
English

C++ V4.0

C++ Library Functions

Reference Manual

*

Edition June 2020

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your opinion on this manual. Your feedback helps us to
optimize our documentation to suit your individual needs.

Feel free to send us your comments by e-mail to: .bs2000services@ts.fujitsu.com

Certified documentation according to DIN EN ISO 9001:2015
To ensure a consistently high quality standard and user-friendliness, this documentation was created to meet the
regulations of a quality management system which complies with the requirements of the standard DIN EN ISO

.9001:2015

Copyright and Trademarks
Copyright © Fujitsu Technology Solutions GmbH.2020

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:bs2000services@ts.fujitsu.com

Table of Contents

 C++ Library Functions . 4
1 Preface . 5
2 Using the C++ library functions . 6

2.1 The CRTE SYSLNK.CRTE.CPP library . 7
2.2 Relationship between the C++ library and the C runtime system 8

3 Complex math classes and functions . 9
3.1 cplxintro Introduction to complex mathematics in C++ 10
3.2 cplxcartpol Cartesian/Polar functions . 11
3.3 cplxerr Error handling functions . 13
3.4 cplxexp Transcendental functions . 17
3.5 cplxops Operators . 20
3.6 cplxtrig Trigonometric and hyperbolic functions . 23

4 Classes and functions for input/output . 26
4.1 iosintro Introduction to buffering, formatting, and input/output 27
4.2 filebuf Buffer for file input/output . 31
4.3 fstream Specialization of iostream and streambuf for files 36
4.4 ios Base class for input/output . 41
4.5 istream Formatted and unformatted input . 52
4.6 manip iostream manipulation . 60
4.7 ostream Formatted and unformatted output . 65
4.8 sbufprot Protected interface of class streambuf . 72
4.9 sbufpub Public interface of class streambuf . 81
4.10 sstreambuf Specialization of streambuf for arrays 86
4.11 stdiobuf Specialization of iostream for stdio FILEs 89
4.12 strstream Specialization of iostream for arrays . 92

5 References . 96

 4

C++ Library Functions

 5

1 Preface

This manual describes all the classes, functions and operators provided under the BS2000 operating system by the
C++ standard library (C++ V2.1) for complex math and stream-oriented input/output. The C++ standard library is
part of the CRTE V1.0 Common Runtime Environment.

Familiarity with the C and C++ programming languages and the BS2000 operating
system is an essential requirement for using this manual effectively.

The chapter contains general information onthe C++ SYSLNK.CRTE.CPP library "Using the C++ library functions"
and the link between the C++ library and the C runtime system.

Chapters and provide a detailed "Complex math classes and functions"C "Classes and functions for input/output"
description of the C++ library functions.
The structure of these chapters reflects the usual structure of SINIX C++ library descriptions. Thus the same section
headers are used (under SINIX C++, these correspond to the section names of the man pages).

In the body of the text, references to other publications are made using abbreviated titles; the full titles are listed in
the "References" section at the back of the manual.
Notes on how to order manuals are given at the end of the same section.

The more important books and manuals are:

The "C++ User Guide", which describes how to compile, link and start a C++ program using the C++(BS2000) V2.1
compiler and other BS2000 operating system components. This includes a description of the use of the CRTE
libraries in the compilation and linkage phases for a program.

The "C Library Functions" manual, which describes all the C functions and macros provided by the C runtime
system. In addition, this manual contains information concerning file processing, buffering, etc. which is of
importance for C++ I/O as well (internally, C++ I/O is handled by the C runtime system, see also "Relationship

) .between the C++ library and the C runtime system"

The "CRTE User Guide", which contains information on the concept and use of the Common Runtime Environment
which includes, among other things, the C, C++, COBOL85 and ILCS runtime systems.

The second edition of "The C++ Programming Language" by Bjarne Stroustrup, whichdescribes the C++-specific
language scope of the C++(BS2000) V2.1 compiler.

 6

2 Using the C++ library functions

This chapter provides information concerning the following topics:

The CRTE SYSLNK.CRTE.CPP library

Relationship between the C++ library and the C runtime system

 7

2.1 The CRTE SYSLNK.CRTE.CPP library

The SYSLNK.CRTE.CPP library provided with CRTE V1.0 contains the following:

Standard header elements for the C++ library functions (type S)

complex.h stdiostream.h

iomanip.h generic.h

fstream.h new.h

iostream.h strstream.h

These header (or include) files are included in the program with the preprocessor directive #include during
compilation. For a detailed description, please refer to your C++ User Guide.

C++ library function modules (LLMs, type L)
These modules contain the code for all C++ library functions for complex math and standard I/O.
Either the modules are permanently (statically) linked to the C++ program using BINDER or they are linked
dynamically using DBL. For a detailed description, please refer to your C++ User Guide.

 8

2.2 Relationship between the C++ library and the C runtime system

The C runtime system included in the CRTE SYSLNK.CRTE library is a prerequisite for the use of the C++ library
functions. The library containing the C runtime system must be specified both for compiling and for linking a C++
program using the C++ library functions (please refer to your C++ User Guide).

Functions such as the C++ standard I/O functions are actually implemented by internal calls to various C runtime
system input/output routines.

Except for record-oriented input/output, the C++ input/output functions can perform any file access method that can
be performed by the C library functions.
Whenever there are differences between KR and ANSI functionality in the C runtime system, ANSI functionality is
always applicable to the execution of C++ library functions.

Please refer to the "C Library Functions" manual for more detailed information on file processing, ANSI functionality,
buffering, etc.

 9

3 Complex math classes and functions

This chapter provides information concerning the following topics:

cplxintro Introduction to complex mathematics in C++

cplxcartpol Cartesian/Polar functions

cplxerr Error handling functions

cplxexp Transcendental functions

cplxops Operators

cplxtrig Trigonometric and hyperbolic functions

 10

3.1 cplxintro Introduction to complex mathematics in C++

This section contains an overview of the classes, functions and operators provided by the C++ complex math library.

#include <complex.h>
class complex;

Declarations for all complex math operators and functions are contained in the <complex.h> header file.

The data type for complex numbers is implemented as a class named .complex

Overloaded versions of the following operators and math functions are available for processing complex numbers:

standard input/output operators and arithmetic, assignment, and comparison operators; see section "cplxops
Operators"

standard math functions such as exponential, logarithmic, power, and square root functions; see section "cplxexp
Transcendental functions"

trigonometric functions (sine, cosine, hyperbolic sine, and hyperbolic cosine); see section "cplxtrig Trigonometric
.and hyperbolic functions"

Routines to convert between Cartesian and Polar coordinate systems are discussed in section "cplxcartpol
".Cartesian/Polar functions

Error handling is described in section "."cplxerr Error handling functions

 11

3.2 cplxcartpol Cartesian/Polar functions

This section describes the Cartesian and Polar functions in the class .complex

#include <complex.h>

class complex

{

public:

friend double abs(complex);

friend double arg(complex);

friend complex conj(complex);

friend double imag(const complex&);

friend double norm(complex);

friend complex polar(double, double = 0.0);

friend double real(const complex&);

/* other declarations */

};

 12

double d = abs(complex x)

Returns the absolute value or magnitude of .x

double d = norm(complex x)

Returns the square of the magnitude of , and is intended for comparison of magnitudes. The x norm()
function is faster than . With , however, an overflow error is more likely since the square of abs() norm()
the magnitude is returned.

double d = arg(complex x)

Returns the angle of , measured in radians in the range -pi to pi.x

complex y = conj(complex x)

Returns the complex conjugate of . If is specified in the form , then is identical to x x (real, imag) conj(x)
.(real, -imag)

complex y = polar(double m, double a=0.0);

Returns a value of type , given a pair of polar coordinates: magnitude , and angle , measured complex m a
in radians.

double d = real(complex &x)

Returns the real part of .x

double d = imag(complex &x)

Returns the imaginary part of .x

EXAMPLE

The following program converts a complex number to the Polar coordinate system and then prints it:

#include <iostream.h>
#include <complex.h>
 main ()
 {
 complex d;
 d = polar (10.0, 0.7);
 cout <<real(d)<<" "<<imag(d);
 cout <<"\n";
 return 0;
 }

The result of executing the program is:

7.64842 6.44218

% CCM0998 CPU time used: 0.0006 seconds

SEE ALSO

, , , cplxerr cplxerr cplxops cplxtrig

 13

3.3 cplxerr Error handling functions

This section describes the error handling function used for complex math in C++.

#include <complex.h>

class c_exception

{

int
char
complex
complex
complex

type;
*name;
arg1;
arg2;
retval;

public:

c_exception(char *n, const complex& a1, const complex& a2 = complex_zero);

friend int complex_error(c_exception&);

friend complex exp(complex);
friend complex sinh(complex);
friend complex cosh(complex);
friend complex log(complex);

};

c_exception(char *n, const complex& a1, const complex& a2 = complex_zero);

friend int complex_error(c_exception&);

friend complex exp(complex);
friend complex sinh(complex);
friend complex cosh(complex);
friend complex log(complex);

};

int i = complex_error(c_exception & x)

The error handling function is called if an error occurs for one of the following complex_error
four functions:

friend complex exp(complex)
friend complex sinh(complex)
friend complex cosh(complex)
friend complex log(complex)

 14

Users may define their own routines for handling errors, by defining a function named complex_error
in their programs. must be of the form described above.complex_error

In the class , the element is an integer describing the type of error that has c_exception type
occurred, from the following list of constants (defined in the header file):<complex.h>

SING
OVERFLOW
UNDERFLOW

argument singularity
overflow range error
underflow range error

The element points to a string containing the name of the function that producedthe error. The name
variables and are the arguments with which the function wasinvoked. is set to the arg1 arg2 retval
default value that is returned by the function unless theuser’s sets it to a different complex_error
value.

If the user’s function returns a non-zero value, no error message isprinted, and complex_error errno
is not set.

If the user does not supply a function called , the default error handlingroutines complex_error
described under the heading "RETURN VALUES" with the respective functionsare invoked upon
error. Default error handling is also summarized in the table below. Inevery case, is set to errno
EDOM or ERANGE and the program continues.

The following abbreviations are used in the table below:

M
(H, 0)
(±H, ±H)
(0, 0)

Message is printed (EDOM error).
(HUGE, 0) is returned.
(±HUGE, ±HUGE) is returned.
(0, 0) is returned.

 15

 DEFAULT ERROR HANDLING ROUTINE

Types of Errors

type SING OVERFLOW UNDERFLOW

errno EDOM ERANGE ERANGE

EXP:

real too large or small

imag too large

(±H, ±H)

(0, 0)

(0,0)

LOG:

arg = (0, 0)

M, (H, 0)

-

-

SINH:

real too large

imag too large

(±H, ±H)

(0, 0)

COSH:

real too large

imag too large

(±H, ±H)

(0, 0)

 16

EXAMPLE The following program declares a complex number using the default constructor, which
gives (0.0, 0.0), and then calls the function with (0.0, 0.0). This produces an errorlog()
since is undefined. The function is called to handle thelog(0.0, 0.0) complex_error()
error.

#include <iostream.h>
#include <complex.h>
#include <stdlib.h>
int complex_error(c_exception & p)
{
 cerr << "Error when processing ";
 cerr << p.name << " (" << p.arg1 << ")\n";
 exit (1);
 return 0; /* NOT REACHED */
}
main()
{
 complex c;
 c = log (c);
 return 0;
}

The result of executing the program is:

Error when processing log ((0, 0))
% CCM0998 CPU time used: 0.0005 seconds
% CCM0999 exit 1

SEE ALSO

cplxcartpol, , , cplxexp cplxops cplxtrig

 17

3.4 cplxexp Transcendental functions

This section describes the transcendental functions in the class .complex

#include <complex.h>

class complex
{

public:

friend complex exp(complex);
friend complex log(complex);
friend complex pow(double, complex);
friend complex pow(complex, int);
friend complex pow(complex, double);
friend complex pow(complex, complex);
friend complex sqrt(complex);
};

complex z = exp(complex x)

Returns .ex

complex z = log(complex x)

Returns the natural logarithm of .x

complex z = pow(complex x, complex y)

Returns .xy

complex z = sqrt(complex x)

Returns the square root of , contained in the first or fourth quadrants of thex
complex plane.

RETURN VALUES

exp returns (0.0, 0.0) when the real part of is so small, or the imaginary part is sox
large, as to cause overflow. When the real part is large enough to cause overflow, returns:exp

(HUGE, HUGE) if the cosine and sine of the imaginary part of is > 0;x

(HUGE, -HUGE) if the cosine is > 0 and the sine
is
(-HUGE, HUGE) if the sine is > 0 and the cosine
is
(-HUGE, -HUGE) if the sine and cosine are 0.

0;
0;

 18

This section describes the transcendental functions in the class .complex

#include <complex.h>

class complex
{

public:

friend complex exp(complex);
friend complex log(complex);
friend complex pow(double, complex);
friend complex pow(complex, int);
friend complex pow(complex, double);
friend complex pow(complex, complex);
friend complex sqrt(complex);

};

complex z = exp(complex x)

Returns .ex

complex z = log(complex x)

Returns the natural logarithm of .x

complex z = pow(complex x, complex y)

Returns .xy

complex z = sqrt(complex x)

Returns the square root of , contained in the first or fourth quadrants of thex
complex plane.

RETURN VALUES

exp returns (0.0, 0.0) when the real part of is so small, or the imaginary part is so large, as to x
cause overflow. When the real part is large enough to cause overflow, returns:exp

(HUGE, HUGE), if the cosine and sine of the imaginary part of is > 0;x

(HUGE, -HUGE), if the cosine is > 0 and the sine is <= 0

(-HUGE, HUGE), if the sine is > 0 and the cosine is <= 0

(-HUGE, -HUGE), if the sine and cosine are <= 0 sind.

In all these cases, is set to ERANGE.errno

log returns (-HUGE, 0.0) and sets to EDOM when is (0.0, 0.0). A message indicating SING errno x
error is printed on the standard error output.

These error handling routines can be changed with the function (see complex_error() section
)."cplxerr Error handling functions"

 19

EXAMPLE The following program prints a set of complex numbers and their exponential powers.

#include <iostream.h>
#include <complex.h>
main()
{
 complex c;
 for (c = complex(1.0,1.0); real(c) < 4.0; c += complex(1.0,1.0))
 {
 cout <<c<<" "<<exp(c)<<"\n";
 }
 return 0;
}

The result of executing the program is:

(1, 1) (1.46869, 2.28736)
(2, 2) (-3.07493, 6.71885)
(3, 3) (-19.8845, 2.83447)
% CCM0998 CPU time used: 0.0012 seconds

Note that complex numbers can be printed by using the << operator and can be processed as easily
as numbers of type or .float double

SEE ALSO

cplxcartpol, , , cplxerr cplxops cplxtrig

 20

3.5 cplxops Operators

This section describes the basic input/output, arithmetic, comparison, and assignment operators.

#include <complex.h>

class complex

{

public:

friend complex
friend complex
friend complex
friend complex
friend complex

friend int
friend int

void
void
void
void

operator+(complex, complex);
operator-(complex);
operator-(complex, complex);
operator*(complex, complex);
operator/(complex, complex);

operator==(complex, complex);
operator!=(complex, complex);

operator+=(complex);
operator-=(complex);
operator*=(complex);
operator/=(complex);

};

ostream&
istream&

operator<<(ostream&, complex);
operator>>(istream&, complex&);

The operators have their conventional precedences. In the following descriptions for operators, , x, y
and are variables of class .z complex

Arithmetic operators:

z = x + y

Returns a which is the arithmetic sum of complex numbers and .complex x y

z = -x

Returns a which is the arithmetic negation of complex number .complex x

z = x - y

Returns a which is the arithmetic difference of complex numbers and .complex x y

z = x * y

Returns a which is the arithmetic product of complex numbers and .complex x y

 21

z = x / y

Returns a which is the arithmetic quotient of complex numbers and .complex x y

Comparison operators:

x == y

Returns a non-zero integer if complex number is equal to complex number ;x y
returns 0 otherwise.

x != y

Returns a non-zero integer if complex number is not equal to complex number ;x y
returns 0 otherwise.

Assignment operators:

x += y

Complex number is assigned the value of the arithmetic sum of itself and complexnumber .x y

x -= y

Complex number is assigned the value of the arithmetic difference of itself and complex x
number .y

x *= y

Complex number is assigned the value of the arithmetic product of itself and complex number x
.y

x /= y

Complex number is assigned the value of the arithmetic quotient of itself and complex x
number .y

Warning

The assignment operators do not produce a value that can be used in an expression.In other
words, the following construction is syntactically invalid:

complex x, y, z;

x = (y += z);

The following lines, by contrast:

x = (y + z);

x = (y == z);

are valid.

Input/output operators:

Output and input of complex numbers may be performed using the << and >> operators,
respectively.

Output format:

 22

(real, imag)

Input format:

Input corresponds to complex number

Zahl | (Zahl, 0)

(Zahl) | (Zahl, 0)

(Zahl1, Zahl2) | (Zahl1, Zahl2)

EXAMPLE The following program defines the complex numbers and , divides by , and then prints the c d d c
values of and :c d

#include <iostream.h>
#include <complex.h>
main()
{
 complex c,d;
 d = complex(10.0, 11.0);
 c = complex (2.0, 2.0);
 while (norm(c) < norm(d))
 {
 d /= c;
 cout << c << " " <<d << "\n";
 }
 return 0;
}

The result of executing the program is:

(2, 2) (5.25, 0.25)
(2, 2) (1.375, -1.25)
% CCM0998 CPU time used: 0.0009 seconds

SEE ALSO

, , , cplxcartpol cplxerr cplxexp cplxtrig

 23

3.6 cplxtrig Trigonometric and hyperbolic functions

This section describes the trigonometric and hyperbolic functions for the data type .complex

#include <complex.h>

class complex
{

public:

friend complex sin(complex);
friend complex cos(complex);

friend complex sinh(complex);
friend complex cosh(complex);
};

complex y = sin(complex x)

Returns the sine of .x

complex y = cos(complex x)
Returns the cosine of .x

complex y = sinh(complex x)
Returns the hyperbolic sine of .x

complex y = cosh(complex x)
Returns the hyperbolic cosine of .x

RETURN VALUES

This section describes the trigonometric and hyperbolic functions for the data type .complex

#include <complex.h>

class complex
{

public:

friend complex sin(complex);
friend complex cos(complex);

friend complex sinh(complex);
friend complex cosh(complex);

};

 24

complex y = sin(complex x)

Returns the sine of .x

complex y = cos(complex x)

Returns the cosine of .x

complex y = sinh(complex x)

Returns the hyperbolic sine of .x

complex y = cosh(complex x)

Returns the hyperbolic cosine of .x

RETURN VALUES

If the imaginary part of causes an overflow, and return (0.0, 0.0). When the real part is x sinh cosh
large enough to cause an overflow, and return:sinh cosh

(HUGE, HUGE) if the cosine and sine of the imaginary part of are 0;x >=

(HUGE, -HUGE) if the cosine is 0 and the sine is < 0;>=

(-HUGE, HUGE) if the sine is 0 and the cosine is < 0.>=

(-HUGE, -HUGE) if both sine and cosine are < 0.

In all these cases, is set to ERANGE.errno
These error handling routines may be changed with the function (see).complex_error() cplxerr

 25

EXAMPLE The following program prints a range of complex numbers with their associated values:cosh()

#include <iostream.h>
#include <complex.h>
main()
{
 complex c;
 while (norm(c) < 10.0)
 {
 cout << c <<" " <<cosh(c) << "\n";
 c += complex(1.0, 1.0);
 }
 return 0;
}

The result of executing the program is:

(0, 0) (1, 0)
(1, 1) (0.83373, 0.988898)
(2, 2) (-1.56563, 3.29789)
% CCM0998 CPU time used: 0.0017 seconds

Note

The result of the function is a object.cosh() complex

The constants of type (e.g. 10.0, 1.0 etc) are used to construct complex numbers.double

SEE ALSO

, , , cplxcartpol cplxerr cplxexp cplxops

 26

4 Classes and functions for input/output

This chapter provides information concerning the following topics:

iosintro Introduction to buffering, formatting, and input/output

filebuf Buffer for file input/output

fstream Specialization of iostream and streambuf for files

ios Base class for input/output

istream Formatted and unformatted input

manip iostream manipulation

ostream Formatted and unformatted output

sbufprot Protected interface of class streambuf

sbufpub Public interface of class streambuf

sstreambuf Specialization of streambuf for arrays

stdiobuf Specialization of iostream for stdio FILEs

strstream Specialization of iostream for arrays

 27

4.1 iosintro Introduction to buffering, formatting, and input/output

This section describes the mechanisms that may be used to implement input and output in C++. The
standard I/O library is written in C++ and shows the power of this programming language.

The C++ package consists primarily of a collection of classes declared in the following header iostream
files:
<iostream.h>, <fstream.h>, <strstream.h>, <stdiostream.h>, <iomanip.h>. Although originally intended
only to support input/output, the package now supports related activities such as byte array processing.

#include <iostream.h>

typedef long streampos, streamoff;

class streambuf;
class ios;
class istream : virtual public ios;
class ostream : virtual public ios;
class iostream : public istream, public ostream;
class istream_withassign : public istream;
class ostream_withassign : public ostream;
class iostream_withassign : public iostream;

extern istream_withassign cin;
extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;

#include <fstream.h>
class filebuf : public streambuf;
class fstreambase : virtual public ios;
class fstream : public fstreambase, public iostream;
class ifstream : public fstreambase, public istream;
class ofstream : public fstreambase, public ostream;

#include <strstream.h>
class strstreambuf : public streambuf;
class strstreambase : virtual public ios;
class istrstream : public strstreambase, public istream;
class ostrstream : public strstreambase, public ostream;
class strstream : public strstreambase, public iostream;

#include <stdiostream.h>
class stdiobuf : public streambuf;
class stdiostream : public ios;

#include <iomanip.h>

 28

In the iostream package, there are some functions which return characters, but whichuse as a return int
type. is used so that all possible characters in the machine character set can be returned, as well as int
the value EOF as an error indication. A character is usually stored in a location of type or char unsigned

.char

The iostream package consists of several core classes, which provide the basic functionality for I/O
conversion and buffering, and several specialized classes derivedfrom the core classes. Both groups of
classes are listed below.

The header file supplies macro definitions which programmers can useto define new <iomanip.h>
parameterized manipulators (see).manip

Core classes

The core of the iostream package comprises the following classes:

streambuf

This is the base class for buffers. It supports insertion (also known as or) and storing putting
extraction (also known as or) of characters. Most members are inlined for efficiency. fetching getting
The public interface of class is described in and the protected interface (for streambuf sbufpub
derived classes) is described in .sbufprot

ios

This is the base class for input/output in C++. This class contains state variables that are stream
common to the various stream classes, for example, error states and formatting states. See .ios

istream

This class supports formatted and unformatted conversion from sequences of characters fetched
from s. See .streambuf istream

ostream

This class supports formatted and unformatted conversion to sequences of characters stored into
s. See .streambuf ostream

iostream

This class combines and . It is intended for situations in which bidirectional operations istream ostream
(inserting into and extracting from a single sequence of characters) are desired. See .ios

istream_withassign
ostream_withassign
iostream_withassign

These classes add assignment operators and a constructor with no operands to thecorresponding
class without assignment. The predefined streams (see below) , and , are objects cin, cout, cerr clog
of these classes. See and .istream, ostream, ios

Predefined streams

The following streams are predefined:

cin

The standard input (file descriptor 0), similar to in the C language.stdin

 29

cout

The standard output (file descriptor 1), similar to in the C language.stdout

cerr

Standard error (file descriptor 2). Output through this stream is unit-buffered, which means that
characters are passed to the C runtime system after each insert operation. (See in ostream::osfx()

 and in .) It is like in the C language.ostream ios::unitbuf ios stderr

clog

This stream is also directed to file descriptor 2, but unlike its output is buffered.cerr

cin, cerr and are tied to so that any use of these causes to be flushed.clog cout cout

In addition to the core classes enumerated above, the iostream package contains additional classes
derived from them and declared in other headers. Programmers canuse these, or they may choose to
define their own classes derived from the core iostream classes.

Classes derived from streambuf

Classes derived from define the details of how characters are produced orconsumed. streambuf
Derivation of a class from (the) is discussed in . The available streambuf protected interface sbufprot
buffer classes are:

filebuf

This buffer class supports I/O through file descriptors. Member functions support opening, closing,
and seeking. Common uses do not require the program to manipulate file descriptors. See .filebuf

stdiobuf

This buffer class supports I/O through stdio FILE structs. It is intended for use whenmixing C and
C++ code. New code should prefer to use . See .filebufs stdiobuf

strstreambuf

This buffer class stores and fetches characters from arrays of bytes in memory (i.e.,strings). See
.sstreambuf

Classes derived from istream, ostream, and iostream

Classes derived from , and specialize the core classes for use with particular istream, ostream iostream
kinds of s. These classes are:streambuf

ifstream
ofstream
fstream

These classes support formatted I/O to and from files. They use a to do the I/O. Common filebuf
operations (such as opening and closing) can be done directly on streams without explicit mention
of s. See .filebuf fstream

fstreambase

The member functions common to all three classes are defined in class .fstreambase

 30

istrstream
ostrstream
strstream

These classes support the processing of arrays of bytes (e.g. strings), and use class strstreambuf
(see).strstream

strstreambase

The member functions common to these classes are defined in class .strstreambase

stdiostream

This class specializes for FILEs (see).iostream stdio stdiobuf

BUGS Performance of programs that copy from to can sometimes be improved by breaking the tie cin cout
between and and doing explicit flushes of .cin cout cout
Some member functions of and (not discussed in this section) are present only for streambuf ios
backward compatibility with the stream package.

SEE ALSO

 filebuf , , , , , , , , , ,fstream ios istream manip ostream sbufprot sbufpub strstream)sstreambu stdiobuf

 31

4.2 filebuf Buffer for file input/output

This section describes how class should be used.filebuf

#include <iostream.h>

typedef long streamoff, streampos;

class ios
{
public:

enum seek_dir {beg, cur, end};

enum open_mode {in, out, ate, app, trunc, nocreate, noreplace,

bin, tabexp};

// and lots of other class members, see ...ios

};

#include <fstream.h>

class filebuf : public streambuf
{
public:

static const int openprot; /* default protection for open*/

filebuf();
filebuf();
filebuf(int d);
filebuf(int d, char* p, int len);

filebuf*
filebuf*
int
int
filebuf*

attach(int d);
close();
fd();
is_open();
open(const char *name, int omode, int prot=openprot);

virtual int
virtual streampos

virtual streambuf*
virtual int
virtual int

overflow(int=EOF);
seekoff(streamoff, ios::seek_dir, int omode);

setbuf(char* p, int len);
sync();
underflow();

};

 32

This section describes how class should be used.filebuf

#include <iostream.h>

typedef long streamoff, streampos;

class ios
{

public:
enum seek_dir {beg, cur, end};

enum open_mode {in, out, ate, app, trunc, nocreate, noreplace,

bin, tabexp};

// and lots of other class members, see ...ios

};

#include <fstream.h>

class filebuf : public streambuf
{
public:

static const int openprot; /* Standardschutzmodus für Öffnen*/

filebuf();
˜filebuf();
filebuf(int d);
filebuf(int d, char* p, int len);

filebuf*
filebuf*
int
int
filebuf*

attach(int d);
close();
fd();
is_open();
open(const char *name, int omode, int prot=openprot);

virtual int
virtual streampos
virtual streambuf*
virtual int
virtual int

overflow(int=EOF);
seekoff(streamoff, ios::seek_dir, int omode);
setbuf(char* p, int len);
sync();
underflow();

};

filebufs specialize s to use a file as source or sink of characters. Charactersare consumed by streambuf
doing writes to the file, and are produced by doing reads. When thefile is seekable, a allows filebuf
seeks. When the file permits reading and writing, the permits both storing and fetching. No special filebuf
action is required between gets and puts (unlike). A that is connected to a file descriptor is stdio filebuf
said to be . No protection mode is used for files in BS2000.open

 33

The (or buffer, see and) is allocated automatically if it is not specified reserve area sbufpub sbufprot
explicitly with a constructor or a call to . s can also be made with certain setbuf() filebuf unbuffered
arguments to the constructor or , in which case each character is passed to the C runtime system setbuf()
for each read or write. Unbufferedinput/output is not as fast as buffered input/output. The and get put
pointers into the reserve area are conceptually tied together and behave as a single pointer. Therefore,
the descriptions below refer to a single get/put pointer.

In the descriptions below, assume:

f is a .filebuf

mode is an representing an .int open_mode

Constructors

filebuf()

Constructs an initially closed .filebuf

filebuf(int d)

Constructs a connected to file descriptor .filebuf d

filebuf(int d, char * p, int len)

Constructs a connected to file descriptor , and initialized to use the reserve area starting at filebuf d p
and containing bytes. If is NULL, or is zero or less, the is unbuffered.len p len filebuf

Members (non-virtual)

filebuf * pfb=f.attach(int d)

Connects to an open file descriptor, normally returns , but returns 0 if is already f d. attach() &f f
open.

filebuf * pfb=f.close()

Flushes any waiting output, closes the file descriptor, and disconnects . Unless an error occurs, ’s f f
error state is cleared. returns unless errors occur, in which case it returns 0. Even if errors close() &f
occur, leaves the file descriptor and closed.close() f

int i=f.fd()

Returns , the file descriptor is connected to. If is closed, returns EOF.i f f fd()

int i=f.is_open()

Returns non-zero when is connected to a file descriptor, and zero otherwise.f

filebuf * pfb=f.open(char* name, int mode, int prot)

 34

Opens file and connects to it. If the file does not already exist, an attempt is made to create name f
it, unless or is specified in . The parameter is ignored under BS2000. ios::nocreate ios::in mode prot
Failure occurs if is already open. On success, returns . If an error occurs it returns 0. The f open() &f
members of are bits that may be or’ed together. (Because the or’ing returns an mode int, open()
takes an rather than an argument.) The meanings of these bits in are int open_mode mode
described in detail in . can take any of the values described for the C library functions fstream name

 and . This name is passed to the C runtime system. Thus any kind of control (except open() fopen()
for record-oriented input/output) is possible when opening files in C++. Please refer to section

 for a list of possible values for , and to the "C Library Functions" manual for more fstream name
detailed information on file processing.

Virtual members

int i=f.overflow(int c)

Please refer to section (streambuf::overflow()) for a general description.sbufprot
For s this means:filebuf
The contents of the buffer is written to the associated file if is attached to an openfile. Thus a new f

 area becomes available.put
On error, EOF is returned.
On success, 0 is returned.

streampos sp=f.seekoff(streamoff off, ios::seek_dir dir, int mode)

Moves the get/put pointer as designated by and . It may fail if the file that is attached to does off dir f
not support seeking, or if the attempted motion is otherwise invalid(such as attempting to seek to a
position before the beginning of file). is interpreted as a count relative to the place in the file off
specified by as described in . is ignored. returns , the new position, or dir sbufpub mode seekoff() sp
EOF if a failure occurs. The position of the file after a failure is undefined. Relative seeks in text
filesare invalid under BS2000 unless = 0.off

streambuf * psb=f.setbuf(char * ptr, int len)

Sets up the reserve area as bytes beginning at . If is NULL or is less than or equal to len ptr ptr len
0, is unbuffered. normally returns . However, if is open and a buffer has been f setbuf() &f f
allocated, no changes are made to the reserve area or to thebuffering status, and returns 0.setbuf()

int i=f.sync()

Attempts to force the state of the get/put pointer of to agree (be synchronized) withthe state of the f
file . This means it may write characters to the file if some have been buffered for output or f.fd()
attempt to reposition (seek) the file if characters have been read and buffered for input. Normally,

 returns 0, but it returns EOF if synchronization is not possible. However, does not sync() sync()
guarantee that the writes made were flushed to disk.
In BS2000, passes the contents of the buffer to the C runtime system.sync()
Synchronization uses relative seeks of the C runtime system. This is not possible fortext files under
BS2000. Therefore, the function can only be used for binary files.sync

Note

 35

Sometimes it is necessary to guarantee that certain characters are written together. To do this,
the program should use (or a constructor) to guarantee that the reserve area is at setbuf()
least as large as the number of characters that must be written together. It can then call , sync()
then store the characters, then call again.sync()

int i=f.underflow();

Please refer to section (streambuf::underflow()) for a general description.sbufprot
For s this means:filebuf
When the area is empty, the associated file is read if is attached to an open file (padding the get f

 area). On success, the next character is returned.get
On error, EOF is returned.

EXAMPLE

The following program tries to attach a variable of type to file descriptor 1, which is a , and filebuf cout
then prints a message showing the success or failure of the :attach()

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
int main()
{
 filebuf b; /* constructor with no parameters called */
 if (b.attach(1))
 {
 static char str[] = "have attached filebuf b to file descriptor 1\n";
 b.sputn(str, sizeof(str)-1);
 }
 else
 {
 cerr << "can’t attach filebuf to file descriptor 1\n";
 exit(1); /* error return */
 }
 return 0;
}

The result of executing the program is:

have attached filebuf b to file descriptor 1

% CCM0998 CPU time used: 0.0003 seconds

BUGS attach() and the constructors should test if the file descriptor they are given is open.

There is no way to force atomic reads.

SEE ALSO

fstream, , sbufprot sbufpub

 lseek() in the C runtime system

 36

4.3 fstream Specialization of iostream and streambuf for files

This section describes the classes , , and , which provide low level operations on files ifstream ofstream fstream
and streams.

#include <iostream.h>

class ios
{
public:

enum seek_dir {beg, cur, end};

enum open_mode {in, out, ate, app, trunc, nocreate, noreplace,

bin, tabexp};

enum io_state {goodbit=0, eofbit, failbit, badbit};

// see for other class members ...ios

};

#include <fstream.h>

class fstreambase : virtual public ios
{
public:

fstreambase();
˜fstreambase();
fstreambase(const char* name, int mode, int prot=filebuf::openprot);
fstreambase(int fd);
fstreambase(int fd, char * p, int l);

void
void
void

attach(int fd);
close();
open(const char* name, int mode, int prot=filebuf::openprot);

filebuf*
void

();
setbuf(char* p, int l);

};

class ifstream : public fstreambase, public istream
{
public:

ifstream();
˜ifstream();
ifstream(const char* name, int mode=ios::in, int prot=filebuf::openprot);
ifstream(int fd);
ifstream(int fd, char* p, int l);

 37

void open(const char* name, int mode=ios::in, int prot=filebuf::openprot);

filebuf* rdbuf();

};

class ofstream : public fstreambase, public ostream
{
public:

ofstream();
˜ofstream();
ofstream(const char* name, int mode=ios::out, int prot =filebuf::openprot);ofstream(int fd);
ofstream(int fd, char* p, int l);

void open(const char* name, int mode=ios::out, int prot=filebuf::openprot);

filebuf* rdbuf();

};

class fstream : public fstreambase, public iostream
{
public:

fstream();
˜fstream();
fstream(const char* name, int mode, int prot =filebuf::openprot);
fstream(int fd);
fstream(int fd, char* p, int l);

void open(const char* name, int mode, int prot=filebuf::openprot);

filebuf* rdbuf();

};

Base class contains the standard definitions for constructors and memberfunctions for derived fstreambase
classes.

ifstream, ofstream, and specialize , , and , respectively, to files. That is, the fstream istream ostream iostream
associated is a .streambuf filebuf

In the following descriptions, assume that:

f is any of , , or .ifstream ofstream fstream

mode is an representing an .int open_mode

Constructors

In , is either:xstream x

if

 38

of, or

f,

so that stands for:xstream

ifstream

ofstream, or

fstream.

The constructors for are:xstream

xstream()

Constructs an unopened .xstream

xstream(char * name, int mode, int prot)

Constructs an and opens file using as the open mode. For a description of xstream name mode
parameters and , see under below. is ignored under BS2000.name mode open() prot
The error state of the constructed indicates failure in case the fails.(io_state) xstream open

xstream(int fd)

Constructs an connected to file descriptor , which must be already open.xstream fd

xstream(int fd, char * ptr, int len)

Constructs an connected to file descriptor , and, in addition, initializes thexstream fd

associated to use the bytes at as the reserve area. If is NULL or is 0, the is filebuf len ptr ptr len filebuf
unbuffered.

Member functions

void f.attach(int fd)

Connects to the file descriptor . A failure occurs when is already connected to afile. A failure sets f fd f
 in ’s error state.ios::failbit f

void f.close()

Closes any associated and thereby breaks the connection of the to a file. ’serror state is cleared filebuf f f
except on failure, which is when the C runtime system detects afailure in the system call .close()

void f.open(char * name, int mode, int prot)

Opens file and connects to it. If the file does not already exist, an attempt is made to create it name f
unless or is set. Failure occurs if is already open, or the C runtime system call ios::nocreate ios::in f

 fails. is set in ’s error status on failure. is ignored under BS2000.open() ios::failbit f prot

name may be:

 39

any valid BS2000 file name

"link= ", where is a BS2000 link namelinkname linkname

"(SYSDTA)", "(SYSOUT)", "(SYSLST)" for the appropriate system file

"(SYSTERM)" for terminal input/output

"(INCORE)" for a temporary binary file that is only set up in virtual memory

For more detailed information, please refer to the "C Library Functions" manual.

The members of are bits that may be or’ed together. (Because the or’ingreturns an , open_mode int
 takes an rather than an argument.) The meanings of these bits in are:open() int open_mode mode

ios::app

A seek to the end of file is performed. Subsequent data written to the file is always appended to the
end of file. implies .ios::app ios::out

ios::ate

A seek to the end of the file is performed during the . does not imply .open() ios::ate ios::out

ios::in

The file is opened for input. is implied by construction and opens of s. For s it ios::in ifstream fstream
indicates that input operations should be allowed if possible. It is legal to include in the ios::in
modes of an , in which case it implies that the original file (if it exists) should not be ostream
truncated. If the file does not already exist, the fails.open()

ios::out

The file is opened for output. is implied by construction and opens of s. For ios::out ofstream fstream
it says that output operations are to be allowed.

ios::trunc

If the file already exists, its contents are truncated (discarded). This mode is implied when is ios::out
specified (including implicit specification for) and neither nor is specified.ofstream ios::ate ios::app

ios::nocreate

If the file does not already exist, the fails.open()

ios::noreplace

If the file already exists, the fails.open()

ios::bin

The file is opened as a binary file. If this parameter is omitted the file is opened as a text file.

ios::tabexp

Is ignored for binary files and input files.
For text files, the tab character (\t) is converted to the corresponding number of spaces. Tab
positions are spaced 8 columns apart (1, 9, 17, ...). When this parameter is omitted, the tab
character is mapped as the corresponding EBCDIC value in the text file (see the "C Library
Functions" manual).

 40

Note

If of class is used, is always set.open() istream ios::in
If of class is used, is always set.open() ostream ios::out

filebuf * pfb=f.rdbuf()

Returns a pointer to the associated with .filebuf f
 has the same meaning as but is typed differently.fstream::rdbuf() iostream::rdbuf()

void f.setbuf(char * p, int len)

Has the usual effect of a (see), offering space for a reserve area or requesting setbuf() filebuf()
unbuffered I/O. An error occurs if is open or the call to fails.f f.rdbuf()->setbuf

EXAMPLE

The following program opens the file . On success, text is written to the file.#TEMP

#include <fstream.h>
#include <iostream.h>
int main()
{
 static char * name = "#TEMP";
 ofstream q(name, ios::out);
 cout << " File " << name;
 if (q.ios::failbit)
 {
 cout << " is open.\n";
 q << "This is the first line of file " << name << ".\n";
 }
 else
 {
 cout << " could not be opened.\n";
 exit (1);
 }
 return 0;
}

The result of executing the program is:

File #TEMP is open.
% CCM0998 CPU time used: 0.0395 seconds

SEE ALSO

filebuf, , , ,ios istream ostream sbufpub
 in the C runtime systemclose(), open()

 41

4.4 ios Base class for input/output

This section describes the operators that are common to both input and output.

#include <iostream.h>

class ios
{
public

enum io_state {goodbit=0, eofbit, failbit, badbit};

enum open_mode {in, out, ate, app, trunc, nocreate, noreplace,

 tabexp};

enum seek_dir {beg, cur, end};

/* Format control flags */
enum
{

skipws=01,
left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000

};

static const long basefield;

/* dec | oct | hex */

static const long adjustfield;

/* left | right | internal */

static const long floatfield;

/* scientific | fixed */

public:

ios(streambuf*);
virtual ˜ios();

 42

int
static long
void
int
int
char

bad() const;
bitalloc();
clear(int state=0);
eof() const;
fail() const;
fill() const;

char
long
long
int
long&
int

fill(char);
flags() const;
flags(long);
good() const;
iword(int);
operator!() const;
operator void*();
operator const void*() const;

int
int
void* &
streambuf*
int
long
long
static void
ostream*
ostream*
long
int
int
static int

precision() const;
precision(int);
pword(int);
rdbuf();
rdstate() const;
setf(long setbits, long field);
setf(long);
sync_with_stdio();
tie();
tie(ostream*);
unsetf(long);
width() const;
width(int);
xalloc();

protected:

ios();

init(streambuf*);

private:

ios(ios&);void operator=(ios&);

};

/* Manipulators */

ios&
ios&
ios&
ostream&
ostream&
ostream&
istream&

dec(ios&);
hex(ios&);
oct(ios&);
endl(ostream& i);
ends(ostream& i);
flush(ostream&);
ws(istream&);

 43

The stream classes derived from class provide a high level interface that supportstransferring ios
formatted and unformatted information into and out of streambuf

Several enumerations are declared in class , andios, open_mode, io_state, seek_dir
format flags, to avoid polluting the global name space. The are described inthis section io_states
under "Error states". The format fields are also described in this sectionunder "Formatting". The

s are described in detail in under .open_mode fstream open()
The s are described in under .seek_dir sbufpub seekoff()

In the following descriptions, assume:

s and are s2 ios

sr is an .ios&

mode is an representing an .int open_mode

Constructors and assignment

ios(streambuf * sb)

The denoted by becomes the associated with the constructed . If streambuf sb streambuf ios sb
is null, the effect is undefined.

ios(ios& sr)
s2=s

Copying of s is not well-defined in general, therefore the constructor and assignment ios
operators are private so that the compiler complains about attempts to copy objects. ios
Copying pointers to s is usually what is required.iostream

ios()
init(streambuf * sb)

Because class is now inherited as a virtual base class, a constructor with no arguments ios
must be used. This constructor is declared protected. Therefore is declared ios::init(streambuf*)
protected and must be used for initialization of derived classes.

Error states

An has an internal (which is a collection of the bits declared as s). Members ios error state io_state
related to the error state are:

int i=s.rdstate()

Returns the current error state.

s.clear(int i)

Stores as the error state. If is zero, this clears all bits. To set a bit without clearing previously i i
set bits requires something like s.clear(ios::badbit|s.rdstate()).

int i=s.good()

 44

Returns non-zero if the error state has no bits set, zero otherwise.

int i=s.eof()

Returns non-zero if is set in the error state, zero otherwise. Normally this bit is set when eofbit
an end-of-file has been encountered during an extraction.

int i=s.fail()

Returns non-zero if either or is set in the error state, zero otherwise.badbit failbit
Normally this indicates that some extraction or conversion has failed, but the stream is still
usable. That is, once the is cleared, I/O on can usually continue.failbit s

int i=s.bad()

Returns non-zero if is set in the error state, zero otherwise. This usually indicates that badbit
some operation on has failed, a severe error, from which recovery is probably s.rdbuf()
impossible. That is, it is probably impossible to continue I/O operations on .s

Operators

Two operators are defined to allow convenient checking of the error state of an object: ios operator!()
and or . The latter converts an to a pointer so that it operator void*() operator const void*() const ios
can be compared to zero. The conversion returns0 if or is set in the error state, and failbit badbit
returns a pointer value otherwise. This pointer is not meant to be used. This allows you to write
expressions such as:

if (cin) ...

if (cin >> x) ...

The ! operator returns non-zero if or is set in the error state, which allows expressions failbit badbit
such as the following to be used:

if (!cout) ...

Formatting

An has a that is used by input and output operations to control the details of ios format state
formatting operations. The format state components may be set and examined arbitrarily by user
code. Most formatting details are controlled by using the , and functions to set flags(), setf() unsetf()
the following flags, which are declared in an enumeration in class . Three other components of ios
the format state are controlled separately with the functions , and .fill(), width() precision()

skipws

 45

If is set, whitespace is skipped on input. This applies to scalar extractions.skipws
When is not set, whitespace is not skipped before the extractor begins conversion. In skipws
this case zero width fields should not be used, as a precaution againstlooping. So if the next
character is whitespace and the variable is not set, thearithmetic extractors signal an skipws
error.
If is not set and numeric input is attempted, and the first character of the input is white skipws
space, the extraction will fail.
In case of string input the extraction will stop at the first white space character. In thespecial
case that the first character in the input stream is white space, nothing will be extracted.
In both cases the input stream will be read until the first white space character is found and
then no further.

left
right
internal

These flags control the padding of a value. When is set, the value is left-adjusted,that is, the left
fill character is added after the value. When is set, the value is right adjusted, that is, the right
fill character is added before the value. When is set, the fill character is added after any internal
leading sign or base indication, but before the value.Right-adjustment is the default if none of
these flags is set. These fields are
collectively identified by the static member, . The fill character is controlled by the ios::adjustfield

 function, and the width of padding is controlled by thefill()
 function.width()

dec
oct
hex

These flags control the conversion base of an integer value. The conversion base is10
(decimal) if is set, but if or is set, conversions are done in octal or hexadecimal, dec oct hex
respectively. If none of these is set, insertions are in decimal, but extractions are interpreted
according to the C++ lexical conventions for integral constants. These fields are collectively
identified by the static member, .The manipulators , and , can also be ios::basefield hex, dec oct
used to set the conversion base, see "Built-in Manipulators" below.

showbase

If is set, insertions are converted to an external form that can be read according to showbase
the C++ lexical conventions for integral constants. This means octals are preceded by the
character ’0’, and hexadecimals are preceded by the string ’0x’(cf.). is uppercase showbase
unset by default.

showpos

If is set, then a plus character ’+’ is inserted into a decimal conversion of a positive showpos
integral value.

uppercase

If uppercase is set, then an uppercase is used for hexadecimal output when is set, X showbase
or an uppercase is used to print floating point numbers in scientific notation.E

showpoint

 46

If showpoint is set, trailing zeros and decimal points appear in the result of a floatingpoint
conversion.

scientific
fixed

These flags control the format to which a floating point value is converted for insertion into a
stream.

If is set, the value is converted using scientific notation, where there is one digit scientific
before the decimal point and the number of digits after it is equal to the (see precision
below), which is six by default.

If is set, an uppercase introduces the exponent; a lowercase appears uppercase E e
otherwise.

If is set, the value is converted to decimal notation with digits after the fixed precision
decimal point, or six by default.

If neither nor is set, then the value is converted using either notation, scientific fixed
depending on the value: scientific notation is used if the exponent
resulting from the conversion is less than -4 or greater than or equal to the precision.
Otherwise, decimal notation is used.

If is not set, trailing zeros are removed from the result and a decimal point showpoint
appears only if it is followed by a digit.

scientific and are collectively identified by the static member, .fixed ios::floatfield

unitbuf

When set, a flush is performed by after each insertion. Unit buffering provides a ostream::osfx()
compromise between buffered output and unbuffered output. Performanceis better under unit
buffering than unbuffered output, which makes a C runtime
system call for each character output. Unit buffering makes a C runtime system call for each
insertion operation, and doesn’t require the user to call .ostream::flush()
In BS2000, a call to terminates the record and starts a new record.ostream::flush()

stdio

When set, and are flushed by after each insertion.stdout stderr ostream::osfx()
In BS2000 this means that the current line (record) is terminated and subsequent data is written
to a new line (record).

The following functions use and set the format flags and variables.

char oc=s.fill(char c)

Sets the "fill character" format state variable to and returns the previous value. isused as the c c
padding character, if necessary (see , below). The default fill or padding character is a width()
space. The positioning of the fill character is determined by the flags, see right, left, internal
above. A parameterized manipulator, , is also available for setting the fill character, see setfill

.manip

Note

The "fill character" has no effect on input.

 47

char c=s.fill()

Returns the "fill character" format state variable.

long l=s.flags()

Returns the current format flags.

long l=s.flags(long f)

Resets all the format flags to those specified in and returns the previous settings.f

int oi=s.precision(int i)

Sets the "precision" format state variable to and returns the previous value. This variable i
controls the number of significant digits inserted by the floating point inserter. The default is 6.
A parameterized manipulator, is also availablefor setting the precision, see .setprecision manip

int i=s.precision()

Returns the "precision" format state variable.

long l=s.setf(long b)

Turns on in the format flags marked in and returns the previous settings. All otherflags are s b
left unchanged. A parameterized manipulator, performs the samefunction, see setiosflags manip
.

long l=s.setf(long b, long f)

Resets in only the format flags specified by to the settings marked in , and returns the s f b
previous settings. That is, the format flags specified by are cleared in ,then reset to be those f s
marked in . For example, to change the conversion base in to be , you could write:b s hex

s.setf(ios::hex, ios::basefield)

Any previous settings to oct or dec will be cleared by this.

ios::basefield specifies the conversion base bits as candidates for change, and ios::hex
specifies the new value. clears all the bits specified by , as does a parameterized s.setf(0, f) f
manipulator, (see).resetiosflags manip

long l=s.unsetf(long b)

Unsets in the bits set in and returns the previous settings.s b

int oi=s.width(int i)

Sets the "field width" format variable to and returns the previous value.i

This has two different meanings for either output or input streams:

 48

Output: When the field width is zero (the default), inserters only insert as many characters as
necessary to represent the value being inserted. When the field width is non-zero, the
inserters insert at least that many characters.

If the value being inserted requires fewer than field-width characters to be represented, the
fill character is used to pad the value. However, the numeric inserters never truncate values,
so if the value being inserted does not fit in fieldwidth characters, more than field-width
characters are output.

The field width is always interpreted as a minimum number of characters; there is no direct
way to specify a maximum number of characters.

The field width format variable is reset to the default (zero) after each insertion.

Input: A setting of the field width applies only for the extraction of and , char* unsigned char*
see . When the field width is non-zero, it is taken to be the size of the array, and no istream
more than characters are extracted.width-1

The field width format variable is reset to the default (zero) after each extraction.

A parameterized manipulator, is also available for setting the width (see).setw manip

int i=s.width()

Returns the "field width" format variable.

User-defined format flags

Several functions are provided to allow users to derive classes from the base class that require ios
additional format flags or variables. The two static member functions and , ios::xalloc ios::bitalloc
allow several such classes to be used together without interference.

long b=ios::bitalloc()

Returns a with a single, previously unallocated, bit set. This allows users who need an long
additional flag to acquire one, and then pass it as an argument to , for example.ios::setf()

int i=ios::xalloc()

Returns a previously unused index into an array of words available for use as format state
variables by derived classes.

long & l=s.iword(int i)

When is an index allocated by , returns a reference to the th user-defined i ios::xalloc iword() i
word.

void*& vp=s.pword(int i)

When is an index allocated by , returns a reference to the th user-defined i ios::xalloc pword() i
word. is similar to , except that it has a different return type.pword() iword

Other members

streambuf* sb=s.rdbuf()

Returns a pointer to the associated with when was constructed.streambuf s s

static void ios::sync_with_stdio()

 49

Solves problems that arise when mixing stdio and iostreams. The first time it is calledit resets
the standard iostreams (; see to be streams using s. After cin, cout, cerr, clog iosintro stdiobuf
that input and output using these streams may be mixed with input and output using the
corresponding FILEs (, and) and is properly synchronized. stdin, stdout stderr sync_with_stdio()
makes and unit buffered (see ans above). Invoking cout cerr ios::unitbuf ios::stdio

 degrades performance.sync_with_stdio()
Since, in BS2000, output to stdout (SYSOUT) implies a subsequent change of line, behaviour
for C++ input/output is not as expected for synchronization with C input/output: Each C++
output is written to a separate line. If synchronization is not used, the order of output is
undefined.

Note

Unit buffering for standard input/output files under BS2000 causes each read or written
unit to close the current record and start reading or writing for the next record.

ostream * oosp=s.tie(ostream * osp)

Sets the "tie" variable to , and returns its previous value. This variable supportsosp
automatic "flushing" of s. If the tie variable is nonnull and an needs moreios ios
characters or has characters to be consumed, the pointed at by the tie variable isflushed. ios
By default, is tied initially to so that attempts to get more charactersfrom standard input cin cout
result in flushing standard output. Additionally, and aretied to by default. For cerr clog cout
other s, the tie variable is set to zero by default.ios

ostream * osp=s.tie()
Returns the "tie" variable.

Note

In the C runtime system, text output files are flushed before stdin (SYSDTA) is read.iostream::tie
affects how the C++ buffer contents are passed to the C runtime system. Information passing
from the C runtime system buffer to the file is not affected by the value of the variable.tie

Built-in manipulators

Some convenient manipulators (functions that take an , an , or an and return ios& istream& ostream&
their argument, (see)) are:manip

sr<<dec
sr>>dec

These set the conversion base format flag to 10.

sr<<hex
sr>>hex

These set the conversion base format flag to 16.

sr<<oct
sr>>oct

These set the conversion base format flag to 8.

sr>>ws
Extracts whitespace characters. See .istream

 50

sr<<endl
Ends a line by inserting a newline character and flushing. See .ostream
Under BS2000, writing a newline character to a text file implies a change of record.

sr<<ends

Ends a string by inserting a null(0) character. See .ostream

sr<<flush

Flushes . See .sr ostream

Several parameterized manipulators that operate on objects are described in ios : setbase, manip
, and .setw, setfill, setprecision, setiosflags resetiosflags

The associated with an can be manipulated by other methods than through the . streambuf ios ios
For example, characters can be stored in a queuelike through an while they are streambuf ostream
being fetched through an , or for efficiency,some part of a program may choose to do istream

 operations directly rather than through the . In most cases the program does not have streambuf ios
to worry about this possibility, because an never saves information about the internal state of a ios

. For example, if the is repositioned between extraction operationsthe extraction streambuf streambuf
(input) proceeds normally.

EXAMPLE The following program uses some data members of class to change the output format of both ios
integers and s on :double cout

#include <iostream.h>
#include <math.h>
void someoutput()
{
 int i;
 const int N = 12;
 for (i = 1; i < N; i += 2)
 {
 cout << "\t" << i << " " << pow((double) i, (double) i) << endl;
 }
 cout << "\n";
}
int main()
{
 cout << "Default format :\n";
 someoutput();
 /* show default formats for integers and doubles */
 cout.setf(ios::fixed, ios::floatfield);
 /* set the output format for floats and doubles to fixed*/
 cout << "The output format for floats and doubles is fixed :\n";
 someoutput();
 cout.setf(ios::oct, ios::basefield);
 /* set the output format for integers to octal */
 cout << "The output format for integers is octal :\n";
 someoutput();
 return 0;
}

The result of executing the program is:

 51

 Default format :
 1 1
 3 27
 5 3125
 7 823543
 9 3.8742e+08
 11 2.85312e+11
 The output format for floats and doubles is fixed :
 1 1.000000
 3 27.000000
 5 3125.000000
 7 823543.000000
 9 387420488.999998
 11 285311670610.995117
 The output format for integers is octal :
 1 1.000000
 3 27.000000
 5 3125.000000
 7 823543.000000
 11 387420488.999998
 13 285311670610.995117
% CCM0998 CPU time used: 0.0066 seconds

Note

The precision of these results depends on the machine used.

BUGS The package does not allow copying of streams. However, objects of type iostream
, and can be assigned to.istream_withassign, ostream_withassign iostream_withassign

(The standard streams , and are members of "withassign" classes, so they can be cin, cout, cerr clog
assigned to, as in .)cin=inputfstream

SEE ALSO

iosintro, , , , ,istream manip ostream sbufprot sbufpub

 52

4.5 istream Formatted and unformatted input

This section describes the member functions and related functions for formatted and istream
unformatted input.

#include <iostream.h>

typedef long streamoff, streampos;

class ios
{
public:

enum seek_dir {beg, cur, end};

enum open_mode {in, out, ate, app, trunc, nocreate, noreplace,

bin, tabexp};

/* Format control flags */
enum
{

skipws=01,
left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000

};

// see for other class members ...ios

};

class istream : virtual public ios

{

public:

istream(streambuf*);

 53

virtual
int
istream&
istream&
istream&
istream&
istream&
int
istream&
istream&
istream&
int
int
istream&
istream&
istream&
istream&
istream&
int
streampos
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&

˜istream();
gcount();
get(char* ptr, int len, char delim=’\n’);
get(unsigned char* ptr,int len, char delim=’\n’);
get(unsigned char&);
get(char&);
get(streambuf& sb, char delim =’\n’);
get();
getline(char* ptr, int len, char delim=’\n’);
getline(unsigned char* ptr, int len, char delim=’\n’);
ignore(int len=1,int delim=EOF);
ipfx(int need=0);
peek();
putback(char);
read(char* s, int n);
read(unsigned char* s, int n);
seekg(streampos);
seekg(streamoff, ios::seek_dir);
sync();
tellg();
operator>>(char*);
operator>>(char&);
operator>>(short&);
operator>>(int&);
operator>>(long&);
operator>>(float&);
operator>>(double&);
operator>>(unsigned char*);
operator>>(unsigned char&);
operator>>(unsigned short&);
operator>>(unsigned int&);
operator>>(unsigned long&);
operator>>(streambuf*);
operator>>(istream& (*)(istream&));
operator>>(ios& (*)(ios&));

};

class istream_withassign : public istream

{

public:

 54

istream_withassign();

virtual ˜istream_withassign();

istream_withassign& operator=(istream&);

istream_withassign& operator=(streambuf*);

};

extern istream_withassign cin;

istream&
ios&
ios&
ios&

ws(istream&);
dec(ios&);
hex(ios&);
oct(ios&);

istreams support interpretation of characters fetched from an associated . These are streambuf
commonly referred to as input or extraction operations.

In the following descriptions assume that:

ins is an .istream

sb is a .streambuf*

Constructors and assignment

istream(streambuf* sb)

Initializes state variables and associates buffer with the .ios sb istream

istream_withassign()

Does no initialization.
 must be initialized with an assignment.istream_withassign

istream_withassign inswa;
streambuf * sb;
inswa=sb

Associates with and initializes the entire state of .sb inswa inswa

istream_withassign inswa;
inswa=ins

Associates with and initializes the entire state of .ins.rdbuf() inswa inswa

Input prefix function

int i = ins.ipfx(int need)

 55

If ’s error state is non-zero, returns zero immediately. If necessary (even if it isnon-null), any ins
 tied to is flushed (see the description in section . Flushing is considered ios ins ios::tie() ios

necessary if either or if there are fewer than characters immediately available. If need==0 need
 is set in and iszero, then leading whitespace characters are ios::skipws ins.flags() need

extracted from .ins

ipfx() returns zero if an error occurs while skipping whitespace; otherwise it returnsnon-zero.

Formatted input functions call , while unformatted input functions call ;see below.ipfx(0) ipfx(1)

Formatted input functions (extractors)

istream ins;
ins>>x

Calls and if that returns non-zero, extracts characters from and converts them ipfx(0) ins
according to the type of . It stores the converted value in . Errors are indicated by setting the x x
error state of . means that characters in did not match the required type. ins ios::failbit ins ios::

 indicates that attempts to extract characters failed. is always returned.badbit ins

The details of conversion depend on the values of ’s format state flags and variables see ins ios
 and the type of . Extractors are defined for thefollowing types, with conversion rules as x
described below.

x might have one of the following types:

char*, unsigned char*

Characters are stored in the array pointed at by until a whitespace character is found in x
. The terminating whitespace is left in . If is non-zero, itins ins ins.width()

is taken to be the size of the array, and no more than characters are ins.width()-1
extracted. A terminating null character (0) is always stored (even when nothing else is
done because of ins’s error status). is reset to 0.ins.width()

char&, unsigned char&

A character is extracted and stored in .x

short&, unsigned short&,
int&, unsigned int&,
long&, unsigned long&

 56

Characters are extracted and converted to an integral value according to theconversion
specified in ’s format flags. Converted characters are stored in . The first character ins x
may be a sign (+ or -). After that, if , or isios::oct, ios::dec ios::hex
set in , the conversion is octal, decimal, or hexadecimal, respectively.Conversion ins.flags()
is terminated by the first "nondigit", which is left in . Octal digits are the characters to ins 0 7
. Decimal digits are the octal digits plus and . Hexadecimal digits are the decimal digits 8 9
plus the letters to (in either uppercase ora f
lowercase). If none of the conversion base format flags is set, then the number is
interpreted according to C++ lexical conventions. That is, if the first characters(after the
optional sign) are or , a hexadecimal conversion is performed onfollowing 0x 0X
hexadecimal digits. Otherwise, if the first character is a , an octalconversion is performed, 0
and in all other cases a decimal conversion is performed. is set if there are no ios::failbit
digits (not counting the in or during hex conversion) available.0 0x 0X

float&, double&

Converts the characters according to C++ syntax for a or , and stores the float double
result in . is set if there are no digits available in or if it does not begin with a x ios::failbit ins
well formed floating point number.

Note

skipws should not be unset during the extraction of numerical values. Otherwise an error
can occur.

The type and name of the extraction operations are chosen to give a convenient syntax for
sequences of input operations. The operator overloading of C++ permits extraction functions to
be declared for user-defined classes. These operations can then be used with the same syntax
as the member functions described here.

ins>>sb

If returns non-zero, extracts characters from and inserts them into . Extraction ios.ipfx(0) ios sb
stops when EOF is reached. Always returns .ins

Unformatted input functions

These functions call and proceed only if it returns non-zero:ipfx(1)

istream * insp=&ins.get(char * ptr, int len, char delim)

Extracts characters and stores them in the byte array beginning at and extending for ptr len
bytes. Extraction stops when is encountered (is left in and not stored), when delim delim ins ins
has no more characters, or when the array has only one byte left. always stores a get()
terminating null, even if it doesn’t extract any characters from because of its error status. ins

 is set only if encounters an end of file before it stores any characters.ios::failbit get()

istream * insp=&ins.get(char & c)

Extracts a single character and stores it in .c

istream * insp=&ins.get(streambuf & sb, char delim)

 57

Extracts characters from and stores them into . It stops if it encounters end of file, ins.rdbuf() sb
or a store into fails, or it encounters (which it leaves in). is set if it stops sb delim ins ios::failbit
because the store into fails.sb

int i=ins.get().

Extracts a character and returns it. is EOF if extraction encounters end of file. is i ios::failbit
never set.

istream * insp=&ins.getline(char * ptr, int len, int delim)

Does the same thing as) with the exception that it extracts a ins.get(char* ptr, int len, char delim
terminating character from . In case occurs when exactly characters have delim ins delim len
been extracted, termination is treated as being due to the array being filled, and this is left delim
in .ins

istream * insp=&ins.ignore(int n, char d)

Extracts and throws away up to characters. Extraction stops prematurely if is extracted or n d
end of file is reached. If is EOF it can never cause termination.d

istream * insp=&ins.read(char * ptr, int n)

Extracts characters and stores them in the array beginning at . If end of file is reached n ptr
before n characters have been extracted, stores whatever it can extract and sets read ios::failbit
. The number of characters extracted can be determined via .ins.gcount()

Other members

int i=ins.gcount()

Returns the number of characters extracted by the last unformatted input function. Formatted
input functions may call unformatted input functions and thereby reset this number.

int i=ins.peek()

Begins by calling . If that call returns zero or if is at end of file, it returns EOF. ins.ipfx(1) ins
Otherwise it returns the next character without extracting it.

istream* insp=&ins.putback(char c)

Attempts to back up so that the character can be read later. must be the ins.rdbuf() c c
character before ’s get pointer. (Unless other activity is modifying this is ins.rdbuf() ins.rdbuf()
the last character extracted from). If it is not, the effect is undefined. may fail (and ins putback()
set the error state). Although it is a member of , never extracts characters, so istream putback()
it does not call . However, it returns without doing anything if the error state is non-zero.ipfx()

int i=ins.sync()

Establishes consistency between internal data structures and the external source of characters.
Calls , which is a virtual function, so the details depend on the derived class. ins.rdbuf()->sync()
Returns EOF to indicate errors.

ins>>manip

 58

Equivalent to . Syntactically this looks like an extractor operation, but semantically it manip(ins)
does an arbitrary operation rather than converting a sequence of characters and storing the
result in . A predefined manipulator, , is described below.manip ws

Member functions related to positioning

istream& insp=ins.seekg(streamoff off, ios::seek_dir dir)

Repositions ’s get pointer. See for a discussion of positioning.ins.rdbuf() sbufpub

istream& insp=ins.seekg(streampos pos)

Repositions ’s get pointer. See for a discussion of positioning.ins.rdbuf() sbufpub

streampos pos=ins.tellg()

The current position of ’s get pointer. See for a discussion of positioning.ios.rdbuf() sbufpub

Manipulators

ins>>ws

Extracts whitespace characters.

ins>>dec

Sets the conversion base format flag to 10. See .ios

ins>>hex

Sets the conversion base format flag to 16. See .ios

ins>>oct

Sets the conversion base format flag to 8. See .ios

 59

EXAMPLE The following program reads one line of text, and then prints it in the reverse order.

#include <iostream.h>
const int N = 80;
char a[N]; /* text buffer */
int main()
{
 int i;
 cout << " Please enter text :\n";
 cin.unsetf(ios::skipws);
 cin.getline(text, N); /* get at most N characters */
 i = cin.gcount() - 1;
 while (i)
 {
 cout << text [--i]; /* prints line in the reverse */
 /* order */
 }
 return 0; /* successful return */
}

The result of executing the program is:

Please enter text :
TOM
MOT
% CCM0998 CPU time used: 0.0024 seconds

BUGS There is no overflow detection on conversion of integers.

SEE ALSO

, , ios manip sbufpub

 60

4.6 manip iostream manipulation

This section describes how manipulators are used with .iostream

#include <iostream.h>
#include <iomanip.h>

IOMANIPdeclare(T);

class SMANIP(T)
{
public:

SMANIP(T)(ios& (*)(ios&,T), T);
friend istream& operator>>(istream&, const SMANIP(T)&);
friend ostream& operator<<(ostream&, const SMANIP(T)&);

};

class SAPP(T)
{
public:

SAPP(T)(ios& (*)(ios&,T));
SMANIP(T) operator()(T);

};

class IMANIP(T)
{
public:

IMANIP(T)(istream& (*)(istream&,T),T);
friend istream& operator>>(istream&, const IMANIP(T)&);

};

class IAPP(T)
{
public:

IAPP(T)(istream& (*)(istream&,T));
IMANIP(T) operator()(T);

};

class OMANIP(T)
{
public:

OMANIP(T)(ostream& (*)(ostream&,T),T);
friend ostream& operator<<(ostream&, const OMANIP(T)&);

};

 61

class OAPP(T)
{
public:

OAPP(T)(ostream& (*)(ostream&,T));
OMANIP(T) operator()(T);

};

class IOMANIP(T)
{
public:

IOMANIP(T)(iostream& (*)(iostream&,T),T);
friend istream& operator>>(iostream&, const IOMANIP(T)&);
friend ostream& operator<<(iostream&, const IOMANIP(T)&);

};

class IOAPP(T)
{
public:

IOAPP(T)(iostream& (*)(iostream&,T));
IOMANIP(T) operator()(T);

};

IOMANIPdeclare(int);
IOMANIPdeclare(long);

SMANIP(int) setbase(int);

SMANIP(long) resetiosflags(long);

SMANIP(int) setfill(int);

SMANIP(long) setiosflags(long);

SMANIP(int) setprecision(int);

SMANIP(int) setw(int w);

Manipulators are values that may be "inserted into" or "extracted from" streams to
achieve some effect (other than to insert or extract values), with a convenient syntax.They enable
you to embed a function call in an expression containing series of
insertions or extractions. For example, the predefined manipulator for s, ,can be used ostream flush
as follows:

cout << flush

to flush .cout

Several classes supply manipulators, see , and . is a simple iostream ios istream ostream flush
manipulator; some manipulators take arguments, such as the predefined manipulators, and ios setfill

 (see below). The header file supplies macro definitions which programmers can setw <iomanip.h>
use to define new parameterized manipulators.

 62

Ideally, the types relating to manipulators would be parameterized as "templates." Themacros
defined in are used to simulate templates. declares the various <iomanip.h> IOMANIPdeclare(T)
classes and operators. (All code is declared inline so that no separate definitions are required.) Each
of the other s is used to construct the real names and therefore must be a single identifier. Each of T
the other macros also requires an identifier and expands to a name.

In the following descriptions, assume:

t is a , or type name.T

s is an .ios

i is an .istream

o is an .ostream

io is an .iostream

f is an .ios& (*)(ios&, T)

isf is an .istream& (*)(istream&, T)

osf is an .ostream& (*)(ostream&, T)

iof is an .iostream& (*)(iostream&, T)

n is an .int

l is a .long

s<<SMANIP(T)((ios& (*)(ios&, T)) f, T t)
s>>SMANIP(T)((ios& (*)(ios&, T)) f, T t)
s<<SAPP(T)((ios& (*)(ios&, T)) f)(T t)
s>>SAPP(T)((ios& (*)(ios&, T)) f)(T t)

Returns , where is the left operand of the insertion or extractor operator (i.e. , , or).f(s,t) s s i o io

i>>IMANIP(T)((istream& (*)(istream&, T)) isf, T t)
i>>IAPP(T)((istream& (*)(istream&, T)) isf) (T t)

Returns .isf(i,t)

o<<OMANIP(T)((ostream& (*)(ostream&, T)) osf,T t)
o<<OAPP(T)((ostream& (*)(ostream&, T)) osf) (T t)

Returns .osf(o,t)

io<<IOMANIP(T)((iostream& (*)(iostream&, T)) iof,T t)
io>>IOMANIP(T)((iostream& (*)(iostream&, T)) iof,T t)
io<<IOAPP(T)((iostream& (*)(iostream&, T)) iof) (T t)
io>>IOAPP(T)((iostream& (*)(iostream&, T)) iof) (T t)

Returns .iof(io,t)

<iomanip.h> contains some additional manipulators that take an or a argument. These int long
manipulators all have to do with changing the format state of a stream, see for further details.ios

o<<setbase(int n)
i>>setbase(int n)

Sets the conversion base format flag to be .n

 63

o<<resetiosflags(long l)
i>>resetiosflags(long l)

The format bits specified by are flushed in the stream (or) (thus callingl o i
 or).o.setf(0, l) i.setf(0, l)

o<<setfill(int n)
i>>setfill(int n)

Sets the fill character of the stream (or) to be .o i n

o<<setiosflags(long l)
i>>setiosflags(long l)

Turns on in the stream (or) the format flags marked in . (Calls oro i l o.setf(l)
).i.setf(l)

o<<setprecision(int n)
i>>setprecision(int n)

Sets the precision of the stream (or) to be .o i n

o<<setw(int n)
i>>setw(int n)

Sets the field width of the stream (left-hand operand: or) to .o i n

 64

EXAMPLE The following program shows the use of manipulators (like) which globally alter output by setw
changing private data members in :cout

#include <iostream.h>
#include <iomanip.h>
#include <string.h>
void testline(const char * const p)
{
 /* Put the parameter string onto cout and set the field width */
 /* of the cout stream to be twice the length of the string */
 int N = 2 * strlen(p);
 cout << setw(N) ;
 cout << p;
}
void someoutput(const char * const p, const char * const q)
{
 /* Given a string p and a string q containing a list of fill */
 /* characters; display the string p in a variety of fill */
 /* character contexts */
 int i;
 int M = strlen(q);
 for (i = 0; i < M; ++i)
 {
 cout << setfill(q[i]);
 testline(p);
 }
}
int main()
{
 someoutput("A Test String\n", ".,!$%&*()");
 /* Note how the output is right justified for text strings */
 return 0;
}

Note how must be included to get the function prototype for , and <iomanip.h> <string.h> strlen()
must be included to get the prototypes for and .setw() setfill()

The result of executing the program is:

.....................A Test String
,,,,,,,,,,,,,,,,,,,,,A Test String
!!!!!!!!!!!!!!!!!!!!!A Test String
$$$$$$$$$$$$$$$$$$$$$A Test String
%%%%%%%%%%%%%%%%%%%%%A Test String
&&&&&&&&&&&&&&&&&&&&&A Test String
*********************A Test String
(((((((((((((((((((((A Test String
)))))))))))))))))))))A Test String
% CCM0998 CPU time used: 0.0006 seconds

SEE ALSO

ios, ,istream ostream

 65

4.7 ostream Formatted and unformatted output

This section defines the functions for formatted and unformatted output.ostream

#include <iostream.h>

typedef long streamoff, streampos;

class ios
{
public:

enum seek_dir {beg, cur, end};
enum open_mode {in, out, ate, app, trunc, nocreate, noreplace,

bin, tabexp};

enum

{

skipws=01,
left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000

};

// see ios for other class members

} ;

class ostream : virtual public ios

{

public:

 66

ostream(streambuf*);

virtual

ostream&
int
void
ostream&
ostream&
ostream&
streampos
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&

˜ostream();

flush();
opfx();
osfx();
put(char);
seekp(streampos);
seekp(streamoff, ios::seek_dir);
tellp();
write(const char* ptr, int n);
write(const unsigned char* ptr, int n);
operator<<(const char*);
operator<<(char);
operator<<(short);
operator<<(int);
operator<<(long);
operator<<(float);
operator<<(double);
operator<<(unsigned char);
operator<<(unsigned short);
operator<<(unsigned int);
operator<<(unsigned long);
operator<<(void*);
operator<<(streambuf*);
operator<<(ostream& (*)(ostream&));
operator<<(ios& (*)(ios&));

};

class ostream_withassign : public ostream

{

public:

ostream_withassign();

virtual ˜ostream_withassign();

ostream_withassign&
ostream_withassign&

operator=(ostream&);
operator=(streambuf*);

};

extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;

 67

ostream&
ostream&
ostream&
ios&
ios&
ios&

endl(ostream&);
ends(ostream&);
flush(ostream&);
dec(ios&);
hex(ios&);
oct(ios&);

ostreams support insertion (storing) into a . These are commonly referred to as output streambuf
operations. The member functions and related functions areostream
described below.

In the following descriptions, assume:

outs is an .ostream

outswa is an .ostream_withassign

outsp is an .ostream*

c is a .char

ptr is a or .char* unsigned char*

sb is a streambuf*

i and are n int

pos is a .streampos

off is a .streamoff

dir is a .seek_dir

manip is a function with type .ostream& (*)(ostream&)

Constructors and assignment

ostream(streambuf * sb)

Initializes and state variables and associates buffer with the .ios ostream sb ostream

ostream_withassign()

Does no initialization. This allows a file static variable of this type (for example) to be used cout
before it is constructed, provided it is assigned to first.

outswa=sb

Associates with and initializes the entire state of .sb outswa outswa

outswa=outs

Associates with and initializes the entire state of .outs.rdbuf() outswa outswa

Output prefix function

int outs.opfx()

 68

If ’s error state is non-zero, returns zero immediately. If is non-null, the s outs outs.tie() ios
associated with are flushed. Returns non-zero in all other cases.outs

Output suffix function

void osfx()

Performs "suffix" actions before returning from inserters. If is set, flushes the ios::unitbuf osfx()
. If is set, flushes and . Under BS2000, flushing stdio and ostream ios::stdio osfx() stdout stderr

stderr implies, among other things, that the current line (record) is terminated. Subsequent data
is written to the next line.

osfx() is called by all predefined inserters, and should be called by user-defined inserters as
well, after any direct manipulation of the . It is not called by the binary output streambuf
functions.

Formatted output functions (inserters)

outs<<x

First calls and if that returns 0, does nothing. Otherwise inserts aouts.opfx()
sequence of characters representing into . Errors are indicated byx outs.rdbuf()
setting the error state of . is always returned.outs outs
 is converted into a sequence of characters (its representation) according to rules that depend x

on ’s type and ’s format state flags and variables (see). Inserters are defined for the x outs ios
following types, with conversion rules as described below:

char*
The representation is the sequence of characters up to (but not including) the
terminating null of the string points at.x

any integral type
(except char and unsigned char)

If x is positive, the representation contains a sequence of decimal, octal, or hexadecimal
digits with no leading zeros, depending on whether ios::dec, ios::oct, or ios::hex is set in ios’

conversion defaults to decimal.s format flags. If none of those flags are set,

If x is zero, the representation is a single zero character(0).

If decimal digits.x is negative, decimal conversion converts it to a minus sign (-) followed by

If sign (+) x is positive and ios::showpos is set, decimal conversion converts it to a plus
followed by decimal digits. The other conversions treat all values as unsigned. If ios::

representation contains 0x before the showbase is set in ios’s format flags, the hexadecimal
hexidecimal digits, or 0X if is set. If ios::uppercase ios::showbase is set, the octal
representation contains a leading 0.

void*

Pointers are converted to integral values and then converted to hexadecimal numbers as if
 were set.ios::showbase

float, double

 69

The arguments are converted according to the current values of , outs.precision() outs.
 and ’s format flags , and (see . The width() outs ios::scientific, ios::fixed ios::uppercase)ios

default value for is 6. If neither nor is set, either outs.precision() ios::scientific ios::fixed
fixed or scientific notation is chosen for the representation, depending on the value of .x

char, unsigned char

No special conversion is necessary.

After the representation is determined, padding occurs. If is greater than0 and the outs.width()
representation contains fewer than characters, then enough characters outs.width() outs.fill()
are added to bring the total number of characters to .ios.width()

If is set in ’s format flags, the sequence is left-adjusted, that is, charactersare added ios::left ios
after the characters determined above. If is set, the padding is added before the ios::right
characters determined above. If is set, the padding is added after any leading sign ios::internal
or base indication and before the characters that represent the value. is reset to 0, ios.width()
but all other format variables are unchanged. The resulting sequence (padding plus
representation) is inserted into .outs.rdbuf()

outs<<sb

If returns non-zero, the sequence of characters that can be fetched from sb are outs.opfx()
inserted into . Insertion stops when no more characters can be fetched from . No outs.rdbuf() sb
padding is performed. Always returns .outs

Unformatted output functions

ostream * outsp=&outs.put(char c)

Inserts into . Sets the error state if the insertion fails.c outs.rdbuf()

ostream * outsp=&outs.write(char * s, int n)

Inserts the characters starting at into . These characters may include zero bytes n s outs.rdbuf()
(i.e., need not be a null-terminated string).s

Other member functions

ostream * outsp=&outs.flush()

Storing characters into a does not always cause them to be consumed (e.g., written streambuf
to the external file) immediately. causes any characters that mayhave been stored but flush()
not yet consumed to be consumed by calling .outs.rdbuf()->sync
In BS2000, this means that these characters are passed to the C runtime system.

outs<<manip

Equivalent to . Syntactically this looks like an insertion operation, but semantically it manip(outs)
does an arbitrary operations rather than converting manip to a sequence of characters as do
the insertion operators. Predefined manipulators are described below.

Positioning functions

ostream * outsp=&outs.seekp(streamoff off, ios::seek_dir dir)

 70

Repositions ’s put pointer. See for a discussion of positioning.outs.rdbuf() sbufpub

ostream * outsp=&outs.seekp(streampos pos)

Repositions ’s put pointer. See for a discussion of positioning.outs.rdbuf() sbufpub

streampos pos=outs.tellp()

The current position of ’s put pointer. See for a discussion of positioning.outs.rdbuf() sbufpub

Manipulators

outs<<endl

Ends a line by inserting a newline character and flushing.
Under BS2000, the newline character is converted to a change-of-record character.

outs<<ends

Ends a string by inserting a null(0) character.

outs<<flush

Flushes outs.

outs<<dec

Sets the conversion base format flag to 10. See .ios

outs<<hex

Sets the conversion base format flag to 16. See .ios

outs<<oct

Sets the conversion base format flag to 8. See .ios

 71

EXAMPLE The following program displays a range of different data types in a variety of different formats:

#include <iostream.h>
#include <iomanip.h> /* for setw */
int main()
{
 int i = 50;
 char c = ’d’;
 double d = 1.2;
 float f = 3.1232;
 const char * const p = "abcdefghijklmnopqrstuvwxyz";
 /* show the defaults for the various data types first */
 cout << i << endl;
 cout << c << endl;
 cout << d << endl;
 cout << f << endl;
 cout << p << endl;
 cout << endl;
 cout.setf(ios::oct, ios::basefield);
 cout << i << endl; /* same number in octal */
 cout << c << endl;
 cout.setf(ios::fixed, ios::floatfield);
 /* use fixed format for floats and doubles */
 cout << d << endl;
 cout << f << endl; /* above format still holds */
 cout.setf(ios::right, ios::basefield);
 cout << setw(50) << flush;
 cout << p << endl; /* put string in field of width 50 */
 return 0;
}

The result of executing the program is:

50
d
1.2
3.1232
abcdefghijklmnopqrstuvwxyz
62
d
1.200000
3.123199
 abcdefghijklmnopqrstuvwxyz
% CCM0998 CPU time used: 0.0009 seconds

Note how the integer has been printed out in two different formats, and the ease by which the i
format of doubles and floats can be controlled. As shown in the first part of , the output library main()
provides sensible defaults, without the programmer explicitly setting them up.

SEE ALSO

ios, ,manip sbufpub

 72

4.8 sbufprot Protected interface of class streambuf

This section describes the protected and virtual parts of the class; especially interesting streambuf
for derived classes.

#include <iostream.h>

typedef long streamoff, streampos;

class ios
{

public:
enum seek_dir {beg, cur, end};

enum open_mode {in, out, ate, app, trunc, nocreate, noreplace,

bin, tabexp};

// and lots of other stuff, see ...ios

} ;

class streambuf

{

public:

streambuf();
streambuf(char* p, int len);

virtual
void

˜streambuf();
dbp();

protected:

 73

int
char*
int
char*
char*
char*
char*
void
char*
char*
void
char*
void
void
void
int
void
virtual int

allocate();
base();
blen() const;
eback();
ebuf();
egptr();
epptr();
gbump(int n);
gptr();
pbase();
pbump(int n);
pptr();
setb(char* b, char* eb, int a=0);
setg(char* eb, char* g, char* eg);
setp(char* p, char* ep);
unbuffered() const;
unbuffered(int);
doallocate();

public:

virtual int
virtual int

overflow(int c=EOF);
pbackfail(int c);

virtual streampos

seekoff(streamoff, ios::seek_dir, int =ios::in|ios:out);

virtual streampos

seekpos(streampos, int =ios::in|ios:out);

virtual streambuf*

setbuf(char* p, int len);

virtual int
virtual int

sync();
underflow();

};

streambufs implement the buffer abstraction described in . However, the sbufpub streambuf class
itself contains only basic members for manipulating the characters and normally a class derived from
streambuf is used. This section describes the interface needed by programmers who are coding a
derived class.

 74

Broadly speaking there are two kinds of member functions described here. The non-virtual functions
are provided for manipulating a in ways that are appropriate in a derived class. Their streambuf
descriptions reveal details of the implementation that would be inappropriate in the public interface.
The virtual functions permit the derived class to specialize the class in ways appropriate streambuf
to the specific sources and sinks that it is implementing.

The descriptions of the virtual functions explain the obligations of the virtuals of the derived class. If
the virtuals behave as specified, the behaves as specified inthe public interface. However, streambuf
if the virtuals do not behave as specified, then the may not behave properly, and an streambuf

 (or any other code) that relies onproper behaviour of the may not behave iostream streambuf
properly either.

In the following descriptions assume:

sb is a .streambuf*

ptr, b, eb, p, ep, g, and are eg char*

i, , and are sn len a int

c is an character (positive or EOF).int

pos is a (see).streampos sbufpub

off is a .streamoff

dir is a .seek_dir

mode is an representing an .int open_mode

Constructors

streambuf()

Constructs an empty buffer corresponding to an empty sequence.

streambuf(char * b, int len)

Constructs an empty buffer and then sets up the reserve area to be the bytes starting at .len b

The get, put, and reserve area

The protected members of present an interface to derived classes organizedaround three streambuf
areas (arrays of bytes) managed cooperatively by the base and derivedclasses. They are the get

, the , and the (or buffer). The get and the put areas are normally area put area reserve area
disjointed, but they may both overlap the reserve area,whose primary purpose is to be a resource in
which space for the put and get areascan be allocated. The get and the put areas are changed as
characters are put into and taken from the buffer, but the reserve area normally remains fixed. The
areas aredefined by a collection of values. The buffer abstraction is described in terms char*
ofpointers that point between characters, but the values must point at s. To establish a char* char
correspondence, the values should be thought of as pointing just before the byte they really char*
point at.

Functions to examine the pointers

char * ptr=sbbase()

Returns a pointer to the first byte of the reserve area. Space between and sbbase() sb->ebuf()
is the reserve area.

 75

char * ptr=sbeback()

Returns a pointer to a lower bound on . Space between and is sb->gptr() sb->eback() sb->gptr()
available for putback.

char * ptr=sbebuf()

Returns a pointer to the byte after the last byte of the reserve area.

char * ptr=sbegptr()

Returns a pointer to the byte after the last byte of the get area.

char * ptr=sbepptr()

Returns a pointer to the byte after the last byte of the put area.

char * ptr=sbgptr()

Returns a pointer to the first byte of the get area. The available characters are thosebetween
 and . The next character fetched is unless is less sb->gptr() sb->egptr() *(sbgptr()) sb->egptr()

than or equal to .sb->gptr()

char * ptr=sbpbase()

Returns a pointer to the put area base. Characters between and have sb->pbase() sb->pptr()
been stored into the buffer and not yet consumed.

char * ptr=sbpptr()

Returns a pointer to the first byte of the put area. The space between and sb->pptr() sb->epptr()
is the put area and characters are stored here.

Functions for setting the pointers

Note

To indicate a particular area (get, put, or reserve) does not exist, all the associated pointers
should be set to zero.

void sb->setb(char * b, char * eb, int i)

Sets and to and , respectively. controls whether the area is subject to base() ebuf() b eb i
automatic deletion. If is non-zero, then is deleted when is changed by another call of i b base

, or when the destructor is called for . If and are both null then we say that there setb() *sb b eb
is no reserve area. If is non-null, there is a reserve area even if is less than , so the b eb b
reserve area has zero length.

void sb->setp(char * p, char * ep)

Sets to to , and to .pptr() p, pbase() p epptr() ep

void sb->setg(char * eb, char * g, char * eg)

Sets to to , and to .eback() eb, gptr() g egptr() eg

Other non-virtual members

int i=sballocate()

 76

Tries to set up a reserve area. If a reserve area already exists or if is nonzero, sbunbuffered()
 returns 0 without doing anything. If the attempt to allocate space fails, allocate() allocate()

returns EOF, otherwise (allocation succeeds) returns allocate() allocate() is not called by any
non-virtual member function of .streambuf

int i=sbblen()

Returns the size (in s) of the current reserve area.char

void dbp()

Writes directly on file descriptor 1 information in EBCDIC about the state of the buffer. It is
intended for debugging and nothing is specified about the form of the output. It is considered
part of the protected interface because the information it prints can only be understood in
relation to that interface, but it is a public function so that it can be called anywhere during
debugging.

void sb->gbump(int n)

Increments by which may be positive or negative. No checks are made on whether the gptr() n
new value of is in bounds.gptr()

void sb->pbump(int n)

Increments by which may be positive or negative. No checks are made on whether the pptr() n
new value of is in bounds.pptr()

void sb->unbuffered(int i)
int i=sbunbuffered()

There is a private variable known as ’s buffering state.sb
 sets the value of this variable to and returns the current sb->unbuffered(i) i sb->unbuffered()

value. This state is independent of the actual allocation of a reserve area.Its primary purpose is
to determine whether a reserve area is allocated automaticallyby .allocate

Virtual member functions

Virtual functions may be redefined in derived classes to specialize the behaviour of s. This streambuf
section describes the behaviour that these virtual functions should have in any derived classes; the
next section describes the behaviour that these functions are defined to have in base class

.streambuf

int i=sbdoallocate()

Is called when determines that space is needed. is required to call allocate() doallocate() setb()
to provide a reserve area or to return EOF if it cannot. It is only called if is zero sb->unbuffered()
and is zero.sb->base()

int i=overflow(int c)

Is called to consume characters. If is not EOF, also must either save or consume c overflow() c
it. Usually it is called when the put area is full and an attempt is being made to store a new
character, but it can be called at other times. The normal actionis to consume the characters
between and , call to establish a new put area, and if store it (using pbase() pptr() setp() c!=EOF

). should return EOF to indicate an error; otherwise it should return sputc() sb->overflow()
something else.

 77

int i=sb->pbackfail(int c)

Is called when equals and an attempt has been made to putback . If this eback() gptr() c
situation can be dealt with (e.g., by repositioning an external file), should return ; pbackfail() c
otherwise it should return EOF.

streampos pos=sb->seekoff(streamoff off, seek_dir dir, int mode)

seekoff() is a public virtual member function. A detailed description is given in section . sbufpub
Repositions the and/or pointers. Not all derived classes support repositioning.get put

streampos pos=sb->seekpos(streampos pos, int mode)

seekpos() is a public virtual member function. A detailed description is given in section . sbufpub
Repositions the and/or pointers. Not all derived classes support repositioning.get put

streambuf * sb=sb->setbuf(char * ptr, int len)

Offers the array at with bytes to be used as a reserve area. The normal interpretation is ptr len
that if or are zero then this is a request to make the unbuffered. The derived class ptr len sb
may use this area or not as it chooses. If may acceptor ignore the request for unbuffered state
as it chooses. should return if it honours the request. Otherwise it should return 0.setbuf() sb

int i=sbsync()

sync() is a public virtual member function. A detailed description is given in section .sbufpub

int i=sbunderflow()

Is called to supply characters for fetching, i.e. to create a condition in which the get area is not
empty. If it is called when there are characters in the get area it should return the first character.
If the get area is empty, it should create a non-empty get area and return the next character
(which it should also leave in the get area). If there are no more characters available,
underflow() should return EOF and leave an empty get area.

The default definitions of the virtual functions

int i=sbstreambuf::doallocate()

Attempts to allocate a reserve area using operator .new

int i=sb->streambuf::overflow(int c)

streambuf::overflow() should be treated as if it had undefined behaviour. That is, derived
classes should always define it.

int i=sb->streambuf::pbackfail(int c)

Returns EOF on failure and on success.c

streampos pos=sb->streambuf::seekpos(streampos pos, int mode)

Returns Thus to define seeking in a derived class, sb->seekoff(streamoff(pos),ios::beg,mode).
it is frequently only necessary to define and use the inherited .seekoff() streambuf::seekpos()

streampos pos=sb->streambuf::seekoff(streamoff off, seekdir dir, int mode)

Returns EOF.

 78

streambuf * sb=sb->streambuf::setbuf(char* ptr, int len)

Honours the request when there is no reserve area.

int i=sbstreambuf::sync()

Returns 0 if the get area is empty and there are no unconsumed characters.
Otherwise it returns EOF.

int i=sbstreambuf::underflow()

streambuf::underflow() should be treated as if it had undefined behaviour. That is, it should
always be defined in derived classes.

 79

EXAMPLE The program prints the address of the base area of a class derived from a .streambuf

The program is an example of displaying memory contents. It could have other trivial member
functions like which return the addresses of the and areas.get_base get put .

#include <iostream.h>
const int N = 20;
class trivial : public streambuf
{
 int a; /* Some sample data in a class */
 public:
 trivial() : streambuf(new char[N], N)
 {
 /* Define trivial constructor by streambuf constructor */
 a = 0;
 };
 trivial() {};
 /* Assume streambuf destructor will delete the N byte */
 /* reserve area */
 char * get_base()
 {
 /* We need this function because the streambuf::base() */
 /* member function is protected. */
 /* We don’t need the streambuf:: qualifier since scope */
 /* is ok. */
 return base();
 };
};
int main()
{
 trivial test_var;
 cout << (void *) test_var.get_base() << endl;
 /* We must cast to void * to stop cout displaying the */
 /* contents of the first byte of the reserve area. */
 return 0;
}

The result of executing the program is:

0xc6008
% CCM0998 CPU time used: 0.0005 seconds

Note that the value stored in the pointer may vary, and that has a default format for pointer cout
values..

 80

BUGS The constructors are public for compatibility with the old stream package. They ought to be protected.

The interface for unbuffered actions is awkward. It’s hard to write and virtuals underflow() overflow()
that behave properly for unbuffered s without special casing. Also there is no way for the streambuf()
virtuals to react sensibly to multi-character gets or puts.

Although the public interface to s deals in characters and bytes, the interface to derived streambuf
classes deals in s. Since a decision had to be made on the types of the real data pointers, it char
seemed easier to reflect that choice in the types of the protected members than to duplicate all the
members with both plain and versions. But perhaps all these uses of ought char unsigned char char*
to have been with a typedef.

SEE ALSO

istream, sbufpub

 81

4.9 sbufpub Public interface of class streambuf

This section describes the public member functions of . Only objects derived from streambuf
 (e.g. , ,) are to be used in a program rather than plain streambuf filebuf strstreambuf stdiobuf
s!streambuf

#include <iostream.h>

typedef long streamoff, streampos;

class ios
{
public:

enum seek_dir {beg, cur, end};

enum open_mode {in, out, ate, app, trunc, nocreate, noreplace,

bin, tabexp};

// and lots of other classes, see .ios

};

class streambuf

{

public:

int
int
int
int
int
int
int
int
int
void

in_avail();
out_waiting();
sbumpc();
sgetc();
sgetn(char* ptr, int n);
snextc();
sputbackc(char);
sputc(int c);
sputn(const char* s, int n);
stossc();

virtual streampos

seekoff(streamoff, ios::seek_dir, int =ios::in|ios:out);

virtual streampos

seekpos(streampos, int =ios::in|ios:out);

virtual int sync();

};

 82

The class supports buffers into which characters can be inserted () or from which streambuf put
characters can be fetched (). Such a buffer is a sequence of characters,together with one or two get
pointers (a get and/or a put pointer) that define the location at which characters are to be inserted or
fetched. The pointers should be thought of as pointing between characters rather than at them.

This makes it easier to understand the boundary conditions (a pointer before the first character or
after the last). Some of the effects of getting and putting are defined by this class but most of the
details are left to specialized classes derived from (see also , and streambuf filebuf sstreambuf

).stdiobuf

Classes derived from vary in their treatments of the get and put pointers. The simplest are streambuf
unidirectional buffers which permit only gets or only puts. Such classes serve as pure sources
(producers) or sinks (consumers) of characters. Queue-like buffers (see and) strstream sstreambuf
have a put and a get pointer which move independently of each other. In such buffers characters
that are stored are held (i.e., queued) until they are later fetched. Filelike buffers (e.g.,) permit filebuf
both gets and puts but have only a single pointer. (An alternative description is that the get and put
pointers are tied together so that when one moves so does the other.)

Most member functions are organized into two phases. As far as possible,operations are streambuf
performed inline by storing into or fetching from arrays (the and the , which get area put area
together form the , or). From time to time, virtual functions are called to deal with reserve area buffer
collections of characters in the get and put areas. That is, the virtual functions are called to fetch
more characters from the ultimate producer or to flush a collection of characters to the ultimate
consumer. Generally the user of a does not have to know anything about these details, streambuf
but some of the public members pass back information about the state of the areas. Further detail
about these areas is provided in , which describes the protected interface.sbufprot

The public member functions of the class are described below. In the following streambuf
descriptions, assume that:

i, and are n len int

c is an . holds a "character" value or EOF. A "character" value is always positive even when int c
 is normally sign extended.char

sb and are sb1 streambuf*

ptr is a char*.

off is a streamoff.

pos is a .streampos

dir is a .seek_dir

mode is an representing an .int open_mode

Public member functions

int i=sbin_avail()

Returns the number of characters that are immediately available in the get area for fetching. i
characters may be fetched with a guarantee that no errors are reported.

int i=sbout_waiting()

Returns the number of characters in the put area that have not been consumed (by the ultimate
consumer).

 83

int c=sbsbumpc()

Moves the get pointer forward one character and returns the character it moved past.Returns
EOF if the get pointer is currently at the end of the sequence.

int c=sbsgetc()

Returns the character after the get pointer. Contrary to what most people expect from the name
it does move the get pointer. Returns EOF if there is no character available.not

streambuf* sb1=sb->setbuf(char * ptr, int len, int i)

Offers the bytes starting at as the reserve area. If is NULL or is zero or less, then len ptr ptr len
an unbuffered state is requested. Whether the offered area is used, or a request for unbuffered
state is honoured depends on details of the derived class.

 normally returns , but if it does not accept the offer or honour the request, it returns 0.setbuf() sb

int i=sb->sgetn(char * ptr, int n)

Fetches the characters following the get pointer and copies them to the area starting at . n ptr
When there are fewer than characters left before the end of the sequence fetches n sgetn()
whatever characters remain. repositions the get pointer following the fetched characters sgetn()
and returns the number of characters fetched.

int c=sbsnextc()

Moves the get pointer forward one character and returns the character following the new
position. If the pointer is currently at the end of the sequence or is at the end of the sequence
after moving forward, EOF is returned.

int i=sb->sputbackc(int c)

Moves the get pointer back one character. must be the current content of the sequence just c
before the get pointer. The underlying mechanism may simply back up the get pointer or may
rearrange its internal data structures so the is saved. Thus the effect of is c sputbackc()
undefined if is not the character before the get pointer.c

 returns EOF when it fails. The conditions under which it can fail depend on the sputbackc()
details of the derived class.

int i=sb->sputc(int c)

Stores after the put pointer, and moves the put pointer past the stored character; usually this c
extends the sequence. It returns EOF when an error occurs. The conditions that can cause
errors depend on the derived class.

int i=sb->sputn(const char * ptr, int n)

Stores the characters starting at after the put pointer and moves the put pointer past them. n ptr
 returns , the number of characters stored successfully. Normally is , but it may be sputn() i i n

less when errors occur.

void sb stossc()

Moves the get pointer forward one character. If the pointer started at the end of the sequence
this function has no effect.

streampos pos=sb->seekoff(streamoff off, ios::seek_dir dir, int mode)

 84

Repositions the get and/or put pointers (i.e. the abstract get and put pointers, not and pptr()
). specifies whether the put pointer (bit set) or the get pointer (bit set) gptr() mode ios::out ios::in

is to be modified. Both bits may be set in which case both pointers should be affected.

off is interpreted as a byte offset. (Notice that it is a signed quantity.) The meanings of possible
values of aredir

ios::beg

The beginning of the stream.

ios::cur

The current position.

ios::end

The end of the stream (end of file.)

A class derived from is not required to support repositioning. returns EOF if streambuf seekoff()
the class does not support repositioning. If the class does support repositioning, seekoff()
returns the new position or EOF on error.

streampos pos=sb->seekpos(streampos pos, int mode)

Repositions the streambuf get and/or put pointer to . specifies which pointers are pos mode
affected as for . Returns (the argument) or EOF if the class does not support seekoff() pos
repositioning or an error occurs. In general, a variable of type should not have streampos
arithmetic performed upon it. Two particular values have special meaning:

streampos(0)

The beginning of the file.

streampos(EOF)

Used as an error indication.

int i=sbsync()

Establishes consistency between the internal data structures and the external source or sink.
The details of this function depend on the derived class. is called to give the derived sync()
class a chance to look at the state of the areas, and synchronize them with any external
representation. Normally should consume any characters that have been stored into the sync()
put area, and if possible give back to the source any characters in the get area that have not
been fetched. When returns there should not be any unconsumed characters, and the sync()
get area should be empty. should return EOF if some kind of failure occurs. In other sync()
words, "flushes" any characters that have been stored but not yet consumed, and sync()
"gives back" any characters that may have been produced but not yet fetched.

 85

EXAMPLE The following program defines a variable of type attached to and reads in blocks of filebuf cin
characters from that until end of file is reached. Then the program determines the number of filebuf
characters read in. Each newline character (\n) represents one character:

#include <iostream.h>
#include <fstream.h>
int main()
{
 filebuf in_file(0);
 /* in_file is connected to cin */
 const int N = 10;
 int k;
 char text_b[N+1];
 /* text buffer */
 cout << "Please enter " << N << " characters :\n";
 cout.flush();
 k = in_file.sgetn(&text_b[0],N);
 cout << " " << (k+in_file.in_avail()) ;
 cout << " characters have been entered.\n";
 /* Each \n represents one character. */
 return 0;
}

The result of executing the program is:

Please enter 10 characters :
0123456789
 11 characters have been entered.
% CCM0998 CPU time used: 0.0040 seconds

The user may change the buffer size by calling the member function. Any buffer size may be setbuf()
set with .setbuf()

BUGS setbuf does not really belong in the public interface. It is there for compatibility with the stream
package.

SEE ALSO

istream, sbufprot

 86

4.10 sstreambuf Specialization of streambuf for arrays

This section describes how a string may be used as a stream buffer.

#include <iostream.h>
#include <strstream.h>

class strstreambuf : public streambuf

{

public:

strstreambuf() ;
strstreambuf(char*, int, char* pstart=0);
strstreambuf(int);
strstreambuf(unsigned char*, int, unsigned char* pstart=0);
strstreambuf(void* (*a)(long), void(*f)(void*));
 ˜strstreambuf();

void
char*

virtual int
virtual int

freeze(int n=1) ;
str();

doallocate();
overflow(int);

virtual streampos

seekoff(streamoff, ios::seek_dir, int);

virtual streambuf*

setbuf(char* p, int n);

virtual int underflow();

};

A is a that uses an array of bytes (a string) to hold the sequence of strstreambuf streambuf
characters. Given the convention that a should be interpreted as pointing just before the it char* char
really points at, the mapping between the abstract get/put pointers (see and pointers)sbufpub char*
is direct. Moving the pointers corresponds exactly to incrementing and decrementing the char*
values.

To accommodate the need for arbitrary length strings supports a dynamicmode. When strstreambuf
a is in dynamic mode, space for the character sequence is allocated as needed. When strstreambuf
the sequence is extended too far, it is copied to a new array.

In the following descriptions assume:

ssb is a .strstreambuf*

sb is a .streambuf*

ptr and are s or pstart char* unsigned char*

 87

Constructors

strstreambuf()

Constructs an empty in dynamic mode. This means that space is automatically strstreambuf
allocated to accommodate the characters that are put into the (using operators strstreambuf

 and). Because this may require copying the original characters, it is recommended new delete
that when many characters are to be inserted,the program should use (described setbuf()
below) to inform the .strstreambuf

strstreambuf(void (*a)(long), void* (*f)(void*))

Constructs an empty in dynamic mode. is used as the allocator function in strstreambuf a
dynamic mode. The argument passed to is a denoting the numberof bytes to be a long
allocated. If is null, operator is used. is used to free (or delete) areas returned by . The a new f a
argument to is a pointer to the array allocated by . If is null, operator is used.f a f delete

strstreambuf(int n)

Constructs an empty in dynamic mode. The initial allocation of space is at least strstreambuf n
bytes.

strstreambuf(char * ptr, int n, char * pstart)
strstreambuf(unsigned char * ptr, int n, unsigned char * pstart)

Constructs a to use the bytes starting at . The is in static mode; it strstreambuf ptr strstreambuf
does not grow dynamically. If is positive, then the bytes starting at are used as the n n ptr

. If is zero, is assumed to point to the beginning of a null-terminated string and strstreambuf n ptr
the bytes of that string (not including the terminating null character) constitutes the strstreambuf
. If is negative, the is assumed to continue indefinitely. The get pointer is n strstreambuf
initialized to . The put pointer is initialized to . If is null, then stores are treated as ptr pstart pstart
errors. If is non-null, then the initial sequence for fetching (the get area) consists of the pstart
bytes between and . If is null, then the initial get area consists of the entire array.ptr pstart pstart

Member functions

ssb->freeze(int n)

Inhibits (when is non-zero) or permits (when is zero) automatic deletion of the current array. n n
Deletion normally occurs when more space is needed or when is being destroyed. Only ssb
space obtained via dynamic allocation is ever freed. It is an error (and the effect is undefined)
to store characters into a that was in dynamic allocation mode and is now frozen. strstreambuf
It is possible, however, to thaw (unfreeze) such a and resume storing characters.strstreambuf

char* ptr=ssbstr()

Returns a pointer to the first of the current array and freezes . If was constructed char ssb ssb
with an explicit array, points to that array. If is in dynamic allocation mode, but nothing ptr ssb
has yet been stored, may be null.ptr

streambuf * sb=ssb->setbuf(char *, int n)

ssb remembers and the next time it does a dynamic mode allocation, it makes sure that at n
least bytes are allocated.n

 88

EXAMPLE The following program declares a variable of type and initializes it with string . The strstreambuf p str()
member function is called to ensure that the text string is successfully processed by the p

 constructor.strstreambuf

#include <strstream.h>
#include <iostream.h>
#include <string.h>
char * const p = "A very long string indeed \
 abcdefghijlkmnopqrstuvwxyz\n";
int main()
{
 strstreambuf s(p, 0, (char *) NULL);
 /* The string p is the strstreambuf. */
 /* The get pointer is to the start of p. */
 char *tp = s.str();
 cout << "length of original string " << strlen(p) << endl;
 cout << "length of strstreambuf string " << strlen(tp) << endl;
 return 0;
}

The result of executing the program is:

length of original string 77
length of strstreambuf string 77
% CCM0998 CPU time used: 0.0018 seconds

Note how the original string length has not changed..

SEE ALSO

sbufpub, strstream

 89

4.11 stdiobuf Specialization of iostream for stdio FILEs

This section describes , which is a class which specializes a to dealwith the top stdiobuf streambuf
level input/output structure FILE.

stdiobuf is intended to be used when mixing C and C++ code in the same program. New C++ code
should use .filebuf

#include <iostream.h>
#include <stdiostream.h>
#include <stdio.h>

class stdiobuf : public streambuf

{

public:

stdiobuf(FILE* f);

FILE * stdiofile();

virtual

virtual int
virtual int

˜stdiobuf();

overflow(int c=EOF);
pbackfail(int c);

virtual streampos

seekoff(streamoff, ios::seek_dir, int);

virtual
virtual int

int sync();
underflow();

};

class stdiostream : public ios

{

public:

stdiostream(FILE*);

˜stdiostream();

stdiobuf * rdbuf();

};

 90

Operations on a are reflected on the associated FILE. A is constructed in stdiobuf stdiobuf
unbuffered mode, which causes all operations to be reflected immediately in the FILE. s and seekg()

s are translated into s. has its usual meaning; if it supplies a reserve area, seekp() fseek() setbuf()
buffering is turned back on.

In the following descriptions, assume that:

std is a .stdiobuf

sts is a .stdiostream

fp is a .FILE *

Constructors

stdiobuf(FILE * fp)

Constructs a in unbuffered mode, and associates it with .stdiobuf fp

stdiostream(FILE * fp)

Constructs a , and associates it with .stdiostream fp

stdiobuf members

FILE * fp = std.stdiofile()

Returns the file pointer connected to .stdiobuf

int l = std.overflow(int c)

Returns EOF if the file connected to is closed or =EOF. Calls and returns its stdiobuf c putc()
value otherwise.

int l = std.pbackfail(int c)

Returns the value of .ungetc()

streampos sp = std.seekoff(streamoff p, ios::seek_dir d, int l)

Parameter is ignored. Returns the value returned by the associated .l fseek()

int l = std.sync()

Calls if the last operation was a write access. Returns ’s return value for the fflush() fseek()
current position.

int l = std.underflow()

Returns EOF if the file connected to is closed or end-of-file has been encountered. stdiobuf
Returns the next character otherwise.

stdiostream member

stdiobuf * std = sts.rdbuf()

Returns a pointer to the connected to .stdiobuf sts

 91

EXAMPLE The following program opens the file , attaches a variable of type to this file, and #TEMP stdiobuf
then prints a message to show if the is attached properly to the file.stdiobuf

#include <stdiostream.h>
#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
int main()
{
 FILE *qw;
 const char * const name = "#TEMP";
 if (!(qw = fopen(name, "w")))
 {
 cerr << "Can’t open " << name << ".\n";
 exit(1);
 }
 stdiobuf s(qw);
 FILE *rt = s.stdiofile();
 if (rt != qw)
 {
 cerr << "Error in stdiofile().\n";
 }
 else
 {
 cerr << "stdiofile() is working ok.\n";
 }
 return 0;
}

The result of executing the program is:

stdiofile() is working ok.
% CCM0998 CPU time used: 0.0086 seconds

This program shows that the member function of returns the correct result in this stdiofile() stdiobuf
case.

SEE ALSO

filebuf, , , istream ostream sbufpub

 92

4.12 strstream Specialization of iostream for arrays

This section describes class , which is a specialization of class . deals strstream iostream strstream
with input and output style operations on arrays of bytes.

#include <iostream.h>

class ios

{
public:enum open_mode {in, out, ate, app, trunc, nocreate, noreplace,

bin, tabexp};

// and lots of others, see ...ios

};

#include <strstream.h>

class strstreambase : public virtual ios

{

public:

strstreambuf* rdbuf();

};

class istrstream : public strstreambase, public istream

{

public:

istrstream(char*);
istrstream(char*, int);
istrstream(const char*);
istrstream(const char*, int);
 ˜istrstream();

};

class ostrstream : public strstreambase, public ostream

{

public:

ostrstream();
ostrstream(char*, int, int=ios::out);
 ˜ostrstream();

int
char*

pcount();
str();

};

 93

class strstream : public strstreambase, public iostream

{

public

strstream();
strstream(char*, int, int mode);
 ˜strstream();

char* str();

};

strstreambase provides the member function. Defining s is noti ntended.rdbuf() strstreambase

strstream specializes for storing and fetching from arrays of bytes. The iostream streambuf
associated with a is a (see).strstream strstreambuf sstreambuf

In the following descriptions assume:

ss is a .strstream

iss is an .istrstream

oss is an .ostrstream

mode is an representing an .int open_mode

Constructors

istrstream(char * cp)

Characters are fetched from the (null-terminated) string . The terminating null character is not cp
part of the sequence. Seeks () are allowed within that array.istream::seekg()

istrstream(char * cp, int len)

Characters are fetched from the array beginning at and extending for bytes.Seeks (cp len
) are allowed anywhere within that array.istream::seekg()

ostrstream()

Space is dynamically allocated to hold stored characters.

ostrstream(char * cp, int n, int mode)

Characters are stored into the array starting at and continuing for bytes. If or cp n ios::ate ios::
 is set in , then is assumed to be a null-terminated string and storing begins at the app mode cp

null character. Otherwise, storing begins at . Seeks are allowed anywhere in the array.cp

strstream()

Space is dynamically allocated to hold stored characters.

strstream(char * cp, int n, int mode)

 94

Characters are stored into the array starting at and continuing for bytes. If or cp n ios::ate ios::
 is set in , then is assumed to be a null-terminated string and storing begins at the app mode cp

null character. Otherwise, storing begins at . Seeks are allowed anywhere in the array.cp

strstreambase members

strstreambuf * ssb = iss.rdbuf()
strstreambuf * ssb = oss.rdbuf()
strstreambuf * ssb = ss.rdbuf()

rdbuf() may be used in derived classes only. Returns the connected to / / .strstreambuf iss oss ss

ostrstream members

char * cp=oss.str()

Returns a pointer to the array being used and "freezes" the array. Once has been called the str
effect of storing more characters into is undefined. If was constructed with an explicit oss oss
array, is just a pointer to the array. Otherwise, points to a dynamically allocated area. cp cp
Until is called, deleting the dynamically allocated area is the responsibility of . After str oss str
returns, the array becomes the responsibility of the user program.

int i=oss.pcount()

Returns the number of bytes that have been stored into the buffer. This is mainly of use when
binary data has been stored and does not point to a null terminated string.oss.str()

strstream member

char * cp=ss.str()

Returns a pointer to the array being used and "freezes" the array. Once has been called, str()
the effect of storing more characters into is undefined. If was constructed with an explicit ss ss
array, is just a pointer to the array. Otherwise, points to a dynamically allocated area. cp cp
Until is called, deleting the dynamically allocated area is the responsibility of . After str ss str()
returns, the array becomes the responsibility of the user program

.

 95

EXAMPLE The following program defines a string , and then reads from the string like an input stream, by str1
using the operator. Each character read from the string is printed on .>> cout

#include <iostream.h>
#include <strstream.h>
const char * const str1 = "A test string to check strstream\n";
/* Use const to make sure that the string, and the pointer */
/* to it, cannot be changed. */
int main()
{
 istrstream is((char*) str1);
 /* Declare variable is using str1 string */
 is.unsetf(ios::skipws);
 /* By default, an istrstream will skip white space on */
 /* input. Change the default behaviour by clearing the */
 /* skipws flag so that it will not skip white space on */
 /* input. */
 while (EOF != is.peek())
 {
 char c;
 is >> c;
 /* Note how the text string is accessed like an input */
 /* string. */
 cout << c;
 }
 return 0;
}

The result of executing the program is:

A test string to check strstream
% CCM0998 CPU time used: 0.0007 seconds

SEE ALSO

istream, sstreambuf

 96

5 References

The manuals are available as online manuals, see .https://bs2manuals.ts.fujitsu.com

[1] CRTE (BS2000)
Common RunTime Environment
User Guide

Target group
Programmers and system administrators in a BS2000 environment

Contents
Description of the common runtime environment for COBOL85, C and C++ objects and for "foreign
language mix"

components of CRTE

ILCS program interface

linkage examples

[2] C (BS2000)
C Library Functions
Reference Manual

Target group
C users working with BS2000
Contents

Descriptions of all C functions and macros provided by the C runtime library

Basic information, programming notes and examples for: file processing,

STXIT and contingency routines, locality

[3] C++ (BS2000)
C++ Compiler
User Guide

Target group
Cand C++ users in a BS2000 environment
Contents

Description of all activities concerned with the creation of executable C and C++ programs:
compilation, linking, loading, debugging

Programming notes and additional information on: program runtime control, file processing, event
handling, locale concept, language interfacing, C and C++ language features of the C++ compiler

https://bs2manuals.ts.fujitsu.com

 97

[4] The C++ Programming Language
by Bjarne Stroustrup

Target group
C++ programmers and programmers wishing to learn C++.
Contents
This standard work by C++ originator Bjarne Stroustrup includes an introduction to C and C++ with a
large number of examples, three chapters on software development using C++ and a complete
reference manual.

	C++ Library Functions
	Preface
	Using the C++ library functions
	The CRTE SYSLNK.CRTE.CPP library
	Relationship between the C++ library and the C runtime system

	Complex math classes and functions
	cplxintro Introduction to complex mathematics in C++
	cplxcartpol Cartesian/Polar functions
	cplxerr Error handling functions
	cplxexp Transcendental functions
	cplxops Operators
	cplxtrig Trigonometric and hyperbolic functions

	Classes and functions for input/output
	iosintro Introduction to buffering, formatting, and input/output
	filebuf Buffer for file input/output
	fstream Specialization of iostream and streambuf for files
	ios Base class for input/output
	istream Formatted and unformatted input
	manip iostream manipulation
	ostream Formatted and unformatted output
	sbufprot Protected interface of class streambuf
	sbufpub Public interface of class streambuf
	sstreambuf Specialization of streambuf for arrays
	stdiobuf Specialization of iostream for stdio FILEs
	strstream Specialization of iostream for arrays

	References

