
Edition November 2006

AID V3.2A
Debugging of COBOL Programs

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Fax forms for sending us your comments are included at the
back of the manual.

There you will also find the addresses of the relevant User
Documentation Department.

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks
Copyright © Fujitsu Siemens Computers GmbH 2006.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

http://www.cognitas.de

U2855-J-Z125-6-76

Contents
1 Preface . 5
1.1 Target group . 5
1.2 Structure of the AID documentation . 6
1.3 Changes made since AID V2.1A . 7

2 Metasyntax . 9

3 Prerequisites for symbolic debugging . 11
3.1 Compilation . 11
3.2 Linking, loading and starting . 13
3.3 Commands at the start of a debugging session . 13

4 COBOL-specific addressing . 15
4.1 Qualifications . 15
4.2 Symbolic memory references . 18

5 AID commands . 27
%AID . 27
%AINT . 32
%BASE . 34
%CONTINUE . 36
%CONTROLn . 37
%DISASSEMBLE . 43
%DISPLAY . 49
%DUMPFILE . 62
%FIND . 64
%HELP . 71
%INSERT . 73
%JUMP . 80
%MOVE . 82
%ON . 91
%OUT . 99
%OUTFILE . 101
%QUALIFY . 103
%REMOVE . 106
%RESUME . 109

Contents

 U2855-J-Z125-6-76

%SDUMP . 110
%SET . 118
%SHOW . 131
%STOP . 133
%SYMLIB . 134
%TITLE . 137
%TRACE . 138

6 Sample application . 145
6.1 Source listing . 145
6.2 Contents of the input file . 147
6.3 Test run . 147

7 Debugging special COBOL language resources . 155
7.1 Debugging of nested programs . 155
7.1.1 Setting test points . 155
7.1.2 Accessing data . 156
7.1.3 Tracing . 156
7.2 Debugging object-oriented COBOL programs . 157
7.2.1 Addressing . 157
7.2.2 Commands . 157
7.2.2.1 Setting test points . 157
7.2.2.2 Tracing . 157
7.2.2.3 Displaying data . 158
7.2.2.4 Editing data . 158
7.3 Testing programs with user-defined types . 159
7.3.1 The dereferencing operator . 159
7.3.2 The address selector (address operator) . 159
7.3.3 Type compatibility for comparing and assigning (%SET) . 160

Glossary . 161

Related publications . 171

Index . 177

U2855-J-Z125-6-76 5

1 Preface
AID, the Advanced Interactive Debugger in BS2000, provides users with a powerful
debugging tool. Thanks to AID, error diagnostics, debugging and short-term error recovery
of all programs generated in BS2000 are considerably more rapid and more straightforward
than other approaches, such as inserting debugging aid statements into a program, for
example. AID is permanently available and is extremely adaptable to the particular
programming language. Any program debugged using AID does not always have to be
recompiled but can be used in a production run immediately. The range of functions of AID
and its debugging language (using AID commands) are primarily tailored to interactive
applications. AID can, however, also be used in batch mode. AID provides the user with a
wide range of options for monitoring and controlling execution, effecting output and modifi-
cation of memory contents; furthermore it provides help information on program execution
as well as information on the AID program itself.

With AID, the user can debug both on the symbolic level of the relevant programming
language as well as on machine code level. During symbolic debugging, data, statements
and program sections can be addressed using the names declared in the source code, and
statements without names can be addressed using the source reference generated by the
compiler.

AID V3.2A can be installed in BS2000/OSD versions as of V5.0.

1.1 Target group

AID is the interactive debugging aid for all software developers and diagnostic engineers
who work in BS2000 with the programming languages ASSEMBH, COBOL, FORTRAN, C,
C++ or PL/I and who wish to test and also correct programs. This manual is aimed at people
wishing to debug COBOL programs.

6 U2855-J-Z125-6-76

Structure of the AID documentation Preface

1.2 Structure of the AID documentation

AID documentation is comprised of the AID Core Manual, the language-specific manuals
for symbolic debugging, and the manual for debugging on machine code level. For experi-
enced AID users there is also a AID (BS2000) Reference Guide [13], showing the syntax of
the commands and operands with brief explanations. The Reference Guide also contains
the %SET tables. All the information the user requires for debugging can be found by
referring to the manual for the particular language required and the core manual. The
manual for debugging on machine code level can either be used as a substitute for or as a
supplement to any of the language-specific manuals.

AID Core Manual [1]

The core manual provides an overview of AID and deals with facts and operands which are
the same in all programming languages. The AID overview describes the BS2000
environment, explains basic concepts and presents the AID command set. The other
chapters discuss preparations for testing; command input; the subcommand; addressing in
AID; the operand medium-a-quantity; AID literals; and keywords. The manual also contains
messages, BS2000 commands invalid in command sequences and operands supported for
the last time in this version.

AID User Guides
The User Guides contain list of the commands in alphabetical order. All simple memory
references are described in these Guides. In addition to this manual
AID - Debugging of COBOL Programs
the following other User Guides are available:
AID - Debugging of FORTRAN Programs [3]
AID - Debugging of PL/I Programs [4]
AID - Debugging of ASSEMBH Programs [5]
AID - Debugging of C/C++ Programs [12]

In the language-specific manuals, the description of the operands is tailored to fit the
programming language in question. A prerequisite for this is that the user knows the
particular language scope and operation of the relevant compiler.

The additional options for debugging on the machine code level are described in
AID - Debugging on Machine Code Level [2].
This manual is required for debugging programs for which no LSD records exist or for which
the information from symbolic testing does not suffice for error diagnosis. Debugging on
machine code level means the user can issue AID commands regardless of the language
in which the program was written.

U2855-J-Z125-6-76 7

Preface Changes made since AID V2.1A

1.3 Changes made since AID V2.1A

The Readme file for AID V3.1 has been incorporated in the manual:

– Testing of COBOL2000 programs with user-defined types

– Index specification in the event of arrays

– Extensions in the %AID, %CONTROLn, %STOP and %TRACE commands

AID supports both COBOL85 objects and COBOL2000 objects.
The COBOL compiler is always discussed in this manual. However, the information refers
to both COBOL compilers.

The support of Unicode means that AID V3.2 includes the new data type %UTF16 to rep-
resent strings whose characters have 2-byte UTF16 encoding. This data type corresponds
to the NATIONAL data type in COBOL2000. The data type for representing strings pre-
viously supported by AID has 1-byte EBCDIC encoding.

COBOL2000 represents alphanumeric characters in the EBCDIC character set and natio-
nal characters in the UTF16 character set.

Further information on the data type %UTF16 is provided in the AID Core Manual [1].

8 U2855-J-Z125-6-76

Changes made since AID V2.1A Preface

U2855-J-Z125-6-76 9

2 Metasyntax
The metasyntax shown below is the notational convention used to represent commands.
The symbols used and their meanings are as follows:

UPPERCASE LETTERS
Mandatory string which the user must employ to select a particular function.

lowercase letters
String identifying a variable, in the place of which the user can insert any of the permis-
sible operand values.

lowercase italics
Operand names in the continuous text of the manual appear in lowercase italics.

 alternative 
 ... 
 alternative 

{ alternative  ...  alternative }

Alternatives; one of these alternatives must be picked. The two formats have the same
meaning.

[optional]
Specifications enclosed in square brackets indicate optional entries.

In the case of AID command names, only the entire part in square brackets can be
omitted; any other abbreviations cause a syntactical error.

[...]
Reproducibility of an optional syntactical unit. If a delimiter, e.g. a comma, must be
inserted before any repeated unit, it is shown before the periods.

{...}
Reproducibility of a syntactical unit which must be specified at least once. If a delimiter,
e.g. a comma, must be inserted, it is shown before the periods.

Underscoring
Underscoring designates the default value which AID inserts if the user does not specify
a value for the operand.

10 U2855-J-Z125-6-76

Metasyntax

● A bullet (period in bold print) delimits qualifications, stands for a prequalification (see
also the %QUALIFY statement), is the operator for a byte offset or part of the execution
counter or subcommand name. The bullet is entered from the keyboard using the key
for a normal period. It is actually a normal period, but here it is shown in bold to make
it stand out better.

U2855-J-Z125-6-76 11

3 Prerequisites for symbolic debugging
For symbolic debugging, AID requires a "List for Symbolic Debugging" (LSD) which
contains the symbolic names defined within the program. This LSD information is generated
by the compiler and can be taken over during linking, and also loaded. AID also offers the
option if necessary of dynamically loading the LSDs if they have been stored by the
compiler in a PLAM library. This LSD information is generated by the compiler and taken
over by the linking loader or the static binder and starter. The control statements for creating
the LSDs by the COBOL85/COBOL2000 compiler are described in brief below.
General information on LSD records and on linking, loading and starting is given in AID
Core Manual [1].

3.1 Compilation

As of V1.2A, the COBOL85 compiler and the CBOBOL2000 compiler can be controlled in
two ways:
– via SDF options or
– via COMOPT statements.

The COBOL compiler generates LSD information in accordance with the control option
selected when the following operands are entered:

SDF control

/START-COBOL2000-COMPILER ...,TEST-SUPPORT = AID[(...)]

Further options which influence debugging with AID can be specified in the parentheses
after "AID":

The STMT-REFERENCE option specifies whether the source references are to be formed
from the line numbers contained in the source program (columns 1-6) or from the line
numbers assigned by the compiler.

The PREPARE-FOR-JUMPS option determines whether dummy commands are to be
generated in the procedure division for every start of paragraph or section so that the AID
command %JUMP can be used.

12 U2855-J-Z125-6-76

Compilation Prerequisites for symbolic debugging

The SHARABLE-CODE option defines whether the PROCEDURE DIVISION code (without
DECLARATIVES) is to be written into a separate object module.

COMOPT control

/START-EXECUTABLE-PROGRAM $.COBOL2000
 ...
 COMOPT SYMTEST=ALL

The other COMOPT statements which can influence debugging with AID are:

COMOPT TEST-WITH-COLUMN=YES (corresponds to SDF option STMT-REFERENCE)
COMOPT SEPARATE-TESTPOINTS=YES (corresponds to SDF option PREPARE-FOR-JUMPS)
COMOPT GENERATE-SHARED-CODE=YES (corresponds to SDF option SHARABLE-CODE)

A detailed description of the corresponding operands is given in COBOL2000
(BS2000/OSD) User Guide [11].

Segmented or shareable programs

Normally the COBOL compiler also generates one object module from one source
program. However, additional object modules are generated for segmented and shareable
programs.

Segmentation
The sections in COBOL programs are defined by a system of segment numbers. The
segment number is contained in the section header (SECTION). Segment numbers 50
through 99 designate independent segments. Separate object modules are generated for
these segments.
The name of such a module comprises the PROGRAM-ID, abbreviated to 6 characters if
required, to which the segment number is appended. This name is referred to as a
segmentname in the AID syntax.
To allow AID to take the overlay structure of a program into consideration, you must enter
%AID OV=YES.

Shareability
If a number of users (tasks) are to access individual sections of a COBOL program, the
program sections can be made shareable. The COBOL compiler enables the requisite
object modules to be generated using SDF or COMOPT control.
The name of such a module comprises the PROGRAM-ID, abbreviated to 7 characters if
required, to which the character @ is appended. This name is referred to as a sharename in
the AID syntax.

U2855-J-Z125-6-76 13

Prerequisites for symbolic debugging Linking, loading and starting

3.2 Linking, loading and starting

You link, load and start compiled programs with the SDF commands and
BINDER/TSOSLNK statements valid for all languages. They are described in AID Core
Manual [1], where you will also find everything about the parameters which have the effect
that the LSD information generated by the compiler is passed to the linkage editor
(BINDER), the static linkage editor (TSOSLNK) or dynamic linking loader (DBL) or to the
static starter (ELDE), to enable symbolic debugging to be carried out. There is also the
possibility of dynamically loading LSDs from a PLAM library with the aid of the %SYMLIB
command.

3.3 Commands at the start of a debugging session

Immediately after it has been loaded, the program is in the PROCEDURE DIVISION before
the first statement and no initializations have yet been carried out. Individual commands
may therefore result in an error message, and in other cases it may be necessary to specify
qualifications, which can be avoided if a %TRACE 1 is used to run the program in response
to the first statement in the program.
If you have previously debugged a program in a programming language which does not
allow the hyphen in names or which uses lowercase letters in names, you should first enter
the %AID SYMCHARS or %AID %LOW=OFF command as appropriate or view the current
settings of global parameters using %SHOW %AID (chapter “AID commands” on page 27).

In order to be able to interrupt a relatively long AID output with the K2 key, the option must
be set with the following command:
/MODIFY-TERMINAL-OPTION OVERFLOW-CONTROL=USER-ACKNOWLEDGE

14 U2855-J-Z125-6-76

Commands at the start of a debugging session Prerequisites for symbolic debugging

U2855-J-Z125-6-76 15

4 COBOL-specific addressing
This chapter describes the memory references used for symbolic debugging of COBOL
programs. For a general description of addressing methods please refer to the AID Core
Manual [1]. The symbolic memory references (section “Symbolic memory references” on
page 18) to be used are all names of files, data and statements from the program as
contained in the LSD records, and the source references generated by the compiler. It may
be necessary to precede them by qualifications, as described below.

In all operands in which it is possible to use compl-memref it is permitted to switch as the
need arises between the memory references described in this manual and AID - Debugging
on Machine Code Level [2], provided no explicit restrictions exist (see section “Symbolic
memory references” on page 18).

4.1 Qualifications

Qualifications are used when a memory object is not located within the current AID work
area or is not unique in that area, or in order to identify a subarea. There are two types of
qualification: the base qualification, by means of which the AID work area is defined, and
the area qualifications, by means of which parts of the work area are addressed. The path
to an area or to a memory object is also described by linking qualifications.

Qualifications are delimited by periods. Likewise a period must be inserted between the
final qualification and the following operand.

Base qualification

E={VM|Dn}

The base qualification specifies whether the AID work area is to be located in a
loaded program (E=VM) or in a dump file (E=Dn). It is described in the AID Core
Manual [1], and under the %BASE command. A base qualification can be immedi-
ately followed by area qualifications or a file name, data name, special register,
figurative constant, statement name, source reference or complex memory
reference.

16 U2855-J-Z125-6-76

Qualifications COBOL-specific addressing

Area qualifications

These qualifications are used to identify a part of the work area. If an address operand ends
with one of these qualifications, the command relates only to the part that is identified by
the last qualification. An area qualification delimits the area in which a command takes
effect, or it renders a data name or statement name unique within the work area, or it makes
it possible to reach a name that would otherwise not be addressable at the current interrupt
point.

CTX=context

The CTX qualification designates a context (see AID Core Manual [1]). It can only
precede an S qualification. An address operand can only end with a CTX qualifi-
cation in the %SDUMP and %QUALIFY commands. This qualification is required if
it is intended to address a compilation unit or CSECT which does not contain the
current interrupt point and which is contained in a number of contexts. context is the
name of the context as explicitly assigned in the BIND macro or the implicitly
assigned name LOCAL#DEFAULT. Programs that are loaded with the DBL are also
given the context name assigned as the default option, LOCAL#DEFAULT. If they
were linked with TSOSLNK, the name of the context is CTXPHASE. Other program
contexts may result from connection to a shared code program.

So as to prevent further inflation of the syntax for the address operands of the
individual commands, the CTX qualification was not included there, particularly as
they currently tend to be used only rarely. The AID Core Manual [1], contains further
information, also in relation to debugging on machine code level.

Examples

%CONTROL1 IN CTX=LOCAL#DEFAULT.S=MAIN.PROC=PART
The control-area in this case is not in the current context in which the program was
interrupted but in the LOCAL#DEFAULT context.

%SDUMP CTX=CTXPHASE
The current interrupt point is in a different context in the call hierarchy. In this
%SDUMP the command is limited to the specified context.

%INSERT CTX=LOCAL#DEFAULT.S=SOURCE.PROC=UNDER.UNDER
The compilation unit SOURCE is both in the current context and in the
LOCAL#DEFAULT context. A context qualification is needed in order to be able to
define the test point.

U2855-J-Z125-6-76 17

COBOL-specific addressing Qualifications

S=srcname

The S qualification designates a compilation unit.

srcname is formed during compilation, from the program name in the PROGRAM-ID
of a "complete" COBOL program (see COBOL2000 (BS2000/OSD) User Guide,
chapter on "Compiler output" [11], or COBOL2000 (BS2000/OSD) Reference
Manual [10], chapter on "Program communication".)
srcname may have up to 8 characters when designating an object module (OM) and
up to 30 characters for a link and load module (LLM). If an srcname ending with a
hyphen is produced for an object module as a result of truncation, the S qualification
must be written as follows: S=N'srcname'

PROC=program-id [•program-id]

The PROC qualification designates a COBOL program. It may be a single program
or the outermost or an outer or inner program of a nested program.

program-id consists of the maximum of 30 characters of the name from the the
PROGRAM-ID in the source program.

Operands specifying an address area (%CONTROL, %TRACE) or a name range
(%SDUMP) can end with the PROC qualification. The address range or name
range then encompasses the entire program. Otherwise you specify the PROC
qualification if you address a name in the LSD records which is not contained in the
current program or is not unique in the compilation unit, i.e. in front of a file name,
data name, statement name or a complex memory reference if the latter begins with
a name.

•program-id
If the name of a program is repeated directly after a PROC qualification, the user is
thus designating the address of the first program statement which can be executed.
If the current interrupt point is in the same program, the PROC qualification can be
omitted. This specification can be used in %DISASSEMBLE and %INSERT.

PROG=program-id [•program-id]

This area qualification is a combination of the S and PROC qualification. It can only
be used if the names of the compilation unit and of the program are identical, i.e. for
an "outermost" program. In that case the same applies as to the PROC qualifi-
cation.
The PROG qualification cannot be used if program-id is more than 8 characters long.
This restriction applies only for object modules (OMs).

The C qualifications listed below switch to the machine code level. They cannot be followed
directly by a symbolic operand (see section “Symbolic memory references” on page 18"),
only a compl-memref (see AID Core Manual [1]). Nevertheless, AID expects or adds a
symbolic criterion in %CONTROLn or %TRACE. Only an E qualification, and if appropriate
a CTX qualification, can be placed in front of a C qualification.

18 U2855-J-Z125-6-76

Symbolic memory references COBOL-specific addressing

C=segmentname

This identifies a segment.
segmentname is composed of the first 6 places of the PROGRAM-ID and the
segment number from the section header.

This C qualification allows you to define a segment as an area in %CONTROLn,
%FIND, %ON write-event or %TRACE, or to declare the start address of the
segment as start in %DISASSEMBLE or test-point in %INSERT.

C=sharename

This identifies a module that has been compiled with the SDF option SHAREABLE-
CODE=YES. It therefore designates an object module.
sharename is composed of the first 7 places of the PROGRAM-ID and the character
@.

This C qualification can be used to define the object module as an area in
%CONTROLn, %FIND, %ON write-event or %TRACE provided it is loaded in class
6 memory. Modules loaded in class 4 memory cannot be addressed with this C
qualification.

4.2 Symbolic memory references

Symbolic memory references may include all file, data and statement names from the
program which are contained in the LSD records, as well as the source references
generated by the compiler and the AID keywords.
No LSD records are generated for 88 levels, the NATIVE alphabet and for definitions from
the REPORT-SECTION (apart from LINE-COUNTER, CBL-CTR and PAGE-COUNTER).
Consequently you cannot access this data with AID.

All symbolic memory references can be subjected to the operations described in AID Core
Manual [1]. All operands in which that is possible contain the entry compl-memref. In accor-
dance with the restrictions described, the user can then switch between the memory refer-
ences as described in this manual and those for debugging on machine code level (see
Debugging on Machine Code Level [2]).

U2855-J-Z125-6-76 19

COBOL-specific addressing Symbolic memory references

filename

is the name of a file from a file definition in the FILE-SECTION of the DATA
DIVISION.
AID outputs the following information in response to the %DISPLAY and %SDUMP
commands: the file status and, if the file is open, the contents of the data record
area and any record key. In addition, the address and length selector can be used
on filename.

dataname

stands for all the names of data items defined in the DATA DIVISION in the source
program, for the COBOL special registers and the figurative constants. Data items
can be data records, group items and tables, or elements in these. They can be
identified and indexed.
dataname is an alphanumeric string up to 30 characters in length. It can be specified
in all commands for output and modification of information; these are the
%DISPLAY, %MOVE, %SDUMP and %SET commands, but also the %FIND
command (search for a string) and the %ON command (write monitoring).

dataname [identifier][...] [(index[,...])]

identifier

If dataname is not unambiguous within a program unit, it can be identified by
being assigned to a particular data item with IN or OF. dataname must be
assigned as many identifiers as are required to designate it unambiguously. If it
is not identified, there must be a definition on level 01 or 77 which AID then
processes, otherwise an error message will be issued.

 In complex memory references, identifier cannot always be specified.

identifier is specified as follows:

 data-item-name

i

IN

OF

20 U2855-J-Z125-6-76

Symbolic memory references COBOL-specific addressing

index

If dataname is the name of an element in a table, it can be indexed and
subscripted as in a COBOL statement. In contrast to COBOL, multiple indexes
have to be separated by a comma.

Data definitions which are subordinate to a dataname with an OCCURS clause
must be assigned as many indexes in the %SET or %SDUMP as have to be
specified for access in a COBOL statement. The index entry for the data name
that is addressed with dataname can be omitted from the %DISPLAY, %FIND
and %MOVE, and it is then only necessary to specify index entries for higher
index levels (see example). Otherwise it is possible to specify a dataname
without index in the %DISPLAY, %FIND and %MOVE if the dataname was itself
defined with the OCCURS clause. This has the effect of addressing all elements
with that name.

index is specified as follows:

n
is an integer with a value 1 ≤ n ≤ 231-1.

index-name

is the symbolic name defined in the INDEXED BY clause for indexing a table
level.

data-name

designates a numerical data item (not floating point) from the DATA DIVISION
that can be identified. It must be contained in the same program unit as the
table.

TALLY

is the special register generated by the COBOL compiler for each program.

arithmetic-expression

AID calculates the value for index. Valid entries are the arithmetic operators (+,-
,/,*) and the above-listed operands n, data-name and TALLY. index-name can only
be combined with n and may only be used to index the table level to which it was
assigned via the INDEXED BY clause.

n
index-name
data-name
TALLY
arithmetic-expression

U2855-J-Z125-6-76 21

COBOL-specific addressing Symbolic memory references

You can specify a range of indexes:

index1 : index2
This designates the range between index1 and index2. Both must lie within the
index limits, and index1 must be less than or equal to index2.

 You can only use range specification in the %DISPLAY command. Array
names with range specifications must not be used in address calcula-
tions. Modifications of type or length are not permitted.

Example

 01 TABLE.
 02 GROUP1 OCCURS 10.
 04 ELEMENT1 PIC X(5).
 04 ELEMENT2 PIC 9(2) OCCURS 6.
 02 GROUP2 PIC 9(2) OCCURS 12.
 01 FIELD PIC X(70).
 01 INPUT-STRUCTURE.
 02 GR1.
 04 ELEM1 PIC X(5).
 04 ELEM2 PIC 9(2).
 02 GR2 PIC 9(2) OCCURS 12.

The various data names can be addressed in an AID command in the following
way:
%DISPLAY GROUP1
All elements GROUP1(1) to GROUP1(10) are output.
%MOVE GR1 INTO GROUP1
This command overwrites all elements GROUP1(1) to GROUP1(10) with the
contents of GR1.
%MOVE GR1 INTO GROUP1(1)
The first element GROUP1(1) is overwritten.
%MOVE GROUP2 INTO GR2
The entire contents of GROUP2(1) to GROUP2(12) are transferred to GR2(1)
to GR2(12). It is not possible, on the other hand, to write the following command:
%SET GROUP2 (1) INTO GR2
Full indexing is required in the %SET command, as in COBOL statements.
%SET GROUP2 (1) INTO GR2 (12)
%SET GR2 (ELEM2) INTO ELEMENT2 (5,ELEM2)

i

22 U2855-J-Z125-6-76

Symbolic memory references COBOL-specific addressing

COBOL special registers
Only those special registers may be specified that have been created by the COBOL
compiler for the program and that have already been supplied with the current values.
For instance, SORT special registers may be specified here only if the program contains
a sort section.

 LINAGE-COUNTER
 RETURN-CODE
 SORT-CCSN
 SORT-CORE-SIZE
 SORT-EOW
 SORT-FILE-SIZE
 SORT-MODE-SIZE
 SORT-RETURN
 TALLY

Figurative constants
dataname is one of the COBOL names for figurative constants or the name of a symbolic
character which is defined in the SPECIAL-NAMES paragraph. HIGH-VALUE and LOW-
VALUE always represent the alphanumeric value that corresponds to them by default
or in accordance with the definition in the PROGRAM COLLATING SEQUENCE clause.

 ZERO
 SPACE
 HIGH-VALUE
 LOW-VALUE
 QUOTE
 symbolic character

statement-name
designates the address of the first instruction in a section or paragraph in the
PROCEDURE DIVISION.

In the %CONTROLn, %DISASSEMBLE, %INSERT, %JUMP and %TRACE
commands, an alphanumeric section or paragraph name can be specified without
L’...’ since in these commands this name cannot be confused with a data name. If in
a complex memory reference statement-name is followed by a pointer (->), the L’...’
format must be used. If a paragraph name is not unambiguous within a program, it
must be identified by the section name of the section in which it was defined:
L'paragraph' IN L'section'

You thus define the address in the %DISPLAY, %FIND, %MOVE and %SET
commands. %DISASSEMBLE, %INSERT and %JUMP are used to define the
memory location at this address. %CONTROLn and %TRACE are used to define
the entire section or the entire paragraph.

L'section'
L'paragraph' [IN L'section']

U2855-J-Z125-6-76 23

COBOL-specific addressing Symbolic memory references

source-reference

is an address constant for the compiler-generated designation of a statement. Its
structure varies in accordance with the SDF option TEST-SUPPORT with the operand
STM-REFERENCE.

STM-REFERENCE=LINE-NUMBER

S’n[verb[m]]’

n
is the line number in the PROCEDURE DIVISION, assigned by the compiler. It is
not permitted to enter leading zeros. In this case the source-reference is
unambiguous within a compilation unit. You specify S’n’ for lines with paragraph or
section names only if no COBOL verb is present.

verb
is the defined abbreviation of a COBOL verb in the statement line designated with n.
You specify S’nverb’ for lines containing a COBOL verb.

m
is a single-digit number > 1. m is specified only if the same COBOL verb appears
more than once in a line and the first COBOL verb is not to be addressed. It is thus
declared to be the m-th COBOL verb within the line.

STM-REFERENCE=COLUMN1-TO-6
S’xverb[m]’

x
is the unchanged contents of columns 1 to 6 of a source program line. Any blanks
included must be specified.
If a source code line cannot be uniquely identified by x...x within the compilation unit
as a whole, the source reference is not unambiguous either. Paragraphs and
sections cannot be addressed via a source reference in this case.

verb
is the designated abbreviation of a COBOL verb in the statement line identified by
x. S’xverb’ must be specified for lines containing a COBOL verb.

m
is a single-digit number > 1.

It identifies the m-th COBOL verb within a line. A line in this case is understood to
be all statements up to a new line number.

24 U2855-J-Z125-6-76

Symbolic memory references COBOL-specific addressing

In %FIND and %ON write-event, the source reference must be followed by the
pointer operator. This identifies four bytes of the machine code starting from the
address that is stored in the address constant. You thus define the address in the
%DISPLAY, %MOVE and %SET commands. %DISASSEMBLE, %INSERT and
%JUMP are used to define the memory location at this address. In the
%CONTROLn and %TRACE commands you can define an area using two source
references.

Example

%DISPLAY S'95ADD2'

The program was compiled with STM-REFERENCE=LINE-NUMBER. The source
reference specifies the address associated with the second ADD statement stored
in line 95 in the LSD records. This is the address of the memory location of the first
command generated for this statement.

U2855-J-Z125-6-76 25

COBOL-specific addressing Symbolic memory references

abbr. COBOL verb abbr. COBOL verb

ACC
ADD
ADDC
ALLO
ALT
CALL
CANC
CLO
COM
CON
CONT
DEL
DIS
DIV
DSC
END
ENTR
ERA
EVAL
EXI
EXIT
FET
FIN
FND
FRE
GEN
GET
GO
GOT
IF
INIT

ACCEPT
ADD
ADD CORRESPONDING
ALLOCATE
ALTER
CALL
CANCEL
CLOSE
COMPUTE
CONNECT
CONTIUE
DELETE
DISPLAY
DIVIDE
DISCONNECT
END-xxx
ENTRY
ERASE
EVALUATE
EXIT [PARAGRAPH/SECTION]
EXIT {PROGRAM/METHOD}
FETCH
FINISH
FIND
FREE
GENERATE
GET
GOBACK
GO TO
IF
INITIALIZE

INI
INSP
INV
KEE
MOD
MOV
MOVC
MRG
MUL
OPE
PER
PERT
RAIS
REA
REDY
REL
RET
REW
SEA
SET
SOR
STA
STO
STOR
STRG
SUB
SUBC
TER
UNST
WRI

INITIATE
INSPECT
INVOKE
KEEP
MODIFY
MOVE
MOVE CORRESPONDING
MERGE
MULTIPLY
OPEN
PERFORM oder EXIT PERFORM
TEST OF PERFORM
RAISE
READ
READY
REALSE
RETURN
REWRITE
SEARCH
SET
SORT
START
STOP
STORE
STRING
SUBTRACT
SUBTRACT CORRESPONDING
TERMINATE
UNSTRING
WRITE

Table 1: List of COBOL verbs and their abbreviations

26 U2855-J-Z125-6-76

Symbolic memory references COBOL-specific addressing

U2855-J-Z125-6-76 27

5 AID commands

%AID

The %AID command can be used to declare global settings or to revoke the settings valid
up until then.

– With CHECK you define whether an update dialog is to be initiated prior to execution of
the %MOVE or %SET commands.

– With REP you define whether memory updates of a %MOVE command are to be stored
as REPs.

– With SYMCHARS you define whether AID is to interpret a "-" in program, data and
statement names as a hyphen or as a minus sign.

– With OV you direct AID to take the overlay structure of a program into account.

– With LOW you direct AID to convert lowercase letters of character literals and names to
uppercase, or to interpret them as lowercase. The default value is OFF.

– With DELIM you define the delimiters for AID output of alphanumeric data. The vertical
bar is the default delimiter.

– With LANG you define whether AID is to output %HELP information in English or
German.

– With EBCDIC you specify the EBCDIC encoding of a C string in the form of a coded cha-
racter set name (CCSN). AID uses this CCSN, for example, in the case of conversions
from and to UTF16/UTFE strings.

28 U2855-J-Z125-6-76

%AID AID commands

���
 Command Operand
���
  CHECK [= {ALL|NO}] 

 REP [= {YES|NO}]

 SYMCHARS [= {STD|NOSTD}]

 OV [= {YES|NO}]

 %AID � LOW [= {ON|OFF|ALL}] �

 C'x'|'x'C|'x'

 DELIM [=  ]

 '|' 

 -

 LANG [={D | E}]

  EBCDIC={*USRDEF | <ebcdic-coded-character-set>}
���

Declarations made using %AID remain valid until superseded by a new %AID command or
until /LOGOFF or /EXIT-JOB.

%AID can only be issued as an individual command, it must never be part of a command
sequence or a subcommand.

The %AID command does not alter the program state.

��������
 CHECK 
���������

ALL Prior to execution of a %MOVE or %SET command, AID conducts the following
update dialog:

 OLD CONTENT:
 AAAAAAAA
 NEW CONTENT:
 BBBBBBBB
 % AID0274 CHANGE DESIRED? REPLY (Y = YES; N = NO) ?

 N

 AID0342 NOTHING CHANGED

If Y is entered, the old memory contents are overwritten and no further message is
issued.
In procedures in batch mode, AID is not able to conduct a dialog and always
assumes Y. The old or new contents are output to SYSOUT. If SYSOUT is
reassigned, these outputs cannot be seen at the terminal. This also applies if the
%MOVE or %SET command was specified with the CMD macro and output to
SYSOUT has been defined. In contrast, message AID0274 and, where appropriate,
AID0342 are always sent to the terminal medium.

U2855-J-Z125-6-76 29

AID commands %AID

NO

%MOVE and %SET commands are executed without an update dialog.

If the CHECK operand is entered without specification of a value, AID assumes the default
value (NO).

������
 REP 
�������

YES

In the event of a memory update caused by a %MOVE command, LMS correction
statemements in SDF format (REPs) are created. If the object structure list is not
available, AID does not create any REPs and issues an error message to this effect.

AID stores the corrections in a file with the link name F6. The MODIFY-ELEMENT
statement must then also be inserted for the LMS run. Care should be taken that no
other outputs are written to the file with link name F6. If no file with link name F6 is
registered (cf. %OUTFILE), AID creates the AID.OUTFILE.F6 file, to which it then
writes the REP. User-specific REP files must be created with access method SAM.
REP files created by AID are likewise defined with access method SAM, record
format V and opening method EXTEND. The file remains open until it is closed via
%OUTFILE or until /LOGOFF or /EXIT-JOB.

NO

No REPs are generated.

If the REP operand is entered without a value specification, AID inserts the default (NO).
The REP operand of the %MOVE command can supersede the declaration made with
%AID, but only for this particular %MOVE command. For subsequent %MOVE commands
without a REP operand, the declaration made with the %AID command is valid again.

�����������
 SYMCHARS 
������������

STD

A hyphen "-" is interpreted as an alphanumeric character and can, as such, be used
in program, data and statement names. A hyphen is only interpreted as a minus
sign if a blank precedes it.

NOSTD

A hyphen "-" is always interpreted as a minus sign and cannot be used as a part of
names.

If the SYMCHARS operand is entered without a value specification, AID inserts the default
value (STD).

30 U2855-J-Z125-6-76

%AID AID commands

�����
 OV 
������

YES

Mandatory specification if the user is debugging a program with an overlay
structure. AID checks each time whether the program unit which has been
addressed originates from a dynamically loaded segment.

NO

AID assumes that the program to be debugged has been linked without an overlay
structure. AID does not check whether the CSECT information or LSD records
belong to the program unit which has been addressed.

If the OV operand is entered without a value specification, AID assumes the default (NO).

������
 LOW 
�������

ON

Lowercase letters in character literals and in program, data and statement names
are not converted to uppercase.

OFF

All lowercase letters from user entries are converted to uppercase.

ALL

Has the same effect as %AID LOW=ON, the distinction between
uppercase/lowercase letters also being taken into account when all BLS names are
entered.

If no LOW operand has been entered in a debugging session, OFF applies.

If the LOW operand is input without a value specification, AID assumes the default (ON). In
this case LOW=OFF must be entered if conversion to uppercase is to be reactivated.

��������
 DELIM 
���������

C’x’ | ’x’C | ’x’

With this operand the user defines a character as the left-hand and right-hand
delimiter for AID output of symbolic data of type ’character’ (%DISPLAY and
%SDUMP commands).

|
_

The standard delimiter is the vertical bar.

U2855-J-Z125-6-76 31

AID commands %AID

If the DELIM operand is entered without value specification, AID inserts the default value (|).

�������
 LANG 
��������

D

AID outputs information requested with %HELP in German.

E

AID outputs information requested with %HELP in English.

If the LANG operand is entered without a value specification, AID inserts the default (D). The
SDF command MODIFY-MSG-ATTRIBUTES TASK-LANGUAGE=D also allows you to receive the
AID messages in German. The update dialog (see CHECK operand) is not affected by this.

*USERDEF
Encoding table which is assigned to the BS2000 ID. AID fetches the information
during initialization for a task or when *USRDEF is specified. Changing the enco-
ding table for the ID takes effect only after *USRDEF has been entered again.

<ebcdic-coded-character-set>
CCSNAME of a 1-byte EBCDIC code as supported by XHCS. This name can also
be specified in the CODED-CHARACTER-SET operand of the BS2000 command
CREATE-FILE.
When this command is entered, AID checks that the CCSNAME is permissible
using XHCS. If the CCSNAME is unknown to XHCS or not 1-byte EBCDIC, the com-
mand is rejected and the current setting is retained.

AID uses the EBCDIC table which is selected via the %AID command when conversion
needs to be performed between a UTFE/UTFE16 string and a C string.

The EBCDIC encoding table selected is also used to interpret the input characters (SYS-
CMD, SYSDTA) and character representation in outputs (SYSOUT, SYSLST).

If no unique code table is assigned to the input and output media (with CODED-CHARAC-
TER-SET=*NONE for the relevant file or CODED-CHARACTER-SET=7-BIT for the termi-
nal (TERMINAL-OPTION)), by default the medium is assigned the user ID’s CODED-CHA-
RACTER-SET. The assignment involved is shown by the %SH[OW] %CCSN command.

EBCDIC

32 U2855-J-Z125-6-76

%AINT AID commands

%AINT

The %AINT command can be used to specify whether AID is to work with 24-bit addresses
or 32-bit addresses for indirect addressing. For AID, the address before the pointer operator
(->) then consists of 24 or 31 bits accordingly.
The addressing mode for the test object is not affected as a result.

– aid-mode specifies the mode of address interpretation for indirect addressing within an
AID work area.

���
Command Operand
���

%AINT [aid-mode] [,...]

���

%AINT is only of benefit when debugging programs on XS computers.

As the default, AID interprets indirect address specifications according to the current
addressing mode for the test object. Specification of %AINT with the keyword %MODEn
deactivates automatic adaptation in this way. The test object4s addressing mode can be
interrogated with %DISPLAY %AMODE. It can be changed with %MOVE. %SHOW %AID
or %SHOW %BASE reveals the addressing mode valid for the current AID work area, in
addition to other information.

If no qualification is specified, %AINT applies to AID commands which reference or use
indirect addresses in the current AID work area.

An %AINT without operands switches back to the default address interpretation. The same
effect is achieved by %AINT with a base qualification and without %MODEn. Otherwise the
declared addressing mode applies until /LOGOFF or /EXIT-JOB.

%AINT does not change the program state.

�����������
 aid-mode 
������������

defines how indirect addresses are to be interpreted in subsequent AID commands, appli-
cable in the current AID work area or the work area identified by the specified base qualifi-
cation.

If a keyword is specified for address interpretation but no qualification is specified, the
%AINT command applies to the processing of the current AID work area.

If a base qualification is specified but no keyword for address interpretation, the default AID
address interpretation applies in the corresponding AID work area.

U2855-J-Z125-6-76 33

AID commands %AINT

aid-mode-OPERAND -

 VM %M[ODE]31
[•][E= [•]] [ ]
 Dn %M[ODE]24

- -

• If a period is placed at the beginning, it is an identifier for a prequalification. It must
have been defined via a previous %QUALIFY command.
A period must be placed between a base qualification and the keyword for address
interpretation.

 VM
E= 
 Dn

This is specified if it is not intended that the change in address should apply to the
current AID work area. If only a base qualification is specified, the default address
interpretation applies again for the area which this addresses.

%M[ODE]31
�%M[ODE]24�

Keyword specifying how many bits are to be taken into account in indirect
addressing in AID commands.

%M[ODE]31 31-bit addressing.
%M[ODE]24 24-bit addressing.

Examples

The contents of address V’100’ are: 1200000C
The contents of register 5 are: 010001A0

1. %AINT %MODE24
%DISPLAY V'100'->
%MOVE %5-> INTO %5G
The %AINT command has the effect of switching to 24-bit address interpretation.
The switch applies to the current AID work area.
The %DISPLAY outputs 4 bytes starting at address V’00000C’.
The %MOVE transfers 4 bytes starting from address V’0001A0’ to AID register 5.

2. %AINT %MODE31
%DISPLAY V'100'->
%MOVE %5-> INTO %5G

Address interpretation for the current AID work area is switched to 31-bit interpre-
tation.
The %DISPLAY outputs 4 bytes starting at address V’1200000C’.
The %MOVE transfers 4 bytes starting at address V’010001A0’ to AID register 5.

34 U2855-J-Z125-6-76

%BASE AID commands

%BASE

The %BASE command is used to specify the base qualification. All subsequently entered
memory references without their own base qualification assume the value declared via
%BASE. The %BASE command also defines the AID work area.

– With the base operand the user designates either the virtual memory area of the
program which has been loaded or a dump in a dump file.

���
Command Operand
���

%BASE [base]

���

With the %BASE command the user also defines the location of the AID work area. When
debugging COBOL programs, the AID work area corresponds to the area which the load
unit occupies in virtual memory or in a dump file. If the user fails to enter a %BASE
command during a debugging session or enters %BASE without any operands, the base
qualification E=VM applies by default and the AID work area corresponds to the non-privi-
leged part in virtual memory which is occupied by all connected subsystems from the
loaded program (AID standard work area).

A %BASE command is valid until the next %BASE command is given, until /LOGOFF or
/EXIT-JOB, or until the dump file declared as the base qualification is closed (see
%DUMPFILE).

The current base qualification is added to all memory references in a command, and also
in a subcommand, immediately on input, i.e. a %BASE command has no effect on subcom-
mands specified previously.

%BASE can only be entered as an individual command, it must never be part of a command
sequence or subcommand.

%BASE does not alter the program state.

U2855-J-Z125-6-76 35

AID commands %BASE

��������
 base 
���������

defines the base qualification. All subsequently entered memory references without a
separate base qualification assume the value declared with the %BASE command.

base-OPERAND -

  VM 
E =  
  Dn 

- -

E=VM

The virtual memory area of the program which has been loaded is declared as the
base qualification. VM is the default value.

E=Dn

A dump in a dump file with the link name Dn is declared as the base qualification.
n is a number with a value 0 ≤ n ≤ 7.

Before declaring a dump file as the base qualification, the user must assign the
corresponding dump file a link name and open it, using the %DUMPFILE command.

36 U2855-J-Z125-6-76

%CONTINUE AID commands

%CONTINUE

The %CONTINUE command is used to start the program which has been loaded or to
continue it at the interrupt point or at the location specified by %JUMP.
As opposed to %RESUME, an interrupted but still active %TRACE command is not termi-
nated by %CONTINUE, rather it is continued depending on the declarations which have
been made.

���
Command Operand
���

%CONT[INUE]

���

A %TRACE command is active as soon as it has been entered. In the following cases the
%TRACE command is only interrupted and can be resumed by a %CONTINUE command:

1. When a subcommand has been executed as the result of a monitoring condition from a
%CONTROLn, %INSERT or %ON command having been satisfied, and the
subcommand contained a %STOP.

2. When an %INSERT command terminates with a program interrupt because the control
operand is K or S.

3. When the K2 key has been pressed (see section “Commands at the start of a
debugging session” on page 13).

A subcommand containing only the %CONTINUE command merely increments the
execution counter.

If the %CONTINUE command is given in a command sequence or subcommand, any
subsequent commands are not executed.

%CONTINUE alters the program state.

U2855-J-Z125-6-76 37

AID commands %CONTROLn

%CONTROLn

By means of the %CONTROLn command you may declare up to seven monitoring
functions one after the other, which then go into effect simultaneously. The seven
commands are %CONTROL1 through %CONTROL7.

– With criterion you may select different types of COBOL statements. If a statement of the
selected type is waiting to be executed, AID interrupts the program and processes
subcmd.

– With control-area you may define the program area in which criterion is to be taken into
consideration.

– With subcmd you declare a command or a command sequence and possibly a condition
(see AID Core Manual [1], "Subcommands"). subcmd is executed if criterion is satisfied
and any specified condition has been met.

���
Command Operand
���

%C[ONTROL]n [criterion][,...] [IN control-area] [<subcmd>]

���

Several %CONTROLn commands with different numbers do not affect one another.
Therefore you may activate several commands with the same criterion for different areas,
or with different criteria for the same area. If several %CONTROLn commands occur in one
statement, the associated subcommands are executed successively, starting with %C1 and
working through %C7.

The individual value of an operand for %CONTROLn is valid until overwritten by a new
specification in a later %CONTROLn command with the same number, until the
%CONTROLn command is deleted or until the end of the program.

A %REMOVE command can be used to delete either a specific or all active %CONTROLn
declarations.

%CONTROLn can only be used in a loaded program, i.e. the base qualification E=VM must
have been set via %BASE or must be specified explicitly.

%CONTROLn does not alter the program state.

������������
 criterion 
�������������

is the keyword defining the type of the COBOL statements prior to whose execution AID is
to process subcmd.
You can specify several keywords at the same time, which are then valid at the same time.

38 U2855-J-Z125-6-76

%CONTROLn AID commands

Any two keywords must be separated by a comma.
If no criterion is declared, AID works with the default value %STMT, unless a criterion
declared in an earlier %CONTROLn command is still valid.

 criterion subcmd is processed prior to

 %STMT Every COBOL statement

 %ASSGN COBOL statements which modify the contents of a data item:
 ADD [CORRESPONDING], COMPUTE, DIVIDE, INITIALIZE, INSPECT,
 MOVE [CORRESPONDING], MULTIPLY, SET, STRING,
 SUBSTRACT [CORRESPONDING], UNSTRING

 %CALL CALL-, CANCEL-, INVOKE-, PERFORM statements as well as prior to
 SORT/MERGE statements, since these may call an
 INPUT or OUTPUT procedure.

 %COND EVALUATE, IF and SEARCH statements and the conditional
 THEN, ELSE and WHEN statement branches.

 %DB COBOL statements for calling a database: CONNECT,
 DISCONNECT, ERASE, FETCH, FIND, FINISH, FREE, GET, KEEP,
 MODIFY, READY, STORE

 %EXCEPTION The conditional statement branches and their admissible
 negations: AT END, AT END OF PAGE, INVALID KEY, ON SIZE
 ERROR, ON OVERFLOW, ON EXCEPTION, the RAISE statement
 as well as prior to the execution of a USE PROCEDURE.

 %GOTO ALTER, CONTINUE, GOTO, RESUME statements

 %IO COBOL statements which initiate I/O operations:
 ACCEPT, DISPLAY, OPEN, CLOSE, DELETE, READ, REWRITE, START,
 WRITE, GENERATE, INITIATE, TERMINATE

 %LAB COBOL statements which have a section or paragraph
 name or which directly follow such a name.

 %PROC Program or module start at the beginning of the PROCEDURE-
 DIVISION
 or at ENTRY.
 Program or module end by the statement
 STOP RUN, GOBACK, EXIT METHOD or EXIT PROGRAM

 %SORT MERGE and SORT statements,
 RELEASE and RETURN statements

U2855-J-Z125-6-76 39

AID commands %CONTROLn

���������������
 control-area 
����������������

specifies the program area in which the monitoring function will be valid. If the user exits
from the specified program, the monitoring function becomes inactive until another
statement within the program area to be monitored is executed. The default value is the
current program area.

control-area is limited to a compilation unit in programs without segmentation, and to a
segment in programs with segmentation. The limitation to one segment applies only for
independent segments (segment No.>50).

A control-area definition is valid until the next %CONTROLn command with the same
number is issued with a new definition, until the corresponding %REMOVE %CONTROLn
command is issued, or until the end of the program is reached. %CONTROLn without a
control-area operand of its own results in a valid area definition being taken over. To be valid,
such a control-area operand must be defined in a %CONTROLn command with the same
number, and the current interrupt point must be within this area. If no valid area definition
exists, the control-area comprises the current compilation unit or current segment by default.

control-area-OPERAND -

 [S=srcname] [[•]PROC=program-id] 

 [PROC=program-id•] statementname 

IN [•][E=VM•] [S=srcname•]   

 (source-reference:source-reference)

C=segmentname

 C=sharename 

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

E=VM

As control-area can only be in the virtual memory of the loaded program, E=VM need
only be specified if a dump file has been declared as the current base qualification
(see %BASE command).

S=srcname

This is specified if control-area is not to be included in the current compilation unit or
if a declared area restriction is no longer to apply.

40 U2855-J-Z125-6-76

%CONTROLn AID commands

PROC=program-id

This is specified if control-area is not contained in the current program,
if it is to be defined with statementname and if this name is not unique in the compi-
lation unit
or in order to overwrite a previously valid control-area declaration. If control-area ends
with a PROC qualification, the area covers the entire program specified. This must
have been loaded at the time the %CONTROLn is entered or when the
subcommand containing the %CONTROLn is processed.

If the srcname in the S qualification is identical to the program-id, instead of these two you
need only write the PROG qualification.

Although you switch to machine code level with the following C qualifications, as the next
step you can only select a criterion from the preceding table or AID will insert the default
%STMT.

C=segmentname

This declares the designated segment for the control-area. It is only required if the
interrupt point is not in this segment or if a previous area limitation applying to parts
of this segment is to be removed.

C=sharename

This declares the designated object module for the control-area. It need only be
specified if the interrupt point is not in the specified object module or if an area
limitation applying to the object module is to be removed.

statement-name

The control-area is defined by a statement name and comprises a section or
paragraph in the PROCEDURE DIVISION.

An alphanumeric section or paragraph name can be specified without L’...’ since this
name cannot be confused with a data name in this command.

If a paragraph name is not unambiguous within a program, it must be identified by
the section name of the section in which it was defined: L'paragraph' IN
L'section'

L'section'
L'paragraph' [IN L'section']

U2855-J-Z125-6-76 41

AID commands %CONTROLn

(source-reference : source-reference)

The control-area is defined by specifying a start source reference and an end source
reference. Both of these must be within the same compilation unit, where the
following applies: start source reference ≤ end source reference
If control-area is to comprise only one statement, the start and end source reference
must be the same.
control-area cannot be limited to individual COBOL verbs within a line.

source-reference

designates the address of the first instruction generated for a statement in the
PROCEDURE DIVISION and must be specified in one of the following formats:

S’n’
for lines with paragraph or section names in which no COBOL verb occurs. This
specification is not possible for programs which have been compiled with STMT-
REFERENCE=COLUMN1-TO-6.

S’nverb’ | S’xverb’
for lines containing a COBOL verb.

���������
 subcmd 
����������

subcmd is processed whenever a statement that satisfies the criterion is awaiting execution
in the control-area. subcmd is processed before execution of the criterion statement.

If subcmd is not specified, AID inserts <%STOP> for %CONTROLn.

For a complete description of subcmd see the AID Core Manual [1].

subcmd-OPERAND -

 AID-command 
<[subcmdname:] [(condition):] [  {;...}]>
 BS2000-command

- -

A subcommand may contain a name, a condition and a command part. Every subcommand
has its own execution counter. The command portion can consist of an individual command
or a command sequence; it may contain AID commands, BS2000 commands and
comments.

If the subcommand consists of a name or a condition, but the command part is missing, AID
merely increments the execution counter when a statement of type criterion has been
reached.

In addition to the commands which are not permitted in any subcommand, the subcmd of a
%CONTROLn must not contain the AID commands %CONTROLn, %INSERT, %JUMP or
%ON.

42 U2855-J-Z125-6-76

%CONTROLn AID commands

The commands in subcmd are executed consecutively, after which the program is continued.
The commands for runtime control also immediately change the program state when they
are part of a subcommand. They abort subcmd and start the program (%CONTINUE,
%RESUME, %TRACE) or halt it (%STOP). In practice, they are only useful as the last
command in subcmd, since any subsequent commands of the subcmd will not be executed.
Likewise, deletion of the current subcommand via %REMOVE is only expedient as the last
command in subcmd.

Examples

1. %CONTROL1 %CALL, %PROCIN(S'123':S'250') <%DISPLAYCOUNTER;%STOP>
%C1 %CALL,%PROC IN(S'123':S'250') <%D COUNTER;%STOP>
The two AID commands differ only in their notation.
The first example is written in full and contains a varying number of blanks at the permis-
sible positions; the second example is abbreviated.

The %CONTROL1 command is valid for the criteria %CALL and %PROC and is to be
effective between statement lines 123 and 250 (inclusive). Statement line 123 contains
no COBOL verb; statement line 250 contains the COBOL verb GO TO.

If one of the COBOL statements corresponding to the criteria %CALL and %PROC
occurs during program execution, the %DISPLAY command from subcmd is executed for
the variable COUNTER. Then the program run is interrupted by means of %STOP, and
AID or BS2000 commands may be entered.

2. %CONTROL1 %CALL <%DISPLAY 'CALL' T=MAX; %STOP>
Prior to the execution of every CALL or PERFORM statement, AID executes the
%DISPLAY command from subcmd and then interrupts the program by executing the
%STOP command.

3. %CONTROL2 %SORT <%SDUMP %NEST P=MAX; %REMOVE C1>
Prior to the execution of an SORT statement, AID outputs the current call hierarchy to
the system file SYSLST and then executes the %REMOVE command, which deletes
the declarations of %CONTROL1. Program execution continues.

4. %C3 %PROC <%STOP>
The %C3 command declares that AID is to execute a %STOP command before the first
PROCEDURE DIVISION statement or the first statement following an ENTRY is
executed or the module is quit or the program is terminated.

5. %C4 %PROC <(SLF LE 10): %D TAB(1)>
%C4 is used to declare that AID is to output the first table element with the name TAB
prior to the first program or module start or program or module end provided that the
SLF value is less than or equal to 10.

U2855-J-Z125-6-76 43

AID commands %DISASSEMBLE

%DISASSEMBLE

%DISASSEMBLE enables memory contents to be "retranslated" into symbolic Assembler
notation and displayed accordingly.

– The number operand enables you to determine how many instructions are to be disas-
sembled and output.

– The start operand enables you to determine the address where AID is to begin disas-
sembling.

���
Command Operand
���

 %DISASSEMBLE 
  [number] [FROM start]
 %DA 

���

Disassembly of the memory contents starts with the first byte. For memory contents which
cannot be interpreted as an instruction, an output line is generated which contains the
hexadecimal representation of the memory contents and the message INVALID OPCODE.
The search for a valid operation code then proceeds in steps of 2 bytes each.

%DISASSEMBLE without a start operand permits the user to continue a previously issued
%DISASSEMBLE command until the test object is switched or a new operand value is
defined by means of a BS2000 or AID command (/START-EXECUTABLE-PROGRAM,
/LOAD-EXECUTABLE-PROGRAM, %BASE). AID continues disassembly at the memory
address following the address last processed by the previous %DISASSEMBLE command.
If number is not specified either, AID generates the same number of output lines as declared
before.

If the user has not entered a %DISASSEMBLE command during a test session or has
changed the test object and does not specify current values for one or both operands in the
%DISASSEMBLE command, AID works with default values (10 for number and V’0’ for
start). If the program was not loaded from V’0’, start must be specified.

The %OUT command can be used to control how processed memory information is to be
represented and whether it is to be output to SYSOUT, SYSLST or to a cataloged file. The
format of the output lines is explained after the description of the start operand.

The %DISASSEMBLE command does not alter the program state.

44 U2855-J-Z125-6-76

%DISASSEMBLE AID commands

���������
 number 
����������

Specifies how many Assembler commands are to be output.

If no value has been specified for number and no value from a previous %DISASSEMBLE
command applies, AID inserts the default value (10).

Number is an integer with the value 1 ≤ number ≤ 231-1

��������
 start 
���������

Defines the address at which disassembly of memory contents into Assembler commands
is to begin. If the start value is not specified, AID assumes the default value V’0’ for the first
%DISASSEMBLE after a program is loaded. If a program has not been loaded from V’0’,
AID issues an error message. On every further %DISASSEMBLE, AID continues after the
Assembler command last disassembled.

start-OPERAND -

 C=segmentname 

C=sharename

program-id

FROM [•][qua•][...]  

statement-name

source-reference

 compl-memref 

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined by a previous %QUALIFY command. Consecutive qualifications must
be delimited by a period. In addition, there must be a period between the final quali-
fication and the following operand part.

qua

Qualifications must be specified if an address operand does not apply to the current
AID work area, the current compilation unit or the program, or if it is not unique in
some other way.

E={VM | Dn}

Only required if the current base qualification is not to apply for start (see
%BASE command).

S=srcname

This is only specified if start is not to be contained in the current compilation unit.

U2855-J-Z125-6-76 45

AID commands %DISASSEMBLE

PROC=program-id

This is only specified if start is not to be contained in the current program (see
chapter “COBOL-specific addressing” on page 15), or if it is to be defined with
statementname and this is not unique in the compilation unit.

If the srcname in the S qualification is the same as the program-id, instead of both of
these only the PROG qualification should be written.

Only the base qualification or the CTX qualification can be placed before the C qualifica-
tions listed below. The C qualification takes the user away from the symbolic level. No
symbolic operands can be written directly afterwards (see section “Symbolic memory refer-
ences” on page 18), only a compl-memref.

C=segmentname

The effect of this entry is to set start to the start address of the designated segment.

C=sharename

The effect of this entry is to set start to the start address of the designated object
module.

program-id

This specification is possible following an explicit PROC/PROG qualification with
the same program-id, or if the current interrupt point is in the program identified by
program-id. The consequence is to set start at the first executable statement in the
designated program.

statement-name

designates the address of the first instruction in a section or paragraph in the
PROCEDURE DIVISION.

An alphanumeric section or paragraph name can be specified without L’...’ since this
name cannot be confused with a data name in this command.

If a paragraph name is not unambiguous within a program, it must be identified by
the section name of the section in which it was defined: L'paragraph' IN
L'section'. If the user intends to follow this with a byte offset, a pointer operator
(->) must be entered first.

L'section'
L'paragraph' [IN L'section']

46 U2855-J-Z125-6-76

%DISASSEMBLE AID commands

source-reference

designates the address of the first instruction generated for a statement in the
PROCEDURE DIVISION and must be specified in one of the following formats:

S’n’ for lines with paragraph or section names in which no COBOL verb occurs.
This specification is not possible for programs which have been compiled
with STMT-REFERENCE=COLUMN1-TO-6.

S’nverb[m]’ | xverb[m]’

for lines containing a COBOL verb.

If the user intends to follow this with a byte offset, a pointer operator (->) must be
entered first.

compl-memref

This should produce the start address of a machine instruction, otherwise the disas-
sembly obtained will be meaningless. compl-memref may contain the following
operations (see AID Core Manual [1]):

– byte offset (•)

– indirect addressing (->)

– type modification (%A, %S, %SX)

– length modification (%Ln, %L=(expression), %Ln)

– address selection (%@(...))

If a statement name or a source reference is to be used as a memory reference, it
must be followed by a pointer operator (->). In this case statementname must be
specified with L’...’. Without the pointer operator the statement name and source
reference can be used anywhere where hexadecimal numbers can be written.
Example: %DISASSEMBLE L'PUTOUT'->.4
A position 4 bytes on from the first instruction in the PUTOUT section is moved to
and disassembly takes place from there.

A type modification makes sense only if the contents of a data element can be used
as an address or if the address is taken from a register.

Example: %1G.2%AL2->

The last two bytes from AID register %1G are used as the address.

U2855-J-Z125-6-76 47

AID commands %DISASSEMBLE

Output of the %DISASSEMBLE log

By default, the %DISASSEMBLE log is output with additional information to SYSOUT
(T=MAX). With %OUT the user can select the output media and specify whether or not
additional information is to be output by AID.

The following is contained in a %DA output line if the default value T=MAX is set:

– CSECT-relative memory address

– memory contents retranslated into symbolic Assembler notation, displacements being
represented as hexadecimal numbers (as opposed to Assembler format)

– for memory contents which do not begin with a valid operation code: Assembler
statement DC in hexadecimal format and with a length of 2 bytes, followed by the note
INVALID OPCODE

– hexadecimal representation of the memory contents (machine code).

Example of line format with T=MAX

The statement number in the %DISASSEMBLE command refers to the sample appli-
cation in section “Source listing” on page 145.

 ��
  /%DISASSEMBLE 8 FROM L'LEADER'->.4 
  M0BS+9FC UNPK 0(4,R4),12C(1,R12) F3 30 4000 C12C 
  M0BS+A02 LA R4,28(R0,R3) 41 40 3028 
  M0BS+A06 LR R0,R0 18 00 
  M0BS+A08 L R15,98(R0,R11) 58 F0 B098 
  M0BS+A0C BALR R14,R15 05 EF 
  M0BS+A0E STH R0,0(R0,R0) 40 00 0000 
  M0BS+A12 DC X'0004' INVALID OPCODE 00 04 
  M0BS+A14 DC X'0000' INVALID OPCODE 00 00 
  

The %OUT operand value T=MIN causes AID to create shortened output lines in which the
CSECT-relative address is replaced by the virtual address and the hexadecimal represen-
tation of the memory contents is omitted.

Example of line format with T=MIN

 ��
  /%OUT %DA T=MIN 
  /%DISASSEMBLE 8 FROM L'LEADER'->.4 
  000009FC UNPK 0(4,R4),12C(1,R12) 
  00000A02 LA R4,28(R0,R3) 
  00000A06 LR R0,R0 
  00000A08 L R15,98(R0,R11) 
  00000A0C BALR R14,R15 
  00000A0E STH R0,0(R0,R0) 
  00000A12 DC X'0004' INVALID OPCODE 
  00000A14 DC X'0000' INVALID OPCODE 
  

48 U2855-J-Z125-6-76

%DISASSEMBLE AID commands

Examples

1. %DISASSEMBLE FROM PROG=EXAMPLE.OUT2 IN PUTOUT
This command initiates disassembly of 10 instructions (default), starting with the
address of the first executable instruction of paragraph OUT2 in section PUTOUT.

2. %DA 2 FROM E=D1.PROG=EXAMPLE.EXAMPLE
Starting with the start address of the EXAMPLE program in the dump file with link name
D1, two instructions are to be disassembled.

3. %DA FROM S'45INIT'
Since no value is specified for number, AID either inserts the default value (in the case
of the first %DISASSEMBLE for this program) or takes the value from the previous
%DISASSEMBLE. Disassembly starts with the first instruction generated for the
statement S’45INIT’.

U2855-J-Z125-6-76 49

AID commands %DISPLAY

%DISPLAY

The %DISPLAY command is used to output memory contents, addresses, lengths, system
information and AID literals and to control feed to SYSLST.

AID edits the data in accordance with the definition in the source program, unless you select
another type of output by means of type modification.
Output is via SYSOUT, SYSLST or to a cataloged file.

– With data you specify data items, their addresses and lengths, statements, data defini-
tions, registers, execution counters of subcommands, system information, COBOL
special registers and figurative constants. Here you also define AID literals or you
control feed to SYSLST.

– With medium-a-quantity you specify the output medium AID uses and whether or not
additional information is to be output. This operand disables a declaration made via the
%OUT command, but only for the current %DISPLAY command.

���
Command Operand
���

%D[ISPLAY] data {,...} [medium-a-quantity][,...]

���

A %DISPLAY command which does not have a qualification for data addresses data of the
current program.
If you do specify a qualification, you can access data in a dump file or in any other compi-
lation unit or program unit which has been loaded.

If the medium-a-quantity operand is not specified, AID outputs the data in accordance with
the declarations in the %OUT command or, by default, to SYSOUT, together with additional
information (AID Core Manual [1]).

In addition to the operand values described here, you can also use the operand values
described for debugging on machine code level (see manual AID - Debugging on Machine
Code Level [2]).

Immediate entry of the command right after loading the program is not recommended as
not all entries in the DATA DIVISION will have been initialized (e.g. record definitions and
special registers).

This command can be used both in the loaded program and in a dump file.

%DISPLAY does not alter the program state.

50 U2855-J-Z125-6-76

%DISPLAY AID commands

The following „names“ are provided for any compilation unit automatically:

��������
 data 
���������

This operand defines the information AID is to output. You may output file definitions, the
contents, address and length of data items and special registers, figurative constants, as
well as the addresses of statements. The contents of registers and execution counters as
well as the system information relevant to your program can be addressed via keywords.
AID literals can be defined to improve the readability of debugging logs, and feed to
SYSLST can be controlled for the same purpose.

AID edits data items in accordance with the definitions in the source program, provided that
you have not defined another type of output using a type modification (see AID Core Manual
[1]). If the contents do not match the defined storage type, output is rejected and an error
message is issued. Nevertheless the contents of the data element can be viewed, for
instance by employing the type modification %X to edit the contents in hexadecimal form.
Modification of the output type via the operand AS {BIN/CHAR/DEC/DUMP/HEX} is
supported for the last time in this version (see AID Core Manual [1], appendix).

If you enter more than one data operand in a %DISPLAY command, you may switch from
one operand to another between the symbolic entries described here and the non-symbolic
entries described in the manual for debugging on machine code level (see manual AID -
Debugging on Machine Code Level [2]). Symbolic and machine-oriented specifications can
also be combined within a complex memory reference, provided no explicit restrictions exist
(see section “Symbolic memory references” on page 18).
If for data a name is specified which is not contained in the LSD records, AID issues an error
message. The other data of the same command will be processed in the normal way.

_Compiler the compiler that compiled the object

_Compilation_Date the date of compilation

_Compilation_Time the time of compilation

_Program_Name ID name of the object

_EBCDIC_CCSN the name of the EBCDIC variant which is assumed in the event of
conversions between alphanumeric and national data
(available only as of COBOL2000 V1.4A)

U2855-J-Z125-6-76 51

AID commands %DISPLAY

data-OPERAND -

 filename  

dataname

statement-name

 [•][qua•][...] source-reference 

keyword

 compl-memref 

 

 %@  filename 

 %L  ([•][qua•][...] dataname )

%C
 compl-memref 

 %UTF

 %L=(expression)

 AID-literal

 feed-control 

- -

● If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua

Qualifications need only be specified if an address operand does not apply to the
current AID work area of if an address is to be referenced which is not in the current
compilation unit or the current program.

E={VM | Dn}

Specified only if the current base qualification (see %BASE) is not to apply for
a file/data/statement name, source reference or keyword.

S=srcname

Specified only if data is not contained in the current compilation unit.

PROC=program-id

Specified only if a file name, data name or statement name is addressed which
is not contained in the current program (see chapter “COBOL-specific
addressing” on page 15) or which is not unique in the current compilation unit.
It is also required for a global data name that is locally hidden.

If srcname in the S qualification is the same as the program-id, only the PROG quali-
fication need be written.

52 U2855-J-Z125-6-76

%DISPLAY AID commands

filename

is the name of a file from a file definition in the FILE-SECTION of the DATA
DIVISION.
AID outputs the following information:
the file status and, if the file is open, the contents of the data record area and any
record key.

dataname

specifies the name of a data item, the name of a COBOL special register or a
figurative constant as defined in the source program.
If dataname is not unique within a program, it can be identified.
If dataname is the name of a table element, it can be indexed or subscripted in the
same way as in a COBOL statement (see section “Symbolic memory references”
on page 18 on dataname).

dataname [identifier][...][(index[,...])]

identifier

dataname is assigned to a particular group item with IN or OF. dataname must
have as many identifiers as are required to designate it unambiguously.
If it is not identified, AID only outputs data for dataname if a data definition is
provided for it at level 01 or 77. If this is not the case, an error message is issued.

index

is written as in a COBOL statement, except that in the AID command multiple
indexes must be separated by commas.
index can be specified as follows:

You can specify a range of indexes:

index1 : index2
This designates the range between index1 and index2. Both must lie within the
index limits, and index1 must be less than or equal to index2.

n
index-name
dataname
TALLY
arithmetic-expression

U2855-J-Z125-6-76 53

AID commands %DISPLAY

COBOL special registers1

 LINAGE-COUNTER
 RETURN-CODE
 SORT-CCSN
 SORT-CORE-SIZE
 SORT-EOW
 SORT-FILE-SIZE
 SORT-MODE-SIZE
 SORT-RETURN
 TALLY

Figurative constants

The address selector cannot be used with figurative constants.

 ZERO
 SPACE
 HIGH-VALUE
 LOW-VALUE
 QUOTE
 symbolic character

statement-name

designates the address of the first statement in a section or paragraph in the
PROCEDURE DIVISION.

If a paragraph name is not unambiguous within a program, it must be identified by
the section name of the section in which it was defined: L'paragraph' IN
L'section'

With the subsequent pointer operator (->) AID outputs 4 bytes of the program code
generated for the first statement in the section or paragraph.

source-reference

designates the address of the first instruction generated for a statement in the
PROCEDURE DIVISION and must be specified in one of the following formats:

S’n’
for lines with paragraph or section names in which no COBOL verb occurs. This
specification is not possible for programs which have been compiled with
STMT-REFERENCE=COLUMN1-TO-6.

S’nverb[m]’ | S’xverb[m]’
for lines containing a COBOL verb.

1 Most COBOL special registers exist only if the corresponding language resources are used.

L'section'
L'paragraph' [IN L'section']

54 U2855-J-Z125-6-76

%DISPLAY AID commands

With the subsequent pointer operator (->) AID outputs 4 bytes of the program code
generated for the statement.

keyword

Here you may specify all the keywords for program registers, AID registers, system
tables and the one for the execution counter or the symbolic localization information
(see AID Core Manual [1]).
keyword can only be preceded by a base qualification.

 %n General register, 0 Î n Î 15
 %nD|E Floating-point register, n = 0,2,4,6
 %nQ Floating-point register, n = 0,4
 %nG AID general register, 0 Î n Î 15
 %nDG AID floating-point register n = 0,2,4,6
 %MR All 16 general registers in tabular form
 %FR All 4 floating-point registers with double precision
 edited in tabular form
 %PC Program counter
 %CC Condition code
 %PM Program mask
 %AMODE Addressing mode of the test object
 %PCB Process control block
 %PCBLST List of all process control blocks
 %SORTEDMAP List of all CSECTs and COMMONs of the user program
 (sorted by name and address)
 long names are truncated
 %MAP [CTX=context] List of all CSECTs and COMMONs of all contexts of
 the user program or of the context designated by the
 context qualification; the names are output
 in full, not abbreviated (for further operands
 see AID Core Manual [1])
 %LINK Name of the segment dynamically loaded last
 %HLLOC(memref) Localization information on the symbolic level for a
 memory reference in the executable part of the
 program (high-level location)
 %LOC(memref) Localization information on machine code level for a
 memory reference in the executable part of the
 program (low-level location)
 %•subcmdname Execution counter
 %• Execution counter of the currently active subcommand

U2855-J-Z125-6-76 55

AID commands %DISPLAY

compl-memref

The following operations may occur in a compl-memref (see AID Core Manual [1]):

– byte offset (•)

– indirect addressing (->)

– type modification (%T(dataname), %X, %C, %P, %D, %F, %A, %S, %SX,
%UTF16)

– length modification (%L(...), %L=(expression), %Ln)

– Character conversion functions %C() and %UTF16()

If a statement name or a source reference is to be used as a memory reference, it
must be followed by a pointer operator (->). Without the pointer operator the
statement name and source reference can be used anywhere where hexadecimal
numbers can be written. Using the type modification, data may be edited in another
form since the output type changes with the storage type.

With the length modification you can define the output length yourself, e.g. if you
wish to output only parts of a data item or display a data item using the length of
another data item. It is only permitted to exceed the implicit area limits of an address
with type or length modification after first using %@(dataname)-> to switch to
machine code level, on which the area comprises the virtual memory occupied by
the loaded program.

%@(...)

With the address selector you can output the start address of a data entry, a data
item, a special register or a complex memory reference (see AID Core Manual [1]).
The address selector cannot be used for constants. However, the statement names,
the source references and the figurative constants among these can be specified
by a subsequent pointer.
Examples
%D %@(L'LEAD'->)
%D %@(S'97MOV'->)

%L(...)

With the length selector you can output the length of a data entry, a data item or a
special register (see AID Core Manual [1]).
Example: %DISPLAY %L(ITEM1)
The length of ITEM1 is output.

56 U2855-J-Z125-6-76

%DISPLAY AID commands

%L=(expression)

With the length function you can have a value calculated.

expression is formed from memory references and arithmetic operators (see AID
Core Manual [1]).
Example: %DISPLAY %L=(ITEM1)
If ITEM1 is an integer (type %F), the contents of ITEM1 will be output. Otherwise
AID issues an error message.

%UTF16(...) or %C(...)

The %UTF16() function converts strings from 1-byte EBCDIC encoding to UTF16
encoding; the %C function performs conversion in the other direction.
For further information, see the AID Core Manual [1].

AID literal

All AID literals described in the AID Core Manual [1], may be specified:

 {C'x...x' | 'x...x'| U'x...x'} Character literal
 {X'f...f'} Hexadecimal literal
 {B'b...b'} Binary literal
 [{±}]n Integer
 #f...f' Hexadecimalnumber'
 [{±}]n.m Fixed-point number
 [{±}]mantissaE[{±}]exponent Floating-point number

feed-control

For output to SYSLST, print editing can be controlled by the following two keywords,
where:

%NP results in a page feed

%NL[(n)] results in a line feed by n blank lines.
1 ≤ n ≤ 255. The default for n is 1.

��������������������
 medium-a-quantity 
���������������������

Defines the medium or media via which output is to take place, and whether additional infor-
mation is to be output by AID. If this operand is omitted and no declaration has been made
using the %OUT command, AID uses the presetting T = MAX.

U2855-J-Z125-6-76 57

AID commands %DISPLAY

medium-a-quantity-OPERAND -

 T 

 H
  MAX 
  =  

 Fn
  MIN 
 P 

- -

medium-a-quantity is described in full detail in the AID Core Manual [1].

T Terminal output

H Hardcopy output (includes terminal output and cannot be specified

together with T)

Fn File output

P Output to SYSLST

MAX Output with additional information

MIN Output without additional information

Examples

1. Specification of several medium-a-quantity operands
%DISPLAY DATARECORD F1=MAX, H=MIN

2. %DISPLAY E=D1.PROG=EXAMPLE.FCOMP3S,'CONTENTS OF DUMP'
Here the contents of a dump are evaluated.

 ��
  ** D1: DUMP.EXAMPLE ** 
  FCOMP3S = +999456989 
  CONTENTS OF DUMP 
  

3. %DISPLAY %L=(S'13ADD'-S'12MOV')
AID outputs the length of the machine code sequence generated for statement 12MOV.

 ��
  +52 
  

58 U2855-J-Z125-6-76

%DISPLAY AID commands

4. %BASE
%DISPLAY L'PROCESSING'
%BASE switches back to the AID standard work area. AID then outputs the address of
the first instruction in the paragraph PROCESSING as a hexadecimal number.

 ��
  ** ITN: #00010053'***TSN:6567***' 
  SRC_REF: 45INIT SOURCE: M0BS PROC: M0BS ******************************
  PROCESSING = 00000A84 
  

5. %DISPLAY L'PROCESSING'->
AID outputs 4 bytes of the machine code contained at the address of the paragraph
PROCESSING. The pointer operator switches to the machine code level, which causes
AID to display an additional header.

 ��
  CURRENT PC: 00000A04 CSECT: M0BS **
  V'00000A84' = M0BS + #00000A84'' 
  00000A84 (00000A84) 18001800 
  

6. %DISPLAY %HLLOC(L'OUT1' IN L'PUTOUT'->)
AID outputs symbolic localization information for paragraph OUT1 in section PUTOUT.

 ��
  V'00000C2C' = SMOD : EXAMPLE 
  PROC : EXAMPLE 
  SECTION : PUTOUT 
  PARAGRAPH: OUT1 
  SRC-REF : 77 
  LABEL : OUT1 
  

7. %DISPLAY %LOC(L'OUT1' IN L'PUTOUT'->)
AID outputs localization information on machine code level for paragraph OUT1 in
section PUTOUT.

 ��
  V'00000C2C' = PROG : EXAMPLE 
  LMOD : %ROOT 
  SMOD : EXAMPLE 
  OMOD : EXAMPLE 
  CSECT : EXAMPLE (00000000) + 00000C2C 
  

U2855-J-Z125-6-76 59

AID commands %DISPLAY

8. The program M1BS is loaded and started

 ��
  /LOAD-EXECUTABLE-PROGRAM M1BS,TEST-OPT=*AID 
  % BLS0500 PROGRAM 'M1BS', VERSION ' ' OF '91-09-04' LOADED. 
  Unpacked numbers 
  12345 
  1234N 
  Packed numbers 
  12345 
  1234N 
  % IDA0N51 PROGRAM INTERRUPT AT LOCATION '008702 (M1BS), (CDUMP), EC=68 
  % IDA0N45 DUMP DESIRED? REPLY (Y = USER/AREA DUMP; Y,SYSTEM = SYSTEM ,N=NO)? 
  % EXC0077 PROGRAM IS STILL LOADED AND IN 'HOLD-PROGRAM' MODE. PROGRAM RUN MAY BE
  CONTINUED WITH /RESUME-PROGRAM 
  

Your program has encountered an error. Now you want to know which statement
caused this error. To find this out, enter %DISPLAY %HLLOC for the address at which
the program was interrupted by the error:

 ��
  /%DISPLAY %HLLOC(V'8702') 
  ** ITN: #0000004D'***TSN:4192***' 
  CURRENT PC: 00008702 CSECT: UPRO **
  V'00008702' = SMOD : UPRO 
  PROC : UPRO 
  SRC-REF : 33COM 
  /%D %LOC(V'8702') 
  V'00008702' = PROG : M1BS 
  LMOD : %ROOT 
  SMOD : UPRO 
  OMOD : UPRO 
  CSECT : UPRO (00008230) + 000004D2 

9. %DISPLAY ALPHA-CHAR(I)
Let ALPHA-CHAR be defined as in example 9 and index I contain the value 5. The 5th
element in the table will be output:

 ��
  ALPHA-CHAR(5) = |E| 
  

10. %DISPLAY ALPHA-CHAR
The ALPHA-CHAR element is contained in a table 26 times and defined in the DATA
DIVISION as follows:

 01 A-Z-TAB1.
 02 ALPHA-CHAR PIC X OCCURS 26 INDEXED BY I.

As no index was specified in %DISPLAY, AID outputs all the elements with this name:

 ��
  ** ITN: #00010053'***TSN:6567***' 
  SRC_REF: 45INIT SOURCE: EXAMPLE PROC: EXAMPLE **************************
  ALPHA-CHAR(1: 26) 
  (1) |A| (2) |B| (3) |C| (4) |D| (5) |E| (6) |F| (7) |G| 
  (8) |H| (9) |I| (10) |J| (11) |K| (12) |L| (13) |M| (14) |N| 
  (15) |O| (16) |P| (17) |Q| (18) |R| (19) |S| (20) |T| (21) |U| 
  (22) |V| (23) |W| (24) |X| (25) |Y| (26) |Z| 
  

60 U2855-J-Z125-6-76

%DISPLAY AID commands

11. Comparison of AID and COBOL output of data items:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NUM.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 TERMINAL IS T.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 UNPKD1 PIC 99999.
 01 UNPKD2 PIC S999V99 VALUE ZERO.
 01 PCKD1 PIC 99999 COMP-3.
 01 PCKD2 PIC S999V99 COMP-3 VALUE ZERO.
 01 FLOAT1 PIC +999.99E-99.
 01 FLOAT2 COMP-1.
 01 FLOAT3 COMP-1 VALUE 12.
 01 FLOAT4 COMP-2.
 01 FLOAT5 COMP-2 VALUE +123456789.1234567E+10.
 01 BIN1 PIC 99999 BINARY.
 01 BIN2 PIC S9999 BINARY VALUE ZERO.
 PROCEDURE DIVISION.
 UNPKD.
 DISPLAY "Unpacked numbers" UPON T.
 MOVE 12345 TO UNPKD1.
 DISPLAY UNPKD1 UPON T.
 MOVE -123.45 TO UNPKD2.
 DISPLAY UNPKD2 UPON T.
 PCKD.
 DISPLAY "Packed numbers" UPON T.
 MOVE 12345 TO PCKD1.
 DISPLAY PCKD1 UPON T.
 MOVE UNPKD2 TO PCKD2.
 DISPLAY PCKD2 UPON T.
 FLOAT.
 DISPLAY "Floating-point numbers" UPON T.
 MOVE 12345 TO FLOAT1.
 MOVE 12345 TO FLOAT2.
 DISPLAY FLOAT1 UPON T.
 DISPLAY FLOAT2 UPON T.
 DISPLAY FLOAT3 UPON T.
 MOVE UNPKD2 TO FLOAT4.
 DISPLAY FLOAT4 UPON T.
 DISPLAY FLOAT5 UPON T.
 BIN.
 DISPLAY "Binary numbers" UPON T.
 MOVE 12345 TO BIN1.
 DISPLAY BIN1 UPON T.
 MOVE UNPKD2 TO BIN2.
 DISPLAY BIN2 UPON T.
 END.
 STOP RUN.

U2855-J-Z125-6-76 61

AID commands %DISPLAY

COBOL output

��
 Unpacked numbers 
 12345 
 1234N 
 Packed numbers 
 12345 
 1234N 
 Floating-point numbers 
 +123.45E 02 
 +.123450E+05 
 +.120000E+02 
 -.123450000000000E+03 
 +.123456789123457E+19 
 Binary numbers 
 12345 
 012L 
��

AID output

��
 %D UNPKD1, UNPKD2 
 SRC_REF: 44DIS SOURCE: UPRONUM PROC: UPRONUM ************************** 
 UNPKD1 = 12345 
 UNPKD2 = -123.45 
 
 %D PCKD1,PCKD2 
 PCKD1 = 12345 
 PCKD2 = -123.45 
 
 %D FLOAT1,FLOAT2,FLOAT3,FLOAT4,FLOAT5 
 FLOAT1 = +.12345 E+005 
 FLOAT2 = +.1234500 E+005 
 FLOAT3 = +.1200000 E+002 
 FLOAT4 = -.1234499999999999 E+003 
 FLOAT5 = +.1234567891234566 E+019 
 
 %D BIN1, BIN2 
 BIN1 = 12345 
 BIN2 = -123 
��

62 U2855-J-Z125-6-76

%DUMPFILE AID commands

%DUMPFILE

With %DUMPFILE you assign a dump file to a link name and cause AID to open or close
this file.

– With link you select the link name for the dump file to be opened or closed.

– With file you designate the dump file to be opened.

���
Command Operand
���

%DUMPFILE
  [link [=file]]
%DF 

���

If you omit the file operand AID will close the file assigned to the specified link name.

With a %DUMPFILE command without operands, you cause AID to close all open dump
files. If the AID work area was, up until this point, contained in a dump file now closed, the
AID standard work area then reapplies (see also %BASE command).

%DUMPFILE may only be specified as an individual command, i.e. it may not be

part of a command sequence and may not be included in a subcommand.

%DUMPFILE does not alter the program state.

�������
 link 
��������

Designates one of the AID link names for input files and has the format Dn, where n is a
number with a value 0 ≤ n ≤ 7.

�������
 file 
��������

Specifies the fully-qualified file name under which the dump file AID is to open is cataloged.
If this operand is omitted, the dump file with the link name link is closed.
An open dump file must first be closed with a separate %DUMPFILE command before
another file can be assigned the same link name.

U2855-J-Z125-6-76 63

AID commands %DUMPFILE

Examples

1. %DUMPFILED3=DUMP.1234.00001
The file DUMP.1234.00001 with link name D3 is opened.

2. %DF D3
The file assigned to link name D3 is closed.

3. %DF
All open dump files are closed.

64 U2855-J-Z125-6-76

%FIND AID commands

%FIND

With %FIND you can search for a literal in a data element or in the executable part of a
program, and output hits to the terminal (via SYSOUT). In addition, the address of the hit
and the continuation address are stored in AID registers %0G and %1G. %FIND can be
used to search both virtual memory and a dump file.

– search-criterion is the character literal or hexadecimal literal to be searched.

– With find-area you specify which data element or which section of the executable part of
the program AID is to search for search-criterion. AID can search the virtual address
space of the task as well as dump files. If the find-area value is omitted, AID searches
the entire memory area in accordance with the base qualification currently set (see
%BASE).

– With alignment you specify whether the search for search-criterion is to be effected at a
doubleword, word, halfword or byte boundary. When a value for alignment is not given,
searching takes place at the byte boundary.

– With ALL you specify that the search is not to be terminated after output of the first hit,
rather the entire find-area is to be searched and all hits are to be output. The search can
only be aborted by pressing the K2 key.

���
 Command Operands
���

 %F[IND] [[ALL] search-criterion [IN find-area] [alignment]]

���

If the ALL operand is omitted from a %FIND command, the user may continue after the
address of the last hit and up to the end of the find-area by specifying a new %FIND
command without any operand values.

In a %FIND command with a separate search-criterion and without any other operands, AID
inserts the corresponding default value for an operand without a current value. In this case,
therefore, no operands are taken over from a previous %FIND command.

In the event of a hit, output is to a maximum length of 12 bytes, from the hit to the end of
find-area on the terminal (SYSOUT) in dump format (hexadecimal and character represen-
tation). In addition to the hit itself, its address and (insofar as possible) the name of the
compilation unit in which the hit was found, and the relative address of the hit with respect
to the beginning of the compilation unit, are output.

The hit address is stored in AID register %0G and the continuation address (hit address +
search string length) in AID register %1G. With the ALL specification, the address of the last
hit is stored in %OG and the continuation address of the last hit is stored in %1G. If the

U2855-J-Z125-6-76 65

AID commands %FIND

search-criterion has not been found, AID registers %0G and %1G remain unchanged.
The two register contents permit you to use the %FIND command in procedures as well as
in subcommands and to further process the results.

The %FIND command does not alter the program state.

�������������������
 search-criterion 
��������������������

is a character literal, hexadecimal literal or a memory location. When a memory location is
specified, parentheses must be specified in the format (search-criterion).

In the case of a literal specification of search-criterion you may use wildcard symbols. These
symbols are always hits. They are represented by ’%’.

search-criterion-OPERAND -

C'x...x' | 'x...x' 
X'f...f' | 

%C(literal) / %UTF16(literal)

(memory-location) 

- -

{C'x...x' | 'x...x'}

Character literal with a maximum length of 80 characters. Lowercase letters can
only be located as character literals after specifying %AID LOW[=ON].

x can be any representable character, in particular the wildcard symbol ’%’, which
always represents a hit. The character ’%’ itself cannot be located when it is in this
form, since C’%’ in a character literal must always result in a hit. For this reason it
must be represented as the hexadecimal literal X’6C’.

{X'f...f'}

Hexadecimal literal with a maximum length of 80 hexadecimal digits or 40
characters. A literal with an odd number of digits is padded with X’0’ on the right.

f can assume any value between 0 and F, as well as the wildcard symbol X’%’. The
wildcard symbol represents a hit for every hexadecimal digit between 0 and F.

%C(literal) | %UTF16(literal)
These functions must be used when, for example, UTF16 encoding of the search-
criterion is required or when strings in 1-byte encoding are searched for even
though the literal was specified in UTFE encoding.

66 U2855-J-Z125-6-76

%FIND AID commands

(memory-location)
The search-criterion is taken from memory-location. If memory-location is of the type
%UTF16, up to 160 bytes = 80 UTF16 characters can be searched for. In all other
cases search-criterion is limited to 80 bytes.

memory-location can also be a symbolic field. A NATIONAL field is then treated like
a %UTF16 memory-location.

�������������
 find-area 
��������������

defines the memory area to be searched for search-criterion. find-area can be a data item or
part of the PROCEDURE DIVISION of the loaded program or of a dump file. find-area must
not exceed 65535 bytes in length.

If no find-area has been specified, AID inserts the default value %CLASS6 (see AID Core
Manual [1]), i.e. the class 6 memory for the currently set base qualification is searched (see
%BASE).

find-area-OPERAND -

 dataname 

statement-name ->

IN [•][qua•] source-reference -> 

compl-memref

  

- -

● If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua

Qualifications need only be specified if an address operand does not apply to the
current AID work area of if an address is to be referenced which is not in the current
compilation unit or the current program.

E={VM | Dn}

Need only be specified if the current base qualification is not to apply for find-
area (see also %BASE command).

S=srcname

Need only be specified if find-area is not within the current compilation unit (see
chapter “COBOL-specific addressing” on page 15).

U2855-J-Z125-6-76 67

AID commands %FIND

PROC=program-id

Need only be specified if find-area is not within the current program (see chapter
“COBOL-specific addressing” on page 15) or if it is defined with a dataname or
statementname which is not unique in the compilation unit.

If srcname in the S qualification is the same as program-id, only the PROG qualifi-
cation need be written.

Only the base qualification or the CTX qualification can be placed before the C
qualifications listed below. The C qualification takes the user away from the
symbolic level. No symbolic operands can be written directly afterwards (see
section “Symbolic memory references” on page 18), only a compl-memref.

C=segmentname

Without a length modification the entire segment is specified as find-area.

C=sharename

Without a length modification the entire object module is specified as find-area.

dataname

is the name of a data item defined in the source program or the name of a COBOL
special register.
If dataname is not unique within a program, it can be marked.
If dataname is the name of an element in a table, it can be indexed or subscripted in
the same way as in a COBOL statement (see section “Symbolic memory refer-
ences” on page 18).

dataname [identifier][...] [(index[,...])]

identifier

IN or OF can be used to assign dataname to a certain group item. dataname must
have as many identifiers as are required to designate it unambiguously.
If it is not identified, AID only processes dataname if a data definition is provided
for it at level 01 or 77. If this is not the case, an error message is issued.

index

This is written in the same way as in a COBOL except that multiple indexes in
the AID command must be separated by commas. index can be specified as
follows:

n
index-name
dataname
TALLY
arithmetic-expression

68 U2855-J-Z125-6-76

%FIND AID commands

COBOL special registers

 LINAGE-COUNTER
 RETURN-CODE
 SORT- CCSN
 SORT-CORE-SIZE
 SORT-EOW
 SORT-FILE-SIZE
 SORT-MODE-SIZE
 SORT-RETURN
 TALLY

statement-name 
 ->
source-reference

designates 4 bytes of the program code from the address contained in the address
constant. If a different number of bytes is to be searched, you must specify a corre-
sponding length modification.

statement-name

defines the address of the first instruction in a section or paragraph in the
PROCEDURE DIVISION.

If a paragraph name is not unambiguous within a program, it must be identified

by the section name of the section in which it was defined: L'paragraph' IN
L'section'

source-reference

designates the address of the first instruction generated for a statement in the
PROCEDURE DIVISION and must be specified in one of the following formats:

S’n’

for lines with paragraph or section names in which no COBOL verb occurs.
This specification is not possible for programs which have been compiled
with STMT-REFERENCE=COLUMN1-TO-6.

S’nverb[m]’ | S’xverb[m]’

for lines containing a COBOL verb.

L'section'
L'paragraph' [IN L'section']

U2855-J-Z125-6-76 69

AID commands %FIND

compl-memref

The following operations may occur in compl-memref (see AID Core Manual [1]):

– byte offset (•)

– indirect addressing (->)

– type modification (%A, %S, %SX)

– length modification (%L(...), %L=(expression), %Ln)

– address selection (%@(...))

If compl-memref begins with a statement name or source reference, it must be
followed by a pointer operator (->). In this case statement-name must be specified
with L’...’. Without the pointer operator the statement name and source reference
can be used anywhere where hexadecimal numbers can be written.
compl-memref designates an area of 4 bytes starting from the calculated address. If
a different number of bytes is to be searched, a corresponding length modification
must be added. When modifying the length of data items you must pay attention to
area boundaries or switch to machine code level using %@(dataname)->.

������������
 alignment 
�������������

defines that the search for search-criterion is to be effected at certain aligned addresses only.

alignment-OPERAND -

 1

2

ALIGN [=]  

4

 8

- -

search-criterion is searched for at:

1 byte boundary (default)

2 halfword boundary

4 word boundary

8 doubleword boundary

70 U2855-J-Z125-6-76

%FIND AID commands

Examples

1. %FIND X'F0' IN DATA
The hexadecimal literal X’F0’ is searched for in the variable DATA. Any hit is output to
SYSOUT.

2. %F X'D2' IN S'12MOV'->%L=(S'13ADD'-S'12MOV') ALIGN=2
The hexadecimal literal X’D2’ is searched for at a halfword boundary in the machine
code generated for statement 12MOV.

3. %F
The search is continued with the parameters of the last %FIND command behind the
last hit.

4. The input medium has the CCSN UTFE:
%FIND %UTF16('[{Ö') IN V'xxx'
The command searches for the string ’[{Ö’ in its UTF16 encoding starting at the memory
location V'xxx'.
If the %UTF16() function were not specified, AID would search for the UTFE encoding
X’BBFB9EB6’ of ’[{Ö’ in the memory.
Using the %UTF16() function means that its UTF16 encoding X’005B007B00D6' is
searched for in the memory.

5. The input medium has the CCSN UTFE.
%FIND %C('Ä') IN V'xxx'

1. %AID EBCDIC=EDF03DRV (German character set)
The command searches for the German encoding of Ä (corresponds to X’BB’) star-
ting at address V’xxx’. If %C() were not specified, AID would search for X’9E9F’ (=
UFTE encoding of ’Ä’) in the memory.

– %AID EBCDIC=EDF03IRV
Instead of the character ’Ä’, which is illegal in the character set EDF03IRV,
the command searches for the substitute character ’.’. In this case AID
reports that a replacement character has occurred in %C() conversion.

U2855-J-Z125-6-76 71

AID commands %HELP

%HELP

By means of %HELP you can request information on the operation of AID. The following
information is output to the selected medium: either all the AID commands or the selected
command and its operands, or the selected error message with its meaning and possible
responses.

– With info-target you specify the command on which you need further information or the
AID message for which you want an explanation of its meaning and actions to be taken.

– With medium-a-quantity you specify to which output media AID is to output the required
information. By means of this operand you temporarily disable a declaration made via
%OUT.

���
Command Operand
���

%H[ELP] [info-target] [medium-a-quantity][,...]

���

%HELP provides information on all the operands of the selected command, i.e. all
language-specific operands for symbolic debugging as well as all operands for machine-
oriented debugging. Refer to the relevant manual to see what is permitted for the language
in which your program is written.

The AID messages have the message code format AID0n, while the AIDSYS messages
have the format IDA0n. Both are queried using /HELP. In addition, in the current AID version
the AID messages can be queried with In using the AID %HELP command, as before.

%HELP can only be entered as an individual command, i.e. it must not be contained in a
command sequence or subcommand.

The %HELP command does not alter the program state.

��������������
 info-target 
���������������

designates a command or a message number about which information is to be output.
If this operand is omitted, AID outputs an overview of the AID commands with a brief
description of each command, and of the AID message number range.

AID responds to a %HELP command containing an invalid info-target operand by issuing an
error message. This is followed by the same overview as for a %HELP command without
info-target. This overview can also be requested via the %H or %? entries.

72 U2855-J-Z125-6-76

%HELP AID commands

info-target-OPERAND -

 %AID | %AINT | %BASE | %CONT[INUE] | %C[ONTROL] 

 %DISASSEMBLE | %DA | %D[ISPLAY] | %DUMPFILE | %DF

 %F[IND] | %H[ELP] | %IN[SERT] | %JUMP | %M[OVE]

 %ON | %OUT | %OUTFILE | %Q[UALIFY]

� %REM[OVE] | %R[ESUME] | %SD[UMP] | %SET �

 %SH[OW] | %STOP | %SYMLIB | %TITLE | %T[RACE]

 In 

- -

The AID command names may be abbreviated as shown above.

In designates the old message code of a message for which the meaning and possible
responses are to be output.
n is a 3-digit message number.

��������������������
 medium-a-quantity 
���������������������

defines the media via which information on the info-target is to be output.

If this operand is omitted and no declaration has been made using the %OUT command,
AID works with the default value T=MAX. The specification {MIN | MAX} has no effect with
%HELP, but the syntax requires one of these two specifications.

medium-a-quantity-OPERAND -

T 

H
 MAX
  =  

Fn
 MIN
P 

- -

medium-a-quantity is described in detail in the AID Core Manual [1].

T Terminal output

H Hardcopy output (includes terminal output and cannot be specified together with T)

Fn File output

P Output to SYSLST

U2855-J-Z125-6-76 73

AID commands %INSERT

%INSERT

By means of %INSERT you can specify a test point and define a subcommand. Once the
program sequence reaches the test point, AID processes the associated subcommand. In
addition, the user can also specify whether AID is to delete the test point once a specific
number of executions has been counted and halt the program afterwards.

– With test-point you may define the address of a command in the program prior to whose
execution AID interrupts the program run and to process subcmd.

– With subcmd you may define a command or a command sequence and perhaps a
condition. Once test-point has been reached and the condition has been satisfied,
subcmd is executed.

– With control you can declare whether test-point is to be deleted after a specified number
of passes and whether the program is then to be halted.

���
Command Operand
���

%IN[SERT] test-point [<subcmd>] [control]

���

A test-point is deleted in the following cases:

1. When the end of the program is reached.

2. When the number of passes specified via control has been reached and deletion of test-
point has been specified.

3. If a %REMOVE command deleting the test-point has been issued.

If no subcmd operand is specified, AID inserts the subcmd <%STOP>.

The subcmd in an %INSERT command for a test-point which has already been set does not
overwrite the existing subcmd; instead, the new subcmd is prefixed to the existing one. The
chained subcommands are thus processed according to the LIFO rule (last in, first out).

%REMOVE can be used to delete a subcommand, a test point or all test points entered.

test-point can only be an address in the program which has been loaded, therefore the base
qualification E=VM must have been set (see %BASE) or must be specified explicitly.

%INSERT does not alter the program state.

74 U2855-J-Z125-6-76

%INSERT AID commands

�������������
 test-point 
��������������

must be the address of an executable machine instruction generated for a COBOL
statement. test-point is immediately entered by targeted overwriting of the memory position
addressed and must therefore be loaded in virtual memory at the time the %INSERT
command is input. Since, by entering test-point, the program code is modified, a test point
which has been incorrectly set may lead to errors in program execution (e.g.
data/addressing errors).

When the program reaches the test-point, AID interrupts the program and starts the subcmd.

test-point-OPERAND -

 C=segmentname 

C=sharename

program-id

 [•][qua•][...]  

statement-name

source-reference

 compl-memref 

- -

● If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua

Qualifications must be specified if an address operand is not valid for the current
AID work area, the current compilation unit or the current program, or if it is not
unambiguous in some other way.

E=VM

Since test-point can only be entered in the virtual memory of the program which
has been loaded, specify E=VM only if a dump file has been declared as the
current base qualification (see %BASE command).

S=srcname

Need only be specified if test-point is not to be contained within the current
compilation unit.

PROC=program-id

Need only be specified if a statement name is not in the current program or if it
is not unique in the current compilation unit (see chapter “COBOL-specific
addressing” on page 15).

U2855-J-Z125-6-76 75

AID commands %INSERT

If srcname in the S qualification and program-id are the same, only the PROG quali-
fication need be written.

Only the base qualification or the CTX qualification can be placed before the C qualifica-
tions listed below. The C qualification takes the user away from the symbolic level. No
symbolic operands can be written directly afterwards (see section “Symbolic memory refer-
ences” on page 18), only a compl-memref.

C=segmentname

With this specification you set test-point to the start address of the designated
segment.

C=sharename

With this specification you set test-point to the start address of the designated
reusable program.

program-id

This specification is possible after an explicit PROC/PROG qualification or if the
current interrupt point is in the program that is identified by program-id. The effect is
to set test-point to the first executable statement of the designated program.

statement-name

designates the address of the first instruction in a section or paragraph in the
PROCEDURE DIVISION.

An alphanumeric section or paragraph name can be specified without L’...’ since this
name cannot be confused with a data name in this command.

If a paragraph name is not unambiguous within a program, it must be identified by
the section name of the section in which it was defined:
L'paragraph' IN L'section'

source-reference

designates the address of the first instruction generated for a statement in the
PROCEDURE DIVISION and must be specified in one of the following formats (see
chapter “COBOL-specific addressing” on page 15):

S’n’
for lines with paragraph or section names in which no COBOL verb occurs. This
specification is not possible for programs which have been compiled with
STMT-REFERENCE=COLUMN1-TO-6.

L'section'
L'paragraph' [IN L'section']

76 U2855-J-Z125-6-76

%INSERT AID commands

S’nverb[m]’ | S’xverb[m]’
for lines containing a COBOL verb.

compl-memref

The result of compl-memref must be the start address of an executable machine
instruction. compl-memref may contain the following operations (see AID Core
Manual [1]):

– byte offset (•)

– indirect addressing (->)

– type modification (%A)

– length modification (%Ln)

– address selection (%@(...))

If compl-memref begins with a statement name or source reference, it must be
followed by a pointer operator (->). In this case statement-name must be specified
with L’...’. Without the pointer operator the statement name and source reference
can be used anywhere where hexadecimal numbers can be written.

Example: %INSERT L'PUTOUT' ->.4

test-point is set to the second instruction after the PUTOUT paragraph. The first
instruction was 4 bytes long.

Type modification makes sense only if the contents of a data item can be used as
an address or if you take the address from a register.
Example: %1G.2 %AL2 ->
The last two bytes from AID register %1G are used as the address.

���������
 subcmd 
����������

A subcommand is processed whenever program execution reaches the address designated
by test-point.
If the subcmd operand is omitted, AID inserts a <%STOP>.

A complete description of subcmd can be found in the AID Core Manual [1].

subcmd-OPERAND -

 AID-command 
<[subcmdname:] [(condition):] [  {;...}]>
 BS2000-command

- -

U2855-J-Z125-6-76 77

AID commands %INSERT

A subcommand may contain a name, a condition and a command part. Every subcommand
has its own execution counter. The command portion can comprise a single command or a
command sequence and may contain AID and BS2000 commands as well as comments.

If the subcommand consists of a name or a condition but the command part is missing, AID
merely increments the execution counter when the test point is reached.

subcmd does not overwrite an existing subcommand for the same test-point, rather the new
subcommand is prefixed to the existing one. The subcmd of an %ON or %INSERT may
contain the commands %CONTROLn, %INSERT, %JUMP and %ON. Nesting over a
maximum of 5 levels is possible.

The commands in a subcmd are executed one after the other; program execution is then
continued. The commands for runtime control immediately alter the program state, even in
a subcommand. They abort the subcmd and start the program (%CONTINUE, %RESUME,
%TRACE) or halt it (%STOP). They are thus only effective as the last command in a subcmd,
since any subsequent commands in the subcmd would fail to be executed. Likewise, deletion
of the current subcommand via %REMOVE makes sense as the last command in subcmd
only.

�����������
 control 
������������

specifies whether test-point is to be deleted after the n-th pass and whether the program is
to be halted with the purpose of inserting new commands.
If no control operand has been specified, AID assumes the defaults 65535 (for n) and K.

control-OPERAND -

  K 
ONLY n [ S ]
  C 

- -

n is a number with the value 1 ≤ n ≤ 65535, specifying after how many test-point passes
the further declarations for this control operand are to go into effect.

K test-point is not deleted (KEEP).

Program execution is interrupted, and AID expects input of commands.

S test-point is deleted (STOP).

Program execution is interrupted, and AID expects input of commands.

C test-point is deleted (CONTINUE).

No interruption of the program.

78 U2855-J-Z125-6-76

%INSERT AID commands

Examples

1. %IN S'48MOV'
test-point is specified with a source reference and is set to the memory location of the
instruction code generated for the MOVE in statement line 48.

2. %IN ST3 <%DISPLAY PERSNR> ONLY 10 S
test-point is designated by the paragraph name ST3. Whenever the program sequence
arrives at the first statement in paragraph ST3, the %DISPLAY command of the subcmd
is executed. When test-point is reached for the 10th time, AID sets the program to STOP
and deletes the test point, at which time you may enter new commands.

3. %IN ST2 <%DISPLAY TEXTDAT, 'ST2'>
%IN ST3 <%DISPLAY 'INSERT1', TEXTDAT; %IN PUTOUT<%D 'INSERT2', -
I,J,K, NUMB-TABLE; %IN S'172' <%D 'INSERT3' ,I,J; %REMOVE PUTOUT>>>

With the first %INSERT command, paragraph ST2 is set as the test-point. If, after the
end of command input, the program execution reaches ST2, the subcommand is
executed. It consists of a %DISPLAY command (for data name TEXTDAT) and the
literal ’ST2’. Afterwards the program is continued.

By means of the second %INSERT command, test-point ST3 is declared. This
%INSERT command contains two other nested %INSERT commands. Their test-point
values are still inactive for AID. They do not become active until the test-point of the
%INSERT command in whose subcmd they are defined is reached.

When program execution reaches paragraph ST3, the corresponding subcmd is
executed, i.e. the %DISPLAY command for the literal ’INSERT1’ and the variable
TEXTDAT is executed and the test-point PUTOUT is set.
The subcmd for test-point PUTOUT is still inactive. Thus, in the program to be tested, the
following three test-points have been set at this stage in the program run: ST2, ST3 and
PUTOUT.

As the subcmd for test-point ST3 does not contain any %STOP command, the program
is continued after execution of subcmd. If program execution is not interrupted for some
other reason, e.g. an error or the occurrence of an event declared by %ON, and finally
reaches the symbolic address PUTOUT, then the %D command ’INSERT2’, I, J, K,
NUMB-TABLE is executed. Furthermore, subcmd contains a further %INSERT
command, whose test-point this time is specified with source-reference S’172’.

If the position marked S’172’ is reached during further program execution, AID executes
the %DISPLAY command for the literal ’INSERT3’ and the contents of data items I and
J. By way of the second command in this subcmd, the %REMOVE PUTOUT command,
test-point PUTOUT is deleted. This is necessary, for instance, if a test-point is located in
a loop and this would lead to an undesirable chaining of nested subcommands. Without
the %REMOVE command, the following subcmd would be created for test-point S’172’
during the second pass of PUTOUT:
<%D 'INSERT3', I,J; %D 'INSERT3',I,J>

U2855-J-Z125-6-76 79

AID commands %INSERT

4. %OUT %DISPLAY P=MAX
%IN S'73SET' <%D 'I GE 10',I,CHAR(I),K,NR-C(I,K)>
%IN S'73SET' <(I LT 10): %D 'I LT 10',I,CHAR(I); %CONT>

First, all outputs of the %DISPLAY command are directed to SYSLST.

The two subsequent %INSERTs create the following subcommand at test-point
S’73SET’:
<(I LT 10): %D 'I LT 10',I,CHAR(I); %CONT; %D 'I GE 10',I,CHAR(I),-
K,NR-C(I,K)>

Every time the program sequence reaches the statement with the name 73SET, a check
is made whether index I contains a value < 10. If the condition is satisfied, AID writes
the comment ’I LT 10’ and the contents of I and CHAR(I) to SYSLST and, as a result of
%CONTINUE, continues the program (with tracing, if the subcommand interrupted a
%TRACE).
If the value of I is ≥ 10, AID writes the comment ’I GE 10’ and, in addition to I and
CHAR(I), also the values of index K and table element NR-C(I,K) to SYSLST and
likewise continues the program. In this case, too, any active %TRACE is continued.

80 U2855-J-Z125-6-76

%JUMP AID commands

%JUMP

With the %JUMP command you define a continuation address at which the program is to
continue with %CONTINUE, %RESUME or %TRACE. With this address you deviate from
the coded program sequence. The command is acknowledged with a message reporting
execution of the branch.

– With continuation you designate the position in the program where AID is to continue
following termination of command input. continuation can only be the address of a
COBOL statement.

���
Command Operand
���

%JUMP continuation

���

%JUMP can only be used for programs which were compiled with the COBOL compiler. For
compilation purposes, you must specify the SDF option
PREPARE-FOR-JUMPS=YES or the COMOPT statement SEPARATE-TESTPOINTS=YES.

The continuation address must be located in the same program as the current interrupt
point, otherwise the command results in an error because essential initializations have not
been carried out.
The user must ensure that the prerequisites (e.g. index or counter states, file status) for
error-free execution of program as of continuation have been fulfilled. This is especially
important if you use the %JUMP command to reach an address which comes logically
before the interrupt point in the course of program execution.

You may not enter the %JUMP command in the following cases:

– immediately after the LOAD-EXECUTABLE-PROGRAM command

– if the program has been interrupted by the system, e.g. because a file to be opened has
not yet been assigned

– if the K2 key has been used to interrupt the program.

The %JUMP command does not alter the program state.

U2855-J-Z125-6-76 81

AID commands %JUMP

���������������
 continuation 
����������������

defines the position at which the program is to be continued. continuation must be the
address of an executable statement within the current program. If the %JUMP command is
part of a subcommand, continuation must designate a statement in the program in which the
current interrupt point for test-point or event has occurred.

continuation-OPERAND -

 statement-name 
� source-reference�

- -

statement-name

designates the address of the first instruction in a section or paragraph in the
PROCEDURE DIVISION.

An alphanumeric section or paragraph name can be specified without L’...’ since this
name cannot be confused with a data name in this command.

If a paragraph name is not unambiguous within a program, it must be identified by
the section name of the section in which it was defined: L'paragraph' IN
L'section'

source-reference

continuation can only be the address of the first instruction in a section or paragraph
in the PROCEDURE DIVISION and can thus only be specified with the following
source reference:

S’n’ for lines with paragraph or section names if they do not include a COBOL
verb. This means that no %JUMP source-reference is possible for a program
that has been compiled with STM-REFERENCE=COLUMN1-T0-6.

Example

%JUMP S'67'
%JUMP PUTOUT

Both commands refer to the example in section “Source listing” on page 145.

Statement line 67 contains only the paragraph name PUTOUT. Thus the same continuation
address is declared with both commands, namely the first executable statement in the
PUTOUT paragraph.

L'section'
L'paragraph' [IN L'section']

82 U2855-J-Z125-6-76

%MOVE AID commands

%MOVE

With the %MOVE command you transfer memory contents or AID literals to memory
positions within the program which has been loaded. Transfer is effected left-justified
without checking and without matching the storage type of the sender to the receiver. The
%SET command is required for transfer appropriate to type, as in the COBOL MOVE
statement.

– With sender you designate a data item, an address, an execution counter, an AID
register, a COBOL special register, a figurative COBOL constant or an AID literal.
sender can be located in virtual memory of the loaded program or in a dump file.

– With receiver you designate a data item, an execution counter, an AID register or a
COBOL special register which is to be overwritten. receiver can only be located in virtual
memory of the loaded program.

– With REP you specify whether AID is to generate a REP record in conjunction with a
modification which has taken place. This operand has a higher priority than the global
setting (see %AID command) but affects only the current %MOVE command.

���
Command Operand
���

%M[OVE] sender INTO receiver [REP]

���

In contrast to the %SET command, AID does not check for compatibility between the
storage types sender and receiver when the %MOVE command is involved, and does not
match these two storage types. Type modifications remain without effect.

sender determines the length of the transfer. A length modification in receiver has no effect.
If the transfer goes beyond the end of receiver, AID rejects the attempt to transfer and issues
an error message.

Input of the command immediately following loading is not recommended as not all entries
in the DATA DIVISION will have been initialized (e.g. record definitions and special
registers).

In addition to the operand values described here, the values described in the manual for
debugging on machine code level can also be employed.

Using %AID CHECK=ALL you can also activate an update dialog, which first provides you
with a display of the old and new contents of receiver and offers you the option of aborting
the %MOVE command.

The %MOVE command does not alter the program state.

U2855-J-Z125-6-76 83

AID commands %MOVE

���������
�����������
 sender  INTO  receiver 
���������� ������������

For sender or receiver you can specify a data item, a COBOL special register, an execution
counter, a register or a complex memory reference. Statement names, source references,
figurative constants, addresses and lengths of data items as well as AID literals can only be
employed as sender.

sender may be either in the virtual memory area of the program which has been loaded or
in a dump file; receiver, on the other hand, can only be within the virtual memory of the
loaded program. If program areas are transferred or overwritten with instruction code, the
results may be undesirable if addresses are affected which belong to a control-area or trace-
area or for which a test point has been set using %INSERT (see AID Core Manual [1]).

No more than 3900 bytes can be transferred with a %MOVE command. If the area to be
transferred is larger, you must issue multiple %MOVE commands.

sender-OPERAND - - - - - - - - - - - - - - receiver-OPERAND - - - - - - - - -

 C=segmentname  

C=sharename

dataname

[•][qua• statement-name 

source-reference

keyword

 C=segmentname 

 compl-memref 

dataname

  INTO [•qua•  

%@ filename 

keyword

 ([•qua•dataname )
 compl-memref 

%L compl-memref 

%L=(expression)

AID-literal 

- -

● If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding

%QUALIFY command.

Consecutive qualifications must be separated by a period. In addition, there must
be a period between the final qualification and the following operand part.

qua

Qualifications need to be specified if an address operand does not apply to the
current AID work area or if the intention is to reference an address that is not within
the current compilation unit or the current program.

84 U2855-J-Z125-6-76

%MOVE AID commands

E={VM | Dn} for sender

E=VM for receiver

You specify a base qualification only if the current base qualification is not to
apply for a data/statement name, source reference or keyword (see %BASE).
sender may be either in virtual memory or in a dump file; receiver, on the other
hand, can only be in virtual memory.

S=srcname

is to be specified if sender or receiver is not contained in the current compilation
unit.

PROC=program-id

is to be specified only if you address a file name, data name or statement name
that is not in the current program or is not unique in the current compilation unit
(see chapter “COBOL-specific addressing” on page 15). It is also necessary for
a global data name that is locally hidden.

If srcname in the S qualification is the same as program-id, only the PROG qualifi-
cation need be written.

Only the base qualification or the CTX qualification can be placed before the C qualifica-
tions listed below. The C qualification takes the user away from the symbolic level. No
symbolic operands can be written directly afterwards (see section “Symbolic memory refer-
ences” on page 18), only a compl-memref.

C=segmentname

Without a length modification, specify the entire segment as the sender or receiver.
If the segment is more than 3900 bytes in length, it can only be transferred by using
several %MOVEs.

C=sharename

Without a length modification, specify the entire object module as the sender or
receiver. If it is more than 3900 bytes in length, it can only be transferred by using
several %MOVEs.

dataname

is the name of a data item defined in the source program, i.e. both individual data
elements and group items and tables and their elements, or the name of a COBOL
special register. Figurative constants can only be used as sender.

If dataname is not unique within a program, it can be marked.

If dataname is the name of a table element, it can be indexed or subscripted in the
same way as in a COBOL statement.

U2855-J-Z125-6-76 85

AID commands %MOVE

dataname [identifier][...][(index[,...])]

identifier

If dataname is not unambiguous within a program, it can be identified by being
assigned to a particular group item with IN or OF. dataname must be assigned
as many identifiers as are required to designate it unambiguously.
If it is not identified, AID processes dataname if a data definition is provided for it
at level 01 or 77. If this is not the case, an error message is issued.

index

is written in the same way as in a COBOL statement, except that indexes must
be separated by a comma. If you specify the name of a table element without
an index, this means that the entire table will be transferred (in the case of
sender). If you specify a table element without an index in the case of receiver,
the table will be overwritten beginning at the start address and using the length
of sender, without taking into account the subdivision into table elements.
index may be specified as follows:

COBOL special registers

 LINAGE-COUNTER
 RETURN-CODE
 SORT- CCSN
 SORT-CORE-SIZE
 SORT-EOW
 SORT-FILE-SIZE
 SORT-MODE-SIZE
 SORT-RETURN
 TALLY

Figurative constants

can only be specified as sender; the address selector cannot be used on them.
The figurative constants HIGH-VALUE and LOW-VALUE always represent the
alphanumeric value assigned to them by default or in the declarations made
with the PROGRAM COLLATING SEQUENCE clause. In contrast to the
COBOL MOVE statement, only one character is transferred in the AID
command %MOVE when a figurative constant is used.

n
index-name
dataname
TALLY
arithmetic-expression

86 U2855-J-Z125-6-76

%MOVE AID commands

 ZERO
 SPACE
 HIGH-VALUE
 LOW-VALUE
 QUOTE
 symbolic character

statement-name

designates the address of the first instruction in a section or paragraph in the
PROCEDURE DIVISION.

If a paragraph name is not unambiguous within a program, it must be identified by
the section name of the section in which it was defined: L'paragraph' IN
L'section'

Statement names are address constants and can only be specified for sender. The
address thus designated is then transferred.
With the subsequent pointer operator (statement-name ->) you designate 4 bytes of
the program code generated for the first statement in the section or paragraph. For
2-byte or 6-byte instructions you must specify a corresponding length modification.
statement-name -> can be used both as sender and receiver. See examples.

source-reference

designates the address of the first instruction generated for a statement in the
PROCEDURE DIVISION and must be specified in one of the following formats:

S’n’ for lines with paragraph or section names in which no COBOL verb occurs.
This specification is not possible for programs which have been compiled
with STMT-REFERENCE=COLUMN1-TO-6.

S’nverb[m]’ | S’xverb[m]’

for lines containing a COBOL verb.

Source references are address constants and can only be specified for sender. The
address thus designated is then transferred.
With the subsequent pointer operator (source-reference ->) you designate 4 bytes of
the program code generated for the statement. For 2-byte or 6-byte instructions you
must specify a corresponding length modification. source-reference -> can be used
both as sender and receiver. See examples.

L'section'
L'paragraph' [IN L'section']

U2855-J-Z125-6-76 87

AID commands %MOVE

keyword

specifies an execution counter, the program counter, or a register. keyword may only
be preceded by a base qualification.

 %•subcmdname Execution counter
 %• Execution counter of the current subcommand
 %PC Program counter
 %n General register, 0 Î n Î 15
 %nD|E Floating-point register, n = 0,2,4,6
 %nQ Floating-point register, n = 0,4
 %nG AID general register, 0 Î n Î 15
 %nDG AID floating-point register, n = 0,2,4,6

compl-memref

may contain the following operations (see AID Core Manual [1]):

– byte offset (•)
– indirect addressing (->)
– type modification (%A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))
– character conversion functions %C() and %UTF16() (for sender only)

If compl-memref begins with a statement name or source reference, it must be
followed by a pointer operator (->). In this case statement-name must be specified
with L’...’. Without the pointer operator the statement name and source reference
can be used anywhere where hexadecimal numbers can be written. A subsequent
type modification for compl-memref is pointless, since transfer is always in binary
form, regardless of the storage type of sender and receiver. However, a type modifi-
cation may be necessary before a pointer operation (->).
Example: %0G.2%AL2->
The last two bytes of AID register %0G are to be used as the address.

After byte offset (•) or pointer operation (->), the implicit storage type and implicit
length of the original address are lost. At the calculated address, storage type %X
with length 4 applies, if no value for type and length has been explicitly specified by
the user.
Despite this, the area boundaries of the start address (for example CSECT,
dataname, keyword etc.) remain in effect. They must not be exceeded as the result
of byte offset or length modification, otherwise AID issues an error message. Only
by combining the address selection (%@) with the pointer operator (->) can you
switch to machine code level, on which the area comprises the area of virtual
memory occupied by the loaded program.

88 U2855-J-Z125-6-76

%MOVE AID commands

Example: %MOVE CITEM.3%L5 INTO CITEM
This command is rejected by AID on account of a violation of the CITEM area. The
variables CITEM and CITEM1 each occupy 5 bytes. The last 2 bytes of CITEM as
well as the 3 following bytes are to be transferred to CITEM1. The command should
read: %MOVE %@(CITEM)->.3%L5 INTO CITEM1

%@(...)

With the address selector you can use the address of a data entry, a data item, a
special register or a complex memory reference as sender. The address selector
produces an address constant as a result (see AID Core Manual [1]). The address
selector cannot be used for constants, which also include statement names, source
references and figurative constants.

%L(...)

With the length selector you can use the length of a data entry, a data item or a
special register as sender. The length selector produces an integer as a result (see
AID Core Manual [1]).
Example: %MOVE %L(ITEM1) INTO %0G
The length of ITEM1 will be transferred.

%L=(expression)

The length function enables you as sender to calculate a value. expression is formed
from the contents of memory references, constants, integers and arithmetic
operators. Only memory reference contents which are integers (type %F or %A) are
permitted. The length function produces an integer as a result (see AID Core
Manual [1]).
Example: %MOVE %L=(ITEM1) INTO %0G
The content of ITEM1 is transferred provided it is an integer (type %F), otherwise
AID issues an error message.

AID literal

The following AID literals (see AID Core Manual [1]) can be transferred using
%MOVE:

{C'x...x'| 'x...x'| U'x...x'}
{X'f...f'}
{B'b...b'}
n
#'f...f'

Character literal
Hexadecimal literal
Binary literal
Integer
Hexadecimalnumber

U2855-J-Z125-6-76 89

AID commands %MOVE

������
 REP 
�������

Specifies whether AID is to generate a REP record after a modification has been performed.
With REP you deactivate the global setting for this command (see %AID command). If REP
is not specified and there is no valid declaration in the %AID command, no REP record is
created.

REP-OPERAND -

REP = {Y[ES]  NO}

- -

REP=Y[ES]

LMS correction statements (REPs) in SDF format are created for the update caused
by the current %MOVE command. If the object structure list is not available, no
correction statements are generated and AID will output an error message.
Also, if receiver is not located completely within one CSECT, or if sender is more than
3900 bytes in length, AID will output an error message and not write a REP record.
To obtain REP records despite this, the user must distribute transfer operations over
several %MOVE commands.

AID stores the REPs with the requisite LMS correction statements in a file with the
link name F6. The MODIFY ELEMENT statement must then also be inserted for the
LMS run. Ensure, therefore, that no other output is written to the file with link name
F6.

If no file with link name F6 is registered (see %OUTFILE), the REP is stored in the
file AID.OUTFILE.F6 created by AID.

REP=NO

No REPs are created for the current %MOVE command.

Examples

The following items and tables are defined in a COBOL program:

01 NUMB-TAB-1.
 02 QNTY-1 PIC 999 OCCURS 10 INDEXED BY I.

01 NUMB-TAB-2.
 02 QNTY-2 PIC S9(6) OCCURS 50 INDEXED BY J.

01 FIXDPOINT-TAB.
 02 FIXD-QNTY PIC S999V99 OCCURS 26.

01 CHAR PIC X(4).
01 INTG-QNTY PIC S9(7) BINARY.

90 U2855-J-Z125-6-76

%MOVE AID commands

1. %MOVE QNTY-1 INTO QNTY-2
No index has been specified for the two table elements: AID therefore transfers the
entire table NUMB-TAB-1 to NUMB-TAB-2 in hexadecimal format and left-justified,
without taking into account any subdivision into table elements.

2. %MOVE 20 INTO INTG-QNTY
AID writes a word containing the value 20 (X’00000014’) to the data item INTG-QNTY,
which also occupies 4 bytes in the COBOL program.

3. %MOVE 20 INTO FIXD-QNTY(5)
N.B.: As in example 2, a word with the contents X’00000014’ is written to FIXD-
QNTY(5), which of course makes no sense when a table element of the fixed-point
number type is involved. To transfer value 20 to FIXD-QNTY(5), you will have to enter a
%SET command (see %SET), which performs conversion prior to the transfer.

4. %MOVE X'58F0C160' INTO CHAR REP=YES
The contents of the data item CHAR are overwritten with the hexadecimal literal
X’58F0C160’. A REP record is created for the correction and is stored in the file
AID.OUTFILE.F6 or the file assigned to link name F6.

U2855-J-Z125-6-76 91

AID commands %ON

%ON

With the %ON command you define events and subcommands. When a selected event
occurs, AID processes the associated subcmd.

– With write-event you define a write access event, accessing a memory area. Whenever
the program writes to the specified memory area, AID is to interrupt the program and
process the subcmd.

– With event you define one of the other events (normal or abnormal program termination,
a supervisor call (SVC), a program error or any event for which AID is to interrupt the
program in order to process the subcmd.

– With subcmd you define a command or a command sequence and perhaps a condition.
When event occurs and this condition is satisfied, subcmd is executed.

���
Command Operand
���

  write-event 
%ON   [<subcmd>]
  event 

���

If the subcmd operand is omitted, AID inserts the subcmd <%STOP>.

The subcmd of an %ON command for an event which has already been defined does not
overwrite the existing subcmd, rather the new subcmd is prefixed to the existing
subcommand. This means that chained subcommands are processed in accordance with
the LIFO principle. This does not apply to write-event. The entry of a new write-event
overwrites an existing one.

Once an event is entered it applies until it is deleted with %REMOVE or until the end of the
program.

The base qualification E=VM must apply for %ON (see %BASE).

The %ON command does not alter the program state.

��������������
 write-event 
���������������

The %WRITE keyword activates write monitoring. It is followed by the memory area to be
monitored, in parentheses. If the program changes a byte within the specified area, the
program is interrupted and the subcmd is executed. The interrupt is effected after the
instruction that caused the change at the memory location; it may also occur in a runtime
routine.

92 U2855-J-Z125-6-76

%ON AID commands

Only one write-event can be defined at any one time. The entry of a new write-event
overwrites an existing one. Other events can, however, be registered at the same time. If an
event arrives at the same time as a write-event, AID processes the subcommand associated
with write-event first.
The write-event can be deleted with %REMOVE %WRITE without specifying the memory
reference.

The following interaction occurs between %ON write-event and other AID commands:

– If a %CONTROLn or a %TRACE is registered with a criterion on the machine code level,
the entry of %ON write-event is rejected with an error message.

– If a machine instruction has been overwritten with the internal AID mark (X’0A81’) by a
%CONTROLn or %TRACE with a symbolic criterion, AID does not notice the write
access by this instruction.

– Also if a machine instruction has been overwritten with the internal AID mark by the test
point declared with %INSERT, AID does not notice the write access by the instruction.

In order to ensure unbroken write monitoring it is advisable to delete all %CONTROLn and
%INSERT commands using %REMOVE and to delete any %TRACE commands that may
still be entered by continuing with %RESUME after the %ON.

The memory area to be monitored can be any memory object, however it is addressed. It
is defined by the start address and the implicit or explicit length. The maximum length of the
area is 64 Kbytes, otherwise an error message is output.

If the address of the specified memory object is overloaded in the case of a program with
an overlay structure, the corresponding area in the newly loaded program section.

write-event-OPERAND -

 C=segmentname 
 • 
C=sharename

dataname

%WRITE ([ ]  )

statement-name->

 S=srcname•[PROC=program-id•]
source-reference->

 compl-memref 

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command.
In addition, there must be a period between the PROC qualification and the following
operand part.

U2855-J-Z125-6-76 93

AID commands %ON

S=srcname

This need only be specified if write-event is not to be declared for the current compi-
lation unit.

PROC=program-id

This need only be specified if you reference a data name or statement name that is
not contained in the current program (see chapter “COBOL-specific addressing” on
page 15) or is not unique in the current compilation unit.

If srcname in the S qualification and program-id are not the same, instead of both of these
you should write only the PROG qualification.

The C qualifications listed below cannot be preceded by a qualification. The C qualification
takes the user away from the symbolic level.
It is not permissible to write a symbolic operand directly afterwards (see section “Symbolic
memory references” on page 18), only a compl-memref.

C=segmentname

The memory area to be monitored comprises the segment designated with this
specification.

C=sharename

The memory area to be monitored comprises the object module designated with
this specification.

dataname

is the name of a data item as defined in the source program or of a COBOL special
register. It can be identified and indexed in the same way as in the COBOL program
(see section “Symbolic memory references” on page 18, dataname).

dataname is an alphanumeric string consisting of up to 30 characters.

dataname [identifier][...][(index[,...])]

identifier

If dataname is not unambiguous within a program, it is assigned to a particular
group item with IN or OF. dataname must be assigned as many identifiers as are
required to designate it unambiguously. If it is not identified, AID processes
dataname if a data definition is provided for it at level 01 or 77. If this is not the
case, an error message is issued.

94 U2855-J-Z125-6-76

%ON AID commands

index

If dataname is the name of an element in a table, it can be indexed and
subscripted; the notation differs from COBOL only in that indexes must be
separated by a comma.
If the name of a table element is specified without an index, the entire table is
referenced.

index may be specified as follows:

COBOL special registers

 LINAGE-COUNTER
 RETURN-CODE
 SORT- CCSN
 SORT-CORE-SIZE
 SORT-EOW
 SORT-FILE-SIZE
 SORT-MODE-SIZE
 SORT-RETURN
 TALLY

statement-name 
  ->#l
source-reference

designates 4 bytes of the program code from the address contained in the address
constant. If a different number of bytes is to be searched, you must specify a corre-
sponding length modification.

statement-name

must be specified in one of the following formats:

If a paragraph name is not unambiguous within a program, it must be identified by
the section name of the section in which it was defined: L'paragraph' IN
L'section'

n
index-name
dataname
TALLY
arithmetic-expression

L'section'
L'paragraph' [IN L'section']

U2855-J-Z125-6-76 95

AID commands %ON

source-reference

must be specified in one of the following formats:

S’n’ for lines with paragraph or section names in which no COBOL verb
occurs. This specification is not possible for programs which have been
compiled with STMT-REFERENCE=COLUMN1-TO-6.

S’nverb[m]’ | S’xverb[m]’

for lines containing a COBOL verb.

compl-memref

The following operations may occur in compl-memref (see AID Core Manual [1]):

– byte offset (•)
– indirect addressing (->)
– type modification (%A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

compl-memref designates an area of 4 bytes starting from the calculated address. If
a different number of bytes is to be searched, a corresponding length modification
must be added. When modifying the length of data items you must pay attention to
area boundaries or switch to machine code level using %@(dataname)->. If a
compl-memref begins with a statement name or source reference, it must be followed
by a pointer operator (->). In this case statement-name must be specified with L’...’.
Without the pointer operator the statement name and source reference can be used
anywhere where hexadecimal numbers can be written.

��������
 event 
���������

A keyword is used to specify an event (program error, abnormal termination of the program,
supervisor call, etc.) upon which AID is to process the subcmd specified. The response to
an event code that has been processed with a STXIT routine cannot be a subcmd that has
been defined for that event. If a subcommand is executed in relation to the %ANY event, at
the subsequent termination of the program there is no query as to whether a dump is to be
output. It may be necessary for the user to initiate output of the dump in the subcommand
with /CREATE-DUMP.

If several %ON commands with different event declarations are simultaneously active and
satisfied, AID processes the associated subcommands in the order in which the keywords
are listed in the table below. If various %TERM events are applicable, the associated
subcommands are processed in the opposite order in which the %TERM events have been
declared (LIFO rule as for chaining of subcommands).

96 U2855-J-Z125-6-76

%ON AID commands

If a write-event occurs at the same time as another event, the subcommand relating to the
write-event is processed first. For selection of the SVC numbers and event codes see
Executive Macros [6].

���
 event  subcmd is processed: 
��
 %ERRFLG (zzz) after the occurrence of an error with event code 
  zzz and 
 before abortion of the program 
��
 %INSTCHK after the occurrence of an addressing error, an 
  impermissible supervisor call (SVC), an 
  operation code which cannot be decoded, 
  a paging error or a privileged operation and 
 before abortion of the program 
��
 %ARTHCHK after the occurrence of a data error, divide 
  error, exponent overflow or a zero mantissa 
  and 
 before abortion of the program 
��
 %ABNORM after the occurrence of one of the errors 
  covered by the previously described events 
��
 %ERRFLG after the occurrence of an error with any event 
  code 
��
 %SVC(zzz) before execution of the supervisor call (SVC) with 
  the specified number 
  
 %SVC before execution of any supervisor call 
  (SVC) 
��
 %LPOV(x...x) after loading of the segment with the specified 
  name 
  
 %LPOV after loading of any arbitrary segment 
  (the name is output with %D %LINK) 
��
 %TERM(N[ORMAL]) before normal termination of a program 
  
 %TERM(A[BNORMAL]) before abnormal termination of a program, but 
 after output of a memory dump 
  
 %TERM(D[UMP]) before output of a memory dump with subsequent 
  termination of the program 
  
 %TERM(S[TEP]) before termination of the program with subsequent 
  branching within procedures 
  
 %TERM before termination of a program by any of the %TERM 
  events described above 
��
 %ANY before termination of a program with because of a 
  program error or as a result of the 
  %TERM events described above 
��

U2855-J-Z125-6-76 97

AID commands %ON

zzz may be specified in one of two formats:

n unsigned decimal number of up to three digits

#ff’ two-digithexadecimalnumber'

The following applies for the value zzz: ≤ zzz ≤ 255

No check is made whether the specified number of the error weight or the SVC
number is meaningful or permissible.

���������
 subcmd 
����������

is processed whenever the specified event occurs in the course of program execution. If the
subcmd operand is omitted, AID inserts a <%STOP>.

For a complete description of subcmd refer to the AID Core Manual [1].

subcmd-OPERAND -

 AID-command 
<[subcmdname:] [(condition):] [  {;...}]>
 BS2000-command

- -

A subcommand may comprise a name, a condition and a command part. Every
subcommand has its own execution counter. The command portion can consist of either an
individual command or a command sequence; it may contain AID and BS2000 commands
as well as comments.

If the subcommand contains a name or condition but no command part, AID merely incre-
ments the execution counter when the declared event occurs.

subcmd does not overwrite an existing subcommand for the same event. Instead, the new
subcommand is prefixed to the existing one. The %CONTROLn, %INSERT, %JUMP and
%ON commands are permitted in subcmd. The user can form up to 5 nesting levels. An
example can be found under the description of the %INSERT command.

The commands in a subcmd are executed one after the other; then the program is continued.
The commands for runtime control immediately alter the program state, even in a
subcommand. They abort subcmd and continue the program (%CONTINUE, %RESUME,
%TRACE) or halt it (%STOP). They should only be placed as the last command in a subcmd,
since any subsequent commands of the subcmd will not be executed. Likewise, deletion of
the current subcommand via %REMOVE makes sense only as the last command in subcmd.

98 U2855-J-Z125-6-76

%ON AID commands

Examples

1. %ON %LPOV (MONA12) <%D 'MONA12 GELADEN'; %STOP>
Each time the segment MONA12 is loaded AID outputs the message ’MONA12
GELADEN’ and halts the program.

2. %ON %ERRFLG (108)
%ON %ERRFLG (#6C')'

3. Both specifications designate the same program error (mantissa equals zero).

4. %ON %ERRFLG (107) <%D 'ERROR'>
This event code does not exist, therefore the subcmd defined for this event will never be
started.

5. %ON %WRITE(PROG=HPROG.TABLE) <%D %HLLOC(%PC ->),TABLE F1=MAX>
Whenever data has been overwritten in TABLE in the main program HPROG, the
symbolic localization information about the current program count and the contents of
TABLE are output. The output is sent to the file that was assigned to the link name F1.
The program then continues.
A search can then be run in this file to establish when TABLE was overwritten.

U2855-J-Z125-6-76 99

AID commands %OUT

%OUT

With %OUT you define the media via which data is to be output and whether output is to
contain additional information, in conjunction with the output commands %DISASSEMBLE,
%DISPLAY, %HELP, %SDUMP and %TRACE.

– With target-cmd you specify the output command for which you want to define medium-
a-quantity.

– With medium-a-quantity you specify which output media are to be used and whether or
not additional information is to be output.

���
Command Operand
���

%OUT [target-cmd [medium-a-quantity][,...]]

���

In the case of %DISPLAY, %HELP and %SDUMP commands, you may specify a

medium-a-quantity operand which for these commands temporarily deactivates the declara-
tions of the %OUT command. %DISASSEMBLE and %TRACE include no
medium-a-quantity operand of their own; their output can only be controlled with the aid of
the %OUT command. Before selecting a file as the output medium via %OUT, you must
issue the %OUTFILE command to assign the file to a link name and open it; otherwise AID
creates a default output file with the name AID.OUTFILE.Fn.

The declarations made with the %OUT command are valid until overwritten by a new %OUT
command, or until /LOGOFF or /EXIT-JOB.

An %OUT command without operands assumes the default value T=MAX for all target-
commands.

%OUT may only be specified as an individual command, i.e. it may not be part of a
command sequence or subcommand.

%OUT does not alter the program state.

�������������
 target-cmd 
��������������

designates the command for which the declarations are to apply. Any of the commands
listed below may be specified.

%D[IS]A[SSEMBLE]
%D[ISPLAY]
%H[ELP]
%SD[UMP]
%T[RACE]

100 U2855-J-Z125-6-76

%OUT AID commands

In conjunction with target-cmd this specifies the medium or media via which output is to take
place, as well as whether or not AID is to output additional information pertaining to the AID
work area, the current interrupt point and the data to be output.

If the medium-a-quantity operand has been omitted, the default value T=MAX applies for
target-cmd.

medium-a-quantity-OPERAND -

 T 

 H
  MAX 
  =  

 Fn
  MIN 
 P 

- -

medium-a-quantity is described in detail in the AID Core Manual [1].

T Terminal output

H Hardcopy output (includes terminal output and cannot be specified together with T)

Fn File output

P Output to SYSLST

MAX Output with additional information
MIN Output without additional information

Examples

1. %OUT %SDUMP T=MIN,F1=MAX
Data output of the %SDUMP command should be output on the terminal in abbreviated
form, and in parallel to this also to the file with link name F1, along with additional infor-
mation.

2. %OUT %TRACE F1=MAX
The TRACE log with additional information is output only to the file with link name F1.

3. %OUT %TRACE
For the %TRACE command, this specifies that previous declarations for output of data
are erased, and that the default value T=MAX applies.

medium-a-quantity

U2855-J-Z125-6-76 101

AID commands %OUTFILE

%OUTFILE

%OUTFILE assigns output files to AID link names F0 through F7 or closes output files. You
can write output of the commands %DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and
%TRACE to these files by specifying the corresponding link name in the medium-a-quantity
operand of %OUT, %DISPLAY, %HELP or %SDUMP. If a file does not yet exist, AID will
make an entry for it in the catalog and then open it.

When information which is available in UTF16/ UTFE is output, AID takes into account the
CCSN of the output medium and performs the requisite conversion. UTFE and all 1-byte
EBCDIC encodings which are supported by XHCS are permitted as CCSNs. %SHOW
%CCSN enables the OUTFILEs currently assigned to be displayed with the CCSNs used
by AID.

– With link you select a link name for the file to be cataloged and opened or closed.
– With file you designate the output file.

���
Command Operand
���

%OUTFILE [link [= file]]

���

If you do not specify the file operand, this causes AID to close the file designated using link.
In this way an intermediate status of the file can be printed during debugging.

An %OUTFILE without operands closes all open AID output files. If you have not explicitly
closed an AID output file using the %OUTFILE command, the file will remain open until
/LOGOFF or /EXIT-JOB.

Without %OUTFILE, you have two options of creating and assigning AID output files:

1. Enter a /SET-FILE-LINK command for a link name Fn which has not yet been reserved.
Then AID opens this file when the first output command for this link name is issued.

2. Leave the creation, assignment and opening of files to AID. AID then uses default file
names with the format AID.OUTFILE.Fn corresponding to link name Fn.

%OUTFILE does not alter the program state.

If a file does not have a CCSN itself, AID uses the CCSN selected via %AID EBCDIC when
character conversion is required. If the file’s CCSN is not permissible for AID and if charac-
ter conversion is required, e.g. because the input medium is of the type UTFE, no output
takes place.

102 U2855-J-Z125-6-76

%OUTFILE AID commands

�������
 link 
��������

Designates one of the AID link names for output files and has the format Fn, where n is a
number with a value 0 ≤ n ≤ 7.

The REP records for the %MOVE command are written to the output file with link name F6
(see also the %AID and %MOVE commands). Care should therefore be taken that no other
outputs are allowed to be written to the file with link name F6.

�������
 file 
��������

specifies the fully-qualified file name with which AID catalogs and opens the output file. Use
of an %OUTFILE command without the file operand closes the file assigned to link name
Fn.

U2855-J-Z125-6-76 103

AID commands %QUALIFY

%QUALIFY

With %QUALIFY you define qualifications. In the address operand of another command you
may refer to these qualifications by prefixing a period.
Use of this abbreviated format for a qualification is practical whenever you want to
repeatedly reference addresses which are not located in the current AID work area.

– With prequalification you define qualifications which you would like to incorporate in
other commands by referencing them via a prefixed period.

���
Command Operand
���

%Q[UALIFY] [prequalification]

���

A prequalification specified with the aid of the %QUALIFY command applies until it is
overwritten by a %QUALIFY with a new prequalification or revoked by a %QUALIFY without
operands, or until /LOGOFF or /EXIT-JOB.

On input of a %QUALIFY command, only a syntax check is made. Whether the specified
link name has been assigned a dump file or whether the specified program has been loaded
or included in the LSD records is not checked until subsequent commands are executed
and the information from prequalification is actually used in addressing.

The declarations of the %QUALIFY command are only used by commands which are input
subsequently. %QUALIFY has no effect on any subcommands in %CONTROL, %INSERT
and %ON commands entered prior to this %QUALIFY command, even if they are executed
after it.

The same %AID LOW={ON|OFF} setting must apply for input of the %QUALIFY and for
replacement in an address operand.

%QUALIFY may only be specified as an individual command, i.e. it may not be part of a
command sequence or subcommand.

The %QUALIFY command does not alter the program state.

104 U2855-J-Z125-6-76

%QUALIFY AID commands

�������������������
 prequalification 
��������������������

consists of a single qualification or a sequence of qualifications, which must then be
separated by a period.

The reference to a prequalification defined in the %QUALIFY command is effected by
prefixing a period to the address operands of subsequent AID commands.

prequalification operand -

 VM  PROC=program-id 
 [E= ] [[•] S=srcname] [[•] C=segmentname ]
 Dn  C=sharename 

- -

E={VM|Dn}

must be specified if you want to use a base qualification which is different from the
current one (see %BASE command).

S=srcname

srcname designates a compilation unit.

PROC=program-id

designates a program unit.

If srcname in the S qualification and program-id are the same, only the PROG qualification
need be written.

C=segmentname

segmentname is composed of the specification in the PROGRAM-ID paragraph and
the segment number. Only the first 6 places of the PROGRAM-ID are used for
generating the segment name.

C=sharename

sharename is composed of the first 7 places of the PROGRAM-ID specification and
the @ character.

U2855-J-Z125-6-76 105

AID commands %QUALIFY

Examples

1. %QUALIFYE=D1.PROG=SORT
%D .TAB(1)
Because of the prequalification, the %DISPLAY command has the same effect as the
following %DISPLAY command in full format:
%D E=D1.PROG=SORT.TAB(1)

2. %QUALIFYPROG=SUB
%SET .A INTO .B
Because of the prequalification, the %SET command has the same effect as the
following %SET command in full format:
%SET PROG=SUB.A INTO PROG=SUB.B

3. %QUALIFY PROG=SUB
%D .TAB(I)
%D .L'OUT1' IN L'PUTOUT'
As in examples 1 and 2, the PROG qualification from the %QUALIFY command is
written before the period in the two %DISPLAY commands.
Thus in the first %DISPLAY command not only do you address table element TAB from
the SUB program unit; you also search for index I in the SUB program unit.
The same applies for the second %DISPLAY command for identifying the paragraph:
the PROG qualification refers both to paragraph OUT1 and to the identifying section
PUTOUT.

106 U2855-J-Z125-6-76

%REMOVE AID commands

%REMOVE

With the %REMOVE command you revoke the test declarations for the %CONTROLn,
%INSERT and %ON commands.

– With target you specify whether AID is to revoke all effective declarations for a particular
command or whether only a specific test point or event or a subcommand is to be
deleted.

���
Command Operand
���

%REM[OVE] target

���

If a subcommand contains a %REMOVE which deletes this subcommand or the associated
monitoring condition (test-point, event or criterion), any subsequent commands in subcmd will
not be executed. Such an entry is therefore only meaningful as the last command in a
subcommand.

The %REMOVE command does not alter the program state.

���������
 target 
����������

Designates a command for which all the valid declarations are to be deleted, or a test-point
to be deleted, or an event which is no longer to be monitored, or the subcommand to be
deleted. If target is within a nested subcommand and therefore has not yet been entered, it
cannot be deleted either.

target-OPERAND -

%C[ONTROL] | %C[ONTROL]n 

%IN[SERT] | test-point

 

%ON | event | %WRITE

%•[subcmdname] 

- -

%C[ONTROL]

The declarations for all %CONTROLn commands entered are deleted.

%C[ONTROL]n

The %CONTROLn command with the specified number (1 ≤ n ≤ 7) is deleted.

U2855-J-Z125-6-76 107

AID commands %REMOVE

%IN[SERT]

All test points which have been entered are deleted.

test-point

The specified test-point is deleted. test-point is specified as under the %INSERT
command.
Within the current subcommand, test-point can also be deleted with the aid of
%REMOVE %PC->, as the program counter (%PC) contains, at this point in time,
the address of the test-point.

%ON All events which have been entered are deleted.

event

The specified event is deleted. event is specified with a keyword, as under the %ON
command. The event table with the keywords and explanations of the individual
events can be found under the description of the %ON command.

The following applies for the events %ERRFLG(zzz), %SVC(zzz) and
%LPOV(x...x):

%REMOVE event(zzz) deletes only the event with the specified number. %REMOVE
event without specification of a number deletes all events of the corresponding
group.

%WRITE

The write-event is deleted.

%•[subcmdname]

deletes the subcommand with the name subcmdname in a %CONTROLn or
%INSERT command.

%• is the abbreviated form of a subcommand name and can only be used within the
subcommand. %REMOVE %• deletes the current subcommand.

As %CONTROLn cannot be chained, the associated %CONTROLn will be deleted
as well. Deleting the subcommand therefore has the same effect as deleting the
%CONTROLn by specifying the appropriate number.

On the other hand, several subcommands may be chained at a test-point of the
%INSERT command. With the aid of %REMOVE %•[subcmdname] you can delete
an individual subcommand from the chain, while further subcommands for the
same test-point will still continue to exist (see AID Core Manual [1]). If only the
subcommand designated subcmdname was entered for the test-point, the test-point
will be deleted along with the subcommand.

%REMOVE %•[subcmdname] is not permitted for %ON.

108 U2855-J-Z125-6-76

%REMOVE AID commands

Examples

1. %C1 %CALL <CALL: %D %.>
%REM %C1
%REM %.CALL

Both %REMOVE commands have the same effect: %C1 is deleted.

2. %IN S'58SEA' <SUB1: %D CHAR, QNTY>

%IN S'58SEA' <SUB2: %D RESLT; %REM %.>
%R
...
%REM S'58SEA'

When the test point S’58SEA’ is reached, RESLT is output. Then subcommand SUB2
is deleted, i.e. this subcommand is executed only once. Subsequently CHAR and QNTY
are output, and the program continues. Whenever test point S’58SEA’ is reached in the
program sequence, subcommand SUB1 is executed. %REM S'58SEA' deletes the test
point later on. %REM %.SUB1 would have the same effect, as this subcommand is the only
remaining entry for test point S’58SEA’.

U2855-J-Z125-6-76 109

AID commands %RESUME

%RESUME

With %RESUME you start the loaded program or continue it at the interrupt point or the
point specified in the %JUMP command. The program executes without tracing.

%RESUME terminates all active %TRACE commands, whereas %CONTINUE has no
effect on %TRACE.

���
Command Operand
���

%R[ESUME]

���

If a %RESUME command is contained within a command sequence or subcommand, any
commands which follow it will not be executed.
If the %RESUME command is the only command in a subcommand, the execution counter
is incremented and any active %TRACE deleted.

The %RESUME command alters the program state.

110 U2855-J-Z125-6-76

%SDUMP AID commands

%SDUMP

With %SDUMP you can output a symbolic dump: individual data items or file definitions, all
data items or file definitions of the current call hierarchy, or the program names of the
current call hierarchy. The current call hierarchy extends from the subprogram level on
which the program was interrupted to the sequence of CALL statements to the outermost
program. Output is via SYSOUT, SYSLST or to a cataloged file.

– With dump-area you designate the data items or file definitions which AID is to output, or
you specify that AID is to output the program names of the current call hierarchy.

– With medium-a-quantity you specify which output media AID is to use, and whether or
not additional information is to be output. This operand is used to deactivate a decla-
ration made by the %OUT command, as far as the current %SDUMP command is
concerned.

���
Command Operand
���

%SD[UMP] [[dump-area][,...] [medium-a-quantity][,...]]

���

If compilation units for which there are no LSD records, not even in a PLAM library, are
included in the hierarchy, the user must individually specify the compilation units for which
LSD records have been loaded or for which they can be loaded from a PLAM library (see
%SYMLIB command). dump-area can be repeated up to 7 times.

%SDUMP without operands outputs all data items of the current call hierarchy, if AID is able
to access the associated LSD records. Data that is defined more than once is also output
more than once.

%SDUMP %NEST outputs the names of all program of the current call hierarchy.

Input of the command immediately following loading is not recommended as not all entries
in the DATA DIVISION will have been initialized (e.g. record definitions and special
registers) and an error message may occur.

If you enter a name for dump-area which is not contained in the LSD records, AID issues an
error message. The other dump-areas of the same command will be processed normally.

With this command the user can work either in the loaded program or in a dump file.

The %SDUMP command does not alter the program state.

U2855-J-Z125-6-76 111

AID commands %SDUMP

������������
 dump-area 
�������������

describes which information AID is to output.

AID can output the program names of the current call hierarchy, all data of the current call
hierarchy, all data of a program or individual data items or file definitions. AID edits the data
items in accordance with the definition in the source program. If the contents do not match
the defined storage type, output is rejected and an error message is issued.

If dataname or filename is defined in multiple DATA DIVISIONs of the current call hierarchy it
is also output repeatedly, unless dump-area has been restricted by a qualification or
dataname is identified. If a data item or DATA DIVISION that is to be output contains redefi-
nitions, these are also output.

All data items generated by the compiler are contained in an %SDUMP with which entire
DATA DIVISIONs are output. The output also includes information on the files defined in the
program, e.g. file status, contents of the I/O areas and the record definitions.

dump-area-OPERAND -

  filename  
 VM
[S=srcname[•]] [PROC=program-id[•]] [ ]

[•][E= [•]] [ dataname  ]
 Dn

 %NEST 

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

E ={VM | Dn}

This need only be specified if the current base qualification is not to apply for the
dump-area. If you specify only a base qualification, all data of the corresponding call
hierarchy will be output.

S=srcname

This need only be specified if dump-area is not to be within the current compilation
unit, which must be within the call hierarchy.

112 U2855-J-Z125-6-76

%SDUMP AID commands

PROC=program-id

This must be specified if dump-area is to apply only for the specified program. It must
be within the call hierarchy. If dump-area ends with a PROC qualification, AID will
output all data of this program.

If srcname in the S qualification and program-id are the same, only the PROG qualification
need be written.

filename

is the name of a file from a file definition in the FILE-SECTION of the DATA
DIVISION. AID outputs the following information:
the file status and, if the file is open, the contents of the record area plus any record
key.

dataname

is the name of a data item as defined in the source program, the name of a COBOL
special register or a figurative constant.
dataname is an alphanumeric string consisting of up to 30 characters.

dataname [identifier][...][(index[,...])]

identifier

If dataname is not unambiguous within a program, it can be identified by being
assigned to a particular group item with IN or OF. dataname must be assigned
as many identifiers as are required to designate it unambiguously.
If it is not identified, AID only outputs data for dataname if a data definition is
provided for it at level 01 or 77. If this is not the case, an error message is issued.

index

If dataname is the name of an element in a table, it can be indexed and
subscripted as in a COBOL statement. The notation differs from COBOL only in
that multiple indexes must be separated by a comma. If you specify the name
of a table element without an index, the entire table is output.
index can be specified as follows:

n
index-name
dataname
TALLY
arithmetic-expression

U2855-J-Z125-6-76 113

AID commands %SDUMP

COBOL special registers

LINAGE-COUNTER
RETURN-CODE
SORT- CCSN
SORT-CORE-SIZE
SORT-EOW
SORT-FILE-SIZE
SORT-MODE-SIZE
SORT-RETURN
TALLY

Figurative constants

ZERO
SPACE
HIGH-VALUE
LOW-VALUE
QUOTE
symbolic character

%NEST

Is an AID keyword which effects output of the current call hierarchy.

For the lowest hierarchical level AID outputs the name of the program and the
source reference of the statement where the program was interrupted. For higher
hierarchical levels AID outputs the name of the calling program and the source
reference of the CALL statement.

��������������������
 medium-a-quantity 
���������������������

Defines the medium or media via which output is to take place and whether or not AID is to
output additional information. If this operand is omitted and no declaration has been made
in the %OUT command, AID assumes the default value T = MAX.

medium-a-quantity-OPERAND -

 T 

 H
  MAX 
  =  

 Fn
  MIN 
 P 

- -

114 U2855-J-Z125-6-76

%SDUMP AID commands

medium-a-quantity is described in detail in the AID Core Manual [1].

T Terminal output

H Hardcopy output (includes terminal output and cannot be specified together with T)

Fn File output

P Output to SYSLST

MAX Output with additional information

MIN Output without additional information

Examples

1. %SDUMP

With this command a symbolic dump of all DATA DIVISIONs in the current call hierarchy
is requested. The value for medium-a-quantity is T=MAX. The compiler listing for this
SDUMP output is given in section “Source listing” on page 145.

 ��
  SRC_REF: 57SEA SOURCE: M0BS PROC: M0BS ***************************** 
  
 �_COMPILER = |COBOL2000 V01.4A02| �
  
 �_COMPILATION_DATE = |2006-06-23| �
  
 �_COMPILATION_TIME = |09:01:33| �
  
 �_PROGRAM_NAME = |MBOS| �
  
 �_EBCDIC-CCSN = |EDF03IRV| �
  
 � ZERO = 0 �
  _ 
  HIGH-VALUE = FF 
  
  LOW-VALUE = 00 . 
  
  SPACE = | | 
  
  QUOTE = |"| 
 � �
 � 01_LAST_EXCEPTION �
 � 02_EXCEPTION_NAME = | | �
  
  TALLY = +0 
  
  RETURN = +0 

U2855-J-Z125-6-76 115

AID commands %SDUMP

The %SDUMP output starts with a header containing the source reference of the
statement at which the program was interrupted and the name of the current program.
This is followed by the information of the test object, the figurative constants and special
register.

 ��
  TEXTDAT 
  _FILE_NAME = |M.INP | 
  _OPEN_MODE = OPEN-INPUT 
  _RECORD = 
  |THIS IS A FILE USED AS INPUT FOR A PROGRAM....................................| 
  |..| 
  |..| 
  |.........................| 
  

File information for the file TEXTDAT.

 ��
  01 RECD 
  02 ITEM(1:61) 
  (1) |D| (2) |I| (3) |E| (4) |S| (5) | | (6) |I| 
  (7) |S| (8) |T| (9) | | (10) |E| (11) |I| (12) |N| 
  (13) |E| (14) | | (15) |D| (16) |A| (17) |T| (18) |E| 
  (19) |I| (20) |,| (21) | | (22) |D| (23) |I| (24) |E| 
  (25) | | (26) |A| (27) |L| (28) |S| (29) | | (30) |E| 
  (31) |I| (32) |N| (33) |G| (34) |A| (35) |B| (36) |E| 
  (37) | | (38) |D| (39) |I| (40) |E| (41) |N| (42) |T| 
  (43) | | (44) |F| (45) |U| (46) |E| (47) |R| (48) | | 
  (49) |E| (50) |I| (51) |N| (52) | | (53) |P| (54) |R| 
  (55) |O| (56) |G| (57) |R| (58) |A| (59) |M| (60) |M| 
  (61) |,| 
  

RECD is the data record definition for the file TEXTDAT. The contents are in the form of
a table and have a permanently allocated index. The elements of the table are alpha-
numeric. For this reason the element contents are enclosed in vertical lines. Each value
in the table is preceded by the appropriate index value in parentheses.

 ��
  K = +1 
  SLF = 61 
  PROCESS-SWITCH = |0| 
  

116 U2855-J-Z125-6-76

%SDUMP AID commands

No level number is output for data elements of level 77 or 01.

 ��
  01 A-Z-TAB 
  02 = |BCDEFGHIJKLMNOPQRSTUVWXYZ| 
  
  01 ABC-TAB 
  02 CHAR(1:26) 
  
  (1) |A| (2) |B| (3) |C| (4) |D| (5) |E| (6) |F| 
  (7) |G| (8) |H| (9) |I| (10) |J| (11) |K| (12) |L| 
  (13) |M| (14) |N| (15) |O| (16) |P| (17) |Q| (18) |R| 
  (19) |S| (20) |T| (21) |U| (22) |V| (23) |W| (24) |X| 
  (25) |Y| (26) |Z| 
  
  I = +1 
  
  01 NUMB-TAB 
  02 QNTY(1:26) 
  (1) 0 (2) 0 (3) 0 (4) 0 (5) 0 
  (6) 0 (7) 0 (8) 0 (9) 0 (10) 0 
  (11) 0 (12) 0 (13) 0 (14) 0 (15) 0 
  (16) 0 (17) 0 (18) 0 (19) 0 (20) 0 
  (21) 0 (22) 0 (23) 0 (24) 0 (25) 0 
  (26) 0 
  
  J = +1 
  

Group items A-Z-TAB, ABC-TAB and NUMB-TAB are in the form of a table. Each
consists of 26 elements. ABC-TAB is alphanumeric and is indexed with index I. NUMB-
TAB is numeric and is indexed with J. Both indexes are assigned the
value 1.

 ��
  NUMB-SUM = +1 
  
  PROC-SUM = +0.00 
  
  01 FRM-HEAD 
  02 = |LETTER NUMB PERCENT| 
  
  01 FRM-LINE 
  02 LETTER = |.| 
  02 = | | 
  02 NUMB = |.......| 
  02 = | | 
  02 PERCENT = |......| 
  
  01 FRM-FOOT 
  02 = |TOTAL: | 
  02 A-SUM = |......| 
  02 = | | 
  02 P-SUM = |......| 
  

Definition of items in the header and footer.

U2855-J-Z125-6-76 117

AID commands %SDUMP

2. %SDUMP %NEST

The current call hierarchy is to be output.

 ��
  SRC_REF: 75EXI SOURCE: UNTER PROC: UNTER ****************************** 
  SRC_REF: 41CALL SOURCE: BEISP PROC: BEISP ****************************** 
  

The program was interrupted at the statement with the name 75EXI in program unit
UNTER. The second line indicates the program unit BEISP, from which UNDER was
called using the CALL statement. The CALL statement is located in statement line 41.
The current call hierarchy has two levels.

118 U2855-J-Z125-6-76

%SET AID commands

%SET

With the %SET command you transfer the memory contents or AID literals to memory
positions in the program which has been loaded. Before transfer, the storage types sender
and receiver are checked for compatibility. The contents of sender are matched to the storage
type of receiver, with the result that the %SET statement works in the same way as the
COBOL MOVE statement, apart from exceptions mentioned later.

– With sender you designate a data item, a length, an address, an execution counter, an
AID register, a COBOL special register, a figurative constant or an AID literal. sender
may be either within the virtual memory of the loaded program or in a dump file.

– With receiver you designate a data item, an execution counter, an AID register or a
COBOL special register to be overwritten. receiver may only be located within the virtual
memory of the program which has been loaded.

���
Command Operand
���

%S[ET] sender INTO receiver

���

In contrast to the %MOVE command, AID checks for the %SET command (prior to transfer)
whether the storage type of receiver is compatible with that of sender and whether the
contents of sender match its storage type. In the event of incompatibility, AID rejects the
transfer and outputs an error message.

If sender is longer than receiver, it is truncated on the left or right, depending on its storage
type, and AID issues a warning message. sender and receiver may overlap. In the case of
numeric transfer, sender is converted to the storage type of receiver if required, and the
contents of sender are stored in receiver with the value being retained. If the value does not
fully fit into receiver, a warning is issued.

sender and receiver may also be defined in the FILE SECTION or SUB-SCHEMA SECTION.
If they are located in the LINKAGE SECTION, the latter must be contained in the current
call hierarchy.

Which storage types are compatible and how transfer takes place is shown in the table at
the end of the description of the %SET command.

Entry of the command immediately after loading the program is not advisable as not all
entries in the DATA DIVISION will have been initialized (e.g. record definitions and special
registers).

In addition to the operand values described here, you can also use those described in the
manual for debugging on machine code level (see manual AID - Debugging on Machine
Code Level [2]).

U2855-J-Z125-6-76 119

AID commands %SET

With %AID CHECK=ALL you can activate an update dialog; this dialog shows you the old
and new contents of receiver prior to transfer and offers the option of aborting the %SET
command.

The %SET command does not alter the program state.

���������
�����������
 sender  INTO  receiver 
���������� ������������

For sender or receiver you may specify data items, COBOL special registers, execution
counters, registers or a complex memory reference. Statement names, source references,
figurative constants, AID literals and addresses and lengths of data items can only be used
as sender.
sender may be located either in the virtual memory area of the loaded program (E=VM) or
in a dump file; receiver, on the other hand, may only be located in the virtual memory area
of the loaded program.
If program areas are transferred or overwritten with instruction code, there may be
undesirable results if addresses are affected which belong to a control-area or trace-area or
for which a test point has been set with %INSERT (see AID Core Manual [1]).

sender-OPERAND - - - - - - - - - - - - - - receiver-OPERAND - - - - - - - - -

 C=segmentname  

C=sharename

dataname

[•[qua•] statement-name 

source-reference

keyword

 C=segmentname 

 compl-memref 

dataname

  INTO [•][qua•]  

%@  filename 

keyword

%L ([•][qua•]dataname )
 compl-memref 

%C
 compl-memref 

%UTF

%L=(expression)

AID-literal 

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua

Qualifications need only be specified if an address operand does not apply to the
current AID work area or if the intention is to reference an address that is not within
the current compilation unit or the current program.

120 U2855-J-Z125-6-76

%SET AID commands

E=VM for receiver

is to be specified only if the current base qualification (see %BASE command)
is not to apply to sender or receiver.
sender can be located either in virtual memory or in a dump file, whereas receiver
must be located in virtual memory.

S=srcname

is to be specified only if sender or receiver is not contained in the current compi-
lation unit.

PROC=program-id

is to be specified only if you address a file name, data name or statement name
that is not in the current program or is not unique in the current compilation unit
(see chapter “COBOL-specific addressing” on page 15). It is also necessary for
a global data name that is locally hidden.

If srcname in the S qualification is the same as program-id, only the PROG qualifi-
cation need be written.

Only the base qualification or the CTX qualification can be placed before the C qualifica-
tions listed below. The C qualification takes the user away from the symbolic level. No
symbolic operands can be written directly afterwards (see section “Symbolic memory refer-
ences” on page 18), only a compl-memref.

C=segmentname

Without a length modification, specify the entire segment as the sender or receiver.

C=sharename

Without a length modification, specify the entire object module as the sender or
receiver.

dataname

is the name of a group item or data element defined in the source program or the
name of a COBOL special register. Figurative constants can only be used as sender.
dataname is an alphanumeric string with up to 30 characters.

AID transfers data elements in accordance with the rules for COBOL MOVE, taking
into consideration the definitions from the source program.
Data items can only be processed with %SET if both sender and receiver have been
defined as data items. AID executes an alphanumeric transfer, taking neither the
format nor the data type definition into account.
Numeric and alphanumeric receive items with print editing can only be modified with
an AID character literal (C’...’, X’...’ or B’...’) whose contents have already been
correspondingly edited for printing.

U2855-J-Z125-6-76 121

AID commands %SET

dataname [identifier][...][(index[,...])]

identifier

If dataname is not unambiguous within a program unit, it can be identified by
being assigned to a particular data item with IN or OF. dataname must be
assigned as many identifiers as are required to designate it unambiguously.
If it is not identified, AID only outputs data for dataname if a data definition is
provided for it at level 01 or 77. If this is not the case, an error message is issued.

index

If dataname is the name of an element in a table, it can be indexed and
subscripted as in a COBOL statement. The notation differs from COBOL only in
that multiple indexes must be separated by a comma. If you specify the name
of a table element without an index or with an incomplete index, AID aborts
transfer.
index can be specified as follows:

COBOL special registers

 LINAGE-COUNTER
 RETURN-CODE
 SORT- CCSN
 SORT-CORE-SIZE
 SORT-EOW
 SORT-FILE-SIZE
 SORT-MODE-SIZE
 SORT-RETURN
 TALLY

Figurative constants

can only be specified as sender; the address selector cannot be used on them.
The figurative constants HIGH-VALUE and LOW-VALUE always represent the
alphanumeric value assigned to them by default or in the declarations made
with the PROGRAM COLLATING SEQUENCE clause. In contrast to the
COBOL MOVE

statement, only one character is transferred in the AID command %SET when
a figurative constant is used.

n
index-name
dataname
TALLY
arithmetic-expression

122 U2855-J-Z125-6-76

%SET AID commands

 ZERO
 SPACE
 HIGH-VALUE
 LOW-VALUE
 QUOTE
 literal
 symbolic character

statement-name

designates the address of the first instruction in a section or paragraph in the
PROCEDURE DIVISION.

If a paragraph name is not unambiguous within a program, it must be identified by
the section name of the section in which it was defined: L'paragraph' IN
L'section'

Statement names are address constants and can only be specified for sender. The
address thus designated is then transferred.
With the subsequent pointer operator (statement-name ->) you designate 4 bytes of
the program code generated for the statement. For 2-byte or 6-byte instructions you
must specify a corresponding length modification. statement-name -> can be used
both as sender and receiver. See examples 6 and 7.

source-reference

designates the address of the first instruction generated for a statement in the
PROCEDURE DIVISION and must be specified in one of the following formats:

S’n’
for lines with paragraph or section names in which no COBOL verb occurs. This
specification is not possible for programs which have been compiled with STMT-
REFERENCE=COLUMN1-TO-6.

S’nverb[m]’ | S’xverb[m]’
for lines containing a COBOL verb. m is specified only if the same COBOL verb
appears more than once in a line.

Source references are address constants and can only be specified for sender. The
address thus designated is then transferred.
With the subsequent pointer operator (source-reference ->) you designate 4 bytes of
the program code generated for the statement. For 2-byte or 6-byte instructions you
must specify a corresponding length modification. source-reference -> can be used
both as sender and receiver. See examples 6 and 7.

L'section'
L'paragraph' [IN L'section']

U2855-J-Z125-6-76 123

AID commands %SET

keyword

is an execution counter, the program counter or a register. Only a base qualification
can be specified before keyword.
The AID Core Manual [1], lists the implicit storage types of the keywords.

%•subcmdname Execution counter
%• Execution counter of the current subcommand
%PC Program counter
%n General register, 0 Î n Î 15
%nD|E Floating-point register, n = 0,2,4,6
%nQ Floating-point register, n = 0,4
%nG AID general register, 0 Î n Î 15
%nDG AID floating-point register, n = 0,2,4,6

compl-memref

The following operations may occur in compl-memref (see AID Core Manual [1]):

– byte offset (•)
– indirect addressing (->)
– type modification (%T(dataname), %X, %C, %D, %P, %F, %A, %S, %SX,

%UTF16)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))
– character conversion functions %C() and %UTF16()

With an explicit type or length modification you can match the storage type for sender
to that of receiver. A type modification with a storage type that is incompatible with
the memory contents will be rejected by AID.
If a compl-memref begins with statement-name or source-reference, it must be followed
by a pointer operator (->). In this case statement-name must be specified with L’...’.
Without the pointer operator (->), statement-name and source-reference can be used
anywhere where hexadecimal numbers can be written. Following a byte offset (•) or
pointer operation (->), the implicit storage type and original address length are lost.
At the calculated address, storage type %X with a length of 4 applies unless the
user has made an explicit specification for type and length. Nevertheless, the area
boundaries of a start address (CSECT, dataname, keyword etc.) remain in effect.
They must not be exceeded for any operand in a complex memory reference by a
byte offset or length modification, otherwise AID will reject the command and issue
an error message. Only by combining the address selector (%@) with the pointer
operator (->) can you switch to machine code level, on which the area comprises
the area of virtual memory occupied by the loaded program.

124 U2855-J-Z125-6-76

%SET AID commands

Example: %SET CITEM.3%L5 INTO CITEM1

The area of CITEM is five bytes long. After the byte offset, the area of CITEM would
be exceeded by three bytes as a result of length modification %L5. This is not
allowed. If it is intended to use the %SET command to transfer a further three

bytes to CITEM1 after CITEM, the %SET must be written as follows:

%SET %@(CITEM)->.3%L5 INTO CITEM

%@(...)

With the address selector you can output the start address of a data entry, a data
item, a special register or a complex memory reference. The result supplied by the
address selector is an address constant (see AID Core Manual [1]).
The address selector cannot be used for symbolic constants (including the
statement names, the source references and the figurative constants).

%L(...)

The length selector can be used to specify the length of a data entry, data item or
special register as sender. The length selector produces an integer as a result (see
AID Core Manual [1]).
Example: %SET %L(ARRAY1) INTO %0G
The length of ARRAY1 will be transferred.

%L=(expression)

With the length function you, as sender, can have a value calculated.
expression is formed from memory references, constants, integers and arithmetic
operators. Only memory reference contents that are integers (type %F or %A) are
permitted. The length function produces an integer as a result. (see AID Core
Manual [1]).
Example: %SET %L=(ARRAY1) INTO %0G The content of ARRAY1 is transferred if it
is an integer (type %F). Otherwise AID issues an error message.

%C(...) or %UTF16(...)

This function converts strings from 1-byte EBCDIC encoding to UTF16 encoding
and vice versa.
For further information, see the AID Core Manual [1].

U2855-J-Z125-6-76 125

AID commands %SET

AID literal

All AID literals described in the AID Core Manual [1], may be specified. Note well
the conversion options for matching AID literals to the respective receivers as
described in that chapter:

{C'x...x' | 'x...x'| U'x...x'}
X'f...f'
B'b...b'
[{±}]n
#'f...f'
[{±}]n.m
[{±}]mantisseE[{±}]exponent

Character literal
Hexadecimal literal
Binary literal
Integer
Hexadecimalnumber
Decimal number
Floating-point number

126 U2855-J-Z125-6-76

%SET AID commands

%SET table

The following table provides an overview on permissible combinations of the sender and re-
ceiver types in conjunction with the %SET command.

sender

receiver

Fixed-pt.,
ext.float.-
pt.no, sub-
script,
index,
special re-
gister, %D

int.
float.-
pt.no,
%F,
%P,
%A

Index1 alpha-
betic

alpha-
nume-
ric %C

edited %X %UTF16,
NATIO-
NAL

strongly
typed

Fixed-pt., ext.float.-pt.no,
subscript, index, special
register, %D

num num num − − −* − − −

internal float.-pt.no ZERO,
%F, %P, %A
[{±}]n,#' f...f'

num num num − − −* bin − −

[{±}]n.m
[{±}]mantE[{±}]exponent

num num − − − −* − − −

edited (alphabetic,
alpanumeric)

− − − chara char −* − chare

−

alphanumeric,
SPACE,QUOTE, %C

numn numn numn chara char −* bin chare −

numeric edited.
HIGH- / LOW-VALUE

− − − − char − − chare∗∗ −

symbolic character numn numn numn chara char −* − chare −

C' x...x' numn numn numn chara char char bin chare −

X' f...f' , B' b...b' bin bin − bin bin bin bin bin bin

%X − bin − − bin − bin bin −

%UTF16/U’x...x’,
NATIONAL

numn numn numn charae chare∗∗∗ −* bin charg −

strongly typed −* −* − −* −* −* − − chart

* Unlike COLBOL, AID does not execute this transfer.
** When HIGH-VALUE/LOW-VALUE is transferred, conversion to NATIONAL
 takes place; this is not COBOL-compliant.
***The transfer is forbidden in COBOL.

U2855-J-Z125-6-76 127

AID commands %SET

bin Binary transfer; left-justified

sender < receiver padding with binary zeros on the right

sender > receiver truncation on the right

For transfer to %X, integral numeric literals correspond to a signed integer value
with a length of 4 bytes (%FL4), which are transferred in binary form.

char Character transfer; left-justified or right-justified if the JUSTIFIED RIGHT clause of
sender is specified.

sender < receiver padding with blanks ’(...)’ on the side which is specified in
JUSTIFIED clause

sender > receiver truncation on the side which is specified in JUSTIFIED clause

a Transfer only carried out if the contents of sender are alphabetic.

e Conversion from/to National/%UTF16.
In the case of symbolic COBOL fields, the EBCDIC code set defined in the
COBOL program is used if sender or receiver is not of the type
NATIONAL/%UTF16.
The EBCDIC setting from the AID command is used in all other fields (of
old COBOL programs, other programming languages or type %C). If a
character in the sender coded character set or receiver coded character
set is illegal, the substitute character ’.’ (period) in the coded
character set of the receiver is transferred to the corresponding
character position in the receiver without an AID message being issued.

g If a group has the attribute GROUP-USAGE NATIONAL, the group behaves
like a NATIONAL field.

t Only if the receiver is of the same type.

num Numeric transfer; value is retained

If required, sender is converted to the storage type of receiver.
The SIGN LEADING/TRAILING [SEPARATE] clause is taken into account.
n If sender of the character type contains only digits and is no more
than 31 digits long, AID performs numeric transfer.
If sender of the character type contains unlike digits, the transfer is
not performed.

1 Only values > 0 can be transferred in index. AID performs the necessary
conversion of table position number to table element displacement and
vice versa.

– No transfer

AID indicates the incompatibility of the storage types.

128 U2855-J-Z125-6-76

%SET AID commands

Examples

The following items and tables are defined in a COBOL program:

01 NUMB-TAB.
 02 QNTY PIC S9(6) OCCURS 50 INDEXED BY J.

01 NUMB-SUM PIC S9(6).
01 PROC-SUM PIC S999V99.
01 CHAR PIC X(10).
01 NATIONAL-CHAR PIC N(10)

For the following examples the update dialog was activated via %AID CHECK=ALL. This
displays the contents of the receive field before and after the execution of %SET:

1. %SET #061'INTONUMB-SUM'

 ��
  OLD CONTENT: 
  1 
  NEW CONTENT: 
  97 
  % IDA0129 CHANGE? (Y=YES;N=NO)? 
  Y 
  

The following command produces the same result:

%SET 97 INTO NUMB-SUM

2. %QUALIFY PROG=UPRONUM

%SET .NUMB-SUM INTO .NUMB(16)

 ��
  OLD CONTENT: 
  0 
  NEW CONTENT: 
  10 
  % IDA0129 CHANGE? (Y=YES;N=NO)? 
  Y 
  

3. %SET 'ABCDEFG' INTO CHAR

 ��
  OLD CONTENT: 
  1234567890 
  NEW CONTENT: 
  ABCDEFG  
  % IDA0129 CHANGE? (Y=YES;N=NO)? 
  Y 
  

U2855-J-Z125-6-76 129

AID commands %SET

4. %SET 123.45 INTO PROC-SUM

 ��
  OLD CONTENT: 
  +0.00 
  NEW CONTENT: 
  +123.45 
  % IDA0129 CHANGE? (Y=YES;N=NO)? 
  Y 
  

5. %SET 123.45 INTO QNTY(5)

 ��
  I390 WARNING: SOURCE TRUNCATED 
  OLD CONTENT: 
  0 
  NEW CONTENT: 
  123 
  % IDA0129 CHANGE? (Y=YES;N=NO)? 
  Y 
  

6. %SET L'OUTPUT' INTO %0G

The address of the first instruction starting at paragraph PUTOUT is written into AID
register %0G.

7. %DA 5 FROM L'PUTOUT'->

%SET L'PUTOUT'->%L2 INTO %1G

With DISASSEMBLE you disassemble the instruction code located at the address
allocated to the paragraph PUTOUT. The first instruction is a 2-byte instruction.
This first instruction is written to AID register %1G with the %SET command.

8. %SET ZEICHEN INTO NATIONAL-ZEICHEN
%SET '{ä}' INTO NATIONAL-ZEICHEN
In the first case the EBCDIC string from the ZEICHEN field is converted to UTF16
encoding (corresponds to the COBOL data type NATIONAL). The converted string is
transferred to the NATIONAL-ZEICHEN field. The EBCDIC character set for ZEICHEN from
the COBOL program is used. This ensures that AID and the COBOL program perform
the same conversions.

In the second case the literal ’{ä}’ is transferred to the NATIONAL-ZEICHEN field following
UTF16 conversion. The literal ’{ä}’ can be input only if the terminal emulation supports
the coded character set UTFE.

130 U2855-J-Z125-6-76

%SET AID commands

9. %SET %UTF16(V'00' %CL3) INTO NATIONAL-ZEICHEN
%SET ZEICHEN INTO NATIONAL-ZEICHEN
The function %UTF16() can only be applied to EBCDIC strings. Type modification with
%C ensures that the memory address V’00’ is also interpreted as such.
Both %SET commands convert an EBCDIC string contained in the memory to a UTF16
string. This is always stored in NATIONAL-ZEICHEN.
In the case of the %UTF16(V’00’ %CL3) operand, AID uses the character set selected
by %AID EBCDIC . In the case of the ZEICHEN operand, AID uses the character set
specified by COBOL2000.
You must consequently check the characters selected using %SHOW %AID. The
EBCDIC character set currently selected is displayed.
%D _EBCDIC_CCSN shows the character set that applies for the COBOL program.

10. %SET NATIONAL-ZEICHEN INTO ZEICHEN
%SET %C(V'00'%UTF16L6) INTO ZEICHEN
Both %SET commands convert a UTF16 string contained in the memory to an EBCDIC
string and store it in ZEICHEN.
In the first case the COBOL2000 object determines the EBCDIC character set of the
destination field. In the second case the %AID command determines the EBCDIC cha-
racter set of the destination field.

U2855-J-Z125-6-76 131

AID commands %SHOW

%SHOW

The %SHOW command allows the user to obtain information about the current definitions
relating to individual AID commands, to find out what the last entry of a command looked
like, and which command was entered last. It is also possible to use the subcommand name
to request the command in which it was defined or to output a list of all entered
subcommand names with the associated command type. Depending on how uppercase
and lowercase notation was defined in the %AID command, the original entry of the
command is either reproduced or the input string is converted to uppercase letters.

– show-target can be used to specify a command, a subcommand name or an AID
keyword for all current subcommands.

���
Command Operand
���

%SH[OW] [show-target]

���

The effect of %SHOW without an operand is to output the AID command entered directly
beforehand. If no AID command has been entered for the task, an error message is issued.
A %SHOW for one of the commands for which it is not intended results in a syntax error.
The command may be used in command and subcommand strings.

%SHOW does not alter the program state.

��������������
 show-target 
���������������

designates an AID command, a specific subcommand or all entered subcommands. The
commands permitted for this command can also be specified in the abbreviated form in
show-target.

Command or subcommand Information

 %AID The current valid settings for the %AID, %AINT and
 %BASE commands and the version of AID loaded.

 %BASE The current settings for %BASE, %AINT and %SYMLIB,
 the TSN, TID and the version of the operating
 system and type of computer are output.

 %CCSN The command output is always directed to SYSOUT
 and contains the following information
 - Character code set names of the system files
 - Character code set names of the actvated output
 files- All currently valid charater code set names
 in the system

132 U2855-J-Z125-6-76

%SHOW AID commands

 %C[0NTROL] The input string is output for each registered
 %CONTROL.

 %D[IS]A[SSEMBLE] The current number and start address (V'...') is
 output.

 %F[IND] The entered command and if appropriate the virtual
 address of the last hit are output.

 %IN[SERT] [testpunkt] Without the test-point entry, all active test points
 are output. Otherwise AID shows the entered command
 in which test-point was declared.

 %ON The input string is output for each active %ON
 command.

 %OUT The valid medium-a-quantity values for the commands
 that can be controlled via %OUT are output.

 %OUTFILE All implicitly or explicitly entered output files
 are listed, with their link names.

 %QUALIFY The last %QUALIFY command is output.

 %SYMLIB The registered libraries are output with the
 associated base qualification and the TSN.

 %TRACE The default values of the %TRACE operands are output.
 Account is taken of whether the last %TRACE was
 symbolic or on machine code level. In successive
 lines AID outputs how many instructions or state-
 ments have already been processed with the current
 %TRACE and what the last current %TRACE command
 looked like.

 %•* The names of all active subcommands are output with
 the type of the AID command in which they were
 defined.

 %•subkdoname The command in which subcmdname was defined is
 output.

Command or subcommand Information

U2855-J-Z125-6-76 133

AID commands %STOP

%STOP

With the %STOP command you direct AID to halt the program, to switch to command mode
and to issue a STOP message. This message indicates the statement and the level of the
call hierarchy where the program was interrupted.

If the command is entered at the terminal or from a procedure file, the program state is not
altered, since the program is already in the STOP state. In this case you may employ the
command to obtain localization information on the program interrupt point by referring to the
STOP message.

���
Command Operand
���

%STOP

���

If the %STOP command is contained in a command sequence or subcommand, any
commands following it will not be executed.

If you set a dump file as a basic qualification with %BASE and then enter a %STOP
command, AID outputs a STOP message containing localization information for the
address at which the program was interrupted when the dump file was written.

If the program has been interrupted by pressing the K2 key, the program interrupt point need
not necessarily be within the user program, it may also be located in the runtime system
routines.

The %STOP command alters the program state.

Example

 ��
  /%IN PROG=SORT.S'20EXI' <%D TAB; %STOP> 
  /%RESUME 
  
  TAB(1: 9) 
  (1) Jimmy (2) Maria (3) Jamie (4) Lesly (5) Jonny 
  (6) Donna (7) Marie (8) Carol (9) Frank 
  STOPPED AT SRC_REF: 20EXI , SOURCE: SORT , PROC: SORT 
  

%INSERT sets a test point for statement EXIT from line 20. The subcommand comprises
the %DISPLAY and %STOP commands. After TAB has been output, AID halts the program
and writes a STOP message indicating the source reference and program of the current
interrupt point.

134 U2855-J-Z125-6-76

%SYMLIB AID commands

%SYMLIB

With the %SYMLIB command you direct AID to open or close PLAM libraries. AID accesses
open PLAM libraries if symbolic memory references located in a program for which no LSD
records have been loaded are addressed in a command.

– With qualification-a-lib you open or close one or more libraries in which object modules
and their associated LSD records are stored. In order to dynamically load LSD records,
any library can be assigned to the current program or to a dump file by specifying the
appropriate base qualification.

���
Command Operand
���

%SYMLIB [qualification-a-lib][,...]

���

When this command is executed AID checks only whether the specified library can be
opened; it does not check whether the contents of the library match the program being
processed. Thus it is possible to initially open all libraries which you might need later during
a test run. AID does not check whether the object module of the program which has been
addressed matches that of the PLAM library until the dynamically loaded LSD records are
accessed.
If several libraries have been opened for a base qualification, AID scans them in the order
in which they were specified in the %SYMLIB command.
If the AID search is not successful or if no library with %DUMPFILE is open, you may assign
the correct library by way of a new %SYMLIB command after the corresponding message
has been issued. You then repeat the command for whose execution the LSD records were
lacking.

A library remains open until it is closed by:

– a new %SYMLIB command for the same base qualification

– a %SYMLIB without an operand

– a %DUMPFILE command with which the file is closed

or by /LOGOFF or /EXIT-JOB.

If a new command contains new file names, these libraries are assigned and opened.

The %SYMLIB command does not alter the program state.

U2855-J-Z125-6-76 135

AID commands %SYMLIB

����������������������
 qualification-a-lib 
�����������������������

is a base qualification and/or the file name of a PLAM library.

– If you enter a base qualification and a file name, AID assigns the specified library for
this base qualification and opens it. Previously assigned libraries for the same base
qualification are closed.

– If you specify a file name only, AID assigns the library for the base qualification which is
currently applicable (see %BASE command) and opens it. All libraries previously
assigned for the current base qualification will be closed.

– If you specify a base qualification only, all open libraries for this qualification will be
closed.

AID can handle up to 15 library assignments. A library which is concurrently assigned for
several base qualifications is counted as often as it is specified.

qualification-a-lib-OPERAND -

 VM 
[•][E= •][filename]
 Dn 

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command and can only stand for a base
qualification.

E=VM

%SYMLIB applies for the loaded program (see also %BASE command).

E=Dn

%SYMLIB applies for a memory dump in a dump file with the link name Dn (see
%BASE and %DUMPFILE commands).

filename

is the BS2000 catalog name of a PLAM library which is assigned for the base quali-
fication specified with prequalification or entered explicitly. If the qualification is
omitted, the library is assigned for the base qualification which currently applies.

136 U2855-J-Z125-6-76

%SYMLIB AID commands

Example

%SYMLIB E=D5.PLAMLIB,COBOLOUTPUT

If AID requires LSD records for processing a memory dump in the dump file with the link
name D5, AID attempts to load these records from the PLAMLIB library.
The COBOLOUTPUT library is assigned for the currently set base qualification. If no
%BASE command has been issued, AID uses this library to dynamically load LSD
records for the program being executed.

U2855-J-Z125-6-76 137

AID commands %TITLE

%TITLE

With the %TITLE command you define the text of your own page header. AID uses this text
when the %DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and %TRACE commands
write to the system file SYSLST.

– With page-header you specify the text of the header and direct AID to set the page
counter to 1 and to position SYSLST to the top of the page before the next line to be
printed.

���
Command Operand
���

%TITLE [page-header]

���

With a %TITLE command without a page-header operand you switch back to the AID
standard header. AID resets the page counter to 1 and positions SYSLST to the top of the
page before the next line to be printed.

A page header defined with %TITLE remains valid until a new %TITLE command is issued
or until the program ends.

The %TITLE command does not alter the program state.

��������������
 page-header 
���������������

Specifies the variable part of the page title. AID completes this specification by adding the
time, date and page counter.

page-header

is a character literal in the format {C’x...x’ | ’x...x’} and may have a maximum length
of 80 characters. A longer literal is rejected with an error message outputting only
the first 52 positions of the literal.

Up to 58 lines are printed on one page, not counting the title of the page.

138 U2855-J-Z125-6-76

%TRACE AID commands

%TRACE

With the %TRACE command you switch on the AID tracing function and start the program
or continue it at the interrupt point or the point specified in the %JUMP command.

– With number you can specify the maximum number of COBOL statements to be traced,
to be logged before execution.

– With continue you can can control whether the program should stop or continue to run
without logging, after %TRACE terminates.

– With criterion you select different types of COBOL statements which AID is to log.
Logging takes place prior to execution of the statements selected.

– With trace-area you define the program area in which the criterion is to be taken into
consideration.

���
Command Operand
���

%T[RACE] [number] [continue] [criterion][,...] [IN trace-area]

���

If the program is interrupted during a %TRACE, the %TRACE can be continued with
%CONTINUE. This applies to the following cases:

– A subcommand containing a %STOP command has been executed.

– An %INSERT command ends with a program interrupt because the control operand is
K or S.

– The K2 key has been used (see section “Commands at the start of a debugging
session” on page 13).

The %TRACE command is terminated, on the other hand, by the following events:

– The maximum number of statements to be traced has been reached.

– A subcommand containing a %RESUME or %TRACE command has been executed.

– After one of the program interrupts described above, the program continues with
%RESUME.

The operand values of a %TRACE command apply until they are overwritten by the entries
in a subsequent %TRACE command, or until the program is terminated. In a new %TRACE
command, AID therefore assumes the value from the previous %TRACE command if an
operand has not been specified. In the case of the trace-area operand, this only happens if
the current interrupt point is within the trace-area to be assumed. If there are no values to be
taken over, AID assumes the default values 10 (for number) and the program containing the
current interrupt point (for trace-area).

U2855-J-Z125-6-76 139

AID commands %TRACE

With the aid of the %OUT command, you can control the information to be contained in a
line of the log and the output medium to which the log is to be written.

If the %TRACE is contained in a command sequence or subcommand, any commands
which follow will not be executed.

The %TRACE command alters the program state.

specifies the maximum number of COBOL statements of type criterion which are to be
executed and logged.

number

is an integer 1 ≤ number ≤ 231-1. The default value is 10. If there is no value from a
previous %TRACE command, AID inserts the default value in a %TRACE
command without the number operand.

After the specified number of statements has been traced, AID outputs a message via
SYSOUT, the program is halted and the user can enter AID or BS2000 commands. The
message tells you at which statement and in which program the current interrupt point is
located.

specifies whether AID should stop or continue the program after %TRACE terminates.
The operand applies until a different operand value for it is entered in a new %TRACE or
until the program terminates.

S
The program is stopped. AID outputs a STOP message containing localization infor-
mation about the interrupt point. The default value is S.

R
The program continues without outputting a message.

is a keyword which defines the type of statements to be traced during program execution.
Several keywords can be specified at a time; they take effect simultaneously. A comma must
be used to separate any two keywords.
If no criterion is declared, AID uses the default value %STMT unless a criterion declaration
from an earlier %TRACE command is still valid.

number

continue

criterion

140 U2855-J-Z125-6-76

%TRACE AID commands

 criterion subcmd is processed prior to

 %STMT Every COBOL statement

 %ASSGN COBOL statements which modify the contents of a
 data item:
 ADD [CORRESPONDING], COMPUTE, DIVIDE, INITIALIZE,
 INSPECT, MOVE [CORRESPONDING], MULTIPLY, SET, STRING,
 SUBTRACT [CORRESPONDING], UNSTRING

 %CALL CALL, CANCEL, INVOKE, PERFORM statements as well as
 prior to SORT/MERGE statements, since these may call an
 INPUT or OUTPUT procedure.

 %COND EVALUATE, IF and SEARCH statements and the conditional
 THEN, ELSE and WHEN statement branches.

 %DB COBOL statements for calling a database: CONNECT,
 DISCONNECT, ERASE, FETCH, FIND, FINISH, FREE, GET, KEEP,
 MODIFY, READY, STORE

 %EXCEPTION The conditional statement branches and their admissible
 negations: AT END, AT END OF PAGE, INVALID KEY, ON SIZE
 ERROR, ON OVERFLOW, ON EXCEPTION, the RAISE statement
 as well as prior to the execution of a USE PROCEDURE

 %GOTO ALTER, CONTINUE, GOTO, RESUME statements.

 %IO COBOL statements which initiate I/O operations:
 ACCEPT, DISPLAY, OPEN, CLOSE, DELETE, READ, REWRITE,
 START, WRITE, GENERATE, INITIATE, TERMINATE

 %LAB COBOL statements which have a section or paragraph
 name or which directly follow such a name.

 %PROC Program or module start at the beginning of the PROCEDURE-
 DIVISION

 or at ENTRY.

 Program or module end by the statement

 STOP RUN, GOBACK, EXIT METHOD or EXIT PROGRAM.

 %SORT MERGE and SORT statements,
 RELEASE and RETURN statements.

U2855-J-Z125-6-76 141

AID commands %TRACE

defines the program area in which tracing is to take place, i.e. only within this area can
monitoring and logging of the statements selected by means of the criterion operand be
effected. The %TRACE command is inactive outside of this area and is activated again only
on returning to this area. trace-area can only be located within the loaded program, and the
program that is specified must be loaded at the time when the %TRACE command is
entered or the subcommand containing the %TRACE command is processed.

trace-area is limited to a compilation unit in programs without segmentation, and to a
segment in programs with segmentation. The limitation to one segment applies only for
independent segments (segment No.≥50).

A trace-area remains effective until a new %TRACE command with its own trace-area
operand is entered, until a %TRACE command is issued outside of this area or until the
program ends. If the trace-area operand has been omitted, the area definition from an earlier
%TRACE command is assumed if the current interrupt point is located in this area.
Otherwise AID uses the default value, i.e. the program unit or segment containing the
current interrupt point.

The continuation address for program execution cannot be influenced by the %TRACE
command; such is only possible by means of the %JUMP command.

trace-area-OPERAND -

 [S=srcname] [[•]PROC=program-id] 

 [PROC=program-id•] statement-name 

IN [•][E=VM•] [S=srcname•]   

 (source-reference:source-reference)

C=segmentname

 C=sharename 

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

E=VM

As trace-area may only be located in the virtual memory of the program which has
been loaded, enter E=VM only if a dump file has been declared as the current base
qualification (see also %BASE command).

trace-area

142 U2855-J-Z125-6-76

%TRACE AID commands

S=srcname

This must be specified if trace-area is not to be included in the current compilation
unit.

PROC=program-id

This need only be specified if trace-area is not to be contained in the current
program, if it is to be defined with statement-name and this is not unique within the
compilation unit, or in order to overwrite a previously valid trace-area definition.
If trace-area ends with a PROC/PROG qualification, it comprises the whole of the
specified program. The program must be loaded at the time when the %TRACE
command is entered or the subcommand containing the %TRACE command is
processed.

If the name in the S qualification is the same as program-id, only the PROG qualification
need be written.

Although the following C qualifications have the effect of switching to machine code level,
they can only be followed by a criterion selected from the preceding table or by the default
value %STMT inserted by AID.

C=segmentname

This specification defines the designated segment as the trace-area. It is only
necessary if the interrupt point is not contained in this segment or if a previously
applicable area restriction applying to parts of the segment is to be removed.

C=sharename

This specification defines the designated object module as the trace-area. It is only
necessary if the interrupt point is not located in the specified object module or if an
area restriction applying to the object module is to be removed.

statement-name

The trace-area is defined by a statement name and comprises a section or
paragraph in the PROCEDURE DIVISION.

An alphanumeric section or paragraph name can be specified without L’...’ since this
name cannot be confused with a data name in this command.

If a paragraph name is not unambiguous within a program, it must be identified by
the section name of the section in which it was defined: L'paragraph' IN
L'section'

L'section'
L'paragraph' [IN L'section']

U2855-J-Z125-6-76 143

AID commands %TRACE

(source-reference:source-reference)

The trace-area is defined by specifying a start address and an end address. The
start and end addresses must both be within the same compilation unit and the
following must apply:
start address ≤ end address.

If the trace-area is to cover only one statement line, the start address and the end
address must be identical. It is not possible to limit trace-area to individual COBOL
verbs within a line.

source-reference

designates the address of the first instruction generated for a statement in the
PROCEDURE DIVISION and must be specified in one of the following formats:

S’n’
for lines with paragraph or section names in which no COBOL verb occurs.
This specification is not possible for programs which have been compiled
with STMT-REFERENCE=COLUMN1-TO-6.

S’nverb[m]’ | S’xverb[m]’
for lines containing a COBOL verb.

Output of the %TRACE listing

The %TRACE listing is output in full format via SYSOUT as a standard procedure (%OUT
operand value T=MAX). With the %OUT command, you can define the output media and
the scope of information to be output (see AID Core Manual [1]).

A %TRACE listing with additional information (T=MAX) contains the number and type of the
statement that was executed. If a statement label exists, it will be output as well.

A %TRACE listing without additional information (T=MIN) does not show the statement
type.

144 U2855-J-Z125-6-76

%TRACE AID commands

Examples

1.

 ��
  /%OUT %TRACE T=MAX 
  /%T 3 
  49 I2 LABEL 
  50MOV ASSIGN 
  51ADD ASSIGN 
  STOPPED AT SRC_REF: 51ADD, SOURCE: EXAMPLE, PROC: EXAMPLE 
  

With the aid of the %OUT command, output is switched back to the terminal and the
maximum range of information is defined for output.
The %TRACE command is to trace three COBOL statements. After the third statement
the termination message for this %TRACE command follows, to the effect that
statement 51 is in the program unit EXAMPLE and that the load module has the same
name.

2.

 ��
  /%OUT %T T=MIN 
  /%T 3 
  49 12 
  50MOV 
  51ADD 
  STOPPED AT SRC_REF: 51, SOURCE: EXAMPLE, PROC: EXAMPLE 
  

With the %OUT command the range of information for the %TRACE command is
reduced. A subsequently entered %TRACE command outputs the log without
additional information.

U2855-J-Z125-6-76 145

6 Sample application
This chapter illustrates an AID debugging session for a short COBOL program. This sample
test is intended to help you understand the application and effect of various AID commands;
for the sake of clarity, a relatively uncomplicated approach has been taken.

The compiler was called with the following SDF command:

/START-COBOL2000-COMPILER SOURCE=COB.S.SRCDAT,TEST-SUPPORT=AID-
/(PREPARE-FOR-JUMPS=YES),-
/LISTING=PARAM(NAME-INFORMATION=YES(SUPPRESS-GENERAT=AT-SEVERE-ERR),-
/OUTPUT=*SYSLST),COMPILER-ACTION=MODULE-GEN(MOD-FORM=OM,-
/SUPPR-GEN=AT-SEVERE-ERR),-
/RUNTIME-OPTIONS=PARAM(ACCEPT-STMT-INPUT=UPPERCASE-CONVERTED)

6.1 Source listing

00001 IDENTIFICATION DIVISION.
00002 PROGRAM-ID. M0BS.
00003 ENVIRONMENT DIVISION.
00004 CONFIGURATION SECTION.
00005 SPECIAL-NAMES.
00006 TERMINAL IS T.
00007 INPUT-OUTPUT SECTION.
00008 FILE-CONTROL.
00009 SELECT TEXTDAT ASSIGN TO "INPFIL".
00010 DATA DIVISION.
00011 FILE SECTION.
00012 FD TEXTDAT
00013 RECORD VARYING FROM 1 TO 256 DEPENDING ON SLF.
00014 01 RECD.
00015 02 ITEM PIC X OCCURS 1 TO 256 DEPENDING ON SLF
00016 INDEXED BY K.
00017 WORKING-STORAGE SECTION.
00018 77 SLF PIC 999 COMP.
00019 77 PROCES-SWITCH PIC X.
00020 88 PROCES-END VALUE "1".
00021 01 A-Z-TAB.
00022 02 FILLER PIC X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
00023 01 ABC-TAB REDEFINES A-Z-TAB.
00024 02 CHAR PIC X OCCURS 26 INDEXED BY I.
00025 01 NUMB-TAB.
00026 02 QNTY PIC 9999 OCCURS 26 INDEXED BY J.
00027 77 NUMB-SUM PIC S9(6) VALUE ZERO.
00028 77 PROC-SUM PIC S999V99 VALUE ZERO.
00029 01 FRM-HEAD.
00030 02 FILLER PIC X(24) VALUE "LETTER NUMB PERCENT".

146 U2855-J-Z125-6-76

Source listing Sample application

00031 01 FRM-LINE.
00032 02 LETTER PIC X.
00033 02 FILLER PIC X(9) VALUE SPACE.
00034 02 NUMB PIC Z(5)9.
00035 02 FILLER PIC X(2) VALUE SPACE.
00036 02 PERCENT PIC ZZ9.99.
00037 01 FRM-FOOT.
00038 02 FILLER PIC X(10) VALUE "TOTAL: ".
00039 02 A-SUM PIC Z(5)9.
00040 02 FILLER PIC X(2) VALUE SPACE.
00041 02 P-SUM PIC ZZ9.99.
00042 PROCEDURE DIVISION.
00043 LEADER.
00044 INITIALIZE NUMB-TAB.
00045 MOVE "0" TO PROCES-SWITCH.
00046 OPEN INPUT TEXTDAT.
00047 PROCESSING.
00048 READ TEXTDAT
00049 AT END DISPLAY "FILE IS EMPTY" UPON T
00050 NOT AT END
00051 PERFORM WITH TEST BEFORE UNTIL PROCES-END
00052 PERFORM WITH TEST BEFORE VARYING K FROM 1 BY 1 UNTIL
00053 K > SLF
00054 IF ITEM(K) NOT = SPACE
00055 THEN ADD 1 TO NUMB-SUM
00056 SET I TO 1
00057 SEARCH CHAR VARYING J
00058 WHEN ITEM(K) = CHAR(I) ADD 1 TO QNTY(J)
00059 END-SEARCH
00060 END-IF
00061 END-PERFORM
00062 READ TEXTDAT
00063 AT END SET PROCES-END TO TRUE
00064 END-READ
00065 END-PERFORM
00066 END-READ.
00067 PUTOUT.
00068 CLOSE TEXTDAT.
00069 DISPLAY FRM-HEAD UPON T.
00070 PERFORM WITH TEST BEFORE
00071 VARYING I FROM 1 BY 1 UNTIL I > 26
00072 MOVE CHAR(I) TO LETTER
00073 SET J TO I
00074 MOVE QNTY(J) TO NUMB
00075 COMPUTE PERCENT = QNTY(J) * 100/NUMB-SUM
00076 DISPLAY FRM-LINE UPON T
00077 COMPUTE PROC-SUM = PROC-SUM + QNTY(J) * 100/NUMB-SUM
00078 END-PERFORM.
00079 MOVE PROC-SUM TO P-SUE.
00080 MOVE NUMB-SUM TO A-SUM.
00081 DISPLAY FRM-FOOT UPON T.
00082 STOP RUN.
00083

U2855-J-Z125-6-76 147

Sample application Contents of the input file

6.2 Contents of the input file

DIES IST EINE DATEI, DIE ALS EINGABE DIENT FUER EIN PROGRAMM,
DAS DIE HAEUFIGKEIT VON BUCHSTABEN BESTIMMT.
DIE GESAMTANZAHL IST DIE ANZAHL ALLER VON EINEM LEERZEICHEN VERSCHIEDENEN ZEICHEN
(EINSCHLIESSLICH ZIFFERN UND SONDERZEICHEN).
ABCDEFGHIJKLMNOPQRSTUVWXYZ
NUN NOCH EIN PAAR NORMALE SAETZE
ANNABELL WAR AUCH IN DER ALHAMBRA
BABETTE BEMALTE BEIM BAECKER DIE BALUSTRADE
CAESAR CHECKTE SICH EIN NACH CHICAGO

6.3 Test run

Step 1

��
 /SET-FILE-LINK LINK-NAME=INPFIL, FILE-NAME=INP 
 /START-EXECUTABLE-PROGRAM FROM-FILE = MOBS 
 % BLS0517 MODULE 'MOBS' LOADED 
 9089 INTERRUPT-CODE= 60 AT PC= 00000C46 
 % EXC0732 ABNORMAL PROGRAM-TERMINATION. ERROR-CODE 'NRT0101': /HELP-MSG NRT0101 
 

The input file INP is assigned to the program. The MOBS program is started. The program
run is aborted due to a data error (EC=60).

Step 2

��
 /SET-FILE-LINK LINK-NAME=BLSLIB00,FILE-NAME=$.SYSLNK.CRTE 
 /SET-FILE-LINK LINK-NAME=INPFIL,FILE-NAME=INP 
 /LOAD-EXE (BIBLIO,MOBS),DBL-PARA=(RESOLUTION=(ALT-LIB=YES)),TEST-OPTIONS=*AID 
 % BLS0517 MODULE 'MOBS' LOADED 
 

The program is loaded once more, this time with LSD information. It is not started immedi-
ately so as to allow AID commands to be entered first.

��
 /%ON %ANY;%RESUME 
 

The %ON %ANY is intended to ensure that it is possible to enter further AID commands
before the end of the program. The program is subsequently started again with %RESUME.

��
 9089 INTERRUPT-CODE = 60 AT PC= 00000C46 , COMPILATION UNIT MOBS 
 STOPPED AT V'F4DCBC' = IT0TRM@ + #2C'' 
 , EVENT: TERM (ABNORMAL,STEP,NODUMP) 
 

148 U2855-J-Z125-6-76

Test run Sample application

The program encounters the known error.

��
 /%display %hlloc(v'c46') 
 *** TID: 00070132 *** TSN: 6DMA *** 
 CURRENT PC: 00F4DCBC CSECT: IT0TRM@ *************************************** 
 V'00000C46' = CONTEXT : LOCAL#DEFAULT 
 SMOD : MOBS 
 PROC : MOBS 
 SECTION : 
 PARAGRAPH: PROCESSING 
 SRC-REF : 58ADD 
 

The %DISPLAY command determines the symbolic address at which the data error occurs.
It is the source reference S’58ADD’.

��
 /%display number(j) 
 % AID0379 S and PROC qualification required or LSD information missing 
 

The aim here in the program, after the character from the input record has been assigned
to A-Z-TAB accordingly, is to increment the counter for this letter by 1. A %DISPLAY
command relating to the table location referenced by index in the COBOL statement ADD
is rejected by AID. As was apparent from the previous output relating to the high level
location (%HLLOC) of the current interrupt point, this is contained in the IT0TRM@ module
of the runtime system. Symbolic addresses in the MOBS program must therefore be
qualified in AID commands. AID requires the S and PROC qualification here, or the PROG
qualification can be used for the short PROGRAM-ID ’MOBS’.

��
 /%d prog=mobs.number(j) 
 % AID0400 Dimension 01 of array NUMBER out of range or array has no element 
 

The new error message indicates that the index J for number has an invalid value. AID
cannot work with this address either.

��
 /%qualify prog=mobs 
 

The prequalification is defined so as not to have to write the qualification repeatedly in
further AID commands. In subsequent commands all that is necessary is to insert a period
in front of a symbolic address instead of the qualification.

��
 /%d .j 
 J = +42 
 

AID outputs the content of J. The maximum value of the index is 26; however, J contains
42. This resulted in the data error.

��
 /%d .item(k) 
 ITEM(6) = I 
 

U2855-J-Z125-6-76 149

Sample application Test run

The data error occurred during processing of the sixth character from the input record.

��
 /%d .k,.i 
 K = +6 
 I = +9 
 

The value of index I is 9. It is correctly positioned at the location of the letter ’I’ in the
alphabet.

��
 /%d .recd 
 01 RECD 
 02 ITEM(1:61) 
 (1) |D| (2) |I| (3) |E| (4) |S| (5) | | (6) |I| 
 (7) |S| (8) |T| (9) | | (10) |E| (11) |I| (12) |N| 
 (13) |E| (14) | | (15) |D| (16) |A| (17) |T| (18) |E| 
 (19) |I| (20) |,| (21) | | (22) |D| (23) |I| (24) |E| 
 (25) | | (26) |A| (27) |L| (28) |S| (29) | | (30) |E| 
 (31) |I| (32) |N| (33) |G| (34) |A| (35) |B| (36) |E| 
 (37) | | (38) |D| (39) |I| (40) |E| (41) |N| (42) |T| 
 (43) | | (44) |F| (45) |U| (46) |E| (47) |R| (48) | | 
 (49) |E| (50) |I| (51) |N| (52) | | (53) |P| (54) |R| 
 (55) |O| (56) |G| (57) |R| (58) |A| (59) |M| (60) |M| 
 (61) |,| 
��

The entire input record is output with %DISPLAY. AID edits it as a table in accordance with
the definition in the source program.

Step 3

��
 /LOAD-P *MOD(BIBLIO,MOBS,RUN-MODE=ADVANCED(ALT-LIB=YES)),TEST-OPTIONS=AID 
 % BLS0500 PROGRAM 'MOBS' LOADED 
 /%TRACE IN PROCESSING 
 47 PROCESSING 
 48REA I-O-ACCESS 
 51PER EXCEPT.DEP, THEN , CALL , LOOP INIT 
 52PER CALL , LOOP INIT 
 54IF IF 
 55ADD THEN , ASSIGN 
 56SET ASSIGN 
 57SEA CASE , LOOP INIT 
 58ADD WHEN/OTHERS, ASSIGN 
 54IF IF 
 
 STOPPED AT SRC_REF: 54IF SOURCE: M0BS PROC: M0BS 
��

The program is loaded again. The %TRACE in the PROCESSING paragraph is used to
show the context of the ADD statement.

Step 4

��
 /%control1 %assgn in Processing <con1: %d item(k),i,j> 
 

CON1 subcommand is to be executed. The character to be processed from the input record
and the status of indices I and J are then output.

150 U2855-J-Z125-6-76

Test run Sample application

��
 /%in s'54if' <ins1: (%.con1 gt 10): %stop> 
 

The run is to be interrupted after the CON1 subcommand has been executed 10 times.

��
 /%in s'58add' <ins2: (j gt 26): %stop> 
 /%r 
 

Before the addition in NUMBER(J) is executed, AID checks whether index J has a permis-
sible value. If it is too high, AID interrupts the program.
The program is started after input of the %INSERT command.

��
 *** TID: 0009027E *** TSN: 634R *** 
 SRC_REF: 55ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(1) = D 
 I = +1 
 J = +1 
 SRC_REF: 56SET SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(1) = D 
 I = +1 
 J = +1 
 
 SRC_REF: 58ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(1) = D 
 I = +4 
 J = +4 
 SRC_REF: 55ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(2) = I 
 I = +4 
 J = +4 
 SRC_REF: 56SET SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(2) = I 
 I = +4 
 J = +4 
 SRC_REF: 58ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(2) = I 
 I = +9 
 J = +12 
 SRC_REF: 55ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(3) = E 
 I = +9 
 J = +12 
 SRC_REF: 56SET SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(3) = E 
 I = +9 
 J = +12 
 SRC_REF: 58ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(3) = E 
 I = +5 
 J = +16 
 SRC_REF: 55ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(4) = S 
 I = +5 
 J = +16 
 SRC_REF: 56SET SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(4) = S 
 I = +5 
 J = +16 
 
 STOPPED AT SRC_REF: 58ADD SOURCE: MOBS PROC: MOBS 
 (INS2) 
 

U2855-J-Z125-6-76 151

Sample application Test run

From the AID log of subcommand CON1 it can be seen that processing of the first character
from the input file is running correctly. Indices I and J run in parallel. From the second
character onwards, J begins to grow more quickly. At the fourth letter, the index increases
to 34. Before a data error occurs again at source reference S’58ADD’, the conditional
subcommand INS2 is executed, as a result of which execution is interrupted. For the letter
’S’, index I is correctly at position 19 in the A-Z-TAB table.
It can be seen from the log that index I is reset to the initial value of 1 for processing a
character, but index J is not.

��
 /%set i into j 
 /%r 
 

Index J is set to the contents of I and the program is continued.

��
 ITEM(4) = S 
 I = +19 
 J = +19 
 
 STOPPED AT SRC_REF: 54IF SOURCE: MOBS PROC: MOBS 
 (INS1) 
 

The CON1 subcommand is still active and the associated execution counter has not been
changed, and the %STOP in subcommand INS1 is therefore executed again.

��
 /%remove %.ins1;%resume 
 

The INS1 subcommand is deleted and the program is continued with %RESUME.

��
 SRC_REF: 55ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(6) = I 
 I = +19 
 J = +19 
 SRC_REF: 56SET SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(6) = I 
 I = +19 
 J = +19 
 
 STOPPED AT SRC_REF: 58ADD SOURCE: MOBS PROC: MOBS 
 (INS2) 
 

Once again, the condition (J greater than 26) for subcommand INS2 has been met and the
program halted.

��
 /%d item(k),i,j 
 SRC_REF: 58ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(6) = I 
 I = +9 
 J = +27 
 

Index J is again too high. Before the COBOL statement SEARCH is executed index I is set
to 1 again, but it was forgotten to assign index J with the initial value as well.

152 U2855-J-Z125-6-76

Test run Sample application

��
 /%insert s'56set' <ins3: %set 1 into j> 
 /%set i into j;%r 
 

Before the SEARCH statement S’57SEA’ is executed, index J is now also to be assigned
the correct initial value via the new %INSERT. To ensure that the statement S’58ADD’,
before which the program was interrupted by the %STOP in subcommand INS2, is
executed correctly, the value of index I is transferred to J with the single %SET.

��
 ITEM(6) = I 
 I = +9 
 J = +9 
 SRC_REF: 55ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(7) = S 
 I = +9 
 J = +9 
 SRC_REF: 56SET SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(7) = S 
 I = +9 
 J = +1 
 SRC_REF: 58ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(7) = S 
 I = +19 
 J = +19 
 SRC_REF: 55ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(8) = T 
 I = +19 
 J = +19 
 SRC_REF: 56SET SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(8) = T 
 I = +19 
 J = +1 
 SRC_REF: 58ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(8) = T 
 I = +20 
 J = +20 
 SRC_REF: 55ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(10) = E 
 I = +20 
 J = +20 
 SRC_REF: 56SET SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(10) = E 
 I = +20 
 J = +1 
 SRC_REF: 58ADD SOURCE: MOBS PROC: MOBS **************************** 
 ITEM(10) = E 
 I = +5 
 J = +5 
 K2-EVENT HAPPENS DURING TERMINAL DISPLAY OF WROUT OUTPUT 
 

As it can be seen that the program is now running correctly, output is interrupted with the
K2 key.

U2855-J-Z125-6-76 153

Sample application Test run

��
 /%show %insert 
 > CTX: LOCAL#DEFAULT SRC-REF: 58ADD SOURCE: MOBS PROC: MOBS 
 (INS2) 
 > CTX: LOCAL#DEFAULT SRC-REF: 56SET SOURCE: MOBS PROC: MOBS 
 (INS3) 
 /%remove s'58add' 
 /%show %control 
 %CONTROL1 %ASSGN IN PROCESSING <CON1: %D ITEM(K),I,J> 
 /%rem %.con1 
 /%r 
 

%SHOW is used to check which %INSERT and %CONTROL commands are still active.
The INS2 subcommand is now superfluous and is deleted. The outputs of subcommand
CON1 are also no longer required. Only the correction of the third %INSERT is necessary.
The program is continued.

��
 LETTER NUMBER PERCENT 
 A 34 9.68 
 B 13 3.70 
 C 18 5.12 
 D 15 4.27 
 E 56 15.95 
 F 5 1.42 
 G 6 1.70 
 H 18 5.12 
 I 31 8.83 
 J 1 0.28 
 K 4 1.13 
 L 16 4.55 
 M 11 3.13 
 N 29 8.26 
 O 8 2.27 
 P 4 1.13 
 Q 1 0.28 
 R 17 4.84 
 S 18 5.12 
 T 16 4.55 
 U 8 2.27 
 V 4 1.13 
 W 2 0.56 
 X 1 0.28 
 Y 1 0.28 
 Z 8 2.27 
 TOTAL: 351 98.12 
 

The program now runs through to the end and outputs the result list. As invalid indices were
used at the start of the program run, some results may not yet be correct. The program must
be executed once more with the AID correction.

154 U2855-J-Z125-6-76

Test run Sample application

Step 5

��
 /LOAD-PROGRAM *M(BIBLIO,MOBS,R-M=A(A-L=V)),T-O=AID 
 % BLS0500 PROGRAM 'MOBS' LOADED 
 /%IN S'56SET' <%SET 1 INTO J> 
 /%R 
 LETTER NUMBER PERCENT 
 A 34 9.68 
 B 13 3.70 
 C 18 5.12 
 D 15 4.27 
 E 57 16.23 
 F 5 1.42 
 G 6 1.70 
 H 18 5.12 
 I 32 9.11 
 J 1 0.28 
 K 4 1.13 
 L 15 4.27 
 M 11 3.13 
 N 29 8.26 
 O 8 2.27 
 P 3 0.85 
 Q 1 0.28 
 R 17 4.84 
 S 18 5.12 
 T 16 4.55 
 U 8 2.27 
 V 4 1.13 
 W 2 0.56 
 X 1 0.28 
 Y 1 0.28 
 Z 8 2.27 
 TOTAL: 351 98.12 
 

The program is loaded again. With %INSERT you set a test point to the SEARCH statement
in line 56. Whenever the program reaches this test point, J is set to 1.
The program is started and outputs the required table.

U2855-J-Z125-6-76 155

7 Debugging special COBOL language
resources

7.1 Debugging of nested programs

7.1.1 Setting test points

– Paragraphs and sections of the contained program in which the interrupt point lies can
be referenced without qualification.

– Sections and paragraphs in a different program, which may also lie in a different compi-
lation unit, are accessed via the S and PROC qualification:

%INSERT [S=program-id.]PROC=program-id-contained.paragraph [IN section]

– The S qualification must be specified whenever the test point is to be set in a different,
separately compiled program.

– A test point at the start of the Procedure Division of the outermost containing program
can be set by means of a PROG qualification:

%INSERT PROG=program-id.program-id

or written out in full:

%INSERT S=program-id.PROC=program-id.program-id

This method is only meaningful if the program-id does not exceed 8 characters or if an
LLM was generated, since otherwise the source name, but not the procedure name,
would be truncated to 8 characters.

– It is not possible to set a test point at the start of a contained program by using a PROG
qualification, since S and PROC are different. This can, however, be achieved as
follows:

%INSERT [S=program-id.]PROC=program-id-contained.program-id-contained

– Names that are unique in the current compilation unit can also be addressed without
any qualification.

156 U2855-J-Z125-6-76

Debugging of nested programs Debugging special COBOL language resources

7.1.2 Accessing data

– %D locates the data of the current nested program and also data having the
GLOBAL attribute that is not locally concealed, i.e. it is possible to access the same
data that the program itself can also access at this point.

– %SD can be used to give the data of all the surrounding programs, in accordance with
the current call hierarchy.

– The PROC qualification can be used to specifically access one item of data from a
different program.

%D PROC=program-id-contained.data-item

%SD is also possible here instead of %D provided the item of data lies in a calling
program.

Depending on how the program is nested, the PROC qualification can be repeated more
than once when accessing both test points and data.

7.1.3 Tracing

The %TRACE command logs all statements of the current CSECT, i.e. including all state-
ments of the called contained programs, but not including the statements in separately
compiled programs.

If the statement types are indicated in the trace, additional LABEL specifications are
occasionally reported by AID on account of internally generated paragraphs.

U2855-J-Z125-6-76 157

Debugging special COBOL language resources Debugging object-oriented COBOL programs

7.2 Debugging object-oriented COBOL programs

7.2.1 Addressing

– Classes are addressed by a source qualification: S=<class>, where <class> is the
name specified in the CLASS-ID paragraph.

– Methods are addressed by a procedure qualification, where <method> is the name
specified in the METHOD-ID paragraph:
PROC={FACTORY | OBJECT}.PROC=<method>

A source qualification is required whenever the current program location is not in (a
method of) the class.
Procedure qualifications are only needed to the extent required for unique identification.
Consequently, PROC={FACTORY | OBJECT} can always be dropped for methods,
since the method name must be unique in the class.

7.2.2 Commands

7.2.2.1 Setting test points

Test points can be set in methods by using a source and procedure qualification:

%INSERT [S=<class>.] [PROC=<method>.] srcref

Write monitoring can be set on an object reference with:
%ON %WRITE(objref)
However, an object reference modified by NEW can only be displayed after returning to the
calling point.

7.2.2.2 Tracing

Classes and methods can be specified as the trace area with %TRACE as follows:

%TRACE <n> IN S=<class>.[PROC={FACTORY | OBJECT}.PROC=<method>]

158 U2855-J-Z125-6-76

Debugging object-oriented COBOL programs Debugging special COBOL language resources

7.2.2.3 Displaying data

%DISPLAY

The data of an object is only visible if the interrupt point lies in a method of that object. No
qualification is specified in such cases.

The data in a method is only visible within that method.

An object reference is displayed as follows:

<level> objref
<level+1> FACTORY | OBJECT | NULL
<level+1> class-name

The first component indicates whether the reference points to the factory object or a normal
object or whether a null reference is involved. The second component shows the class
name of the currently referenced object and is dropped for null references.

%SD

%SD shows the data in the current dynamic call hierarchy of programs and methods. In the
case of methods, only the local data of the method is displayed, not the data of the
surrounding object.
In addition, the global data for a source module such as the _COMPILATION_DATE, for
example, is output per class.

7.2.2.4 Editing data

%SET, %MOVE

High-level assignments to object references are rejected by AID with an error message
(Types are not convertible...). Low-level access to object references is possible, but entirely
at the user’s own risk.

U2855-J-Z125-6-76 159

Debugging special COBOL language resources Testing programs with user-defined types

7.3 Testing programs with user-defined types

AID supports the TYPEDEF clause and the typed pointers of COBOL2000 programs (see
also section "Debugging Aids for Program Runtime" in the COBOL Compiler [10] manual).

The existing AID operators are now supplemented with a dereferencing operator and an
address operator.

7.3.1 The dereferencing operator

The '*' character is used as the dereferencing operator. It allows access to a piece of data
that is addressed via a pointer. The pointer is prefixed with '*' which can also be combined
with the COBOL qualification (IN, OF) and the COBOL subscription.

The dereferencing operator can only be used on typed pointers.

Examples:

1. /%DISPLAY *POINTER

2. /%DISPLAY FIELD IN *POINTER

Example 1: AID outputs the data addressed via POINTER

Example 2: AID outputs the FIELD element that must lie in the data structure addressed via
POINTER. This example also shows that '*' binds stronger than qualification with IN/OF.

7.3.2 The address selector (address operator)

As in COBOL, AID also offers the address selector ADDRESS OF. In AID, this is only reserved
for the setting SYMCHARS=STD and only exactly in this form. In contrast to COBOL, ADDRESS
generally or, e.g. in conjunction with ADDRESS IN, is not reserved in AID.

Compatibility to COBOL85 programs

A COBOL data field ADDRESS can still be referenced without any problems with AID.
However, qualification is now only possible via ADDRESS IN and no longer via ADDRESS OF.

Example

%SET ADDRESS OF FELD INTO ZEIGER

The address of FELD is transferred to ZEIGER.

160 U2855-J-Z125-6-76

Testing programs with user-defined types Debugging special COBOL language resources

7.3.3 Type compatibility for comparing and assigning (%SET)

AID only allows comparing or assigning to typed pointers if both pointers have the same
reference type (and are therefore based on the same TYPEDEF clause). Comparing and
assigning of pointers with data from different reference types is therefore generally not
allowed.

The address selector ADDRESS OF is also allowed for a comparison or an assignment. The
address selector is implicitly assigned a corresponding reference type that is checked
analogously for type compatibility.

Comparing and assigning data structures with a TYPE clause

As with data structures that have no TYPE clause, comparisons and assignments are string
type operations, i.e. the entire data structure is seen as a hexadecimal string. However, the
TYPE clause causes AID to check the reference type (only for %SET and not for %MOVE
- in the same way as the check with typed pointers) and reject the operation if appropriate.

Comparison or assignment at low level is however always possible, e.g. via type modifi-
cation with %X.

U2855-J-Z125-6-76 161

Glossary
address operand

This is an operand used to address a memory location or memory area. The
operand may specify virtual addresses, data names, statement names, source
references, keywords, complex memory references, C qualifications
(debugging on machine code level) or PROG qualifications (symbolic
debugging). The memory location or area is located either in the program which
has been loaded or in a memory dump in a dump file. If a name has been
assigned more than once in a user program and thus no unique address
reference is possible, area qualifications or an identifier can be used to assign
the name unambiguously to the desired address.

address selector
The address selector supplies the corresponding address for a memory object.
It can be specified in COBOL with ADDRESS OF or as a low-level function in
the form %@(...).

AID input files
AID input files are files which AID requires to execute AID functions, as distin-
guished from input files which the program requires. AID processes disk files
only. AID input files include:

1. Dump files containing memory dumps (%DUMPFILE)

2. PLAM libraries containing object modules. If the library has been assigned
with the aid of the %SYMLIB command, AID is able to load the LSD records.

AID literals
AID provides the user with both alphanumeric and numeric literals (see AID
Core Manual [1]):

{C'x...x' | 'x...x'| U'x...x'}
{X'f...f'}
{B'b...b'}
[{±}]n
#'f...f'
[{±}]n.m
[{±}]mantisseE[{±}]exponent

Character literal
Hexadecimal literal
Binary literal
Integer
Hexadecimal number
Decimal number
Floating-point number

162 U2855-J-Z125-6-76

Glossary

AID output files
AID output files are files to which the user can direct output of the %DISAS-
SEMBLE, %DISPLAY, %HELP, %SDUMP and %TRACE commands. The files
are addressed via their link names (F0 through F7) in the output commands
(see %OUT and %OUTFILE). The REP records are written to the file assigned
to link name F6 (see %AID REP=YES and %MOVE).
There are three ways of creating an output file:

1. /%OUTFILE command with link name and file name

2. /FILE command with link name and file name

3. For a link name to which no file name has been assigned, AID issues a FILE
macro with the file name AID.OUTFILE.Fn.

An AID output file always has the format FCBTYPE=SAM, RECFORM=V and
OPEN=EXTEND.

AID standard work area
This is the non-privileged part of virtual memory (in the user task) which is
occupied by the program and all its connected subsystems.
If no presetting has been made with the %BASE command and no base quali-
fication is specified, the AID standard work area applies by default.

AID work area
The AID work area is the address area in which the user may reference
addresses without having to specify a qualification. It comprises the non-privi-
leged part of virtual memory in the user task, which is occupied by the program
and all its connected subsystems or the corresponding area in a memory dump.
Using the %BASE command, you can shift the AID work area from the loaded
program to a memory dump, or vice versa. You may deviate from the AID work
area in a command by specifying a qualification in the address operand.

area check
In the case of byte offset, length modification and the receiver of a %MOVE, AID
checks whether the area limits of the referenced memory objects are exceeded
and issues a corresponding message if necessary.

area limits
Each memory object is assigned a particular area, which is defined by the
address and length attributes in the case of data names and keywords. For
virtual addresses, the area limits are between V’0’ and the last address in virtual
memory (V’7FFFFFFF’). In PROC/PROG qualifications, the area limits are
determined by the start and end addresses of the program unit (see AID Core
Manual [1]).

U2855-J-Z125-6-76 163

Glossary

area qualification
These qualifications are used to identify part of the work area. If an address
operand ends with one of these qualifications, the command is effective only in
the part that is identified by the last qualification. An area qualification delimits
the active area of a command, or makes a data name or statement name unique
within the work area, or allows a name to be reached that would otherwise not
be addressable at the current interrupt point.

attributes
Each memory object has up to six attributes:
address, name (opt), content, length, storage type, output type.
Selectors can be used to access the address, length and storage type. Via the
name, AID finds all the associated attributes in the LSD records so they can be
processed accordingly.
Address constants and constants from the source program have only up to five
attributes:
name (opt), value, length, storage type, output type.
They have no address. When a constant is referenced, AID does not access a
memory object but merely inserts the value stored for the constant.

base qualification
This is the qualification designating either the loaded program or a memory
dump in a dump file. It is specified via E={VM | Dn}.
The base qualification can be declared globally with %BASE or specified
explicitly in the address operand for a single memory reference.

character conversion functions
AID provides two functions for character conversion, %C() and %UTF16().
The %UTF16() function converts strings from a 1-byte EBCDIC encoding to
UTF16 encoding; the %C function performs conversion in the other direction.

command mode
In the AID documentation, the term "command mode" designates the EXPERT
mode of the SDF command language. Users working in a different mode
(GUIDANCE={MAXIMUM|MEDIUM|MINIMUM|NO}) and wishing to enter AID commands
should switch to EXPERT mode via MODIFY-SDF-OPTIONS GUIDANCE=EXPERT.
AID commands are not supported by SDF syntax:

– Operands are not queried via menus.

– If an error occurs, AID issues an error message but does not offer a
correction dialog.

In EXPERT mode, the system prompt for command input is "/".

164 U2855-J-Z125-6-76

Glossary

command sequence
Several commands are linked to form a sequence via semicolons (;). The
sequence is processed from left to right. A command sequence may contain
both AID and BS2000 commands, like a subcommand. Commands not
permitted in a command sequence are the AID commands %AID, %BASE,
%DUMPFILE, %HELP, %OUT and %QUALIFY as well as the BS2000
commands listed in the appendix of the AID Core Manual.
If a command sequence contains one of the commands for runtime control, the
command sequence is aborted at that point and the program is started
(%CONTINUE, %RESUME, %TRACE) or halted (%STOP). As a result, any
commands which follow as part of the command sequence are not executed.

compilation unit
This consists of a single source program or a sequence of such programs. It is
addressed via the S qualification.

constant
A constant represents a value which cannot be accessed via an address in
program memory.
Constants include the figurative constants, the results of length selection, length
function and address selection, and the statement names and source refer-
ences.
An address constant represents an address. Address constants include
statement names, source references and the result of an address selection.
They can be used, in conjunction with a pointer operator (->), to address the
corresponding memory location.

CSECT information
is contained in the object structure list.

current call hierarchy
The current call hierarchy represents the status of subprogram nesting at the
interrupt point. It ranges from the subprogram level on which the program was
interrupted to the subprograms exited by CALL statements (intermediate levels)
to the main program.
The hierarchy is output using the %SDUMP %NEST command.

current compilation unit
The current compilation unit is the unit containing the current interrupt point.

current program
The current program is the program unit in which the compilation unit was inter-
rupted. Its name is output in the STOP message.

U2855-J-Z125-6-76 165

Glossary

data item
This is a general term for all the data defined in the DATA DIVISION, covering
group items and tables and the elements in these.

data name
An operand that stands for all names assigned for data in the source program.
With the aid of the data name the user addresses data items during symbolic
debugging.
No LSD records are generated for definitions from the REPORT-SECTION, for
88 levels, for system switches in the SPECIAL-NAMES paragraph and the
NATIVE alphabet. Thus you cannot use AID to address this data.
If a data name is not unambiguous within a program unit, it can be identified by
being assigned to a specific group item with IN or OF.
Table elements can be addressed via an index as in COBOL.

data type
In accordance with the data type declared in the source program, AID assigns
an AID storage type to each data item:

– binary string (ï %X)

– character (ï %C or %UTF16)

– numeric (ï %F, %D)

Not all data types that are numeric in COBOL are of the storage type numeric
for AID (see %SET table).

This storage type determines how the data item is output by %DISPLAY, trans-
ferred or overwritten by %SET, and compared in the condition of a
subcommand.

ESD
The External Symbol Dictionary (ESD) lists the external references of a module.
It is generated by the compiler and contains, among other items, information on
CSECTs, DSECTs and COMMONs. The linkage editor accesses the ESD
when it creates the object structure list.

global settings
AID offers commands facilitating addressing, saving input efforts and enabling
the behavior of AID to be adapted to individual requirements. The presettings
specified in these commands continue to apply throughout the debugging
session (see %AID, %AINT, %BASE and %QUALIFY).

166 U2855-J-Z125-6-76

Glossary

index
The index is part of an address operand and permits the position of a table
element to be defined. It can be specified in the same way as in COBOL (in
contrast to COBOL, however, multiple indexes must be separated by commas)
or by means of an arithmetic expression from which AID calculates the index
value. This AID-specific index contains both the address of a table element with
a subscript and the COBOL-specific index from the INDEXED BY clause.

index-name
This is the symbolic name defined in the INDEXED BY clause for indexing a
table level. index-name may not be used to index another table.
If the AID index is to be calculated from an arithmetic expression, index-name
can be linked only with integers, not with other data items of the COBOL special
register TALLY.

input buffer
AID has an internal input buffer. If this buffer is not large enough to accom-
modate a command input, the command is rejected with an error message
identifying it as too long. If fewer of the repeatable operands are specified, the
command will be accepted.

interrupt point
The interrupt point is the address at which a program has been interrupted.
From the STOP message the user can determine both the address at which and
the program unit in which the interrupt point is located. The program is
continued at this point. A different continuation address can be specified for
COBOL programs with the aid of the %JUMP command.

LIFO
Stands for the "last in, first out" principle. If statements from different entries
concur at a test point (%INSERT) or upon occurrence of an event (%ON), the
ones entered last are processed first (see AID Core Manual [1]).

localization information
%DISPLAY %HLLOC(memref) for the symbolic level and %DISPLAY
%LOC(memref) for the machine code level cause AID to output the static
program nesting for a given memory location.
Conversely, %SDUMP %NEST outputs the dynamic program nesting, i.e. the
call hierarchy for the current program interrupt point.

U2855-J-Z125-6-76 167

Glossary

LSD
The List for Symbolic Debugging (LSD) is a list of the data/statement names
defined in the module. It also contains the compiler-generated source refer-
ences. The LSD records are created by the compiler. AID uses them to fetch the
information required for symbolic addressing.

memory object
A memory object is formed by a set of contiguous bytes in memory. At program
level, this comprises the program data (if it has been assigned a memory area)
and the instruction code. Other memory objects are all the registers, the
program counter, and all other areas that can only be addressed via keywords.
Conversely, any constants defined in the program, as well as statement names,
source references, the results of address selection, length selection and length
function, and the AID literals do not constitute memory objects because they
represent a value that cannot be changed.

memory reference
A memory reference addresses a memory object. Memory references can
either be simple or complex.
Simple memory references on machine code level are virtual addresses and
CSECTs. Symbolic memory references comprise all names (recorded in the
LSD information) of files, data and statements from the program, the source
references generated by the compiler and the AID keywords. Complex memory
references instruct AID how to calculate a particular address and which type
and length are to apply. The following operations are possible here: byte offset,
indirect addressing, type modification, length modification, address selection.

monitoring
%CONTROLn, %INSERT and %ON are monitoring commands. When the
program reaches a statement of the selected group (%CONTROLn) or the
defined program address (%INSERT), or if the declared event occurs (%ON),
program execution is interrupted and AID processes the specified
subcommand.

name range
This comprises all file names, data names, special registers and figurative
constants stored for a program unit in the LSD records.

object structure list
On the basis of the External Symbol Dictionary (ESD), the linkage editor
generates the object structure list, provided the linkage editor option TEST-
OPTIONS=AID applies.

168 U2855-J-Z125-6-76

Glossary

output type
This is an attribute of a memory object and determines how AID outputs the
memory contents. Each storage type has its corresponding output type. The
AID Core Manual [1], lists the AID-specific storage types together with their
output types. This assignment also applies for the data types used in COBOL.
A type modification in %DISPLAY and %SDUMP causes the output type to be
changed as well.

program state
AID makes a distinction between three program states which the program being
tested may assume:

1. The program has stopped.

%STOP, the K2 key or completion of a %TRACE interrupted the program. The
task is in command mode. The user may enter commands.

2. The program is running without tracing.

%RESUME started or continued the program. %CONTINUE does the same,
with the exception that any active %TRACE is continued.

3. The program is running with tracing.

%TRACE started or continued the program. The program sequence is logged
in accordance with the declarations made in the %TRACE command.
%CONTINUE has the same effect if a %TRACE is still active.

program unit
A subset of a complete COBOL program with a separate name in the
PROGRAM-ID, e.g. the main program or any subprogram called with CALL. It
can be addressed with a PROC or C qualification (segment, shared code
module).

qualification
A qualification is used to reference an address which is not in the AID work area
or not uniquely defined therein. The base qualification specifies whether the
address is in the loaded program or in a memory dump. The S qualification
specifies the compilation unit in which the memory object is situated. The PROC
qualification or C qualification specifies the program unit or segment in which
the address is situated. If a qualification is found to be superfluous or contra-
dictory, it will be ignored. This is the case, for example, if a PROC qualification
is specified for a data element of the current program unit, except in %SDUMP.

U2855-J-Z125-6-76 169

Glossary

source reference
A source reference designates an executable statement and is specified via
S’n[verb[m]] | S’xverb[m]
Source references are generated by the compiler and stored in LSD records.

n | x is the line number that has been assigned by the programmer or
compiler, in accordance with the SDF option applicable at compilation:
STMT-REFERENCE.

verb is the defined abbreviation of a COBOL verb (see section “Symbolic
memory references” on page 18).

m is a number which you only need to specify if the same COBOL verb
appears more than once in a statement line.
m then designates the m-th identical verb.
Source references are address constants.

special register
The COBOL compiler provides special registers for every program:

 LINAGE-COUNTER
 RETURN-CODE
 SORT-CCSN
 SORT-CORE-SIZE
 SORT-EOW
 SORT-FILE-SIZE
 SORT-MODE-SIZE
 SORT-RETURN
 TALLY

A TALLY special register is created for each program. The RETURN-CODE
special register, on the other hand, is provided just once for the entire compi-
lation unit. The SORT special registers are generated only if the program
contains a sort section.

statement name
This designates the address of the first instruction in a section or paragraph in
the PROCEDURE DIVISION.

If a statement name cannot be confused with a data name, an alphanumeric
section or paragraph name can be specified without L’...’. If a paragraph name
is not unambiguous within a program unit, it can be identified with IN L’section’.
Statement names are address constants.

L'section'
L'paragraph' [IN L'section']

170 U2855-J-Z125-6-76

Glossary

storage type
This is either the data type defined in the source program or the one selected
by way of type modification. AID knows the storage types %X, %C, %P, %D, %F,
%A, %UTF16, %S and %SX
(see %SET and AID Core Manual [1]).

subcommand
A subcommand is an operand of the monitoring commands %CONTROLn,
%INSERT or %ON. A subcommand can contain a name, a condition and a
command part. The latter may comprise a single command or a command
sequence. It may contain both AID and BS2000 commands. Each subcommand
has an execution counter. Refer to the AID Core Manual [1], for information on
how an execution condition is formulated, how the names and execution
counters are assigned and addressed, and which commands are not permitted
within subcommands.
The command part of the subcommand is executed if the monitoring condition
(criterion, test-point, event) of the corresponding command is satisfied and any
execution condition defined has been met.

tracing
%TRACE is a tracing command, i.e. it can be used to define the type and
number of statements to be logged. Program execution can be viewed on the
screen as a standard procedure.

update dialog
The update dialog is initiated by means of the %AID CHECK=ALL command. It
goes into effect when the %MOVE or %SET command is executed. During the
dialog, AID queries whether updating of the memory contents really is to take
place. If N is entered in response, no modification is carried out; if Y is entered,
AID will execute the transfer.

user area
This is the area in virtual memory which is occupied by the loaded program and
all its connected subsystems. It corresponds to the area represented by the
keyword %CLASS6 (or %CLASS6ABOVE and %CLASS6BELOW).

U2855-J-Z125-6-76 171

Related publications
The manuals are available as online manuals, see http://manuals.fujitsu-siemens.com, or in
printed form which must be paid and ordered separately at http://FSC-manualshop.com.

[1] AID (BS2000)
Advanced Interactive Debugger
Core Manual
User Guide

Target group
Programmers in BS2000
Contents
– Overview of the AID system
– Description of facts and operands which are the same for all programming languages
– Messages
Applications
Testing of programs in interactive or batch mode

[2] AID (BS2000/OSD)
Debugging on Machine Code Level
User Guide

Target group
Programmers and debuggers
Contents
– Description of the AID commands for debugging on machine code level
– Sample application
The %SHOW, %SDUMP and %NEST commands are described, plus context COMMON
qualification and (on ESA systems) the ALET/SPID qualifications for data spaces.
Additional keywords have been included.

http://manuals.fujitsu-siemens.com
http://FSC-manualshop.com

172 U2855-J-Z125-6-76

Related publications

[3] AID (BS2000)
Advanced Interactive Debugger
Debugging of FORTRAN Programs
User Guide

Target group
FORTRAN programmers
Contents
– Description of the AID commands for symbolic debugging of FORTRAN programs
– Sample application
Applications
Testing of FORTRAN programs in interactive or batch mode

[4] AID (BS2000)
Advanced Interactive Debugger
Debugging of PL/I Programs
User Guide

Target group
PL/I programmers
Contents
– Description of all the AID commands available for the symbolic debugging of PL/I

programs
– Sample application

[5] AID (BS2000)
Advanced Interactive Debugger
Debugging of ASSEMBH Programs
User Guide

Target group
Assembly language programmers
Contents
– Description of the AID commands for symbolic debugging of ASSEMBH-XT programs
– Sample application
Applications
Testing of ASSEMBH-XT programs in interactive or batch mode

U2855-J-Z125-6-76 173

Related publications

[6] BS2000/OSD-BC
Executive Macros
User Guide

Target group
The manual addresses all BS2000/OSD assembly language programmers.
Contents
The manual contains a summary of all Executive macros, detailed descriptions of each
macro with notes and examples, including job variable macros, and a comprehensive
general training section.

[7] BS2000
Programmiersystem *
Technische Beschreibung
(Programming System, Technical Description)

Target group
● BS2000 users with an interest in the technical background of their systems (software

engineers, systems analysts, computer center managers, system administrators)
● Computer scientists interested in studying a concrete example of a general-purpose

operating system
Contents
Functions and principles of implementation of
● the linkage editor
● the static loader
● the Dynamic Linking Loader
● the debugging aids
● the program library system

[8] COBOL85 (BS2000)
COBOL Compiler
Reference Manual

Target group
COBOL users in BS2000
Contents
– COBOL glossary
– Introduction to Standard COBOL
– Description of the full language set of the COBOL85 compiler: formats, rules and

examples illustrating the COBOL ANS85 language elements of the "High" language
subset, and the Siemens Nixdorf-specific extensions.

174 U2855-J-Z125-6-76

Related publications

[9] COBOL85 (BS2000)
COBOL Compiler
User’s Guide

Target group
COBOL users of BS2000
Contents
– Generation of the COBOL85 compiler and the software required for the linking, loading

and debugging of COBOL programs
– File processing with COBOL programs
– Inter-program communication
– Structure of the COBOL85 system
– Compiler messages and runtime system messages

[10] COBOL2000 (BS2000/OSD)
COBOL Compiler
Reference Manual

Target group
COBOL users in BS2000/OSD
Contents
– COBOL glossary
– Introduction to Standard COBOL
– Description of the full language set of the COBOL2000 compiler:

formats, rules and examples illustrating the COBOL ANS85 language elements of the
"High" language subset, the Fujitsu Siemens-specific extensions and the extensions
defined by the forthcoming COBOL standard, specifically the object orientation.

[11] COBOL2000 (BS2000/OSD)
COBOL Compiler
User’s Guide

Target group
COBOL users of BS2000/OSD
Contents
– Using the COBOL2000 compiler
– Linking, loading and starting of COBOL programs
– Debugging aids
– File processing with COBOL programs
– Checkpointing and restart
– Program linkage
– COBOL2000 and POSIX
– Useful software for COBOL users
– Messages of the COBOL2000 system

U2855-J-Z125-6-76 175

Related publications

[12] AID (BS2000/OSD)
Debugging of C/C++ Programs
User Guide

Target group
This manual is intended for C/C++ programmers.
Contents
The manual contains a description of the AID commands and the C/C++-specific address
operands for symbolic debugging of C/C++ programs. It contains information on
debbugging under POSIX and on RISC systems, and comprehensive applications
examples.
Application
Debugging of C/C++ programs in interactive and batch mode

[13] AID (BS2000)
Advanced Interactive Debugger
Ready Reference
Target group
Programmers in BS2000
Contents
– Debugging of programs written in ASSEMBH, C/C++, COBOL, FORTRAN, PL/I and ar

machine code level
– Summary of the AID commands and operands
– %SET tables
Applications
Testing of programs in interactive or batch mode

176 U2855-J-Z125-6-76

Related publications

U2855-J-Z125-6-76 177

Index

%? 71
%•#Ksubcmdname#k 87
%•subcmdname 123
%0G 64
%1G 64
%AID 27, 82, 89, 119
%AINT 32
%AMODE 32
%BASE 34, 43, 64, 66
%C() 55, 56, 87, 123
%CCSN 101, 131
%CLASS6 66
%CONTINUE 36, 80
%CONTROL 106
%CONTROLn 37
%DISASSEMBLE 43, 99, 101, 137
%DISASSEMBLE log 47
%DISPLAY 32, 49, 99, 101, 137
%DUMPFILE 34, 62
%ERRFLG 107
%FIND 64
%H %? 71
%H? 71
%HELP 71, 99, 101, 137
%HELP information, English or German 27
%HLLOC 54
%INSERT 73, 106
%JUMP 80, 109, 138
%L=(expression) 124
%LPOV 107
%MOVE 27, 32, 82
%n 87, 123
%nD 87, 123
%nDG 87, 123

%nE 87, 123
%NEST 113
%nG 87
%nQ 87, 123
%ON 91, 106
%OUT 43, 49, 56, 72, 99, 113, 139
%OUTFILE 89, 101
%OUTFILE command 29
%PC 87, 107
%QUALIFY 103
%REMOVE 37, 77, 97, 106
%RESUME 80, 109
%SDUMP 99, 101, 110, 137
%SET 118, 160
%SET table 126
%STOP 73, 91, 133
%STOP within a subcommand 133
%SVC 107
%SYMLIB 110, 134
%TITLE 137
%TRACE 80, 99, 101, 109, 137, 138
%TRACE listing 143
%TRACE, terminating 138
%UTF16 124, 126
%UTF16() 55, 56, 87, 123

24 33
24-bit address 32
31-bit address 32

A
abbreviations of COBOL verbs 25
additional information 99, 100, 113
address 49, 83, 88, 119

178 U2855-J-Z125-6-76

Index

address operand 16, 44, 51, 66, 74, 83, 103, 119
address selection 46, 55, 69, 76, 87, 95, 123
address selector 55, 88, 124, 159
addressing mode 32
AID address interpretation 32
AID address interpretation, default 32
AID commands, help texts 71
AID literal 49, 56, 82, 83, 88, 119, 125
AID message number range 71
AID output 43, 49, 56, 72, 114, 143
AID output file, assign 101
AID output file, close 101
AID output file, open 101
AID output, delimiter 27
AID register 54, 64, 83, 87, 123
AID registers 65
AID standard work area 34
AID work area 32, 34, 62, 100, 103
aid-mode#k 32
alignment#k 64, 69
ALL#k 64
alter program state 133
area qualification 16
arithmetic-expression 20
assign AID output file 101
assign PLAM library 134

B
base qualification 15, 32, 35, 39, 44, 51, 66, 74,

84, 87, 104, 111, 120, 135, 141
base#k 34, 35
branch 80
brief description of commands 71
BS2000 catalog name of a PLAM library 135
byte boundary, search at 69
byte offset 46, 55, 69, 76, 87, 95, 123

C
C qualification 104
CALL statement 110
cataloging the output file 101, 102
chaining of subcommands 73
character conversion 55, 56, 87, 123
character literal 64, 65, 137

CHECK#k 27
checking the storage types 118
class (object-oriented) 157
close AID output file 101
close dump file 62
close PLAM library 134
COBOL special register 82, 93
COBOL statement 74
COBOL verbs, abbreviations for AID 25
coded program sequence, deviation from 80
command mode 133
command sequence 41, 97
compl-memref#k 46, 55, 69, 76
continuation address %JUMP 80
continuation address, %FIND 64
continuation#k 80, 81
continue program 36, 42, 77, 97, 109, 138
control of the output file 99, 137
control#k 36, 73, 77
control-area#k 37, 39
conversion function 55, 56, 87, 123
creating an AID output file 101
criterion#k 37, 138
CSECT 89
current interrupt point 39, 100, 133, 138, 139,

141
current program 49

D
data element 119
data item 49, 83, 93, 112
data output 49, 99
data#k 49
dataname#k 19, 52, 67, 84, 93, 112, 120
debugging programs 155
declare global settings 27
default address interpretation 32
define a continuation address 80
define page header for SYSLST 137
define prequalification 103
definition in the source program 50
delete #Kevent#k 107
delete #Ksubcmdname#k 107
delete #Ktest point#k 107

U2855-J-Z125-6-76 179

Index

delete #Ktest-point#k 77
delete %CONTROLn 37
delete, %CONTROL#Kn#k 106
DELIM 27, 30
delimiter of AID output fields 27
dereferencing operator 159
display addresses 49
display lengths 49
display memory contents 49
doubleword boundary, search at 69
dump area 110
dump file 62
dynamic loading of LSD records 134

E
EBCDIC 27, 31
end address 41
error message 71, 80
event table 97
event#k 91, 95, 96
execution condition 97
execution control 42, 97, 133, 138
execution counter 41, 54, 77, 83, 87, 97, 109,

119, 123

F
F6 102
feed to SYSLST 49
feed-control 56
figurative constants#k 22, 53, 85, 113, 121
file#k 62, 101, 102
filename 112
find literal 64
find-area#k 64, 66

G
global data name, locally hidden 51, 84, 120
global declaration, define 103

H
halfword boundary, search at 69
halt the program 133
help texts 71
help texts, output 71

hexadecimal literal 64, 65
hit address 64

I
identifier 19, 85
identifier#k 52
In message number 72
index 94
index#k 20, 52, 85, 112, 121
index-name#k 20
indirect addressing 46, 55, 69, 76, 87, 95, 123
individual command 62, 99
information on error messages 71
information on the operation of AID 71
info-target#k 71
input file 62
instruction 43
interpretation of indirect addresses 32
interpretation of the hyphen 27
interrupting the program 77, 133
INVALID OPCODE 43

K
K2 key 133, 138
keyword 32, 113
keyword#k 54, 87, 95, 123

L
LANG 27
LANG#k 31
length 49, 83, 88, 119
length function 56, 88
length modification 46, 55, 69, 76, 87, 95, 123
length selector 55, 88, 124
LIFO principle 73, 95
line feed 56
link name F6 89
link name, assign 62, 101
link#k 62, 101
LMS UPDR record 89
localization information, symbolic 54
LOW#k 27, 30
lowercase/uppercase 27
lowercase/uppercase letters 27

180 U2855-J-Z125-6-76

Index

LSD names, abbreviations of COBOL verbs 25
LSD records 11, 18, 110, 134
LSD records, dynamic loading 134

M
machine code level 49, 50, 82, 118
matching numeric values 118
medium-a-quantity#k 49, 71, 99, 100, 110
memory area 66
memory contents, modify 82, 118
memory references 15
message number AID0n 71
message number IDA0n 71
messages from AIDSYS 71
metasyntax 9
methods (object-oriented) 157
modifying memory contents 82, 118
monitor COBOL statements 37
monitor program addresses 73
monitoring 73
monitoring function 37, 39
monitoring statements 37

N
NATIONAL 126
number of lines per print page 137
number#k 43, 44, 138
numeric #Kreceiver#k 118
numeric transfer 118

O
object structure list 89
object-oriented COBOL programs

debugging 157
%M 33
open AID output file 101
open dump file 62
open PLAM library 134
opening the output file 102
output %DISASSEMBLE log 47
output %TRACE log 143
output commands 99
output literal 64
output medium 43, 49, 57, 71, 72, 99, 113, 139

output of hits 64
output of hits with %FIND 64
output type 50, 55
output, current call hierarchy 110
output, data areas 110
output, file 57, 100, 114
output, hardcopy 57, 100, 114
output, program name 113
output, terminal 57, 100, 114
OV#k 27, 30
overlay 27

P
page counter for SYSLST 137
page feed 56
page-header#k 137
paragraph name 22
period 33, 39, 44, 51, 66, 74, 83, 92, 103, 111,

119, 135, 141
permissible combinations for %SET 126
PLAM library 110
PLAM library, assign 134
PLAM library, close 134
PLAM library, open 134
pointer operator 54
prequalification 33, 39, 44, 51, 66, 74, 83, 92,

103, 111, 119, 135, 141
prequalification#k 104
PROC qualification 17, 45, 51, 84, 104, 120, 142
PROG qualification 40, 67, 74, 93, 104, 112, 120,

142
program addresses, monitoring 73
program area to be monitored 39, 141
program counter 87, 123
program end 91
program error 91
program register 54
program start 138
program state, alter 36
program state, change 109
program termination 91
program, continue 109, 138
program, start 109
programs with overlay structure 27

U2855-J-Z125-6-76 181

Index

Q
qualification-a-lib#k 134

R
receiver#k 82, 83, 118, 119
register 119
REMOVE 42
REP file 89
REP record, generate 89
REP#k 27, 82, 89
retranslate memory contents 43
runtime control 77
runtime system 133

S
S qualification 17, 104, 111, 120, 142
search criterion 64
search string 64
search string length 64
search-criterion#k 65
section name 22
segment 39, 141
segmentation 39, 141
segmentname 84, 93, 120
segmentname#k 18, 40, 45, 67, 142
sender 118
sender#k 82, 83, 119
shared code 40
sharename 18, 142
sharename#k 45, 67, 75, 84, 93, 120
show-target#k 131
single command 71
source-reference 23, 41, 143
source-reference#k 46, 53, 75, 81, 86, 122
special register 93
special registers#k 22, 53, 68, 85, 94, 113, 121
specify global definitions 32
start %TRACE 138
start address 41
start address of the loaded operands 44
start program 36, 109
start#k 43, 44
statement 49, 81
statement-name#k 22, 40, 45, 53, 75, 81, 86,

122, 142
STOP message 133
storage type 50, 55
storage types, check 82
subcmd#k 37, 41, 73, 91, 97
subcommand 41, 65, 76, 77, 95, 103, 109, 133
subcommand chaining 77, 97
subcommand condition 41
subcommand name 41, 97
subcommand nesting 77, 97
subcommand termination 138
subprogram nesting 110
supervisor call (SVC) 91
symbolic constant 119
SYMCHARS 27, 29
SYSLST 56, 57, 100, 114, 137
SYSOUT 64
system table 54

T
TALLY 20
target#k 106
target-cmd#k 99
test object 43
test-point#k 73, 74, 75
trace area consisting of one statement 143
trace-area#k 138
tracing 109, 138
transfer while retaining values 118
type compatibility 160
type modification 46, 49, 55, 69, 76, 87, 95, 123
TYPEDEF clause 159

U
Unicode 7
update dialog 82, 119
uppercase/lowercase 27
uppercase/lowercase letters 27
user-defined types 159

V
verb 23

182 U2855-J-Z125-6-76

Index

W
wildcard symbol 65
word boundary, search at 69
write-event#k 91
write-event#k, overwriting 91

X
XS computers 32

Comments on AID V3.2A
Debugging of COBOL Programs

U2855-J-Z125-6-76

Fujitsu Siemens Computers GmbH
User Documentation
81730 München
Germany

Fax: 0 700 / 372 00001

e-mail: manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Comments
Suggestions
Corrections

✁

Submitted by

mailto:manuals@fujitsu-siemens.com
http://manuals.fujitsu-siemens.com

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Target group
	Structure of the AID documentation
	Changes made since AID V2.1A

	Metasyntax
	Prerequisites for symbolic debugging
	Compilation
	Linking, loading and starting
	Commands at the start of a debugging session

	COBOL-specific addressing
	Qualifications
	Symbolic memory references

	AID commands
	%AID
	%AINT
	%BASE
	%CONTINUE
	%CONTROLn
	%DISASSEMBLE
	%DISPLAY
	%DUMPFILE
	%FIND
	%HELP
	%INSERT
	%JUMP
	%MOVE
	%ON
	%OUT
	%OUTFILE
	%QUALIFY
	%REMOVE
	%RESUME
	%SDUMP
	%SET
	%SHOW
	%STOP
	%SYMLIB
	%TITLE
	%TRACE

	Sample application
	Source listing
	Contents of the input file
	Test run

	Debugging special COBOL language resources
	Debugging of nested programs
	Setting test points
	Accessing data
	Tracing

	Debugging object-oriented COBOL programs
	Addressing
	Commands
	Setting test points
	Tracing
	Displaying data
	Editing data

	Testing programs with user-defined types
	The dereferencing operator
	The address selector (address operator)
	Type compatibility for comparing and assigning (%SET)

	Glossary
	Related publications
	Index
	A
	B - D
	E - L
	M - P
	Q - V
	W - Z

	Comments, Suggestions, Corrections

