREATION
INTERNAL-NAME=X

(2) INCLUDE-MODULES LIBRARY=LIB1,
ELEMENT=(A,B),TYPE=L

v(u)

X

A B

A1 A2 B1 B2
v(t)

F
v(s)v(u)

:u
:t

(3) RESOLVE-BY-AUTOLINK
LIBRARY=LIB4,TYPE=(L,R)
SCOPE=EXPLICIT(WITHIN-SUB-LLM=B)

88 U9557-J-Z125-4-76

Resolving external references BINDER functions

3.5.3 Handling unresolved external references

The user uses the SET-EXTERN-RESOLUTION statement to define how BINDER is to
handle remaining unresolvable external references for the current LLM. It is possible to
define that unresolved external references are valid or invalid. Valid unresolved external
references are given the address of a specified symbol.

If unresolved external references are valid, they are taken over when the LLM is saved. If
unresolved external references are invalid, the LLM will be rejected when saving is
attempted.

The SET-EXTERN-RESOLUTION statement does not take effect until the current LLM is
saved with the SAVE-LLM statement. The current LLM in the work area remains
unchanged. If modules are included by means of an INCLUDE-MODULES statement
between the SET-EXTERN-RESOLUTION statements and the SAVE-LLM statement, and
an included module can resolve the unresolved external references, the SET-EXTERN-
RESOLUTION statement will be skipped.

The scope for the handling of unresolved external references can be limited to specific OMs
and sub-LLMs in the current LLM (SCOPE operand).

Example 1

Statements Current LLM
(work area)

Program library

X

A B

X
(1) START-LLM-CREATION

INTERNAL-NAME=X

(2) INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=(A,B)

A v(t)
B :u

LIB1

A v(t)
B :u

LIB1

v(t) :u

U9557-J-Z125-4-76 89

BINDER functions Resolving external references

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) The object modules A and B are read from program library LIB1 and included in the
current LLM. Object module A contains the unresolved EXTRN v(t), object module
B contains the ENTRY u. The EXTRN v(t) remains unresolved because it cannot be
resolved by the ENTRY u.

(3) This defines that the unresolved EXTRN v(t) will be given the address of the ENTRY
u when the current LLM is saved. The current LLM in the work area remains
unchanged.

(4) The current LLM is saved as an element with the element name X in program library
LIB1. The SET-EXTERN-RESOLUTION statement is executed. The EXTRN v(t) is
given the address of the ENTRY u.

X

A B

(3) SET-EXTERN-RESOLUTION
SYMBOL-NAME=T,
SYMBOL-TYPE=REFERENCES
RESOLUTION=BY-SYMBOL
(SYMBOL=U)

(4) SAVE-LLM
LIBRARY=LIB1

A v(t)
B :u

LIB1

v(t) :u

A v(t)
B :u

LIB1

X

A B
v(t) :u

X

X

A B
v(t) :u

90 U9557-J-Z125-4-76

Resolving external references BINDER functions

Example 2

X

A B

(3) SET-EXTERN-RESOLUTION
SYMBOL-NAME=T,
SYMBOL-TYPE=REFERENCES
RESOLUTION=BY-SYMBOL
(SYMBOL=U)

(4) INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=C

v(t) :u

Statements Current LLM
(work area)

Program library

X
(1) START-LLM-CREATION

INTERNAL-NAME=X
A v(t)
B :u

LIB1

X

A B
v(t) :u

C :t

A v(t)
B :u

LIB1

C :t

(2) INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=(A,B)

A v(t)
B :u

LIB1

C :t

A v(t)
B :u

LIB1

C :t

X

A B
v(t) :u

C
:t

U9557-J-Z125-4-76 91

BINDER functions Resolving external references

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) The object modules A and B are read from program library LIB1 and included in the
current LLM. Object module A contains the unresolved EXTRN v(t), object module
B contains the ENTRY u. The EXTRN v(t) remains unresolved because it cannot be
resolved by the ENTRY u.

(3) This defines that the unresolved EXTRN v(t) will be given the address of the ENTRY
u when the current LLM is saved. The current LLM in the work area remains
unchanged.

(4) The object module C with the ENTRY t is read from program library LIB1 and
included in the current LLM. The ENTRY t can resolve EXTRN v(t).

(5) The current LLM is saved as an element with the element name X in program library
LIB1. Because the EXTRN v(t) was resolved by ENTRY t, the SET-EXTERN-
RESOLUTION statement is skipped.

(5) SAVE-LLM
LIBRARY=LIB1,
ELEMENT=X

A v(t)
B :u

LIB1

X

X

A B
v(t) :u

C
:t

X

A B
v(t) :u

C
:t

C :t

92 U9557-J-Z125-4-76

Resolving external references BINDER functions

Example 3

X

A B

(3) SET-EXTERN-RESOLUTION
SYMBOL-NAME=T,
SYMBOL-TYPE=REFERENCES
RESOLUTION=BY-SYMBOL
(SYMBOL=U)

(4) SAVE-LLM
LIBRARY=LIB1

v(t) :u

Statements Current LLM
(work area)

Program library

X
(1) START-LLM-CREATION

INTERNAL-NAME=X
A v(t)
B :u

LIB1

X

A B
v(t) :u

(2) INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=(A,B)

A v(t)
B :u

LIB1

A v(t)
B :u

LIB1

A v(t)
B :u

LIB1

X

A B
v(t) :u

X

X

A B
v(t) :u

X

A B
v(t) :u

A v(t)
B :u

LIB1

X

A B
v(t) :u

X

(5) START-LLM-UPDATE
LIBRARY=LIB1
ELEMENT=X

U9557-J-Z125-4-76 93

BINDER functions Resolving external references

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) The object modules A and B are read from program library LIB1 and included in the
current LLM. Object module A contains the unresolved EXTRN v(t), object module
B contains the ENTRY u. The EXTRN v(t) remains unresolved because it cannot be
resolved by the ENTRY u.

(3) This defines that the unresolved EXTRN v(t) will be given the address of the ENTRY
u when the current LLM is saved. The current LLM in the work area remains
unchanged.

(4) The current LLM is saved as an element with the element name X in program library
LIB1. The SET-EXTERN-RESOLUTION statement is executed. The EXTRN v(t) is
given the address of the ENTRY u.

(5) The same LLM with the element name X in program library LIB1 is updated.

(6) The current LLM is saved as an element with the element name X in program library
LIB1. The specifications under (3) in the SET-EXTERN-RESOLUTION statement
are then ignored. The LLM is saved with the EXTRN v(t) unresolved (default value
in the SET-EXTERN-RESOLUTION statement).

(6) SAVE-LLM
LIBRARY=LIB1

A v(t)
B :u

LIB1

X

A B
v(t) :u

X

X

A B
v(t) :u

94 U9557-J-Z125-4-76

Handling name conflicts BINDER functions

3.6 Handling name conflicts

Name conflicts can occur when multiple entries having the same name in the External
Symbols Vector (ESV) of the LLM. Not every instance of identical names is a name conflict,
however.

The following table illustrates how BINDER reacts when identical names are encountered.

Explanation

(1) A name conflict has been detected.
BINDER accepts the name conflict and attempts to resolve it. In doing so it
proceeds in accordance with the rules described for the resolution of external refer-
ences (see page 72ff).

The user can find information about name conflicts in the lists that are output by the
SHOW-MAP statement (see page 133ff). The user can then take action to resolve
the name conflict by renaming symbols or modifying the masking of symbols (see
page 97ff).

(2) BINDER selects a suitable size for the COMMON that will accommodate the longest
CSECT of this name or the longest COMMON of this name.

(3) BINDER selects a suitable size for the COMMON that will accommodate the longest
COMMON.

(4) A name conflict has been detected.
BINDER proceeds as described in point (1). Definitions of XDSECs cannot however
be renamed or masked by the user.

Entry 2
Entry 1

CSECT ENTRY COMMON XDSEC-D

CSECT (1) (1) (2) --

ENTRY (1) (1) (1) --

COMMON (2) (1) (3) --

XDSEC-D -- -- -- (4)

U9557-J-Z125-4-76 95

BINDER functions COMMON promotion

In the statements

INCLUDE-MODULES,
MERGE-MODULES,
MODIFY-MODULE-ATTRIBUTES,
MODIFY-SYMBOL-VISIBILITY,
RENAME-SYMBOLS,
REPLACE-MODULS,
RESOLVE-BY-AUTOLINK and
SAVE-LLM

the NAME-COLLISION operand can be used to control the handling of a name conflict
caused by the statement in which this operand is specified. Note, however, that any other
name conflicts which may occur are not affected by this.

3.7 COMMON promotion

COMMONs are sections that at the time of linking do not as yet contain any data or instruc-
tions but simply reserve space for that purpose. These areas can be used after loading of
the LLM as data communication areas between different modules of the LLM or as reserved
space for CSECTs.

BINDER assigns COMMONs of the same name one shared storage area. BINDER selects
a suitable size for this area that will accommodate the longest COMMON or longest CSECT
that promotes a COMMON of this name. After they have been promoted, the COMMONs
have the same load address as the CSECT that promoted them.

If the LLM is single slice or sliced by attribute, all the COMMONs with the same name are
promoted by the first CSECT with the same name found during the scan of the LLM
structure tree from left to right.

If the LLM is sliced by user, all the COMMONs with the same name are sliced by slice. In
each slice, these COMMONs are promoted by the first CSECT with the same name
included in the slice and found during the scan of the LLM structure tree from left to right.

If the LLM has no External Symbols Vector, a COMMON that has not already been
promoted cannot be promoted at load time.

Unnamed COMMONs are handled by BINDER in the same way as named areas except
that it does not compare the name field with the names of CSECTs. Text in unnamed
CSECTs is not therefore used for promotion of a COMMON.

96 U9557-J-Z125-4-76

Handling pseudo-registers BINDER functions

3.8 Handling pseudo-registers

Pseudo-registers are main memory areas that are used for intercommunication between
different program sections. The language processors compute the alignment and length of
the pseudo-registers and pass this information on to BINDER in the form of ESV infor-
mation. BINDER combines the pseudo-registers in the modules to form pseudo-register
vectors and computes the alignment and maximum length of the pseudo-register vectors.
The maximum length of a pseudo-register vector may not exceed 4096 bytes.

BINDER does not reserve the main memory area for the pseudo-register vectors. The user
must reserve the necessary main memory area.

3.9 Address relocation

Each module that is included in the LLM comprises one or more CSECTs with addresses
relative to the beginning of the associated module. BINDER assigns relative addresses to
the individual CSECTs on linking the LLM. The address of the first CSECT of the LLM is
used as the reference address. All other CSECTs in the modules that are included in the
LLM contain an address relative to this reference address. In addition, all address refer-
ences in the CSECTs are adjusted to their relative position. If a CSECT has the relative
position 300, for example, relative to the address of the first CSECT in the LLM, all address
references in the CSECT are incremented by 300.

If the specified load address is greater than or less than the reference address of the LLM,
DBL defines the absolute addresses of the LLM by determining an address constant from
the sum of the reference address and the load address and adding this to the relative
addresses of the CSECTs.

U9557-J-Z125-4-76 97

BINDER functions Handling symbols

3.10 Handling symbols

Program definitions and references in an LLM are combined under the generic term
symbols in the following. Each symbol is identified by means of its name.

Program definitions are:

– control sections (CSECTs)

– entry points (ENTRYs)

– COMMONs

– external dummy sections as definitions (XDSEC-Ds)

References are:

– external references (EXTRNs)

– V-type constants

– weak external references (WXTRNs)

– external dummy sections as references (XDSEC-Rs)

BINDER handles symbols with the following functions:

– renaming symbols (RENAME-SYMBOLS),

– modifying the attributes of symbols (MODIFY-SYMBOL-ATTRIBUTES),

– modifying the masking of symbols (MODIFY-SYMBOL-VISIBILITY),

– modifying the symbol type (MODIFY-SYMBOL-TYPE).

98 U9557-J-Z125-4-76

Handling symbols BINDER functions

3.10.1 Symbol names

In addition to the usual EN name (external name), BINDER also supports another type of
symbol name: the EEN name (extended external name).

● EN names have a maximum length of 32 characters and may contain only the following
characters:

A-Z, a-z, 0-9, @, #, $, _, &, %, -

The name must not start with a % character.

● EEN names can consist of up to 32723 characters, on which there are no restrictions
(nonprintable characters are also permitted). Names of this kind are necessary for
compilers of object-oriented programming languages (e.g. C/C++ V3.0) in particular.

Special measures must be taken so that these names can be input and output at user
interfaces:

– EEN names cannot be input at the BINDER user interfaces. They can only be
directly generated by corresponding compilers and contained in the LLMs
generated by these compilers.

– EEN names are output in lists as follows:

BINDER restricts the printable length for the output of EEN names to 32 characters.
The compiler which has generated the name provides an algorithm, which BINDER
uses to determine a printable string representing the EEN name in its full length. By
its nature, this string is not unique and should be used only for information
purposes. In particular, a certain EEN name may be presented differently by
another application if it determines a different printable length. This kind of printable
name should therefore never be used as an input parameter.

Notes

– The type of a symbol name cannot be changed.

– Both types of symbol name can occur next to one another in the same LLM.

– The type of a symbol name is irrelevant in tests for the same name.

– BLSSERV is required to load LLMs that contain EEN names. Therefore, they cannot be
loaded in BS2000/OSD versions earlier than V3.0, and only in BS2000/OSD V3.0, if at
least version V2.0 of BLSSERV is used.

U9557-J-Z125-4-76 99

BINDER functions Handling symbols

3.10.2 Renaming symbols

The names of program definitions and references in an LLM can be changed by means of
the RENAME-SYMBOLS statement.

The following program definitions can be renamed:

– control sections (CSECTs)

– entry points (ENTRYs)

– COMMONs

The following references can be renamed:

– external references (EXTRNs)

– V-type constants

– weak external references (WXTRNs)

Program definitions and references can be renamed simultaneously. The SYMBOL-TYPE
operand determines which type is renamed.

Masked symbols can also be renamed by means of the RENAME-SYMBOLS statement.
External references relating to the masked symbols are deresolved during renaming if
requested in the MODIFY-SYMBOL-VISIBILITY statement.

The scope for renaming can be limited to specific OMs and sub-LLMs in the current LLM.

The handling of any name conflicts which may occur can be controlled with the NAME-
COLLISION operand.

100 U9557-J-Z125-4-76

Handling symbols BINDER functions

Example 1

This example illustrates the renaming of ENTRYs in an LLM. Here, one object module is
excluded.

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) The OMs A, B and C are included in the current LLM from program library LIB.

(3) The OMs D and E are included in the current LLM from program library LIB.
D and E have ENTRYs with the name “exa”.

(4) Only the name “exa” of the ENTRY in module E is changed to “abc”. The name “exa”
of the ENTRY in module D remains unchanged because it was excluded by the
SCOPE operand.

Statements Current LLM
(work area)

(1) START-LLM-CREATION
INTERNAL-NAME=X

(2) INCLUDE-MODULES
LIBRARY=LIB,
ELEMENT=(A,B,C)

(3) INCLUDE-MODULES
LIBRARY=LIB,
ELEMENT=(D,E)

(4) RENAME-SYMBOLS
SYMBOL-NAME=EXA,
SYMBOL-TYPE=ENTRY,
SCOPE=EXPLICIT(EXCEPT-
 SUB-LLM=X.D),
NEW-NAME=ABC

A B C D E
:exa :exa

X

X

A B C D E
:exa :abc

X

U9557-J-Z125-4-76 101

BINDER functions Handling symbols

Example 2

This example illustrates the renaming of ENTRYs in an LLM. Here, only one specific sub-
LLM is involved.

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) The OMs A, B and C are included in the current LLM from program library LIB.
B has an ENTRY with the name “exa”.

(3) A sub-LLM with the name MOD1 is begun at the root.

(4) The OMs D and E are included in the current sub-LLM from program library LIB.
E also has an ENTRY with the name “exa”.

(5) Only the name “exa” of the ENTRY in module E is changed to “abc” because
renaming was restricted to the sub-LLM MOD1 by means of the SCOPE operand.
The name “exa” of the ENTRY in module B remains unchanged.

(6) The current sub-LLM is ended.

Statements Current LLM
(work area)

(1) START-LLM-CREATION
INTERNAL-NAME=X

(2) INCLUDE-MODULES
LIBRARY=LIB,
ELEMENT=(A,B,C)

(4) INCLUDE-MODULES
LIBRARY=LIB,
ELEMENT=(D,E)

(5) RENAME-SYMBOLS
SYMBOL-NAME=EXA,
SYMBOL-TYPE=ENTRY,
SCOPE=EXPLICIT(WITHIN-SUB-
 LLM=X.MOD1),
NEW-NAME=ABC

A B C

D E
:exa

X

X

MOD1

A B C

D E
:abc

X

MOD1

:exa

:exa

(3) BEGIN-SUB-LLM-STATEMENTS
SUB-LLM-NAME=MOD1

(6) END-SUB-LLM-STATEMENTS

102 U9557-J-Z125-4-76

Handling symbols BINDER functions

Example 3

This example illustrates the renaming of EXTRNs in an LLM. Here, only one specific sub-
LLM is involved.

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) The OMs A, B and C are included in the current LLM from program library LIB.
B has an ENTRY with the name “n” and an EXTRN with the name “m”.

(3) A sub-LLM with the name MOD1 is begun at the root.

(4) The OMs D and E are included in the current sub-LLM from program library LIB.
D has an ENTRY with the name “u” and an EXTRN with the name “m”.

Statements Current LLM
(work area)

(1) START-LLM-CREATION
INTERNAL-NAME=X

(2) INCLUDE-MODULES
LIBRARY=LIB,
ELEMENT=(A,B,C)

(4) INCLUDE-MODULES
LIBRARY=LIB,
ELEMENT=(D,E)

(5) RENAME-SYMBOLS
SYMBOL-NAME=M,
SYMBOL-OCCURENCE=PARAMETERS
(OCCURENCE-NUMBER=ALL),
SYMBOL-TYPE=REFERENCES,
SCOPE=EXPLICIT(WITHIN-SUB-
 LLM=X.MOD1),
NEW-NAME=K

A B C

D E

X

X

MOD1(3) BEGIN-SUB-LLM-STATEMENTS
SUB-LLM-NAME=MOD1

(6) END-SUB-LLM-STATEMENTS

:n
v(m)

:u
v(m)

A B C

D E

X

MOD1
:n

v(m)

:u
v(k)

U9557-J-Z125-4-76 103

BINDER functions Handling symbols

(5) The name “m” of references is to be changed to “k” (SYMBOL-TYPE=REFER-
ENCES operand). Only the name “m” of the EXTRN in module D is changed to “k”
because renaming was restricted to the sub-LLM MOD1 by means of the SCOPE
operand. Renaming applies to every occurrence of the name (OCCURRENCE-
NUMBER=ALL operand).

(6) The current sub-LLM is ended.

Example 4

This example illustrates how the resolution of external references is affected by the
renaming of program definitions.

A C

T

E

W

I J

V

D G

Y Z

X

:m v(m) v(k)
:n v(n)

F
:u v(u)

(1) START-LLM-UPDATE LIBRARY=LIB,ELEMENT=LLM1

104 U9557-J-Z125-4-76

Handling symbols BINDER functions

A C

T

E

W

I A

V

D G

Y Z

X

:m v(m) v(k)
:n v(n)

F
:u v(u)

(2) INCLUDE-MODULES LIBRARY=LIB2,ELEMENT=A,PATH-NAME=X.Z.V

(3) RENAME-SYMBOLS SYMBOL-NAME=M,SYMBOL-TYPE=DEFINITIONS,
SCOPE=EXPLICIT(WITHIN-SUB-LLM=X.Y.T.A),NEW-NAME=K

J
:m
:n

A C

T

E

W

I A

V

D G

Y Z

X

:k v(m) v(k)
:n v(n)

F
:u v(u)

J
:m
:n

U9557-J-Z125-4-76 105

BINDER functions Handling symbols

Explanation:

(1) An LLM saved as an element with the name LLM1 in program library LIB is to be
updated. The LLM contains the following program definitions and references:

– the EXTRN v(m) in the OM C resolved by ENTRY “m” in the OM A
– the EXTRN v(u) in the OM F resolved by ENTRY “u” in the OM D
– the unresolved EXTRN v(k) in the OM G
– the EXTRN v(n) in the OM I resolved by ENTRY “n” in the OM A.

(2) The same object module A that is already included in the sub-LLM T is read from
program library LIB2 and included in the sub-LLM V. The ENTRY “n” in the most
recently included OM A now resolves the EXTRN v(n) in the OM I because OM A
lies in the same sub-LLM as OM I.

(3) The ENTRY “m” in the OM A of the sub-LLM T is renamed “k”. The external refer-
ences are thus resolved as follows:

– EXTRN v(k) in the OM G is resolved by ENTRY “k” in the OM A of the
sub-LLM T

– ENTRY v(m) in the OM C is resolved by ENTRY “m” in the OM A of the
sub-LLM V.

(4) The ENTRY “n” in the OM A of the sub-LLM T is renamed “s”. This has no influence
on the resolution of the external references.

(4) RENAME-SYMBOLS SYMBOL-NAME=N,SYMBOL-TYPE=DEFINITIONS,
SCOPE=EXPLICIT(WITHIN-SUB-LLM=X.Y.T.A),NEW-NAME=S

A C

T

E

W

I A

V

D G

Y Z

X

:k v(m) v(k)
:s v(n)

F
:u v(u)

J
:m
:n

106 U9557-J-Z125-4-76

Handling symbols BINDER functions

3.10.3 Modifying the attributes of symbols

The attributes of control sections (CSECTs) and COMMONs in the current LLM can be
changed with the MODIFY-SYMBOL-ATTRIBUTES statement.

The following attributes can be modified (see page 10ff):

– main memory resident (RESIDENT)

– shareable (PUBLIC)

– read access (READ-ONLY)

– alignment (ALIGNMENT)

– addressing mode (AMODE)

– residence mode (RMODE)

When modifying the attributes it should be noted that all COMMONs must have the same
name and all CSECTs of the same name that initialize these COMMONs with data must
have the same value for the READ-ONLY attribute.

The scope for the modification of attributes can be limited to specific OMs and sub-LLMs in
the current LLM (SCOPE operand).

Example

Statements Current LLM
(work area)

X
(1) START-LLM-CREATION

INTERNAL-NAME=X

(2) BEGIN-SUB-LLM-STATEMENTS
SUB-LLM-NAME=A1

(3) INCLUDE-MODULES LIBRARY=LIB1,
ELEMENT=(A,B)

(4) END-SUB-LLM-STATEMENTS

(5) BEGIN-SUB-LLM-STATEMENTS
SUB-LLM-NAME=A2

(6) INCLUDE-MODULES LIBRARY=LIB1,
ELEMENT=(C,D)

(7) END-SUB-LLM-STATEMENTS

(8) BEGIN-SUB-LLM-STATEMENTS
SUB-LLM-NAME=A3

A
:csect1

B C
:csect1

D

A1 A2 A3

X

U9557-J-Z125-4-76 107

BINDER functions Handling symbols

Explanation:

(1) An LLM with the internal name X is created in the work area.

(2) A sub-LLM with the name A1 is begun.

(3) The object modules A and B are included in the current sub-LLM A1 from program
library LIB1. Object module A contains a CSECT with the name CSECT1.

(4) A1 is ended.

(5) A sub-LLM with the name A2 is begun.

(6) The object modules C and D are included in A2 from program library LIB1. Object
module C contains a CSECT with the name CSECT1.

(7) A2 is ended.

(8) A sub-LLM with the name A3 is begun.

Statements Current LLM
(work area)

(9) INCLUDE-MODULES
LIBRARY=LIB1,
ELEMENT=(E,F)

(10)MODIFY-SYMBOL-ATTRIBUTES
SYMBOL-NAME=CSECT1,
READ-ONLY=YES,
PUBLIC=YES

(11)END-SUB-LLM-STATEMENTS
A

:csect1
B C

:csect1
D E

:csect1
F

A1 A2 A3

X

PUBLIC
READ-ONLY

A
:csect1

B C
:csect1

D E
:csect1

F

A1 A2 A3

X

PUBLIC
READ-ONLY

PAGE

(12)MODIFY-SYMBOL-ATTRIBUTES
SYMBOL-NAME=CSECT1,
SCOPE=EXPLICIT(WITHIN-SUB-
 LLM=X.A2),
ALIGNMENT=PAGE

108 U9557-J-Z125-4-76

Handling symbols BINDER functions

(9) The object modules E and F are included in A3 from program library LIB1. Object
module E contains a CSECT with the name CSECT1.

(10) The PUBLIC and READ-ONLY attributes of CSECT1 are modified. The current sub-
LLM is addressed. This is the sub-LLM A3. The attributes of the CSECTs “CSECT1”
in object modules A and C remain unchanged.

(11) A3 is ended.

(12) The ALIGNMENT attribute of the CSECT1 is modified. Object module C in the sub-
LLM A2 is addressed with the path name X.A2. The attributes of the CSECTs
“CSECT1” in object modules A and E remain unchanged.

3.10.4 Modifying the masking of symbols

The user has the facility to mask control sections (CSECTs) and entry points (ENTRYs) in
the current LLM. A masked symbol is saved in the External Symbols Vector (ESV) of the
LLM, but it is provided with a flag (mask) which makes it “invisible”. Such a symbol is thus
“invisible” for the autolink function and is not used for the resolution of external references.

The extent to which the symbols remain visible or are masked is determined by the user
with the MODIFY-SYMBOL-VISIBILITY statement. With masked symbols it is possible to
choose whether resolved external references relating to the specified symbols remain
resolved or are to be deresolved (KEEP-RESOLUTION operand).

The scope for modifying the masking of symbols can be limited to specific OMs and sub-
LLMs in the current LLM (SCOPE operand).

The handling of any name conflicts which may occur can be controlled with the NAME-
COLLISION operand.

U9557-J-Z125-4-76 109

BINDER functions Handling symbols

Example

This example illustrates how the resolution of external references is affected by the masking
and renaming of symbols.

Statements Current LLM
(work area)

Program library
(LIB1)

(1) START-LLM-UPDATE
LIBRARY=LIB1,
ELEMENT=Y

A B C

X

:n v(k) v(n)

Y

A B C

X

:n v(k) v(n)

(2) MODIFY-SYMBOL-VISIBILITY
SYMBOL-NAME=N,
VISIBLE=NO (KEEP-
 RESOLUTION=YES)

A B C

X

[:n] v(k) v(n)

A B C

X

[:t] v(k) v(n)

(3) RENAME-SYMBOLS
SYMBOL-NAME=N,
SYMBOL-TYPE=DEFINITIONS,
NEW-NAME=T

A B C

X

[:t] v(k) v(t)

(4) RENAME-SYMBOLS
SYMBOL-NAME=N,
SYMBOL-TYPE=REFERENCES,
NEW-NAME=T

110 U9557-J-Z125-4-76

Handling symbols BINDER functions

Explanation:

(1) An LLM X saved as an element with element name Y in program library LIB1 is to
be updated. The LLM X contains the EXTRN v(n) that is resolved by the ENTRY n,
and the unresolved EXTRN v(k).

(2) The ENTRY n in the LLM X is masked (masking is represented by square brackets).
The resolved EXTRN v(n) remains resolved (KEEP-RESOLUTION=YES operand).

(3) The name “n” of the masked ENTRY is changed to “t”. The resolved EXTRN (n) is
thus deresolved.

(4) The names “n” of the EXTRNs are changed to “t”. The EXTRN v(t) cannot be
resolved by the ENTRY t because the ENTRY t is masked.

3.10.5 Modifying symbol types

With the MODIFY-SYMBOL-TYPE statement, the user can modify the types of symbols in
the current LLM. Note, however, that “symbols” in this context can only be references. The
user cannot modify the types of program definitions (CSECTs, ENTRYs).

External references (EXTRNs), V constants (VCONs) and weak external references
(WXTRNs) can be converted into each other almost without restrictions. The user can, for
example, convert EXTRNs or VCONs into WXTRNs in order to prevent these external refer-
ences from being resolved by the autolink function. However, it is not possible to convert
unreferenced EXTRNs and WXTRNs into VCONs.

A further typical application for the MODIFY-SYMBOL-TYPE statement results from the use
of OCM (Overlay Control Module) with user-defined slices (see the START-LLM-CREATION
statement). Since only VCONs may be used as references in OCMs, all references must
have the symbol type VCON.

The scope for modification of symbol types can be restricted to certain object modules and
sub-LLMs in the current LLM (operand SCOPE).

The MODIFY-SYMBOL-TYPE statement has no effect on external references which have
already been resolved.

U9557-J-Z125-4-76 111

BINDER functions Merging modules

3.11 Merging modules

A sub-LLM or an entire LLM can be “merged”, i.e. all CSECTs of the sub-LLM combined to
form a single CSECT. External references between the merged modules remain resolved
and are deleted from the External Symbols Vector. With the operand ENTRY-LIST, the user
can specify which CSECTs and ENTRYs are to remain in the External Symbols Vector, and
can thus still be used for resolving external references. Each CSECT which is merged and
remains in the External Symbols Vector is converted into an ENTRY.

The following examples show three possible situations which can occur when a sub-LLM is
merged.

Case 1

The sub-LLM to be merged contains only refer-
ences to symbols within the same sub-LLM.

Consequence:

The external reference is finally resolved and is
deleted from the External Symbols Vector.
If the user specifies the definition in operand
ENTRY-LIST, it remains in the ESV and is
converted into an ENTRY if it was a CSECT.

Sub-LLM
to be merged

Defintion Reference

OM1 OM2

OM: object module

112 U9557-J-Z125-4-76

Merging modules BINDER functions

Case 2

Case 3

The sub-LLM to be merged contains refer-
ences to symbols in one or more other
sub-LLMs.

Consequence:

The resolution of external references
remains unchanged.
The External Symbols Vector is also not
affected.

OM: object module

Sub-LLM
to be merged

Other
sub-LLM

Reference Defintion

OM1 OM2

LLM

The sub-LLM to be merged contains defini-
tions to which other sub-LLMs refer.

Consequence:

If the user specifies these definitions in the
ENTRY-LIST operand, they remain in the
External Symbols Vector and are changed to
ENTRYs if they were CSECTs. No changes
are made to the resolution of the external
reference in OM2.

If, however, the user does not specify the
ENTRY-LIST operand, the definition is
deleted from the External Symbols Vector.
The external reference in OM2 is now
unresolved and BINDER attempts to resolve
this external reference with the aid of the
definitions which exist in the External
Symbols

LLM

OM1 OM2

Sub-LLM
to be merged

Other
sub-LLM

Defintion Reference

OM: object module

U9557-J-Z125-4-76 113

BINDER functions Merging modules

After the merge operation, the following logical structure exists for the sub-LLM:

– one sub-LLM node with the name of the merged sub-LLM,

– one prelinked module (as a “leaf” in the logical structure, see page 8ff) with the same
name as the merged sub-LLM.

All nodes removed by the merge procedure are still visible in the BINDER list during the
BINDER run. However, they are not stored with SAVE-LLM.

If the CSECTs to be merged are contained in different slices, the following should be noted:

– LLMs with user-defined slices may not be merged.

– In the case of slices by attributes, the new CSECT is inserted in the slice whose
attributes match those specified with the NEW-CSECT-ATTRIBUTES operand.

If a definition specified in ENTRY-LIST exists more than once in the sub-LLM to be merged,
only one definition with this name will remain in the External Symbols Vector. This is deter-
mined as follows:

– CSECTs have priority over ENTRYs,

– the first definition with this name which occurs in the External Symbols Vector remains
there.

No list for symbolic debugging (LSD) is generated for the new CSECT. The merge module
is not regarded as a runtime module, which means that the visibility of the symbols also
remains unchanged. COMMONs, external dummy sections (XDSEC-D) and pseudo-
registers in the merged modules also remain unchanged. The initialization of the
COMMONs is also updated, as is the External Symbols Vector.

114 U9557-J-Z125-4-76

Merging modules BINDER functions

Example 1

Merging an entire LLM. The result is an LLM which contains only a single module (prelinked
module).

Explanation:

(1) An LLM stored as an element with the name M in program library LIB1 is to be
merged. For this, it is read into the work area. The LLM has the internal name X1.

(2) The entire LLM with the internal name X1 is merged, since PATH-NAME=*NONE
was specified. The new CSECT receives the same name as the LLM because the
default value *NAME is used for NEW-CSECT-NAME.

Current LLM

OM4
CSECT

:d

SUB1

X1

(work area)
Statements

SUB2

OM3
CSECT

:c

OM2
CSECT

:b

OM1
CSECT

:a

(1) START-LLM-UPDATE
LIBRARY=LIB1,
ELEMENT=M

(2) MERGE-MODULES
NAME=X1,
PATH-NAME=*NONE

X1(GM)
CSECT

:x1

X1

GM: prelinked module

U9557-J-Z125-4-76 115

BINDER functions Merging modules

Example 2

Merging a sub-LLM with changes to the resolution of the external references.

Initial situation:

In LLM X2, all external references except EXTRN v(z) are resolved by CSECTs or ENTRYs
in LLM X2.

Current LLM

X2

(work area)
Statements

SUB1

(1) START-LLM-UPDATE
LIBRARY=LIB1,
ELEMENT=N

(2) MERGE-MODULES
NAME=SUB2,
PATH-NAME=X2.SUB1,
NEW-CSECT-NAME=*STD,
ENTRY-LIST=(b,y)

X2

GM: prelinked module

SUB2

OM1
CSECT:a
ENTRY:x
EXTRN

v(d)

OM2
CSECT:b
CSECT:c
EXTRN

v(e)
EXTRN

v(z)

OM3
CSECT:d
ENTRY:y

OM4
CSECT:e

EXTRN
v(b)

EXTRN
v(x)

SUB1

SUB2

SUB2(GM)
CSECT:a
ENTRY:b
ENTRY:y
EXTRN
 v(e)
EXTRN
 v(z)

 OM4
CSECT:e

EXTRN
 v(b)
EXTRN
 v(x)

116 U9557-J-Z125-4-76

Merging modules BINDER functions

Explanation:

(1) A sub-LLM of the LLM with the internal name X2 is to be merged. For this, the LLM
X2, which is stored as library element N in program library LIB1, is read into the
work area.

(2) Sub-LLM SUB2, which can be accessed via path X2.SUB1, is merged. The new
CSECT receives the name of the first CSECT in sub-LLM SUB2. The program
definitions b and y from sub-LLM SUB2 remain in the External Symbols Vector,
whereby b is converted into an ENTRY. All other program definitions from SUB2
(c,d,x) are deleted from the External Symbols Vector (ESV).

After SUB2 has been merged:

– EXTRN v(d) is finally resolved and no longer appears in the ESV

– EXTRN v(z) is still unresolved

– EXTRN v(x) is now also unresolved because it lies outside sub-LLM SUB2 and
the ENTRY x in SUB2 has been deleted from the ESV.

U9557-J-Z125-4-76 117

BINDER functions Defining default values

3.12 Defining default values

The user can define his/her own default values for some of the operands for a BINDER run
or an edit run (see page 130).

The following default values can be defined:

● MAP defaults:
These are defined with the MODIFY-MAP-DEFAULTS statement and are valid for the
duration of a BINDER run.

● CURRENT defaults:

– The current input library (CURRENT-INPUT-LIB) for inclusion and replacement of
modules is defined with the INCLUDE-MODULES and REPLACE-MODULES
statements.

– The current input/output library for LLMs, the current element name and the current
element version are defined with the START-LLM-UPDATE and SAVE-LLM state-
ments.

– The current sub-LLM is set with the BEGIN-SUB-LLM-STATEMENTS statement.
The END-SUB-LLM-STATEMENTS statement makes the next higher LLM the
current sub-LLM.

● INCLUSION-DEFAULTS:
These are set in the START-LLM-CREATION, START-LLM-UPDATE and MODIFY-LLM-
ATTRIBUTES statements for the duration of an edit run and can be changed tempo-
rarily for the duration of an INCLUDE-MODULES or REPLACE-MODULES statement.

● SAVE defaults:
These values are defined in the SAVE-LLM ...=LAST-SAVE... statement and are
available for the duration of an edit run.

● Global defaults (STD-DEFAULTS):
Global defaults which define the format of the LLM and the handling of name conflicts
can be set with the MODIFY-STD-DEFAULTS statement. They are valid for the duration
of a BINDER run.

118 U9557-J-Z125-4-76

Display functions BINDER functions

3.13 Display functions

3.13.1 Displaying the default values

The SHOW-DEFAULTS statement permits the user to display the current default values
(see page 117). The following defaults can be selected for display:

– the global defaults (STD-DEFAULTS)

– the CURRENT defaults

– the INCLUSION-DEFAULTS

– the values for the last saving of LLMs (LAST-SAVE) or

– the defaults for the BINDER lists (MAP-DEFAULTS).

The CURRENT-DEFAULTS, INCLUSION-DEFAULTS and LAST-SAVE operands are
meaningful only after the START-LLM-CREATION or START-LLM-UPDATE statement has
been executed. The values are output on SYSOUT.

Example

The example below illustrates output of the SHOW-DEFAULTS statement.

/start-binder
% BND0500 BINDER VERSION 'V02.3A00' STARTED
//start-llm-creation internal-name=complex1
//show-defaults
STD-DEFAULTS:
 OVERWRITE =YES
 FOR-BS2000-VERSIONS =FROM-CURRENT
 CONNECTION-MODE =OSD-DEFAULT
 REQUIRED-COMPRESSION=NO
 NAME-COLLISION:
 INCLUSION =IGNORED
 SAVE =IGNORED
 SYMBOL-PROCESSING=IGNORED
CURRENT-DEFAULTS:
 CURRENT-SUB-LLM =COMPLEX1
 LIBRARY:
 CURRENT =
 CURRENT-INPUT-LIB=
 ELEMENT:
 CURRENT =

U9557-J-Z125-4-76 119

BINDER functions Display functions

 VERSION:
 CURRENT-VERSION =
INCLUSION-DEFAULTS:
 LOGICAL-STRUCTURE=WHOLE-LLM
 TEST-SUPPORT =NO
LAST-SAVE:
 OVERWRITE =STD
 FOR-BS2000-VERSIONS =STD
 REQUIRED-COMPRESSION=STD
 NAME-COLLISION =STD
 SYMBOL-DICTIONARY =YES
 RELOCATION-DATA =YES
 LOGICAL-STRUCTURE =WHOLE-LLM
 TEST-SUPPORT =YES
 LOAD-ADDRESS =UNDEFINED
 ENTRY-POINT =*STD
 MAP =YES
MAP-DEFAULTS:
 MAP-NAME =*STD
 COMMENT =NONE
 HELP-INFORMATION =YES
 GLOBAL-INFORMATION =YES
 LOGICAL-STRUCTURE =YES
 RESOLUTION-SCOPE =YES
 PHYSICAL-STRUCTURE =YES
 PROGRAM-MAP =PARAMETERS
 DEFINITIONS =ALL
 INVERTED-XREF-LIST=NONE
 REFERENCES =ALL
 UNRESOLVED-LIST =SORTED (WXTRN=YES,NOREF=NO)
 SORTED-PROGRAM-MAP =NO
 PSEUDO-REGISTER =NO
 UNUSED-MODULE-LIST =NO
 DUPLICATED-LIST =NO
 MERGED-MODULES =YES
 INPUT-INFORMATION =YES
 STATEMENT-LIST =NO
 OUTPUT =*SYSLST
 SYSLST-NUMBER =STD
 LINES-PER-PAGE =64
 LINE-SIZE =136
//end
% BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS: 'OK'

120 U9557-J-Z125-4-76

Display functions BINDER functions

3.13.2 Displaying symbol information

With the SHOW-SYMBOL-INFORMATION statement, the user can display information
about symbols. The amount of information to be displayed can be restricted with the
INFORMATION operand, depending on what the user wishes to see at the moment. The
user can, for example, display the positions of symbols in the logical structure of the LLM,
their attributes or their relative addresses (name of the slice and relative address within this
slice) either separately or simultaneously. The user can also select the following for display:

– all visible definitions

– the COMMONs and their initialization

– the resolved external references

– a list of symbol names used more than once

– a list of the unresolved external references.

The type of display generally corresponds to the type used for the BINDER lists (see
page 133ff). The information is output on SYSOUT.

U9557-J-Z125-4-76 121

BINDER functions Display functions

Example

/start-binder
% BND0500 BINDER VERSION 'V02.3A00' STARTED
//start-llm-update library=bnd.llmlib,element=complex1 ———————————————— (1)
//show-symbol-information information=all ————————————————————————————— (2)
AUTOA SD ——————————————————————————————————— (3)
 @=000000A8 L=00000040 (AA......)
 IN MODULE : AUTOA
 IN SLICE:PUU-ROU-RTU-RMU + 000000A8
AUTOA SD
 @=00000068 L=00000040 (AA......)
 IN MODULE : AUTOA
 IN SLICE:PUU-ROU-RTU-RMU + 00000068
AUTOA SD
 @=00000000 L=00000040 (AA......)
 IN MODULE : AUTOA
 IN SLICE:PUU-ROU-RTU-RMU + 00000000
AUTOC2 CM
 NOT PROMOTED L=00000050 (AA......)
 IN MODULE : AUTOC
AUTOC2 CM
 NOT PROMOTED L=00000050 (AA......)
 IN MODULE : AUTOC
AUTOC SD
 @=000000E8 L=00000018 (AA......)
 IN MODULE : AUTOC
 IN SLICE:PUU-ROU-RTU-RMU + 000000E8
AUTOC SD
 @=00000040 L=00000018 (AA......)
 IN MODULE : AUTOC
 IN SLICE:PUU-ROU-RTU-RMU + 00000040
AUTO22 SD
 @=00000118 L=00000006 (AA......)
 IN MODULE : AUTO22
 IN SLICE:PUU-ROU-RTU-RMU + 00000118
AUTO22 CM
 @=00000118 L=00000050 (AA......)
 IN MODULE : AUTO23
AUTO2 SD
 @=00000100 L=0000000C (AA......)
 IN MODULE : AUTO2
 IN SLICE:PUU-ROU-RTU-RMU + 00000100
AUTO2 SD
 @=00000058 L=0000000C (AA......)
 IN MODULE : AUTO2
 IN SLICE:PUU-ROU-RTU-RMU + 00000058
AUTO21 SD

122 U9557-J-Z125-4-76

Display functions BINDER functions

 @=00000110 L=00000006 (AA......)
 IN MODULE : AUTO21
 IN SLICE:PUU-ROU-RTU-RMU + 00000110
AUTO23 SD
 @=00000168 L=00000006 (AA......)
 IN MODULE : AUTO23
 IN SLICE:PUU-ROU-RTU-RMU + 00000168
//end
% BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS: 'OK'

(1) LLM COMPLEX1 is read into the BINDER work area.

(2) The following information is output for all symbols in the LLM:

– Symbol name

– Type of symbol (CSECT, COMMON,...)

– Load address for CSECTs and ENTRYs; for COMMONs, the load address of
the CSECT that promoted the COMMON

– Length of the text information in the case of CSECTs

– Attributes

– Name of the module containing the symbol

– Name of the slice containing the symbol and relative address of the symbol in
the slice

(3) The first symbol with the name AUTOA is a CSECT and has the load address
000000A8 (length of the text information of the CSECT: 00000040). The CSECT
has the following attributes: AMODE=ANY, RMODE=ANY. No other attributes are
specified. The symbol is located in the module AUTOA and in the slice with the
name PUU-ROU-RTU-RMU. There it has the relative address 000000A8.

U9557-J-Z125-4-76 123

BINDER functions Display functions

3.13.3 Displaying and checking library elements

LLMs or object modules in specific libraries can be displayed and checked at regular
intervals with the SHOW-LIBRARY-ELEMENTS statement. The user can, just as in the list
output function SHOW-MAP, select the output device for the information. In order to avoid
name conflicts, the user can have a list of endangered symbols (DUPLICATE SYMBOLS)
generated during a BINDER run. The generated lists (except for those output on SYSLST)
are by default ISAM files with ISAM keys with a length of 8.
The ISAM key can be used for evaluation of the lists. The ISAM key is described in the
appendix (page 405f).

Example

In the following example the user first has information about the LLMs AUTOLINKL and
AUTOLINKR output from the BND.LLMLIB program library to SYSLST. After this the user
requests a list of the symbols with the same names for these two LLMs (DUPLICATE
SYMBOLS) and also has this list output to SYSLST.

/start-binder
% BND0500 BINDER VERSION 'V02.3A00' STARTED
//show-library-elements library=bnd.llmlib, -
// element=(autolinkl,autolinkr) —————————————————— (1)
//show-library-elements library=bnd.llmlib,-
// element=(autolinkl,autolinkr),-
// select=name-collision ————————————————————————— (2)
%//end
% BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS: 'OK'

(1) Information about the library elements AUTOLINKL and AUTOLINKR is displayed.

BINDER V02.3A *LIBRARY CONTENT* DATE=2004-05-03 10:43:51 PAGE 1
LIBRARY LINKNAME TYPE
 TYP ELEMENT VERSION
 TY SYMBOL TY SYMBOL TY SYMBOL TY SYMBOL TY SYMBOL
--
:CTID:$USERID.BND.LLMLIB PLAM
 (L) AUTOLINKL @
 SD AUTOA SD AUTOC SD AUTO2 SD AUTOA SD AUTOA
 SD AUTOC SD AUTO2
 (L) AUTOLINKR @
 SD AUTO21 SD AUTO22 SD AUTO23
 --- END OF SECTION ---

124 U9557-J-Z125-4-76

Display functions BINDER functions

(2) The list of symbols with the same name is output for library elements AUTOLINKL
and AUTOLINKR:

BINDER V02.3A *DUPLICATE SYMBOLS* DATE=2004-05-03 10:43:51 PAGE 1
SYMBOL
 LIBRARY LINKNAME TYPE
 TYP ELEMENT VERSION
 SYMBOL TYPE
--
AUTOA
 :CTID:$USERID.BND.LLMLIB PLAM
 (L) AUTOLINKL @
 CSECT
 CSECT
 CSECT
AUTOC
 :CTID:$USERID.BND.LLMLIB PLAM
 (L) AUTOLINKL @
 CSECT
 CSECT
AUTO2
 :CTID:$USERID.BND.LLMLIB PLAM
 (L) AUTOLINKL @
 CSECT
 CSECT
 --- END OF SECTION ---

U9557-J-Z125-4-76 125

BINDER functions Controlling logging

3.14 Controlling logging

Lists containing information about the current LLM are output:

– by means of the SHOW-MAP statement

– by means of the SAVE-LLM statement (MAP operand) on saving an LLM.

The following may be selected as the output destination:

– the system file SYSLST.

– a file that is output to SYSOUT automatically by means of an implicit SHOW-FILE
command (see the “Commands” manual [6]). This file is created under the default file
name and deleted immediately after it has been output unless the user prevents this.

– a file whose name is specified by the user.

– a file defined by the default file link name or a specified file link name.

– a user-written subroutine which evaluates the supplied information. This information is
output to an ISAM file which the subroutine must access.

These output destinations are also available in the SHOW-LIBRARY-ELEMENTS
statement.

Operands in the SHOW-MAP statement determine which information is output. Default
settings can be modified with the MODIFY-MAP-DEFAULTS statement. The various lists
are described on page 133f.

The START-STATEMENT-RECORDING and STOP-STATEMENT-RECORDING statements
are used to activate and deactivate recording of BINDER statements. The statements re-
corded in this way are output in a list using the SHOW-MAP statement if STATEMENT-LIST
operand is set to YES.

126 U9557-J-Z125-4-76

Controlling error processing BINDER functions

3.15 Controlling error processing

3.15.1 Severity classes

BINDER uses a table of severity classes for error processing purposes. These classes
describe all the possible actions to be taken by BINDER’s error processing routines if errors
occur in the BINDER run. The following severity classes are possible:

Each severity class has a certain weight. The INFORMATION class has the lowest severity
level, the INTERNAL ERROR class the highest severity level. The severity classes to be
handled by BINDER are defined by the user with the MODIFY-ERROR-PROCESSING
statement.

The user can define for the severity classes whether, upon the occurrence of errors of
certain severity classes,

– the BINDER run is to be terminated

– error messages are to be output

– user and/or task switches are to be set.

Severity class Meaning

INFORMATION No error detected. An information messages output.

WARNING It is possible that the LLM cannot be loaded. A warning message
is output..

UNRESOLVED EXTERNS The LLM contains unresolved external references. Loading is
possible.

SYNTAX ERROR Error detected during syntax checking of a statement.

RECOVERABLE ERROR Error detected. With some types of error, processing is
continued automatically or upon input of an acknowledgment.

FATAL ERROR Error detected. Processing of the LLM is aborted without output
of a dump.

INTERNAL ERROR Internal error. Processing of the LLM is aborted. The user can
request that a dump be output.

U9557-J-Z125-4-76 127

BINDER functions Controlling error processing

3.15.2 Message handling

Using the MESSAGE-CONTROL operand in the MODIFY-ERROR-PROCESSING
statement it is possible to define for which severity classes messages are to be output. This
operand determines the lowest severity class as of which messages are output. The
following table illustrates how the MESSAGE-CONTROL operand controls message output.

Messages of severity class MESSAGECONTROL

INFORMATION WARNING ERROR

INFORMATION yes no no

WARNING yes yes no

UNRESOLVED EXTERNS yes yes no

SYNTAX ERROR yes yes yes

RECOVERABLE ERROR yes yes yes

FATAL ERROR yes yes yes

INTERNAL ERROR yes yes yes

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9557-J-Z125-4-76 129

4 BINDER input/output
Figure 7 provides an overview of the possible BINDER input and output files.

Figure 7: BINDER input and output files

EAM object
module file

Object modu-
le library
(OML)

Program
library
type R

Program
library
type L

Program
library
type L

List file

BINDER

Input

Output
LLMs Lists

LLMsStatements Object
modules
(OMs)

SYSOUT

Program
file

PAM-LLM

130 U9557-J-Z125-4-76

Inputs for BINDER BINDER input/output

4.1 Inputs for BINDER

The inputs for BINDER are statements and modules.

Statements

BINDER expects statements from the system file SYSDTA. The statements can be entered
interactively or from procedure files. The dialog interface SDF (System Dialog Facility) is
available to the user for interactive input (see page 177ff). Each statement is processed
immediately after it is entered.

Operand values can be specified as global values in the BINDER statements. These values
can then be used as default values within a defined scope in the subsequent statements.
The following scopes are defined:

– Scope for one statement
This scope is local. An operand value applies only to the associated statement.

– Scope for an edit run
An edit run comprises a sequence of statements that begins with the START-LLM-
CREATION or START-LLM-UPDATE statement and ends with the next START-LLM-
CREATION or START-LLM-UPDATE statement or with the END statement.
An operand value applies to an edit run if it can be used as a default value in other state-
ments of the same edit run.

– Scope for a BINDER run
A BINDER run is a sequence of statements that begins after the BINDER load call and
ends with the END statement.
An operand value applies to a BINDER run if it can be used as a default value in other
statements of the same BINDER run.

U9557-J-Z125-4-76 131

BINDER input/output Inputs for BINDER

Example

Explanation:

(1) BINDER load call

(2) The internal name X is taken over as the element name from the START-LLM-
CREATION statement of the same edit run.

(3) The program library LIB1 is taken over from the last SAVE-LLM statement of the
same edit run.

(4) The program library LIB1 and the element name A1 are taken over from the last
SAVE-LLM statement of the same edit run.

(5) The program library LIB2 is taken over from the START-LLM-UPDATE statement of
the same edit run.

START-BINDER
START-LLM-CREATION INTERNAL-NAME=X
INCLUDE-MODULES ...
.
.
SAVE-LLM LIBRARY=LIB1,ELEMENT=*CURRENT-NAME
INCLUDE-MODULES ...
.
.
SAVE-LLM LIBRARY=*CURRENT,ELEMENT=A1
INCLUDE-MODULES ...
.
.
SAVE-LLM LIBRARY=*CURRENT,ELEMENT=*CURRENT-NAME

START-LLM-UPDATE LIBRARY=LIB2,ELEMENT=B
REPLACE-MODULES ...
.
.
SAVE-LLM LIBRARY=*CURRENT,ELEMENT=B

END

(1)

(2)

(3)

(5)

(4)

First
edit
run

Second
edit
run

BINDER-
run

132 U9557-J-Z125-4-76

Inputs for BINDER BINDER input/output

Modules

Modules can be object modules (OMs), link and load modules (LLMs) or both. The following
are input sources for modules:

– for OMs: a program library (element type R), an object module library (OML) or the EAM
object module file,

– for LLMs: a program library (element type L).

Opening the input sources

Program libraries, module libraries and the EAM object module file are opened for input in
the order in which they are specified in the statement sequence. They remain open during
the entire BINDER run and are closed only by the END statement. An input library cannot
therefore be used simultaneously as an output library. For all files that are read in input
mode BINDER uses the DMS “secondary read” function (see the “Introductory Guide to
DMS” [16]).

Simultaneous BINDER runs

All input sources accessed in BINDER statements are opened in read-only mode, which
means that write accesses (as in SAVE-LLM) are forbidden. This means that several tasks
may access one and the same LLM. Several tasks can, for example, transfer the same LLM
to the BINDER work area with START-LLM-UPDATE and modify it there. However, a task
may store the modified LLM under the same name and with the same element version
number only if no other task is currently processing this LLM.

U9557-J-Z125-4-76 133

BINDER input/output Outputs from BINDER

4.2 Outputs from BINDER

BINDER outputs are as follows:

– saved LLMs. Each LLM is saved with its own element name in a program library.

– lists containing status information relating to the current LLM or concluding information
about the saved LLM.

With the aid of the display functions (see section “Display functions” on page 118ff), the
user can display information about default values, symbols and library elements.

4.2.1 Saved LLMs

BINDER can also link multiple LLMs in a single BINDER run. Each SAVE-LLM statement
saves the current LLM with its current structure as a separate type L library element in a
program library. LLMs can only be saved by means of the SAVE-LLM statement. If a new
START-LLM-CREATION or START-LLM-UPDATE statement is issued without the current
LLM having been previously saved by means of the SAVE-LLM statement, the previous
current LLM will be overwritten. The END statement terminates the BINDER run without
saving the current LLM.

4.2.2 Lists

Lists containing information about the status of the LLM are output by means of the SHOW-
MAP statement, lists containing concluding information about the saved LLM are output
with the SAVE-LLM statement (MAP=YES operand).

The output destination may be:

– the system file SYSLST.

– a file that is output to SYSOUT automatically by means of an implicit SHOW-FILE
command (see the “Commands” manual [6]). This file is created under the default file
name and deleted immediately after it has been output unless the user prevents this.

– a file whose name is specified by the user.

– a file defined by the default file link name or a specified file link name.

– a user-written subroutine which evaluates the supplied information. This information is
output to an ISAM file which the subroutine must access.

These output destinations are also available in the SHOW-LIBRARY-ELEMENTS
statement.

134 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

The lists generated by SHOW-MAP or SHOW-LIBRARY-ELEMENTS (except for those
output on SYSLST) are by default ISAM files with ISAM keys with a length of 8. The ISAM
key can be used for evaluation of the lists. A description of the ISAM keys is provided in the
appendix (page 405f).

The operands in the SHOW-MAP statement determine which lists of information are output.
Default settings can be modified by a preceding MODIFY-MAP-DEFAULTS statement. A list
with the name *STD is always generated automatically. The user can, however, also define
other lists in a BINDER run with the MODIFY-MAP-DEFAULTS statement and can name
them individually (MAP-NAME operand). The user can then, for example, define different
default values for each list and/or determine the scope of the lists. If the list specified in
MAP-NAME does not already exist, it is created; otherwise, the values for the list are simply
updated. SHOW-MAP cannot be used to define lists; this can be done only with the
MODIFY-MAP-DEFAULTS statement. A SHOW-MAP statement for an existing list has no
effect on subsequent SHOW-MAP statements and changes nothing in the other MAP defini-
tions.

The following table provides an overview of the various lists with their associated operands.
The individual lists are then illustrated by way of an example.

A header line containing a user comment can be defined for all lists (USER-COMMENT
operand).

List Operands

Help information (list of abbreviations) HELP-INFORMATION

Global information GLOBAL-INFORMATION

Logical structure LOGICAL-STRUCTURE

Physical structure PHYSICAL-STRUCTURE

Program map PROGRAM-MAP

Unresolved definitions list
(list of unresolved external references)

UNRESOLVED-LIST

Sorted symbols definitions list
(sorted list of program definitions)

SORTED-PROGRAM-MAP

Pseudo-registers list PSEUDO-REGISTER

Unused modules list UNUSED-MODULE-LIST

Merged modules
(shown in other lists)

MERGED-MODULES

Duplicate symbols definitions list
(list of multiple program definitions)

DUPLICATE-LIST

Input information INPUT-INFORMATION

Statement list STATEMENT-LIST

U9557-J-Z125-4-76 135

BINDER input/output Outputs from BINDER

Example of list output

/start-binder ——— (1)
//mod-map-def user-comment=c'LIST EXAMPLE', - ————————————————————————— (2)
// help-information=*yes, - ———————————————————————————————— (3)
// global-information=*yes, - —————————————————————————————— (4)
// logical-structure=*yes(res-scope=*yes,hsi-code=*yes), - — (5)
// physical-structure=*yes, - —————————————————————————————— (6)
// program-map=*par(def=*all,inv-xref-list=*all,ref=*all), - (7)
// unresolved-list=*yes(- ————————————————————————————————— (8)
// noref=*yes), - ————————————————————— (9)
// sorted-program-map=*yes, - —————————————————————————————— (10)
// pseudo-register=*yes, - ————————————————————————————————— (11)
// unused-module-list=*yes, - —————————————————————————————— (12)
// duplicate-list=*yes(inverted-xref-list=*yes), - ————————— (13)
// merged-modules=*yes, - —————————————————————————————————— (14)
// input-information=*yes, - ——————————————————————————————— (15)
// statement-list=*yes, - —————————————————————————————————— (16)
// output=*syslst —— (17)
//start-statement-recording ——— (18)
//start-llm-creation internal-name=complex1 ——————————————————————————— (19)
//include-modules library=bnd.llmlib,element=(autolinkl,autolinkr) ———— (20)
//save-llm library=bnd.llmlib,element=complex1 ———————————————————————— (21)
//end ——— (22)

(1) BINDER call

(2) Definition of defaults for the BINDER lists. A header line with the title “LIST
EXAMPLE” is output for all lists.

(3) Help information

(4) Global information

(5) Logical structure list

(6) Physical structure list

(7) Program map

(8) Unresolved definitions list

(9) Not referenced symbols list

(10) Sorted symbols definition list

(11) Pseudo-registers list

(12) Unused modules list

(13) Duplicate symbols definitions list

(14) Merged modules are also output in the lists

136 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

(15) Input information

(16) Recorded BINDER statements list

(17) The output destination is system file SYSLST

(18) Switching on the recording of BINDER statements

(19) An LLM with the internal name COMPLEX1 is generated

(20) LLMs AUTOLINKL and AUTOLINKR, which are stored in program library
BND.LLMLIB, are included in the LLM

(21) The LLM is stored in program library BND.LLMLIB as a type L element. The library
element contains the element name COMPLEX1. The BINDER statement SAVE-
LLM initiates output of the BINDER list provided MAP=YES is specified in SAVE-
LLM. The defaults set in (2) to (17) are used for list output.

(22) Termination of the BINDER run

The lists output under points (3) through (16) are described in detail below.

Help information (3)

The abbreviations used in the subsequent lists are explained in this list (e.g. SD for
CSECT).

BINDER V02.3A *HELP INFORMATION* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 1
LIST EXAMPLE
ATTRIBUTES CONVERSION

+----------------- AMODE: S=24 BITS, X=31 BITS, A=ANY
| +--------------- RMODE: S=24 BITS, A=ANY
| | +------------- ALIGNMENT: P=PAGE ALIGNED, O=OTHER
| | | +----------- ACCESS: R=READ-ONLY
| | | | +--------- INVISIBILITY: I=INVISIBLE, R=RUN-TIME
| | | | | +------- RESIDENT: R=RESIDENT
| | | | | | +----- PUBLIC/PRIVATE: P=PUBLIC
| | | | | | | +--- PRIVILEGE: P=PRIVILEGED
| | | | | | | |
V V V V V V V V (. = NOT SPECIFIED)
S S . R I R P P
X A P . R . . .
A O

MAP GLOSSARY

: CM : COMMON : SD : CSECT :
: ER : EXTERN : SUB : SUB-LLM :
: GM : GROSSMODULE : VC : VCON :
: LD : ENTRY : WX : WEAK-EXTERN :
: LLM : LINK AND LOAD MODULE : XD : XDSECT-DEF :
: OM : OBJECT MODULE : XR : XDSECT-REF :
: RT : RUN-TIME : :

 --- END OF SECTION ---

GROSSMODULE = prelinked module

U9557-J-Z125-4-76 137

BINDER input/output Outputs from BINDER

Global information (4)

This list contains the following information:

ENTRY POINT
Address and position of the start address of the LLM (relative to the associated
slice), HSI code, memory access mode and name of the symbol.
This information is significant only after the LLM has been saved. Currently the
memory access mode only applies to internal applications on systems with
SPARC architecture.

LOAD POINT
Load address of the LLM.

LLM LENGTH
Length of the LLM.

COPYRIGHT
Copyright information.

The following information is significant only after the LLM has been saved.

LIBRARY NAME
File name of the program library in which the LLM has been saved.

ELEMENT NAME/VERSION
Element name and element version of the LLM in the program library.

LLM FORMAT
The format in which the LLM was stored wurde

SLICE TYPE
Type of slice:

Format 1: It is possible to load the LLM in all versions of BS2000/OSD.

Format 2: It is possible to load the LLM in all versions of BS2000/OSD.

Format 3: It is only possible to load the LLM as of BS2000/OSD V3.0A.

Format 4: It is only possible to load the LLM with BLSSERV as of
BS2000/OSD V3.0A.

SINGLE Single slice

BY-USER User-defined slice

BY-ATTR Slice by attributes
In addition, those attributes from which the slice was formed are
output. Value abbreviated as per list of abbreviations in help infor-
mation (see page 136).

138 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

SYMBOL DICTIONARY
External Symbols Vector stored: yes/no

RELOCATION DATA
Relocation data stored: yes/no

LOGICAL STRUCTURE
Type of structure information stored

TEST SUPPORT
List for symbolic debugging stored: yes/no i This value only shows the setting of the TEST-SUPPORT operand of

the relevant BINDER statement. Information on the existence of the list
for symbolic debugging is provided in the “T&D” column in BINDER lists.

BINDER V02.3A *GLOBAL INFORMATION* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 2
LIST EXAMPLE
 ADDRESS IN SLICE HSI MMODE SYMBOL
 ------- -------- ----- ------- ------
ENTRY POINT: 00000000 1 + 00000000 /7500 TU4K AUTOA

LOAD POINT: 00000000

LLM LENGTH: 00000800

COPYRIGHT: FUJITSU SIEMENS COMPUTERS GMBH 2004

LIBRARY NAME: :CTID:$USERID.BND.LLMLIB

ELEMENT NAME/VERSION: COMPLEX1/@

LLM FORMAT: 1

SLICE TYPE: SINGLE

SYMBOL DICTIONARY: YES

RELOCATION DATA: YES

LOGICAL STRUCTURE: WHOLE-LLM

TEST SUPPORT: YES

 --- END OF SECTION ---

WHOLE-LLM Entire structure information

OBJECT-MODULES Only one structure with the internal name of the LLM
and the object modules is stored

NONE Only the internal name of the LLM is stored

U9557-J-Z125-4-76 139

BINDER input/output Outputs from BINDER

Logical structure (5)

This list comprises two parts.

The first one is a representation of the structure tree of the LLM. The list contains the
internal names of the included object modules and sub-LLMs in the order in which they
were included in the structure tree (from left to right).
Meaning:

SLICE Identifier for the slice
Refers to the SLICE column in the physical structure list (see page 141). If a
logical node is spread over more than one slice, ’-’ must be entered for the
number of the slice.

TYPE Node type in the structure tree of the LLM.

HSI Type of code of the LLM.

MMODE Memory access mode of the LLM.

Currently this information only applies to internal applications on systems with
SPARC architecture.

LEVEL Node level in the structure tree of the LLM.

STR# Progressive number of the node in the LLM structure tree
This number is referred to in the second part of the list.

NAME Internal name of the node in the structure tree of the LLM.

T&D List for symbolic debugging present: yes/no

LLM Root

OM Object module

GM Prelinked module

SUB Sub-LLM

RT Runtime (if the module is to be regarded as a runtime module)

/7500 /390 code

/4000 RISC(MIPS) code

MIXED Mixed binary code (=/390 + RISC(MIPS))

SPARC SPARC code

MIXSP Mixed SPARC code (=/390 + SPARC)

140 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

BINDER V02.3A *LOGICAL STRUCTURE* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 3
LIST EXAMPLE
SLICE TYPE HSI MMODE LEVEL STR# NAME T&D
----- ---- ----- ------ ----- ---- ---- ---
 1 LLM /7500 TU4K 0 1 COMPLEX1
 1 SUB /7500 TU4K 1 2 AUTOLINKL
 1 SUB /7500 TU4K 2 3 SUB1
 1 OM /7500 TU4K 3 4 AUTOA NO
 1 OM /7500 TU4K 3 5 AUTOC NO
 1 OM /7500 TU4K 3 6 AUTO2 NO
 1 SUB /7500 TU4K 2 7 SUB2
 1 OM /7500 TU4K 3 8 AUTOA NO
 1 SUB /7500 TU4K 3 9 SUB3
 1 OM /7500 TU4K 4 10 AUTOA NO
 1 OM /7500 TU4K 4 11 AUTOC NO
 1 OM /7500 TU4K 4 12 AUTO2 NO
 1 SUB /7500 TU4K 1 13 AUTOLINKR
 1 SUB /7500 TU4K 2 14 SUB1
 1 OM /7500 TU4K 3 15 AUTO21 NO
 1 SUB /7500 TU4K 2 16 SUB2
 1 OM /7500 TU4K 3 17 AUTO22 NO
 1 SUB /7500 TU4K 3 18 SUB3
 1 OM /7500 TU4K 4 19 AUTO23 NO
 --- END OF SECTION ---

The second part of the list shows the path names specified in operands HIGH-PRIORITY-
SCOPE, LOW-PRIORITY-SCOPE or FORBIDDEN-SCOPE.

PATH Progressive number of the path
This number is referred to in the first part of the list.

STR# Progressive number of the node in the LLM structure tree
This number is used to refer to the first part of the list.

PATHNAME
Path name specified in operand HIGH-PRIORITY-SCOPE, LOW-PRIORITY-
SCOPE or FORBIDDEN-SCOPE.

BINDER V02.3A *SCOPE PATH INFORMATION* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 4
LIST EXAMPLE
PATH STR# PATHNAME
----- ---- --------
 --- END OF SECTION ---

U9557-J-Z125-4-76 141

BINDER input/output Outputs from BINDER

Physical structure (6)

This list contains the following information:

SLICE Identifier for the slice or region.
This identifier is referenced in the SLICE column in other lists.

ATTRIB Attributes of the slice.
Value abbreviated as per list of abbreviations (see page 136).

LENGTH Length of the slice.
The length refers to the length of the text information (TXT). All slices having the
length 0 are also logged in the list. Slices with length 0 are, however, only taken
over when the LLM is saved if they have been defined by the user. Single slices
with length 0 and slices by attributes with length 0 are not saved in the LLM.

NAME Name of the slice or region (see page 69).

BINDER V02.3A *PHYSICAL STRUCTURE* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 5
LIST EXAMPLE
SLICE ATTRIB LENGTH NAME
----- ------ ------ ----
 1 .A...... 00000800 PUU-ROU-RTU-RMU
 --- END OF SECTION ---

142 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

Program map (7)

The program map describes the modules that constitute the LLM in terms of their name,
load address, length, attributes and origin. The program map may optionally contain:

– the program definitions and COMMONs in the individual modules (DEFINITIONS
operand)

– the references in the individual modules (REFERENCES operand)

– a cross-reference list (INVERTED-XREF-LIST operand)
The latter describes the list of external references that are resolved by a current
program definition (CSECT, ENTRY, ..).

The program map contains the following individual items of information:

OBJ Type of the module or symbol.
Value abbreviated as per list of abbreviations (see page 136).

NAME Name of the module or symbol

ADDRESS
Load address for CSECTs and ENTRYs

LENGTH Length of the text information (TXT) for CSECTs

ATTRIB Attributes of the CSECTs.
Value abbreviated as per list of abbreviations (see page 136). For information
purposes, also specified for ENTRYs (only the attribute INVISIBLE is relevant).

SLICE Identifier for the slice.
Refers to the SLICE column in the physical structure list (see page 141).

TYPE Of significance only to the cross-reference list (INVERTED-XREF-LIST).
Specifies the type of resolved references. Value abbreviated as per list of abbre-
viations (see page 136).

RESOLVED
Of significance only to references.
Address that is entered in the resolved references. If an address is entered that
was defined with the SET-EXTERN-RESOLUTION statement, this column will
contain the entry EXT-RES. In this case, the name of the reference and the
entered address are logged in an additional line.

IN MODULE
Of significance only to references and to the cross-reference list (INVERTED-
XREF-LIST).
Specifies the module in which the external references specified under OBJ and
NAME were resolved.

U9557-J-Z125-4-76 143

BINDER input/output Outputs from BINDER

FROM ELEMENT#
Of significance only to object modules (OMs).
Contains the identifier for the element. This identifier is defined in the ELEM#
column of the input information list (see page 148).

OM# Identifier for the object module (OM).
This identifier is referenced in the other lists by being prefixed to the module
name.

SLICE Of significance only to references and the cross-reference list (INVERTED-
XREF-LIST).
Specifies the slice containing the symbol that resolves the external reference
specified under OBJ. Refers to the SLICE column in the physical structure list
(see page 141).

SATIS Specifies how external references were handled in the LLM.

Additional values for user-defined slices:

NOREF The external reference was not resolved because no relocation
dictionary (RLD) was available.

UNRES Unresolved external reference.

SLICE The external reference was resolved in this slice.

ERREX An external reference for which an address was entered with the
SET-EXTERN-RESOLUTION statement is present.

HIGH The symbol was resolved in a slice that is higher than the slice
containing the symbol.

LOW The symbol was resolved in a slice that is lower than the slice
containing the symbol.

OTHER The symbol was resolved in a slice that lies in a different region to
the slice containing the symbol.

CONC The symbol was resolved in a slice that is exclusive with respect to
the slice containing the symbol.

144 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

BINDER V02.3A *PROGRAM MAP* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 6
LIST EXAMPLE
OBJ NAME ADDRESS LENGTH ATTRIB SLICE TYPE RESOLVED IN MODULE/FROM ELEMENT# OM# SLICE SATIS
--- ---- ------- ------ ------ ----- ---- -------- ----------------------- --- ----- -----
OM AUTOA 1 1 1
 SD AUTOA 00000000 00000040 AA...... 1
 ER AUTOB FFFFFFFF UNRES
 WX AUTOWX FFFFFFFF UNRES
 VC ENTRYB1 FFFFFFFF UNRES
OM AUTOC 1 1 2
 SD AUTOC 00000040 00000018 AA...... 1
 VC AUTOCOM FFFFFFFF UNRES
OM AUTO2 1 1 3
 SD AUTO2 00000058 0000000C AA...... 1
 VC AUTO21 00000110 AUTO21 8 1 SLICE
 VC AUTO22 00000118 AUTO22 9 1 SLICE
 VC AUTO23 00000168 AUTO23 10 1 SLICE
OM AUTOA 1 1 4
 SD AUTOA 00000068 00000040 AA...... 1
 ER AUTOB FFFFFFFF UNRES
 WX AUTOWX FFFFFFFF UNRES
 VC ENTRYB1 FFFFFFFF UNRES
OM AUTOA 1 1 5
 SD AUTOA 000000A8 00000040 AA...... 1
 ER AUTOB FFFFFFFF UNRES
 WX AUTOWX FFFFFFFF UNRES
 VC ENTRYB1 FFFFFFFF UNRES
OM AUTOC 1 1 6
 SD AUTOC 000000E8 00000018 AA...... 1
 VC AUTOCOM FFFFFFFF UNRES
OM AUTO2 1 1 7
 SD AUTO2 00000100 0000000C AA...... 1
 VC AUTO21 00000110 AUTO21 8 1 SLICE
 VC AUTO22 00000118 AUTO22 9 1 SLICE
 VC AUTO23 00000168 AUTO23 10 1 SLICE
OM AUTO21 1 2 8
 SD AUTO21 00000110 00000006 AA...... 1
 VC AUTO2 3 1 SLICE
 VC AUTO2 7 1 SLICE
OM AUTO22 1 2 9
 SD AUTO22 00000118 00000006 AA...... 1
 VC AUTO2 3 1 SLICE
 VC AUTO2 7 1 SLICE
OM AUTO23 1 2 10
 SD AUTO23 00000168 00000006 AA...... 1
 VC AUTO2 3 1 SLICE
 VC AUTO2 7 1 SLICE
 --- END OF SECTION ---

U9557-J-Z125-4-76 145

BINDER input/output Outputs from BINDER

COMMON list

This list contains the following information:

NAME Name of the COMMON

ADDRESS
Address of the CSECT with which the COMMON was promoted; FFFFFFFF if
the COMMON was not promoted.

LENGTH Length of the COMMON

ATTRIB Attributes of the COMMON.
Value abbreviated as per list of abbreviations (see page 136).

TYPE Of significance only to the cross-reference list (INVERTED-XREF-LIST).
Specifies the type of the resolved references. Value abbreviated as per list of
abbreviations (see page 136).

IN MODULE
Name of the module containing the COMMON.

OM# This identifier is referred to in other lists by placing the identifier in front of the
symbol.

SLICE Of significance only to the cross-reference list (INVERTED-XREF-LIST).
Identifier for the slice. Refers to the SLICE column in the physical structure list
(see page 141).

BINDER V02.3A *COMMON LIST* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 7
LIST EXAMPLE
NAME ADDRESS LENGTH ATTRIB TYPE IN MODULE OM# SLICE SATIS
---- ------- ------ ------ ---- --------- --- ----- -----
AUTOC2 FFFFFFFF 00000050 AA...... AUTOC 2 1
 *NOT-PROMOTED
AUTOC2 FFFFFFFF 00000050 AA...... AUTOC 6 1
 *NOT-PROMOTED
AUTO22 00000118 00000050 AA...... AUTO23 10 1
 AUTO22 9 1
 --- END OF SECTION ---

Unresolved definitions list (8)

This list contains the names of unresolved external references for which the address
X’FFFFFFFF’ is entered in the RESOLVED column and the value UNRES is entered in the
SATIS column in the program map (see page 143).

BINDER V02.3A *UNRESOLVED REFERENCES* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 8
LIST EXAMPLE
VC AUTOCOM VC ENTRYB1 WX AUTOWX ER AUTOB
 --- END OF SECTION ---

146 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

List of the unreferenced external references (9)

This list contains the names of the unreferenced external references for which the value
NOREF is entered in the SATIS column of the program overview (see page 143).

BINDER V02.3A *NOT REFERENCED SYMBOLS* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 9
LIST EXAMPLE
 NONE
 --- END OF SECTION ---

Sorted symbol definitions list (10)

This list contains the following information:

NAME Name of the program definition

TYPE Specifies the type of program definition.
Value abbreviated as per list of abbreviations (see page 136).

IN MODULE
Name of the module containing the program definition

OM# Identifier for the object module containing the symbol. Refers to column OM# in
the program map (7).

SLICE Specifies the slice containing the program definition. Refers to the SLICE
column in the physical structure list (see page 141).

BINDER V02.3A *SORTED SYMBOLS* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 10
LIST EXAMPLE
NAME TYPE IN MODULE OM# SLICE
---- ---- --------- --- -----
AUTOA SD AUTOA 1 1
AUTOA SD AUTOA 4 1
AUTOA SD AUTOA 5 1
AUTOC SD AUTOC 2 1
AUTOC SD AUTOC 6 1
AUTOC2 CM AUTOC 2 1
AUTOC2 CM AUTOC 6 1
AUTO2 SD AUTO2 3 1
AUTO2 SD AUTO2 7 1
AUTO21 SD AUTO21 8 1
AUTO22 SD AUTO22 9 1
AUTO22 CM AUTO23 10 1
AUTO23 SD AUTO23 10 1
 --- END OF SECTION ---

U9557-J-Z125-4-76 147

BINDER input/output Outputs from BINDER

Pseudo-registers list (11)

This list contains the following information:

NAME Name of the pseudo-register

OFFSET Reference point for the pseudo-register

LENGTH Length assigned to the pseudo-register

REF LEN Length of the pseudo-register used by the module

IN MODULE
Name of the module containing the pseudo-register

BINDER V02.3A *PSEUDO-REGISTERS* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 11
LIST EXAMPLE
PSEUDO-REGISTERS NAME OFFSET LENGTH REF LEN IN MODULE
---------------- ---- ------ ------ ------- ---------
PSEUDO-REGISTER VECTOR LENGTH: 0

 --- END OF SECTION ---

Unused modules list (12)

This list contains the names of those modules in which no symbols were used for resolving
external references.
The number specifies the module identifier defined for the module in the program map in
the OM# column (see page 143).

BINDER V02.3A *UNUSED MODULES* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 12
LIST EXAMPLE
UNUSED MODULES LIST

 1 AUTOA 2 AUTOC 3 AUTO2
 4 AUTOA 5 AUTOA 6 AUTOC
 7 AUTO2
 --- END OF SECTION ---

Last line: PSEUDO-REGISTER VECTOR LENGTH
Specifies the length of the pseudo-register vector.

148 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

Duplicate symbol definitions list (13)

The entries have the same meaning as in the program map (see page 142).

BINDER V02.3A *DUPLICATE SYMBOLS* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 13
LIST EXAMPLE
NAME TYPE IN MODULE OM# SLICE TYPE IN MODULE OM# SLICE
---- ---- --------- --- ----- ---- --------- --- -----
AUTOA SD AUTOA 1 1
AUTOA SD AUTOA 4 1
AUTOA SD AUTOA 5 1
AUTOC SD AUTOC 2 1
AUTOC SD AUTOC 6 1
AUTOC2 CM AUTOC 2 1
AUTOC2 CM AUTOC 6 1
AUTO2 SD AUTO2 3 1
AUTO2 SD AUTO2 7 1
AUTO22 SD AUTO22 9 1
 VC AUTO2 3 1
 VC AUTO2 7 1
AUTO22 CM AUTO23 10 1
 --- END OF SECTION ---

Merged modules list (14)

Merged modules (if any) appear in all lists containing symbols. The merged modules are
indicated by parentheses. The resultant module is a prelinked module that is marked with
GM in the lists. An example is provided on page 151ff.

Input information (15)

The list comprises two parts:

First part of list
The list contains the following information for each included module:

NAME Element name

TYPE Element type in the program library

VERSION Element version in the program library. The entry @ signifies the default value
for the highest version for program libraries (see the “LMS” manual [4]).

DATE Creation date

FILE ID Identifier for the program library or program file. This provides the link with the
second part of the list.

L LLM

R Object module (OM)

U9557-J-Z125-4-76 149

BINDER input/output Outputs from BINDER

BIND Specifies how the module (ELEMENT) was included.

ELEM# Identifier for the element.
This identifier is referenced in the other lists.

PATH Path name of the sub-LLM branched to in the INCLUDE-MODULES or
REPLACE-MODULES statement. This is followed by a list containing the
names of all object modules (OMs) comprising the sub-LLM (see logical
structure list, page 139).
Each module name is prefixed by a number for the module, defined for the
module in the program map in the OM# column (see page 143).

BINDER V02.3A *INPUT INFORMATION* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 14
LIST EXAMPLE
 NAME TYPE VERSION DATE FILE ID BIND ELEM#
 ---- ---- ------- ---- ------- ---- -----
ELEMENT: AUTOLINKL L @ 1991-02-01 1 EXPL 1

 PATH: AUTOLINKL
MODULES

 1 AUTOA 2 AUTOC 3 AUTO2
 4 AUTOA 5 AUTOA 6 AUTOC
 7 AUTO2
ELEMENT: AUTOLINKR L @ 1992-10-02 1 EXPL 2

 PATH: AUTOLINKR
MODULES

 8 AUTO21 9 AUTO22 10 AUTO23
 --- END OF SECTION ---

Second part of the list
The list contains the following information for each input source:

FILE ID Identifier for the input source.
Provides the link with the first part of the list.

LINKNAME
File link name of the input source

FILE TYPE
Type of the input source

EXPL The module was included by means of the INCLUDE-MODULES
or REPLACE-MODULES statement.

AUTO The module was included by means of autolink.

IMPL The module was included through an INCLUDE record in the
object module.

PLAM Program library (element type R or L)

OML Object module library

150 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

FILENAME

File name of the input source

BINDER V02.3A *LINKNAME CONVERSION* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 15
LIST EXAMPLE
FILE ID LINKNAME FILE TYPE FILENAME
------- -------- --------- --------
 1 PLAM :CTID:$USERID.BND.LLMLIB
 --- END OF SECTION ---

List of the BINDER statements (16)

This list contains the list of the recorded BINDER statements (see //START-STATEMENT-
RECORDING).

BINDER V02.3A *BINDER STATEMENTS* LLM: COMPLEX1 DATE=2004-05-03 10:43:51 PAGE 17
LIST EXAMPLE
 START-LLM-CREATION INTERNAL-NAME=COMPLEX1,COPYRIGHT=*PARAMETERS,INCLUSION-DEFAULTS=*PARAMETERS
 INCLUDE-MODULES MODULE-CONTAINER=*LIBRARY-ELEMENT(LIBRARY=BNDBSP.LIB,ELEMENT=(AUTOLINKL,AUTOLINKR),
 TYPE=(*L,*R))
 SAVE-LLM MODULE-CONTAINER=*LIBRARY-ELEMENT(LIBRARY=#OUT.PL,ELEMENT=COMPLEX1),MAP=*YES
 --- END OF SECTION ---

OMF EAM object module file

U9557-J-Z125-4-76 151

BINDER input/output Outputs from BINDER

List example for an LLM with merged modules

The example below shows how BINDER lists appear when merged modules are present in
the LLM.

/start-binder
% BND0500 BINDER VERSION 'V02.3A00' STARTED
//modify-map-defaults help-information=no,-
// global-information=no,-
// logical-structure=yes,-
// physical-structure=no,-
// program-map=parameters(definitions=all,-
// inverted-xref-list=all,references=all),-
// unresolved-list=yes,-
// sorted-program-map=yes,-
// pseudo-register=no,-
// unused-module-list=no,-
// duplicate-list=yes(inv-xref-list=yes),-
// input-information=no,-
// output=*syslst —————————————————————————————————— (1)
//start-llm-creation internal-name=complex2 ——————————————————————————— (2)
//begin-sub-llm-statements sub-llm-name=subllm ———————————————————————— (3)
//include-modules library=bnd.llmlib,element=(auto2,auto21)
//end-sub-llm-statements
% BND1120 CURRENT LOGICAL POSITION: 'COMPLEX2'
//include-modules library=bnd.llmlib,element=auto22 ——————————————————— (4)
//show-map user-comment='LIST EXAMPLE PRIOR TO MERGE',MERGED-MODULES=YES (5)
//merge-modules name=subllm,path-name=complex2 ———————————————————————— (6)
% BND1112 '0' KEPT ENTRIES
//show-map user-comment='LIST EXAMPLE (MERGED-MODULES=YES)',- ————————— (7)
// merged-modules=yes
//show-map user-comment='LIST EXAMPLE (MERGED-MODULES=NO)',- —————————— (8)
// merged-modules=no
//save-llm library=bnd.llmlib,element=complex2,map=no ————————————————— (9)
% BND3101 SOME EXTERNAL REFERENCES ARE UNRESOLVED
% BND1501 LLM FORMAT : '1'
//end
% BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS: 'UNRESOLVED EXTERNAL'

(1) The default values for the BINDER lists were defined after BINDER was started.
Only those modules are to be output that contain information relevant for merging
modules.

(2) An LLM with the internal name COMPLEX2 is generated.

(3) LLM COMPLEX2 contains a sub-LLM with the name SUBLLM. Object modules
AUTO2 and AUTO21 are included in this. The two object modules are fetched from
program library BND.LLMLIB. The sub-LLM is terminated.

152 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

(4) A further object module (AUTO22) is included in the LLM.

(5) The BINDER lists are displayed prior to the merge procedure. The lists contain the
comment ’LIST EXAMPLE PRIOR TO MERGE’ in the header. MERGED-
MODULES=YES causes any merged modules already contained in the lists to be
displayed in parentheses. This is not the case in LLM COMPLEX2, however, as can
be seen in the lists.

(6) Sub-LLM SUBLLM is merged. It is unambiguously defined as an object for merging
via the path COMPLEX2 and its name SUBLLM.

(7) The BINDER lists are output containing the merged modules. The lists contain the
comment ’LIST EXAMPLE (MERGED-MODULES=YES)’ in the header. The
merged modules are marked in the lists by parentheses. A prelinked module with
the name SUBLLM has been created.

(8) The BINDER lists are output without the merged modules. The lists contain the
comment ’LIST EXAMPLE (MERGED-MODULES=NO)’ in the header. In the lists
the only indication of the merge procedure is that the prelinked module created,
SUBLLM, also appears as a module in the program map and is marked with the
abbreviation GM.

(9) LLM COMPLEX2 is stored in program library BND.LLMLIB as a type L element
under the name COMPLEX2. No further list is output. BINDER recognizes that not
all external references have been resolved and that the LLM will be stored in
format 1 (see page 36).

U9557-J-Z125-4-76 153

BINDER input/output Outputs from BINDER

The following lists are output to SYSLST. The lists are identified by their header lines. The
parentheses in the lists indicate merged modules.

Lists prior to the merge run

BINDER V02.3A *LOGICAL STRUCTURE* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 1
LIST EXAMPLE PRIOR TO MERGE
SLICE TYPE HSI MMODE LEVEL STR# NAME T&D
----- ---- ----- ------ ----- ---- ---- ---
 1 LLM /7500 TU4K 0 1 COMPLEX2
 1 SUB /7500 TU4K 1 2 SUBLLM
 1 OM /7500 TU4K 2 3 AUTO2 NO
 1 OM /7500 TU4K 2 4 AUTO21 NO
 1 OM /7500 TU4K 1 5 AUTO22 NO
 --- END OF SECTION ---

BINDER V02.3A *SCOPE PATH INFORMATION* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 2
LIST EXAMPLE PRIOR TO MERGE
PATH STR# PATHNAME
----- ---- --------
 --- END OF SECTION ---

BINDER V02.3A *PROGRAM MAP* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 3
LIST EXAMPLE PRIOR TO MERGE
OBJ NAME ADDRESS LENGTH ATTRIB SLICE TYPE RESOLVED IN MODULE/FROM ELEMENT# OM# SLICE SATIS
--- ---- ------- ------ ------ ----- ---- -------- ----------------------- --- ----- -----
OM AUTO2 1 1
 SD AUTO2 00000000 0000000C AA...... 1
 VC AUTO21 00000010 AUTO21 2 1 SLICE
 VC AUTO22 00000018 AUTO22 3 1 SLICE
 VC AUTO23 FFFFFFFF UNRES
OM AUTO21 1 2
 SD AUTO21 00000010 00000006 AA...... 1
 VC AUTO2 1 1 SLICE
OM AUTO22 1 3
 SD AUTO22 00000018 00000006 AA...... 1
 VC AUTO2 1 1 SLICE
 --- END OF SECTION ---

BINDER V02.3A *COMMON LIST* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 4
LIST EXAMPLE PRIOR TO MERGE
NAME ADDRESS LENGTH ATTRIB TYPE IN MODULE OM# SLICE SATIS
---- ------- ------ ------ ---- --------- --- ----- -----
 --- END OF SECTION ---

BINDER V02.3A *UNRESOLVED REFERENCES* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 5
LIST EXAMPLE PRIOR TO MERGE
VC AUTO23
 --- END OF SECTION ---

BINDER V02.3A *UNRESOLVED LONG NAMES* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 6
LIST EXAMPLE PRIOR TO MERGE
INDEX NAME
----- ----
 --- END OF SECTION ---

154 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

BINDER V02.3A *SORTED SYMBOLS* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 7
LIST EXAMPLE PRIOR TO MERGE
NAME TYPE IN MODULE OM# SLICE
---- ---- --------- --- -----
AUTO2 SD AUTO2 1 1
AUTO21 SD AUTO21 2 1
AUTO22 SD AUTO22 3 1
 --- END OF SECTION ---

BINDER V02.3A *DUPLICATE SYMBOLS* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 8
LIST EXAMPLE PRIOR TO MERGE
NAME TYPE IN MODULE OM# SLICE TYPE IN MODULE OM# SLICE
---- ---- --------- --- ----- ---- --------- --- -----
 --- END OF SECTION ---

Lists after merging with output of merged modules

BINDER V02.3A *LOGICAL STRUCTURE* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 1
LIST EXAMPLE (MERGED-MODULES=YES)
SLICE TYPE HSI MMODE LEVEL STR# NAME T&D
----- ---- ----- ------ ----- ---- ---- ---
 1 LLM /7500 TU4K 0 1 COMPLEX2
 1 SUB /7500 TU4K 1 2 SUBLLM
 1 GM /7500 TU4K 2 3 SUBLLM NO
 1(OM) /7500 TU4K 3 4 (AUTO2) NO
 1(OM) /7500 TU4K 3 5 (AUTO21) NO
 1 OM /7500 TU4K 1 6 AUTO22 NO
 --- END OF SECTION ---

BINDER V02.3A *SCOPE PATH INFORMATION* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 2
LIST EXAMPLE (MERGED-MODULES=YES)
PATH STR# PATHNAME
----- ---- --------
 --- END OF SECTION ---

BINDER V02.3A *PROGRAM MAP* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 3
LIST EXAMPLE (MERGED-MODULES=YES)
OBJ NAME ADDRESS LENGTH ATTRIB SLICE TYPE RESOLVED IN MODULE/FROM ELEMENT# OM# SLICE SATIS
--- ---- ------- ------ ------ ----- ---- -------- ----------------------- --- ----- -----
GM SUBLLM 1 1
 SD SUBLLM 00000000 00000016 AA...... 1
(OM) (AUTO2) 1 2
 (SD)(AUTO2) 00000000
 (VC)(AUTO21) 00000010 AUTO21 3 1 SLICE
 VC AUTO22 00000018 AUTO22 4 1 SLICE
 VC AUTO23 FFFFFFFF UNRES
(OM) (AUTO21) 1 3
 (SD)(AUTO21) 00000010
 (VC) AUTO2 2 1 SLICE
OM AUTO22 1 4
 SD AUTO22 00000018 00000006 AA...... 1
 VC AUTO2 2 1 SLICE
 --- END OF SECTION ---

U9557-J-Z125-4-76 155

BINDER input/output Outputs from BINDER

BINDER V02.3A *COMMON LIST* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 4

LIST EXAMPLE (MERGED-MODULES=YES)
NAME ADDRESS LENGTH ATTRIB TYPE IN MODULE OM# SLICE SATIS
---- ------- ------ ------ ---- --------- --- ----- -----
 --- END OF SECTION ---

BINDER V02.3A *UNRESOLVED REFERENCES* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 5
LIST EXAMPLE (MERGED-MODULES=YES)
VC AUTO23
 --- END OF SECTION ---

BINDER V02.3A *UNRESOLVED LONG NAMES* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 6
LIST EXAMPLE (MERGED-MODULES=YES)
INDEX NAME
----- ----
 --- END OF SECTION ---

BINDER V02.3A *SORTED SYMBOLS* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 7
LIST EXAMPLE (MERGED-MODULES=YES)
NAME TYPE IN MODULE OM# SLICE
---- ---- --------- --- -----
(AUTO2) (SD)(AUTO2) 2 1
(AUTO21) (SD)(AUTO21) 3 1
AUTO22 SD AUTO22 4 1
SUBLLM SD SUBLLM 1 1
 --- END OF SECTION ---

BINDER V02.3A *DUPLICATE SYMBOLS* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 8
LIST EXAMPLE (MERGED-MODULES=YES)
NAME TYPE IN MODULE OM# SLICE TYPE IN MODULE OM# SLICE
---- ---- --------- --- ----- ---- --------- --- -----
 --- END OF SECTION ---

Lists after merging without merged modules

BINDER V02.3A *LOGICAL STRUCTURE* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 1
LIST EXAMPLE (MERGED-MODULES=NO)
SLICE TYPE HSI MMODE LEVEL STR# NAME T&D
----- ---- ----- ------ ----- ---- ---- ---
 1 LLM /7500 TU4K 0 1 COMPLEX2
 1 SUB /7500 TU4K 1 2 SUBLLM
 1 GM /7500 TU4K 2 3 SUBLLM NO
 1 OM /7500 TU4K 1 6 AUTO22 NO
 --- END OF SECTION ---

BINDER V02.3A *SCOPE PATH INFORMATION* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 2
LIST EXAMPLE (MERGED-MODULES=NO)
PATH STR# PATHNAME
----- ---- --------
 --- END OF SECTION ---

156 U9557-J-Z125-4-76

Outputs from BINDER BINDER input/output

BINDER V02.3A *PROGRAM MAP* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 3
LIST EXAMPLE (MERGED-MODULES=NO)
OBJ NAME ADDRESS LENGTH ATTRIB SLICE TYPE RESOLVED IN MODULE/FROM ELEMENT# OM# SLICE SATIS
--- ---- ------- ------ ------ ----- ---- -------- ----------------------- --- ----- -----
GM SUBLLM 1 1
 SD SUBLLM 00000000 00000016 AA...... 1
 VC AUTO22 00000018 AUTO22 2 1 SLICE
 VC AUTO23 FFFFFFFF UNRES
OM AUTO22 1 2
 SD AUTO22 00000018 00000006 AA...... 1
 VC SUBLLM 1 1 SLICE
 --- END OF SECTION ---

BINDER V02.3A *COMMON LIST* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 4
LIST EXAMPLE (MERGED-MODULES=NO)
NAME ADDRESS LENGTH ATTRIB TYPE IN MODULE OM# SLICE SATIS
---- ------- ------ ------ ---- --------- --- ----- -----
 --- END OF SECTION ---

BINDER V02.3A *UNRESOLVED REFERENCES* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 5
LIST EXAMPLE (MERGED-MODULES=NO)
VC AUTO23
 END OF SECTION ---

BINDER V02.3A *UNRESOLVED LONG NAMES* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 6
LIST EXAMPLE (MERGED-MODULES=NO)
INDEX NAME
----- ----
 --- END OF SECTION ---

BINDER V02.3A *SORTED SYMBOLS* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 7
LIST EXAMPLE (MERGED-MODULES=NO)
NAME TYPE IN MODULE OM# SLICE
---- ---- --------- --- -----
AUTO22 SD AUTO22 2 1
SUBLLM SD SUBLLM 1 1
 --- END OF SECTION ---

BINDER V02.3A *DUPLICATE SYMBOLS* LLM: COMPLEX2 DATE=2004-05-03 14:13:30 PAGE 8
LIST EXAMPLE (MERGED-MODULES=NO)
NAME TYPE IN MODULE OM# SLICE TYPE IN MODULE OM# SLICE
NAME TYPE IN MODULE OM# SLICE TYPE IN MODULE OM# SLICE
---- ---- --------- --- ----- ---- --------- --- -----
 --- END OF SECTION ---

U9557-J-Z125-4-76 157

5 BINDER run
A BINDER run is a sequence of statements beginning after the BINDER load call and
ending with the END statement.

5.1 Calling and terminating BINDER

BINDER is loaded and started by means of the following command:

VERSION =
Product version of the BINDER to be started.
Only the value *STD is currently supported.

VERSION = *STD
No product version is explicitly specified. The product version is selected as follows:

1. The version predefined with the /SELECT-PRODUCT-VERSION command.

2. The highest BINDER version installed with IMON.

MONJV =
Specifies a monitoring job variable for monitoring the BINDER run.

MONJV = *NONE
No monitoring job variable is used.

MONJV = <full-filename 1..54 without-gen-vers>
Name of the job variable to be used.

START-BINDER

VERSION = *STD

,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>

158 U9557-J-Z125-4-76

Calling and terminating BINDER BINDER run

CPU-LIMIT =
Maximum CPU time, in seconds, that the program may use.

CPU-LIMIT = JOB-REST
The remaining CPU time should be used for the job.

CPU-LIMIT = <integer 1..32767 seconds>
Only the specified time should be used.

After the program load message, BINDER expects the input of statements from the system
file SYSDTA (see page 130ff).
The END statement terminates the BINDER run.

U9557-J-Z125-4-76 159

BINDER run Monitoring the BINDER run with job variables

5.2 Monitoring the BINDER run with job variables

The user can use a program-monitoring job variable (JV) for the execution of BINDER (see
the “Job Variables” manual [7]). This presupposes that the software product JV is installed.

The program-monitoring job variable is 7 bytes long and has the following structure:

The first 3 bytes of the job variable (bytes 0-2) contain the status indicator. This reflects
the current status of the BINDER run and may have the following values:

$R BINDER running (START-BINDER)

$T BINDER run terminated successfully

$A BINDER run aborted due to error

The following 4 bytes (bytes 3-6) contain the return code indicator. The return code
indicator consists of the termination code (byte 3) and the program information
(bytes 4-6).

Termination code

0 BINDER run terminated without errors.

1 BINDER run terminated without errors. Warning messages were output.

2 BINDER run terminated with errors. The LLM contains errors or is not completely
linked.

3 BINDER run terminated due to a serious error.

0 1 2 3 4 5 6Byte

Status indicator Return code indicator

Program
information

Termination
code

160 U9557-J-Z125-4-76

Monitoring the BINDER run with job variables BINDER run

Program information

000 BINDER run terminated without errors. The LLM was linked without errors.

001 BINDER run terminated without errors. Warning messages were output.

002 BINDER run terminated without errors. Some unresolved external references were
not deresolved.

003 BINDER run terminated with errors. Errors detected during syntax checking of the
statements.

004 BINDER run terminated with errors. Certain recoverable errors were detected.

005 BINDER run terminated with errors. Errors in the input or user errors were detected.
No LLM was linked, or the linked LLM may not be used.

006 BINDER run terminated with errors (internal BINDER errors). No LLM was linked,
or the linked LLM may not be used.

The following table shows the relationship between the different values for the job variable
and the severity classes. The value of the job variable corresponds to the highest severity
class that occurred during the BINDER run.

Status
indicator

Termination
code

Program
information

Severity class

$T 0 000 INFORMATION

$T 1 001 WARNING

$T 1 002 UNRESOLVED EXTERNS

$A 2 003 SYNTAX ERROR

$A 2 004 RECOVERABLE ERROR

$A 3 005 FATAL ERROR

$A 3 006 INTERNAL ERROR

U9557-J-Z125-4-76 161

6 Subroutine interface

6.1 BINDER macro

BINDER is called as a subroutine from a main program by means of the BINDER macro;
the statements to BINDER can be input in the following ways:

– Input from SYSDTA
After BINDER is called, it requests the statements in succession from SYSDTA. It
returns control to the main program when the END statement is entered.

– Input from the main program
Each time BINDER is called, the main program issues one statement. One call is
required for each statement.

Format and operand description

BNDSTMT Specifies whether the statements are input to BINDER from SYSDTA or
from the main program.

=NULL The statements are input from SYSDTA.

=addr The statements are input from the main program. “addr” denotes the
symbolic address (name) of a parameter area used for inputting one
statement (see next page).

Operation Operands

BINDER [BNDSTMT = NULL / addr]
[,MF = S / C / D / E / L / M]
[,PARAM = opaddr / (r)]
[,PREFIX = P / x]
[,MACID = BND / yyy]

162 U9557-J-Z125-4-76

BINDER macro Subroutine interface

MF Controls the form of macro expansion (see the “Executive Macros”
manual [8]).

=S S form

=C C form (CSECT only)

=D D form (DSECT only)

=E E form (instruction code only)
Generates the necessary instructions for execution of the macros.

=L L form (data only)

=M M form

PARAM For E form and M form only.

=opaddr Operand list, previously created with the control operand MF=L, whose
address should be specified with “opaddr”.

=(r) Operand list, previously created with the control operand MF=L, whose
address should be specified in register (r).

PREFIX=x Controls the generation of names (for C form, D form and M form only).
One letter should be specified for “x”. This will be used as the first letter of
all symbolic names. The remaining characters of the name are not changed.
Default value is “P”.

MACID=yyy Controls the generation of names (for C form and M form only).
Three letters should be specified for “yyy”. These determine the second
through fourth characters of the symbolic names.
Default value is “BND”.

U9557-J-Z125-4-76 163

Subroutine interface BINDER macro

Notes

– The macro BINDER is supplied in the macro library $.SYSLIB.BINDER.023.

– The module BINDER is supplied in the program library $.SYSLNK.BINDER.023.
Because the BINDER module is maintained in this library, it is more advantageous to
load this module dynamically in the main program with the BIND macro since the calling
program can then always use the current BINDER module (see following examples).
The S form of the BINDER macro should not be used since it generates a V-type
constant V(BINDER).

– If the statements are input by the calling program, the same parameter list must always
be used. BINDER stores information that is used for the next call in the parameter list.
The parameter list should therefore be set up with MF=L when BINDER is first called,
and modified with MF=M on subsequent calls (see example 2, page 170).

– BINDER utilizes fields in the parameter list for internal information. Therefore the values
in the parameter list should not be modified directly, but implicitly by the BINDER macro
with MF=M.

Structure of the parameter area

The parameter area for the input of a statement has the following structure:

Register conventions

When calling BINDER as a subroutine, the following register conventions must be
observed:

Register 1: Address of the parameter list of the BINDER macro

Register 14: Return address to the main program

Register 15: Address of the entry point to BINDER

Byte Length Meaning

0-1 2 Length of statement, including 4-byte record length field (n+4)

2-3 2 Reserved (ignored)

4-n any Statement with length n.
The statement is input without syntax checking in the
specified format to SDF. The user must therefore decide
whether or not lowercase letters are permissible.

164 U9557-J-Z125-4-76

BINDER macro Subroutine interface

Return information and error flags

BINDER returns a return code (RC) for each macro call, containing information about
execution of the macro. The return code is transferred in the least significant byte of the field
MAINCODE in the standard header (see the “Executive Macros” manual [8]). The values
denote hexadecimal constants. The return code issued corresponds to the highest severity
class that occurred on calling BINDER.

Furthermore, subcode1 shows whether the BINDER macro was terminated normally or
abnormally.

Subcode2 contains the maximum permissible error weight in case the abnormal terminati-
on was caused by this error weight being exceeded. Otherwise subcode2 contains the va-
lue X'FF'.

The following tables show the return code values, the subcode1 values and the meaning of
these values. They also give the associated symbolic names. The user can specify the first
character in the symbolic names with the PREFIX=x operand, and the second through
fourth characters with the MACID=yyy operand. The default values are PREFIX=P and
MACID=BND.

Return code Symbolic
name xyyy...

Meaning

X' 00' OK No error

X' 01' INFO Error of severity class INFORMATION

X' 02' WARN Error of severity class WARNING

X' 03' UNRE Error of severity class UNRESOLVED EXTERNS

X' 04' SYNT Error of severity class SYNTAX ERROR

X' 05' RECO Error of severity class RECOVERABLE ERROR

X' 06' FATA Error of severity class FATAL ERROR

X' 07' INTE Error of severity class INTERNAL ERROR

Subcode1 Symbolic
name xyyy...

Meaning

X'00' NORM Normal termination

X'40' ABN Abnormal termination

U9557-J-Z125-4-76 165

Subroutine interface Examples

6.2 Examples

Example 1

A routine BNDCALL1 loads BINDER dynamically with the BIND macro from the program
library $.SYSLNK.BINDER.023. BINDER is called with the BINDER macro and the
BINDER statements are requested from SYSDTA. The routine BNDCALL1 is called as a
subroutine by the main program PROG1.

Source listing of BNDCALL1

BNDCALL1 CSECT
USING BNDCALL1,15
STM 0,15,SAVEREG ——— (1)
DROP 15
LR 10,15
USING BNDCALL1,10
L 1,BINDER@ —— (2)
LTR 1,1
BNZ NOT1CALL ——— (3)
BIND MF=E,PARAM=BINDPL —————————————————————————————————————— (4)
LA 2,BINDPL
USING BINDDS,2 ——— (5)
CLI XBINSR2,XBINPART ——————————————————————————————————————— (6)
BNL BINDERR —— (7)

NOT1CALL DS 0H
USING BNDDS,1 —— (8)
LA 1,BNDPL —— (9)
L 15,BINDER@ ——— (10)
BALR 14,15 —— (11)
CLI YBNDMRET+1,YBNDSYNT ———————————————————————————————————— (12)
BNL BNDERROR ——— (13)

RETURN DS 0H
LM 0,15,SAVEREG ——— (14)
BR 14 ——— (15)

BINDERR DS 0H
B RETURN

BNDERROR DS 0H
B RETURN

SAVEREG DS 16F
BINDER@ DC A(0)
BNDPL BINDER MF=L —— (16)
MODNAM DC CL32'BINDER '
MODLIB DC CL54'$.SYSLNK.BINDER.023 '
BINDPL BIND MF=L,SYMBOL@=MODNAM,LIBNAM@=MODLIB,SYMBLAD=BINDER@ ————— (17)

LTORG
BNDDS BINDER MF=D,PREFIX=Y ——— (18)

166 U9557-J-Z125-4-76

Examples Subroutine interface

BINDDS BIND MF=D,PREFIX=X —— (19)
END

Source listing of PROG1

PROG1 START
BALR 3,0
USING *,3
L 15,=V(BNDCALL1) —— (20)
BALR 14,15
WROUT AUS,FEHLER ——— (21)

FEHLER TERM
AUS DC Y(AUSE-AUS)

DS CL3
DC C'BINDER CALL TERMINATED'

AUSE EQU *
END

(1) All registers are saved in the save area of BNDCALL1.

(2) The field BINDER@ is checked. The BIND macro uses it to pass the start address
of the dynamically loaded module BINDER (see (4)).

(3) If an address was passed in the field BINDER@, the module BINDER is already
loaded and the BIND call is skipped.

(4) The BIND macro is called in its E form. Only the instruction code is therefore
generated at this point in the program. The associated parameter list is set up at the
symbolic address BINDPL (see (17)) by a BIND call with MF=L. The operand values
specified in it cause the BIND macro to perform the following actions on program
execution:

– dynamically load the module BINDER (SYMBOL@=MODNAM) from the library
$.SYSLNK.BINDER.023 (LIBNAM@=MODLIB)

– pass the start address of the module BINDER in the field BINDER@
(SYMBLAD=BINDER@)

– after loading of the module BINDER in the calling routine BNDCALL1, continue
with the instruction following the BIND macro (default value BRANCH=NO).

(5) Register 2 is assigned to the assembler as the base address register for addressing
the DSECT for the parameter list of the BIND macro, that is generated at the
symbolic address BINDDS by a BIND call with MF=D.

U9557-J-Z125-4-76 167

Subroutine interface Examples

(6) After execution of the BIND macro, the field XBINSR2 of the standard header
containing the SUBCODE2 is compared with the SUBCODE2 XBINPART of the
standard header that establishes error-free execution of the BIND macro. The
names XBINSR2 and XBINPART originate from the DSECT that was generated
under the symbolic address BINDDS by a BIND call with MF=D and PREFIX=X
(see (17)). This DSECT describes the structure of the parameter list of the BIND
macro. The symbolic names of the DSECT can be used for addressing within the
parameter list after the assigned base address register (register 2 in this case) has
been loaded with the start address of the parameter list (BINDPL here).

(7) Branch to the error exit BINDERR if the BIND macro is errored in its execution or is
not executed.

(8) Register 1 is assigned to the assembler as the base address register for addressing
the DSECT for the parameter list of the BINDER macro, that is generated at the
symbolic address BNDDS (see (18)) by a BINDER call with MF=D.

(9) Register 1 is loaded with the address of the parameter list of the BINDER macro.
The parameter list is generated at the symbolic address BNDPL (see (16)) by a
BINDER call with MF=L. The default value BNDSTMT=NULL specifies that the
BINDER statements are requested by BINDER from SYSDTA.

(10) Register 15 is loaded with the start address of the module BINDER, that was
passed by the BIND macro in the field BINDER@.

(11) Call for the module BINDER that requests the BINDER statements from SYSDTA.
After input of the END statement, the BINDER run is terminated and control returns
to the routine BNDCALL1.

(12) After execution of the BINDER macro, the field YBNDMRET+1 of the standard
header that denotes the least significant byte of the MAINCODE is compared with
the return code YBNDSYNT that specifies the severity class SYNTAX ERROR. The
names YBNDMRET and YBNDSYNT originate from the DSECT that was
generated under the symbolic address BNDDS by a BINDER call with MF=D and
PREFIX=Y (see (18)). This DSECT describes the structure of the parameter list of
the BINDER macro. The symbolic names of the DSECT can be used for addressing
within the parameter list after the assigned base address register (register 1 in this
case) has been loaded with the start address of the parameter list (BNDPL here).

(13) Branch to the error exit BINDERERR if errors of severity class SYNTAX ERROR or
higher have occurred during execution of the BINDER macro.

(14) Restore original contents to all saved registers.

(15) Return to the user program that called the routine BNDCALL1.

(16) The call of the BINDER macro in its L form creates the parameter list for the call of
the BINDER module (see (9)) and supplies it with values.

168 U9557-J-Z125-4-76

Examples Subroutine interface

(17) The L form of the BIND macro creates the parameter list for the BIND macro
(see (4)).

(18) The BINDER macro with MF=D generates a DSECT that describes the structure of
the parameter list of the BINDER macro. The PREFIX=Y operand causes all
symbolic names in this DSECT (field names and equates) to begin with the letter Y.

(19) The BIND macro with MF=D generates a DSECT that describes the structure of the
parameter list of the BIND macro. The PREFIX=X operand causes all symbolic
names in this DSECT (field names and equates) to begin with the letter X.

(20) The routine BNDCALL1 is called by the user program PROG1 as a subroutine.

(21) A message to SYSOUT indicates that the routine BNDCALL1 has been terminated.

Runtime listing

/set-file-link link-name=altlib,file-name=$.syslib.binder.023 ————————— (1)
/start-assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '1.2C00' OF '2002-03-06' LOADED
% BLS0552 COPYRIGHT (C) FUJITSU SIEMENS COMPUTERS GMBH 2002.

ALL RIGHTS RESERVED
% ASS6010 V01.2C00 OF BS2000 ASSEMBH READY
%//compile source=src.bndcall1,macro-library=*link(link-name=altlib),-
%// module-library=bndlib —————————————————————————————————————— (2)
% ASS6011 ASSEMBLY TIME: 1458 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 867 MSEC
%//compile source=src.prog1,module-library=*omf ——————————————————————— (3)
% ASS6011 ASSEMBLY TIME: 697 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 260 MSEC
%//end
% ASS6012 END OF ASSEMBH
/set-file-link link-name=blslib01,file-name=bndlib
/start-program from-file=*module(library=*omf,element=prog1, -
/ run-mode=advanced(alternate-libraries=yes)) ———————————— (4)
% BLS0517 MODULE 'PROG1' LOADED
%//start-llm-creation internal-name=llm1 —————————————————————————————— (5)
%//include-modules library=bndlib,element=(mod1,mod2)
%//save-llm library=bndlib
% BND1501 LLM FORMAT : '1'
%//end
% BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS: 'OK'
BINDER CALL TERMINATED —— (6)

U9557-J-Z125-4-76 169

Subroutine interface Examples

(1) The macro library $.SYSLIB.BINDER.023 that contains the BINDER macro is
assigned to the assembler as ALTLIB.

(2) The routine BNDCALL1 is compiled and the object module BNDCALL1 is stored in
program library BNDLIB.

(3) The user program PROG1 is compiled.

(4) The program library BNDLIB containing the module BNDCALL1 is assigned as the
alternative library.

(5) DBL is called in order to load and start the module PROG1. The module PROG1 is
fetched from the EAM object module library. External references are resolved form
the alternative library.

(6) The module BINDER is called by BNDCALL1 and requests the BINDER statements
from SYSDTA. The END statement terminates the BINDER run.

(7) The program PROG1 issues a message indicating that the routine BNDCALL1 has
been terminated.

170 U9557-J-Z125-4-76

Examples Subroutine interface

Example 2

A routine BNDCALL2 loads BINDER dynamically with the BIND macro from the program
library $.SYSLNK.BINDER.023. BINDER is called with the BINDER macro. The first two
BINDER statements are entered by the routine BNDCALL2. BINDER then requests further
BINDER statements from SYSDTA. The routine BNDCALL2 is called as a subroutine by a
main program PROG2.

Source listing of BNDCALL2

BNDCALL2 CSECT
USING BNDCALL2,15
STM 0,15,SAVEREG —— (1)
DROP 15
LR 10,15
USING BNDCALL2,10
L 1,BINDER@ ——— (2)
LTR 1,1
BNZ NOT2CALL —— (3)
BIND MF=E,PARAM=BINDPL ————————————————————————————————————— (4)
LA 2,BINDPL
USING BINDDS,2 —— (5)
CLI XBINSR2,XBINPART —————————————————————————————————————— (6)
BNL BINDERR ——— (7)

NOT2CALL DS 0H
LA 1,BNDPL ——— (8)
USING BNDDS,1 ——— (9)
L 15,BINDER@ —— (10)
BALR 14,15 ——— (11)
CLI YBNDMRET+1,YBNDSYNT ——————————————————————————————————— (12)
BL CAL2STMT —— (13)
CLI YBNDMRET+1,YBNDFATA ——————————————————————————————————— (14)
BNL RETURN —— (15)

CAL2STMT BINDER MF=M,BNDSTMT=STMT2LG,PREFIX=Y ————————————————————————— (16)
BALR 14,15 ——— (17)
BINDER MF=M,BNDSTMT=NULL,PREFIX=Y ———————————————————————————— (18)
BALR 14,15 ——— (19)
CLI YBNDMRET+1,YBNDSYNT ——————————————————————————————————— (20)
BNL BNDERROR —— (21)

RETURN DS 0H
LM 0,15,SAVEREG —— (22)
BR 14 —— (23)

BINDERR DS 0H
B RETURN

BNDERROR DS 0H
B RETURN

SAVEREG DS 16F
BINDER@ DC A(0)

U9557-J-Z125-4-76 171

Subroutine interface Examples

STMT1LG DC H'40' ——— (24)
STMT1UN DC H'0'
STMT1 DC CL36'START-LLM-CREATION INTERNAL-NAME=LLM'
STMT2LG DC H'56' ——— (25)
STMT2UN DC H'0'
STMT2 DC CL52'INCLUDE-MODULES LIBRARY=BNDLIB,ELEMENT=(MOD1,MOD2)'
BNDPL BINDER MF=L,BNDSTMT=STMT1LG —————————————————————————————————— (26)
MODNAM DC CL32'BINDER '
MODLIB DC CL54'$.SYSLNK.BINDER.023 '
BINDPL BIND MF=L,SYMBOL@=MODNAM,LIBNAM@=MODLIB,SYMBLAD=BINDER@ ———— (27)

LTORG
BNDDS BINDER MF=D,PREFIX=Y ——— (28)
BINDDS BIND MF=D,PREFIX=X ——— (29)

END

Source listing of PROG2

PROG2 START
BALR 3,0
USING *,3
L 15,=V(BNDCALL2) ——— (30)
BALR 14,15
WROUT AUS,FEHLER

FEHLER TERM ——— (31)
AUS DC Y(AUSE-AUS)

DS CL3
DC C'BINDER CALL TERMINATED'

AUSE EQU *
END

(1) All registers are saved in the save area of BNDCALL2.

(2) The field BINDER@ is checked. The BIND macro uses it to pass the start address
of the dynamically loaded module BINDER (see 04).

(3) If an address was passed in the field BINDER@, the module BINDER is already
loaded and the BIND call is skipped.

172 U9557-J-Z125-4-76

Examples Subroutine interface

(4) The BIND macro is called in its E form. Only the instruction code is therefore
generated at this point in the program. The associated parameter list is set up at the
symbolic address BINDPL by a BIND call with MF=L. The operand values specified
in it cause the BIND macro to perform the following actions on program execution:

– dynamically load the module BINDER (SYMBOL@=MODNAM) from the library
$.SYSLNK.BINDER.023 (LIBNAM@=MODLIB)

– pass the start address of the module BINDER in the field BINDER@
(SYMBLAD=BINDER@)

– after loading of the module BINDER in the calling routine BNDCALL2, continue
with the instruction following the BIND macro (default value BRANCH=NO).

(5) Register 2 is assigned to the assembler as the base address register for addressing
the DSECT for the parameter list of the BIND macro, that is generated at the
symbolic address BINDDS by a BIND call with MF=D.

(6) After execution of the BIND macro, the field XBINSR2 of the standard header
containing the SUBCODE2 is compared with the SUBCODE2 XBINPART of the
standard header that establishes error-free execution of the BIND macro. The
names XBINSR2 and XBINPART originate from the DSECT that was generated
under the symbolic address BINDDS by a BIND call with MF=D and PREFIX=X
(see (27)). This DSECT describes the structure of the parameter list of the BIND
macro. The symbolic names of the DSECT can be used for addressing within the
parameter list after the assigned base address register (register 2 in this case) has
been loaded with the start address of the parameter list (BINDPL here).

(7) Branch to the error exit BINDERR if the BIND macro is errored in its execution or is
not executed.

(8) Register 1 is loaded with the address of the parameter list of the BINDER macro.
The parameter list is generated at the symbolic address BNDPL by a BINDER call
with MF=L. The value STMT1LG of the BNDSTMT operand specifies that the
BINDER statement START-LLM-CREATION that is constructed in the parameter
area starting at address STMT1LG is taken over.

(9) Register 1 is assigned to the assembler as the base address register for addressing
the DSECT for the parameter list of the BINDER macro, that is generated at the
symbolic address BNDDS by a BINDER call with MF=D.

(10) Register 15 is loaded with the start address of the module BINDER, that was
passed by the BIND macro in the field BINDER@.

(11) Call for the module BINDER that takes the first BINDER statement from the
parameter area starting at address STMT1LG.

U9557-J-Z125-4-76 173

Subroutine interface Examples

(12) After execution of the BINDER macro, the field YBNDMRET+1 of the standard
header that denotes the least significant byte of the MAINCODE is compared with
the return code YBNDSYNT that specifies the severity class SYNTAX ERROR. The
names YBNDMRET and YBNDSYNT originate from the DSECT that was
generated under the symbolic address BNDDS by a BINDER call with MF=D and
PREFIX=Y (see (26)). This DSECT describes the structure of the parameter list of
the BINDER macro. The symbolic names of the DSECT can be used for addressing
within the parameter list after the assigned base address register (register 1 in this
case) has been loaded with the start address of the parameter list (BNDPL here).

(13) Branch to the next BINDER call if no errors of severity class SYNTAX ERROR or
higher have occurred during execution of the BINDER macro

(14) The field YBNDMRET+1 of the standard header that denotes the least significant
byte of the MAINCODE is compared with the return code YBNDFATA that specifies
the severity class FATAL ERROR.

(15) If errors of severity class FATAL ERROR or higher have occurred during execution
of the BINDER macro, the routine BNDCALL2 branches to the user program
PROG2 from which it was called.

(16) The BINDER macro with MF=M modifies the parameter list that was set up by the
previous BINDER macro with MF=L. The value STMT2LG of the BNDSTMT
operand specifies that the BINDER statement INCLUDE-MODULES that is
constructed in the parameter area starting at address STMT2LG is taken over.

(17) Call for the module BINDER that takes the BINDER statement from the parameter
area starting at address STMT2LG.

(18) The BINDER macro with MF=M modifies the parameter list that was set up with
MF=L. The value NULL of the BNDSTMT operand specifies that the following
BINDER statements are requested from SYSDTA.

(19) Call for the module BINDER that requests the BINDER statements from SYSDTA.
On entry of the END statement, the BINDER run is terminated and control is
returned to the routine BNDCALL2.

(20) After execution of the BINDER macro, the field YBNDMRET+1 of the standard
header that denotes the least significant byte of the MAINCODE is compared with
the return code YBNDSYNT that specifies the severity class SYNTAX ERROR.

(21) Branch to the error exit BINDERERR if errors of severity class SYNTAX ERROR or
higher have occurred during execution of the BINDER macro.

(22) Restore original contents to all saved registers.

(23) Return to the user program that called the routine BNDCALL2.

(24) Parameter area in which the START-LLM-CREATION statement is constructed.

174 U9557-J-Z125-4-76

Examples Subroutine interface

(25) Parameter area in which the INCLUDE-MODULES statement is constructed.

(26) The BINDER macro with MF=D generates a DSECT that describes the structure of
the parameter list of the BINDER macro. The PREFIX=Y operand causes all
symbolic names in this DSECT (field names and equates) to begin with the letter Y.

(27) The BIND macro with MF=D generates a DSECT that describes the structure of the
parameter list of the BIND macro. The PREFIX=X operand causes all symbolic
names in this DSECT (field names and equates) to begin with the letter X.

(28) The routine BNDCALL2 is called by the user program PROG2 as a subroutine.

(29) A message to SYSOUT indicates that the routine BNDCALL2 has been terminated.

Runtime listing

/set-file-link link-name=altlib,file-name=$.syslib.binder.023 ————————— (1)
/start-program from-file=$assembh
% BLS0500 PROGRAM 'ASSEMBH', VERSION '1.2C00' OF '2002-03-06' LOADED
% BLS0552 COPYRIGHT (C) FUJITSU SIEMENS COMPUTERS GMBH 2002.

ALL RIGHTS RESERVED
% ASS6010 V01.2C00 OF BS2000 ASSEMBH READY
%//compile source=src.bndcall2,macro-library=*link(link-name=altlib),-
%// module-library=bndlib —————————————————————————————————————— (2)
% ASS6011 ASSEMBLY TIME: 1486 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 855 MSEC
%//compile source=src.prog2,module-library=*omf ——————————————————————— (3)
% ASS6011 ASSEMBLY TIME: 688 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 255 MSEC
%//end
% ASS6012 END OF ASSEMBH

U9557-J-Z125-4-76 175

Subroutine interface Examples

/set-file-link link-name=blslib01,file-name=bndlib ———————————————————— (4)
/start-program from-file=*module(library=*omf,element=prog2,-
/ run-mode=advanced(alternate-libraries=yes)) ———————————— (5)
% BLS0517 MODULE 'PROG2' LOADED
%//include-modules element=mod3,type=(l,r) ———————————————————————————— (6)
%//show-map help-information=no,global-information=no, - —————————————— (7)
%// physical-structure=no,program-map=no,unresolved-list=no,-
%// input-information=no,output=*by-show-file
% BND1601 'FILE' MACRO PERFORMED ON 'BNDMAP.2004-05-17138.173535.2AB0'

%//save-llm library=bndlib —— (9)
%//end —— (10)
% BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS: 'OK'
BINDER CALL TERMINATED —— (11)

(1) The macro library $.SYSLIB.BINDER.023 that contains the BINDER macro is
assigned to the assembler as ALTLIB.

(2) The routine BNDCALL2 is compiled and the object module BNDCALL2 is stored in
program library BNDLIB.

(3) The user program PROG2 is compiled and the object module PROG2 is stored in
the EAM object module file.

(4) The program library BNDLIB containing the object module BNDCALL2 is assigned
as the alternative library.

15000000BINDER V02.3A *LOGICAL STRUCTURE* LLM: X
15000001
15000002SLICE TYPE HSI LEVEL STR# NAME
15000003----- ---- ----- ----- ---- ----
15100000 1 LLM /7500 0 1 LLMX
15100001 1 GM /7500 1 2 MOD1
15100002 1 GM /7500 1 2 MOD2
15100003 1 GM /7500 1 2 MOD3
15900000
17000000BINDER V02.0A *SCOPE PATH INFORMATION* LLM: X
17000001
17000002PATH STR# PATHNAME
17000003----- ---- --------
17900000

% SHO0301 WARNING: END OF FILE REACHED
e I*SOF+ 1(1)

(8)

176 U9557-J-Z125-4-76

Examples Subroutine interface

(5) DBL is called in order to load and start the module PROG2. The module PROG2 is
fetched from the EAM object module library. After the first two statements START-
LLM-CREATION and INCLUDE-MODULES, that have been passed by
BNDCALL2, have been processed, the module BINDER requests further BINDER
statements from SYSDTA.

(6) The INCLUDE-MODULES statement is read in from SYSDTA. This fetches the
object module MOD3 from the current library BLSLIB01 and includes it in the LLM.

(7) The SHOW-MAP statement is entered from SYSDTA. Only the logical structure list
is to be output.

(8) Logical structure list for the created LLM. The ISAM keys are shown in the first eight
columns.

(9) The SAVE-LLM statement stores the created LLM in the program library BNDLIB.

(10) The END statement terminates the BINDER run.

(11) The program PROG2 issues a message indicating that the routine BNDCALL2 has
been terminated.

U9557-J-Z125-4-76 177

7 BINDER statements
All the statements for BINDER are described in this chapter.

7.1 Grouping of statements by function

The statements for BINDER can be grouped as follows depending on their function:

Creating, updating and saving an LLM

Including, removing and replacing modules

Merging modules

START-LLM-CREATION Creates a current LLM in the BINDER work area.

START-LLM-UPDATE Updates an LLM saved in a program library.

SAVE-LLM Saves the current LLM from the BINDER work area to
a program library.

INCLUDE-MODULES Includes one or more modules in the current LLM.

REMOVE-MODULES Removes one or more modules from the current LLM.

REPLACE-MODULES Replaces one or more modules in the current LLM
with new modules.

MERGE-MODULES Merges all modules of a (sub-)LLM into one LLM
which then contains only one prelinked module with a
single CSECT.

178 U9557-J-Z125-4-76

Grouping of statements by function BINDER statements

Creating the logical structure of an LLM

Creating the physical structure of an LLM

Modifying the attributes of LLMs and modules

Resolving external references by autolink

Handling symbols

BEGIN-SUB-LLM-STATEMENTS Defines the beginning of a sub-LLM within an LLM or
a sub-LLM.

END-SUB-LLM-STATEMENTS Defines the end of a sub-LLM within an LLM or a sub-
LLM.

SET-USER-SLICE-POSITION Defines the position of a slice in the physical structure
of an LLM.

MODIFY-LLM-ATTRIBUTES Modifies the attributes of an LLM.

MODIFY-MODULE-ATTRIBUTES Modifies the attributes of the modules in the current
LLM and can, for example, modify the logical
structure of the LLM.

RESOLVE-BY-AUTOLINK Automatically includes modules in the current LLM
that resolve unresolved external references.

SET-EXTERN-RESOLUTION Declares how unresolved external references that
cannot be resolved are to be handled.

RENAME-SYMBOLS Replaces the names of symbols in the current LLM
with new names.

MODIFY-SYMBOL-ATTRIBUTES Modifies the attributes of CSECTs and COMMONs in
the current LLM.

MODIFY-SYMBOL-TYPE Modifies the symbol types (EXTRN, WXTRN and
VCON).

MODIFY-SYMBOL-VISIBILITY Defines the extent to which program definitions
(CSECTs) and entry points (ENTRYs) remain visible
or are masked in the current LLM.

U9557-J-Z125-4-76 179

BINDER statements Grouping of statements by function

Display functions

Controlling list output and error processing

Terminating the BINDER run

The SDF standard statements may also be specified. They (except for END) are not
described in the present manual. A description of these statements can be found in the
“Introductory Guide to the SDF Dialog Interface” [14].

SHOW-DEFAULTS Displays the global defaults for a BINDER run.

SHOW-LIBRARY-ELEMENTS Displays and checks library elements.

SHOW-SYMBOL-INFORMATION Displays selected information about symbols.

SHOW-MAP Outputs lists containing information about the current
LLM.

MODIFY-MAP-DEFAULTS Modifies the default values for list output.

MODIFY-ERROR-PROCESSING Specifies that the BINDER run will be terminated on
the occurrence of errors of certain severity classes,
and controls message output.

MODIFY-STD-DEFAULTS Modifies the global defaults for a BINDER run.

START-STATEMENT-RECORDING Records BINDER statements

STOP-STATEMENT-RECORDING Terminates recording of BINDER statements

END Terminates the BINDER run.

180 U9557-J-Z125-4-76

Notes on the SDF user interface BINDER statements

7.2 Notes on the SDF user interface

The statements described in this manual are processed by the command processor SDF
(System Dialog Facility). This supports various levels of guided and unguided dialog,
enabling less experienced users to request help menus for the statements. Input errors can
be corrected in a correction dialog. Detailed information on various options provided by SDF
can be found in the ”Introductory Guide to the SDF Dialog Interface” [14].

Abbreviation of names

SDF permits inputs to be abbreviated in interactive and batch modes as well as in proce-
dures, provided the abbreviations used are unambiguous within the related syntax
environment. Note, however, that an abbreviation that is currently unambiguous could
potentially become ambiguous at a later date, particularly if new functions are added to the
product. For this reason, it is best to avoid abbreviations entirely, especially in procedures,
or at the very least, to ensure that only guaranteed abbreviations be used. In the statement
formats, these guaranteed abbreviations are shown in boldface.

Command and statement names, operands and keyword values may be abbreviated as
follows:
– Complete name components may be omitted from right to left; the hyphen preceding

the dropped name component is also omitted.
– Individual characters of a name component may be omitted from right to left.
– An asterisk (*) preceding a keyword value is not considered a valid abbreviation for that

value. As of SDF V4.0A, keyword values are always represented with a leading asterisk.
The asterisk may be omitted only if there is no possible alternative variable operand
value with a value range that includes the name of the keyword value. This form of
abbreviation may be restricted due to extensions in later versions. For compatibility
reasons, operand values that were previously represented without an asterisk are still
accepted without the asterisk.

Example of input

Unabbreviated command format:

/MODIFY-SDF-OPTIONS SYNTAX-FILE=*NONE,GUIDANCE=*MINIMUM

Abbreviated command format:

/MOD-SDF-OPT SYN-F=*NO,GUID=*MIN

The guaranteed abbreviations are only intended as recommendations for abbreviated input;
they may not always be the shortest possible input in your syntax environment. They are,
however, clear and easy to understand and are designed to remain unique in the long term.

U9557-J-Z125-4-76 181

BINDER statements Notes on the SDF user interface

In some cases, an additional abbreviation is documented in the manual next to the
command or statement name. This abbreviation is implemented as an alias for the
command or statement name and is guaranteed in the long term. The alias consists of a
maximum of 8 letters (A...Z) that are derived from the command or statement name. Aliases
cannot be abbreviated further.

Default values

Most operands are optional, i.e. need not be explicitly specified. Such operands are preset
to a specific operand value, the so-called default value. The default value for each operand
is shown in the syntax underscored. If an optional operand is not explicitly specified, its
default value is automatically inserted when executing the command or statement.

Positional operands

SDF permits operands to be specified either as keyword operands or as positional
operands. However, it is quite possible that the positions of operands may change in future
versions of the product. It is therefore advisable to avoid the use of positional operands,
especially in procedures.

7.2.1 SDF syntax description

This syntax description is valid for SDF V4.5A.The syntax of the SDF command/statement
language is explained in the following three tables.

Table 1: Notational conventions

The meanings of the special characters and the notation used to describe command and
statement formats are explained in table 1.

Table 2: Data types

Variable operand values are represented in SDF by data types. Each data type represents
a specific set of values. The number of data types is limited to those described in table 2.

The description of the data types is valid for the entire set of commands/statements.
Therefore only deviations (if any) from the attributes described here are explained in the
relevant operand descriptions.

182 U9557-J-Z125-4-76

Notes on the SDF user interface BINDER statements

Table 4: Suffixes for data types

Data type suffixes define additional rules for data type input. They contain a length or
interval specification and can be used to limit the set of values (suffix begins with without),
extend it (suffix begins with with), or declare a particular task mandatory (suffix begins with
mandatory). The following short forms are used in this manual for data type suffixes:

cat-id cat
completion compl
correction-state corr
generation gen
lower-case low
manual-release man
odd-possible odd
path-completion path-compl
separators sep
temporary-file temp-file
underscore under
user-id user
version vers
wildcard-constr wild-constr
wildcards wild

The description of the ‘integer’ data type in table 4 contains a number of items in italics; the
italics are not part of the syntax and are only used to make the table easier to read.
For special data types that are checked by the implementation, table 4 contains suffixes
printed in italics (see the special suffix) which are not part of the syntax.

The description of the data type suffixes is valid for the entire set of commands/statements.
Therefore only deviations (if any) from the attributes described here are explained in the
relevant operand descriptions.

U9557-J-Z125-4-76 183

BINDER statements Notes on the SDF user interface

Metasyntax

Representation Meaning Examples

UPPERCASE

LETTERS
Uppercase letters denote keywords
(command, statement or operand
names, keyword values) and
constant operand values. Keyword
values begin with *.

HELP-SDF

SCREEN-STEPS = *NO

UPPERCASE

LETTERS

in boldface

Uppercase letters printed in
boldface denote guaranteed or
suggested abbreviations of
keywords.

GUIDANCE-MODE = *YES

= The equals sign connects an
operand name with the associated
operand values.

GUIDANCE-MODE = *NO

< > Angle brackets denote variables
whose range of values is described
by data types and suffixes (see
Tables 2 and 4).

SYNTAX-FILE = <filename 1..54>

Underscoring Underscoring denotes the default
value of an operand.

GUIDANCE-MODE = *NO

/ A slash serves to separate
alternative operand values.

NEXT-FIELD = *NO / *YES

(…) Parentheses denote operand
values that initiate a structure.

,UNGUIDED-DIALOG = *YES (...) / *NO

[] Square brackets denote operand
values which introduce a structure
and are optional. The subsequent
structure can be specified without
the initiating operand value.

SELECT = [*BY-ATTRIBUTES](...)

Indentation Indentation indicates that the
operand is dependent on a higher-
ranking operand.

,GUIDED-DIALOG = *YES (...)

*YES(...)

 SCREEN-STEPS = *NO /

 *YES

Table 1: Metasyntax (part 1 of 2)

184 U9557-J-Z125-4-76

Notes on the SDF user interface BINDER statements




A vertical bar identifies related
operands within a structure. Its
length marks the beginning and
end of a structure. A structure may
contain further structures. The
number of vertical bars preceding
an operand corresponds to the
depth of the structure.

SUPPORT = *TAPE(...)

 *TAPE(...)

 VOLUME = *ANY(...)
 *ANY(...)
  ...

 

, A comma precedes further
operands at the same structure
level.

GUIDANCE-MODE = *NO / *YES

,SDF-COMMANDS = *NO / *YES

list-poss(n): The entry “list-poss” signifies that a
list of operand values can be given
at this point. If (n) is present, it
means that the list must not have
more than n elements. A list of
more than one element must be
enclosed in parentheses.

list-poss: *SAM / *ISAM

list-poss(40): <structured-name 1..30>

list-poss(256): *OMF / *SYSLST(...) /

<filename 1..54>

Alias: The name that follows represents a
guaranteed alias (abbreviation) for
the command or statement name.

HELP-SDF Alias: HPSDF

Representation Meaning Examples

Table 1: Metasyntax (part 2 of 2)

U9557-J-Z125-4-76 185

BINDER statements Notes on the SDF user interface

Data types

Data type Character set Special rules

alphanum-name A…Z
0…9
$, #, @

cat-id A…Z
0…9

Not more than 4 characters;
must not begin with the string PUB

command-rest freely selectable

composed-name A…Z
0…9
$, #, @
hyphen
period
catalog ID

Alphanumeric string that can be split into
multiple substrings by means of a period or
hyphen.
If a file name can also be specified, the string
may begin with a catalog ID in the form :cat: (see
data type filename).

c-string EBCDIC character Must be enclosed within single quotes;
the letter C may be prefixed; any single quotes
occurring within the string must be entered
twice.

date 0…9
Structure identifier:
hyphen

Input format: yyyy-mm-dd

jjjj: year; optionally 2 or 4 digits
mm: month
tt: day

device A…Z
0…9
hyphen

Character string, max. 8 characters in length,
corresponding to a device available in the
system. In guided dialog, SDF displays the valid
operand values. For notes on possible devices,
see the relevant operand description.

fixed +, -
0…9
period

Input format: [sign][digits].[digits]

[sign]: + or -
[digits]: 0...9

must contain at least one digit, but may contain
up to 10 characters (0...9, period) apart from the
sign.

Table 2: Data types (part 1 of 6)

186 U9557-J-Z125-4-76

Notes on the SDF user interface BINDER statements

filename A…Z
0…9
$, #, @
hyphen
period

Input format:

[:cat:][$user.]

 :cat:
optional entry of the catalog identifier;
character set limited to A...Z and 0...9;
maximum of 4 characters; must be enclosed
in colons; default value is the catalog
identifier assigned to the user ID, as
specified in the user catalog.

 $user.
optional entry of the user ID;
character set is A…Z, 0…9, $, #, @;
maximum of 8 characters; first character
cannot be a digit; $ and period are
mandatory;
default value is the user's own ID.

 $. (special case)
system default ID

file
file or job variable name;
may be split into a number of partial names
using a period as a delimiter:
name1[.name2[...]]
namei does not contain a period and must
not begin or end with a hyphen;
file can have a maximum length of 41
characters; it must not begin with a $ and
must include at least one character from the
range A...Z.

Data type Character set Special rules

Table 2: Data types (part 2 of 6)

file
file(no)
group

group
(*abs)
(+rel)
(-rel)

U9557-J-Z125-4-76 187

BINDER statements Notes on the SDF user interface

filename
(contd.)

#file (special case)
@file (special case)

or @ used as the first character indicates
temporary files or job variables, depending
on system generation.

file(no)
tape file name
no: version number;
character set is A...Z, 0...9, $, #, @.
Parentheses must be specified.

group
name of a file generation group
(character set: as for “file”)

group

 (*abs)
absolute generation number (1-9999);
* and parentheses must be specified.

 (+rel)
(-rel)

relative generation number (0-99);
sign and parentheses must be specified.

integer 0…9, +, - + or -, if specified, must be the first character.

name A…Z
0…9
$, #, @

Must not begin with 0...9.

Data type Character set Special rules

Table 2: Data types (part 3 of 6)

(*abs)
(+rel)
(-rel)

188 U9557-J-Z125-4-76

Notes on the SDF user interface BINDER statements

partial-filename A…Z
0…9
$, #, @
hyphen
period

Input format: [:cat:][$user.][partname.]

:cat: see filename
$user. see filename

partname
optional entry of the initial part of a name
common to a number of files or file
generation groups in the form:
name1.[name2.[...]]
namei (see filename).
The final character of “partname” must be a
period.
At least one of the parts :cat:, $user. or
partname must be specified.

posix-filename A...Z
0...9
special characters

String with a length of up to 255 characters;
consists of either one or two periods or of alpha-
numeric characters and special characters.
The special characters must be escaped with a
preceding \ (backslash); the / is not allowed.
Must be enclosed within single quotes if alter-
native data types are permitted, separators are
used, or the first character is a ?, ! or ^.
A distinction is made between uppercase and
lowercase.

posix-pathname A...Z
0...9
special characters
structure identifier:
slash

Input format: [/]part1/.../partn
where parti is a posix-filename;
max. 1023 characters;
must be enclosed within single quotes if alter-
native data types are permitted, separators are
used, or the first character is a ?, ! or ^.

Data type Character set Special rules

Table 2: Data types (part 4 of 6)

U9557-J-Z125-4-76 189

BINDER statements Notes on the SDF user interface

product-version A…Z
0…9
period
single quote

Input format:

where m, n, s and o are all digits and a is a letter.
Whether the release and/or correction status
may/must be specified depends on the suffixes
to the data type (see suffixes without-corr,
without-man, mandatory-man and mandatory-
corr in table 4).
product-version may be enclosed within single
quotes (possibly with a preceding C).
The specification of the version may begin with
the letter V.

structured-name A…Z
0…9
$, #, @
hyphen

Alphanumeric string which may comprise a
number of substrings separated by a hyphen.
First character: A...Z or $, #, @

text freely selectable For the input format, see the relevant operand
descriptions.

time 0…9
structure identifier:
colon

Time-of-day entry:

Input format:

hh: hours
mm: minutes
ss: seconds

vsn a) A…Z
0…9

a) Input format: pvsid.sequence-no
max. 6 characters
pvsid: 2-4 characters; PUB must

not be entered
sequence-no: 1-3 characters

 b) A…Z
0…9
$, #, @

b) Max. 6 characters;
PUB may be prefixed, but must not be
followed by $, #, @.

Data type Character set Special rules

Table 2: Data types (part 5 of 6)

[[C]’][V][m]m.naso[’]

correction status

release status

hh:mm:ss
hh:mm
hh

Leading zeros may be
omitted

190 U9557-J-Z125-4-76

Notes on the SDF user interface BINDER statements

Special data types

x-string Hexadecimal:
00…FF

Must be enclosed in single quotes; must be
prefixed by the letter X. There may be an odd
number of characters.

x-text Hexadecimal:
00…FF

Must not be enclosed in single quotes;
the letter X must not be prefixed.
There may be an odd number of characters.

Data type Character set Special rules

element-name A...Z
0...9
$,#,@
hyphen
period
underscore

The characters hyphen, underscore and period
must not be the first or last character, and two of
the same of any of these special characters
must not immediately follow one another.
The hyphen must not stand immediately to the
right of any of the characters $, @, #, under-
score and period. The element name must
contain at least one letter or one of the special
characters $, #, @.

element-version A...Z
0...9
hyphen
period

The special characters period and hyphen must
not be the first or last character. Two of the same
of these special characters must not immedi-
ately follow one another.
The hyphen must not stand immediately to the
right of a period.

path-name Any See page 16 for input format.

symbol A...Z
0...9
$,#,@,&,%
hyphen
underscore

First character: A...Z or $,#,@
In addition, names comprising 8 blanks are also
permitted.

symbol-with-
wild

EBCDIC characters Must be enclosed in apostrophes;
parts of a name may be replaced .
by wildcard characters (see table 4).

Table 3: Special data types

Data type Character set Special rules

Table 2: Data types (part 6 of 6)

U9557-J-Z125-4-76 191

BINDER statements Notes on the SDF user interface

Suffixes for data types

Suffix Meaning

x..y unit With data type “integer”: interval specification

x minimum value permitted for “integer”. x is an (optionally signed)
integer.

y maximum value permitted for “integer”. y is an (optionally signed)
integer.

unit with “integer” only: additional units.
The following units may be specified:
days byte
hours 2Kbyte
minutes 4Kbyte
seconds Mbyte
milliseconds

x..y special With the other data types: length specification
For data types catid, date, device, product-version, time and vsn the length
specification is not displayed.

x minimum length for the operand value; x is an integer.

y maximum length for the operand value; y is an integer.

x=y the length of the operand value must be precisely x.

special Specification of a suffix for describing a special data type that is
checked by the implementation. “special” can be preceded by other
suffixes. The following specifications are used:
arithm-expr arithmetic expression (SDF-P)
bool-expr logical expression (SDF-P)
string-expr string expression (SDF-P)
expr freely selectable expression (SDF-P)
cond-expr conditional expression (JV)
symbol CSECT or entry name (BLS)

with Extends the specification options for a data type.

-compl When specifying the data type “date”, SDF expands two-digit year specific-
tions in the form yy-mm-dd to:

20jj-mm-tt if jj < 60
19jj-mm-tt if jj Ï 60

-low Uppercase and lowercase letters are differentiated.

-path-
compl

For specifications for the data type “filename”, SDF adds the catalog and/or
user ID if these have not been specified.

Table 4: Data type suffixes (part 1 of 7)

192 U9557-J-Z125-4-76

Notes on the SDF user interface BINDER statements

with (contd.)

-under Permits underscores (_) for the data type “name”.

-wild(n) Parts of names may be replaced by the following wildcards.
n denotes the maximum input length when using wildcards.
Due to the introduction of the data types posix-filename and posix-
pathname, SDF now accepts wildcards from the UNIX world (referred to
below as POSIX wildcards) in addition to the usual BS2000 wildcards.
However, as not all commands support POSIX wildcards, their use for data
types other than posix-filename and posix-pathname can lead to semantic
errors.
Only POSIX wildcards or only BS2000 wildcards should be used within a
search pattern. Only POSIX wildcards are allowed for the data types posix-
filename and posix-pathname. If a pattern can be matched more than once
in a string, the first match is used.

BS2000
wildcards

Meaning

* Replaces an arbitrary (even empty) character string. If the
string concerned starts with *, then the * must be entered twice
in succession if it is followed by other characters and if the
character string entered does not contain at least one other
wildcard.

Termina-
ting period

Partially-qualified entry of a name.
Corresponds implicitly to the string “./*”, i.e. at least one other
character follows the period.

/ Replaces any single character.

<sx:sy> Replaces a string that meets the following conditions:
– It is at least as long as the shortest string (sx or sy)
– It is not longer than the longest string (sx or sy)
– It lies between sx and sy in the alphabetic collating

sequence; numbers are sorted after letters (A...Z, 0...9)
– sx can also be an empty string (which is in the first position

in the alphabetic collating sequence)
– sy can also be an empty string, which in this position stands

for the string with the highest possible code (contains only
the characters X’FF’)

<s1,…> Replaces all strings that match any of the character combina-
tions specified by s. s may also be an empty string. Any such
string may also be a range specification “sx:sy” (see above).

Suffix Meaning

Table 4: Data type suffixes (part 2 of 7)

U9557-J-Z125-4-76 193

BINDER statements Notes on the SDF user interface

with-wild(n)

(contd.) -s Replaces all strings that do not match the specified string s.
The minus sign may only appear at the beginning of string s.
Within the data types filename or partial-filename the negated
string -s can be used exactly once, i.e. -s can replace one of
the three name components: cat, user or file.

Wildcards are not permitted in generation and version specifications for file
names. Only system administration may use wildcards in user IDs.
Wildcards cannot be used to replace the delimiters in name components cat
(colon) and user ($ and period).

POSIX
wildcards

Meaning

* Replaces any single string (including an empty string). An *
appearing at the first position must be duplicated if it is followed
by other characters and if the entered string does not include
at least one further wildcard.

? Replaces any single character; not permitted as the first
character outside single quotes.

[cx-cy] Replaces any single character from the range defined by cx
and cy, including the limits of the range. cx and cy must be
normal characters.

[s] Replaces exactly one character from string s.
The expressions [cx-cy] and [s] can be combined into
[s1cx-cys2].

[!cx-cy] Replaces exactly one character not in the range defined by cx
and cy, including the limits of the range. cx and cy must be
normal characters. The expressions [!cx-cy] and [!s] can be
combined into [!s1cx-cys2].

[!s] Replaces exactly one character not contained in string s. The
expressions [!s] and [!cx-cy] can be combined into [!s1cx-cys2].

Suffix Meaning

Table 4: Data type suffixes (part 3 of 7)

194 U9557-J-Z125-4-76

Notes on the SDF user interface BINDER statements

with (contd.)

wild-
constr(n)

Specification of a constructor (string) that defines how new names are to be
constructed from a previously specified selector (i.e. a selection string with
wildcards). See also with-wild. n denotes the maximum input length when
using wildcards.
The constructor may consist of constant strings and patterns. A pattern
(character) is replaced by the string that was selected by the corresponding
pattern in the selector.
The following wildcards may be used in constructors:

Wildcard Meaning

* Corresponds to the string selected by the wildcard * in the
selector.

Termina-
ting period

Corresponds to the partially-qualified specification of a name in
the selector;
corresponds to the string selected by the terminating period in
the selector.

/ or ? Corresponds to the character selected by the / or ? wildcard in
the selector.

<n> Corresponds to the string selected by the n-th wildcard in the
selector, where n is an integer.

Allocation of wildcards to corresponding wildcards in the selector:
All wildcards in the selector are numbered from left to right in ascending
order (global index).
Identical wildcards in the selector are additionally numbered from left to right
in ascending order (wildcard-specific index).
Wildcards can be specified in the constructor by one of two mutually
exclusive methods:

1. Wildcards can be specified via the global index: <n>

2. The same wildcard may be specified as in the selector; substitution
occurs on the basis of the wildcard-specific index. For example:
the second “/” corresponds to the string selected by the second “/” in the
selector

Suffix Meaning

Table 4: Data type suffixes (part 4 of 7)

U9557-J-Z125-4-76 195

BINDER statements Notes on the SDF user interface

with-wild-
constr(n)

(contd.)

The following rules must be observed when specifying a constructor:

– The constructor can only contain wildcards of the selector.

– If the string selected by the wildcard <...> or [...] is to be used in the
constructor, the index notation must be selected.

– The index notation must be selected if the string identified by a wildcard
in the selector is to be used more than once in the constructor. For
example: if the selector “A/” is specified, the constructor “A<n><n>” must
be specified instead of “A//”.

– The wildcard * can also be an empty string. Note that if multiple asterisks
appear in sequence (even with further wildcards), only the last asterisk
can be a non-empty string, e.g. for “****” or “*//*”.

– Valid names must be produced by the constructor. This must be taken
into account when specifying both the constructor and the selector.

– Depending on the constructor, identical names may be constructed from
different names selected by the selector. For example:
 “A/*” selects the names “A1” and “A2”; the constructor “B*” generates
the same new name “B” in both cases.
To prevent this from occurring, all wildcards of the selector should be
used at least once in the constructor.

– If the constructor ends with a period, the selector must also end with a
period. The string selected by the period at the end of the selector
cannot be specified by the global index in the constructor specification.

Suffix Meaning

Table 4: Data type suffixes (part 5 of 7)

196 U9557-J-Z125-4-76

Notes on the SDF user interface BINDER statements

with-wild-
constr(n)
(contd.)

Examples:

without Restricts the specification options for a data type.

-cat Specification of a catalog ID is not permitted.

-corr Input format: [[C]’][V][m]m.na[’]
Specifications for the data type product-version must not include the
correction status.

-gen Specification of a file generation or file generation group is not permitted.

-man Input format: [[C]’][V][m]m.n[’]
Specifications for the data type product-version must not include either
release or correction status.

-odd The data type x-text permits only an even number of characters.

-sep With the data type “text”, specification of the following separators is not
permitted: ; = () < > Ë (i.e. semicolon, equals sign, left and right paren-
theses, greater than, less than, and blank).

-temp-
file

Specification of a temporary file is not permitted (see #file or @file under
filename).

Suffix Meaning

Table 4: Data type suffixes (part 6 of 7)

Selector Selection Constructor New name

A//* AB1
AB2
A.B.C

D<3><2> D1
D2
D.CB

C.<A:C>/<D,F> C.AAD
C.ABD
C.BAF
C.BBF

G.<1>.<3>.XY<2> G.A.D.XYA
G.A.D.XYB
G.B.F.XYA
G.B.F.XYB

C.<A:C>/<D,F> C.AAD
C.ABD
C.BAF
C.BBF

G.<1>.<2>.XY<2> G.A.A.XYA
G.A.B.XYB
G.B.A.XYA
G.B.B.XYB

A//B ACDB
ACEB
AC.B
A.CB

G/XY/ GCXYD
GCXYE
GCXY. 1

G.XYC
1 The period at the end of the name may violate naming conventions (e.g. for fully-qualified

file names).

U9557-J-Z125-4-76 197

BINDER statements Description of the statements

7.3 Description of the statements

The statements are arranged in alphabetical order by name. The description of a statement
is organized as follows:

– statement name

– description of the statement function

– statement format

– description of the statement operands.

without
(contd.)

-user Specification of a user ID is not permitted.

-vers Specification of the version (see “file(no)”) is not permitted for tape files.

-wild The file types posix-filename and posix-pathname must not contain a
pattern (character).

mandatory Certain specifications are necessary for a data type.

-corr Input format: [[C]’][V][m]m.naso[’]
Specifications for the data type product-version must include the correction
status and therefore also the release status.

-man Input format: [[C]’][V][m]m.na[so][’]
Specifications for the data type product-version must include the release
status. Specification of the correction status is optional if this is not
prohibited by the use of the suffix without-corr.

-quotes Specifications for the data types posix-filename and posix-pathname must
be enclosed in single quotes.

Suffix Meaning

Table 4: Data type suffixes (part 7 of 7)

198 U9557-J-Z125-4-76

Description of the statements BINDER statements

Overview

The SDF standard statements may also be specified in a BINDER-RUN. They (except for
END) are not described in the present manual. A description of these statements can be
found in the “Introductory Guide to the SDF Dialog Interface” [14].

Statement name Function

BEGIN-SUB-LLM-STATEMENTS Define beginning of a sub-LLM

END Terminate BINDER run

END-SUB-LLM-STATEMENTS Define end of a sub-LLM

INCLUDE-MODULES Include modules

MERGE-MODULES Merge the modules of a (sub-)LLM

MODIFY-ERROR-PROCESSING Control error processing

MODIFY-LLM-ATTRIBUTES Modify attributes of an LLM

MODIFY-MAP-DEFAULTS Modify default values for the output of lists

MODIFY-MODULE-ATTRIBUTES Modify the attributes of modules

MODIFY-STD-DEFAULTS Modify the global default values

MODIFY-SYMBOL-ATTRIBUTES Modify attributes of symbols

MODIFY-SYMBOL-TYPE Modify symbol types

MODIFY-SYMBOL-VISIBILITY Modify masking of symbols

REMOVE-MODULES Remove modules

RENAME-SYMBOLS Modify symbol names

REPLACE-MODULES Replace modules

RESOLVE-BY-AUTOLINK Resolve external references by autolink

SAVE-LLM Save an LLM

SET-EXTERN-RESOLUTION Handle unresolved external references

SET-USER-SLICE-POSITION Define position of a slice

SHOW-DEFAULTS Display the global default values

SHOW-LIBRARY-ELEMENTS Display and check library elements

SHOW-MAP Output lists

SHOW-SYMBOL-INFORMATION Display symbol information

START-LLM-CREATION Create an LLM

START-LLM-UPDATE Update an LLM

START-STATEMENT-RECORDING Records BINDER statements

STOP-STATEMENT-RECORDING Terminates recording of BINDER statements

U9557-J-Z125-4-76 199

BINDER statements BEGIN-SUB-LLM-STATEMENTS

BEGIN-SUB-LLM-STATEMENTS

This statement is used for the logical structuring of an LLM. It defines the beginning of a
sub-LLM within an LLM or sub-LLM.

Either the node at which the sub-LLM is to begin can be defined through the path name or
the node of the current sub-LLM can be selected.

A sub-LLM is created in exactly the same way as an LLM, i.e. all statements are valid. The
END-SUB-LLM-STATEMENTS statement terminates the structure of the sub-LLM.

SUB-LLM-NAME = <structured-name 1..32>
Defines the name that the sub-LLM is to receive.

PATH-NAME =
Defines the node in the logical structure at which the sub-LLM is to begin.

PATH-NAME = *CURRENT-SUB-LLM
The sub-LLM is to begin at the node of the current sub-LLM.

PATH-NAME = <text 1..255>
Path name of the node at which the sub-LLM is to begin.
Note: BINDER checks special data type <path-name> (see page 190).

BEGIN-SUB-LLM-STATEMENTS

SUB-LLM-NAME = <c-string 1..32 with-low> / <text 1..32>

,PATH-NAME = *CURRENT-SUB-LLM / <c-string 1..255 with-low> / <text 1..255>

,RESOLUTION-SCOPE = *UNCHANGED / *STD / *PARAMETERS(...)

*PARAMETERS(...)
  HIGH-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE / <c-string 1..255 with-low> /

 <text 1..255>
  ,LOW-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE / <c-string 1..255 with-low> /

 <text 1..255>
  ,FORBIDDEN-SCOPE = *UNCHANGED / *STD / *NONE / <c-string 1..255 with-low> / <text 1..255>

,MODE = *CREATE / *UPDATE

200 U9557-J-Z125-4-76

BEGIN-SUB-LLM-STATEMENTS BINDER statements

RESOLUTION-SCOPE =
Defines priority classes that control the order in which BINDER is to search other modules
when resolving external references. Two values must be discriminated for each class:
– The dynamic value

influences the order in which modules are searched to resolve external references. It is,
however, not stored in the LLM.

– The static value
is stored in the LLM and forms the basis for determining the dynamic value.

RESOLUTION-SCOPE = *UNCHANGED
The static values of the priority classes are those stored in the modules concerned. They
are assigned the value *STD (see below) for object modules (OMs).

RESOLUTION-SCOPE = *STD
The static values of the priority classes are *STD, i.e. the dynamic values of superordinate
nodes are taken over into the logical LLM structure. This inheritance mechanism is applied
each time a new search is started for resolving external references.
The default value for the static values of the ROOT node of an LLM is *STD. The dynamic
values in this case are *NONE (see below).

RESOLUTION-SCOPE = *PARAMETERS(...)
The static values of the individual priority classes are defined separately.

HIGH-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is to be searched before all others for resolving external refer-
ences (see section “Rules for resolving external references” on page 73).

HIGH-PRIORITY-SCOPE = *STD
The static value of this priority class is *STD, i.e. the dynamic value of the superordinate
node is taken over into the logical LLM structure. This inheritance mechanism is applied
each time a new search is started for resolving external references.
The default value for the static value of the ROOT node of an LLM is *STD. The dynamic
value in this case is *NONE (see below).

HIGH-PRIORITY-SCOPE = *NONE
The HIGH-PRIORITY-SCOPE priority class is undefined, i.e. there are no modules
which are to be searched before all others for resolving external references. The value
of the superordinate node is not taken over.

HIGH-PRIORITY-SCOPE = <c-string 1..255 with-low> / <text 1..255>
Path name of the sub-LLM which is to be searched first for resolving external refer-
ences.

U9557-J-Z125-4-76 201

BINDER statements BEGIN-SUB-LLM-STATEMENTS

LOW-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is only to be searched for resolving external references after
the search was unsuccessful in all other modules (see section “Rules for resolving
external references” on page 73).
The meanings of the separate operand values are analogous to the priority class HIGH-
PRIORITY-SCOPE.

FORBIDDEN-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is not to be searched for resolving external references (see
section “Rules for resolving external references” on page 73).
The meanings of the separate operand values are analogous to the priority class HIGH-
PRIORITY-SCOPE.

An example of the inheritance mechanism for the PRIORITY-SCOPE values is provided in
the description of the INCLUDE-MODULES statement on page 211.

MODE =
Specifies whether a new sub-LLM is created or an existing sub-LLM updated.

MODE =*CREATE
A new sub-LLM is created.

MODE = *UPDATE
An existing sub-LLM is updated.

202 U9557-J-Z125-4-76

END/END-SUB-LLM-STATEMENTS BINDER statements

END

This statement terminates the BINDER run. The input sources opened by BINDER are
closed and an end message is output.

The END statement has no operands.

END-SUB-LLM-STATEMENTS

This statement is used for the logical structuring of a sub-LLM. It defines the end of a sub-
LLM within an LLM or sub-LLM.

The current LLM is reset to the level that contained the current LLM prior to the associated
BEGIN-SUB-LLM-STATEMENTS statement.

The END-SUB-LLM-STATEMENTS statement has no operands.

END

END-SUB-LLM-STATEMENTS

U9557-J-Z125-4-76 203

BINDER statements INCLUDE-MODULES

INCLUDE-MODULES

This statement reads one or more modules from the specified input source and includes
them in the current LLM work area.

Both object modules and LLMs can be included as modules. It is not possible to include
LLMs with user-defined slices or LLMs without relocation information. If the entire structure
information was included when the LLM was stored (operand LOGICAL-STRUCTURE =
WHOLE-LLM), then either entire LLMs can be included or sub-LLMs can be selected.

The input source may be:

– for object modules: a program library (element type R), an object module library (OML)
or the EAM object module file (OMF),

– for LLMs and sub-LLMs: a program library (element type L).

(part 1 of 2)

INCLUDE-MODULES

MODULE-CONTAINER = *LIBRARY-ELEMENT (...) / *FILE(...) / *OMF(...)

*LIBRARY-ELEMENT(...)
  LIBRARY = *CURRENT-INPUT-LIB / <filename 1..54 without-gen-vers> / *LINK(...) /

 *BLSLIB-LINK / *OMF
  *LINK(...)
   LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>
  ,ELEMENT = *ALL (...) / list-poss(40): <composed-name 1..64>(...) / <c-string 1..64>(...)
  *ALL(...)
   VERSION = *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>
  <composed-name>(...)
   VERSION = *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>
    ,SUB-LLM = *WHOLE-LLM / <c-string 1..255 with-low> / <text 1..255>
  <c-string>(...)
   VERSION = *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>
    ,SUB-LLM = *WHOLE-LLM / <c-string 1..255 with-low> / <text 1..255>
  ,TYPE = (*L,*R) / list-poss(2): *L / *R

continued ➠

204 U9557-J-Z125-4-76

INCLUDE-MODULES BINDER statements

MODULE-CONTAINER =
Defines where the LLM is to be stored or is already stored.

MODULE-CONTAINER = *LIBRARY-ELEMENT(...)
The LLM is stored in a program library.

LIBRARY =
Specifies the input source from which the modules are read.

*FILE(...)
  FILE-NAME = <filename 1..54 without-gen> / *LINK(...)
  *LINK(...)
   LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>
  ,SUB-LLM = *WHOLE-LLM / <c-string 1..255 with-low> / <text 1..255>

*OMF(...)
  ELEMENT = *ALL / list-poss(40): <composed-name 1..64> / <c-string 1..64>

,NAME = *INTERNAL / *ELEMENT-NAME / <c-string 1..32 with-low> / <text 1..32>

,PATH-NAME = *CURRENT-SUB-LLM / <c-string 1..255 with-low> / <text 1..255>

,SLICE = *CURRENT-SLICE / *ROOT / <structured-name 1..32>

,LOGICAL-STRUCTURE = *INCLUSION-DEFAULT / *WHOLE-LLM / *OBJECT-MODULES

,TEST-SUPPORT = *INCLUSION-DEFAULT / *NO / *YES

,RUN-TIME-VISIBILITY = *UNCHANGED / *NO / *YES

,RESOLUTION-SCOPE = *UNCHANGED / *STD / *PARAMETERS(...)

*PARAMETERS(...)
  HIGH-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE / <c-string 1..255 with-low> /

 <text 1..255>
  ,LOW-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE / <c-string 1..255 with-low> /

 <text 1..255>
  ,FORBIDDEN-SCOPE = *UNCHANGED / *STD / *NONE / <c-string 1..255 with-low> / <text 1..255>

,NAME-COLLISION = STD / *IGNORED / *WARNING(...) / *ERROR(...)

*WARNING(...)
  SCOPE = *WHOLE-LLM / *SLICE

*ERROR(...)
  SCOPE = *WHOLE-LLM / *SLICE

(part 2 of 2)

U9557-J-Z125-4-76 205

BINDER statements INCLUDE-MODULES

LIBRARY = *CURRENT-INPUT-LIB
The input source from which the last module (OM or LLM) was read by means of a
START-LLM-UPDATE, INCLUDE-MODULES or REPLACE-MODULES statement is
used. The scope of the operand relates to one edit run.

LIBRARY = <filename 1..54 without-gen-vers>
File name of the library that is to be used as the input source.

LIBRARY = *LINK(...)
Denotes a library with the file link name

LINKNAME = <structured-name 1..8>
File link name of the library that is to be used as the input source.

LIBRARY = *BLSLIB-LINK
The input sources are the libraries with the file link name BLSLIBnn (00≤nn≤99). The
libraries are searched in ascending order of “nn” values for the file link name.

LIBRARY = *OMF
The input source is the EAM object module file. This contains only object modules. (If
the operand NAME has the value *ELEMENT-NAME, the BINDER replaces this value
with *INTERNAL.)

ELEMENT =
Defines the element name and the element version of the modules that are included
from the specified input source.

ELEMENT = *ALL(...)
All modules are included from the specified input source.

VERSION =
Specifies the element version of the module. The element version is applicable only
to program libraries.

VERSION = *HIGHEST-EXISTING
BINDER takes as element version the default value for the highest version in the
case of program libraries (see the “LMS” manual [4]).

VERSION = <composed-name 1..24> / <c-string 1..24>
Explicit specification of the element version.
Note: BINDER checks special data type <element-version> (see page 190).

206 U9557-J-Z125-4-76

INCLUDE-MODULES BINDER statements

ELEMENT = <composed-name 1..64>(...)
Explicit specification of the element name and element version.
Note: BINDER checks special data types <element-name> and <element-version>
(see page 190).

VERSION = *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>
Specifies the element version of the module. The element version is applicable only
to program libraries.
See above for meaning of operands.

SUB-LLM =
Specifies whether the whole LLM or a sub-LLM is included.

SUB-LLM = *WHOLE-LLM
The whole LLM is included.

SUB-LLM = <text 1..255>
Path name of the sub-LLM that is included.
Note: BINDER checks special data type <path-name>.

ELEMENT = <c-string 1..64>(...)
Explicit specification of the element name and element version.
Note: BINDER checks special data types <element-name> and <element-version>
(see page 190).
See above for meaning of operands.

TYPE =
Defines the priority of the modules (object modules and/or LLMs) to be included.

TYPE = (*L,*R)
Both LLMs and object modules are included. If the same name is specified for an LLM
as for an object module, the LLM is included.

TYPE = (*R,*L)
Both LLMs and object modules are included. If the same name is specified for an LLM
as for an object module, the object module is included.

TYPE = *R
Only object modules are included.

TYPE = *L
Only LLMs are included.

U9557-J-Z125-4-76 207

BINDER statements INCLUDE-MODULES

MODULE-CONTAINER = *FILE(...)

FILE-NAME =
The LLM is stored in a PAM file.

FILE-NAME = <filename 1..54 without-gen-vers>
Name of the PAM file in which the LLM is stored.

FILE-NAME = *LINK(...)

LINK-NAME = <structured-name 1..8>
File link name of the PAM file in which the LLM is stored.

MODULE-CONTAINER = *OMF(...)
The input source is the EAM object module file. This contains only object modules. (If the
NAME operand has the value *ELEMENT-NAME, the BINDER replaces this value with
*INTERNAL in this case.)

ELEMENT = *ALL / list-poss(40): <composed-name 1..64> / <c-string 1..64>
See above for the meanings of the operands.

NAME =
Specifies the logical name for the module to be included.

NAME = *INTERNAL
The internal name is used as the logical name.

NAME = *ELEMENT-NAME
The name of the library element is used as the logical name for the module. If necessary,
the BINDER truncates this name to 32 characters.
Note: BINDER checks special data type <symbol> (see page 190).

NAME = <structured-name 1..32>
Explicit specification of the logical name.

PATH-NAME =
Defines the sub-LLM in the logical structure of the current LLM in the work area in which
modules are included.

PATH-NAME = *CURRENT-SUB-LLM
The current sub-LLM is assumed (see BEGIN-SUB-LLM-STATEMENTS statement).

PATH-NAME = <text 1..255>
Path name of the sub-LLM in the logical structure of the current LLM.
Note: BINDER checks special data type <path-name> (see page 190).

208 U9557-J-Z125-4-76

INCLUDE-MODULES BINDER statements

SLICE =
Defines the slice in the physical structure of the LLM in which the modules are included.
The slice must be defined with a SET-USER-SLICE-POSITION statement (see SET-USER-
SLICE-POSITION statement).

SLICE = *CURRENT-SLICE
Modules are included in the current slice. This is the slice that was defined by the most
recent preceding SET-USER-SLICE-POSITION statement.

SLICE = *ROOT
Modules are included in the root slice (%ROOT).

SLICE = <structured-name 1..32>
Explicit specification of the slice in which modules are included.

LOGICAL-STRUCTURE =
Specifies whether the logical structure information from the modules is taken over into the
current LLM.

LOGICAL-STRUCTURE = *INCLUSION-DEFAULT
The values of the INCLUSION-DEFAULTS operand from the START-LLM-CREATION,
START-LLM-UPDATE or MODIFY-LLM-ATTRIBUTES statements from the same edit run
are assumed.

LOGICAL-STRUCTURE = *WHOLE-LLM
All the logical structure information is taken over into the current LLM.

LOGICAL-STRUCTURE = *OBJECT-MODULES
The logical structure information is not taken over. A structure comprising only object
modules (OMs) is set up in the current LLM.

TEST-SUPPORT =
Specifies whether the LSD information from the modules is taken over into the current LLM.

i Information on the existence of the list for symbolic debugging is provided in the
“T&D” column in the BINDER lists. The TEST-SUPPORT field in BINDER lists only
shows the setting of this TEST-SUPPORT operand.

TEST-SUPPORT = *INCLUSION-DEFAULT
The values of the INCLUSION-DEFAULTS operand from the START-LLM-CREATION,
START-LLM-UPDATE or MODIFY-LLM-ATTRIBUTES statements from the same edit run
are assumed.

TEST-SUPPORT = *NO
The LSD information is not taken over.

TEST-SUPPORT = *YES
The LSD information is taken over.

U9557-J-Z125-4-76 209

BINDER statements INCLUDE-MODULES

RUN-TIME-VISIBILITY =
Specifies whether the module is to be regarded as a runtime module. All symbols in a
runtime module are masked when the module is stored and are, for the moment, not used
for resolving external references. This masking of the symbols is canceled during any
subsequent read access to the module (e.g. with START-LLM-UPDATE or INCLUDE-
MODULES).

RUN-TIME-VISIBILITY = *UNCHANGED
The value is not changed. When a module is included in an LLM for the first time with
INCLUDE-MODULES or REPLACE-MODULES, BINDER assumes the value NO.

RUN-TIME-VISIBILITY = *NO
The module is not to be regarded as a runtime module.

RUN-TIME-VISIBILITY = *YES
The module is to be regarded as a runtime module. All symbols in the module are masked
when the module is stored.

RESOLUTION-SCOPE =
Defines priority classes that control the order in which BINDER is to search other modules
when resolving external references. Two values must be discriminated for each class:
– The dynamic value

influences the order in which modules are searched to resolve external references. It is,
however, not stored in the LLM.

– The static value
is stored in the LLM and forms the basis for determining the dynamic value.

RESOLUTION-SCOPE = *UNCHANGED
The static values of the priority classes are those stored in the modules concerned. They
are assigned the value *STD (see below) for object modules (OMs).

RESOLUTION-SCOPE = *STD
The static values of the priority classes are *STD, i.e. the dynamic values of superordinate
nodes are taken over into the logical LLM structure. This inheritance mechanism is applied
each time a new search is started for resolving external references.
The default value for the static values of the ROOT node of an LLM is *STD. The dynamic
values in this case are *NONE (see below).

RESOLUTION-SCOPE = *PARAMETERS(...)
The static values of the individual priority classes are defined separately.

HIGH-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is to be searched before all others for resolving external refer-
ences (see section “Rules for resolving external references” on page 73).

210 U9557-J-Z125-4-76

INCLUDE-MODULES BINDER statements

HIGH-PRIORITY-SCOPE = *STD
The static value of this priority class is *STD, i.e. the dynamic value of the superordinate
node is taken over into the logical LLM structure. This inheritance mechanism is applied
each time a new search is started for resolving external references.
The default value for the static value of the ROOT node of an LLM is *STD. The dynamic
value in this case is *NONE (see below).

HIGH-PRIORITY-SCOPE = *NONE
The HIGH-PRIORITY-SCOPE priority class is undefined, i.e. there are no modules
which are to be searched before all others for resolving external references. The value
of the superordinate node is not taken over.

HIGH-PRIORITY-SCOPE = <c-string 1..255 with-low> / <text 1..255>
Path name of the sub-LLM which is to be searched first for resolving external refer-
ences.

LOW-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is only to be searched for resolving external references after
the search was unsuccessful in all other modules (see section “Rules for resolving
external references” on page 73).
The meanings of the separate operand values are analogous to the priority class HIGH-
PRIORITY-SCOPE.

FORBIDDEN-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is not to be searched for resolving external references (see
section “Rules for resolving external references” on page 73).
The meanings of the separate operand values are analogous to the priority class HIGH-
PRIORITY-SCOPE.

U9557-J-Z125-4-76 211

BINDER statements INCLUDE-MODULES

The following example illustrates the inheritance mechanism for the PRIORITY-SCOPE
values:

LLM1 and LLM2 are both in a library and static HIGH-PRIORITY-SCOPE values are
defined for them as shown in the following table.

LLM2 is linked into LLM1. During linkage, BINDER uses the static HIGH-PRIORITY-
SCOPE values to determine the dynamic values which influence the search order when
resolving external references.

The following table shows the resulting module structure and dynamic values of HIGH-
PRIORITY-SCOPE.

Module

LLM1

OM11

OM12

*STD

*NONE

LLM1.OM12

Dynamic value of
HIGH-PRIORITY-SCOPE

LLM2

OM21

OM22

LLM2.OM22

*STD

*STD

Module

LLM1

OM11

OM12

*STD

*NONE

LLM1.OM12

Dynamic value of
HIGH-PRIORITY-SCOPE

LLM2

OM21

OM22

LLM2.OM22

*STD

*STD

Comment

= static value

= static value

inherited from LLM1

= static value

inherited from LLM1

inherited from LLM1

212 U9557-J-Z125-4-76

INCLUDE-MODULES BINDER statements

NAME-COLLISION =
Specifies how name conflicts which occur during processing of the statement are to be
handled.

NAME-COLLISION = *STD
BINDER uses the value from the NAME-COLLISION operand in the last MODIFY-STD-
DEFAULTS statement. If this statement has not already been entered in the same edit run,
BINDER uses the value *IGNORED.

NAME-COLLISION = *IGNORED
Name conflicts are not handled.

NAME-COLLISION = *WARNING(...)
The user receives a warning if name conflicts occur during processing of the statement.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

NAME-COLLISION = *ERROR(...)
Execution of the statement is aborted if name conflicts (correctable errors) occur.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

U9557-J-Z125-4-76 213

BINDER statements MERGE-MODULES

MERGE-MODULES

This statement merges all modules of an LLM or sub-LLM, creating a new LLM or sub-LLM
which contains only one prelinked module with a single CSECT. The user can define the
attributes for the new CSECT and specify which symbols are to remain in the External
Symbols Vector.

NAME = <c-string 1..32 with-low> / <text 1..32>
The name of the sub-LLM or LLM to be merged.
Note: BINDER checks special data type <symbol> (see page 190).

PATH-NAME =
Specifies the next higher node in the logical structure of the sub-LLM to be merged.

PATH-NAME = *CURRENT-SUB-LLM
The current sub-LLM is assumed
(see the BEGIN-SUB-LLM-STATEMENTS statement).

MERGE-MODULES

NAME = <c-string 1..32 with-low> / <text 1..32>

,PATH-NAME = *CURRENT-SUB-LLM / *NONE / <c-string 1..255 with-low> / <text 1..255>

,NEW-CSECT-NAME = *NAME / *STD / <c-string 1..32 with-low> / <text 1..32>

,NEW-CSECT-ATTRIBUTES = *PARAMETERS (...)

*PARAMETERS(...)
  RESIDENT = STD / *YES / *NO / *UNIFORM
  ,PUBLIC = *STD / *NO / *YES / *UNIFORM
  ,READ-ONLY = *STD / *NO / *YES / *UNIFORM
  ,ALIGNMENT = *STD / *DOUBLE-WORD / *PAGE / *BUNDLE / <integer 3..12>
  ,ADDRESSING-MODE = *UNIFORM / *STD / *24 / *31 / *ANY
  ,RESIDENCY-MODE = *STD / *24 / *ANY / *UNIFORM

,ENTRY-LIST = *NONE / *ALL / list-poss(40): <c-string 1..255 with-low> / <text 1..32>

,NAME-COLLISION = *STD / *IGNORED / *WARNING(...) / *ERROR(...)

*WARNING(...)
  SCOPE = *WHOLE-LLM / *SLICE

*ERROR(...)
  SCOPE = *WHOLE-LLM / *SLICE

214 U9557-J-Z125-4-76

MERGE-MODULES BINDER statements

PATH-NAME = *NONE
The entire LLM which is currently being processed is to be merged.

PATH-NAME = <text 1..255>
The path name of the sub-LLM in the logical structure of the current LLM.
Note: BINDER checks special data type <path-name> (see page 190).

NEW-CSECT-NAME =
Specifies the name for the merged CSECT.

NEW-CSECT-NAME = *NAME
The new CSECT receives the name of the merged object module.

NEW-CSECT-NAME = *STD
The new CSECT receives the name of the first CSECT found in the (sub-)LLM to be
merged.

NEW-CSECT-NAME = <text 1..32>
Explicit specification of the new CSECT name.
Note: BINDER checks special data type <symbol> (see page 190).

NEW-CSECT-ATTRIBUTES = *PARAMETERS(...)
Defines the attributes for the new CSECT.

RESIDENT =
Defines the value for the attribute RESIDENT.

RESIDENT = *STD
The new CSECT receives the attribute RESIDENT if at least one CSECT with the
attribute RESIDENT exists in the sub-LLM to be merged; otherwise, the new CSECT is
pageable (RESIDENT=NO).

RESIDENT = *YES
The new CSECT is resident.

RESIDENT = *NO
The new CSECT is pageable.

RESIDENT = *UNIFORM
For all CSECTs included in the merge operation, the value of the attribute RESIDENT
must be the same. If not, the MERGE-MODULES statement is rejected. The new
CSECT also receives this attribute value.

U9557-J-Z125-4-76 215

BINDER statements MERGE-MODULES

PUBLIC =
Defines the value for the attribute PUBLIC.

PUBLIC = *STD
The new CSECT is PRIVATE (PUBLIC=NO) if at least one CSECT with the attribute
PUBLIC=NO exists in the sub-LLM to be merged; otherwise, the new CSECT is
shareable (PUBLIC=YES).

PUBLIC = *NO
The new CSECT is not shareable (PRIVATE).

PUBLIC = *YES
The new CSECT is shareable.

PUBLIC = *UNIFORM
For all CSECTs included in the merge operation, the value of the attribute PUBLIC must
be the same. If not, the MERGE-MODULES statement is rejected. The new CSECT
also receives this attribute value.

READ-ONLY =
Defines the value for the attribute READ-ONLY.

READ-ONLY = *STD
Read/write access is permitted for the new CSECT if at least one CSECT with the
attribute READ-ONLY=NO exists in the sub-LLM to be merged; otherwise, only read
access is permitted for the new CSECT (READ-ONLY=YES).

READ-ONLY = *NO
Only read access is permitted for the new CSECT.

READ-ONLY = *YES
Read and write access is permitted for the new CSECT.

READ-ONLY = *UNIFORM
For all CSECTs included in the merge operation, the value of the attribute READ-ONLY
must be the same. If not, the MERGE-MODULES statement is rejected. The new
CSECT also receives this attribute value.

ALIGNMENT =
Defines the alignment of the new CSECT.

ALIGNMENT = *STD
The alignment of the new CSECT is the largest alignment of all CSECTs to be merged.

ALIGNMENT = *DOUBLE-WORD
The new CSECT is aligned on a doubleword boundary.

ALIGNMENT = *PAGE
The new CSECT is aligned on a page boundary, i.e. the address is a multiple of
4096 (X’1000’).

216 U9557-J-Z125-4-76

MERGE-MODULES BINDER statements

ALIGNMENT = *BUNDLE
The new CSECT is aligned on an address that is a multiple of 16.

ALIGNMENT = <integer 3..12>
The new CSECT is aligned on an address which is a multiple of 2n. The exponent “n”
is specified with <integer 3..12>. (For example, 23 means alignment on a doubleword
boundary and 212 means alignment on a page boundary.)

ADDRESSING-MODE =
Defines the addressing mode (AMODE) for the new CSECT.

ADDRESSING-MODE = *UNIFORM
If the attribute AMODE is not the same for all CSECTs included in the merge operation,
the statement is rejected. The new CSECT also receives this attribute value.

ADDRESSING-MODE = *STD
The addressing mode for the new CSECT is the same as that for the first CSECT in the
sub-LLM to be merged.

ADDRESSING-MODE = 24
The new CSECT is assigned 24-bit addressing mode.

ADDRESSING-MODE = 31
The new CSECT is assigned 31-bit addressing mode.

ADDRESSING-MODE = *ANY
The new CSECT is assigned 24-bit or 31-bit addressing mode. The decision as to which
addressing mode is to be used is made only when the CSECT is loaded.

RESIDENCY-MODE =
Defines the residency mode for the new CSECT.

RESIDENCY-MODE = *STD
The residency mode for the new CSECT is 24 if at least one of the CSECTs to be
merged has residency mode 24; otherwise, the value ANY is assumed.

RESIDENCY-MODE = 24
The residency mode for the new CSECT is 24.

RESIDENCY-MODE = *ANY
The new CSECT may be loaded either above or below 16 Mbytes.

RESIDENCY-MODE = *UNIFORM
For all CSECTs included in the merge operation, the value of the attribute RESIDENCY-
MODE must be the same. If not, the MERGE-MODULES statement is rejected. The
new CSECT also receives this attribute value.

U9557-J-Z125-4-76 217

BINDER statements MERGE-MODULES

ENTRY-LIST =
Defines the symbols (CSECTs or ENTRYs) which are to remain in the External Symbols
Vector (ESV). Any CSECTs which are retained are converted into ENTRYs.

ENTRY-LIST = *NONE
No symbols are to remain in the ESV.

ENTRY-LIST = *ALL
All symbols are to remain in the ESV.

ENTRY-LIST = <c-string 1..255>
All symbols which match the wildcard pattern are to remain in the ESV.
Note: BINDER checks special data type <symbol-with-wild> (see page 190).

ENTRY-LIST = <text 1..32>
Explicit specification of the symbols which are to remain in the ESV.
Note: BINDER checks special data type <symbol> (see page 190).

NAME-COLLISION =
Specifies how name conflicts which occur during processing of the statement are to be
handled. A name conflict can occur only if a CSECT receives a new name.

NAME-COLLISION = *STD
BINDER uses the value from the NAME-COLLISION operand in the last MODIFY-STD-
DEFAULTS statement. If this statement has not already been entered in the same edit run,
BINDER uses the value *IGNORED.

NAME-COLLISION = *IGNORED
Name conflicts are not handled.

NAME-COLLISION = *WARNING(...)
The user receives a warning if name conflicts occur during processing of the statement.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

218 U9557-J-Z125-4-76

MERGE-MODULES BINDER statements

NAME-COLLISION = *ERROR(...)
Execution of the statement is aborted if name conflicts (correctable errors) occur.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

U9557-J-Z125-4-76 219

BINDER statements MODIFY-ERROR-PROCESSING

MODIFY-ERROR-PROCESSING

This statement controls error processing and termination of the BINDER run.

The following can be defined:

– the lowest severity class as of which messages are output,

– the output medium used for output of the messages,

– the severity class as of which the BINDER run is to be terminated and

– whether user switches and/or task switches are set on the occurrence of certain errors.

The scope of all operands relates to one BINDER run. The value *UNCHANGED in the
operands means that the default value is retained.
In the first MODIFY-ERROR-PROCESSING statement, the first operand value following the
value UNCHANGED is assumed for UNCHANGED.

(part 1 of 2)

MODIFY-ERROR-PROCESSING

MESSAGE-CONTROL = *UNCHANGED / *INFORMATION / *WARNING / *ERROR

,MESSAGE-DESTINATION = *UNCHANGED / *SYSOUT / *SYSLST / *BOTH

,MAX-ERROR-WEIGHT = *UNCHANGED / *FATAL / *RECOVERABLE / *SYNTAX /

*UNRESOLVED-EXTERNS / *WARNING

,SPECIAL-HANDLING = *UNCHANGED / *NO / *ALL(...) / *PARAMETERS(...)

*ALL(...)
  USER-SWITCH = *UNCHANGED / *NO / <integer 0..31>
  ,TASK-SWITCH = *UNCHANGED / *NO / <integer 0..31>

continued ➠

220 U9557-J-Z125-4-76

MODIFY-ERROR-PROCESSING BINDER statements

MESSAGE-CONTROL = *UNCHANGED / *INFORMATION / *WARNING / *ERROR
Defines the lowest severity class as of which messages are output (see page 126).

MESSAGE-CONTROL = *INFORMATION
The messages of all severity classes are output.

*PARAMETERS(...)
  WARNING = *UNCHANGED / *NO / *PARAMETERS(...)
  *PARAMETERS(...)
   USER-SWITCH = *UNCHANGED / *NO / <integer 0..31>
    ,TASK-SWITCH = *UNCHANGED / *NO / <integer 0..31>
  ,UNRESOLVED-EXTERNS = *UNCHANGED / *NO / *PARAMETERS(...)
  *PARAMETERS(...)
   USER-SWITCH = *UNCHANGED / *NO / <integer 0..31>
    ,TASK-SWITCH = *UNCHANGED / *NO / <integer 0..31>
  ,SYNTAX-ERROR = *UNCHANGED / *NO / *PARAMETERS(...)
  *PARAMETERS(...)
   USER-SWITCH = *UNCHANGED / *NO / <integer 0..31>
    ,TASK-SWITCH = *UNCHANGED / *NO / <integer 0..31>
  ,RECOVERABLE-ERROR = *UNCHANGED / *NO / *PARAMETERS(...)
  *PARAMETERS(...)
   USER-SWITCH = *UNCHANGED / *NO / <integer 0..31>
    ,TASK-SWITCH = *UNCHANGED / *NO / <integer 0..31>
  ,FATAL-ERROR = UNCHANGED / *NO / *PARAMETERS(...)
  *PARAMETERS(...)
   USER-SWITCH = *UNCHANGED / *NO / <integer 0..31>
    ,TASK-SWITCH = *UNCHANGED / *NO / <integer 0..31>
  ,INTERNAL-ERROR = *UNCHANGED / *NO / *PARAMETERS(...)
  *PARAMETERS(...)
   USER-SWITCH = *UNCHANGED / *NO / <integer 0..31>
    ,TASK-SWITCH = *UNCHANGED / *NO / <integer 0..31>

(part 2 of 2)

U9557-J-Z125-4-76 221

BINDER statements MODIFY-ERROR-PROCESSING

MESSAGE-CONTROL = *WARNING
Only messages as of severity class WARNING are output. Messages of severity class
INFORMATION are not output.

MESSAGE-CONTROL = *ERROR
Only messages of severity classes SYNTAX ERROR, RECOVERABLE ERROR, FATAL
ERROR and INTERNAL ERROR are output. Messages of severity classes INFORMATION,
WARNING and UNRESOLVED EXTERNS are not output.

MESSAGE-DESTINATION = *UNCHANGED / *SYSOUT / *SYSLST / *BOTH
Defines the output destination for the messages.

MESSAGE-DESTINATION = *SYSOUT
System file SYSOUT is the output destination.

MESSAGE-DESTINATION = *SYSLST
System file SYSLST is the output destination.

MESSAGE-DESTINATION = *BOTH
System files SYSOUT and SYSLST are the output destination.

MAX-ERROR-WEIGHT = *UNCHANGED / *FATAL / *RECOVERABLE /
*SYNTAX / *UNRESOLVED-EXTERNS / *WARNING
Specifies which severity class will terminate the BINDER run. The BINDER run will be
terminated upon the occurrence of all errors whose severity class is equal to or greater than
the specified severity class (see page 126).

SPECIAL-HANDLING = *UNCHANGED / *NO / *ALL(...) / *PARAMETERS(...)
Specifies whether user or task switches are to be set upon the occurrence of errors. If so,
it is possible to differentiate as to whether the specified user or task switch is set

– upon the occurrence of any error or

– upon the occurrence an error of a specific severity class.

SPECIAL-HANDLING = *NO
No switches are set.

SPECIAL-HANDLING = *ALL(...)
All errors result in setting of the specified user or task switch. Only one switch may be set
for each severity class.

USER-SWITCH = *UNCHANGED / *NO / <integer 0..31>
Number of the user switch.
With NO, no user switch is set.

222 U9557-J-Z125-4-76

MODIFY-ERROR-PROCESSING BINDER statements

TASK-SWITCH = *UNCHANGED / *NO / <integer 0..31>
Number of the task switch.
With NO, no task switch is set.

SPECIAL-HANDLING = *PARAMETERS(...)
Upon the occurrence of errors of the selected severity classes, the specified user or task
switches are set. Only one switch may be set for each severity class.

WARNING = *UNCHANGED / *NO / *PARAMETERS(...)
Specifies whether a switch is set for the severity class WARNING.

WARNING = *NO
No switch is set.

WARNING = *PARAMETERS (...)
Defines the number of the switch that is set.

USER-SWITCH = *UNCHANGED / *NO / <integer 0..31>
Number of the user switch.
With NO, no user switch is set.

TASK-SWITCH = *UNCHANGED / *NO / <integer 0..31>
Number of the task switch.
With NO, no task switch is set.

UNRESOLVED-EXTERNS = *UNCHANGED / *NO / *PARAMETERS(...)
Specifies whether a switch is set for the severity class UNRESOLVED EXTERNS.
See WARNING for operands.

SYNTAX-ERROR = *UNCHANGED / *NO / *PARAMETERS(...)
Specifies whether a switch is set for the severity class SYNTAX ERROR.
See WARNING for operands.

RECOVERABLE-ERROR = *UNCHANGED / *NO / *PARAMETERS(...)
Specifies whether a switch is set for the severity class RECOVERABLE ERROR.
See WARNING for operands.

FATAL-ERROR = *UNCHANGED / *NO / *PARAMETERS(...)
Specifies whether a switch is set for the severity class FATAL ERROR.
See WARNING for operands.

INTERNAL-ERROR = *UNCHANGED / *NO / *PARAMETERS(...)
Specifies whether a switch is set for the severity class INTERNAL ERROR. See
WARNING for operands.

U9557-J-Z125-4-76 223

BINDER statements MODIFY-LLM-ATTRIBUTES

MODIFY-LLM-ATTRIBUTES

This statement modifies attributes of an LLM that were defined by means of the START-
LLM-CREATION or START-LLM-UPDATE statements.

The following attributes can be modified:

– the internal name (INTERNAL-NAME)

– the internal version (INTERNAL-VERSION)

– the physical structure of the LLM (SLICE-DEFINITION)

– the copyright information (COPYRIGHT)

– use of the logical structure information and LSD information (INCLUSION-DEFAULTS).

The type of physical structure of the LLM may be modified as follows:

1. LLM with slices by attributes → LLM with single slice

2. LLM with single slice → LLM with slices by attributes

3. LLM with slices by attributes → LLM with slices by other attributes

4. LLM with user-defined slices → LLM with user-defined slices and modified values for
AUTOMATIC-CONTROL and EXCLUSIVE-SLICE-CALL.

The default value *UNCHANGED in the relevant operands means that the previously
declared value applies in each case.

224 U9557-J-Z125-4-76

MODIFY-LLM-ATTRIBUTES BINDER statements

INTERNAL-NAME = *UNCHANGED / <structured-name 1..32>
Defines the new internal name of the LLM.

MODIFY-LLM-ATTRIBUTES

INTERNAL-NAME = *UNCHANGED / <c-string 1..32 with-low> / <text 1..32>

,INTERNAL-VERSION = *UNCHANGED / *UNDEFINED / <composed-name 1..24> / <c-string 1..24>

,SLICE-DEFINITION = *UNCHANGED / *SINGLE / *BY-ATTRIBUTES(...) / *BY-USER(...)

*BY-ATTRIBUTES(...)
  READ-ONLY = *UNCHANGED / *NO / *YES
  ,RESIDENT = *UNCHANGED / *NO / *YES
  ,PUBLIC = *UNCHANGED / *NO / *YES(...)
  *YES(...)
   SUBSYSTEM-ENTRIES = *NONE / list-poss(40): <c-string 1..32 with-low> /

  <text 1..32>
  ,RESIDENCY-MODE = *UNCHANGED / *NO / *YES

*BY-USER(...)
  AUTOMATIC-CONTROL = *UNCHANGED / *YES / *NO
  ,EXCLUSIVE-SLICE-CALL = *UNCHANGED / *NO / *YES

,COPYRIGHT = *UNCHANGED / *PARAMETERS(...) / *NONE

*PARAMETERS(...)
  NAME = *UNCHANGED / *SYSTEM-DEFAULT / <c-string 1..64 with-low>
  ,YEAR = *UNCHANGED / *CURRENT / <integer 1900..2100>
  ,PATH-NAME = *UNCHANGED / *NONE / <c-string 1..255 with-low> / <text 1..255>
  ,ENTRY = *UNCHANGED / *NONE / <c-string 1..32 with-low> / <text 1..32>

,INCLUSION-DEFAULTS = *PARAMETERS (...)

*PARAMETERS(...)
  LOGICAL-STRUCTURE = *UNCHANGED / *WHOLE-LLM / *OBJECT-MODULES
  ,TEST-SUPPORT = *UNCHANGED / *NO / *YES

U9557-J-Z125-4-76 225

BINDER statements MODIFY-LLM-ATTRIBUTES

INTERNAL-VERSION = *UNCHANGED / *UNDEFINED / <composed-name 1..24> /
<c-string 1..24>
Defines the new internal version of the LLM.

INTERNAL-VERSION = *UNDEFINED
When the LLM is saved with the SAVE-LLM statement, the default value for the highest
version for program libraries is assumed (see the “LMS” manual [4]).

INTERNAL-VERSION = <composed-name 1..24> / <c-string 1..24>
Explicit specification of the new internal version of the LLM.
Note: BINDER checks special data type <element-version> (see page 190).

SLICE-DEFINITION = *UNCHANGED / *SINGLE / *BY-ATTRIBUTES(...) / *BY-USER(...)
Defines the new physical structure of the LLM.

SLICE-DEFINITION = *SINGLE
The LLM consists of a single slice.

SLICE-DEFINITION = *BY-ATTRIBUTES(...)
The LLM consists of slices formed by the combination of the attributes of CSECTs (see
page 10ff). If the BY-ATTRIBUTES operand is specified and if all sub-operands are set to
NO, SINGLE is assumed. The operand values of READ-ONLY, RESIDENT, PUBLIC and
RESIDENCY-MODE control only the assembly of slices. They have no effect on the
individual CSECTs. Up to 16 different slices can be formed by the combination of the
attributes.

READ-ONLY = *UNCHANGED / *NO / *YES
Specifies whether the attribute READ-ONLY is to be considered when forming the
slices.
If YES is specified, BINDER generates separate slices for CSECTs with different values
for the attribute READ-ONLY.

RESIDENT = *UNCHANGED / *NO / *YES
Specifies whether the attribute RESIDENT is to be considered when forming the slices.
If YES is specified, BINDER generates separate slices for CSECTs with different values
for the attribute RESIDENT.

PUBLIC = *UNCHANGED / *NO / *YES(...)
Specifies whether the attribute PUBLIC is to be considered when forming the slices.

PUBLIC = *NO
The attribute PUBLIC is not considered when forming the slices.

226 U9557-J-Z125-4-76

MODIFY-LLM-ATTRIBUTES BINDER statements

PUBLIC = *YES(...)
BINDER generates separate slices for CSECTs with different values for the attribute
PUBLIC.

SUBSYSTEM-ENTRIES =
Specifies the symbols (CSECT or ENTRY) of the PUBLIC slice which can be used
for resolving external references if the PUBLIC slice is loaded as a dynamic
subsystem (see the “Introductory Guide to Systems Support” [10]).

SUBSYSTEM-ENTRIES = *NONE
No symbols from this subsystem (of the PUBLIC slice) are used for resolving
external references.

SUBSYSTEM-ENTRIES = <text 1..32>
The name of the CSECT or the ENTRY in the PUBLIC slice loaded as a subsystem
which can be used for resolving external references.
Note: BINDER checks special data type <symbol> (see page 190).

RESIDENCY-MODE = *UNCHANGED / *NO / *YES
Specifies whether the attribute RMODE is to be considered when forming the slices.
If YES is specified, BINDER generates separate slices for CSECTs with different values
for the attribute RMODE.

SLICE-DEFINITION = *BY-USER(...)
The physical structure of the LLM is defined by the user with SET-USER-SLICE-POSITION
statements (user-defined slices). When this is done, overlays can be defined.

AUTOMATIC-CONTROL = *UNCHANGED / *YES / *NO
This is relevant only for overlays.
If YES is specified, an Overlay Control Module (OCM) is linked into the generated LLM
to cause the overlays to be loaded automatically.

EXCLUSIVE-SLICE-CALL = *UNCHANGED / *NO / *YES
This is relevant only for overlays and specifies whether external references between
exclusive slices are to be resolved.

EXCLUSIVE-SLICE-CALL = *NO
Specifies that BINDER is simply to report external references and is not to resolve any
references between exclusive slices it may detect.

EXCLUSIVE-SLICE-CALL = *YES
Specifies that BINDER is to resolve external references between exclusive slices, i.e.
the user is willing to accept any errors which may possibly occur as a result of this.

U9557-J-Z125-4-76 227

BINDER statements MODIFY-LLM-ATTRIBUTES

COPYRIGHT = *UNCHANGED / *PARAMETERS (...) / *NONE
Defines the new copyright information. The copyright information consists of text and the
year number.

COPYRIGHT = *PARAMETERS(...)

NAME = *UNCHANGED / *SYSTEM-DEFAULT / <c-string 1..64>
Denotes the new text for the copyright information.

NAME = *SYSTEM-DEFAULT
The value of the class 2 system parameter BLSCOPYN is to be taken over. This value
is defined at system installation time (see the “Introductory Guide to Systems
Support” [10]).

NAME = <c-string 1..64>
New text for the copyright information. If the text comprises blanks, no copyright infor-
mation is taken over.

YEAR = *UNCHANGED / *CURRENT / <integer 1900..2100>
Denotes the year number.

YEAR = *CURRENT
Current year number.

YEAR = <integer 1900..2100>
Explicit specification of the year number.

COPYRIGHT = *NONE
No new copyright information is taken over.

INCLUSION-DEFAULTS =
Defines the use of the logical structure information and LSD information. This is the default
value that is used in the INCLUDE-MODULES, REPLACE-MODULES and RESOLVE-BY-
AUTOLINK statements of the same edit run if no specific values are specified in these state-
ments.
Logical structure information and LSD information are not included during saving of the LLM
unless this is required both in the SAVE-LLM statement and in preceding INCLUDE-
MODULES, REPLACE-MODULES or RESOLVE-BY-AUTOLINK statements.

228 U9557-J-Z125-4-76

MODIFY-LLM-ATTRIBUTES BINDER statements

INCLUSION-DEFAULTS = *PARAMETERS(...)

LOGICAL-STRUCTURE = *UNCHANGED / *WHOLE-LLM / *OBJECT-MODULES
Specifies whether the logical structure information is taken over from the modules into
the current LLM when including or replacing modules.

LOGICAL-STRUCTURE = *WHOLE-LLM
All the logical structure information is taken over into the current LLM.

LOGICAL-STRUCTURE = *OBJECT-MODULES
The logical structure information is not taken over. A structure comprising only object
modules (OMs) is set up in the current LLM.

TEST-SUPPORT = *UNCHANGED / *NO / *YES
Specifies whether the LSD information from the modules is taken over into the current
LLM when including or replacing modules.

TEST-SUPPORT = *NO
The LSD information is not taken over.

TEST-SUPPORT = *YES
The LSD information is taken over.

U9557-J-Z125-4-76 229

BINDER statements MODIFY-MAP-DEFAULTS

MODIFY-MAP-DEFAULTS

This statement modifies the default values for a subsequent SHOW-MAP statement and for
the next sequential SAVE-LLM statement with the MAP=YES operand.

The scope of all operands relates to one BINDER run.

A new MODIFY-MAP-DEFAULTS statement overwrites the operand values of the preceding
MODIFY-MAP-DEFAULTS statement.

Since the MAP-NAME operand permits the user to specify names for lists, it is possible to
define several different lists with different names. When the SHOW-MAP statement is
executed in a BINDER run, the user can access the predefined lists by means of these
names.

The value *UNCHANGED in the relevant operands means that the value specified for this
operand in the preceding MODIFY-MAP-DEFAULTS statement within a BINDER run is to
be used.
In the first MODIFY-MAP-DEFAULTS statement, the first operand value following the value
*UNCHANGED is assumed for *UNCHANGED.

(part 1 of 3)

 MODIFY-MAP-DEFAULTS

MAP-NAME = *STD / <structured-name 1..32>

,USER-COMMENT = *UNCHANGED / *NONE / <c-string 1..255 with-low>

,HELP-INFORMATION = *UNCHANGED / *YES / *NO

,GLOBAL-INFORMATION = *UNCHANGED / *YES / *NO

,LOGICAL-STRUCTURE = *UNCHANGED / *YES(...) / *NO

*YES(...)
  RESOLUTION-SCOPE = *UNCHANGED / *YES / *NO
  ,HSI-CODE = *UNCHANGED / *YES / *NO

,PHYSICAL-STRUCTURE = *UNCHANGED / *YES / *NO

continued ➠

230 U9557-J-Z125-4-76

MODIFY-MAP-DEFAULTS BINDER statements

,PROGRAM-MAP = *UNCHANGED / *PARAMETERS(...) / *NO

*PARAMETERS(...)
  DEFINITIONS = *UNCHANGED / *ALL / *NONE / list-poss(5): *MODULE / *CSECT /
  *ENTRY / *COMMON / *XDSECT-D
  ,INVERTED-XREF-LIST = *UNCHANGED / *NONE / *ALL / list-poss(4): *EXTRN / *VCON /

 *WXTRN / *XDSECT-R
  ,REFERENCES = *UNCHANGED / *ALL / *NONE / list-poss(4): *EXTRN / *VCON / *WXTRN /

 *XDSECT-R

,UNRESOLVED-LIST = *UNCHANGED / *SORTED(...) / *YES(...) / *NO

*SORTED(...)
  WXTRN = *YES / *NO

 ,NOREF = *NO / *YES

*YES(...)
  WXTRN = *YES / *NO

 ,NOREF = *NO / *YES

,SORTED-PROGRAM-MAP = *UNCHANGED / *NO / *YES

,PSEUDO-REGISTER = *UNCHANGED / *NO / *YES

,UNUSED-MODULE-LIST = *UNCHANGED / *NO / *YES

,DUPLICATE-LIST = *UNCHANGED / *NO / *YES(...)

*YES(...)
  INVERTED-XREF-LIST = *YES / *NO

,MERGED-MODULES = *UNCHANGED / *YES / *NO

,INPUT-INFORMATION = *UNCHANGED / *YES / *NO

,STATEMENT-LIST = *UNCHANGED / *NO / *YES

,OUTPUT = *UNCHANGED / *SYSLST(...) / *BY-SHOW-FILE(...) / <filename 1..54 without-gen-vers>(...) /

*LINK(...) / *EXIT-ROUTINE(...)

*SYSLST(...)
  SYSLST-NUMBER = *STD / <integer 1..99>
  ,LINES-PER-PAGE = 64 / <integer 10..2147483647> / *IGNORED
  ,LINE-SIZE = 136 / <integer 132..255>

continued ➠

(part 2 of 3)

U9557-J-Z125-4-76 231

BINDER statements MODIFY-MAP-DEFAULTS

MAP-NAME =
Specifies the name of the list to which the new default values are to apply.

MAP-NAME = *STD
Applies the values to the default list with the name BNDMAP.date.time.<tsn>, i.e. to the
list which is output for //SHOW-MAP MAP-NAME=*STD or for //SAVE-LLM ... MAP=YES.

MAP-NAME = <structured-name 1..32>
Applies the default values to a list defined and named by the user, which can be output with
//SHOW-MAP MAP-NAME=<structured-name 1..32>.

See the SHOW-MAP statement, page 302ff, for the meanings of the other operands.

*BY-SHOW-FILE(...)
  FILE-NAME = *STD / <filename 1..54 without-gen-vers>
  ,DELETE-FILE = *YES / *NO
  ,LINE-SIZE = 136 / <integer 132..255>

<filename>(...)
  LINE-SIZE = 136 / <integer 132..255>

*LINK(...)
  LINK-NAME = BNDMAP / <structured-name 1..8> / <filename 1..8 without-gen>
  ,LINE-SIZE = 136 / <integer 132..255>

*EXIT-ROUTINE(...)
  ROUTINE-NAME = <c-string 1..32 with-low> / <text 1..32>
  ,LIBRARY = *BLSLIB-LINK / <filename 1..54 without-gen-vers> / *LINK(...)
  *LINK(...)
   LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>
  ,FILE-NAME = *STD / <filename 1..54 without-gen-vers>
  ,LINE-SIZE = 136 / <integer 132..255>
  ,USER-PARAMETERS = *NONE / <c-string 1..255 with-low> / <text 1..255>

(part 3 of 3)

232 U9557-J-Z125-4-76

MODIFY-MODULE-ATTRIBUTES BINDER statements

MODIFY-MODULE-ATTRIBUTES

This statement permits the user to modify the logical structure of an LLM, the runtime infor-
mation and the list for symbolic debugging of a module.

NAME = <structured-name 1..32> / <text 1..32>
Specifies the name of the sub-LLM which is to be modified.
Note: BINDER checks special data type <symbol> (see page 190).

PATH-NAME =
Specifies the logically next higher node of the sub-LLM to be processed. By default, this is
the current sub-LLM in the BINDER work area (see the BEGIN-SUB-LLM-STATEMENTS
statement).

PATH-NAME = *CURRENT-SUB-LLM
The current sub-LLM is assumed
(see the BEGIN-SUB-LLM-STATEMENTS statement).

MODIFY-MODULE-ATTRIBUTES

NAME = <c-string 1..32 with-low> / <text 1..32>

,PATH-NAME = *CURRENT-SUB-LLM / *NONE / <c-string 1..255 with-low> / <text 1..255>

,NEW-NAME = *UNCHANGED / *INTERNAL / *ELEMENT-NAME / <c-string 1..32 with-low> / <text 1..32>

,NEW-PATH-NAME = *UNCHANGED / *CURRENT-SUB-LLM / <c-string 1..255 with-low> / <text 1..255>

,TEST-SUPPORT = *UNCHANGED / *INCLUSION-DEFAULT / *NO / *YES

,RUN-TIME-VISIBILITY = *UNCHANGED / *NO / *YES

,RESOLUTION-SCOPE = *UNCHANGED / *STD / *PARAMETERS(...)

*PARAMETERS(...)
  HIGH-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE / <text 1..255>
  ,LOW-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE / <text 1..255>
  ,FORBIDDEN-SCOPE = *UNCHANGED / *STD / *NONE / <text 1..255>

,NAME-COLLISION = *STD / *IGNORED / *WARNING(...) / *ERROR(...)

*WARNING(...)
  SCOPE = *WHOLE-LLM / *SLICE

*ERROR(...)
  SCOPE = *WHOLE-LLM / *SLICE

U9557-J-Z125-4-76 233

BINDER statements MODIFY-MODULE-ATTRIBUTES

PATH-NAME = *NONE
The entire LLM is to be modified.

PATH-NAME = <text 1..255>
The path name of the sub-LLM in the logical structure of the current LLM.
Note: BINDER checks special data type <path-name> (see page 190).

NEW-NAME =
Specifies the new name for the (sub-)LLM.

NEW-NAME = *UNCHANGED
The name of the (sub-)LLM remains unchanged.

NEW-NAME = *INTERNAL
The internal name of the (sub-)LLM is used as the new name.

NEW-NAME = *ELEMENT-NAME
The name which the sub-LLM possesses as a library element name is used as the new
name. This value is permitted only if the module actually exists as a library element.

NEW-NAME = <structured-name 1..32>
Explicit specification of the new name for the (sub-)LLM.

NEW-PATH-NAME =
Specifies the new path name for the sub-LLM, thus permitting the logical structure of the
LLM to be modified.

NEW-PATH-NAME = *UNCHANGED
The path name of the sub-LLM remains unchanged, which means that the logical structure
of the LLM also remains unchanged.

NEW-PATH-NAME = *CURRENT-SUB-LLM
The path name of the current sub-LLM is used as the new path name (see page 10).

NEW-PATH-NAME = <text 1..255>
Explicit specification of the new path name.
Note: BINDER checks special data type <path-name> (see page 190).

TEST-SUPPORT =
Specifies whether the LSD information from the modules is to be transferred into the current
LLM.

i Information on the existence of the list for symbolic debugging is provided in the
“T&D” column in the BINDER lists. The TEST-SUPPORT field in BINDER lists only
shows the setting of this TEST-SUPPORT operand.

234 U9557-J-Z125-4-76

MODIFY-MODULE-ATTRIBUTES BINDER statements

TEST-SUPPORT = *UNCHANGED
The LSD information remains unchanged.

TEST-SUPPORT = *INCLUSION-DEFAULT
The values specified for the INCLUSION-DEFAULTS operand in the START-LLM-
CREATION, START-LLM-UPDATE or MODIFY-LLM-ATTRIBUTES statement in the same
edit run are assumed.

TEST-SUPPORT = *NO
The LSD information is not transferred.

TEST-SUPPORT = *YES
The LSD information is transferred.

RUN-TIME-VISIBILITY =
Specifies whether the module is to be regarded as a runtime module. All symbols in a
runtime module are masked when the module is stored and are, for the moment, not used
for resolving external references. This masking of the symbols is canceled during any
subsequent read access to the module (e.g. with START-LLM-UPDATE or INCLUDE-
MODULES).

RUN-TIME-VISIBILITY = *UNCHANGED
The value is not changed.

RUN-TIME-VISIBILITY = *NO
The module is not to be regarded as a runtime module.

RUN-TIME-VISIBILITY = *YES
The module is to be regarded as a runtime module. All symbols in the module are masked
when the module is stored.

RESOLUTION-SCOPE =
Defines priority classes that control the order in which BINDER is to search other modules
when resolving external references. Two values must be discriminated for each class:
– The dynamic value

influences the order in which modules are searched to resolve external references. It is,
however, not stored in the LLM.

– The static value
is stored in the LLM and forms the basis for determining the dynamic value.

RESOLUTION-SCOPE = *UNCHANGED
The static values of the priority classes are those stored in the modules concerned. They
are assigned the value *STD (see below) for object modules (OMs).

U9557-J-Z125-4-76 235

BINDER statements MODIFY-MODULE-ATTRIBUTES

RESOLUTION-SCOPE = *STD
The static values of the priority classes are *STD, i.e. the dynamic values of superordinate
nodes are taken over into the logical LLM structure. This inheritance mechanism is applied
each time a new search is started for resolving external references.
The default value for the static values of the ROOT node of an LLM is *STD. The dynamic
values in this case are *NONE (see below).

RESOLUTION-SCOPE = *PARAMETERS(...)
The static values of the individual priority classes are defined separately.

HIGH-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is to be searched before all others for resolving external refer-
ences (see section “Rules for resolving external references” on page 73).

HIGH-PRIORITY-SCOPE = *STD
The static value of this priority class is *STD, i.e. the dynamic value of the superordinate
node is taken over into the logical LLM structure. This inheritance mechanism is applied
each time a new search is started for resolving external references.
The default value for the static value of the ROOT node of an LLM is *STD. The dynamic
value in this case is *NONE (see below).

HIGH-PRIORITY-SCOPE = *NONE
The HIGH-PRIORITY-SCOPE priority class is undefined, i.e. there are no modules
which are to be searched before all others for resolving external references. The value
of the superordinate node is not taken over.

HIGH-PRIORITY-SCOPE = <c-string 1..255 with-low> / <text 1..255>
Path name of the sub-LLM which is to be searched first for resolving external refer-
ences.

LOW-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is only to be searched for resolving external references after
the search was unsuccessful in all other modules (see section “Rules for resolving
external references” on page 73).
The meanings of the separate operand values are analogous to the priority class HIGH-
PRIORITY-SCOPE.

FORBIDDEN-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is not to be searched for resolving external references (see
section “Rules for resolving external references” on page 73).
The meanings of the separate operand values are analogous to the priority class HIGH-
PRIORITY-SCOPE.

236 U9557-J-Z125-4-76

MODIFY-MODULE-ATTRIBUTES BINDER statements

An example of the inheritance mechanism for the PRIORITY-SCOPE values is provided in
the description of the INCLUDE-MODULES statement on page 211.

NAME-COLLISION =
Specifies how name conflicts which occur during processing of the statement are to be
handled. A name conflict can occur within this statement only if RUN-TIME-
VISIBILITY=YES is specified.

NAME-COLLISION = *STD
BINDER uses the value from the NAME-COLLISION operand in the last MODIFY-STD-
DEFAULTS statement. If this statement has not already been entered in the same edit run,
BINDER uses the value *IGNORED.

NAME-COLLISION = *IGNORED
Name conflicts are not handled.

NAME-COLLISION = *WARNING(...)
The user receives a warning if name conflicts occur during processing of the statement.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

NAME-COLLISION = *ERROR(...)
Execution of the statement is aborted if name conflicts (correctable errors) occur.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

U9557-J-Z125-4-76 237

BINDER statements MODIFY-STD-DEFAULTS

MODIFY-STD-DEFAULTS

This statement modifies the global default values for a BINDER run.

(part 1 of 2)

MODIFY-STD-DEFAULTS

OVERWRITE = *UNCHANGED / *YES / *NO

,FOR-BS2000-VERSIONS = *UNCHANGED / *FROM-CURRENT(...) / *FROM-V10(...) /

*FROM-OSD-V1(...) / *FROM-OSD-V3(...) / *FROM-OSD-V4(...)

*FROM-CURRENT(...)
  CONNECTION-MODE = *OSD-DEFAULT / *BY-RELOCATION / *BY-RESOLUTION

*FROM-V10(...)
  CONNECTION-MODE = *BY-RESOLUTION / *BY-RELOCATION / *BY-RESOLUTION

*FROM-OSD-V1(...)
  CONNECTION-MODE = *BY-RELOCATION / *BY-RESOLUTION

*FROM-OSD-V3(...)
  CONNECTION-MODE = *BY-RELOCATION / *BY-RESOLUTION

*FROM-OSD-V4(...)
  CONNECTION-MODE = *BY-RELOCATION / *BY-RESOLUTION

,REQUIRED-COMPRESSION = *UNCHANGED / *NO / *YES

continued ➠

238 U9557-J-Z125-4-76

MODIFY-STD-DEFAULTS BINDER statements

OVERWRITE =
Specifies whether or not overwriting is permitted.

OVERWRITE = *UNCHANGED
BINDER uses the value of the operand from the last MODIFY-STD-DEFAULTS statement.
If this statement has not yet been entered in this edit run, BINDER uses the value *YES.

OVERWRITE = *YES
Overwriting is permitted.

OVERWRITE = *NO
Overwriting is not permitted.

,NAME-COLLISION = *UNCHANGED / *PARAMETERS(...)

*PARAMETERS(...)
  INCLUSION = *UNCHANGED / *IGNORED / *WARNING(...) / *ERROR(...)
  *WARNING(...)
   SCOPE = *WHOLE-LLM / *SLICE
  *ERROR(...)
   SCOPE = WHOLE-LLM / *SLICE
  ,SAVE = *UNCHANGED / *IGNORED / *WARNING(...) / *ERROR(...)
  *WARNING(...)
   SCOPE = *WHOLE-LLM / *SLICE
  *ERROR(...)
   SCOPE = WHOLE-LLM / *SLICE
  ,SYMBOL-PROCESSING = *UNCHANGED / *IGNORED / *WARNING(...) / *ERROR(...)
  *WARNING(...)
   SCOPE = *WHOLE-LLM / *SLICE
  *ERROR(...)
   SCOPE = *WHOLE-LLM / *SLICE

(part 2 of 2)

U9557-J-Z125-4-76 239

BINDER statements MODIFY-STD-DEFAULTS

FOR-BS2000-VERSIONS =
Specifies the BS2000/OSD-BC version for which the generated LLM is to be loaded by
DBL. DBL can only process the LLM in the specified (or a higher) version of
BS2000/OSD-BC.

FOR-BS2000-VERSIONS = *BY-PROGRAM
BINDER defines the format of the generated LLM on the basis of its contents. The LLM
format is always the lowest possible that can provide the required functionality. For example,
an LLM containing RISC code has format 3, while an LLM containing compressed text is
created in format 2.

FOR-BS2000-VERSIONS = *UNCHANGED
BINDER uses the value of the operand from the last MODIFY-STD-DEFAULTS statement.
If this statement has not yet been entered in this edit run, BINDER uses the value *FROM-
CURRENT.

FOR-BS2000-VERSIONS = *FROM-CURRENT
The BS2000/OSD-BC version under which BINDER is currently running is used.

CONNECTION-MODE =
Defines the type of connection between the private and public slices. This operand is
only meaningful if the LLM is divided into slices according to the public attribute of the
CSECTs it contains.

CONNECTION-MODE = *OSD-DEFAULT
This specification is supported for compatibility reasons. It is equivalent to
CONNECTION-MODE = *BY-RELOCATION.

CONNECTION-MODE = *BY-RELOCATION
The connection between private and public slices is by relocation.

CONNECTION-MODE = *BY-RESOLUTION
The connection between private and public slices is by resolution.

FOR-BS2000-VERSIONS = *FROM-V10(...)
The LLM can be loaded by DBL in any version of BS2000/OSD-BC.

CONNECTION-MODE = *BY-RESOLUTION / *BY-RELOCATION
The meaning of the operand and value is as for FOR-BS2000-VERSION=*FROM-
CURRENT.

FOR-BS2000-VERSIONS = *FROM-OSD-V1(...)
The LLM can be loaded by DBL in any version of BS2000/OSD-BC.

CONNECTION-MODE = *BY-RESOLUTION / *BY-RELOCATION
The meaning of the operand and value is as for FOR-BS2000-VERSION=*FROM-
CURRENT.

240 U9557-J-Z125-4-76

MODIFY-STD-DEFAULTS BINDER statements

FOR-BS2000-VERSIONS = *FROM-OSD-V3(...)
The LLM can be loaded by DBL in BS2000/OSD-BC V3.0 or higher.

CONNECTION-MODE = *BY-RELOCATION / *BY-RESOLUTION
The meaning of the operand and value is as for FOR-BS2000-VERSION=*FROM-
CURRENT.

FOR-BS2000-VERSIONS = *FROM-OSD-V4(...)
The LLM can be loaded by BLSSERV in BS2000/OSD-BC V4.0 or higher.

CONNECTION-MODE = *BY-RELOCATION / *BY-RESOLUTION
The meaning of the operand and value is as for FOR-BS2000-VERSION=*FROM-
CURRENT.

REQUIRED-COMPRESSION =
Specifies whether the data is to be compressed for better utilization of the disk capacity.

REQUIRED-COMPRESSION = *UNCHANGED
BINDER uses the value specified in the last MODIFY-STD-DEFAULTS statement. If this
statement has not yet been entered in this edit run, BINDER uses the value *NO.

REQUIRED-COMPRESSION = *NO
No data compression is carried out.

REQUIRED-COMPRESSION = *YES
Data compression is carried out.

NAME-COLLISION =
Specifies how name conflicts are to be handled.

NAME-COLLISION = *UNCHANGED
BINDER uses the value of the NAME-COLLISION operand in the last MODIFY-STD-
DEFAULTS statement. If this statement has not yet been entered in this edit run, BINDER
does not handle name conflicts.

U9557-J-Z125-4-76 241

BINDER statements MODIFY-STD-DEFAULTS

NAME-COLLISION = *PARAMETERS(...)

INCLUSION =
Specifies how name conflicts which occur during inclusion of modules are to be
handled.

INCLUSION = *UNCHANGED
BINDER uses the value of the same operand in the last MODIFY-STD-DEFAULTS
statement. If this statement has not yet been entered in this edit run, BINDER uses the
value *IGNORED.

INCLUSION = *IGNORED
Specifies that name conflicts which occur during inclusion of modules are to be ignored.

INCLUSION = *WARNING(...)
The user receives a warning if name conflicts occur during inclusion of modules.

SCOPE =
Specifies the scope of the definitions for the handling of name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. BINDER
ignores name conflicts between different slices.
This value may be specified only for user-defined slices.

INCLUSION = *ERROR(...)
Specifies that the inclusion of modules is to be aborted if name conflicts (correctable
errors) occur.

SCOPE = *WHOLE-LLM / *SLICE
Defines the scope of validity of the definitions for handling name conflicts. See
WARNING for the meanings of the operands.

SAVE =
Specifies how name conflicts which occur when saving an LMM are to be handled.

SAVE = *UNCHANGED
BINDER uses the value of the same operand in the last MODIFY-STD-DEFAULTS
statement. If this statement has not yet been entered in this edit run, the LLM is not
checked for name conflicts.

SAVE = *IGNORED
Specifies that no checks for name conflicts are to be executed when the LLM is stored.

242 U9557-J-Z125-4-76

MODIFY-STD-DEFAULTS BINDER statements

SAVE = *WARNING(...)
The user receives a warning if name conflicts are detected when the LLM is stored.

SCOPE = *WHOLE-LLM / *SLICE
Defines the scope of validity of the definitions for handling name conflicts. See
INCLUSION=WARNING(...) for the meanings of the operands.

SAVE = ERROR(...)
Specifies that the storing of an LLM is to be aborted if name conflicts (correctable
errors) occur.

SCOPE = *WHOLE-LLM / *SLICE
Defines the scope of validity of the definitions for handling name conflicts. See
INCLUSION=WARNING(...) for the meanings of the operands.

SYMBOL-PROCESSING =
Specifies how name conflicts which occur during the handling of symbols are to be
handled.

SYMBOL-PROCESSING = *UNCHANGED
BINDER uses the value of the same operand in the last MODIFY-STD-DEFAULTS
statement. If this statement has not yet been entered in this edit run, BINDER uses the
value *IGNORED.

SYMBOL-PROCESSING = *IGNORED
Specifies that the statement for symbol handling is to be executed without checking for
name conflicts.

SYMBOL-PROCESSING = *WARNING(...)
The user receives a warning if name conflicts are detected during symbol handling.

SCOPE = *WHOLE-LLM / *SLICE
Defines the scope of validity of the definitions for handling name conflicts. See
INCLUSION=WARNING(...) for the meanings of the operands.

SYMBOL-PROCESSING = *ERROR(...)
Specifies that the statement for symbol handling is to be aborted if name conflicts
(correctable errors) occur during symbol handling.

SCOPE = *WHOLE-LLM / *SLICE
Defines the scope of validity of the definitions for handling name conflicts. See
INCLUSION=WARNING(...) for the meanings of the operands.

U9557-J-Z125-4-76 243

BINDER statements MODIFY-SYMBOL-ATTRIBUTES

MODIFY-SYMBOL-ATTRIBUTES

This statement modifies the attributes of control sections (CSECTs) and COMMONs in the
current LLM.

The following attributes can be modified (see the “ASSEMBH” manual [3]):

– main memory resident (RESIDENT)

– shareable (PUBLIC)

– read access (READ-ONLY)

– alignment (ALIGNMENT)

– addressing mode (AMODE)

– residence mode (RMODE).

SYMBOL-NAME =
Specifies the names of the CSECTs and COMMONs whose attributes are to be modified.

SYMBOL-NAME = *ALL
The attributes of all CSECTs and COMMONs are modified.

SYMBOL-NAME = <c-string 1..255>
The names, specified with wildcards, of symbols whose attributes are modified.
Note: BINDER checks special data type <symbol-with-wild> (see page 190).

MODIFY-SYMBOL-ATTRIBUTES

SYMBOL-NAME = *ALL / list-poss(40): <c-string 1..255 with-low> / <text 1..32>

,SYMBOL-TYPE = *DEFINITIONS / list-poss(2): *CSECT / *COMMON

,SCOPE = *CURRENT-SUB-LLM / *EXPLICIT(...) / *WHOLE-LLM

*EXPLICIT(...)
  WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <c-string 1..255 with-low> /

 <text 1..255>
  ,EXCEPT-SUB-LLM = *NONE / list-poss(10): <c-string 1..255 with-low> / <text 1..255>

,RESIDENT = *UNCHANGED / *YES / *NO

,PUBLIC = *UNCHANGED / *YES / *NO

,READ-ONLY = UNCHANGED / *YES / *NO

,ALIGNMENT = *UNCHANGED / *DOUBLE-WORD / *PAGE / *BUNDLE / <integer 3..12>

,ADDRESSING-MODE = *UNCHANGED / *24 / *31 / *ANY

,RESIDENCY-MODE = *UNCHANGED / *24 / *ANY

244 U9557-J-Z125-4-76

MODIFY-SYMBOL-ATTRIBUTES BINDER statements

SYMBOL-NAME = <text 1..32>
Explicit specification of the names of symbols whose attributes are modified.
Note: BINDER checks special data type <symbol> (see page 190).

SYMBOL-TYPE = *DEFINITIONS / list-poss(2): *CSECT / *COMMON
Specifies whether only attributes of CSECTs, only attributes of COMMONs, or attributes of
both, are modified.

SCOPE =
Sets one or more pointers. These point to the sub-LLMs in the logical structure of the LLM,
in which attributes are modified.

SCOPE = *CURRENT-SUB-LLM
The pointer points to the current sub-LLM
(see BEGIN-SUB-LLM-STATEMENTS statement).

SCOPE = *EXPLICIT(...)

WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <text 1..255>
The pointers point to the explicitly specified sub-LLMs. The path names of the sub-
LLMs should be specified for <text 1..255>.
Note: BINDER checks special data type <path-name> (see page 190).
When *WHOLE-LLM is specified, all sub-LLMs are referenced.

EXCEPT-SUB-LLM = *NONE / list-poss(10): <text 1..255>
Allows the exclusion of individual pointers from the list specified in the WITHIN-SUB-
LLM operand. The path names of the sub-LLMs that are to be ignored should be
specified for <text 1..255>.
Note: BINDER checks special data type <path-name> (see page 190).
When *NONE is specified, no pointers are excluded.

SCOPE = *WHOLE-LLM
All sub-LLMs of the current LLM are involved in the modification of attributes.

RESIDENT =
Specifies whether the RESIDENT attribute is modified.

RESIDENT = *UNCHANGED
The previous value for the RESIDENT attribute is retained.

RESIDENT = *YES
The specified symbols are resident in main memory (class 3 memory).

RESIDENT = *NO
The specified symbols are pageable.

U9557-J-Z125-4-76 245

BINDER statements MODIFY-SYMBOL-ATTRIBUTES

PUBLIC =
Specifies whether the PUBLIC attribute is modified.

PUBLIC = *UNCHANGED
The previous value for the PUBLIC attribute is retained.

PUBLIC = *YES
The specified symbols are shareable.

PUBLIC = *NO
The specified symbols are not shareable.

READ-ONLY =
Specifies whether the READ-ONLY attribute is modified.

READ-ONLY = *UNCHANGED
The previous value for the READ-ONLY attribute is retained.

READ-ONLY = *YES
Only read access is permitted for the specified symbols. The entry YES is not permitted for
a vector program.

READ-ONLY = *NO
Read and write access are permitted for the specified symbols.

ALIGNMENT =
Specifies whether or not the alignment is modified.

ALIGNMENT = *UNCHANGED
The previous value for the alignment is retained.

ALIGNMENT = *DOUBLE-WORD
The specified symbols are aligned on a doubleword boundary.

ALIGNMENT = *PAGE
The specified symbols are aligned on a page boundary, i.e. the address is a multiple of
4096 (X’1000’).

ALIGNMENT = *BUNDLE
The new CSECT is aligned on an address that is a multiple of 16.

ALIGNMENT = <integer 3..12>
The specified symbols are aligned on an address that is a multiple of 2n. The exponent “n”
is specified by <integer 3..12>.

246 U9557-J-Z125-4-76

MODIFY-SYMBOL-ATTRIBUTES BINDER statements

ADDRESSING-MODE =
Specifies whether the addressing mode (AMODE) is modified. If an inconsistency occurs
between the original and specified values for AMODE and RMODE, the operand will be
ignored.

ADDRESSING-MODE = *UNCHANGED
The previous value for the addressing mode is retained.

ADDRESSING-MODE = *24
The 24-bit addressing mode is assigned to the specified symbols.

ADDRESSING-MODE = *31
The 31-bit addressing mode is assigned to the specified symbols.

ADDRESSING-MODE = *ANY
The 24- or 31-bit addressing mode is assigned to the specified symbols. The decision
concerning the addressing mode is not made until load time.

RESIDENCY-MODE =
Specifies whether or not the residence mode (RMODE) is modified. If an inconsistency
occurs between the original and specified values for AMODE and RMODE, the operand will
be ignored.

RESIDENCY-MODE = *UNCHANGED
The previous value for the residence mode is retained.

RESIDENCY-MODE = *24
The specified symbols may only be loaded below 16 Mb.

RESIDENCY-MODE = *ANY
The specified symbols may be loaded below and above 16 Mb.

U9557-J-Z125-4-76 247

BINDER statements MODIFY-SYMBOL-TYPE

MODIFY-SYMBOL-TYPE

This statement defines the types of symbols, where “symbols” means only external refer-
ences (EXTRNs), weak external references (WXTRNs) and V constants (VCONs). The
following conversions are possible:

EXTRN → WXTRN or VCON

WXTRN → EXTRN or VCON

VCON → EXTRN or WXTRN.

EXTRN and WXTRN, which are not referenced, cannot be converted to VCON. The scope
of validity of the definitions can be restricted with the operand SCOPE.
This statement has no effect on previously resolved external references.

SYMBOL-NAME =
Specifies the symbols whose types are to be modified.

SYMBOL-NAME = *ALL
All symbols in the scope of validity defined with SCOPE are to be processed.

SYMBOL-NAME = list-poss(40): <c-string 1..255> / <text 1..32>
Note: BINDER checks special data types <symbol> and <symbol-with-wild> (see
page 190).

SYMBOL-TYPE = *REFERENCES / list-poss(3): *EXTRN / *VCON / *WXTRN
Specifies which types of external references are to be processed. If REFERENCES is
specified, all external references are processed.

MODIFY-SYMBOL-TYPE

SYMBOL-NAME = *ALL / list-poss(40): <c-string 1..255 with-low> / <text 1..32>

,SYMBOL-TYPE = *REFERENCES / list-poss(3): *EXTRN / *VCON / *WXTRN

,SCOPE = *CURRENT-SUB-LLM / *EXPLICIT(...) / *WHOLE-LLM

*EXPLICIT(...)
  WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <c-string 1..255 with-low> /

 <text 1..255>
  ,EXCEPT-SUB-LLM = *NONE / list-poss(10): <c-string 1..255 with-low> / <text 1..255>

,NEW-SYMBOL-TYPE = *EXTRN / *VCON / *WXTRN

248 U9557-J-Z125-4-76

MODIFY-SYMBOL-TYPE BINDER statements

SCOPE =
Defines the scope of validity by setting one or more pointers. These pointers point to the
sub-LLMs in the logical structure of the LLM in which the symbol types are to be modified.

SCOPE = *CURRENT-SUB-LLM
The pointer points to the current sub-LLM
(see the BEGIN-SUB-LLM-STATEMENTS statement).

SCOPE = *EXPLICIT(...)

WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <text 1..255>
The pointers point to the explicitly specified sub-LLMs. The path names of the sub-
LLMs are specified in <text 1..255>.
Note: BINDER checks special data type <path-name> (see page 190).
*WHOLE-LLM addresses all sub-LLMs.

EXCEPT-SUB-LLM = *NONE / list-poss(10): <text 1..255>
Permits individual pointers to be excluded from the list entered for the WITHIN-SUB-
LLM operand. The path names of the sub-LLMs to be excluded are specified in
<text 1..255>.
Note: BINDER checks special data type <path-name> (see page 190).
*NONE specifies that no pointers are to be excluded.

SCOPE = *WHOLE-LLM
All sub-LLMs of the current LLM are affected by the symbol type modification.

NEW-SYMBOL-TYPE = *EXTRN / *VCON / *WXTRN
Specifies the new type which is to be assigned to the symbols.

U9557-J-Z125-4-76 249

BINDER statements MODIFY-SYMBOL-VISIBILITY

MODIFY-SYMBOL-VISIBILITY

This statement specifies the extent to which control sections (CSECTs) and entry points
(ENTRYs) in the current LLM are to remain visible or be masked for a subsequent BINDER
or DBL run. Masked symbols will not be found for resolving external references in subse-
quent BINDER or DBL runs.

SYMBOL-NAME =
Defines the symbols whose masking is to be modified.

SYMBOL-NAME = *ALL
The masking of all symbols is modified.

SYMBOL-NAME = list-poss(40): <c-string 1..255>/ <text 1..32>
Explicit specification of the symbols whose masking is to be modified.
Wildcards may be specified.
Note: BINDER checks special data types <symbol> and <symbol-with-wild> (see
page 190).

MODIFY-SYMBOL-VISIBILITY

SYMBOL-NAME = *ALL / list-poss(40): <c-string 1..255 with-low> / <text 1..32>

,SYMBOL-TYPE = *DEFINITIONS / list-poss(3): *CSECT / *ENTRY / *COMMON

,SCOPE = *CURRENT-SUB-LLM / *EXPLICIT(...) / *WHOLE-LLM

*EXPLICIT(...)
  WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <c-string 1..255 with-low> /

 <text 1..255>
  ,EXCEPT-SUB-LLM = *NONE / list-poss(10): <c-string 1..255 with-low> / <text 1..255>

,VISIBLE = *YES / *NO(...)

*NO(...)
  KEEP-RESOLUTION = *YES / *NO

,NAME-COLLISION = STD / *IGNORED / *WARNING(...) / *ERROR(...)

*WARNING(...)
  SCOPE = *WHOLE-LLM / *SLICE

*ERROR(...)
  SCOPE = *WHOLE-LLM / *SLICE

250 U9557-J-Z125-4-76

MODIFY-SYMBOL-VISIBILITY BINDER statements

SYMBOL-TYPE = *DEFINITIONS / list-poss(3): *CSECT / *ENTRY / *COMMON
Defines the type of the symbols whose masking is modified. When *DEFINITIONS is
specified, the masking of all specified symbols is modified.

SCOPE =
Sets one or more pointers. These point to the sub-LLMs in the logical structure of the LLM
in which the masking of symbols is modified.

SCOPE = *CURRENT-SUB-LLM
The pointer points to the current sub-LLM (see BEGIN-SUB-LLM-STATEMENTS
statement).

SCOPE = *EXPLICIT(...)

WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <text 1..255>
The pointers point to the explicitly specified sub-LLMs. The path names of the sub-
LLMs should be specified for <text 1..255>.
Note: BINDER checks special data type <path-name> (see page 190).
When *WHOLE-LLM is specified, all sub-LLMs are referenced.

EXCEPT-SUB-LLM = *NONE / list-poss(10): <text 1..255>
Allows the exclusion of individual pointers from the list specified in the WITHIN-SUB-
LLM operand. The path names of the sub-LLMs that are to be ignored should be
specified for <text 1..255>.
Note: BINDER checks special data type <path-name> (see page 190).
When *NONE is specified, no pointers are excluded.

SCOPE = *WHOLE-LLM
All sub-LLMs of the current LLM are involved in the modification of masking of symbols.

VISIBLE =
Determines whether the specified symbols are to remain visible or be masked.

VISIBLE = *YES
The specified symbols remains visible for subsequent BINDER or DBL runs.

VISIBLE = *NO(...)
The specified symbols are masked for subsequent BINDER or DBL runs.

KEEP-RESOLUTION =
Determines whether resolved external references for the specified symbol are to remain
resolved or be deresolved.

KEEP-RESOLUTION = *YES
Resolved external references remain resolved.

KEEP-RESOLUTION = *NO
Resolved external references are deresolved.

U9557-J-Z125-4-76 251

BINDER statements MODIFY-SYMBOL-VISIBILITY

NAME-COLLISION =
Specifies how name conflicts which occur during processing of the statement are to be
handled.

NAME-COLLISION = *STD
BINDER uses the value from the NAME-COLLISION operand in the last MODIFY-STD-
DEFAULTS statement. If this statement has not already been entered in the same edit run,
BINDER uses the value *IGNORED.

NAME-COLLISION = *IGNORED
Name conflicts are not handled.

NAME-COLLISION = *WARNING(...)
The user receives a warning if name conflicts occur during processing of the statement.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

NAME-COLLISION = *ERROR(...)
Execution of the statement is aborted if name conflicts (correctable errors) occur.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

252 U9557-J-Z125-4-76

REMOVE-MODULES BINDER statements

REMOVE-MODULES

This statement removes modules from the current LLM. Object modules and sub-LLMs can
be removed. The following are not removed:

– the current sub-LLM (see BEGIN-SUB-LLM-STATEMENTS statement)

– a sub-LLM whose beginning is defined with the BEGIN-SUB-LLM-STATEMENTS
statement but whose end has not yet been defined with the END-SUB-LLM-
STATEMENTS statement.

The user can use the path name to specify from which sub-LLM of the current LLM the
modules are to be removed.

NAME =
Defines the modules of the current LLM that are to be removed.

NAME = *ALL
All modules of the current LLM are removed.

NAME = <structured-name 1..32>
Explicit specification of the modules that are to be removed.

NAME = <text 1..32>
A logical name which was specified in an INCLUDE-MODULES or REPLACE-MODULES
statement.
Note: BINDER checks special data type <symbol> (see page 190).

PATH-NAME =
Defines the sub-LLM in the logical structure of the current LLM in the work area, from which
modules are to be removed.

PATH-NAME = *CURRENT-SUB-LLM
The current sub-LLM is assumed (see BEGIN-SUB-LLM-STATEMENTS statement).

PATH-NAME = <text 1..255>
Path name of the sub-LLM in the logical structure of the current LLM.
Note: BINDER checks special data type <path-name> (see page 190).

REMOVE-MODULES

NAME = *ALL / list-poss(40): <c-string 1..32 with-low> / <text 1..32>

,PATH-NAME = *CURRENT-SUB-LLM / <c-string 1..255 with-low> / <text 1..255>

U9557-J-Z125-4-76 253

BINDER statements RENAME-SYMBOLS

RENAME-SYMBOLS

This statement replaces the names of program definitions and references in the current
LLM with a new name.

A separate RENAME-SYMBOLS statement must be entered for each symbol name which
is to be changed. The user can specify the types of symbols with this name which are to be
processed.

The following program definitions can be renamed:

– control sections (CSECTs)

– entry points (ENTRYs)

– COMMONs.

The following references can be renamed:

– external references (EXTRNs)

– V-type constants

– weak external references (WXTRNs).

254 U9557-J-Z125-4-76

RENAME-SYMBOLS BINDER statements

SYMBOL-NAME = <text 1..32> / <c-string 1..32>
Defines the symbols to be renamed.
Note: BINDER checks special data type <symbol> (see page 190).

SYMBOL-TYPE =
Defines the type of the symbols that are to be renamed.

SYMBOL-TYPE = *ALL
All types of symbols are renamed.

SYMBOL-TYPE = *DEFINITIONS
Program definitions are renamed.

SYMBOL-TYPE = *REFERENCES
References are renamed.

SYMBOL-TYPE = *CSECT
Control sections are renamed.

RENAME-SYMBOLS

SYMBOL-NAME = <c-string 1..32 with-low> / <text 1..32>

,SYMBOL-TYPE = *ALL / *DEFINITIONS / *REFERENCES / list-poss(6): *CSECT / *ENTRY / *COMMON /

*EXTRN / *VCON / *WXTRN

,SYMBOL-OCCURRENCE = *PARAMETERS (...)

*PARAMETERS(...)
  FIRST-OCCURRENCE = 1 / <integer 1..32767>
  ,OCCURRENCE-NUMBER = 1 / <integer 1..32767> / *ALL

,SCOPE = *CURRENT-SUB-LLM / *EXPLICIT(...) / *WHOLE-LLM

*EXPLICIT(...)
  WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <c-string 1..255 with-low> /

 <text 1..255>
  ,EXCEPT-SUB-LLM = *NONE / list-poss(10): <c-string 1..255 with-low> / <text 1..255>

,NEW-NAME = <c-string 1..32 with-low> / <text 1..32>

,NAME-COLLISION = *STD / *IGNORED / *WARNING(...) / *ERROR(...)

*WARNING(...)
  SCOPE = *WHOLE-LLM / *SLICE

*ERROR(...)
  SCOPE = *WHOLE-LLM / *SLICE

U9557-J-Z125-4-76 255

BINDER statements RENAME-SYMBOLS

SYMBOL-TYPE = *ENTRY
Entry points are renamed.

SYMBOL-TYPE = *COMMON
COMMONs are renamed.

SYMBOL-TYPE = *EXTRN
External references are renamed.

SYMBOL-TYPE = *VCON
V-type constants are renamed.

SYMBOL-TYPE = *WXTRN
Weak external references are renamed.

SYMBOL-OCCURRENCE = *PARAMETERS(...)
Defines the position and number of occurrences of the symbols. In the logical structure, the
symbols are searched in the following order:

1. CSECTs and ENTRYs

2. COMMONs

3. EXTRN, VCON and WXTRN.

FIRST-OCCURRENCE = 1 / <integer 1..32767>
Defines the position of the first occurrence of the symbol with the specified name.
Renaming begins at the xth occurrence of this symbol (x: <integer 1..32767>.

OCCURRENCE-NUMBER = 1 / <integer 1..32767>
Defines the number of the occurring symbols which are to be renamed.
If ALL is specified, every occurrence of the symbol after the position specified with
FIRST-OCCURRENCE is renamed. Otherwise, the next y (y: <integer 1..32767>)
occurrences of the symbols are renamed.

SCOPE =
Sets one or more pointers. These point to the sub-LLMs within the logical structure of the
LLM in which BINDER is to rename symbols.

SCOPE = *CURRENT-SUB-LLM
The pointer points to the current sub-LLM
(see BEGIN-SUB-LLM-STATEMENTS statement).

256 U9557-J-Z125-4-76

RENAME-SYMBOLS BINDER statements

SCOPE = *EXPLICIT(...)

WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <text 1..255>
The pointers point to the explicitly specified sub-LLMs. The path names of the sub-
LLMs should be specified for <text 1..255>.
When *WHOLE-LLM is specified, all sub-LLMs are referenced.
Note: BINDER checks special data type <path-name> (see page 190).

EXCEPT-SUB-LLM = *NONE / list-poss(10): <text 1..255>
Allows the exclusion of individual sub-LLMs from the list specified in the WITHIN-SUB-
LLM operand. The path names of the sub-LLMs that are to be ignored should be
specified for <text 1..255>.
When *NONE is specified, no pointers are excluded.
Note: BINDER checks special data type <path-name> (see page 190).

SCOPE = *WHOLE-LLM
All sub-LLMs of the current LLM are involved in the renaming of symbols.

NEW-NAME = <text 1..32> / <c-string 1..32>
The new symbol name which will replace the name specified for SYMBOL-NAME.
Note: BINDER checks special data type <symbol> (see page 190).

NAME-COLLISION =
Specifies how name conflicts which occur during processing of the statement are to be
handled.

NAME-COLLISION = *STD
BINDER uses the value from the NAME-COLLISION operand in the last MODIFY-STD-
DEFAULTS statement. If this statement has not already been entered in the same edit run,
BINDER uses the value *IGNORED.

NAME-COLLISION = *IGNORED
Name conflicts are not handled.

U9557-J-Z125-4-76 257

BINDER statements RENAME-SYMBOLS

NAME-COLLISION = *WARNING(...)
The user receives a warning if name conflicts occur during processing of the statement.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

NAME-COLLISION = *ERROR(...)
Execution of the statement is aborted if name conflicts (correctable errors) occur.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

258 U9557-J-Z125-4-76

REPLACE-MODULES BINDER statements

REPLACE-MODULES

This statement replaces one or more modules in the current LLM with new modules. Both
object modules and sub-LLMs can replace modules in the current LLM.
Object modules, LLMs or both can be replaced as modules. LLMs with user-defined slices
and LLMs without relocation information cannot be replaced. Either whole LLMs can be
replaced or sub-LLMs can be selected.

The input source may be:

– for object modules: a program library (element type R), an object module library or the
EAM object module file

– for LLMs and sub-LLMs: a program library (element type L).

(part 1 of 2)

REPLACE-MODULES

NAME = <c-string 1..32 with-low> / <text 1..32>

,PATH-NAME = *CURRENT-SUB-LLM / <c-string 1..255 with-low> / <text 1..255>

,MODULE-CONTAINER = *LIBRARY-ELEMENT (...) / *FILE(...) / *OMF(...)

*LIBRARY-ELEMENT(...)
  LIBRARY = *CURRENT-INPUT-LIB / <filename 1..54 without-gen-vers> / *LINK(...) /
  *BLSLIB-LINK / *OMF
  *LINK(...)
   LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>

 ,ELEMENT = *ALL (...) / list-poss(40): <composed-name 1..64>(...) / <c-string 1..64>(...)
  *ALL(...)
   VERSION = *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>
  <composed-name>(...)
   VERSION = *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>
    ,SUB-LLM = *WHOLE-LLM / <c-string 1..255 with-low> / <text 1..255>
  <c-string>(...)
   VERSION = *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>
    ,SUB-LLM = *WHOLE-LLM / <c-string 1..255 with-low> / <text 1..255>
  ,TYPE = (*L,*R) / list-poss(2): *L / *R

continued ➠

U9557-J-Z125-4-76 259

BINDER statements REPLACE-MODULES

NAME =
Specifies the name of the module that is to be replaced in the current LLM.

NAME = <structured-name 1..32>
Explicit specification of the name of the module to be replaced.

NAME = <text 1..32>
The logical name assigned to the module in an INCLUDE-MODULES statement or in a
previous REPLACE-MODULES statement (NEW-NAME operand).
Note: BINDER checks special data type <symbol> (see page 190).

*FILE(...)
  FILE-NAME = <filename 1..54 without-gen> / *LINK(...)
  *LINK(...)
   LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>
  ,SUB-LLM = *WHOLE-LLM / <c-string 1..255 with-low> / <text 1..255>

*OMF(...)
  ELEMENT = *ALL / list-poss(40): <composed-name 1..64> / <c-string 1..64>

,NEW-NAME = *INTERNAL / *ELEMENT-NAME / <c-string 1..32 with-low> / <text 1..32>

,SLICE = *CURRENT-SLICE / *ROOT / <structured-name 1..32>

,LOGICAL-STRUCTURE = INCLUSION-DEFAULT / *WHOLE-LLM / *OBJECT-MODULES

,TEST-SUPPORT = *INCLUSION-DEFAULT / *NO / *YES

,RUN-TIME-VISIBILITY = UNCHANGED / *NO / *YES

,RESOLUTION-SCOPE = *UNCHANGED / *STD / *PARAMETERS(...)

*PARAMETERS(...)
  HIGH-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE / <text 1..255>
  ,LOW-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE / <text 1..255>
  ,FORBIDDEN-SCOPE = *UNCHANGED / *STD / *NONE / <text 1..255>

,NAME-COLLISION = *STD / *IGNORED / *WARNING(...) / *ERROR(...)

*WARNING(...)
  SCOPE = WHOLE-LLM / *SLICE

*ERROR(...)
  SCOPE = WHOLE-LLM / *SLICE

(part 2 of 2)

260 U9557-J-Z125-4-76

REPLACE-MODULES BINDER statements

PATH-NAME =
Defines the sub-LLM in the logical structure of the current LLM in which modules are
replaced.

PATH-NAME = *CURRENT-SUB-LLM
The current sub-LLM is assumed (see BEGIN-SUB-LLM-STATEMENTS statement).

PATH-NAME = <text 1..255>
Path name of the sub-LLM in the logical structure of the current LLM.
Note: BINDER checks special data type <path-name> (see page 190).

MODULE-CONTAINER =
Defines where the LLM is stored.

MODULE-CONTAINER = *LIBRARY-ELEMENT(...)
The LLM is stored in a program library.

LIBRARY =
Specifies the input source from which the modules are read.

LIBRARY = *CURRENT-INPUT-LIB
The input source from which the last module (OM or LLM) was read by means of a
START-LLM-UPDATE, INCLUDE-MODULES or REPLACE-MODULES statement is
used. The scope of the operand relates to one edit run.

LIBRARY = <filename 1..54 without-gen-vers>
File name of the library that is to be used as the input source.

LIBRARY = *LINK(...)
Denotes a library by means of the file link name.

LINKNAME = <structured-name 1..8>
File link name of the library that is to be used as the input source.

LIBRARY = *BLSLIB-LINK
The input sources are libraries with the file link name BLSLIBnn (00≤nn≤99). The
libraries are searched in ascending order of “nn” values for the file link name.

LIBRARY = *OMF
The input source is the EAM object module file. This contains only object modules.

U9557-J-Z125-4-76 261

BINDER statements REPLACE-MODULES

ELEMENT =
Defines the element name and the element version of the modules that are read from
the specified input source.

ELEMENT = *ALL(...)
All modules are read from the specified input source.

VERSION =
Specifies the element version of the module. The element version is applicable only
to program libraries.

VERSION = *HIGHEST-EXISTING
BINDER takes as element version the default value for the highest version in the
case of program libraries (see the “LMS” manual [4]).

VERSION = <composed-name 1..24> / <c-string 1..24>
Explicit specification of the element version.
Note: BINDER checks special data type <element-version> (see page 190).

ELEMENT = <composed-name 1..64>(...)
Explicit specification of the element name and element version.
Note: BINDER checks special data types <element-name> and <element-version>
(see page 190).

VERSION = *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>
Specifies the element version of the module. The element version is applicable only
to program libraries.
See above for meaning of operands.

SUB-LLM =
Specifies whether the whole LLM or a sub-LLM is taken over as an element.

SUB-LLM = *WHOLE-LLM
The whole LLM is taken over.

SUB-LLM = <text 1..255>
Path name of the sub-LLM that is taken over.
Note: BINDER checks special data type <path-name> (see page 190).

ELEMENT = <c-string 1..64>(...)
Explicit specification of the element name and element version.
Note: BINDER checks special data types <element-name> and <element-version>
(see page 190).
See above for meaning of operands.

262 U9557-J-Z125-4-76

REPLACE-MODULES BINDER statements

TYPE =
Defines the priority of the modules (object modules and/or LLMs) that can replace a
module in the current LLM.

TYPE = (*L,*R)
Both LLMs and object modules can replace modules in the current LLM. If the same
name is specified for an LLM as for an object module, the LLM is taken over.

TYPE = (*R,*L)
Both LLMs and object modules can replace modules. If the same name is specified for
an LLM as for an object module, the object module is taken over.

TYPE = *R
Only object modules can replace modules.

TYPE = *L
Only LLMs can replace modules.

MODULE-CONTAINER = *FILE(...)

FILE-NAME =
Specifies the PAM file that contains the LLM.

FILE-NAME = <filename 1..54 without-gen-vers>
Name of the PAM file in which the LLM is stored.

FILE-NAME = *LINK(...)

LINK-NAME = <structured-name 1..8>
File link name of the PAM file in which the LLM is stored.

MODULE-CONTAINER = *OMF(...)
The input source is the EAM object module file. This contains only object modules.

ELEMENT = *ALL / list-poss(40): <composed-name 1..64> / <c-string 1..64>
See above for the meanings of the operands.

NEW-NAME =
Specifies the new logical name for the replaced module.

NEW-NAME = *INTERNAL
The internal name is used as the logical name.

NEW-NAME = *ELEMENT-NAME
The name of the library element is used as the new logical name.

NEW-NAME = <structured-name 1..32>
Explicit specification of the new logical name.

U9557-J-Z125-4-76 263

BINDER statements REPLACE-MODULES

SLICE =
Specifies the slice in the physical structure of the LLM in which the modules are replaced.
The slice must be defined with a SET-USER-SLICE-POSITION statement.

SLICE = *CURRENT-SLICE
Modules are replaced in the current slice. This is the slice that was defined by the most
recent preceding SET-USER-SLICE-POSITION statement.

SLICE = *ROOT
Modules are replaced in the root slice (%ROOT).

SLICE = <structured-name 1..32>
Explicit specification of the slice in which modules are replaced.

LOGICAL-STRUCTURE =
Specifies whether the logical structure information from the modules is taken over into the
current LLM.

LOGICAL-STRUCTURE = *INCLUSION-DEFAULT
The values of the INCLUSION-DEFAULTS operand from the START-LLM-CREATION,
START-LLM-UPDATE or MODIFY-LLM-ATTRIBUTES statements from the same edit run
are assumed.

LOGICAL-STRUCTURE = *WHOLE-LLM
All the logical structure information is taken over into the current LLM.

LOGICAL-STRUCTURE = *OBJECT-MODULES
The logical structure information is not taken over. A structure comprising only object
modules (OMs) is set up in the current LLM.

TEST-SUPPORT =
Specifies whether the LSD information from the modules is taken over into the current LLM.

i Information on the existence of the list for symbolic debugging is provided in the
“T&D” column in the BINDER lists. The TEST-SUPPORT field in BINDER lists only
shows the setting of this TEST-SUPPORT operand.

TEST-SUPPORT = *INCLUSION-DEFAULT
The values of the INCLUSION-DEFAULTS operand from the START-LLM-CREATION,
START-LLM-UPDATE or MODIFY-LLM-ATTRIBUTES statements from the same edit run
are assumed.

TEST-SUPPORT = *NO
The LSD information is not taken over.

TEST-SUPPORT = *YES
The LSD information is taken over.

264 U9557-J-Z125-4-76

REPLACE-MODULES BINDER statements

RUN-TIME-VISIBILITY =
Specifies whether the module is to be regarded as a runtime module. All symbols in a
runtime module are masked when the module is stored and are, for the moment, not used
for resolving external references. This masking of the symbols is canceled during any
subsequent read access to the module (e.g. with START-LLM-UPDATE or INCLUDE-
MODULES).

RUN-TIME-VISIBILITY = *UNCHANGED
The value is not changed. When a module is included in an LLM for the first time with
INCLUDE-MODULES or REPLACE-MODULES, BINDER assumes the value NO.

RUN-TIME-VISIBILITY = *NO
The module is not to be regarded as a runtime module.

RUN-TIME-VISIBILITY = *YES
The module is to be regarded as a runtime module. All symbols in the module are masked
when the module is stored.

RESOLUTION-SCOPE =
Defines priority classes that control the order in which BINDER is to search other modules
when resolving external references. Two values must be discriminated for each class:
– The dynamic value

influences the order in which modules are searched to resolve external references. It is,
however, not stored in the LLM.

– The static value
is stored in the LLM and forms the basis for determining the dynamic value.

RESOLUTION-SCOPE = *UNCHANGED
The static values of the priority classes are those stored in the modules concerned. They
are assigned the value *STD (see below) for object modules (OMs).

RESOLUTION-SCOPE = *STD
The static values of the priority classes are *STD, i.e. the dynamic values of superordinate
nodes are taken over into the logical LLM structure. This inheritance mechanism is applied
each time a new search is started for resolving external references.
The default value for the static values of the ROOT node of an LLM is *STD. The dynamic
values in this case are *NONE (see below).

U9557-J-Z125-4-76 265

BINDER statements REPLACE-MODULES

RESOLUTION-SCOPE = *PARAMETERS(...)
The static values of the individual priority classes are defined separately.

HIGH-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is to be searched before all others for resolving external refer-
ences (see section “Rules for resolving external references” on page 73).

HIGH-PRIORITY-SCOPE = *STD
The static value of this priority class is *STD, i.e. the dynamic value of the superordinate
node is taken over into the logical LLM structure. This inheritance mechanism is applied
each time a new search is started for resolving external references.
The default value for the static value of the ROOT node of an LLM is *STD. The dynamic
value in this case is *NONE (see below).

HIGH-PRIORITY-SCOPE = *NONE
The HIGH-PRIORITY-SCOPE priority class is undefined, i.e. there are no modules
which are to be searched before all others for resolving external references. The value
of the superordinate node is not taken over.

HIGH-PRIORITY-SCOPE = <c-string 1..255 with-low> / <text 1..255>
Path name of the sub-LLM which is to be searched first for resolving external refer-
ences.

LOW-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is only to be searched for resolving external references after
the search was unsuccessful in all other modules (see section “Rules for resolving
external references” on page 73).
The meanings of the separate operand values are analogous to the priority class HIGH-
PRIORITY-SCOPE.

FORBIDDEN-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is not to be searched for resolving external references (see
section “Rules for resolving external references” on page 73).
The meanings of the separate operand values are analogous to the priority class HIGH-
PRIORITY-SCOPE.

An example of the inheritance mechanism for the PRIORITY-SCOPE values is provided in
the description of the RESOLVE-BY-AUTOLINK statement on page 273.

266 U9557-J-Z125-4-76

REPLACE-MODULES BINDER statements

NAME-COLLISION =
Specifies how name conflicts which occur during processing of the statement are to be
handled.

NAME-COLLISION = *STD
BINDER uses the value from the NAME-COLLISION operand in the last MODIFY-STD-
DEFAULTS statement. If this statement has not already been entered in the same edit run,
BINDER uses the value *IGNORED.

NAME-COLLISION = *IGNORED
Name conflicts are not handled.

NAME-COLLISION = *WARNING(...)
The user receives a warning if name conflicts occur during processing of the statement.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

NAME-COLLISION = *ERROR(...)
Execution of the statement is aborted if name conflicts (correctable errors) occur.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

U9557-J-Z125-4-76 267

BINDER statements RESOLVE-BY-AUTOLINK

RESOLVE-BY-AUTOLINK

This statement determines how BINDER is to resolve unresolved external references
(autolink function).
BINDER searches the specified libraries for modules with suitable CSECTs and ENTRYs
and includes the located modules in the current LLM.

LLMs with user-defined slices and LLMs without relocation information are not included. If
BINDER finds such LLMs, it aborts the autolink function.

(part 1 of 2)

RESOLVE-BY-AUTOLINK

LIBRARY = *CURRENT-INPUT-LIB / *BLSLIB-LINK /

list-poss(40): <filename 1..54 without-gen-vers> / *LINK(...)

*LINK(...)
  LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>

,TYPE = (*L,*R) / list-poss(2): *L / *R

,SYMBOL-NAME = *ALL / list-poss(40): <c-string 1..255 with-low> / <text 1..32>

,SCOPE = CURRENT-SUB-LLM / *EXPLICIT(...) / *WHOLE-LLM

*EXPLICIT(...)
  WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <c-string 1..255 with-low> / <text 1..255>
  ,EXCEPT-SUB-LLM = *NONE / list-poss(10): <c-string 1..255 with-low> / <text 1..255>

,NAME = *INTERNAL / *ELEMENT-NAME

,PATH-NAME = *CURRENT-SUB-LLM / <c-string 1..255 with-low> / <text 1..255>

,LOGICAL-STRUCTURE = *INCLUSION-DEFAULT / *WHOLE-LLM / *OBJECT-MODULES

,TEST-SUPPORT = *INCLUSION-DEFAULT / *NO / *YES

,RUN-TIME-VISIBILITY = *UNCHANGED / *NO / *YES

,RESOLUTION-SCOPE = *UNCHANGED / *STD / *PARAMETERS(...)

*PARAMETERS(...)
  HIGH-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE / <text 1..255>
  ,LOW-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE / <text 1..255>
  ,FORBIDDEN-SCOPE = *UNCHANGED / *STD / *NONE / <text 1..255>

continued ➠

268 U9557-J-Z125-4-76

RESOLVE-BY-AUTOLINK BINDER statements

LIBRARY =
Specifies one or more input libraries that BINDER is to search for resolving external refer-
ences.

LIBRARY = *CURRENT-INPUT-LIB
The input library from which the last module (OM or LLM) was read by means of a START-
LLM-UPDATE, INCLUDE-MODULES or REPLACE-MODULES statement is searched.
The scope of the operand relates to one edit run.

LIBRARY = *BLSLIB-LINK
The input libraries with the file link names BLSLIBnn (00≤nn≤99) are searched.

LIBRARY = <filename 1..54 without-gen-vers>
File names of the input libraries that are searched.

LIBRARY = *LINK(...)

LINK-NAME = <structured-name 1..8>
File link name of the input library that is searched.

TYPE =
Defines the priority of the modules (object modules and/or LLMs) that are searched for
suitable CSECTs and ENTRYs.

TYPE = (*L,*R)
Both LLMs and object modules are searched. If the same name is present for an LLM and
for an object module, the LLM is searched.

TYPE = (*R,*L)
Both LLMs and object modules are searched. If the same name is present for an LLM and
for an object module, the object module is searched.

TYPE = *R
Only object modules are searched.

TYPE = *L
Only LLMs are searched.

,NAME-COLLISION = STD / *IGNORED / *WARNING(...) / *ERROR(...)

*WARNING(...)
  SCOPE = *WHOLE-LLM / *SLICE

*ERROR(...)
  SCOPE = *WHOLE-LLM / *SLICE

(part 2 of 2)

U9557-J-Z125-4-76 269

BINDER statements RESOLVE-BY-AUTOLINK

SYMBOL-NAME =
Defines the external references that BINDER is to resolve.

SYMBOL-NAME = *ALL
All external references are to be resolved.

SYMBOL-NAME = <c-string 1..255> / <text 1..32>
Names of the external references that are to be resolved. Wildcards may be specified.
Note: BINDER checks special data types <symbol> and <symbol-with-wild> (see
page 190).

SCOPE =
Sets one or more pointers. These point to the sub-LLMs in the logical structure of the LLM,
in which BINDER is to resolve unresolved external references.

SCOPE = *CURRENT-SUB-LLM
The pointer points to the current sub-LLM (see BEGIN-SUB-LLM-STATEMENTS statement
on page 199).

SCOPE = *EXPLICIT(...)

WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <text 1..255>
The pointers point to the explicitly specified sub-LLMs. The path names of the sub-
LLMs should be specified for <text 1..255>.
Note: BINDER checks special data type <path-name> (see page 190).
If *WHOLE-LLM is specified, all sub-LLMs are referenced.

EXCEPT-SUB-LLM = *NONE / list-poss(10): <text 1..255>
Allows the exclusion of individual pointers from the list specified in the WITHIN-SUB-
LLM operand. The path names of the sub-LLMs that are to be ignored should be
specified for <text 1..255>.
Note: BINDER checks special data type <path-name> (see page 190).
If *NONE is specified, no pointers are excluded.

SCOPE = *WHOLE-LLM
All sub-LLMs of the current LLM are involved in the resolution of external references.

270 U9557-J-Z125-4-76

RESOLVE-BY-AUTOLINK BINDER statements

NAME =
Specifies the name to be used as the logical name when the module is included by the
autolink function.

NAME = *INTERNAL
The internal name is used as the logical name.

NAME = *ELEMENT-NAME
The name of the library element containing the module is used as the logical name. If
necessary, BINDER truncates this name to 32 characters.
Note: BINDER checks special data type <symbol> (see page 190).

PATH-NAME =
Defines the sub-LLM in the logical structure of the current LLM in the work area in which
modules are included.

PATH-NAME = *CURRENT-SUB-LLM
The current sub-LLM is assumed (see BEGIN-SUB-LLM-STATEMENTS statement).

PATH-NAME = <text 1..255>
Path name of the sub-LLM in the logical structure of the current LLM.
Note: BINDER checks special data type <path-name> (see page 190).

LOGICAL-STRUCTURE =
Specifies whether the logical structure information from the modules is taken over into the
current LLM.

LOGICAL-STRUCTURE = *INCLUSION-DEFAULT
The values of the INCLUSION-DEFAULTS operand from the START-LLM-CREATION,
START-LLM-UPDATE or MODIFY-LLM-ATTRIBUTES statements from the same edit run
are assumed.

LOGICAL-STRUCTURE = WHOLE-LLM
All the logical structure information is taken over into the current LLM.

LOGICAL-STRUCTURE = OBJECT-MODULES
The logical structure information is not taken over. A structure comprising only object
modules (OMs) is established in the current LLM.

U9557-J-Z125-4-76 271

BINDER statements RESOLVE-BY-AUTOLINK

TEST-SUPPORT =
Specifies whether the LSD information from the modules is taken over into the current LLM.

i Information on the existence of the list for symbolic debugging is provided in the
“T&D” column in the BINDER lists. The TEST-SUPPORT field in BINDER lists only
shows the setting of this TEST-SUPPORT operand.

TEST-SUPPORT = *INCLUSION-DEFAULT
The values of the INCLUSION-DEFAULTS operand from the START-LLM-CREATION,
START-LLM-UPDATE or MODIFY-LLM-ATTRIBUTES statements from the same edit run
are assumed.

TEST-SUPPORT = *NO
The LSD information is not taken over.

TEST-SUPPORT = *YES
The LSD information is taken over.

RUN-TIME-VISIBILITY =
Specifies whether the symbols in a runtime module are masked when the module is stored
and are, for the moment, not used for resolving external references. This masking of the
symbols is canceled during any subsequent read access to the module (e.g. with START-
LLM-UPDATE or INCLUDE-MODULES).

RUN-TIME-VISIBILITY = *UNCHANGED
The value is not changed. When a module is included in an LLM for the first time with
INCLUDE-MODULES or REPLACE-MODULES, BINDER assumes the value NO.

RUN-TIME-VISIBILITY = *NO
Symbols that are resolved by autolink remain visible.

RUN-TIME-VISIBILITY = *YES
Symbols that are resolved by autolink module are masked when the module is stored.

RESOLUTION-SCOPE =
Defines priority classes that control the order in which BINDER is to search other modules
when resolving external references. Two values must be discriminated for each class:
– The dynamic value

influences the order in which modules are searched to resolve external references. It is,
however, not stored in the LLM.

– The static value
is stored in the LLM and forms the basis for determining the dynamic value.

RESOLUTION-SCOPE = *UNCHANGED
The static values of the priority classes are those stored in the modules concerned. They
are assigned the value *STD (see below) for object modules (OMs).

272 U9557-J-Z125-4-76

RESOLVE-BY-AUTOLINK BINDER statements

RESOLUTION-SCOPE = *STD
The static values of the priority classes are *STD, i.e. the dynamic values of superordinate
nodes are taken over into the logical LLM structure. This inheritance mechanism is applied
each time a new search is started for resolving external references.
The default value for the static values of the ROOT node of an LLM is *STD. The dynamic
values in this case are *NONE (see below).

RESOLUTION-SCOPE = *PARAMETERS(...)
The static values of the individual priority classes are defined separately.

HIGH-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is to be searched before all others for resolving external refer-
ences (see section “Rules for resolving external references” on page 73).

HIGH-PRIORITY-SCOPE = *STD
The static value of this priority class is *STD, i.e. the dynamic value of the superordinate
node is taken over into the logical LLM structure. This inheritance mechanism is applied
each time a new search is started for resolving external references.
The default value for the static value of the ROOT node of an LLM is *STD. The dynamic
value in this case is *NONE (see below).

HIGH-PRIORITY-SCOPE = *NONE
The HIGH-PRIORITY-SCOPE priority class is undefined, i.e. there are no modules
which are to be searched before all others for resolving external references. The value
of the superordinate node is not taken over.

HIGH-PRIORITY-SCOPE = <c-string 1..255 with-low> / <text 1..255>
Path name of the sub-LLM which is to be searched first for resolving external refer-
ences.

LOW-PRIORITY-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is only to be searched for resolving external references after
the search was unsuccessful in all other modules (see section “Rules for resolving
external references” on page 73).
The meanings of the separate operand values are analogous to the priority class HIGH-
PRIORITY-SCOPE.

FORBIDDEN-SCOPE = *UNCHANGED / *STD / *NONE /
<c-string 1..255 with-low> / <text 1..255>
Defines which sub-LLM is not to be searched for resolving external references (see
section “Rules for resolving external references” on page 73).
The meanings of the separate operand values are analogous to the priority class HIGH-
PRIORITY-SCOPE.

U9557-J-Z125-4-76 273

BINDER statements RESOLVE-BY-AUTOLINK

The following example illustrates the inheritance mechanism for the PRIORITY-SCOPE
values:

LLM1 and LLM2 are both in a library. Static HIGH-PRIORITY-SCOPE values are
defined for both LLMs, as shown in the following table.

LLM2 is linked into LLM1. During linkage, BINDER uses the static HIGH-PRIORITY-
SCOPE values to determine the dynamic values which influence the search order when
resolving external references.

The following table shows the resulting module structure and dynamic values of HIGH-
PRIORITY-SCOPE.

Module

LLM1

OM11

OM12

*STD

*NONE

LLM1.OM12

Dynamic value of
HIGH-PRIORITY-SCOPE

LLM2

OM21

OM22

LLM2.OM22

*STD

*STD

Module

LLM1

OM11

OM12

*STD

*NONE

LLM1.OM12

Dynamic value of
HIGH-PRIORITY-SCOPE

LLM2

OM21

OM22

LLM2.OM22

*STD

*STD

Comment

= static value

= static value

inherited from LLM1

= static value

inherited from LLM1

inherited from LLM1

274 U9557-J-Z125-4-76

RESOLVE-BY-AUTOLINK BINDER statements

NAME-COLLISION =
Specifies how name conflicts which occur during processing of the statement are to be
handled.

NAME-COLLISION = *STD
BINDER uses the value from the NAME-COLLISION operand in the last MODIFY-STD-
DEFAULTS statement. If this statement has not already been entered in the same edit run,
BINDER uses the value IGNORED.

NAME-COLLISION = *IGNORED
Name conflicts are not handled.

NAME-COLLISION = *WARNING(...)
The user receives a warning if name conflicts occur during processing of the statement.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

NAME-COLLISION = *ERROR(...)
Execution of the statement is aborted if name conflicts (correctable errors) occur.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

U9557-J-Z125-4-76 275

BINDER statements SAVE-LLM

SAVE-LLM

This statement saves the current LLM, created with a START-LLM-CREATION statement or
updated with a START-LLM-UPDATE statement, as a type L element in a program library.
An LLM updated by means of the START-LLM-UPDATE statement is written back to the
original element during saving if the new element retains the same element name and the
same element version in the program library and OVERWRITE=*YES is specified.

The SAVE-LLM statement does not terminate the BINDER run. It is therefore possible to
further process the current LLM in the same BINDER run, or to create a new LLM with
another START-LLM-CREATION statement, or to modify a new LLM with another START-
LLM-UPDATE statement.

(part 1 of 3)

SAVE-LLM

MODULE-CONTAINER = *CURRENT / *LIBRARY-ELEMENT(...) / *FILE(...)

*LIBRARY-ELEMENT(...)
  LIBRARY = *CURRENT / <filename 1..54 without-gen-vers> / *LINK(...)
  *LINK(...)
   LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>
  ,ELEMENT = *CURRENT-NAME (...) / *INTERNAL-NAME(...) / <composed-name 1..64>(...) /

 <c-string 1..64>(...)
  *CURRENT-NAME(...)
   VERSION = *CURRENT-VERSION / *INTERNAL-VERSION / *UPPER-LIMIT /

  *INCREMENT / <composed-name 1..24> / <c-string 1..24>
  *INTERNAL-NAME(...)
   VERSION = *INTERNAL-VERSION / *UPPER-LIMIT / *INCREMENT /

  <composed-name 1..24> / <c-string 1..24>
  <composed-name 1..64>(...)
   VERSION = *INTERNAL-VERSION / *UPPER-LIMIT / *INCREMENT /

  <composed-name 1..24> / <c-string 1..24>
  <c-string 1..64>(...)
   VERSION = *INTERNAL-VERSION / *UPPER-LIMIT / *INCREMENT /

  <composed-name 1..24> / <c-string 1..24>

continued ➠

276 U9557-J-Z125-4-76

SAVE-LLM BINDER statements

*FILE(...)
  FILE-NAME = *CURRENT / <filename 1..54 without-gen> / *LINK(...)
  *LINK(...)
   LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>

,OVERWRITE = *LAST-SAVE / *STD / *YES / *NO

,FOR-BS2000-VERSIONS = *LAST-SAVE / *STD / *FROM-CURRENT(...) / *FROM-V10(...) /

 *FROM-OSD-V1(...) / *FROM-OSD-V3(...) / *FROM-OSD-V4(...)

*FROM-CURRENT(...)
  CONNECTION-MODE = *OSD-DEFAULT / *BY-RELOCATION / *BY-RESOLUTION

*FROM-V10(...)
  CONNECTION-MODE = *BY-RESOLUTION / *BY-RELOCATION

*FROM-OSD-V1(...)
  CONNECTION-MODE = *BY-RELOCATION / *BY-RESOLUTION

*FROM-OSD-V3(...)
  CONNECTION-MODE = *BY-RELOCATION / *BY-RESOLUTION

*FROM-OSD-V4(...)
  CONNECTION-MODE = *BY-RELOCATION / *BY-RESOLUTION

,REQUIRED-COMPRESSION = *LAST-SAVE / *STD / *NO / *YES

,NAME-COLLISION = *LAST-SAVE / *STD / *IGNORED / *WARNING(...) / *ERROR(...)

*WARNING(...)
  SCOPE = *WHOLE-LLM / *SLICE

*ERROR(...)
  SCOPE = WHOLE-LLM / *SLICE

,SYMBOL-DICTIONARY = *LAST-SAVE / *YES / *NO

,RELOCATION-DATA = *LAST-SAVE / *YES / *NO / *UNRESOLVED-ONLY

,LOGICAL-STRUCTURE = *LAST-SAVE / *WHOLE-LLM / *OBJECT-MODULES / *NONE

,TEST-SUPPORT = *LAST-SAVE / *YES / *NO

continued ➠

(part 2 of 3)

U9557-J-Z125-4-76 277

BINDER statements SAVE-LLM

MODULE-CONTAINER =
Defines where the LLM is to be stored.

MODULE-CONTAINER = *CURRENT
The LLM is stored in the library or PAM file specified in the most recent SAVE-LLM or
START-LLM-UPDATE statement.

MODULE-CONTAINER = *LIBRARY-ELEMENT(...)
The LLM is to be stored in a program library.

LIBRARY =
Defines the program library in which the LLM is saved.

LIBRARY = *CURRENT
BINDER takes the program library from the most recent SAVE-LLM statement in the
same edit run. If no SAVE-LLM statement has as yet been specified in the edit run,
BINDER selects the program library as follows:

– it takes the library from the associated START-LLM-UPDATE statement if the LLM
was updated by means of a START-LLM-UPDATE statement

– it outputs an error message and requests the explicit specification of the library if
the LLM was created by means of a START-LLM-CREATION statement.

LIBRARY = <filename 1..54 without-gen-vers>
File name of the program library in which the LLM is to be saved.

,LOAD-ADDRESS = *LAST-SAVE / *UNDEFINED / *NULL / *BY-SLICES(...) / <x-string 1..8>

*BY-SLICES(...)
  ADDRESSES = list-poss(40): *REGION(...) / *SLICE(...)
  *REGION(...)
   REGION-NAME = <structured-name 1..32>
    ,REGION-ADDRESS = <x-string 1..8>
  *SLICE(...)
   SLICE-NAME = *ROOT / <structured-name 1..32>
    ,SLICE-ADDRESS = <x-string 1..8>

,ENTRY-POINT = *LAST-SAVE / *STD / *BY-MODULE(...) / <c-string 1..32 with-low> / <text 1..32>

*BY-MODULE(...)
  PATH-NAME = <text 1..255>

,MAP = *LAST-SAVE / *YES / *NO

(part 3 of 3)

278 U9557-J-Z125-4-76

SAVE-LLM BINDER statements

LIBRARY = *LINK(...)

LINK-NAME = <structured-name 1..8>
File link name of the program library in which the LLM is to be saved.

ELEMENT =
The element name and element version that the LLM is to receive on saving in the
program library.

Note

It is not possible to store an LLM under the same name and with the same element
version number if other tasks are simultaneously processing or including this LLM,
since the library element is locked for write access in this case. In order to resolve
this conflict, all but one of the competing tasks must temporarily store the LLM under
another name or with a different version number.

ELEMENT = *CURRENT-NAME(...)
BINDER takes the element name from the most recent SAVE-LLM statement in the
same edit run. If no SAVE-LLM statement has as yet been specified in the edit run,
BINDER takes as the element name of the LLM:

– the element name from the associated START-LLM-UPDATE statement if the LLM
was modified by means of a START-LLM-UPDATE statement

– the internal name from the associated START-LLM-CREATION statement if the
LLM was created by means of a START-LLM-CREATION statement.

VERSION =
Defines the element version.

VERSION = *CURRENT-VERSION
BINDER takes the element version from the most recent SAVE-LLM statement in
the same edit run. If no SAVE-LLM statement has as yet been specified in the edit
run, BINDER takes as the version of the LLM:

– the specified element version from the associated START-LLM-UPDATE
statement if the LLM was modified by means of a START-LLM-UPDATE
statement,

– the internal version from the associated START-LLM-CREATION statement if
the LLM was created by means of a START-LLM-CREATION statement.

VERSION = *INTERNAL-VERSION
BINDER takes as the element version the internal version of the LLM.

VERSION = *UPPER-LIMIT
BINDER takes as the element version the default value for the highest version in the
case of program libraries (see the “LMS” manual [4]).

U9557-J-Z125-4-76 279

BINDER statements SAVE-LLM

VERSION = *INCREMENT
The current element version number is incremented by 1.

VERSION = <composed-name 1..24> / <c-string 1..24>
Explicit specification of the element version.
Note: BINDER checks special data type <element-version> (see page 190).

ELEMENT = *INTERNAL-NAME(...)
BINDER takes as the element name the internal name of the LLM.

VERSION =
Defines the element version.

VERSION = *INTERNAL-VERSION
BINDER takes as the element version the internal version of the LLM.

VERSION = *UPPER-LIMIT
BINDER takes as the element version the default value for the version in the case
of program libraries (see the “LMS” manual [4]).

VERSION = *INCREMENT
The current element version number is incremented by 1.

VERSION = <composed-name 1..24> / <c-string 1..24>
Explicit specification of the element version.
Note: BINDER checks special data type <element-version> (see page 190).

ELEMENT = <composed-name 1..64(...)
Explicit specification of the element name.
Note: BINDER checks special data type <element-name> (see page 190). In DBL
commands LOAD-/START-EXECUTABLE-PROGRAM (or LOAD-/ START-PROGRAM,
see the “BLSSERV Binder Loader/Starter” manual [1]), the length of the element names
is restricted to 32 characters when BLSSERV up to V2.4 is used. BINDER therefore
issues the following warning if the element name is longer then 32 characters:

BND2110 WARNING: ELEMENT NAME LONGER THAN 32 CHARACTERS NOT PROCESSABLE BY
’DBL’

VERSION = *INTERNAL-VERSION / *UPPER-LIMIT / *INCREMENT /
<composed-name 1..24> / <c-string 1..24>
Defines the element version.
Note: BINDER checks special data type <element-version> (see page 190).
See above for the meanings of the operands.

280 U9557-J-Z125-4-76

SAVE-LLM BINDER statements

ELEMENT = <c-string 1..64>(...)
Explicit specification of the element name.
Note: BINDER checks special data type <element-name> (see page 190). In DBL
commands LOAD-/START-EXECUTABLE-PROGRAM (or LOAD-/ START-PROGRAM,
see the “BLSSERV Binder Loader/Starter” manual [1]), the length of the element names
is restricted to 32 characters when BLSSERV up to V2.4 is used. BINDER therefore
issues the following warning if the element name is longer then 32 characters:

BND2110 WARNING: ELEMENT NAME LONGER THAN 32 CHARACTERS NOT PROCESSABLE BY
’DBL’

VERSION = *INTERNAL-VERSION / *UPPER-LIMIT / *INCREMENT /
<composed-name 1..24> / <c-string 1..24>
Defines the element version.
Note: BINDER checks special data type <element-version> (see page 190).
See above for the meanings of the operands.

MODULE-CONTAINER = *FILE(...)
The LLM is to be stored in a PAM file. This type of LLM is called a PAM-LLM.

Notes

– PAM-LLMs can be loaded as of BLSSERV V2.5.

– If an LLM which is stored in a PAM file is modified with START-LLM-UPDATE and saved
into a PLAM library with SAVE-LLM, the value for *CURRENT-NAME is the internal
name of the LLM.

– When an LLM is output to a PAM file, BINDER initially generates a temporary PAM file
and writes the LLM into it. Once the LLM has been successfully generated, it is written
to the PAM file defined with SAVE-LLM and the temporary file is deleted. The BS2000
function “Temporary files” is used to create the temporary file if this is activated by the
systems support staff with the class 2 system parameter TEMPFILE. Otherwise,
BINDER generates a file whose name is made up of the name of the input file together
with the date and time.

FILE-NAME =
Specifies the file in which the LLM is to be stored.

FILE-NAME = *CURRENT
The LLM is stored in the PAM file specified in the most recent SAVE-LLM or START-
LLM-UPDATE statement.

FILE-NAME = <filename 1..54 without-gen-vers>
Name of the PAM file in which the LLM is to be stored.

FILE-NAME = *LINK(...)

LINK-NAME = <structured-name 1..8>
File link name of the PAM file in which the PAM-LLM is to be stored.

U9557-J-Z125-4-76 281

BINDER statements SAVE-LLM

OVERWRITE =
Specifies whether or not overwriting is permitted.

OVERWRITE = *LAST-SAVE
BINDER uses the value from the last SAVE-LLM statement in this edit run. If this statement
has not yet been entered in this edit run, BINDER uses the value *STD.

OVERWRITE = *STD
BINDER uses the value of the operand in the last MODIFY-STD-DEFAULTS statement. If
this statement has not yet been entered in this edit run, BINDER uses the value *YES.

OVERWRITE = *YES
Overwriting is permitted.

OVERWRITE = *NO
Overwriting is not permitted.

FOR-BS2000-VERSIONS =
Specifies the BS2000/OSD-BC version for which the generated LLM is to be loaded by
DBL. DBL can only process the LLM in the specified (or a higher) version of
BS2000/OSD-BC.

FOR-BS2000-VERSIONS = *BY-PROGRAM
BINDER defines the format of the generated LLM on the basis of its contents. The LLM
format is always the lowest possible that can provide the required functionality. For example,
an LLM containing RISC code has format 3, while an LLM containing compressed text is
created in format 2.

FOR-BS2000-VERSIONS = *LAST-SAVE
BINDER uses the value from the last SAVE-LLM statement in this edit run. If this statement
has not yet been entered in this edit run, BINDER uses the value *STD.

FOR-BS2000-VERSIONS = *STD
BINDER uses the value of the operand in the last MODIFY-STD-DEFAULTS statement. If
this statement has not yet been entered in this edit run, BINDER uses the value
*FROM-CURRENT.

282 U9557-J-Z125-4-76

SAVE-LLM BINDER statements

FOR-BS2000-VERSIONS = *FROM-CURRENT(...)
The BS2000/OSD-BC version under which BINDER is currently running is used.

CONNECTION-MODE =
Defines the type of connection between the private and public slices. This operand is
only meaningful if the LLM is divided into slices according to the public attribute of the
CSECTs it contains.

CONNECTION-MODE = *OSD-DEFAULT
This specification is supported for compatibility reasons. It is equivalent to
CONNECTION-MODE = *BY-RELOCATION

CONNECTION-MODE = *BY-RELOCATION
The connection between private and public slices is by relocation.

CONNECTION-MODE = *BY-RESOLUTION
The connection between private and public slices is by resolution.

FOR-BS2000-VERSIONS = *FROM-V10(...)
The LLM can be loaded by DBL in any version of BS23000/OSD-BC.

CONNECTION-MODE = *BY-RESOLUTION / *BY-RELOCATION
The meaning of the operand and value is as for FOR-BS2000-VERSION=*FROM-
CURRENT.

FOR-BS2000-VERSIONS = *FROM-OSD-V1(...)
The LLM can be loaded by DBL in any version of BS23000/OSD-BC.

CONNECTION-MODE = *BY-RELOCATION / *BY-RESOLUTION
The meaning of the operand and value is as for FOR-BS2000-VERSION=*FROM-
CURRENT.

FOR-BS2000-VERSIONS = *FROM-OSD-V3(...)
The LLM can be loaded by DBL in BS2000/OSD V3.0 or higher.

CONNECTION-MODE = *BY-RELOCATION / *BY-RESOLUTION
The meaning of the operand and value is as for FOR-BS2000-VERSION=*FROM-
CURRENT.

FOR-BS2000-VERSIONS = *FROM-OSD-V4(...)
The LLM can be loaded by BLSSERV in BS2000/OSD V3.0 or higher.

CONNECTION-MODE = *BY-RELOCATION / *BY-RESOLUTION
The meaning of the operand and value is as for FOR-BS2000-VERSION=*FROM-
CURRENT.

U9557-J-Z125-4-76 283

BINDER statements SAVE-LLM

REQUIRED-COMPRESSION =
Specifies whether the text information (TXT) is to be compressed for better utilization of the
disk capacity.

REQUIRED-COMPRESSION = *LAST-SAVE
BINDER uses the value of the REQUIRED-COMPRESSION operand in the last SAVE-LLM
statement in this edit run. If this statement has not yet been entered in this edit run, BINDER
uses the value *STD.

REQUIRED-COMPRESSION = *STD
BINDER uses the value specified in the last MODIFY-STD-DEFAULTS statement. If this
statement has not yet been entered in this edit run, BINDER uses the value NO.

REQUIRED-COMPRESSION = *NO
The text information is not compressed.

REQUIRED-COMPRESSION = *YES
The text information is compressed.

NAME-COLLISION =
Specifies how name conflicts which occur during processing of the SAVE-LLM statement
are to be handled.

NAME-COLLISION = *LAST-SAVE
BINDER uses the value from the last SAVE-LLM statement in this edit run. If this statement
has not already been entered in the same edit run, BINDER uses the value STD.

NAME-COLLISION = *STD
BINDER uses the value from the NAME-COLLISION operand in the last MODIFY-STD-
DEFAULTS statement. If this statement has not already been entered in the same edit run,
BINDER uses the value IGNORED.

NAME-COLLISION = *IGNORED
Name conflicts are not handled.

284 U9557-J-Z125-4-76

SAVE-LLM BINDER statements

NAME-COLLISION = *WARNING(...)
The user receives a warning if name conflicts occur during processing of the SAVE-LLM
statement.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

NAME-COLLISION = *ERROR(...)
Execution of the SAVE-LLM statement is aborted if name conflicts (correctable errors)
occur.

SCOPE =
Defines the scope of the definitions for handling name conflicts.

SCOPE = *WHOLE-LLM
The definitions for name conflicts are valid for the entire LLM.

SCOPE = *SLICE
The definitions for name conflicts are valid only at the slice level, i.e. name conflicts
between different slices are ignored by BINDER.
This value may be specified only for user-defined slices.

SYMBOL-DICTIONARY =
Specifies whether the LLM is saved with or without an External Symbols Vector (ESV).

Note
If LOGICAL-STRUCTURE=*NONE has been set, whether explicitly or implicitly (by
means of *LAST-SAVE), SYMBOL-DICTIONARY=*NO must be set.

SYMBOL-DICTIONARY = *LAST-SAVE
BINDER takes the values from the most recent SAVE-LLM statement in the same edit run.
If no SAVE-LLM statement has as yet been specified in the edit run, BINDER takes the
value YES.

SYMBOL-DICTIONARY = *YES
The External Symbols Vector (ESV) is taken over on saving the LLM.

SYMBOL-DICTIONARY = *NO
No External Symbols Vector (ESV) is taken over on saving the LLM.

U9557-J-Z125-4-76 285

BINDER statements SAVE-LLM

RELOCATION-DATA =
Specifies whether the LLM is saved with or without relocation information.

RELOCATION-DATA = *LAST-SAVE
BINDER takes the values from the most recent SAVE-LLM statement in the same edit run.
If no SAVE-LLM statement has as yet been specified in the edit run, BINDER takes the
value YES.

RELOCATION-DATA = *YES
The relocation information is taken over on saving the LLM.

RELOCATION-DATA = *NO
No relocation information is taken over on saving the LLM. The value NO is skipped in the
case of slices by attributes.

RELOCATION-DATA = *UNRESOLVED-ONLY
Only the relocation information for external references which are still unresolved is stored.

LOGICAL-STRUCTURE =
Specifies whether the LLM is saved with or without logical structure information.

LOGICAL-STRUCTURE = *LAST-SAVE
BINDER takes the values from the most recent SAVE-LLM statement in the same edit run.
If no SAVE-LLM statement has as yet been specified in the edit run, BINDER takes the
value WHOLE-LLM.

LOGICAL-STRUCTURE = *WHOLE-LLM
All the logical structure information is taken over on saving the LLM. The logical structure
of the LLM can then be modified subsequently.

LOGICAL-STRUCTURE = *OBJECT-MODULES
On saving the LLM, a structure comprising only the internal name (root) and object modules
(OMs) is stored.

LOGICAL-STRUCTURE = *NONE
Only the internal name (root) of the structure is stored.

286 U9557-J-Z125-4-76

SAVE-LLM BINDER statements

TEST-SUPPORT =
Specifies whether the LLM is saved with or without LSD information.

i If LOGICAL-STRUCTURE=*NONE or SYMBOL-DICTIONARY=*NO has been set,
whether explicitly or implicitly (by means of *LAST-SAVE), TEST-SUPPORT=*NO
must be set.

Information on the existence of the list for symbolic debugging is provided in the
“T&D” column in the BINDER lists. The TEST-SUPPORT field in BINDER lists only
shows the setting of this TEST-SUPPORT operand.

TEST-SUPPORT = *LAST-SAVE
BINDER takes the values from the most recent SAVE-LLM statement in the same edit run.
If no SAVE-LLM statement has as yet been specified in the edit run, BINDER takes the
value YES.

TEST-SUPPORT = *YES
The LSD information is taken over on saving the LLM.

TEST-SUPPORT = *NO
No LSD information is taken over on saving the LLM.

LOAD-ADDRESS =
Defines a virtual address at which the LLM is to be loaded. This operand is skipped in the
case of slices by attributes.

LOAD-ADDRESS = *LAST-SAVE
BINDER takes the address from the most recent SAVE-LLM statement in the same edit run.
If no corresponding SAVE-LLM statement has as yet been specified in the edit run, the
following value is used for the load address:

– UNDEFINED if the LLM was created with a START-LLM-CREATION statement

– the original load address if the LLM was updated by means of a START-LLM-UPDATE
statement.

LOAD-ADDRESS = *UNDEFINED
The virtual address is set as follows:

– to the value 0 if the RELOCATION-DATA operand has the value *NO or
*UNRESOLVED-ONLY

– above 16 Mbytse to the value of the class 2 system option BLSLDPXS if this was
defined during system installation

– to the value X’FFFFFFFF’ in all other cases.

LOAD-ADDRESS = NULL
The virtual address 0 is defined as the load address.

U9557-J-Z125-4-76 287

BINDER statements SAVE-LLM

LOAD-ADDRESS = <x-string 1..8>
Explicit specification of the load address.
The address must lie on a page boundary, i.e. be a multiple of 4096 (X‘1000’). Addresses
not lying on a page boundary are automatically aligned on a page boundary by BINDER.

LOAD-ADDRESS = *BY-SLICES(...)
Specification of the load addresses for individual slices. Load addresses of slices which are
not explicitly specified are calculated by BINDER. For LLMs which are not output in PAM
files, this specification is handled in the same way as *UNDEFINED.

ADDRESSES = list-poss(40): *REGION(...) / *SLICE(...)
Specifies the load addresses for slices.

*REGION(...)
Defines the load address for a region.

REGION-NAME = <structured-name 1..32>
Name of the region for which a load address is defined.

REGION-ADDRESS = <x-string 1..8>
Load address for the region.

*SLICE(...)
Defines the load address for a slice.

SLICE-NAME = *ROOT / <structured-name 1..32>
Name of the slice for which a load address is defined.

SLICE-ADDRESS = <x-string 1..8>
Load address for the slice.

Note

If the user has defined a load address for a slice, it is accepted by BINDER only if it is
at least as long as the smallest possible load address permitted by the physical
structure of the LLM.

Example

Slice X has the load address X‘1000’ and a length of X‘4000’. Slice Y links itself to slice
X. The smallest possible load address for slice Y is thus X‘4000’ + X‘1000’ = x‘5000’.
A user-defined slice address is therefore accepted by BINDER only if it is x‘5000’ or
larger. If a smaller load address is specified, BINDER replaces it with X‘5000’.

288 U9557-J-Z125-4-76

SAVE-LLM BINDER statements

ENTRY-POINT =
Specifies the name of a symbol, i.e. the name of an address to be branched to after loading
of the LLM.

ENTRY-POINT = *LAST-SAVE
BINDER takes the name of the symbol from the most recent SAVE-LLM statement in the
same edit run.
If no corresponding SAVE-LLM statement has as yet been specified in the edit run, the
following name is defined for the symbol:
– the name from the END record of the first object module if the LLM was created with a

START-LLM-CREATION statement
– the original name if the LLM was updated with a START-LLM-UPDATE statement.

ENTRY-POINT = *STD
The name of the symbol is taken over from the END record of the first object module (OM).
If the END record contains no such specification, then, on loading, a branch is taken to the
address defined by the first byte of the first object module.

ENTRY-POINT = *BY-MODULE(...)
Defines the object module from whose END record the name of the symbol is to be taken
over. If the END record contains no such specification, then, on loading, a branch is taken
to the address defined by the first byte of the object module.

PATH-NAME = <text 1..255>
Path name of the object module (see page 16ff).
If the path name of a sub-LLM is specified, the first object module of the sub-LLM is
assumed.
Note: BINDER checks special data type <path-name> (see page 190).

ENTRY-POINT = <text 1..32>
Explicit specification of the name of a CSECT or of an ENTRY for the name of the symbol.
Note: BINDER checks special data type <symbol> (see page 190).

MAP = *LAST-SAVE / *YES / *NO
Specifies whether lists containing information about the saved LLM are output (see
page 133ff).
The output destination and the type of lists are determined by the values in the most recent
preceding MODIFY-MAP-DEFAULTS statement with the specification MAP-NAME=*STD,
or without a MAP-NAME specification. If no MODIFY-MAP-DEFAULTS statement has been
specified with MAP-NAME=*STD or without the MAP-NAME operand, the default values
are assumed.

MAP = *LAST-SAVE
BINDER uses the value from the last SAVE-LLM statement in this edit run. If this statement
has not yet been entered in this run, BINDER uses the value *YES.

U9557-J-Z125-4-76 289

BINDER statements SET-EXTERN-RESOLUTION

SET-EXTERN-RESOLUTION

This statement defines how BINDER is to handle outstanding external references that
cannot be resolved. It is possible to specify that unresolved external references are to be
allowed or not allowed.

If unresolved external references are allowed, they are taken over on saving the LLM. Here
the unresolved external references can be given a specified address. If unresolved external
references are not allowed, the LLM will be rejected on saving with the SAVE-LLM
statement.

SYMBOL-NAME =
Defines the external references that BINDER is to handle if they cannot be resolved.

SYMBOL-NAME = *ALL
All external references are to be handled.

SYMBOL-NAME = list-poss(40): <c-string 1..255> / <text 1..32>
Names of the external references to be handled. Wildcards may be specified.
Note: BINDER checks special data types <symbol> and <symbol-with-wild> (see
page 190).

SYMBOL-TYPE = *REFERENCES / list-poss(3): *EXTRN / *VCON / *WXTRN
Defines the type of the external references to be handled. External references (EXTRNs),
V-type constants (VCON) and weak external references (WXTRNs) can be selected. If
REFERENCES is specified, all types of external references are handled.

SET-EXTERN-RESOLUTION

SYMBOL-NAME = *ALL / list-poss(40): <c-string 1..255 with-low> / <text 1..32>

,SYMBOL-TYPE = *REFERENCES / list-poss(3): *EXTRN / *VCON / *WXTRN

,SCOPE = *CURRENT-SUB-LLM / *EXPLICIT(...) / *WHOLE-LLM

*EXPLICIT(...)
  WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <c-string 1..255 with-low> / <text 1..255>
  ,EXCEPT-SUB-LLM = *NONE / list-poss(10): <c-string 1..255 with-low> / <text 1..255>

,RESOLUTION = *STD / *BY-SYMBOL(...) / *MANDATORY

*BY-SYMBOL(...)
  SYMBOL = <c-string 1..32 with-low> / <text 1..32>

290 U9557-J-Z125-4-76

SET-EXTERN-RESOLUTION BINDER statements

SCOPE =
Sets one or more pointers. These point to the sub-LLMs in the logical structure of the LLM
in which BINDER is to handle unresolved external references.

SCOPE = *CURRENT-SUB-LLM
The pointer points to the current sub-LLM (see BEGIN-SUB-LLM-STATEMENTS
statement).

SCOPE = *EXPLICIT(...)

WITHIN-SUB-LLM = *WHOLE-LLM / list-poss(10): <text 1..255>
The pointers point to the explicitly specified sub-LLMs. The path names of the sub-
LLMs should be specified for <text 1..255>.
Note: BINDER checks special data type <path-name> (see page 190).
When *WHOLE-LLM is specified, all sub-LLMs are referenced.

EXCEPT-SUB-LLM = *NONE / list-poss(10): <text 1..255>
Allows the exclusion of individual pointers from the list specified in the WITHIN-SUB-
LLM operand. The path names of the sub-LLMs that are to be ignored should be
specified for <text 1..255>.
Note: BINDER checks special data type <path-name> (see page 190).
When *NONE is specified, no pointers are excluded.

SCOPE = *WHOLE-LLM
All sub-LLMs of the current LLM are involved.

RESOLUTION =
Defines the way in which BINDER is to handle the unresolved external references.

RESOLUTION = *STD
Unresolved external references are allowed. When the LLM is saved with the SAVE-LLM
statement the unresolved external references are taken over.

RESOLUTION = *BY-SYMBOL(...)
Specifies that unresolved external references are given an address.

SYMBOL = <c-string 1..32 with-low> / <text 1..32>
Explicit specification of the address.
Note: BINDER checks special data type <symbol> (see page 190).

RESOLUTION = *MANDATORY
Unresolved external references are not allowed. The LLM will be rejected on saving with the
SAVE-LLM statement if unresolved external references are present.

U9557-J-Z125-4-76 291

BINDER statements SET-USER-SLICE-POSITION

SET-USER-SLICE-POSITION

This statement defines the physical structure for the LLM. It may be used only for LLMs with
user-defined slices.

Each statement designates the name and position of a slice into which BINDER links the
modules. A slice may also begin at a region.

SLICE-NAME =
Defines the name of the slice in the physical structure.

SLICE-NAME = *ROOT
The slice is the root slice (%ROOT).

SLICE-NAME = <structured-name 1..32>
Explicit specification of the name.
The name must be unique within the physical structure.

MODE =
Specifies whether the specified slice is new or is already present in the physical structure.

MODE = *CREATE(...)
A new slice is created.

POSITION =
Specifies the address level of the slice in the physical structure.

SET-USER-SLICE-POSITION

SLICE-NAME = *ROOT / <structured-name 1..32>

,MODE = *CREATE (...) / *UPDATE

*CREATE(...)
  POSITION = *BEHIND-SLICE (...) / *BEGIN-REGION(...)
  *BEHIND-SLICE(...)
   SLICE = *CURRENT-SLICE / *ROOT / <structured-name 1..32>
  *BEGIN-REGION(...)
   REGION = *CURRENT-REGION / <structured-name 1..32>
    ,NEW-REGION = *NO / *YES

292 U9557-J-Z125-4-76

SET-USER-SLICE-POSITION BINDER statements

POSITION = *BEHIND-SLICE(...)

SLICE =
BINDER adds the slice concerned immediately following the specified slice.

SLICE = *CURRENT-SLICE
The slice is added immediately following the current slice.

SLICE = *ROOT
The slice is added immediately following the root slice (%ROOT).

SLICE = <structured-name 1..32>
Explicit specification of the slice, immediately following which the slice is added.

POSITION = *BEGIN-REGION(...)
Defines the beginning of a region, i.e. ensures that the slice beginning there does not
overlay preceding slices.

REGION =
Name of the region at which the slice is to begin.

REGION = *CURRENT-REGION
Current region
The current region contains the current slice. If the current slice lies in the region
containing the root slice (%ROOT), the name of the region must be specified
explicitly.

REGION = <structured-name 1..32>
Explicit specification of the region.
The name of the region must be unique within the physical structure.

NEW-REGION = *NO / *YES
Specifies whether the specified region is new.

MODE = *UPDATE
The slice is already present in the physical structure.

U9557-J-Z125-4-76 293

BINDER statements SHOW-DEFAULTS

SHOW-DEFAULTS

This statement permits the user to display the default values.
The values are output on SYSOUT.

STD-DEFAULTS = *YES / *NO
Displays all defaults specified with the operand value STD.

CURRENT-DEFAULTS = *YES / *NO
Displays all defaults which apply to CURRENT operands.

INCLUSION-DEFAULTS = *YES / *NO
Displays all defaults which apply to the inclusion of modules.

LAST-SAVE = *YES / *NO
Displays all defaults which were defined the last time an LLM was saved.

SHOW-DEFAULTS

STD-DEFAULTS = *YES / *NO

,CURRENT-DEFAULTS = *YES / *NO

,INCLUSION-DEFAULTS = *YES / *NO

,LAST-SAVE = *YES / *NO

,MAP-DEFAULTS = *YES (...) / *NO

*YES(...)
  MAP-NAME = *STD / *ALL / <structured-name 1..32>

294 U9557-J-Z125-4-76

SHOW-DEFAULTS BINDER statements

MAP-DEFAULTS = *YES(...) / *NO
Specifies whether the defaults for list output are to be displayed.

MAP-DEFAULTS = *YES(...)
The defaults for list output are displayed.

MAP-NAME =
Specifies the name of the list whose defaults are to be displayed.

MAP-NAME = *STD
The defaults for the list with the default name BNDMAP.date.time.<tsn> are to be
displayed.

MAP-NAME = *ALL
The defaults for the list with the default name and the defaults for all self-defined lists
are to be displayed.

MAP-NAME = <structured-name 1..32>
The defaults for the self-defined list with the specified name are to be displayed.

U9557-J-Z125-4-76 295

BINDER statements SHOW-LIBRARY-ELEMENTS

SHOW-LIBRARY-ELEMENTS

This statement permits the user to obtain information about library elements (object
modules and LLMs) during a BINDER run. The user can also check whether the symbols
in the object modules and/or LLMs could result in name conflicts. By default, the information
is output on SYSLST, but the user can specify other output devices. Except for the list which
is output on SYSLST, the lists are ISAM files with ISAM keys with a length of 8 (see also
page 133).

(part 1 of 2)

SHOW-LIBRARY-ELEMENTS

LIBRARY = *CURRENT-INPUT-LIB / *BLSLIB-LINK /

list-poss(40): <filename 1..54 without-gen-vers> / *LINK(...)

*LINK(...)
  LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>

,ELEMENT = *ALL (...) / list-poss(40): <composed-name 1..64>(...) / <c-string 1..64>(...)

*ALL(...)
  VERSION = *ALL / *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>

<composed-name>(...)
  VERSION = *ALL / *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>

<c-string>(...)
  VERSION = *ALL / *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>

,TYPE = (*L,*R) / list-poss(2): *L / *R

,SYMBOL-NAME = *ALL / *NONE / list-poss(40): <c-string 1..255 with-low> / <text 1..32>

,SYMBOL-TYPE = (*CSECT,*ENTRY) / list-poss(2): *CSECT / *ENTRY

,SELECT = *ALL / *NAME-COLLISION

continued ➠

296 U9557-J-Z125-4-76

SHOW-LIBRARY-ELEMENTS BINDER statements

LIBRARY =
Specifies the library or libraries to be searched. This operand is mandatory.

LIBRARY = *CURRENT-INPUT-LIB
The library to be searched is the one from which the last element was read (with a START-
LLM-UPDATE, INCLUDE-MODULES or REPLACE-MODULES statement). The scope of
the operand relates to one edit run.

,OUTPUT = *SYSLST (...) / *BY-SHOW-FILE(...) / <filename 1..54 without-gen-vers>(...) / *LINK(...) /

*EXIT-ROUTINE(...)

*SYSLST(...)
  SYSLST-NUMBER = STD / <integer 1..99>
  ,LINES-PER-PAGE = 64 / <integer 10..2147483647> / *IGNORED
  ,LINE-SIZE = 72 / <integer 72..255>

*BY-SHOW-FILE(...)
  FILE-NAME = *STD / <filename 1..54 without-gen-vers>
  ,DELETE-FILE = *YES / *NO
  ,LINE-SIZE = 72 / <integer 72..255>

<filename>(...)
  LINE-SIZE = 72 / <integer 72..255>

*LINK(...)
  LINK-NAME = BNDMAP / <structured-name 1..8> / <filename 1..8 without-gen>
  ,LINE-SIZE = 72 / <integer 72..255>

*EXIT-ROUTINE(...)
  ROUTINE-NAME =
  <c-string 1..32 with-low> / <text 1..32>
  ,LIBRARY = *BLSLIB-LINK / <filename 1..54 without-gen-vers> / *LINK(...)
  *LINK(...)
   LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>
  ,FILE-NAME = *STD / <filename 1..54 without-gen-vers>
  ,LINE-SIZE = 72 / <integer 72..255>
  ,USER-PARAMETERS = *NONE / <c-string 1..255 with-low> / <text 1..255>

(part 2 of 2)

U9557-J-Z125-4-76 297

BINDER statements SHOW-LIBRARY-ELEMENTS

LIBRARY = *BLSLIB-LINK
The libraries with the file link names BLSLIBnn (00≤nn≤99) are to be searched. The
libraries are searched in ascending order of the values “nn” in the file link name.

LIBRARY = list-poss(40): <filename 1..54 without-gen-vers>
The file name of the library which is to be searched.

LIBRARY = *LINK(...)
Denotes a library with the file link name

LINKNAME = <structured-name 1..8> / <filename 1..8 without-gen>
File link name of the library that is to be searched.

ELEMENT =
Specifies the element name and the element version of the modules which are to be
checked.

ELEMENT = *ALL(...)
All elements of the specified library are to be checked. The elements are processed in the
order in which they are stored in the library.

VERSION =
Specifies the element version of the module. The element version is valid only for
program libraries.

VERSION = *ALL
All versions of library elements with the same name are to be checked.

VERSION = *HIGHEST-EXISTING
BINDER takes as element version the default value for the highest version in the case
of program libraries (see the “LMS” manual [4]).

VERSION = <composed-name 1..24> / <c-string 1..24>
Explicit specification of the element version.
Note: BINDER checks special data type <element-version> (see page 190).

ELEMENT = <composed-name 1..64>(...)
Explicit specification of the element name and element version.
Note: BINDER checks special data types <element-name> and <element-version> (see
page 190).

VERSION = *ALL / *HIGHEST-EXISTING / <composed-name 1..24> /
<c-string 1..24>
Specifies the element version of the module. The element version is valid only for
program libraries.
See above for the meanings of the operands.

298 U9557-J-Z125-4-76

SHOW-LIBRARY-ELEMENTS BINDER statements

ELEMENT = <c-string 1..64>(...)
Explicit specification of the element name and element version.
Note: BINDER checks special data types <element-name> and <element-version>
(see page 190). See above for the meanings of the operands.

TYPE =
Defines the priority of the modules (object modules and/or LLMs) to be checked.

TYPE = (*L,*R)
Both LLMs and object modules are to be checked. If an LLM and an object module have
the same name, the LLM is checked.

TYPE = (*R,*L)
Both LLMs and object modules are to be checked. If and LLM and an object module have
the same name, object module is checked.

TYPE = *R
Only object modules are checked.

TYPE = *L
Only LLMs are checked.

SYMBOL-NAME =
Specifies the symbols in the library element to be processed.

SYMBOL-NAME = *ALL
All symbols are processed.

SYMBOL-NAME = *NONE
No symbols are processed. When the library contents are output, only LLMs (without the
related symbols) will appear.

SYMBOL-NAME = list-poss(40): <c-string 1..255> / <text 1..32>
Specifies the names of the symbols which are to be processed. Wildcards may be specified.
Note: BINDER checks special data types <symbol> and <symbol-with-wild> (see
page 190).

SYMBOL-TYPE = (*CSECT, ENTRY*) / list-poss(2): *CSECT / *ENTRY
Specifies which types of symbols are to be processed. A list of CSECTs and ENTRYs, a list
of CSECTs or a list of ENTRYs can be requested.

U9557-J-Z125-4-76 299

BINDER statements SHOW-LIBRARY-ELEMENTS

SELECT =
Specifies what is to be done with the symbols specified for SYMBOL-NAME.

SELECT = *ALL
All symbols specified for SYMBOL-NAME are listed.

SELECT = *NAME-COLLISION
From the symbols specified for SYMBOL-NAME, the program selects those symbols which
could cause a name conflict if the element being considered is included in the LLM currently
being processed.

OUTPUT =
Specifies the output destination for the lists.

OUTPUT = *SYSLST(...)
The output destination is a system file SYSLST.

SYSLST-NUMBER =

SYSLST-NUMBER = *STD
The system file SYSLST is used.

SYSLST-NUMBER = <integer 1..99>
A system file from the set SYSLST01 to SYSLST99, whose number must be specified
here, is used.

LINES-PER-PAGE = 64 / <integer 10..2147483647> / IGNORED
Specifies the number of lines per page. This is needed for generation of the form-feeds
at the end of each page. If LINES-PER-PAGE=IGNORED is specified, no form-feed is
executed.

LINE-SIZE = 72 / <integer 72..255>
Specifies the number of characters per line.

OUTPUT = *BY-SHOW-FILE(...)
The output destination is an ISAM file whose file name is specified here. After output, the
file is automatically opened with the command SHOW-FILE (see the “Commands”
manual [6]). The ISAM keys contained in the file are described in the appendix (see
page 405f).

FILE-NAME =
Specifies the name for the ISAM file.

300 U9557-J-Z125-4-76

SHOW-LIBRARY-ELEMENTS BINDER statements

FILE-NAME = *STD
The output is sent to the file with the default file name
BNDMAP.date.time.<tsn>
“date” has the format yyyy-mm-dddoy

yyyy year

mm month

dd day

doy day of year

“time” has the format hhmmss

hh hours

mm minutes

ss seconds

“<tsn>” means the TSN (Task Sequence Number) of the current task.

FILE-NAME = <filename 1..54 without-gen-vers>
Explicit specification of the file name.

DELETE-FILE = *YES / NO
Specifies whether the file is to be deleted after execution of the SHOW-FILE command.

LINE-SIZE = 72 / <integer 72..255>
Specifies the number of characters per line.

OUTPUT = <filename 1..54 without-gen-vers>
The output destination is an ISAM file whose file name is specified here. The ISAM keys
contained there are described in the appendix (see page 405f).

LINE-SIZE = 72 / <integer 72...255>
Specifies the number of characters per line.

OUTPUT = *LINK(...)
The output destination is an ISAM file whose link name is specified here. The ISAM keys
contained there are described in the appendix (see page 405f).

LINK-NAME = BNDMAP / <structured-name 1..8> / <filename 1..8 without-gen>
Specifies the file link name. The default file link name is BNDMAP.

LINE-SIZE = 72 / <integer 72..255>
Specifies the number of characters per line.

U9557-J-Z125-4-76 301

BINDER statements SHOW-LIBRARY-ELEMENTS

OUTPUT = *EXIT-ROUTINE(...)
The list is output to the ISAM file specified for FILE-NAME and control is then passed to the
subroutine by calling the BIND macro. See the SHOW-MAP statement for register conven-
tions and for the parameters for the BIND macro.

ROUTINE-NAME = <text 1..32>
The name of the subroutine which is to be called.

LIBRARY =
Permits specification of the library which contains the subroutine.

LIBRARY = *BLSLIB-LINK
Libraries with the file link names BLSLIBnn (00≤nn≤99) are used. These libraries are
searched in ascending order of the “nn” values in the file link name.

LIBRARY = <filename 1..54 without-gen-vers>
Explicit specification of the library name.

LIBRARY = *LINK(...)
The library is specified with its file link name.

LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>
The file link name of the library.

FILE-NAME = *STD / <filename 1..54 without-gen-vers>
Specifies the name (or the link name) of the ISAM file to which the list is to be output.
By default, the file name BNDMAP.date.time.<tsn> is used (see the OUTPUT=*BY-
SHOW-FILE(...) operand for the format). The ISAM keys contained in the file are
described in the appendix (see page 405f).

LINE-SIZE = 72 / <integer 72..255>
Specifies the number of characters per line.

USER-PARAMETERS = *NONE / <c-string 1..255> / <text 1..255>
Specifies the parameters to be passed with the BINDER macro.

302 U9557-J-Z125-4-76

SHOW-MAP BINDER statements

SHOW-MAP

This statement outputs lists containing information about the current LLM (see page 133ff).
The *MAP-DEFAULT value is the value defined with a previous MODIFY-MAP-DEFAULTS
statement with the same MAP-NAME specification for the same operand. If a MODIFY-
MAP-DEFAULTS statement with the same MAP-NAME specification has not yet been
entered, the first operand value after the MAP-DEFAULT value is used.

As well as the standard list *STD, you can also view other (named) lists for which you have
defined default values with the statement
MODIFY-MAP-DEFAULTS MAP-NAME= <structured-name 1..32>.

(part 1 of 3)

SHOW-MAP

MAP-NAME = *STD / <structured-name 1..32>

,USER-COMMENT = *MAP-DEFAULT / *NONE / <c-string 1..255 with-low>

,HELP-INFORMATION = *MAP-DEFAULT / *YES / *NO

,GLOBAL-INFORMATION = *MAP-DEFAULT / *YES / *NO

,LOGICAL-STRUCTURE = *MAP-DEFAULT / *YES(...) / *NO

*YES(...)
  RESOLUTION-SCOPE = *MAP-DEFAULT / *YES / *NO
  ,HSI-CODE = *MAP-DEFAULT / *YES / *NO

,PHYSICAL-STRUCTURE = *MAP-DEFAULT / *YES / *NO

,PROGRAM-MAP = *MAP-DEFAULT / *PARAMETERS(...) / *NO

*PARAMETERS(...)
  DEFINITIONS = *MAP-DEFAULT / *ALL / *NONE / list-poss(5): *MODULE / *CSECT /

 *ENTRY / *COMMON / *XDSECT-D
  ,INVERTED-XREF-LIST = *MAP-DEFAULT / *NONE / *ALL / list-poss(4): *EXTRN / *VCON /

 *WXTRN / *XDSECT-R
  ,REFERENCES = *MAP-DEFAULT / *ALL / *NONE / list-poss(4): *EXTRN / *VCON /

 *WXTRN / *XDSECT-R

continued ➠

U9557-J-Z125-4-76 303

BINDER statements SHOW-MAP

,UNRESOLVED-LIST = *MAP-DEFAULT / *SORTED(...) / *YES(...) / *NO

*SORTED(...)
  WXTRN = *YES / *NO

 ,NOREF = *NO / *YES

*YES(...)
  WXTRN = *YES / *NO

 ,NOREF = *NO / *YES

,SORTED-PROGRAM-MAP = *MAP-DEFAULT / *NO / *YES

,PSEUDO-REGISTER = *MAP-DEFAULT / *NO / *YES

,UNUSED-MODULE-LIST = *MAP-DEFAULT / *NO / *YES

,DUPLICATE-LIST = *MAP-DEFAULT / *NO / *YES(...)

*YES(...)
  INVERTED-XREF-LIST = *YES / *NO

,MERGED-MODULES = *MAP-DEFAULT / *YES / *NO

,INPUT-INFORMATION = *MAP-DEFAULT / *YES / *NO

,STATEMENT-LIST = *MAP-DEFAULT / *NO / *YES

,OUTPUT = *MAP-DEFAULT / *SYSLST(...) / *BY-SHOW-FILE(...) / <filename 1..54 without-gen-vers>(...) /

*LINK(...) / *EXIT-ROUTINE(...)

*SYSLST(...)
  SYSLST-NUMBER = *STD / <integer 1..99>
  ,LINES-PER-PAGE = 64 / <integer 10..2147483647> / *IGNORED
  ,LINE-SIZE = 136 / <integer 132..255>

*BY-SHOW-FILE(...)
  FILE-NAME = *STD / <filename 1..54 without-gen-vers>
  ,DELETE-FILE = *YES / *NO
  ,LINE-SIZE = 136 / <integer 132..255>

<filename 1..54 without-gen-vers>(...)
  LINE-SIZE = 136 / <integer 132..255>

*LINK(...)
  LINK-NAME = BNDMAP / <structured-name 1..8> / <filename 1..8 without-gen>
  ,LINE-SIZE = 136 / <integer 132..255>

continued ➠

(part 2 of 3)

304 U9557-J-Z125-4-76

SHOW-MAP BINDER statements

MAP-NAME =
Specifies the name of the list to be output.

MAP-NAME = *STD
The default list with the name BNDMAP.date.time.<tsn> is output.

MAP-NAME = <structured-name 1..32>
A list defined by the user with the MODIFY-MAP-DEFAULTS statement is output.

USER-COMMENT = *MAP-DEFAULT / *NONE / <c-string 1..255 with-low>
Specifies whether a header line with a user comment is output in the lists. The header line
is repeated at the beginning of each list.

HELP-INFORMATION = *MAP-DEFAULT / *YES / *NO
Specifies whether a list of abbreviations is output.
This list explains the abbreviations used in the subsequent lists (e.g. SD for CSECT, GM for
prelinked module).

GLOBAL-INFORMATION = *MAP-DEFAULT / *YES / *NO
Specifies whether the header information is also to be output.

LOGICAL-STRUCTURE = *MAP-DEFAULT / *YES(...) / *NO
Specifies whether a list mapping the logical structure of the LLM is logged.

LOGICAL-STRUCTURE = *YES(...)
Logs the logical structure of the LLM.

RESOLUTION-SCOPE = *MAP-DEFAULT / *YES / *NO
Specifies whether the output is to contain the priority classes assigned to the logical
node of the LLM.

HSI-CODE = *MAP-DEFAULT / *YES / *NO
Specifies whether the output contains the HSI code specification.

*EXIT-ROUTINE(...)
  ROUTINE-NAME = <c-string 1..32 with-low> / <text 1..32>
  ,LIBRARY = *BLSLIB-LINK / <filename 1..54 without-gen-vers> / *LINK(...)
  *LINK(...)
   LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>
  ,FILE-NAME = *STD / <filename 1..54 without-gen-vers>
  ,LINE-SIZE = 136 / <integer 132..255>
  ,USER-PARAMETERS = *NONE / <c-string 1..255 with-low> / <text 1..255>

(part 3 of 3)

U9557-J-Z125-4-76 305

BINDER statements SHOW-MAP

PHYSICAL-STRUCTURE = *MAP-DEFAULT / *YES / *NO
Specifies whether a list mapping the physical structure of the LLM is logged.

PROGRAM-MAP = *MAP-DEFAULT / *PARAMETERS(...) / *NO
Specifies whether a program map is logged.

Note
The program overview is always output with module information when UNUSED-
MODULE-LIST=*YES is set, regardless of the value of the PROGRAM-MAP operand.

PROGRAM-MAP = *PARAMETERS(...)
Defines the contents of the program map.

DEFINITIONS = *MAP-DEFAULT / *ALL / *NONE / list-poss(5): *MODULE /
*CSECT / *ENTRY / *COMMON / *XDSECT-D
Defines which program definitions the program map will contain.

DEFINITIONS = *ALL
The program map contains all the program definitions listed below.

DEFINITIONS = *NONE
The program map contains no program definitions.

DEFINITIONS = *MODULE
The program map contains module information.

DEFINITIONS = *CSECT
The program map contains definitions of CSECTs.

DEFINITIONS = *ENTRY
The program map contains definitions of ENTRYs.

DEFINITIONS = *COMMON
The program map contains definitions of COMMONs.

DEFINITIONS = *XDSECT-D
The program map contains definitions of external dummy sections.

INVERTED-XREF-LIST = *MAP-DEFAULT / *NONE / *ALL /
list-poss(4): *EXTRN / *VCON / *WXTRN / *XDSECT-R
Defines the contents of a cross-reference list that contains the resolved references with
cross-references to the associated program definitions for each module.

INVERTED-XREF-LIST = *NONE
No cross-reference list is output.

INVERTED-XREF-LIST = *ALL
The cross-reference list contains all the resolved references listed below for each
module.

306 U9557-J-Z125-4-76

SHOW-MAP BINDER statements

INVERTED-XREF-LIST = *EXTRN
The cross-reference list contains the resolved EXTRNs for each module.

INVERTED-XREF-LIST = *VCON
The cross-reference list contains the resolved V-type constants for each module.

INVERTED-XREF-LIST = *WXTRN
The cross-reference list contains the resolved weak external references for each
module.

INVERTED-XREF-LIST = *XDSECT-R
The cross-reference list contains the resolved dummy section references for each
module.

REFERENCES = *MAP-DEFAULT/ *ALL / *NONE /
list-poss(4): *EXTRN / *VCON / *WXTRN / *XDSECT-R
Specifies which reference list the program map is to contain. See INVERTED-XREF-
LIST operand for meaning of operand values.

UNRESOLVED-LIST = *MAP-DEFAULT / *SORTED(...) / *YES(...) / *NO
Specifies whether or not a list of the unresolved external references is logged and defines
its contents.

UNRESOLVED-LIST = *SORTED(...)
Unresolved external references are output sorted.

WXTRN = *YES / *NO
Specifies whether or not weak external references are also to be output.

NOREF = *NO / *YES
Specifies whether or not unresolved external references are also to be output.

UNRESOLVED-LIST = *YES(...)
The unresolved external references are output in the order in which they are found.

WXTRN = *YES / *NO
Specifies whether or not weak external references are also to be output.

NOREF = *NO / *YES
Specifies whether or not unresolved external references are also to be output.

UNRESOLVED-LIST = *NO
Unresolved external references are not logged.

SORTED-PROGRAM-MAP = *MAP-DEFAULT / *NO / *YES
Specifies whether a sorted list of program definitions is output.

U9557-J-Z125-4-76 307

BINDER statements SHOW-MAP

PSEUDO-REGISTER = *MAP-DEFAULT / *NO / *YES
Specifies whether a sorted list of the pseudo-registers is output.

UNUSED-MODULE-LIST = *MAP-DEFAULT / *NO / *YES
Specifies whether a list of the unused modules is output.

DUPLICATE-LIST = *MAP-DEFAULT / *NO / *YES(...)
Specifies whether a sorted list of the duplicate program definitions is output.

DUPLICATE-LIST = *YES(...)
A list of the duplicate program definitions is output.

INVERTED-XREF-LIST = *YES / *NO
Specifies whether cross-references are output in the list of duplicate program defini-
tions.

MERGED-MODULES = *MAP-DEFAULT / *YES / *NO
Specifies whether merged modules are to be included in the list.

INPUT-INFORMATION = *MAP-DEFAULT / *YES / *NO
Specifies whether a list containing input information about the LLM is output.

STATEMENT-LIST = *MAP-DEFAULT / *NO / *YES
Defines whether a list of the recorded BINDER statements is output (see //START-STATE-
MENT-RECORDING and //STOP-STATEMENT-RECORDING). If a recorded statement
was not terminated correctly, it could be that recording of this statement is incomplete.

OUTPUT = *MAP-DEFAULT / *SYSLST(...) / *BY-SHOW-FILE(...) /
<filename 1..54 without-gen-vers> / *LINK(...)
Defines the output destination for the lists.

OUTPUT = *SYSLST(...)
The output destination is a system file SYSLST.

SYSLST-NUMBER =

SYSLST-NUMBER = *STD
The system file SYSLST is the output destination.

SYSLST-NUMBER = <integer 1..99>
One of the system files SYSLST01 through SYSLST99 whose number is specified here
is the output destination.

308 U9557-J-Z125-4-76

SHOW-MAP BINDER statements

LINES-PER-PAGE = 64 / <integer 10..2147483647>
Defines the number of lines per page.

LINE-SIZE = 136 / <integer 132..255>
Defines the number of characters per line.

OUTPUT = *BY-SHOW-FILE(...)
The output destination is an ISAM file defined by its file name. The file is subsequently
opened automatically by the SHOW-FILE command (see the “Commands” manual [6]). The
file contains ISAM keys that are described in the appendix (see page 405f).

FILE-NAME =
Defines the file name of the file.

FILE-NAME = *STD
Logging takes place in the file with the default file name
BNDMAP.date.time.<tsn>

“date” has the format yyyy-mm-dddoy

yyyy year

mm month

dd day

doy day of year

“time” has the format hhmmss

hh hours

mm minutes

ss seconds

“tsn” signifies the TSN (Task Sequence Number) of the current task.

FILE-NAME = <filename 1..54 without-gen-vers>
Explicit specification of the file name.

DELETE-FILE = *YES / *NO
Specifies whether the file is to be deleted after execution of the SHOW-FILE command.

LINE-SIZE = 136 / <integer 132..255>
Defines the number of characters per line.

OUTPUT = <filename 1..54 without-gen-vers>
The output destination is an ISAM file defined by the specified file name. The ISAM keys
contained there are described in the appendix (see page 405f).

LINE-SIZE = 136 / <integer 132...255>
Defines the number of characters per line.

U9557-J-Z125-4-76 309

BINDER statements SHOW-MAP

OUTPUT = *LINK(...)
The output destination is an ISAM file defined by the file link name. The ISAM keys
contained there are described in the appendix (see page 405f).

LINK-NAME = BNDMAP / <filename 1..8 without-gen>
Defines the file link name. The default file link name is BNDMAP.

LINE-SIZE = 136 / <integer 132..255>
Defines the number of characters per line.

OUTPUT = *EXIT-ROUTINE(...)
The output destination is a user-owned subroutine which is loaded dynamically by BINDER
with DBL macro BIND (see the “BLSSERV Dynamic Binder Loader / Starter” manual [1]).
The following register conventions must be observed:

ROUTINE-NAME = <text 1..32>
Specifies the name of the user-owned subroutine.

LIBRARY =
Specifies the library which contains the user-owned subroutine.

LIBRARY = *BLSLIB-LINK
The libraries with the file link name BLSLIBnn (00≤nn≤99) are searched for the
subroutine. The libraries are searched in ascending order of the values “nn” in the file link
names.

LIBRARY = <filename 1..54 without-gen-vers>
Explicit specification of the library name.

LIBRARY = *LINK(...)
The library is specified via its file link name.

LINK-NAME = <structured-name 1..8>
The file link name of the library.

Register 1:
(input)

contains the address of a field with 2 elements:

element 1:

element 2:

address of the file name, which may be up to
54 characters in length
address of the parameter list, which may be up to
255 characters in length

Register 1:
(output)

contains the standard return code from the BIND macro

Register 14: contains the return address

310 U9557-J-Z125-4-76

SHOW-MAP BINDER statements

FILE-NAME = *STD / <filename 1..54 without-gen-vers>
Specifies the name (or link name) of the ISAM file into which the list is to be output. By
default, the file name BNDMAP.date.time.<tsn> is used (see the OUTPUT=BY-
SHOW-FILE(...) operand for the format of this name). The ISAM keys contained in the
file are described in the appendix (see page 405f).

LINE-SIZE = 136 / <integer 132..255>
Specifies the number of characters per line.

USER-PARAMETERS = *NONE / <c-string 1..255 with-low> / <text 1..255>
Specifies the parameters which are to be passed with the macro call BIND.

U9557-J-Z125-4-76 311

BINDER statements SHOW-SYMBOL-INFORMATION

SHOW-SYMBOL-INFORMATION

This statement outputs information about symbols on SYSOUT. The following information
may be output:

– the logical position of the symbols in the LLM (i.e. the name of the module in which they
are located)

– the attributes of the symbols

– the address of the slice in which the symbols are located.

This information can be requested for:

– all visible program definitions

– the initialized COMMONs

– the resolved external references

– all visible program definitions which have duplicates

– the unresolved external references.

SYMBOL-NAME =
Specifies the names of the symbols for which the information is to be displayed.

SYMBOL-NAME = *ALL
Information is displayed for all symbols.

SYMBOL-NAME = list-poss(40): <c-string 1..255 with-low> / <text 1..32>
Information is displayed only for symbols with the specified name.
Wildcards may be specified.
Note: BINDER checks special data types <symbol> and <symbol-with-wild> (see
page 190).

SHOW-SYMBOL-INFORMATION

SYMBOL-NAME = *ALL / list-poss(40): <c-string 1..255 with-low> / <text 1..32>

,INFORMATION = *LOGICAL-POSITION / *ALL /

list-poss(3): *LOGICAL-POSITION / *ATTRIBUTES / *ADDRESS

,SELECT = *ALL / *COMMON-PROMOTION / *EXTERN-RESOLUTION / *DUPLICATE-LIST /

*UNRESOLVED-LIST(...)

*UNRESOLVED-LIST(...)
  REFERENCE-TYPE = *ALL / list-poss(4): *EXTRN / *VCON / *WXTRN / *XDSECT-R

312 U9557-J-Z125-4-76

SHOW-SYMBOL-INFORMATION BINDER statements

INFORMATION =
Specifies which information about the symbols is to be displayed.

INFORMATION = *LOGICAL-POSITION
The names of the modules in which the symbols are located are displayed.

INFORMATION = *ALL
All information is displayed.

INFORMATION = list-poss(3): *LOGICAL-POSITION / *ATTRIBUTES / *ADDRESS
Specifies the list of the requested information.

INFORMATION = *ATTRIBUTES
The address, the length and the attributes of program definitions are displayed.

INFORMATION = *ADDRESS
The names of the slices in which the symbols are located are displayed.

SELECT =
Selects information about symbol handling.

SELECT = *ALL
Information about all visible program definitions is displayed.

SELECT = *COMMON-PROMOTION
The initialized COMMONs and the CSECTs by which they were initialized are displayed.

SELECT = *EXTERN-RESOLUTION
The resolved external references and the symbols with which they were resolved are
displayed.

SELECT = *DUPLICATE-LIST
Information about program definitions with duplicates is displayed.

SELECT = *UNRESOLVED-LIST(...)
Unresolved external references and their logical positions (i.e. the names of the modules in
which the unresolved external references are located) are displayed.

REFERENCE-TYPE = *ALL / list-poss(3): *EXTRN / *VCON / *WXTRN
Specifies which types of references are to be included in the displayed information.

U9557-J-Z125-4-76 313

BINDER statements START-LLM-CREATION

START-LLM-CREATION

This statement creates a new LLM in the work area, thereby deleting the previous work area
contents. The following attributes can be defined for the LLM:

– internal name (INTERNAL-NAME)

– internal version (INTERNAL-VERSION)

– physical structure (SLICE-DEFINITION)

– copyright information (COPYRIGHT)

– use of logical structure information and LSD information (INCLUSION-DEFAULTS).

BINDER then includes in this current LLM those modules specified by means of INCLUDE-
MODULES statements.

The LLM created is saved as a type L element in a program library by means of the SAVE-
LLM statement.

314 U9557-J-Z125-4-76

START-LLM-CREATION BINDER statements

INTERNAL-NAME = <structured-name 1..32>
Defines the internal name of the LLM created. The internal name forms the root in the
logical structure of the LLM (see page 8ff). The internal name is entered as the element
name on saving the LLM in the program library if corresponding values are set for the
ELEMENT operand in the SAVE-LLM statement (see SAVE-LLM statement).

START-LLM-CREATION

INTERNAL-NAME = <c-string 1..32 with-low> / <text 1..32>

,INTERNAL-VERSION = *UNDEFINED / <composed-name 1..24> / <c-string 1..24>

,SLICE-DEFINITION = SINGLE / *BY-ATTRIBUTES(...) / *BY-USER(...)

*BY-ATTRIBUTES(...)
  READ-ONLY = *NO / *YES
  ,RESIDENT = *NO / *YES
  ,PUBLIC = NO / *YES(...)
  *YES(...)
   SUBSYSTEM-ENTRIES = *NONE / list-poss(40): <c-string 1..32 with-low> / <text 1..32>
  ,RESIDENCY-MODE = *NO / *YES

*BY-USER(...)
  AUTOMATIC-CONTROL = *YES / *NO
  ,EXCLUSIVE-SLICE-CALL = *NO / *YES

,COPYRIGHT = *PARAMETERS (...) / *NONE

*PARAMETERS(...)
  NAME = *SYSTEM-DEFAULT / <c-string 1..64 with-low>
  ,YEAR = *CURRENT / <integer 1900..2100>
  ,PATH-NAME = *NONE / <c-string 1..255 with-low> / <text 1..255>
  ,ENTRY = *NONE / <c-string 1..32 with-low> / <text 1..32>

,INCLUSION-DEFAULTS = *PARAMETERS (...)

*PARAMETERS(...)
  LOGICAL-STRUCTURE = *WHOLE-LLM / *OBJECT-MODULES
  ,TEST-SUPPORT = *NO / *YES

U9557-J-Z125-4-76 315

BINDER statements START-LLM-CREATION

INTERNAL-VERSION =
Defines the internal version of the LLM created. The internal version is used as element
version on saving the LLM in the program library if corresponding values are set for the
VERSION operand in the SAVE-LLM statement (see SAVE-LLM statement on page 275).

INTERNAL-VERSION = *UNDEFINED
When the LLM is saved with the SAVE-LLM statement, the default value for the highest
version for program libraries is assumed (see the “LMS” manual [4]).

INTERNAL-VERSION = <composed-name 1..24> / <c-string 1..24>
Internal version of the LLM.
Note: BINDER checks special data type <element-version> (see page 190).

SLICE-DEFINITION =
Defines the physical structure of the LLM.

SLICE-DEFINITION = *SINGLE
The LLM consists of a single slice.

SLICE-DEFINITION = *BY-ATTRIBUTES(...)
The LLM consists of slices formed by combination of the attributes of CSECTs (see
page 8ff). If the BY-ATTRIBUTES operand is specified and if all suboperands are set to NO,
then SINGLE is assumed. The operand values for READ-ONLY, RESIDENT, PUBLIC and
RESIDENCY-MODE simply result in combination to form slices. They do not affect the
individual CSECTs. Up to 16 different slices can be formed by combination of attributes.

READ-ONLY = *NO / *YES
Specifies whether the READ-ONLY attribute is to be taken into consideration when
forming slices.
When YES is specified, BINDER forms separate slices for CSECTs with differing
READ-ONLY attributes.

RESIDENT = *NO / *YES
Specifies whether the RESIDENT attribute is to be taken into consideration when
forming slices.
When YES is specified, BINDER forms separate slices for CSECTs with differing
RESIDENT attributes.

PUBLIC =
Specifies whether the PUBLIC attribute is to be taken into consideration when forming
slices.

PUBLIC = *NO
The attribute PUBLIC is not taken into consideration when forming slices.

PUBLIC = *YES(...)
BINDER generates separate slices for CSECTs with differing PUBLIC attributes.

316 U9557-J-Z125-4-76

START-LLM-CREATION BINDER statements

SUBSYSTEM-ENTRIES = *NONE / list-poss(40): <text 1..32>
Specifies the symbols (CSECTs or ENTRYs) of the PUBLIC slice which may be
used for resolving external references if the PUBLIC slice is loaded as a dynamic
subsystem (see the “Introductory Guide to Systems Support” [10]).

SUBSYSTEM-ENTRIES = *NONE
No symbols from this subsystem (of the PUBLIC slice) are used for resolving
external references.

SUBSYSTEM-ENTRIES = <text 1..32>
The name of the CSECT or the ENTRY in the PUBLIC slice loaded as a subsystem
which may be used for resolving external references.
Note: BINDER checks special data type <symbol> (see page 190).

RESIDENCY-MODE = *NO / *YES
Specifies whether the RMODE attribute is to be taken into consideration when forming
slices.
When YES is specified, BINDER forms separate slices for CSECTs with differing
RMODE attributes.

SLICE-DEFINITION = *BY-USER(...)
The physical structure of the LLM is defined by the user by means of SET-USER-SLICE-
POSITION statements (user-defined slices). Overlays can be defined here.

AUTOMATIC-CONTROL = *YES / *NO
Of significance only for overlays.
When YES is specified, an overlay control module (OCM) is linked into the LLM created;
this controls automatic dynamic loading of the overlays.

EXCLUSIVE-SLICE-CALL =
Of significance only for overlays; specifies whether external references between
exclusive slices are to be resolved.

EXCLUSIVE-SLICE-CALL = *NO
Specifies that BINDER only reports external references and does not resolve them if it
detects references between exclusive slices.

EXCLUSIVE-SLICE-CALL = *YES
Causes BINDER to resolve external references between exclusive slices i.e. the user
must accept any errors that may occur.

U9557-J-Z125-4-76 317

BINDER statements START-LLM-CREATION

COPYRIGHT =
Defines the copyright information that is entered in the LLM created. The copyright infor-
mation consists of text and the year number.

COPYRIGHT = *PARAMETERS(...)

NAME =
Text for the copyright information.

NAME = *SYSTEM-DEFAULT
The value of the class 2 system parameter BLSCOPYN is to be taken over. This value
is defined at system installation time (see the “Introductory Guide to Systems
Support” [10]).

NAME = <c-string 1..64>
New text for the copyright information. If the text comprises blanks, no copyright infor-
mation is entered.

YEAR =
Year number for copyright information.

YEAR = *CURRENT
Current year number.

YEAR = <integer 1900..2100>
Explicit specification of the year number.

COPYRIGHT = *NONE
No copyright information is entered.

318 U9557-J-Z125-4-76

START-LLM-CREATION BINDER statements

INCLUSION-DEFAULTS =
Defines the use of the logical structure information and LSD information. This is the default
value that is used in the INCLUDE-MODULES, REPLACE-MODULES and RESOLVE-BY-
AUTOLINK statements of the same edit run if no specific values are specified in these state-
ments. Logical structure information and LSD information are not included during saving of
the LLM unless this is required both in the SAVE-LLM statement and in preceding
INCLUDE-MODULES, REPLACE-MODULES or RESOLVE-BY-AUTOLINK statements.

INCLUSION-DEFAULTS = *PARAMETERS(...)

LOGICAL-STRUCTURE =
Specifies whether the logical structure information is taken over from the modules into
the current LLM when including or replacing modules.

LOGICAL-STRUCTURE = *WHOLE-LLM
All the logical structure information is taken over into the current LLM.

LOGICAL-STRUCTURE = *OBJECT-MODULES
The logical structure information is not taken over. A structure comprising only object
modules (OMs) is established in the current LLM.

TEST-SUPPORT =
Specifies whether the LSD information from the modules is taken over into the current
LLM when including or replacing modules.

i Information on the existence of the list for symbolic debugging is provided in the
“T&D” column in the BINDER lists. The TEST-SUPPORT field in BINDER lists
only shows the setting of this TEST-SUPPORT operand.

TEST-SUPPORT = *NO
The LSD information is not taken over.

TEST-SUPPORT = *YES
The LSD information is taken over.

U9557-J-Z125-4-76 319

BINDER statements START-LLM-UPDATE

START-LLM-UPDATE

This statement updates an LLM that is saved as a type L element in a program library. The
START-LLM-UPDATE statement reads the LLM from the program library into the BINDER
work area. After it is read in, the LLM becomes the current LLM, i.e. it has the same status
as it had before being saved in the program library. The current LLM can then be processed
in the work area.

Processing of the current LLM is terminated without implicit saving of the LLM. It is saved
again as a type L element in a program library by means of the SAVE-LLM statement. If the
new element retains the same element name and the same element version and
OVERWRITE=YES is specified, the previous element in the program library will be
overwritten. The user should remember that START-LLM-UPDATE (and also INCLUDE-/
REPLACE-MODULES) opens the input source in read-only mode and that other tasks may
also have read-only access to the same source. In this case, the LLM cannot be stored with
the same element name and the same version as the original LLM.

320 U9557-J-Z125-4-76

START-LLM-UPDATE BINDER statements

MODULE-CONTAINER =
Defines where the LLM is stored.

MODULE-CONTAINER = *LIBRARY-ELEMENT(...)
The LLM is stored in a program library.

LIBRARY =
Specifies the program library containing as an element the LLM that is to be updated.

LIBRARY = *CURRENT
The program library specified in the most recent preceding START-LLM-UPDATE or
SAVE-LLM statement is to be used. The scope of the operand relates to one edit run.

START-LLM-UPDATE

MODULE-CONTAINER = *LIBRARY-ELEMENT (...) / *FILE(...)

*LIBRARY-ELEMENT(...)
  LIBRARY = *CURRENT / <filename 1..54 without-gen-vers> / *LINK(...)
  *LINK(...)
   LINK-NAME =
    <structured-name 1..8> / <filename 1..8 without-gen>
  ,ELEMENT = <composed-name 1..64>(...) / <c-string 1..64>(...)
  <composed-name>(...)
   VERSION = *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>
  <c-string>(...)
   VERSION = *HIGHEST-EXISTING / <composed-name 1..24> / <c-string 1..24>

*FILE(...)
  FILE-NAME =
  <filename 1..54 without-gen-vers> / *LINK(...)
  *LINK(...)
   LINK-NAME =
    <structured-name 1..8> / <filename 1..8 without-gen>

,INCLUSION-DEFAULTS = *PARAMETERS (...)

*PARAMETERS(...)
  LOGICAL-STRUCTURE = *UNCHANGED / *WHOLE-LLM / *OBJECT-MODULES
  ,TEST-SUPPORT = *UNCHANGED / *NO / *YES

U9557-J-Z125-4-76 321

BINDER statements START-LLM-UPDATE

LIBRARY = <filename 1..54 without-gen-vers>
File name of the program library that contains the LLM as an element.

LIBRARY = *LINK(...)
Denotes a library by means of the file link name

LINK-NAME = <structured-name 1..8> / <filename 1..8 without-gen>
File link name of the program library.

ELEMENT =
Element name and element version of the LLM in the program library.

ELEMENT = <composed-name 1..64>(...)
Element name of the LLM.
Note: BINDER checks special data type <element-name> (see page 190).

VERSION =
Element version of the LLM.
Note: BINDER checks special data type <element-version> (see page 190).

VERSION = *HIGHEST-EXISTING
The default value for the highest version in the program library is assumed (see the
“LMS” manual [4]).

VERSION = <composed-name 1..24> / <c-string 1..24>
Explicit specification of the element version.

ELEMENT = <c-string 1..64>(...)
Element name of the LLM.
Note: BINDER checks special data type <element-name> (see page 190).

VERSION =
Version of the LLM.

VERSION = *HIGHEST-EXISTING
The default value for the version identifier in the program library is assumed (see
the “LMS” manual [4]).

VERSION = <composed-name 1..24> / <c-string 1..24>
Explicit specification of the element version.
Note: BINDER checks special data type <element-version> (see page 190).

322 U9557-J-Z125-4-76

START-LLM-UPDATE BINDER statements

MODULE-CONTAINER = *FILE(...)
The LLM is stored in a PAM file.

FILE-NAME =
Specifies the file in which the PAM-LLM is stored.

FILE-NAME = <filename 1..54 without-gen-vers>
Name of the PAM file in which the LLM is stored.

FILE-NAME = *LINK(...)

LINK-NAME = <structured-name 1..8>
File link name of the PAM file in which the LLM is stored.

INCLUSION-DEFAULTS =
Defines the use of the logical structure information and LSD information. This is the default
value that is used in the INCLUDE-MODULES, REPLACE-MODULES and RESOLVE-BY-
AUTOLINK statements of the same edit run if no specific values are specified in these state-
ments. Logical structure information and LSD information are only transferred during saving
of the LLM if this is required both in the SAVE-LLM statement and in preceding INCLUDE-
MODULES, REPLACE-MODULES or RESOLVE-BY-AUTOLINK statements.

INCLUSION-DEFAULTS = *PARAMETERS(...)

LOGICAL-STRUCTURE =
Specifies whether the logical structure information is taken over from the modules into
the current LLM when including or replacing modules.

LOGICAL-STRUCTURE = *UNCHANGED
The value defined in the START-LLM-CREATION statement on creating the LLM is
applicable.

LOGICAL-STRUCTURE = *WHOLE-LLM
All the logical structure information is taken over into the current LLM.

LOGICAL-STRUCTURE = *OBJECT-MODULES
The logical structure information is not taken over. A structure consisting only of object
modules (OMs) is created in the current LLM.

U9557-J-Z125-4-76 323

BINDER statements START-LLM-UPDATE

TEST-SUPPORT =
Specifies whether the LSD information from the modules is taken over into the current
LLM when including or replacing modules.

i Information on the existence of the list for symbolic debugging is provided in the
“T&D” column in the BINDER lists. The TEST-SUPPORT field in BINDER lists
only shows the setting of this TEST-SUPPORT operand.

TEST-SUPPORT = *UNCHANGED
The value defined in the START-LLM-CREATION statement on creating the LLM is
applicable.

TEST-SUPPORT = *NO
The LSD information is not taken over.

TEST-SUPPORT = *YES
The LSD information is taken over.

324 U9557-J-Z125-4-76

START-STATEMENT-RECORDING BINDER statements

START-STATEMENT-RECORDING

This statement starts statement recording. All BINDER statements entered after this state-
ment are recorded in the memory. The //STOP-STATEMENT-RECORDING statement ter-
minates recording. Output of the recorded statements in BINDER lists is controlled by the
STATEMENT-LIST operand of the //SHOW-MAP statement.

STATEMENT-FORM =
Controls recording of default values.

STATEMENT-FORM = *SHORT
Only those operands are recorded whose value deviates from the default.

STATEMENT-FORM = *LONG
All operands are recorded, even if their value matches the default.

RECORDING-MODE= *NEW / *EXTEND
Controls handling of log entries for statements which were generated by a preceding
//START-STATEMENT-RECORDING statement in the same BINDER run.

RECORDING-MODE= *NEW
Older log entries are deleted from the memory.

RECORDING-MODE= *EXTEND
Older log entries are retained.

Notes

In the event of memory saturation, recording is terminated with the message BND2102.

If a BINDER statement which is to be recorded is terminated abnormally, the log entry
concerned may be incomplete.

START-STATEMENT-RECORDING

STATEMENT-FORM= *SHORT / *LONG

,RECORDING-MODE= *NEW / *EXTEND

U9557-J-Z125-4-76 325

BINDER statements STOP-STATEMENT-RECORDING

STOP-STATEMENT-RECORDING

This statement terminates statement recording started with //START-STATEMENT-RECOR-
DING. BINDER statements entered after this statement are no (longer) recorded in the me-
mory.

Furthermore, this statement can be used to delete the entries for statements which have
already been recorded from the memory.

DELETE-RECORDED-STMT =
Controls the handling of existing log entries.

DELETE-RECORDED-STMT= *NO
The log entries are retained in the memory.

DELETE-RECORDED-STMT= *YES
The log entries are deleted from the memory.

STOP-STATEMENT-RECORDING

DELETE-RECORDED-STMT= *NO / *YES

U9557-J-Z125-4-76 327

8 Usage models for generating LLMs
This chapter describes the different usage models for a program or set of programs
generated in LLM format.

The described usage models are oriented to the properties that the created program must
possess. For example, the model for generating a stand-alone program differs from that of
a module that must be dynamically linked and loaded.

If LLMs were not used, various program formats with different BLS properties would have
to be generated:

● a load module (program file or type C library element in a program library) for a stand-
alone program

● a link module (type R library element).

This difference is eliminated by using LLMs. It is therefore necessary to define different
usage models

The following usage models for LLMs can be distinguished on the basis of their different
usage potential and main operational properties (dynamic linking/loading, performance,
partial replacement and reconfiguration):

1. Program

2. Module

3. Program library

4. Module library

328 U9557-J-Z125-4-76

Program Usage models for generating LLMs

8.1 Program

This model is used for generating stand-alone executable programs.

It is typically used for replacing the load modules (phases) generated by TSOSLNK during
migration (type C library elements into a program library or programs into DMS files).

Main properties

This model has the following main properties:

● optimum loading performance

● BLS metadata stored in a program must be reduced to a minimum; the object can
therefore not be modified by BINDER (e.g. via the REPLACE-MODULES statement)

These properties are comparable to those of a phase generated by TSOSLNK. The LLM
format also allows the following features:

● the symbol name length is not limited to 8 characters

● an LLM can be loaded (partially or fully) as shared code (e.g. as a DSSM subsystem)

Reducing the BLS metadata in a program is an essential requirement for avoiding
unexpected external reference resolution by an existing LLM during program generation (or
loading).

Possible reconfigurations

The following reconfigurations are possible for this model:

● Installation of a completely new program version (as for a phase). The LLM container is
not locked during execution.

● Dynamic unloading of the program (or its public part), which is loaded as a DSSM
subsystem, with the STOP-SUBSYSTEM statement and loading of a new version with
the START-SUBSYSTEM statement.

● Dynamic unloading of the program (or its public part), which is loaded as user shared
code, with the DSHARE macro and loading of a new version with the ASHARE macro.

The following applies to the last two cases: if the new private program part is loaded before
the public part is available, the public part is loaded into task-local memory (BLS executes
a time stamp validation to avoid inconsistencies between the private and public parts).

U9557-J-Z125-4-76 329

Usage models for generating LLMs Program

Correction options

The following correction options exist for a program:

● using an REP file for online correction loading if the external symbol dictionary contains
at least one CSECT

● using static object correction via LMS (MODIFY-ELEMENT statement)

Methods of use

This type of LLM can be used in the following ways:

● It can be called with the START-PROGRAM-EXECUTABLE (or START-<program>)
command.

● It can be called with the BIND macro, but only via the main program entry point

Restrictions

The following restrictions are placed on this kind of LLM:

● It cannot be statically linked into another program

● It cannot be referenced by external programs via specific ENTRYs, it can only be called
as a whole

330 U9557-J-Z125-4-76

Module Usage models for generating LLMs

8.2 Module

The purpose of this model is to generate modules which can be inserted into a program or
dynamically loaded (via the dynamic resolution of external references or by calling the BIND
macro).

It is typically used during migration for replacing the object modules (OMs) generated by the
compiler or the load modules (phases) generated by TSOSLNK (type R library elements in
a program library).

Main properties

The main properties of this model are:

● the loading performance compared to programs is not optimal due to dynamic linking

● the loading performance is, however, drastically improved compared to the old OM
format (a factor of 3 to 10 has been proven).

● BLS metadata in the program must be reduced to a minimum. Only the names refer-
enced by external modules/programs may be contained or visible in the module. These
properties are comparable to those of an object module.

The LLM format also offers the following features:

● the symbol name length is not limited to 8 characters

● an LLM can be loaded (partially or fully) as shared code (e.g. as a DSSM subsystem)

● an LLM can be updated (e.g. with the REPLACE-MODULES statement) as long as the
required data exists in storage

U9557-J-Z125-4-76 331

Usage models for generating LLMs Module

Possible reconfigurations

The following reconfigurations are possible for this model:

● Dynamic unloading of a module loaded into task local memory with the UNBIND macro
and loading of a new module with the BIND macro. This option is also available for the
OM format.

● Dynamic unloading of the module, which is loaded as a DSSM subsystem, with the
STOP-SUBSYSTEM statement and loading of a new version with the START-
SUBSYSTEM statement. This option is also available for the OM format.

● Dynamic unloading of the module, which is loaded as user shared code, with DSHARE
and loading of a new version with ASHARE. This option is also available for the OM
format.

The following applies to the last two cases: if the new private part is loaded before the public
part is available, the public part is loaded into task-local memory (BLS executes a time
stamp validation to avoid inconsistencies between the private and public parts).

Correction options

The following correction options exist for a module:

● Static LLM modification via BINDER (e.g. REPLACE-MODULES statement).

● Using an REP file for online correction loading.

● Using static object correction via LMS (MODIFY-ELEMENT statement).

Methods of use

This type of LLM can be used in the following ways:

● It can be statically linked into another program.

● It can be referenced by other programs via specific entry points, a BIND macro call or
the BLS autolink function

Restriction

If this type of LLM is to be called with the START-EXECUTABLE-PROGRAM (or
START-<program>) command, it is generally necessary to assign alternative libraries (link
name BLSLIBnn) for the BLS autolink function.

332 U9557-J-Z125-4-76

Program library Usage models for generating LLMs

8.3 Program library

The purpose of this model is to collect a set of programs belonging to the same application
into a single library. Each of these programs has the same properties as a single program.

The following aspects must be taken into account:

● In most cases, it is absolutely imperative that dynamic resolution of external references
between different programs is avoided. The external symbol dictionary must therefore
be reduced to the minimum required.

● If part of the program contains shared code, this can be loaded as an application-
specific subsystem.

Possible reconfigurations

The following reconfigurations are possible for this model:

● Exchanging the complete application:

– Installation of a complete new version of the program library (as for a phase library).

– Dynamic unloading of the programs (or their public parts), which are loaded as a
DSSM subsystem, with the STOP-SUBSYSTEM statement and loading of a new
version with the START-SUBSYSTEM statement.

– Dynamic unloading of the programs (or their public parts), which are loaded as user
shared code, with the DSHARE macro and loading of a new version with the
ASHARE macro.

If the library is exchanged before the shared part is unloaded/loaded, execution of a
program leads to both the public and private parts being loaded into task-local memory.

● Exchanging separate programs in the library:

If the public parts of the programs are loaded as a DSSM subsystem, the complete
subsystem must be unloaded and then reloaded. Separate programs can be
unloaded/reloaded if user shared code is employed (in this case, however, the tasks
which execute the shared parts are not validated).

If the public parts are not reloaded, executing one of the new programs leads to both
the private and public parts being loaded into task-local memory.

U9557-J-Z125-4-76 333

Usage models for generating LLMs Program library

Correction options

The following correction options exist for this model:

● Using an REP file for online correction loading if the external symbol dictionary contains
at least one CSECT. A single REP file can be used for the complete library but, in this
case, a NOREF file must be used to prevent the message 'Rep name error' being
output.

● Using static object correction via LMS (MODIFY-ELEMENT statement).

Methods of use

This type of LLM can be used in the following ways:

● It can be called with the START-EXECUTABLE-PROGRAM (or START-<program>)
command.

● It can be called with the BIND macro, but only via the main entry point of the program.

Restrictions

The following restrictions are placed on this kind of LLM:

● It cannot be statically linked into another program.

● It cannot be referenced by other programs via specific entry points, it can only be called
as a whole

334 U9557-J-Z125-4-76

Module library Usage models for generating LLMs

8.4 Module library

The purpose of this model is to collect a set of modules belonging to the same application
into a library. Language module runtime libraries are a typical example. Each of these
modules has the same properties as a single module.

If some of the modules contain shared code, they can be loaded as an application-specific
subsystem.

Possible reconfigurations

The following reconfigurations are possible for a module library:

● Exchanging the complete application:

– Installation of a complete new version of the module library (as for a phase library).

– Dynamic unloading of the modules (or their public parts), which are loaded as a
DSSM subsystem, with the STOP-SUBSYSTEM statement and loading of a new
version with the START-SUBSYSTEM statement.

– Dynamic unloading of the modules (or their public parts), which are loaded as user
shared code, with the DSHARE macro and loading of a new version with the
ASHARE macro.

If the library is exchanged before the shared part is unloaded/loaded, execution of a
module leads to both the public and private parts being loaded into task local memory.

● Exchanging separate modules in the library:

If the public parts of the modules are loaded as a DSSM subsystem, the complete
subsystem must be unloaded and then reloaded. Separate modules can be
unloaded/reloaded if user shared code is employed (in this case, however, the tasks
which execute the shared parts are not validated). If the public parts are not reloaded,
loading one of the new modules leads to both the private and public parts being loaded
into task local memory.

Correction options

The following correction options exist for this model:

● static LLM modification via BINDER (e.g. REPLACE-MODULES statement)

● using an REP file for online correction loading

● using static object correction via LMS (MODIFY-ELEMENT statement)

U9557-J-Z125-4-76 335

Usage models for generating LLMs Module library

Methods of use

This type of LLM can be used in the following ways:

● It can be statically linked into another program

● It can be referenced by external programs via specific entry points, BIND call or the BLS
autolink function

Restriction

If this type of LLM is to be called with the START-EXECUTABLE-PROGRAM (or
START-<program>) command, it is generally necessary to assign alternative libraries (link
name BLSLIBnn) for the BLS autolink function.

336 U9557-J-Z125-4-76

Generating the different program types Usage models for generating LLMs

8.5 Generating the different program types

This section describes how LLMs have to be created in order to conform to the different
usage models.

8.5.1 Generating a program

A program is a stand-alone executable LLM. It can reference other objects (via dynamic
resolution of external references or BIND macro calls). It can, however, neither be refer-
enced by external objects nor statically linked into other LLMs. It may also be loaded as
shared code.

8.5.1.1 Non-shareable program

The LLM may be a single slice or divided into multiple slices according to the attributes
READ-ONLY/READ-WRITE and/or RMODE=ANY/RMODE=24. The LLM can be saved
without the external symbol dictionary or the logical structure. The relocation information
may be saved with it if required.

Link procedure

//START-LLM-CREATION INTERNAL-NAME=<internal-name>, -
// INTERNAL-VERSION=<version>
//INCLUDE-MODULES ... ——— (1)
//INCLUDE-MODULES ...
//RESOLVE-BY-AUTOLINK ... ——— (2)
//SAVE-LLM LIBRARY=<library>,ELEMENT=<element>, -
// SYMBOL-DICTIONARY=*NO, LOGICAL-STRUCTURE=*NONE,
// RELOCATION-DATA=*YES/*NO ——————————————————————————————————————— (3)

(1) All modules of the program (OMs or LLMs) are explicitly included.

(2) The autolink function is called for the specified libraries (e.g. runtime libraries).

(3) The LLM is saved without external symbol dictionary or logical structure. The
relocation information may be saved with it if required.

U9557-J-Z125-4-76 337

Usage models for generating LLMs Generating the different program types

Program execution

The program can be executed with the command:

/START-EXECUTABLE-PROGRAM -
/ FROM-FILE=*LIBRARY-ELEMENT(-
/ LIBRARY=<library>,ELEMENT-OR-SYMBOL=<element>), -
/ DBL-PARAMETERS=(LOADING=(PROGRAM-MODE=*ANY,REP-FILE=<rep-filename>))

It is also possible (and recommended) to create a specific SDF START-<program>
command and, for example, implement it via a BS2000 procedure. This allows the param-
eters required to start program execution (e.g. the REP file name) to be 'hidden'. It also
provides independence from the file names required for loading the program.

8.5.1.2 Partially shareable program

A partially shareable program contains shareable and non-shareable code. A partially
shareable LLM must be divided into multiple slices according to the private/public attributes.
The compiler generates the CSECT attribute automatically (see 'Compiling' below).
BINDER then collects all CSECTs with the same attribute into one slice (see 'Link
procedure' below). A DSSM catalog must be generated (see 'DSSM declaration' below) in
order to load the public slice as a DSSM subsystem. The model is based on LLM format 2.

Compiling

The sources must be compiled with the following option to generate CSECTs with public or
private attributes (example of a C compiler):

COMPILER-ACTION=*MODULE-GENERATION(SHAREABLE-CODE=*YES,
MODULE-FORMAT=*OM/*LLM)

If symbol names longer than 8 characters are used, MODULE-FORMAT=*LLM must be
specified.

338 U9557-J-Z125-4-76

Generating the different program types Usage models for generating LLMs

Link procedure

//START-LLM-CREATION INTERNAL-NAME=<name>, -
// INTERNAL-VERSION=<version>, -
// SLICE-DEFINITION=*BY-ATTRIBUTES(PUBLIC=*YES -
// (SUB-ENTRIES=<symbolname>)) ——————————————————— (1)
//INCLUDE-MODULES ... ——— (2)
//INCLUDE-MODULES ...
//RESOLVE-BY-AUTOLINK ... ——— (3)
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=*ALL,VISIBLE=*NO ——————————————— (4)
[//RENAME-SYMBOL SYMBOL-NAME=<public-definition>, -
// NEW-NAME=<symbolname>,SYMBOL-OCCURENCE=*PARAMETERS -
// (FIRST-OCCURENCE=1,OCCURENCE-NUMBER=*ALL)] ——————————————————————— (5)
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=<symbolname>, -
// VISIBLE=*YES ——— (6)
//SAVE-LLM LIBRARY=<library>,ELEMENT=<element>

(1) Slices can be defined with the START-LLM-CREATION (or MODIFY-LLM-
ATTRIBUTES) statement. For SUB-ENTRIES, the user must specify a program
definition (CSECT or ENTRY) in the public slice which is used in the private slice.
The specified name must uniquely identify the subsystem. If this is not possible, the
symbol name must be modified (see 5 below).

(2) All program modules (OMs or LLMs) are included explicitly.

(3) The autolink function is called for the specified libraries (e.g. runtime libraries).

(4) All symbols are masked.

(5) Optional: If none of the program definitions in the LLM can be used as a unique
specification for SUB-ENTRIES, the user must rename a public definition used in
the private slice to create a unique name.

(6) The required symbol is made visible.

DSSM declaration

The following definitions must be made in the subsystem catalog (with the product SSCM)
to load the LLM public slice:

//SET-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=<subsystem-name>,-
// LIBRARY=<libraryname>,LINK-ENTRY=<symbolname>,-
// SUBSYSTEM-ENTRIES=(<symbolname>(CONNECTION-SCOPE=*PROGRAM)),-
// MEMORY-CLASS=*SYSTEM-GLOBAL(SUBSYSTEM-ACCESS=*LOW/*HIGH)

The subsystem access must be defined dependent on the program addressing mode
(HIGH is recommended).

U9557-J-Z125-4-76 339

Usage models for generating LLMs Generating the different program types

Preloading the public slice

The subsystem can be loaded with the START-SUBSYSTEM command. It is also possible
to specify automatic subsystem loading with the parameter CREATION-TIME=*AFTER-
SYSTEM-READY in the SSCM statement SET-SUBSYSTEM-ATTRIBUTES. If the
subsystem is not loaded, the public slice is loaded into user address space when the
program is executed.

Program execution

The program can be executed with the following command:

/START-EXECUTABLE-PROGRAM -
/ FROM-FILE=*LIBRARY-ELEMENT(-
/ LIBRARY=<library>,ELEMENT-OR-SYMBOL=<element>), -
/ DBL-PARAMETERS=(LOADING=(PROGRAM-MODE=*ANY,REP-FILE=<rep-filename>))

It is also possible (and recommended) to create a specific SDF START-<program>
command and, for example, implement it via a BS2000 procedure. This allows the param-
eters required to start program execution (e.g. the REP file name) to be 'hidden'. It also
provides independence from the file names required for loading the program. For a partially
shareable program, BLS then loads the private slice into the user address space and
connects it with the corresponding public slice (using the symbol names). In order to avoid
inconsistencies, BLS uses a time stamp to check whether the two slices belong to the same
LLM and if the check fails, BLS loads the public slice into the user address space.

8.5.1.3 Totally shareable program

A totally shareable program only contains shareable code. The user can create a totally
shareable LLM as a single-slice LLM. In this case, the external symbol dictionary may only
contain a single symbol which must be used as a connectable entry and as the entry point
for program loading. A DSSM catalog must be generated in order to load the LLM as a
DSSM subsystem (see 'DSSM declaration' below).

340 U9557-J-Z125-4-76

Generating the different program types Usage models for generating LLMs

Link procedure

//START-LLM-CREATION INTERNAL-NAME=<internal-name>, -
// INTERNAL-VERSION=<version>
//INCLUDE-MODULES ... ——— (1)
//INCLUDE-MODULES ...
//RESOLVE-BY-AUTOLINK ... ——— (2)
//MERGE-MODULES NAME=<internal-name>,ENTRY-LIST=<symbol> ——————————————— (3)
//SAVE-LLM LIBRARY=<library>,ELEMENT=<element>, -
// LOGICAL-STRUCTURE=*WHOLE-LLM, SYMBOL-DICTIONARY=*YES, -
// RELOCATION-DATA=*YES

(1) All program modules (OMs or LLMs) are included explicitly.

(2) The autolink function is called for the specified libraries (e.g. runtime libraries).

(3) All symbols apart from <symbol> are removed from the external symbol dictionary.
After the MERGE-MODULES statement, the LLM contains just one CSECT and its
properties apply to the whole program (e.g. READ-ONLY, RMODE, AMODE,...). If
this is not acceptable, different MERGE-MODULE statements can be issued (this
statement can be used at the sub-LLM or OM level).

DSSM declaration

The following must be defined in the subsystem catalog (with the product SSCM) for loading
the LLM:

//SET-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=<subsystem-name>, -
// LIBRARY= <libraryname>, LINK-ENTRY=<symbol>, -
// SUBSYSTEM-ENTRIES=(<symbol>(CONNECTION-SCOPE=*PROGRAM)), -
// MEMORY-CLASS=*SYSTEM-GLOBAL(SUBSYSTEM-ACCESS=*LOW/*HIGH)

The subsystem access must be defined dependent on the program addressing mode
(HIGH is recommended).

Preloading the program

The subsystem can be loaded with the START-SUBSYSTEM command. It is also possible
to specify automatic subsystem loading with the parameter CREATION-TIME=*AFTER-
SYSTEM-READY in the SSCM statement SET-SUBSYSTEM-ATTRIBUTES. If the
subsystem is not loaded, the public slice is loaded into user address space when the
program is executed.

U9557-J-Z125-4-76 341

Usage models for generating LLMs Generating the different program types

Program execution

The program can be executed with the following command:

/START-EXECUTABLE-PROGRAM -
/ FROM-FILE=*LIBRARY-ELEMENT(-
/ LIBRARY=<library>,ELEMENT-OR-SYMBOL=<element>), -
/ DBL-PARAMETERS=(LOADING=(PROGRAM-MODE=*ANY,REP-FILE=<rep-filename>))

It is only meaningful to specify <library> if the program is not loaded as a DSSM subsystem.

It is also possible (and recommended) to create a specific SDF START-<program>
command and, for example, implement it via a BS2000 procedure. This allows the param-
eters required to start program execution (e.g. the REP file name) to be 'hidden'. It also
provides independence from the file names required for loading the program.

8.5.2 Generating a module

A module is an LLM that can be included in a program and loaded dynamically (via dynamic
resolution of external references or by calling the BIND macro). The aim of the models
described in this section is to hide or suppress all symbols in the external symbol dictionary
that are not required for calling the module, thus improving the loading performance (CPU
and I/O).

8.5.2.1 Non-shareable module

A non-shareable module is loaded into the user address space and not in shared code.

The merge function can be used to suppress all definitions in the external symbol dictionary
that are not required and retain only the required definitions. This is specified in the
MERGE-MODULES statement. The number of symbols that may remain in the external
symbol dictionary when using this function is, however, limited to 40. This method is shown
in variant 1 of the link procedure.

The merge function cannot be used if the LLM contains more than 40 external names. To
prevent name conflicts and unexpected resolving of external references, the user must
mask all symbols not required at the module interface. In this way, symbols which are used
only internally are not visible (variant 2 of the link procedure).

342 U9557-J-Z125-4-76

Generating the different program types Usage models for generating LLMs

Link procedure (variant 1 for a maximum of 40 external names)

//START-LLM-CREATION INTERNAL-NAME=<internal-name>, -
// INTERNAL-VERSION=<version>
//INCLUDE-MODULES ... ——— (1)
//INCLUDE-MODULES ...
//RESOLVE-BY-AUTOLINK ... ——— (2)
//MERGE-MODULES NAME=<internal-name>,ENTRY-LIST=<list> ———————————————— (3)
//SAVE-LLM LIBRARY=...,ELEMENT=...,

(1) All program modules (OMs or LLMs) are included explicitly.

(2) The autolink function is called for the specified libraries (e.g. runtime libraries).

(3) All symbols in the external symbol dictionary which are not required at the module
interface are suppressed. The symbols that are likely to be referenced by external
entities and are therefore to remain in the external symbol dictionary can be
specified with <list>.

After the MERGE-MODULES statement, the LLM contains just one CSECT and its
properties apply to the whole program (e.g. READ-ONLY, RMODE, AMODE,...). If this
is not acceptable, different MERGE-MODULE statements can be issued (this statement
can be used at the sub-LLM or OM level).

Link procedure (variant 2 for modules with more than 40 external names)

//START-LLM-CREATION INTERNAL-NAME=<internal-name>, -
// INTERNAL-VERSION=<version>
//INCLUDE-MODULES ... ——— (1)
//INCLUDE-MODULES ...
//RESOLVE-BY-AUTOLINK ... ——— (2)
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=*ALL,VISIBLE=*NO ——————————————— (3)
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=<list 1>,VISIBLE=*YES —————————— (4)
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=<list 2>,VISIBLE=*YES
//SAVE-LLM LIBRARY=...,ELEMENT=...,

(1) All program modules (OMs or LLMs) are included explicitly.

(2) The autolink function is called for the specified libraries (e.g. runtime libraries).

(3) All symbols are masked.

(4) The required symbols are made visible. The symbols that are likely to be referenced
by external entities and should remain visible are specified with <list 1>/<list 2>.
More than two statements can be specified if necessary.

U9557-J-Z125-4-76 343

Usage models for generating LLMs Generating the different program types

8.5.2.2 Partially shareable module

Partially shareable modules contain both shareable code and non-shareable code. The
shareable code can be loaded in shared code. It can also be loaded dynamically by dynam-
ically resolving references. A partially shareable LLM must be divided into several slices
formed in accordance with the public/private attributes. The CSECT attribute is generated
automatically by the compiler (see “Compiling” below). BINDER then automatically groups
all the CSECTs with the same attribute into a slice (see “Link procedure” below). A DSSM
catalog must be generated so that the public slice can be loaded as the DSSM subsystem
(see “DSSM declaration” below). The model is based on LLM format 2.

Compiling

The sources must be compiled with the following option to generate CSECTs with public or
private attributes (example of a C compiler):

COMPILER-ACTION=*MODULE-GENERATION(SHAREABLE-CODE=*YES,
MODULE-FORMAT=*OM/*LLM)

If symbol names longer than 8 characters are used, MODULE-FORMAT=*LLM must be
specified.

344 U9557-J-Z125-4-76

Generating the different program types Usage models for generating LLMs

Link procedure

//START-LLM-CREATION INTERNAL-NAME=<name>,
// INTERNAL-VERSION=<version>,SLICE-DEFINITION=*BY-ATTRIBUTES -
// (PUBLIC=*YES(SUB-ENTRIES=<symbolname>)) ——————————————————————————— (1)
//INCLUDE-MODULES ... ——— (2)
//INCLUDE-MODULES ...
//RESOLVE-BY-AUTOLINK ... ——— (3)
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=*ALL,VISIBLE=*NO ——————————————— (4)
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=<list>,VISIBLE=*YES ———————————— (5)
[//RENAME-SYMBOL SYMBOL-NAME=<public-definition>, -
// NEW-NAME=<symbolname>,SYMBOL-OCCURENCE=*PARAMETERS -
// (FIRST-OCCURENCE=1,OCCURENCE-NUMBER=*ALL)] —————————————————————— (6)
//SAVE-LLM LIBRARY=...,ELEMENT=...,

(1) Slices can be defined with the START-LLM-CREATION (or MODIFY-LLM-
ATTRIBUTES) statement. For SUB-ENTRIES, the user must specify a program
definition (CSECT or ENTRY) in the public slice which is used in the private slice.
The specified name must uniquely identify the subsystem. If this is not possible, the
symbol name must be modified (see (6)).

(2) All modules (OMs or LLMs) are included explicitly.

(3) The autolink function is called for the specified libraries (e.g. runtime libraries).

(4) All symbols are masked.

(5) The required symbols are made visible. The symbols that are likely to be referenced
by external entities and should remain visible are specified with <list>. The symbol
name specified for SUB-ENTRIES must remain visible.

(6) Optional: If none of the program definitions in the LLM can be used as a unique
specification for SUB-ENTRIES, the user must rename a (visible) public definition
used in the private slice to create a unique name.

U9557-J-Z125-4-76 345

Usage models for generating LLMs Generating the different program types

DSSM declaration

The following definitions must be made in the subsystem catalog (with the product SSCM)
to load the LLM public slice:

//SET-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=<subsystem-name>, -
// LIBRARY=<bibliotheksname>,LINK-ENTRY=<symbolname>, -
// SUBSYSTEM-ENTRIES=(<symbolname> -
// (CONNECTION-SCOPE=*PROGRAM)), -
// MEMORY-CLASS=*SYSTEM-GLOBAL(SUBSYSTEM-ACCESS=*LOW/*HIGH)

The subsystem access must be defined dependent on the program addressing mode
(HIGH is recommended). If the public slice can be accessed by external entities via names
other than <symbolname>, these names must also be defined with the SUBSYSTEM-
ENTRIES parameter:

SUBSYSTEM-ENTRIES=(<symbolname>(CONNECTION-SCOPE=*PROGRAM),
...<symbol 1>(CONNECTION-SCOPE=*PROGRAM),
...<symbol n>(CONNECTION-SCOPE=*PROGRAM))

Preloading the public slice

The subsystem can be loaded with the START-SUBSYSTEM command. It is also possible
to specify automatic subsystem loading with the parameter CREATION-TIME=*AFTER-
SYSTEM-READY in the SSCM statement SET-SUBSYSTEM-ATTRIBUTES. If the
subsystem is not loaded, the public slice is loaded into user address space when the
program is executed.

8.5.2.3 Totally shareable module

Totally shareable modules contain only shareable code and can therefore be loaded in full
in shared code. LLMs of this kind can also be loaded dynamically by dynamically resolving
references. To generate a totally shareable LLM, you can use the models for non-shareable
modules. (The variant with more than 40 external names is then defined.) A DSSM catalog
must be generated so that the LLM can be loaded as the DSSM subsystem (see “DSSM
declaration” below).

346 U9557-J-Z125-4-76

Generating the different program types Usage models for generating LLMs

Link procedure

//START-LLM-CREATION INTERNAL-NAME=<internal-name>, -
// INTERNAL-VERSION=<version>
//INCLUDE-MODULES ... —— (1)
//INCLUDE-MODULES ...
//RESOLVE-BY-AUTOLINK ... ——— (2)
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=*ALL,VISIBLE=*NO ——————————————— (3)
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=<list>,VISIBLE=*YES ———————————— (4)
//SAVE-LLM LIBRARY=...,ELEMENT=...,

(1) All modules (OMs or LLMs) are included explicitly.

(2) The autolink function is called for the specified libraries (e.g. runtime libraries).

(3) All symbols are masked.

(4) The required symbols are made visible. The symbols that are likely to be referenced
by external entities and should remain visible are specified with <list>
(<list>=<symbol 1>,...,<symbol n>).

DSSM declaration

The following definitions must be made in the subsystem catalog (with the product SSCM)
to load the LLM public slice:

//SET-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=<subsystem-name>, -
// LIBRARY=<libraryname>,LINK-ENTRY=<symbol 1>, -
// SUBSYSTEM-ENTRIES=(<symbol 1>(CONNECTION-SCOPE=*PROGRAM)), -
// ...<symbol n>(CONNECTION-SCOPE=*PROGRAM), -
// MEMORY-CLASS=*SYSTEM-GLOBAL(SUBSYSTEM-ACCESS=*LOW/*HIGH)

The subsystem access must be defined dependent on the program addressing mode
(HIGH is recommended).

Preloading the module

The subsystem can be loaded with the START-SUBSYSTEM command. It is also possible
to specify automatic subsystem loading with the parameter CREATION-TIME=*AFTER-
SYSTEM-READY in the SSCM statement SET-SUBSYSTEM-ATTRIBUTES. If the
subsystem is not loaded, the public slice is loaded into user address space when the
program is executed.

U9557-J-Z125-4-76 347

Usage models for generating LLMs Generating the different program types

8.5.3 Generating a program library

A program library is a set of programs that are loaded with START-EXECUTABLE-
PROGRAM. It is used to define a product made up of a number of programs and may
contain totally shareable, partially shareable and non-shareable programs. If the library
contains shareable programs, these should be loaded as a DSSM subsystem. Since they
are called with START-EXECUTABLE-PROGRAM, they must be generated together as
stand-alone programs. The models described in this section are based on LLM format 2.

Compiling and linking

The various programs must be compiled and linked as described in the sections “Non-
shareable program” on page 336, “Partially shareable program” on page 337 and “Totally
shareable program” on page 339.

DSSM declaration

The following definitions must be made in the subsystem catalog (with the product SSCM)
to load the program library (public slices of all partially and fully shareable LLMs):

//SET-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=<symbolname>, -
// LIBRARY=<programname>,LINK-ENTRY=<symbolname 1>, -
// SUBSYSTEM-ENTRIES=(<symbolname 1> -
// (CONNECTION-SCOPE=*PROGRAM), -
// ...<symbolname n>(CONNECTION-SCOPE=*PROGRAM), -
// MEMORY-CLASS=*SYSTEM-GLOBAL(SUBSYSTEM-ACCESS=*LOW/*HIGH)

<symbolname 1> ... <symbolname n> are the names which were specified in the following
operand when the individual programs were linked:

SLICE-DEFINITION=*BY-ATTRIBUTES(PUBLIC=*YES(SUB-ENTRIES=<symbolname>)

The subsystem access must be defined dependent on the program addressing mode
(HIGH is recommended).

Preloading the public slices

The subsystem can be loaded with the START-SUBSYSTEM command. It is also possible
to specify automatic subsystem loading with the parameter CREATION-TIME=*AFTER-
SYSTEM-READY in the SSCM statement SET-SUBSYSTEM-ATTRIBUTES. If the
subsystem is not loaded, all shareable parts are loaded into user address space.

348 U9557-J-Z125-4-76

Generating the different program types Usage models for generating LLMs

Execution

The following command can be used for executing a specific program from the program
library:

/START-EXECUTABLE-PROGRAM -
/ FROM-FILE=*LIBRARY-ELEMENT(-
/ LIBRARY=<library>,ELEMENT-OR-SYMBOL=<element>), -
/ DBL-PARAMETERS=(LOADING=(PROGRAM-MODE=*ANY,REP-FILE=<rep-filename>))

It is also possible (and recommended) to create a specific SDF START-<program>
command and, for example, implement it via a BS2000 procedure. This allows the param-
eters required to start program execution (e.g. the REP file name) to be 'hidden'. It also
provides independence from the file names required for loading the program. For a partially
shareable program, BLS then loads the private slice into the user address space and
connects it with the corresponding public slice (using the symbol names). In order to avoid
inconsistencies, BLS uses a time stamp to check whether the two slices belong to the same
LLM. If the check fails, BLS loads the public slice into the user address space.

U9557-J-Z125-4-76 349

Usage models for generating LLMs Generating the different program types

8.5.4 Generating a module library

A module library is a set of modules that can be statically linked into an application or
dynamically loaded. Its purpose is to define products made up of multiple modules and it
can contain fully, partially and non-shareable modules. If the library contains shareable
modules, these should be loaded together as a DSSM subsystem. The models described
in this section are based on LLM format 2.

Compiling and linking

The various modules must be compiled and linked as described in the sections “Non-
shareable module” on page 341, “Partially shareable module” on page 343 and “Totally
shareable module” on page 345.

DSSM declaration

The following definitions must be made in the subsystem catalog (with the product SSCM)
to load the module library (public slices of all partially and fully shareable LLMs):

//SET-SUBSYSTEM-ATTRIBUTES SUBSYSTEM-NAME=<subsystem-name>, -
// LIBRARY=<programname>,LINK-ENTRY=<symbolname 1>, -
// SUBSYSTEM-ENTRIES=(<symbolname 1>(CONNECTION-SCOPE=*PROGRAM), -
// ...<symbolname k>(CONNECTION-SCOPE=*PROGRAM), -
// MEMORY-CLASS=*SYSTEM-GLOBAL(SUBSYSTEM-ACCESS=*LOW/*HIGH)

<symbolname 1> ... <symbolname n> are the names which were specified in the following
operand when the individual modules were linked:

SLICE-DEFINITION=*BY-ATTRIBUTES(PUBLIC=*YES(SUB-ENTRIES=<symbolname>)

The subsystem access must be defined dependent on the program addressing mode
(HIGH is recommended).

Preloading the public slices

The subsystem can be loaded with the START-SUBSYSTEM command. It is also possible
to specify automatic subsystem loading with the parameter CREATION-TIME=*AFTER-
SYSTEM-READY in the SSCM statement SET-SUBSYSTEM-ATTRIBUTES. If the
subsystem is not loaded, all shareable parts are loaded into user address space.

350 U9557-J-Z125-4-76

More information about the usage models Usage models for generating LLMs

8.6 More information about the usage models

8.6.1 LLM format 1

All models in this document refer to LLM format 2. LLM format 1 differs from LLM format 1
mainly in the following points:

With LLM format 1, BLS calls DSSM for each symbol in the public slice that is referenced
by the private slice. All names in the DSSM catalog must therefore be defined as
connectable entries, which considerably limits the use of such objects (the symbols corre-
sponding to a shareable runtime module used in different LLMs were defined in all
subsystems concerned).

With LLM format 2, the user can define a symbol (SUBSYSTEM-ENTRIES operand in
START-LLM-CREATION) during the BINDER run that must be used for connecting the two
slices at load time. This symbol must be in the public slice and referenced by the private
slice. In this case, BLS only calls DSSM for this symbol and resolves all other external refer-
ences automatically without calling DSSM. The user therefore only has to declare one
symbol in the DSSM catalog. As of BINDER V1.3A, it is possible to generate LLM format 1
with the same property as format 2 in this respect.

8.6.2 Preloading public slices via the ASHARE interface

Only the DSSM functions for preloading shared code are described in this document.

A further option for loading shared code is “shared user code”. In this case, the shared code
can be loaded via the BLS program interface ASHARE into the common memory pool in
class 6 memory and a DSSM catalog is not required.

The memory pools used by the ASHARE interface for loading shared code are requested
by the user program, and must therefore be managed by the user program itself (unlike
subsystems, which are managed by DSSM).

You should note that a memory pool is released by the system if it is no longer linked to a
task, i.e. after the last task has released the connection either explicitly with DISMP or
implicitly when the program is terminated.

U9557-J-Z125-4-76 351

Usage models for generating LLMs More information about the usage models

The following steps therefore need to be taken:

1. To keep the memory pool available throughout the entire run of an application, a
program should be created to run in a separate task for memory pool management.
This program will then start the application as follows:

– it creates the memory pool with ENAMP

– it loads the application code with ASHARE

The program then switches to a wait state until the application can be terminated. It then
performs termination of the application:

– it unloads the code with DSHARE

– it releases the memory pool with DISMP

2. If the module is to be exchanged, it is recommended that you use the ILE mechanism
of the DBL (see the manual “BLSSERV Dynamic Binder Loader/Starter” [1]). This
enables you to exchange a module loaded as shared code without modifying the private
part of the application. It is also recommended that you manage the connections to the
PUBLIC modules if the exchanged modules are to be unloaded. You can do this with a
“usage counter”, which is increased and decreased in the indirect linkage routine (by
means of CS statements). DSHARE can then be executed as soon as the counter
indicates that no further task which is to be unloaded is using the code.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9557-J-Z125-4-76 353

9 Migration
This section highlights the differences between the old linkage editor/loader system (up to
BS2000 V9.5) and the current Binder-Loader-Starter (BLS) system (as of BS2000 V10.0)
and is intended to help the user make the transition.

9.1 Old and current concepts

First, it is useful to compare and contrast concepts from the previous linkage editor/loader
system and the new Binder-Loader-Starter system (see also “Glossary” on page 409).

9.1.1 Old concepts

Object module (OM)
Loadable unit which is generated by translating a source program by means of
a language processor.

Prelinked object module
Loadable unit which is produced by the TSOSLNK linkage editor by linking
together individual object modules (OMs). It is identical in format to an object
module.

Object module library (OML)
PAM file which contains object modules in the form of library elements. As of
LMS V2.0A, object module libraries are no longer supported and should be
replaced by program libraries.

EAM object module file (OMF)
Temporary system object module library in which object modules (OMs) or
prelinked modules are stored by the language processor or TSOSLNK linkage
editor, respectively.

354 U9557-J-Z125-4-76

Old and current concepts Migration

Program library
PAM file which is processed using the PLAM library access method. It contains
library elements which are uniquely identifiable by the element type and
element identifier.

Program (load module)
Executable unit which is produced from object modules (OMs) and prelinked
modules (GMs) by the TSOSLNK linkage editor and stored in a cataloged
program file or in a program library as a type C library element.

Segment
Section of a program that can be loaded separately and executed indepen-
dently of other program segments.

TSOSLNK
Linkage editor of the old linkage editor/loader system. TSOSLNK links:

– either one or more object modules (OMs) or prelinked modules (GMs) to
produce an executable program (load module) or

– multiple object modules (OMs) to produce a single prelinked object module.

DLL
Dynamic linking loader of the previous linkage editor/loader system. It links
object modules (OMs) and prelinked modules (GMs) into an executable
program and loads this into computer memory.

ELDE
Static loader of the old linkage editor/loader system. It loads a program (load
module) that has been linked by the TSOSLNK linkage editor.

U9557-J-Z125-4-76 355

Migration Old and current concepts

9.1.2 Current concepts

Link and load module (LLM)
Loadable unit that possesses a logical and a physical structure. It is generated
by the linker BINDER and stored in a program library as a type L library element.

Module
Generic term for an object module (OM) and a link and load module (LLM).

Load unit
Contains all modules that are loaded with a single load call. Each load unit is
located in a context.

Context
A context can be:
– a set of load units
– a linking and loading environment
– an unloading and unlinking environment.

A context has a scope and an access privilege.

Slice
Loadable unit comprising all the control sections (CSECTs) that are loaded
contiguously. Slices form the physical structure of a link and load module (LLM).

Binder-Loader-Starter (BLS)
Designation of the current linkage editor/loader system.

BINDER
Linker (linkage editor) of the current Binder-Loader-Starter system. It links
modules into a link and load module (LLM).

DBL
Dynamic binder loader of the current Binder-Loader-Starter system. It links
modules into a load unit and loads this into computer memory.

356 U9557-J-Z125-4-76

Features of the current Binder-Loader-Starter system Migration

9.2 Features of the current Binder-Loader-Starter system

The current Binder-Loader-Starter (BLS) system is a significant departure from the concept
underlying the old linkage editor/loader system. The key features of the current concept are
summarized below.

9.2.1 Link and load module (LLM) and BINDER

– The format of the link and load module (LLM) permits optimization of loading compared
with the object modules (OMs) and prelinked modules of the previous system.

– The logical structure of an LLM enables the user to structure his or her application. The
user can remove or replace a node when creating or modifying an LLM, or include the
node of an LLM in another LLM.

– An LLM that is saved in a program library can be modified. Modules can be replaced or
additional modules included in the LLM.

– The user can specify that all CSECTs that have the same attributes or combination of
attributes are to be combined into slices by BINDER. This significantly reduces the
loading time and main memory requirements when the LLM is loaded.

– Symbols can be selected using wildcards, e.g. when modifying the visibility
(masking/nonmasking) of symbols (MODIFY-SYMBOL-VISIBILITY).

– List for symbolic debugging (LSD) information can be included in an LLM for testing and
diagnostic purposes. The user can select individual object modules (OMs) or sub-LLMs
in which the LSD information is to be inserted.

– BINDER uses an SDF interface. The statements can be entered in dialog (interactive)
mode or in batch mode. Each statement is processed immediately after input.

– At any time when creating an LLM the user can request lists to be output (using SHOW-
MAP) containing information about the status of the current LLM. The user can then
decide whether further modules are to be included in the current LLM or whether
modules are to be removed. The lists are output to SYSLST or SYSOUT. BINDER
implicitly uses the SDF SHOW-FILE command for this. During a BINDER run, the user
has access not only to list output but also to other easy-to-use information functions.

U9557-J-Z125-4-76 357

Migration Features of the current Binder-Loader-Starter system

9.2.2 Dynamic binder loader DBL

● The user can make use of contexts. This has the following advantages:

– Multiple copies of the same program can be loaded into different contexts.

– Parts of a comprehensive application can be loaded into different contexts. External
references are resolved separately in each individual context. Each partial appli-
cation in a context can therefore be loaded and started as an independent “sub-
application”. In this way it is possible to load and start the individual modules of, for
example, a runtime system in separate contexts.

– Parts of an application belonging to a context can be unloaded with one call.

– No name conflicts are caused by having identically named symbols in different
contexts because each context has its own symbol table.

● When DBL is invoked, a list of information concerning the logical structure and contents
of the loaded load unit can be requested.

● Up to 100 alternate libraries can be specified for the autolink function.

● The user can define according to individual requirements how name conflicts and
unresolved external references are to be handled.

● When loading a load unit with the BIND macro, the user can specify that:

– REP records from a REP file are to be applied to the modules of the load unit

– libraries used by DBL are to remain open when processing of the DBL call has been
completed. This can speed processing when DBL is called repeatedly with the
same library.

358 U9557-J-Z125-4-76

Features of the current Binder-Loader-Starter system Migration

9.2.3 DBL and BINDER

● One of the main features of the current Binder-Loader-Starter (BLS) system is the large
degree of harmonization between BINDER and DBL. This means:

– Pseudo-calls, such as the TABLE macro previously used as a link between the
static loader ELDE and the dynamic linking loader DLL, are superseded as a result
of using LLMs. All LLM information that has been specified by BINDER when
creating the LLM can be evaluated immediately by the new DBL.

– External references are resolved by BINDER and DBL according to the same rules.

● Functions which the DLL could apply only to dynamically loaded object modules (e.g.
modify options, information output, unloading) can be applied to the entire load unit by
DBL.

● Both DBL and BINDER can process symbol names up to 32 characters long. These
symbol names can be generated by BINDER by renaming the original symbol names
in an LLM (RENAME-SYMBOLS).

● BINDER can generate LLMs with slices formed according to the PUBLIC or PRIVATE
attribute of the CSECTs. The user can declare the PUBLIC slice as shareable by
loading it in a common memory pool using the DBL macro ASHARE.

U9557-J-Z125-4-76 359

Migration Migration from TSOSLNK to BINDER

9.3 Migration from TSOSLNK to BINDER

9.3.1 Comparison of the statements

The migration from TSOSLNK statements (see the “TSOSLNK” manual [2]) to BINDER
statements is conveniently represented by arranging the TSOSLNK statements into the
following classes:

Class 1 statements

For each TSOSLNK statement there is an equivalent BINDER statement.

Class 2 statements

For each TSOSLNK statement there is an equivalent BINDER statement, but the way in
which the statement is embedded in the TSOSLNK statement sequence is significant.

Class 3 statements

Same as for the class 2 TSOSLNK statements. In addition, the time at which the modules
are included from the input library is significant.

Class 4 statements

No equivalent BINDER statement exists for these statements.

Statement table

The following table shows how the TSOSLNK statements are classified and also lists the
associated BINDER statements. The table is followed by a more detailed description of the
functions of the BINDER statement equivalent of each TSOSLNK statement.

360 U9557-J-Z125-4-76

Migration from TSOSLNK to BINDER Migration

TSOSLNK statement Class Equivalent BINDER statement

ALTLIB 4 None

BIND 1 SAVE-LLM/END

CLASS 4 None

COMMENT 1 REMARK

CONTINUE 1 SAVE-LLM/END

END 1 SAVE-LLM/END

ENTRY 1 SAVE-LLM (ENTRY-POINT operand)

ERREXIT 1 SET-EXTERN-RESOLUTION

EXCLUDE 4 None

INCLUDE 1 INCLUDE-MODULES

LET 1 SET-EXTERN-RESOLUTION

LINK-SYMBOLS 3 MODIFY-SYMBOL-VISIBILITY/MERGE-MODULES

MODULE 1 START-LLM-CREATION/SAVE-LLM

NCAL 4 None

NOCTL 2 START-LLM-CREATION (AUTOMATIC-CONTROL operand)

NOMAP 1 SAVE-LLM (MAP operand)

OVERLAY 1 SET-USER-SLICE-POSITION

PAGE 1 MODIFY-SYMBOL-ATTRIBUTES (ALIGNMENT operand)

PROGRAM 1 START-LLM-CREATION/SAVE-LLM

RENAME 3 RENAME-SYMBOLS

REP 4 None

RESOLVE 3 RESOLVE-BY-AUTOLINK

SHARE 4 None

STOP 1 END

TRAITS 3 MODIFY-SYMBOL-ATTRIBUTES

XCAL 2 START-LLM-CREATION (EXCLUSIVE-SLICE-CALL operand)

XREF 1 MODIFY-MAP-DEFAULTS/SHOW-MAP (PROGRAM-MAP
operand) and SAVE-LLM (MAP operand)

U9557-J-Z125-4-76 361

Migration Migration from TSOSLNK to BINDER

Equivalent BINDER functions for the functions of the TSOSLNK statements

ALTLIB statement
There is no equivalent BINDER statement for the function of the ALTLIB statement. The
function of the ALTLIB statement is no longer supported because each BINDER statement
is processed immediately. Unlike TSOSLNK, BINDER does not permit statements to be
stored for subsequent processing in their entirety.

BIND statement
The function of the BIND statement is implemented by the equivalent BINDER statements
SAVE-LLM and END. The BINDER statement SAVE-LLM stores the linked (bound) object
in a library. The subsequent END statement terminates the BINDER run. Unlike TSOSLNK,
however, BINDER stores only LLMs in a program library.

CLASS statement
There is no equivalent BINDER statement for the function of the CLASS statement. The
function of the CLASS statement is not supported by BINDER since no distinction is made
in the case of an LLM between a class 2 program and a system program (class E).

COMMENT statement
The function of the COMMENT statement is implemented by the equivalent SDF statement
REMARK (see the “Commands” manual [6]).

CONTINUE statement
There is no equivalent BINDER statement for the function of the CONTINUE statement.
However, the RESOLUTION operand in the BINDER statement SET-EXTERN-
RESOLUTION can be used to specify whether or not unresolved external references are
permissible.

END statement
The function of the END statement is implemented by the equivalent BINDER statements
SAVE-LLM and END. The BINDER statement SAVE-LLM stores the linked object in a
library. The ensuing END statement terminates the BINDER run. Unlike TSOSLNK,
however, BINDER stores only LLMs in a program library.

ENTRY statement
The function of the ENTRY statement is implemented by the ENTRY-POINT operand of the
equivalent BINDER statement SAVE-LLM.

ERREXIT statement
The function of the ERREXIT statement is implemented by the equivalent BINDER
statement SET-EXTERN-RESOLUTION. This BINDER statement defines how any
remaining unresolved external references are to be handled.

362 U9557-J-Z125-4-76

Migration from TSOSLNK to BINDER Migration

EXCLUDE statement
There is no equivalent BINDER statement for the function of the EXCLUDE statement. The
function is implemented by the BINDER statement RESOLVE-BY-AUTOLINK when symbol
names are excluded by means of wildcards in the SYMBOL-NAME operand (minus sign in
the <symbol-with-wild> data type, see page 190).

Example
SYMBOL-NAME=’-<A,B,CD>’ excludes all modules that contain symbols with the symbol
names A, B and CD.

INCLUDE statement
The function of the INCLUDE statement is implemented by the equivalent BINDER
statement INCLUDE-MODULES.

LET statement
The function of the LET statement is implemented by the equivalent BINDER statement
SET-EXTERN-RESOLUTION. This BINDER statement enables unresolved external refer-
ences to be accepted even without an address being entered when an LLM is saved.

LINK-SYMBOLS statement
The function of the LINK-SYMBOLS statement is implemented by the BINDER statement
MODIFY-SYMBOL-VISIBILITY (for the TSOSLNK operand HIDE or KEEP) or MERGE-
MODULES (for the TSOSLNK operand *NOESD). MODIFY-SYMBOL-VISIBILITY is used
to mask CSECTs, ENTRYs and COMMONs. MERGE-MODULES enables symbols to be
deleted from the External Symbols Vector.

MODULE statement
The function of the MODULE statement is implemented by the equivalent BINDER state-
ments START-LLM-CREATION and SAVE-LLM.

The MODULE statement creates a prelinked object module and stores it in a library. The
attributes of the prelinked module can be modified with a subsequent MODULE statement.

The BINDER statement START-LLM-CREATION generates an LLM in the BINDER work
area. The attributes of the LLM can be modified only by means of a subsequent MODIFY-
LLM-ATTRIBUTES or MODIFY-MODULE-ATTRIBUTES statement, since another START-
LLM-CREATION statement will create a new LLM. Once created, an LLM is stored in a type
L program library by means of the SAVE-LLM statement.

NCAL statement
There is no equivalent BINDER statement for the function of the NCAL statement. For
BINDER, the TSOSLNK library TASKLIB is replaced by libraries having the file link name
BLSLIBnn (00≤nn≤99). The BLSLIBnn libraries are not automatically searched by the
autolink function. They are searched only if the LIBRARY=*BLSLIB-LINK operand is
specified in the BINDER statement RESOLVE-BY-AUTOLINK.

U9557-J-Z125-4-76 363

Migration Migration from TSOSLNK to BINDER

NOCTL statement
The function of the NOCTL statement is implemented by the AUTOMATIC-CONTROL
operand in the equivalent BINDER statement START-LLM-CREATION.

NOMAP statement
The function of the NOMAP statement is implemented by the MAP=NO operand in the
equivalent BINDER statement SAVE-LLM.

OVERLAY statement
The function of the OVERLAY statement is implemented by the equivalent BINDER
statement SET-USER-SLICE-POSITION. The term “segment” in TSOSLNK corresponds to
the term “user-defined slice” in BINDER.

PAGE statement
The function of the PAGE statement is implemented by the ALIGNMENT operand in the
equivalent BINDER statement MODIFY-SYMBOL-ATTRIBUTES.

PROGRAM statement
The function of the PROGRAM statement is implemented by the equivalent BINDER state-
ments START-LLM-CREATION and SAVE-LLM.

The PROGRAM statement generates a program (load module) and stores it in a program
file or program library. The attributes of the load module can be modified by means of a
subsequent PROGRAM statement.

BINDER does not recognize programs (load modules) but only LLMs. The BINDER
statement START-LLM-CREATION generates an LLM in the BINDER work area. The
attributes of the LLM can be modified only by means of a subsequent MODIFY-LLM-
ATTRIBUTES or MODIFY-MODULE-ATTRIBUTES statement, since an ensuing START-
LLM-CREATION statement will produce a new LLM. Once created, an LLM is stored in a
type L program library by means of the SAVE-LLM statement.

RENAME statement
The function of the RENAME statement is implemented by the equivalent BINDER
statement RENAME-SYMBOLS. TSOSLNK and BINDER process the statements differ-
ently.

TSOSLNK changes the symbol names only in those object modules that are included after
the RENAME statement has been input. The RENAME statement must therefore be
specified before the object modules are included.

BINDER changes the symbol names in modules that have already been included. The
RENAME-SYMBOLS statement must therefore be specified after modules are included.

REP statement
There is no equivalent BINDER statement for the function of the REP statement. This
function is performed by the library management (see the “LMS” manual [4]). REP records
can be applied only to object modules (OMs), not to LLMs.

364 U9557-J-Z125-4-76

Migration from TSOSLNK to BINDER Migration

RESOLVE statement
The function of the RESOLVE statement (autolink function) is implemented by the equiv-
alent BINDER statement RESOLVE-BY-AUTOLINK. TSOSLNK and BINDER process the
statements differently. TSOSLNK stores all RESOLVE statements in the sequence in which
they were input and then processes them as a whole. The autolink function of TSOSLNK
deals first with those RESOLVE statements in which the names of external references are
specified explicitly, processing them in the order in which the statements were entered. Only
then is a search made for any unresolved external references in libraries named in the
remaining RESOLVE statements. In this case TSOSLNK processes the libraries in reverse
order of the RESOLVE statements, i.e. from last to first.

BINDER processes each RESOLVE-BY-AUTOLINK statement immediately. In contrast to
TSOSLNK, where a separate RESOLVE statement must be entered for each library, only
one RESOLVE-BY-AUTOLINK statement with a list of libraries may be specified for BINDER
in order to achieve an identical result. These libraries are then always searched in the order
in which they are specified in this list. If a RESOLVE-BY-AUTOLINK statement is issued for
each library, the search strategy changes and the result may differ from that of TSOSLNK.
The following example shows which statements can be used to achieve identical autolink
processing in TSOSLNK and BINDER:

Example

SHARE statement
There is no equivalent BINDER statement for the function of the SHARE statement.
However, BINDER permits portions of an LLM (slices) to be declared as shareable (attribute
PUBLIC).

STOP statement
The function of the STOP statement is implemented by the equivalent BINDER statement
END. The END statement terminates the BINDER run without storing the LLM.

TSOSLNK BINDER

RESOLVE ,A
RESOLVE ,B
RESOLVE ,C

RESOLVE-BY-AUTOLINK LIBRARY=(C,B,A)

U9557-J-Z125-4-76 365

Migration Migration from TSOSLNK to BINDER

TRAITS statement
The function of the TRAITS statement is implemented by the equivalent BINDER statement
MODIFY-SYMBOL-ATTRIBUTES. TSOSLNK and BINDER process the statements differ-
ently.

TSOSLNK stores all the TRAITS statements and processes them as a whole in conjunction
with the rest of the TSOSLNK statements. If TRAITS and RENAME statements are entered
together, the TRAITS statement refers to the new symbol name for the CSECT. This is
because TSOSLNK processes the RENAME statements before the TRAITS statements.
The order in which RENAME and TRAITS statements are input is therefore not significant.

BINDER processes all statements immediately. Consequently, the MODIFY-SYMBOL-
ATTRIBUTES statement must be specified after all the modules affected have been
included, and after the RENAME-SYMBOLS statement. If only one symbol name
(SYMBOL-NAME operand) is specified for each symbol type (SYMBOL-TYPE operand) in
the MODIFY-SYMBOL-ATTRIBUTES statement, this statement should be specified
immediately before the SAVE-LLM statement.

XCAL statement
The function of the XCAL statement is replaced by the EXCLUSIVE-SLICE-CALL operand
in the equivalent BINDER statement START-LLM-CREATION.

XREF statement
The function of the XREF statement is implemented by the PROGRAM-MAP operand in the
equivalent BINDER statements MODIFY-MAP-DEFAULTS and SHOW-MAP.

9.3.2 Differences in method of operation

Overlay structures

With TSOSLNK, the user can define individual segments for a program and have these
loaded separately and executed independently of one another. The overlay structure is
defined by the user by means of OVERLAY statements. Each OVERLAY statement desig-
nates the name and location of a segment in which TSOSLNK will include the object
modules that are specified in subsequent INCLUDE statements. The order of the OVERLAY
statements controls the structure, i.e. TSOSLNK creates different overlay structures
depending on the arrangement of the OVERLAY statements.

Analogously, BINDER enables the user to build overlay structures for an LLM by defining
slices (user-defined slices). The overlay structure is defined by the user by means of SET-
USER-SLICE-POSITION statements. Each of these statements designates the name and
location of a slice in which BINDER will include modules. The building of the overlay
structure is controlled by the POSITION operand.

366 U9557-J-Z125-4-76

Migration from TSOSLNK to BINDER Migration

Autolink with unreferenced external references

TSOSLNK performs autolink for all external references (even for those that are not refer-
enced).
BINDER performs autolink only for referenced external references.

Autolink with TASKLIB

The TSOSLNK library TASKLIB is replaced under BINDER by libraries having the file link
name BLSLIBnn (00≤nn≤99). The BLSLIBnn libraries are not automatically searched by the
autolink function. They are searched only if the LIBRARY=*BLSLIB-LINK is specified in the
BINDER statement RESOLVE-BY-AUTOLINK.

Autolink with I$ symbols

TSOSLNK does not use autolink to search for symbols with names beginning with “I$”.
BINDER uses autolink by default to search for all symbols when attempting to resolve
unresolved external references. Symbols with names beginning with “I$” can be excluded
in a BINDER run by specifying the RESOLVE-BY-AUTOLINK statement with the
SYMBOL-NAME operand set to the value SYMBOL-NAME=’-I$*’ (minus sign in the
<symbol-with-wild> data type, see page 190). These symbols are, however, then registered
as unresolved external references by BINDER and a corresponding warning message is
issued. In order to handle the I$ symbols in a manner that really conforms to TSOSLNK,
these external references must be converted into weak external references. The
MODIFY-SYMBOL-TYPE SYMBOL-NAME=’I$*’,NEW-SYMBOL-TYPE=WXTRN
statement is used to do this.

Masking of symbols

Under TSOSLNK, the LINK-SYMBOLS statement determines how CSECTs and ENTRYs
are masked when modules are linked into a prelinked module. Except for the first CSECT,
all CSECTs and ENTRYs are masked by default.

Under BINDER, the MODIFY-SYMBOL-VISIBILITY statement determines the masking of
CSECTs and ENTRYs in an LLM. By default, no symbols are masked. Therefore the
MODIFY-SYMBOL-VISIBILITY statement should be specified immediately before the
SAVE-LLM statement.

In addition, the RUN-TIME-VISIBILITY operand in some BINDER statements permits
temporary masking of all symbols of a module if this module is to be regarded as a runtime
module.

U9557-J-Z125-4-76 367

Migration Migration from TSOSLNK to BINDER

Example of symbol masking

A module (LLM or prelinked module) is to be created from three object modules (OMs):
A, B and C. Except for SYMB1 and SYMB2, all symbols are to be masked.

● Masking by BINDER

/START-BINDER
//START-LLM-CREATION INTERNAL-NAME=X —————————————————————————————— (1)
//INCLUDE-MODULES LIBRARY=LIB1,ELEMENT=(A,B,C) ————————————————————— (2)
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=*ALL, -
// SYMBOL-TYPE=DEFINITIONS, -
// VISIBLE=NO —— (3)
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=(SYMB1,SYMB2), -
// SYMBOL-TYPE=DEFINITIONS, -
// VISIBLE=YES ——————————————————————————————————————— (4)
//SAVE-LLM LIBRARY=LIB1,ELEMENT=X ————————————————————————————————— (5)
//END

(1) An LLM with the internal name X is generated in the BINDER work area.

(2) The OMs A, B and C are included in the current LLM from the program library
LIB1. By default, no symbols are masked.

(3) All symbols in the current LLM X are masked.

(4) Symbols SYMB1 and SYMB2 are to remain visible.

(5) The current LLM is saved under the element name X in program library LIB1.

Note

Statements (3) and (4) can be combined into one statement by using wildcards in
the SYMBOL-NAME operand in order to exclude symbol names (minus sign in the
<symbol-with-wild> data type, see page 190).

The combined statement is then as follows:

//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME='-<SYMB1,SYMB2>', -
// SYMBOL-TYPE=DEFINITIONS, -
// VISIBLE=NO

368 U9557-J-Z125-4-76

Migration from TSOSLNK to BINDER Migration

● Masking by TSOSLNK

/START-EXECUTABLE-PROGRAM FROM-FILE=$TSOSLNK
*MODULE X,LIBRARY=LIB1,ELEM=GM ————————————————————————————————————— (1)
*INCLUDE (A,B,C),LIB1 —— (2)
*LINK-SYMBOLS KEEP=(SYMB1,SYMB2) ——————————————————————————————————— (3)
*END

(1) A prelinked module with the name X is to be linked. It is to be stored under the
name GM as an element in program library LIB1.

(2) The object modules (OMs) A, B and C are fetched from program library LIB1
and included. By default, except for the first symbol X, which is generated by
TSOSLNK, all symbols in the prelinked module are masked.

(3) Symbols SYMB1 and SYMB2 are to remain visible.

9.3.3 Comparison of the output

Prelinked object module and LLM

When the MODULE statement is specified, TSOSLNK produces a prelinked object module
(loadable unit created by linking two or more OMs). The following two types of prelinked
object modules can be generated:

– Prelinked object module with complete External Symbol Dictionary (ESD)
The prelinked object module contains a complete ESD, although CSECTs and ENTRYs
in this ESD may be masked. A complete ESD is generated when there is no LINK-
SYMBOLS statement after the MODULE statement, or the LINK-SYMBOLS statement
is specified without the *NOESD operand (see “TSOSLNK” manual [2]).

– Prelinked object module with special ESD
TSOSLNK creates only one ESD record with the name of the module. This type of ESD
is generated when the MODULE statement is followed by a LINK-SYMBOLS statement
in which the *NOESD operand is specified.

Neither of these two types of prelinked object modules contains LSD (list for symbolic
debugging) information.

BINDER does not offer the facility to store an LLM with a special ESD. The SAVE-LLM
statement causes it to store an LLM either with a complete ESD (SYMBOL-
DICTIONARY=YES operand) or without any ESD (SYMBOL-DICTIONARY=NO operand).

U9557-J-Z125-4-76 369

Migration Migration from TSOSLNK to BINDER

However, the BINDER statement MERGE-MODULES also permits generation of prelinked
modules without an ESD. For this, the statement must be entered as follows:

//MERGE-MODULES COMPLEX1,PATH-NAME=*NONE, —————————————————————————————— (1)
// ENTRY-LIST=*NONE ——————————————————————————————————— (2)

(1) All modules of the LLM COMPLEX1 are merged, resulting in an LLM with the same
name which contains a prelinked module with a single CSECT.

(2) Except for the new CSECT, all symbols are removed from the External Symbol
Dictionary.

The resulting LLM is then stored with an External Symbol Dictionary
(SAVE-LLM ..., SYMBOL-DICTIONARY=YES).

An LLM can be stored with or without LSD information (TEST-SUPPORT operand).

Program (load module) and LLM

When the MODULE statement is specified, TSOSLNK produces a program (load module).
The following two types of programs can be generated:

– Program in core image format (COREIM=Y operand)
The program is constructed in the format in which it will reside in main memory after
being loaded. No relocation information (RLD) is present.

– Program with relocation information (COREIM=N operand)
The program is not generated in core image format, but contains relocation information
(RLD).

The output produced by BINDER is an LLM similar to the core image format of a program
if no External Symbols Vector (ESV) or relocation dictionary (LRLD) is included when the
LLM is saved. In this case the SYMBOL-DICTIONARY=NO and RELOCATION-DATA=NO
operands must be specified in the SAVE-LLM statement.

The output produced by BINDER is an LLM similar to a program containing relocation infor-
mation if the ESV and the relocation information is included when the LLM is stored. In this
case the SYMBOL-DICTIONARY=YES and RELOCATION-DATA=YES operands must be
specified in the SAVE-LLM statement.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9557-J-Z125-4-76 371

10 BINDER messages
BNDCOPY COPYRIGHT (C) ’(&00)’ ’(&01)’ ALL RIGHTS RESERVED

BNDLOAD PROGRAM ’(&00)’,VERSION ’(&01)’ OF ’(&02)’ LOADED

BND0500 BINDER VERSION ’(&00)’ STARTED

Meaning
The module ’BINDER’ with version number ’(&00)’ has been started.
(&00): BINDER version number.

BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS: ’(&00)’

Meaning
No error with severity class >= SYNTAX ERROR has been detected.
(&00): highest severity class met in the BINDER run.

BND1102 BINDER ABNORMALLY TERMINATED. SEVERITY CLASS: ’(&00)’

Meaning
At least one error with severity class >= SYNTAX ERROR has been detected.
(&00): highest severity class met in the BINDER run.

Response
Contact the system administrator if the severity class is >= FATAL ERROR.

BND1111 ’(&00)’ SYMBOL(S) PROCESSED IN CURRENT STATEMENT

Meaning
Severity class: INFORMATION.
(&00): number of symbol(s).

BND1112 ’(&00)’ KEPT ENTRIES

Meaning
Severity class: INFORMATION.
(&00): number of symbol(s).

BND1120 CURRENT LOGICAL POSITION: ’(&00)’

Meaning
Severity class: INFORMATION.
(&00): current sub-LLM.

372 U9557-J-Z125-4-76

BND1301 Messages

BND1301 ’(&00)’ CARD PROCESSED

Meaning
Severity class: INFORMATION.
(&00): REP or INCLUDE card.

BND1302 ’(&00)’ CARD PROCESSED IN CSECT ’(&01)’ OF ELEMENT ’(&02)’

Meaning
Severity class: INFORMATION.
(&00): REP or INCLUDE card.
(&01): CSECT name
(&02): module name.

BND1401 LLM LOADABLE BELOW 16MB ONLY. A ’RMODE’ ATTRIBUTE IS 24

Meaning
Severity class: INFORMATION.
The LLM can be loaded below the 16 MB limit only because
- at least one CSECT of the current LLM has a RMODE attribute set to 24 and
- the LLM is not sliced *BY-ATTRIBUTE according to the RESIDENCY-MODE criterion.
LLM: Link and Load Module.

BND1501 LLM FORMAT: ’(&00)’

Meaning
Severity class: INFORMATION.
Format-1-LLM loadable from BS2000 V10; format-2-LLM loadable from
BS2000 OSD-V1; format-3-LLM loadable from BS2000 OSD-V3.
(&00): LLM format.
LLM: Link and Load Module.

BND1601 ’FILE’ MACRO PERFORMED ON FILE ’(&00)’

Meaning
Severity class: INFORMATION.
As the specified file to output the list does not exist, a FILE macro is performed to create it.
(&00): output file name.

BND1711 ’0’ SYMBOL PROCESSED IN CURRENT STATEMENT

Meaning
Severity class: INFORMATION.

BND1712 SYMBOL ’(&00)’ DOES NOT EXIST

Meaning
Severity class: WARNING.
(&00): symbol name.

U9557-J-Z125-4-76 373

Messages BND2101

BND2101 WARNING: ’SLICE-DEFINITION’ RESET TO ’*SINGLE’ BECAUSE NO CRITERION SELECTED IN
’*BY-ATTRIBUTE’ OPERAND

Meaning
Severity class: WARNING.
A *BY-ATTRIBUTE LLM with no slicing criterion selected is equivalent to a single slice LLM.
LLM: Link and Load Module.

BND2103 WARNING: GIVEN OCCURRENCE NUMBER EXCEEDS REAL OCCURRENCE NUMBER

Meaning
Severity class: WARNING.
The occurrence number given in the //RENAME-SYMBOLS statement exceeds
the symbol occurrence number found in the given SCOPE.

BND2104 WARNING: ’RESIDENCY-MODE’ OPERAND SET TO 24 BECAUSE 24 IS SELECTED FOR
’ADDRESSING-MODE’ OPERAND

Meaning
Severity class: WARNING.
When the AMODE attribute of a symbol is modified to 24, its RMODE attribute
is also set to 24 to keep the coherence between AMODE and RMODE attributes.

BND2105 WARNING: FOR ’(&00)’ IN MODULE ’(&01)’ ’RMODE’ ATTRIBUTE LEFT TO 24 BECAUSE
’AMODE’ ATTRIBUTE IS 24

Meaning
Severity class: WARNING.
When the AMODE attribute of a symbol is 24, it is not possible to change
its RMODE to a value different from 24.
(&00): symbol name
(&01): module name.

BND2107 WARNING: ’LOAD-ADDRESS’ OPERAND IGNORED AND SET TO ’STD’, BECAUSE LLM SLICED BY
’BY-ATTRIBUTES’

Meaning
Severity class: WARNING.
For LLMs sliced BY-ATTRIBUTES, each slice can be loaded independently.
So a single load address is meaningless. BINDER ignores the specified load address.
LLM: Link and Load Module.

374 U9557-J-Z125-4-76

BND2108 Messages

BND2108 WARNING: A ’(&00)’ WHOSE NAME IS ’(&01)’ IS NOT KEPT

Meaning
Severity class: WARNING.
There exist several symbols with the specified name in the modules to
be merged: only the first occurrence is kept, but the CSECTs have
priority on ENTRYs.
(&00): symbol type
(&01): symbol name.

BND2109 WARNING: THE NOT REFERENCED ’(&00)’ ’(&01)’ CAN NOT BE MODIFIED INTO A VCON

Meaning
Severity class: WARNING.
The symbol is not referenced: its type can not become VCON.
(&00): symbol type
(&01): symbol name.

BND2110 WARNING: ELEMENT NAME LONGER THAN 32 CHARACTERS. NOT PROCESSABLE BY ’DBL’

Meaning
Severity class: WARNING.
DBL can only use PLAM elements with names not longer than 32 characters.
DBL: Dynamic Binding Loader.

BND2112 WARNING: SPECIFIED COPYRIGHT TEXT PATH-NAME DOES NOT CORRESPOND TO ANY SUB-LLM.
COPYRIGHT TEXT IGNORED

Meaning
Severity class: WARNING.
The path name specified for the copyright text does not correspond to.
any logical node of the LLM.
No copyright text is taken into account.

BND2113 WARNING: INVALID TYPE OF THE SPECIFIED COPYRIGHT TEXT NODE. COPYRIGHT TEXT
IGNORED

Meaning
Severity class: WARNING.
The path name specified for the copyright text must correspond to
an OM or GM node if no copyright entry is specified.
No copyright text is taken into account.

BND2114 WARNING: THE SPECIFIED COPYRIGHT TEXT NODE DOES NOT CONTAIN ANY CSECT. COPYRIGHT
TEXT IGNORED

Meaning
Severity class: WARNING.
The specified copyright text node must contain at least one CSECT.
No copyright text is not taken into account.

U9557-J-Z125-4-76 375

Messages BND2115

BND2115 WARNING: THE SPECIFIED COPYRIGHT TEXT IS NOT IN ROOT SLICE. COPYRIGHT TEXT
IGNORED

Meaning
Severity class: WARNING.
In a LLM sliced BY-USER, the copyright text must be in the ROOT slice.
No copyright text is not taken into account.

BND2116 WARNING: SPECIFIED COPYRIGHT TEXT ENTRY NOT FOUND. COPYRIGHT TEXT IGNORED

Meaning
Severity class: WARNING.
The specified copyright text entry does not exist in the specified
SUB-LLM (in the whole LLM if no copyright text path-name is specified).
No copyright text is taken into account.

BND2117 WARNING: ’LOGICAL-STRUCTURE’ ENFORCED TO ’*WHOLE-LLM’ BECAUSE THE INCLUDED LLM
CONTAINS INI/FINI ROUTINES.

Meaning
Severity class: WARNING.
A LLM containing some initialization or termination routines can
only be included with its logical structure to remain consistent.
LLM: Link and Load Module.

BND2130 WARNING: SPECIFIED LOAD ADDRESS ’(&01)’ TO SMALL FOR SLICE ’(&00)’. LOAD ADDRESS
’(&02)’ USED

Meaning
Severity class: WARNING.
The address (&02) is the smallest load address usable for the slice (&00).
The specified load address (&01) is ignored.
(&00): slice name
(&01): invalid specified load address
(&02): used load address.

BND2131 WARNING: SPECIFIED ’(&00)’ ’(&01)’ NOT FOUND. SPECIFIED LOAD ADDRESS IGNORED

Meaning
Severity class: WARNING.
The LLM does not contain any physical node (&01) of type (&00).
(&00): physical node type.
(&01): physical node name.

376 U9557-J-Z125-4-76

BND2132 Messages

BND2132 WARNING: EXPLICIT SLICE/REGION LOAD ADDRESSES ARE ONLY ALLOWED FOR PAM-LLMS.
SPECIFIED LOAD ADDRESSES IGNORED

Meaning
Severity class: WARNING.
The explicit SLICE/REGION load addresses are only supported by the
STARTUP loader which only loads PAM-LLMs.
No SLICE/REGION load address is taken into account.

BND2190 WARNING: NAME COLLISION OCCURS BECAUSE OF SYMBOL NAME ’(&00)’

Meaning
Severity class: WARNING.
The statement execution introduces a collision of name (&00).
(&00): symbol name.

BND2191 WARNING: NAME COLLISION OCCURS BECAUSE OF SYMBOL NAME ’(&00)’ IN SLICE ’(&01)’

Meaning
Severity class: WARNING.
The statement execution introduces a collision of name (&00) in the slice (&01).
(&00): symbol name
(&01): slice name.

BND2301 WARNING: LIBRARY ’(&00)’ DOES NOT EXIST. ’INCLUDE’ CARD IGNORED

Meaning
Severity class: WARNING.
The library specified in an INCLUDE card does not exist.
(&00): name of the library.

BND2302 WARNING: ELEMENT ’(&00)’ DOES NOT EXIST IN LIBRARY ’(&01)’

Meaning
Severity class: WARNING.
The object module specified in an INCLUDE card does not exist in the
library. The INCLUDE card is ignored, processing continues.
(&00): element name
(&01): library name.

BND2303 WARNING: NO ELEMENT READ FROM LIBRARY BECAUSE NO ELEMENT OF SPECIFIED TYPE(S)
EXISTS

Meaning
Severity class: WARNING.

U9557-J-Z125-4-76 377

Messages BND2304

BND2304 WARNING: LLM ’(&00)’ VERSION ’(&01)’ CAN NOT BE PROCESSED BY BINDER. PROCESSING
CONTINUES

Meaning
Severity class: WARNING.
The LLM (&00) version (&01) can not be included because it has been generated without
some BINDER requested informations (relocation data, symbol dictionary, resolution
scopes, ...)
(&00): LLM container name
(&01): LLM container version.
LLM: Link and Load Module.

BND2305 WARNING: SYNTAX ERROR IN ’INCLUDE’ CARD ’(&00)’. ’INCLUDE’ CARD IGNORED

Meaning
Severity class: WARNING.
A syntax error has been detected in the INCLUDE card.
The include card is ignored, processing continues.
(&00): text of the INCLUDE card.

BND2306 WARNING: TOO MANY NAMES SPECIFIED IN ’INCLUDE’ CARD ’(&00)’. SUPERNUMERARY NAMES
IGNORED

Meaning
Severity class: WARNING.
Only 20 names are permitted in an INCLUDE card. Only the first 20 names
are taken into account.
(&00): text of the INCLUDE card.

BND2307 WARNING: LLM ’(&00)’ VERSION ’(&01)’ NOT INCLUDED BECAUSE SLICED ’BY-USER’.
PROCESSING CONTINUES

Meaning
Severity class: WARNING.
(&00): LLM container name
(&01): LLM container version.
LLM: Link and Load Module.

BND2308 WARNING: LLM ’(&00)’ VERSION ’(&01)’ NOT INCLUDED BECAUSE FORMAT IS UNKNOWN.
PROCESSING CONTINUES

Meaning
Severity class: WARNING.
The LLM (&00) version (&01) is not included because its format is not
known by the current BINDER version.
(&00): LLM container name
(&01): LLM container version.
LLM: Link and Load Module.

378 U9557-J-Z125-4-76

BND2310 Messages

BND2310 WARNING: ESID ’(&00)’ FROM ’(&01)’ RECORD DOES NOT EXIST IN MODULE ’(&02)’. CARD
IGNORED

Meaning
Severity class: WARNING.
The ESID (&00) specified in the (&01) record does not correspond to
any module symbol. This record is ignored, processing continues.
(&00): ESID number
(&01): OM record type
(&02): module name.

BND2311 WARNING: ESID ’(&00)’ FROM ’(&01)’ RECORD DOES NOT CORRESPOND TO ANY CSECT OF
MODULE ’(&02)’. CARD IGNORED

Meaning
Severity class: WARNING.
The ESID (&00) referenced in the (&01) record does not correspond to any
CSECT in the module (&02).
(&00): ESID number
(&01): OM record type
(&02): module name.

BND2312 WARNING: RECORD ’(&00)’ AT LOCATION ’(&01)’ OUT OF CSECT ’(&02)’ IN MODULE
’(&03)’. CARD IGNORED

Meaning
Severity class: WARNING.
(&00): record type of object module (OM)
(&01): assembled address specified in the OM record
(&02): CSECT name
(&03): module name.

BND2313 SYMBOL ’(&00)’ DOES NOT EXIST IN MODULE ’(&01)’. CARD IGNORED

Meaning
Severity class: WARNING.
(&00): symbol name
(&01): module name.

BND2314 END CARD DOES NOT EXIST IN MODULE ’(&00)’

Meaning
Severity class: WARNING.
(&00): module name.

U9557-J-Z125-4-76 379

Messages BND2315

BND2315 WARNING: ESID ’(&00)’ FROM ’END’ CARD DOES NOT EXIST IN MODULE ’(&01)’. END CARD
IGNORED

Meaning
Severity class: WARNING.
(&00): ESID number
(&01): module name.

BND2316 WARNING: INVALID REP DATA FORMAT AT LOCATION ’(&00)’ IN MODULE ’(&01)’. REP CARD
IGNORED

Meaning
Severity class: WARNING.
(&00): assembled address
(&01): module name.

BND2317 WARNING: ’(&00)’ EXTERNAL REP. CARD IGNORED

Meaning
Severity class: WARNING.
REP card referring to another element than the currently included element is not permitted.
(&00): REP card.

BND2320 WARNING: LOGICAL NAME TRUNCATED TO ’(&00)’. RIGHT CHARACTERS ’(&01)’ ARE LOST

Meaning
Severity class: WARNING.
The included element name is longer than 32 characters.
(&00): logical name for included module
(&01): lost characters of element name.

BND2321 WARNING: ELEMENT NAME ’(&00)’ NOT PERMITTED AS ’LOGICAL NAME’. INTERNAL NAME
’(&01)’ USED

Meaning
Severity class: WARNING.
(&00): included element name
(&01): logical name used.

BND2322 WARNING: ELEMENT NAME NOT PERMITTED AS ’LOGICAL NAME’. INTERNAL NAME ’(&00)’
USED

Meaning
Severity class: WARNING.
When including a module from the OMF, the element-name can not be specified
as logical name.
(&00): logical name used.

380 U9557-J-Z125-4-76

BND2323 Messages

BND2323 WARNING: RECORD ’(&00)’ AT LOCATION ’(&01)’ OUT OF ANY CSECT IN MODULE ’(&02)’.
CARD IGNORED

Meaning
Severity class: WARNING.
(&00): record type of object module (OM)
(&01): assembled address specified in the OM record
(&02): module name.

BND2330 WARNING: SOME SYMBOL WITH VERY LONG NAME CANNOT BE SHORTENED IN AN
UNDERSTANDABLE WAY BY COMPILER PROVIDED ALGORITHM. THE COMPLETE STRING IS
DIPLAYED.

Meaning
Severity class: WARNING.
An error occured during processing of at least one VLN . Completename is used.
ACTION : NONE

BND2401 WARNING: NO TEXT INFORMATION IN PRODUCED LLM. LLM CANNOT BE PROCESSED BY DYNAMIC
BINDING LOADER

Meaning
Severity class: WARNING.
LLM: Link and Load Module.

BND2402 WARNING: NO TEXT INFORMATION IN ROOT SLICE. LLM CANNOT BE PROCESSED BY DYNAMIC
BINDING LOADER

Meaning
Severity class: WARNING.
LLM: Link and Load Module.

BND2411 WARNING: ALIGNMENT OF OLD CSECT TEXT ’(&00)’ SET FROM ’(&01)’ TO ’(&02)’

Meaning
Severity class: WARNING.
The old alignment (&01) of old CSECT text (&00) is greater than the
alignment (&02) specified for the new CSECT text.
(&00): old CSECT name
(&01): old alignment of old CSECT text
(&02): new alignment of old CSECT text.

BND2420 WARNING: IMPOSSIBLE TO GET ’T&D’ INFORMATION FOR MODULE ’(&00)’ BECAUSE MODULE
NOT CONTAINED IN A PLAM ELEMENT

Meaning
Severity class: WARNING.
The module is contained in an element of the OMF or OML.
The test and diagnostic information is no longer available.
(&00): module name.

U9557-J-Z125-4-76 381

Messages BND2430

BND2430 WARNING: SUBSYSTEM ENTRY ’(&00)’ DOES NOT EXIST

Meaning
Severity class: WARNING.
No public CSECT or ENTRY corresponds to the name specified as
subsystem entry. This name cannot be used as a subsystem entry.
(&00): name of the subsystem entry.

BND2501 WARNING: ESID ’(&00)’ OF RECORD ’(&01)’ DOES NOT EXIST IN MODULE ’(&02)’. CARD
IGNORED

Meaning
Severity class: WARNING.
The ESID (&00) specified in the record (&01) does not correspond to
any module symbol. This record is ignored, processing continues.
(&00): ESID number
(&01): record type of object module (OM)
(&02): module name.

BND2502 WARNING: ALL THE REFERENCES FROM PRIVATE PART TO A VISIBLE PUBLIC DEFINITION
CONCERN NOT PROMOTED COMMONS. LLM CANNOT BE PROCESSED BY DYNAMIC BINDING LOADER

Meaning
Severity class: WARNING.
A LLM sliced BY-ATTRIBUTES private/public cannot be loaded by DBL if all the references
from the private part to a visible public definition concern non promoted commons.
LLM: Link and Load Module.
DBL: Dynamic Binding Loader.

BND2503 INVISIBLE PUBLIC DEFINITION ’(&00)’ RESOLVING PRIVATE REFERENCE(S). LLM CANNOT
BE PROCESSED BY DYNAMIC BINDING LOADER

Meaning
Severity class: WARNING.
The public definition (&00) resolves private reference(s) and is invisible.
(&00): invisible public definition.
LLM: Link and Load Module.
DBL: Dynamic Binding Loader.

BND2504 NO VISIBLE SUBSYSTEM ENTRY RESOLVING PRIVATE REFERENCE(S). LLM CANNOT BE
PROCESSED BY DYNAMIC BINDING LOADER

Meaning
Severity class: WARNING.
All public definitions specified as subsystem entries and resolving
private reference(s) are invisible.
LLM: Link and Load Module.
DBL: Dynamic Binding Loader.

382 U9557-J-Z125-4-76

BND2505 Messages

BND2505 NO VISIBLE PUBLIC DEFINITION RESOLVING PRIVATE REFERENCE(S). LLM CANNOT BE
PROCESSED BY DYNAMIC BINDING LOADER

Meaning
Severity class: WARNING.
All public definitions resolving private reference(s) are invisible.
LLM: Link and Load Module.
DBL: Dynamic Binding Loader.

BND2507 ONLY NOT PROMOTED COMMON(S) IN THE PRIVATE PART. LLM CANNOT BE PROCESSED BY
DYNAMIC BINDING LOADER

Meaning
Severity class: WARNING.
The private part only contains not promoted common(s).
LLM: Link and Load Module.
DBL: Dynamic Binding Loader.

BND2508 ONLY NOT PROMOTED COMMON(S) IN THE PUBLIC PART. LLM CANNOT BE PROCESSED BY
DYNAMIC BINDING LOADER

Meaning
Severity class: WARNING.
The public part only contains not promoted common(s).
LLM: Link and Load Module.
DBL: Dynamic Binding Loader.

BND2510 WARNING: RELOCATION ON 2 BYTES INSIDE CSECT ’(&00)’ REFERENCING THE PSEUDO
REGISTER ’(&01)’ WITH OFFSET GREATER THAN 4095 BYTES NOT ALLOWED. LLM CANNOT BE
PROCESSED BY DYNAMIC BINDING LOADER

Meaning
Severity class: WARNING.
The offset of the pseudo register (&01) referenced by a relocation applied on 2 bytes inside
the CSECT (&00) must be lower than 4096; otherwise, the LLM is not loadable.
(&00): CSECT name in which the relocation is applied
(&01): pseudo register name
LLM: Link and Load Module.
DBL: Dynamic Binding Loader.

BND2512 WARNING: LLM FORMAT ’(&00)’ NOT LOADABLE BEFORE BS2000 VERSION ’(&01)’

Meaning
Severity class: WARNING.
The computed format of the LLM implies that the LLM can not be loaded
before the requested BS2000 version.
(&00): LLM format.
(&01): BS2000 version.
LLM: Link and Load Module.

U9557-J-Z125-4-76 383

Messages BND2513

BND2513 WARNING: NO VALID ENTRY POINT IN PRODUCED LLM. LLM CANNOT BE PROCESSED BY DYNAMIC
BINDING LOADER

Meaning
Severity class: WARNING.
LLM: Link and Load Module.
DBL: Dynamic Binding Loader.

BND2514 FEATURE ’(&00)’ NOT SUPPORTED. LLM IS NOT UPDATABLE BY BINDER. PROCESSING
CONTINUES

Meaning
Severity class: WARNING.
The LLM is generated using the feature (&01) which is not supported by the selected LLM
format. It is loadable but cannot be processed again by BINDER.
(&00): Not supported feature.

BND2530 WARNING: OVERFLOW OR CARRY DETECTED FOR A RELOCATION INSIDE CSECT ’(&00)’

Meaning
Severity class: WARNING.
(&00): CSECT name.

BND2540 AT LEAST ONE RESOLUTION-SCOPE PATH NAME DOES NOT EXIST. PROCESSING CONTINUES

Meaning
Severity class: WARNING.
A path name specified as resolution scope does not exist.
The information is kept in the LLM but is currently ignored.

BND2541 AT LEAST ONE NODE HAS A SAME PATH NAME FOR SEVERAL RESOLUTION SCOPES. PROCESSING
CONTINUES

Meaning
Severity class: WARNING.
Several resolution scopes of a LLM node refer to the same SUB-LLM.

BND2550 WARNING: SOME SYMBOLS WITH EEN NAME NOT GENERATED. LLM IS NOT UPDATABLE BY
BINDER. PROCESSING CONTINUES

Meaning
Severity class: WARNING.
To be loadable on BS2000/OSD V3.0 and lower, the LLM may not

contain any symbol whose name is an EEN one.
As the only such symbols in the current LLM are not mandatory

by their own, they are not generated.
Thanks to this, the LLM is loadable on BS2000/OSD V3.0 and lower

but cannot be processed again by BINDER.

384 U9557-J-Z125-4-76

BND2910 Messages

BND2910 WARNING: SLICE-DEFINITION INVALID FOR A PAM-LLM FILE. LLM NOT LOADABLE

Meaning
Severity class: WARNING.
The output PAM-LLM file is not loadable, either because the existing slices number is to big,
or because the LLM is sliced according to the public CSECT attributes.

BND3101 SOME EXTERNAL REFERENCES UNRESOLVED

Meaning
Severity class: UNRESOLVED EXTERNS.
Some external references remain unresolved after the link processing.
The LLM is nevertheless generated. A list of the unresolved externals
can be output with the statement //SHOW-MAP and the UNRESOLVED-LIST operand.
LLM: Link and Load Module.

BND3102 SOME WEAK EXTERNS UNRESOLVED

Meaning
Severity class: UNRESOLVED EXTERNS.
The list with the information about the unresolved weak externs can be
output with the statement //SHOW-MAP and the UNRESOLVED-LIST operand.

BND4101 UNEXPECTED COMMAND IN STATEMENT STREAM. COMMAND IGNORED

Meaning
Severity class: SYNTAX ERROR.
A command was entered instead of a statement.

BND4102 SYNTAX ERROR: LOAD ADDRESS NOT PAGE ALIGNED. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
The load address must be page aligned.

BND4103 SYNTAX ERROR: UNKNOWN STATEMENT IN BINDER PROGRAM. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.

BND4104 SYNTAX ERROR: LOAD ADDRESS NOT 8K PAGE ALIGNED. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
The load address must be 8k page aligned.

BND4105 SYNTAX ERROR IN PLAM ELEMENT ’(&00)’. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
The element name does not correspond to the standard for names of a PLAM library.
(&00): PLAM element name.

U9557-J-Z125-4-76 385

Messages BND4106

BND4106 SYNTAX ERROR IN VERSION ’(&00)’ OF PLAM ELEMENT. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
The version specification does not correspond to the standard for an
element of a PLAM library.
(&00): PLAM library element version.

BND4107 SYNTAX ERROR IN ’LOAD-ADDRESS’ (>X’7FFFF000’). STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
An invalid load address was specified in the //SAVE-LLM statement.
A valid load address must be page aligned and lower than X’80000000’.
So the highest valid value for the load address is X’7FFFF000’.

BND4108 SYNTAX ERROR IN WILD CARD ’(&00)’. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.

BND4109 SYNTAX ERROR IN PATH NAME. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.

BND4110 SYNTAX ERROR IN SUB-LLM. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
LLM: Link and Load Module.

BND4111 SYNTAX ERROR IN OBJECT MODULE. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.

BND4112 SYNTAX ERROR: ’*CURRENT-INPUT-LIB’ VALUE UNDEFINED. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.

BND4113 SYNTAX ERROR: ’*CURRENT’ VALUE FOR ’LIBRARY’ OPERAND UNDEFINED. STATEMENT
REJECTED

Meaning
Severity class: SYNTAX ERROR.
*CURRENT is defined by the value specified with the operand LIBRARY in
the last //START-LLM-UPDATE or //SAVE-LLM statement. As no such statement
is entered, the operand *CURRENT is undefined.

386 U9557-J-Z125-4-76

BND4114 Messages

BND4114 SYNTAX ERROR IN SYMBOL ’(&00)’. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
The symbol specification does not correspond to the standard for the
symbol specification in the external symbol dictionary.
(&00): symbol name.

BND4115 SYNTAX-ERROR IN LOGICAL NODE ’(&00)’. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
(&00): logical node name.

BND4116 SYNTAX ERROR: COMBINATION OF THE VALUES ’LOGICAL-STRUCTURE’, ’TEST-SUPPORT’ AND
’SYMBOL-DICTIONARY’ NOT PERMITTED. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
An illegal operand value combination is specified.
- SYMBOL-DICTIONARY=NO mandatory when LOGICAL-STRUCTURE=NONE.
- TEST-SUPPORT=NO mandatory when SYMBOL-DICTIONARY=NO.

BND4117 SYNTAX ERROR: OPERAND ’SLICE’ CANNOT BE SPECIFIED. LLM NOT SLICED ’BY-USER’

Meaning
Severity class: SYNTAX ERROR.
The SLICE operand can only be used if the LLM is defined with BY-USER.
LLM: Link and Load Module.

BND4118 SYNTAX ERROR: ’RELOCATION-DATA=YES’ AND ’SYMBOL-DICTIONARY=YES’ OPERANDS
MANDATORY FOR LLM DEFINED ’BY-ATTRIBUTES’

Meaning
Severity class: SYNTAX ERROR.
LLM: Link and Load Module.

BND4119 SYNTAX ERROR: ELEMENT AND VALUE COMBINATION ’(&00)’ NOT PERMITTED. STATEMENT
REJECTED

Meaning
Severity class: SYNTAX ERROR.
An illegal operand value combination is specified.
*INTERNAL or *ELEMENT-NAME mandatory when ELEMENT=*ALL or LIST.
(&00): specified combination.

U9557-J-Z125-4-76 387

Messages BND4120

BND4120 SYNTAX ERROR: VALUE COMBINATION OF ’LOGICAL-STRUCTURE’ AND ’(&00)’ NOT
PERMITTED. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
(&00): operand.

BND4122 SYNTAX ERROR: WHOLE LLM CANNOT BE MOVED IN LOGICAL STRUCTURE. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
Only the *UNCHANGED value is permitted for NEW-PATH-NAME operand if
the module to be processed is the whole LLM.
LLM: Link and Load Module.

BND4123 SYNTAX ERROR: ’SCOPE’ FOR ’NAME-COLLISION’ CANNOT BE ’SLICE’ FOR ’SINGLE’ OR
’BY-ATTRIBUTES’ LLM. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
The scope SLICE for NAME-COLLISION is permitted for BY-USER LLM only.
LLM: Link and Load Module.

BND4124 SYNTAX ERROR: VALUE COMBINATION ’FOR-BS2000-VERSIONS’ AND ’REQUIRED-
COMPRESSION’ NOT PERMITTED. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
An illegal combination of operand values is specified:
Text compression cannot be requested if FOR-BS2000-VERSION=FROM-V10.

BND4125 SYNTAX ERROR: COMPRESSION CANNOT BE REQUIRED FOR A ’BY-USER’ LLM. STATEMENT
REJECTED

Meaning
Severity class: SYNTAX ERROR.
The text compression is permitted for a SINGLE or a BY-ATTRIBUTES LLM only.
LLM: Link and Load Module.

BND4126 SYNTAX ERROR: SYMBOL NAME ’%OCM’ CAN NOT BE SPECIFIED. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
The symbol name ’%OCM’ is a BLS reserved name: this name specifies
univocally the Overlay Control Module.Its use is restricted.

388 U9557-J-Z125-4-76

BND4127 Messages

BND4127 SYNTAX ERROR: NAME ’(&00)’ NOT AVAILABLE AS NEW-NAME. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
The specified new symbol name is a BLS reserved name: it can not be used to give a name
to a symbol.
(&00): specified new symbol name.

BND4130 SYNTAX ERROR: SPECIFICATION OF A LOAD ADDRESS FOR A REGION ONLY VALID FOR A LLM
SLICED BY-USER. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
REGION’s only exist in a LLM sliced BY-USER

BND4131 SYNTAX ERROR: SPECIFICATION OF A LOAD ADDRESS FOR THE ROOT SLICE ONLY VALID FOR
A LLM SLICED BY-USER. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
A ROOT slice only exists in a LLM sliced BY-USER

BND4132 SYNTAX ERROR: VALUE ’(&00)’ OF OPERAND ’(&01)’ IS FORBIDDEN IF OPERAND ’(&02)’
IS NOT DEFAULTED. STATEMENT REJECTED

Meaning
Severity class: SYNTAX ERROR.
The following coherency constraints must be fulfilled:
- All the identification informations must be specified if the related product is a subsystem.
- A dynamic check entry is only relevant if the related product is a
subsystem.
(&00): wrong value.
(&01): operand name.
(&02): reference operand.

BND4133 SYNTAX ERROR: MMODE ’(&00)’ IS INCOMPATIBLE WITH HSI-CODE ’(&01)’

Meaning
Severity class: SYNTAX ERROR.
Values NATIVE or TPR for MMODE may only be used with value SP04 for HSI
(&00): value of operand MMODE.
(&01): value of operand HSI-CODE.

BND5101 NAME ’(&00)’ ALREADY SON OF NODE DEFINED BY PATH NAME. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The specified name corresponds to an already created node although
MODE=CREATE is specified.
(&00): node name.

U9557-J-Z125-4-76 389

Messages BND5102

BND5102 NAME ’(&00)’ NOT SON OF NODE DEFINED BY ’PATH-NAME’. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The name cannot be found in the sons of the logical node defined by the path name.
(&00): internal sub-LLM name.

BND5103 PATH NAME ’(&00)’ DOES NOT CORRESPOND TO ANY SUB-LLM. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
LLM: Link and Load Module.

BND5104 ELEMENT NAME ’(&00)’ INVALID FOR A LOGICAL NAME. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
Included element name is invalid for a logical name.
(&00): included element name.

BND5105 HSI OF ELEMENT NAME ’(&00)’ IS INVALID. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
HSI of included element name is invalid. Mips, IA64 and SPARC cannot be mixed.
(&00): included element name.

BND5106 MEMORY ACCESS MODE OF ELEMENT ’(&00)’ IS INVALID. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
Memory access mode of included element name is invalid.
Native cannot be mixed with TU-4K-DEPENDENT
(&00): name of included element.

BND5107 MEMORY ACCESS MODE OF ELEMENT ’(&00)’ IS INCOMPATIBLE WITH MEMORY ACCESS MODE
SPECIFIED IN SAVE-LLM STATEMENT

Meaning
Severity class: RECOVERABLE ERROR.
Memory access mode of given element name is invalid.
NATIVE cannot be changed neither to TU-4K-DEPENDENT nor to COMPATIBLE
COMPATIBLE cannot be changed to NATIVE. TU-4K-DEPENDENT may not be set for
NATIVE
(&00): element name.

390 U9557-J-Z125-4-76

BND5108 Messages

BND5108 HSI OF ELEMENT (&00) IS INCOMPATIBLE WITH MEMORY-ACCESS-MODE SPECIFIED IN SAVE-
LLM STATEMENT

Meaning
Severity class: RECOVERABLE ERROR.
HSI of saved element is invalid.
Memory access mode Native can only be set for SPARC or MIXED-SPARC HSI.
(&00): element name.

BND5111 PATH NAME ’(&00)’ DOES NOT EXIST. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The specified path name has not been found in the LLM used.
(&00): path name.
LLM: Link and Load Module.

BND5112 PATH NAME ’(&00)’ INVALID AND DOES NOT CORRESPOND TO ANY SUB-LLM. STATEMENT
ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
As the path name does not correspond to any sub-LLM, it is impossible
to attach a logical node to it.
(&00): path name.

BND5113 NAME ’(&00)’ CONTAINED IN ’(&01)’. STATEMENT REJECTED

Meaning
Severity class: RECOVERABLE ERROR.
The specified NEW-PATH-NAME is contained in the module to be moved in
the logical structure.
(&00): NEW-PATH-NAME
(&01): module name.

BND5121 SLICE OR REGION ’(&00)’ DOES NOT EXIST. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
(&00): slice or region name.

U9557-J-Z125-4-76 391

Messages BND5122

BND5122 SLICE OR REGION ’(&00)’ ALREADY EXISTS. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
Possible reasons:
- in the statement //SET-USER-SLICE-POSITION the MODE=CREATE operand has

been specified, but the slice or region already exists.
- in the statement //SET-USER-SLICE-POSITION the NEW-REGION=YES operand

has been specified, but the REGION already exists.
(&00): slice or region name.

BND5123 ’(&00)’ IS NO SLICE NAME BUT A REGION NAME. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The name specified in the statement //SET-USER-SLICE-POSITION corresponds
to a region name.
(&00): specified name.

BND5124 ’(&00)’ IS NO REGION NAME BUT A SLICE NAME. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The name specified in the statement //SET-USER-SLICE-POSITION corresponds
to a slice name.
(&00): specified name.

BND5125 ONLY ROOT SLICE CAN BE LOCATED AT BEGINNING OF ROOT REGION. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The name given to a slice which is placed at the beginning of the ROOT
region is not ROOT (*ROOT value).

BND5131 FILE ’(&00)’ DOES NOT EXIST. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The file which has been specified in the statement does not exist.
(&00): file name.

BND5132 LINK NAME ’(&00)’ DOES NOT EXIST. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
No file name corresponds to the specified link name.
(&00): link name.

392 U9557-J-Z125-4-76

BND5133 Messages

BND5133 ELEMENT ’(&00)’ DOES NOT EXIST

Meaning
Severity class: RECOVERABLE ERROR.
Element (&00) not found in given library or libraries.
Processing continues to include the other element(s) specified in the statement.
(&00): element name.

BND5134 *OMF (*CURRENT-INPUT-LIB) CANNOT BE USED IN AUTOLINK PROCESSING. STATEMENT
ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The statement //RESOLVE-BY-AUTOLINK was entered while the current input
library is the object module file (OMF).
OMF: object module file.

BND5135 NO BLSLIB-LINK DEFINED. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
No library BLSLIBxx has been specified.

BND5141 GIVEN ENTRY POINT DOES NOT EXIST. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The entry point specified in the operand ENTRY-POINT cannot be found.

BND5142 SOME EXTERNAL REFERENCES WHOSE RESOLUTION IS MANDATORY ARE STILL UNRESOLVED.
STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
Some mandatory resolutions specified in the //SET-EXTERN-RESOLUTION
statement are not possible.

BND5143 RESIDENT-PAGES VALUES NOT AVAILABLE. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The specified MAXIMUM value is lower than the specified MINIMUM value.

BND5151 //END-SUB-LLM STATEMENT ISSUED WITHOUT PRECEDING INPUT OF //BEGIN-SUB-LLM
STATEMENT. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.

U9557-J-Z125-4-76 393

Messages BND5152

BND5152 SUB-LLM ’(&00)’ CONTAINS A SUB-LLM IN PROCESSING. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
A //BEGIN-SUB-LLM-STATEMENTS statement was issued on a logical node
contained in the sub-LLM which must be removed.
(&00): sub-LLM or module name.

BND5153 SUB-LLM ’(&00)’ CONTAINS A SUB-LLM IN PROCESSING. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
A //BEGIN-SUB-LLM-STATEMENTS statement was issued on a logical node
contained in the sub-LLM which must be merged.
(&00): sub-LLM or module name.

BND5155 ’(&00)’ NOT ASSOCIATED WITH AN ELEMENT. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The element name corresponding to the logical node does not exist.
(&00): sub-LLM or module name.

BND5161 MAP NAME ’(&00)’ DOES NOT EXIST. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
No map name created with the specified name.
(&00): map name.

BND5171 SWITCH FROM ’(&00)’ SLICING TO ’(&01)’ SLICING NOT PERMITTED. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
Incorrect switch modification.
(&00): current slice definition
(&01): wrongly required slice definition.

BND5181 NO CSECT TO BE MERGED EXISTS. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
There is no CSECT to be merged in the module.

BND5182 CSECTS CONTAINED IN MODULE ’(&00)’ EXIST IN SEVERAL SLICES. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The whole module to be merged is not contained in a single slice.
This is not permitted in the case of a LLM sliced BY-USER.
(&00): module to be merged.

394 U9557-J-Z125-4-76

BND5183 Messages

BND5183 ENTRY ’(&00)’ DOES NOT EXIST. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The specified ENTRY does not exist in the module to be merged.
(&00): specified name.

BND5184 ATTRIBUTE ’(&00)’ OF CSECTS TO BE MERGED IS NOT VALID. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The combination of the attributes of the CSECTs contained in the
modules to be merged is illegal.
(&00): invalid attribute.

BND5185 NAME CONFLICT BETWEEN AN ENTRY TO BE KEPT AND THE NEW CSECT NAME. STATEMENT
ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
New CSECT name cannot be the name of an entry to be kept.

BND5186 VERSION ’*INCREMENT’ ONLY PERMITTED WITH PLAM VERSION >= V02.0A

Meaning
Severity class: RECOVERABLE ERROR.
The PLAM version does not support the *INCREMENT operand.

BND5187 A LLM SLICED BY-USER CANNOT BE FULLY MERGED. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.

BND5188 AT LEAST ONE RESOLUTION SCOPE NOT ’*STD’. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
In order to merge the specified modules, the resolution scopes defined
for the different logical item must be *STD.

BND5189 THE HSI-CODES OF THE CSECTS TO BE MERGED ARE NOT HOMOGENEOUS. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
It is only possible to merge modules whose CSECTs have the same HSI-CODE.

BND5190 ERROR: NAME COLLISION OCCURS BECAUSE OF SYMBOL NAME ’(&00)’

Meaning
Severity class: WARNING.
The statement execution introduces a collision of name.
(&00): symbol name.

U9557-J-Z125-4-76 395

Messages BND5191

BND5191 ERROR: NAME COLLISION OCCURS BECAUSE OF SYMBOL NAME ’(&00)’ IN SLICE ’(&01)’

Meaning
Severity class: WARNING.
The statement execution introduces a collision of name in slice (&01).
(&00): symbol name
(&01): slice name.

BND5201 INVALID FORMAT FOR FILE ’(&00)’. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The file (&00) is either not a valid container, either a container of an incompatible type.

BND5202 EAM OBJECT MODULE FILE EMPTY. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
No module can be included from the EAM object module file because it is empty.

BND5203 DMS ERROR ’(&01)’ ON FILE ’(&00)’. STATEMENT ABORTED. FURTHER INFORMATION:
/HELP-MSG DMS(&01)

Meaning
Severity class: RECOVERABLE ERROR.
The processing of the file (&00) caused a DMS error (&01).

Response
For detailed information about the DMS error code enter /HELP-MSG
or see the BS2000 manual ’System Messages’.
(&00): file name
(&01): DMS error code.

BND5301 WARNING: LLM ’(&00)’ VERSION ’(&01)’ CAN NOT BE PROCESSED BY BINDER. PROCESSING
CONTINUES

Meaning
Severity class: RECOVERABLE ERROR.
The LLM (&00) version (&01) can not be updated/included because it has been generated
without some BINDER requested informations (relocation data, symbol dictionary,
resolution scopes, ...).
(&00): LLM container name
(&01): LLM container version.
LLM: Link and Load Module.

396 U9557-J-Z125-4-76

BND5302 Messages

BND5302 SUB-LLM ’(&00)’ DOES NOT EXIST IN MODULE ’(&01)’. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The specified sub-LLM does not exist in the LLM.
Inclusion of the module is aborted.
(&00): sub-LLM name
(&01): module name.
LLM: Link and Load Module.

BND5303 TYPE L ELEMENT ’(&00)’ VERSION ’(&01)’ NO VALID LLM. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
(&00): PLAM element name
(&01): PLAM element version.
LLM: Link and Load Module.

Response
The LLM must be bind again with a BINDER version >= V01.1A).

BND5304 LLM ’(&00)’ VERSION ’(&01)’ NOT INCLUDED BECAUSE SLICED ’BY-USER’. PROCESSING
CONTINUES

Meaning
Severity class: RECOVERABLE ERROR.
(&00): LLM container name
(&01): LLM container version.
LLM: Link and Load Module.

BND5305 SUB-LLM ’(&00)’ OF MODULE ’(&01)’ NOT INCLUDED BECAUSE ONE OF ITS ANCESTOR NODES
CONTAINS INI/FINI ROUTINES. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
An ancestor of the specified sub-LLM contains at least one initialization or termination
routine generated at compilation time. The existence of such a routine in a compiler output
LLM makes it processable by BINDER only as a whole.
(&00): sub-LLM name
(&01): module name.
LLM: Link and Load Module.

BND5311 NO ESD EXISTS IN OBJECT MODULE ’(&00)’. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The module cannot be included without an ESD record.
ESD: External Symbol Dictionary.

U9557-J-Z125-4-76 397

Messages BND5312

BND5312 ’(&00)’ IS AN INVALID ESD NAME. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
An ESD name may not begin with blank character.
ESD: External Symbol Dictionary.

BND5401 LOAD ADDRESS >16MB BUT ATTRIBUTE ’RMODE’ 24 FOUND. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The load address is not compatible with the LLM content. As a CSECT must be loaded
below the 16 MB limit (RMODE 24) the load address must be lower than 16 MB too.
LLM: Link and Load Module.

BND5402 PROMOTION ERROR FOR COMMON ’(&00)’. ATTRIBUTES CORRESPOND TO DIFFERENT SLICES.
STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
All COMMONs with the same name and the CSECT(s) used for the COMMON
promotion must pertain to the same slice when slicing is BY-ATTRIBUTES.
(&00): symbol name.

BND5403 PROMOTION ERROR FOR ’COMMON’ ’(&00)’. ’READ-ONLY’ ATTRIBUTE INCONSISTENCY.
STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
All COMMONs with the same name and the CSECT(s) used for the COMMON
promotion must have the same READ-ONLY attribute.
(&00): symbol name.

BND5411 LLM TOO LARGE. ADDRESS SPACE OVERFLOW. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
When the LLM is constructed at the specified load address, an overflow occurs.
LLM: Link and Load Module.

BND5412 PSEUDO REGISTERS VECTOR GREATER THAN 4096 BYTES. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.

398 U9557-J-Z125-4-76

BND5501 Messages

BND5501 OUTPUT CONTAINER ALREADY USED IN A PREVIOUS INCLUSION STATEMENT. STATEMENT
ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
When a LLM container is used in an //INCLUDE-MODULES, //REPLACE-MODULES
or //RESOLVE-BY-AUTOLINK statement, it is not possible to use it as output container.

BND5502 LLM FORMAT ’(&00)’ NOT LOADABLE BEFORE BS2000 VERSION ’(&01)’. STATEMENT
REJECTED

Meaning
Severity class: RECOVERABLE ERROR.
The computed format of the LLM implies that the LLM can not be loaded
before the requested BS2000 version.
(&00): LLM format.
(&01): BS2000 version.
LLM: Link and Load Module.

BND5504 PLAM RETURNS ERROR CODE ’(&00)’ ON LIBRARY ’(&01)’. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
(&00): PLAM return code
(&01): PLAM library name.

BND5505 PAM ERROR CODE ’(&00)’ ON LIBRARY ’(&01)’. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
(&00): PAM error code
(&01): PLAM library name.

BND5506 DMS ERROR CODE ’(&00)’ ON FILE ’(&01)’. STATEMENT ABORTED. FURTHER INFORMATION:
/HELP-MSG DMS(&00)

Meaning
Severity class: RECOVERABLE ERROR.

Response
For more detailed information about the DMS error code enter /HELP-MSG
or see the BS2000 manual ’System Messages’.
(&00): DMS error code
(&01): file name.

U9557-J-Z125-4-76 399

Messages BND5508

BND5508 RELOCATION APPLIED IN PUBLIC CSECT ’(&00)’ CANNOT REFER TO PRIVATE SYMBOL
’(&01)’. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
(&00): CSECT name
(&01): symbol name.

BND5509 RELOCATION APPLIED IN PUBLIC CSECT ’(&00)’ CANNOT REFER TO EXTERNAL REFERENCE
WHICH IS RESOLVED BY PRIVATE SYMBOL ’(&01)’. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
(&00): CSECT name.

BND5510 LLM ALREADY EXISTS. OVERWRITE NOT PERMITTED

Meaning
Severity class: RECOVERABLE ERROR.
LLM: Link and Load Module.

BND5511 NO SPECIFIED SUBSYSTEM ENTRY IN SLICE ’(&00)’. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
To create a LLM sliced according to the public attribute in format 1 with a connection mode
BY-RELOCATION, it is mandatory to specify at least one visible CSECT or ENTRY as
subsytem-entry by slice containing a public definition referenced from the private part.
(&00): SLICE name.

BND5530 ADDRESS OF A ’JUMP’ RELOCATION INSIDE THE CSECT ’(&00)’ BRANCHING OUTSIDE THE
SEGMENT BOUNDARY. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
(&00): CSECT name.

BND5601 LINK NAME ’(&00)’ DOES NOT EXIST. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
No file name corresponds to the specified LINK name.
(&00): link name.

400 U9557-J-Z125-4-76

BND5602 Messages

BND5602 DMS ERROR DURING ’(&00)’ ON ’(&01)’. STATEMENT ABORTED. FURTHER INFORMATION:
/HELP-MSG DMS(&02)

Meaning
Severity class: RECOVERABLE ERROR.
For detailed information about the DMS error code enter /HELP-MSG
in system mode or see the BS2000 manual ’System Messages’.
(&00): DMS operation type
(&01): file name
(&02): DMS error code.

BND5603 EXIT ROUTINE ’(&00)’ DOES NOT EXIST. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
No CSECT name corresponds to the specified routine name.
(&00): routine name.

BND5604 ’WROUT’ ERROR. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
An error occurred when calling WROUT.

Response
Try another output possibility.

BND5605 ’WRLST’ ERROR. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
An error occurred when calling WRLST.

Response
Try another output possibility.

BND5606 BLS ERROR DURING ’BIND’ ON SYMBOL ’(&00)’ IN LIBRARY ’(&01)’. STATEMENT ABORTED.
RETURN CODE FROM BLS: ’(&02)’

Meaning
Severity class: RECOVERABLE ERROR.
For more detailed information see the BLS error code.
(&00): routine name
(&01): library name
(&02): BLS error code.

U9557-J-Z125-4-76 401

Messages BND5607

BND5607 LLMAM ERROR ’(&00)’ DURING LLM GENERATION. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
For more detailed information see the LLMAM error code.
(&00): LLMAM error code

BND5608 INSTALLATION ERROR: INVALID LLMAM VERSION. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The installed version of LLMAM is not able to process the BINDER requests.

Response
The requested LLMAM version must be installed.

BND5910 FILE ’(&00)’ DOES NOT EXIST. STATEMENT ABORTED

Meaning
Severity class: RECOVERABLE ERROR.
The file which has been specified in the statement does not exist.
(&00): file name.

BND5912 DMS ERROR ’(&01)’ ON FILE ’(&00)’. STATEMENT ABORTED. FURTHER INFORMATION:
/HELP-MSG DMS(&01)

Meaning
Severity class: RECOVERABLE ERROR.
The processing of the file (&00) caused a DMS error (&01).

Response
For detailed information about the DMS error code enter /HELP-MSG
or see the BS2000 manual ’System Messages’.
(&00): file name
(&01): DMS error code.

BND5913 FSTAT ERROR ’(&01)’ ON FILE ’(&00)’. STATEMENT ABORTED. FURTHER INFORMATION:
/HELP-MSG DMS(&01)

Meaning
Severity class: RECOVERABLE ERROR.
The processing of the file (&00) caused a FSTAT error (&01).

Response
For detailed information about the DMS error code enter /HELP-MSG
or see the BS2000 manual ’System Messages’.
(&00): file name
(&01): DMS error code.

402 U9557-J-Z125-4-76

BND5918 Messages

BND5918 INTERNAL RETURN CODE ’(&00)’ DURING PAM-LLM PROCESSING

Meaning
Severity class: RECOVERABLE ERROR.
(&00): internal return code.

BND5919 INTERNAL RETURN CODE ’(&00)/(&01)’ DURING PAM-LLM PROCESSING

Meaning
Severity class: RECOVERABLE ERROR.
(&00): internal return code.

BND6101 *** FATAL ERROR: SDF NOT AVAILABLE OR SYSTEM ERROR. BINDER RUN TERMINATED ***

Meaning
Severity class: FATAL ERROR.

BND6102 *** FATAL ERROR: SDF RETURNS ’END OF FILE REACHED’. BINDER RUN TERMINATED ***

Meaning
Severity class: FATAL ERROR.
End of file (EOF) is incorrect, or the statement after which end of file
(EOF) was detected is incorrect.

BND6103 *** FATAL ERROR: SDF SYNTAX FILE ’(&00)’ DOES NOT EXIST. BINDER RUN TERMINATED

Meaning
Severity class: FATAL ERROR.
(&00): name of the syntax file.

BND6104 *** FATAL ERROR: BINDER PROGRAM DOES NOT EXIST. BINDER RUN TERMINATED ***

Meaning
Severity class: FATAL ERROR.
The BINDER program is not contained in the active syntax file.

BND6105 *** FATAL ERROR: INVALID SYNTAX FILE VERSION ’(&00)’. ’(&01)’ EXPECTED. BINDER
RUN TERMINATED ***

Meaning
Severity class: FATAL ERROR.
The syntax file version is invalid for BINDER.
(&00): syntax file version
(&01): expected syntax file version.

U9557-J-Z125-4-76 403

Messages BND6106

BND6106 *** FATAL ERROR: DEFINITION OF STATEMENT ’(&00)’ INCORRECT. BINDER RUN
TERMINATED ***

Meaning
Severity class: FATAL ERROR.
An error has been detected by the SDF analysis.
(&00): internal name of the statement.

BND6107 *** FATAL ERROR: SDF RETURNS ERROR CODE ’(&00)’. STATEMENT ABORTED

Meaning
Severity class: FATAL ERROR.
(&00): SDF return code.

BND6201 *** FATAL ERROR: PLAM NOT AVAILABLE. BINDER RUN TERMINATED ***

Meaning
Severity class: FATAL ERROR.
The access method for the program library is not available.

BND6701 *** FATAL ERROR: INSUFFICIENT USER MEMORY. BINDER RUN TERMINATED ***

Meaning
Severity class: FATAL ERROR.

BND7001 INTERNAL ERROR ’(&00)/(&01)’. BINDER RUN TERMINATED

Meaning
Severity class: INTERNAL ERROR.
(&00), (&01): diagnostic information.

Response
Contact the system administrator.

BND7201 EAM ERROR ’(&01)’ DURING ’(&00)’. BINDER RUN TERMINATED

Meaning
Severity class: INTERNAL ERROR.
An error (&01) occurred during the processing of the function (&00)
in the EAM object module file.
(&00): EAM operation type
(&01): internal EAM error code.
EAM: Evanescent Access Method.

Response
Contact the system administrator.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9557-J-Z125-4-76 405

11 Appendix: Description of the ISAM keys
In the BINDER statements SHOW-MAP, MODIFY-MAP-DEFAULTS and SHOW-LIBRARY-
ELEMENTS the user can select the medium to which the required information is to be
output. If OUTPUT ≠ *SYSLST is selected, BINDER outputs the information as an ISAM
file. The keys of this ISAM file are eight bytes long and are described below.

ISAM keys in BINDER lists (MAPs)

The ISAM key consists of three sections:

Byte 0 1 2 3 4 5 6 7

(1) (2) (3)

406 U9557-J-Z125-4-76

Appendix

(1) Bytes 0 through 1:
indicate the section of the BINDER map:

(2) Byte 2:
indicates the record type in the section of the BINDER map:

(3) Bytes 3 through 7:
sequential number of the record in the relevant record type; decimal; starts at 0 for
a new record type

Decimal value Meaning

05
10
15
17
20
25

30
31
35
36
37
40
45
50
55
60
61

HELP INFORMATION
GLOBAL INFORMATION
LOGICAL STRUCTURE
SCOPE PATH INFORMATION
PHYSICAL STRUCTURE if the LLM contains user-defined slices
PHYSICAL STRUCTURE if the LLM is sliced by attributes or only contains a
single slice
PROGRAM MAP
COMMON LIST
UNRESOLVED REFERENCES
UNRESOLVED LONG NAMES
NOT REFERENCED SYMBOLS
SORTED SYMBOLS
PSEUDO REGISTERS
UNUSED MODULES
DUPLICATE SYMBOLS
INPUT INFORMATION
LINKNAME CONVERSION

Decimal value Meaning

0
1
9

header record
information record
end of section

U9557-J-Z125-4-76 407

Appendix

ISAM keys in the SHOW-LIBRARY-ELEMENTS lists

The ISAM key consists of three sections:

(1) Bytes 0 through 1:
indicate the type of list output for SHOW-LIBRARY-ELEMENTS:

(2) Byte 2:
indicates the record type in the selected list:

(3) Bytes 3 through 7:
sequential number of the record in the relevant record type; decimal; starts at 0 for
a new record type

Decimal value Meaning

90
50
00

DUPLICATE SYMBOLS
SYMBOLS IN LIBRARY
LIBRARY CONTENT

Decimal value Meaning

0
1
9

header record
information record
end of section

Byte 0 1 2 3 4 5 6 7

(1) (2) (3)

U9557-J-Z125-4-76 409

Glossary
This glossary contains definitions of key terms used in the description of the Binder-Loader-
Starter (BLS) system. Cross-references are indicated by typeface italic of the associated
term.

access privilege for a context
Defines which users may access a context. The context can be privileged or
nonprivileged.

addressing mode
AMODE

Attribute of a control section (CSECT). Hardware addressing mode which a
program or load unit expects at runtime. It can be set to:
– 24-bit addressing (AMODE=24)
– 31-bit addressing (AMODE=31)
– 24- and 31-bit addressing (AMODE=ANY).

AMODE
Addressing mode

attribute
Property which can be assigned to a control section (CSECT) at assembly or
compilation time. A CSECT can have the following attributes:
– read access (READ-ONLY)
– memory-resident (RESIDENT)
– shareable (PUBLIC)
– residence mode (RMODE)
– alignment (ALIGNMENT)
– addressing mode (AMODE).

autolink
Automatic search and insert mechanism for including modules.

BINDER run
Sequence of BINDER statements which begins after the load call for BINDER
and ends with the END statement.

410 U9557-J-Z125-4-76

Glossary

COMMON
Common section

common memory pool
A memory area in class 6 memory (user memory) which may be accessed by
several users.

common section
COMMON

Data area which can be shared by a number of control sections (CSECTs) for
communication.

context
A context can be:
– a set of objects with a logical structure
– an environment for linking and loading
– an environment for unloading and unlinking.
A context has a scope and an access privilege.

control section
CSECT

Program section which can be loaded independently of other program sections.
A control section can have certain attributes.

CSECT
Control section

current LLM
Newly created or modified link and load module (LLM) which is constructed in the
BINDER work area.

current slice
Slice into which modules are inserted or in which modules are replaced if nothing
is defined concerning their position in the physical structure of the LLM. Applies
to user-defined slices only.

EAM object module file (OMF)
Temporary system object module library in which object modules (OMs) produced
by a compiler or prelinked modules produced by TSOSLNK are stored.

U9557-J-Z125-4-76 411

Glossary

edit run
Comprises a sequence of BINDER statements which begins with the START-
LLM-CREATION or START-LLM-UPDATE statement and ends with the next
START-LLM-CREATION or START-LLM-UPDATE statement or with the END
statement.

element identifier
Designates a library element in a program library; it is composed of the element
name and element version.

element name
Name of a library element in a program library or object module library. It is
referred to by the BINDER statements and the DBL commands.

element type
Type of a library element in a program library.
The following element types apply to program libraries:
– type C program (load module)
– type L link and load module (LLM)
– type R object module (OM)

element version
Version designation of a library element in a program library. It is referred to by
the BINDER statements and the DBL commands.

ENTRY
Entry point

entry point
ENTRY

Symbolic link address which is defined in one module but can also be used by
another module.

ESD
External symbol dictionary

ESV
External symbols vector

external dummy section
XDSEC

Program section for which there is no image in the text information of a module.
An external dummy section can be a reference (XDSEC-R)
or a program definition (XDSEC-D).

412 U9557-J-Z125-4-76

Glossary

external reference
EXTRN

Symbolic link address which is used in one module but defined in another; it is
resolved unconditionally either explicitly or by autolink.

external symbol dictionary
ESD

Contains all the program definitions and references in a module. It is required for
resolving references. Object modules (OMs) contain the ESD in the form of
ESD records. Link and load modules (LLMs) contain ESV records.

external symbols vector
ESV

Contains the ESD in link and load modules (LLMs)

ILE
indirect linkage entry

Entry point (ENTRY) which the caller forwards to an ILE server by means of an
IL routine. An ILE has the following attributes:

– name
– address of the IL routine
– address of the IL server
– displacement of the ILE server address in the IL routine
– status of the ILE server (active or not active)
– control indicator (system-driven or user-driven)

ILE server
Module containing program code in the same way as a subprogram but which
can be branched to via an ILE and an IL routine.

IL routine
indirect linkage routine

Routine which calls an ILE server. Users can also define their own IL routine if
they do not want to use the one provided by the system.

indirect linkage
Linkage mechanism in which an external reference is resolved by means of an
ILE and an intermediate IL routine, rather than directly by means of a program
definition.

indirect linkage entry
ILE

U9557-J-Z125-4-76 413

Glossary

indirect linkage routine
IL routine

internal name
Defined when a link and load module (LLM) is created and identifies the root in
the logical structure of the LLM.

link and load module
LLM

Loadable unit with a logical structure and a physical structure. LLMs are
generated by BINDER and stored in a program library as type L library elements
(element type) or in a PAM file (PAM-LLM).

list for symbolic debugging
LSD

Test and diagnostic information which is held in a module and which is required
by the debugging and diagnostic tools for debugging at source program level.

LLM
Link and load module

load module
Synonym for program

load unit
Contains all modules that are loaded with a single load call. Each load unit is
situated in a context.

local relocation dictionary
LRLD

Information in a module which determines how addresses are to be adjusted
relative to a common base address during linking and loading.

logical structure information
Information in a link and load module (LLM) which determines the logical structure
of the LLM.

logical structure of a context
Hierarchical structure of a context as a set of objects. Objects are control sections
(CSECTs), modules and load units.

414 U9557-J-Z125-4-76

Glossary

logical structure of an LLM
Defines the tree structure of a link and load module (LLM). The root forms the
internal name; the nodes form sub-LLMs; the leaves are object modules (OMs) and
empty sub-LLMs.

LRLD
Local relocation dictionary

LSD
List for symbolic debugging.

module
Generic term for object module (OM) and link and load module (LLM).

object module
OM

Loadable unit generated by translating a source program by means of a
language processor routine (assembler, compiler).

object module library
OML

PAM file which contains object modules as library elements.

OM
Object module

OML
Object module library

PAM-LLM
LLM which is stored by BINDER in a PAM file.

path name
Name by which sub-LLMs are addressed in the logical structure of an LLM. It
consists of a sequence of individual names separated from one another by a
period.

physical structure information
Information in a link and load module (LLM) which defines the physical structure of
the LLM.

U9557-J-Z125-4-76 415

Glossary

physical structure of an LLM
Defines the slices from which a link and load module (LLM) is constructed. These
may be:
– single slices
– slices by attributes
– user-defined slices.

prelinked object module
Loadable unit which is linked by the TSOSLNK linkage editor from individual
object modules (OM); it has the same format as an object module (OM).

program
Executable entity which is linked by the TSOSLNK linkage editor from object
modules (OMs) and stored in a cataloged program file or as a type C library
element (cf. element type) in a program library.

program definition
Generic term for
– control section (CSECT)
– entry point (ENTRY)
– COMMON section
– external dummy section (XDSEC-D)

program library
PAM file which is processed using the library access method PLAM. A program
library contains library elements which are uniquely identifiable by element type
and element identifier.

pseudo-register
Main memory area which is used for intercommunication by different program
sections.

pseudo-RMODE
Residence mode (RMODE) of a module. It is defined by BINDER or DBL on the
basis of the residence mode of all the CSECTs in the module.

reentrant program
A program whose code is not modified during execution. This is a prerequisite
for use of the program as shared code.

416 U9557-J-Z125-4-76

Glossary

reference
Generic term for
– external reference (EXTRN)
– V-type constant
– weak external reference (WXTRN)
– external dummy section (XDSEC-R)

residence mode
RMODE

Attribute of a control section (CSECT); it defines whether the CSECT will be
loaded above and below 16 Mb (RMODE=ANY) or only below 16 Mb
(RMODE=24).

RMODE
Residence mode

scope of a context
Defines the memory class in which a context is situated. The context can be in
the user address space (USER) or system address space (SYSTEM).

shared (SHARE) program
Module which has been declared shareable by the system administrator by
means of the ADD-SHARED-PROGRAM command; it is loaded into class 4
memory.

single slice
Physical structure of a link and load module (LLM) in which the LLM consists of a
single slice.

shared code
Code which may be used simultaneously by several tasks. It may be stored in
class 4 memory or in a common memory pool of class 6 memory. In order to be
used as shared code, the program must have been written as a reentrant
program.

slice
Loadable unit which combines all the control sections (CSECTs) that are to be
loaded together. Slices form the physical structure of a link and load module (LLM).

slices by attributes
Physical structure of a link and load module (LLM) in which the slices are formed
according to attributes of control sections (CSECTs)

U9557-J-Z125-4-76 417

Glossary

sub-LLM
Substructure in the logical structure of an LLM; it consists of object modules (OMs)
or other sub-LLMs and is addressed by means of the path name.

symbol
Generic term for program definition and reference; it is identified by a symbol
name.

text information
Information in a module which consists of the code and the data.

user-defined slices
Physical structure of a link and load module (LLM) in which the slices are defined
by the user by means of SET-USER-SLICE-POSITION statements. Overlay
structures can be formed at the same time.

V-type constant
Address constant which is defined in one module but whose address is used in
another module; it is resolved unconditionally, either explicitly or by autolink.

weak external reference
WXTRN

Has the same characteristics as an external reference (EXTRN), but is only
resolved conditionally. Autolink cannot be applied to WXTRNs.

WXTRN
Weak external reference

XDSEC
External dummy section

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9557-J-Z125-4-76 419

Related publications
The manuals are available as online manuals, see http://manuals.fujitsu-siemens.com, or in
printed form which must be paid and ordered separately at http://FSC-manualshop.com.

[1] BLSSERV
Dynamic Binder Loader / Starter in BS2000/OSD
User Guide

Target group
This manual is intended for software developers and experienced
BS2000/OSD users
Contents
It describes the functions, subroutine interface and XS support of the dynamic binder loader
DBL as a component of the BLSSERV subsystem, plus the method used for calling it.

[2] BS2000
TSOSLNK
User Guide

Target group
Software developers
Contents
– Statements and macros of the linkage editor TSOSLNK for linking load modules and

prelinked modules
– Commands of the static loader ELDE

http://manuals.fujitsu-siemens.com
http://FSC-manualshop.com

420 U9557-J-Z125-4-76

Related publications

[3] ASSEMBH (BS2000)
User Guide

Target group
Assembly language users under BS2000
Contents
– Calling and controlling ASSEMBH
– Assembling, linking, loading, and starting programs
– Input sources and output of ASSEMBH
– Runtime system, structured programming
– Language interfacing
– Assembler Diagnostic Program ASSDIAG
– Advanced Interactive Debugger AID
– ASSEMBH messages
– Machine instruction formats

[4] LMS (BS2000)
SDF Format
User Guide

Target group
BS2000 users.
Contents
Description of the statements for creating and managing PLAM libraries and the members
these contain.
Frequent applications are illustrated with examples.

[5] BS2000/OSD-BC
System Installation
User Guide

Target group
This manual is intended for BS2000/OSD system administration.
Contents
The manual describes the generation of the hardware configuration with UGEN and the
following installation services: disk organization with MPVS, the installation of volumes
using the SIR utility routine, and the IOCFCOPY subsystem.

U9557-J-Z125-4-76 421

Related publications

[6] BS2000/OSD-BC V6.0
Commands, Volumes 1 - 6
User Guide

Target group
This manual is addressed to nonprivileged users and systems support staff.
Contents
The manual contains the BS2000/OSD commands (basic configuration and selected
products) with the functionality for all privileges. An introductory overview provides infor-
mation on all the commands.

[7] JV (BS2000/OSD)
Job Variables
User Guide

Target group
The manual addresses both nonprivileged users and systems support.
Contents
The manual describes management and possible uses of job variables. The command
descriptions are divided according to function areas. The macro calls are described in a
separate chapter.

[8] BS2000/OSD-BC
Executive Macros
User Guide

Target group
The manual addresses all BS2000/OSD assembly language programmers.
Contents
The manual contains a summary of all Executive macros, detailed descriptions of each
macro with notes and examples, including job variable macros, and a comprehensive
general training section.

422 U9557-J-Z125-4-76

Related publications

[9] AID (BS2000)
Advanced Interactive Debugger
Core Manual
User Guide

Target group
Programmers in BS2000
Contents
– Overview of the AID system
– Description of facts and operands which are the same for all programming languages
– Messages
– Comparison between AID and IDA
Applications
Testing of programs in interactive or batch mode

[10] BS2000/OSD-BC
Introductory Guide to Systems Support
User Guide

Target group
This manual is addressed to BS2000/OSD systems support staff and operators.
Contents
The manual covers the following topics relating to the management and monitoring of the
BS2000/OSD basic configuration: system initialization, parameter service, job and task
control, memory/device/system time/user/file/pubset management, assignment of privi-
leges, accounting and operator functions.

[11] BS2000/OSD-BC V6.0
System Messages, Volumes 1 - 3
User Guide

Target group
This manual is addressed to systems support staff, operators and users.
Contents
The manual deals with message processing in BS2000/OSD and contains the system
messages for the basic configuration of the BS2000/OSD operating system. The messages
are arranged in alphabetical order by message class and are accompanied by explanatory
texts where appropriate.

U9557-J-Z125-4-76 423

Related publications

[12] Introductory Guide to XS Programming
(for Assembler Programmers) (BS2000)
User’s Guide

Target group
– Programmers
– System programmers
Contents
– The addressing modes of the central units supported as of BS2000 V9.0 and their effect

on Assembler instructions
– Programming notes for Assembler programmers who use the extended address space

of XS systems or who wish to structure their programs independently of addressing
mode and to make them portable

Applications
TU and TPR programs

[13] BS2000
Programmiersystem (only available in German)
Technische Beschreibung
(Programming System, Technical Description)

Target group
● BS2000 users with an interest in the technical background of their systems (software

engineers, systems analysts, computer center managers, system administrators)
● Computer scientists interested in studying a concrete example of a general-purpose

operating system
Contents
Functions and principles of implementation of
● the linkage editor
● the static loader
● the Dynamic Linking Loader
● the debugging aids
● the program library system

[14] SDF (BS2000/OSD)
Introductory Guide to the SDF Dialog Interface
User Guide

Target group
BS2000/OSD users
Contents
This manual describes the interactive input of commands and statements in SDF format. A
Getting Started chapter with easy-to-understand examples and further comprehensive
examples facilitates use of SDF. SDF syntax files are discussed.

424 U9557-J-Z125-4-76

Related publications

[15] SDF-A (BS2000/OSD)
User Guide

Target group
This manual is intended for experienced BS2000 users and system administration staff.
Contents
It describes how to process syntax files and explains the SDF-A functions on the basis of
examples. The SDF-A statements are listed in alphabetical order.
The manual also includes a description of the SDF-SIM utility routine.

[16] BS2000/OSD-BC
Introductory Guide to DMS
User Guide

Target group
This manual is addressed to nonprivileged users and systems support staff.
Contents
It describes file management and processing in BS2000.
Attention is focused on the following topics:
– volumes and files
– file and catalog management
– file and data protection
– OPEN, CLOSE and EOV processing
– DMS access methods (SAM, ISAM,...)

U9557-J-Z125-4-76 425

Index

A
abbreviation facilities 180
address relocation 96
addressing mode 106, 243
alias 181, 184
ALIGNMENT 106, 243
alignment (ALIGNMENT) 106, 243
alphanum-name (data type) 185
AMODE 106, 243
asterisk preceding constant operand value 180
attributes of a CSECT 10
attributes of an LLM, modifying 35
attributes of modules, modifying 58, 232
attributes of symbols 106

modifying 106, 243
modifying, example 106

attributes, sliced by common promotion 95
autolink function 72, 77

of BINDER 267
rules 77
with I$ symbols 366

B
backtracking 17
batch mode 7, 73
beginning of a sub-LLM 49
BEGIN-SUB-LLM-STATEMENTS 44, 49, 199,

252
bind 1
BINDER concept 7
BINDER functions 27
BINDER list output, example 135
BINDER macro 161

BINDER run 7, 72, 126, 130, 132, 157
monitoring with job variables 159
program information 160
starting 157
status indicator 159
terminating 157, 202
termination code 159

BINDER runs, simultaneous 132, 278, 319
BINDER statements 27
BINDER-MAPs, ISAM keys 134
BLSCOPYN 227, 317
BLSLDPXS 286
BLSLIBnn 72, 205, 268, 297

in REPLACE-MODULES 260
BLSSEC 3

C
calling BINDER 157
cat (suffix for data type) 196
cat-id (data type) 185
changing

logical name of an LLM 58
path name of a module 58

class 2 system parameter
BLSCOPYN 227, 317
BLSLDPXS 286

command-rest (data type) 185
COMMON 95, 97

in name conflicts 94
modifying attributes 106, 243
renaming 99, 253

COMMON promotion 95
compilers 1
compl (suffix for data type) 191
composed-name (data type) 185

426 U9557-J-Z125-4-76

Index

constructor (string) 194
contents of an LLM 21
control section (CSECT) 10, 97

modifying attributes 106, 243
renaming 99, 253
searching for 72

controlling error processing 126, 219
controlling, logging 125
COPYRIGHT 29, 35, 227, 317
copyright information 29, 35, 227, 317
corr (suffix for data type) 196, 197
creating an LLM 22, 29, 313

example 31
CSECT 10, 97

handling by autolink 267
modifying attributes 106, 243
renaming 99, 253
searching for 72

CSECT attributes 10
c-string (data type) 185
current

program library 35
slice 61
sub-LLM 49, 199

current LLM 29, 32, 35, 275
resetting 202
storing 319

D
data type

alphanum-name 185
cat-id 185
command-rest 185
composed-name 185
c-string 185
date 185
device 185
filename 186
fixed 185
integer 187
name 187
partial-name 188
posix-filename 188
posix-pathname 188

product-version 189
structured-name 189
text 189
time 189
vsn 189
x-string 190
x-text 190

data types in SDF 181, 185
suffixes 182

date (data type) 185
DBL (dynamic binder loader) 2, 10
default file link name

for BINDER lists 300, 308, 309
default file name for BINDER lists 300
device (data type) 185
DUPLICATE-LIST 307

in BINDER lists 134
dynamic binder loader (DBL) 10

E
EAM object module file (OMF) 2

in INCLUDE-MODULES 40, 203
in REPLACE-MODULES 46, 258
input source for BINDER 132

edit run 30, 227
ELDE 3
ELEMENT

in INCLUDE-MODULES 205
in REPLACE-MODULES 261
in SAVE-LLM 15, 278
in SHOW-LIBRARY-ELEMENT 297
in START-LLM-UPDATE 321

element identifier, definition 15
element name

definition 15
in INCLUDE-MODULES 205
in REPLACE-MODULES 261
in SAVE-LLM 29, 36, 278
in SHOW-LIBRARY-ELEMENT 297
in START-LLM-UPDATE 321
same 275

element type C 2

U9557-J-Z125-4-76 427

Index

element type L 2, 7, 8
in INCLUDE-MODULES 203
in REPLACE-MODULES 46, 258
in SAVE-LLM 35, 313
in START-LLM-UPDATE 319

element type R 2
as BINDER input 132
in INCLUDE-MODULES 203
in REPLACE-MODULES 258

element type, definition 15
element version 40, 46

definition 15
highest 40, 46
in INCLUDE-MODULES 205
in REPLACE-MODULES 261
in SAVE-LLM 29, 36, 278
in SHOW-LIBRARY-ELEMENT 297
in START-LLM-UPDATE 321

END 132, 158, 161, 202
end of a sub-LLM 49
END-LLM-STATEMENTS 49
END-SUB-LLM-STATEMENTS 44, 199, 202,

252
ENTRY 97

handling by autolink 267
renaming 99, 253
searching for 72

entry point (ENTRY) 97, 99
renaming 253
searching for 72

ENTRY-POINT 288
error processing, controlling 126, 219
ESV (External Symbols Vector) 21

in name conflicts 94
in SAVE-LLM 36, 284
when masking symbols 108

exclusive slice 60
EXIT-ROUTINE in SHOW-MAP 309
external dummy section (XDSEC-D) 97
external reference 97

renaming 99, 253
resolving 72, 267
resolving, examples 75
resolving, rules 73

unreferenced 72, 366
unresolved 88, 289
unresolved, examples 88

External Symbols Vector (ESV)
definition 21
in name conflicts 94
in SAVE-LLM 36, 284
when masking symbols 108

EXTRN 72, 97, 289
renaming 99, 253

F
FATAL ERROR 221

severity class 126
filename (data type) 186
fixed (data type) 185

G
gen (suffix for data type) 196
global index 194
GLOBAL-INFORMATION 304

in BINDER lists 134
list 137

guaranteed abbreviations 180

H
handling symbols 97
HELP-INFORMATION 304

in BINDER lists 134

I
I$ symbol 366
identification of an LLM 15
INCLUDE-MODULES 22, 32, 40

format 203
including modules 22, 40, 203

example 41
INCLUSION-DEFAULTS

in MODIFY-LLM-ATTRIBUTES 227
in START-LLM-CREATION 30, 318
in START-LLM-UPDATE 322

index 194
INFORMATION 220

severity class 126

428 U9557-J-Z125-4-76

Index

input source for BINDER 40, 46, 203, 258
current 40
opening 132

INPUT-INFORMATION 307
in BINDER lists 134

inputs for BINDER 130
integer (data type) 187
interactive mode 7, 73
INTERNAL ERROR (severity class) 126
internal name

in MODIFY-LLM-ATTRIBUTES 35, 224
in SAVE-LLM 36, 278
in START-LLM-CREATION 29, 314
root in logical structure of an LLM 8, 15

internal version
definition 15
in MODIFY-LLM-ATTRIBUTES 35, 225
in SAVE-LLM 36, 278
in START-LLM-CREATION 29, 315

INTERNAL-NAME
in MODIFY-LLM-ATTRIBUTES 35, 224
in START-LLM-CREATION 314
in START-LLM-CrEATION 29
root in logical structure of an LLM 8, 15

INTERNAL-VERSION
definition 15
in MODIFY-LLM-ATTRIBUTES 35, 225
in START-LLM-CREATION 29, 315

ISAM keys 176
BINDER-MAPs 134
description 405

J
job variables

for monitoring the BINDER run 159

L
level

in logical structure of an LLM 8, 16, 49
LIBRARY

in INCLUDE-MODULES 204
in REPLACE-MODULES 260
in RESOLVE-BY-AUTOLINK 268
in SAVE-LLM 277

in START-LLM-UPDATE 320
library element 7
link and load module (LLM) 1, 7, 8, 132, 133

definition 2
linkage 1
linkage editor BINDER 2
link-edit 1
linker BINDER 2
list for symbolic debugging (LSD) 21, 35, 58

in INCLUDE-MODULES 208
in MODIFY-LLM-ATTRIBUTES 228
in MODIFY-MODULE-ATTRIBUTES 233
in REPLACE-MODULES 263
in RESOLVE-BY-AUTOLINK 271
in SAVE-LLM 36, 286
in START-LLM-CREATION 30, 318
in START-LLM-UPDATE 32, 323

lists 288
COMMON list 145
duplicate list 307
duplicate symbol definitions list 148
duplicate symbols definitions list 134
global information 137
header information 134
header line 134, 304
help information 134, 136, 304
input information 134, 148, 307
ISAM keys 134
logical structure 134, 139, 304
merged modules 134
naming 134
output destination 299, 307
outputting 302
overview of the logical structure 304
physical structure 134, 141, 305
program map 134, 142, 305
pseudo-registers 307
pseudo-registers list 134, 147
sorted program map 306
sorted symbols definitions list 134, 146
statement list 134
unresolved definitions list 134
unresolved external references 306
unused modules 307

U9557-J-Z125-4-76 429

Index

unused modules list 134, 147
lists from BINDER 125, 133

output 133
LLM (link and load module) 1, 7, 8, 132, 133

contents 21
creating 22, 29, 313
creating logical structure 49, 199, 202
creating logical structure, example 51
creating physical structure 60
creating physical structure, example 62
creating, example 31
current 35, 275
defining physical structure 61, 291
definition 2
identification 15
in BINDER lists 134
load address 96, 286
logical structure 8, 21
modifying attributes 22, 35, 223
modifying the structure 232
physical structure 10, 29, 225, 315
physical structure, diagrammatic

representation 60
physical structure, example 15
reference address 96
saving 22, 29, 35, 275
saving, example 37
start address 288
updating 22, 32, 319
updating, example 33

load address 95
of an LLM 96, 286

load module 7, 369
LOAD-ADDRESS 286
loader 1
loading 1
loading and starting BINDER 157
local relocation dictionary (LRLD)

definition 21
in SAVE-LLM 36

logging control 125
logical name of an LLM,changing 58
logical structure information for an LLM 30

in INCLUDE-MODULES 208

in MODIFY-LLM-ATTRIBUTES 35, 228
in REPLACE-MODULES 263
in RESOLVE-BY-AUTOLINK 270
in SAVE-LLM 285
in START-LLM-CREATION 318
in START-LLM-UPDATE 322

logical structure of an LLM 8, 21, 51
creating 49, 199, 202
level 8, 49
modifiyng 58
root 8, 49
structure tree 8, 49

LOGICAL-STRUCTURE
in BINDER lists 134
in INCLUDE-MODULES 208
in MODIFY-LLM-ATTRIBUTES 35, 228
in REPLACE-MODULES 263
in RESOLVE-BY-AUTOLINK 270
in SAVE-LLM 36, 285
in SHOW-MAP 304
in START-LLM-CREATION 30, 318
in START-LLM-UPDATE 32, 322

low (suffix for data type) 191
LRLD (local relocation dictionary)

definition 21
in SAVE-LLM 36

LSD (list for symbolic debugging) 21, 36
in INCLUDE-MODULES 208
in MODIFY-LLM-ATTRIBUTES 35, 228
in MODIFY-MODULE-ATTRIBUTES 58, 233
in REPLACE-MODULES 263
in RESOLVE-BY-AUTOLINK 271
in SAVE-LLM 286
in START-LLM-CREATION 30, 318
in START-LLM-UPDATE 32, 323
storing 21

M
main memory resident (RESIDENT) 11, 67, 106,

243
man (suffix for data type) 196, 197
mandatory (suffix for data type) 197
MAP 125, 133, 288
MAP-NAME 134

430 U9557-J-Z125-4-76

Index

masked symbol 99, 356, 366
masking of symbols 94

modifying 108, 249
MAX-ERROR-WEIGHT 221
MERGED-MODULES in BINDER lists 134
MERGE-MODULES 111, 213

examples 114
merging modules 111, 213
message handling 127
MESSAGE-CONTROL 127, 220
metasyntax of SDF 181
migration from TSOSLNK to BINDER 359
MODE 291
MODIFY-ERROR-PROCESSING 126, 127, 219
modifying

attributes of an LLM 22, 35, 223
attributes of modules 58, 232
attributes of symbols 106, 243
attributes of symbols, example 106
default values for output of lists 229
logical structure of an LLM 58
masking of symbols 108, 249
physical structure 35
structure of an LLM 232
symbol types 110
type of external references 247

MODIFY-LLM-ATTRIBUTES 15, 22, 35, 223
MODIFY-MAP-DEFAULTS 125, 229, 288, 302
MODIFY-MODULE-ATTRIBUTES 58, 232
MODIFY-SYMBOL-ATTRIBUTES 106, 243
MODIFY-SYMBOL-TYPE 110, 247
MODIFY-SYMBOL-VISIBILITY 99, 108, 249
module 8, 132

including 22, 40, 203
including, example 41
modifiyng attributes 58
modifying attributes 232
priority 206, 262, 268, 298
removing 44, 252
removing, example 45
replacing 22, 46, 258
replacing, example 47

MODULE-CONTAINER
in INCLUDE-MODULES 204, 260, 277

in START-LLM-UPDATE 320
multiple access to LLMs 132, 278, 319

N
NAME 252

in INCLUDE-MODULES 207
in REPLACE-MODULES 259

name (data type) 187
name conflicts 94

in MODIFY-MODULE-ATTRIBUTES 58
in MODIFY-SYMBOL-VISIBILITY 108
in RENAME-SYMBOLS 99

NAME-COLLISION in MODIFY-MODULE-
ATTRIBUTES 58

nesting with sub-LLMs 49
NEW-NAME 256

in REPLACE-MODULES 262
node 8, 16, 49, 199
nonmasked symbol 356
notational conventions for SDF 181

O
object module (OM) 1, 2, 8, 132

prelinked 2
object module library (OML) 2

in INCLUDE-MODULES 40, 203
in REPLACE-MODULES 46, 258
input source for BINDER 132

odd (suffix for data type) 196
OM (object module) 1
OML (object module library) 2

in INCLUDE-MODULES 40, 203
in REPLACE-MODULES 46, 258
input source for BINDER 132

opening, input source 132
OUTPUT 299, 307
output destinations for BINDER lists 125, 133
outputting lists from BINDER 133, 302
overlays with slices 12
OVERWRITE in SAVE-LLM 35
overwriting, LLM as library element 35

U9557-J-Z125-4-76 431

Index

P
parameter area, BINDER macro 163
partial-filename (data type) 188
path name 40, 49, 199, 252

abbreviation 17
definition 16
in INCLUDE-MODULES 207
in MERGE-MODULES 214
in MODIFY-MODULE-ATTRIBUTES 233
in RESOLVE-BY-AUTOLINK 78, 270
of a module, changing 58
structure 16

path-compl (suffix for data type) 191
PATH-NAME

in BEGIN-SUB-LLM-STATEMENTS 199
in INCLUDE-MODULES 207
in MERGE-MODULES 213
in MODIFY-MODULE-ATTRIBUTES 232
in REMOVE-MODULES 252
in REPLACE-MODULES 260
in RESOLVE-BY-AUTOLINK 78, 270

physical structure information of an LLM 21
physical structure of an LLM 10, 29, 225, 315

creating 60
creating, example 62
defining 61, 291
diagrammatic representation 60
diagrammatic representation, example 61
example 15

physical structure, modifying 35
PHYSICAL-STRUCTURE 305

in BINDER lists 134
positional operands 181
posix-filename (data type) 188
posix-pathname (data type) 188
prelinked module 7, 8
prelinked object module 2, 368
priority of modules 40, 206, 262, 268, 298
product-version (data type) 189
program 7
program (load module) 369
program definition 97, 253
program file 2
program information for BINDER run 159

program library 2, 7
current 35
in INCLUDE-MODULES 40, 203
in REPLACE-MODULES 46, 258
in SAVE-LLM 29, 35
in START-LLM-UPDATE 319
input source for BINDER 132

PROGRAM-MAP 305
in BINDER lists 134

PSEUDO-REGISTER 307
in BINDER lists 134

pseudo-register 96
pseudo-register vector 96
PUBLIC 11, 67, 106, 243

Q
quotes (suffix for data type) 197

R
read access (READ-ONLY) 11, 67, 106, 243
READ-ONLY 11, 67, 106, 243
RECOVERABLE ERROR 221

severity class 126
reference 97, 253
reference address 96

of an LLM 96
referenced external references 366
region 61
relocation dictionary (RLD)

in SAVE-LLM 285
relocation information 21, 36
relocation of addresses 96
RELOCATION-DATA in SAVE-LLM 36
REMOVE-MODULES 32, 44, 252
removing modules 44, 252

example 45
RENAME-SYMBOLS 99, 253
renaming symbols 99, 253

examples 100
REPLACE-MODULES 22, 32, 46

format 258
replacing modules 22, 46, 258

example 47
residence mode 11, 67, 106, 243

432 U9557-J-Z125-4-76

Index

RESIDENT 11, 67, 106, 243
RESOLUTION 290
RESOLUTION-SCOPE

in BEGIN-SUB-LLM-STATEMENTS 200
in INCLUDE-MODULES 209, 264
in MODIFY-MODULE-ATTRIBUTES 234
in RESOLVE-BY-AUTOLINK 271

RESOLVE-BY-AUTOLINK 72, 77, 267
resolving external references 72, 267

BINDER, examples 74, 75
BINDER, rules 73

return code indicator
for BINDER run 159

return code, BINDER macro 164
RLD (relocation dictionary)

in SAVE-LLM 285
RMODE 11, 67, 106, 243
root 8, 16
root slice 60, 61, 208, 263
runtime modules

in RESOLVE-BY-AUTOLINK 78
RUN-TIME-VISIBILITY

in MODIFY-MODULE-ATTRIBUTES 58
in RESOLVE-BY-AUTOLINK 78

S
SAVE-LLM 22, 29

after START-LLM-CREATION 313
after START-LLM-UPDATE 32, 35, 319
for BINDER lists 125
format 275

saving an LLM 22, 35, 275
example 37

SCOPE
in MODIFY-SYMBOL-ATTRIBUTES 106,

244
in MODIFY-SYMBOL-TYPE 248
in MODIFY-SYMBOL-VISIBILITY 108, 250
in RENAME-SYMBOLS 255
in RESOLVE-BY-AUTOLINK 269
in SET-EXTERN-RESOLUTION 290

scope for
BINDER run 130
edit run 130
one statement 130

search procedure for path name 17
security component BLSSEC 3
sep (suffix for data type) 196
SET-EXTERN-RESOLUTION 88, 289
SET-USER-SLICE-POSITION 12, 61, 226, 291,

316
severity class 160, 219

FATAL ERROR 126, 221
for messages 127
INFORMATION 126, 221
INTERNAL ERROR 126, 221
RECOVERABLE ERROR 126, 221
SYNTAX ERROR 126, 221
UNRESOLVED EXTERNS 126, 221
WARNING 126, 221

shareable (PUBLIC) 11, 67, 106, 243
SHOW-FILE 125, 133, 299, 308
SHOW-LIBRARY-ELEMENTS 295

ISAM keys of the lists 123, 134
SHOW-MAP 61, 125

format 302
modifying default values 229
output destination 133

SHOW-SYMBOL-INFORMATION 311
simultaneous access to LLMs 132, 278, 319
simultaneous BINDER runs 132
single slice 10, 13, 225, 315

common promotion 95
SLICE 208, 263
slice 10, 208, 263, 291

by attributes 225, 315
by attributes, example 13
exclusive 60
level number 61
region 61
single 10, 225, 315
single, example 13
user-defined 12, 226, 316
user-defined, example 13

slice name 69, 141

U9557-J-Z125-4-76 433

Index

SLICE-DEFINITION 29, 61, 225, 315
in MODIFY-LLM-ATTRIBUTES 35

SLICE-NAME 291
slices by attributes 10
SORTED-PROGRAM-MAP 306

in BINDER lists 134
SPECIAL-HANDLING 221
standard header 164
start address of LLM 288
starter 3
START-LLM-CREATION 15, 22, 29, 32

format 313
START-LLM-UPDATE 22, 32

format 319
START-STATEMENT-RECORDING 324
STATEMENT-LIST

in BINDER lists 134
statements for BINDER 130, 177

grouping by function 177
overview 198

static loader ELDE 3
status indicator for BINDER run 159
STOP-STATEMENT-RECORDING 325
structure information for an LLM 21

logical, with SAVE-LLM 36
structure information, physical 21
structure of an LLM modifying 232
structure of path name 16
structured-name (data type) 189
sub-LLM 7, 8, 40, 44, 199

beginning 49, 199
end 49, 202
nesting 49

subsystem 11
symbols 226, 316

SUBSYSTEM-ENTRIES 226
suffixes for data types 182, 191
symbol

definition of term 97
handling 97
masked 99, 249, 356, 366
modifying attributes 106, 243
modifying masking 108, 249
modifying type 110

nonmasked 356
renaming 99, 253
renaming, examples 100
showing information about 311

symbol types 247
SYMBOL-DICTIONARY

in SAVE-LLM 284
SYMBOL-DICTIONARY in SAVE-LLM 36
SYMBOL-NAME 243, 249, 254, 269, 289

in SHOW-LIBRARY-ELEMENT 298
symbols in subsystems 226, 316
SYMBOL-TYPE 254, 289
syntax description 181
SYNTAX ERROR, severity class 126, 221

T
task switch 221
temp-file (suffix for data type) 196
terminating BINDER 157
termination code for BINDER run 159
TEST-OPTIONS in REPLACE-MODULES 263
TEST-SUPPORT

in INCLUDE-MODULES 208
in MODIFY-LLM-ATTRIBUTES 35, 228
in MODIFY-MODULE-ATTRIBUTES 58, 233
in RESOLVE-BY-AUTOLINK 271
in SAVE-LLM 36, 286
in START-LLM-CREATION 30, 318
in START-LLM-UPDATE 32, 323

text (data type) 189
text information (TXT) 21
time (data type) 189
TSOSLNK 7
TXT (text) 21
TYPE 206, 262, 268, 298

in INCLUDE-MODULES 40

U
under (suffix for data type) 192
unreferenced EXTRNs 110
unresolved external references 88, 289

examples 88
UNRESOLVED EXTERNS

severity class 126

434 U9557-J-Z125-4-76

Index

UNRESOLVED-EXTERNS 221
UNRESOLVED-LIST 306

in BINDER lists 134
UNUSED-MODULE-LIST 307

in BINDER lists 134
updating LLM 22, 32, 319

example 33
user (suffix for data type) 197
user interface, notes on 180
user switch 221
USER-COMMENT 134, 304

V
vers (suffix for data type) 197
VERSION

in INCLUDE-MODULES 205
in REPLACE-MODULES 261
in SAVE-LLM 15
in START-LLM-UPDATE 321

VISIBLE 250
vsn (data type) 189
V-type constant 97, 99, 253, 289

W
WARNING 221
WARNING, severity class 126, 221
weak external reference (WXTRN) 72, 97, 99,

253, 289
wild(n) (suffix for data type) 192
wild-constr (suffix for data type) 194
with (suffix for data type) 191
with-constr (suffix for data type) 194
with-low (suffix for data type) 191
without (suffix for data type) 196
without-cat (suffix for data type) 196
without-corr (suffix for data type) 196
without-gen (suffix for data type) 196
without-man (suffix for data type) 196
without-odd (suffix for data type) 196
without-sep (suffix for data type) 196
without-user (suffix for data type) 197
without-vers (suffix for data type) 197
with-under (suffix for data type) 192
with-wild(n) (suffix for data type) 192

work area of BINDER 29, 32, 35, 40, 319
deleting 313

WXTRN 97
in RENAME-SYMBOLS 99
in SET-EXTERN-RESOLUTION 289
renaming 253
unresolved 72

X
XDSEC-D 97
x-string (data type) 190
x-text (data type) 190

U9557-J-Z125-4-76

Contents
1 Preface . 1
1.1 Brief product description . 1
1.2 Target group . 5
1.3 Summary of contents . 5
1.4 Notational conventions . 6
1.5 Changes since the last version of this manual . 6

2 Introduction to the linker BINDER . 7
2.1 Link and load modules (LLMs) . 8
2.2 Logical structure of an LLM . 8
2.3 Physical structure of an LLM . 10
2.3.1 LLMs with a single slice . 10
2.3.2 LLMs with slices by attributes . 10
2.3.3 LLMs with user-defined slices . 12
2.4 Identification of an LLM . 15
2.5 Contents of an LLM . 21
2.6 Limiting conditions for LLMs . 23

3 BINDER functions . 27
3.1 Creating, modifying and saving an LLM . 29
3.1.1 Creating an LLM . 29
3.1.2 Updating an LLM . 32
3.1.3 Modifying the attributes of an LLM . 35
3.1.4 Saving an LLM . 35
3.2 Including, removing and replacing modules . 40
3.2.1 Including modules . 40
3.2.2 Removing modules . 44
3.2.3 Replacing modules . 46
3.3 Creating and modifying the logical structure of an LLM . 49
3.3.1 Creating the logical structure of an LLM . 49
3.3.2 Modifying the logical structure of an LLM . 58
3.4 Creating the physical structure of an LLM . 60
3.4.1 User-defined slices . 60
3.4.2 Slices by attributes . 67
3.4.3 Modifying the type of physical structure . 70
3.4.4 Connection between private and public slices . 70

 U9557-J-Z125-4-76

Contents

3.5 Resolving external references . 72
3.5.1 Rules for resolving external references . 73
3.5.2 Autolink function . 77
3.5.3 Handling unresolved external references . 88
3.6 Handling name conflicts . 94
3.7 COMMON promotion . 95
3.8 Handling pseudo-registers . 96
3.9 Address relocation . 96
3.10 Handling symbols . 97
3.10.1 Symbol names . 98
3.10.2 Renaming symbols . 99
3.10.3 Modifying the attributes of symbols . 106
3.10.4 Modifying the masking of symbols . 108
3.10.5 Modifying symbol types . 110
3.11 Merging modules . 111
3.12 Defining default values . 117
3.13 Display functions . 118
3.13.1 Displaying the default values . 118
3.13.2 Displaying symbol information . 120
3.13.3 Displaying and checking library elements . 123
3.14 Controlling logging . 125
3.15 Controlling error processing . 126
3.15.1 Severity classes . 126
3.15.2 Message handling . 127

4 BINDER input/output . 129
4.1 Inputs for BINDER . 130
4.2 Outputs from BINDER . 133
4.2.1 Saved LLMs . 133
4.2.2 Lists . 133

5 BINDER run . 157
5.1 Calling and terminating BINDER . 157
5.2 Monitoring the BINDER run with job variables . 159

6 Subroutine interface . 161
6.1 BINDER macro . 161
6.2 Examples . 165

U9557-J-Z125-4-76

Contents

7 BINDER statements . 177
7.1 Grouping of statements by function . 177
7.2 Notes on the SDF user interface . 180
7.2.1 SDF syntax description . 181
7.3 Description of the statements . 197

BEGIN-SUB-LLM-STATEMENTS . 199
END . 202
END-SUB-LLM-STATEMENTS . 202
INCLUDE-MODULES . 203
MERGE-MODULES . 213
MODIFY-ERROR-PROCESSING . 219
MODIFY-LLM-ATTRIBUTES . 223
MODIFY-MAP-DEFAULTS . 229
MODIFY-MODULE-ATTRIBUTES . 232
MODIFY-STD-DEFAULTS . 237
MODIFY-SYMBOL-ATTRIBUTES . 243
MODIFY-SYMBOL-TYPE . 247
MODIFY-SYMBOL-VISIBILITY . 249
REMOVE-MODULES . 252
RENAME-SYMBOLS . 253
REPLACE-MODULES . 258
RESOLVE-BY-AUTOLINK . 267
SAVE-LLM . 275
SET-EXTERN-RESOLUTION . 289
SET-USER-SLICE-POSITION . 291
SHOW-DEFAULTS . 293
SHOW-LIBRARY-ELEMENTS . 295
SHOW-MAP . 302
SHOW-SYMBOL-INFORMATION . 311
START-LLM-CREATION . 313
START-LLM-UPDATE . 319
START-STATEMENT-RECORDING . 324
STOP-STATEMENT-RECORDING . 325

 U9557-J-Z125-4-76

Contents

8 Usage models for generating LLMs . 327
8.1 Program . 328
8.2 Module . 330
8.3 Program library . 332
8.4 Module library . 334
8.5 Generating the different program types . 336
8.5.1 Generating a program . 336
8.5.1.1 Non-shareable program . 336
8.5.1.2 Partially shareable program . 337
8.5.1.3 Totally shareable program . 339
8.5.2 Generating a module . 341
8.5.2.1 Non-shareable module . 341
8.5.2.2 Partially shareable module . 343
8.5.2.3 Totally shareable module . 345
8.5.3 Generating a program library . 347
8.5.4 Generating a module library . 349
8.6 More information about the usage models . 350
8.6.1 LLM format 1 . 350
8.6.2 Preloading public slices via the ASHARE interface . 350

9 Migration . 353
9.1 Old and current concepts . 353
9.1.1 Old concepts . 353
9.1.2 Current concepts . 355
9.2 Features of the current Binder-Loader-Starter system . 356
9.2.1 Link and load module (LLM) and BINDER . 356
9.2.2 Dynamic binder loader DBL . 357
9.2.3 DBL and BINDER . 358
9.3 Migration from TSOSLNK to BINDER . 359
9.3.1 Comparison of the statements . 359
9.3.2 Differences in method of operation . 365
9.3.3 Comparison of the output . 368

10 BINDER messages . 371

11 Appendix: Description of the ISAM keys . 405

Glossary . 409

Related publications . 419

Index . 425

U9557-J-Z125-4-76

BINDER V2.3

Binder in BS2000/OSD
User Guide

Target group
Software developers

Contents
The manual describes the BINDER functions, including examples. The reference section
contains a description of the BINDER statements and BINDER macro.

Edition: June 2004

File: binder.pdf

Copyright © Fujitsu Siemens Computers GmbH, 2004.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

This manual was produced by
cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

http://www.cognitas.de

Comments on BINDER V2.3
Binder in BS2000/OSD

U9557-J-Z125-4-76

Fujitsu Siemens computers GmbH
User Documentation
81730 Munich
Germany

Fax: (++49) 700 / 372 00000

e-mail: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Comments
Suggestions
Corrections

✁

Submitted by

mailto:manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Brief product description
	Target group
	Summary of contents
	Notational conventions
	Changes since the last version of this manual

	Introduction to the linker BINDER
	Link and load modules (LLMs)
	Logical structure of an LLM
	Physical structure of an LLM
	LLMs with a single slice
	LLMs with slices by attributes
	LLMs with user-defined slices

	Identification of an LLM
	Contents of an LLM
	Limiting conditions for LLMs

	BINDER functions
	Creating, modifying and saving an LLM
	Creating an LLM
	Updating an LLM
	Modifying the attributes of an LLM
	Saving an LLM

	Including, removing and replacing modules
	Including modules
	Removing modules
	Replacing modules

	Creating and modifying the logical structure of an LLM
	Creating the logical structure of an LLM
	Modifying the logical structure of an LLM

	Creating the physical structure of an LLM
	User-defined slices
	Slices by attributes
	Modifying the type of physical structure
	Connection between private and public slices

	Resolving external references
	Rules for resolving external references
	Autolink function
	Handling unresolved external references

	Handling name conflicts
	COMMON promotion
	Handling pseudo-registers
	Address relocation
	Handling symbols
	Symbol names
	Renaming symbols
	Modifying the attributes of symbols
	Modifying the masking of symbols
	Modifying symbol types

	Merging modules
	Defining default values
	Display functions
	Displaying the default values
	Displaying symbol information
	Displaying and checking library elements

	Controlling logging
	Controlling error processing
	Severity classes
	Message handling

	BINDER input/output
	Inputs for BINDER
	Outputs from BINDER
	Saved LLMs
	Lists

	BINDER run
	Calling and terminating BINDER
	Monitoring the BINDER run with job variables

	Subroutine interface
	BINDER macro
	Examples

	BINDER statements
	Grouping of statements by function
	Notes on the SDF user interface
	SDF syntax description

	Description of the statements
	BEGIN-SUB-LLM-STATEMENTS
	END
	END-SUB-LLM-STATEMENTS
	INCLUDE-MODULES
	MERGE-MODULES
	MODIFY-ERROR-PROCESSING
	MODIFY-LLM-ATTRIBUTES
	MODIFY-MAP-DEFAULTS
	MODIFY-MODULE-ATTRIBUTES
	MODIFY-STD-DEFAULTS
	MODIFY-SYMBOL-ATTRIBUTES
	MODIFY-SYMBOL-TYPE
	MODIFY-SYMBOL-VISIBILITY
	REMOVE-MODULES
	RENAME-SYMBOLS
	REPLACE-MODULES
	RESOLVE-BY-AUTOLINK
	SAVE-LLM
	SET-EXTERN-RESOLUTION
	SET-USER-SLICE-POSITION
	SHOW-DEFAULTS
	SHOW-LIBRARY-ELEMENTS
	SHOW-MAP
	SHOW-SYMBOL-INFORMATION
	START-LLM-CREATION
	START-LLM-UPDATE
	START-STATEMENT-RECORDING
	STOP-STATEMENT-RECORDING

	Usage models for generating LLMs
	Program
	Module
	Program library
	Module library
	Generating the different program types
	Generating a program
	Non-shareable program
	Partially shareable program
	Totally shareable program

	Generating a module
	Non-shareable module
	Partially shareable module
	Totally shareable module

	Generating a program library
	Generating a module library

	More information about the usage models
	LLM format 1
	Preloading public slices via the ASHARE interface

	Migration
	Old and current concepts
	Old concepts
	Current concepts

	Features of the current Binder-Loader-Starter system
	Link and load module (LLM) and BINDER
	Dynamic binder loader DBL
	DBL and BINDER

	Migration from TSOSLNK to BINDER
	Comparison of the statements
	Differences in method of operation
	Comparison of the output

	BINDER messages
	Appendix: Description of the ISAM keys
	Glossary
	Related publications
	Comments, Suggestions, Corrections
	Index
	A-C
	D
	E
	F-I
	J-L
	M
	N-O
	P-R
	S
	T-U
	V-X

