
English

C/C++ V4.0A

POSIX commands of the C/C++-Compilers

User Guide

*

Edition June 2020

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your opinion on this manual. Your feedback helps us to
optimize our documentation to suit your individual needs.

Feel free to send us your comments by e-mail to: .bs2000services@ts.fujitsu.com

Certified documentation according to DIN EN ISO 9001:2015
To ensure a consistently high quality standard and user-friendliness, this documentation was created to meet the
regulations of a quality management system which complies with the requirements of the standard DIN EN ISO

.9001:2015

Copyright and Trademarks
Copyright © Fujitsu Technology Solutions GmbH.2020

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:bs2000services@ts.fujitsu.com

Table of Contents

 C/C++ POSIX Commands . 5
1 Preface . 6

1.1 Brief product description . 7
1.2 Summary of contents . 8
1.3 Changes since the previous manual . 9
1.4 Notational conventions . 10

2 Basics . 11
2.1 Delivery structure and software environment . 12
2.2 From source code to program execution . 13

2.2.1 Providing the source code and header files . 14
2.2.2 Compiling . 15
2.2.3 Linking . 17

2.2.3.1 Linking user modules . 18
2.2.3.2 Linking the CRTE runtime libraries . 19

2.2.4 Debugging . 21
2.2.5 Using the POSIX library functions . 22

2.3 C++ template instantiation under POSIX . 23
2.3.1 Basic aspects . 24
2.3.2 Automatic instantiation . 26
2.3.3 Generating explicit template instantiation statements (ETR files) 30
2.3.4 Implicit inclusion . 36
2.3.5 Libraries and templates . 37

2.4 Porting software . 40
2.5 Introductory examples . 41

3 The cc, c11, c89 and CC commands . 42
3.1 Calling syntax and general rules . 43
3.2 Description of options . 47

3.2.1 Options for selecting the language mode . 48
3.2.2 General options . 50
3.2.3 Options for selecting compilation phases . 52
3.2.4 Preprocessor options . 55
3.2.5 Common frontend options in C and C++ . 57
3.2.6 C++-specific frontend options . 60

3.2.6.1 General C++ options . 61
3.2.6.2 Template options . 63

3.2.7 Optimization options . 66
3.2.8 Options for controlling object generation . 69

3.2.9 Debug option . 75
3.2.10 Runtime options . 76
3.2.11 Link editor options . 78
3.2.12 Options for controlling message output . 84
3.2.13 Options for outputting listings and CIF information . 86

3.3 Files . 90
3.4 Environment variables . 91
3.5 Predefined preprocessor names . 92

4 Global listing generator (cclistgen) . 95
4.1 Calling syntax . 96
4.2 Options . 97

5 Appendix: overview of options (alphabetic) . 100
6 Related publications . 107

 5

C/C++ POSIX Commands

 6

1 Preface

This chapter provides information concerning the following topics:

Brief product description

Summary of contents

Changes since the previous manual

Notational conventions

 7

1.1 Brief product description

The BS2000 C/C++ Compiler can be called from and controlled with options from the BS2000 (SDF) or POSIX
(POSIX shell) environment.

This manual describes controlling the compiler from the POSIX environment, where the following POSIX commands
are available:

cc, , c11 c89 Calls the compiler as a C compiler

CC Calls the compiler as a C++ compiler

cclistgen Calls the global listing generator

The options and operands of the above calling commands cover most of the services and functions available for
controlling the compiler via the SDF interface (see the “C/C++ User Guide” []). The syntax of the POSIX 4
commands is based on the definition in the XPG4 Standard or on the normal UNIX shell commands.

The , , and calling commands also include linking the compiled objects together to form an cc c11 c89 CC

executable program.

The software products CRTE and POSIX-HEADER are required for creating and running C and C++ programs in
the POSIX environment. CRTE also contains the standard header files and modules of the C and C++ library
functions. The headers of CRTE and also the POSIX headers are required for using the POSIX library functions.

 8

1.2 Summary of contents

This manual describes how C and C++ programs are compiled, linked and executed with the C/C++ compiler and
additional development tools in the POSIX environment.

Chapter summarizes the C/C++ program development in the POSIX environment."Basics"

The compiler is called with the , , and commands, which are described in detail with their options and cc c11 c89 CC

the effects of these in chapter ."The cc, c11, c89 and CC commands"

Chapter describes the command, which is used to call and control "Global listing generator (cclistgen)" cclistgen

the global listing generator.

All compiler options are listed alphabetically in the together with page references.appendix

In order to work effectively with this manual, you will need to be familiar with the C and C++ programming
languages and the POSIX shell.

This manual is primarily intended for use as a reference manual for the POSIX commands of the C/C++ compiler.

Detailed information on the services and functions of the C/C++ compiler beyond the POSIX control can be found in
the following manual:

“C/C++ BS2000/OSD, C/C++ Compiler”, User Guide [].4

In addition to SDF control of the C/C++ compiler, the above manual contains further information on topics not dealt
with in this manual. These topics include:

process and effects of optimization

structure of the compiler listings and messages

compiler C language support (a summary of the C language modes, implementationdependent behavior,
 directives, extensions to the ANSI/ISO C standard)#pragma

compiler C++ language support (a summary of the C++ language modes, implementation-dependent behavior,
extensions to the ANSI/ISO C++ standard)

links between functions and language

brief description of the C++ libraries supplied with CRTE

 9

1.3 Changes since the previous manual

The changes in this manual compared to the C/C++ V3.2D User Guide mainly affect the new language modes C11
and C++ 2017 and the changes to compiler options due to them.

The most important point is the default setting of the compiler. If the language mode is not specified explicitly, it
always uses the most modern implemented language standard. This was and is the case with version 3. For
Version 3 the (then) most modern standard was C89. Now the compiler supports C11 and this is also the default.
This is similar for C ++. The version 3 had as (at that time) most modern standard a preliminary version of C++ 98,
the current compiler supports C++ 17.

The new compiler now supports 10 language modes, 5 for C and 5 for C++. For better handling of this variety, the
syntax for specifying the language mode has been redesigned. The options used in Version 3 will continue to be
recognized and mapped to new options. The mapping is:

-X a -X cc -X 1990 -X nostrict

-X c -X cc -X 1990 -X strict

-X t -X cc -X kr

-X w -X CC -X V3 -X nostrict

-X e -X CC -X V3 -X strict

-X d -X CC -X V2

With the support of the new language modes, the recognition of questionable source constructs has also been
revised. In some situations, messages are now different than C/C++ V3.2D. The error weight, the error number and
the text may have changed. There are a few situations where either C/C++ V3.2 gives a message or C/C++ V4.0
but not both.

 10

1.4 Notational conventions

The following notational conventions are used to depict commands, options and program directives described in this
User Guide:

*STD Uppercase letters, digits and special characters which do not
belong to the metalanguage characters designate keyword or
constants which must be entered exactly as shown.

-R msg_id Uppercase and lowercase letters, digits and special characters in
 are constants and must be entered exactly as typewritten text

shown, except for the option arguments, which are shown in the -K

manual in lowercase letters, but may be entered in both uppercase
and lowercase (see)."Calling syntax and general rules (C/C++ POSIX Commands, #26)"

name Lowercase letters in denote variables, which must be italics
replaced by current values at the time of input.

{ | }cc c89 Braces enclose alternatives from which one must be selected.
The separator character | must not be specified.

[] Square brackets enclose options that may be omitted.

() Parentheses are constants and must be specified.

'BLANK' This symbol indicates that at least one white space character is necessary for the syntax.

... Ellipses signify repetition, i.e. the preceding unit can be repeated several times in succession.

 11

2 Basics

This chapter provides information concerning the following topics:

Delivery structure and software environment

From source code to program execution

Providing the source code and header files

Compiling

Linking

Linking user modules

Linking the CRTE runtime libraries

Debugging

Using the POSIX library functions

C++ template instantiation under POSIX

Basic aspects

Automatic instantiation

Generating explicit template instantiation statements (ETR files)

Implicit inclusion

Libraries and templates

Porting software

Introductory examples

 12

2.1 Delivery structure and software environment

The files required for controlling the BS2000 C/C++ compiler from the POSIX shell are stored as follows in the
POSIX file system:

This chapter provides information concerning the following topics:

/opt/C/bin/c89
/opt/C/bin/cclistgen

Links to the compiler and listing generator installed in BS2000 (PLAM library)

/opt/C/bin/cc
/opt/C/bin/c11
/opt/C/bin/CC

Links to /opt/C/bin/c89

/usr/bin/cc Link to /opt/C/bin/cc

/usr/bin/c11 Link to /opt/C/bin/c11

/usr/bin/c89 Link to /opt/C/bin/c89

/usr/bin/CC Link to /opt/C/bin/CC

/usr/bin/cclistgen Link to /opt/C/bin/cclistgen

Installation of the above POSIX files is described in the Release Notice for C/C++ (BS2000/OSD) V4.0A.

C/C++ uses the C and C++ library function header (or include) files and modules supplied with CRTE and the
header files supplied with POSIX-HEADER for all POSIX library functions. The libraries for programs and lex yacc

are part of the software product POSIX-SH.

The C and C++ library function modules are installed in BS2000 as PLAM libraries and not in the POSIX file
system. When linking with the / / / commands, the link options are issued to the relevant PLAM libraries cc c11 c89 CC

as RESOLVE directives (of the LINK EDITOR).
See also the link option ().-l x "Link editor options"

The header files for the C and C++ library functions are stored as POSIX files in the standard , /usr/include /usr

, and directories. Installation of these header files is /include/sys /usr/include/CXX01 /usr/include/CC

described in the CRTE Release Notice or in the manual “POSIX Basics” [].1

 13

2.2 From source code to program execution

This section provides you with an overview of the following program creation stages in the POSIX subsystem:

Providing the source code and header files

Compiling

Linking

Linking user modules

Linking the CRTE runtime libraries

Debugging

Using the POSIX library functions

 14

2.2.1 Providing the source code and header files

The source code and header files may be provided in EBCDIC or ASCII code. The default is EBCDIC in the POSIX
file system and ASCII in the file systems of remote UNIX hosts. All files in a file system (POSIX file system or
merged in, remote file system) must be available in the same codeset. The compiler does not query the codeset of
individual files, it only queries the codeset of a file system. The files of ASCII file systems are converted
automatically to EBCDIC, as long as the POSIX variable IO_CONVERSION is set to YES.

The the source code file names must contain one of the following standard suffixes:

c, C C source code (, ,) or C++ source code () before the preprocessor runcc c11 c89 CC

cpp, CPP, cxx, CXX, cc, CC, c++, C++

C++ source code before the preprocessor run ()CC

i C source code (, ,) after the preprocessor runcc c11 c89

I C++ source code after the preprocessor run ()CC

In addition to the above suffixes, the option (see) can be used to define additional input file -Y F "General options"

suffixes which are then also accepted by the compiler.

Source code and include members stored in BS2000 files or PLAM libraries cannot be processed with the compiler
in the POSIX file system.

The POSIX command is provided for transferring BS2000 files and PLAM library members into the POSIX bs2cp

file system and vice versa. The POSIX command is provided for editing POSIX files in the POSIX shell. If the edt

POSIX shell is accessed via , the editor may also be used. See the manual “POSIX Commands” [].rlogin vi 3

The standard header files for the C and C++ library functions available with CRTE are in the standard directories
, and resp. . These directories /usr/include /usr/include/sys /usr/include/CC /usr/include/CXX01

are searched automatically by the compiler (or preprocessor).

 15

2.2.2 Compiling

C sources are compiled with the , and commands and C++ sources with the command.cc c11 c89 CC

These commands are described in detail in chapter ."The cc, c11, c89 and CC commands"

C and C++ language modes

The C and C++ sources can be compiled in various language modes via the following options:

C language modes (/ / commands):cc c11 c89

extended c11 mode (), default for and -X 2011 -X nostrict cc c11

strict c11 mode ()-X 2011 -X strict

extended c89 mode (), default for -X 1990 -X nostrict c89

strict c89 mode ()-X 1990 -X strict

Kernighan&Ritchie C ()-X kr

C++ language modes (command):CC

extended C++ 2017 mode (), default-X 2017 -X nostrict

strict C++ 2017 mode ()-X 2017 -X strict

extended C++ V3 mode ()-X v3-compatible -X nostrict

strict C++ V3 mode ()-X v3-compatible -X strict

Cfront C++ mode (Cfront-V3.0.3-compatible C++) ()-X v2-compatible

See for the language mode options."Options for selecting the language mode"

Creating an object file (“.o” file)

If the compilation run is not terminated after the preprocessor phase (see the and options on -E -P "Options for

), the compiler creates an LLM for each compiled source file and stores it by default in selecting compilation phases"
a POSIX object file named in the current directory. is the name of the source file without basename.o basename
the directory part or the standard suffixes (, etc.)..c .C

A different directory and/or file name may be defined for the object file with the option (see).-o "General options"

By default, a link run is started after compilation. If only one source file is compiled and linked in one step, the object
file is stored temporarily and then deleted. If at least two source files or one source and one object file (file) are .o

specified, the object files are not deleted.

Linking can be prevented by specifying the option (see -c "Options for selecting compilation phases (C/C++ POSIX

).Commands, #29)"

Creating an expanded, recompilable source program (“.i” file)

If the option is specified, only the preprocessor run is executed and one expanded, recompilable source -P

program is generated for each compiled source file. The result is written by default into a POSIX source file named
 (, ,) or () in the current directory.basename.i cc c11 c89 basename.I CC

 16

The option can be used to specify a different destination directory and/or file name for the expanded source -o

program (see)."General options "

Creating compilation listings

The option can be used to request various compiler listings (e.g. source/error listing, cross-reference -N listing
listing, etc.). The compiler either writes the requested listings separately for each compiled source file into a list file
named or collectively for all compiled source files into a list file specified with the basename.lst file -N output

option (see)."Options for outputting listings and CIF information)"

You can also create CIFs (Compilation Information Files) for the output of compilation listings, which are
subsequently processed with the global listing generator . See the option (cclistgen -N cif "Options for

) and chapter .outputting listings and CIF information" “Global listing generator (cclistgen)”

List files can be printed out with the POSIX command (see the manual “POSIX Commands” []).bs2lp 3

Output destinations and codeset

The compiler saves the output files by default in the current directory, i.e. in the directory from which the compiler
run was started.

The option (see) can be used to specify a different directory and/or file name as the output -o "General options"

destination. This can be a directory in the local POSIX file system or in a merged in file system on a remote host.
However, it must be noted that it is only meaningful to further process text files on UNIX hosts or PCs, i.e. only
expanded source programs (“.i” files) and list files (“.lst” files).

The codeset of the destination file system determines the output codeset used for the files (ASCII or EBCDIC) itf the
environment variable IO-CONVERSION has the value YES (see sections "Environment variables" und "Support for

.file systems in ASCII" in manual "C Library Functions for POSIX Applications“ [2])

How characters and strings are stored is controlled by the ... option (see -K literal_encoding_ "Common

).frontend options in C and C++"

 17

2.2.3 Linking

A C or C++ program can only be linked in the POSIX shell to form an executable program with the , , cc c11 c89

and calling commands. A “standalone” link editor, normally found in UNIX systems, does not exist. From the CC

technical viewpoint, linking in the POSIX shell calls the BS2000 link editor and supplies it with the appropriate
directives (INCLUDE-
MODULES, RESOLVE-BY-AUTOLINK etc.).

A link run is started if none of the , , , or options are specified (see -c -E -M -P -y "Options for selecting compilation

), as long as no errors occurred during a prior compilation. By default, the linked program is written as an phases"
LLM into an executable POSIX file with the standard name , in the current directory. The option can be a.out -o

used to specify a different directory and/or file name (see)."General options"

No link listings can be generated when linking in the POSIX shell. If errors occur, appropriate error messages are
output to .stderr

The option can be used to generate the standard listings of BINDER (see -N binder "Options for outputting

).listings and CIF information"

 18

2.2.3.1 Linking user modules

User modules can only be linked in statically and not dynamically (i.e. at runtime). Programs containing “unresolved
externals” to user modules cannot be loaded in the POSIX shell.

The following can be input sources to the link editor:

Object files generated by the compiler (“.o” files)

Libraries created with the utility (“.a” files)ar

LLMs that were copied from PLAM libraries into POSIX object files with the POSIX command (see bs2cp

). These may be LLMs that were generated directly by a compiler in the BS2000 “Introductory examples”
environment (SDF) or object modules which were written into an LLM with the link editor.

LLMs and object modules in BS2000 PLAM libraries. The PLAM libraries must be assigned with the BLSLIB nn
environment variable (see the option on).-l BLSLIB "Link editor options"

The modules from the PLAM libraries may be modules generated by any BS2000 compiler with ILCS capabilities (e.
g. C/C++, COBOL85, COBOL2000, ASSEMBH).
You must observe language-specific requirements with the above (parameter passing, required runtime systems,
etc.).

Internal INCLUDE-MODULES directives are issued during linking with POSIX object files and RESOLVE-BY-
AUTOLINK directives are issued for libraries and PLAM libraries.ar

 19

1.

2.

3.

2.2.3.2 Linking the CRTE runtime libraries

The link editor resolves the unresolved external references to the C and C++ runtime systems via autolink
(RESOLVE-BY-AUTOLINK) from the CRTE PLAM libraries.

C runtime system

When code is generated, the C runtime system modules can be linked or loaded with the , , and cc c11 c89 CC

commands as follows:

Loading the C runtime system dynamically (partial bind). There are two variants of the partial bind linkage
method:

Standard partial bind ()-d y

Linking is carried out by default from the SYSLNK.CRTE.PARTIAL-BIND library if no special linker options
are specified. This library contains link modules that resolve all unresolved external references to the C and
COBOL runtime systems. Only the connection modules required are linked. If a module loaded by the
application to be linked requires entries of the runtime system, this can result in unresolved external
references because the link modules to the runtime system’s entries need not necessarily already be linked.
In this case the complete partial bind method should be used for linking (see also CRTE-BHB).

The C and COBOL runtime systems themselves are loaded dynamically at runtime, either from class 4
memory, if it has been preloaded, or from the SYSLNK.CRTE library.

The linked program requires considerably less disk storage space than if the C runtime system is linked
statically from the SYSLNK.CRTE library (see 2.). The load time is also faster. The appropriate CRTE must
be available when the program is called.

Complete partial bind ()-d compl

In this case, linking is done from the SYSLNK.CRTE.COMPL library. Basically, the procedure for the
complete partial bind is the same as that for the standard partial bind method. With complete partial bind, the
link modules provided in
SYSLNK.CRTE.COMPL contain all the entries and the external data of the complete C and COBOL runtime
systems. This means that the unresolved external references which may occur when modules of an
application which was linked in a standard partial bind are loaded cannot occur in complete partial bind.
When you use shared libraries in POSIX, successful linking is only guaranteed with a complete partial bind.

For more information on the partial bind linking method, see the manual “CRTE" [].5)

Linking the complete C runtime system statically (

-d n)

If the link option is specified (see), all required C runtime system modules are linked -d n "Link editor options"

in from the SYSLNK.CRTE library.

Leaving the external references to the C runtime system unresolved ()-z nodefs

If the link option is specified (see), the program is linked without a RESOLVE -z nodefs "Link editor options)"

to the C runtime library. The unresolved external references are then resolved at runtime from the C runtime
system preloaded in class 4 memory. is not supported when linking C++ programs (command).-z nodefs CC

C++ library for the Cfront C++ language mode C++ V2

The modules of the Cfront C++ library (SYSLNK.CRTE.CPP) and of the Cfront C++ runtime system (SYSLNK.
CRTE.CFCPP) can only be linked in statically. If the Cfront C++ mode(option) is specified in -X v2-compatible

the command, these libraries are linked in automatically in addition to the C runtime system.CC

 20

See also the link option in section .-l "Link editor options"

C++ library for the Cfront C++ language mode C++ V3

The modules of the standard C++ V3 library (SYSLNK.CRTE.STDCPP) and of the C++ runtime system (SYSLNK.
CRTE.RTSCPP) can only be linked in statically. These libraries are linked in automatically in addition to the C
runtime system if the C++ V3 mode is specified in the command ().CC -X v3-compatible

See also the link option in section .-l "Link editor options"

C++ V3 library Tools.h+

The modules of the Tools.h++ library (SYSLNK.CRTE.TOOLS) can only be linked in statically. The library is only
available in the C++ V3 mode (option) and is only linked in if the link option is -X v3-compatible -l RWtools

also specified.

See also the link option in section .-l "Link editor options"

C++ library for the Cfront C++ language mode C++ 2017

The modules of the standard C++ library (SYSLNK.CRTE.CXX01) can only be linked in statically. These libraries
are linked in automatically in addition to the C runtime system if the C++ 2017 mode is specified in the command CC

(default or option).-X 2017

See also the link option in section .-l "Link editor options"

POSIX link switch

The link switches and available with CRTE (correspond to the CRTE SYSLNK.CRTE.POSIX posix.o postime.o

library in the BS2000 environment) are linked in automatically. The time, signal handling and functions, clock

which are duplicated in the C runtime system, are therefore generally executed with POSIX semantics. Mixed
processing of POSIX and BS2000 is generally possible. Please refer to the manual “C Library Functions for POSIX
Applications” [] for further details.2

 21

2.2.4 Debugging

Linked programs can be debugged with the dialog debugger AID, provided the required debugging information
(LSD) has been generated by the compiler by specifying the option (see).-g "Debug option"

Note

When the option is used, the objects created may be much larger under some circumstances due to the -g

LSD information!

The AID debugger is activated with the POSIX command. When this command is input, the debug programname
BS2000 environment becomes the current environment. This is indicated by the %xxxxyyyy/ prompt, where
xxxxyyyy stands for the PID of the process started using . The debugging commands as described in the debug

manual “AID Debugging of C/C++ Programs” [] can then be input. Once the program is terminated, the POSIX 11
shell then becomes the current environment again.

The command is described with all operands in the manual “POSIX Commands” [].debug 3

 22

2.2.5 Using the POSIX library functions

In contrast to developing programs in the BS2000 environment (SDF), no special provisions are required for using
the POSIX library functions in the POSIX environment. The following actions are executed automatically:

Setzen des Präprozessor-Defines _OSD_POSIX

merging in the standard header files supplied with CRTE and POSIX-HEADER from the standard directories
 or . These depend on the language mode:/usr/include /usr/include/sys

language mode searched directories

all C modes /usr/include

/usr/include/sys

Cfront C++ /usr/include

/usr/include/sys

C++ V3 /usr/include/CC

/usr/include

/usr/include/sys

C++ 2017 /usr/include/CXX01

/usr/include

/usr/include/sys

The default setting can be overwritten by specifying .-Y -I

linking in the POSIX link switches and (corresponds to the PLAM library SYSLNK.CRTE.posix.o postime.o

POSIX in the BS2000 environment)

The PROGRAM-ENVIRONMENT variable is set to “Shell” when the program is started.

Please refer to the manual “C Library Functions for POSIX Applications” [] for further details.2

https://edsys.g02.fujitsu.local:8443/pages/viewpage.action?pageId=42580464

 23

2.3 C++ template instantiation under POSIX

This section provides information concerning the following topics:

Basic aspects

Automatic instantiation

Generating explicit template instantiation statements (ETR files)

Implicit inclusion

Libraries and templates

 24

2.3.1 Basic aspects

The C++ language includes the concept of templates. A template is a description of a class or function that serves
as a model for a family of derived classes or functions. For example, one can write a template for a class, Stack

and then use a stack of integers, a stack of floats, or a stack of any user-defined type. These stacks could then be
typically written in the source as , and . The compiler can create Stack<int> Stack<float> Stack<X>

instantiations of the template for each of the types required from a single source description of the template for a
stack.

The instantiation of a class template is always created as soon as it is required during compilation.
The instantiations of template functions and member functions or static data members of a class template (referred
to as below), by contrast, need not be created immediately. This is mainly due to the following template entities
reasons:

In the case of template entities with external linkage (functions and static data members), it is important to have
only one copy of the instantiated template entity throughout the program.

The C++ language allows one to write a specialization for a template entity, which means that the user can
supply a specific version to be used instead of the instantiation generated from the template for a specific data
type. In the language mode C++V3 such a specialization need not be declared when it is used. Since the
compiler cannot know, when compiling a reference to a template entity, if a specialization for that entity is
available in another compilation unit, it cannot create the instantiation immediately.

The C++ standard dictates that template functions which are not referenced should not be compiled and should
be checked for errors. Consequently, a reference to a template class should not automatically instantiate all the
member functions of that class.

Note that some template entities such as inline functions are always instantiated when used.

From the requirements listed above, it is evident that if the compiler is responsible for the entire instantiation
(“automatic” instantiation), these instantiations can only be performed meaningfully on a program-wide basis. In
other words, the compiler cannot make decisions about the instantiation of template entities until it has seen the
source code of all compilation units in the program.

The C/C++ compiler provides an instantiation mechanism by which automatic instantiation is carried out at link time
(with the aid of a “prelinker”). Refer to section for further details.“Automatic instantiation”

Explicit control over the instantiation process is available to the programmer via selectable instantiation modes and
 directives:#pragma

The instantiation mode selection options are , , and .They are described in -T auto -T none -T local -T all

detail in section “ ."Template options"

 25

The following directives can be used to control instantiation of single templates or a group of templates:#pragma

The pragma creates the template instance specified as the argument. This pragma can be instantiate

used in place of the C++ language feature for explicit instantiation requests. See also template declaration
the example on ."Libraries and templates"

The pragma suppresses instantiation of the template instance specified as the do_not_instantiate

argument. Typical candidates for this pragma are template entities for which specific definitions have been
provided (specializations).

The pragma informs the compiler that the template instance specified as the argument can_instantiate

can be, but does not have to be created in the compilation unit. This pragma is required in conjunction with
libraries and is only evaluated in automatic instantiation mode. See also the example on "Libraries and

.templates"

The exact syntax and general rules regarding these pragmas can be found in theC/C++ User Guide [], in the 4
section “Pragmas for controlling template Instantiation”.

It is possible to implement explicit control using the “explicit instantiation statements” specified (in the source).
These “explicit instantiation statements” can be generated using or -T etr_file_all -T

 (see section) and can etr_file_assigned “Generatingexplicit template instantiation statements (ETR files)”

then be incorporated into the sources by the user.

Important information

The method of template instantiation preset for this compiler (automatic instantiation by the prelinker and
implicit inclusion) is also the method we recommend. There are options allowing you to change the settings for
this method, but you should do this only in exceptional cases and only when you are very familiar with the
entire application, including all the templates which are defined and used.

Implicit inclusion: implicit inclusion must not be disabled (with) when templates -K no_implicit_include

from the C++ V3 library (SYSLNK.CRTE.STDCPP) are used, since otherwise no definitions are found.

Instantiation modes other than : there is a danger here that unsatisfied external references (-T auto -T

), duplicates () or runtime errors () may occur.none -T all -T local

 26

1.

2.

3.

4.

2.3.2 Automatic instantiation

Automatic instantiation (option) is supported by the compiler by default in the language modes C++ V3 -T auto

and C++ 2017. This allows you to compile your source code and link the generated objects without having to worry
about how the necessary instantiations are done.

Note that the discussion which follows refers to the automatic instantiation of template entities for which there is no
explicit instantiation request () and no pragma.template declaration instantiate

Requirements

For each instantiation, the compiler expects a source file that contains both a reference to the required instantiation
and the definition of the template entity as well as all types required for the instantiation of that template entity. The
last two requirements can be satisfied by the following methods:

Each file that declares a template entity also contains either the definition of the entity or includes another file .h

containing the definition.

Implicit inclusion
When the compiler sees a template declaration in a file and discovers a need to instantiate that entity, it looks .h

for a source file with the same base name as the file and a suffix that satisfies the conventions for C++ source .h

file names (see the rules for input file names on). This file is then implicitly "Calling syntax and general rules"
included by the compiler on instantiation at the end of each compilation unit without a message being issued.
See also section for details.“Implicit inclusion”

The programmer makes sure that the files that define template entities also contain the definitions of all required
types and adds C++ code or instantiation pragmas in those files to request the instantiation of the template
entities therein.

First instantiation without a definition list

The definition list method can also be used as an alternative to the following procedure (see First instantiation using
).the definition list (temporary repository)

The following steps are performed internally during automatic instantiation:

Create instantiation information files
No template entities are instantiated the first time that one or more source files are compiled. For each source
file that makes use of a template, an associated instantiation information file is created if no such file already
exists. An instantiation information file has the suffix . For example, the compilation of would .o.ii abc.C

result in the creation of the file . The instantiation information file must not be modified by the user.abc.o.ii

Create object files
The created objects contain information on which instantiations could have been and were created when
compiling a source file.

Assign template instantiations
When the object files are linked, the prelinker is called before the actual linking takes place. The prelinker
examines the object files, looking for references and definitions of template entities and for added information
about entities that could be instantiated. If it does not find a definition for a required template entity, it searches
for an object file which can instantiate the template entity.When it finds such a file, it assigns the instantiation to
it.

 27

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

Update the instantiation information file
All instantiations that were assigned to a given file are recorded by name in the associated instantiation
information file.

Recompile
The compiler is internally called again to recompile each file for which the instantiation information file was
changed.

Create new object file
When the compiler compiles a file, it reads the instantiation information file for that compilation unit and creates
a new object file with the required instantiations.

Repetition
Steps to are repeated until all instantiations that are required and can be generated have been created.3 6

Linkage
The object files are linked together.

First instantiation using the definition list (temporary repository)

Since the procedure above (see) recompiles some files more than once, "First instantiation without a definition list"
an option was added that is intended to accelerate the overall process.

Generally the files are only recompiled once. The majority of instantiations are associated with the first files to be
recompiled in the method. This has disadvantages in some cases since their object sizes increase due to this
(although the sizes of other objects decrease to compensate for this).

Increasing the size of individual modules can be a disadvantage in user applications when, for example, precisely
this module needs to be loaded often. The user must therefore decide if the method that more evenly distributes the
instances (default) is desired or if this method is desired (due to improved response during prelinking).

This schema can be enabled by specifying the option.-T definition_list

Steps 3-5 above are modified. The resulting algorithm appears as follows then:

Create instantiation information files
When one or more source files are compiled for the first time, no template entities are instantiated. One
instantiation information file is created (if not already present) for every source file that uses a template. An
instantiation information file has the file suffix . When compiling , for example, the file .o.ii abc.C abc.o.ii

would be created. The instantiation information file may not be modified by the user.

Create object files
The objects created contain information on which instances could be created and may be needed when
compiling a source file.

Assign template instances to a source file
If there are references for template entities for which there are no definitions in the set of object files, then a file
is selected that could instantiate one of the template entities. All template entities that can be instantiated in this
file are assigned to it.

Update instantiation information
The set of instances that this file is assigned to is recorded in the associated instantiation file.

Save the definition list
A definition list is maintained internally in memory. It contains a list of all definitions relating to templates that
were found in all object files. This list can be read in and changed during recompilation.

Note

 28

5.

6.

7.

8.

9.

This list is not stored in a file.

Recompilation
The compiler is called again internally to recompile the corresponding source file.

Create new object file
When the compiler recompiles a file, it reads the instantiation information file for this compilation unit and
creates a new object file with the required instances.If the compiler gets the chance during compilation to
instantiate additional referenced template entities that are not mentioned in the definition list or were not found
in the libraries resolved, then it also instantiates these template entities (e.g. for templates that are contained in
templates). It passes a list of instantiations received to the prelinker so that the prelinker can assign them to the
file.

This process permits faster instantiation. It also reduces the necessity of recompiling and existing file more than
once during the prelink process.

Repeat
Steps - are repeated until all necessary and generatable instances have been created.3 7

Link
The object files are linked.

Further development

Once a program has been linked correctly, the associated instantiation information files contain all the names of the
required instantiations. From then on, whenever source files are compiled, the compiler will consult the instantiation
information file and do the instantiations therein as in a normal compilation run. In other words, except in cases
where the set of required instantiations changes, the prelinker will find all required instantiations stored in the object
files, so no further instantiation adjustments are needed. This applies even if the entire program is recompiled.

If a specialization of a template entity has been provided somewhere in the program, the prelinker will treat it as a
definition. Since this definition will satisfy any references to the template entity, the prelinker will see no need to
request an instantiation for that template entity. If a specialization is added to a program that has already been
compiled, the prelinker will remove the assignment of the instantiation from the corresponding instantiation
information file.

The instantiation information file must not be modified (e.g. renamed or deleted) by the user, except in the following
case: if a source file in which a definition was changed and another source file in which a specialization was added
are being compiled in sequence in the same compiler run, and the compilation of the first file (with the changed
definition) has aborted with an error, the associated instantiation information file must be deleted manually to allow
the prelinker to regenerate it.

Automatic instantiation, libraries and prelinked object files

When an executable file is generated with the command in automatic instantiation mode, the prelinker will do the CC

automatic instantiation only in individual object files (files), but not in objects that are part of a library (library) .o .a

or an object file that was prelinked with the option.-r

When generating the executable file, libraries or prelinked object files that require instances of template entities
must either

already contain these instances (which may be achieved by explicit instantiation and/or the preinstantiation of
objects using the option; see)-y "Options for selecting compilation phases"

or provide appropriate header files with pragmas.can_instantiate

 29

More details can be found in section .“Libraries and templates”

The option provides a further method of controlling automatic instantiation in connection -T add_prelink_files

with libraries (see)."Template options"

Controlling instantiation assignments

The assignment of instantiations to local object files can be enabled and disabled with the -K

 and options (see).assign_local_only -K no_assign_local_only "Template options"

https://edsys.g02.fujitsu.local:8443/pages/viewpage.action?pageId=74003922

 30

1.

2.

2.3.3 Generating explicit template instantiation statements (ETR files)

In some cases, for example, when automatic instantiation cannot be used effectively, the programmer has the
option of using explicit (manual) instantiation in order to extend the sources as required.
To make this process easier, it is possible to create an ETR file (ETR - Explicit Template Request) which contains
the instantiation statements for the templates used and which can be incorporated into a source.
The options for creating this ETR file are described in section .“Template options”

The option has three possibilities: If is specified, -T etr_file_none (default) /_all /_assigned. _none

the file will not be generated, if is specified, all relevant information is output, if is specified, then _all _assigned

only the specified information is output.

The templates taken into account during the ETR analysis can be divided into the following classes:

Templates that are instantiated explicitly in the compilation unit. These are output using ._all

Templates that are assigned by the prelinker to the compilation unit and then instantiated within the compilation
unit. These can be output using both and ._all _assigned

Templates that are used in the compilation unit and that can be instantiated here. These are output using ._all

Templates that are used in the compilation unit, but cannot be instantiated here. These are output using ._all

The contents of an ETR file have the following format:

Comments in the header will indicate that the file is a generated file.

Four logical lines are created for each template (see the example below):

a comment line containing the text ’The following template was’

a comment line containing the type of the instance (for example, ’explicitly instantiated’)

a comment line containing the external name of the instance. This name is the same as the entry in the ii file
and can also be obtained from the binder listing or the binder error listing

a line which describes the explicit instantiation for this instance

Notes

If the lines described above are too long, they will be wrapped in the usual C++ fashion using “Backslash newline”
.

The sequence of the output templates is not defined. If recompilation takes place or a source is modified, the
sequence may change.

The fourth logical line is particularly interesting when copying to a source.

The comments are always in English.

The following scenarios describe two possible uses of an ETR file:

The compiler is called during development using the and -T auto

 options.-T etr_file_assigned

The instantiation statements output to the ETR files are incorporated into the appropriate sources. Productive
operation is then activated using the or option the next time the compiler is called.-T none -T auto

The advantage of this method is the considerable reduction in the time it takes to complete prelinking during
productive operation.

 31

2. The compiler is called during development using the and - options.-T none T etr_file_all

After binding the developer checks each unresolved external reference to see whether it is a template, and if it
is a template, when it can be instantiated. Particularly helpful in this case are the output external names. Then,
the developer selects a source for the instantiation and inserts the instantiation statements there. In addition,
the correct header files must also be included.
This method requires a considerable amount of manual work. But you do not subsequently need to call the
prelinker ().-T none

This procedure offers you precise control over the placing of instances
(which is important when using components with high performance requirements).

Example 1

For a single ETR file compiled using two files, and (when using).x.c y.c etr_file_all

The following command sequence is used for compilation:

CC -y y.c

CC -y -T etr_file_all x.c y.c

Source x.c

template <class T> void f(T) {}
template <class T> void g(T);
template void f(long);
void foo()
{
 f(5);
 f(’a’);
 g(5);
}

Source y.c

template <class T> void f(T) {}
void bar()
{
 f(5);
}

 32

ETR-file x.o.etr

// This file is generated and will be changed when the module is compiled

// The following template was
// explicitly instantiated
// __1f__tm__2_l__FZ1Z_v&_
template void f(long);

// The following template was
// used in this module and can be instantiated here
// __1f__tm__2_i__FZ1Z_v&_
template void f(int);

// The following template was
// used in this module and can be instantiated here
// __1f__tm__2_c__FZ1Z_v&_
template void f(char);

// The following template was
// used in this module
// __1g__tm__2_i__FZ1Z_v&_
template void g(int);

ETR-file y.o.etr

// This file is generated and will be changed when the module is compiled

// The following template was
// used in this module and can be instantiated here
// __1f__tm__2_i__FZ1Z_v&_
template void f(int);

The user can now decide in which source they wish to make explicit instantiations (this decision must always be
made for entries with “used in this module and can be instantiated here”), for example, insertion of template

 and in (see the source in .void f(int) template void f(char) x.c Example 2
Then you will subsequently not need to use automatic template instantiation.

Example 2

Example of the use of .etr_file_assigned

Two files are specified and x.c y.c:

 33

Source x.c

template <class T> void f(T) {}
template <class T> void g(T);
template void f(long);
void foo()
{
 f(5);
 f(’a’);
 g(5);
}

Source y.c

template <class T> void f(T) {}
void bar()
{
 f(5):
}

These programs are first compiled using the following commands and then prelinked:

CC -c -T auto -T etr_file_assigned x.c
CC -c -T auto -T etr_file_assigned y.c
CC -y -T auto -T etr_file_assigned x.o y.o

Then a file is created (since only x template instantiations are assigned) which looks like this:x.o.etr

// This file is generated and will be changed when the module is compiled

// The following template was
// instantiated automatically by the compiler
// __1f__tm__2_i__FZ1Z_v&_
template void f(int);

// The following template was
// instantiated automatically by the compiler
// __1f__tm__2_c__FZ1Z_v&_
template void f(char);

The important lines are inserted in the file x.c, thus creating the file x1.c:

 34

template <class T> void f(T) {}
template <class T> void g(T);
template void f(long);
void foo()
{
 f(5);
 f(’a’);
 g(5);
}
template void f(int);
template void f(char);

Then production can be carried out using the following commands:

CC -c -T none x1.c
CC -c -T none y.c

Example 3

The following example shows the four classes of template that can be output.The assumptions are as in Example 1

The following commands are entered:

CC -c -T auto y.c
CC -y -T auto y.o (this assigns y.o to f(int))
CC -c -T auto -T etr_file_all x.c
CC -y -T auto -T etr_file_all x.o y.o

Thus creates the following ETR file, :x.o.etr

 35

// This file is generated and will be changed when the module is compiled

// The following template was
// explicitly instantiated
// __1f__tm__2_l__FZ1Z_v&_
template void f(long);

// The following template was
// used in this module and can be instantiated here
// __1f__tm__2_i__FZ1Z_v&_
template void f(int);

// The following template was
// instantiated automatically by the compiler
// __1f__tm__2_c__FZ1Z_v&_
template void f(char);

// The following template was
// used in this module
// __1g__tm__2_i__FZ1Z_v&_
template void g(int);

 36

1.

2.

3.

4.

2.3.4 Implicit inclusion

The implicit inclusion of source files is a method of finding definitions of template entities. This method is enabled for
the compiler by default (see also the option on) and can be disabled -K implicit_include "Template options"

with . Please refer to the notes on with regard to disabling implicit -K no_implicit_include "Basic aspects"

inclusion.

If implicit inclusion is enabled, the compiler looks for the definition of a template entity in accordance with the
following principle: if a template entity is declared in a header file named and no definition for it is basename .h

available in the compiled source code, the compiler will assume that the definition for that template entity is in a
source file with the same base name as the header file and with a suitable suffix (e.g.). basename .C

Let us assume, for example, that a template entity is declared in the header file . If the instantiation ABC::f xyz.h

of is requested on compilation, but no definition of exists in the compiled source code, the ABC::f ABC::f

compiler will search the directory containing the header file for a source file with the base name and a suitable xyz

suffix (e.g.). If such a file exists, it will be treated as if it were included at the end of the source file.xyz.C

The following suffixes are checked in this order: c, C, cpp, CPP, cxx, CXX, cc, CC, c++ und C++. These are the
suffixes that are interpreted as C ++ source by default. The option has no effect on the suffixes checked for -Y F

implicit inclusion.

To ensure that the file containing the definition of a particular template entity can be found during instantiation, the
complete path name of the file with the declaration of the template must be known. This information is not available
in files containing directives. Consequently, implicit inclusion is not possible in such cases.#line

Implicit inclusion and the make utility

When working with the utility, implicit inclusions must be taken into account when generating file dependency make

lines. In other words, the object file depends on explicitly included headers as well as implicitly included files with
template definitions.

When using the option, implicit inclusions will be taken into account in automatic instantiation mode only if the -M

instantiation information files have been correctly built.

The following steps are required for this purpose:

Compile all source files.

Link the program together so that all instantiations are assigned.

Generate file dependency lines with the program using the option (see also make -M "Options for selecting

).compilation phase"

Repeat steps 2 and 3 if the generated template instances have changed.

 37

1.

a.

b.

2.3.5 Libraries and templates

Instantiations for template entities (template functions, member functions and static data members of template
classes) can be generated in automatic instantiation mode only if the object meets the following conditions:

It is not part of a library,.a

it contains a reference to the template entity or the pragma for that template entity,can_instantiate

and it contains all definitions needed for the instantiation.

A library that requires instances for its implementation must either contain these instances or provide special
headers with pragmas. These two options are explained individually below.can_instantiate

The library contains all required instances

The main point to be observed here is to ensure that no duplicates are created when using multiple libraries.

The instantiation of template entities in libraries can be achieved by the following methods:

automatic instantiation of the template unit using the prelinker with the option (see -y "Options for selecting

).compilation phases"

Caution

If multiple libraries that require the same entity are used, there is a potential risk of duplicates being
created, since a separate object is not created per entity. This can be avoided by using the -T

 option (see).add_prelink_files "Template options"

by explicitly instantiating all template entities with the instantiation directive or the template declaration
 pragma.instantiate

The main point to be observed here is to ensure that a separate object is created per entity.

Example

Given:

a library with references to the instances and l.a t_list(Foo1)

t_list(Foo2),

a header file with the declarations of , and listFoo.h t_list Foo1 Foo2

and a source file with the definitions of , and listFoo.C t_list Foo1 Foo2

 38

1.

b.

2.

// l.h
#ifndef L_H
#define L_H
#include "listFoo.h"
void g();
#endif

// l.C (l.o is an element of l.a)
#include "l.h"
void g() {
 Foo1 f1;
 Foo2 f2;
 //...
 t_list(f1);
 t_list(f2);
 //...
 }

//listFoo.h
#ifndef LIST_FOO_H
#define LIST_FOO_H
template <class T> void t_list (T t);
class Foo1 {...};
class Foo2 {...};
#endif

//listFoo.C
template <class T> class t_list (T t)
{
 ...
};

Each of the referenced instances are contained in separate objects in the library l.a.

// lf1.C (lf1.o is an element of l.a)
// and contains an explicit instantiation for t_list(Foo1)
#include "listFoo.h"
template void t_list(Foo1);

// lf2.C (lf2.o is element of l.a)
// and contains an explicit instantiation for t_list(Foo2)
#include "listFoo.h"
#pragma instantiate void t_list(Foo2)

The header files contain pragmas for all required instances.can_instantiate

Example

Given:

a library with a reference to the instance ,l.a t_list(Foo)

a header file with the declarations of and listFoo.h t_list Foo

and a source file with the definitions of and .listFoo.C t_list Foo

 39

2.

// l.h
#ifndef L_H
#define L_H
#include "listFoo.h"
void g();
#endif

// l.C (l.o is an element of l.a)
#include "l.h"
void g()
{
 Foo f;
 //...
 t_list(f);
 //...
}

//listFoo.h
#ifndef LIST_FOO_H
#define LIST_FOO_H
template <class T> void t_list (T t);
class Foo {...};
#pragma can_instantiate t_list(Foo)
#endif

//listFoo.C
template <class T> void t_list (T t) {...};

The object and the library are linked together ().user.o l.a CC user.o l.a

// user.C
#include "l.h"
int f ()
{
 g();
}

user.C includes , which in turn includes . Consequently, contains notification that l.h listFoo.h user.C

 can be instantiated.list(Foo)

Automatic instantiation by the prelinker produces only one instance .t_list(Foo)

Note

In order to generate the needed instances, the pragma must be contained in a header file can_instantiate

of the library that will be included by the user programs.

 40

2.4 Porting software

When porting C source programs from UNIX systems into POSIX BS2000, note must made of the different,
implementation-dependent handling of externally visible names by the compiler.

The BS2000 C/C++ compiler uses the external name of the source program (e.g. function name) to create a
corresponding external name for the link editor (entry name). As default, lowercase letters are converted to
uppercase and the underscore character (_) is converted to a dollar sign ($) (see also “Generating the entry names

). These conversions ensure that the objects created by the with LLMs” (Options for controlling object generation)
compiler can be linked to other objects (e.g. objects created by BS2000 compilers in other languages or objects in
object module format).

When selecting the externally visible name for C source programs, it is therefore imperative that two names not only
differ in uppercase/lowercase. For example, the function names and will be mapped to the same getc getC

external name . Provided no names of BS2000 compilers in other languages are affected, this behavior can GETC

be prevented using the option (see).-K llm_case_lower "Options for controlling object generation"

 41

2.5 Introductory examples

Compiling and linking with the c89 command

c89 hello.c

Compiles and creates the executable file hello.c a.out

c89 -o hello hello.c

Compiles and creates the executable file hello.c hello

c89 -c hello.c upro.c

Compiles and and creates the object files and hello.c upro.c hello.o upro.o

c89 -o hello hello.o upro.o

Links and to the executable file hello.o upro.o hello

Copying with the bs2cp command

bs2cp bs2:hello hello.c

Copies the cataloged BS2000 file to the POSIX file HELLO hello.c

bs2cp ’bs2:plam.bsp(hello.l,l)’ hello.o

Copies the LLM from the PLAM library to the POSIX object file HELLO.L PLAM.BSP hello.o

 42

3 The cc, c11, c89 and CC commands

The C/C++ compiler can be called and supplied with options from the POSIX shell. The options cover most of the
services and functions available for controlling the compiler via the SDF interface.
The syntax of the options, names of the processed or created objects and other conventions are based on the
definition in the XPG4 Standard. POSIX shell interface extensions not covered by the XPG4 standard are based on
the normal compiler or utility interface in UNIX systems.

The compiler includes an integrated link phase which converts the normal shell link options into corresponding link
editor directives. A “standalone” link editor which is independent of the calling command is not available in the
POSIX shell.

Only POSIX files can be read and written when compiling with the C/C++ compiler in the POSIX shell. BS 2000 files
are not supported.
The source and header files may exist in either EBCDIC or ASCII code. It is assumed that all files (from a remote,
merged in or a POSIX file system) are in the same codeset.

 43

3.1 Calling syntax and general rules

{ | | } { | } ...cc c11 CC option operand

or

c89 []... ...option operand

The differences between the , , and commands are summarized below.cc c11 c89 CC

The cc, c11, c89 and CC commands

cc

If the compiler is called with , it works as a C compiler, and the default language mode is set to the latest cc

supported C language mode. In this version of the compiler this mode is C11 (see the option in -X 2011

section)."Options for selecting the language mode)"
Options and operands may be specified in any order on the command line.
In contrast to the command, is interpreted as an operand (see option and the option in c89 -L dir -L --

section)."General options"

c11

If the compiler is called with , it works as a C compiler, and the default language mode is set to C11 (see c11

the option in section).-X 2011 "Options for selecting the language mode"

Options and operands may be specified in any order on the command line.
In contrast to the command, is interpreted as an operand (see option and the option in c89 -L dir -L --

section)."General options"

c89

If the compiler is called with , it works as a C compiler, and the default language mode is set to C89 (see c89

the option in section).-X 89 "Options for selecting the language mode"

In this case, options and operands cannot be mixed on the command line, i.e. the "options before operands"
sequence must be maintained.
In contrast to the commands, is interpreted here as an option (see option and the option cc/CC -L dir -L --

in section).)."General options"

CC

If the compiler is called with , it works as a C++ compiler, and the default language mode is set to the latest CC

supported C++ language mode. In this version of the compiler this mode is C++ 2017 (see the option -X 2017

in section)."Options for selecting the language mode)"

Options and operands may be specified in any order on the command line.
In contrast to the command, is interpreted as an operand (see option and the option in c89 -L dir -L --

section)."General options"

Options

No specifiedoption

 44

If the source code contains no syntax errors, and all unresolved references are resolved, the compiler
generates an executable file , which contains the executable program. a.out

The compiler only stores the object code of the separate source files in files with the same names if at least .o

two source files or one source file and one () object file are specified..o

If only a source file is specified, no object file is available after compilation as it is a temporary file file.c file.o
and is subsequently deleted. If an object file exists before compilation, this is also deleted.file.o

option

You can specify options in the compiler call to control the compilation process and to determine which
arguments are passed to the programs for the individual compilation phases.

Options can also be used to instruct the compiler to perform only some of the compilation phases (see
). If the compilation process is not completed fully, all options that "Options for selecting compilation phases"

refer to the skipped compilation phases are ignored by the compiler. If multiple options are used to select the
compilation phases to be performed, the compiler will stop after the earliest specified phase.

An option always consists of a single letter that is identified by a leading hyphen ("-").

Multiple options may be grouped, i.e. specified in succession after a single hyphen without any delimiting
whitespace, only if none of the listed options take any arguments (e.g. could also be entered as).-V -c -Vc

Options that take arguments must be specified in accordance with the XPG4 Standard by separating the
option and its argument with a space. This XPG4-compliant notation is strongly recommended, but is not
enforced by the compiler for compatibility reasons (e.g. the compiler will accept instead of -ohello -o hello

).

Arguments that contain delimiters (or) or the equals sign () must not be specified with any whitespace : , =

before or after these characters.

Examples

-D MAKRO = 1 illegal
-D MAKRO=1 legal
-R limit, 20 illegal
-R limit,20 legal

If the same option is specified more than once with conflicting arguments (e.g. and), the last -K at -K no_at

option specified on the command line applies.

Options that are not known to the compiler, i.e. options that begin with an unrecognized letter after the leading
hyphen ("- option and the argument are "), are ignored. A corresponding warning is issued. If the unknown
separated by whitespace, the option is interpreted as an option without an argument.

Options with unrecognized arguments are ignored, and a corresponding warning is issued.

Special input rules for the -K option

-K arg1[, ...]arg2

 45

The option can be used to specify one or more arguments in succession, with a delimiting comma -K

between each such argument. The delimiter between the arguments (i.e. the comma) must not be
preceded or followed by any whitespace.Multiple options with one argument each have the same -K

effect as a single option with multiple arguments delimited by commas. The arguments specified with -K

the option may be entered in uppercase and/or lowercase letters (e.g. the arguments , , , -K PIC pic Pic

etc. are equivalent). In the case of conflicting specifications (e.g. and), the last -K uchar -K schar

entry is taken without issuing a warning.

Operands

The "operands" category includes the following entries:

the names of input files, i.e.: .file suffix

the link editor options and -l x -lBLSLIB

only for the / commands: also the link editor option cc/c11 CC -L dir

The compiler processes all options first, and then the operands, in the order in which they are specified on the
command line.
All arguments that follow the option (which ends the input of options) on the command line are interpreted as --

operands, even if they begin with a "-" character (see the option in section).-- "General options"

file.suffix

The name of an input file.

The compiler determines the contents of a file, and thus the compilation steps to be performed in each case,
from the file name extension. The file name must therefore have a suffix (or extension) that matches its
contents. The possible suffixes that can be used to identify source files will depend on the mode in which the
compiler is invoked and whether the compiler was called with the / / command (C mode) or with cc c11 c89 CC

(C++ mode).

The following suffixes are interpreted in individual cases as listed below:

c, C C source code (, ,) or C++ source code () before the preprocessor runcc c11 c89 CC

cpp, , , , , , , CPP cxx CXX cc CC c++ C++

C++ source code before the preprocessor run ()CC

i C source code (, ,) after the preprocessor runcc c11 c89

I C++ source code after the preprocessor run ()CC

o Object file

a Static library with object modules created with the utility.ar

In addition to the suffixes above, the -Y F option may be used to specify other user defined suffixes, which

are then recognized by the individual compiler components (see "General options").

File names with no suffix or an unrecognized suffix are passed through to the link editor without issuing a
warning.

 46

At least one input file () or one library in the form is required for each compiler call.file.suffix -l x

If more than one input file is specified, these files need not be of the same type, i.e. source files and object files
may all be specified in the same compiler call. In the case of object files and libraries, the order and position in
which they are entered on the command line are significant for linking.

-L dir

-L dir is only interpreted as an operand when the compiler is called with the , and commands. cc c11 CC dir
can be used to specify an additional directory that is to be searched by the link editor for the libraries specified
with the option (see for more details).-l "Link editor options"

-l x

This operand instructs the link editor to search for libraries named (see for more libx.a “Link editor options”

details).

-l BLSLIB

This operand instructs the link editor to search through PLAM libraries which were assigned with the BLSLIB nn
shell environment variable (00 99) (see for more details).>= nn <= “Link editor options”

Exit status

0 Normal termination of the compiler run; no errors, but possibly with notes and warnings

1 Normal termination of the compiler run; with error

2 Abnormal termination of the compiler run; with the occurrence of a fatal error

 47

3.2 Description of options

The following sections describe the possible options for the , , and commands in groups, depending cc c11 c89 CC

on the context in which they are used. The options are classified as follows:

Options for selecting the language mode

General options

Options for selecting compilation phases

Preprocessor options

Common frontend options in C and C++

C++-specific frontend options

General C++ options

Template options

Optimization options

Options for controlling object generation

Debug option

Runtime options

Link editor options

Options for controlling message output

Options for outputting listings and CIF information

The general aspects to be observed when entering options are discussed in section “Calling syntax and general
).rules”

A list of all options in alphabetic order with references to the pages on which they appear can be found in the
.appendix

 48

3.2.1 Options for selecting the language mode

-X cc

This option is used to select the C language mode. It only needs to be specified if the compiler is to run in C
mode, but is not called by , or .cc c11 c89

-X CC

This option is used to select the C++ language mode. It only needs to be specified if the compiler is to run in
C++ mode, but is not called by .CC

-X 89

-X 90

-X 1990

C89 mode (the default setting when calling the compiler with)c89

The compiler supports C code, as defined in the ANSI/ISO C standard This option is only allowed in C mode.
from 1990. This standard is also known as the ANSI C89 standard. This specification corresponds to the
specification or of the C/C++ V3 compiler.-X a -X c

 has a value of 199409L.__STDC_VERSION__

-X 11

-X 2011

C11 mode (the default setting when calling the compiler with)cc or c11 or specifying -X cc

This option is only allowed in C mode. The compiler supports C code according to the 2011 C standard.
 has a value of .__STDC_VERSION__ 201112L

-X kr

-X KR

K&R C mode

This option is only allowed in C mode. This mode should not be used for new developments. It is typically
intended for porting "old" K&R C sources and/or systematic conversions to ANSI C.
The compiler accepts C code, as defined by Kernighan&Ritchie in the reference manual ("The C Programming
Language", First Edition). It also supports C language elements of the ANSI C standard that are semantically
identical to the Kernighan&Ritchie "definition" of the C language (e.g. function prototypes, ,). const volatile

This simplifies the conversion of a K&R C source to ANSI C. All C library functions of the system (i.e. ANSI
functions, POSIX and X/OPEN functions, UNIX extensions) are available for use.As far as the preprocessor
behavior is concerned, ANSI/ISO C is the default. If desired, the option can be specified to -K kr_cpp

convert the preprocessor behavior to K&R C (as required when porting old C sources, for example).
 is undefined. The option has no effect, i.e. __STDC_VERSION__ -X strict always applies.-X nostrict

-X 17

-X 2017

C++ 2017 mode (the default setting when calling the compiler with)CC or specifying -X CC

This option is only allowed in C++ mode. The compiler supports C++ code according to the 2017 C++ standard.

__cplusplus has a value of 201703L and a value of 199409L.__STDC_VERSION__

-X V2-COMPATIBLE

https://edsys.g02.fujitsu.local:8443/display/CMANUALSde/.Optionen+zur+Auswahl+des+Sprachmodus+%28POSIX_Kommandos%2C+%2330%29+vV4.0#id-.OptionenzurAuswahldesSprachmodus(POSIX_Kommandos,#30)vV4.0-strict
https://edsys.g02.fujitsu.local:8443/display/CMANUALSde/.Optionen+zur+Auswahl+des+Sprachmodus+%28POSIX_Kommandos%2C+%2330%29+vV4.0#id-.OptionenzurAuswahldesSprachmodus(POSIX_Kommandos,#30)vV4.0-nostrict

 49

-X v2-compatible

Cfront-C++ mode
This option is only allowed in C++ mode.
This mode is only offered for compatibility reasons and should not be used for new developments. It supports
the C++ language elements of Cfront V3.0.3, which was first released with the C++ V2.1 compiler. The Cfront-
compatible C++ library for complex mathematics and stream-oriented I/O is available.
More information on the Cfront C++ library can be found in the C/C++ User Guide [].4
C++ sources must be compiled and linked with if their objects are to be linkable with -X v2-compatible

C++ V2.1/V2.2 objects.
This specification corresponds to the specification of the C/C++ V3 compiler.-X d

 has a value of 1 and the value 199409L. The option has no effect, i.__cplusplus __STDC_VERSION -X strict

e. always applies.-X nostrict

-X V3-COMPATIBLE

-X v3-compatible

C++ V3 mode
The compiler supports C++ code corresponding to the This option is only allowed in ++C mode. C/C++ V3

. compiler The specification corresponds to the specification or of the C/C++ V3 compiler.-X w -X e

The following C++ libraries are available:

the standard C++ library (strings, containers, iterators, algorithms, and numerics), including the Cfront-
compatible I/O classes

the C++ V3 library Tools.h++

For more information on C++ libraries, see also the C++ User Guide [].4

__cplusplus has a value of 2 (for) or 199612L (for) and-X nostrict -X strict __STDC_VERSION has

the value 199409L.

-X strict

Strict C- resp. C++ mode
The namespace is restricted to the names defined in the standard, and only the C resp. C++ library functions
defined in the standard are available. Certain extensions (such as the asm keyword) and some commonly
expected header file declarations (stdio.h, stdlib.h etc.) are not available.
Deviations from the standard result in compiler messages (mostly warnings). If desired, the output of errors
can be forced in such cases by specifying the option (see -R strict_errors "Options for controlling

).message output"
, is defined__STDC__ has a value of 1 _STRICT_STDC

-X nostrict

Extended C- resp. C++ mode
Some required diagnostics are omitted, the name space is not restricted to names that are specified by the

.standard and some extensions are included

 has a value of 0, is not defined__STDC__ _STRICT_STDC

https://edsys.g02.fujitsu.local:8443/display/CMANUALSde/.Optionen+zur+Auswahl+des+Sprachmodus+%28POSIX_Kommandos%2C+%2330%29+vV4.0#id-.OptionenzurAuswahldesSprachmodus(POSIX_Kommandos,#30)vV4.0-strict
https://edsys.g02.fujitsu.local:8443/display/CMANUALSde/.Optionen+zur+Auswahl+des+Sprachmodus+%28POSIX_Kommandos%2C+%2330%29+vV4.0#id-.OptionenzurAuswahldesSprachmodus(POSIX_Kommandos,#30)vV4.0-nostrict

 50

3.2.2 General options

-K arg1[, ...]arg2

General input rules for the option can be found on .-K "Calling syntax and general rules"

The following entries are possible as arguments for general control of the compilation run:arg

verbose

no_verbose

Note that the specification, which causes additional information on template instantiation to -K verbose

be written to the standard error output , is presently only meaningful with the command.stderr CC

 is the default setting.-K no_verbose

-o output_destination

If this option is omitted, the compiler generates output files with default names and places them in the current
directory.
The option can be used to rename the various output files of a compiler run and/or have them written to a -o

different directory.

output_destination can be any of the following: only the name of a directory, only a file name, or a file name
including directory components. The specified directories must already exist.

output_destination = directory name dir

The output files are created with default names and placed in the specified directory as follows:dir

When an executable file is generated, the file is assigned the name .dir/a.out

If the option is specified, the object file is named .-c dir/sourcefile.o

If the option is specified, the preprocessor output is written to the file (/ / -E dir/sourcefilei.i cc c11 c89

command) or (command)) instead of the standard output .dir/sourcefile.I CC stdout

If the option is specified, the preprocessor output (dependency lines for further processing with -M

) is written to the file instead of the standard output .make dir/sourcefile.mk stdout

If the option is specified, the preprocessor output is written to the file (/ / -P dir/sourcefile.i cc c11 c89

command) or (command).dir/sourcefile.I CC

With the exception of the executable file generated by the link editor, independent output files are created
for each compiled source file in cases where multiple source files are specified for compilation.

output_destination = a specified orfile_name
 = a specified directory and file name: output_destination dir/file_name

If an executable file is being generated or if the option is specified in combination with option , , -o -c -E -

 or , the compiler writes the result to a file named and places it in the current directory or in M -P file_name
the directory specified with . Apart from the executable file generated by the link editor, a different file dir
name may be specified for all other output files, but only if a single source file is listed for compilation in
each compiler call.
If more than one input file is specified but only output file is specified, then a warning is output and one

 is reset to the default value.output_destination
If an executable file is created, the file name specified with must differ from an object file generated by -o

the compiler or specified explicitly in the command line. For example, the following commands are
rejected with errors:

 51

cc -o hello.o hello.o

cc -o hello.o hello.c

-V

For each compiler component that is implicitly called during the execution of , the version and cc/c89/CC

possibly a copyright note are written in a separate line. In the linking procedure the version of the CRTE being
used and a list of the libraries used are also output.

-Y F,file-type,user_suffix

This option can be used to define user-specific suffixes in the form for input files of type in user_suffix file-type
addition to the standard suffixes (see)."Calling syntax and general rules"

The following entries are possible for :file-type

c++ C++ source file

c C source file

prec++ C++ preprocessor output file

prec C preprocessor output file

obj Object file

lib Static library

Example

-Y F,obj,llm

An input file named is recognized by the compiler as an object file.file.llm

--

This option ends the input of options, i.e. causes all following arguments (except for the link editor options that
fall under the "operands" category) to be interpreted as file names, even if they begin with a hyphen. This
makes it possible to specify file names that start with a hyphen (e.g.).-hello.c

The following link editor options are permitted after the option:--

-l x

-l BLSLIB

-L dir (only with the , and commands; in the command, this entry would be interpreted as a file cc c11 CC c89

name!)

 52

3.2.3 Options for selecting compilation phases

All of the options listed below always suppress the linkage run and cause any link editor options and operands that
may have been specified to be ignored.

-c

Terminates the compiler run after an LLM has been created and placed into an object file for each file.o
compiled source file. The object is written by default into the current directory. The option (see -o "General

) can be used to define a different file name and/or directory.options"

-E

The compiler run is terminated after the preprocessor phase and the result is written to the standard output
. Any blank lines present in the file are combined in the process, and the corresponding stdout #line

directives are generated. By default, C and C++ comments are removed from the preprocessor output (see the
 option in section). If the option is specified (see), the result of -C "Preprocessor options" -o "General options"

the preprocessor run is written to a file instead of the standard output .stdout

-M

The compiler run is terminated after the preprocessor phase; however, instead of the normal preprocessor
output (cf. ,), a list of dependency lines that is suitable for further processing with the POSIX -E -P make

program is generated and written to the standard output . If the option is specified (see stdout -o "General

), the file dependency list is written to a file instead of the standard output .options" stdout

Note

Templates in C++ 2017 and C++ V3 sources are not included explicitly.

-P

The compiler run is terminated after the preprocessor phase, and the result is written to a file named (/file.i cc

/ command) or (command) and placed in the current directory instead of the standard output c11 c89 file.I CC

 as in the option. The output does not contain any additional directives. By default, C or C++ stdout -E #line

comments are removed from the preprocessor output (see the option on). -C "Preprocessor options" file.i
can be subsequently compiled further with the / / / commands, whereas can only be cc c11 c89 CC file.I
compiled with the command. If desired, the option (see) may be used to specify CC -o "General options"

another file name and/or directory.

-y

This option can only be specified with the command in the modes C++ 2017 and C++ V3.CC

The compiler run is terminated after the prelinker phase (automatic template instantiation), and an object file
named containing the instantiated templates is generated for each compiled source file. This is sourcefile.o
meaningful for objects that are to be subsequently incorporated in a library (library) or in a prelinked object .a

file (); no automatic instantiation is performed for templates within libraries or prelinked object files. Note that -r

the option can only be meaningfully used in the default automatic instantiation mode ().-y -T auto

Example

Contents of the source files (extracts):

// a.h:

 53

class A {int i;};

// f.h:

template <class T> void f(T)

{

 /* any code */

}

// b.c:

#include "a.h"

#include "f.h"

void foo() {

 A a;

 f(a);

}

// main.c:

extern void foo();

int main(void)

{

 foo();

}

Commands:

CC -c b.c

The first compilation produces an object file and a template information file , where each contains b.o b.o.ii

an entry that the function is not instantiated.f(A)

CC -y b.o

The and files generated in the first compilation run are updated, and the function is b.o b.o.ii f(A)

instantiated.

ar -r x.a b.o

The module in is added to the library .b.o x.a

CC main.c x.a

An executable file named is generated.a.out

The following command sequence, by contrast, would not produce the desired result:

rm *.o *.ii *.a a.out /* Cleanup the current directory */
CC -c b.c
ar -r x.a b.o
CC main.c x.a

 54

This command sequence results in an error message. This is because the function f(A) cannot be found,

since no automatic instantiation is performed for the templates in the library x.a.

 55

1.

2.

3.

3.2.4 Preprocessor options

-A "name(tokens)"

This option can be used to define an assertion, as if by a preprocessor directive (see the section #assert

“Extensions over ANSI/ISO C” in the C/C++ User Guide []). The quotes are required because of the special 4
significance of parentheses in the POSIX shell. The parentheses can alternatively be nullified with the
backslash:
-A name\(tokens\)

-C

This option is evaluated only if the or option is also specified (see -E -P "Options for selecting compilation

). It causes C or C++ comments to be retained in the preprocessor output. Such comments are phases"
removed by default.

-D name[]=value

This option can be used to define names, symbolic constants and macros (as if by a preprocessor #define

directive).
 has the same effect as the statement ;-D name #define name 1
 = corresponds to the directive for text substitutions,-D name value #define

i.e. #define name value.

-H

Causes a list of all header files used during the compilation run to be written to the standard error output
.stderr

-i header

This option specifies an include file which is inserted before the source program text (pre-include).header

You can specify the as follows:header

by giving the fully qualified path name of the include file

by giving the relative path name of the include file on the basis of the option -I

The include file specified as the will be handled in exactly the same way as any include file where an header
statement is specified at the beginning of the source program file. If several header files are to be #include

pre-included, the corresponding #include instructions must be collected together in a single include file which
is then specified using the option .-i

-I dir

dir is added to the list of directories that are searched by the preprocessor for header files. If this option is
entered more than once, the order of entry determines the search order for header files.

If the relative pathname of the header file (which does not begin with a slash /) is specified in the #include

directive enclosed within quotes "...", the preprocessor searches the directories in the following order:

the directory of the source or header file containing the directive#include

the directories that were specified with the preprocessor option -I

 56

3. either the directories specified with the option or the standard directories (see -Y I "Using the POSIX

)library functions"

If the relative pathname of the header file is specified in the directive enclosed within angular #include

brackets ... , the preprocessor will only search the directories listed under points 2 and 3 above.< >

If you want the preprocessor to search some other directories last instead of the standard directories listed
above, you can specify such directories by using the option (see below).-Y I

-K arg1[, ...]arg2

General input rules for the option can be found in section .-K "Calling syntax and general rules"

The following entries are possible as arguments to control preprocessor behavior:arg

ansi_cpp

kr_cpp

-K ansi_cpp is the default setting in all C and C++ language modes of the compiler. This means that

preprocessor behavior in accordance with the ANSI/ISO C standard is also supported in the K&R C mode.
The obsolete preprocessor behavior based on Reiser cpp and Johnson pcc can be turned on with -K

.kr_cpp

-U name

Undefines a macro or a symbolic constant (as when using the preprocessor directive), where name #undef

 is a predefined preprocessor name (see) or a name that was defined name "Predefined preprocessor names"
with the option in the command line before or after option .This option has no effect on -D -U #define

directives in the source program.

-Y I, [: ...]dir dir

Instructs the preprocessor which directory or directories are to be searched for header files last. specifies dir
the directory.
Without this option, the last directories to be searched are the standard directories (see "Using the POSIX

).library functions"

 57

3.2.5 Common frontend options in C and C++

-K [, ...]arg1 arg2

General input rules for the option can be found on .-K "Calling syntax and general rules"

The following entries are possible as arguments to control the compiler frontend in the C and C++ modes:arg

uchar

schar

The default data type is . If is specified, is treated as a char unsigned char -K schar char signed

 in expressions and conversions.char

Note that the use of this option may result in portability problems!

at

no_at

If is specified, the “at” sign ‘@’ is not allowed in identifiers.-K no_at

The default is . The ‘@’ sign in identifiers is an extension.-K at

dollar

no_dollar

If is specified, the dollar sign ‘$’ is not allowed in identifiers.-K no_dollar

The default is . The ‘$’ sign in identifiers is an extension.-K dollar

literal_encoding_native

literal_encoding_ascii

literal_encoding_ascii_full

literal_encoding_ebcdic

literal_encoding_ebcdic_full

This option determines whether the C/C++ compiler creates the code for characters or for strings in
EBCDIC or ASCII format (ISO 8859-1).

In C/C++, literal strings can contain binary coded characters as octal or hexadecimal escape sequences
with the following syntax:

octal escape sequences: \[0-7] [0-7][0-7]

hexadecimal escape sequences: \x[0-9A-F][0-9A-F]

Whether or not the C/C++ compiler escape sequences are converted into ASCII format depends on the
value specified for the optionliteral_encoding_

literal_encoding_native

If you are using a Cfront C++ library, you cannot use the option .-K no_ati

 58

The C/C++ compiler leaves the character and literal string code in the EBCDIC format, i.e. it transfers the
characters and strings into the object code without converting them. is the literal_encoding_native

default setting.

literal_encoding_ascii

The C/C++ compiler encodes the characters and literal strings in ASCII format. Strings containing escape
sequences converted into ASCII format.will not be

literal_encoding_ascii_full

The C/C++ compiler encodes the characters and literal strings in ASCII format. Strings containing escape
sequences converted into ASCII format.will be

literal_encoding_ebcdic

The C/C++ compiler leaves the character and literal string code in the EBCDIC format, i.e. it transfers the
characters and strings into the object code without converting them. has literal_encoding_ebcdic

the same effect as or .literal_encoding_ebcdic_full literal_encoding_native

literal_encoding_ebcdic_full

The C/C++ compiler leaves the character and literal string code in the EBCDIC format, it transfers the
characters and strings into the object code without converting them. literal_encoding_ebcdic_full

has the same effect as or .literal_encoding_ebcdic literal_encoding_native

Prerequisites for using the ASCII Format:

You must not explicitly declare the C library functions in your source program, but only indirectly by
including the corresponding CRTE header. Otherwise a tranlation error ‘CFE1079[ERROR]..: expected
a type specifier‘ may occur.

For CRTE function (C library function) in your program that works with characters or each and every
strings, you must use the corresponding or matching include file. If you do not do this, the CRTE
functions will not be able to process the character strings correctly. You should ensure that you include
the include file for the function with .<stdio.h> printf() #include <stdio.h>

If you are using CRTE functions you must also specify the following options:
-K llm_keep

-K llm_case_lower

signed_fields_signed

signed_fields_unsigned

If is specified, bit fields are always interpreted as . -K signed_fields_unsigned signed unsigned

This option is only offered for compatibility with older C versions and is only meaningful in K&R C mode.
The default is .-K signed_fields_signed

plain_fields_signed

plain_fields_unsigned

These arguments control whether integer bit fields (, ,) are treated as or short int long signed

 types by default.unsigned

The default is .-K plain_fields_signed

 59

long_preserving

unsigned_preserving

These arguments control whether arithmetic operations with operands of type and long unsigned int

return a result of type () in accordance with K&R mode (first edition; appendix long long_preserving

6.6) or of type () in accordance with ANSI/ISO C.unsigned long unsigned_preserving

The default is .-K unsigned_preserving

alternative_tokens

no_alternative_tokens

These arguments control whether alternative tokens are to be recognized by the compiler:

Digraph sequences in the C and C++ language modes (e.g. for),<: [

Additional keyword operators which are only valid in the C++ language modes (e.g. for , and &&

 for).bitand &

-K alternative_tokens is the default in the modes C11, C++ V3 and C++ 2017,

 is the default for all other modes.-K no_alternative_tokens

longlong

no_longlong

These arguments control whether the data type is recognized by the compiler.long long

 is the default. In this case, the preprocessor define is set.-K longlong _LONGLONG

If is set, the use of the data type will result in an error. This specification -K no_longlong long long

is only allowed in the language modes C89 and C++ V3.

end_of_line_comments

no_end_of_line_comments

These arguments control whether the compiler accepts C++-style comments (//...) in the extended C89
mode as well. is the default in the extended C89 mode.-K no_end_of_line_comments

Only one entry is permitted in the other language modes, the other is ignored with a warning. In the strict
C89 mode and in the K&R mode, C++ comments are not allowed. In the C++ modes and in the C11
mode they are always allowed.

 60

3.2.6 C++-specific frontend options

The options described in the following sections on and are only "General C++ options" "Template options"
applicable to the command.CC

 61

3.2.6.1 General C++ options

General C++ options can be used to control the following C++ features:

whether the keywords and are recognizedwchar_t bool

the scope of initialization directives in and loopsfor while

whether the old specialization syntax is accepted

None of the language features listed above is supported in Cfront C++ mode.

-K arg1[,arg2...]

General input rules for the option can be found on . The following entries -K "Calling syntax and general rules"

are possible as arguments to control the C++ frontend:arg

using_std

no_using_std

These arguments determine the use of the C++ library functions for which names have been defined in
the standard name space .std

If is specified, the compiler behaves as if the following lines were entered at the start of a -K using_std

compilation unit:

namespace std{}

using namespace std;

-K using_std is the default in extended C++ V3 mode ().-X v3-compatible -X nostrict

-K no_using_std is the default in strict C++ V3 mode () and in C++ -X v3-compatible -X strict

2017 mode () and the only possible behavior in Cfront C++ mode).-X 2017 (-X v2-compatible

If is set in the mode C++ V3 or C++ 2017, the source program must contain the -K no_using_std

directive before the first call to a C++ library function or the names must be using namespace std;

qualified appropriately.

wchar_t_keyword

no_wchar_t_keyword

These arguments can be used to define whether is recognized as a keyword.wchar_t

-K wchar_t_keyword is the default in mode C++ V3 and the only possible behavior in mode C++

2017. In this case, the preprocessor macro is defined._WCHAR_T

-K no_wchar_t_keyword is the default and the only possible behavior in the Cfront C++ mode.

bool

no_bool

These arguments can be used to define whether is recognized as a keyword.bool

-K bool is the default in mode C++ V3 and the only possible behavior in mode C++ 2017. In this case,

the preprocessor macro is defined._BOOL

-K no_bool is the default and the only possible behavior in the Cfront C++ mode.

 62

old_for_init

new_for_init

These arguments define how an initialization directive in and loops is to be handled.for while

-K old_for_init

Specifies that an initialization directive has the same scope as the entire loop. This is the default setting in
the Cfront C++ mode.

-K new_for_init

Specifies the new ANSI C++-compliant scope rule, which surrounds the entire loop in its own implicitly
generated scope.This is the default setting in mode C++ V3 and the only possible behavior in mode C++
2017.

no_old_specialization

old_specialization

These arguments are only relevant in the modes C++ V3 and C++ 2017. They are used to specify
whether template specializations need the new syntax .template<>

-K no_old_specialization is the default setting in mode C++ V3 and the only possible behavior in

mode C++ 2017. In this case, the compiler implicitly defines the macro
 with the value 0.__OLD_SPECIALIZATION_SYNTAX

If is specified, the the compiler implicitly defines the macro-K old_specialization

 with the value 1.__OLD_SPECIALIZATION_SYNTAX

 63

3.2.6.2 Template options

The following options are only relevant in the modes C++ 2017 and C++ V3 as templates are not supported in the
Cfront C++ mode.

-T none

-T auto

-T local

-T all

These options control how templates with external linkage are instantiated. This includes function templates as
well as (non-static and non-inline) functions and static variables that are members of class templates. These
template types are combined under the generic term "template entity" below.

In all instantiation modes, the compiler generates all instances per compilation unit that are requested with the
explicit instantiation directive or with the instantiation pragma template declaration #pragma instantiate

template entity.

The remaining template entities are instantiated as follows:

-T none

No instances are generated unless explicitly requested.

-T auto (default)

Instantiation is carried out globally for all compilation units by a prelinker. The prelinker is activated when an
executable file is generated with the command or if the option (see CC -y "Options for selecting compilation

) is specified. No instantiations are performed by the prelinker when generating a prelinked object file (phases"
 option). The principle of automatic instantiation is described in detail in section .-r “Automatic instantiation”

-T local

Instantiation is carried out per compilation unit.All template entities used in a compilation unit are instantiated,
with internal linkage for the functions generated in the process. This provides a very simple mechanism for
starting template programming. The compiler instantiates the functions required in each compilation unit as
local functions. The program links them and then terminates correctly. However, this method produces a large
number of copies of the instantiated functions and is therefore not recommended for production. And for the
same reasons this mode is not suitable if one of the templates contains variables.static

Warning:

The template contains a variable which is used to represent an empty string. If you basic_string static

use the option and select the type from the library the empty string is no longer -T local string

recognized. Try to avoid using this combination as it can lead to serious problems.

-T all

Instantiation is carried out per compilation unit.All template entities that are used or declared in a compilation
unit are instantiated. All member functions and static variables of a class template are instantiated regardless
of whether they are used or not. Function templates are also instantiated if they are just declared.

-T add_prelink_files, [..]pl_file1 , pl_file2.

 64

This option can be used to specify objects and libraries that are taken into account as described below when
the prelinker determines the instances to be generated:

pl_filei is the name of an object file (file) or a static library (file)..o .a

If an object file or library contains the definition of a function or static data member, no instance of a pl_filei
template entity that is a duplicate this is generated.

If an object file or library needs instances for template entities, these instances are not generated.pl_filei

Problem

The and libraries contain references to the same template instances. Duplicates occur if the libX.a libY.a

objects of the two libraries were each preinstantiated with the option.-y

In such cases, the prelinker must be informed that symbols are defined elsewhere and it should therefore not
generate any instances. The option is provided for this purpose.-T add_prelink_files

Solution

The objects of the library are initially preinstantiated with the option. Then the objects of the libX.a -y libY.

 library are preinstantiated, using thea

 option to inform the prelinker to consider and ensure that no -T add_prelink_files,libX.a libX.a

duplicate of this is generated.

-T max_iterations, n

In automatic instantiation mode (), this option specifies the maximum number of prelinker runs. -T auto n
The default is = 30. The number of prelinker runs is unlimited if is set to the value 0.n n

-T etr_file_none

-T etr_file_all

-T etr_file_assigned

These three options are used to control the creation of an ETR file (ETR=Explicit Template file.etr

Request) for the application of explicit template instantiation (see section “Generating explicit template
).instantiation statements (ETR files)”

Warning:

The and options are ignored if they are used in conjunction with the etr_file_all etr_file_assigned

preprocessor options .-P / -E / -M

-T etr_file_none

This is the default setting and suppresses the output of instantiation information.

-T etr_file_all

This option outputs all the possible template information.

-T etr_file_assigned

This option ensures that only those instantiation templates assigned by the prelinker are output.

-T [no_]definition_list or -T [no_]dl

 65

This options allows for internal communication between the front end and the prelinker during the
recompilation phase of the automatic template instantiation. You will find more information in the section

.“Automatic instantiation”

-K arg1 [, arg2 ...]

General input rules for the option can be found in section . The following -K "Calling syntax and general rules"

entries are possible as arguments to control template instantiation:arg

assign_local_only

no_assign_local_only

These arguments determine whether or not instantiation assignments are only supported locally. If -K

 is set, the following applies:assign_local_only

Instantiations can only be assigned to object files that are located in the current directory (local files).

Instantiations can only be assigned to an object file if the current directory at the time of the
instantiation matches the current directory at compile time.

Example

cd dir1 # The current directory when
CC -c test1.c # compiling test1.c is dir1
cd ../dir2 # The current directory when
CC -c test2.c # compiling test2.c is dir2
cd ../dir1 # The current directory for the
 # prelinker is dir1
CC -K assign_local_only -o test test1.c ../dir2/test2.o

In this example, the assignment of instantiations is restricted to the local object file test1.o .

-K no_assign_local_only is the default setting.

implicit_include

no_implicit_include

These arguments determine whether the definition of a template is implicitly included (see section
).“Implicit inclusion”

-K implicit_include is the default setting.

instantiation_flags

no_instantiation_flags

-K instantiation_flags is the default setting and causes special symbols to be generated for use

by the prelinker during automatic instantiation.
If is set, no such symbols are generated, so the object size is reduced. -K no_instantiation_flags

Consequently, no automatic instantiation with is possible in this case.-T auto

 66

3.2.7 Optimization options

If none of the following optimization options are specified, the compiler does not carry out any optimization. This
corresponds to the SDF option.LEVEL=*LOW

The separate optimization options and their effects are described in detail in the C/C++ User Guide [] in the section 4
“Optimization”.

-O

-F O2

These options enable the standard optimization of the compiler. The only difference between the two options is
that every optimization strategy is internally executed only once for , but several times for . -O -F O2

Consequently, the overall compile time at
the optimization level is significantly less than the compile time required for the “highly-optimized” -O -F O2

level.

The following standard optimizations are performed by the compiler:

calculates constant expressions at compilation time

optimizes the indexing in loops

eliminates unnecessary assignments

propagates constant expressions

eliminates redundant expressions

optimizes jumps and unconditional jump commands

In addition, registers are also optimized.

In contrast to the SDF option (where the optimization level can be set as *HIGH or *VERY-HIGH without
parameters), loop unrolling is disabled here.

If the standard optimization has not been explicitly enabled with or , it is automatically activated at -O -F O2

level if the (loop expansion) or , (inline substitution of -O -F loopunroll -F i -F inline_by_source

user-defined functions) options are specified.

-F I[]name

This option allows you to specify the C library functions for which the implementation in CRTE can be
assumed. This permits better optimization of the program.
When -F I is specified without , all calls for known C library functions are handled separately.name
When the -F I option is not specified, no call is handled separately.
When -F I is specified (without a separating blank), only the function is handled separately.name name
If several functions are to be handled separately, the -F I option must be specifed several times.name
The -F I option can be specified independently of normal optimization.

The compiler achieves the greatest effect by means of inline generation of a function. In this case the function
code is inserted directly in place of the function call. This eliminates time-consuming management activities
required of the runtime system (e.g. saving and restoring registers or returning from the function), thus
shortening program runtime.

The following C library functions can be generated inline:

 67

abs strcat

fabs strlen

labs strcmp

memcmp strncmp

memcpy strcpy

memset

Functions which are generated inline cannot be replaced by other functions at linkage time, nor can they be
used as test points when debugging with AID.

The default compiler optimization does not have to be activated for generating C library functions inline.

The compiler knows the semantics of the CRTE library functions. With the option you command -F Iname
the compiler to generate optimized functions that observe the CRTE library function semantics. If no name is
specified, then the compiler should use all its knowledge of the CRTE functions (the compiler knows of about
150 functions).

Functions which are not generated inline are retained as calls. However, optimizations are possible which are
not feasible with the user functions. For example, the compiler can use the information that the isdigit()

function has no side effects.

Some functions are highly specialized since they are generated to be completely inline. For these functions the
compiler creates the code directly without passing it to CRTE. These functions are listed in the table above.

In some cases this optimization may not be desired. If the program is to be debugged, you may need to set a
breakpoint in such a function. This is not possible for functions generated to be completely inline, or more
precisely, you can set a breakpoint, but it will not be reached. The code generated by the compiler is used and
not the function where the breakpoint was set.

Another case is when a function is defined with a name that is already known to the compiler. In most cases
this function will use semantics different from the CRTE semantics. If a conflict between such a function and
this option arises, then all calls assume the CRTE semantics. Warning CFE2067 is output in this case.

Note that the CRTE semantics are used in every compilation unit. The warning is only output in the compilation
unit that contains the private definition.

-F i[]name
-F inline_by_source

These alternative options control the inline substitution of user-defined functions. As in the case of some C
library functions from the standard library (see), each call to an inline function is replaced by the -F I

corresponding function code. This saves the code sequence for the call and return and thus results in faster
execution times. Specifying the , or options automatically activates -F i -F iname -F inline_by_source

the standard optimization () as well, unless was explicitly set.-O -F O2

 68

-F i and -F iname
When is specified with or without , the compiler selects functions for inline substitution in -F i name
accordance with its own criteria. Any existing inline pragmas and C++-specific inline functions in the source
program are automatically considered by the compiler in the search for suitable candidates (see also -F

).inline_by_source

If is specified (without a leading blank!), the function will also be inlined. If multiple user-selected name name
functions are to be considered by the compiler for inline substitution, the option must be specified -F iname
more than once.
The option is ignored for C++ compilations, i.e. by the command.-F iname CC

-F inline_by_source

If this option is specified, only the following user-defined functions are inlined:

For C compilations (, ,): C functions declared with the directive (see cc c11 c89 #pragma inline name
also the section “inline pragma” in the C/C++ User Guide []). The inline pragma in not supported in C++.4

For C++ compilations (): the C++-specific inline functions. These are the functions defined within classes CC

and functions with the attribute.inline

Note on inline functions in C++

The inline substitution of C++-specific inline functions is also performed when optimization is not enabled or if
the or options are not set. This can be suppressed with the -F i -F inline_by_source -F no_inlining

option.

-F loopunroll[],n

This option controls loop unrolling. Multiple unrolling of the loop body speeds up loop execution. This
optimization option is not used by default. If it is specified, it automatically activates the standard optimization (-

), unless was explicitly set.O -F O2

If is specified without , the compiler unrolls loop bodies four times.You can use to specify -F loopunroll n n
your own unroll factor, where can be set to a value between 1 and 100.n

Specifying does not guarantee that the optimizer will always carry out the loop -F loopunroll[,n]
expansion. The optmizer decides whether or not to run the loop expansion on the basis of the loop structure
and specified factor .n

-F no_inlining

This option suppresses the inline substitution of C++-specific inline functions, which is performed by default
even if the or options have not been specified.-F i -F inline_by_source

If the option in combination with the or option, the last -F no_inlining -F i -F inline_by_source

specification on the command line applies.
If is the last specified option, even the originally requested inlining of user-defined C -F no_inlining

functions is suppressed (however, the implicitly set optimization remains enabled). -O

The inlining of C library functions set with the option is not affected by .-F I -F no_inlining

 69

3.2.8 Options for controlling object generation

-K [, ...]arg1 arg2

General input rules for the option can be found on .-K "Calling syntax and general rules"

The following entries are possible as arguments to control object generation:arg

Assembler commands for subroutine entries

subcall_basr

subcall_lab

-K subcall_basr (default)

The BASR command is generated by default.

-K subcall_lab

The processor-independent LA and B assembler commands are generated. Programs using these
commands will run on all 7500 systems.

Warning: This option is not allowed in the modes C++ 2017 and C++ V3.

Generating the ETPND area

The following options are used to ignore the # directive for generating an ETPND area (see the section pragma

“ETPND pragma” in the C/C++ User Guide []) or to define the date format of the ETPND area.4

no_etpnd
 calendar_etpnd

julian_etpnd

-K no_etpnd (default)

By default, no ETPND area is generated.

-K calendar_etpnd

The date format in the ETPND area is defined as follows:8 bytes calendar date - 4 bytes load address.

-K julian_etpnd

The date format in the ETPND area is defined as follows:6 bytes calendar date - 3 bytes Julian date - 4
bytes load address.

Generating the entry code for function calls

ilcs_opt

ilcs_out

-K ilcs_opt (default)

The ILCS entry code is generated inline. This speeds up the runtime of the created object.

-K ilcs_out

A branch to the ILCS entry code for function calls in the runtime system is generated. This reduces the
module code volume.

Handling enum data

 70

enum_value

enum_long

-K enum_value (default)

By default, the data is handled as , or , depending on the value range.enum char short long

-K enum_long

enum data is always handled as type objects.long

Generating the entry names with LLMs

llm_convert

llm_keep

-K llm_convert (default)

By default, underscore characters are converted to dollar signs when entry names are generated.

-K llm_keep

The underscore characters are retained when generating entry names.

The underscore character conversion applies to all external symbols in the C language modes and only
the symbols declared with in the C++ language modes (not the entry names of the C external "C"

library functions). The underscore character is always retained when coding external C++ symbols.

no_llm_case_lower

llm_case_lower

-K no_llm_case_lower (default)

By default, lowercase letters are converted to uppercase when entry names are generated.

-K llm_case_lower

The lowercase letters are retained when entry names are generated.

The lowercase to uppercase conversion applies to all external symbols in the C language modes and the
Cfront C++ mode, and only the symbols declared with in the modes C++ 2017 and C++ external "C"

V3. Lowercase letters are always retained when coding external C++ symbols in the modes C++ 2017
and C++ V3.

Warning:

The C library functions are only available in full if one of the following combinations of options has been
specified:

-K llm_convert and -K no_llm_case_lower

-K llm_keep and -K llm_case_lower

csect_suffix= suffix
csect_hashpath

 71

These options specify how CSECT names are formed. By default the CSECT name is derived from the
module name, and the module name is derived from the source name as long as it is not explicitly
specified.
The options can be sued to generate different CSECT names when the object names are the same.

With the help of these two options, a 30 character long string is created as the basis for the real CSECT
names. This basis can be output using .'-K verbose / -v'

The basis is changed in the usual manner by:

converting all lower case letters to upper case letters ,

converting all special characters such as ‘_’ or ‘.’ to ‘$’ and

adding ’&@’ or ’&#’ to generate real CSECT names.

With the help of these options you select different suffixes that are appended to the object names. If an
object name is longer than 30 characters (not including the length of the suffix), then it is truncated.

-K csect_suffix=

With this option you specify a user-defined suffix. A maximum of 10 characters are used.

-K csect_hashpath

With this option you generate a 7 character long string from the full object path (including ’..’; links are not
expanded). This character string is used as the suffix.

Storing const objects

roconst

no_roconst

-K no_roconst (default)

By default, type objects are stored in the data module (WRITEABLE). This allows the values to be const

overwritten if the attribute is removed with a operatorconst cast .

-K roconst

Type objects are stored in the code module (READ-ONLY). The constants cannot be overwritten const

even if the attribute is removed with a operator.const cast

Caution: only global or local constants are affected. Local variables with the type static auto const

attribute cannot be stored in the READ-ONLY area.

Storing string constants

no_rostr

rostr

-K no_rostr (default)

By default, string constants are stored in the data module (WRITEABLE). This allows the values to be
overwritten if the attribute is removed with a operator.const cast

-K rostr

String constants and aggregate initialization constants are stored in the code module (READ-ONLY).

Floating-arithmetics in /390 and IEEE formats

 72

no_ieee_floats

ieee_floats

-K no_ieee_floats (default setting)

By default, floating point data types and operations in /390 format are used.

-K ieee_floats

The IEEE format is used for floating-point data types and operations. This applies to all variables and
constants of the , and data types inside the C/C++ programms.float double long double

Important:
The same C/C++ program can produce different results depending on whether the IEEE format or the
/390 format is used for floating-point data types and operations. The reasons for this are as follows:

IEEE floating-point numbers use a different internal notation from /390 floating-point numbers.

IEEE floating-point operations use different semantics from /390 floatingpoint operations even on the
same type of operation. This is the case, for example, in rounding. IEEE format uses "Round to
Nearest" as default whereas /390 format uses "Round to Zero" as default.

C++ library functions do no support the IEEE format and must therefore be replaced with C functions
where necessary (see the example below).

Prerequisites for using the IEEE-Format:

For each and every CRTE function that works with floating-point numbers in your program, you must
use the corresponding or matching include file. If you do not do this, the CRTE functions will not be
able to process the floating-point numbers correctly. You should ensure that you include the include
file <stdio.h> for the function with .printf() #include <stdio.h>

CRTE contains some C library functions which use the IEEE format for floatingpoint arithmetics. To
ensure that the IEEE function names are correctly used, you should specify the following two options
for the option :ieee_floats

-K llm_keep

-K llm_case_lower

Generating shareable code

no_share

share

-K no_share (default)

By default, the compiler does not generate any shareable code.

-K share

The compiler generates shareable code comprising a shared code CSECT and a non-shared data
CSECT.Modules containing shareable code can only be meaningfully further processed in a BS2000
environment (SDF).

Storing workspace variables

workspace_static

workspace_stack

 73

-K workspace_static (default)

By default, workspace variables are stored in the static data area.

-K workspace_stack

The data required for workspace variables is stored on the stack.

Multiple definition of externally visible variables

external_multiple

external_unique

-K external_multiple

An externally visible variable that is defined in several modules is only assigned one memory area.
In order to achieve this, the variable may not be statically initialized in any of the definitions. The compiler
places the memory for this variable in the COMMON area. If the variable is statically initialized during
definition, the memory is placed in the data area. It is then not possible to assign it just one memory area.
This behavior is the default in K&R C mode.

-K external_unique

Externally visible variables may only be defined in just one module and must be declared as in external

all other modules. The memory space for such variables is placed in the data module of the object in
which the variable was defined.This behavior is the default in the language modes C89, C11 and all C++
language modes. The default may not be changed in the C++ language modes.

Length of external C names

The following options define the length of external C names and affect all external symbols in the C language
modes, but only the symbols declared with in the C++ modes (not the entry names of C library extern "C"

functions).

c_names_std

c_names_unlimited

c_names_short

-K c_names_std (default)

By default, external C names may be a maximum of 32 characters long. Longer names are truncated by
the compiler to 32 characters. Only 30 characters are allowed when generating shareable code (-K

).share

-K c_names_unlimited

Names are not truncated. In this case, the compiler generates entry names in EEN format. EENs can
have a length of up to 32000 characters. Modules containing EENs are saved by the compiler in LLM
Format 4. More detailed information on how LLMs in Format 4 are processed further can be found on

 (). EENs are not supported in the Cfront C++ "Link editor options" -B extended_external_names

mode.

-K c_names_short

External C names are truncated to 8 characters.

Note

 74

Options which affect the length of external names also affect the names of static functions as the compiler
handles the names of static functions like the names of external functions.

 75

3.2.9 Debug option

-g

The compiler generates additional information (LSD) for the AID debugger. By default, no debugging
information is generated.

A program, i.e. an executable file generated by the link editor, can be debugged in the POSIX shell with the
 command. Once this command is input, the user is in BS2000 mode (indicated by %DEBUG/). The AID debug

commands are then input as described in the manual “AID Debugging of C/C++ Programs” []. The POSIX 11
shell is the current environment after the program is terminated.

A description of the command can be found in the manual “POSIX Commands” [].debug 3

 76

3.2.10 Runtime options

The following options can be used to influence runtime behavior when compiling the module containing the main

function. When compiling other modules These options have no effect.

-K arg1[, ...]arg2

General input rules for the option can be found on .-K "Calling syntax and general rules"

The following entries are possible as arguments to control the runtime behavior:arg

integer_overflow

no_integer_overflow

-K integer_overflow (default)

By default, the program mask is set to X‘0C‘ in compliance with the ILCS convention.

-K no_integer_overflow

The program mask is set to X’00’.

The two program masks have the following effect:

X‘0C‘ X‘00‘

Fixed point overflow
Decimal overflow
Exponent underflow
Mantissa null

allowed
allowed
suppressed
suppressed

suppressed
suppressed
suppressed
suppressed

Notes

The ILCS program mask may not be changed with mixed code!

The option does not affect he selection of generated commands. The result is -K integer_overflow

that permitting INTEGER-OVERFLOW does not necessarily mean that an overflow is triggered in all
cases.

prompting

no_prompting

-K prompting (default)

If the program is called from the BS2000 environment (SDF), a prompt line is output in which parameters
can be specified for the function or for redirecting the standard I/O stream.main

-K no_prompting

No prompt line is output.

This option has no effect if the program is started from the POSIX shell as the parameters are always
specified in the command line in this case.

statistics

no_statistics

 77

-K statistics (default)

The used CPU time is output when a program generated with this option is terminated. However, this only
occurs when the program is transferred to BS2000 and is started there.

-K no_statistics

The used CPU time is not output.

stacksize=n

The option can be used to input a number (8 to 99999) which defines the number of -K stacksize n
kilobytes to be reserved for the first segment of the C runtime stack. The default is 64 kilobytes.

environment_encoding_std

environment_encoding_ebcdic

These options enable the encoding of external strings, such as arguments of and environment main
variables, to be controlled.

–K environment_encoding_std (default).

The external strings are encoded in the way specified in the options , -K literal_encoding_ascii -

, or K literal_encoding_ascii_full K literal_encoding_ebcdic- -

 (see).K literal_encoding_ebcdic_full "Common frontend options in C and C+"

-K literal_encoding_ebcdic_full

This option is offered for reasons of compatibility. Despite or -K literal_encoding_ascii –K

 being specified, external strings are encoded in EBCDIC.literal_encoding_ascii_full

The table below explains the option combinations and the encoding of the external strings:

environment_encoding_std environment_encoding_ebcdic

literal_encoding_ebcdic* EBCDIC EBCDIC

literal_encoding_ascii* ASCII EBCDIC

 78

3.2.11 Link editor options

The following link editor options are not evaluated if one of the , , or options are specified (terminate -c -E -M -P

the compiler run after compilation or after the preprocessor run, see)."Options for selecting compilation phases"

-B extended_external_names

-B short_external_names

This option is required if the program to be linked is to run on very old systems. LLMs with long names (EEN)
cannot be processed on systems with BS2000/OSD versions 1 to 3 or the BLSSERV product with version less
than 2.0. For such systems, the generated element must have an LLM format 1.

EENs, i.e. untruncated external C++ symbols are generally contained in modules that were generated with the
compiler in mode C++ 2017 or C++ V3.
Untruncated external C symbols are generated only if the option is specified at -K c_names_unlimited

compilation (see)."Options for controlling object generation"
If this is the case, even external C symbols are not truncated to 32 bytes by the compiler.
Modules with EENs are stored by the compiler in LLM Format 4. The modules of the C++ libraries and of the
CRTE runtime systems used in mode C++ 2017 or C++ V3 are also provided in LLM Format 4.

If the modules generated by the compiler do not include any EENs, i.e. are in LLM Format 1, this option has no
effect, since the link editor always generates LLM Format 1 in accordance with the input format in this case.

By default, the link editor generates LLM Format 4. The EENs remain in the result module without being
truncated. LLMs in Format 4 can be partially linked, i.e. first linked with unresolved external references to
EENs and then processed further as desired by means of the link editor.

-B extended_external_names

This entry is supported for compatibility reasons only.

-B short_external_names

This entry is needed if the link editor is to generate LLM Format 1.
In this case, all symbols with long names (EEN) must be satisfied. There is no EEN in the generated LLM. If an
open reference remains here, it remains open in the long run and cannot be satisfied subsequently.

Summary of generated LLM formats

Input format Option -B Output format

LLM 1 no entry / extended_external_names /
short_external_names

LLM 1

LLM 4 (EEN) no entry / extended_external_names LLM 4

short_external_names LLM 1

-d y

 -d n

-d compl

This option affects linking the C runtime system.

 79

1.

2.

By default, i.e. if the option is either not specified or is specified, a RESOLVE for the standard C -d y library

. is issued to the SYSLNK.CRTE.PARTIAL-BIND library. Instead of the complete C runtime system libc a

being linked in, only a connection module is linked that satisfies all unresolved external references to the C
runtime system. The C runtime system itself is loaded dynamically at runtime, either from class 4 memory if
the C runtime system has been preloaded, or from the SYSLNK.CRTE.

If is specified, the C runtime system is linked in completely from the SYSLNK.CRTE.-d n

The complete partial bind method of the CRTE is supported with the option. To accomplish this the -d compl

SYSLNK.CRTE.COMPL library is linked in.
You will find a detailed description of the complete partial bind method in the "CRTE" [] manual.5

In the mode C++ V3 the special library SYSLNK.CRTE.CPP-COMPL is linked instead of the standard libraries
SYSLNK.CRTE.RTSCPP and SYSLNK.CRTE.STDCPP. This library is also used instead of SYSLNK.CRTE.
TOOLS.

Note

The complete partial bind method is not supported in the CFRONT-C++ mode. The option is reset -d compl

to in this case.-dy

In the mode C++2017 the "complete partial bind" technique is not supported. In this case, the -d compl

option is rejected with an error.

-K [, ...]arg1 arg2

General input rules for the -option can be found in section .-K "Calling syntax and general rules"

The following entries are possible as arguments to control the link editor:arg

link_stdlibs

no_link_stdlibs

-K link_stdlibs is the default setting and causes certain standard libraries to be automatically linked

in (see also the option). This means that the corresponding options are automatically set for these -l -l

libraries:

Only with the commandCC

-l Cxx in C++ 2017 mode

 in C++ V3 mode-l Cstd

 and in Cfront C++ mode-l C

Always

-l c

If is specified, the above libraries are not linked in automatically. -K no_link_stdlibs -K

 is set automatically, if a prelinked object file is generated with the option (see no_link_stdlibs -r

)."Link editor options"

-l x

 80

1.

2.

This option instructs the link editor to search the library named . for resolving external references lib x a
via autolink. By default the link editor searches for the library in the following directories in the order given
below:

The directories specified with -L

Either the directories specified with the option (see) or the standard -Y P "Link editor options" /usr

 directory./lib

-l falls into the category of operands and can also be specified with after options have been input x --

(see also).“Operands” (Calling syntax and general rules)

The standard libraries of the C and C++ runtime system are not installed in the POSIX file system /usr

 directory, they are stored as PLAM libraries in BS2000./lib

Assignment of standard libraries to the BS2000 PLAM libraries:-lx

x Library name Contents

c SYSLNK.CRTE.

PARTIAL-BIND

Connection module for loading the C runtime system
dynamically (default)

SYSLNK.CRTE Separate modules for completely linking the C runtime
system (with)-d n

m see c

C see c

SYSLNK.CRTE.CFCPP Cfront C++ runtime system

SYSLNK.CRTE.CPP Cfront C++ library for input/output and complex
mathematics

Cstd see c

SYSLNK.CRTE.RTSCPP C++ V3 runtime system

SYSLNK.CRTE.STDCPP Standard C++ V3 library

Cxx see c

SYSLNK.CRTE.CXX01 C++ 2017 library

SYSLNK.CRTE.STDCPP Standard C++ library

RWtools SYSLNK.CRTE.TOOLS C++ V3 library Tools.h++

 81

The link editor only resolves the unresolved external references from these PLAM libraries if the -l x
option is used and not if the path name is specified explicitly (e.g.) using the /usr/lib/libRWtools.a

. operand (see)!file suffix "Calling syntax and general rules"
When calling the compiler in the C language modes, is implicitly added as the last -l option, when -lc

calling in Cfront-C++ mode the implicitly added option is , when calling in C++ V3 mode it is -l C -l

 and when calling in C++ 2017 mode it is (does not apply to).Cstd -l Cxx -K no_link_stdlibs

The order and position in which the options and any object files (or source files from which the -l

compiler generates object files) are specified in the command line is significant to the link process.
For example, the program would be linked correctly with the CC -v3-compatible test.c -l

 command, but the command would lead to an RWtools CC -v3-compatible -l RWtools test.c

error.

-l BLSLIB

This option instructs the link editor to search PLAM libraries which were assigned with the BLSLIB (00 nn <

 99) shell environment variable.= nn <=

The environment variables must be supplied with the library names and exported with the POSIX export

command before the compiler is called. The libraries are searched in ascending order .nn

All libraries specified with BLSLIBxx are searched cyclically. They are processed by BINDER as if they
had been specified as a list in RESOLVE directive to the link editor.one

-l BLSLIB falls into the category of operands and can also be specified with after options have been --

input (see also).“Operands (Calling syntax and general rules)”

Example

The library assigned with BLSLIB00 contains unresolved external references to the library assigned with
BLSLIB01 and this in turn contains unresolved external references to the BLSLIB00 library (reverse
references).

BLSLIB00=‘$RZ99.SYSLNK.CCC.999‘

BLSLIB01=‘$MYTEST.LIB‘

export BLSLIB00 BLSLIB01

c89 mytest.o -l BLSLIB

-L dir

The option can be used to specify an additional directory in which the link editor is to search for dir
libraries specified with options. By default, only the directory is searched for the libraries. A -l /usr/lib

directory specified with is searched before the standard or before the directories -L directory /usr/lib

specified with the option. The order in which the options are specified in the command line -Y P -L

determines the link editor search order.
This option only falls into the category of operands for the , and commands and can therefore cc c11 CC

only be specified with after the options have been input (see also -- “Operands” (Calling syntax and

).general rules)

-r

 82

Several object files can be prelinked to form a single object file with this option. A prelinked object file is
not executable, but contains the relocation information required to repeat a linkage run.
The following options are set implicitly when prelinking with :-r

 and . This means that the C/C++ standard -K no_link_stdlibs -B extended_external_names

libraries are not linked and that LLM Format 4 is generated in the case of long C and C++ names (EENs).
The and options, if specified, are ignored. No -K link_stdlibs -B short_external_names

instantiations by the prelinker are performed when generating a prelinked object file.Unresolved
references do not cause error messages to be output.
The prelinked object file is given the name or the name specified with the option. The object a.out -o

file can only be meaningfully further processed (linked) if the name of the prelinked object file is suffixed
with or with a suffix which can be defined with the option (see)..o -Y F "General options"

-s

Symbol table information is stripped from the output file. The sections with additional information for
troubleshooting and with line numbers and associated offset information are also removed.
The option is ignored if debugging information for AID is simultaneously requested (options). It is also -g

ignored in all C++ modes as the symbol tables are required at runtime for global initialization. The option
corresponds to the link editor SAVE-LLM SYMBOL-DICTIONARY=*NO directive.

-Y P, [...]dir1 : dir2

Instructs the link editor to search for libraries in the directories specified with last. Without this option, dir
the last directory to be searched is the standard .directory /usr/lib

-z nodefs

This option is only supported when linking C programs (, ,). Specifying this option allows a C cc c11 c89

program to be linked in which all external references to the standard C library remain unresolved, libc.a

i.e. no RESOLVE is issued to the library
SYSLNK.CRTE.PARTIAL-BIND or SYSLNK.CRTE. The unresolved external references are resolved
dynamically at runtime from the C runtime system which is preloaded into class 4 memory.

If this option is used, unresolved externals to user modules are ignored and not reported. Information on
unresolved external references is only output when the program is loaded.

–z dup_ignore

–z dup_warning

–z dup_error

These options control the behavior of duplicates during linking.

–z dup_ignore

Duplicates are ignored during linking.This is the default.

–z dup_warning

Duplicates during linking result in a warning being issued.

–z dup_error

Duplicates during linking result in an error.

 83

A program which contains duplicates cannot be executed in POSIX. It immediately returns with error code
127.
The compiler cannot specify any duplicates which are found by name. They are output in the message
BLS0339 when the program is loaded in BS2000 interface (SDF) with ./LOAD-EXECUTABLE-PROGRAM

The modules which contain the duplicates can be found using the BINDER listing (see -N binder,
) and possibly also with the support program ."Options for outputting listings and CIF information" nm

 84

3.2.12 Options for controlling message output

More detailed information on the compiler message output can be found in the C/C++ User Guide [] in the section 4
“Structure of the compiler messages”.

-R diagnose_to_listing

This option allows you to sort diagnostic information (normally sent to) as a special “result listing” and stderr

to copy this to the end of the listing file. Note: the messages are sorted according to their message weighting.

-R limit,n
This option defines the maximum number of errors tolerated by the compiler before it aborts the compilation
run. Notes and warnings are counted separately. The default value is = 50. If = 0, the compiler will attempt n n
to continue compiling as long as possible, regardless of the number of errors that have occurred.

-R min_weight,min_weight

This option defines the minimum error weight (i.e. severity code) as of which diagnostic messages from the
compiler are to be output to the standard error output .stderr

 is the default setting. The following entries are possible for-R min_weight,warnings

min_weight:

notes All messages are output, i.e. even the notes.

warnings The output of notes is suppressed (default).

errors The output of notes and warnings is suppressed.

fatals The output of notes, warnings and errors is suppressed.

-R note,msgid,[...]msgid
,[...]-R warning,msgid msgid

,[...]-R error,msgid msgid

These options can be used to change the default severity code of diagnostic messages. is the msgid
corresponding message number. The severity code for fatal errors cannot be changed. This also applies to
errors, unless they have been explicitly marked in the original message with an asterisk: . [*error]

Depending on the language mode or the position in the code, the same message ID can have a msgid
different severity code (warning or error).

-R show_column

-R no_show_column

This option determines whether the diagnostic messages of the compiler are generated in short or long form.
 is the default setting, which means that the original source program line is shown with the -R show_column

error location marked (with) in addition to the diagnostic message itself.^

If is specified, the marked source program line is not output.-R no_show_column

-R strict_errors

-R strict_warnings

 85

This option can only be used meaningfully in the strict language modes (). -X strict -K strict_warnings

is the default, which means that warnings are issued for language constructs that deviate from the ANSI/ISO
standard, but do not represent a serious violation of the semantic rules defined therein (e.g. implementation-
dependent language extensions; see the C/C++ User Guide []).4
If is specified, such cases are treated as errors with corresponding messages.-K strict_errors

Serious violations automatically lead to errors.

-R suppress,msgid,[...]msgid

Suppresses the output of the message with the message ID . Some messages (e.g. fatal errors) cannot msgid
be suppressed.

-R use_before_set

-R no_use_before_set

-R use_before_set is the default setting and causes warnings to be issued if local variables are auto

used in the program before being assigned a value.
If is specified, the output of such warnings is suppressed.-R no_use_before_set

-v

The output of messages with this option is the same as for the option combination -R min_weight,notes

and .-K verbose

-w

This option is a synonym for .-R min_weight,errors

 86

3.2.13 Options for outputting listings and CIF information

-N binder[],file

This option, which is analogous to the MAP operand of the BINDER statement SAVE-LLM, can be used to
request the standard listings of BINDER. These listings are created only when an executable file or a prelinked
object file () is generated. If is not specified, the BINDER listings are written to an output file , -r file file.lst
where is the name of the executable or the prelinked object file (or the name defined with the file a.out -o

option). can be used to specify some other output file name. The option is ignored if specified file -N binder

in combination with any of the options , , , or .-c -E -M -P -y

-N cif,[] [...]output-spec ,consumer1 ,consumer2

(is a file or a directory).output-spec
The compiler generates a CIF (Compilation Information File) containing information for the specified consumers
. If is not specified, the CIF is written into a separate file named for each compiled output-spec sourcefile.cif
source file. A different output file name can be defined with . In this case, only one source file can output-spec
be compiled. The global listing generator is provided to further process the generated CIF cclistgen

information (see)."Global listing generator (cclistgen)"
The following entries can be made for :consumer

option or (options)lo

prepro or (result of the preprocessor)lp

source_error or (errors in the source program)ls

data_allocation_map or (addresses)lm

cross_reference or or (references)lx xref

object or (object code)la

project or (project information, only with the command)lP CC

summary or (statistics)lS

ALL

If is specified, all possible CIF information is generated, e.g. when the compiler run is terminated after the ALL

preprocessor phase (, options), CIF information for an options, preprocessor and statistics listing. The -E -P

CIF may be very large if is specified!ALL

-N listing1[...],listing2

The compiler writes the listings requested with this option either into a separate file for each sourcefile.lst
compiled source file or for all compiled source files into the listing file specified with the file -N output

option.
When the maximum number of errors is reached (controlled by), no source program information will -R limit

be output to the source/error list. At this point the source/error list can no longer taken as a reliable guide to
real error status.
The following entries are possible for :listing

option or (options listing)lo

prepro or (preprocessor listing)lp

 87

source_error or (source program/error listing)ls

data_allocation_map or (map listing)lm

cross_reference or (cross-reference listing, see also the option)lx -N xref

object or (object listing)la

project or (project listing, only with the command)lP CC

summary or (statistics listing)lS

ALL

If is specified, all possible CIF information is generated, e.g. when the compiler run is terminated after the ALL

preprocessor phase (, options), an options, preprocessor and statistics listing.-E -P

-N map_structlevel,n

This option controls the nesting level up to which structure elements are included in the list requested with the
option . Values from 0 to 256 inclusively can be specified for . -N data_allocation_map n
Structure elements up to the nesting level specified by are represented in the map listing. If a nesting level of n
0 is specified, no structure elements are output.

Examples for the structure of compiler listings can be found in the section “Description of listings” of the C/C++
User Guide [].4

-N output[[][][[][,]]], output-spec ,layout , lpp cpl

This option can be used to specify the name of the output file () or output directory in which the output-spec
compiler listings for all source files are to be written.
If is not specified, a separate listing file is generated for each compiled source file.output-spec sourcefile.lst
If specifies an existing output directory, the name is assigned by default. output-spec output-spec/sourcefile.lst
If this is not the case, the name is interpreted as the file name.output-spec

The following entries can be made for :layout

normal or (default)for_normal_print

The default page length is 64 lines and the line width 132 characters.

rotation or for_rotation_print

The page length for the compiler listing is defined as 84 lines and the line width as 120 characters.

lpp can be used to define a page length of from 11 to 255 lines per page.

cpl can be used to define a line width of from 120 to 255 characters per line.

Note

Since the output file is prepared for printing under POSIX, there are up to 3 control characters at the beginning
of some lines in the file. In addition, every line is terminated with the printer control character for a carriage
return. If the output file is printed out, then the line length is .cpl–1

-N title,text

 88

This operand can be used to specify if an additional line is to appear in the header of the listing and the text
that is to be entered in it. In contrast to pragmas, which only apply to source and preprocessor listings, the -N

 option applies to all compiler listings. In order to ensure that the desired text is transferred correctly, it is title

advisable to enter it within quotes (). In the case of source and preprocessor listings, TITLE and PAGE "text"
pragmas (if any) override the specification. See also the section on “Pragmas to control the layout -N title

of listings” in the C/C++ User Guide [].4

-N xref,xrefopt1[...],xrefopt2

The sections contained in the cross-reference listing requested with
 can be controlled with this option.-N cross_reference

If the option is not specified, the cross-reference listing contains a list of the variables, functions and -N xref

labels (equivalent to). -N xref,v,f,l

The cross-reference listing always contains a FILETABLE section containing the names of all files, libraries
and members that the compiler used as sources.

If the option is specified, the cross-reference listing only contains the FILETABLE section and the -N xref

sections requested with the argument:xrefopt

p List of the names processed by the preprocessor in and #include

 statements#define

y List of the user-defined types (typedefs, structure, union, classes and
counter types)

v List of variables

f List of functions

l List of labels

t List of templates (only with C++ compilations)

o=

str
The order in which the separate sections are listed in the cross-reference listing.

 is a string of up to 6 characters (letters for the lists shown above).str
The default is the order as shown above (i.e.,). If the order specified with does not o=pyvflt o=str
include all letters for the listings requested with , the omitted letters are implicitly appended to -N xref

the end of in the default order shown above.str

-K arg1[, ...]arg2

General input rules for the option can be found on -K "Calling syntax and general rules (C/C++ POSIX

.Commands, #26)"
The following entries are possible as arguments to control the listing output:arg

include_user

include_all

include_none

These arguments control whether and which header files are mapped to the source program,
preprocessor and cross-reference listings.

 89

-K include_user is the default and only maps the user header files.

If is specified, all header files are mapped, i.e. the standard header files and those of -K include_all

the user.

If is specified, no header files are mapped.-K include_none

cif_include_user

cif_include_all

cif_include_none

These arguments control whether and from which header files (also called include files) the CIF
information for source/error, preprocessor and cross-reference listings is to be generated.

-K cif_include_user is the default and causes only the user-defined header files to be considered in

the CIF.

If is specified, all header files, i.e., the standard headers and the user-defined -K cif_include_all

headers, are considered in the CIF.

If is specified, none of the header files are considered in the CIF.-K cif_include_none

pragmas_interpreted

pragmas_ignored

These arguments control whether directives for controlling the layout of listings are evaluated #pragma

(see also the section “Pragmas to control the layout of listings” in the C/C++ User Guide []).4
 is the default.-K pragmas_interpreted

 90

3.3 Files

file.c/.C (, ,) or C++ source file () before the preprocessor runcc c11 c89 CC

file.cpp/. /. /. /. /. /. /.CPP cxx CXX cc CC c++ C++

C++ source file before the preprocessor run

file.i C source file (, ,) after the preprocessor runcc c11 c8

file.I C++ source file) after the preprocessor run

file.o LLM object file

file.a Static library containing object files created with the utilityar

file.lst File containing compilation listings

file.cif File containing CIF information for further processing with the global listing generator cclistgen

file.etr File containing explicit instantiation statements

file.o.ii Information file for automatic template instantiation (used internally)

a.out Executable file

file.mk Preprocessor output file for further processing with make

/var/tmp/... Temporary files used during compilation

 91

3.4 Environment variables

The / / / commands can be influenced with the following environment variables:cc c11 c89 CC

LANG, LC_MESSAGES Message output language

TMPDIR Name of the directory in which temporary files are stored

BLSLIBnn Assignment of PLAM libraries which the link editor is to search with autolink

IO_CONVERSION Automatic conversion () from ASCII to EBCDIC.IO_CONVERSION=YES

 92

3.5 Predefined preprocessor names

When the compiler is called with , , or , preprocessor macros and predicates are predefined, cc c11 c89 CC

depending on the command and some options.

For a few macros the value is fixed. It cannot be changed, neither on the command line nor in the source (via
 or). These macros are: , , and #define #undef __cplusplus __STDC__ __STDC_VERSION__

.__SNI__STDCplusplus

Predefined preprocessor macros (defines)

_BOOL In the language modes C++ V3 and C++ 2017 with the option , which -K bool
is the default

__CGLOBALS_PRAGMA Always set

__cplusplus In all C++ language modes:

== 1 in Cfront C++ mode
== 2 in extended C++ V3 mode
== 199612L in strict C++ V3 mode
== 201703L in C++ 2017 mode

c_plusplus In all C++ language modes

__CFRONT_V3 In Cfront C++ mode

__EDG_NO_IMPLICIT_INCLUSION

In the modes C++ V3 and C++ 2017, if implicit inclusion has been disabled
with the option within the framework of template -K no_implicit_include

instantiation

__EXISTCGLOB Always set

__HALF_TAG_LOOKUP Always set

_IEEE Option -K ieee_floats

LANGUAGE_C Always set

_LANGUAGE_C Always set

__LITERAL_ENCODING_ASCII

Option -K literal_encoding_ascii[_full]

__LITERAL_ENCODING_EBCDIC

Option -K literal_encoding_{ebcdic[_full]|native}

_LONGLONG Option -K longlong

__OLD_SPECIALIZATION_SYNTAX

 93

== 1 with the option -K old_specialization

_OSD_POSIX Always set

__OSD_POSIX Always set

__SHORT_NAMES Option –K c_names_short

__SIGNED_CHARS__ Option -K schar

__SMALL_VA_DCL Always set

__SNI In all C modes and in C++ V2 mode

__SNI_HOST_BS2000 Never set (reserved for compilation in BS2000 (SDF))

__SNI_HOST_BS2000_POSIX Always set

__SNI__STDCplusplus in all C++ language modes:

== 0 in extended language modes ()-X nostrict

== 1 strict language modes ()-X strict

__SNI_TARG_BS2000 Never set (reserved for compilation in BS2000 (SDF))

__SNI_TARG_BS2000_POSIX Always set

__STDC__ Always set:

== 0 in extended language modes ()-X nostrict

== 1 in strict language modes ()-X strict

__STDC_HOSTED__ Always set

__STDC_NO_ATOMICS__ Always set

__STDC_NO_COMPLEX__ Always set

__STDC_NO_THREADS__ Always set

__STDCPP_DEFAULT_NEW_ALIGNMENT__

Always set

== 8U

__STDC_UTF_16__ Always set

__STDC_UTF_32__ Always set

__STDC_VERS_CRTE__ Undefined in K&R C mode

== 199409L in language modes C89, C++ V2, C++ V3

== 201112L in language modes C11 and C++ 2017

 94

__STDC_VERSION__ Undefined in K&R C mode

== 199409L in language mode C89 and in all C++ language modes

== 201112L in language mode C11

_STRICT_STDC in strict language modes ()-X strict

_WCHAR_T Option (default in language modes C++ V3 and C++ -K wchar_t_keyword

2017)
If this option is not set (e.g. in C modes or in C++ V2 mode), is _WCHAR_T

defined in various standard headers to issue a for .typedef wchar_t

_WCHAR_T_KEYWORD Option (default in language modes C++ V3 and C++ -K wchar_t_keyword

2017)

_XPG_IV If called with or c11 c89

Predefined preprocessor predicates (#assert)

data_model(bit32) Always set

cpu(7500) With /390 code generation

machine(7500) With /390 code generation

system(bs2000) Always set

 95

4 Global listing generator (cclistgen)

The global listing generator is called with the command. The input sources for the listing generator are cclistgen

the CIFs (Compilation Information Files) generated by the compiler and written into a file or into an sourcefile.cif
explicitly specified file (see the option on). The file -N cif "Options for outputting listings and CIF information"

generated listings are written by default to or into an output file specified in the option. The listing stdout -o

generator creates global module cross-reference and project listings from the local module cross-reference and
project listing CIF information. The remaining listings are generated per source file.

 96

4.1 Calling syntax

cclistgen [option] ... operand ...

Mixing options and operands is not allowed. The “options first, operands last” order must be adhered to.

Options

No specifiedoption

A source/error listing is generated and output to .stdout

option

Options can be used to control the type and scope of the listings to be generated.The options are described in
the section)."Options"

If is called with illegal options, the program outputs an error message and terminates with an exit cclistgen

status other than .0

Operands

cif file

Name of the CIF file from which a listing is to be generated. An unlimited number of CIF files can be specified,
but at least one must be. The syntax of the extension is not checked, i.e. other file names are accepted .cif

(see also the compiler option in section).-N cif "Options for outputting listings and CIF information"

Exit status

The exit value 0 is returned if the listing was generated successfully; an exit value other than 0 is returned if an error
occurred.

 97

4.2 Options

–o outputfile

The global listing is written to the file . If contains a directory path section, the file is written outputfile outputfile
into it, otherwise into the current directory. The listing is output to by default. If the option is used, stdout -o

the output codeset (ASCII or EBCDIC) is determined by the destination system codeset. However, BS2000
print control characters are always generated.

–V

The version and a copyright message are output to .stderr

-N listing1[...],listing2

The listing generator writes the listings requested with this option either to or into the file specified with stdout

the option.-o outputfile
The following can be specified for :listing

option or (options listing)lo

prepro or (preprocessor listing)lp

source_error or (source/error listing)ls

data_allocation_map or (map listing)lm

cross_reference or (cross-reference listing)lx

object or (object listing)la

project or (project listing, only useful for C++ programs)lP

summary or (statistics listing)lS

ALL

If is specified, all listings are generated.ALL

In order to generate a listing, the corresponding information must be requested during the compile (see -Ncif

). If a listing is requested but the information is in section "Options for outputting listings and CIF information"
not available, an error is generated.

-N output [][[][,]],layout , lpp cpl

The layout of the global listing can be influenced with this option.

Four specifications are possible for :layout

normal or (default)for_normal_print

The default for the page length is 64 lines and for the line width 132 characters.

rotation or for_rotation_print

Defines the page length as 84 lines and the line width as 120 characters.

A page length of from 11 to 255 lines can be defined with .lpp

A line width of from 120 to 255 characters can be defined with .cpl

 98

Note

Since the output file is prepared for printing under POSIX, there are up to 3 control characters at the beginning
of some lines in the file. In addition, every line is terminated with the printer control character for a carriage
return. If the output file is printed out, then the line length is .cpl–1

-N title,text

This operand can be used to specify if an additional line is to appear in the header of the listing and the text
that is to be entered in it. In contrast to pragmas, which only apply to source and preprocessor listings, the -N

 option applies to all compiler listings. In order to ensure that the desired text is transferred correctly, it is title

advisable to enter it within quotes (). In the case of source and preprocessor listings, TITLE and PAGE "text"
pragmas (if any) override the specification. See also the section on “Pragmas to control the layout -N title

of listings” in the C/C++ User Guide [].4

-N map_structlevel,n

See compiler option in section .-N map_structlevel,n "Options for outputting listings and CIF information"

-N xref,xrefopt1[...],xrefopt2

This option can be used to control which sections are included in the cross-reference listing requested with the
 option. If the option is not specified, the cross-reference listing contains a -N cross_reference -N xref

list of the variables, functions and labels (equivalent to).-N xref,v,f,l

The cross-reference listing always contains a FILETABLE section with the names of all files, libraries and
members that the compiler used as sources.

If the option is specified, the cross-reference listing contains the FILETABLE section and only the -N xref

sections requested with the argument. The following can be specified for :xrefopt xrefopt

p List of the names in and directives processed by the preprocessor.#include #define

y List of the user-defined types (typedefs, structure, union, classes and counter types)

v List of variables

f List of functions

l List of labels

t List of templates (only with C++ compilations)

o=

str
The order in which the separate sections are listed in the cross-reference listing.

 is a string of 6 characters maximum (letters for the listings shown above).str
The default is the order shown above (i.e.).o=pyvflt

If the order specified with does not include all letters for the listings requested with , the o=str -N xref

omitted letters are implicitly appended to the end of in the default order shown above.str

-K arg1[, ...]arg2

 99

General input rules for the option can be found on .-K "Calling syntax and general rules

The following entries are possible as arguments to control the listing output:arg

include_user

include_all

include_none

These options control whether and which header files are mapped to the source program, preprocessor
and cross-reference listing.

-K include_user is the default and causes only the user header files to be mapped.

If is specified, all header files, i.e. the standard and the user header files, are mapped.-K include_all

No header files are mapped if is specified.-K include_none

A mapping of header files is only possible when the information is contained in the CIF file (see the
compiler option).-K cif_include_user

pragmas_interpreted

pragmas_ignored

These arguments control whether directives are evaluated to control the t layout of the listing #pragma

(see also the section “Pragmas to control the layout of listings” in the C/C++ User Guide []).4
 is the default.-K pragmas_interpreted

 100

5 Appendix: overview of options (alphabetic)

Option Category Section

–– General General options

–A Preprocessor Preprocessor options

–B extended_external_names Link Link editor options

–B short_external_names Link Link editor options

–C Preprocessor Preprocessor options

–c Compilation phases (object
code)

Options for selecting compilation phases

–D [=]name value Preprocessor Preprocessor options

–d compl Link Link editor options

–d n Link Link editor options

–d y Link Link editor options

–E name Compilation phases
(preprocessor)

Options for selecting compilation phases

–F I Optimization Optimization options

–F i[]name Optimization Optimization options

–F inline_by_source Optimization Optimization options

–F loopunroll Optimization Optimization options

–F no_inlining Optimization Optimization options

–F O2 Optimization Optimization options

–g Debug Debug option

–H Preprocessor Preprocessor options

–i header Preprocessor Preprocessor options

–I dir Preprocessor Preprocessor options

–K [no_]alternative_tokens C and C++ frontend Common frontend options in C and C++

–K ansi_cpp Preprocessor Preprocessor options

–K [no_]assign_local_only C++ frontend (templates) Template options

 101

–K [no_]at C and C++ frontend Common frontend options in C and C++

–K [no_]bool C and C++ frontend (general) General C++ options

–K c_names_short Object generation Options for controlling object generation

–K c_names_std Object generation Options for controlling object generation

–K c_names_unlimited Object generation Options for controlling object generation

–K calendar_etpnd Object generation Options for controlling object generation

–K cif_include_all CIF Options for outputting listings and CIF
information

–K cif_include_none CIF Options for outputting listings and CIF
information

–K cif_include_user CIF Options for outputting listings and CIF
information

–K csect_hashpath Object generation Options for controlling object generation

–K csect_suffix= Object generation Options for controlling object generation

–K [no_]dollar C and C++ frontend Common frontend options in C and C++

–K [no_]
end_of_line_comments

C frontend Common frontend options in C and C++

–K enum_long Object generation Options for controlling object generation

–K enum_value Object generation Options for controlling object generation

–K
environment_encoding_ebcdic

Runtime Runtime options

–K environment_encoding_std Runtime Runtime options

–K external_multiple Object generation Options for controlling object generation

–K external_unique Object generation Options for controlling object generation

–K [no_]ieee_floats Object generation Options for controlling object generation

–K ilcs_opt Object generation Options for controlling object generation

–K ilcs_out Object generation Options for controlling object generation

–K [no_]implicit_include C and C++ frontend (templates) Template options

–K include_all Listings Options for outputting listings and CIF
information

 102

–K include_none Listings Options for outputting listings and CIF
information

–K include_user Listings Options for outputting listings and CIF
information

–K [no_]instantiation_flags C and C++ frontend (templates) Template options

–K [no_]integer_overflow Runtime Runtime options

–K julian_etpnd Object generation Options for controlling object generation

–K kr_cpp Preprocessor Preprocessor options

–K [no_]link_stdlibs Link Link editor options

–K literal_encoding_ascii C and /C++ frontend Common frontend options in C and C++

–K literal_encoding_ascii_full C and /C++ frontend Common frontend options in C and C++

–K literal_encoding_ebcdic C and /C++ frontend Common frontend options in C and C++

–K literal_encoding_ebcdic_full C and /C++ frontend Common frontend options in C and C++

–K literal_encoding_native C and /C++ frontend Common frontend options in C and C++

–K [no_]llm_case_lower Object generation Options for controlling object generation

–K llm_convert Object generation Options for controlling object generation

–K llm_keep Object generation Options for controlling object generation

–K [no_]longlong C and C++- frontend Common frontend options in C and C++

–K long_preserving C and C++- frontend Common frontend options in C and C++

–K new_for_init C++ frontend (general) General C++ options

–K no_etpnd Object generation Options for controlling object generation

–K old_for_init C++ frontend (general) General C++ options

–K [no_]old_specialization C++ frontend (general) General C++ options

–K plain_fields_signed C and C++ frontend Common frontend options in C and C++

–K plain_fields_unsigned C and C++ frontend Common frontend options in C and C++

–K pragmas_ignored Listings Options for outputting listings and CIF
information

–K pragmas_interpreted Listings Options for outputting listings and CIF
information

 103

–K [no_]prompting Runtime Runtime options

–K [no_]roconst Object generation Options for controlling object generation

–K [no_]rostr Object generation Options for controlling object generation

–K schar C and C++ frontend Common frontend options in C and C++

–K [no_]share Object generation Options for controlling object generation

–K signed_fields_signed C and C++ frontend Common frontend options in C and C++

–K signed_fields_unsigned C and C++ frontend Common frontend options in C and C++

–K stacksize=n Runtime Runtime options

–K [no_]statistics Runtime Runtime options

–K subcall_basr Object generation Options for controlling object generation

–K subcall_lab Object generation Options for controlling object generation

–K uchar C and C++ frontend Common frontend options in C and C++

–K unsigned_preserving C and C++ frontend Common frontend options in C and C++

–K [no_]using_std C++ frontend (general) General C++ options

–K [no_]verbose General General options

–K [no_]wchar_t_keyword C++ frontend (general) General C++ options

–K workspace_stack Object generation Options for controlling object generation

–K workspace_static Object generation Options for controlling object generation

–l BLSLIB Link Link editor options

–L dir Link Calling syntax and general rules
Link editor options

–l x Link Calling syntax and general rules
Link editor options

–M Compilation phases
(preprocessor)

Options for selecting compilation phases

–N binder,... Link (listings) Options for outputting listings and CIF
information

–N cif,... CIF Options for outputting listings and CIF
information

 104

–N ,...listing Listings Options for outputting listings and CIF
information

–N map_structlevel Listings Options for outputting listings and CIF
information

–N output Listings Options for outputting listings and CIF
information

–N title Listings Options for outputting listings and CIF
information

–N xref Listings Options for outputting listings and CIF
information

–O Optimization Optimization options

–o ausgabeziel General General options

–P Compilation phases
(preprocessor)

Options for selecting compilation phases

–r Link Link editor options

–R diagnose_to_listing Compiler messages Options for controlling message output

–R error Compiler messages Options for controlling message output

–R limit Compiler messages Options for controlling message output

–R min_weight,... Compiler messages Options for controlling message output

–R note Compiler messages Options for controlling message output

–R [no_]show_column Compiler messages Options for controlling message output

–R strict_errors Compiler messages Options for controlling message output

–R strict_warnings Compiler messages Options for controlling message output

–R suppress Compiler messages Options for controlling message output

–R [no_]use_before_set Compiler messages Options for controlling message output

–R warning Compiler messages Options for controlling message output

–s Link Link editor options

–T add_prelink_files C++ frontend (templates) Template options

–T all C++ frontend (templates) Template options

–T auto C++ frontend (templates) Template options

 105

–T [no_]definition_list C++ frontend (templates) Template options

–T [no_]dl C++ frontend (templates) Template options

–T etr_file_all C++ frontend (templates) Template options

–T etr_file_assigned C++ frontend (templates) Template options

–T etr_file_none C++ frontend (templates) Template options

–T local C++ frontend (templates) Template options

–T max_iterations C++ frontend (templates) Template options

–T none C++ frontend (templates) Template options

–U name Preprocessor Preprocessor options

–V General General options

–v Compiler messages Options for controlling message output

–w Compiler messages Options for controlling message output

–X cc Language mode (C) Options for selecting the language mode

–X CC Language mode (C++) Options for selecting the language mode

–X kr Language mode (C) Options for selecting the language mode

–X KR Language mode (C) Options for selecting the language mode

–X [no]strict Language mode Options for selecting the language mode

–X v2-compatible Language mode (C++) Options for selecting the language mode

–X V2-COMPATIBLE Language mode (C++) Options for selecting the language mode

–X v3-compatible Language mode (C++) Options for selecting the language mode

-X V3-COMPATIBLE Language mode (C++) Options for selecting the language mode

–X 11 Language mode (C) Options for selecting the language mode

–X 17 Language mode (C++) Options for selecting the language mode

–X 1990 Language mode (C) Options for selecting the language mode

–X 2011 Language mode (C) Options for selecting the language mode

–X 2017 Language mode (C++) Options for selecting the language mode

–X 89 Language mode (C) Options for selecting the language mode

–X 90 Language mode (C) Options for selecting the language mode

 106

–y Compilation phases (Prelinker) Options for selecting compilation phases

–Y F,... General General options

–Y I,... Preprocessor Preprocessor options

–Y P,... Link Link editor options

–z dup_error Link Link editor options

–z dup_ignore Link Link editor options

–z dup_warning Link Link editor options

–z nodefs Link Link editor options

 107

6 Related publications

The manuals are available as online manuals at .https://bs2manuals.ts.fujitsu.com

[1] POSIX (BS2000/OSD)
POSIX Basics for Users and System Administrators
User Guide

[2] C Library Functions for POSIX Applications (BS2000/OSD)
Reference Manual

[3] POSIX (BS2000/OSD)
Commands
User Guide

[4] C/C++ V4.0A (BS2000/OSD)
C/C++ Compiler
User Guide

[5] CRTE (BS2000/OSD)
Common RunTime Environment
User Guide

[6] C++ (BS2000)
C++ Library Functions

[7] Standard C++ Library V1.2
User‘s Guide and Reference

[8] Tools.h++ V7.0
User Guide

[9] Tools.h++ V7.0
Class Reference

[10] C++ Library Functions (BS2000)
Reference Manual

[11] AID (BS2000/OSD)
Advanced Interactive Debugger

 Debugging of C/C++ Programs
User Guide

[12] AID (BS2000)
Advanced Interactive Debugger

 Core Manual
User Guide

Other reference literature and standards

https://bs2manuals.ts.fujitsu.com/

 108

[13] The C Programming Language
by Brian W. Kernighan und Dennis M. Ritchie

[14] The C++ Programming Language
(Third Edition)
by Bjarne Stroustrup

[15] „International Standard ISO/IEC 9899 : 1990, Programming languages - C“

[16] „International Standard ISO/IEC 9899 : 1990, Programming languages - C /
Amendment 1 : 1994“

[17] „International Standard ISO/IEC 9899 : 2011, Programming languages - C“

[18] „International Standard ISO/IEC 14882 : 1998, Programming languages - C++“

[19] „International Standard ISO/IEC 14882 : 2017, Programming languages - C++“

	C/C++ POSIX Commands
	Preface
	Brief product description
	Summary of contents
	Changes since the previous manual
	Notational conventions

	Basics
	Delivery structure and software environment
	From source code to program execution
	Providing the source code and header files
	Compiling
	Linking
	Linking user modules
	Linking the CRTE runtime libraries

	Debugging
	Using the POSIX library functions

	C++ template instantiation under POSIX
	Basic aspects
	Automatic instantiation
	Generating explicit template instantiation statements (ETR files)
	Implicit inclusion
	Libraries and templates

	Porting software
	Introductory examples

	The cc, c11, c89 and CC commands
	Calling syntax and general rules
	Description of options
	Options for selecting the language mode
	General options
	Options for selecting compilation phases
	Preprocessor options
	Common frontend options in C and C++
	C++-specific frontend options
	General C++ options
	Template options

	Optimization options
	Options for controlling object generation
	Debug option
	Runtime options
	Link editor options
	Options for controlling message output
	Options for outputting listings and CIF information

	Files
	Environment variables
	Predefined preprocessor names

	Global listing generator (cclistgen)
	Calling syntax
	Options

	Appendix: overview of options (alphabetic)
	Related publications

